]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: clean up references to `Tracking Locations'.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
ea0a7676
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
71caec06 112* Bibliography:: Publications cited in this manual.
f56274a8 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
35430378 134Writing GLR Parsers
fa7e68c3 135
35430378
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
7404cdf3
JD
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
188* Tracking Locations:: Locations and actions.
189* Named References:: Using named references in actions.
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
192
193Outline of a Bison Grammar
194
f56274a8 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
d6328241 226* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
9987d1b3 229* Push Decl:: Requesting a push parser.
bfa74976 230* Decl Summary:: Table of all Bison declarations.
2f4518a1 231* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 232* %code Summary:: Inserting code into the parser source.
bfa74976
RS
233
234Parser C-Language Interface
235
f56274a8
DJ
236* Parser Function:: How to call @code{yyparse} and what it returns.
237* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
238* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
239* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
240* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
241* Lexical:: You must supply a function @code{yylex}
242 which reads tokens.
243* Error Reporting:: You must supply a function @code{yyerror}.
244* Action Features:: Special features for use in actions.
245* Internationalization:: How to let the parser speak in the user's
246 native language.
bfa74976
RS
247
248The Lexical Analyzer Function @code{yylex}
249
250* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
251* Token Values:: How @code{yylex} must return the semantic value
252 of the token it has read.
253* Token Locations:: How @code{yylex} must return the text location
254 (line number, etc.) of the token, if the
255 actions want that.
256* Pure Calling:: How the calling convention differs in a pure parser
257 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 258
13863333 259The Bison Parser Algorithm
bfa74976 260
742e4900 261* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
262* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
263* Precedence:: Operator precedence works by resolving conflicts.
264* Contextual Precedence:: When an operator's precedence depends on context.
265* Parser States:: The parser is a finite-state-machine with stack.
266* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 267* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 268* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 269* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 270* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
271
272Operator Precedence
273
274* Why Precedence:: An example showing why precedence is needed.
275* Using Precedence:: How to specify precedence in Bison grammars.
276* Precedence Examples:: How these features are used in the previous example.
277* How Precedence:: How they work.
278
6f04ee6c
JD
279Tuning LR
280
281* LR Table Construction:: Choose a different construction algorithm.
282* Default Reductions:: Disable default reductions.
283* LAC:: Correct lookahead sets in the parser states.
284* Unreachable States:: Keep unreachable parser states for debugging.
285
bfa74976
RS
286Handling Context Dependencies
287
288* Semantic Tokens:: Token parsing can depend on the semantic context.
289* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
290* Tie-in Recovery:: Lexical tie-ins have implications for how
291 error recovery rules must be written.
292
93dd49ab 293Debugging Your Parser
ec3bc396
AD
294
295* Understanding:: Understanding the structure of your parser.
296* Tracing:: Tracing the execution of your parser.
297
bfa74976
RS
298Invoking Bison
299
13863333 300* Bison Options:: All the options described in detail,
c827f760 301 in alphabetical order by short options.
bfa74976 302* Option Cross Key:: Alphabetical list of long options.
93dd49ab 303* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 304
8405b70c 305Parsers Written In Other Languages
12545799
AD
306
307* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 308* Java Parsers:: The interface to generate Java parser classes
12545799
AD
309
310C++ Parsers
311
312* C++ Bison Interface:: Asking for C++ parser generation
313* C++ Semantic Values:: %union vs. C++
314* C++ Location Values:: The position and location classes
315* C++ Parser Interface:: Instantiating and running the parser
316* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 317* A Complete C++ Example:: Demonstrating their use
12545799
AD
318
319A Complete C++ Example
320
321* Calc++ --- C++ Calculator:: The specifications
322* Calc++ Parsing Driver:: An active parsing context
323* Calc++ Parser:: A parser class
324* Calc++ Scanner:: A pure C++ Flex scanner
325* Calc++ Top Level:: Conducting the band
326
8405b70c
PB
327Java Parsers
328
f56274a8
DJ
329* Java Bison Interface:: Asking for Java parser generation
330* Java Semantic Values:: %type and %token vs. Java
331* Java Location Values:: The position and location classes
332* Java Parser Interface:: Instantiating and running the parser
333* Java Scanner Interface:: Specifying the scanner for the parser
334* Java Action Features:: Special features for use in actions
335* Java Differences:: Differences between C/C++ and Java Grammars
336* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 337
d1a1114f
AD
338Frequently Asked Questions
339
f56274a8
DJ
340* Memory Exhausted:: Breaking the Stack Limits
341* How Can I Reset the Parser:: @code{yyparse} Keeps some State
342* Strings are Destroyed:: @code{yylval} Loses Track of Strings
343* Implementing Gotos/Loops:: Control Flow in the Calculator
344* Multiple start-symbols:: Factoring closely related grammars
35430378 345* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
346* I can't build Bison:: Troubleshooting
347* Where can I find help?:: Troubleshouting
348* Bug Reports:: Troublereporting
349* More Languages:: Parsers in C++, Java, and so on
350* Beta Testing:: Experimenting development versions
351* Mailing Lists:: Meeting other Bison users
d1a1114f 352
f2b5126e
PB
353Copying This Manual
354
f56274a8 355* Copying This Manual:: License for copying this manual.
f2b5126e 356
342b8b6e 357@end detailmenu
bfa74976
RS
358@end menu
359
342b8b6e 360@node Introduction
bfa74976
RS
361@unnumbered Introduction
362@cindex introduction
363
6077da58 364@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
365annotated context-free grammar into a deterministic LR or generalized
366LR (GLR) parser employing LALR(1) parser tables. As an experimental
367feature, Bison can also generate IELR(1) or canonical LR(1) parser
368tables. Once you are proficient with Bison, you can use it to develop
369a wide range of language parsers, from those used in simple desk
370calculators to complex programming languages.
371
372Bison is upward compatible with Yacc: all properly-written Yacc
373grammars ought to work with Bison with no change. Anyone familiar
374with Yacc should be able to use Bison with little trouble. You need
375to be fluent in C or C++ programming in order to use Bison or to
376understand this manual. Java is also supported as an experimental
377feature.
378
379We begin with tutorial chapters that explain the basic concepts of
380using Bison and show three explained examples, each building on the
381last. If you don't know Bison or Yacc, start by reading these
382chapters. Reference chapters follow, which describe specific aspects
383of Bison in detail.
bfa74976 384
840341d6
JD
385Bison was written originally by Robert Corbett. Richard Stallman made
386it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
387added multi-character string literals and other features. Since then,
388Bison has grown more robust and evolved many other new features thanks
389to the hard work of a long list of volunteers. For details, see the
390@file{THANKS} and @file{ChangeLog} files included in the Bison
391distribution.
931c7513 392
df1af54c 393This edition corresponds to version @value{VERSION} of Bison.
bfa74976 394
342b8b6e 395@node Conditions
bfa74976
RS
396@unnumbered Conditions for Using Bison
397
193d7c70
PE
398The distribution terms for Bison-generated parsers permit using the
399parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 400permissions applied only when Bison was generating LALR(1)
193d7c70 401parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 402parsers could be used only in programs that were free software.
a31239f1 403
35430378 404The other GNU programming tools, such as the GNU C
c827f760 405compiler, have never
9ecbd125 406had such a requirement. They could always be used for nonfree
a31239f1
RS
407software. The reason Bison was different was not due to a special
408policy decision; it resulted from applying the usual General Public
409License to all of the Bison source code.
410
9913d6e4
JD
411The main output of the Bison utility---the Bison parser implementation
412file---contains a verbatim copy of a sizable piece of Bison, which is
413the code for the parser's implementation. (The actions from your
414grammar are inserted into this implementation at one point, but most
415of the rest of the implementation is not changed.) When we applied
416the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
417the effect was to restrict the use of Bison output to free software.
418
419We didn't change the terms because of sympathy for people who want to
420make software proprietary. @strong{Software should be free.} But we
421concluded that limiting Bison's use to free software was doing little to
422encourage people to make other software free. So we decided to make the
423practical conditions for using Bison match the practical conditions for
35430378 424using the other GNU tools.
bfa74976 425
193d7c70
PE
426This exception applies when Bison is generating code for a parser.
427You can tell whether the exception applies to a Bison output file by
428inspecting the file for text beginning with ``As a special
429exception@dots{}''. The text spells out the exact terms of the
430exception.
262aa8dd 431
f16b0819
PE
432@node Copying
433@unnumbered GNU GENERAL PUBLIC LICENSE
434@include gpl-3.0.texi
bfa74976 435
342b8b6e 436@node Concepts
bfa74976
RS
437@chapter The Concepts of Bison
438
439This chapter introduces many of the basic concepts without which the
440details of Bison will not make sense. If you do not already know how to
441use Bison or Yacc, we suggest you start by reading this chapter carefully.
442
443@menu
f56274a8
DJ
444* Language and Grammar:: Languages and context-free grammars,
445 as mathematical ideas.
446* Grammar in Bison:: How we represent grammars for Bison's sake.
447* Semantic Values:: Each token or syntactic grouping can have
448 a semantic value (the value of an integer,
449 the name of an identifier, etc.).
450* Semantic Actions:: Each rule can have an action containing C code.
451* GLR Parsers:: Writing parsers for general context-free languages.
452* Locations Overview:: Tracking Locations.
453* Bison Parser:: What are Bison's input and output,
454 how is the output used?
455* Stages:: Stages in writing and running Bison grammars.
456* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
457@end menu
458
342b8b6e 459@node Language and Grammar
bfa74976
RS
460@section Languages and Context-Free Grammars
461
bfa74976
RS
462@cindex context-free grammar
463@cindex grammar, context-free
464In order for Bison to parse a language, it must be described by a
465@dfn{context-free grammar}. This means that you specify one or more
466@dfn{syntactic groupings} and give rules for constructing them from their
467parts. For example, in the C language, one kind of grouping is called an
468`expression'. One rule for making an expression might be, ``An expression
469can be made of a minus sign and another expression''. Another would be,
470``An expression can be an integer''. As you can see, rules are often
471recursive, but there must be at least one rule which leads out of the
472recursion.
473
35430378 474@cindex BNF
bfa74976
RS
475@cindex Backus-Naur form
476The most common formal system for presenting such rules for humans to read
35430378 477is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 478order to specify the language Algol 60. Any grammar expressed in
35430378
JD
479BNF is a context-free grammar. The input to Bison is
480essentially machine-readable BNF.
bfa74976 481
6f04ee6c
JD
482@cindex LALR grammars
483@cindex IELR grammars
484@cindex LR grammars
485There are various important subclasses of context-free grammars. Although
486it can handle almost all context-free grammars, Bison is optimized for what
487are called LR(1) grammars. In brief, in these grammars, it must be possible
488to tell how to parse any portion of an input string with just a single token
489of lookahead. For historical reasons, Bison by default is limited by the
490additional restrictions of LALR(1), which is hard to explain simply.
5da0355a
JD
491@xref{Mysterious Conflicts}, for more information on this. As an
492experimental feature, you can escape these additional restrictions by
493requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
494Construction}, to learn how.
bfa74976 495
35430378
JD
496@cindex GLR parsing
497@cindex generalized LR (GLR) parsing
676385e2 498@cindex ambiguous grammars
9d9b8b70 499@cindex nondeterministic parsing
9501dc6e 500
35430378 501Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
502roughly that the next grammar rule to apply at any point in the input is
503uniquely determined by the preceding input and a fixed, finite portion
742e4900 504(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 505grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 506apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 507grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 508lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 509With the proper declarations, Bison is also able to parse these more
35430378
JD
510general context-free grammars, using a technique known as GLR
511parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
512are able to handle any context-free grammar for which the number of
513possible parses of any given string is finite.
676385e2 514
bfa74976
RS
515@cindex symbols (abstract)
516@cindex token
517@cindex syntactic grouping
518@cindex grouping, syntactic
9501dc6e
AD
519In the formal grammatical rules for a language, each kind of syntactic
520unit or grouping is named by a @dfn{symbol}. Those which are built by
521grouping smaller constructs according to grammatical rules are called
bfa74976
RS
522@dfn{nonterminal symbols}; those which can't be subdivided are called
523@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
524corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 525corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
526
527We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
528nonterminal, mean. The tokens of C are identifiers, constants (numeric
529and string), and the various keywords, arithmetic operators and
530punctuation marks. So the terminal symbols of a grammar for C include
531`identifier', `number', `string', plus one symbol for each keyword,
532operator or punctuation mark: `if', `return', `const', `static', `int',
533`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
534(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
535lexicography, not grammar.)
