]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: begin to split apart the manual's Decl Summary section.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
ea0a7676
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
112* Index:: Cross-references to the text.
bfa74976 113
93dd49ab
PE
114@detailmenu
115 --- The Detailed Node Listing ---
bfa74976
RS
116
117The Concepts of Bison
118
f56274a8
DJ
119* Language and Grammar:: Languages and context-free grammars,
120 as mathematical ideas.
121* Grammar in Bison:: How we represent grammars for Bison's sake.
122* Semantic Values:: Each token or syntactic grouping can have
123 a semantic value (the value of an integer,
124 the name of an identifier, etc.).
125* Semantic Actions:: Each rule can have an action containing C code.
126* GLR Parsers:: Writing parsers for general context-free languages.
127* Locations Overview:: Tracking Locations.
128* Bison Parser:: What are Bison's input and output,
129 how is the output used?
130* Stages:: Stages in writing and running Bison grammars.
131* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 132
35430378 133Writing GLR Parsers
fa7e68c3 134
35430378
JD
135* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
136* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 137* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 138* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 139
bfa74976
RS
140Examples
141
f56274a8
DJ
142* RPN Calc:: Reverse polish notation calculator;
143 a first example with no operator precedence.
144* Infix Calc:: Infix (algebraic) notation calculator.
145 Operator precedence is introduced.
bfa74976 146* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 147* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
148* Multi-function Calc:: Calculator with memory and trig functions.
149 It uses multiple data-types for semantic values.
150* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
151
152Reverse Polish Notation Calculator
153
f56274a8
DJ
154* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
155* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
156* Rpcalc Lexer:: The lexical analyzer.
157* Rpcalc Main:: The controlling function.
158* Rpcalc Error:: The error reporting function.
159* Rpcalc Generate:: Running Bison on the grammar file.
160* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
161
162Grammar Rules for @code{rpcalc}
163
13863333
AD
164* Rpcalc Input::
165* Rpcalc Line::
166* Rpcalc Expr::
bfa74976 167
342b8b6e
AD
168Location Tracking Calculator: @code{ltcalc}
169
f56274a8
DJ
170* Ltcalc Declarations:: Bison and C declarations for ltcalc.
171* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
172* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 173
bfa74976
RS
174Multi-Function Calculator: @code{mfcalc}
175
f56274a8
DJ
176* Mfcalc Declarations:: Bison declarations for multi-function calculator.
177* Mfcalc Rules:: Grammar rules for the calculator.
178* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
179
180Bison Grammar Files
181
182* Grammar Outline:: Overall layout of the grammar file.
183* Symbols:: Terminal and nonterminal symbols.
184* Rules:: How to write grammar rules.
185* Recursion:: Writing recursive rules.
186* Semantics:: Semantic values and actions.
93dd49ab 187* Locations:: Locations and actions.
bfa74976
RS
188* Declarations:: All kinds of Bison declarations are described here.
189* Multiple Parsers:: Putting more than one Bison parser in one program.
190
191Outline of a Bison Grammar
192
f56274a8 193* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 194* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
195* Bison Declarations:: Syntax and usage of the Bison declarations section.
196* Grammar Rules:: Syntax and usage of the grammar rules section.
197* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
198
199Defining Language Semantics
200
201* Value Type:: Specifying one data type for all semantic values.
202* Multiple Types:: Specifying several alternative data types.
203* Actions:: An action is the semantic definition of a grammar rule.
204* Action Types:: Specifying data types for actions to operate on.
205* Mid-Rule Actions:: Most actions go at the end of a rule.
206 This says when, why and how to use the exceptional
207 action in the middle of a rule.
1f68dca5 208* Named References:: Using named references in actions.
bfa74976 209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976 229* Decl Summary:: Table of all Bison declarations.
8e6f2266 230* %code Summary:: Inserting code into the parser source.
bfa74976
RS
231
232Parser C-Language Interface
233
f56274a8
DJ
234* Parser Function:: How to call @code{yyparse} and what it returns.
235* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
236* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
237* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
238* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
239* Lexical:: You must supply a function @code{yylex}
240 which reads tokens.
241* Error Reporting:: You must supply a function @code{yyerror}.
242* Action Features:: Special features for use in actions.
243* Internationalization:: How to let the parser speak in the user's
244 native language.
bfa74976
RS
245
246The Lexical Analyzer Function @code{yylex}
247
248* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
249* Token Values:: How @code{yylex} must return the semantic value
250 of the token it has read.
251* Token Locations:: How @code{yylex} must return the text location
252 (line number, etc.) of the token, if the
253 actions want that.
254* Pure Calling:: How the calling convention differs in a pure parser
255 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 256
13863333 257The Bison Parser Algorithm
bfa74976 258
742e4900 259* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
260* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
261* Precedence:: Operator precedence works by resolving conflicts.
262* Contextual Precedence:: When an operator's precedence depends on context.
263* Parser States:: The parser is a finite-state-machine with stack.
264* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 265* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 266* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 267* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
268
269Operator Precedence
270
271* Why Precedence:: An example showing why precedence is needed.
272* Using Precedence:: How to specify precedence in Bison grammars.
273* Precedence Examples:: How these features are used in the previous example.
274* How Precedence:: How they work.
275
276Handling Context Dependencies
277
278* Semantic Tokens:: Token parsing can depend on the semantic context.
279* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
280* Tie-in Recovery:: Lexical tie-ins have implications for how
281 error recovery rules must be written.
282
93dd49ab 283Debugging Your Parser
ec3bc396
AD
284
285* Understanding:: Understanding the structure of your parser.
286* Tracing:: Tracing the execution of your parser.
287
bfa74976
RS
288Invoking Bison
289
13863333 290* Bison Options:: All the options described in detail,
c827f760 291 in alphabetical order by short options.
bfa74976 292* Option Cross Key:: Alphabetical list of long options.
93dd49ab 293* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 294
8405b70c 295Parsers Written In Other Languages
12545799
AD
296
297* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 298* Java Parsers:: The interface to generate Java parser classes
12545799
AD
299
300C++ Parsers
301
302* C++ Bison Interface:: Asking for C++ parser generation
303* C++ Semantic Values:: %union vs. C++
304* C++ Location Values:: The position and location classes
305* C++ Parser Interface:: Instantiating and running the parser
306* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 307* A Complete C++ Example:: Demonstrating their use
12545799
AD
308
309A Complete C++ Example
310
311* Calc++ --- C++ Calculator:: The specifications
312* Calc++ Parsing Driver:: An active parsing context
313* Calc++ Parser:: A parser class
314* Calc++ Scanner:: A pure C++ Flex scanner
315* Calc++ Top Level:: Conducting the band
316
8405b70c
PB
317Java Parsers
318
f56274a8
DJ
319* Java Bison Interface:: Asking for Java parser generation
320* Java Semantic Values:: %type and %token vs. Java
321* Java Location Values:: The position and location classes
322* Java Parser Interface:: Instantiating and running the parser
323* Java Scanner Interface:: Specifying the scanner for the parser
324* Java Action Features:: Special features for use in actions
325* Java Differences:: Differences between C/C++ and Java Grammars
326* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 327
d1a1114f
AD
328Frequently Asked Questions
329
f56274a8
DJ
330* Memory Exhausted:: Breaking the Stack Limits
331* How Can I Reset the Parser:: @code{yyparse} Keeps some State
332* Strings are Destroyed:: @code{yylval} Loses Track of Strings
333* Implementing Gotos/Loops:: Control Flow in the Calculator
334* Multiple start-symbols:: Factoring closely related grammars
35430378 335* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
336* I can't build Bison:: Troubleshooting
337* Where can I find help?:: Troubleshouting
338* Bug Reports:: Troublereporting
339* More Languages:: Parsers in C++, Java, and so on
340* Beta Testing:: Experimenting development versions
341* Mailing Lists:: Meeting other Bison users
d1a1114f 342
f2b5126e
PB
343Copying This Manual
344
f56274a8 345* Copying This Manual:: License for copying this manual.
f2b5126e 346
342b8b6e 347@end detailmenu
bfa74976
RS
348@end menu
349
342b8b6e 350@node Introduction
bfa74976
RS
351@unnumbered Introduction
352@cindex introduction
353
6077da58 354@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
355annotated context-free grammar into a deterministic LR or generalized
356LR (GLR) parser employing LALR(1) parser tables. As an experimental
357feature, Bison can also generate IELR(1) or canonical LR(1) parser
358tables. Once you are proficient with Bison, you can use it to develop
359a wide range of language parsers, from those used in simple desk
360calculators to complex programming languages.
361
362Bison is upward compatible with Yacc: all properly-written Yacc
363grammars ought to work with Bison with no change. Anyone familiar
364with Yacc should be able to use Bison with little trouble. You need
365to be fluent in C or C++ programming in order to use Bison or to
366understand this manual. Java is also supported as an experimental
367feature.
368
369We begin with tutorial chapters that explain the basic concepts of
370using Bison and show three explained examples, each building on the
371last. If you don't know Bison or Yacc, start by reading these
372chapters. Reference chapters follow, which describe specific aspects
373of Bison in detail.
bfa74976 374
840341d6
JD
375Bison was written originally by Robert Corbett. Richard Stallman made
376it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
377added multi-character string literals and other features. Since then,
378Bison has grown more robust and evolved many other new features thanks
379to the hard work of a long list of volunteers. For details, see the
380@file{THANKS} and @file{ChangeLog} files included in the Bison
381distribution.
931c7513 382
df1af54c 383This edition corresponds to version @value{VERSION} of Bison.
bfa74976 384
342b8b6e 385@node Conditions
bfa74976
RS
386@unnumbered Conditions for Using Bison
387
193d7c70
PE
388The distribution terms for Bison-generated parsers permit using the
389parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 390permissions applied only when Bison was generating LALR(1)
193d7c70 391parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 392parsers could be used only in programs that were free software.
a31239f1 393
35430378 394The other GNU programming tools, such as the GNU C
c827f760 395compiler, have never
9ecbd125 396had such a requirement. They could always be used for nonfree
a31239f1
RS
397software. The reason Bison was different was not due to a special
398policy decision; it resulted from applying the usual General Public
399License to all of the Bison source code.
400
9913d6e4
JD
401The main output of the Bison utility---the Bison parser implementation
402file---contains a verbatim copy of a sizable piece of Bison, which is
403the code for the parser's implementation. (The actions from your
404grammar are inserted into this implementation at one point, but most
405of the rest of the implementation is not changed.) When we applied
406the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
407the effect was to restrict the use of Bison output to free software.
408
409We didn't change the terms because of sympathy for people who want to
410make software proprietary. @strong{Software should be free.} But we
411concluded that limiting Bison's use to free software was doing little to
412encourage people to make other software free. So we decided to make the
413practical conditions for using Bison match the practical conditions for
35430378 414using the other GNU tools.
bfa74976 415
193d7c70
PE
416This exception applies when Bison is generating code for a parser.
417You can tell whether the exception applies to a Bison output file by
418inspecting the file for text beginning with ``As a special
419exception@dots{}''. The text spells out the exact terms of the
420exception.
262aa8dd 421
f16b0819
PE
422@node Copying
423@unnumbered GNU GENERAL PUBLIC LICENSE
424@include gpl-3.0.texi
bfa74976 425
342b8b6e 426@node Concepts
bfa74976
RS
427@chapter The Concepts of Bison
428
429This chapter introduces many of the basic concepts without which the
430details of Bison will not make sense. If you do not already know how to
431use Bison or Yacc, we suggest you start by reading this chapter carefully.
432
433@menu
f56274a8
DJ
434* Language and Grammar:: Languages and context-free grammars,
435 as mathematical ideas.
436* Grammar in Bison:: How we represent grammars for Bison's sake.
437* Semantic Values:: Each token or syntactic grouping can have
438 a semantic value (the value of an integer,
439 the name of an identifier, etc.).
440* Semantic Actions:: Each rule can have an action containing C code.
441* GLR Parsers:: Writing parsers for general context-free languages.
442* Locations Overview:: Tracking Locations.
443* Bison Parser:: What are Bison's input and output,
444 how is the output used?
445* Stages:: Stages in writing and running Bison grammars.
446* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
447@end menu
448
342b8b6e 449@node Language and Grammar
bfa74976
RS
450@section Languages and Context-Free Grammars
451
bfa74976
RS
452@cindex context-free grammar
453@cindex grammar, context-free
454In order for Bison to parse a language, it must be described by a
455@dfn{context-free grammar}. This means that you specify one or more
456@dfn{syntactic groupings} and give rules for constructing them from their
457parts. For example, in the C language, one kind of grouping is called an
458`expression'. One rule for making an expression might be, ``An expression
459can be made of a minus sign and another expression''. Another would be,
460``An expression can be an integer''. As you can see, rules are often
461recursive, but there must be at least one rule which leads out of the
462recursion.
463
35430378 464@cindex BNF
bfa74976
RS
465@cindex Backus-Naur form
466The most common formal system for presenting such rules for humans to read
35430378 467is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 468order to specify the language Algol 60. Any grammar expressed in
35430378
JD
469BNF is a context-free grammar. The input to Bison is
470essentially machine-readable BNF.
bfa74976 471
35430378
JD
472@cindex LALR(1) grammars
473@cindex IELR(1) grammars
474@cindex LR(1) grammars
34a6c2d1
JD
475There are various important subclasses of context-free grammars.
476Although it can handle almost all context-free grammars, Bison is
35430378 477optimized for what are called LR(1) grammars.
34a6c2d1
JD
478In brief, in these grammars, it must be possible to tell how to parse
479any portion of an input string with just a single token of lookahead.
480For historical reasons, Bison by default is limited by the additional
35430378 481restrictions of LALR(1), which is hard to explain simply.
c827f760
PE
482@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
483more information on this.
3b1977ea 484As an experimental feature, you can escape these additional restrictions by
35430378 485requesting IELR(1) or canonical LR(1) parser tables.
34a6c2d1 486@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 487
35430378
JD
488@cindex GLR parsing
489@cindex generalized LR (GLR) parsing
676385e2 490@cindex ambiguous grammars
9d9b8b70 491@cindex nondeterministic parsing
9501dc6e 492
35430378 493Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
494roughly that the next grammar rule to apply at any point in the input is
495uniquely determined by the preceding input and a fixed, finite portion
742e4900 496(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 497grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 498apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 499grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 500lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 501With the proper declarations, Bison is also able to parse these more
35430378
JD
502general context-free grammars, using a technique known as GLR
503parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
504are able to handle any context-free grammar for which the number of
505possible parses of any given string is finite.
676385e2 506
bfa74976
RS
507@cindex symbols (abstract)
508@cindex token
509@cindex syntactic grouping
510@cindex grouping, syntactic
9501dc6e
AD
511In the formal grammatical rules for a language, each kind of syntactic
512unit or grouping is named by a @dfn{symbol}. Those which are built by
513grouping smaller constructs according to grammatical rules are called
bfa74976
RS
514@dfn{nonterminal symbols}; those which can't be subdivided are called
515@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
516corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 517corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
518
519We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
520nonterminal, mean. The tokens of C are identifiers, constants (numeric
521and string), and the various keywords, arithmetic operators and
522punctuation marks. So the terminal symbols of a grammar for C include
523`identifier', `number', `string', plus one symbol for each keyword,
524operator or punctuation mark: `if', `return', `const', `static', `int',
525`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
526(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
527lexicography, not grammar.)
528
529Here is a simple C function subdivided into tokens:
530
9edcd895
AD
531@ifinfo
532@example
533int /* @r{keyword `int'} */
14d4662b 534square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
535 @r{identifier, close-paren} */
536@{ /* @r{open-brace} */
aa08666d
AD
537 return x * x; /* @r{keyword `return', identifier, asterisk,}
538 @r{identifier, semicolon} */
9edcd895
AD
539@} /* @r{close-brace} */
540@end example
541@end ifinfo
542@ifnotinfo
bfa74976
RS
543@example
544int /* @r{keyword `int'} */
14d4662b 545square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 546@{ /* @r{open-brace} */
9edcd895 547 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
548@} /* @r{close-brace} */
549@end example
9edcd895 550@end ifnotinfo
bfa74976
RS
551
552The syntactic groupings of C include the expression, the statement, the
553declaration, and the function definition. These are represented in the
554grammar of C by nonterminal symbols `expression', `statement',
555`declaration' and `function definition'. The full grammar uses dozens of
556additional language constructs, each with its own nonterminal symbol, in
557order to express the meanings of these four. The example above is a
558function definition; it contains one declaration, and one statement. In
559the statement, each @samp{x} is an expression and so is @samp{x * x}.
560
561Each nonterminal symbol must have grammatical rules showing how it is made
562out of simpler constructs. For example, one kind of C statement is the
563@code{return} statement; this would be described with a grammar rule which
564reads informally as follows:
565
566@quotation
567A `statement' can be made of a `return' keyword, an `expression' and a
568`semicolon'.
569@end quotation
570
571@noindent
572There would be many other rules for `statement', one for each kind of
573statement in C.
574
575@cindex start symbol
576One nonterminal symbol must be distinguished as the special one which
577defines a complete utterance in the language. It is called the @dfn{start
578symbol}. In a compiler, this means a complete input program. In the C
579language, the nonterminal symbol `sequence of definitions and declarations'
580plays this role.
581
582For example, @samp{1 + 2} is a valid C expression---a valid part of a C
583program---but it is not valid as an @emph{entire} C program. In the
584context-free grammar of C, this follows from the fact that `expression' is
585not the start symbol.
586
587The Bison parser reads a sequence of tokens as its input, and groups the
588tokens using the grammar rules. If the input is valid, the end result is
589that the entire token sequence reduces to a single grouping whose symbol is
590the grammar's start symbol. If we use a grammar for C, the entire input
591must be a `sequence of definitions and declarations'. If not, the parser
592reports a syntax error.
593
342b8b6e 594@node Grammar in Bison
bfa74976
RS
595@section From Formal Rules to Bison Input
596@cindex Bison grammar
597@cindex grammar, Bison
598@cindex formal grammar
599
600A formal grammar is a mathematical construct. To define the language
601for Bison, you must write a file expressing the grammar in Bison syntax:
602a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
603
604A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 605as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
606in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
607
608The Bison representation for a terminal symbol is also called a @dfn{token
609type}. Token types as well can be represented as C-like identifiers. By
610convention, these identifiers should be upper case to distinguish them from
611nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
612@code{RETURN}. A terminal symbol that stands for a particular keyword in
613the language should be named after that keyword converted to upper case.
614The terminal symbol @code{error} is reserved for error recovery.
931c7513 615@xref{Symbols}.
bfa74976
RS
616
617A terminal symbol can also be represented as a character literal, just like
618a C character constant. You should do this whenever a token is just a
619single character (parenthesis, plus-sign, etc.): use that same character in
620a literal as the terminal symbol for that token.
621
931c7513
RS
622A third way to represent a terminal symbol is with a C string constant
623containing several characters. @xref{Symbols}, for more information.
624
bfa74976
RS
625The grammar rules also have an expression in Bison syntax. For example,
626here is the Bison rule for a C @code{return} statement. The semicolon in
627quotes is a literal character token, representing part of the C syntax for
628the statement; the naked semicolon, and the colon, are Bison punctuation
629used in every rule.
630
631@example
632stmt: RETURN expr ';'
633 ;
634@end example
635
636@noindent
637@xref{Rules, ,Syntax of Grammar Rules}.
638
342b8b6e 639@node Semantic Values
bfa74976
RS
640@section Semantic Values
641@cindex semantic value
642@cindex value, semantic
643
644A formal grammar selects tokens only by their classifications: for example,
645if a rule mentions the terminal symbol `integer constant', it means that
646@emph{any} integer constant is grammatically valid in that position. The
647precise value of the constant is irrelevant to how to parse the input: if
648@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 649grammatical.
bfa74976
RS
650
651But the precise value is very important for what the input means once it is
652parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6533989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
654has both a token type and a @dfn{semantic value}. @xref{Semantics,
655,Defining Language Semantics},
bfa74976
RS
656for details.
657
658The token type is a terminal symbol defined in the grammar, such as
659@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
660you need to know to decide where the token may validly appear and how to
661group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 662except their types.
bfa74976
RS
663
664The semantic value has all the rest of the information about the
665meaning of the token, such as the value of an integer, or the name of an
666identifier. (A token such as @code{','} which is just punctuation doesn't
667need to have any semantic value.)
668
669For example, an input token might be classified as token type
670@code{INTEGER} and have the semantic value 4. Another input token might
671have the same token type @code{INTEGER} but value 3989. When a grammar
672rule says that @code{INTEGER} is allowed, either of these tokens is
673acceptable because each is an @code{INTEGER}. When the parser accepts the
674token, it keeps track of the token's semantic value.
675
676Each grouping can also have a semantic value as well as its nonterminal
677symbol. For example, in a calculator, an expression typically has a
678semantic value that is a number. In a compiler for a programming
679language, an expression typically has a semantic value that is a tree
680structure describing the meaning of the expression.
681
342b8b6e 682@node Semantic Actions
bfa74976
RS
683@section Semantic Actions
684@cindex semantic actions
685@cindex actions, semantic
686
687In order to be useful, a program must do more than parse input; it must
688also produce some output based on the input. In a Bison grammar, a grammar
689rule can have an @dfn{action} made up of C statements. Each time the
690parser recognizes a match for that rule, the action is executed.
691@xref{Actions}.
13863333 692
bfa74976
RS
693Most of the time, the purpose of an action is to compute the semantic value
694of the whole construct from the semantic values of its parts. For example,
695suppose we have a rule which says an expression can be the sum of two
696expressions. When the parser recognizes such a sum, each of the
697subexpressions has a semantic value which describes how it was built up.
698The action for this rule should create a similar sort of value for the
699newly recognized larger expression.
700
701For example, here is a rule that says an expression can be the sum of
702two subexpressions:
703
704@example
705expr: expr '+' expr @{ $$ = $1 + $3; @}
706 ;
707@end example
708
709@noindent
710The action says how to produce the semantic value of the sum expression
711from the values of the two subexpressions.
712
676385e2 713@node GLR Parsers
35430378
JD
714@section Writing GLR Parsers
715@cindex GLR parsing
716@cindex generalized LR (GLR) parsing
676385e2
PH
717@findex %glr-parser
718@cindex conflicts
719@cindex shift/reduce conflicts
fa7e68c3 720@cindex reduce/reduce conflicts
676385e2 721
34a6c2d1 722In some grammars, Bison's deterministic
35430378 723LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
724certain grammar rule at a given point. That is, it may not be able to
725decide (on the basis of the input read so far) which of two possible
726reductions (applications of a grammar rule) applies, or whether to apply
727a reduction or read more of the input and apply a reduction later in the
728input. These are known respectively as @dfn{reduce/reduce} conflicts
729(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
730(@pxref{Shift/Reduce}).
731
35430378 732To use a grammar that is not easily modified to be LR(1), a
9501dc6e 733more general parsing algorithm is sometimes necessary. If you include
676385e2 734@code{%glr-parser} among the Bison declarations in your file
35430378
JD
735(@pxref{Grammar Outline}), the result is a Generalized LR
736(GLR) parser. These parsers handle Bison grammars that
9501dc6e 737contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 738declarations) identically to deterministic parsers. However, when
9501dc6e 739faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 740GLR parsers use the simple expedient of doing both,
9501dc6e
AD
741effectively cloning the parser to follow both possibilities. Each of
742the resulting parsers can again split, so that at any given time, there
743can be any number of possible parses being explored. The parsers
676385e2
PH
744proceed in lockstep; that is, all of them consume (shift) a given input
745symbol before any of them proceed to the next. Each of the cloned
746parsers eventually meets one of two possible fates: either it runs into
747a parsing error, in which case it simply vanishes, or it merges with
748another parser, because the two of them have reduced the input to an
749identical set of symbols.
750
751During the time that there are multiple parsers, semantic actions are
752recorded, but not performed. When a parser disappears, its recorded
753semantic actions disappear as well, and are never performed. When a
754reduction makes two parsers identical, causing them to merge, Bison
755records both sets of semantic actions. Whenever the last two parsers
756merge, reverting to the single-parser case, Bison resolves all the
757outstanding actions either by precedences given to the grammar rules
758involved, or by performing both actions, and then calling a designated
759user-defined function on the resulting values to produce an arbitrary
760merged result.
761
fa7e68c3 762@menu
35430378
JD
763* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
764* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 765* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 766* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
767@end menu
768
769@node Simple GLR Parsers
35430378
JD
770@subsection Using GLR on Unambiguous Grammars
771@cindex GLR parsing, unambiguous grammars
772@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
773@findex %glr-parser
774@findex %expect-rr
775@cindex conflicts
776@cindex reduce/reduce conflicts
777@cindex shift/reduce conflicts
778
35430378
JD
779In the simplest cases, you can use the GLR algorithm
780to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 781Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
782
783Consider a problem that
784arises in the declaration of enumerated and subrange types in the
785programming language Pascal. Here are some examples:
786
787@example
788type subrange = lo .. hi;
789type enum = (a, b, c);
790@end example
791
792@noindent
793The original language standard allows only numeric
794literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 795and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
79610206) and many other
797Pascal implementations allow arbitrary expressions there. This gives
798rise to the following situation, containing a superfluous pair of
799parentheses:
800
801@example
802type subrange = (a) .. b;
803@end example
804
805@noindent
806Compare this to the following declaration of an enumerated
807type with only one value:
808
809@example
810type enum = (a);
811@end example
812
813@noindent
814(These declarations are contrived, but they are syntactically
815valid, and more-complicated cases can come up in practical programs.)
816
817These two declarations look identical until the @samp{..} token.
35430378 818With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
819possible to decide between the two forms when the identifier
820@samp{a} is parsed. It is, however, desirable
821for a parser to decide this, since in the latter case
822@samp{a} must become a new identifier to represent the enumeration
823value, while in the former case @samp{a} must be evaluated with its
824current meaning, which may be a constant or even a function call.
825
826You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
827to be resolved later, but this typically requires substantial
828contortions in both semantic actions and large parts of the
829grammar, where the parentheses are nested in the recursive rules for
830expressions.
831
832You might think of using the lexer to distinguish between the two
833forms by returning different tokens for currently defined and
834undefined identifiers. But if these declarations occur in a local
835scope, and @samp{a} is defined in an outer scope, then both forms
836are possible---either locally redefining @samp{a}, or using the
837value of @samp{a} from the outer scope. So this approach cannot
838work.
839
e757bb10 840A simple solution to this problem is to declare the parser to
35430378
JD
841use the GLR algorithm.
842When the GLR parser reaches the critical state, it
fa7e68c3
PE
843merely splits into two branches and pursues both syntax rules
844simultaneously. Sooner or later, one of them runs into a parsing
845error. If there is a @samp{..} token before the next
846@samp{;}, the rule for enumerated types fails since it cannot
847accept @samp{..} anywhere; otherwise, the subrange type rule
848fails since it requires a @samp{..} token. So one of the branches
849fails silently, and the other one continues normally, performing
850all the intermediate actions that were postponed during the split.
851
852If the input is syntactically incorrect, both branches fail and the parser
853reports a syntax error as usual.
854
855The effect of all this is that the parser seems to ``guess'' the
856correct branch to take, or in other words, it seems to use more
35430378
JD
857lookahead than the underlying LR(1) algorithm actually allows
858for. In this example, LR(2) would suffice, but also some cases
859that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 860
35430378 861In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
862and the current Bison parser even takes exponential time and space
863for some grammars. In practice, this rarely happens, and for many
864grammars it is possible to prove that it cannot happen.
865The present example contains only one conflict between two
866rules, and the type-declaration context containing the conflict
867cannot be nested. So the number of
868branches that can exist at any time is limited by the constant 2,
869and the parsing time is still linear.
870
871Here is a Bison grammar corresponding to the example above. It
872parses a vastly simplified form of Pascal type declarations.
873
874@example
875%token TYPE DOTDOT ID
876
877@group
878%left '+' '-'
879%left '*' '/'
880@end group
881
882%%
883
884@group
885type_decl : TYPE ID '=' type ';'
886 ;
887@end group
888
889@group
890type : '(' id_list ')'
891 | expr DOTDOT expr
892 ;
893@end group
894
895@group
896id_list : ID
897 | id_list ',' ID
898 ;
899@end group
900
901@group
902expr : '(' expr ')'
903 | expr '+' expr
904 | expr '-' expr
905 | expr '*' expr
906 | expr '/' expr
907 | ID
908 ;
909@end group
910@end example
911
35430378 912When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
913about one reduce/reduce conflict. In the conflicting situation the
914parser chooses one of the alternatives, arbitrarily the one
915declared first. Therefore the following correct input is not
916recognized:
917
918@example
919type t = (a) .. b;
920@end example
921
35430378 922The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
923to be silent about the one known reduce/reduce conflict, by adding
924these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
925@samp{%%}):
926
927@example
928%glr-parser
929%expect-rr 1
930@end example
931
932@noindent
933No change in the grammar itself is required. Now the
934parser recognizes all valid declarations, according to the
935limited syntax above, transparently. In fact, the user does not even
936notice when the parser splits.
937
35430378 938So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
939almost without disadvantages. Even in simple cases like this, however,
940there are at least two potential problems to beware. First, always
35430378
JD
941analyze the conflicts reported by Bison to make sure that GLR
942splitting is only done where it is intended. A GLR parser
f8e1c9e5 943splitting inadvertently may cause problems less obvious than an
35430378 944LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
945conflict. Second, consider interactions with the lexer (@pxref{Semantic
946Tokens}) with great care. Since a split parser consumes tokens without
947performing any actions during the split, the lexer cannot obtain
948information via parser actions. Some cases of lexer interactions can be
35430378 949eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
950lexer to the parser. You must check the remaining cases for
951correctness.
952
953In our example, it would be safe for the lexer to return tokens based on
954their current meanings in some symbol table, because no new symbols are
955defined in the middle of a type declaration. Though it is possible for
956a parser to define the enumeration constants as they are parsed, before
957the type declaration is completed, it actually makes no difference since
958they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
959
960@node Merging GLR Parses
35430378
JD
961@subsection Using GLR to Resolve Ambiguities
962@cindex GLR parsing, ambiguous grammars
963@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
964@findex %dprec
965@findex %merge
966@cindex conflicts
967@cindex reduce/reduce conflicts
968
2a8d363a 969Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
970
971@example
972%@{
38a92d50
PE
973 #include <stdio.h>
974 #define YYSTYPE char const *
975 int yylex (void);
976 void yyerror (char const *);
676385e2
PH
977%@}
978
979%token TYPENAME ID
980
981%right '='
982%left '+'
983
984%glr-parser
985
986%%
987
fae437e8 988prog :
676385e2
PH
989 | prog stmt @{ printf ("\n"); @}
990 ;
991
992stmt : expr ';' %dprec 1
993 | decl %dprec 2
994 ;
995
2a8d363a 996expr : ID @{ printf ("%s ", $$); @}
fae437e8 997 | TYPENAME '(' expr ')'
2a8d363a
AD
998 @{ printf ("%s <cast> ", $1); @}
999 | expr '+' expr @{ printf ("+ "); @}
1000 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1001 ;
1002
fae437e8 1003decl : TYPENAME declarator ';'
2a8d363a 1004 @{ printf ("%s <declare> ", $1); @}
676385e2 1005 | TYPENAME declarator '=' expr ';'
2a8d363a 1006 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1007 ;
1008
2a8d363a 1009declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1010 | '(' declarator ')'
1011 ;
1012@end example
1013
1014@noindent
1015This models a problematic part of the C++ grammar---the ambiguity between
1016certain declarations and statements. For example,
1017
1018@example
1019T (x) = y+z;
1020@end example
1021
1022@noindent
1023parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1024(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1025@samp{x} as an @code{ID}).
676385e2 1026Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1027@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1028time it encounters @code{x} in the example above. Since this is a
35430378 1029GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1030each choice of resolving the reduce/reduce conflict.
1031Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1032however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1033ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1034the other reduces @code{stmt : decl}, after which both parsers are in an
1035identical state: they've seen @samp{prog stmt} and have the same unprocessed
1036input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1037
35430378 1038At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1039grammar of how to choose between the competing parses.
1040In the example above, the two @code{%dprec}
e757bb10 1041declarations specify that Bison is to give precedence
fa7e68c3 1042to the parse that interprets the example as a
676385e2
PH
1043@code{decl}, which implies that @code{x} is a declarator.
1044The parser therefore prints
1045
1046@example
fae437e8 1047"x" y z + T <init-declare>
676385e2
PH
1048@end example
1049
fa7e68c3
PE
1050The @code{%dprec} declarations only come into play when more than one
1051parse survives. Consider a different input string for this parser:
676385e2
PH
1052
1053@example
1054T (x) + y;
1055@end example
1056
1057@noindent
35430378 1058This is another example of using GLR to parse an unambiguous
fa7e68c3 1059construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1060Here, there is no ambiguity (this cannot be parsed as a declaration).
1061However, at the time the Bison parser encounters @code{x}, it does not
1062have enough information to resolve the reduce/reduce conflict (again,
1063between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1064case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1065into two, one assuming that @code{x} is an @code{expr}, and the other
1066assuming @code{x} is a @code{declarator}. The second of these parsers
1067then vanishes when it sees @code{+}, and the parser prints
1068
1069@example
fae437e8 1070x T <cast> y +
676385e2
PH
1071@end example
1072
1073Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1074the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1075actions of the two possible parsers, rather than choosing one over the
1076other. To do so, you could change the declaration of @code{stmt} as
1077follows:
1078
1079@example
1080stmt : expr ';' %merge <stmtMerge>
1081 | decl %merge <stmtMerge>
1082 ;
1083@end example
1084
1085@noindent
676385e2
PH
1086and define the @code{stmtMerge} function as:
1087
1088@example
38a92d50
PE
1089static YYSTYPE
1090stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1091@{
1092 printf ("<OR> ");
1093 return "";
1094@}
1095@end example
1096
1097@noindent
1098with an accompanying forward declaration
1099in the C declarations at the beginning of the file:
1100
1101@example
1102%@{
38a92d50 1103 #define YYSTYPE char const *
676385e2
PH
1104 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1105%@}
1106@end example
1107
1108@noindent
fa7e68c3
PE
1109With these declarations, the resulting parser parses the first example
1110as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1111
1112@example
fae437e8 1113"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1114@end example
1115
fa7e68c3 1116Bison requires that all of the
e757bb10 1117productions that participate in any particular merge have identical
fa7e68c3
PE
1118@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1119and the parser will report an error during any parse that results in
1120the offending merge.
9501dc6e 1121
32c29292
JD
1122@node GLR Semantic Actions
1123@subsection GLR Semantic Actions
1124
1125@cindex deferred semantic actions
1126By definition, a deferred semantic action is not performed at the same time as
1127the associated reduction.
1128This raises caveats for several Bison features you might use in a semantic
35430378 1129action in a GLR parser.
32c29292
JD
1130
1131@vindex yychar
35430378 1132@cindex GLR parsers and @code{yychar}
32c29292 1133@vindex yylval
35430378 1134@cindex GLR parsers and @code{yylval}
32c29292 1135@vindex yylloc
35430378 1136@cindex GLR parsers and @code{yylloc}
32c29292 1137In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1138the lookahead token present at the time of the associated reduction.
32c29292
JD
1139After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1140you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1141lookahead token's semantic value and location, if any.
32c29292
JD
1142In a nondeferred semantic action, you can also modify any of these variables to
1143influence syntax analysis.
742e4900 1144@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1145
1146@findex yyclearin
35430378 1147@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1148In a deferred semantic action, it's too late to influence syntax analysis.
1149In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1150shallow copies of the values they had at the time of the associated reduction.
1151For this reason alone, modifying them is dangerous.
1152Moreover, the result of modifying them is undefined and subject to change with
1153future versions of Bison.
1154For example, if a semantic action might be deferred, you should never write it
1155to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1156memory referenced by @code{yylval}.
1157
1158@findex YYERROR
35430378 1159@cindex GLR parsers and @code{YYERROR}
32c29292 1160Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1161(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1162initiate error recovery.
35430378 1163During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1164the same as its effect in a deterministic parser.
32c29292
JD
1165In a deferred semantic action, its effect is undefined.
1166@c The effect is probably a syntax error at the split point.
1167
8710fc41 1168Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1169describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1170
fa7e68c3 1171@node Compiler Requirements
35430378 1172@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1173@cindex @code{inline}
35430378 1174@cindex GLR parsers and @code{inline}
fa7e68c3 1175
35430378 1176The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1177later. In addition, they use the @code{inline} keyword, which is not
1178C89, but is C99 and is a common extension in pre-C99 compilers. It is
1179up to the user of these parsers to handle
9501dc6e
AD
1180portability issues. For instance, if using Autoconf and the Autoconf
1181macro @code{AC_C_INLINE}, a mere
1182
1183@example
1184%@{
38a92d50 1185 #include <config.h>
9501dc6e
AD
1186%@}
1187@end example
1188
1189@noindent
1190will suffice. Otherwise, we suggest
1191
1192@example
1193%@{
38a92d50
PE
1194 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1195 #define inline
1196 #endif
9501dc6e
AD
1197%@}
1198@end example
676385e2 1199
342b8b6e 1200@node Locations Overview
847bf1f5
AD
1201@section Locations
1202@cindex location
95923bd6
AD
1203@cindex textual location
1204@cindex location, textual
847bf1f5
AD
1205
1206Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1207and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1208the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1209Bison provides a mechanism for handling these locations.
1210
72d2299c 1211Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1212associated location, but the type of locations is the same for all tokens and
72d2299c 1213groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1214structure for storing locations (@pxref{Locations}, for more details).
1215
1216Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1217set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1218is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1219@code{@@3}.
1220
1221When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1222of its left hand side (@pxref{Actions}). In the same way, another default
1223action is used for locations. However, the action for locations is general
847bf1f5 1224enough for most cases, meaning there is usually no need to describe for each
72d2299c 1225rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1226grouping, the default behavior of the output parser is to take the beginning
1227of the first symbol, and the end of the last symbol.
1228
342b8b6e 1229@node Bison Parser
9913d6e4 1230@section Bison Output: the Parser Implementation File
bfa74976
RS
1231@cindex Bison parser
1232@cindex Bison utility
1233@cindex lexical analyzer, purpose
1234@cindex parser
1235
9913d6e4
JD
1236When you run Bison, you give it a Bison grammar file as input. The
1237most important output is a C source file that implements a parser for
1238the language described by the grammar. This parser is called a
1239@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1240implementation file}. Keep in mind that the Bison utility and the
1241Bison parser are two distinct programs: the Bison utility is a program
1242whose output is the Bison parser implementation file that becomes part
1243of your program.
bfa74976
RS
1244
1245The job of the Bison parser is to group tokens into groupings according to
1246the grammar rules---for example, to build identifiers and operators into
1247expressions. As it does this, it runs the actions for the grammar rules it
1248uses.
1249
704a47c4
AD
1250The tokens come from a function called the @dfn{lexical analyzer} that
1251you must supply in some fashion (such as by writing it in C). The Bison
1252parser calls the lexical analyzer each time it wants a new token. It
1253doesn't know what is ``inside'' the tokens (though their semantic values
1254may reflect this). Typically the lexical analyzer makes the tokens by
1255parsing characters of text, but Bison does not depend on this.
1256@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1257
9913d6e4
JD
1258The Bison parser implementation file is C code which defines a
1259function named @code{yyparse} which implements that grammar. This
1260function does not make a complete C program: you must supply some
1261additional functions. One is the lexical analyzer. Another is an
1262error-reporting function which the parser calls to report an error.
1263In addition, a complete C program must start with a function called
1264@code{main}; you have to provide this, and arrange for it to call
1265@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1266C-Language Interface}.
bfa74976 1267
f7ab6a50 1268Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1269write, all symbols defined in the Bison parser implementation file
1270itself begin with @samp{yy} or @samp{YY}. This includes interface
1271functions such as the lexical analyzer function @code{yylex}, the
1272error reporting function @code{yyerror} and the parser function
1273@code{yyparse} itself. This also includes numerous identifiers used
1274for internal purposes. Therefore, you should avoid using C
1275identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1276file except for the ones defined in this manual. Also, you should
1277avoid using the C identifiers @samp{malloc} and @samp{free} for
1278anything other than their usual meanings.
1279
1280In some cases the Bison parser implementation file includes system
1281headers, and in those cases your code should respect the identifiers
1282reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1283@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1284included as needed to declare memory allocators and related types.
1285@code{<libintl.h>} is included if message translation is in use
1286(@pxref{Internationalization}). Other system headers may be included
1287if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1288,Tracing Your Parser}).
7093d0f5 1289
342b8b6e 1290@node Stages
bfa74976
RS
1291@section Stages in Using Bison
1292@cindex stages in using Bison
1293@cindex using Bison
1294
1295The actual language-design process using Bison, from grammar specification
1296to a working compiler or interpreter, has these parts:
1297
1298@enumerate
1299@item
1300Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1301(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1302in the language, describe the action that is to be taken when an
1303instance of that rule is recognized. The action is described by a
1304sequence of C statements.
bfa74976
RS
1305
1306@item
704a47c4
AD
1307Write a lexical analyzer to process input and pass tokens to the parser.
1308The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1309Lexical Analyzer Function @code{yylex}}). It could also be produced
1310using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1311
1312@item
1313Write a controlling function that calls the Bison-produced parser.
1314
1315@item
1316Write error-reporting routines.
1317@end enumerate
1318
1319To turn this source code as written into a runnable program, you
1320must follow these steps:
1321
1322@enumerate
1323@item
1324Run Bison on the grammar to produce the parser.
1325
1326@item
1327Compile the code output by Bison, as well as any other source files.
1328
1329@item
1330Link the object files to produce the finished product.
1331@end enumerate
1332
342b8b6e 1333@node Grammar Layout
bfa74976
RS
1334@section The Overall Layout of a Bison Grammar
1335@cindex grammar file
1336@cindex file format
1337@cindex format of grammar file
1338@cindex layout of Bison grammar
1339
1340The input file for the Bison utility is a @dfn{Bison grammar file}. The
1341general form of a Bison grammar file is as follows:
1342
1343@example
1344%@{
08e49d20 1345@var{Prologue}
bfa74976
RS
1346%@}
1347
1348@var{Bison declarations}
1349
1350%%
1351@var{Grammar rules}
1352%%
08e49d20 1353@var{Epilogue}
bfa74976
RS
1354@end example
1355
1356@noindent
1357The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1358in every Bison grammar file to separate the sections.
1359
72d2299c 1360The prologue may define types and variables used in the actions. You can
342b8b6e 1361also use preprocessor commands to define macros used there, and use
bfa74976 1362@code{#include} to include header files that do any of these things.
38a92d50
PE
1363You need to declare the lexical analyzer @code{yylex} and the error
1364printer @code{yyerror} here, along with any other global identifiers
1365used by the actions in the grammar rules.
bfa74976
RS
1366
1367The Bison declarations declare the names of the terminal and nonterminal
1368symbols, and may also describe operator precedence and the data types of
1369semantic values of various symbols.
1370
1371The grammar rules define how to construct each nonterminal symbol from its
1372parts.
1373
38a92d50
PE
1374The epilogue can contain any code you want to use. Often the
1375definitions of functions declared in the prologue go here. In a
1376simple program, all the rest of the program can go here.
bfa74976 1377
342b8b6e 1378@node Examples
bfa74976
RS
1379@chapter Examples
1380@cindex simple examples
1381@cindex examples, simple
1382
1383Now we show and explain three sample programs written using Bison: a
1384reverse polish notation calculator, an algebraic (infix) notation
1385calculator, and a multi-function calculator. All three have been tested
1386under BSD Unix 4.3; each produces a usable, though limited, interactive
1387desk-top calculator.
1388
1389These examples are simple, but Bison grammars for real programming
aa08666d
AD
1390languages are written the same way. You can copy these examples into a
1391source file to try them.
bfa74976
RS
1392
1393@menu
f56274a8
DJ
1394* RPN Calc:: Reverse polish notation calculator;
1395 a first example with no operator precedence.
1396* Infix Calc:: Infix (algebraic) notation calculator.
1397 Operator precedence is introduced.
bfa74976 1398* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1399* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1400* Multi-function Calc:: Calculator with memory and trig functions.
1401 It uses multiple data-types for semantic values.
1402* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1403@end menu
1404
342b8b6e 1405@node RPN Calc
bfa74976
RS
1406@section Reverse Polish Notation Calculator
1407@cindex reverse polish notation
1408@cindex polish notation calculator
1409@cindex @code{rpcalc}
1410@cindex calculator, simple
1411
1412The first example is that of a simple double-precision @dfn{reverse polish
1413notation} calculator (a calculator using postfix operators). This example
1414provides a good starting point, since operator precedence is not an issue.
1415The second example will illustrate how operator precedence is handled.
1416
1417The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1418@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1419
1420@menu
f56274a8
DJ
1421* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1422* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1423* Rpcalc Lexer:: The lexical analyzer.
1424* Rpcalc Main:: The controlling function.
1425* Rpcalc Error:: The error reporting function.
1426* Rpcalc Generate:: Running Bison on the grammar file.
1427* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1428@end menu
1429
f56274a8 1430@node Rpcalc Declarations
bfa74976
RS
1431@subsection Declarations for @code{rpcalc}
1432
1433Here are the C and Bison declarations for the reverse polish notation
1434calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1435
1436@example
72d2299c 1437/* Reverse polish notation calculator. */
bfa74976
RS
1438
1439%@{
38a92d50
PE
1440 #define YYSTYPE double
1441 #include <math.h>
1442 int yylex (void);
1443 void yyerror (char const *);
bfa74976
RS
1444%@}
1445
1446%token NUM
1447
72d2299c 1448%% /* Grammar rules and actions follow. */
bfa74976
RS
1449@end example
1450
75f5aaea 1451The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1452preprocessor directives and two forward declarations.
bfa74976
RS
1453
1454The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1455specifying the C data type for semantic values of both tokens and
1456groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1457Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1458don't define it, @code{int} is the default. Because we specify
1459@code{double}, each token and each expression has an associated value,
1460which is a floating point number.
bfa74976
RS
1461
1462The @code{#include} directive is used to declare the exponentiation
1463function @code{pow}.