536
537Here is a simple C function subdivided into tokens:
538
9edcd895
AD
539@ifinfo
540@example
541int /* @r{keyword `int'} */
14d4662b 542square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
543 @r{identifier, close-paren} */
544@{ /* @r{open-brace} */
aa08666d
AD
545 return x * x; /* @r{keyword `return', identifier, asterisk,}
546 @r{identifier, semicolon} */
9edcd895
AD
547@} /* @r{close-brace} */
548@end example
549@end ifinfo
550@ifnotinfo
bfa74976
RS
551@example
552int /* @r{keyword `int'} */
14d4662b 553square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 554@{ /* @r{open-brace} */
9edcd895 555 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
556@} /* @r{close-brace} */
557@end example
9edcd895 558@end ifnotinfo
bfa74976
RS
559
560The syntactic groupings of C include the expression, the statement, the
561declaration, and the function definition. These are represented in the
562grammar of C by nonterminal symbols `expression', `statement',
563`declaration' and `function definition'. The full grammar uses dozens of
564additional language constructs, each with its own nonterminal symbol, in
565order to express the meanings of these four. The example above is a
566function definition; it contains one declaration, and one statement. In
567the statement, each @samp{x} is an expression and so is @samp{x * x}.
568
569Each nonterminal symbol must have grammatical rules showing how it is made
570out of simpler constructs. For example, one kind of C statement is the
571@code{return} statement; this would be described with a grammar rule which
572reads informally as follows:
573
574@quotation
575A `statement' can be made of a `return' keyword, an `expression' and a
576`semicolon'.
577@end quotation
578
579@noindent
580There would be many other rules for `statement', one for each kind of
581statement in C.
582
583@cindex start symbol
584One nonterminal symbol must be distinguished as the special one which
585defines a complete utterance in the language. It is called the @dfn{start
586symbol}. In a compiler, this means a complete input program. In the C
587language, the nonterminal symbol `sequence of definitions and declarations'
588plays this role.
589
590For example, @samp{1 + 2} is a valid C expression---a valid part of a C
591program---but it is not valid as an @emph{entire} C program. In the
592context-free grammar of C, this follows from the fact that `expression' is
593not the start symbol.
594
595The Bison parser reads a sequence of tokens as its input, and groups the
596tokens using the grammar rules. If the input is valid, the end result is
597that the entire token sequence reduces to a single grouping whose symbol is
598the grammar's start symbol. If we use a grammar for C, the entire input
599must be a `sequence of definitions and declarations'. If not, the parser
600reports a syntax error.
601
342b8b6e 602@node Grammar in Bison
bfa74976
RS
603@section From Formal Rules to Bison Input
604@cindex Bison grammar
605@cindex grammar, Bison
606@cindex formal grammar
607
608A formal grammar is a mathematical construct. To define the language
609for Bison, you must write a file expressing the grammar in Bison syntax:
610a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
611
612A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 613as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
614in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
615
616The Bison representation for a terminal symbol is also called a @dfn{token
617type}. Token types as well can be represented as C-like identifiers. By
618convention, these identifiers should be upper case to distinguish them from
619nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
620@code{RETURN}. A terminal symbol that stands for a particular keyword in
621the language should be named after that keyword converted to upper case.
622The terminal symbol @code{error} is reserved for error recovery.
931c7513 623@xref{Symbols}.
bfa74976
RS
624
625A terminal symbol can also be represented as a character literal, just like
626a C character constant. You should do this whenever a token is just a
627single character (parenthesis, plus-sign, etc.): use that same character in
628a literal as the terminal symbol for that token.
629
931c7513
RS
630A third way to represent a terminal symbol is with a C string constant
631containing several characters. @xref{Symbols}, for more information.
632
bfa74976
RS
633The grammar rules also have an expression in Bison syntax. For example,
634here is the Bison rule for a C @code{return} statement. The semicolon in
635quotes is a literal character token, representing part of the C syntax for
636the statement; the naked semicolon, and the colon, are Bison punctuation
637used in every rule.
638
639@example
640stmt: RETURN expr ';'
641 ;
642@end example
643
644@noindent
645@xref{Rules, ,Syntax of Grammar Rules}.
646
342b8b6e 647@node Semantic Values
bfa74976
RS
648@section Semantic Values
649@cindex semantic value
650@cindex value, semantic
651
652A formal grammar selects tokens only by their classifications: for example,
653if a rule mentions the terminal symbol `integer constant', it means that
654@emph{any} integer constant is grammatically valid in that position. The
655precise value of the constant is irrelevant to how to parse the input: if
656@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 657grammatical.
bfa74976
RS
658
659But the precise value is very important for what the input means once it is
660parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6613989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
662has both a token type and a @dfn{semantic value}. @xref{Semantics,
663,Defining Language Semantics},
bfa74976
RS
664for details.
665
666The token type is a terminal symbol defined in the grammar, such as
667@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
668you need to know to decide where the token may validly appear and how to
669group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 670except their types.
bfa74976
RS
671
672The semantic value has all the rest of the information about the
673meaning of the token, such as the value of an integer, or the name of an
674identifier. (A token such as @code{','} which is just punctuation doesn't
675need to have any semantic value.)
676
677For example, an input token might be classified as token type
678@code{INTEGER} and have the semantic value 4. Another input token might
679have the same token type @code{INTEGER} but value 3989. When a grammar
680rule says that @code{INTEGER} is allowed, either of these tokens is
681acceptable because each is an @code{INTEGER}. When the parser accepts the
682token, it keeps track of the token's semantic value.
683
684Each grouping can also have a semantic value as well as its nonterminal
685symbol. For example, in a calculator, an expression typically has a
686semantic value that is a number. In a compiler for a programming
687language, an expression typically has a semantic value that is a tree
688structure describing the meaning of the expression.
689
342b8b6e 690@node Semantic Actions
bfa74976
RS
691@section Semantic Actions
692@cindex semantic actions
693@cindex actions, semantic
694
695In order to be useful, a program must do more than parse input; it must
696also produce some output based on the input. In a Bison grammar, a grammar
697rule can have an @dfn{action} made up of C statements. Each time the
698parser recognizes a match for that rule, the action is executed.
699@xref{Actions}.
13863333 700
bfa74976
RS
701Most of the time, the purpose of an action is to compute the semantic value
702of the whole construct from the semantic values of its parts. For example,
703suppose we have a rule which says an expression can be the sum of two
704expressions. When the parser recognizes such a sum, each of the
705subexpressions has a semantic value which describes how it was built up.
706The action for this rule should create a similar sort of value for the
707newly recognized larger expression.
708
709For example, here is a rule that says an expression can be the sum of
710two subexpressions:
711
712@example
713expr: expr '+' expr @{ $$ = $1 + $3; @}
714 ;
715@end example
716
717@noindent
718The action says how to produce the semantic value of the sum expression
719from the values of the two subexpressions.
720
676385e2 721@node GLR Parsers
35430378
JD
722@section Writing GLR Parsers
723@cindex GLR parsing
724@cindex generalized LR (GLR) parsing
676385e2
PH
725@findex %glr-parser
726@cindex conflicts
727@cindex shift/reduce conflicts
fa7e68c3 728@cindex reduce/reduce conflicts
676385e2 729
34a6c2d1 730In some grammars, Bison's deterministic
35430378 731LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
732certain grammar rule at a given point. That is, it may not be able to
733decide (on the basis of the input read so far) which of two possible
734reductions (applications of a grammar rule) applies, or whether to apply
735a reduction or read more of the input and apply a reduction later in the
736input. These are known respectively as @dfn{reduce/reduce} conflicts
737(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
738(@pxref{Shift/Reduce}).
739
35430378 740To use a grammar that is not easily modified to be LR(1), a
9501dc6e 741more general parsing algorithm is sometimes necessary. If you include
676385e2 742@code{%glr-parser} among the Bison declarations in your file
35430378
JD
743(@pxref{Grammar Outline}), the result is a Generalized LR
744(GLR) parser. These parsers handle Bison grammars that
9501dc6e 745contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 746declarations) identically to deterministic parsers. However, when
9501dc6e 747faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 748GLR parsers use the simple expedient of doing both,
9501dc6e
AD
749effectively cloning the parser to follow both possibilities. Each of
750the resulting parsers can again split, so that at any given time, there
751can be any number of possible parses being explored. The parsers
676385e2
PH
752proceed in lockstep; that is, all of them consume (shift) a given input
753symbol before any of them proceed to the next. Each of the cloned
754parsers eventually meets one of two possible fates: either it runs into
755a parsing error, in which case it simply vanishes, or it merges with
756another parser, because the two of them have reduced the input to an
757identical set of symbols.
758
759During the time that there are multiple parsers, semantic actions are
760recorded, but not performed. When a parser disappears, its recorded
761semantic actions disappear as well, and are never performed. When a
762reduction makes two parsers identical, causing them to merge, Bison
763records both sets of semantic actions. Whenever the last two parsers
764merge, reverting to the single-parser case, Bison resolves all the
765outstanding actions either by precedences given to the grammar rules
766involved, or by performing both actions, and then calling a designated
767user-defined function on the resulting values to produce an arbitrary
768merged result.
769
fa7e68c3 770@menu
35430378
JD
771* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
772* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 773* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 774* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
775@end menu
776
777@node Simple GLR Parsers
35430378
JD
778@subsection Using GLR on Unambiguous Grammars
779@cindex GLR parsing, unambiguous grammars
780@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
781@findex %glr-parser
782@findex %expect-rr
783@cindex conflicts
784@cindex reduce/reduce conflicts
785@cindex shift/reduce conflicts
786
35430378
JD
787In the simplest cases, you can use the GLR algorithm
788to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 789Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
790
791Consider a problem that
792arises in the declaration of enumerated and subrange types in the
793programming language Pascal. Here are some examples:
794
795@example
796type subrange = lo .. hi;
797type enum = (a, b, c);
798@end example
799
800@noindent
801The original language standard allows only numeric
802literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 803and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80410206) and many other
805Pascal implementations allow arbitrary expressions there. This gives
806rise to the following situation, containing a superfluous pair of
807parentheses:
808
809@example
810type subrange = (a) .. b;
811@end example
812
813@noindent
814Compare this to the following declaration of an enumerated
815type with only one value:
816
817@example
818type enum = (a);
819@end example
820
821@noindent
822(These declarations are contrived, but they are syntactically
823valid, and more-complicated cases can come up in practical programs.)
824
825These two declarations look identical until the @samp{..} token.
35430378 826With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
827possible to decide between the two forms when the identifier
828@samp{a} is parsed. It is, however, desirable
829for a parser to decide this, since in the latter case
830@samp{a} must become a new identifier to represent the enumeration
831value, while in the former case @samp{a} must be evaluated with its
832current meaning, which may be a constant or even a function call.
833
834You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
835to be resolved later, but this typically requires substantial
836contortions in both semantic actions and large parts of the
837grammar, where the parentheses are nested in the recursive rules for
838expressions.
839
840You might think of using the lexer to distinguish between the two
841forms by returning different tokens for currently defined and
842undefined identifiers. But if these declarations occur in a local
843scope, and @samp{a} is defined in an outer scope, then both forms
844are possible---either locally redefining @samp{a}, or using the
845value of @samp{a} from the outer scope. So this approach cannot
846work.
847
e757bb10 848A simple solution to this problem is to declare the parser to
35430378
JD
849use the GLR algorithm.
850When the GLR parser reaches the critical state, it
fa7e68c3
PE
851merely splits into two branches and pursues both syntax rules
852simultaneously. Sooner or later, one of them runs into a parsing
853error. If there is a @samp{..} token before the next
854@samp{;}, the rule for enumerated types fails since it cannot
855accept @samp{..} anywhere; otherwise, the subrange type rule
856fails since it requires a @samp{..} token. So one of the branches
857fails silently, and the other one continues normally, performing
858all the intermediate actions that were postponed during the split.
859
860If the input is syntactically incorrect, both branches fail and the parser
861reports a syntax error as usual.
862
863The effect of all this is that the parser seems to ``guess'' the
864correct branch to take, or in other words, it seems to use more
35430378
JD
865lookahead than the underlying LR(1) algorithm actually allows
866for. In this example, LR(2) would suffice, but also some cases
867that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 868
35430378 869In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
870and the current Bison parser even takes exponential time and space
871for some grammars. In practice, this rarely happens, and for many
872grammars it is possible to prove that it cannot happen.