1464
38a92d50
PE
1465The forward declarations for @code{yylex} and @code{yyerror} are
1466needed because the C language requires that functions be declared
1467before they are used. These functions will be defined in the
1468epilogue, but the parser calls them so they must be declared in the
1469prologue.
1470
704a47c4
AD
1471The second section, Bison declarations, provides information to Bison
1472about the token types (@pxref{Bison Declarations, ,The Bison
1473Declarations Section}). Each terminal symbol that is not a
1474single-character literal must be declared here. (Single-character
bfa74976
RS
1475literals normally don't need to be declared.) In this example, all the
1476arithmetic operators are designated by single-character literals, so the
1477only terminal symbol that needs to be declared is @code{NUM}, the token
1478type for numeric constants.
1479
342b8b6e 1480@node Rpcalc Rules
bfa74976
RS
1481@subsection Grammar Rules for @code{rpcalc}
1482
1483Here are the grammar rules for the reverse polish notation calculator.
1484
1485@example
1486input: /* empty */
1487 | input line
1488;
1489
1490line: '\n'
18b519c0 1491 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1492;
1493
18b519c0
AD
1494exp: NUM @{ $$ = $1; @}
1495 | exp exp '+' @{ $$ = $1 + $2; @}
1496 | exp exp '-' @{ $$ = $1 - $2; @}
1497 | exp exp '*' @{ $$ = $1 * $2; @}
1498 | exp exp '/' @{ $$ = $1 / $2; @}
1499 /* Exponentiation */
1500 | exp exp '^' @{ $$ = pow ($1, $2); @}
1501 /* Unary minus */
1502 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1503;
1504%%
1505@end example
1506
1507The groupings of the rpcalc ``language'' defined here are the expression
1508(given the name @code{exp}), the line of input (@code{line}), and the
1509complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1510symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1511which is read as ``or''. The following sections explain what these rules
1512mean.
1513
1514The semantics of the language is determined by the actions taken when a
1515grouping is recognized. The actions are the C code that appears inside
1516braces. @xref{Actions}.
1517
1518You must specify these actions in C, but Bison provides the means for
1519passing semantic values between the rules. In each action, the
1520pseudo-variable @code{$$} stands for the semantic value for the grouping
1521that the rule is going to construct. Assigning a value to @code{$$} is the
1522main job of most actions. The semantic values of the components of the
1523rule are referred to as @code{$1}, @code{$2}, and so on.
1524
1525@menu
13863333
AD
1526* Rpcalc Input::
1527* Rpcalc Line::
1528* Rpcalc Expr::
bfa74976
RS
1529@end menu
1530
342b8b6e 1531@node Rpcalc Input
bfa74976
RS
1532@subsubsection Explanation of @code{input}
1533
1534Consider the definition of @code{input}:
1535
1536@example
1537input: /* empty */
1538 | input line
1539;
1540@end example
1541
1542This definition reads as follows: ``A complete input is either an empty
1543string, or a complete input followed by an input line''. Notice that
1544``complete input'' is defined in terms of itself. This definition is said
1545to be @dfn{left recursive} since @code{input} appears always as the
1546leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1547
1548The first alternative is empty because there are no symbols between the
1549colon and the first @samp{|}; this means that @code{input} can match an
1550empty string of input (no tokens). We write the rules this way because it
1551is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1552It's conventional to put an empty alternative first and write the comment
1553@samp{/* empty */} in it.
1554
1555The second alternate rule (@code{input line}) handles all nontrivial input.
1556It means, ``After reading any number of lines, read one more line if
1557possible.'' The left recursion makes this rule into a loop. Since the
1558first alternative matches empty input, the loop can be executed zero or
1559more times.
1560
1561The parser function @code{yyparse} continues to process input until a
1562grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1563input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1564
342b8b6e 1565@node Rpcalc Line
bfa74976
RS
1566@subsubsection Explanation of @code{line}
1567
1568Now consider the definition of @code{line}:
1569
1570@example
1571line: '\n'
1572 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1573;
1574@end example
1575
1576The first alternative is a token which is a newline character; this means
1577that rpcalc accepts a blank line (and ignores it, since there is no
1578action). The second alternative is an expression followed by a newline.
1579This is the alternative that makes rpcalc useful. The semantic value of
1580the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1581question is the first symbol in the alternative. The action prints this
1582value, which is the result of the computation the user asked for.
1583
1584This action is unusual because it does not assign a value to @code{$$}. As
1585a consequence, the semantic value associated with the @code{line} is
1586uninitialized (its value will be unpredictable). This would be a bug if
1587that value were ever used, but we don't use it: once rpcalc has printed the
1588value of the user's input line, that value is no longer needed.
1589
342b8b6e 1590@node Rpcalc Expr
bfa74976
RS
1591@subsubsection Explanation of @code{expr}
1592
1593The @code{exp} grouping has several rules, one for each kind of expression.
1594The first rule handles the simplest expressions: those that are just numbers.
1595The second handles an addition-expression, which looks like two expressions
1596followed by a plus-sign. The third handles subtraction, and so on.
1597
1598@example
1599exp: NUM
1600 | exp exp '+' @{ $$ = $1 + $2; @}
1601 | exp exp '-' @{ $$ = $1 - $2; @}
1602 @dots{}
1603 ;
1604@end example
1605
1606We have used @samp{|} to join all the rules for @code{exp}, but we could
1607equally well have written them separately:
1608
1609@example
1610exp: NUM ;
1611exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1612exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1613 @dots{}
1614@end example
1615
1616Most of the rules have actions that compute the value of the expression in
1617terms of the value of its parts. For example, in the rule for addition,
1618@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1619the second one. The third component, @code{'+'}, has no meaningful
1620associated semantic value, but if it had one you could refer to it as
1621@code{$3}. When @code{yyparse} recognizes a sum expression using this
1622rule, the sum of the two subexpressions' values is produced as the value of
1623the entire expression. @xref{Actions}.
1624
1625You don't have to give an action for every rule. When a rule has no
1626action, Bison by default copies the value of @code{$1} into @code{$$}.
1627This is what happens in the first rule (the one that uses @code{NUM}).
1628
1629The formatting shown here is the recommended convention, but Bison does
72d2299c 1630not require it. You can add or change white space as much as you wish.
bfa74976
RS
1631For example, this:
1632
1633@example
99a9344e 1634exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1635@end example
1636
1637@noindent
1638means the same thing as this:
1639
1640@example
1641exp: NUM
1642 | exp exp '+' @{ $$ = $1 + $2; @}
1643 | @dots{}
99a9344e 1644;
bfa74976
RS
1645@end example
1646
1647@noindent
1648The latter, however, is much more readable.
1649
342b8b6e 1650@node Rpcalc Lexer
bfa74976
RS
1651@subsection The @code{rpcalc} Lexical Analyzer
1652@cindex writing a lexical analyzer
1653@cindex lexical analyzer, writing
1654
704a47c4
AD
1655The lexical analyzer's job is low-level parsing: converting characters
1656or sequences of characters into tokens. The Bison parser gets its
1657tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1658Analyzer Function @code{yylex}}.
bfa74976 1659
35430378 1660Only a simple lexical analyzer is needed for the RPN
c827f760 1661calculator. This
bfa74976
RS
1662lexical analyzer skips blanks and tabs, then reads in numbers as
1663@code{double} and returns them as @code{NUM} tokens. Any other character
1664that isn't part of a number is a separate token. Note that the token-code
1665for such a single-character token is the character itself.
1666
1667The return value of the lexical analyzer function is a numeric code which
1668represents a token type. The same text used in Bison rules to stand for
1669this token type is also a C expression for the numeric code for the type.
1670This works in two ways. If the token type is a character literal, then its
e966383b 1671numeric code is that of the character; you can use the same
bfa74976
RS
1672character literal in the lexical analyzer to express the number. If the
1673token type is an identifier, that identifier is defined by Bison as a C
1674macro whose definition is the appropriate number. In this example,
1675therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1676
1964ad8c
AD
1677The semantic value of the token (if it has one) is stored into the
1678global variable @code{yylval}, which is where the Bison parser will look
1679for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1680defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1681,Declarations for @code{rpcalc}}.)
bfa74976 1682
72d2299c
PE
1683A token type code of zero is returned if the end-of-input is encountered.
1684(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1685
1686Here is the code for the lexical analyzer:
1687
1688@example
1689@group
72d2299c 1690/* The lexical analyzer returns a double floating point
e966383b 1691 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1692 of the character read if not a number. It skips all blanks
1693 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1694
1695#include <ctype.h>
1696@end group
1697
1698@group
13863333
AD
1699int
1700yylex (void)
bfa74976
RS
1701@{
1702 int c;
1703
72d2299c 1704 /* Skip white space. */
13863333 1705 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1706 ;
1707@end group
1708@group
72d2299c 1709 /* Process numbers. */
13863333 1710 if (c == '.' || isdigit (c))
bfa74976
RS
1711 @{
1712 ungetc (c, stdin);
1713 scanf ("%lf", &yylval);
1714 return NUM;
1715 @}
1716@end group
1717@group
72d2299c 1718 /* Return end-of-input. */
13863333 1719 if (c == EOF)
bfa74976 1720 return 0;
72d2299c 1721 /* Return a single char. */
13863333 1722 return c;
bfa74976
RS
1723@}
1724@end group
1725@end example
1726
342b8b6e 1727@node Rpcalc Main
bfa74976
RS
1728@subsection The Controlling Function
1729@cindex controlling function
1730@cindex main function in simple example
1731
1732In keeping with the spirit of this example, the controlling function is
1733kept to the bare minimum. The only requirement is that it call
1734@code{yyparse} to start the process of parsing.
1735
1736@example
1737@group
13863333
AD
1738int
1739main (void)
bfa74976 1740@{
13863333 1741 return yyparse ();
bfa74976
RS
1742@}
1743@end group
1744@end example
1745
342b8b6e 1746@node Rpcalc Error
bfa74976
RS
1747@subsection The Error Reporting Routine
1748@cindex error reporting routine
1749
1750When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1751function @code{yyerror} to print an error message (usually but not
6e649e65 1752always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1753@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1754here is the definition we will use:
bfa74976
RS
1755
1756@example
1757@group
1758#include <stdio.h>
1759
38a92d50 1760/* Called by yyparse on error. */
13863333 1761void
38a92d50 1762yyerror (char const *s)
bfa74976 1763@{
4e03e201 1764 fprintf (stderr, "%s\n", s);
bfa74976
RS
1765@}
1766@end group
1767@end example
1768
1769After @code{yyerror} returns, the Bison parser may recover from the error
1770and continue parsing if the grammar contains a suitable error rule
1771(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1772have not written any error rules in this example, so any invalid input will
1773cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1774real calculator, but it is adequate for the first example.
bfa74976 1775
f56274a8 1776@node Rpcalc Generate
bfa74976
RS
1777@subsection Running Bison to Make the Parser
1778@cindex running Bison (introduction)
1779
ceed8467
AD
1780Before running Bison to produce a parser, we need to decide how to
1781arrange all the source code in one or more source files. For such a
9913d6e4
JD
1782simple example, the easiest thing is to put everything in one file,
1783the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1784@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1785(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1786
1787For a large project, you would probably have several source files, and use
1788@code{make} to arrange to recompile them.
1789
9913d6e4
JD
1790With all the source in the grammar file, you use the following command
1791to convert it into a parser implementation file:
bfa74976
RS
1792
1793@example
fa4d969f 1794bison @var{file}.y
bfa74976
RS
1795@end example
1796
1797@noindent
9913d6e4
JD
1798In this example, the grammar file is called @file{rpcalc.y} (for
1799``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1800implementation file named @file{@var{file}.tab.c}, removing the
1801@samp{.y} from the grammar file name. The parser implementation file
1802contains the source code for @code{yyparse}. The additional functions
1803in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1804copied verbatim to the parser implementation file.
bfa74976 1805
342b8b6e 1806@node Rpcalc Compile
9913d6e4 1807@subsection Compiling the Parser Implementation File
bfa74976
RS
1808@cindex compiling the parser
1809
9913d6e4 1810Here is how to compile and run the parser implementation file:
bfa74976
RS
1811
1812@example
1813@group
1814# @r{List files in current directory.}
9edcd895 1815$ @kbd{ls}
bfa74976
RS
1816rpcalc.tab.c rpcalc.y
1817@end group
1818
1819@group
1820# @r{Compile the Bison parser.}
1821# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1822$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1823@end group
1824
1825@group
1826# @r{List files again.}
9edcd895 1827$ @kbd{ls}
bfa74976
RS
1828rpcalc rpcalc.tab.c rpcalc.y
1829@end group
1830@end example
1831
1832The file @file{rpcalc} now contains the executable code. Here is an
1833example session using @code{rpcalc}.
1834
1835@example
9edcd895
AD
1836$ @kbd{rpcalc}
1837@kbd{4 9 +}
bfa74976 183813
9edcd895 1839@kbd{3 7 + 3 4 5 *+-}
bfa74976 1840-13
9edcd895 1841@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 184213
9edcd895 1843@kbd{5 6 / 4 n +}
bfa74976 1844-3.166666667
9edcd895 1845@kbd{3 4 ^} @r{Exponentiation}
bfa74976 184681
9edcd895
AD
1847@kbd{^D} @r{End-of-file indicator}
1848$
bfa74976
RS
1849@end example
1850
342b8b6e 1851@node Infix Calc
bfa74976
RS
1852@section Infix Notation Calculator: @code{calc}
1853@cindex infix notation calculator
1854@cindex @code{calc}
1855@cindex calculator, infix notation
1856
1857We now modify rpcalc to handle infix operators instead of postfix. Infix
1858notation involves the concept of operator precedence and the need for
1859parentheses nested to arbitrary depth. Here is the Bison code for
1860@file{calc.y}, an infix desk-top calculator.
1861
1862@example
38a92d50 1863/* Infix notation calculator. */
bfa74976
RS
1864
1865%@{
38a92d50
PE
1866 #define YYSTYPE double
1867 #include <math.h>
1868 #include <stdio.h>
1869 int yylex (void);
1870 void yyerror (char const *);
bfa74976
RS
1871%@}
1872
38a92d50 1873/* Bison declarations. */
bfa74976
RS
1874%token NUM
1875%left '-' '+'
1876%left '*' '/'
1877%left NEG /* negation--unary minus */
38a92d50 1878%right '^' /* exponentiation */
bfa74976 1879
38a92d50
PE
1880%% /* The grammar follows. */
1881input: /* empty */
bfa74976
RS
1882 | input line
1883;
1884
1885line: '\n'
1886 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1887;
1888
1889exp: NUM @{ $$ = $1; @}
1890 | exp '+' exp @{ $$ = $1 + $3; @}
1891 | exp '-' exp @{ $$ = $1 - $3; @}
1892 | exp '*' exp @{ $$ = $1 * $3; @}
1893 | exp '/' exp @{ $$ = $1 / $3; @}
1894 | '-' exp %prec NEG @{ $$ = -$2; @}
1895 | exp '^' exp @{ $$ = pow ($1, $3); @}
1896 | '(' exp ')' @{ $$ = $2; @}
1897;
1898%%
1899@end example
1900
1901@noindent
ceed8467
AD
1902The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1903same as before.
bfa74976
RS
1904
1905There are two important new features shown in this code.
1906
1907In the second section (Bison declarations), @code{%left} declares token
1908types and says they are left-associative operators. The declarations
1909@code{%left} and @code{%right} (right associativity) take the place of
1910@code{%token} which is used to declare a token type name without
1911associativity. (These tokens are single-character literals, which
1912ordinarily don't need to be declared. We declare them here to specify
1913the associativity.)
1914
1915Operator precedence is determined by the line ordering of the
1916declarations; the higher the line number of the declaration (lower on
1917the page or screen), the higher the precedence. Hence, exponentiation
1918has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1919by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1920Precedence}.
bfa74976 1921
704a47c4
AD
1922The other important new feature is the @code{%prec} in the grammar
1923section for the unary minus operator. The @code{%prec} simply instructs
1924Bison that the rule @samp{| '-' exp} has the same precedence as
1925@code{NEG}---in this case the next-to-highest. @xref{Contextual
1926Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1927
1928Here is a sample run of @file{calc.y}:
1929
1930@need 500
1931@example
9edcd895
AD
1932$ @kbd{calc}
1933@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19346.880952381
9edcd895 1935@kbd{-56 + 2}
bfa74976 1936-54
9edcd895 1937@kbd{3 ^ 2}
bfa74976
RS
19389
1939@end example
1940
342b8b6e 1941@node Simple Error Recovery
bfa74976
RS
1942@section Simple Error Recovery
1943@cindex error recovery, simple
1944
1945Up to this point, this manual has not addressed the issue of @dfn{error
1946recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1947error. All we have handled is error reporting with @code{yyerror}.
1948Recall that by default @code{yyparse} returns after calling
1949@code{yyerror}. This means that an erroneous input line causes the
1950calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1951
1952The Bison language itself includes the reserved word @code{error}, which
1953may be included in the grammar rules. In the example below it has
1954been added to one of the alternatives for @code{line}:
1955
1956@example
1957@group
1958line: '\n'
1959 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1960 | error '\n' @{ yyerrok; @}
1961;
1962@end group
1963@end example
1964
ceed8467 1965This addition to the grammar allows for simple error recovery in the
6e649e65 1966event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1967read, the error will be recognized by the third rule for @code{line},
1968and parsing will continue. (The @code{yyerror} function is still called
1969upon to print its message as well.) The action executes the statement
1970@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1971that error recovery is complete (@pxref{Error Recovery}). Note the
1972difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1973misprint.
bfa74976
RS
1974
1975This form of error recovery deals with syntax errors. There are other
1976kinds of errors; for example, division by zero, which raises an exception
1977signal that is normally fatal. A real calculator program must handle this
1978signal and use @code{longjmp} to return to @code{main} and resume parsing
1979input lines; it would also have to discard the rest of the current line of
1980input. We won't discuss this issue further because it is not specific to
1981Bison programs.
1982
342b8b6e
AD
1983@node Location Tracking Calc
1984@section Location Tracking Calculator: @code{ltcalc}
1985@cindex location tracking calculator
1986@cindex @code{ltcalc}
1987@cindex calculator, location tracking
1988
9edcd895
AD
1989This example extends the infix notation calculator with location
1990tracking. This feature will be used to improve the error messages. For
1991the sake of clarity, this example is a simple integer calculator, since
1992most of the work needed to use locations will be done in the lexical
72d2299c 1993analyzer.
342b8b6e
AD
1994
1995@menu
f56274a8
DJ
1996* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1997* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1998* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1999@end menu
2000
f56274a8 2001@node Ltcalc Declarations
342b8b6e
AD
2002@subsection Declarations for @code{ltcalc}
2003
9edcd895
AD
2004The C and Bison declarations for the location tracking calculator are
2005the same as the declarations for the infix notation calculator.
342b8b6e
AD
2006
2007@example
2008/* Location tracking calculator. */
2009
2010%@{
38a92d50
PE
2011 #define YYSTYPE int
2012 #include <math.h>
2013 int yylex (void);
2014 void yyerror (char const *);
342b8b6e
AD
2015%@}
2016
2017/* Bison declarations. */
2018%token NUM
2019
2020%left '-' '+'
2021%left '*' '/'
2022%left NEG
2023%right '^'
2024
38a92d50 2025%% /* The grammar follows. */
342b8b6e
AD
2026@end example
2027
9edcd895
AD
2028@noindent
2029Note there are no declarations specific to locations. Defining a data
2030type for storing locations is not needed: we will use the type provided
2031by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2032four member structure with the following integer fields:
2033@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2034@code{last_column}. By conventions, and in accordance with the GNU
2035Coding Standards and common practice, the line and column count both
2036start at 1.
342b8b6e
AD
2037
2038@node Ltcalc Rules
2039@subsection Grammar Rules for @code{ltcalc}
2040
9edcd895
AD
2041Whether handling locations or not has no effect on the syntax of your
2042language. Therefore, grammar rules for this example will be very close
2043to those of the previous example: we will only modify them to benefit
2044from the new information.
342b8b6e 2045
9edcd895
AD
2046Here, we will use locations to report divisions by zero, and locate the
2047wrong expressions or subexpressions.
342b8b6e
AD
2048
2049@example
2050@group
2051input : /* empty */
2052 | input line
2053;
2054@end group
2055
2056@group
2057line : '\n'
2058 | exp '\n' @{ printf ("%d\n", $1); @}
2059;
2060@end group
2061
2062@group
2063exp : NUM @{ $$ = $1; @}
2064 | exp '+' exp @{ $$ = $1 + $3; @}
2065 | exp '-' exp @{ $$ = $1 - $3; @}
2066 | exp '*' exp @{ $$ = $1 * $3; @}
2067@end group
342b8b6e 2068@group
9edcd895 2069 | exp '/' exp
342b8b6e
AD
2070 @{
2071 if ($3)
2072 $$ = $1 / $3;
2073 else
2074 @{
2075 $$ = 1;
9edcd895
AD
2076 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2077 @@3.first_line, @@3.first_column,
2078 @@3.last_line, @@3.last_column);
342b8b6e
AD
2079 @}
2080 @}
2081@end group
2082@group
178e123e 2083 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2084 | exp '^' exp @{ $$ = pow ($1, $3); @}
2085 | '(' exp ')' @{ $$ = $2; @}
2086@end group
2087@end example
2088
2089This code shows how to reach locations inside of semantic actions, by
2090using the pseudo-variables @code{@@@var{n}} for rule components, and the
2091pseudo-variable @code{@@$} for groupings.
2092
9edcd895
AD
2093We don't need to assign a value to @code{@@$}: the output parser does it
2094automatically. By default, before executing the C code of each action,
2095@code{@@$} is set to range from the beginning of @code{@@1} to the end
2096of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2097can be redefined (@pxref{Location Default Action, , Default Action for
2098Locations}), and for very specific rules, @code{@@$} can be computed by
2099hand.
342b8b6e
AD
2100
2101@node Ltcalc Lexer
2102@subsection The @code{ltcalc} Lexical Analyzer.
2103
9edcd895 2104Until now, we relied on Bison's defaults to enable location
72d2299c 2105tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2106able to feed the parser with the token locations, as it already does for
2107semantic values.
342b8b6e 2108
9edcd895
AD
2109To this end, we must take into account every single character of the
2110input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2111
2112@example
2113@group
2114int
2115yylex (void)
2116@{
2117 int c;
18b519c0 2118@end group
342b8b6e 2119
18b519c0 2120@group
72d2299c 2121 /* Skip white space. */
342b8b6e
AD
2122 while ((c = getchar ()) == ' ' || c == '\t')
2123 ++yylloc.last_column;
18b519c0 2124@end group
342b8b6e 2125
18b519c0 2126@group
72d2299c 2127 /* Step. */
342b8b6e
AD
2128 yylloc.first_line = yylloc.last_line;
2129 yylloc.first_column = yylloc.last_column;
2130@end group
2131
2132@group
72d2299c 2133 /* Process numbers. */
342b8b6e
AD
2134 if (isdigit (c))
2135 @{
2136 yylval = c - '0';
2137 ++yylloc.last_column;
2138 while (isdigit (c = getchar ()))
2139 @{
2140 ++yylloc.last_column;
2141 yylval = yylval * 10 + c - '0';
2142 @}
2143 ungetc (c, stdin);
2144 return NUM;
2145 @}
2146@end group
2147
72d2299c 2148 /* Return end-of-input. */
342b8b6e
AD
2149 if (c == EOF)
2150 return 0;
2151
72d2299c 2152 /* Return a single char, and update location. */
342b8b6e
AD
2153 if (c == '\n')
2154 @{
2155 ++yylloc.last_line;
2156 yylloc.last_column = 0;
2157 @}
2158 else
2159 ++yylloc.last_column;
2160 return c;
2161@}
2162@end example
2163
9edcd895
AD
2164Basically, the lexical analyzer performs the same processing as before:
2165it skips blanks and tabs, and reads numbers or single-character tokens.
2166In addition, it updates @code{yylloc}, the global variable (of type
2167@code{YYLTYPE}) containing the token's location.
342b8b6e 2168
9edcd895 2169Now, each time this function returns a token, the parser has its number
72d2299c 2170as well as its semantic value, and its location in the text. The last
9edcd895
AD
2171needed change is to initialize @code{yylloc}, for example in the
2172controlling function:
342b8b6e
AD
2173
2174@example
9edcd895 2175@group
342b8b6e
AD
2176int
2177main (void)
2178@{
2179 yylloc.first_line = yylloc.last_line = 1;
2180 yylloc.first_column = yylloc.last_column = 0;
2181 return yyparse ();
2182@}
9edcd895 2183@end group
342b8b6e
AD
2184@end example
2185
9edcd895
AD
2186Remember that computing locations is not a matter of syntax. Every
2187character must be associated to a location update, whether it is in
2188valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2189
2190@node Multi-function Calc
bfa74976
RS
2191@section Multi-Function Calculator: @code{mfcalc}
2192@cindex multi-function calculator
2193@cindex @code{mfcalc}
2194@cindex calculator, multi-function
2195
2196Now that the basics of Bison have been discussed, it is time to move on to
2197a more advanced problem. The above calculators provided only five
2198functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2199be nice to have a calculator that provides other mathematical functions such
2200as @code{sin}, @code{cos}, etc.
2201
2202It is easy to add new operators to the infix calculator as long as they are
2203only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2204back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2205adding a new operator. But we want something more flexible: built-in
2206functions whose syntax has this form:
2207
2208@example
2209@var{function_name} (@var{argument})
2210@end example
2211
2212@noindent
2213At the same time, we will add memory to the calculator, by allowing you
2214to create named variables, store values in them, and use them later.
2215Here is a sample session with the multi-function calculator:
2216
2217@example
9edcd895
AD
2218$ @kbd{mfcalc}
2219@kbd{pi = 3.141592653589}
bfa74976 22203.1415926536
9edcd895 2221@kbd{sin(pi)}
bfa74976 22220.0000000000
9edcd895 2223@kbd{alpha = beta1 = 2.3}
bfa74976 22242.3000000000
9edcd895 2225@kbd{alpha}
bfa74976 22262.3000000000
9edcd895 2227@kbd{ln(alpha)}
bfa74976 22280.8329091229
9edcd895 2229@kbd{exp(ln(beta1))}
bfa74976 22302.3000000000
9edcd895 2231$
bfa74976
RS
2232@end example
2233
2234Note that multiple assignment and nested function calls are permitted.
2235
2236@menu
f56274a8
DJ
2237* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2238* Mfcalc Rules:: Grammar rules for the calculator.
2239* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2240@end menu
2241
f56274a8 2242@node Mfcalc Declarations
bfa74976
RS
2243@subsection Declarations for @code{mfcalc}
2244
2245Here are the C and Bison declarations for the multi-function calculator.
2246
2247@smallexample
18b519c0 2248@group
bfa74976 2249%@{
38a92d50
PE
2250 #include <math.h> /* For math functions, cos(), sin(), etc. */
2251 #include "calc.h" /* Contains definition of `symrec'. */
2252 int yylex (void);
2253 void yyerror (char const *);
bfa74976 2254%@}
18b519c0
AD
2255@end group
2256@group
bfa74976 2257%union @{
38a92d50
PE
2258 double val; /* For returning numbers. */
2259 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2260@}
18b519c0 2261@end group
38a92d50
PE
2262%token <val> NUM /* Simple double precision number. */
2263%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2264%type <val> exp
2265
18b519c0 2266@group
bfa74976
RS
2267%right '='
2268%left '-' '+'
2269%left '*' '/'
38a92d50
PE
2270%left NEG /* negation--unary minus */
2271%right '^' /* exponentiation */
18b519c0 2272@end group
38a92d50 2273%% /* The grammar follows. */
bfa74976
RS
2274@end smallexample
2275
2276The above grammar introduces only two new features of the Bison language.
2277These features allow semantic values to have various data types
2278(@pxref{Multiple Types, ,More Than One Value Type}).
2279
2280The @code{%union} declaration specifies the entire list of possible types;
2281this is instead of defining @code{YYSTYPE}. The allowable types are now
2282double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2283the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2284
2285Since values can now have various types, it is necessary to associate a
2286type with each grammar symbol whose semantic value is used. These symbols
2287are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2288declarations are augmented with information about their data type (placed
2289between angle brackets).
2290
704a47c4
AD
2291The Bison construct @code{%type} is used for declaring nonterminal
2292symbols, just as @code{%token} is used for declaring token types. We
2293have not used @code{%type} before because nonterminal symbols are
2294normally declared implicitly by the rules that define them. But
2295@code{exp} must be declared explicitly so we can specify its value type.
2296@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2297
342b8b6e 2298@node Mfcalc Rules
bfa74976
RS
2299@subsection Grammar Rules for @code{mfcalc}
2300
2301Here are the grammar rules for the multi-function calculator.
2302Most of them are copied directly from @code{calc}; three rules,
2303those which mention @code{VAR} or @code{FNCT}, are new.
2304
2305@smallexample
18b519c0 2306@group
bfa74976
RS
2307input: /* empty */
2308 | input line
2309;
18b519c0 2310@end group
bfa74976 2311
18b519c0 2312@group
bfa74976
RS
2313line:
2314 '\n'
2315 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2316 | error '\n' @{ yyerrok; @}
2317;
18b519c0 2318@end group
bfa74976 2319
18b519c0 2320@group
bfa74976
RS
2321exp: NUM @{ $$ = $1; @}
2322 | VAR @{ $$ = $1->value.var; @}
2323 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2324 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2325 | exp '+' exp @{ $$ = $1 + $3; @}
2326 | exp '-' exp @{ $$ = $1 - $3; @}
2327 | exp '*' exp @{ $$ = $1 * $3; @}
2328 | exp '/' exp @{ $$ = $1 / $3; @}
2329 | '-' exp %prec NEG @{ $$ = -$2; @}
2330 | exp '^' exp @{ $$ = pow ($1, $3); @}
2331 | '(' exp ')' @{ $$ = $2; @}
2332;
18b519c0 2333@end group
38a92d50 2334/* End of grammar. */
bfa74976
RS
2335%%
2336@end smallexample
2337
f56274a8 2338@node Mfcalc Symbol Table
bfa74976
RS
2339@subsection The @code{mfcalc} Symbol Table
2340@cindex symbol table example
2341
2342The multi-function calculator requires a symbol table to keep track of the
2343names and meanings of variables and functions. This doesn't affect the
2344grammar rules (except for the actions) or the Bison declarations, but it
2345requires some additional C functions for support.
2346
2347The symbol table itself consists of a linked list of records. Its
2348definition, which is kept in the header @file{calc.h}, is as follows. It
2349provides for either functions or variables to be placed in the table.
2350
2351@smallexample
2352@group
38a92d50 2353/* Function type. */
32dfccf8 2354typedef double (*func_t) (double);
72f889cc 2355@end group
32dfccf8 2356
72f889cc 2357@group
38a92d50 2358/* Data type for links in the chain of symbols. */
bfa74976
RS
2359struct symrec
2360@{
38a92d50 2361 char *name; /* name of symbol */
bfa74976 2362 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2363 union
2364 @{
38a92d50
PE
2365 double var; /* value of a VAR */
2366 func_t fnctptr; /* value of a FNCT */
bfa74976 2367 @} value;
38a92d50 2368 struct symrec *next; /* link field */
bfa74976
RS
2369@};
2370@end group
2371
2372@group
2373typedef struct symrec symrec;
2374
38a92d50 2375/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2376extern symrec *sym_table;
2377
a730d142 2378symrec *putsym (char const *, int);
38a92d50 2379symrec *getsym (char const *);
bfa74976
RS
2380@end group
2381@end smallexample
2382
2383The new version of @code{main} includes a call to @code{init_table}, a
2384function that initializes the symbol table. Here it is, and
2385@code{init_table} as well:
2386
2387@smallexample
bfa74976
RS
2388#include <stdio.h>
2389
18b519c0 2390@group
38a92d50 2391/* Called by yyparse on error. */
13863333 2392void
38a92d50 2393yyerror (char const *s)
bfa74976
RS
2394@{
2395 printf ("%s\n", s);
2396@}
18b519c0 2397@end group
bfa74976 2398
18b519c0 2399@group
bfa74976
RS
2400struct init
2401@{
38a92d50
PE
2402 char const *fname;
2403 double (*fnct) (double);
bfa74976
RS
2404@};
2405@end group
2406
2407@group
38a92d50 2408struct init const arith_fncts[] =
13863333 2409@{
32dfccf8
AD
2410 "sin", sin,
2411 "cos", cos,
13863333 2412 "atan", atan,
32dfccf8
AD
2413 "ln", log,
2414 "exp", exp,
13863333
AD
2415 "sqrt", sqrt,
2416 0, 0
2417@};
18b519c0 2418@end group
bfa74976 2419
18b519c0 2420@group
bfa74976 2421/* The symbol table: a chain of `struct symrec'. */
38a92d50 2422symrec *sym_table;
bfa74976
RS
2423@end group
2424
2425@group
72d2299c 2426/* Put arithmetic functions in table. */
13863333
AD
2427void
2428init_table (void)
bfa74976
RS
2429@{
2430 int i;
2431 symrec *ptr;
2432 for (i = 0; arith_fncts[i].fname != 0; i++)
2433 @{
2434 ptr = putsym (arith_fncts[i].fname, FNCT);
2435 ptr->value.fnctptr = arith_fncts[i].fnct;
2436 @}
2437@}
2438@end group
38a92d50
PE
2439
2440@group
2441int
2442main (void)
2443@{
2444 init_table ();
2445 return yyparse ();
2446@}
2447@end group
bfa74976
RS
2448@end smallexample
2449
2450By simply editing the initialization list and adding the necessary include
2451files, you can add additional functions to the calculator.
2452
2453Two important functions allow look-up and installation of symbols in the
2454symbol table. The function @code{putsym} is passed a name and the type
2455(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2456linked to the front of the list, and a pointer to the object is returned.
2457The function @code{getsym} is passed the name of the symbol to look up. If
2458found, a pointer to that symbol is returned; otherwise zero is returned.
2459
2460@smallexample
2461symrec *
38a92d50 2462putsym (char const *sym_name, int sym_type)
bfa74976
RS
2463@{
2464 symrec *ptr;
2465 ptr = (symrec *) malloc (sizeof (symrec));
2466 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2467 strcpy (ptr->name,sym_name);
2468 ptr->type = sym_type;
72d2299c 2469 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2470 ptr->next = (struct symrec *)sym_table;
2471 sym_table = ptr;
2472 return ptr;
2473@}
2474
2475symrec *
38a92d50 2476getsym (char const *sym_name)
bfa74976
RS
2477@{
2478 symrec *ptr;
2479 for (ptr = sym_table; ptr != (symrec *) 0;
2480 ptr = (symrec *)ptr->next)
2481 if (strcmp (ptr->name,sym_name) == 0)
2482 return ptr;
2483 return 0;
2484@}
2485@end smallexample
2486
2487The function @code{yylex} must now recognize variables, numeric values, and
2488the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2489characters with a leading letter are recognized as either variables or
bfa74976
RS
2490functions depending on what the symbol table says about them.
2491
2492The string is passed to @code{getsym} for look up in the symbol table. If
2493the name appears in the table, a pointer to its location and its type
2494(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2495already in the table, then it is installed as a @code{VAR} using
2496@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2497returned to @code{yyparse}.
bfa74976
RS
2498
2499No change is needed in the handling of numeric values and arithmetic
2500operators in @code{yylex}.
2501
2502@smallexample
2503@group
2504#include <ctype.h>
18b519c0 2505@end group
13863333 2506
18b519c0 2507@group
13863333
AD
2508int
2509yylex (void)
bfa74976
RS
2510@{
2511 int c;
2512
72d2299c 2513 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2514 while ((c = getchar ()) == ' ' || c == '\t');
2515
2516 if (c == EOF)
2517 return 0;
2518@end group
2519
2520@group
2521 /* Char starts a number => parse the number. */
2522 if (c == '.' || isdigit (c))
2523 @{
2524 ungetc (c, stdin);
2525 scanf ("%lf", &yylval.val);
2526 return NUM;
2527 @}
2528@end group
2529
2530@group
2531 /* Char starts an identifier => read the name. */
2532 if (isalpha (c))
2533 @{
2534 symrec *s;
2535 static char *symbuf = 0;
2536 static int length = 0;
2537 int i;
2538@end group
2539
2540@group
2541 /* Initially make the buffer long enough
2542 for a 40-character symbol name. */
2543 if (length == 0)
2544 length = 40, symbuf = (char *)malloc (length + 1);
2545
2546 i = 0;
2547 do
2548@end group
2549@group
2550 @{
2551 /* If buffer is full, make it bigger. */
2552 if (i == length)
2553 @{
2554 length *= 2;
18b519c0 2555 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2556 @}
2557 /* Add this character to the buffer. */
2558 symbuf[i++] = c;
2559 /* Get another character. */
2560 c = getchar ();
2561 @}
2562@end group
2563@group
72d2299c 2564 while (isalnum (c));
bfa74976
RS
2565
2566 ungetc (c, stdin);
2567 symbuf[i] = '\0';
2568@end group
2569
2570@group
2571 s = getsym (symbuf);
2572 if (s == 0)
2573 s = putsym (symbuf, VAR);
2574 yylval.tptr = s;
2575 return s->type;
2576 @}
2577
2578 /* Any other character is a token by itself. */
2579 return c;
2580@}
2581@end group
2582@end smallexample
2583
72d2299c 2584This program is both powerful and flexible. You may easily add new
704a47c4
AD
2585functions, and it is a simple job to modify this code to install
2586predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2587
342b8b6e 2588@node Exercises
bfa74976
RS
2589@section Exercises
2590@cindex exercises
2591
2592@enumerate
2593@item
2594Add some new functions from @file{math.h} to the initialization list.
2595
2596@item
2597Add another array that contains constants and their values. Then
2598modify @code{init_table} to add these constants to the symbol table.
2599It will be easiest to give the constants type @code{VAR}.
2600
2601@item
2602Make the program report an error if the user refers to an
2603uninitialized variable in any way except to store a value in it.
2604@end enumerate
2605
342b8b6e 2606@node Grammar File
bfa74976
RS
2607@chapter Bison Grammar Files
2608
2609Bison takes as input a context-free grammar specification and produces a
2610C-language function that recognizes correct instances of the grammar.
2611
9913d6e4 2612The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2613@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2614
2615@menu
2616* Grammar Outline:: Overall layout of the grammar file.
2617* Symbols:: Terminal and nonterminal symbols.
2618* Rules:: How to write grammar rules.
2619* Recursion:: Writing recursive rules.
2620* Semantics:: Semantic values and actions.
847bf1f5 2621* Locations:: Locations and actions.
bfa74976
RS
2622* Declarations:: All kinds of Bison declarations are described here.
2623* Multiple Parsers:: Putting more than one Bison parser in one program.
2624@end menu
2625
342b8b6e 2626@node Grammar Outline
bfa74976
RS
2627@section Outline of a Bison Grammar
2628
2629A Bison grammar file has four main sections, shown here with the
2630appropriate delimiters:
2631
2632@example
2633%@{
38a92d50 2634 @var{Prologue}
bfa74976
RS
2635%@}
2636
2637@var{Bison declarations}
2638
2639%%
2640@var{Grammar rules}
2641%%
2642
75f5aaea 2643@var{Epilogue}
bfa74976
RS
2644@end example
2645
2646Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2647As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2648continues until end of line.
bfa74976
RS
2649
2650@menu
f56274a8 2651* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2652* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2653* Bison Declarations:: Syntax and usage of the Bison declarations section.
2654* Grammar Rules:: Syntax and usage of the grammar rules section.
2655* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2656@end menu
2657
38a92d50 2658@node Prologue
75f5aaea
MA
2659@subsection The prologue
2660@cindex declarations section
2661@cindex Prologue
2662@cindex declarations
bfa74976 2663
f8e1c9e5
AD
2664The @var{Prologue} section contains macro definitions and declarations
2665of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2666rules. These are copied to the beginning of the parser implementation
2667file so that they precede the definition of @code{yyparse}. You can
2668use @samp{#include} to get the declarations from a header file. If
2669you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2670@samp{%@}} delimiters that bracket this section.
bfa74976 2671
9c437126 2672The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2673of @samp{%@}} that is outside a comment, a string literal, or a
2674character constant.
2675
c732d2c6
AD
2676You may have more than one @var{Prologue} section, intermixed with the
2677@var{Bison declarations}. This allows you to have C and Bison
2678declarations that refer to each other. For example, the @code{%union}
2679declaration may use types defined in a header file, and you may wish to
2680prototype functions that take arguments of type @code{YYSTYPE}. This
2681can be done with two @var{Prologue} blocks, one before and one after the
2682@code{%union} declaration.
2683
2684@smallexample
2685%@{
aef3da86 2686 #define _GNU_SOURCE
38a92d50
PE
2687 #include <stdio.h>
2688 #include "ptypes.h"
c732d2c6
AD
2689%@}
2690
2691%union @{
779e7ceb 2692 long int n;
c732d2c6
AD
2693 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2694@}
2695
2696%@{
38a92d50
PE
2697 static void print_token_value (FILE *, int, YYSTYPE);
2698 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2699%@}
2700
2701@dots{}
2702@end smallexample
2703
aef3da86
PE
2704When in doubt, it is usually safer to put prologue code before all
2705Bison declarations, rather than after. For example, any definitions
2706of feature test macros like @code{_GNU_SOURCE} or
2707@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2708feature test macros can affect the behavior of Bison-generated
2709@code{#include} directives.
2710
2cbe6b7f
JD
2711@node Prologue Alternatives
2712@subsection Prologue Alternatives
2713@cindex Prologue Alternatives
2714
136a0f76 2715@findex %code
16dc6a9e
JD
2716@findex %code requires
2717@findex %code provides
2718@findex %code top
85894313 2719
2cbe6b7f 2720The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2721inflexible. As an alternative, Bison provides a @code{%code}
2722directive with an explicit qualifier field, which identifies the
2723purpose of the code and thus the location(s) where Bison should
2724generate it. For C/C++, the qualifier can be omitted for the default
2725location, or it can be one of @code{requires}, @code{provides},
8e6f2266 2726@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2727
2728Look again at the example of the previous section:
2729
2730@smallexample
2731%@{
2732 #define _GNU_SOURCE
2733 #include <stdio.h>
2734 #include "ptypes.h"
2735%@}
2736
2737%union @{
2738 long int n;
2739 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2740@}
2741
2742%@{
2743 static void print_token_value (FILE *, int, YYSTYPE);
2744 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2745%@}
2746
2747@dots{}
2748@end smallexample
2749
2750@noindent
9913d6e4
JD
2751Notice that there are two @var{Prologue} sections here, but there's a
2752subtle distinction between their functionality. For example, if you
2753decide to override Bison's default definition for @code{YYLTYPE}, in
2754which @var{Prologue} section should you write your new definition?
2755You should write it in the first since Bison will insert that code
2756into the parser implementation file @emph{before} the default
2757@code{YYLTYPE} definition. In which @var{Prologue} section should you
2758prototype an internal function, @code{trace_token}, that accepts
2759@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2760prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2761@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2762
2763This distinction in functionality between the two @var{Prologue} sections is
2764established by the appearance of the @code{%union} between them.
a501eca9 2765This behavior raises a few questions.
2cbe6b7f
JD
2766First, why should the position of a @code{%union} affect definitions related to
2767@code{YYLTYPE} and @code{yytokentype}?
2768Second, what if there is no @code{%union}?
2769In that case, the second kind of @var{Prologue} section is not available.
2770This behavior is not intuitive.
2771
8e0a5e9e 2772To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2773@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2774Let's go ahead and add the new @code{YYLTYPE} definition and the
2775@code{trace_token} prototype at the same time:
2776
2777@smallexample
16dc6a9e 2778%code top @{
2cbe6b7f
JD
2779 #define _GNU_SOURCE
2780 #include <stdio.h>
8e0a5e9e
JD
2781
2782 /* WARNING: The following code really belongs
16dc6a9e 2783 * in a `%code requires'; see below. */
8e0a5e9e 2784
2cbe6b7f
JD
2785 #include "ptypes.h"
2786 #define YYLTYPE YYLTYPE
2787 typedef struct YYLTYPE
2788 @{
2789 int first_line;
2790 int first_column;
2791 int last_line;
2792 int last_column;
2793 char *filename;
2794 @} YYLTYPE;
2795@}
2796
2797%union @{
2798 long int n;
2799 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2800@}
2801
2802%code @{
2803 static void print_token_value (FILE *, int, YYSTYPE);
2804 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2805 static void trace_token (enum yytokentype token, YYLTYPE loc);
2806@}
2807
2808@dots{}
2809@end smallexample
2810
2811@noindent
16dc6a9e
JD
2812In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2813functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2814explicit which kind you intend.
2cbe6b7f
JD
2815Moreover, both kinds are always available even in the absence of @code{%union}.
2816
9913d6e4
JD
2817The @code{%code top} block above logically contains two parts. The
2818first two lines before the warning need to appear near the top of the
2819parser implementation file. The first line after the warning is
2820required by @code{YYSTYPE} and thus also needs to appear in the parser
2821implementation file. However, if you've instructed Bison to generate
2822a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2823want that line to appear before the @code{YYSTYPE} definition in that
2824header file as well. The @code{YYLTYPE} definition should also appear
2825in the parser header file to override the default @code{YYLTYPE}
2826definition there.
2cbe6b7f 2827
16dc6a9e 2828In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2829lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2830definitions.
16dc6a9e 2831Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2832
2833@smallexample
16dc6a9e 2834%code top @{
2cbe6b7f
JD
2835 #define _GNU_SOURCE
2836 #include <stdio.h>
2837@}
2838
16dc6a9e 2839%code requires @{
9bc0dd67
JD
2840 #include "ptypes.h"
2841@}
2842%union @{
2843 long int n;
2844 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2845@}
2846
16dc6a9e 2847%code requires @{
2cbe6b7f
JD
2848 #define YYLTYPE YYLTYPE
2849 typedef struct YYLTYPE
2850 @{
2851 int first_line;
2852 int first_column;
2853 int last_line;
2854 int last_column;
2855 char *filename;
2856 @} YYLTYPE;
2857@}
2858
136a0f76 2859%code @{
2cbe6b7f
JD
2860 static void print_token_value (FILE *, int, YYSTYPE);
2861 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2862 static void trace_token (enum yytokentype token, YYLTYPE loc);
2863@}
2864
2865@dots{}
2866@end smallexample
2867
2868@noindent
9913d6e4
JD
2869Now Bison will insert @code{#include "ptypes.h"} and the new
2870@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2871and @code{YYLTYPE} definitions in both the parser implementation file
2872and the parser header file. (By the same reasoning, @code{%code
2873requires} would also be the appropriate place to write your own
2874definition for @code{YYSTYPE}.)
2875
2876When you are writing dependency code for @code{YYSTYPE} and
2877@code{YYLTYPE}, you should prefer @code{%code requires} over
2878@code{%code top} regardless of whether you instruct Bison to generate
2879a parser header file. When you are writing code that you need Bison
2880to insert only into the parser implementation file and that has no
2881special need to appear at the top of that file, you should prefer the
2882unqualified @code{%code} over @code{%code top}. These practices will
2883make the purpose of each block of your code explicit to Bison and to
2884other developers reading your grammar file. Following these
2885practices, we expect the unqualified @code{%code} and @code{%code
2886requires} to be the most important of the four @var{Prologue}
16dc6a9e 2887alternatives.
a501eca9 2888
9913d6e4
JD
2889At some point while developing your parser, you might decide to
2890provide @code{trace_token} to modules that are external to your
2891parser. Thus, you might wish for Bison to insert the prototype into
2892both the parser header file and the parser implementation file. Since
2893this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2894@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
2895@code{%code requires}. More importantly, since it depends upon
2896@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2897sufficient. Instead, move its prototype from the unqualified
2898@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
2899
2900@smallexample
16dc6a9e 2901%code top @{
2cbe6b7f 2902 #define _GNU_SOURCE
136a0f76 2903 #include <stdio.h>
2cbe6b7f 2904@}
136a0f76 2905
16dc6a9e 2906%code requires @{
2cbe6b7f
JD
2907 #include "ptypes.h"
2908@}
2909%union @{
2910 long int n;
2911 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2912@}
2913
16dc6a9e 2914%code requires @{
2cbe6b7f
JD
2915 #define YYLTYPE YYLTYPE
2916 typedef struct YYLTYPE
2917 @{
2918 int first_line;
2919 int first_column;
2920 int last_line;
2921 int last_column;
2922 char *filename;
2923 @} YYLTYPE;
2924@}
2925
16dc6a9e 2926%code provides @{
2cbe6b7f
JD
2927 void trace_token (enum yytokentype token, YYLTYPE loc);
2928@}
2929
2930%code @{
9bc0dd67
JD
2931 static void print_token_value (FILE *, int, YYSTYPE);
2932 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2933@}
9bc0dd67
JD
2934
2935@dots{}
2936@end smallexample
2937
2cbe6b7f 2938@noindent
9913d6e4
JD
2939Bison will insert the @code{trace_token} prototype into both the
2940parser header file and the parser implementation file after the
2941definitions for @code{yytokentype}, @code{YYLTYPE}, and
2942@code{YYSTYPE}.
2943
2944The above examples are careful to write directives in an order that
2945reflects the layout of the generated parser implementation and header
2946files: @code{%code top}, @code{%code requires}, @code{%code provides},
2947and then @code{%code}. While your grammar files may generally be
2948easier to read if you also follow this order, Bison does not require
2949it. Instead, Bison lets you choose an organization that makes sense
2950to you.
2cbe6b7f 2951
a501eca9 2952You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2953In that case, Bison concatenates the contained code in declaration order.
2954This is the only way in which the position of one of these directives within
2955the grammar file affects its functionality.
2956
2957The result of the previous two properties is greater flexibility in how you may
2958organize your grammar file.
2959For example, you may organize semantic-type-related directives by semantic
2960type:
2961
2962@smallexample
16dc6a9e 2963%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2964%union @{ type1 field1; @}
2965%destructor @{ type1_free ($$); @} <field1>
2966%printer @{ type1_print ($$); @} <field1>
2967
16dc6a9e 2968%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2969%union @{ type2 field2; @}
2970%destructor @{ type2_free ($$); @} <field2>
2971%printer @{ type2_print ($$); @} <field2>
2972@end smallexample
2973
2974@noindent
2975You could even place each of the above directive groups in the rules section of
2976the grammar file next to the set of rules that uses the associated semantic
2977type.
61fee93e
JD
2978(In the rules section, you must terminate each of those directives with a
2979semicolon.)
2cbe6b7f
JD
2980And you don't have to worry that some directive (like a @code{%union}) in the
2981definitions section is going to adversely affect their functionality in some
2982counter-intuitive manner just because it comes first.
2983Such an organization is not possible using @var{Prologue} sections.
2984
a501eca9 2985This section has been concerned with explaining the advantages of the four
8e0a5e9e 2986@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2987However, in most cases when using these directives, you shouldn't need to
2988think about all the low-level ordering issues discussed here.
2989Instead, you should simply use these directives to label each block of your
2990code according to its purpose and let Bison handle the ordering.
2991@code{%code} is the most generic label.
16dc6a9e
JD
2992Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2993as needed.
a501eca9 2994
342b8b6e 2995@node Bison Declarations
bfa74976
RS
2996@subsection The Bison Declarations Section
2997@cindex Bison declarations (introduction)
2998@cindex declarations, Bison (introduction)
2999
3000The @var{Bison declarations} section contains declarations that define
3001terminal and nonterminal symbols, specify precedence, and so on.
3002In some simple grammars you may not need any declarations.
3003@xref{Declarations, ,Bison Declarations}.
3004
342b8b6e 3005@node Grammar Rules
bfa74976
RS
3006@subsection The Grammar Rules Section
3007@cindex grammar rules section
3008@cindex rules section for grammar
3009
3010The @dfn{grammar rules} section contains one or more Bison grammar
3011rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3012
3013There must always be at least one grammar rule, and the first
3014@samp{%%} (which precedes the grammar rules) may never be omitted even
3015if it is the first thing in the file.
3016
38a92d50 3017@node Epilogue
75f5aaea 3018@subsection The epilogue
bfa74976 3019@cindex additional C code section
75f5aaea 3020@cindex epilogue
bfa74976
RS
3021@cindex C code, section for additional
3022
9913d6e4
JD
3023The @var{Epilogue} is copied verbatim to the end of the parser
3024implementation file, just as the @var{Prologue} is copied to the
3025beginning. This is the most convenient place to put anything that you
3026want to have in the parser implementation file but which need not come
3027before the definition of @code{yyparse}. For example, the definitions
3028of @code{yylex} and @code{yyerror} often go here. Because C requires
3029functions to be declared before being used, you often need to declare
3030functions like @code{yylex} and @code{yyerror} in the Prologue, even
3031if you define them in the Epilogue. @xref{Interface, ,Parser
3032C-Language Interface}.
bfa74976
RS
3033
3034If the last section is empty, you may omit the @samp{%%} that separates it
3035from the grammar rules.
3036
f8e1c9e5
AD
3037The Bison parser itself contains many macros and identifiers whose names
3038start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3039any such names (except those documented in this manual) in the epilogue
3040of the grammar file.
bfa74976 3041
342b8b6e 3042@node Symbols
bfa74976
RS
3043@section Symbols, Terminal and Nonterminal
3044@cindex nonterminal symbol
3045@cindex terminal symbol
3046@cindex token type
3047@cindex symbol
3048
3049@dfn{Symbols} in Bison grammars represent the grammatical classifications
3050of the language.
3051
3052A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3053class of syntactically equivalent tokens. You use the symbol in grammar
3054rules to mean that a token in that class is allowed. The symbol is
3055represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3056function returns a token type code to indicate what kind of token has
3057been read. You don't need to know what the code value is; you can use
3058the symbol to stand for it.
bfa74976 3059
f8e1c9e5
AD
3060A @dfn{nonterminal symbol} stands for a class of syntactically
3061equivalent groupings. The symbol name is used in writing grammar rules.
3062By convention, it should be all lower case.
bfa74976 3063
eb8c66bb
JD
3064Symbol names can contain letters, underscores, periods, and non-initial
3065digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3066with POSIX Yacc. Periods and dashes make symbol names less convenient to
3067use with named references, which require brackets around such names
3068(@pxref{Named References}). Terminal symbols that contain periods or dashes
3069make little sense: since they are not valid symbols (in most programming
3070languages) they are not exported as token names.
bfa74976 3071
931c7513 3072There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3073
3074@itemize @bullet
3075@item
3076A @dfn{named token type} is written with an identifier, like an
c827f760 3077identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3078such name must be defined with a Bison declaration such as
3079@code{%token}. @xref{Token Decl, ,Token Type Names}.
3080
3081@item
3082@cindex character token
3083@cindex literal token
3084@cindex single-character literal
931c7513
RS
3085A @dfn{character token type} (or @dfn{literal character token}) is
3086written in the grammar using the same syntax used in C for character
3087constants; for example, @code{'+'} is a character token type. A
3088character token type doesn't need to be declared unless you need to
3089specify its semantic value data type (@pxref{Value Type, ,Data Types of
3090Semantic Values}), associativity, or precedence (@pxref{Precedence,
3091,Operator Precedence}).
bfa74976
RS
3092
3093By convention, a character token type is used only to represent a
3094token that consists of that particular character. Thus, the token
3095type @code{'+'} is used to represent the character @samp{+} as a
3096token. Nothing enforces this convention, but if you depart from it,
3097your program will confuse other readers.
3098
3099All the usual escape sequences used in character literals in C can be
3100used in Bison as well, but you must not use the null character as a
72d2299c
PE
3101character literal because its numeric code, zero, signifies
3102end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3103for @code{yylex}}). Also, unlike standard C, trigraphs have no
3104special meaning in Bison character literals, nor is backslash-newline
3105allowed.
931c7513
RS
3106
3107@item
3108@cindex string token
3109@cindex literal string token
9ecbd125 3110@cindex multicharacter literal
931c7513
RS
3111A @dfn{literal string token} is written like a C string constant; for
3112example, @code{"<="} is a literal string token. A literal string token
3113doesn't need to be declared unless you need to specify its semantic
14ded682 3114value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3115(@pxref{Precedence}).
3116
3117You can associate the literal string token with a symbolic name as an
3118alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3119Declarations}). If you don't do that, the lexical analyzer has to
3120retrieve the token number for the literal string token from the
3121@code{yytname} table (@pxref{Calling Convention}).
3122
c827f760 3123@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3124
3125By convention, a literal string token is used only to represent a token
3126that consists of that particular string. Thus, you should use the token
3127type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3128does not enforce this convention, but if you depart from it, people who
931c7513
RS
3129read your program will be confused.
3130
3131All the escape sequences used in string literals in C can be used in
92ac3705
PE
3132Bison as well, except that you must not use a null character within a
3133string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3134meaning in Bison string literals, nor is backslash-newline allowed. A
3135literal string token must contain two or more characters; for a token
3136containing just one character, use a character token (see above).
bfa74976
RS
3137@end itemize
3138
3139How you choose to write a terminal symbol has no effect on its
3140grammatical meaning. That depends only on where it appears in rules and
3141on when the parser function returns that symbol.
3142
72d2299c
PE
3143The value returned by @code{yylex} is always one of the terminal
3144symbols, except that a zero or negative value signifies end-of-input.
3145Whichever way you write the token type in the grammar rules, you write
3146it the same way in the definition of @code{yylex}. The numeric code
3147for a character token type is simply the positive numeric code of the
3148character, so @code{yylex} can use the identical value to generate the
3149requisite code, though you may need to convert it to @code{unsigned
3150char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3151Each named token type becomes a C macro in the parser implementation
3152file, so @code{yylex} can use the name to stand for the code. (This
3153is why periods don't make sense in terminal symbols.) @xref{Calling
3154Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3155
3156If @code{yylex} is defined in a separate file, you need to arrange for the
3157token-type macro definitions to be available there. Use the @samp{-d}
3158option when you run Bison, so that it will write these macro definitions
3159into a separate header file @file{@var{name}.tab.h} which you can include
3160in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3161
72d2299c 3162If you want to write a grammar that is portable to any Standard C
9d9b8b70 3163host, you must use only nonnull character tokens taken from the basic
c827f760 3164execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3165digits, the 52 lower- and upper-case English letters, and the
3166characters in the following C-language string:
3167
3168@example
3169"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3170@end example
3171
f8e1c9e5
AD
3172The @code{yylex} function and Bison must use a consistent character set
3173and encoding for character tokens. For example, if you run Bison in an
35430378 3174ASCII environment, but then compile and run the resulting
f8e1c9e5 3175program in an environment that uses an incompatible character set like
35430378
JD
3176EBCDIC, the resulting program may not work because the tables
3177generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3178character tokens. It is standard practice for software distributions to
3179contain C source files that were generated by Bison in an
35430378
JD
3180ASCII environment, so installers on platforms that are
3181incompatible with ASCII must rebuild those files before
f8e1c9e5 3182compiling them.
e966383b 3183
bfa74976
RS
3184The symbol @code{error} is a terminal symbol reserved for error recovery
3185(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3186In particular, @code{yylex} should never return this value. The default
3187value of the error token is 256, unless you explicitly assigned 256 to
3188one of your tokens with a @code{%token} declaration.
bfa74976 3189
342b8b6e 3190@node Rules
bfa74976
RS
3191@section Syntax of Grammar Rules
3192@cindex rule syntax
3193@cindex grammar rule syntax
3194@cindex syntax of grammar rules
3195
3196A Bison grammar rule has the following general form:
3197
3198@example
e425e872 3199@group
bfa74976
RS
3200@var{result}: @var{components}@dots{}
3201 ;
e425e872 3202@end group
bfa74976
RS
3203@end example
3204
3205@noindent
9ecbd125 3206where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3207and @var{components} are various terminal and nonterminal symbols that
13863333 3208are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3209
3210For example,
3211
3212@example
3213@group
3214exp: exp '+' exp
3215 ;
3216@end group
3217@end example
3218
3219@noindent
3220says that two groupings of type @code{exp}, with a @samp{+} token in between,
3221can be combined into a larger grouping of type @code{exp}.
3222
72d2299c
PE
3223White space in rules is significant only to separate symbols. You can add
3224extra white space as you wish.
bfa74976
RS
3225
3226Scattered among the components can be @var{actions} that determine
3227the semantics of the rule. An action looks like this:
3228
3229@example
3230@{@var{C statements}@}
3231@end example
3232
3233@noindent
287c78f6
PE
3234@cindex braced code
3235This is an example of @dfn{braced code}, that is, C code surrounded by
3236braces, much like a compound statement in C@. Braced code can contain
3237any sequence of C tokens, so long as its braces are balanced. Bison
3238does not check the braced code for correctness directly; it merely
9913d6e4
JD
3239copies the code to the parser implementation file, where the C
3240compiler can check it.
287c78f6
PE
3241
3242Within braced code, the balanced-brace count is not affected by braces
3243within comments, string literals, or character constants, but it is
3244affected by the C digraphs @samp{<%} and @samp{%>} that represent
3245braces. At the top level braced code must be terminated by @samp{@}}
3246and not by a digraph. Bison does not look for trigraphs, so if braced
3247code uses trigraphs you should ensure that they do not affect the
3248nesting of braces or the boundaries of comments, string literals, or
3249character constants.
3250
bfa74976
RS
3251Usually there is only one action and it follows the components.
3252@xref{Actions}.
3253
3254@findex |
3255Multiple rules for the same @var{result} can be written separately or can
3256be joined with the vertical-bar character @samp{|} as follows:
3257
bfa74976
RS
3258@example
3259@group
3260@var{result}: @var{rule1-components}@dots{}
3261 | @var{rule2-components}@dots{}
3262 @dots{}
3263 ;
3264@end group
3265@end example
bfa74976
RS
3266
3267@noindent
3268They are still considered distinct rules even when joined in this way.
3269
3270If @var{components} in a rule is empty, it means that @var{result} can
3271match the empty string. For example, here is how to define a
3272comma-separated sequence of zero or more @code{exp} groupings:
3273
3274@example
3275@group
3276expseq: /* empty */
3277 | expseq1
3278 ;
3279@end group
3280
3281@group
3282expseq1: exp
3283 | expseq1 ',' exp
3284 ;
3285@end group
3286@end example
3287
3288@noindent
3289It is customary to write a comment @samp{/* empty */} in each rule
3290with no components.
3291
342b8b6e 3292@node Recursion
bfa74976
RS
3293@section Recursive Rules
3294@cindex recursive rule
3295
f8e1c9e5
AD
3296A rule is called @dfn{recursive} when its @var{result} nonterminal
3297appears also on its right hand side. Nearly all Bison grammars need to
3298use recursion, because that is the only way to define a sequence of any
3299number of a particular thing. Consider this recursive definition of a
9ecbd125 3300comma-separated sequence of one or more expressions:
bfa74976
RS
3301
3302@example
3303@group
3304expseq1: exp
3305 | expseq1 ',' exp
3306 ;
3307@end group
3308@end example
3309
3310@cindex left recursion
3311@cindex right recursion
3312@noindent
3313Since the recursive use of @code{expseq1} is the leftmost symbol in the
3314right hand side, we call this @dfn{left recursion}. By contrast, here
3315the same construct is defined using @dfn{right recursion}:
3316
3317@example
3318@group
3319expseq1: exp
3320 | exp ',' expseq1
3321 ;
3322@end group
3323@end example
3324
3325@noindent
ec3bc396
AD
3326Any kind of sequence can be defined using either left recursion or right
3327recursion, but you should always use left recursion, because it can
3328parse a sequence of any number of elements with bounded stack space.
3329Right recursion uses up space on the Bison stack in proportion to the
3330number of elements in the sequence, because all the elements must be
3331shifted onto the stack before the rule can be applied even once.
3332@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3333of this.
bfa74976
RS
3334
3335@cindex mutual recursion
3336@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3337rule does not appear directly on its right hand side, but does appear
3338in rules for other nonterminals which do appear on its right hand
13863333 3339side.
bfa74976
RS
3340
3341For example:
3342
3343@example
3344@group
3345expr: primary
3346 | primary '+' primary
3347 ;
3348@end group
3349
3350@group
3351primary: constant
3352 | '(' expr ')'
3353 ;
3354@end group
3355@end example
3356
3357@noindent
3358defines two mutually-recursive nonterminals, since each refers to the
3359other.
3360
342b8b6e 3361@node Semantics
bfa74976
RS
3362@section Defining Language Semantics
3363@cindex defining language semantics
13863333 3364@cindex language semantics, defining
bfa74976
RS
3365
3366The grammar rules for a language determine only the syntax. The semantics
3367are determined by the semantic values associated with various tokens and
3368groupings, and by the actions taken when various groupings are recognized.
3369
3370For example, the calculator calculates properly because the value
3371associated with each expression is the proper number; it adds properly
3372because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3373the numbers associated with @var{x} and @var{y}.
3374
3375@menu
3376* Value Type:: Specifying one data type for all semantic values.
3377* Multiple Types:: Specifying several alternative data types.
3378* Actions:: An action is the semantic definition of a grammar rule.
3379* Action Types:: Specifying data types for actions to operate on.
3380* Mid-Rule Actions:: Most actions go at the end of a rule.
3381 This says when, why and how to use the exceptional
3382 action in the middle of a rule.
1f68dca5 3383* Named References:: Using named references in actions.
bfa74976
RS
3384@end menu
3385
342b8b6e 3386@node Value Type
bfa74976
RS
3387@subsection Data Types of Semantic Values
3388@cindex semantic value type
3389@cindex value type, semantic
3390@cindex data types of semantic values
3391@cindex default data type
3392
3393In a simple program it may be sufficient to use the same data type for
3394the semantic values of all language constructs. This was true in the
35430378 3395RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3396Notation Calculator}).
bfa74976 3397
ddc8ede1
PE
3398Bison normally uses the type @code{int} for semantic values if your
3399program uses the same data type for all language constructs. To
bfa74976
RS
3400specify some other type, define @code{YYSTYPE} as a macro, like this:
3401
3402@example
3403#define YYSTYPE double
3404@end example
3405
3406@noindent
50cce58e
PE
3407@code{YYSTYPE}'s replacement list should be a type name
3408that does not contain parentheses or square brackets.
342b8b6e 3409This macro definition must go in the prologue of the grammar file
75f5aaea 3410(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3411
342b8b6e 3412@node Multiple Types
bfa74976
RS
3413@subsection More Than One Value Type
3414
3415In most programs, you will need different data types for different kinds
3416of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3417@code{int} or @code{long int}, while a string constant needs type
3418@code{char *}, and an identifier might need a pointer to an entry in the
3419symbol table.
bfa74976
RS
3420
3421To use more than one data type for semantic values in one parser, Bison
3422requires you to do two things:
3423
3424@itemize @bullet
3425@item
ddc8ede1 3426Specify the entire collection of possible data types, either by using the
704a47c4 3427@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3428Value Types}), or by using a @code{typedef} or a @code{#define} to
3429define @code{YYSTYPE} to be a union type whose member names are
3430the type tags.
bfa74976
RS
3431
3432@item
14ded682
AD
3433Choose one of those types for each symbol (terminal or nonterminal) for
3434which semantic values are used. This is done for tokens with the
3435@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3436and for groupings with the @code{%type} Bison declaration (@pxref{Type
3437Decl, ,Nonterminal Symbols}).
bfa74976
RS
3438@end itemize
3439
342b8b6e 3440@node Actions
bfa74976
RS
3441@subsection Actions
3442@cindex action
3443@vindex $$
3444@vindex $@var{n}
1f68dca5
AR
3445@vindex $@var{name}
3446@vindex $[@var{name}]
bfa74976
RS
3447
3448An action accompanies a syntactic rule and contains C code to be executed
3449each time an instance of that rule is recognized. The task of most actions
3450is to compute a semantic value for the grouping built by the rule from the
3451semantic values associated with tokens or smaller groupings.
3452
287c78f6
PE
3453An action consists of braced code containing C statements, and can be
3454placed at any position in the rule;
704a47c4
AD
3455it is executed at that position. Most rules have just one action at the
3456end of the rule, following all the components. Actions in the middle of
3457a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3458Actions, ,Actions in Mid-Rule}).
bfa74976 3459
9913d6e4
JD
3460The C code in an action can refer to the semantic values of the
3461components matched by the rule with the construct @code{$@var{n}},
3462which stands for the value of the @var{n}th component. The semantic
3463value for the grouping being constructed is @code{$$}. In addition,
3464the semantic values of symbols can be accessed with the named
3465references construct @code{$@var{name}} or @code{$[@var{name}]}.
3466Bison translates both of these constructs into expressions of the
3467appropriate type when it copies the actions into the parser
3468implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3469for the current grouping) is translated to a modifiable lvalue, so it
3470can be assigned to.
bfa74976
RS
3471
3472Here is a typical example:
3473
3474@example
3475@group
3476exp: @dots{}
3477 | exp '+' exp
3478 @{ $$ = $1 + $3; @}
3479@end group
3480@end example
3481
1f68dca5
AR
3482Or, in terms of named references:
3483
3484@example
3485@group
3486exp[result]: @dots{}
3487 | exp[left] '+' exp[right]
3488 @{ $result = $left + $right; @}
3489@end group
3490@end example
3491
bfa74976
RS
3492@noindent
3493This rule constructs an @code{exp} from two smaller @code{exp} groupings
3494connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3495(@code{$left} and @code{$right})
bfa74976
RS
3496refer to the semantic values of the two component @code{exp} groupings,
3497which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3498The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3499semantic value of
bfa74976
RS
3500the addition-expression just recognized by the rule. If there were a
3501useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3502referred to as @code{$2}.
bfa74976 3503
1f68dca5
AR
3504@xref{Named References,,Using Named References}, for more information
3505about using the named references construct.
3506
3ded9a63
AD
3507Note that the vertical-bar character @samp{|} is really a rule
3508separator, and actions are attached to a single rule. This is a
3509difference with tools like Flex, for which @samp{|} stands for either
3510``or'', or ``the same action as that of the next rule''. In the
3511following example, the action is triggered only when @samp{b} is found:
3512
3513@example
3514@group
3515a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3516@end group
3517@end example
3518
bfa74976
RS
3519@cindex default action
3520If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3521@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3522becomes the value of the whole rule. Of course, the default action is
3523valid only if the two data types match. There is no meaningful default
3524action for an empty rule; every empty rule must have an explicit action
3525unless the rule's value does not matter.
bfa74976
RS
3526
3527@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3528to tokens and groupings on the stack @emph{before} those that match the
3529current rule. This is a very risky practice, and to use it reliably
3530you must be certain of the context in which the rule is applied. Here
3531is a case in which you can use this reliably:
3532
3533@example
3534@group
3535foo: expr bar '+' expr @{ @dots{} @}
3536 | expr bar '-' expr @{ @dots{} @}
3537 ;
3538@end group
3539
3540@group
3541bar: /* empty */
3542 @{ previous_expr = $0; @}
3543 ;
3544@end group
3545@end example
3546
3547As long as @code{bar} is used only in the fashion shown here, @code{$0}
3548always refers to the @code{expr} which precedes @code{bar} in the
3549definition of @code{foo}.
3550
32c29292 3551@vindex yylval
742e4900 3552It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3553any, from a semantic action.
3554This semantic value is stored in @code{yylval}.
3555@xref{Action Features, ,Special Features for Use in Actions}.
3556
342b8b6e 3557@node Action Types
bfa74976
RS
3558@subsection Data Types of Values in Actions
3559@cindex action data types
3560@cindex data types in actions
3561
3562If you have chosen a single data type for semantic values, the @code{$$}
3563and @code{$@var{n}} constructs always have that data type.
3564
3565If you have used @code{%union} to specify a variety of data types, then you
3566must declare a choice among these types for each terminal or nonterminal
3567symbol that can have a semantic value. Then each time you use @code{$$} or
3568@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3569in the rule. In this example,
bfa74976
RS
3570
3571@example
3572@group
3573exp: @dots{}
3574 | exp '+' exp
3575 @{ $$ = $1 + $3; @}
3576@end group
3577@end example
3578
3579@noindent
3580@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3581have the data type declared for the nonterminal symbol @code{exp}. If
3582@code{$2} were used, it would have the data type declared for the
e0c471a9 3583terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3584
3585Alternatively, you can specify the data type when you refer to the value,
3586by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3587reference. For example, if you have defined types as shown here:
3588
3589@example
3590@group
3591%union @{
3592 int itype;
3593 double dtype;
3594@}
3595@end group
3596@end example
3597
3598@noindent
3599then you can write @code{$<itype>1} to refer to the first subunit of the
3600rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3601
342b8b6e 3602@node Mid-Rule Actions
bfa74976
RS
3603@subsection Actions in Mid-Rule
3604@cindex actions in mid-rule
3605@cindex mid-rule actions
3606
3607Occasionally it is useful to put an action in the middle of a rule.
3608These actions are written just like usual end-of-rule actions, but they
3609are executed before the parser even recognizes the following components.
3610
3611A mid-rule action may refer to the components preceding it using
3612@code{$@var{n}}, but it may not refer to subsequent components because
3613it is run before they are parsed.
3614
3615The mid-rule action itself counts as one of the components of the rule.
3616This makes a difference when there is another action later in the same rule
3617(and usually there is another at the end): you have to count the actions
3618along with the symbols when working out which number @var{n} to use in
3619@code{$@var{n}}.
3620
3621The mid-rule action can also have a semantic value. The action can set
3622its value with an assignment to @code{$$}, and actions later in the rule
3623can refer to the value using @code{$@var{n}}. Since there is no symbol
3624to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3625in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3626specify a data type each time you refer to this value.
bfa74976
RS
3627
3628There is no way to set the value of the entire rule with a mid-rule
3629action, because assignments to @code{$$} do not have that effect. The
3630only way to set the value for the entire rule is with an ordinary action
3631at the end of the rule.
3632
3633Here is an example from a hypothetical compiler, handling a @code{let}
3634statement that looks like @samp{let (@var{variable}) @var{statement}} and
3635serves to create a variable named @var{variable} temporarily for the
3636duration of @var{statement}. To parse this construct, we must put
3637@var{variable} into the symbol table while @var{statement} is parsed, then
3638remove it afterward. Here is how it is done:
3639
3640@example
3641@group
3642stmt: LET '(' var ')'
3643 @{ $<context>$ = push_context ();
3644 declare_variable ($3); @}
3645 stmt @{ $$ = $6;
3646 pop_context ($<context>5); @}
3647@end group
3648@end example
3649
3650@noindent
3651As soon as @samp{let (@var{variable})} has been recognized, the first
3652action is run. It saves a copy of the current semantic context (the
3653list of accessible variables) as its semantic value, using alternative
3654@code{context} in the data-type union. Then it calls
3655@code{declare_variable} to add the new variable to that list. Once the
3656first action is finished, the embedded statement @code{stmt} can be
3657parsed. Note that the mid-rule action is component number 5, so the
3658@samp{stmt} is component number 6.
3659
3660After the embedded statement is parsed, its semantic value becomes the
3661value of the entire @code{let}-statement. Then the semantic value from the
3662earlier action is used to restore the prior list of variables. This
3663removes the temporary @code{let}-variable from the list so that it won't
3664appear to exist while the rest of the program is parsed.
3665
841a7737
JD
3666@findex %destructor
3667@cindex discarded symbols, mid-rule actions
3668@cindex error recovery, mid-rule actions
3669In the above example, if the parser initiates error recovery (@pxref{Error
3670Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3671it might discard the previous semantic context @code{$<context>5} without
3672restoring it.
3673Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3674Discarded Symbols}).
ec5479ce
JD
3675However, Bison currently provides no means to declare a destructor specific to
3676a particular mid-rule action's semantic value.
841a7737
JD
3677
3678One solution is to bury the mid-rule action inside a nonterminal symbol and to
3679declare a destructor for that symbol:
3680
3681@example
3682@group
3683%type <context> let
3684%destructor @{ pop_context ($$); @} let
3685
3686%%
3687
3688stmt: let stmt
3689 @{ $$ = $2;
3690 pop_context ($1); @}
3691 ;
3692
3693let: LET '(' var ')'
3694 @{ $$ = push_context ();
3695 declare_variable ($3); @}
3696 ;
3697
3698@end group
3699@end example
3700
3701@noindent
3702Note that the action is now at the end of its rule.
3703Any mid-rule action can be converted to an end-of-rule action in this way, and
3704this is what Bison actually does to implement mid-rule actions.
3705
bfa74976
RS
3706Taking action before a rule is completely recognized often leads to
3707conflicts since the parser must commit to a parse in order to execute the
3708action. For example, the following two rules, without mid-rule actions,
3709can coexist in a working parser because the parser can shift the open-brace
3710token and look at what follows before deciding whether there is a
3711declaration or not:
3712
3713@example
3714@group
3715compound: '@{' declarations statements '@}'
3716 | '@{' statements '@}'
3717 ;
3718@end group
3719@end example
3720
3721@noindent
3722But when we add a mid-rule action as follows, the rules become nonfunctional:
3723
3724@example
3725@group
3726compound: @{ prepare_for_local_variables (); @}
3727 '@{' declarations statements '@}'
3728@end group
3729@group
3730 | '@{' statements '@}'
3731 ;
3732@end group
3733@end example
3734
3735@noindent
3736Now the parser is forced to decide whether to run the mid-rule action
3737when it has read no farther than the open-brace. In other words, it
3738must commit to using one rule or the other, without sufficient
3739information to do it correctly. (The open-brace token is what is called
742e4900
JD
3740the @dfn{lookahead} token at this time, since the parser is still
3741deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3742
3743You might think that you could correct the problem by putting identical
3744actions into the two rules, like this:
3745
3746@example
3747@group
3748compound: @{ prepare_for_local_variables (); @}
3749 '@{' declarations statements '@}'
3750 | @{ prepare_for_local_variables (); @}
3751 '@{' statements '@}'
3752 ;
3753@end group
3754@end example
3755
3756@noindent
3757But this does not help, because Bison does not realize that the two actions
3758are identical. (Bison never tries to understand the C code in an action.)
3759
3760If the grammar is such that a declaration can be distinguished from a
3761statement by the first token (which is true in C), then one solution which
3762does work is to put the action after the open-brace, like this:
3763
3764@example
3765@group
3766compound: '@{' @{ prepare_for_local_variables (); @}
3767 declarations statements '@}'
3768 | '@{' statements '@}'
3769 ;
3770@end group
3771@end example
3772
3773@noindent
3774Now the first token of the following declaration or statement,
3775which would in any case tell Bison which rule to use, can still do so.
3776
3777Another solution is to bury the action inside a nonterminal symbol which
3778serves as a subroutine:
3779
3780@example
3781@group
3782subroutine: /* empty */
3783 @{ prepare_for_local_variables (); @}
3784 ;
3785
3786@end group
3787
3788@group
3789compound: subroutine
3790 '@{' declarations statements '@}'
3791 | subroutine
3792 '@{' statements '@}'
3793 ;
3794@end group
3795@end example
3796
3797@noindent
3798Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3799deciding which rule for @code{compound} it will eventually use.
bfa74976 3800
1f68dca5
AR
3801@node Named References
3802@subsection Using Named References
3803@cindex named references
3804
3805While every semantic value can be accessed with positional references
3806@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3807them by name. First of all, original symbol names may be used as named
3808references. For example:
3809
3810@example
3811@group
3812invocation: op '(' args ')'
3813 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3814@end group
3815@end example
3816
3817@noindent
3818The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3819mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3820
3821@example
3822@group
3823invocation: op '(' args ')'
3824 @{ $$ = new_invocation ($op, $args, @@$); @}
3825@end group
3826@end example
3827
3828@noindent
3829However, sometimes regular symbol names are not sufficient due to
3830ambiguities:
3831
3832@example
3833@group
3834exp: exp '/' exp
3835 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3836
3837exp: exp '/' exp
3838 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3839
3840exp: exp '/' exp
3841 @{ $$ = $1 / $3; @} // No error.
3842@end group
3843@end example
3844
3845@noindent
3846When ambiguity occurs, explicitly declared names may be used for values and
3847locations. Explicit names are declared as a bracketed name after a symbol
3848appearance in rule definitions. For example:
3849@example
3850@group
3851exp[result]: exp[left] '/' exp[right]
3852 @{ $result = $left / $right; @}
3853@end group
3854@end example
3855
3856@noindent
3857Explicit names may be declared for RHS and for LHS symbols as well. In order
3858to access a semantic value generated by a mid-rule action, an explicit name
3859may also be declared by putting a bracketed name after the closing brace of
3860the mid-rule action code:
3861@example
3862@group
3863exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3864 @{ $res = $left + $right; @}
3865@end group
3866@end example
3867
3868@noindent
3869
3870In references, in order to specify names containing dots and dashes, an explicit
3871bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3872@example
3873@group
3874if-stmt: IF '(' expr ')' THEN then.stmt ';'
3875 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3876@end group
3877@end example
3878
3879It often happens that named references are followed by a dot, dash or other
3880C punctuation marks and operators. By default, Bison will read
3881@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3882@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3883value. In order to force Bison to recognize @code{name.suffix} in its entirety
3884as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3885must be used.
3886
3887
342b8b6e 3888@node Locations
847bf1f5
AD
3889@section Tracking Locations
3890@cindex location
95923bd6
AD
3891@cindex textual location
3892@cindex location, textual
847bf1f5
AD
3893
3894Though grammar rules and semantic actions are enough to write a fully
72d2299c 3895functional parser, it can be useful to process some additional information,
3e259915
MA
3896especially symbol locations.
3897
704a47c4
AD
3898The way locations are handled is defined by providing a data type, and
3899actions to take when rules are matched.
847bf1f5
AD
3900
3901@menu
3902* Location Type:: Specifying a data type for locations.
3903* Actions and Locations:: Using locations in actions.
3904* Location Default Action:: Defining a general way to compute locations.
3905@end menu
3906
342b8b6e 3907@node Location Type
847bf1f5
AD
3908@subsection Data Type of Locations
3909@cindex data type of locations
3910@cindex default location type
3911
3912Defining a data type for locations is much simpler than for semantic values,
3913since all tokens and groupings always use the same type.
3914
50cce58e
PE
3915You can specify the type of locations by defining a macro called
3916@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3917defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3918When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3919four members:
3920
3921@example
6273355b 3922typedef struct YYLTYPE
847bf1f5
AD
3923@{
3924 int first_line;
3925 int first_column;
3926 int last_line;
3927 int last_column;
6273355b 3928@} YYLTYPE;
847bf1f5
AD
3929@end example
3930
8fbbeba2
AD
3931When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3932initializes all these fields to 1 for @code{yylloc}. To initialize
3933@code{yylloc} with a custom location type (or to chose a different
3934initialization), use the @code{%initial-action} directive. @xref{Initial
3935Action Decl, , Performing Actions before Parsing}.
cd48d21d 3936
342b8b6e 3937@node Actions and Locations
847bf1f5
AD
3938@subsection Actions and Locations
3939@cindex location actions
3940@cindex actions, location
3941@vindex @@$
3942@vindex @@@var{n}
1f68dca5
AR
3943@vindex @@@var{name}
3944@vindex @@[@var{name}]
847bf1f5
AD
3945
3946Actions are not only useful for defining language semantics, but also for
3947describing the behavior of the output parser with locations.
3948
3949The most obvious way for building locations of syntactic groupings is very
72d2299c 3950similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3951constructs can be used to access the locations of the elements being matched.
3952The location of the @var{n}th component of the right hand side is
3953@code{@@@var{n}}, while the location of the left hand side grouping is
3954@code{@@$}.
3955
1f68dca5
AR
3956In addition, the named references construct @code{@@@var{name}} and
3957@code{@@[@var{name}]} may also be used to address the symbol locations.
3958@xref{Named References,,Using Named References}, for more information
3959about using the named references construct.
3960
3e259915 3961Here is a basic example using the default data type for locations:
847bf1f5
AD
3962
3963@example
3964@group
3965exp: @dots{}
3e259915 3966 | exp '/' exp
847bf1f5 3967 @{
3e259915
MA
3968 @@$.first_column = @@1.first_column;
3969 @@$.first_line = @@1.first_line;
847bf1f5
AD
3970 @@$.last_column = @@3.last_column;
3971 @@$.last_line = @@3.last_line;
3e259915
MA
3972 if ($3)
3973 $$ = $1 / $3;
3974 else
3975 @{
3976 $$ = 1;
4e03e201
AD
3977 fprintf (stderr,
3978 "Division by zero, l%d,c%d-l%d,c%d",
3979 @@3.first_line, @@3.first_column,
3980 @@3.last_line, @@3.last_column);
3e259915 3981 @}
847bf1f5
AD
3982 @}
3983@end group
3984@end example
3985
3e259915 3986As for semantic values, there is a default action for locations that is
72d2299c 3987run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3988beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3989last symbol.
3e259915 3990
72d2299c 3991With this default action, the location tracking can be fully automatic. The
3e259915
MA
3992example above simply rewrites this way:
3993
3994@example
3995@group
3996exp: @dots{}
3997 | exp '/' exp
3998 @{
3999 if ($3)
4000 $$ = $1 / $3;
4001 else
4002 @{
4003 $$ = 1;
4e03e201
AD
4004 fprintf (stderr,
4005 "Division by zero, l%d,c%d-l%d,c%d",
4006 @@3.first_line, @@3.first_column,
4007 @@3.last_line, @@3.last_column);
3e259915
MA
4008 @}
4009 @}
4010@end group
4011@end example
847bf1f5 4012
32c29292 4013@vindex yylloc
742e4900 4014It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4015from a semantic action.
4016This location is stored in @code{yylloc}.
4017@xref{Action Features, ,Special Features for Use in Actions}.
4018
342b8b6e 4019@node Location Default Action
847bf1f5
AD
4020@subsection Default Action for Locations
4021@vindex YYLLOC_DEFAULT
35430378 4022@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4023
72d2299c 4024Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4025locations are much more general than semantic values, there is room in
4026the output parser to redefine the default action to take for each
72d2299c 4027rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4028matched, before the associated action is run. It is also invoked
4029while processing a syntax error, to compute the error's location.
35430378 4030Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4031parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4032of that ambiguity.
847bf1f5 4033
3e259915 4034Most of the time, this macro is general enough to suppress location
79282c6c 4035dedicated code from semantic actions.
847bf1f5 4036
72d2299c 4037The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4038the location of the grouping (the result of the computation). When a
766de5eb 4039rule is matched, the second parameter identifies locations of
96b93a3d 4040all right hand side elements of the rule being matched, and the third
8710fc41 4041parameter is the size of the rule's right hand side.
35430378 4042When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4043right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4044When processing a syntax error, the second parameter identifies locations
4045of the symbols that were discarded during error processing, and the third
96b93a3d 4046parameter is the number of discarded symbols.
847bf1f5 4047
766de5eb 4048By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4049
766de5eb 4050@smallexample
847bf1f5 4051@group
766de5eb
PE
4052# define YYLLOC_DEFAULT(Current, Rhs, N) \
4053 do \
4054 if (N) \
4055 @{ \
4056 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4057 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4058 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4059 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4060 @} \
4061 else \
4062 @{ \
4063 (Current).first_line = (Current).last_line = \
4064 YYRHSLOC(Rhs, 0).last_line; \
4065 (Current).first_column = (Current).last_column = \
4066 YYRHSLOC(Rhs, 0).last_column; \
4067 @} \
4068 while (0)
847bf1f5 4069@end group
766de5eb 4070@end smallexample
676385e2 4071
766de5eb
PE
4072where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4073in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4074just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4075
3e259915 4076When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4077
3e259915 4078@itemize @bullet
79282c6c 4079@item
72d2299c 4080All arguments are free of side-effects. However, only the first one (the
3e259915 4081result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4082
3e259915 4083@item
766de5eb
PE
4084For consistency with semantic actions, valid indexes within the
4085right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4086valid index, and it refers to the symbol just before the reduction.
4087During error processing @var{n} is always positive.
0ae99356
PE
4088
4089@item
4090Your macro should parenthesize its arguments, if need be, since the
4091actual arguments may not be surrounded by parentheses. Also, your
4092macro should expand to something that can be used as a single
4093statement when it is followed by a semicolon.
3e259915 4094@end itemize
847bf1f5 4095
342b8b6e 4096@node Declarations
bfa74976
RS
4097@section Bison Declarations
4098@cindex declarations, Bison
4099@cindex Bison declarations
4100
4101The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4102used in formulating the grammar and the data types of semantic values.
4103@xref{Symbols}.
4104
4105All token type names (but not single-character literal tokens such as
4106@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4107declared if you need to specify which data type to use for the semantic
4108value (@pxref{Multiple Types, ,More Than One Value Type}).
4109
9913d6e4
JD
4110The first rule in the grammar file also specifies the start symbol, by
4111default. If you want some other symbol to be the start symbol, you
4112must declare it explicitly (@pxref{Language and Grammar, ,Languages
4113and Context-Free Grammars}).
bfa74976
RS
4114
4115@menu
b50d2359 4116* Require Decl:: Requiring a Bison version.
bfa74976
RS
4117* Token Decl:: Declaring terminal symbols.
4118* Precedence Decl:: Declaring terminals with precedence and associativity.
4119* Union Decl:: Declaring the set of all semantic value types.
4120* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4121* Initial Action Decl:: Code run before parsing starts.
72f889cc 4122* Destructor Decl:: Declaring how symbols are freed.
d6328241 4123* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4124* Start Decl:: Specifying the start symbol.
4125* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4126* Push Decl:: Requesting a push parser.
bfa74976 4127* Decl Summary:: Table of all Bison declarations.
8e6f2266 4128* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4129@end menu
4130
b50d2359
AD
4131@node Require Decl
4132@subsection Require a Version of Bison
4133@cindex version requirement
4134@cindex requiring a version of Bison
4135@findex %require
4136
4137You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4138the requirement is not met, @command{bison} exits with an error (exit
4139status 63).
b50d2359
AD
4140
4141@example
4142%require "@var{version}"
4143@end example
4144
342b8b6e 4145@node Token Decl
bfa74976
RS
4146@subsection Token Type Names
4147@cindex declaring token type names
4148@cindex token type names, declaring
931c7513 4149@cindex declaring literal string tokens
bfa74976
RS
4150@findex %token
4151
4152The basic way to declare a token type name (terminal symbol) is as follows:
4153
4154@example
4155%token @var{name}
4156@end example
4157
4158Bison will convert this into a @code{#define} directive in
4159the parser, so that the function @code{yylex} (if it is in this file)
4160can use the name @var{name} to stand for this token type's code.
4161
14ded682
AD
4162Alternatively, you can use @code{%left}, @code{%right}, or
4163@code{%nonassoc} instead of @code{%token}, if you wish to specify
4164associativity and precedence. @xref{Precedence Decl, ,Operator
4165Precedence}.
bfa74976
RS
4166
4167You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4168a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4169following the token name:
bfa74976
RS
4170
4171@example
4172%token NUM 300
1452af69 4173%token XNUM 0x12d // a GNU extension
bfa74976
RS
4174@end example
4175
4176@noindent
4177It is generally best, however, to let Bison choose the numeric codes for
4178all token types. Bison will automatically select codes that don't conflict
e966383b 4179with each other or with normal characters.
bfa74976
RS
4180
4181In the event that the stack type is a union, you must augment the
4182@code{%token} or other token declaration to include the data type
704a47c4
AD
4183alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4184Than One Value Type}).
bfa74976
RS
4185
4186For example:
4187
4188@example
4189@group
4190%union @{ /* define stack type */
4191 double val;
4192 symrec *tptr;
4193@}
4194%token <val> NUM /* define token NUM and its type */
4195@end group
4196@end example
4197
931c7513
RS
4198You can associate a literal string token with a token type name by
4199writing the literal string at the end of a @code{%token}
4200declaration which declares the name. For example:
4201
4202@example
4203%token arrow "=>"
4204@end example
4205
4206@noindent
4207For example, a grammar for the C language might specify these names with
4208equivalent literal string tokens:
4209
4210@example
4211%token <operator> OR "||"
4212%token <operator> LE 134 "<="
4213%left OR "<="
4214@end example
4215
4216@noindent
4217Once you equate the literal string and the token name, you can use them
4218interchangeably in further declarations or the grammar rules. The
4219@code{yylex} function can use the token name or the literal string to
4220obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4221Syntax error messages passed to @code{yyerror} from the parser will reference
4222the literal string instead of the token name.