873The present example contains only one conflict between two
874rules, and the type-declaration context containing the conflict
875cannot be nested. So the number of
876branches that can exist at any time is limited by the constant 2,
877and the parsing time is still linear.
878
879Here is a Bison grammar corresponding to the example above. It
880parses a vastly simplified form of Pascal type declarations.
881
882@example
883%token TYPE DOTDOT ID
884
885@group
886%left '+' '-'
887%left '*' '/'
888@end group
889
890%%
891
892@group
893type_decl : TYPE ID '=' type ';'
894 ;
895@end group
896
897@group
898type : '(' id_list ')'
899 | expr DOTDOT expr
900 ;
901@end group
902
903@group
904id_list : ID
905 | id_list ',' ID
906 ;
907@end group
908
909@group
910expr : '(' expr ')'
911 | expr '+' expr
912 | expr '-' expr
913 | expr '*' expr
914 | expr '/' expr
915 | ID
916 ;
917@end group
918@end example
919
35430378 920When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
921about one reduce/reduce conflict. In the conflicting situation the
922parser chooses one of the alternatives, arbitrarily the one
923declared first. Therefore the following correct input is not
924recognized:
925
926@example
927type t = (a) .. b;
928@end example
929
35430378 930The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
931to be silent about the one known reduce/reduce conflict, by adding
932these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
933@samp{%%}):
934
935@example
936%glr-parser
937%expect-rr 1
938@end example
939
940@noindent
941No change in the grammar itself is required. Now the
942parser recognizes all valid declarations, according to the
943limited syntax above, transparently. In fact, the user does not even
944notice when the parser splits.
945
35430378 946So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
947almost without disadvantages. Even in simple cases like this, however,
948there are at least two potential problems to beware. First, always
35430378
JD
949analyze the conflicts reported by Bison to make sure that GLR
950splitting is only done where it is intended. A GLR parser
f8e1c9e5 951splitting inadvertently may cause problems less obvious than an
35430378 952LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
953conflict. Second, consider interactions with the lexer (@pxref{Semantic
954Tokens}) with great care. Since a split parser consumes tokens without
955performing any actions during the split, the lexer cannot obtain
956information via parser actions. Some cases of lexer interactions can be
35430378 957eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
958lexer to the parser. You must check the remaining cases for
959correctness.
960
961In our example, it would be safe for the lexer to return tokens based on
962their current meanings in some symbol table, because no new symbols are
963defined in the middle of a type declaration. Though it is possible for
964a parser to define the enumeration constants as they are parsed, before
965the type declaration is completed, it actually makes no difference since
966they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
967
968@node Merging GLR Parses
35430378
JD
969@subsection Using GLR to Resolve Ambiguities
970@cindex GLR parsing, ambiguous grammars
971@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
972@findex %dprec
973@findex %merge
974@cindex conflicts
975@cindex reduce/reduce conflicts
976
2a8d363a 977Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
978
979@example
980%@{
38a92d50
PE
981 #include <stdio.h>
982 #define YYSTYPE char const *
983 int yylex (void);
984 void yyerror (char const *);
676385e2
PH
985%@}
986
987%token TYPENAME ID
988
989%right '='
990%left '+'
991
992%glr-parser
993
994%%
995
fae437e8 996prog :
676385e2
PH
997 | prog stmt @{ printf ("\n"); @}
998 ;
999
1000stmt : expr ';' %dprec 1
1001 | decl %dprec 2
1002 ;
1003
2a8d363a 1004expr : ID @{ printf ("%s ", $$); @}
fae437e8 1005 | TYPENAME '(' expr ')'
2a8d363a
AD
1006 @{ printf ("%s <cast> ", $1); @}
1007 | expr '+' expr @{ printf ("+ "); @}
1008 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1009 ;
1010
fae437e8 1011decl : TYPENAME declarator ';'
2a8d363a 1012 @{ printf ("%s <declare> ", $1); @}
676385e2 1013 | TYPENAME declarator '=' expr ';'
2a8d363a 1014 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1015 ;
1016
2a8d363a 1017declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1018 | '(' declarator ')'
1019 ;
1020@end example
1021
1022@noindent
1023This models a problematic part of the C++ grammar---the ambiguity between
1024certain declarations and statements. For example,
1025
1026@example
1027T (x) = y+z;
1028@end example
1029
1030@noindent
1031parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1032(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1033@samp{x} as an @code{ID}).
676385e2 1034Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1035@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1036time it encounters @code{x} in the example above. Since this is a
35430378 1037GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1038each choice of resolving the reduce/reduce conflict.
1039Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1040however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1041ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1042the other reduces @code{stmt : decl}, after which both parsers are in an
1043identical state: they've seen @samp{prog stmt} and have the same unprocessed
1044input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1045
35430378 1046At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1047grammar of how to choose between the competing parses.
1048In the example above, the two @code{%dprec}
e757bb10 1049declarations specify that Bison is to give precedence
fa7e68c3 1050to the parse that interprets the example as a
676385e2
PH
1051@code{decl}, which implies that @code{x} is a declarator.
1052The parser therefore prints
1053
1054@example
fae437e8 1055"x" y z + T <init-declare>
676385e2
PH
1056@end example
1057
fa7e68c3
PE
1058The @code{%dprec} declarations only come into play when more than one
1059parse survives. Consider a different input string for this parser:
676385e2
PH
1060
1061@example
1062T (x) + y;
1063@end example
1064
1065@noindent
35430378 1066This is another example of using GLR to parse an unambiguous
fa7e68c3 1067construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1068Here, there is no ambiguity (this cannot be parsed as a declaration).
1069However, at the time the Bison parser encounters @code{x}, it does not
1070have enough information to resolve the reduce/reduce conflict (again,
1071between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1072case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1073into two, one assuming that @code{x} is an @code{expr}, and the other
1074assuming @code{x} is a @code{declarator}. The second of these parsers
1075then vanishes when it sees @code{+}, and the parser prints
1076
1077@example
fae437e8 1078x T <cast> y +
676385e2
PH
1079@end example
1080
1081Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1082the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1083actions of the two possible parsers, rather than choosing one over the
1084other. To do so, you could change the declaration of @code{stmt} as
1085follows:
1086
1087@example
1088stmt : expr ';' %merge <stmtMerge>
1089 | decl %merge <stmtMerge>
1090 ;
1091@end example
1092
1093@noindent
676385e2
PH
1094and define the @code{stmtMerge} function as:
1095
1096@example
38a92d50
PE
1097static YYSTYPE
1098stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1099@{
1100 printf ("<OR> ");
1101 return "";
1102@}
1103@end example
1104
1105@noindent
1106with an accompanying forward declaration
1107in the C declarations at the beginning of the file:
1108
1109@example
1110%@{
38a92d50 1111 #define YYSTYPE char const *
676385e2
PH
1112 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1113%@}
1114@end example
1115
1116@noindent
fa7e68c3
PE
1117With these declarations, the resulting parser parses the first example
1118as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1119
1120@example
fae437e8 1121"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1122@end example
1123
fa7e68c3 1124Bison requires that all of the
e757bb10 1125productions that participate in any particular merge have identical
fa7e68c3
PE
1126@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1127and the parser will report an error during any parse that results in
1128the offending merge.
9501dc6e 1129
32c29292
JD
1130@node GLR Semantic Actions
1131@subsection GLR Semantic Actions
1132
1133@cindex deferred semantic actions
1134By definition, a deferred semantic action is not performed at the same time as
1135the associated reduction.
1136This raises caveats for several Bison features you might use in a semantic
35430378 1137action in a GLR parser.
32c29292
JD
1138
1139@vindex yychar
35430378 1140@cindex GLR parsers and @code{yychar}
32c29292 1141@vindex yylval
35430378 1142@cindex GLR parsers and @code{yylval}
32c29292 1143@vindex yylloc
35430378 1144@cindex GLR parsers and @code{yylloc}
32c29292 1145In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1146the lookahead token present at the time of the associated reduction.
32c29292
JD
1147After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1148you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1149lookahead token's semantic value and location, if any.
32c29292
JD
1150In a nondeferred semantic action, you can also modify any of these variables to
1151influence syntax analysis.
742e4900 1152@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1153
1154@findex yyclearin
35430378 1155@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1156In a deferred semantic action, it's too late to influence syntax analysis.
1157In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1158shallow copies of the values they had at the time of the associated reduction.
1159For this reason alone, modifying them is dangerous.
1160Moreover, the result of modifying them is undefined and subject to change with
1161future versions of Bison.
1162For example, if a semantic action might be deferred, you should never write it
1163to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1164memory referenced by @code{yylval}.
1165
1166@findex YYERROR
35430378 1167@cindex GLR parsers and @code{YYERROR}
32c29292 1168Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1169(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1170initiate error recovery.
35430378 1171During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1172the same as its effect in a deterministic parser.
32c29292
JD
1173In a deferred semantic action, its effect is undefined.
1174@c The effect is probably a syntax error at the split point.
1175
8710fc41 1176Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1177describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1178
fa7e68c3 1179@node Compiler Requirements
35430378 1180@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1181@cindex @code{inline}
35430378 1182@cindex GLR parsers and @code{inline}
fa7e68c3 1183
35430378 1184The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1185later. In addition, they use the @code{inline} keyword, which is not
1186C89, but is C99 and is a common extension in pre-C99 compilers. It is
1187up to the user of these parsers to handle
9501dc6e
AD
1188portability issues. For instance, if using Autoconf and the Autoconf
1189macro @code{AC_C_INLINE}, a mere
1190
1191@example
1192%@{
38a92d50 1193 #include <config.h>
9501dc6e
AD
1194%@}
1195@end example
1196
1197@noindent
1198will suffice. Otherwise, we suggest
1199
1200@example
1201%@{
38a92d50
PE
1202 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1203 #define inline
1204 #endif
9501dc6e
AD
1205%@}
1206@end example
676385e2 1207
342b8b6e 1208@node Locations Overview
847bf1f5
AD
1209@section Locations
1210@cindex location
95923bd6
AD
1211@cindex textual location
1212@cindex location, textual
847bf1f5
AD
1213
1214Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1215and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1216the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1217Bison provides a mechanism for handling these locations.
1218
72d2299c 1219Each token has a semantic value. In a similar fashion, each token has an
7404cdf3
JD
1220associated location, but the type of locations is the same for all tokens
1221and groupings. Moreover, the output parser is equipped with a default data
1222structure for storing locations (@pxref{Tracking Locations}, for more
1223details).
847bf1f5
AD
1224
1225Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1226set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1227is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1228@code{@@3}.
1229
1230When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1231of its left hand side (@pxref{Actions}). In the same way, another default
1232action is used for locations. However, the action for locations is general
847bf1f5 1233enough for most cases, meaning there is usually no need to describe for each
72d2299c 1234rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1235grouping, the default behavior of the output parser is to take the beginning
1236of the first symbol, and the end of the last symbol.
1237
342b8b6e 1238@node Bison Parser
9913d6e4 1239@section Bison Output: the Parser Implementation File
bfa74976
RS
1240@cindex Bison parser
1241@cindex Bison utility
1242@cindex lexical analyzer, purpose
1243@cindex parser
1244
9913d6e4
JD
1245When you run Bison, you give it a Bison grammar file as input. The
1246most important output is a C source file that implements a parser for
1247the language described by the grammar. This parser is called a
1248@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1249implementation file}. Keep in mind that the Bison utility and the
1250Bison parser are two distinct programs: the Bison utility is a program
1251whose output is the Bison parser implementation file that becomes part
1252of your program.
bfa74976
RS
1253
1254The job of the Bison parser is to group tokens into groupings according to
1255the grammar rules---for example, to build identifiers and operators into
1256expressions. As it does this, it runs the actions for the grammar rules it
1257uses.
1258
704a47c4
AD
1259The tokens come from a function called the @dfn{lexical analyzer} that
1260you must supply in some fashion (such as by writing it in C). The Bison
1261parser calls the lexical analyzer each time it wants a new token. It
1262doesn't know what is ``inside'' the tokens (though their semantic values
1263may reflect this). Typically the lexical analyzer makes the tokens by
1264parsing characters of text, but Bison does not depend on this.
1265@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1266
9913d6e4
JD
1267The Bison parser implementation file is C code which defines a
1268function named @code{yyparse} which implements that grammar. This
1269function does not make a complete C program: you must supply some
1270additional functions. One is the lexical analyzer. Another is an
1271error-reporting function which the parser calls to report an error.
1272In addition, a complete C program must start with a function called
1273@code{main}; you have to provide this, and arrange for it to call
1274@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1275C-Language Interface}.
bfa74976 1276
f7ab6a50 1277Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1278write, all symbols defined in the Bison parser implementation file
1279itself begin with @samp{yy} or @samp{YY}. This includes interface
1280functions such as the lexical analyzer function @code{yylex}, the
1281error reporting function @code{yyerror} and the parser function
1282@code{yyparse} itself. This also includes numerous identifiers used
1283for internal purposes. Therefore, you should avoid using C
1284identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1285file except for the ones defined in this manual. Also, you should
1286avoid using the C identifiers @samp{malloc} and @samp{free} for
1287anything other than their usual meanings.
1288
1289In some cases the Bison parser implementation file includes system
1290headers, and in those cases your code should respect the identifiers
1291reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1292@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1293included as needed to declare memory allocators and related types.
1294@code{<libintl.h>} is included if message translation is in use
1295(@pxref{Internationalization}). Other system headers may be included
1296if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1297,Tracing Your Parser}).
7093d0f5 1298
342b8b6e 1299@node Stages
bfa74976
RS
1300@section Stages in Using Bison
1301@cindex stages in using Bison
1302@cindex using Bison
1303
1304The actual language-design process using Bison, from grammar specification
1305to a working compiler or interpreter, has these parts:
1306
1307@enumerate
1308@item
1309Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1310(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1311in the language, describe the action that is to be taken when an
1312instance of that rule is recognized. The action is described by a
1313sequence of C statements.
bfa74976
RS
1314
1315@item
704a47c4
AD
1316Write a lexical analyzer to process input and pass tokens to the parser.
1317The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1318Lexical Analyzer Function @code{yylex}}). It could also be produced
1319using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1320
1321@item
1322Write a controlling function that calls the Bison-produced parser.
1323
1324@item
1325Write error-reporting routines.
1326@end enumerate
1327
1328To turn this source code as written into a runnable program, you
1329must follow these steps:
1330
1331@enumerate
1332@item
1333Run Bison on the grammar to produce the parser.
1334
1335@item
1336Compile the code output by Bison, as well as any other source files.
1337
1338@item
1339Link the object files to produce the finished product.
1340@end enumerate
1341
342b8b6e 1342@node Grammar Layout
bfa74976
RS
1343@section The Overall Layout of a Bison Grammar
1344@cindex grammar file
1345@cindex file format
1346@cindex format of grammar file
1347@cindex layout of Bison grammar
1348
1349The input file for the Bison utility is a @dfn{Bison grammar file}. The
1350general form of a Bison grammar file is as follows:
1351
1352@example
1353%@{
08e49d20 1354@var{Prologue}
bfa74976
RS
1355%@}
1356
1357@var{Bison declarations}
1358
1359%%
1360@var{Grammar rules}
1361%%
08e49d20 1362@var{Epilogue}
bfa74976
RS
1363@end example
1364
1365@noindent
1366The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1367in every Bison grammar file to separate the sections.
1368
72d2299c 1369The prologue may define types and variables used in the actions. You can
342b8b6e 1370also use preprocessor commands to define macros used there, and use
bfa74976 1371@code{#include} to include header files that do any of these things.
38a92d50
PE
1372You need to declare the lexical analyzer @code{yylex} and the error
1373printer @code{yyerror} here, along with any other global identifiers
1374used by the actions in the grammar rules.
bfa74976
RS
1375
1376The Bison declarations declare the names of the terminal and nonterminal
1377symbols, and may also describe operator precedence and the data types of
1378semantic values of various symbols.
1379
1380The grammar rules define how to construct each nonterminal symbol from its
1381parts.
1382
38a92d50
PE
1383The epilogue can contain any code you want to use. Often the
1384definitions of functions declared in the prologue go here. In a
1385simple program, all the rest of the program can go here.
bfa74976 1386
342b8b6e 1387@node Examples
bfa74976
RS
1388@chapter Examples
1389@cindex simple examples
1390@cindex examples, simple
1391
1392Now we show and explain three sample programs written using Bison: a
1393reverse polish notation calculator, an algebraic (infix) notation
1394calculator, and a multi-function calculator. All three have been tested
1395under BSD Unix 4.3; each produces a usable, though limited, interactive
1396desk-top calculator.
1397
1398These examples are simple, but Bison grammars for real programming
aa08666d
AD
1399languages are written the same way. You can copy these examples into a
1400source file to try them.
bfa74976
RS
1401
1402@menu
f56274a8
DJ
1403* RPN Calc:: Reverse polish notation calculator;
1404 a first example with no operator precedence.
1405* Infix Calc:: Infix (algebraic) notation calculator.
1406 Operator precedence is introduced.
bfa74976 1407* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1408* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1409* Multi-function Calc:: Calculator with memory and trig functions.
1410 It uses multiple data-types for semantic values.
1411* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1412@end menu
1413
342b8b6e 1414@node RPN Calc
bfa74976
RS
1415@section Reverse Polish Notation Calculator
1416@cindex reverse polish notation
1417@cindex polish notation calculator
1418@cindex @code{rpcalc}
1419@cindex calculator, simple
1420
1421The first example is that of a simple double-precision @dfn{reverse polish
1422notation} calculator (a calculator using postfix operators). This example
1423provides a good starting point, since operator precedence is not an issue.
1424The second example will illustrate how operator precedence is handled.
1425
1426The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1427@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1428
1429@menu
f56274a8
DJ
1430* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1431* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1432* Rpcalc Lexer:: The lexical analyzer.
1433* Rpcalc Main:: The controlling function.
1434* Rpcalc Error:: The error reporting function.
1435* Rpcalc Generate:: Running Bison on the grammar file.
1436* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1437@end menu
1438
f56274a8 1439@node Rpcalc Declarations
bfa74976
RS
1440@subsection Declarations for @code{rpcalc}
1441
1442Here are the C and Bison declarations for the reverse polish notation
1443calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1444
1445@example
72d2299c 1446/* Reverse polish notation calculator. */
bfa74976
RS
1447
1448%@{
38a92d50
PE
1449 #define YYSTYPE double
1450 #include <math.h>
1451 int yylex (void);
1452 void yyerror (char const *);
bfa74976
RS
1453%@}
1454
1455%token NUM
1456
72d2299c 1457%% /* Grammar rules and actions follow. */
bfa74976
RS
1458@end example
1459
75f5aaea 1460The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1461preprocessor directives and two forward declarations.
bfa74976
RS
1462
1463The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1464specifying the C data type for semantic values of both tokens and
1465groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1466Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1467don't define it, @code{int} is the default. Because we specify
1468@code{double}, each token and each expression has an associated value,
1469which is a floating point number.
bfa74976
RS
1470
1471The @code{#include} directive is used to declare the exponentiation
1472function @code{pow}.
1473
38a92d50
PE
1474The forward declarations for @code{yylex} and @code{yyerror} are
1475needed because the C language requires that functions be declared
1476before they are used. These functions will be defined in the
1477epilogue, but the parser calls them so they must be declared in the
1478prologue.
1479
704a47c4
AD
1480The second section, Bison declarations, provides information to Bison
1481about the token types (@pxref{Bison Declarations, ,The Bison
1482Declarations Section}). Each terminal symbol that is not a
1483single-character literal must be declared here. (Single-character
bfa74976
RS
1484literals normally don't need to be declared.) In this example, all the
1485arithmetic operators are designated by single-character literals, so the
1486only terminal symbol that needs to be declared is @code{NUM}, the token
1487type for numeric constants.
1488
342b8b6e 1489@node Rpcalc Rules
bfa74976
RS
1490@subsection Grammar Rules for @code{rpcalc}
1491
1492Here are the grammar rules for the reverse polish notation calculator.
1493
1494@example
1495input: /* empty */
1496 | input line
1497;
1498
1499line: '\n'
18b519c0 1500 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1501;
1502
18b519c0
AD
1503exp: NUM @{ $$ = $1; @}
1504 | exp exp '+' @{ $$ = $1 + $2; @}
1505 | exp exp '-' @{ $$ = $1 - $2; @}
1506 | exp exp '*' @{ $$ = $1 * $2; @}
1507 | exp exp '/' @{ $$ = $1 / $2; @}
1508 /* Exponentiation */
1509 | exp exp '^' @{ $$ = pow ($1, $2); @}
1510 /* Unary minus */
1511 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1512;
1513%%
1514@end example
1515
1516The groupings of the rpcalc ``language'' defined here are the expression
1517(given the name @code{exp}), the line of input (@code{line}), and the
1518complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1519symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1520which is read as ``or''. The following sections explain what these rules
1521mean.
1522
1523The semantics of the language is determined by the actions taken when a
1524grouping is recognized. The actions are the C code that appears inside
1525braces. @xref{Actions}.
1526
1527You must specify these actions in C, but Bison provides the means for
1528passing semantic values between the rules. In each action, the
1529pseudo-variable @code{$$} stands for the semantic value for the grouping
1530that the rule is going to construct. Assigning a value to @code{$$} is the
1531main job of most actions. The semantic values of the components of the
1532rule are referred to as @code{$1}, @code{$2}, and so on.
1533
1534@menu
13863333
AD
1535* Rpcalc Input::
1536* Rpcalc Line::
1537* Rpcalc Expr::
bfa74976
RS
1538@end menu
1539
342b8b6e 1540@node Rpcalc Input
bfa74976
RS
1541@subsubsection Explanation of @code{input}
1542
1543Consider the definition of @code{input}:
1544
1545@example
1546input: /* empty */
1547 | input line
1548;
1549@end example
1550
1551This definition reads as follows: ``A complete input is either an empty
1552string, or a complete input followed by an input line''. Notice that
1553``complete input'' is defined in terms of itself. This definition is said
1554to be @dfn{left recursive} since @code{input} appears always as the
1555leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1556
1557The first alternative is empty because there are no symbols between the
1558colon and the first @samp{|}; this means that @code{input} can match an
1559empty string of input (no tokens). We write the rules this way because it
1560is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1561It's conventional to put an empty alternative first and write the comment
1562@samp{/* empty */} in it.
1563
1564The second alternate rule (@code{input line}) handles all nontrivial input.
1565It means, ``After reading any number of lines, read one more line if
1566possible.'' The left recursion makes this rule into a loop. Since the
1567first alternative matches empty input, the loop can be executed zero or
1568more times.
1569
1570The parser function @code{yyparse} continues to process input until a
1571grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1572input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1573
342b8b6e 1574@node Rpcalc Line
bfa74976
RS
1575@subsubsection Explanation of @code{line}
1576
1577Now consider the definition of @code{line}:
1578
1579@example
1580line: '\n'
1581 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1582;
1583@end example
1584
1585The first alternative is a token which is a newline character; this means
1586that rpcalc accepts a blank line (and ignores it, since there is no
1587action). The second alternative is an expression followed by a newline.
1588This is the alternative that makes rpcalc useful. The semantic value of
1589the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1590question is the first symbol in the alternative. The action prints this
1591value, which is the result of the computation the user asked for.
1592
1593This action is unusual because it does not assign a value to @code{$$}. As
1594a consequence, the semantic value associated with the @code{line} is
1595uninitialized (its value will be unpredictable). This would be a bug if
1596that value were ever used, but we don't use it: once rpcalc has printed the
1597value of the user's input line, that value is no longer needed.
1598
342b8b6e 1599@node Rpcalc Expr
bfa74976
RS
1600@subsubsection Explanation of @code{expr}
1601
1602The @code{exp} grouping has several rules, one for each kind of expression.
1603The first rule handles the simplest expressions: those that are just numbers.
1604The second handles an addition-expression, which looks like two expressions
1605followed by a plus-sign. The third handles subtraction, and so on.
1606
1607@example
1608exp: NUM
1609 | exp exp '+' @{ $$ = $1 + $2; @}
1610 | exp exp '-' @{ $$ = $1 - $2; @}
1611 @dots{}
1612 ;
1613@end example
1614
1615We have used @samp{|} to join all the rules for @code{exp}, but we could
1616equally well have written them separately:
1617
1618@example
1619exp: NUM ;
1620exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1621exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1622 @dots{}
1623@end example
1624
1625Most of the rules have actions that compute the value of the expression in
1626terms of the value of its parts. For example, in the rule for addition,
1627@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1628the second one. The third component, @code{'+'}, has no meaningful
1629associated semantic value, but if it had one you could refer to it as
1630@code{$3}. When @code{yyparse} recognizes a sum expression using this
1631rule, the sum of the two subexpressions' values is produced as the value of
1632the entire expression. @xref{Actions}.