4223
4224The token numbered as 0 corresponds to end of file; the following line
4225allows for nicer error messages referring to ``end of file'' instead
4226of ``$end'':
4227
4228@example
4229%token END 0 "end of file"
4230@end example
931c7513 4231
342b8b6e 4232@node Precedence Decl
bfa74976
RS
4233@subsection Operator Precedence
4234@cindex precedence declarations
4235@cindex declaring operator precedence
4236@cindex operator precedence, declaring
4237
4238Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4239declare a token and specify its precedence and associativity, all at
4240once. These are called @dfn{precedence declarations}.
704a47c4
AD
4241@xref{Precedence, ,Operator Precedence}, for general information on
4242operator precedence.
bfa74976 4243
ab7f29f8 4244The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4245@code{%token}: either
4246
4247@example
4248%left @var{symbols}@dots{}
4249@end example
4250
4251@noindent
4252or
4253
4254@example
4255%left <@var{type}> @var{symbols}@dots{}
4256@end example
4257
4258And indeed any of these declarations serves the purposes of @code{%token}.
4259But in addition, they specify the associativity and relative precedence for
4260all the @var{symbols}:
4261
4262@itemize @bullet
4263@item
4264The associativity of an operator @var{op} determines how repeated uses
4265of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4266@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4267grouping @var{y} with @var{z} first. @code{%left} specifies
4268left-associativity (grouping @var{x} with @var{y} first) and
4269@code{%right} specifies right-associativity (grouping @var{y} with
4270@var{z} first). @code{%nonassoc} specifies no associativity, which
4271means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4272considered a syntax error.
4273
4274@item
4275The precedence of an operator determines how it nests with other operators.
4276All the tokens declared in a single precedence declaration have equal
4277precedence and nest together according to their associativity.
4278When two tokens declared in different precedence declarations associate,
4279the one declared later has the higher precedence and is grouped first.
4280@end itemize
4281
ab7f29f8
JD
4282For backward compatibility, there is a confusing difference between the
4283argument lists of @code{%token} and precedence declarations.
4284Only a @code{%token} can associate a literal string with a token type name.
4285A precedence declaration always interprets a literal string as a reference to a
4286separate token.
4287For example:
4288
4289@example
4290%left OR "<=" // Does not declare an alias.
4291%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4292@end example
4293
342b8b6e 4294@node Union Decl
bfa74976
RS
4295@subsection The Collection of Value Types
4296@cindex declaring value types
4297@cindex value types, declaring
4298@findex %union
4299
287c78f6
PE
4300The @code{%union} declaration specifies the entire collection of
4301possible data types for semantic values. The keyword @code{%union} is
4302followed by braced code containing the same thing that goes inside a
4303@code{union} in C@.
bfa74976
RS
4304
4305For example:
4306
4307@example
4308@group
4309%union @{
4310 double val;
4311 symrec *tptr;
4312@}
4313@end group
4314@end example
4315
4316@noindent
4317This says that the two alternative types are @code{double} and @code{symrec
4318*}. They are given names @code{val} and @code{tptr}; these names are used
4319in the @code{%token} and @code{%type} declarations to pick one of the types
4320for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4321
35430378 4322As an extension to POSIX, a tag is allowed after the
6273355b
PE
4323@code{union}. For example:
4324
4325@example
4326@group
4327%union value @{
4328 double val;
4329 symrec *tptr;
4330@}
4331@end group
4332@end example
4333
d6ca7905 4334@noindent
6273355b
PE
4335specifies the union tag @code{value}, so the corresponding C type is
4336@code{union value}. If you do not specify a tag, it defaults to
4337@code{YYSTYPE}.
4338
35430378 4339As another extension to POSIX, you may specify multiple
d6ca7905
PE
4340@code{%union} declarations; their contents are concatenated. However,
4341only the first @code{%union} declaration can specify a tag.
4342
6273355b 4343Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4344a semicolon after the closing brace.
4345
ddc8ede1
PE
4346Instead of @code{%union}, you can define and use your own union type
4347@code{YYSTYPE} if your grammar contains at least one
4348@samp{<@var{type}>} tag. For example, you can put the following into
4349a header file @file{parser.h}:
4350
4351@example
4352@group
4353union YYSTYPE @{
4354 double val;
4355 symrec *tptr;
4356@};
4357typedef union YYSTYPE YYSTYPE;
4358@end group
4359@end example
4360
4361@noindent
4362and then your grammar can use the following
4363instead of @code{%union}:
4364
4365@example
4366@group
4367%@{
4368#include "parser.h"
4369%@}
4370%type <val> expr
4371%token <tptr> ID
4372@end group
4373@end example
4374
342b8b6e 4375@node Type Decl
bfa74976
RS
4376@subsection Nonterminal Symbols
4377@cindex declaring value types, nonterminals
4378@cindex value types, nonterminals, declaring
4379@findex %type
4380
4381@noindent
4382When you use @code{%union} to specify multiple value types, you must
4383declare the value type of each nonterminal symbol for which values are
4384used. This is done with a @code{%type} declaration, like this:
4385
4386@example
4387%type <@var{type}> @var{nonterminal}@dots{}
4388@end example
4389
4390@noindent
704a47c4
AD
4391Here @var{nonterminal} is the name of a nonterminal symbol, and
4392@var{type} is the name given in the @code{%union} to the alternative
4393that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4394can give any number of nonterminal symbols in the same @code{%type}
4395declaration, if they have the same value type. Use spaces to separate
4396the symbol names.
bfa74976 4397
931c7513
RS
4398You can also declare the value type of a terminal symbol. To do this,
4399use the same @code{<@var{type}>} construction in a declaration for the
4400terminal symbol. All kinds of token declarations allow
4401@code{<@var{type}>}.
4402
18d192f0
AD
4403@node Initial Action Decl
4404@subsection Performing Actions before Parsing
4405@findex %initial-action
4406
4407Sometimes your parser needs to perform some initializations before
4408parsing. The @code{%initial-action} directive allows for such arbitrary
4409code.
4410
4411@deffn {Directive} %initial-action @{ @var{code} @}
4412@findex %initial-action
287c78f6 4413Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4414@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4415@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4416@code{%parse-param}.
18d192f0
AD
4417@end deffn
4418
451364ed
AD
4419For instance, if your locations use a file name, you may use
4420
4421@example
48b16bbc 4422%parse-param @{ char const *file_name @};
451364ed
AD
4423%initial-action
4424@{
4626a15d 4425 @@$.initialize (file_name);
451364ed
AD
4426@};
4427@end example
4428
18d192f0 4429
72f889cc
AD
4430@node Destructor Decl
4431@subsection Freeing Discarded Symbols
4432@cindex freeing discarded symbols
4433@findex %destructor
12e35840 4434@findex <*>
3ebecc24 4435@findex <>
a85284cf
AD
4436During error recovery (@pxref{Error Recovery}), symbols already pushed
4437on the stack and tokens coming from the rest of the file are discarded
4438until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4439or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4440symbols on the stack must be discarded. Even if the parser succeeds, it
4441must discard the start symbol.
258b75ca
PE
4442
4443When discarded symbols convey heap based information, this memory is
4444lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4445in traditional compilers, it is unacceptable for programs like shells or
4446protocol implementations that may parse and execute indefinitely.
258b75ca 4447
a85284cf
AD
4448The @code{%destructor} directive defines code that is called when a
4449symbol is automatically discarded.
72f889cc
AD
4450
4451@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4452@findex %destructor
287c78f6
PE
4453Invoke the braced @var{code} whenever the parser discards one of the
4454@var{symbols}.
4b367315 4455Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4456with the discarded symbol, and @code{@@$} designates its location.
4457The additional parser parameters are also available (@pxref{Parser Function, ,
4458The Parser Function @code{yyparse}}).
ec5479ce 4459
b2a0b7ca
JD
4460When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4461per-symbol @code{%destructor}.
4462You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4463tag among @var{symbols}.
b2a0b7ca 4464In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4465grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4466per-symbol @code{%destructor}.
4467
12e35840 4468Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4469(These default forms are experimental.
4470More user feedback will help to determine whether they should become permanent
4471features.)
3ebecc24 4472You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4473exactly one @code{%destructor} declaration in your grammar file.
4474The parser will invoke the @var{code} associated with one of these whenever it
4475discards any user-defined grammar symbol that has no per-symbol and no per-type
4476@code{%destructor}.
4477The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4478symbol for which you have formally declared a semantic type tag (@code{%type}
4479counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4480The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4481symbol that has no declared semantic type tag.
72f889cc
AD
4482@end deffn
4483
b2a0b7ca 4484@noindent
12e35840 4485For example:
72f889cc
AD
4486
4487@smallexample
ec5479ce
JD
4488%union @{ char *string; @}
4489%token <string> STRING1
4490%token <string> STRING2
4491%type <string> string1
4492%type <string> string2
b2a0b7ca
JD
4493%union @{ char character; @}
4494%token <character> CHR
4495%type <character> chr
12e35840
JD
4496%token TAGLESS
4497
b2a0b7ca 4498%destructor @{ @} <character>
12e35840
JD
4499%destructor @{ free ($$); @} <*>
4500%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4501%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4502@end smallexample
4503
4504@noindent
b2a0b7ca
JD
4505guarantees that, when the parser discards any user-defined symbol that has a
4506semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4507to @code{free} by default.
ec5479ce
JD
4508However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4509prints its line number to @code{stdout}.
4510It performs only the second @code{%destructor} in this case, so it invokes
4511@code{free} only once.
12e35840
JD
4512Finally, the parser merely prints a message whenever it discards any symbol,
4513such as @code{TAGLESS}, that has no semantic type tag.
4514
4515A Bison-generated parser invokes the default @code{%destructor}s only for
4516user-defined as opposed to Bison-defined symbols.
4517For example, the parser will not invoke either kind of default
4518@code{%destructor} for the special Bison-defined symbols @code{$accept},
4519@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4520none of which you can reference in your grammar.
4521It also will not invoke either for the @code{error} token (@pxref{Table of
4522Symbols, ,error}), which is always defined by Bison regardless of whether you
4523reference it in your grammar.
4524However, it may invoke one of them for the end token (token 0) if you
4525redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4526
4527@smallexample
4528%token END 0
4529@end smallexample
4530
12e35840
JD
4531@cindex actions in mid-rule
4532@cindex mid-rule actions
4533Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4534mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4535That is, Bison does not consider a mid-rule to have a semantic value if you do
4536not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4537@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4538rule.
4539However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4540@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4541
3508ce36
JD
4542@ignore
4543@noindent
4544In the future, it may be possible to redefine the @code{error} token as a
4545nonterminal that captures the discarded symbols.
4546In that case, the parser will invoke the default destructor for it as well.
4547@end ignore
4548
e757bb10
AD
4549@sp 1
4550
4551@cindex discarded symbols
4552@dfn{Discarded symbols} are the following:
4553
4554@itemize
4555@item
4556stacked symbols popped during the first phase of error recovery,
4557@item
4558incoming terminals during the second phase of error recovery,
4559@item
742e4900 4560the current lookahead and the entire stack (except the current
9d9b8b70 4561right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4562@item
4563the start symbol, when the parser succeeds.
e757bb10
AD
4564@end itemize
4565
9d9b8b70
PE
4566The parser can @dfn{return immediately} because of an explicit call to
4567@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4568exhaustion.
4569
29553547 4570Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4571error via @code{YYERROR} are not discarded automatically. As a rule
4572of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4573the memory.
e757bb10 4574
342b8b6e 4575@node Expect Decl
bfa74976
RS
4576@subsection Suppressing Conflict Warnings
4577@cindex suppressing conflict warnings
4578@cindex preventing warnings about conflicts
4579@cindex warnings, preventing
4580@cindex conflicts, suppressing warnings of
4581@findex %expect
d6328241 4582@findex %expect-rr
bfa74976
RS
4583
4584Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4585(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4586have harmless shift/reduce conflicts which are resolved in a predictable
4587way and would be difficult to eliminate. It is desirable to suppress
4588the warning about these conflicts unless the number of conflicts
4589changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4590
4591The declaration looks like this:
4592
4593@example
4594%expect @var{n}
4595@end example
4596
035aa4a0
PE
4597Here @var{n} is a decimal integer. The declaration says there should
4598be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4599Bison reports an error if the number of shift/reduce conflicts differs
4600from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4601
34a6c2d1 4602For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4603serious, and should be eliminated entirely. Bison will always report
35430378 4604reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4605parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4606there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4607also possible to specify an expected number of reduce/reduce conflicts
35430378 4608in GLR parsers, using the declaration:
d6328241
PH
4609
4610@example
4611%expect-rr @var{n}
4612@end example
4613
bfa74976
RS
4614In general, using @code{%expect} involves these steps:
4615
4616@itemize @bullet
4617@item
4618Compile your grammar without @code{%expect}. Use the @samp{-v} option
4619to get a verbose list of where the conflicts occur. Bison will also
4620print the number of conflicts.
4621
4622@item
4623Check each of the conflicts to make sure that Bison's default
4624resolution is what you really want. If not, rewrite the grammar and
4625go back to the beginning.
4626
4627@item
4628Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4629number which Bison printed. With GLR parsers, add an
035aa4a0 4630@code{%expect-rr} declaration as well.
bfa74976
RS
4631@end itemize
4632
cf22447c
JD
4633Now Bison will report an error if you introduce an unexpected conflict,
4634but will keep silent otherwise.
bfa74976 4635
342b8b6e 4636@node Start Decl
bfa74976
RS
4637@subsection The Start-Symbol
4638@cindex declaring the start symbol
4639@cindex start symbol, declaring
4640@cindex default start symbol
4641@findex %start
4642
4643Bison assumes by default that the start symbol for the grammar is the first
4644nonterminal specified in the grammar specification section. The programmer
4645may override this restriction with the @code{%start} declaration as follows:
4646
4647@example
4648%start @var{symbol}
4649@end example
4650
342b8b6e 4651@node Pure Decl
bfa74976
RS
4652@subsection A Pure (Reentrant) Parser
4653@cindex reentrant parser
4654@cindex pure parser
d9df47b6 4655@findex %define api.pure
bfa74976
RS
4656
4657A @dfn{reentrant} program is one which does not alter in the course of
4658execution; in other words, it consists entirely of @dfn{pure} (read-only)
4659code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4660for example, a nonreentrant program may not be safe to call from a signal
4661handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4662program must be called only within interlocks.
4663
70811b85 4664Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4665suitable for most uses, and it permits compatibility with Yacc. (The
4666standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4667statically allocated variables for communication with @code{yylex},
4668including @code{yylval} and @code{yylloc}.)
bfa74976 4669
70811b85 4670Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4671declaration @code{%define api.pure} says that you want the parser to be
70811b85 4672reentrant. It looks like this:
bfa74976
RS
4673
4674@example
d9df47b6 4675%define api.pure
bfa74976
RS
4676@end example
4677
70811b85
RS
4678The result is that the communication variables @code{yylval} and
4679@code{yylloc} become local variables in @code{yyparse}, and a different
4680calling convention is used for the lexical analyzer function
4681@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4682Parsers}, for the details of this. The variable @code{yynerrs}
4683becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4684of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4685Reporting Function @code{yyerror}}). The convention for calling
4686@code{yyparse} itself is unchanged.
4687
4688Whether the parser is pure has nothing to do with the grammar rules.
4689You can generate either a pure parser or a nonreentrant parser from any
4690valid grammar.
bfa74976 4691
9987d1b3
JD
4692@node Push Decl
4693@subsection A Push Parser
4694@cindex push parser
4695@cindex push parser
812775a0 4696@findex %define api.push-pull
9987d1b3 4697
59da312b
JD
4698(The current push parsing interface is experimental and may evolve.
4699More user feedback will help to stabilize it.)
4700
f4101aa6
AD
4701A pull parser is called once and it takes control until all its input
4702is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4703each time a new token is made available.
4704
f4101aa6 4705A push parser is typically useful when the parser is part of a
9987d1b3 4706main event loop in the client's application. This is typically
f4101aa6
AD
4707a requirement of a GUI, when the main event loop needs to be triggered
4708within a certain time period.
9987d1b3 4709
d782395d
JD
4710Normally, Bison generates a pull parser.
4711The following Bison declaration says that you want the parser to be a push
812775a0 4712parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4713
4714@example
f37495f6 4715%define api.push-pull push
9987d1b3
JD
4716@end example
4717
4718In almost all cases, you want to ensure that your push parser is also
4719a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4720time you should create an impure push parser is to have backwards
9987d1b3
JD
4721compatibility with the impure Yacc pull mode interface. Unless you know
4722what you are doing, your declarations should look like this:
4723
4724@example
d9df47b6 4725%define api.pure
f37495f6 4726%define api.push-pull push
9987d1b3
JD
4727@end example
4728
f4101aa6
AD
4729There is a major notable functional difference between the pure push parser
4730and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4731many parser instances, of the same type of parser, in memory at the same time.
4732An impure push parser should only use one parser at a time.
4733
4734When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4735the generated parser. @code{yypstate} is a structure that the generated
4736parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4737function that will create a new parser instance. @code{yypstate_delete}
4738will free the resources associated with the corresponding parser instance.
f4101aa6 4739Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4740token is available to provide the parser. A trivial example
4741of using a pure push parser would look like this:
4742
4743@example
4744int status;
4745yypstate *ps = yypstate_new ();
4746do @{
4747 status = yypush_parse (ps, yylex (), NULL);
4748@} while (status == YYPUSH_MORE);
4749yypstate_delete (ps);
4750@end example
4751
4752If the user decided to use an impure push parser, a few things about
f4101aa6 4753the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4754a global variable instead of a variable in the @code{yypush_parse} function.
4755For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4756changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4757example would thus look like this:
4758
4759@example
4760extern int yychar;
4761int status;
4762yypstate *ps = yypstate_new ();
4763do @{
4764 yychar = yylex ();
4765 status = yypush_parse (ps);
4766@} while (status == YYPUSH_MORE);
4767yypstate_delete (ps);
4768@end example
4769
f4101aa6 4770That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4771for use by the next invocation of the @code{yypush_parse} function.
4772
f4101aa6 4773Bison also supports both the push parser interface along with the pull parser
9987d1b3 4774interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4775you should replace the @code{%define api.push-pull push} declaration with the
4776@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4777the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4778and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4779would be used. However, the user should note that it is implemented in the
d782395d
JD
4780generated parser by calling @code{yypull_parse}.
4781This makes the @code{yyparse} function that is generated with the
f37495f6 4782@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4783@code{yyparse} function. If the user
4784calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4785stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4786and then @code{yypull_parse} the rest of the input stream. If you would like
4787to switch back and forth between between parsing styles, you would have to
4788write your own @code{yypull_parse} function that knows when to quit looking
4789for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4790like this:
4791
4792@example
4793yypstate *ps = yypstate_new ();
4794yypull_parse (ps); /* Will call the lexer */
4795yypstate_delete (ps);
4796@end example
4797
d9df47b6 4798Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4799the generated parser with @code{%define api.push-pull both} as it did for
4800@code{%define api.push-pull push}.
9987d1b3 4801
342b8b6e 4802@node Decl Summary
bfa74976
RS
4803@subsection Bison Declaration Summary
4804@cindex Bison declaration summary
4805@cindex declaration summary
4806@cindex summary, Bison declaration
4807
d8988b2f 4808Here is a summary of the declarations used to define a grammar:
bfa74976 4809
18b519c0 4810@deffn {Directive} %union
bfa74976
RS
4811Declare the collection of data types that semantic values may have
4812(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4813@end deffn
bfa74976 4814
18b519c0 4815@deffn {Directive} %token
bfa74976
RS
4816Declare a terminal symbol (token type name) with no precedence
4817or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4818@end deffn
bfa74976 4819
18b519c0 4820@deffn {Directive} %right
bfa74976
RS
4821Declare a terminal symbol (token type name) that is right-associative
4822(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4823@end deffn
bfa74976 4824
18b519c0 4825@deffn {Directive} %left
bfa74976
RS
4826Declare a terminal symbol (token type name) that is left-associative
4827(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4828@end deffn
bfa74976 4829
18b519c0 4830@deffn {Directive} %nonassoc
bfa74976 4831Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4832(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4833Using it in a way that would be associative is a syntax error.
4834@end deffn
4835
91d2c560 4836@ifset defaultprec
39a06c25 4837@deffn {Directive} %default-prec
22fccf95 4838Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4839(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4840@end deffn
91d2c560 4841@end ifset
bfa74976 4842
18b519c0 4843@deffn {Directive} %type
bfa74976
RS
4844Declare the type of semantic values for a nonterminal symbol
4845(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4846@end deffn
bfa74976 4847
18b519c0 4848@deffn {Directive} %start
89cab50d
AD
4849Specify the grammar's start symbol (@pxref{Start Decl, ,The
4850Start-Symbol}).
18b519c0 4851@end deffn
bfa74976 4852
18b519c0 4853@deffn {Directive} %expect
bfa74976
RS
4854Declare the expected number of shift-reduce conflicts
4855(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4856@end deffn
4857
bfa74976 4858
d8988b2f
AD
4859@sp 1
4860@noindent
4861In order to change the behavior of @command{bison}, use the following
4862directives:
4863
148d66d8 4864@deffn {Directive} %code @{@var{code}@}
8e6f2266 4865@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4866@findex %code
8e6f2266
JD
4867Insert @var{code} verbatim into the output parser source at the
4868default location or at the location specified by @var{qualifier}.
4869@xref{%code Summary}.
148d66d8
JD
4870@end deffn
4871
18b519c0 4872@deffn {Directive} %debug
9913d6e4
JD
4873In the parser implementation file, define the macro @code{YYDEBUG} to
48741 if it is not already defined, so that the debugging facilities are
4875compiled. @xref{Tracing, ,Tracing Your Parser}.
bd5df716 4876@end deffn
d8988b2f 4877
c1d19e10 4878@deffn {Directive} %define @var{variable}
f37495f6 4879@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 4880@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 4881Define a variable to adjust Bison's behavior.
9611cfa2 4882
e3a33f7c 4883It is an error if a @var{variable} is defined by @code{%define} multiple
c33bc800 4884times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 4885
eb8c66bb
JD
4886@var{value} must be placed in quotation marks if it contains any character
4887other than a letter, underscore, period, or non-initial dash or digit.
f37495f6
JD
4888
4889Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
4890@code{""}.
4891
628be6c9 4892Some @var{variable}s take Boolean values.
9611cfa2
JD
4893In this case, Bison will complain if the variable definition does not meet one
4894of the following four conditions:
4895
4896@enumerate
f37495f6 4897@item @code{@var{value}} is @code{true}
9611cfa2 4898
f37495f6
JD
4899@item @code{@var{value}} is omitted (or @code{""} is specified).
4900This is equivalent to @code{true}.
9611cfa2 4901
f37495f6 4902@item @code{@var{value}} is @code{false}.
9611cfa2
JD
4903
4904@item @var{variable} is never defined.
628be6c9 4905In this case, Bison selects a default value.
9611cfa2 4906@end enumerate
148d66d8 4907
628be6c9
JD
4908What @var{variable}s are accepted, as well as their meanings and default
4909values, depend on the selected target language and/or the parser
4910skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
4911Summary,,%skeleton}).
4912Unaccepted @var{variable}s produce an error.
793fbca5
JD
4913Some of the accepted @var{variable}s are:
4914
4915@itemize @bullet
d9df47b6
JD
4916@item api.pure
4917@findex %define api.pure
4918
4919@itemize @bullet
4920@item Language(s): C
4921
4922@item Purpose: Request a pure (reentrant) parser program.
4923@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4924
4925@item Accepted Values: Boolean
4926
f37495f6 4927@item Default Value: @code{false}
d9df47b6
JD
4928@end itemize
4929
812775a0
JD
4930@item api.push-pull
4931@findex %define api.push-pull
793fbca5
JD
4932
4933@itemize @bullet
34a6c2d1 4934@item Language(s): C (deterministic parsers only)
793fbca5 4935
3b1977ea 4936@item Purpose: Request a pull parser, a push parser, or both.
d782395d 4937@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4938(The current push parsing interface is experimental and may evolve.
4939More user feedback will help to stabilize it.)
793fbca5 4940
f37495f6 4941@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 4942
f37495f6 4943@item Default Value: @code{pull}
793fbca5
JD
4944@end itemize
4945
232be91a
AD
4946@c ================================================== lr.default-reductions
4947
1d0f55cc 4948@item lr.default-reductions
620b5727 4949@cindex default reductions
1d0f55cc 4950@findex %define lr.default-reductions
34a6c2d1
JD
4951@cindex delayed syntax errors
4952@cindex syntax errors delayed
35430378 4953@cindex LAC
4c38b19e 4954@findex %nonassoc
34a6c2d1
JD
4955
4956@itemize @bullet
4957@item Language(s): all
4958
4c38b19e 4959@item Purpose: Specify the kind of states that are permitted to
620b5727 4960contain default reductions.
4c38b19e
JD
4961That is, in such a state, Bison selects the reduction with the largest
4962lookahead set to be the default parser action and then removes that
620b5727 4963lookahead set.
4c38b19e
JD
4964(The ability to specify where default reductions should be used is
4965experimental.
34a6c2d1
JD
4966More user feedback will help to stabilize it.)
4967
4968@item Accepted Values:
4969@itemize
f37495f6 4970@item @code{all}.
4c38b19e
JD
4971This is the traditional Bison behavior.
4972The main advantage is a significant decrease in the size of the parser
4973tables.
4974The disadvantage is that, when the generated parser encounters a
4975syntactically unacceptable token, the parser might then perform
4976unnecessary default reductions before it can detect the syntax error.
4977Such delayed syntax error detection is usually inherent in
35430378
JD
4978LALR and IELR parser tables anyway due to
4979LR state merging (@pxref{Decl Summary,,lr.type}).
4c38b19e 4980Furthermore, the use of @code{%nonassoc} can contribute to delayed
35430378 4981syntax error detection even in the case of canonical LR.
4c38b19e 4982As an experimental feature, delayed syntax error detection can be
35430378 4983overcome in all cases by enabling LAC (@pxref{Decl
4c38b19e
JD
4984Summary,,parse.lac}, for details, including a discussion of the effects
4985of delayed syntax error detection).
34a6c2d1 4986
f37495f6 4987@item @code{consistent}.
34a6c2d1
JD
4988@cindex consistent states
4989A consistent state is a state that has only one possible action.
4990If that action is a reduction, then the parser does not need to request
4991a lookahead token from the scanner before performing that action.
4c38b19e
JD
4992However, the parser recognizes the ability to ignore the lookahead token
4993in this way only when such a reduction is encoded as a default
4994reduction.
4995Thus, if default reductions are permitted only in consistent states,
35430378 4996then a canonical LR parser that does not employ
4c38b19e
JD
4997@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
4998syntactically unacceptable token from the scanner.
34a6c2d1 4999
f37495f6 5000@item @code{accepting}.
34a6c2d1 5001@cindex accepting state
4c38b19e
JD
5002In the accepting state, the default reduction is actually the accept
5003action.
35430378 5004In this case, a canonical LR parser that does not employ
4c38b19e
JD
5005@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
5006syntactically unacceptable token in the input.
5007That is, it does not perform any extra reductions.
34a6c2d1
JD
5008@end itemize
5009
5010@item Default Value:
5011@itemize
f37495f6
JD
5012@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5013@item @code{all} otherwise.
34a6c2d1
JD
5014@end itemize
5015@end itemize
5016
232be91a
AD
5017@c ============================================ lr.keep-unreachable-states
5018
812775a0
JD
5019@item lr.keep-unreachable-states
5020@findex %define lr.keep-unreachable-states
31984206
JD
5021
5022@itemize @bullet
5023@item Language(s): all
5024
3b1977ea
JD
5025@item Purpose: Request that Bison allow unreachable parser states to
5026remain in the parser tables.
31984206
JD
5027Bison considers a state to be unreachable if there exists no sequence of
5028transitions from the start state to that state.
5029A state can become unreachable during conflict resolution if Bison disables a
5030shift action leading to it from a predecessor state.
5031Keeping unreachable states is sometimes useful for analysis purposes, but they
5032are useless in the generated parser.
5033
5034@item Accepted Values: Boolean
5035
f37495f6 5036@item Default Value: @code{false}
31984206
JD
5037
5038@item Caveats:
5039
5040@itemize @bullet
cff03fb2
JD
5041
5042@item Unreachable states may contain conflicts and may use rules not used in
5043any other state.
31984206
JD
5044Thus, keeping unreachable states may induce warnings that are irrelevant to
5045your parser's behavior, and it may eliminate warnings that are relevant.
5046Of course, the change in warnings may actually be relevant to a parser table
5047analysis that wants to keep unreachable states, so this behavior will likely
5048remain in future Bison releases.
5049
5050@item While Bison is able to remove unreachable states, it is not guaranteed to
5051remove other kinds of useless states.
5052Specifically, when Bison disables reduce actions during conflict resolution,
5053some goto actions may become useless, and thus some additional states may
5054become useless.
5055If Bison were to compute which goto actions were useless and then disable those
5056actions, it could identify such states as unreachable and then remove those
5057states.
5058However, Bison does not compute which goto actions are useless.
5059@end itemize
5060@end itemize
5061
232be91a
AD
5062@c ================================================== lr.type
5063
34a6c2d1
JD
5064@item lr.type
5065@findex %define lr.type
35430378
JD
5066@cindex LALR
5067@cindex IELR
5068@cindex LR
34a6c2d1
JD
5069
5070@itemize @bullet
5071@item Language(s): all
5072
3b1977ea 5073@item Purpose: Specify the type of parser tables within the
35430378 5074LR(1) family.
34a6c2d1
JD
5075(This feature is experimental.
5076More user feedback will help to stabilize it.)
5077
5078@item Accepted Values:
5079@itemize
f37495f6 5080@item @code{lalr}.
35430378
JD
5081While Bison generates LALR parser tables by default for
5082historical reasons, IELR or canonical LR is almost
34a6c2d1 5083always preferable for deterministic parsers.
35430378 5084The trouble is that LALR parser tables can suffer from
620b5727 5085mysterious conflicts and thus may not accept the full set of sentences
35430378 5086that IELR and canonical LR accept.
34a6c2d1 5087@xref{Mystery Conflicts}, for details.
35430378 5088However, there are at least two scenarios where LALR may be
34a6c2d1
JD
5089worthwhile:
5090@itemize
35430378
JD
5091@cindex GLR with LALR
5092@item When employing GLR parsers (@pxref{GLR Parsers}), if you
34a6c2d1
JD
5093do not resolve any conflicts statically (for example, with @code{%left}
5094or @code{%prec}), then the parser explores all potential parses of any
5095given input.
35430378 5096In this case, the use of LALR parser tables is guaranteed not
620b5727 5097to alter the language accepted by the parser.
35430378 5098LALR parser tables are the smallest parser tables Bison can
34a6c2d1 5099currently generate, so they may be preferable.
3b1977ea 5100Nevertheless, once you begin to resolve conflicts statically,
35430378
JD
5101GLR begins to behave more like a deterministic parser, and so
5102IELR and canonical LR can be helpful to avoid
5103LALR's mysterious behavior.
34a6c2d1
JD
5104
5105@item Occasionally during development, an especially malformed grammar
35430378
JD
5106with a major recurring flaw may severely impede the IELR or
5107canonical LR parser table generation algorithm.
5108LALR can be a quick way to generate parser tables in order to
34a6c2d1 5109investigate such problems while ignoring the more subtle differences
35430378 5110from IELR and canonical LR.
34a6c2d1
JD
5111@end itemize
5112
f37495f6 5113@item @code{ielr}.
35430378
JD
5114IELR is a minimal LR algorithm.
5115That is, given any grammar (LR or non-LR),
5116IELR and canonical LR always accept exactly the same
34a6c2d1 5117set of sentences.
35430378
JD
5118However, as for LALR, the number of parser states is often an
5119order of magnitude less for IELR than for canonical
5120LR.
5121More importantly, because canonical LR's extra parser states
5122may contain duplicate conflicts in the case of non-LR
5123grammars, the number of conflicts for IELR is often an order
34a6c2d1
JD
5124of magnitude less as well.
5125This can significantly reduce the complexity of developing of a grammar.
5126
f37495f6 5127@item @code{canonical-lr}.
34a6c2d1
JD
5128@cindex delayed syntax errors
5129@cindex syntax errors delayed
35430378 5130@cindex LAC
4c38b19e 5131@findex %nonassoc
35430378 5132While inefficient, canonical LR parser tables can be an
4c38b19e 5133interesting means to explore a grammar because they have a property that
35430378 5134IELR and LALR tables do not.
4c38b19e
JD
5135That is, if @code{%nonassoc} is not used and default reductions are left
5136disabled (@pxref{Decl Summary,,lr.default-reductions}), then, for every
35430378 5137left context of every canonical LR state, the set of tokens
4c38b19e
JD
5138accepted by that state is guaranteed to be the exact set of tokens that
5139is syntactically acceptable in that left context.
35430378 5140It might then seem that an advantage of canonical LR parsers
4c38b19e
JD
5141in production is that, under the above constraints, they are guaranteed
5142to detect a syntax error as soon as possible without performing any
5143unnecessary reductions.
35430378 5144However, IELR parsers using LAC (@pxref{Decl
4c38b19e
JD
5145Summary,,parse.lac}) are also able to achieve this behavior without
5146sacrificing @code{%nonassoc} or default reductions.
34a6c2d1
JD
5147@end itemize
5148
f37495f6 5149@item Default Value: @code{lalr}
34a6c2d1
JD
5150@end itemize
5151
793fbca5
JD
5152@item namespace
5153@findex %define namespace
5154
5155@itemize
5156@item Languages(s): C++
5157
3b1977ea 5158@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5159For example, if you specify:
5160
5161@smallexample
5162%define namespace "foo::bar"
5163@end smallexample
5164
5165Bison uses @code{foo::bar} verbatim in references such as:
5166
5167@smallexample
5168foo::bar::parser::semantic_type
5169@end smallexample
5170
5171However, to open a namespace, Bison removes any leading @code{::} and then
5172splits on any remaining occurrences:
5173
5174@smallexample
5175namespace foo @{ namespace bar @{
5176 class position;
5177 class location;
5178@} @}
5179@end smallexample
5180
5181@item Accepted Values: Any absolute or relative C++ namespace reference without
5182a trailing @code{"::"}.
5183For example, @code{"foo"} or @code{"::foo::bar"}.
5184
5185@item Default Value: The value specified by @code{%name-prefix}, which defaults
5186to @code{yy}.
5187This usage of @code{%name-prefix} is for backward compatibility and can be
5188confusing since @code{%name-prefix} also specifies the textual prefix for the
5189lexical analyzer function.
5190Thus, if you specify @code{%name-prefix}, it is best to also specify
5191@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5192lexical analyzer function.
5193For example, if you specify:
5194
5195@smallexample
5196%define namespace "foo"
5197%name-prefix "bar::"
5198@end smallexample
5199
5200The parser namespace is @code{foo} and @code{yylex} is referenced as
5201@code{bar::lex}.
5202@end itemize
4c38b19e
JD
5203
5204@c ================================================== parse.lac
5205@item parse.lac
5206@findex %define parse.lac
35430378 5207@cindex LAC
4c38b19e
JD
5208@cindex lookahead correction
5209
5210@itemize
5211@item Languages(s): C
5212
35430378 5213@item Purpose: Enable LAC (lookahead correction) to improve
4c38b19e
JD
5214syntax error handling.
5215
35430378 5216Canonical LR, IELR, and LALR can suffer
4c38b19e
JD
5217from a couple of problems upon encountering a syntax error. First, the
5218parser might perform additional parser stack reductions before
5219discovering the syntax error. Such reductions perform user semantic
5220actions that are unexpected because they are based on an invalid token,
5221and they cause error recovery to begin in a different syntactic context
5222than the one in which the invalid token was encountered. Second, when
5223verbose error messages are enabled (with @code{%error-verbose} or
5224@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
5225error message can both contain invalid tokens and omit valid tokens.
5226
5227The culprits for the above problems are @code{%nonassoc}, default
5228reductions in inconsistent states, and parser state merging. Thus,
35430378
JD
5229IELR and LALR suffer the most. Canonical
5230LR can suffer only if @code{%nonassoc} is used or if default
4c38b19e
JD
5231reductions are enabled for inconsistent states.
5232
35430378
JD
5233LAC is a new mechanism within the parsing algorithm that
5234completely solves these problems for canonical LR,
5235IELR, and LALR without sacrificing @code{%nonassoc},
4c38b19e
JD
5236default reductions, or state mering. Conceptually, the mechanism is
5237straight-forward. Whenever the parser fetches a new token from the
5238scanner so that it can determine the next parser action, it immediately
5239suspends normal parsing and performs an exploratory parse using a
5240temporary copy of the normal parser state stack. During this
5241exploratory parse, the parser does not perform user semantic actions.
5242If the exploratory parse reaches a shift action, normal parsing then
5243resumes on the normal parser stacks. If the exploratory parse reaches
5244an error instead, the parser reports a syntax error. If verbose syntax
5245error messages are enabled, the parser must then discover the list of
5246expected tokens, so it performs a separate exploratory parse for each
5247token in the grammar.
5248
35430378 5249There is one subtlety about the use of LAC. That is, when in
4c38b19e
JD
5250a consistent parser state with a default reduction, the parser will not
5251attempt to fetch a token from the scanner because no lookahead is needed
5252to determine the next parser action. Thus, whether default reductions
5253are enabled in consistent states (@pxref{Decl
5254Summary,,lr.default-reductions}) affects how soon the parser detects a
5255syntax error: when it @emph{reaches} an erroneous token or when it
5256eventually @emph{needs} that token as a lookahead. The latter behavior
5257is probably more intuitive, so Bison currently provides no way to
5258achieve the former behavior while default reductions are fully enabled.
5259
35430378 5260Thus, when LAC is in use, for some fixed decision of whether
4c38b19e 5261to enable default reductions in consistent states, canonical
35430378 5262LR and IELR behave exactly the same for both
4c38b19e 5263syntactically acceptable and syntactically unacceptable input. While
35430378
JD
5264LALR still does not support the full language-recognition
5265power of canonical LR and IELR, LAC at
5266least enables LALR's syntax error handling to correctly
5267reflect LALR's language-recognition power.
4c38b19e 5268
35430378 5269Because LAC requires many parse actions to be performed twice,
4c38b19e
JD
5270it can have a performance penalty. However, not all parse actions must
5271be performed twice. Specifically, during a series of default reductions
5272in consistent states and shift actions, the parser never has to initiate
5273an exploratory parse. Moreover, the most time-consuming tasks in a
5274parse are often the file I/O, the lexical analysis performed by the
5275scanner, and the user's semantic actions, but none of these are
5276performed during the exploratory parse. Finally, the base of the
5277temporary stack used during an exploratory parse is a pointer into the
5278normal parser state stack so that the stack is never physically copied.
35430378 5279In our experience, the performance penalty of LAC has proven
4c38b19e
JD
5280insignificant for practical grammars.
5281
5282@item Accepted Values: @code{none}, @code{full}
5283
5284@item Default Value: @code{none}
5285@end itemize
793fbca5
JD
5286@end itemize
5287
d782395d
JD
5288@end deffn
5289
18b519c0 5290@deffn {Directive} %defines
9913d6e4
JD
5291Write a parser header file containing macro definitions for the token
5292type names defined in the grammar as well as a few other declarations.
5293If the parser implementation file is named @file{@var{name}.c} then
5294the parser header file is named @file{@var{name}.h}.
d8988b2f 5295
9913d6e4 5296For C parsers, the parser header file declares @code{YYSTYPE} unless
ddc8ede1 5297@code{YYSTYPE} is already defined as a macro or you have used a
9913d6e4
JD
5298@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5299you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5300Value Type}) with components that require other definitions, or if you
5301have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5302Type, ,Data Types of Semantic Values}), you need to arrange for these
5303definitions to be propagated to all modules, e.g., by putting them in
5304a prerequisite header that is included both by your parser and by any
5305other module that needs @code{YYSTYPE}.
5306
5307Unless your parser is pure, the parser header file declares
5308@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5309(Reentrant) Parser}.
5310
5311If you have also used locations, the parser header file declares
4bfd5e4e 5312@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
9913d6e4
JD
5313the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations,
5314,Tracking Locations}.
4bfd5e4e 5315
9913d6e4
JD
5316This parser header file is normally essential if you wish to put the
5317definition of @code{yylex} in a separate source file, because
5318@code{yylex} typically needs to be able to refer to the
5319above-mentioned declarations and to the token type codes. @xref{Token
5320Values, ,Semantic Values of Tokens}.
9bc0dd67 5321
16dc6a9e
JD
5322@findex %code requires
5323@findex %code provides
5324If you have declared @code{%code requires} or @code{%code provides}, the output
5325header also contains their code.
8e6f2266 5326@xref{%code Summary}.
592d0b1e
PB
5327@end deffn
5328
02975b9a
JD
5329@deffn {Directive} %defines @var{defines-file}
5330Same as above, but save in the file @var{defines-file}.
5331@end deffn
5332
18b519c0 5333@deffn {Directive} %destructor
258b75ca 5334Specify how the parser should reclaim the memory associated to
fa7e68c3 5335discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5336@end deffn
72f889cc 5337
02975b9a 5338@deffn {Directive} %file-prefix "@var{prefix}"
9913d6e4
JD
5339Specify a prefix to use for all Bison output file names. The names
5340are chosen as if the grammar file were named @file{@var{prefix}.y}.
18b519c0 5341@end deffn
d8988b2f 5342
e6e704dc 5343@deffn {Directive} %language "@var{language}"
0e021770 5344Specify the programming language for the generated parser. Currently
59da312b 5345supported languages include C, C++, and Java.
e6e704dc 5346@var{language} is case-insensitive.
ed4d67dc
JD
5347
5348This directive is experimental and its effect may be modified in future
5349releases.
0e021770
PE
5350@end deffn
5351
18b519c0 5352@deffn {Directive} %locations
89cab50d
AD
5353Generate the code processing the locations (@pxref{Action Features,
5354,Special Features for Use in Actions}). This mode is enabled as soon as
5355the grammar uses the special @samp{@@@var{n}} tokens, but if your
5356grammar does not use it, using @samp{%locations} allows for more
6e649e65 5357accurate syntax error messages.
18b519c0 5358@end deffn
89cab50d 5359
02975b9a 5360@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5361Rename the external symbols used in the parser so that they start with
5362@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5363in C parsers
d8988b2f 5364is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5365@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5366(if locations are used) @code{yylloc}. If you use a push parser,
5367@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5368@code{yypstate_new} and @code{yypstate_delete} will
5369also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5370names become @code{c_parse}, @code{c_lex}, and so on.
5371For C++ parsers, see the @code{%define namespace} documentation in this
5372section.
aa08666d 5373@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5374@end deffn
931c7513 5375
91d2c560 5376@ifset defaultprec
22fccf95
PE
5377@deffn {Directive} %no-default-prec
5378Do not assign a precedence to rules lacking an explicit @code{%prec}
5379modifier (@pxref{Contextual Precedence, ,Context-Dependent
5380Precedence}).
5381@end deffn
91d2c560 5382@end ifset
22fccf95 5383
18b519c0 5384@deffn {Directive} %no-lines
931c7513 5385Don't generate any @code{#line} preprocessor commands in the parser
9913d6e4
JD
5386implementation file. Ordinarily Bison writes these commands in the
5387parser implementation file so that the C compiler and debuggers will
5388associate errors and object code with your source file (the grammar
5389file). This directive causes them to associate errors with the parser
5390implementation file, treating it as an independent source file in its
5391own right.
18b519c0 5392@end deffn
931c7513 5393
02975b9a 5394@deffn {Directive} %output "@var{file}"
9913d6e4 5395Specify @var{file} for the parser implementation file.
18b519c0 5396@end deffn
6deb4447 5397
18b519c0 5398@deffn {Directive} %pure-parser
d9df47b6
JD
5399Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5400for which Bison is more careful to warn about unreasonable usage.
18b519c0 5401@end deffn
6deb4447 5402
b50d2359 5403@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5404Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5405Require a Version of Bison}.
b50d2359
AD
5406@end deffn
5407
0e021770 5408@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5409Specify the skeleton to use.
5410
ed4d67dc
JD
5411@c You probably don't need this option unless you are developing Bison.
5412@c You should use @code{%language} if you want to specify the skeleton for a
5413@c different language, because it is clearer and because it will always choose the
5414@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5415
5416If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5417file in the Bison installation directory.
5418If it does, @var{file} is an absolute file name or a file name relative to the
5419directory of the grammar file.
5420This is similar to how most shells resolve commands.
0e021770
PE
5421@end deffn
5422
18b519c0 5423@deffn {Directive} %token-table
9913d6e4
JD
5424Generate an array of token names in the parser implementation file.
5425The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5426the name of the token whose internal Bison token code number is
5427@var{i}. The first three elements of @code{yytname} correspond to the
5428predefined tokens @code{"$end"}, @code{"error"}, and
5429@code{"$undefined"}; after these come the symbols defined in the
5430grammar file.
931c7513 5431
9e0876fb
PE
5432The name in the table includes all the characters needed to represent
5433the token in Bison. For single-character literals and literal
5434strings, this includes the surrounding quoting characters and any
5435escape sequences. For example, the Bison single-character literal
5436@code{'+'} corresponds to a three-character name, represented in C as
5437@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5438corresponds to a five-character name, represented in C as
5439@code{"\"\\\\/\""}.
931c7513 5440
8c9a50be 5441When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5442definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5443@code{YYNRULES}, and @code{YYNSTATES}:
5444
5445@table @code
5446@item YYNTOKENS
5447The highest token number, plus one.
5448@item YYNNTS
9ecbd125 5449The number of nonterminal symbols.
931c7513
RS
5450@item YYNRULES
5451The number of grammar rules,
5452@item YYNSTATES
5453The number of parser states (@pxref{Parser States}).