1633
1634You don't have to give an action for every rule. When a rule has no
1635action, Bison by default copies the value of @code{$1} into @code{$$}.
1636This is what happens in the first rule (the one that uses @code{NUM}).
1637
1638The formatting shown here is the recommended convention, but Bison does
72d2299c 1639not require it. You can add or change white space as much as you wish.
bfa74976
RS
1640For example, this:
1641
1642@example
99a9344e 1643exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1644@end example
1645
1646@noindent
1647means the same thing as this:
1648
1649@example
1650exp: NUM
1651 | exp exp '+' @{ $$ = $1 + $2; @}
1652 | @dots{}
99a9344e 1653;
bfa74976
RS
1654@end example
1655
1656@noindent
1657The latter, however, is much more readable.
1658
342b8b6e 1659@node Rpcalc Lexer
bfa74976
RS
1660@subsection The @code{rpcalc} Lexical Analyzer
1661@cindex writing a lexical analyzer
1662@cindex lexical analyzer, writing
1663
704a47c4
AD
1664The lexical analyzer's job is low-level parsing: converting characters
1665or sequences of characters into tokens. The Bison parser gets its
1666tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1667Analyzer Function @code{yylex}}.
bfa74976 1668
35430378 1669Only a simple lexical analyzer is needed for the RPN
c827f760 1670calculator. This
bfa74976
RS
1671lexical analyzer skips blanks and tabs, then reads in numbers as
1672@code{double} and returns them as @code{NUM} tokens. Any other character
1673that isn't part of a number is a separate token. Note that the token-code
1674for such a single-character token is the character itself.
1675
1676The return value of the lexical analyzer function is a numeric code which
1677represents a token type. The same text used in Bison rules to stand for
1678this token type is also a C expression for the numeric code for the type.
1679This works in two ways. If the token type is a character literal, then its
e966383b 1680numeric code is that of the character; you can use the same
bfa74976
RS
1681character literal in the lexical analyzer to express the number. If the
1682token type is an identifier, that identifier is defined by Bison as a C
1683macro whose definition is the appropriate number. In this example,
1684therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1685
1964ad8c
AD
1686The semantic value of the token (if it has one) is stored into the
1687global variable @code{yylval}, which is where the Bison parser will look
1688for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1689defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1690,Declarations for @code{rpcalc}}.)
bfa74976 1691
72d2299c
PE
1692A token type code of zero is returned if the end-of-input is encountered.
1693(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1694
1695Here is the code for the lexical analyzer:
1696
1697@example
1698@group
72d2299c 1699/* The lexical analyzer returns a double floating point
e966383b 1700 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1701 of the character read if not a number. It skips all blanks
1702 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1703
1704#include <ctype.h>
1705@end group
1706
1707@group
13863333
AD
1708int
1709yylex (void)
bfa74976
RS
1710@{
1711 int c;
1712
72d2299c 1713 /* Skip white space. */
13863333 1714 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1715 ;
1716@end group
1717@group
72d2299c 1718 /* Process numbers. */
13863333 1719 if (c == '.' || isdigit (c))
bfa74976
RS
1720 @{
1721 ungetc (c, stdin);
1722 scanf ("%lf", &yylval);
1723 return NUM;
1724 @}
1725@end group
1726@group
72d2299c 1727 /* Return end-of-input. */
13863333 1728 if (c == EOF)
bfa74976 1729 return 0;
72d2299c 1730 /* Return a single char. */
13863333 1731 return c;
bfa74976
RS
1732@}
1733@end group
1734@end example
1735
342b8b6e 1736@node Rpcalc Main
bfa74976
RS
1737@subsection The Controlling Function
1738@cindex controlling function
1739@cindex main function in simple example
1740
1741In keeping with the spirit of this example, the controlling function is
1742kept to the bare minimum. The only requirement is that it call
1743@code{yyparse} to start the process of parsing.
1744
1745@example
1746@group
13863333
AD
1747int
1748main (void)
bfa74976 1749@{
13863333 1750 return yyparse ();
bfa74976
RS
1751@}
1752@end group
1753@end example
1754
342b8b6e 1755@node Rpcalc Error
bfa74976
RS
1756@subsection The Error Reporting Routine
1757@cindex error reporting routine
1758
1759When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1760function @code{yyerror} to print an error message (usually but not
6e649e65 1761always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1762@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1763here is the definition we will use:
bfa74976
RS
1764
1765@example
1766@group
1767#include <stdio.h>
1768
38a92d50 1769/* Called by yyparse on error. */
13863333 1770void
38a92d50 1771yyerror (char const *s)
bfa74976 1772@{
4e03e201 1773 fprintf (stderr, "%s\n", s);
bfa74976
RS
1774@}
1775@end group
1776@end example
1777
1778After @code{yyerror} returns, the Bison parser may recover from the error
1779and continue parsing if the grammar contains a suitable error rule
1780(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1781have not written any error rules in this example, so any invalid input will
1782cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1783real calculator, but it is adequate for the first example.
bfa74976 1784
f56274a8 1785@node Rpcalc Generate
bfa74976
RS
1786@subsection Running Bison to Make the Parser
1787@cindex running Bison (introduction)
1788
ceed8467
AD
1789Before running Bison to produce a parser, we need to decide how to
1790arrange all the source code in one or more source files. For such a
9913d6e4
JD
1791simple example, the easiest thing is to put everything in one file,
1792the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1793@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1794(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1795
1796For a large project, you would probably have several source files, and use
1797@code{make} to arrange to recompile them.
1798
9913d6e4
JD
1799With all the source in the grammar file, you use the following command
1800to convert it into a parser implementation file:
bfa74976
RS
1801
1802@example
fa4d969f 1803bison @var{file}.y
bfa74976
RS
1804@end example
1805
1806@noindent
9913d6e4
JD
1807In this example, the grammar file is called @file{rpcalc.y} (for
1808``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1809implementation file named @file{@var{file}.tab.c}, removing the
1810@samp{.y} from the grammar file name. The parser implementation file
1811contains the source code for @code{yyparse}. The additional functions
1812in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1813copied verbatim to the parser implementation file.
bfa74976 1814
342b8b6e 1815@node Rpcalc Compile
9913d6e4 1816@subsection Compiling the Parser Implementation File
bfa74976
RS
1817@cindex compiling the parser
1818
9913d6e4 1819Here is how to compile and run the parser implementation file:
bfa74976
RS
1820
1821@example
1822@group
1823# @r{List files in current directory.}
9edcd895 1824$ @kbd{ls}
bfa74976
RS
1825rpcalc.tab.c rpcalc.y
1826@end group
1827
1828@group
1829# @r{Compile the Bison parser.}
1830# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1831$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1832@end group
1833
1834@group
1835# @r{List files again.}
9edcd895 1836$ @kbd{ls}
bfa74976
RS
1837rpcalc rpcalc.tab.c rpcalc.y
1838@end group
1839@end example
1840
1841The file @file{rpcalc} now contains the executable code. Here is an
1842example session using @code{rpcalc}.
1843
1844@example
9edcd895
AD
1845$ @kbd{rpcalc}
1846@kbd{4 9 +}
bfa74976 184713
9edcd895 1848@kbd{3 7 + 3 4 5 *+-}
bfa74976 1849-13
9edcd895 1850@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 185113
9edcd895 1852@kbd{5 6 / 4 n +}
bfa74976 1853-3.166666667
9edcd895 1854@kbd{3 4 ^} @r{Exponentiation}
bfa74976 185581
9edcd895
AD
1856@kbd{^D} @r{End-of-file indicator}
1857$
bfa74976
RS
1858@end example
1859
342b8b6e 1860@node Infix Calc
bfa74976
RS
1861@section Infix Notation Calculator: @code{calc}
1862@cindex infix notation calculator
1863@cindex @code{calc}
1864@cindex calculator, infix notation
1865
1866We now modify rpcalc to handle infix operators instead of postfix. Infix
1867notation involves the concept of operator precedence and the need for
1868parentheses nested to arbitrary depth. Here is the Bison code for
1869@file{calc.y}, an infix desk-top calculator.
1870
1871@example
38a92d50 1872/* Infix notation calculator. */
bfa74976
RS
1873
1874%@{
38a92d50
PE
1875 #define YYSTYPE double
1876 #include <math.h>
1877 #include <stdio.h>
1878 int yylex (void);
1879 void yyerror (char const *);
bfa74976
RS
1880%@}
1881
38a92d50 1882/* Bison declarations. */
bfa74976
RS
1883%token NUM
1884%left '-' '+'
1885%left '*' '/'
1886%left NEG /* negation--unary minus */
38a92d50 1887%right '^' /* exponentiation */
bfa74976 1888
38a92d50
PE
1889%% /* The grammar follows. */
1890input: /* empty */
bfa74976
RS
1891 | input line
1892;
1893
1894line: '\n'
1895 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1896;
1897
1898exp: NUM @{ $$ = $1; @}
1899 | exp '+' exp @{ $$ = $1 + $3; @}
1900 | exp '-' exp @{ $$ = $1 - $3; @}
1901 | exp '*' exp @{ $$ = $1 * $3; @}
1902 | exp '/' exp @{ $$ = $1 / $3; @}
1903 | '-' exp %prec NEG @{ $$ = -$2; @}
1904 | exp '^' exp @{ $$ = pow ($1, $3); @}
1905 | '(' exp ')' @{ $$ = $2; @}
1906;
1907%%
1908@end example
1909
1910@noindent
ceed8467
AD
1911The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1912same as before.
bfa74976
RS
1913
1914There are two important new features shown in this code.
1915
1916In the second section (Bison declarations), @code{%left} declares token
1917types and says they are left-associative operators. The declarations
1918@code{%left} and @code{%right} (right associativity) take the place of
1919@code{%token} which is used to declare a token type name without
1920associativity. (These tokens are single-character literals, which
1921ordinarily don't need to be declared. We declare them here to specify
1922the associativity.)
1923
1924Operator precedence is determined by the line ordering of the
1925declarations; the higher the line number of the declaration (lower on
1926the page or screen), the higher the precedence. Hence, exponentiation
1927has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1928by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1929Precedence}.
bfa74976 1930
704a47c4
AD
1931The other important new feature is the @code{%prec} in the grammar
1932section for the unary minus operator. The @code{%prec} simply instructs
1933Bison that the rule @samp{| '-' exp} has the same precedence as
1934@code{NEG}---in this case the next-to-highest. @xref{Contextual
1935Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1936
1937Here is a sample run of @file{calc.y}:
1938
1939@need 500
1940@example
9edcd895
AD
1941$ @kbd{calc}
1942@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19436.880952381
9edcd895 1944@kbd{-56 + 2}
bfa74976 1945-54
9edcd895 1946@kbd{3 ^ 2}
bfa74976
RS
19479
1948@end example
1949
342b8b6e 1950@node Simple Error Recovery
bfa74976
RS
1951@section Simple Error Recovery
1952@cindex error recovery, simple
1953
1954Up to this point, this manual has not addressed the issue of @dfn{error
1955recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1956error. All we have handled is error reporting with @code{yyerror}.
1957Recall that by default @code{yyparse} returns after calling
1958@code{yyerror}. This means that an erroneous input line causes the
1959calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1960
1961The Bison language itself includes the reserved word @code{error}, which
1962may be included in the grammar rules. In the example below it has
1963been added to one of the alternatives for @code{line}:
1964
1965@example
1966@group
1967line: '\n'
1968 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1969 | error '\n' @{ yyerrok; @}
1970;
1971@end group
1972@end example
1973
ceed8467 1974This addition to the grammar allows for simple error recovery in the
6e649e65 1975event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1976read, the error will be recognized by the third rule for @code{line},
1977and parsing will continue. (The @code{yyerror} function is still called
1978upon to print its message as well.) The action executes the statement
1979@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1980that error recovery is complete (@pxref{Error Recovery}). Note the
1981difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1982misprint.
bfa74976
RS
1983
1984This form of error recovery deals with syntax errors. There are other
1985kinds of errors; for example, division by zero, which raises an exception
1986signal that is normally fatal. A real calculator program must handle this
1987signal and use @code{longjmp} to return to @code{main} and resume parsing
1988input lines; it would also have to discard the rest of the current line of
1989input. We won't discuss this issue further because it is not specific to
1990Bison programs.
1991
342b8b6e
AD
1992@node Location Tracking Calc
1993@section Location Tracking Calculator: @code{ltcalc}
1994@cindex location tracking calculator
1995@cindex @code{ltcalc}
1996@cindex calculator, location tracking
1997
9edcd895
AD
1998This example extends the infix notation calculator with location
1999tracking. This feature will be used to improve the error messages. For
2000the sake of clarity, this example is a simple integer calculator, since
2001most of the work needed to use locations will be done in the lexical
72d2299c 2002analyzer.
342b8b6e
AD
2003
2004@menu
f56274a8
DJ
2005* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2006* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2007* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2008@end menu
2009
f56274a8 2010@node Ltcalc Declarations
342b8b6e
AD
2011@subsection Declarations for @code{ltcalc}
2012
9edcd895
AD
2013The C and Bison declarations for the location tracking calculator are
2014the same as the declarations for the infix notation calculator.
342b8b6e
AD
2015
2016@example
2017/* Location tracking calculator. */
2018
2019%@{
38a92d50
PE
2020 #define YYSTYPE int
2021 #include <math.h>
2022 int yylex (void);
2023 void yyerror (char const *);
342b8b6e
AD
2024%@}
2025
2026/* Bison declarations. */
2027%token NUM
2028
2029%left '-' '+'
2030%left '*' '/'
2031%left NEG
2032%right '^'
2033
38a92d50 2034%% /* The grammar follows. */
342b8b6e
AD
2035@end example
2036
9edcd895
AD
2037@noindent
2038Note there are no declarations specific to locations. Defining a data
2039type for storing locations is not needed: we will use the type provided
2040by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2041four member structure with the following integer fields:
2042@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2043@code{last_column}. By conventions, and in accordance with the GNU
2044Coding Standards and common practice, the line and column count both
2045start at 1.
342b8b6e
AD
2046
2047@node Ltcalc Rules
2048@subsection Grammar Rules for @code{ltcalc}
2049
9edcd895
AD
2050Whether handling locations or not has no effect on the syntax of your
2051language. Therefore, grammar rules for this example will be very close
2052to those of the previous example: we will only modify them to benefit
2053from the new information.
342b8b6e 2054
9edcd895
AD
2055Here, we will use locations to report divisions by zero, and locate the
2056wrong expressions or subexpressions.
342b8b6e
AD
2057
2058@example
2059@group
2060input : /* empty */
2061 | input line
2062;
2063@end group
2064
2065@group
2066line : '\n'
2067 | exp '\n' @{ printf ("%d\n", $1); @}
2068;
2069@end group
2070
2071@group
2072exp : NUM @{ $$ = $1; @}
2073 | exp '+' exp @{ $$ = $1 + $3; @}
2074 | exp '-' exp @{ $$ = $1 - $3; @}
2075 | exp '*' exp @{ $$ = $1 * $3; @}
2076@end group
342b8b6e 2077@group
9edcd895 2078 | exp '/' exp
342b8b6e
AD
2079 @{
2080 if ($3)
2081 $$ = $1 / $3;
2082 else
2083 @{
2084 $$ = 1;
9edcd895
AD
2085 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2086 @@3.first_line, @@3.first_column,
2087 @@3.last_line, @@3.last_column);
342b8b6e
AD
2088 @}
2089 @}
2090@end group
2091@group
178e123e 2092 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2093 | exp '^' exp @{ $$ = pow ($1, $3); @}
2094 | '(' exp ')' @{ $$ = $2; @}
2095@end group
2096@end example
2097
2098This code shows how to reach locations inside of semantic actions, by
2099using the pseudo-variables @code{@@@var{n}} for rule components, and the
2100pseudo-variable @code{@@$} for groupings.
2101
9edcd895
AD
2102We don't need to assign a value to @code{@@$}: the output parser does it
2103automatically. By default, before executing the C code of each action,
2104@code{@@$} is set to range from the beginning of @code{@@1} to the end
2105of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2106can be redefined (@pxref{Location Default Action, , Default Action for
2107Locations}), and for very specific rules, @code{@@$} can be computed by
2108hand.
342b8b6e
AD
2109
2110@node Ltcalc Lexer
2111@subsection The @code{ltcalc} Lexical Analyzer.
2112
9edcd895 2113Until now, we relied on Bison's defaults to enable location
72d2299c 2114tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2115able to feed the parser with the token locations, as it already does for
2116semantic values.
342b8b6e 2117
9edcd895
AD
2118To this end, we must take into account every single character of the
2119input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2120
2121@example
2122@group
2123int
2124yylex (void)
2125@{
2126 int c;
18b519c0 2127@end group
342b8b6e 2128
18b519c0 2129@group
72d2299c 2130 /* Skip white space. */
342b8b6e
AD
2131 while ((c = getchar ()) == ' ' || c == '\t')
2132 ++yylloc.last_column;
18b519c0 2133@end group
342b8b6e 2134
18b519c0 2135@group
72d2299c 2136 /* Step. */
342b8b6e
AD
2137 yylloc.first_line = yylloc.last_line;
2138 yylloc.first_column = yylloc.last_column;
2139@end group
2140
2141@group
72d2299c 2142 /* Process numbers. */
342b8b6e
AD
2143 if (isdigit (c))
2144 @{
2145 yylval = c - '0';
2146 ++yylloc.last_column;
2147 while (isdigit (c = getchar ()))
2148 @{
2149 ++yylloc.last_column;
2150 yylval = yylval * 10 + c - '0';
2151 @}
2152 ungetc (c, stdin);
2153 return NUM;
2154 @}
2155@end group
2156
72d2299c 2157 /* Return end-of-input. */
342b8b6e
AD
2158 if (c == EOF)
2159 return 0;
2160
72d2299c 2161 /* Return a single char, and update location. */
342b8b6e
AD
2162 if (c == '\n')
2163 @{
2164 ++yylloc.last_line;
2165 yylloc.last_column = 0;
2166 @}
2167 else
2168 ++yylloc.last_column;
2169 return c;
2170@}
2171@end example
2172
9edcd895
AD
2173Basically, the lexical analyzer performs the same processing as before:
2174it skips blanks and tabs, and reads numbers or single-character tokens.
2175In addition, it updates @code{yylloc}, the global variable (of type
2176@code{YYLTYPE}) containing the token's location.
342b8b6e 2177
9edcd895 2178Now, each time this function returns a token, the parser has its number
72d2299c 2179as well as its semantic value, and its location in the text. The last
9edcd895
AD
2180needed change is to initialize @code{yylloc}, for example in the
2181controlling function:
342b8b6e
AD
2182
2183@example
9edcd895 2184@group
342b8b6e
AD
2185int
2186main (void)
2187@{
2188 yylloc.first_line = yylloc.last_line = 1;
2189 yylloc.first_column = yylloc.last_column = 0;
2190 return yyparse ();
2191@}
9edcd895 2192@end group
342b8b6e
AD
2193@end example
2194
9edcd895
AD
2195Remember that computing locations is not a matter of syntax. Every
2196character must be associated to a location update, whether it is in
2197valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2198
2199@node Multi-function Calc
bfa74976
RS
2200@section Multi-Function Calculator: @code{mfcalc}
2201@cindex multi-function calculator
2202@cindex @code{mfcalc}
2203@cindex calculator, multi-function
2204
2205Now that the basics of Bison have been discussed, it is time to move on to
2206a more advanced problem. The above calculators provided only five
2207functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2208be nice to have a calculator that provides other mathematical functions such
2209as @code{sin}, @code{cos}, etc.
2210
2211It is easy to add new operators to the infix calculator as long as they are
2212only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2213back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2214adding a new operator. But we want something more flexible: built-in
2215functions whose syntax has this form:
2216
2217@example
2218@var{function_name} (@var{argument})
2219@end example
2220
2221@noindent
2222At the same time, we will add memory to the calculator, by allowing you
2223to create named variables, store values in them, and use them later.
2224Here is a sample session with the multi-function calculator:
2225
2226@example
9edcd895
AD
2227$ @kbd{mfcalc}
2228@kbd{pi = 3.141592653589}
bfa74976 22293.1415926536
9edcd895 2230@kbd{sin(pi)}
bfa74976 22310.0000000000
9edcd895 2232@kbd{alpha = beta1 = 2.3}
bfa74976 22332.3000000000
9edcd895 2234@kbd{alpha}
bfa74976 22352.3000000000
9edcd895 2236@kbd{ln(alpha)}
bfa74976 22370.8329091229
9edcd895 2238@kbd{exp(ln(beta1))}
bfa74976 22392.3000000000
9edcd895 2240$
bfa74976
RS
2241@end example
2242
2243Note that multiple assignment and nested function calls are permitted.
2244
2245@menu
f56274a8
DJ
2246* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2247* Mfcalc Rules:: Grammar rules for the calculator.
2248* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2249@end menu
2250
f56274a8 2251@node Mfcalc Declarations
bfa74976
RS
2252@subsection Declarations for @code{mfcalc}
2253
2254Here are the C and Bison declarations for the multi-function calculator.
2255
2256@smallexample
18b519c0 2257@group
bfa74976 2258%@{
38a92d50
PE
2259 #include <math.h> /* For math functions, cos(), sin(), etc. */
2260 #include "calc.h" /* Contains definition of `symrec'. */
2261 int yylex (void);
2262 void yyerror (char const *);
bfa74976 2263%@}
18b519c0
AD
2264@end group
2265@group
bfa74976 2266%union @{
38a92d50
PE
2267 double val; /* For returning numbers. */
2268 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2269@}
18b519c0 2270@end group
38a92d50
PE
2271%token <val> NUM /* Simple double precision number. */
2272%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2273%type <val> exp
2274
18b519c0 2275@group
bfa74976
RS
2276%right '='
2277%left '-' '+'
2278%left '*' '/'
38a92d50
PE
2279%left NEG /* negation--unary minus */
2280%right '^' /* exponentiation */
18b519c0 2281@end group
38a92d50 2282%% /* The grammar follows. */
bfa74976
RS
2283@end smallexample
2284
2285The above grammar introduces only two new features of the Bison language.
2286These features allow semantic values to have various data types
2287(@pxref{Multiple Types, ,More Than One Value Type}).
2288
2289The @code{%union} declaration specifies the entire list of possible types;
2290this is instead of defining @code{YYSTYPE}. The allowable types are now
2291double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2292the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2293
2294Since values can now have various types, it is necessary to associate a
2295type with each grammar symbol whose semantic value is used. These symbols
2296are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2297declarations are augmented with information about their data type (placed
2298between angle brackets).
2299
704a47c4
AD
2300The Bison construct @code{%type} is used for declaring nonterminal
2301symbols, just as @code{%token} is used for declaring token types. We
2302have not used @code{%type} before because nonterminal symbols are
2303normally declared implicitly by the rules that define them. But
2304@code{exp} must be declared explicitly so we can specify its value type.
2305@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2306
342b8b6e 2307@node Mfcalc Rules
bfa74976
RS
2308@subsection Grammar Rules for @code{mfcalc}
2309
2310Here are the grammar rules for the multi-function calculator.
2311Most of them are copied directly from @code{calc}; three rules,
2312those which mention @code{VAR} or @code{FNCT}, are new.
2313
2314@smallexample
18b519c0 2315@group
bfa74976
RS
2316input: /* empty */
2317 | input line
2318;
18b519c0 2319@end group
bfa74976 2320
18b519c0 2321@group
bfa74976
RS
2322line:
2323 '\n'
2324 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2325 | error '\n' @{ yyerrok; @}
2326;
18b519c0 2327@end group
bfa74976 2328
18b519c0 2329@group
bfa74976
RS
2330exp: NUM @{ $$ = $1; @}
2331 | VAR @{ $$ = $1->value.var; @}
2332 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2333 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2334 | exp '+' exp @{ $$ = $1 + $3; @}
2335 | exp '-' exp @{ $$ = $1 - $3; @}
2336 | exp '*' exp @{ $$ = $1 * $3; @}
2337 | exp '/' exp @{ $$ = $1 / $3; @}
2338 | '-' exp %prec NEG @{ $$ = -$2; @}
2339 | exp '^' exp @{ $$ = pow ($1, $3); @}
2340 | '(' exp ')' @{ $$ = $2; @}
2341;
18b519c0 2342@end group
38a92d50 2343/* End of grammar. */
bfa74976
RS
2344%%
2345@end smallexample
2346
f56274a8 2347@node Mfcalc Symbol Table
bfa74976
RS
2348@subsection The @code{mfcalc} Symbol Table
2349@cindex symbol table example
2350
2351The multi-function calculator requires a symbol table to keep track of the
2352names and meanings of variables and functions. This doesn't affect the
2353grammar rules (except for the actions) or the Bison declarations, but it
2354requires some additional C functions for support.