5454@end table
18b519c0 5455@end deffn
d8988b2f 5456
18b519c0 5457@deffn {Directive} %verbose
d8988b2f 5458Write an extra output file containing verbose descriptions of the
742e4900 5459parser states and what is done for each type of lookahead token in
72d2299c 5460that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5461information.
18b519c0 5462@end deffn
d8988b2f 5463
18b519c0 5464@deffn {Directive} %yacc
d8988b2f
AD
5465Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5466including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5467@end deffn
d8988b2f 5468
8e6f2266
JD
5469@node %code Summary
5470@subsection %code Summary
5471@deffn {Directive} %code @{@var{code}@}
5472@findex %code
5473This is the unqualified form of the @code{%code} directive.
5474It inserts @var{code} verbatim at a language-dependent default location in the
5475output@footnote{The default location is actually skeleton-dependent;
5476 writers of non-standard skeletons however should choose the default location
5477 consistently with the behavior of the standard Bison skeletons.}.
5478
5479@cindex Prologue
5480For C/C++, the default location is the parser implementation file
5481after the usual contents of the parser header file. Thus,
5482@code{%code} replaces the traditional Yacc prologue,
5483@code{%@{@var{code}%@}}, for most purposes. For a detailed
5484discussion, see @ref{Prologue Alternatives}.
5485
5486For Java, the default location is inside the parser class.
5487@end deffn
5488
5489@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5490This is the qualified form of the @code{%code} directive.
5491If you need to specify location-sensitive verbatim @var{code} that does not
5492belong at the default location selected by the unqualified @code{%code} form,
5493use this form instead.
5494
5495@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
5496where Bison should generate it.
5497Not all @var{qualifier}s are accepted for all target languages.
5498Unaccepted @var{qualifier}s produce an error.
5499Some of the accepted @var{qualifier}s are:
5500
5501@itemize @bullet
5502@item requires
5503@findex %code requires
5504
5505@itemize @bullet
5506@item Language(s): C, C++
5507
5508@item Purpose: This is the best place to write dependency code required for
5509@code{YYSTYPE} and @code{YYLTYPE}.
5510In other words, it's the best place to define types referenced in @code{%union}
5511directives, and it's the best place to override Bison's default @code{YYSTYPE}
5512and @code{YYLTYPE} definitions.
5513
5514@item Location(s): The parser header file and the parser implementation file
5515before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5516definitions.
5517@end itemize
5518
5519@item provides
5520@findex %code provides
5521
5522@itemize @bullet
5523@item Language(s): C, C++
5524
5525@item Purpose: This is the best place to write additional definitions and
5526declarations that should be provided to other modules.
5527
5528@item Location(s): The parser header file and the parser implementation
5529file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5530token definitions.
5531@end itemize
5532
5533@item top
5534@findex %code top
5535
5536@itemize @bullet
5537@item Language(s): C, C++
5538
5539@item Purpose: The unqualified @code{%code} or @code{%code requires}
5540should usually be more appropriate than @code{%code top}. However,
5541occasionally it is necessary to insert code much nearer the top of the
5542parser implementation file. For example:
5543
5544@smallexample
5545%code top @{
5546 #define _GNU_SOURCE
5547 #include <stdio.h>
5548@}
5549@end smallexample
5550
5551@item Location(s): Near the top of the parser implementation file.
5552@end itemize
5553
5554@item imports
5555@findex %code imports
5556
5557@itemize @bullet
5558@item Language(s): Java
5559
5560@item Purpose: This is the best place to write Java import directives.
5561
5562@item Location(s): The parser Java file after any Java package directive and
5563before any class definitions.
5564@end itemize
5565@end itemize
5566
5567@cindex Prologue
5568For a detailed discussion of how to use @code{%code} in place of the
5569traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
5570@end deffn
5571
d8988b2f 5572
342b8b6e 5573@node Multiple Parsers
bfa74976
RS
5574@section Multiple Parsers in the Same Program
5575
5576Most programs that use Bison parse only one language and therefore contain
5577only one Bison parser. But what if you want to parse more than one
5578language with the same program? Then you need to avoid a name conflict
5579between different definitions of @code{yyparse}, @code{yylval}, and so on.
5580
5581The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5582(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5583functions and variables of the Bison parser to start with @var{prefix}
5584instead of @samp{yy}. You can use this to give each parser distinct
5585names that do not conflict.
bfa74976
RS
5586
5587The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5588@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5589@code{yychar} and @code{yydebug}. If you use a push parser,
5590@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5591@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5592For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5593@code{clex}, and so on.
bfa74976
RS
5594
5595@strong{All the other variables and macros associated with Bison are not
5596renamed.} These others are not global; there is no conflict if the same
5597name is used in different parsers. For example, @code{YYSTYPE} is not
5598renamed, but defining this in different ways in different parsers causes
5599no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5600
9913d6e4
JD
5601The @samp{-p} option works by adding macro definitions to the
5602beginning of the parser implementation file, defining @code{yyparse}
5603as @code{@var{prefix}parse}, and so on. This effectively substitutes
5604one name for the other in the entire parser implementation file.
bfa74976 5605
342b8b6e 5606@node Interface
bfa74976
RS
5607@chapter Parser C-Language Interface
5608@cindex C-language interface
5609@cindex interface
5610
5611The Bison parser is actually a C function named @code{yyparse}. Here we
5612describe the interface conventions of @code{yyparse} and the other
5613functions that it needs to use.
5614
5615Keep in mind that the parser uses many C identifiers starting with
5616@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5617identifier (aside from those in this manual) in an action or in epilogue
5618in the grammar file, you are likely to run into trouble.
bfa74976
RS
5619
5620@menu
f56274a8
DJ
5621* Parser Function:: How to call @code{yyparse} and what it returns.
5622* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5623* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5624* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5625* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5626* Lexical:: You must supply a function @code{yylex}
5627 which reads tokens.
5628* Error Reporting:: You must supply a function @code{yyerror}.
5629* Action Features:: Special features for use in actions.
5630* Internationalization:: How to let the parser speak in the user's
5631 native language.
bfa74976
RS
5632@end menu
5633
342b8b6e 5634@node Parser Function
bfa74976
RS
5635@section The Parser Function @code{yyparse}
5636@findex yyparse
5637
5638You call the function @code{yyparse} to cause parsing to occur. This
5639function reads tokens, executes actions, and ultimately returns when it
5640encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5641write an action which directs @code{yyparse} to return immediately
5642without reading further.
bfa74976 5643
2a8d363a
AD
5644
5645@deftypefun int yyparse (void)
bfa74976
RS
5646The value returned by @code{yyparse} is 0 if parsing was successful (return
5647is due to end-of-input).
5648
b47dbebe
PE
5649The value is 1 if parsing failed because of invalid input, i.e., input
5650that contains a syntax error or that causes @code{YYABORT} to be
5651invoked.
5652
5653The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5654@end deftypefun
bfa74976
RS
5655
5656In an action, you can cause immediate return from @code{yyparse} by using
5657these macros:
5658
2a8d363a 5659@defmac YYACCEPT
bfa74976
RS
5660@findex YYACCEPT
5661Return immediately with value 0 (to report success).
2a8d363a 5662@end defmac
bfa74976 5663
2a8d363a 5664@defmac YYABORT
bfa74976
RS
5665@findex YYABORT
5666Return immediately with value 1 (to report failure).
2a8d363a
AD
5667@end defmac
5668
5669If you use a reentrant parser, you can optionally pass additional
5670parameter information to it in a reentrant way. To do so, use the
5671declaration @code{%parse-param}:
5672
feeb0eda 5673@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5674@findex %parse-param
287c78f6
PE
5675Declare that an argument declared by the braced-code
5676@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5677The @var{argument-declaration} is used when declaring
feeb0eda
PE
5678functions or prototypes. The last identifier in
5679@var{argument-declaration} must be the argument name.
2a8d363a
AD
5680@end deffn
5681
5682Here's an example. Write this in the parser:
5683
5684@example
feeb0eda
PE
5685%parse-param @{int *nastiness@}
5686%parse-param @{int *randomness@}
2a8d363a
AD
5687@end example
5688
5689@noindent
5690Then call the parser like this:
5691
5692@example
5693@{
5694 int nastiness, randomness;
5695 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5696 value = yyparse (&nastiness, &randomness);
5697 @dots{}
5698@}
5699@end example
5700
5701@noindent
5702In the grammar actions, use expressions like this to refer to the data:
5703
5704@example
5705exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5706@end example
5707
9987d1b3
JD
5708@node Push Parser Function
5709@section The Push Parser Function @code{yypush_parse}
5710@findex yypush_parse
5711
59da312b
JD
5712(The current push parsing interface is experimental and may evolve.
5713More user feedback will help to stabilize it.)
5714
f4101aa6 5715You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5716function is available if either the @code{%define api.push-pull push} or
5717@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5718@xref{Push Decl, ,A Push Parser}.
5719
5720@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5721The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5722following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5723is required to finish parsing the grammar.
5724@end deftypefun
5725
5726@node Pull Parser Function
5727@section The Pull Parser Function @code{yypull_parse}
5728@findex yypull_parse
5729
59da312b
JD
5730(The current push parsing interface is experimental and may evolve.
5731More user feedback will help to stabilize it.)
5732
f4101aa6 5733You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5734stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5735declaration is used.
9987d1b3
JD
5736@xref{Push Decl, ,A Push Parser}.
5737
5738@deftypefun int yypull_parse (yypstate *yyps)
5739The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5740@end deftypefun
5741
5742@node Parser Create Function
5743@section The Parser Create Function @code{yystate_new}
5744@findex yypstate_new
5745
59da312b
JD
5746(The current push parsing interface is experimental and may evolve.
5747More user feedback will help to stabilize it.)
5748
f4101aa6 5749You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5750This function is available if either the @code{%define api.push-pull push} or
5751@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5752@xref{Push Decl, ,A Push Parser}.
5753
5754@deftypefun yypstate *yypstate_new (void)
c781580d 5755The function will return a valid parser instance if there was memory available
333e670c
JD
5756or 0 if no memory was available.
5757In impure mode, it will also return 0 if a parser instance is currently
5758allocated.
9987d1b3
JD
5759@end deftypefun
5760
5761@node Parser Delete Function
5762@section The Parser Delete Function @code{yystate_delete}
5763@findex yypstate_delete
5764
59da312b
JD
5765(The current push parsing interface is experimental and may evolve.
5766More user feedback will help to stabilize it.)
5767
9987d1b3 5768You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5769function is available if either the @code{%define api.push-pull push} or
5770@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5771@xref{Push Decl, ,A Push Parser}.
5772
5773@deftypefun void yypstate_delete (yypstate *yyps)
5774This function will reclaim the memory associated with a parser instance.
5775After this call, you should no longer attempt to use the parser instance.
5776@end deftypefun
bfa74976 5777
342b8b6e 5778@node Lexical
bfa74976
RS
5779@section The Lexical Analyzer Function @code{yylex}
5780@findex yylex
5781@cindex lexical analyzer
5782
5783The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5784the input stream and returns them to the parser. Bison does not create
5785this function automatically; you must write it so that @code{yyparse} can
5786call it. The function is sometimes referred to as a lexical scanner.
5787
9913d6e4
JD
5788In simple programs, @code{yylex} is often defined at the end of the
5789Bison grammar file. If @code{yylex} is defined in a separate source
5790file, you need to arrange for the token-type macro definitions to be
5791available there. To do this, use the @samp{-d} option when you run
5792Bison, so that it will write these macro definitions into the separate
5793parser header file, @file{@var{name}.tab.h}, which you can include in
5794the other source files that need it. @xref{Invocation, ,Invoking
5795Bison}.
bfa74976
RS
5796
5797@menu
5798* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5799* Token Values:: How @code{yylex} must return the semantic value
5800 of the token it has read.
5801* Token Locations:: How @code{yylex} must return the text location
5802 (line number, etc.) of the token, if the
5803 actions want that.
5804* Pure Calling:: How the calling convention differs in a pure parser
5805 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5806@end menu
5807
342b8b6e 5808@node Calling Convention
bfa74976
RS
5809@subsection Calling Convention for @code{yylex}
5810
72d2299c
PE
5811The value that @code{yylex} returns must be the positive numeric code
5812for the type of token it has just found; a zero or negative value
5813signifies end-of-input.
bfa74976
RS
5814
5815When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5816in the parser implementation file becomes a C macro whose definition
5817is the proper numeric code for that token type. So @code{yylex} can
5818use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5819
5820When a token is referred to in the grammar rules by a character literal,
5821the numeric code for that character is also the code for the token type.
72d2299c
PE
5822So @code{yylex} can simply return that character code, possibly converted
5823to @code{unsigned char} to avoid sign-extension. The null character
5824must not be used this way, because its code is zero and that
bfa74976
RS
5825signifies end-of-input.
5826
5827Here is an example showing these things:
5828
5829@example
13863333
AD
5830int
5831yylex (void)
bfa74976
RS
5832@{
5833 @dots{}
72d2299c 5834 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5835 return 0;
5836 @dots{}
5837 if (c == '+' || c == '-')
72d2299c 5838 return c; /* Assume token type for `+' is '+'. */
bfa74976 5839 @dots{}
72d2299c 5840 return INT; /* Return the type of the token. */
bfa74976
RS
5841 @dots{}
5842@}
5843@end example
5844
5845@noindent
5846This interface has been designed so that the output from the @code{lex}
5847utility can be used without change as the definition of @code{yylex}.
5848
931c7513
RS
5849If the grammar uses literal string tokens, there are two ways that
5850@code{yylex} can determine the token type codes for them:
5851
5852@itemize @bullet
5853@item
5854If the grammar defines symbolic token names as aliases for the
5855literal string tokens, @code{yylex} can use these symbolic names like
5856all others. In this case, the use of the literal string tokens in
5857the grammar file has no effect on @code{yylex}.
5858
5859@item
9ecbd125 5860@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5861table. The index of the token in the table is the token type's code.
9ecbd125 5862The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5863double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5864token's characters are escaped as necessary to be suitable as input
5865to Bison.
931c7513 5866
9e0876fb
PE
5867Here's code for looking up a multicharacter token in @code{yytname},
5868assuming that the characters of the token are stored in
5869@code{token_buffer}, and assuming that the token does not contain any
5870characters like @samp{"} that require escaping.
931c7513
RS
5871
5872@smallexample
5873for (i = 0; i < YYNTOKENS; i++)
5874 @{
5875 if (yytname[i] != 0
5876 && yytname[i][0] == '"'
68449b3a
PE
5877 && ! strncmp (yytname[i] + 1, token_buffer,
5878 strlen (token_buffer))
931c7513
RS
5879 && yytname[i][strlen (token_buffer) + 1] == '"'
5880 && yytname[i][strlen (token_buffer) + 2] == 0)
5881 break;
5882 @}
5883@end smallexample
5884
5885The @code{yytname} table is generated only if you use the
8c9a50be 5886@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5887@end itemize
5888
342b8b6e 5889@node Token Values
bfa74976
RS
5890@subsection Semantic Values of Tokens
5891
5892@vindex yylval
9d9b8b70 5893In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5894be stored into the global variable @code{yylval}. When you are using
5895just one data type for semantic values, @code{yylval} has that type.
5896Thus, if the type is @code{int} (the default), you might write this in
5897@code{yylex}:
5898
5899@example
5900@group
5901 @dots{}
72d2299c
PE
5902 yylval = value; /* Put value onto Bison stack. */
5903 return INT; /* Return the type of the token. */
bfa74976
RS
5904 @dots{}
5905@end group
5906@end example
5907
5908When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5909made from the @code{%union} declaration (@pxref{Union Decl, ,The
5910Collection of Value Types}). So when you store a token's value, you
5911must use the proper member of the union. If the @code{%union}
5912declaration looks like this:
bfa74976
RS
5913
5914@example
5915@group
5916%union @{
5917 int intval;
5918 double val;
5919 symrec *tptr;
5920@}
5921@end group
5922@end example
5923
5924@noindent
5925then the code in @code{yylex} might look like this:
5926
5927@example
5928@group
5929 @dots{}
72d2299c
PE
5930 yylval.intval = value; /* Put value onto Bison stack. */
5931 return INT; /* Return the type of the token. */
bfa74976
RS
5932 @dots{}
5933@end group
5934@end example
5935
95923bd6
AD
5936@node Token Locations
5937@subsection Textual Locations of Tokens
bfa74976
RS
5938
5939@vindex yylloc
847bf1f5 5940If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5941Tracking Locations}) in actions to keep track of the textual locations
5942of tokens and groupings, then you must provide this information in
5943@code{yylex}. The function @code{yyparse} expects to find the textual
5944location of a token just parsed in the global variable @code{yylloc}.
5945So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5946
5947By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5948initialize the members that are going to be used by the actions. The
5949four members are called @code{first_line}, @code{first_column},
5950@code{last_line} and @code{last_column}. Note that the use of this
5951feature makes the parser noticeably slower.
bfa74976
RS
5952
5953@tindex YYLTYPE
5954The data type of @code{yylloc} has the name @code{YYLTYPE}.
5955
342b8b6e 5956@node Pure Calling
c656404a 5957@subsection Calling Conventions for Pure Parsers
bfa74976 5958
d9df47b6 5959When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5960pure, reentrant parser, the global communication variables @code{yylval}
5961and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5962Parser}.) In such parsers the two global variables are replaced by
5963pointers passed as arguments to @code{yylex}. You must declare them as
5964shown here, and pass the information back by storing it through those
5965pointers.
bfa74976
RS
5966
5967@example
13863333
AD
5968int
5969yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5970@{
5971 @dots{}
5972 *lvalp = value; /* Put value onto Bison stack. */
5973 return INT; /* Return the type of the token. */
5974 @dots{}
5975@}
5976@end example
5977
5978If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5979textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5980this case, omit the second argument; @code{yylex} will be called with
5981only one argument.
5982
e425e872 5983
2a8d363a
AD
5984If you wish to pass the additional parameter data to @code{yylex}, use
5985@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5986Function}).
e425e872 5987
feeb0eda 5988@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5989@findex %lex-param
287c78f6
PE
5990Declare that the braced-code @var{argument-declaration} is an
5991additional @code{yylex} argument declaration.
2a8d363a 5992@end deffn
e425e872 5993
2a8d363a 5994For instance:
e425e872
RS
5995
5996@example
feeb0eda
PE
5997%parse-param @{int *nastiness@}
5998%lex-param @{int *nastiness@}
5999%parse-param @{int *randomness@}
e425e872
RS
6000@end example
6001
6002@noindent
2a8d363a 6003results in the following signature:
e425e872
RS
6004
6005@example
2a8d363a
AD
6006int yylex (int *nastiness);
6007int yyparse (int *nastiness, int *randomness);
e425e872
RS
6008@end example
6009
d9df47b6 6010If @code{%define api.pure} is added:
c656404a
RS
6011
6012@example
2a8d363a
AD
6013int yylex (YYSTYPE *lvalp, int *nastiness);
6014int yyparse (int *nastiness, int *randomness);
c656404a
RS
6015@end example
6016
2a8d363a 6017@noindent
d9df47b6 6018and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 6019
2a8d363a
AD
6020@example
6021int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6022int yyparse (int *nastiness, int *randomness);
6023@end example
931c7513 6024
342b8b6e 6025@node Error Reporting
bfa74976
RS
6026@section The Error Reporting Function @code{yyerror}
6027@cindex error reporting function
6028@findex yyerror
6029@cindex parse error
6030@cindex syntax error
6031
6e649e65 6032The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 6033whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6034action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6035macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6036in Actions}).
bfa74976
RS
6037
6038The Bison parser expects to report the error by calling an error
6039reporting function named @code{yyerror}, which you must supply. It is
6040called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6041receives one argument. For a syntax error, the string is normally
6042@w{@code{"syntax error"}}.
bfa74976 6043
2a8d363a
AD
6044@findex %error-verbose
6045If you invoke the directive @code{%error-verbose} in the Bison
6046declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6047Section}), then Bison provides a more verbose and specific error message
6e649e65 6048string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6049
1a059451
PE
6050The parser can detect one other kind of error: memory exhaustion. This
6051can happen when the input contains constructions that are very deeply
bfa74976 6052nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6053parser normally extends its stack automatically up to a very large limit. But
6054if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6055fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6056
6057In some cases diagnostics like @w{@code{"syntax error"}} are
6058translated automatically from English to some other language before
6059they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6060
6061The following definition suffices in simple programs:
6062
6063@example
6064@group
13863333 6065void
38a92d50 6066yyerror (char const *s)
bfa74976
RS
6067@{
6068@end group
6069@group
6070 fprintf (stderr, "%s\n", s);
6071@}
6072@end group
6073@end example
6074
6075After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6076error recovery if you have written suitable error recovery grammar rules
6077(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6078immediately return 1.
6079
93724f13 6080Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6081an access to the current location.
35430378 6082This is indeed the case for the GLR
2a8d363a 6083parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6084@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6085@code{yyerror} are:
6086
6087@example
38a92d50
PE
6088void yyerror (char const *msg); /* Yacc parsers. */
6089void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6090@end example
6091
feeb0eda 6092If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6093
6094@example
b317297e
PE
6095void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6096void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6097@end example
6098
35430378 6099Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6100convention for absolutely pure parsers, i.e., when the calling
6101convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
6102@code{%define api.pure} are pure.
6103I.e.:
2a8d363a
AD
6104
6105@example
6106/* Location tracking. */
6107%locations
6108/* Pure yylex. */
d9df47b6 6109%define api.pure
feeb0eda 6110%lex-param @{int *nastiness@}
2a8d363a 6111/* Pure yyparse. */
feeb0eda
PE
6112%parse-param @{int *nastiness@}
6113%parse-param @{int *randomness@}
2a8d363a
AD
6114@end example
6115
6116@noindent
6117results in the following signatures for all the parser kinds:
6118
6119@example
6120int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6121int yyparse (int *nastiness, int *randomness);
93724f13
AD
6122void yyerror (YYLTYPE *locp,
6123 int *nastiness, int *randomness,
38a92d50 6124 char const *msg);
2a8d363a
AD
6125@end example
6126
1c0c3e95 6127@noindent
38a92d50
PE
6128The prototypes are only indications of how the code produced by Bison
6129uses @code{yyerror}. Bison-generated code always ignores the returned
6130value, so @code{yyerror} can return any type, including @code{void}.
6131Also, @code{yyerror} can be a variadic function; that is why the
6132message is always passed last.
6133
6134Traditionally @code{yyerror} returns an @code{int} that is always
6135ignored, but this is purely for historical reasons, and @code{void} is
6136preferable since it more accurately describes the return type for
6137@code{yyerror}.
93724f13 6138
bfa74976
RS
6139@vindex yynerrs
6140The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6141reported so far. Normally this variable is global; but if you
704a47c4
AD
6142request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6143then it is a local variable which only the actions can access.
bfa74976 6144
342b8b6e 6145@node Action Features
bfa74976
RS
6146@section Special Features for Use in Actions
6147@cindex summary, action features
6148@cindex action features summary
6149
6150Here is a table of Bison constructs, variables and macros that
6151are useful in actions.
6152
18b519c0 6153@deffn {Variable} $$
bfa74976
RS
6154Acts like a variable that contains the semantic value for the
6155grouping made by the current rule. @xref{Actions}.
18b519c0 6156@end deffn
bfa74976 6157
18b519c0 6158@deffn {Variable} $@var{n}
bfa74976
RS
6159Acts like a variable that contains the semantic value for the
6160@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6161@end deffn
bfa74976 6162
18b519c0 6163@deffn {Variable} $<@var{typealt}>$
bfa74976 6164Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6165specified by the @code{%union} declaration. @xref{Action Types, ,Data
6166Types of Values in Actions}.
18b519c0 6167@end deffn
bfa74976 6168
18b519c0 6169@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6170Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6171union specified by the @code{%union} declaration.
e0c471a9 6172@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6173@end deffn
bfa74976 6174
18b519c0 6175@deffn {Macro} YYABORT;
bfa74976
RS
6176Return immediately from @code{yyparse}, indicating failure.
6177@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6178@end deffn
bfa74976 6179
18b519c0 6180@deffn {Macro} YYACCEPT;
bfa74976
RS
6181Return immediately from @code{yyparse}, indicating success.
6182@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6183@end deffn
bfa74976 6184
18b519c0 6185@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6186@findex YYBACKUP
6187Unshift a token. This macro is allowed only for rules that reduce
742e4900 6188a single value, and only when there is no lookahead token.
35430378 6189It is also disallowed in GLR parsers.
742e4900 6190It installs a lookahead token with token type @var{token} and
bfa74976
RS
6191semantic value @var{value}; then it discards the value that was
6192going to be reduced by this rule.
6193
6194If the macro is used when it is not valid, such as when there is
742e4900 6195a lookahead token already, then it reports a syntax error with
bfa74976
RS
6196a message @samp{cannot back up} and performs ordinary error
6197recovery.
6198
6199In either case, the rest of the action is not executed.
18b519c0 6200@end deffn
bfa74976 6201
18b519c0 6202@deffn {Macro} YYEMPTY
bfa74976 6203@vindex YYEMPTY
742e4900 6204Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6205@end deffn
bfa74976 6206
32c29292
JD
6207@deffn {Macro} YYEOF
6208@vindex YYEOF
742e4900 6209Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6210stream.
6211@end deffn
6212
18b519c0 6213@deffn {Macro} YYERROR;
bfa74976
RS
6214@findex YYERROR
6215Cause an immediate syntax error. This statement initiates error
6216recovery just as if the parser itself had detected an error; however, it
6217does not call @code{yyerror}, and does not print any message. If you
6218want to print an error message, call @code{yyerror} explicitly before
6219the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6220@end deffn
bfa74976 6221
18b519c0 6222@deffn {Macro} YYRECOVERING
02103984
PE
6223@findex YYRECOVERING
6224The expression @code{YYRECOVERING ()} yields 1 when the parser
6225is recovering from a syntax error, and 0 otherwise.
bfa74976 6226@xref{Error Recovery}.
18b519c0 6227@end deffn
bfa74976 6228
18b519c0 6229@deffn {Variable} yychar
742e4900
JD
6230Variable containing either the lookahead token, or @code{YYEOF} when the
6231lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6232has been performed so the next token is not yet known.
6233Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6234Actions}).
742e4900 6235@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6236@end deffn
bfa74976 6237
18b519c0 6238@deffn {Macro} yyclearin;
742e4900 6239Discard the current lookahead token. This is useful primarily in
32c29292
JD
6240error rules.
6241Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6242Semantic Actions}).
6243@xref{Error Recovery}.
18b519c0 6244@end deffn
bfa74976 6245
18b519c0 6246@deffn {Macro} yyerrok;
bfa74976 6247Resume generating error messages immediately for subsequent syntax
13863333 6248errors. This is useful primarily in error rules.
bfa74976 6249@xref{Error Recovery}.
18b519c0 6250@end deffn
bfa74976 6251
32c29292 6252@deffn {Variable} yylloc
742e4900 6253Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6254to @code{YYEMPTY} or @code{YYEOF}.
6255Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6256Actions}).
6257@xref{Actions and Locations, ,Actions and Locations}.
6258@end deffn
6259
6260@deffn {Variable} yylval
742e4900 6261Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6262not set to @code{YYEMPTY} or @code{YYEOF}.
6263Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6264Actions}).
6265@xref{Actions, ,Actions}.
6266@end deffn
6267
18b519c0 6268@deffn {Value} @@$
847bf1f5 6269@findex @@$
95923bd6 6270Acts like a structure variable containing information on the textual location
847bf1f5
AD
6271of the grouping made by the current rule. @xref{Locations, ,
6272Tracking Locations}.
bfa74976 6273
847bf1f5
AD
6274@c Check if those paragraphs are still useful or not.
6275
6276@c @example
6277@c struct @{
6278@c int first_line, last_line;
6279@c int first_column, last_column;
6280@c @};
6281@c @end example
6282
6283@c Thus, to get the starting line number of the third component, you would
6284@c use @samp{@@3.first_line}.
bfa74976 6285
847bf1f5
AD
6286@c In order for the members of this structure to contain valid information,
6287@c you must make @code{yylex} supply this information about each token.
6288@c If you need only certain members, then @code{yylex} need only fill in
6289@c those members.
bfa74976 6290
847bf1f5 6291@c The use of this feature makes the parser noticeably slower.
18b519c0 6292@end deffn
847bf1f5 6293
18b519c0 6294@deffn {Value} @@@var{n}
847bf1f5 6295@findex @@@var{n}
95923bd6 6296Acts like a structure variable containing information on the textual location
847bf1f5
AD
6297of the @var{n}th component of the current rule. @xref{Locations, ,
6298Tracking Locations}.
18b519c0 6299@end deffn
bfa74976 6300
f7ab6a50
PE
6301@node Internationalization
6302@section Parser Internationalization
6303@cindex internationalization
6304@cindex i18n
6305@cindex NLS
6306@cindex gettext
6307@cindex bison-po
6308
6309A Bison-generated parser can print diagnostics, including error and
6310tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6311also supports outputting diagnostics in the user's native language. To
6312make this work, the user should set the usual environment variables.
6313@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6314For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6315set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6316encoding. The exact set of available locales depends on the user's
6317installation.
6318
6319The maintainer of a package that uses a Bison-generated parser enables
6320the internationalization of the parser's output through the following
35430378
JD
6321steps. Here we assume a package that uses GNU Autoconf and
6322GNU Automake.
f7ab6a50
PE
6323
6324@enumerate
6325@item
30757c8c 6326@cindex bison-i18n.m4
35430378 6327Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6328by the package---often called @file{m4}---copy the
6329@file{bison-i18n.m4} file installed by Bison under
6330@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6331For example:
6332
6333@example
6334cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6335@end example
6336
6337@item
30757c8c
PE
6338@findex BISON_I18N
6339@vindex BISON_LOCALEDIR
6340@vindex YYENABLE_NLS
f7ab6a50
PE
6341In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6342invocation, add an invocation of @code{BISON_I18N}. This macro is
6343defined in the file @file{bison-i18n.m4} that you copied earlier. It
6344causes @samp{configure} to find the value of the
30757c8c
PE
6345@code{BISON_LOCALEDIR} variable, and it defines the source-language
6346symbol @code{YYENABLE_NLS} to enable translations in the
6347Bison-generated parser.
f7ab6a50
PE
6348
6349@item
6350In the @code{main} function of your program, designate the directory
6351containing Bison's runtime message catalog, through a call to
6352@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6353For example:
6354
6355@example
6356bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6357@end example
6358
6359Typically this appears after any other call @code{bindtextdomain
6360(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6361@samp{BISON_LOCALEDIR} to be defined as a string through the
6362@file{Makefile}.
6363
6364@item
6365In the @file{Makefile.am} that controls the compilation of the @code{main}
6366function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6367either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6368
6369@example
6370DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6371@end example
6372
6373or:
6374
6375@example
6376AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6377@end example
6378
6379@item
6380Finally, invoke the command @command{autoreconf} to generate the build
6381infrastructure.
6382@end enumerate
6383
bfa74976 6384
342b8b6e 6385@node Algorithm
13863333
AD
6386@chapter The Bison Parser Algorithm
6387@cindex Bison parser algorithm
bfa74976
RS
6388@cindex algorithm of parser
6389@cindex shifting
6390@cindex reduction
6391@cindex parser stack
6392@cindex stack, parser
6393
6394As Bison reads tokens, it pushes them onto a stack along with their
6395semantic values. The stack is called the @dfn{parser stack}. Pushing a
6396token is traditionally called @dfn{shifting}.
6397
6398For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6399@samp{3} to come. The stack will have four elements, one for each token
6400that was shifted.
6401
6402But the stack does not always have an element for each token read. When
6403the last @var{n} tokens and groupings shifted match the components of a
6404grammar rule, they can be combined according to that rule. This is called
6405@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6406single grouping whose symbol is the result (left hand side) of that rule.
6407Running the rule's action is part of the process of reduction, because this
6408is what computes the semantic value of the resulting grouping.
6409
6410For example, if the infix calculator's parser stack contains this:
6411
6412@example
64131 + 5 * 3
6414@end example
6415
6416@noindent
6417and the next input token is a newline character, then the last three
6418elements can be reduced to 15 via the rule:
6419
6420@example
6421expr: expr '*' expr;
6422@end example
6423
6424@noindent
6425Then the stack contains just these three elements:
6426
6427@example
64281 + 15
6429@end example
6430
6431@noindent
6432At this point, another reduction can be made, resulting in the single value
643316. Then the newline token can be shifted.
6434
6435The parser tries, by shifts and reductions, to reduce the entire input down
6436to a single grouping whose symbol is the grammar's start-symbol
6437(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6438
6439This kind of parser is known in the literature as a bottom-up parser.
6440
6441@menu
742e4900 6442* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6443* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6444* Precedence:: Operator precedence works by resolving conflicts.
6445* Contextual Precedence:: When an operator's precedence depends on context.
6446* Parser States:: The parser is a finite-state-machine with stack.
6447* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6448* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6449* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6450* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6451@end menu
6452
742e4900
JD
6453@node Lookahead
6454@section Lookahead Tokens
6455@cindex lookahead token
bfa74976
RS
6456
6457The Bison parser does @emph{not} always reduce immediately as soon as the
6458last @var{n} tokens and groupings match a rule. This is because such a
6459simple strategy is inadequate to handle most languages. Instead, when a
6460reduction is possible, the parser sometimes ``looks ahead'' at the next
6461token in order to decide what to do.
6462
6463When a token is read, it is not immediately shifted; first it becomes the
742e4900 6464@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6465perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6466the lookahead token remains off to the side. When no more reductions
6467should take place, the lookahead token is shifted onto the stack. This
bfa74976 6468does not mean that all possible reductions have been done; depending on the
742e4900 6469token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6470application.
6471
742e4900 6472Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6473expressions which contain binary addition operators and postfix unary
6474factorial operators (@samp{!}), and allow parentheses for grouping.
6475
6476@example
6477@group
6478expr: term '+' expr
6479 | term
6480 ;
6481@end group
6482
6483@group
6484term: '(' expr ')'
6485 | term '!'
6486 | NUMBER
6487 ;
6488@end group
6489@end example
6490
6491Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6492should be done? If the following token is @samp{)}, then the first three
6493tokens must be reduced to form an @code{expr}. This is the only valid
6494course, because shifting the @samp{)} would produce a sequence of symbols
6495@w{@code{term ')'}}, and no rule allows this.
6496
6497If the following token is @samp{!}, then it must be shifted immediately so
6498that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6499parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6500@code{expr}. It would then be impossible to shift the @samp{!} because
6501doing so would produce on the stack the sequence of symbols @code{expr
6502'!'}. No rule allows that sequence.
6503
6504@vindex yychar
32c29292
JD
6505@vindex yylval
6506@vindex yylloc
742e4900 6507The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6508Its semantic value and location, if any, are stored in the variables
6509@code{yylval} and @code{yylloc}.
bfa74976
RS
6510@xref{Action Features, ,Special Features for Use in Actions}.
6511
342b8b6e 6512@node Shift/Reduce
bfa74976
RS
6513@section Shift/Reduce Conflicts
6514@cindex conflicts
6515@cindex shift/reduce conflicts
6516@cindex dangling @code{else}
6517@cindex @code{else}, dangling
6518
6519Suppose we are parsing a language which has if-then and if-then-else
6520statements, with a pair of rules like this:
6521
6522@example
6523@group
6524if_stmt:
6525 IF expr THEN stmt
6526 | IF expr THEN stmt ELSE stmt
6527 ;
6528@end group
6529@end example
6530
6531@noindent
6532Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6533terminal symbols for specific keyword tokens.
6534
742e4900 6535When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6536contents of the stack (assuming the input is valid) are just right for
6537reduction by the first rule. But it is also legitimate to shift the
6538@code{ELSE}, because that would lead to eventual reduction by the second
6539rule.
6540
6541This situation, where either a shift or a reduction would be valid, is
6542called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6543these conflicts by choosing to shift, unless otherwise directed by
6544operator precedence declarations. To see the reason for this, let's
6545contrast it with the other alternative.
6546
6547Since the parser prefers to shift the @code{ELSE}, the result is to attach
6548the else-clause to the innermost if-statement, making these two inputs
6549equivalent:
6550
6551@example
6552if x then if y then win (); else lose;
6553
6554if x then do; if y then win (); else lose; end;
6555@end example
6556
6557But if the parser chose to reduce when possible rather than shift, the
6558result would be to attach the else-clause to the outermost if-statement,
6559making these two inputs equivalent:
6560
6561@example
6562if x then if y then win (); else lose;
6563
6564if x then do; if y then win (); end; else lose;
6565@end example
6566
6567The conflict exists because the grammar as written is ambiguous: either
6568parsing of the simple nested if-statement is legitimate. The established
6569convention is that these ambiguities are resolved by attaching the
6570else-clause to the innermost if-statement; this is what Bison accomplishes
6571by choosing to shift rather than reduce. (It would ideally be cleaner to
6572write an unambiguous grammar, but that is very hard to do in this case.)
6573This particular ambiguity was first encountered in the specifications of
6574Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6575
6576To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6577conflicts, use the @code{%expect @var{n}} declaration.
6578There will be no warning as long as the number of shift/reduce conflicts
6579is exactly @var{n}, and Bison will report an error if there is a
6580different number.
bfa74976
RS
6581@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6582
6583The definition of @code{if_stmt} above is solely to blame for the
6584conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6585rules. Here is a complete Bison grammar file that actually manifests
6586the conflict:
bfa74976
RS
6587
6588@example
6589@group
6590%token IF THEN ELSE variable
6591%%
6592@end group
6593@group
6594stmt: expr
6595 | if_stmt
6596 ;
6597@end group
6598
6599@group
6600if_stmt:
6601 IF expr THEN stmt
6602 | IF expr THEN stmt ELSE stmt
6603 ;
6604@end group
6605
6606expr: variable
6607 ;
6608@end example
6609
342b8b6e 6610@node Precedence
bfa74976
RS
6611@section Operator Precedence
6612@cindex operator precedence
6613@cindex precedence of operators
6614
6615Another situation where shift/reduce conflicts appear is in arithmetic
6616expressions. Here shifting is not always the preferred resolution; the
6617Bison declarations for operator precedence allow you to specify when to
6618shift and when to reduce.
6619
6620@menu
6621* Why Precedence:: An example showing why precedence is needed.
6622* Using Precedence:: How to specify precedence in Bison grammars.
6623* Precedence Examples:: How these features are used in the previous example.
6624* How Precedence:: How they work.
6625@end menu
6626
342b8b6e 6627@node Why Precedence
bfa74976
RS
6628@subsection When Precedence is Needed
6629
6630Consider the following ambiguous grammar fragment (ambiguous because the
6631input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6632
6633@example
6634@group
6635expr: expr '-' expr
6636 | expr '*' expr
6637 | expr '<' expr
6638 | '(' expr ')'
6639 @dots{}
6640 ;
6641@end group
6642@end example
6643
6644@noindent
6645Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6646should it reduce them via the rule for the subtraction operator? It
6647depends on the next token. Of course, if the next token is @samp{)}, we
6648must reduce; shifting is invalid because no single rule can reduce the
6649token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6650the next token is @samp{*} or @samp{<}, we have a choice: either
6651shifting or reduction would allow the parse to complete, but with
6652different results.
6653
6654To decide which one Bison should do, we must consider the results. If
6655the next operator token @var{op} is shifted, then it must be reduced
6656first in order to permit another opportunity to reduce the difference.
6657The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6658hand, if the subtraction is reduced before shifting @var{op}, the result
6659is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6660reduce should depend on the relative precedence of the operators
6661@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6662@samp{<}.
bfa74976
RS
6663
6664@cindex associativity
6665What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6666@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6667operators we prefer the former, which is called @dfn{left association}.
6668The latter alternative, @dfn{right association}, is desirable for
6669assignment operators. The choice of left or right association is a
6670matter of whether the parser chooses to shift or reduce when the stack
742e4900 6671contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6672makes right-associativity.
bfa74976 6673
342b8b6e 6674@node Using Precedence
bfa74976
RS
6675@subsection Specifying Operator Precedence
6676@findex %left
6677@findex %right
6678@findex %nonassoc
6679
6680Bison allows you to specify these choices with the operator precedence
6681declarations @code{%left} and @code{%right}. Each such declaration
6682contains a list of tokens, which are operators whose precedence and
6683associativity is being declared. The @code{%left} declaration makes all
6684those operators left-associative and the @code{%right} declaration makes
6685them right-associative. A third alternative is @code{%nonassoc}, which
6686declares that it is a syntax error to find the same operator twice ``in a
6687row''.
6688
6689The relative precedence of different operators is controlled by the
6690order in which they are declared. The first @code{%left} or
6691@code{%right} declaration in the file declares the operators whose
6692precedence is lowest, the next such declaration declares the operators
6693whose precedence is a little higher, and so on.
6694
342b8b6e 6695@node Precedence Examples
bfa74976
RS
6696@subsection Precedence Examples
6697
6698In our example, we would want the following declarations:
6699
6700@example
6701%left '<'
6702%left '-'
6703%left '*'
6704@end example
6705
6706In a more complete example, which supports other operators as well, we
6707would declare them in groups of equal precedence. For example, @code{'+'} is
6708declared with @code{'-'}:
6709
6710@example
6711%left '<' '>' '=' NE LE GE
6712%left '+' '-'
6713%left '*' '/'
6714@end example
6715
6716@noindent
6717(Here @code{NE} and so on stand for the operators for ``not equal''
6718and so on. We assume that these tokens are more than one character long
6719and therefore are represented by names, not character literals.)
6720
342b8b6e 6721@node How Precedence
bfa74976
RS
6722@subsection How Precedence Works
6723
6724The first effect of the precedence declarations is to assign precedence
6725levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6726precedence levels to certain rules: each rule gets its precedence from
6727the last terminal symbol mentioned in the components. (You can also
6728specify explicitly the precedence of a rule. @xref{Contextual
6729Precedence, ,Context-Dependent Precedence}.)
6730
6731Finally, the resolution of conflicts works by comparing the precedence
742e4900 6732of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6733token's precedence is higher, the choice is to shift. If the rule's
6734precedence is higher, the choice is to reduce. If they have equal
6735precedence, the choice is made based on the associativity of that
6736precedence level. The verbose output file made by @samp{-v}
6737(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6738resolved.
bfa74976
RS
6739
6740Not all rules and not all tokens have precedence. If either the rule or
742e4900 6741the lookahead token has no precedence, then the default is to shift.
bfa74976 6742
342b8b6e 6743@node Contextual Precedence
bfa74976
RS
6744@section Context-Dependent Precedence
6745@cindex context-dependent precedence
6746@cindex unary operator precedence
6747@cindex precedence, context-dependent
6748@cindex precedence, unary operator
6749@findex %prec
6750
6751Often the precedence of an operator depends on the context. This sounds
6752outlandish at first, but it is really very common. For example, a minus
6753sign typically has a very high precedence as a unary operator, and a
6754somewhat lower precedence (lower than multiplication) as a binary operator.
6755
6756The Bison precedence declarations, @code{%left}, @code{%right} and
6757@code{%nonassoc}, can only be used once for a given token; so a token has
6758only one precedence declared in this way. For context-dependent
6759precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6760modifier for rules.
bfa74976
RS
6761
6762The @code{%prec} modifier declares the precedence of a particular rule by
6763specifying a terminal symbol whose precedence should be used for that rule.
6764It's not necessary for that symbol to appear otherwise in the rule. The
6765modifier's syntax is:
6766
6767@example
6768%prec @var{terminal-symbol}
6769@end example
6770
6771@noindent
6772and it is written after the components of the rule. Its effect is to
6773assign the rule the precedence of @var{terminal-symbol}, overriding
6774the precedence that would be deduced for it in the ordinary way. The
6775altered rule precedence then affects how conflicts involving that rule
6776are resolved (@pxref{Precedence, ,Operator Precedence}).
6777
6778Here is how @code{%prec} solves the problem of unary minus. First, declare
6779a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6780are no tokens of this type, but the symbol serves to stand for its
6781precedence:
6782
6783@example
6784@dots{}
6785%left '+' '-'
6786%left '*'
6787%left UMINUS
6788@end example
6789
6790Now the precedence of @code{UMINUS} can be used in specific rules:
6791
6792@example
6793@group
6794exp: @dots{}
6795 | exp '-' exp
6796 @dots{}
6797 | '-' exp %prec UMINUS
6798@end group
6799@end example
6800
91d2c560 6801@ifset defaultprec
39a06c25
PE
6802If you forget to append @code{%prec UMINUS} to the rule for unary
6803minus, Bison silently assumes that minus has its usual precedence.
6804This kind of problem can be tricky to debug, since one typically
6805discovers the mistake only by testing the code.
6806
22fccf95 6807The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6808this kind of problem systematically. It causes rules that lack a
6809@code{%prec} modifier to have no precedence, even if the last terminal
6810symbol mentioned in their components has a declared precedence.
6811
22fccf95 6812If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6813for all rules that participate in precedence conflict resolution.
6814Then you will see any shift/reduce conflict until you tell Bison how
6815to resolve it, either by changing your grammar or by adding an
6816explicit precedence. This will probably add declarations to the
6817grammar, but it helps to protect against incorrect rule precedences.
6818
22fccf95
PE
6819The effect of @code{%no-default-prec;} can be reversed by giving
6820@code{%default-prec;}, which is the default.
91d2c560 6821@end ifset
39a06c25 6822
342b8b6e 6823@node Parser States
bfa74976
RS
6824@section Parser States
6825@cindex finite-state machine
6826@cindex parser state
6827@cindex state (of parser)
6828
6829The function @code{yyparse} is implemented using a finite-state machine.
6830The values pushed on the parser stack are not simply token type codes; they
6831represent the entire sequence of terminal and nonterminal symbols at or
6832near the top of the stack. The current state collects all the information
6833about previous input which is relevant to deciding what to do next.
6834
742e4900
JD
6835Each time a lookahead token is read, the current parser state together
6836with the type of lookahead token are looked up in a table. This table
6837entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6838specifies the new parser state, which is pushed onto the top of the
6839parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6840This means that a certain number of tokens or groupings are taken off
6841the top of the stack, and replaced by one grouping. In other words,
6842that number of states are popped from the stack, and one new state is
6843pushed.