2355
2356The symbol table itself consists of a linked list of records. Its
2357definition, which is kept in the header @file{calc.h}, is as follows. It
2358provides for either functions or variables to be placed in the table.
2359
2360@smallexample
2361@group
38a92d50 2362/* Function type. */
32dfccf8 2363typedef double (*func_t) (double);
72f889cc 2364@end group
32dfccf8 2365
72f889cc 2366@group
38a92d50 2367/* Data type for links in the chain of symbols. */
bfa74976
RS
2368struct symrec
2369@{
38a92d50 2370 char *name; /* name of symbol */
bfa74976 2371 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2372 union
2373 @{
38a92d50
PE
2374 double var; /* value of a VAR */
2375 func_t fnctptr; /* value of a FNCT */
bfa74976 2376 @} value;
38a92d50 2377 struct symrec *next; /* link field */
bfa74976
RS
2378@};
2379@end group
2380
2381@group
2382typedef struct symrec symrec;
2383
38a92d50 2384/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2385extern symrec *sym_table;
2386
a730d142 2387symrec *putsym (char const *, int);
38a92d50 2388symrec *getsym (char const *);
bfa74976
RS
2389@end group
2390@end smallexample
2391
2392The new version of @code{main} includes a call to @code{init_table}, a
2393function that initializes the symbol table. Here it is, and
2394@code{init_table} as well:
2395
2396@smallexample
bfa74976
RS
2397#include <stdio.h>
2398
18b519c0 2399@group
38a92d50 2400/* Called by yyparse on error. */
13863333 2401void
38a92d50 2402yyerror (char const *s)
bfa74976
RS
2403@{
2404 printf ("%s\n", s);
2405@}
18b519c0 2406@end group
bfa74976 2407
18b519c0 2408@group
bfa74976
RS
2409struct init
2410@{
38a92d50
PE
2411 char const *fname;
2412 double (*fnct) (double);
bfa74976
RS
2413@};
2414@end group
2415
2416@group
38a92d50 2417struct init const arith_fncts[] =
13863333 2418@{
32dfccf8
AD
2419 "sin", sin,
2420 "cos", cos,
13863333 2421 "atan", atan,
32dfccf8
AD
2422 "ln", log,
2423 "exp", exp,
13863333
AD
2424 "sqrt", sqrt,
2425 0, 0
2426@};
18b519c0 2427@end group
bfa74976 2428
18b519c0 2429@group
bfa74976 2430/* The symbol table: a chain of `struct symrec'. */
38a92d50 2431symrec *sym_table;
bfa74976
RS
2432@end group
2433
2434@group
72d2299c 2435/* Put arithmetic functions in table. */
13863333
AD
2436void
2437init_table (void)
bfa74976
RS
2438@{
2439 int i;
2440 symrec *ptr;
2441 for (i = 0; arith_fncts[i].fname != 0; i++)
2442 @{
2443 ptr = putsym (arith_fncts[i].fname, FNCT);
2444 ptr->value.fnctptr = arith_fncts[i].fnct;
2445 @}
2446@}
2447@end group
38a92d50
PE
2448
2449@group
2450int
2451main (void)
2452@{
2453 init_table ();
2454 return yyparse ();
2455@}
2456@end group
bfa74976
RS
2457@end smallexample
2458
2459By simply editing the initialization list and adding the necessary include
2460files, you can add additional functions to the calculator.
2461
2462Two important functions allow look-up and installation of symbols in the
2463symbol table. The function @code{putsym} is passed a name and the type
2464(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2465linked to the front of the list, and a pointer to the object is returned.
2466The function @code{getsym} is passed the name of the symbol to look up. If
2467found, a pointer to that symbol is returned; otherwise zero is returned.
2468
2469@smallexample
2470symrec *
38a92d50 2471putsym (char const *sym_name, int sym_type)
bfa74976
RS
2472@{
2473 symrec *ptr;
2474 ptr = (symrec *) malloc (sizeof (symrec));
2475 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2476 strcpy (ptr->name,sym_name);
2477 ptr->type = sym_type;
72d2299c 2478 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2479 ptr->next = (struct symrec *)sym_table;
2480 sym_table = ptr;
2481 return ptr;
2482@}
2483
2484symrec *
38a92d50 2485getsym (char const *sym_name)
bfa74976
RS
2486@{
2487 symrec *ptr;
2488 for (ptr = sym_table; ptr != (symrec *) 0;
2489 ptr = (symrec *)ptr->next)
2490 if (strcmp (ptr->name,sym_name) == 0)
2491 return ptr;
2492 return 0;
2493@}
2494@end smallexample
2495
2496The function @code{yylex} must now recognize variables, numeric values, and
2497the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2498characters with a leading letter are recognized as either variables or
bfa74976
RS
2499functions depending on what the symbol table says about them.
2500
2501The string is passed to @code{getsym} for look up in the symbol table. If
2502the name appears in the table, a pointer to its location and its type
2503(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2504already in the table, then it is installed as a @code{VAR} using
2505@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2506returned to @code{yyparse}.
bfa74976
RS
2507
2508No change is needed in the handling of numeric values and arithmetic
2509operators in @code{yylex}.
2510
2511@smallexample
2512@group
2513#include <ctype.h>
18b519c0 2514@end group
13863333 2515
18b519c0 2516@group
13863333
AD
2517int
2518yylex (void)
bfa74976
RS
2519@{
2520 int c;
2521
72d2299c 2522 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2523 while ((c = getchar ()) == ' ' || c == '\t');
2524
2525 if (c == EOF)
2526 return 0;
2527@end group
2528
2529@group
2530 /* Char starts a number => parse the number. */
2531 if (c == '.' || isdigit (c))
2532 @{
2533 ungetc (c, stdin);
2534 scanf ("%lf", &yylval.val);
2535 return NUM;
2536 @}
2537@end group
2538
2539@group
2540 /* Char starts an identifier => read the name. */
2541 if (isalpha (c))
2542 @{
2543 symrec *s;
2544 static char *symbuf = 0;
2545 static int length = 0;
2546 int i;
2547@end group
2548
2549@group
2550 /* Initially make the buffer long enough
2551 for a 40-character symbol name. */
2552 if (length == 0)
2553 length = 40, symbuf = (char *)malloc (length + 1);
2554
2555 i = 0;
2556 do
2557@end group
2558@group
2559 @{
2560 /* If buffer is full, make it bigger. */
2561 if (i == length)
2562 @{
2563 length *= 2;
18b519c0 2564 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2565 @}
2566 /* Add this character to the buffer. */
2567 symbuf[i++] = c;
2568 /* Get another character. */
2569 c = getchar ();
2570 @}
2571@end group
2572@group
72d2299c 2573 while (isalnum (c));
bfa74976
RS
2574
2575 ungetc (c, stdin);
2576 symbuf[i] = '\0';
2577@end group
2578
2579@group
2580 s = getsym (symbuf);
2581 if (s == 0)
2582 s = putsym (symbuf, VAR);
2583 yylval.tptr = s;
2584 return s->type;
2585 @}
2586
2587 /* Any other character is a token by itself. */
2588 return c;
2589@}
2590@end group
2591@end smallexample
2592
72d2299c 2593This program is both powerful and flexible. You may easily add new
704a47c4
AD
2594functions, and it is a simple job to modify this code to install
2595predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2596
342b8b6e 2597@node Exercises
bfa74976
RS
2598@section Exercises
2599@cindex exercises
2600
2601@enumerate
2602@item
2603Add some new functions from @file{math.h} to the initialization list.
2604
2605@item
2606Add another array that contains constants and their values. Then
2607modify @code{init_table} to add these constants to the symbol table.
2608It will be easiest to give the constants type @code{VAR}.
2609
2610@item
2611Make the program report an error if the user refers to an
2612uninitialized variable in any way except to store a value in it.
2613@end enumerate
2614
342b8b6e 2615@node Grammar File
bfa74976
RS
2616@chapter Bison Grammar Files
2617
2618Bison takes as input a context-free grammar specification and produces a
2619C-language function that recognizes correct instances of the grammar.
2620
9913d6e4 2621The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2622@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2623
2624@menu
7404cdf3
JD
2625* Grammar Outline:: Overall layout of the grammar file.
2626* Symbols:: Terminal and nonterminal symbols.
2627* Rules:: How to write grammar rules.
2628* Recursion:: Writing recursive rules.
2629* Semantics:: Semantic values and actions.
2630* Tracking Locations:: Locations and actions.
2631* Named References:: Using named references in actions.
2632* Declarations:: All kinds of Bison declarations are described here.
2633* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2634@end menu
2635
342b8b6e 2636@node Grammar Outline
bfa74976
RS
2637@section Outline of a Bison Grammar
2638
2639A Bison grammar file has four main sections, shown here with the
2640appropriate delimiters:
2641
2642@example
2643%@{
38a92d50 2644 @var{Prologue}
bfa74976
RS
2645%@}
2646
2647@var{Bison declarations}
2648
2649%%
2650@var{Grammar rules}
2651%%
2652
75f5aaea 2653@var{Epilogue}
bfa74976
RS
2654@end example
2655
2656Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2657As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2658continues until end of line.
bfa74976
RS
2659
2660@menu
f56274a8 2661* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2662* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2663* Bison Declarations:: Syntax and usage of the Bison declarations section.
2664* Grammar Rules:: Syntax and usage of the grammar rules section.
2665* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2666@end menu
2667
38a92d50 2668@node Prologue
75f5aaea
MA
2669@subsection The prologue
2670@cindex declarations section
2671@cindex Prologue
2672@cindex declarations
bfa74976 2673
f8e1c9e5
AD
2674The @var{Prologue} section contains macro definitions and declarations
2675of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2676rules. These are copied to the beginning of the parser implementation
2677file so that they precede the definition of @code{yyparse}. You can
2678use @samp{#include} to get the declarations from a header file. If
2679you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2680@samp{%@}} delimiters that bracket this section.
bfa74976 2681
9c437126 2682The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2683of @samp{%@}} that is outside a comment, a string literal, or a
2684character constant.
2685
c732d2c6
AD
2686You may have more than one @var{Prologue} section, intermixed with the
2687@var{Bison declarations}. This allows you to have C and Bison
2688declarations that refer to each other. For example, the @code{%union}
2689declaration may use types defined in a header file, and you may wish to
2690prototype functions that take arguments of type @code{YYSTYPE}. This
2691can be done with two @var{Prologue} blocks, one before and one after the
2692@code{%union} declaration.
2693
2694@smallexample
2695%@{
aef3da86 2696 #define _GNU_SOURCE
38a92d50
PE
2697 #include <stdio.h>
2698 #include "ptypes.h"
c732d2c6
AD
2699%@}
2700
2701%union @{
779e7ceb 2702 long int n;
c732d2c6
AD
2703 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2704@}
2705
2706%@{
38a92d50
PE
2707 static void print_token_value (FILE *, int, YYSTYPE);
2708 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2709%@}
2710
2711@dots{}
2712@end smallexample
2713
aef3da86
PE
2714When in doubt, it is usually safer to put prologue code before all
2715Bison declarations, rather than after. For example, any definitions
2716of feature test macros like @code{_GNU_SOURCE} or
2717@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2718feature test macros can affect the behavior of Bison-generated
2719@code{#include} directives.
2720
2cbe6b7f
JD
2721@node Prologue Alternatives
2722@subsection Prologue Alternatives
2723@cindex Prologue Alternatives
2724
136a0f76 2725@findex %code
16dc6a9e
JD
2726@findex %code requires
2727@findex %code provides
2728@findex %code top
85894313 2729
2cbe6b7f 2730The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2731inflexible. As an alternative, Bison provides a @code{%code}
2732directive with an explicit qualifier field, which identifies the
2733purpose of the code and thus the location(s) where Bison should
2734generate it. For C/C++, the qualifier can be omitted for the default
2735location, or it can be one of @code{requires}, @code{provides},
8e6f2266 2736@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2737
2738Look again at the example of the previous section:
2739
2740@smallexample
2741%@{
2742 #define _GNU_SOURCE
2743 #include <stdio.h>
2744 #include "ptypes.h"
2745%@}
2746
2747%union @{
2748 long int n;
2749 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2750@}
2751
2752%@{
2753 static void print_token_value (FILE *, int, YYSTYPE);
2754 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2755%@}
2756
2757@dots{}
2758@end smallexample
2759
2760@noindent
9913d6e4
JD
2761Notice that there are two @var{Prologue} sections here, but there's a
2762subtle distinction between their functionality. For example, if you
2763decide to override Bison's default definition for @code{YYLTYPE}, in
2764which @var{Prologue} section should you write your new definition?