6844
742e4900 6845There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6846is erroneous in the current state. This causes error processing to begin
6847(@pxref{Error Recovery}).
6848
342b8b6e 6849@node Reduce/Reduce
bfa74976
RS
6850@section Reduce/Reduce Conflicts
6851@cindex reduce/reduce conflict
6852@cindex conflicts, reduce/reduce
6853
6854A reduce/reduce conflict occurs if there are two or more rules that apply
6855to the same sequence of input. This usually indicates a serious error
6856in the grammar.
6857
6858For example, here is an erroneous attempt to define a sequence
6859of zero or more @code{word} groupings.
6860
6861@example
6862sequence: /* empty */
6863 @{ printf ("empty sequence\n"); @}
6864 | maybeword
6865 | sequence word
6866 @{ printf ("added word %s\n", $2); @}
6867 ;
6868
6869maybeword: /* empty */
6870 @{ printf ("empty maybeword\n"); @}
6871 | word
6872 @{ printf ("single word %s\n", $1); @}
6873 ;
6874@end example
6875
6876@noindent
6877The error is an ambiguity: there is more than one way to parse a single
6878@code{word} into a @code{sequence}. It could be reduced to a
6879@code{maybeword} and then into a @code{sequence} via the second rule.
6880Alternatively, nothing-at-all could be reduced into a @code{sequence}
6881via the first rule, and this could be combined with the @code{word}
6882using the third rule for @code{sequence}.
6883
6884There is also more than one way to reduce nothing-at-all into a
6885@code{sequence}. This can be done directly via the first rule,
6886or indirectly via @code{maybeword} and then the second rule.
6887
6888You might think that this is a distinction without a difference, because it
6889does not change whether any particular input is valid or not. But it does
6890affect which actions are run. One parsing order runs the second rule's
6891action; the other runs the first rule's action and the third rule's action.
6892In this example, the output of the program changes.
6893
6894Bison resolves a reduce/reduce conflict by choosing to use the rule that
6895appears first in the grammar, but it is very risky to rely on this. Every
6896reduce/reduce conflict must be studied and usually eliminated. Here is the
6897proper way to define @code{sequence}:
6898
6899@example
6900sequence: /* empty */
6901 @{ printf ("empty sequence\n"); @}
6902 | sequence word
6903 @{ printf ("added word %s\n", $2); @}
6904 ;
6905@end example
6906
6907Here is another common error that yields a reduce/reduce conflict:
6908
6909@example
6910sequence: /* empty */
6911 | sequence words
6912 | sequence redirects
6913 ;
6914
6915words: /* empty */
6916 | words word
6917 ;
6918
6919redirects:/* empty */
6920 | redirects redirect
6921 ;
6922@end example
6923
6924@noindent
6925The intention here is to define a sequence which can contain either
6926@code{word} or @code{redirect} groupings. The individual definitions of
6927@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6928three together make a subtle ambiguity: even an empty input can be parsed
6929in infinitely many ways!
6930
6931Consider: nothing-at-all could be a @code{words}. Or it could be two
6932@code{words} in a row, or three, or any number. It could equally well be a
6933@code{redirects}, or two, or any number. Or it could be a @code{words}
6934followed by three @code{redirects} and another @code{words}. And so on.
6935
6936Here are two ways to correct these rules. First, to make it a single level
6937of sequence:
6938
6939@example
6940sequence: /* empty */
6941 | sequence word
6942 | sequence redirect
6943 ;
6944@end example
6945
6946Second, to prevent either a @code{words} or a @code{redirects}
6947from being empty:
6948
6949@example
6950sequence: /* empty */
6951 | sequence words
6952 | sequence redirects
6953 ;
6954
6955words: word
6956 | words word
6957 ;
6958
6959redirects:redirect
6960 | redirects redirect
6961 ;
6962@end example
6963
342b8b6e 6964@node Mystery Conflicts
bfa74976
RS
6965@section Mysterious Reduce/Reduce Conflicts
6966
6967Sometimes reduce/reduce conflicts can occur that don't look warranted.
6968Here is an example:
6969
6970@example
6971@group
6972%token ID
6973
6974%%
6975def: param_spec return_spec ','
6976 ;
6977param_spec:
6978 type
6979 | name_list ':' type
6980 ;
6981@end group
6982@group
6983return_spec:
6984 type
6985 | name ':' type
6986 ;
6987@end group
6988@group
6989type: ID
6990 ;
6991@end group
6992@group
6993name: ID
6994 ;
6995name_list:
6996 name
6997 | name ',' name_list
6998 ;
6999@end group
7000@end example
7001
7002It would seem that this grammar can be parsed with only a single token
742e4900 7003of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7004a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 7005@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7006
35430378
JD
7007@cindex LR(1)
7008@cindex LALR(1)
34a6c2d1 7009However, for historical reasons, Bison cannot by default handle all
35430378 7010LR(1) grammars.
34a6c2d1
JD
7011In this grammar, two contexts, that after an @code{ID} at the beginning
7012of a @code{param_spec} and likewise at the beginning of a
7013@code{return_spec}, are similar enough that Bison assumes they are the
7014same.
7015They appear similar because the same set of rules would be
bfa74976
RS
7016active---the rule for reducing to a @code{name} and that for reducing to
7017a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7018that the rules would require different lookahead tokens in the two
bfa74976
RS
7019contexts, so it makes a single parser state for them both. Combining
7020the two contexts causes a conflict later. In parser terminology, this
35430378 7021occurrence means that the grammar is not LALR(1).
bfa74976 7022
34a6c2d1 7023For many practical grammars (specifically those that fall into the
35430378 7024non-LR(1) class), the limitations of LALR(1) result in
34a6c2d1
JD
7025difficulties beyond just mysterious reduce/reduce conflicts.
7026The best way to fix all these problems is to select a different parser
7027table generation algorithm.
35430378 7028Either IELR(1) or canonical LR(1) would suffice, but
34a6c2d1
JD
7029the former is more efficient and easier to debug during development.
7030@xref{Decl Summary,,lr.type}, for details.
35430378 7031(Bison's IELR(1) and canonical LR(1) implementations
34a6c2d1
JD
7032are experimental.
7033More user feedback will help to stabilize them.)
7034
35430378 7035If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
7036can often fix a mysterious conflict by identifying the two parser states
7037that are being confused, and adding something to make them look
7038distinct. In the above example, adding one rule to
bfa74976
RS
7039@code{return_spec} as follows makes the problem go away:
7040
7041@example
7042@group
7043%token BOGUS
7044@dots{}
7045%%
7046@dots{}
7047return_spec:
7048 type
7049 | name ':' type
7050 /* This rule is never used. */
7051 | ID BOGUS
7052 ;
7053@end group
7054@end example
7055
7056This corrects the problem because it introduces the possibility of an
7057additional active rule in the context after the @code{ID} at the beginning of
7058@code{return_spec}. This rule is not active in the corresponding context
7059in a @code{param_spec}, so the two contexts receive distinct parser states.
7060As long as the token @code{BOGUS} is never generated by @code{yylex},
7061the added rule cannot alter the way actual input is parsed.
7062
7063In this particular example, there is another way to solve the problem:
7064rewrite the rule for @code{return_spec} to use @code{ID} directly
7065instead of via @code{name}. This also causes the two confusing
7066contexts to have different sets of active rules, because the one for
7067@code{return_spec} activates the altered rule for @code{return_spec}
7068rather than the one for @code{name}.
7069
7070@example
7071param_spec:
7072 type
7073 | name_list ':' type
7074 ;
7075return_spec:
7076 type
7077 | ID ':' type
7078 ;
7079@end example
7080
35430378 7081For a more detailed exposition of LALR(1) parsers and parser
e054b190
PE
7082generators, please see:
7083Frank DeRemer and Thomas Pennello, Efficient Computation of
35430378 7084LALR(1) Look-Ahead Sets, @cite{ACM Transactions on
e054b190
PE
7085Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7086pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7087
fae437e8 7088@node Generalized LR Parsing
35430378
JD
7089@section Generalized LR (GLR) Parsing
7090@cindex GLR parsing
7091@cindex generalized LR (GLR) parsing
676385e2 7092@cindex ambiguous grammars
9d9b8b70 7093@cindex nondeterministic parsing
676385e2 7094
fae437e8
AD
7095Bison produces @emph{deterministic} parsers that choose uniquely
7096when to reduce and which reduction to apply
742e4900 7097based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7098As a result, normal Bison handles a proper subset of the family of
7099context-free languages.
fae437e8 7100Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7101sequence of reductions cannot have deterministic parsers in this sense.
7102The same is true of languages that require more than one symbol of
742e4900 7103lookahead, since the parser lacks the information necessary to make a
676385e2 7104decision at the point it must be made in a shift-reduce parser.
fae437e8 7105Finally, as previously mentioned (@pxref{Mystery Conflicts}),
34a6c2d1 7106there are languages where Bison's default choice of how to
676385e2
PH
7107summarize the input seen so far loses necessary information.
7108
7109When you use the @samp{%glr-parser} declaration in your grammar file,
7110Bison generates a parser that uses a different algorithm, called
35430378 7111Generalized LR (or GLR). A Bison GLR
c827f760 7112parser uses the same basic
676385e2
PH
7113algorithm for parsing as an ordinary Bison parser, but behaves
7114differently in cases where there is a shift-reduce conflict that has not
fae437e8 7115been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7116reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7117situation, it
fae437e8 7118effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7119shift or reduction. These parsers then proceed as usual, consuming
7120tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7121and split further, with the result that instead of a sequence of states,
35430378 7122a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7123
7124In effect, each stack represents a guess as to what the proper parse
7125is. Additional input may indicate that a guess was wrong, in which case
7126the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7127actions generated in each stack are saved, rather than being executed
676385e2 7128immediately. When a stack disappears, its saved semantic actions never
fae437e8 7129get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7130their sets of semantic actions are both saved with the state that
7131results from the reduction. We say that two stacks are equivalent
fae437e8 7132when they both represent the same sequence of states,
676385e2
PH
7133and each pair of corresponding states represents a
7134grammar symbol that produces the same segment of the input token
7135stream.
7136
7137Whenever the parser makes a transition from having multiple
34a6c2d1 7138states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7139algorithm, after resolving and executing the saved-up actions.
7140At this transition, some of the states on the stack will have semantic
7141values that are sets (actually multisets) of possible actions. The
7142parser tries to pick one of the actions by first finding one whose rule
7143has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7144declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7145precedence, but there the same merging function is declared for both
fae437e8 7146rules by the @samp{%merge} declaration,
676385e2
PH
7147Bison resolves and evaluates both and then calls the merge function on
7148the result. Otherwise, it reports an ambiguity.
7149
35430378
JD
7150It is possible to use a data structure for the GLR parsing tree that
7151permits the processing of any LR(1) grammar in linear time (in the
c827f760 7152size of the input), any unambiguous (not necessarily
35430378 7153LR(1)) grammar in
fae437e8 7154quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7155context-free grammar in cubic worst-case time. However, Bison currently
7156uses a simpler data structure that requires time proportional to the
7157length of the input times the maximum number of stacks required for any
9d9b8b70 7158prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7159grammars can require exponential time and space to process. Such badly
7160behaving examples, however, are not generally of practical interest.
9d9b8b70 7161Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7162doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7163structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7164grammar, in particular, it is only slightly slower than with the
35430378 7165deterministic LR(1) Bison parser.
676385e2 7166
35430378 7167For a more detailed exposition of GLR parsers, please see: Elizabeth
f6481e2f 7168Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
35430378 7169Generalised LR Parsers, Royal Holloway, University of
f6481e2f
PE
7170London, Department of Computer Science, TR-00-12,
7171@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7172(2000-12-24).
7173
1a059451
PE
7174@node Memory Management
7175@section Memory Management, and How to Avoid Memory Exhaustion
7176@cindex memory exhaustion
7177@cindex memory management
bfa74976
RS
7178@cindex stack overflow
7179@cindex parser stack overflow
7180@cindex overflow of parser stack
7181
1a059451 7182The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7183not reduced. When this happens, the parser function @code{yyparse}
1a059451 7184calls @code{yyerror} and then returns 2.
bfa74976 7185
c827f760 7186Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7187usually results from using a right recursion instead of a left
7188recursion, @xref{Recursion, ,Recursive Rules}.
7189
bfa74976
RS
7190@vindex YYMAXDEPTH
7191By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7192parser stack can become before memory is exhausted. Define the
bfa74976
RS
7193macro with a value that is an integer. This value is the maximum number
7194of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7195
7196The stack space allowed is not necessarily allocated. If you specify a
1a059451 7197large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7198stack at first, and then makes it bigger by stages as needed. This
7199increasing allocation happens automatically and silently. Therefore,
7200you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7201space for ordinary inputs that do not need much stack.
7202
d7e14fc0
PE
7203However, do not allow @code{YYMAXDEPTH} to be a value so large that
7204arithmetic overflow could occur when calculating the size of the stack
7205space. Also, do not allow @code{YYMAXDEPTH} to be less than
7206@code{YYINITDEPTH}.
7207
bfa74976
RS
7208@cindex default stack limit
7209The default value of @code{YYMAXDEPTH}, if you do not define it, is
721010000.
7211
7212@vindex YYINITDEPTH
7213You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7214macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7215parser in C, this value must be a compile-time constant
d7e14fc0
PE
7216unless you are assuming C99 or some other target language or compiler
7217that allows variable-length arrays. The default is 200.
7218
1a059451 7219Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7220
d1a1114f 7221@c FIXME: C++ output.
c781580d 7222Because of semantic differences between C and C++, the deterministic
34a6c2d1 7223parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7224by C++ compilers. In this precise case (compiling a C parser as C++) you are
7225suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7226this deficiency in a future release.
d1a1114f 7227
342b8b6e 7228@node Error Recovery
bfa74976
RS
7229@chapter Error Recovery
7230@cindex error recovery
7231@cindex recovery from errors
7232
6e649e65 7233It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7234error. For example, a compiler should recover sufficiently to parse the
7235rest of the input file and check it for errors; a calculator should accept
7236another expression.
7237
7238In a simple interactive command parser where each input is one line, it may
7239be sufficient to allow @code{yyparse} to return 1 on error and have the
7240caller ignore the rest of the input line when that happens (and then call
7241@code{yyparse} again). But this is inadequate for a compiler, because it
7242forgets all the syntactic context leading up to the error. A syntax error
7243deep within a function in the compiler input should not cause the compiler
7244to treat the following line like the beginning of a source file.
7245
7246@findex error
7247You can define how to recover from a syntax error by writing rules to
7248recognize the special token @code{error}. This is a terminal symbol that
7249is always defined (you need not declare it) and reserved for error
7250handling. The Bison parser generates an @code{error} token whenever a
7251syntax error happens; if you have provided a rule to recognize this token
13863333 7252in the current context, the parse can continue.
bfa74976
RS
7253
7254For example:
7255
7256@example
7257stmnts: /* empty string */
7258 | stmnts '\n'
7259 | stmnts exp '\n'
7260 | stmnts error '\n'
7261@end example
7262
7263The fourth rule in this example says that an error followed by a newline
7264makes a valid addition to any @code{stmnts}.
7265
7266What happens if a syntax error occurs in the middle of an @code{exp}? The
7267error recovery rule, interpreted strictly, applies to the precise sequence
7268of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7269the middle of an @code{exp}, there will probably be some additional tokens
7270and subexpressions on the stack after the last @code{stmnts}, and there
7271will be tokens to read before the next newline. So the rule is not
7272applicable in the ordinary way.
7273
7274But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7275the semantic context and part of the input. First it discards states
7276and objects from the stack until it gets back to a state in which the
bfa74976 7277@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7278already parsed are discarded, back to the last complete @code{stmnts}.)
7279At this point the @code{error} token can be shifted. Then, if the old
742e4900 7280lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7281tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7282this example, Bison reads and discards input until the next newline so
7283that the fourth rule can apply. Note that discarded symbols are
7284possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7285Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7286
7287The choice of error rules in the grammar is a choice of strategies for
7288error recovery. A simple and useful strategy is simply to skip the rest of
7289the current input line or current statement if an error is detected:
7290
7291@example
72d2299c 7292stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7293@end example
7294
7295It is also useful to recover to the matching close-delimiter of an
7296opening-delimiter that has already been parsed. Otherwise the
7297close-delimiter will probably appear to be unmatched, and generate another,
7298spurious error message:
7299
7300@example
7301primary: '(' expr ')'
7302 | '(' error ')'
7303 @dots{}
7304 ;
7305@end example
7306
7307Error recovery strategies are necessarily guesses. When they guess wrong,
7308one syntax error often leads to another. In the above example, the error
7309recovery rule guesses that an error is due to bad input within one
7310@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7311middle of a valid @code{stmnt}. After the error recovery rule recovers
7312from the first error, another syntax error will be found straightaway,
7313since the text following the spurious semicolon is also an invalid
7314@code{stmnt}.
7315
7316To prevent an outpouring of error messages, the parser will output no error
7317message for another syntax error that happens shortly after the first; only
7318after three consecutive input tokens have been successfully shifted will
7319error messages resume.
7320
7321Note that rules which accept the @code{error} token may have actions, just
7322as any other rules can.
7323
7324@findex yyerrok
7325You can make error messages resume immediately by using the macro
7326@code{yyerrok} in an action. If you do this in the error rule's action, no
7327error messages will be suppressed. This macro requires no arguments;
7328@samp{yyerrok;} is a valid C statement.
7329
7330@findex yyclearin
742e4900 7331The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7332this is unacceptable, then the macro @code{yyclearin} may be used to clear
7333this token. Write the statement @samp{yyclearin;} in the error rule's
7334action.
32c29292 7335@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7336
6e649e65 7337For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7338called that advances the input stream to some point where parsing should
7339once again commence. The next symbol returned by the lexical scanner is
742e4900 7340probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7341with @samp{yyclearin;}.
7342
7343@vindex YYRECOVERING
02103984
PE
7344The expression @code{YYRECOVERING ()} yields 1 when the parser
7345is recovering from a syntax error, and 0 otherwise.
7346Syntax error diagnostics are suppressed while recovering from a syntax
7347error.
bfa74976 7348
342b8b6e 7349@node Context Dependency
bfa74976
RS
7350@chapter Handling Context Dependencies
7351
7352The Bison paradigm is to parse tokens first, then group them into larger
7353syntactic units. In many languages, the meaning of a token is affected by
7354its context. Although this violates the Bison paradigm, certain techniques
7355(known as @dfn{kludges}) may enable you to write Bison parsers for such
7356languages.
7357
7358@menu
7359* Semantic Tokens:: Token parsing can depend on the semantic context.
7360* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7361* Tie-in Recovery:: Lexical tie-ins have implications for how
7362 error recovery rules must be written.
7363@end menu
7364
7365(Actually, ``kludge'' means any technique that gets its job done but is
7366neither clean nor robust.)
7367
342b8b6e 7368@node Semantic Tokens
bfa74976
RS
7369@section Semantic Info in Token Types
7370
7371The C language has a context dependency: the way an identifier is used
7372depends on what its current meaning is. For example, consider this:
7373
7374@example
7375foo (x);
7376@end example
7377
7378This looks like a function call statement, but if @code{foo} is a typedef
7379name, then this is actually a declaration of @code{x}. How can a Bison
7380parser for C decide how to parse this input?
7381
35430378 7382The method used in GNU C is to have two different token types,
bfa74976
RS
7383@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7384identifier, it looks up the current declaration of the identifier in order
7385to decide which token type to return: @code{TYPENAME} if the identifier is
7386declared as a typedef, @code{IDENTIFIER} otherwise.
7387
7388The grammar rules can then express the context dependency by the choice of
7389token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7390but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7391@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7392is @emph{not} significant, such as in declarations that can shadow a
7393typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7394accepted---there is one rule for each of the two token types.
7395
7396This technique is simple to use if the decision of which kinds of
7397identifiers to allow is made at a place close to where the identifier is
7398parsed. But in C this is not always so: C allows a declaration to
7399redeclare a typedef name provided an explicit type has been specified
7400earlier:
7401
7402@example
3a4f411f
PE
7403typedef int foo, bar;
7404int baz (void)
7405@{
7406 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7407 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7408 return foo (bar);
7409@}
bfa74976
RS
7410@end example
7411
7412Unfortunately, the name being declared is separated from the declaration
7413construct itself by a complicated syntactic structure---the ``declarator''.
7414
9ecbd125 7415As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7416all the nonterminal names changed: once for parsing a declaration in
7417which a typedef name can be redefined, and once for parsing a
7418declaration in which that can't be done. Here is a part of the
7419duplication, with actions omitted for brevity:
bfa74976
RS
7420
7421@example
7422initdcl:
7423 declarator maybeasm '='
7424 init
7425 | declarator maybeasm
7426 ;
7427
7428notype_initdcl:
7429 notype_declarator maybeasm '='
7430 init
7431 | notype_declarator maybeasm
7432 ;
7433@end example
7434
7435@noindent
7436Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7437cannot. The distinction between @code{declarator} and
7438@code{notype_declarator} is the same sort of thing.
7439
7440There is some similarity between this technique and a lexical tie-in
7441(described next), in that information which alters the lexical analysis is
7442changed during parsing by other parts of the program. The difference is
7443here the information is global, and is used for other purposes in the
7444program. A true lexical tie-in has a special-purpose flag controlled by
7445the syntactic context.
7446
342b8b6e 7447@node Lexical Tie-ins
bfa74976
RS
7448@section Lexical Tie-ins
7449@cindex lexical tie-in
7450
7451One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7452which is set by Bison actions, whose purpose is to alter the way tokens are
7453parsed.
7454
7455For example, suppose we have a language vaguely like C, but with a special
7456construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7457an expression in parentheses in which all integers are hexadecimal. In
7458particular, the token @samp{a1b} must be treated as an integer rather than
7459as an identifier if it appears in that context. Here is how you can do it:
7460
7461@example
7462@group
7463%@{
38a92d50
PE
7464 int hexflag;
7465 int yylex (void);
7466 void yyerror (char const *);
bfa74976
RS
7467%@}
7468%%
7469@dots{}
7470@end group
7471@group
7472expr: IDENTIFIER
7473 | constant
7474 | HEX '('
7475 @{ hexflag = 1; @}
7476 expr ')'
7477 @{ hexflag = 0;
7478 $$ = $4; @}
7479 | expr '+' expr
7480 @{ $$ = make_sum ($1, $3); @}
7481 @dots{}
7482 ;
7483@end group
7484
7485@group
7486constant:
7487 INTEGER
7488 | STRING
7489 ;
7490@end group
7491@end example
7492
7493@noindent
7494Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7495it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7496with letters are parsed as integers if possible.
7497
9913d6e4
JD
7498The declaration of @code{hexflag} shown in the prologue of the grammar
7499file is needed to make it accessible to the actions (@pxref{Prologue,
7500,The Prologue}). You must also write the code in @code{yylex} to obey
7501the flag.
bfa74976 7502
342b8b6e 7503@node Tie-in Recovery
bfa74976
RS
7504@section Lexical Tie-ins and Error Recovery
7505
7506Lexical tie-ins make strict demands on any error recovery rules you have.
7507@xref{Error Recovery}.
7508
7509The reason for this is that the purpose of an error recovery rule is to
7510abort the parsing of one construct and resume in some larger construct.
7511For example, in C-like languages, a typical error recovery rule is to skip
7512tokens until the next semicolon, and then start a new statement, like this:
7513
7514@example
7515stmt: expr ';'
7516 | IF '(' expr ')' stmt @{ @dots{} @}
7517 @dots{}
7518 error ';'
7519 @{ hexflag = 0; @}
7520 ;
7521@end example
7522
7523If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7524construct, this error rule will apply, and then the action for the
7525completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7526remain set for the entire rest of the input, or until the next @code{hex}
7527keyword, causing identifiers to be misinterpreted as integers.
7528
7529To avoid this problem the error recovery rule itself clears @code{hexflag}.
7530
7531There may also be an error recovery rule that works within expressions.
7532For example, there could be a rule which applies within parentheses
7533and skips to the close-parenthesis:
7534
7535@example
7536@group
7537expr: @dots{}
7538 | '(' expr ')'
7539 @{ $$ = $2; @}
7540 | '(' error ')'
7541 @dots{}
7542@end group
7543@end example
7544
7545If this rule acts within the @code{hex} construct, it is not going to abort
7546that construct (since it applies to an inner level of parentheses within
7547the construct). Therefore, it should not clear the flag: the rest of
7548the @code{hex} construct should be parsed with the flag still in effect.
7549
7550What if there is an error recovery rule which might abort out of the
7551@code{hex} construct or might not, depending on circumstances? There is no
7552way you can write the action to determine whether a @code{hex} construct is
7553being aborted or not. So if you are using a lexical tie-in, you had better
7554make sure your error recovery rules are not of this kind. Each rule must
7555be such that you can be sure that it always will, or always won't, have to
7556clear the flag.
7557
ec3bc396
AD
7558@c ================================================== Debugging Your Parser
7559
342b8b6e 7560@node Debugging
bfa74976 7561@chapter Debugging Your Parser
ec3bc396
AD
7562
7563Developing a parser can be a challenge, especially if you don't
7564understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7565Algorithm}). Even so, sometimes a detailed description of the automaton
7566can help (@pxref{Understanding, , Understanding Your Parser}), or
7567tracing the execution of the parser can give some insight on why it
7568behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7569
7570@menu
7571* Understanding:: Understanding the structure of your parser.
7572* Tracing:: Tracing the execution of your parser.
7573@end menu
7574
7575@node Understanding
7576@section Understanding Your Parser
7577
7578As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7579Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7580frequent than one would hope), looking at this automaton is required to
7581tune or simply fix a parser. Bison provides two different
35fe0834 7582representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7583
7584The textual file is generated when the options @option{--report} or
7585@option{--verbose} are specified, see @xref{Invocation, , Invoking
7586Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
7587the parser implementation file name, and adding @samp{.output}
7588instead. Therefore, if the grammar file is @file{foo.y}, then the
7589parser implementation file is called @file{foo.tab.c} by default. As
7590a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
7591
7592The following grammar file, @file{calc.y}, will be used in the sequel:
7593
7594@example
7595%token NUM STR
7596%left '+' '-'
7597%left '*'
7598%%
7599exp: exp '+' exp
7600 | exp '-' exp
7601 | exp '*' exp
7602 | exp '/' exp
7603 | NUM
7604 ;
7605useless: STR;
7606%%
7607@end example
7608
88bce5a2
AD
7609@command{bison} reports:
7610
7611@example
379261b3
JD
7612calc.y: warning: 1 nonterminal useless in grammar
7613calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7614calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7615calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7616calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7617@end example
7618
7619When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7620creates a file @file{calc.output} with contents detailed below. The
7621order of the output and the exact presentation might vary, but the
7622interpretation is the same.
ec3bc396
AD
7623
7624The first section includes details on conflicts that were solved thanks
7625to precedence and/or associativity:
7626
7627@example
7628Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7629Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7630Conflict in state 8 between rule 2 and token '*' resolved as shift.
7631@exdent @dots{}
7632@end example
7633
7634@noindent
7635The next section lists states that still have conflicts.
7636
7637@example
5a99098d
PE
7638State 8 conflicts: 1 shift/reduce
7639State 9 conflicts: 1 shift/reduce
7640State 10 conflicts: 1 shift/reduce
7641State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7642@end example
7643
7644@noindent
7645@cindex token, useless
7646@cindex useless token
7647@cindex nonterminal, useless
7648@cindex useless nonterminal
7649@cindex rule, useless
7650@cindex useless rule
7651The next section reports useless tokens, nonterminal and rules. Useless
7652nonterminals and rules are removed in order to produce a smaller parser,
7653but useless tokens are preserved, since they might be used by the
d80fb37a 7654scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7655below):
7656
7657@example
d80fb37a 7658Nonterminals useless in grammar:
ec3bc396
AD
7659 useless
7660
d80fb37a 7661Terminals unused in grammar:
ec3bc396
AD
7662 STR
7663
cff03fb2 7664Rules useless in grammar:
ec3bc396
AD
7665#6 useless: STR;
7666@end example
7667
7668@noindent
7669The next section reproduces the exact grammar that Bison used:
7670
7671@example
7672Grammar
7673
7674 Number, Line, Rule
88bce5a2 7675 0 5 $accept -> exp $end
ec3bc396
AD
7676 1 5 exp -> exp '+' exp
7677 2 6 exp -> exp '-' exp
7678 3 7 exp -> exp '*' exp
7679 4 8 exp -> exp '/' exp
7680 5 9 exp -> NUM
7681@end example
7682
7683@noindent
7684and reports the uses of the symbols:
7685
7686@example
7687Terminals, with rules where they appear
7688
88bce5a2 7689$end (0) 0
ec3bc396
AD
7690'*' (42) 3
7691'+' (43) 1
7692'-' (45) 2
7693'/' (47) 4
7694error (256)
7695NUM (258) 5
7696
7697Nonterminals, with rules where they appear
7698
88bce5a2 7699$accept (8)
ec3bc396
AD
7700 on left: 0
7701exp (9)
7702 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7703@end example
7704
7705@noindent
7706@cindex item
7707@cindex pointed rule
7708@cindex rule, pointed
7709Bison then proceeds onto the automaton itself, describing each state
7710with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7711item is a production rule together with a point (marked by @samp{.})
7712that the input cursor.
7713
7714@example
7715state 0
7716
88bce5a2 7717 $accept -> . exp $ (rule 0)
ec3bc396 7718
2a8d363a 7719 NUM shift, and go to state 1
ec3bc396 7720
2a8d363a 7721 exp go to state 2
ec3bc396
AD
7722@end example
7723
7724This reads as follows: ``state 0 corresponds to being at the very
7725beginning of the parsing, in the initial rule, right before the start
7726symbol (here, @code{exp}). When the parser returns to this state right
7727after having reduced a rule that produced an @code{exp}, the control
7728flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7729symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7730the parse stack, and the control flow jumps to state 1. Any other
742e4900 7731lookahead triggers a syntax error.''
ec3bc396
AD
7732
7733@cindex core, item set
7734@cindex item set core
7735@cindex kernel, item set
7736@cindex item set core
7737Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7738report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7739at the beginning of any rule deriving an @code{exp}. By default Bison
7740reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7741you want to see more detail you can invoke @command{bison} with
7742@option{--report=itemset} to list all the items, include those that can
7743be derived:
7744
7745@example
7746state 0
7747
88bce5a2 7748 $accept -> . exp $ (rule 0)
ec3bc396
AD
7749 exp -> . exp '+' exp (rule 1)
7750 exp -> . exp '-' exp (rule 2)
7751 exp -> . exp '*' exp (rule 3)
7752 exp -> . exp '/' exp (rule 4)
7753 exp -> . NUM (rule 5)
7754
7755 NUM shift, and go to state 1
7756
7757 exp go to state 2
7758@end example
7759
7760@noindent
7761In the state 1...
7762
7763@example
7764state 1
7765
7766 exp -> NUM . (rule 5)
7767
2a8d363a 7768 $default reduce using rule 5 (exp)
ec3bc396
AD
7769@end example
7770
7771@noindent
742e4900 7772the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7773(@samp{$default}), the parser will reduce it. If it was coming from
7774state 0, then, after this reduction it will return to state 0, and will
7775jump to state 2 (@samp{exp: go to state 2}).
7776
7777@example
7778state 2
7779
88bce5a2 7780 $accept -> exp . $ (rule 0)
ec3bc396
AD
7781 exp -> exp . '+' exp (rule 1)
7782 exp -> exp . '-' exp (rule 2)
7783 exp -> exp . '*' exp (rule 3)
7784 exp -> exp . '/' exp (rule 4)
7785
2a8d363a
AD
7786 $ shift, and go to state 3
7787 '+' shift, and go to state 4
7788 '-' shift, and go to state 5
7789 '*' shift, and go to state 6
7790 '/' shift, and go to state 7
ec3bc396
AD
7791@end example
7792
7793@noindent
7794In state 2, the automaton can only shift a symbol. For instance,
742e4900 7795because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7796@samp{+}, it will be shifted on the parse stack, and the automaton
7797control will jump to state 4, corresponding to the item @samp{exp -> exp
7798'+' . exp}. Since there is no default action, any other token than
6e649e65 7799those listed above will trigger a syntax error.
ec3bc396 7800
34a6c2d1 7801@cindex accepting state
ec3bc396
AD
7802The state 3 is named the @dfn{final state}, or the @dfn{accepting
7803state}:
7804
7805@example
7806state 3
7807
88bce5a2 7808 $accept -> exp $ . (rule 0)
ec3bc396 7809
2a8d363a 7810 $default accept
ec3bc396
AD
7811@end example
7812
7813@noindent
7814the initial rule is completed (the start symbol and the end
7815of input were read), the parsing exits successfully.
7816
7817The interpretation of states 4 to 7 is straightforward, and is left to
7818the reader.
7819
7820@example
7821state 4
7822
7823 exp -> exp '+' . exp (rule 1)
7824
2a8d363a 7825 NUM shift, and go to state 1
ec3bc396 7826
2a8d363a 7827 exp go to state 8
ec3bc396
AD
7828
7829state 5
7830
7831 exp -> exp '-' . exp (rule 2)
7832
2a8d363a 7833 NUM shift, and go to state 1
ec3bc396 7834
2a8d363a 7835 exp go to state 9
ec3bc396
AD
7836
7837state 6
7838
7839 exp -> exp '*' . exp (rule 3)
7840
2a8d363a 7841 NUM shift, and go to state 1
ec3bc396 7842
2a8d363a 7843 exp go to state 10
ec3bc396
AD
7844
7845state 7
7846
7847 exp -> exp '/' . exp (rule 4)
7848
2a8d363a 7849 NUM shift, and go to state 1
ec3bc396 7850
2a8d363a 7851 exp go to state 11
ec3bc396
AD
7852@end example
7853
5a99098d
PE
7854As was announced in beginning of the report, @samp{State 8 conflicts:
78551 shift/reduce}:
ec3bc396
AD
7856
7857@example
7858state 8
7859
7860 exp -> exp . '+' exp (rule 1)
7861 exp -> exp '+' exp . (rule 1)
7862 exp -> exp . '-' exp (rule 2)
7863 exp -> exp . '*' exp (rule 3)
7864 exp -> exp . '/' exp (rule 4)
7865
2a8d363a
AD
7866 '*' shift, and go to state 6
7867 '/' shift, and go to state 7
ec3bc396 7868
2a8d363a
AD
7869 '/' [reduce using rule 1 (exp)]
7870 $default reduce using rule 1 (exp)
ec3bc396
AD
7871@end example
7872
742e4900 7873Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7874either shifting (and going to state 7), or reducing rule 1. The
7875conflict means that either the grammar is ambiguous, or the parser lacks
7876information to make the right decision. Indeed the grammar is
7877ambiguous, as, since we did not specify the precedence of @samp{/}, the
7878sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7879NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7880NUM}, which corresponds to reducing rule 1.
7881
34a6c2d1 7882Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7883arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7884Shift/Reduce Conflicts}. Discarded actions are reported in between
7885square brackets.
7886
7887Note that all the previous states had a single possible action: either
7888shifting the next token and going to the corresponding state, or
7889reducing a single rule. In the other cases, i.e., when shifting
7890@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7891possible, the lookahead is required to select the action. State 8 is
7892one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7893is shifting, otherwise the action is reducing rule 1. In other words,
7894the first two items, corresponding to rule 1, are not eligible when the
742e4900 7895lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7896precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7897with some set of possible lookahead tokens. When run with
7898@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7899
7900@example
7901state 8
7902
88c78747 7903 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7904 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7905 exp -> exp . '-' exp (rule 2)
7906 exp -> exp . '*' exp (rule 3)
7907 exp -> exp . '/' exp (rule 4)
7908
7909 '*' shift, and go to state 6
7910 '/' shift, and go to state 7
7911
7912 '/' [reduce using rule 1 (exp)]
7913 $default reduce using rule 1 (exp)
7914@end example
7915
7916The remaining states are similar:
7917
7918@example
7919state 9
7920
7921 exp -> exp . '+' exp (rule 1)
7922 exp -> exp . '-' exp (rule 2)
7923 exp -> exp '-' exp . (rule 2)
7924 exp -> exp . '*' exp (rule 3)
7925 exp -> exp . '/' exp (rule 4)
7926
2a8d363a
AD
7927 '*' shift, and go to state 6
7928 '/' shift, and go to state 7
ec3bc396 7929
2a8d363a
AD
7930 '/' [reduce using rule 2 (exp)]
7931 $default reduce using rule 2 (exp)
ec3bc396
AD
7932
7933state 10
7934
7935 exp -> exp . '+' exp (rule 1)
7936 exp -> exp . '-' exp (rule 2)
7937 exp -> exp . '*' exp (rule 3)
7938 exp -> exp '*' exp . (rule 3)
7939 exp -> exp . '/' exp (rule 4)
7940
2a8d363a 7941 '/' shift, and go to state 7
ec3bc396 7942
2a8d363a
AD
7943 '/' [reduce using rule 3 (exp)]
7944 $default reduce using rule 3 (exp)
ec3bc396
AD
7945
7946state 11
7947
7948 exp -> exp . '+' exp (rule 1)
7949 exp -> exp . '-' exp (rule 2)
7950 exp -> exp . '*' exp (rule 3)
7951 exp -> exp . '/' exp (rule 4)
7952 exp -> exp '/' exp . (rule 4)
7953
2a8d363a
AD
7954 '+' shift, and go to state 4
7955 '-' shift, and go to state 5
7956 '*' shift, and go to state 6
7957 '/' shift, and go to state 7
ec3bc396 7958
2a8d363a
AD
7959 '+' [reduce using rule 4 (exp)]
7960 '-' [reduce using rule 4 (exp)]
7961 '*' [reduce using rule 4 (exp)]
7962 '/' [reduce using rule 4 (exp)]
7963 $default reduce using rule 4 (exp)
ec3bc396
AD
7964@end example
7965
7966@noindent
fa7e68c3
PE
7967Observe that state 11 contains conflicts not only due to the lack of
7968precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7969@samp{*}, but also because the
ec3bc396
AD
7970associativity of @samp{/} is not specified.
7971
7972
7973@node Tracing
7974@section Tracing Your Parser
bfa74976
RS
7975@findex yydebug
7976@cindex debugging
7977@cindex tracing the parser
7978
7979If a Bison grammar compiles properly but doesn't do what you want when it
7980runs, the @code{yydebug} parser-trace feature can help you figure out why.
7981
3ded9a63
AD
7982There are several means to enable compilation of trace facilities:
7983
7984@table @asis
7985@item the macro @code{YYDEBUG}
7986@findex YYDEBUG
7987Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 7988parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
7989@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7990YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7991Prologue}).
7992
7993@item the option @option{-t}, @option{--debug}
7994Use the @samp{-t} option when you run Bison (@pxref{Invocation,
35430378 7995,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
7996
7997@item the directive @samp{%debug}
7998@findex %debug
7999Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
8000Declaration Summary}). This is a Bison extension, which will prove
8001useful when Bison will output parsers for languages that don't use a
35430378 8002preprocessor. Unless POSIX and Yacc portability matter to
c827f760 8003you, this is
3ded9a63
AD
8004the preferred solution.
8005@end table
8006
8007We suggest that you always enable the debug option so that debugging is
8008always possible.
bfa74976 8009
02a81e05 8010The trace facility outputs messages with macro calls of the form
e2742e46 8011@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8012@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8013arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8014define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8015and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8016
8017Once you have compiled the program with trace facilities, the way to
8018request a trace is to store a nonzero value in the variable @code{yydebug}.
8019You can do this by making the C code do it (in @code{main}, perhaps), or
8020you can alter the value with a C debugger.
8021
8022Each step taken by the parser when @code{yydebug} is nonzero produces a
8023line or two of trace information, written on @code{stderr}. The trace
8024messages tell you these things:
8025
8026@itemize @bullet
8027@item
8028Each time the parser calls @code{yylex}, what kind of token was read.
8029
8030@item
8031Each time a token is shifted, the depth and complete contents of the
8032state stack (@pxref{Parser States}).
8033
8034@item
8035Each time a rule is reduced, which rule it is, and the complete contents
8036of the state stack afterward.
8037@end itemize
8038
8039To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8040produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8041Bison}). This file shows the meaning of each state in terms of
8042positions in various rules, and also what each state will do with each
8043possible input token. As you read the successive trace messages, you
8044can see that the parser is functioning according to its specification in
8045the listing file. Eventually you will arrive at the place where
8046something undesirable happens, and you will see which parts of the
8047grammar are to blame.
bfa74976 8048
9913d6e4
JD
8049The parser implementation file is a C program and you can use C
8050debuggers on it, but it's not easy to interpret what it is doing. The
8051parser function is a finite-state machine interpreter, and aside from
8052the actions it executes the same code over and over. Only the values
8053of variables show where in the grammar it is working.
bfa74976
RS
8054
8055@findex YYPRINT
8056The debugging information normally gives the token type of each token
8057read, but not its semantic value. You can optionally define a macro
8058named @code{YYPRINT} to provide a way to print the value. If you define
8059@code{YYPRINT}, it should take three arguments. The parser will pass a
8060standard I/O stream, the numeric code for the token type, and the token
8061value (from @code{yylval}).
8062
8063Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8064calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8065
8066@smallexample
38a92d50
PE
8067%@{
8068 static void print_token_value (FILE *, int, YYSTYPE);
8069 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8070%@}
8071
8072@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8073
8074static void
831d3c99 8075print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8076@{
8077 if (type == VAR)
d3c4e709 8078 fprintf (file, "%s", value.tptr->name);
bfa74976 8079 else if (type == NUM)
d3c4e709 8080 fprintf (file, "%d", value.val);
bfa74976
RS
8081@}
8082@end smallexample
8083
ec3bc396
AD
8084@c ================================================= Invoking Bison
8085
342b8b6e 8086@node Invocation
bfa74976
RS
8087@chapter Invoking Bison
8088@cindex invoking Bison
8089@cindex Bison invocation
8090@cindex options for invoking Bison
8091
8092The usual way to invoke Bison is as follows:
8093
8094@example
8095bison @var{infile}
8096@end example
8097
8098Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
8099@samp{.y}. The parser implementation file's name is made by replacing
8100the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8101Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8102the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8103also possible, in case you are writing C++ code instead of C in your
8104grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8105output files will take an extension like the given one as input
8106(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8107feature takes effect with all options that manipulate file names like
234a3be3
AD
8108@samp{-o} or @samp{-d}.
8109
8110For example :
8111
8112@example
8113bison -d @var{infile.yxx}
8114@end example
84163231 8115@noindent
72d2299c 8116will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8117
8118@example
b56471a6 8119bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8120@end example
84163231 8121@noindent
234a3be3
AD
8122will produce @file{output.c++} and @file{outfile.h++}.
8123
35430378 8124For compatibility with POSIX, the standard Bison
397ec073
PE
8125distribution also contains a shell script called @command{yacc} that
8126invokes Bison with the @option{-y} option.
8127
bfa74976 8128@menu
13863333 8129* Bison Options:: All the options described in detail,
c827f760 8130 in alphabetical order by short options.
bfa74976 8131* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8132* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8133@end menu
8134
342b8b6e 8135@node Bison Options
bfa74976
RS
8136@section Bison Options
8137
8138Bison supports both traditional single-letter options and mnemonic long
8139option names. Long option names are indicated with @samp{--} instead of
8140@samp{-}. Abbreviations for option names are allowed as long as they
8141are unique. When a long option takes an argument, like
8142@samp{--file-prefix}, connect the option name and the argument with
8143@samp{=}.
8144
8145Here is a list of options that can be used with Bison, alphabetized by
8146short option. It is followed by a cross key alphabetized by long
8147option.
8148
89cab50d
AD
8149@c Please, keep this ordered as in `bison --help'.
8150@noindent
8151Operations modes:
8152@table @option
8153@item -h
8154@itemx --help
8155Print a summary of the command-line options to Bison and exit.
bfa74976 8156
89cab50d
AD
8157@item -V
8158@itemx --version
8159Print the version number of Bison and exit.
bfa74976 8160
f7ab6a50
PE
8161@item --print-localedir
8162Print the name of the directory containing locale-dependent data.
8163
a0de5091
JD
8164@item --print-datadir
8165Print the name of the directory containing skeletons and XSLT.
8166
89cab50d
AD
8167@item -y
8168@itemx --yacc
9913d6e4
JD
8169Act more like the traditional Yacc command. This can cause different
8170diagnostics to be generated, and may change behavior in other minor
8171ways. Most importantly, imitate Yacc's output file name conventions,
8172so that the parser implementation file is called @file{y.tab.c}, and
8173the other outputs are called @file{y.output} and @file{y.tab.h}.
8174Also, if generating a deterministic parser in C, generate
8175@code{#define} statements in addition to an @code{enum} to associate
8176token numbers with token names. Thus, the following shell script can
8177substitute for Yacc, and the Bison distribution contains such a script
8178for compatibility with POSIX:
bfa74976 8179
89cab50d 8180@example
397ec073 8181#! /bin/sh
26e06a21 8182bison -y "$@@"
89cab50d 8183@end example
54662697
PE
8184
8185The @option{-y}/@option{--yacc} option is intended for use with
8186traditional Yacc grammars. If your grammar uses a Bison extension
8187like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8188this option is specified.
8189
ecd1b61c
JD
8190@item -W [@var{category}]
8191@itemx --warnings[=@var{category}]
118d4978
AD
8192Output warnings falling in @var{category}. @var{category} can be one
8193of:
8194@table @code
8195@item midrule-values
8e55b3aa
JD
8196Warn about mid-rule values that are set but not used within any of the actions
8197of the parent rule.
8198For example, warn about unused @code{$2} in:
118d4978
AD
8199
8200@example
8201exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8202@end example
8203
8e55b3aa
JD
8204Also warn about mid-rule values that are used but not set.
8205For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8206
8207@example
8208 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8209@end example
8210
8211These warnings are not enabled by default since they sometimes prove to
8212be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8213@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8214
8215
8216@item yacc
35430378 8217Incompatibilities with POSIX Yacc.
118d4978
AD
8218
8219@item all
8e55b3aa 8220All the warnings.
118d4978 8221@item none
8e55b3aa 8222Turn off all the warnings.
118d4978 8223@item error
8e55b3aa 8224Treat warnings as errors.
118d4978
AD
8225@end table
8226
8227A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 8228instance, @option{-Wno-yacc} will hide the warnings about
35430378 8229POSIX Yacc incompatibilities.
89cab50d
AD
8230@end table
8231
8232@noindent
8233Tuning the parser:
8234
8235@table @option
8236@item -t
8237@itemx --debug
9913d6e4
JD
8238In the parser implementation file, define the macro @code{YYDEBUG} to
82391 if it is not already defined, so that the debugging facilities are
8240compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8241
e14c6831
AD
8242@item -D @var{name}[=@var{value}]
8243@itemx --define=@var{name}[=@var{value}]
c33bc800 8244@itemx -F @var{name}[=@var{value}]
34d41938
JD
8245@itemx --force-define=@var{name}[=@var{value}]
8246Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8247(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8248definitions for the same @var{name} as follows:
8249
8250@itemize
8251@item
e3a33f7c
JD
8252Bison quietly ignores all command-line definitions for @var{name} except
8253the last.
34d41938 8254@item
e3a33f7c
JD
8255If that command-line definition is specified by a @code{-D} or
8256@code{--define}, Bison reports an error for any @code{%define}
8257definition for @var{name}.
34d41938 8258@item
e3a33f7c
JD
8259If that command-line definition is specified by a @code{-F} or
8260@code{--force-define} instead, Bison quietly ignores all @code{%define}
8261definitions for @var{name}.
8262@item
8263Otherwise, Bison reports an error if there are multiple @code{%define}
8264definitions for @var{name}.
34d41938
JD
8265@end itemize
8266
8267You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
8268make files unless you are confident that it is safe to quietly ignore
8269any conflicting @code{%define} that may be added to the grammar file.
e14c6831 8270
0e021770
PE
8271@item -L @var{language}
8272@itemx --language=@var{language}
8273Specify the programming language for the generated parser, as if
8274@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8275Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8276@var{language} is case-insensitive.
0e021770 8277
ed4d67dc
JD
8278This option is experimental and its effect may be modified in future
8279releases.
8280
89cab50d 8281@item --locations
d8988b2f 8282Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8283
8284@item -p @var{prefix}
8285@itemx --name-prefix=@var{prefix}
02975b9a 8286Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8287@xref{Decl Summary}.
bfa74976
RS
8288
8289@item -l
8290@itemx --no-lines
9913d6e4
JD
8291Don't put any @code{#line} preprocessor commands in the parser
8292implementation file. Ordinarily Bison puts them in the parser
8293implementation file so that the C compiler and debuggers will
8294associate errors with your source file, the grammar file. This option
8295causes them to associate errors with the parser implementation file,
8296treating it as an independent source file in its own right.
bfa74976 8297
e6e704dc
JD
8298@item -S @var{file}
8299@itemx --skeleton=@var{file}
a7867f53 8300Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8301(@pxref{Decl Summary, , Bison Declaration Summary}).
8302
ed4d67dc
JD
8303@c You probably don't need this option unless you are developing Bison.
8304@c You should use @option{--language} if you want to specify the skeleton for a
8305@c different language, because it is clearer and because it will always
8306@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8307
a7867f53
JD
8308If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8309file in the Bison installation directory.
8310If it does, @var{file} is an absolute file name or a file name relative to the
8311current working directory.
8312This is similar to how most shells resolve commands.
8313
89cab50d
AD
8314@item -k
8315@itemx --token-table
d8988b2f 8316Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8317@end table
bfa74976 8318
89cab50d
AD
8319@noindent
8320Adjust the output:
bfa74976 8321
89cab50d 8322@table @option
8e55b3aa 8323@item --defines[=@var{file}]
d8988b2f 8324Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8325file containing macro definitions for the token type names defined in
4bfd5e4e 8326the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8327
8e55b3aa
JD
8328@item -d
8329This is the same as @code{--defines} except @code{-d} does not accept a
8330@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8331with other short options.
342b8b6e 8332
89cab50d
AD
8333@item -b @var{file-prefix}
8334@itemx --file-prefix=@var{prefix}
9c437126 8335Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8336for all Bison output file names. @xref{Decl Summary}.
bfa74976 8337
ec3bc396
AD
8338@item -r @var{things}
8339@itemx --report=@var{things}
8340Write an extra output file containing verbose description of the comma
8341separated list of @var{things} among:
8342
8343@table @code
8344@item state
8345Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8346parser's automaton.
ec3bc396 8347
742e4900 8348@item lookahead
ec3bc396 8349Implies @code{state} and augments the description of the automaton with
742e4900 8350each rule's lookahead set.
ec3bc396
AD
8351
8352@item itemset
8353Implies @code{state} and augments the description of the automaton with
8354the full set of items for each state, instead of its core only.
8355@end table
8356
1bb2bd75
JD
8357@item --report-file=@var{file}
8358Specify the @var{file} for the verbose description.
8359
bfa74976
RS
8360@item -v
8361@itemx --verbose
9c437126 8362Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8363file containing verbose descriptions of the grammar and
72d2299c 8364parser. @xref{Decl Summary}.
bfa74976 8365
fa4d969f
PE
8366@item -o @var{file}
8367@itemx --output=@var{file}
9913d6e4 8368Specify the @var{file} for the parser implementation file.
bfa74976 8369
fa4d969f 8370The other output files' names are constructed from @var{file} as
d8988b2f 8371described under the @samp{-v} and @samp{-d} options.
342b8b6e 8372
72183df4 8373@item -g [@var{file}]
8e55b3aa 8374@itemx --graph[=@var{file}]
34a6c2d1 8375Output a graphical representation of the parser's
35fe0834 8376automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 8377@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8378@code{@var{file}} is optional.
8379If omitted and the grammar file is @file{foo.y}, the output file will be
8380@file{foo.dot}.
59da312b 8381
72183df4 8382@item -x [@var{file}]
8e55b3aa 8383@itemx --xml[=@var{file}]
34a6c2d1 8384Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8385@code{@var{file}} is optional.
59da312b
JD
8386If omitted and the grammar file is @file{foo.y}, the output file will be
8387@file{foo.xml}.
8388(The current XML schema is experimental and may evolve.
8389More user feedback will help to stabilize it.)
bfa74976
RS
8390@end table
8391
342b8b6e 8392@node Option Cross Key
bfa74976
RS
8393@section Option Cross Key
8394
8395Here is a list of options, alphabetized by long option, to help you find
34d41938 8396the corresponding short option and directive.
bfa74976 8397
34d41938 8398@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8399@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8400@include cross-options.texi
aa08666d 8401@end multitable
bfa74976 8402
93dd49ab
PE
8403@node Yacc Library
8404@section Yacc Library
8405
8406The Yacc library contains default implementations of the
8407@code{yyerror} and @code{main} functions. These default
35430378 8408implementations are normally not useful, but POSIX requires
93dd49ab
PE
8409them. To use the Yacc library, link your program with the
8410@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 8411library is distributed under the terms of the GNU General
93dd49ab
PE
8412Public License (@pxref{Copying}).
8413
8414If you use the Yacc library's @code{yyerror} function, you should
8415declare @code{yyerror} as follows:
8416
8417@example
8418int yyerror (char const *);
8419@end example
8420
8421Bison ignores the @code{int} value returned by this @code{yyerror}.
8422If you use the Yacc library's @code{main} function, your
8423@code{yyparse} function should have the following type signature:
8424
8425@example
8426int yyparse (void);
8427@end example
8428
12545799
AD
8429@c ================================================= C++ Bison
8430
8405b70c
PB
8431@node Other Languages
8432@chapter Parsers Written In Other Languages
12545799
AD
8433
8434@menu
8435* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8436* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8437@end menu
8438
8439@node C++ Parsers
8440@section C++ Parsers
8441
8442@menu
8443* C++ Bison Interface:: Asking for C++ parser generation
8444* C++ Semantic Values:: %union vs. C++
8445* C++ Location Values:: The position and location classes
8446* C++ Parser Interface:: Instantiating and running the parser
8447* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8448* A Complete C++ Example:: Demonstrating their use
12545799
AD
8449@end menu
8450
8451@node C++ Bison Interface
8452@subsection C++ Bison Interface
ed4d67dc 8453@c - %skeleton "lalr1.cc"
12545799
AD
8454@c - Always pure
8455@c - initial action
8456
34a6c2d1 8457The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8458@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8459@option{--skeleton=lalr1.cc}.
e6e704dc 8460@xref{Decl Summary}.
0e021770 8461
793fbca5
JD
8462When run, @command{bison} will create several entities in the @samp{yy}
8463namespace.
8464@findex %define namespace
8465Use the @samp{%define namespace} directive to change the namespace name, see
8466@ref{Decl Summary}.
8467The various classes are generated in the following files:
aa08666d 8468
12545799
AD
8469@table @file
8470@item position.hh
8471@itemx location.hh
8472The definition of the classes @code{position} and @code{location},
8473used for location tracking. @xref{C++ Location Values}.
8474
8475@item stack.hh
8476An auxiliary class @code{stack} used by the parser.
8477
fa4d969f
PE
8478@item @var{file}.hh
8479@itemx @var{file}.cc
9913d6e4 8480(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
8481declaration and implementation of the C++ parser class. The basename
8482and extension of these two files follow the same rules as with regular C
8483parsers (@pxref{Invocation}).
12545799 8484
cd8b5791
AD
8485The header is @emph{mandatory}; you must either pass
8486@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8487@samp{%defines} directive.
8488@end table
8489
8490All these files are documented using Doxygen; run @command{doxygen}
8491for a complete and accurate documentation.
8492
8493@node C++ Semantic Values
8494@subsection C++ Semantic Values
8495@c - No objects in unions
178e123e 8496@c - YYSTYPE
12545799
AD
8497@c - Printer and destructor
8498
8499The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8500Collection of Value Types}. In particular it produces a genuine
8501@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8502within pseudo-unions (similar to Boost variants) might be implemented to
8503alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8504@itemize @minus
8505@item
fb9712a9
AD
8506The type @code{YYSTYPE} is defined but its use is discouraged: rather
8507you should refer to the parser's encapsulated type
8508@code{yy::parser::semantic_type}.
12545799
AD
8509@item
8510Non POD (Plain Old Data) types cannot be used. C++ forbids any
8511instance of classes with constructors in unions: only @emph{pointers}
8512to such objects are allowed.
8513@end itemize
8514
8515Because objects have to be stored via pointers, memory is not
8516reclaimed automatically: using the @code{%destructor} directive is the
8517only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8518Symbols}.
8519
8520
8521@node C++ Location Values
8522@subsection C++ Location Values
8523@c - %locations
8524@c - class Position
8525@c - class Location
16dc6a9e 8526@c - %define filename_type "const symbol::Symbol"
12545799
AD
8527
8528When the directive @code{%locations} is used, the C++ parser supports
8529location tracking, see @ref{Locations, , Locations Overview}. Two
8530auxiliary classes define a @code{position}, a single point in a file,
8531and a @code{location}, a range composed of a pair of
8532@code{position}s (possibly spanning several files).
8533
fa4d969f 8534@deftypemethod {position} {std::string*} file
12545799
AD
8535The name of the file. It will always be handled as a pointer, the
8536parser will never duplicate nor deallocate it. As an experimental
8537feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8538filename_type "@var{type}"}.
12545799
AD
8539@end deftypemethod
8540
8541@deftypemethod {position} {unsigned int} line
8542The line, starting at 1.
8543@end deftypemethod
8544
8545@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8546Advance by @var{height} lines, resetting the column number.
8547@end deftypemethod
8548
8549@deftypemethod {position} {unsigned int} column
8550The column, starting at 0.
8551@end deftypemethod
8552
8553@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8554Advance by @var{width} columns, without changing the line number.
8555@end deftypemethod
8556
8557@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8558@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8559@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8560@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8561Various forms of syntactic sugar for @code{columns}.
8562@end deftypemethod
8563
8564@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8565Report @var{p} on @var{o} like this:
fa4d969f
PE
8566@samp{@var{file}:@var{line}.@var{column}}, or
8567@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8568@end deftypemethod
8569
8570@deftypemethod {location} {position} begin
8571@deftypemethodx {location} {position} end
8572The first, inclusive, position of the range, and the first beyond.
8573@end deftypemethod
8574
8575@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8576@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8577Advance the @code{end} position.
8578@end deftypemethod
8579
8580@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8581@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8582@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8583Various forms of syntactic sugar.
8584@end deftypemethod
8585
8586@deftypemethod {location} {void} step ()
8587Move @code{begin} onto @code{end}.
8588@end deftypemethod
8589
8590
8591@node C++ Parser Interface
8592@subsection C++ Parser Interface
8593@c - define parser_class_name
8594@c - Ctor
8595@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8596@c debug_stream.
8597@c - Reporting errors
8598
8599The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8600declare and define the parser class in the namespace @code{yy}. The
8601class name defaults to @code{parser}, but may be changed using
16dc6a9e 8602@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8603this class is detailed below. It can be extended using the
12545799
AD
8604@code{%parse-param} feature: its semantics is slightly changed since
8605it describes an additional member of the parser class, and an
8606additional argument for its constructor.
8607
baacae49
AD
8608@defcv {Type} {parser} {semantic_type}
8609@defcvx {Type} {parser} {location_type}
12545799 8610The types for semantics value and locations.
8a0adb01 8611@end defcv
12545799 8612
baacae49
AD
8613@defcv {Type} {parser} {token}
8614A structure that contains (only) the definition of the tokens as the
8615@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8616scanner should use @code{yy::parser::token::FOO}. The scanner can use
8617@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8618(@pxref{Calc++ Scanner}).
8619@end defcv
8620
12545799
AD
8621@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8622Build a new parser object. There are no arguments by default, unless
8623@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8624@end deftypemethod
8625
8626@deftypemethod {parser} {int} parse ()
8627Run the syntactic analysis, and return 0 on success, 1 otherwise.
8628@end deftypemethod
8629
8630@deftypemethod {parser} {std::ostream&} debug_stream ()
8631@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8632Get or set the stream used for tracing the parsing. It defaults to
8633@code{std::cerr}.
8634@end deftypemethod
8635
8636@deftypemethod {parser} {debug_level_type} debug_level ()
8637@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8638Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8639or nonzero, full tracing.
12545799
AD
8640@end deftypemethod
8641
8642@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8643The definition for this member function must be supplied by the user:
8644the parser uses it to report a parser error occurring at @var{l},
8645described by @var{m}.
8646@end deftypemethod
8647
8648
8649@node C++ Scanner Interface
8650@subsection C++ Scanner Interface
8651@c - prefix for yylex.
8652@c - Pure interface to yylex
8653@c - %lex-param
8654
8655The parser invokes the scanner by calling @code{yylex}. Contrary to C
8656parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8657@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 8658
baacae49 8659@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
8660Return the next token. Its type is the return value, its semantic
8661value and location being @var{yylval} and @var{yylloc}. Invocations of
8662@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8663@end deftypemethod
8664
8665
8666@node A Complete C++ Example
8405b70c 8667@subsection A Complete C++ Example
12545799
AD
8668
8669This section demonstrates the use of a C++ parser with a simple but
8670complete example. This example should be available on your system,
8671ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8672focuses on the use of Bison, therefore the design of the various C++
8673classes is very naive: no accessors, no encapsulation of members etc.
8674We will use a Lex scanner, and more precisely, a Flex scanner, to
8675demonstrate the various interaction. A hand written scanner is
8676actually easier to interface with.
8677
8678@menu
8679* Calc++ --- C++ Calculator:: The specifications
8680* Calc++ Parsing Driver:: An active parsing context
8681* Calc++ Parser:: A parser class
8682* Calc++ Scanner:: A pure C++ Flex scanner
8683* Calc++ Top Level:: Conducting the band
8684@end menu
8685
8686@node Calc++ --- C++ Calculator
8405b70c 8687@subsubsection Calc++ --- C++ Calculator
12545799
AD
8688
8689Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8690expression, possibly preceded by variable assignments. An
12545799
AD
8691environment containing possibly predefined variables such as
8692@code{one} and @code{two}, is exchanged with the parser. An example
8693of valid input follows.
8694
8695@example
8696three := 3
8697seven := one + two * three
8698seven * seven
8699@end example
8700
8701@node Calc++ Parsing Driver
8405b70c 8702@subsubsection Calc++ Parsing Driver
12545799
AD
8703@c - An env
8704@c - A place to store error messages
8705@c - A place for the result
8706
8707To support a pure interface with the parser (and the scanner) the
8708technique of the ``parsing context'' is convenient: a structure
8709containing all the data to exchange. Since, in addition to simply
8710launch the parsing, there are several auxiliary tasks to execute (open
8711the file for parsing, instantiate the parser etc.), we recommend
8712transforming the simple parsing context structure into a fully blown
8713@dfn{parsing driver} class.
8714
8715The declaration of this driver class, @file{calc++-driver.hh}, is as
8716follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8717required standard library components, and the declaration of the parser
8718class.
12545799 8719
1c59e0a1 8720@comment file: calc++-driver.hh
12545799
AD
8721@example
8722#ifndef CALCXX_DRIVER_HH
8723# define CALCXX_DRIVER_HH
8724# include <string>
8725# include <map>
fb9712a9 8726# include "calc++-parser.hh"
12545799
AD
8727@end example
8728
12545799
AD
8729
8730@noindent
8731Then comes the declaration of the scanning function. Flex expects
8732the signature of @code{yylex} to be defined in the macro
8733@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8734factor both as follows.
1c59e0a1
AD
8735
8736@comment file: calc++-driver.hh
12545799 8737@example
3dc5e96b
PE
8738// Tell Flex the lexer's prototype ...
8739# define YY_DECL \
c095d689
AD
8740 yy::calcxx_parser::token_type \
8741 yylex (yy::calcxx_parser::semantic_type* yylval, \
8742 yy::calcxx_parser::location_type* yylloc, \
8743 calcxx_driver& driver)
12545799
AD
8744// ... and declare it for the parser's sake.
8745YY_DECL;
8746@end example
8747
8748@noindent
8749The @code{calcxx_driver} class is then declared with its most obvious
8750members.
8751
1c59e0a1 8752@comment file: calc++-driver.hh
12545799
AD
8753@example
8754// Conducting the whole scanning and parsing of Calc++.
8755class calcxx_driver
8756@{
8757public:
8758 calcxx_driver ();
8759 virtual ~calcxx_driver ();
8760
8761 std::map<std::string, int> variables;
8762
8763 int result;
8764@end example
8765
8766@noindent
8767To encapsulate the coordination with the Flex scanner, it is useful to
8768have two members function to open and close the scanning phase.
12545799 8769
1c59e0a1 8770@comment file: calc++-driver.hh
12545799
AD
8771@example
8772 // Handling the scanner.
8773 void scan_begin ();
8774 void scan_end ();
8775 bool trace_scanning;
8776@end example
8777
8778@noindent
8779Similarly for the parser itself.
8780
1c59e0a1 8781@comment file: calc++-driver.hh
12545799 8782@example
bb32f4f2
AD
8783 // Run the parser. Return 0 on success.
8784 int parse (const std::string& f);
12545799
AD
8785 std::string file;
8786 bool trace_parsing;
8787@end example
8788
8789@noindent
8790To demonstrate pure handling of parse errors, instead of simply
8791dumping them on the standard error output, we will pass them to the
8792compiler driver using the following two member functions. Finally, we
8793close the class declaration and CPP guard.
8794
1c59e0a1 8795@comment file: calc++-driver.hh
12545799
AD
8796@example
8797 // Error handling.
8798 void error (const yy::location& l, const std::string& m);
8799 void error (const std::string& m);
8800@};
8801#endif // ! CALCXX_DRIVER_HH
8802@end example
8803
8804The implementation of the driver is straightforward. The @code{parse}
8805member function deserves some attention. The @code{error} functions
8806are simple stubs, they should actually register the located error
8807messages and set error state.
8808
1c59e0a1 8809@comment file: calc++-driver.cc
12545799
AD
8810@example
8811#include "calc++-driver.hh"
8812#include "calc++-parser.hh"
8813
8814calcxx_driver::calcxx_driver ()
8815 : trace_scanning (false), trace_parsing (false)
8816@{
8817 variables["one"] = 1;
8818 variables["two"] = 2;
8819@}
8820
8821calcxx_driver::~calcxx_driver ()
8822@{
8823@}
8824
bb32f4f2 8825int
12545799
AD
8826calcxx_driver::parse (const std::string &f)
8827@{
8828 file = f;
8829 scan_begin ();
8830 yy::calcxx_parser parser (*this);
8831 parser.set_debug_level (trace_parsing);
bb32f4f2 8832 int res = parser.parse ();
12545799 8833 scan_end ();
bb32f4f2 8834 return res;
12545799
AD
8835@}
8836
8837void
8838calcxx_driver::error (const yy::location& l, const std::string& m)
8839@{
8840 std::cerr << l << ": " << m << std::endl;
8841@}
8842
8843void
8844calcxx_driver::error (const std::string& m)
8845@{
8846 std::cerr << m << std::endl;
8847@}
8848@end example
8849
8850@node Calc++ Parser
8405b70c 8851@subsubsection Calc++ Parser
12545799 8852
9913d6e4
JD
8853The grammar file @file{calc++-parser.yy} starts by asking for the C++
8854deterministic parser skeleton, the creation of the parser header file,
8855and specifies the name of the parser class. Because the C++ skeleton
8856changed several times, it is safer to require the version you designed
8857the grammar for.
1c59e0a1
AD
8858
8859@comment file: calc++-parser.yy
12545799 8860@example
ed4d67dc 8861%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8862%require "@value{VERSION}"
12545799 8863%defines
16dc6a9e 8864%define parser_class_name "calcxx_parser"
fb9712a9
AD
8865@end example
8866
8867@noindent
16dc6a9e 8868@findex %code requires
fb9712a9
AD
8869Then come the declarations/inclusions needed to define the
8870@code{%union}. Because the parser uses the parsing driver and
8871reciprocally, both cannot include the header of the other. Because the
8872driver's header needs detailed knowledge about the parser class (in
8873particular its inner types), it is the parser's header which will simply
8874use a forward declaration of the driver.
8e6f2266 8875@xref{%code Summary}.
fb9712a9
AD
8876
8877@comment file: calc++-parser.yy
8878@example
16dc6a9e 8879%code requires @{
12545799 8880# include <string>
fb9712a9 8881class calcxx_driver;
9bc0dd67 8882@}
12545799
AD
8883@end example
8884
8885@noindent
8886The driver is passed by reference to the parser and to the scanner.
8887This provides a simple but effective pure interface, not relying on
8888global variables.
8889
1c59e0a1 8890@comment file: calc++-parser.yy
12545799
AD
8891@example
8892// The parsing context.
8893%parse-param @{ calcxx_driver& driver @}
8894%lex-param @{ calcxx_driver& driver @}
8895@end example
8896
8897@noindent
8898Then we request the location tracking feature, and initialize the
c781580d 8899first location's file name. Afterward new locations are computed
12545799
AD
8900relatively to the previous locations: the file name will be
8901automatically propagated.
8902
1c59e0a1 8903@comment file: calc++-parser.yy
12545799
AD
8904@example
8905%locations
8906%initial-action
8907@{
8908 // Initialize the initial location.
b47dbebe 8909 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8910@};
8911@end example
8912
8913@noindent
8914Use the two following directives to enable parser tracing and verbose
8915error messages.
8916
1c59e0a1 8917@comment file: calc++-parser.yy
12545799
AD
8918@example
8919%debug
8920%error-verbose
8921@end example
8922
8923@noindent
8924Semantic values cannot use ``real'' objects, but only pointers to
8925them.
8926
1c59e0a1 8927@comment file: calc++-parser.yy
12545799
AD
8928@example
8929// Symbols.
8930%union
8931@{
8932 int ival;
8933 std::string *sval;
8934@};
8935@end example
8936
fb9712a9 8937@noindent
136a0f76
PB
8938@findex %code
8939The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8940@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8941
8942@comment file: calc++-parser.yy
8943@example
136a0f76 8944%code @{
fb9712a9 8945# include "calc++-driver.hh"
34f98f46 8946@}
fb9712a9
AD
8947@end example
8948
8949
12545799
AD
8950@noindent
8951The token numbered as 0 corresponds to end of file; the following line
8952allows for nicer error messages referring to ``end of file'' instead
8953of ``$end''. Similarly user friendly named are provided for each
8954symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8955avoid name clashes.
8956
1c59e0a1 8957@comment file: calc++-parser.yy
12545799 8958@example
fb9712a9
AD
8959%token END 0 "end of file"
8960%token ASSIGN ":="
8961%token <sval> IDENTIFIER "identifier"
8962%token <ival> NUMBER "number"
a8c2e813 8963%type <ival> exp
12545799
AD
8964@end example
8965
8966@noindent
8967To enable memory deallocation during error recovery, use
8968@code{%destructor}.
8969
287c78f6 8970@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8971@comment file: calc++-parser.yy
12545799
AD
8972@example
8973%printer @{ debug_stream () << *$$; @} "identifier"
8974%destructor @{ delete $$; @} "identifier"
8975
a8c2e813 8976%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8977@end example
8978
8979@noindent
8980The grammar itself is straightforward.
8981
1c59e0a1 8982@comment file: calc++-parser.yy
12545799
AD
8983@example
8984%%
8985%start unit;
8986unit: assignments exp @{ driver.result = $2; @};
8987
8988assignments: assignments assignment @{@}
9d9b8b70 8989 | /* Nothing. */ @{@};
12545799 8990
3dc5e96b
PE
8991assignment:
8992 "identifier" ":=" exp
8993 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8994
8995%left '+' '-';
8996%left '*' '/';
8997exp: exp '+' exp @{ $$ = $1 + $3; @}
8998 | exp '-' exp @{ $$ = $1 - $3; @}
8999 | exp '*' exp @{ $$ = $1 * $3; @}
9000 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 9001 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 9002 | "number" @{ $$ = $1; @};
12545799
AD
9003%%
9004@end example
9005
9006@noindent
9007Finally the @code{error} member function registers the errors to the
9008driver.
9009
1c59e0a1 9010@comment file: calc++-parser.yy
12545799
AD
9011@example
9012void
1c59e0a1
AD
9013yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
9014 const std::string& m)
12545799
AD
9015@{
9016 driver.error (l, m);
9017@}
9018@end example
9019
9020@node Calc++ Scanner
8405b70c 9021@subsubsection Calc++ Scanner
12545799
AD
9022
9023The Flex scanner first includes the driver declaration, then the
9024parser's to get the set of defined tokens.
9025
1c59e0a1 9026@comment file: calc++-scanner.ll
12545799
AD
9027@example
9028%@{ /* -*- C++ -*- */
04098407 9029# include <cstdlib>
b10dd689
AD
9030# include <cerrno>
9031# include <climits>
12545799
AD
9032# include <string>
9033# include "calc++-driver.hh"
9034# include "calc++-parser.hh"
eaea13f5
PE
9035
9036/* Work around an incompatibility in flex (at least versions
9037 2.5.31 through 2.5.33): it generates code that does
9038 not conform to C89. See Debian bug 333231
9039 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9040# undef yywrap
9041# define yywrap() 1
eaea13f5 9042
c095d689
AD
9043/* By default yylex returns int, we use token_type.
9044 Unfortunately yyterminate by default returns 0, which is
9045 not of token_type. */
8c5b881d 9046#define yyterminate() return token::END
12545799
AD
9047%@}
9048@end example
9049
9050@noindent
9051Because there is no @code{#include}-like feature we don't need
9052@code{yywrap}, we don't need @code{unput} either, and we parse an
9053actual file, this is not an interactive session with the user.
9054Finally we enable the scanner tracing features.
9055
1c59e0a1 9056@comment file: calc++-scanner.ll
12545799
AD
9057@example
9058%option noyywrap nounput batch debug
9059@end example
9060
9061@noindent
9062Abbreviations allow for more readable rules.
9063
1c59e0a1 9064@comment file: calc++-scanner.ll
12545799
AD
9065@example
9066id [a-zA-Z][a-zA-Z_0-9]*
9067int [0-9]+
9068blank [ \t]
9069@end example
9070
9071@noindent
9d9b8b70 9072The following paragraph suffices to track locations accurately. Each
12545799
AD
9073time @code{yylex} is invoked, the begin position is moved onto the end
9074position. Then when a pattern is matched, the end position is
9075advanced of its width. In case it matched ends of lines, the end
9076cursor is adjusted, and each time blanks are matched, the begin cursor
9077is moved onto the end cursor to effectively ignore the blanks
9078preceding tokens. Comments would be treated equally.
9079
1c59e0a1 9080@comment file: calc++-scanner.ll
12545799 9081@example
828c373b
AD
9082%@{
9083# define YY_USER_ACTION yylloc->columns (yyleng);
9084%@}
12545799
AD
9085%%
9086%@{
9087 yylloc->step ();
12545799
AD
9088%@}
9089@{blank@}+ yylloc->step ();
9090[\n]+ yylloc->lines (yyleng); yylloc->step ();
9091@end example
9092
9093@noindent
fb9712a9
AD
9094The rules are simple, just note the use of the driver to report errors.
9095It is convenient to use a typedef to shorten
9096@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9097@code{token::identifier} for instance.
12545799 9098
1c59e0a1 9099@comment file: calc++-scanner.ll
12545799 9100@example
fb9712a9
AD
9101%@{
9102 typedef yy::calcxx_parser::token token;
9103%@}
8c5b881d 9104 /* Convert ints to the actual type of tokens. */
c095d689 9105[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9106":=" return token::ASSIGN;
04098407
PE
9107@{int@} @{
9108 errno = 0;
9109 long n = strtol (yytext, NULL, 10);
9110 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9111 driver.error (*yylloc, "integer is out of range");
9112 yylval->ival = n;
fb9712a9 9113 return token::NUMBER;
04098407 9114@}
fb9712a9 9115@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9116. driver.error (*yylloc, "invalid character");
9117%%
9118@end example
9119
9120@noindent
9121Finally, because the scanner related driver's member function depend
9122on the scanner's data, it is simpler to implement them in this file.
9123
1c59e0a1 9124@comment file: calc++-scanner.ll
12545799
AD
9125@example
9126void
9127calcxx_driver::scan_begin ()
9128@{
9129 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9130 if (file == "-")
9131 yyin = stdin;
9132 else if (!(yyin = fopen (file.c_str (), "r")))
9133 @{
9134 error (std::string ("cannot open ") + file);
9135 exit (1);
9136 @}
12545799
AD
9137@}
9138
9139void
9140calcxx_driver::scan_end ()
9141@{
9142 fclose (yyin);
9143@}
9144@end example
9145
9146@node Calc++ Top Level
8405b70c 9147@subsubsection Calc++ Top Level
12545799
AD
9148
9149The top level file, @file{calc++.cc}, poses no problem.
9150
1c59e0a1 9151@comment file: calc++.cc
12545799
AD
9152@example
9153#include <iostream>
9154#include "calc++-driver.hh"
9155
9156int
fa4d969f 9157main (int argc, char *argv[])
12545799
AD
9158@{
9159 calcxx_driver driver;
9160 for (++argv; argv[0]; ++argv)
9161 if (*argv == std::string ("-p"))
9162 driver.trace_parsing = true;
9163 else if (*argv == std::string ("-s"))
9164 driver.trace_scanning = true;
bb32f4f2
AD
9165 else if (!driver.parse (*argv))
9166 std::cout << driver.result << std::endl;
12545799
AD
9167@}
9168@end example
9169
8405b70c
PB
9170@node Java Parsers
9171@section Java Parsers
9172
9173@menu
f56274a8
DJ
9174* Java Bison Interface:: Asking for Java parser generation
9175* Java Semantic Values:: %type and %token vs. Java
9176* Java Location Values:: The position and location classes
9177* Java Parser Interface:: Instantiating and running the parser
9178* Java Scanner Interface:: Specifying the scanner for the parser
9179* Java Action Features:: Special features for use in actions
9180* Java Differences:: Differences between C/C++ and Java Grammars
9181* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9182@end menu
9183
9184@node Java Bison Interface
9185@subsection Java Bison Interface
9186@c - %language "Java"
8405b70c 9187
59da312b
JD
9188(The current Java interface is experimental and may evolve.
9189More user feedback will help to stabilize it.)
9190
e254a580
DJ
9191The Java parser skeletons are selected using the @code{%language "Java"}
9192directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9193
e254a580 9194@c FIXME: Documented bug.
9913d6e4
JD
9195When generating a Java parser, @code{bison @var{basename}.y} will
9196create a single Java source file named @file{@var{basename}.java}
9197containing the parser implementation. Using a grammar file without a
9198@file{.y} suffix is currently broken. The basename of the parser
9199implementation file can be changed by the @code{%file-prefix}
9200directive or the @option{-p}/@option{--name-prefix} option. The
9201entire parser implementation file name can be changed by the
9202@code{%output} directive or the @option{-o}/@option{--output} option.
9203The parser implementation file contains a single class for the parser.
8405b70c 9204
e254a580 9205You can create documentation for generated parsers using Javadoc.
8405b70c 9206
e254a580
DJ
9207Contrary to C parsers, Java parsers do not use global variables; the
9208state of the parser is always local to an instance of the parser class.
9209Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9210and @code{%define api.pure} directives does not do anything when used in
9211Java.
8405b70c 9212
e254a580 9213Push parsers are currently unsupported in Java and @code{%define
812775a0 9214api.push-pull} have no effect.
01b477c6 9215
35430378 9216GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9217@code{glr-parser} directive.
9218
9219No header file can be generated for Java parsers. Do not use the
9220@code{%defines} directive or the @option{-d}/@option{--defines} options.
9221
9222@c FIXME: Possible code change.
9223Currently, support for debugging and verbose errors are always compiled
9224in. Thus the @code{%debug} and @code{%token-table} directives and the
9225@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9226options have no effect. This may change in the future to eliminate
9227unused code in the generated parser, so use @code{%debug} and
9228@code{%verbose-error} explicitly if needed. Also, in the future the
9229@code{%token-table} directive might enable a public interface to
9230access the token names and codes.
8405b70c
PB
9231
9232@node Java Semantic Values
9233@subsection Java Semantic Values
9234@c - No %union, specify type in %type/%token.
9235@c - YYSTYPE
9236@c - Printer and destructor
9237
9238There is no @code{%union} directive in Java parsers. Instead, the
9239semantic values' types (class names) should be specified in the
9240@code{%type} or @code{%token} directive:
9241
9242@example
9243%type <Expression> expr assignment_expr term factor
9244%type <Integer> number
9245@end example
9246
9247By default, the semantic stack is declared to have @code{Object} members,
9248which means that the class types you specify can be of any class.
9249To improve the type safety of the parser, you can declare the common
e254a580
DJ
9250superclass of all the semantic values using the @code{%define stype}
9251directive. For example, after the following declaration:
8405b70c
PB
9252
9253@example
e254a580 9254%define stype "ASTNode"
8405b70c
PB
9255@end example
9256
9257@noindent
9258any @code{%type} or @code{%token} specifying a semantic type which
9259is not a subclass of ASTNode, will cause a compile-time error.
9260
e254a580 9261@c FIXME: Documented bug.
8405b70c
PB
9262Types used in the directives may be qualified with a package name.
9263Primitive data types are accepted for Java version 1.5 or later. Note
9264that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9265Generic types may not be used; this is due to a limitation in the
9266implementation of Bison, and may change in future releases.
8405b70c
PB
9267
9268Java parsers do not support @code{%destructor}, since the language
9269adopts garbage collection. The parser will try to hold references
9270to semantic values for as little time as needed.
9271
9272Java parsers do not support @code{%printer}, as @code{toString()}
9273can be used to print the semantic values. This however may change
9274(in a backwards-compatible way) in future versions of Bison.
9275
9276
9277@node Java Location Values
9278@subsection Java Location Values
9279@c - %locations
9280@c - class Position
9281@c - class Location
9282
9283When the directive @code{%locations} is used, the Java parser
9284supports location tracking, see @ref{Locations, , Locations Overview}.
9285An auxiliary user-defined class defines a @dfn{position}, a single point
9286in a file; Bison itself defines a class representing a @dfn{location},
9287a range composed of a pair of positions (possibly spanning several
9288files). The location class is an inner class of the parser; the name
e254a580 9289is @code{Location} by default, and may also be renamed using
f37495f6 9290@code{%define location_type "@var{class-name}"}.
8405b70c
PB
9291
9292The location class treats the position as a completely opaque value.
9293By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9294with @code{%define position_type "@var{class-name}"}. This class must
9295be supplied by the user.
8405b70c
PB
9296
9297
e254a580
DJ
9298@deftypeivar {Location} {Position} begin
9299@deftypeivarx {Location} {Position} end
8405b70c 9300The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9301@end deftypeivar
9302
9303@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9304Create a @code{Location} denoting an empty range located at a given point.
e254a580 9305@end deftypeop
8405b70c 9306
e254a580
DJ
9307@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9308Create a @code{Location} from the endpoints of the range.
9309@end deftypeop
9310
9311@deftypemethod {Location} {String} toString ()
8405b70c
PB
9312Prints the range represented by the location. For this to work
9313properly, the position class should override the @code{equals} and
9314@code{toString} methods appropriately.
9315@end deftypemethod
9316
9317
9318@node Java Parser Interface
9319@subsection Java Parser Interface
9320@c - define parser_class_name
9321@c - Ctor
9322@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9323@c debug_stream.
9324@c - Reporting errors
9325
e254a580
DJ
9326The name of the generated parser class defaults to @code{YYParser}. The
9327@code{YY} prefix may be changed using the @code{%name-prefix} directive
9328or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9329@code{%define parser_class_name "@var{name}"} to give a custom name to
9330the class. The interface of this class is detailed below.
8405b70c 9331
e254a580
DJ
9332By default, the parser class has package visibility. A declaration
9333@code{%define public} will change to public visibility. Remember that,
9334according to the Java language specification, the name of the @file{.java}
9335file should match the name of the class in this case. Similarly, you can
9336use @code{abstract}, @code{final} and @code{strictfp} with the
9337@code{%define} declaration to add other modifiers to the parser class.
9338
9339The Java package name of the parser class can be specified using the
9340@code{%define package} directive. The superclass and the implemented
9341interfaces of the parser class can be specified with the @code{%define
9342extends} and @code{%define implements} directives.
9343
9344The parser class defines an inner class, @code{Location}, that is used
9345for location tracking (see @ref{Java Location Values}), and a inner
9346interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9347these inner class/interface, and the members described in the interface
9348below, all the other members and fields are preceded with a @code{yy} or
9349@code{YY} prefix to avoid clashes with user code.
9350
9351@c FIXME: The following constants and variables are still undocumented:
9352@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9353
9354The parser class can be extended using the @code{%parse-param}
9355directive. Each occurrence of the directive will add a @code{protected
9356final} field to the parser class, and an argument to its constructor,
9357which initialize them automatically.
9358
9359Token names defined by @code{%token} and the predefined @code{EOF} token
9360name are added as constant fields to the parser class.
9361
9362@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9363Build a new parser object with embedded @code{%code lexer}. There are
9364no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9365used.
9366@end deftypeop
9367
9368@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9369Build a new parser object using the specified scanner. There are no
9370additional parameters unless @code{%parse-param}s are used.
9371
9372If the scanner is defined by @code{%code lexer}, this constructor is
9373declared @code{protected} and is called automatically with a scanner
9374created with the correct @code{%lex-param}s.
9375@end deftypeop
8405b70c
PB
9376
9377@deftypemethod {YYParser} {boolean} parse ()
9378Run the syntactic analysis, and return @code{true} on success,
9379@code{false} otherwise.
9380@end deftypemethod
9381
01b477c6 9382@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9383During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9384from a syntax error.
9385@xref{Error Recovery}.
8405b70c
PB
9386@end deftypemethod
9387
9388@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9389@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9390Get or set the stream used for tracing the parsing. It defaults to
9391@code{System.err}.
9392@end deftypemethod
9393
9394@deftypemethod {YYParser} {int} getDebugLevel ()
9395@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9396Get or set the tracing level. Currently its value is either 0, no trace,
9397or nonzero, full tracing.
9398@end deftypemethod
9399
8405b70c
PB
9400
9401@node Java Scanner Interface
9402@subsection Java Scanner Interface
01b477c6 9403@c - %code lexer
8405b70c 9404@c - %lex-param
01b477c6 9405@c - Lexer interface
8405b70c 9406
e254a580
DJ
9407There are two possible ways to interface a Bison-generated Java parser
9408with a scanner: the scanner may be defined by @code{%code lexer}, or
9409defined elsewhere. In either case, the scanner has to implement the
9410@code{Lexer} inner interface of the parser class.
9411
9412In the first case, the body of the scanner class is placed in
9413@code{%code lexer} blocks. If you want to pass parameters from the
9414parser constructor to the scanner constructor, specify them with
9415@code{%lex-param}; they are passed before @code{%parse-param}s to the
9416constructor.
01b477c6 9417
59c5ac72 9418In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9419which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9420The constructor of the parser object will then accept an object
9421implementing the interface; @code{%lex-param} is not used in this
9422case.
9423
9424In both cases, the scanner has to implement the following methods.
9425
e254a580
DJ
9426@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9427This method is defined by the user to emit an error message. The first
9428parameter is omitted if location tracking is not active. Its type can be
9429changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9430@end deftypemethod
9431
e254a580 9432@deftypemethod {Lexer} {int} yylex ()
8405b70c 9433Return the next token. Its type is the return value, its semantic
c781580d 9434value and location are saved and returned by the their methods in the
e254a580
DJ
9435interface.
9436
9437Use @code{%define lex_throws} to specify any uncaught exceptions.
9438Default is @code{java.io.IOException}.
8405b70c
PB
9439@end deftypemethod
9440
9441@deftypemethod {Lexer} {Position} getStartPos ()
9442@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9443Return respectively the first position of the last token that
9444@code{yylex} returned, and the first position beyond it. These
9445methods are not needed unless location tracking is active.
8405b70c 9446
e254a580 9447The return type can be changed using @code{%define position_type
8405b70c
PB
9448"@var{class-name}".}
9449@end deftypemethod
9450
9451@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9452Return the semantic value of the last token that yylex returned.
8405b70c 9453
e254a580 9454The return type can be changed using @code{%define stype
8405b70c
PB
9455"@var{class-name}".}
9456@end deftypemethod
9457
9458
e254a580
DJ
9459@node Java Action Features
9460@subsection Special Features for Use in Java Actions
9461
9462The following special constructs can be uses in Java actions.
9463Other analogous C action features are currently unavailable for Java.
9464
9465Use @code{%define throws} to specify any uncaught exceptions from parser
9466actions, and initial actions specified by @code{%initial-action}.
9467
9468@defvar $@var{n}
9469The semantic value for the @var{n}th component of the current rule.
9470This may not be assigned to.
9471@xref{Java Semantic Values}.
9472@end defvar
9473
9474@defvar $<@var{typealt}>@var{n}
9475Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9476@xref{Java Semantic Values}.
9477@end defvar
9478
9479@defvar $$
9480The semantic value for the grouping made by the current rule. As a
9481value, this is in the base type (@code{Object} or as specified by
9482@code{%define stype}) as in not cast to the declared subtype because
9483casts are not allowed on the left-hand side of Java assignments.
9484Use an explicit Java cast if the correct subtype is needed.
9485@xref{Java Semantic Values}.
9486@end defvar
9487
9488@defvar $<@var{typealt}>$
9489Same as @code{$$} since Java always allow assigning to the base type.
9490Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9491for setting the value but there is currently no easy way to distinguish
9492these constructs.
9493@xref{Java Semantic Values}.
9494@end defvar
9495
9496@defvar @@@var{n}
9497The location information of the @var{n}th component of the current rule.
9498This may not be assigned to.
9499@xref{Java Location Values}.
9500@end defvar
9501
9502@defvar @@$
9503The location information of the grouping made by the current rule.
9504@xref{Java Location Values}.
9505@end defvar
9506
9507@deffn {Statement} {return YYABORT;}
9508Return immediately from the parser, indicating failure.
9509@xref{Java Parser Interface}.
9510@end deffn
8405b70c 9511
e254a580
DJ
9512@deffn {Statement} {return YYACCEPT;}
9513Return immediately from the parser, indicating success.
9514@xref{Java Parser Interface}.
9515@end deffn
8405b70c 9516
e254a580 9517@deffn {Statement} {return YYERROR;}
c046698e 9518Start error recovery without printing an error message.
e254a580
DJ
9519@xref{Error Recovery}.
9520@end deffn
8405b70c 9521
e254a580
DJ
9522@deftypefn {Function} {boolean} recovering ()
9523Return whether error recovery is being done. In this state, the parser
9524reads token until it reaches a known state, and then restarts normal
9525operation.
9526@xref{Error Recovery}.
9527@end deftypefn
8405b70c 9528
e254a580
DJ
9529@deftypefn {Function} {protected void} yyerror (String msg)
9530@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9531@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9532Print an error message using the @code{yyerror} method of the scanner
9533instance in use.
9534@end deftypefn
8405b70c 9535
8405b70c 9536
8405b70c
PB
9537@node Java Differences
9538@subsection Differences between C/C++ and Java Grammars
9539
9540The different structure of the Java language forces several differences
9541between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9542section summarizes these differences.
8405b70c
PB
9543
9544@itemize
9545@item
01b477c6 9546Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9547@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9548macros. Instead, they should be preceded by @code{return} when they
9549appear in an action. The actual definition of these symbols is
8405b70c
PB
9550opaque to the Bison grammar, and it might change in the future. The
9551only meaningful operation that you can do, is to return them.
e254a580 9552See @pxref{Java Action Features}.
8405b70c
PB
9553
9554Note that of these three symbols, only @code{YYACCEPT} and
9555@code{YYABORT} will cause a return from the @code{yyparse}
9556method@footnote{Java parsers include the actions in a separate
9557method than @code{yyparse} in order to have an intuitive syntax that
9558corresponds to these C macros.}.
9559
e254a580
DJ
9560@item
9561Java lacks unions, so @code{%union} has no effect. Instead, semantic
9562values have a common base type: @code{Object} or as specified by
c781580d 9563@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9564@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9565an union. The type of @code{$$}, even with angle brackets, is the base
9566type since Java casts are not allow on the left-hand side of assignments.
9567Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9568left-hand side of assignments. See @pxref{Java Semantic Values} and
9569@pxref{Java Action Features}.
9570
8405b70c 9571@item
c781580d 9572The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9573@table @asis
9574@item @code{%code imports}
9575blocks are placed at the beginning of the Java source code. They may
9576include copyright notices. For a @code{package} declarations, it is
9577suggested to use @code{%define package} instead.
8405b70c 9578
01b477c6
PB
9579@item unqualified @code{%code}
9580blocks are placed inside the parser class.
9581
9582@item @code{%code lexer}
9583blocks, if specified, should include the implementation of the
9584scanner. If there is no such block, the scanner can be any class
9585that implements the appropriate interface (see @pxref{Java Scanner
9586Interface}).
29553547 9587@end table
8405b70c
PB
9588
9589Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9590In particular, @code{%@{ @dots{} %@}} blocks should not be used
9591and may give an error in future versions of Bison.
9592
01b477c6 9593The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9594be used to define other classes used by the parser @emph{outside}
9595the parser class.
8405b70c
PB
9596@end itemize
9597
e254a580
DJ
9598
9599@node Java Declarations Summary
9600@subsection Java Declarations Summary
9601
9602This summary only include declarations specific to Java or have special
9603meaning when used in a Java parser.
9604
9605@deffn {Directive} {%language "Java"}
9606Generate a Java class for the parser.
9607@end deffn
9608
9609@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9610A parameter for the lexer class defined by @code{%code lexer}
9611@emph{only}, added as parameters to the lexer constructor and the parser
9612constructor that @emph{creates} a lexer. Default is none.
9613@xref{Java Scanner Interface}.
9614@end deffn
9615
9616@deffn {Directive} %name-prefix "@var{prefix}"
9617The prefix of the parser class name @code{@var{prefix}Parser} if
9618@code{%define parser_class_name} is not used. Default is @code{YY}.
9619@xref{Java Bison Interface}.
9620@end deffn
9621
9622@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9623A parameter for the parser class added as parameters to constructor(s)
9624and as fields initialized by the constructor(s). Default is none.
9625@xref{Java Parser Interface}.
9626@end deffn
9627
9628@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9629Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9630@xref{Java Semantic Values}.
9631@end deffn
9632
9633@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9634Declare the type of nonterminals. Note that the angle brackets enclose
9635a Java @emph{type}.
9636@xref{Java Semantic Values}.
9637@end deffn
9638
9639@deffn {Directive} %code @{ @var{code} @dots{} @}
9640Code appended to the inside of the parser class.
9641@xref{Java Differences}.
9642@end deffn
9643
9644@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9645Code inserted just after the @code{package} declaration.
9646@xref{Java Differences}.
9647@end deffn
9648
9649@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9650Code added to the body of a inner lexer class within the parser class.
9651@xref{Java Scanner Interface}.
9652@end deffn
9653
9654@deffn {Directive} %% @var{code} @dots{}
9655Code (after the second @code{%%}) appended to the end of the file,
9656@emph{outside} the parser class.
9657@xref{Java Differences}.
9658@end deffn
9659
9660@deffn {Directive} %@{ @var{code} @dots{} %@}
9661Not supported. Use @code{%code import} instead.
9662@xref{Java Differences}.
9663@end deffn
9664
9665@deffn {Directive} {%define abstract}
9666Whether the parser class is declared @code{abstract}. Default is false.
9667@xref{Java Bison Interface}.
9668@end deffn
9669
9670@deffn {Directive} {%define extends} "@var{superclass}"
9671The superclass of the parser class. Default is none.
9672@xref{Java Bison Interface}.
9673@end deffn
9674
9675@deffn {Directive} {%define final}
9676Whether the parser class is declared @code{final}. Default is false.
9677@xref{Java Bison Interface}.
9678@end deffn
9679
9680@deffn {Directive} {%define implements} "@var{interfaces}"
9681The implemented interfaces of the parser class, a comma-separated list.
9682Default is none.
9683@xref{Java Bison Interface}.
9684@end deffn
9685
9686@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9687The exceptions thrown by the @code{yylex} method of the lexer, a
9688comma-separated list. Default is @code{java.io.IOException}.
9689@xref{Java Scanner Interface}.
9690@end deffn
9691
9692@deffn {Directive} {%define location_type} "@var{class}"
9693The name of the class used for locations (a range between two
9694positions). This class is generated as an inner class of the parser
9695class by @command{bison}. Default is @code{Location}.
9696@xref{Java Location Values}.
9697@end deffn
9698
9699@deffn {Directive} {%define package} "@var{package}"
9700The package to put the parser class in. Default is none.
9701@xref{Java Bison Interface}.
9702@end deffn
9703
9704@deffn {Directive} {%define parser_class_name} "@var{name}"
9705The name of the parser class. Default is @code{YYParser} or
9706@code{@var{name-prefix}Parser}.
9707@xref{Java Bison Interface}.
9708@end deffn
9709
9710@deffn {Directive} {%define position_type} "@var{class}"
9711The name of the class used for positions. This class must be supplied by
9712the user. Default is @code{Position}.
9713@xref{Java Location Values}.
9714@end deffn
9715
9716@deffn {Directive} {%define public}
9717Whether the parser class is declared @code{public}. Default is false.
9718@xref{Java Bison Interface}.
9719@end deffn
9720
9721@deffn {Directive} {%define stype} "@var{class}"
9722The base type of semantic values. Default is @code{Object}.
9723@xref{Java Semantic Values}.
9724@end deffn
9725
9726@deffn {Directive} {%define strictfp}
9727Whether the parser class is declared @code{strictfp}. Default is false.
9728@xref{Java Bison Interface}.
9729@end deffn
9730
9731@deffn {Directive} {%define throws} "@var{exceptions}"
9732The exceptions thrown by user-supplied parser actions and
9733@code{%initial-action}, a comma-separated list. Default is none.
9734@xref{Java Parser Interface}.
9735@end deffn
9736
9737
12545799 9738@c ================================================= FAQ
d1a1114f
AD
9739
9740@node FAQ
9741@chapter Frequently Asked Questions
9742@cindex frequently asked questions
9743@cindex questions
9744
9745Several questions about Bison come up occasionally. Here some of them
9746are addressed.
9747
9748@menu
55ba27be
AD
9749* Memory Exhausted:: Breaking the Stack Limits
9750* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9751* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9752* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9753* Multiple start-symbols:: Factoring closely related grammars
35430378 9754* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
9755* I can't build Bison:: Troubleshooting
9756* Where can I find help?:: Troubleshouting
9757* Bug Reports:: Troublereporting
8405b70c 9758* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9759* Beta Testing:: Experimenting development versions
9760* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9761@end menu
9762
1a059451
PE
9763@node Memory Exhausted
9764@section Memory Exhausted
d1a1114f
AD
9765
9766@display
1a059451 9767My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9768message. What can I do?
9769@end display
9770
9771This question is already addressed elsewhere, @xref{Recursion,
9772,Recursive Rules}.
9773
e64fec0a
PE
9774@node How Can I Reset the Parser
9775@section How Can I Reset the Parser
5b066063 9776
0e14ad77
PE
9777The following phenomenon has several symptoms, resulting in the
9778following typical questions:
5b066063
AD
9779
9780@display
9781I invoke @code{yyparse} several times, and on correct input it works
9782properly; but when a parse error is found, all the other calls fail
0e14ad77 9783too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9784@end display
9785
9786@noindent
9787or
9788
9789@display
0e14ad77 9790My parser includes support for an @samp{#include}-like feature, in
5b066063 9791which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9792although I did specify @code{%define api.pure}.
5b066063
AD
9793@end display
9794
0e14ad77
PE
9795These problems typically come not from Bison itself, but from
9796Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9797speed, they might not notice a change of input file. As a
9798demonstration, consider the following source file,
9799@file{first-line.l}:
9800
9801@verbatim
9802%{
9803#include <stdio.h>
9804#include <stdlib.h>
9805%}
9806%%
9807.*\n ECHO; return 1;
9808%%
9809int
0e14ad77 9810yyparse (char const *file)
5b066063
AD
9811{
9812 yyin = fopen (file, "r");
9813 if (!yyin)
9814 exit (2);
fa7e68c3 9815 /* One token only. */
5b066063 9816 yylex ();
0e14ad77 9817 if (fclose (yyin) != 0)
5b066063
AD
9818 exit (3);
9819 return 0;
9820}
9821
9822int
0e14ad77 9823main (void)
5b066063
AD
9824{
9825 yyparse ("input");
9826 yyparse ("input");
9827 return 0;
9828}
9829@end verbatim
9830
9831@noindent
9832If the file @file{input} contains
9833
9834@verbatim
9835input:1: Hello,
9836input:2: World!
9837@end verbatim
9838
9839@noindent
0e14ad77 9840then instead of getting the first line twice, you get:
5b066063
AD
9841
9842@example
9843$ @kbd{flex -ofirst-line.c first-line.l}
9844$ @kbd{gcc -ofirst-line first-line.c -ll}
9845$ @kbd{./first-line}
9846input:1: Hello,
9847input:2: World!
9848@end example
9849
0e14ad77
PE
9850Therefore, whenever you change @code{yyin}, you must tell the
9851Lex-generated scanner to discard its current buffer and switch to the
9852new one. This depends upon your implementation of Lex; see its
9853documentation for more. For Flex, it suffices to call
9854@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9855Flex-generated scanner needs to read from several input streams to
9856handle features like include files, you might consider using Flex
9857functions like @samp{yy_switch_to_buffer} that manipulate multiple
9858input buffers.
5b066063 9859
b165c324
AD
9860If your Flex-generated scanner uses start conditions (@pxref{Start
9861conditions, , Start conditions, flex, The Flex Manual}), you might
9862also want to reset the scanner's state, i.e., go back to the initial
9863start condition, through a call to @samp{BEGIN (0)}.
9864
fef4cb51
AD
9865@node Strings are Destroyed
9866@section Strings are Destroyed
9867
9868@display
c7e441b4 9869My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9870them. Instead of reporting @samp{"foo", "bar"}, it reports
9871@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9872@end display
9873
9874This error is probably the single most frequent ``bug report'' sent to
9875Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9876of the scanner. Consider the following Lex code:
fef4cb51
AD
9877
9878@verbatim
9879%{
9880#include <stdio.h>
9881char *yylval = NULL;
9882%}
9883%%
9884.* yylval = yytext; return 1;
9885\n /* IGNORE */
9886%%
9887int
9888main ()
9889{
fa7e68c3 9890 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9891 char *fst = (yylex (), yylval);
9892 char *snd = (yylex (), yylval);
9893 printf ("\"%s\", \"%s\"\n", fst, snd);
9894 return 0;
9895}
9896@end verbatim
9897
9898If you compile and run this code, you get:
9899
9900@example
9901$ @kbd{flex -osplit-lines.c split-lines.l}
9902$ @kbd{gcc -osplit-lines split-lines.c -ll}
9903$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9904"one
9905two", "two"
9906@end example
9907
9908@noindent
9909this is because @code{yytext} is a buffer provided for @emph{reading}
9910in the action, but if you want to keep it, you have to duplicate it
9911(e.g., using @code{strdup}). Note that the output may depend on how
9912your implementation of Lex handles @code{yytext}. For instance, when
9913given the Lex compatibility option @option{-l} (which triggers the
9914option @samp{%array}) Flex generates a different behavior:
9915
9916@example
9917$ @kbd{flex -l -osplit-lines.c split-lines.l}
9918$ @kbd{gcc -osplit-lines split-lines.c -ll}
9919$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9920"two", "two"
9921@end example
9922
9923
2fa09258
AD
9924@node Implementing Gotos/Loops
9925@section Implementing Gotos/Loops
a06ea4aa
AD
9926
9927@display
9928My simple calculator supports variables, assignments, and functions,
2fa09258 9929but how can I implement gotos, or loops?
a06ea4aa
AD
9930@end display
9931
9932Although very pedagogical, the examples included in the document blur
a1c84f45 9933the distinction to make between the parser---whose job is to recover
a06ea4aa 9934the structure of a text and to transmit it to subsequent modules of
a1c84f45 9935the program---and the processing (such as the execution) of this
a06ea4aa
AD
9936structure. This works well with so called straight line programs,
9937i.e., precisely those that have a straightforward execution model:
9938execute simple instructions one after the others.
9939
9940@cindex abstract syntax tree
35430378 9941@cindex AST
a06ea4aa
AD
9942If you want a richer model, you will probably need to use the parser
9943to construct a tree that does represent the structure it has
9944recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 9945or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
9946traversing it in various ways, will enable treatments such as its
9947execution or its translation, which will result in an interpreter or a
9948compiler.
9949
9950This topic is way beyond the scope of this manual, and the reader is
9951invited to consult the dedicated literature.
9952
9953
ed2e6384
AD
9954@node Multiple start-symbols
9955@section Multiple start-symbols
9956
9957@display
9958I have several closely related grammars, and I would like to share their
9959implementations. In fact, I could use a single grammar but with
9960multiple entry points.
9961@end display
9962
9963Bison does not support multiple start-symbols, but there is a very
9964simple means to simulate them. If @code{foo} and @code{bar} are the two
9965pseudo start-symbols, then introduce two new tokens, say
9966@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9967real start-symbol:
9968
9969@example
9970%token START_FOO START_BAR;
9971%start start;
9972start: START_FOO foo
9973 | START_BAR bar;
9974@end example
9975
9976These tokens prevents the introduction of new conflicts. As far as the
9977parser goes, that is all that is needed.
9978
9979Now the difficult part is ensuring that the scanner will send these
9980tokens first. If your scanner is hand-written, that should be
9981straightforward. If your scanner is generated by Lex, them there is
9982simple means to do it: recall that anything between @samp{%@{ ... %@}}
9983after the first @code{%%} is copied verbatim in the top of the generated
9984@code{yylex} function. Make sure a variable @code{start_token} is
9985available in the scanner (e.g., a global variable or using
9986@code{%lex-param} etc.), and use the following:
9987
9988@example
9989 /* @r{Prologue.} */
9990%%
9991%@{
9992 if (start_token)
9993 @{
9994 int t = start_token;
9995 start_token = 0;
9996 return t;
9997 @}
9998%@}
9999 /* @r{The rules.} */
10000@end example
10001
10002
55ba27be
AD
10003@node Secure? Conform?
10004@section Secure? Conform?
10005
10006@display
10007Is Bison secure? Does it conform to POSIX?
10008@end display
10009
10010If you're looking for a guarantee or certification, we don't provide it.
10011However, Bison is intended to be a reliable program that conforms to the
35430378 10012POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10013please send us a bug report.
10014
10015@node I can't build Bison
10016@section I can't build Bison
10017
10018@display
8c5b881d
PE
10019I can't build Bison because @command{make} complains that
10020@code{msgfmt} is not found.
55ba27be
AD
10021What should I do?
10022@end display
10023
10024Like most GNU packages with internationalization support, that feature
10025is turned on by default. If you have problems building in the @file{po}
10026subdirectory, it indicates that your system's internationalization
10027support is lacking. You can re-configure Bison with
10028@option{--disable-nls} to turn off this support, or you can install GNU
10029gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10030Bison. See the file @file{ABOUT-NLS} for more information.
10031
10032
10033@node Where can I find help?
10034@section Where can I find help?
10035
10036@display
10037I'm having trouble using Bison. Where can I find help?
10038@end display
10039
10040First, read this fine manual. Beyond that, you can send mail to
10041@email{help-bison@@gnu.org}. This mailing list is intended to be
10042populated with people who are willing to answer questions about using
10043and installing Bison. Please keep in mind that (most of) the people on
10044the list have aspects of their lives which are not related to Bison (!),
10045so you may not receive an answer to your question right away. This can
10046be frustrating, but please try not to honk them off; remember that any
10047help they provide is purely voluntary and out of the kindness of their
10048hearts.
10049
10050@node Bug Reports
10051@section Bug Reports
10052
10053@display
10054I found a bug. What should I include in the bug report?
10055@end display
10056
10057Before you send a bug report, make sure you are using the latest
10058version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10059mirrors. Be sure to include the version number in your bug report. If
10060the bug is present in the latest version but not in a previous version,
10061try to determine the most recent version which did not contain the bug.
10062
10063If the bug is parser-related, you should include the smallest grammar
10064you can which demonstrates the bug. The grammar file should also be
10065complete (i.e., I should be able to run it through Bison without having
10066to edit or add anything). The smaller and simpler the grammar, the
10067easier it will be to fix the bug.
10068
10069Include information about your compilation environment, including your
10070operating system's name and version and your compiler's name and
10071version. If you have trouble compiling, you should also include a
10072transcript of the build session, starting with the invocation of
10073`configure'. Depending on the nature of the bug, you may be asked to
10074send additional files as well (such as `config.h' or `config.cache').
10075
10076Patches are most welcome, but not required. That is, do not hesitate to
10077send a bug report just because you can not provide a fix.
10078
10079Send bug reports to @email{bug-bison@@gnu.org}.
10080
8405b70c
PB
10081@node More Languages
10082@section More Languages
55ba27be
AD
10083
10084@display
8405b70c 10085Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10086favorite language here}?
10087@end display
10088
8405b70c 10089C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10090languages; contributions are welcome.
10091
10092@node Beta Testing
10093@section Beta Testing
10094
10095@display
10096What is involved in being a beta tester?
10097@end display
10098
10099It's not terribly involved. Basically, you would download a test
10100release, compile it, and use it to build and run a parser or two. After
10101that, you would submit either a bug report or a message saying that
10102everything is okay. It is important to report successes as well as
10103failures because test releases eventually become mainstream releases,
10104but only if they are adequately tested. If no one tests, development is
10105essentially halted.
10106
10107Beta testers are particularly needed for operating systems to which the
10108developers do not have easy access. They currently have easy access to
10109recent GNU/Linux and Solaris versions. Reports about other operating
10110systems are especially welcome.
10111
10112@node Mailing Lists
10113@section Mailing Lists
10114
10115@display
10116How do I join the help-bison and bug-bison mailing lists?
10117@end display
10118
10119See @url{http://lists.gnu.org/}.
a06ea4aa 10120
d1a1114f
AD
10121@c ================================================= Table of Symbols
10122
342b8b6e 10123@node Table of Symbols
bfa74976
RS
10124@appendix Bison Symbols
10125@cindex Bison symbols, table of
10126@cindex symbols in Bison, table of
10127
18b519c0 10128@deffn {Variable} @@$
3ded9a63 10129In an action, the location of the left-hand side of the rule.
88bce5a2 10130@xref{Locations, , Locations Overview}.
18b519c0 10131@end deffn
3ded9a63 10132
18b519c0 10133@deffn {Variable} @@@var{n}
3ded9a63
AD
10134In an action, the location of the @var{n}-th symbol of the right-hand
10135side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10136@end deffn
3ded9a63 10137
1f68dca5
AR
10138@deffn {Variable} @@@var{name}
10139In an action, the location of a symbol addressed by name.
10140@xref{Locations, , Locations Overview}.
10141@end deffn
10142
10143@deffn {Variable} @@[@var{name}]
10144In an action, the location of a symbol addressed by name.
10145@xref{Locations, , Locations Overview}.
10146@end deffn
10147
18b519c0 10148@deffn {Variable} $$
3ded9a63
AD
10149In an action, the semantic value of the left-hand side of the rule.
10150@xref{Actions}.
18b519c0 10151@end deffn
3ded9a63 10152
18b519c0 10153@deffn {Variable} $@var{n}
3ded9a63
AD
10154In an action, the semantic value of the @var{n}-th symbol of the
10155right-hand side of the rule. @xref{Actions}.
18b519c0 10156@end deffn
3ded9a63 10157
1f68dca5
AR
10158@deffn {Variable} $@var{name}
10159In an action, the semantic value of a symbol addressed by name.
10160@xref{Actions}.
10161@end deffn
10162
10163@deffn {Variable} $[@var{name}]
10164In an action, the semantic value of a symbol addressed by name.
10165@xref{Actions}.
10166@end deffn
10167
dd8d9022
AD
10168@deffn {Delimiter} %%
10169Delimiter used to separate the grammar rule section from the
10170Bison declarations section or the epilogue.
10171@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10172@end deffn
bfa74976 10173
dd8d9022
AD
10174@c Don't insert spaces, or check the DVI output.
10175@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
10176All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
10177to the parser implementation file. Such code forms the prologue of
10178the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 10179Grammar}.
18b519c0 10180@end deffn
bfa74976 10181
dd8d9022
AD
10182@deffn {Construct} /*@dots{}*/
10183Comment delimiters, as in C.
18b519c0 10184@end deffn
bfa74976 10185
dd8d9022
AD
10186@deffn {Delimiter} :
10187Separates a rule's result from its components. @xref{Rules, ,Syntax of
10188Grammar Rules}.
18b519c0 10189@end deffn
bfa74976 10190
dd8d9022
AD
10191@deffn {Delimiter} ;
10192Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10193@end deffn
bfa74976 10194
dd8d9022
AD
10195@deffn {Delimiter} |
10196Separates alternate rules for the same result nonterminal.
10197@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10198@end deffn
bfa74976 10199
12e35840
JD
10200@deffn {Directive} <*>
10201Used to define a default tagged @code{%destructor} or default tagged
10202@code{%printer}.
85894313
JD
10203
10204This feature is experimental.
10205More user feedback will help to determine whether it should become a permanent
10206feature.
10207
12e35840
JD
10208@xref{Destructor Decl, , Freeing Discarded Symbols}.
10209@end deffn
10210
3ebecc24 10211@deffn {Directive} <>
12e35840
JD
10212Used to define a default tagless @code{%destructor} or default tagless
10213@code{%printer}.
85894313
JD
10214
10215This feature is experimental.
10216More user feedback will help to determine whether it should become a permanent
10217feature.
10218
12e35840
JD
10219@xref{Destructor Decl, , Freeing Discarded Symbols}.
10220@end deffn
10221
dd8d9022
AD
10222@deffn {Symbol} $accept
10223The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10224$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10225Start-Symbol}. It cannot be used in the grammar.
18b519c0 10226@end deffn
bfa74976 10227
136a0f76 10228@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10229@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10230Insert @var{code} verbatim into output parser source.
8e6f2266 10231@xref{%code Summary}.
9bc0dd67 10232@end deffn
9bc0dd67 10233
18b519c0 10234@deffn {Directive} %debug
6deb4447 10235Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10236@end deffn
6deb4447 10237
91d2c560 10238@ifset defaultprec
22fccf95
PE
10239@deffn {Directive} %default-prec
10240Assign a precedence to rules that lack an explicit @samp{%prec}
10241modifier. @xref{Contextual Precedence, ,Context-Dependent
10242Precedence}.
39a06c25 10243@end deffn
91d2c560 10244@end ifset
39a06c25 10245
148d66d8
JD
10246@deffn {Directive} %define @var{define-variable}
10247@deffnx {Directive} %define @var{define-variable} @var{value}
f37495f6 10248@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10249Define a variable to adjust Bison's behavior.
10250@xref{Decl Summary,,%define}.
10251@end deffn
10252
18b519c0 10253@deffn {Directive} %defines
9913d6e4
JD
10254Bison declaration to create a parser header file, which is usually
10255meant for the scanner. @xref{Decl Summary}.
18b519c0 10256@end deffn
6deb4447 10257
02975b9a
JD
10258@deffn {Directive} %defines @var{defines-file}
10259Same as above, but save in the file @var{defines-file}.
10260@xref{Decl Summary}.
10261@end deffn
10262
18b519c0 10263@deffn {Directive} %destructor
258b75ca 10264Specify how the parser should reclaim the memory associated to
fa7e68c3 10265discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10266@end deffn
72f889cc 10267
18b519c0 10268@deffn {Directive} %dprec
676385e2 10269Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10270time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 10271GLR Parsers}.
18b519c0 10272@end deffn
676385e2 10273
dd8d9022
AD
10274@deffn {Symbol} $end
10275The predefined token marking the end of the token stream. It cannot be
10276used in the grammar.
10277@end deffn
10278
10279@deffn {Symbol} error
10280A token name reserved for error recovery. This token may be used in
10281grammar rules so as to allow the Bison parser to recognize an error in
10282the grammar without halting the process. In effect, a sentence
10283containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10284token @code{error} becomes the current lookahead token. Actions
10285corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10286token is reset to the token that originally caused the violation.
10287@xref{Error Recovery}.
18d192f0
AD
10288@end deffn
10289
18b519c0 10290@deffn {Directive} %error-verbose
2a8d363a
AD
10291Bison declaration to request verbose, specific error message strings
10292when @code{yyerror} is called.
18b519c0 10293@end deffn
2a8d363a 10294
02975b9a 10295@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10296Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10297Summary}.
18b519c0 10298@end deffn
d8988b2f 10299
18b519c0 10300@deffn {Directive} %glr-parser
35430378
JD
10301Bison declaration to produce a GLR parser. @xref{GLR
10302Parsers, ,Writing GLR Parsers}.
18b519c0 10303@end deffn
676385e2 10304
dd8d9022
AD
10305@deffn {Directive} %initial-action
10306Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10307@end deffn
10308
e6e704dc
JD
10309@deffn {Directive} %language
10310Specify the programming language for the generated parser.
10311@xref{Decl Summary}.
10312@end deffn
10313
18b519c0 10314@deffn {Directive} %left
bfa74976
RS
10315Bison declaration to assign left associativity to token(s).
10316@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10317@end deffn
bfa74976 10318
feeb0eda 10319@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10320Bison declaration to specifying an additional parameter that
10321@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10322for Pure Parsers}.
18b519c0 10323@end deffn
2a8d363a 10324
18b519c0 10325@deffn {Directive} %merge
676385e2 10326Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10327reduce/reduce conflict with a rule having the same merging function, the
676385e2 10328function is applied to the two semantic values to get a single result.
35430378 10329@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10330@end deffn
676385e2 10331
02975b9a 10332@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10333Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10334@end deffn
d8988b2f 10335
91d2c560 10336@ifset defaultprec
22fccf95
PE
10337@deffn {Directive} %no-default-prec
10338Do not assign a precedence to rules that lack an explicit @samp{%prec}
10339modifier. @xref{Contextual Precedence, ,Context-Dependent
10340Precedence}.
10341@end deffn
91d2c560 10342@end ifset
22fccf95 10343
18b519c0 10344@deffn {Directive} %no-lines
931c7513 10345Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 10346parser implementation file. @xref{Decl Summary}.
18b519c0 10347@end deffn
931c7513 10348
18b519c0 10349@deffn {Directive} %nonassoc
9d9b8b70 10350Bison declaration to assign nonassociativity to token(s).
bfa74976 10351@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10352@end deffn
bfa74976 10353
02975b9a 10354@deffn {Directive} %output "@var{file}"
9913d6e4
JD
10355Bison declaration to set the name of the parser implementation file.
10356@xref{Decl Summary}.
18b519c0 10357@end deffn
d8988b2f 10358
feeb0eda 10359@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10360Bison declaration to specifying an additional parameter that
10361@code{yyparse} should accept. @xref{Parser Function,, The Parser
10362Function @code{yyparse}}.
18b519c0 10363@end deffn
2a8d363a 10364
18b519c0 10365@deffn {Directive} %prec
bfa74976
RS
10366Bison declaration to assign a precedence to a specific rule.
10367@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10368@end deffn
bfa74976 10369
18b519c0 10370@deffn {Directive} %pure-parser
d9df47b6
JD
10371Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10372for which Bison is more careful to warn about unreasonable usage.
18b519c0 10373@end deffn
bfa74976 10374
b50d2359 10375@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10376Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10377Require a Version of Bison}.
b50d2359
AD
10378@end deffn
10379
18b519c0 10380@deffn {Directive} %right
bfa74976
RS
10381Bison declaration to assign right associativity to token(s).
10382@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10383@end deffn
bfa74976 10384
e6e704dc
JD
10385@deffn {Directive} %skeleton
10386Specify the skeleton to use; usually for development.
10387@xref{Decl Summary}.
10388@end deffn
10389
18b519c0 10390@deffn {Directive} %start
704a47c4
AD
10391Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10392Start-Symbol}.
18b519c0 10393@end deffn
bfa74976 10394
18b519c0 10395@deffn {Directive} %token
bfa74976
RS
10396Bison declaration to declare token(s) without specifying precedence.
10397@xref{Token Decl, ,Token Type Names}.
18b519c0 10398@end deffn
bfa74976 10399
18b519c0 10400@deffn {Directive} %token-table
9913d6e4
JD
10401Bison declaration to include a token name table in the parser
10402implementation file. @xref{Decl Summary}.
18b519c0 10403@end deffn
931c7513 10404
18b519c0 10405@deffn {Directive} %type
704a47c4
AD
10406Bison declaration to declare nonterminals. @xref{Type Decl,
10407,Nonterminal Symbols}.
18b519c0 10408@end deffn
bfa74976 10409
dd8d9022
AD
10410@deffn {Symbol} $undefined
10411The predefined token onto which all undefined values returned by
10412@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10413@code{error}.
10414@end deffn
10415
18b519c0 10416@deffn {Directive} %union
bfa74976
RS
10417Bison declaration to specify several possible data types for semantic
10418values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10419@end deffn
bfa74976 10420
dd8d9022
AD
10421@deffn {Macro} YYABORT
10422Macro to pretend that an unrecoverable syntax error has occurred, by
10423making @code{yyparse} return 1 immediately. The error reporting
10424function @code{yyerror} is not called. @xref{Parser Function, ,The
10425Parser Function @code{yyparse}}.
8405b70c
PB
10426
10427For Java parsers, this functionality is invoked using @code{return YYABORT;}
10428instead.
dd8d9022 10429@end deffn
3ded9a63 10430
dd8d9022
AD
10431@deffn {Macro} YYACCEPT
10432Macro to pretend that a complete utterance of the language has been
10433read, by making @code{yyparse} return 0 immediately.
10434@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10435
10436For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10437instead.
dd8d9022 10438@end deffn
bfa74976 10439
dd8d9022 10440@deffn {Macro} YYBACKUP
742e4900 10441Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10442token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10443@end deffn
bfa74976 10444
dd8d9022 10445@deffn {Variable} yychar
32c29292 10446External integer variable that contains the integer value of the
742e4900 10447lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10448@code{yyparse}.) Error-recovery rule actions may examine this variable.
10449@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10450@end deffn
bfa74976 10451
dd8d9022
AD
10452@deffn {Variable} yyclearin
10453Macro used in error-recovery rule actions. It clears the previous
742e4900 10454lookahead token. @xref{Error Recovery}.
18b519c0 10455@end deffn
bfa74976 10456
dd8d9022
AD
10457@deffn {Macro} YYDEBUG
10458Macro to define to equip the parser with tracing code. @xref{Tracing,
10459,Tracing Your Parser}.
18b519c0 10460@end deffn
bfa74976 10461
dd8d9022
AD
10462@deffn {Variable} yydebug
10463External integer variable set to zero by default. If @code{yydebug}
10464is given a nonzero value, the parser will output information on input
10465symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10466@end deffn
bfa74976 10467
dd8d9022
AD
10468@deffn {Macro} yyerrok
10469Macro to cause parser to recover immediately to its normal mode
10470after a syntax error. @xref{Error Recovery}.
10471@end deffn
10472
10473@deffn {Macro} YYERROR
10474Macro to pretend that a syntax error has just been detected: call
10475@code{yyerror} and then perform normal error recovery if possible
10476(@pxref{Error Recovery}), or (if recovery is impossible) make
10477@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10478
10479For Java parsers, this functionality is invoked using @code{return YYERROR;}
10480instead.
dd8d9022
AD
10481@end deffn
10482
10483@deffn {Function} yyerror
10484User-supplied function to be called by @code{yyparse} on error.
10485@xref{Error Reporting, ,The Error
10486Reporting Function @code{yyerror}}.
10487@end deffn
10488
10489@deffn {Macro} YYERROR_VERBOSE
10490An obsolete macro that you define with @code{#define} in the prologue
10491to request verbose, specific error message strings
10492when @code{yyerror} is called. It doesn't matter what definition you
10493use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10494@code{%error-verbose} is preferred.
10495@end deffn
10496
10497@deffn {Macro} YYINITDEPTH
10498Macro for specifying the initial size of the parser stack.
1a059451 10499@xref{Memory Management}.
dd8d9022
AD
10500@end deffn
10501
10502@deffn {Function} yylex
10503User-supplied lexical analyzer function, called with no arguments to get
10504the next token. @xref{Lexical, ,The Lexical Analyzer Function
10505@code{yylex}}.
10506@end deffn
10507
10508@deffn {Macro} YYLEX_PARAM
10509An obsolete macro for specifying an extra argument (or list of extra
32c29292 10510arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10511macro is deprecated, and is supported only for Yacc like parsers.
10512@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10513@end deffn
10514
10515@deffn {Variable} yylloc
10516External variable in which @code{yylex} should place the line and column
10517numbers associated with a token. (In a pure parser, it is a local
10518variable within @code{yyparse}, and its address is passed to
32c29292
JD
10519@code{yylex}.)
10520You can ignore this variable if you don't use the @samp{@@} feature in the
10521grammar actions.
10522@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10523In semantic actions, it stores the location of the lookahead token.
32c29292 10524@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10525@end deffn
10526
10527@deffn {Type} YYLTYPE
10528Data type of @code{yylloc}; by default, a structure with four
10529members. @xref{Location Type, , Data Types of Locations}.
10530@end deffn
10531
10532@deffn {Variable} yylval
10533External variable in which @code{yylex} should place the semantic
10534value associated with a token. (In a pure parser, it is a local
10535variable within @code{yyparse}, and its address is passed to
32c29292
JD
10536@code{yylex}.)
10537@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10538In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10539@xref{Actions, ,Actions}.
dd8d9022
AD
10540@end deffn
10541
10542@deffn {Macro} YYMAXDEPTH
1a059451
PE
10543Macro for specifying the maximum size of the parser stack. @xref{Memory
10544Management}.
dd8d9022
AD
10545@end deffn
10546
10547@deffn {Variable} yynerrs
8a2800e7 10548Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10549(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10550pure push parser, it is a member of yypstate.)
dd8d9022
AD
10551@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10552@end deffn
10553
10554@deffn {Function} yyparse
10555The parser function produced by Bison; call this function to start
10556parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10557@end deffn
10558
9987d1b3 10559@deffn {Function} yypstate_delete
f4101aa6 10560The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10561call this function to delete the memory associated with a parser.
f4101aa6 10562@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10563@code{yypstate_delete}}.
59da312b
JD
10564(The current push parsing interface is experimental and may evolve.
10565More user feedback will help to stabilize it.)
9987d1b3
JD
10566@end deffn
10567
10568@deffn {Function} yypstate_new
f4101aa6 10569The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10570call this function to create a new parser.
f4101aa6 10571@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10572@code{yypstate_new}}.
59da312b
JD
10573(The current push parsing interface is experimental and may evolve.
10574More user feedback will help to stabilize it.)
9987d1b3
JD
10575@end deffn
10576
10577@deffn {Function} yypull_parse
f4101aa6
AD
10578The parser function produced by Bison in push mode; call this function to
10579parse the rest of the input stream.
10580@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10581@code{yypull_parse}}.
59da312b
JD
10582(The current push parsing interface is experimental and may evolve.
10583More user feedback will help to stabilize it.)
9987d1b3
JD
10584@end deffn
10585
10586@deffn {Function} yypush_parse
f4101aa6
AD
10587The parser function produced by Bison in push mode; call this function to
10588parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10589@code{yypush_parse}}.
59da312b
JD
10590(The current push parsing interface is experimental and may evolve.
10591More user feedback will help to stabilize it.)
9987d1b3
JD
10592@end deffn
10593
dd8d9022
AD
10594@deffn {Macro} YYPARSE_PARAM
10595An obsolete macro for specifying the name of a parameter that
10596@code{yyparse} should accept. The use of this macro is deprecated, and
10597is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10598Conventions for Pure Parsers}.
10599@end deffn
10600
10601@deffn {Macro} YYRECOVERING
02103984
PE
10602The expression @code{YYRECOVERING ()} yields 1 when the parser
10603is recovering from a syntax error, and 0 otherwise.
10604@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10605@end deffn
10606
10607@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10608Macro used to control the use of @code{alloca} when the
10609deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10610the parser will use @code{malloc} to extend its stacks. If defined to
106111, the parser will use @code{alloca}. Values other than 0 and 1 are
10612reserved for future Bison extensions. If not defined,
10613@code{YYSTACK_USE_ALLOCA} defaults to 0.
10614
55289366 10615In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10616limited stack and with unreliable stack-overflow checking, you should
10617set @code{YYMAXDEPTH} to a value that cannot possibly result in
10618unchecked stack overflow on any of your target hosts when
10619@code{alloca} is called. You can inspect the code that Bison
10620generates in order to determine the proper numeric values. This will
10621require some expertise in low-level implementation details.
dd8d9022
AD
10622@end deffn
10623
10624@deffn {Type} YYSTYPE
10625Data type of semantic values; @code{int} by default.
10626@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10627@end deffn
bfa74976 10628
342b8b6e 10629@node Glossary
bfa74976
RS
10630@appendix Glossary
10631@cindex glossary
10632
10633@table @asis
34a6c2d1
JD
10634@item Accepting State
10635A state whose only action is the accept action.
10636The accepting state is thus a consistent state.
10637@xref{Understanding,,}.
10638
35430378 10639@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
10640Formal method of specifying context-free grammars originally proposed
10641by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10642committee document contributing to what became the Algol 60 report.
10643@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10644
34a6c2d1
JD
10645@item Consistent State
10646A state containing only one possible action.
1d0f55cc 10647@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10648
bfa74976
RS
10649@item Context-free grammars
10650Grammars specified as rules that can be applied regardless of context.
10651Thus, if there is a rule which says that an integer can be used as an
10652expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10653permitted. @xref{Language and Grammar, ,Languages and Context-Free
10654Grammars}.
bfa74976 10655
620b5727
JD
10656@item Default Reduction
10657The reduction that a parser should perform if the current parser state
34a6c2d1 10658contains no other action for the lookahead token.
620b5727
JD
10659In permitted parser states, Bison declares the reduction with the
10660largest lookahead set to be the default reduction and removes that
10661lookahead set.
1d0f55cc 10662@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10663
bfa74976
RS
10664@item Dynamic allocation
10665Allocation of memory that occurs during execution, rather than at
10666compile time or on entry to a function.
10667
10668@item Empty string
10669Analogous to the empty set in set theory, the empty string is a
10670character string of length zero.
10671
10672@item Finite-state stack machine
10673A ``machine'' that has discrete states in which it is said to exist at
10674each instant in time. As input to the machine is processed, the
10675machine moves from state to state as specified by the logic of the
10676machine. In the case of the parser, the input is the language being
10677parsed, and the states correspond to various stages in the grammar
c827f760 10678rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10679
35430378 10680@item Generalized LR (GLR)
676385e2 10681A parsing algorithm that can handle all context-free grammars, including those
35430378 10682that are not LR(1). It resolves situations that Bison's
34a6c2d1 10683deterministic parsing
676385e2
PH
10684algorithm cannot by effectively splitting off multiple parsers, trying all
10685possible parsers, and discarding those that fail in the light of additional
c827f760 10686right context. @xref{Generalized LR Parsing, ,Generalized
35430378 10687LR Parsing}.
676385e2 10688
bfa74976
RS
10689@item Grouping
10690A language construct that is (in general) grammatically divisible;
c827f760 10691for example, `expression' or `declaration' in C@.
bfa74976
RS
10692@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10693
35430378
JD
10694@item IELR(1)
10695A minimal LR(1) parser table generation algorithm.
10696That is, given any context-free grammar, IELR(1) generates
34a6c2d1 10697parser tables with the full language recognition power of canonical
35430378
JD
10698LR(1) but with nearly the same number of parser states as
10699LALR(1).
34a6c2d1 10700This reduction in parser states is often an order of magnitude.
35430378 10701More importantly, because canonical LR(1)'s extra parser
34a6c2d1 10702states may contain duplicate conflicts in the case of
35430378
JD
10703non-LR(1) grammars, the number of conflicts for
10704IELR(1) is often an order of magnitude less as well.
34a6c2d1
JD
10705This can significantly reduce the complexity of developing of a grammar.
10706@xref{Decl Summary,,lr.type}.
10707
bfa74976
RS
10708@item Infix operator
10709An arithmetic operator that is placed between the operands on which it
10710performs some operation.
10711
10712@item Input stream
10713A continuous flow of data between devices or programs.
10714
35430378 10715@item LAC (Lookahead Correction)
4c38b19e
JD
10716A parsing mechanism that fixes the problem of delayed syntax error
10717detection, which is caused by LR state merging, default reductions, and
10718the use of @code{%nonassoc}. Delayed syntax error detection results in
10719unexpected semantic actions, initiation of error recovery in the wrong
10720syntactic context, and an incorrect list of expected tokens in a verbose
10721syntax error message. @xref{Decl Summary,,parse.lac}.
10722
bfa74976
RS
10723@item Language construct
10724One of the typical usage schemas of the language. For example, one of
10725the constructs of the C language is the @code{if} statement.
10726@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10727
10728@item Left associativity
10729Operators having left associativity are analyzed from left to right:
10730@samp{a+b+c} first computes @samp{a+b} and then combines with
10731@samp{c}. @xref{Precedence, ,Operator Precedence}.
10732
10733@item Left recursion
89cab50d
AD
10734A rule whose result symbol is also its first component symbol; for
10735example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10736Rules}.
bfa74976
RS
10737
10738@item Left-to-right parsing
10739Parsing a sentence of a language by analyzing it token by token from
c827f760 10740left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10741
10742@item Lexical analyzer (scanner)
10743A function that reads an input stream and returns tokens one by one.
10744@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10745
10746@item Lexical tie-in
10747A flag, set by actions in the grammar rules, which alters the way
10748tokens are parsed. @xref{Lexical Tie-ins}.
10749
931c7513 10750@item Literal string token
14ded682 10751A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10752
742e4900
JD
10753@item Lookahead token
10754A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10755Tokens}.
bfa74976 10756
35430378 10757@item LALR(1)
bfa74976 10758The class of context-free grammars that Bison (like most other parser
35430378 10759generators) can handle by default; a subset of LR(1).
34a6c2d1 10760@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10761
35430378 10762@item LR(1)
bfa74976 10763The class of context-free grammars in which at most one token of
742e4900 10764lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10765
10766@item Nonterminal symbol
10767A grammar symbol standing for a grammatical construct that can
10768be expressed through rules in terms of smaller constructs; in other
10769words, a construct that is not a token. @xref{Symbols}.
10770
bfa74976
RS
10771@item Parser
10772A function that recognizes valid sentences of a language by analyzing
10773the syntax structure of a set of tokens passed to it from a lexical
10774analyzer.
10775
10776@item Postfix operator
10777An arithmetic operator that is placed after the operands upon which it
10778performs some operation.
10779
10780@item Reduction
10781Replacing a string of nonterminals and/or terminals with a single
89cab50d 10782nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10783Parser Algorithm}.
bfa74976
RS
10784
10785@item Reentrant
10786A reentrant subprogram is a subprogram which can be in invoked any
10787number of times in parallel, without interference between the various
10788invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10789
10790@item Reverse polish notation
10791A language in which all operators are postfix operators.
10792
10793@item Right recursion
89cab50d
AD
10794A rule whose result symbol is also its last component symbol; for
10795example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10796Rules}.
bfa74976
RS
10797
10798@item Semantics
10799In computer languages, the semantics are specified by the actions
10800taken for each instance of the language, i.e., the meaning of
10801each statement. @xref{Semantics, ,Defining Language Semantics}.
10802
10803@item Shift
10804A parser is said to shift when it makes the choice of analyzing
10805further input from the stream rather than reducing immediately some
c827f760 10806already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10807
10808@item Single-character literal
10809A single character that is recognized and interpreted as is.
10810@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10811
10812@item Start symbol
10813The nonterminal symbol that stands for a complete valid utterance in
10814the language being parsed. The start symbol is usually listed as the
13863333 10815first nonterminal symbol in a language specification.
bfa74976
RS
10816@xref{Start Decl, ,The Start-Symbol}.
10817
10818@item Symbol table
10819A data structure where symbol names and associated data are stored
10820during parsing to allow for recognition and use of existing
10821information in repeated uses of a symbol. @xref{Multi-function Calc}.
10822
6e649e65
PE
10823@item Syntax error
10824An error encountered during parsing of an input stream due to invalid
10825syntax. @xref{Error Recovery}.
10826
bfa74976
RS
10827@item Token
10828A basic, grammatically indivisible unit of a language. The symbol
10829that describes a token in the grammar is a terminal symbol.
10830The input of the Bison parser is a stream of tokens which comes from
10831the lexical analyzer. @xref{Symbols}.
10832
10833@item Terminal symbol
89cab50d
AD
10834A grammar symbol that has no rules in the grammar and therefore is
10835grammatically indivisible. The piece of text it represents is a token.
10836@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10837@end table
10838
342b8b6e 10839@node Copying This Manual
f2b5126e 10840@appendix Copying This Manual
f2b5126e
PB
10841@include fdl.texi
10842
342b8b6e 10843@node Index
bfa74976
RS
10844@unnumbered Index
10845
10846@printindex cp
10847
bfa74976 10848@bye
a06ea4aa 10849
8fbbeba2
AD
10850@c Local Variables:
10851@c fill-column: 76
10852@c End:
10853
232be91a
AD
10854@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
10855@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
10856@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
10857@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
10858@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
10859@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
10860@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
10861@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
10862@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
10863@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
10864@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
10865@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
10866@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
10867@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
10868@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
10869@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
10870@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
10871@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
10872@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
10873@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
10874@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
10875@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
10876@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
10877@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
10878@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
10879@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
10880@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
10881@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
10882@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 10883@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
232be91a 10884@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
9913d6e4 10885@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
232be91a
AD
10886@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
10887@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
10888@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
10889@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
10890@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
10891@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
10892@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
9913d6e4 10893@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
232be91a
AD
10894@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
10895@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
10896@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
10897@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
10898@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
10899@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
10900@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
10901@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
10902@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
10903@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
840341d6 10904@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
232be91a 10905@c LocalWords: subdirectory Solaris nonassociativity