2765You should write it in the first since Bison will insert that code
2766into the parser implementation file @emph{before} the default
2767@code{YYLTYPE} definition. In which @var{Prologue} section should you
2768prototype an internal function, @code{trace_token}, that accepts
2769@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2770prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2771@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2772
2773This distinction in functionality between the two @var{Prologue} sections is
2774established by the appearance of the @code{%union} between them.
a501eca9 2775This behavior raises a few questions.
2cbe6b7f
JD
2776First, why should the position of a @code{%union} affect definitions related to
2777@code{YYLTYPE} and @code{yytokentype}?
2778Second, what if there is no @code{%union}?
2779In that case, the second kind of @var{Prologue} section is not available.
2780This behavior is not intuitive.
2781
8e0a5e9e 2782To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2783@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2784Let's go ahead and add the new @code{YYLTYPE} definition and the
2785@code{trace_token} prototype at the same time:
2786
2787@smallexample
16dc6a9e 2788%code top @{
2cbe6b7f
JD
2789 #define _GNU_SOURCE
2790 #include <stdio.h>
8e0a5e9e
JD
2791
2792 /* WARNING: The following code really belongs
16dc6a9e 2793 * in a `%code requires'; see below. */
8e0a5e9e 2794
2cbe6b7f
JD
2795 #include "ptypes.h"
2796 #define YYLTYPE YYLTYPE
2797 typedef struct YYLTYPE
2798 @{
2799 int first_line;
2800 int first_column;
2801 int last_line;
2802 int last_column;
2803 char *filename;
2804 @} YYLTYPE;
2805@}
2806
2807%union @{
2808 long int n;
2809 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2810@}
2811
2812%code @{
2813 static void print_token_value (FILE *, int, YYSTYPE);
2814 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2815 static void trace_token (enum yytokentype token, YYLTYPE loc);
2816@}
2817
2818@dots{}
2819@end smallexample
2820
2821@noindent
16dc6a9e
JD
2822In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2823functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2824explicit which kind you intend.
2cbe6b7f
JD
2825Moreover, both kinds are always available even in the absence of @code{%union}.
2826
9913d6e4
JD
2827The @code{%code top} block above logically contains two parts. The
2828first two lines before the warning need to appear near the top of the
2829parser implementation file. The first line after the warning is
2830required by @code{YYSTYPE} and thus also needs to appear in the parser
2831implementation file. However, if you've instructed Bison to generate
2832a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2833want that line to appear before the @code{YYSTYPE} definition in that
2834header file as well. The @code{YYLTYPE} definition should also appear
2835in the parser header file to override the default @code{YYLTYPE}
2836definition there.
2cbe6b7f 2837
16dc6a9e 2838In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2839lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2840definitions.
16dc6a9e 2841Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2842
2843@smallexample
16dc6a9e 2844%code top @{
2cbe6b7f
JD
2845 #define _GNU_SOURCE
2846 #include <stdio.h>
2847@}
2848
16dc6a9e 2849%code requires @{
9bc0dd67
JD
2850 #include "ptypes.h"
2851@}
2852%union @{
2853 long int n;
2854 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2855@}
2856
16dc6a9e 2857%code requires @{
2cbe6b7f
JD
2858 #define YYLTYPE YYLTYPE
2859 typedef struct YYLTYPE
2860 @{
2861 int first_line;
2862 int first_column;
2863 int last_line;
2864 int last_column;
2865 char *filename;
2866 @} YYLTYPE;
2867@}
2868
136a0f76 2869%code @{
2cbe6b7f
JD
2870 static void print_token_value (FILE *, int, YYSTYPE);
2871 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2872 static void trace_token (enum yytokentype token, YYLTYPE loc);
2873@}
2874
2875@dots{}
2876@end smallexample
2877
2878@noindent
9913d6e4
JD
2879Now Bison will insert @code{#include "ptypes.h"} and the new
2880@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2881and @code{YYLTYPE} definitions in both the parser implementation file
2882and the parser header file. (By the same reasoning, @code{%code
2883requires} would also be the appropriate place to write your own
2884definition for @code{YYSTYPE}.)
2885
2886When you are writing dependency code for @code{YYSTYPE} and
2887@code{YYLTYPE}, you should prefer @code{%code requires} over
2888@code{%code top} regardless of whether you instruct Bison to generate
2889a parser header file. When you are writing code that you need Bison
2890to insert only into the parser implementation file and that has no
2891special need to appear at the top of that file, you should prefer the
2892unqualified @code{%code} over @code{%code top}. These practices will
2893make the purpose of each block of your code explicit to Bison and to
2894other developers reading your grammar file. Following these
2895practices, we expect the unqualified @code{%code} and @code{%code
2896requires} to be the most important of the four @var{Prologue}
16dc6a9e 2897alternatives.
a501eca9 2898
9913d6e4
JD
2899At some point while developing your parser, you might decide to
2900provide @code{trace_token} to modules that are external to your
2901parser. Thus, you might wish for Bison to insert the prototype into
2902both the parser header file and the parser implementation file. Since
2903this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2904@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
2905@code{%code requires}. More importantly, since it depends upon
2906@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2907sufficient. Instead, move its prototype from the unqualified
2908@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
2909
2910@smallexample
16dc6a9e 2911%code top @{
2cbe6b7f 2912 #define _GNU_SOURCE
136a0f76 2913 #include <stdio.h>
2cbe6b7f 2914@}
136a0f76 2915
16dc6a9e 2916%code requires @{
2cbe6b7f
JD
2917 #include "ptypes.h"
2918@}
2919%union @{
2920 long int n;
2921 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2922@}
2923
16dc6a9e 2924%code requires @{
2cbe6b7f
JD
2925 #define YYLTYPE YYLTYPE
2926 typedef struct YYLTYPE
2927 @{
2928 int first_line;
2929 int first_column;
2930 int last_line;
2931 int last_column;
2932 char *filename;
2933 @} YYLTYPE;
2934@}
2935
16dc6a9e 2936%code provides @{
2cbe6b7f
JD
2937 void trace_token (enum yytokentype token, YYLTYPE loc);
2938@}
2939
2940%code @{
9bc0dd67
JD
2941 static void print_token_value (FILE *, int, YYSTYPE);
2942 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2943@}
9bc0dd67
JD
2944
2945@dots{}
2946@end smallexample
2947
2cbe6b7f 2948@noindent
9913d6e4
JD
2949Bison will insert the @code{trace_token} prototype into both the
2950parser header file and the parser implementation file after the
2951definitions for @code{yytokentype}, @code{YYLTYPE}, and
2952@code{YYSTYPE}.
2953
2954The above examples are careful to write directives in an order that
2955reflects the layout of the generated parser implementation and header
2956files: @code{%code top}, @code{%code requires}, @code{%code provides},
2957and then @code{%code}. While your grammar files may generally be
2958easier to read if you also follow this order, Bison does not require
2959it. Instead, Bison lets you choose an organization that makes sense
2960to you.
2cbe6b7f 2961
a501eca9 2962You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2963In that case, Bison concatenates the contained code in declaration order.
2964This is the only way in which the position of one of these directives within
2965the grammar file affects its functionality.
2966
2967The result of the previous two properties is greater flexibility in how you may
2968organize your grammar file.
2969For example, you may organize semantic-type-related directives by semantic
2970type:
2971
2972@smallexample
16dc6a9e 2973%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2974%union @{ type1 field1; @}
2975%destructor @{ type1_free ($$); @} <field1>
2976%printer @{ type1_print ($$); @} <field1>
2977
16dc6a9e 2978%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2979%union @{ type2 field2; @}
2980%destructor @{ type2_free ($$); @} <field2>
2981%printer @{ type2_print ($$); @} <field2>
2982@end smallexample
2983
2984@noindent
2985You could even place each of the above directive groups in the rules section of
2986the grammar file next to the set of rules that uses the associated semantic
2987type.
61fee93e
JD
2988(In the rules section, you must terminate each of those directives with a
2989semicolon.)
2cbe6b7f
JD
2990And you don't have to worry that some directive (like a @code{%union}) in the
2991definitions section is going to adversely affect their functionality in some
2992counter-intuitive manner just because it comes first.
2993Such an organization is not possible using @var{Prologue} sections.
2994
a501eca9 2995This section has been concerned with explaining the advantages of the four
8e0a5e9e 2996@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2997However, in most cases when using these directives, you shouldn't need to
2998think about all the low-level ordering issues discussed here.
2999Instead, you should simply use these directives to label each block of your
3000code according to its purpose and let Bison handle the ordering.
3001@code{%code} is the most generic label.
16dc6a9e
JD
3002Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3003as needed.
a501eca9 3004
342b8b6e 3005@node Bison Declarations
bfa74976
RS
3006@subsection The Bison Declarations Section
3007@cindex Bison declarations (introduction)
3008@cindex declarations, Bison (introduction)
3009
3010The @var{Bison declarations} section contains declarations that define
3011terminal and nonterminal symbols, specify precedence, and so on.
3012In some simple grammars you may not need any declarations.
3013@xref{Declarations, ,Bison Declarations}.
3014
342b8b6e 3015@node Grammar Rules
bfa74976
RS
3016@subsection The Grammar Rules Section
3017@cindex grammar rules section
3018@cindex rules section for grammar
3019
3020The @dfn{grammar rules} section contains one or more Bison grammar
3021rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3022
3023There must always be at least one grammar rule, and the first
3024@samp{%%} (which precedes the grammar rules) may never be omitted even
3025if it is the first thing in the file.
3026
38a92d50 3027@node Epilogue
75f5aaea 3028@subsection The epilogue
bfa74976 3029@cindex additional C code section
75f5aaea 3030@cindex epilogue
bfa74976
RS
3031@cindex C code, section for additional
3032
9913d6e4
JD
3033The @var{Epilogue} is copied verbatim to the end of the parser
3034implementation file, just as the @var{Prologue} is copied to the
3035beginning. This is the most convenient place to put anything that you
3036want to have in the parser implementation file but which need not come
3037before the definition of @code{yyparse}. For example, the definitions
3038of @code{yylex} and @code{yyerror} often go here. Because C requires
3039functions to be declared before being used, you often need to declare
3040functions like @code{yylex} and @code{yyerror} in the Prologue, even
3041if you define them in the Epilogue. @xref{Interface, ,Parser
3042C-Language Interface}.
bfa74976
RS
3043
3044If the last section is empty, you may omit the @samp{%%} that separates it
3045from the grammar rules.
3046
f8e1c9e5
AD
3047The Bison parser itself contains many macros and identifiers whose names
3048start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3049any such names (except those documented in this manual) in the epilogue
3050of the grammar file.
bfa74976 3051
342b8b6e 3052@node Symbols
bfa74976
RS
3053@section Symbols, Terminal and Nonterminal
3054@cindex nonterminal symbol
3055@cindex terminal symbol
3056@cindex token type
3057@cindex symbol
3058
3059@dfn{Symbols} in Bison grammars represent the grammatical classifications
3060of the language.
3061
3062A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3063class of syntactically equivalent tokens. You use the symbol in grammar
3064rules to mean that a token in that class is allowed. The symbol is
3065represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3066function returns a token type code to indicate what kind of token has
3067been read. You don't need to know what the code value is; you can use
3068the symbol to stand for it.
bfa74976 3069
f8e1c9e5
AD
3070A @dfn{nonterminal symbol} stands for a class of syntactically
3071equivalent groupings. The symbol name is used in writing grammar rules.
3072By convention, it should be all lower case.
bfa74976 3073
eb8c66bb
JD
3074Symbol names can contain letters, underscores, periods, and non-initial
3075digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3076with POSIX Yacc. Periods and dashes make symbol names less convenient to
3077use with named references, which require brackets around such names
3078(@pxref{Named References}). Terminal symbols that contain periods or dashes
3079make little sense: since they are not valid symbols (in most programming
3080languages) they are not exported as token names.
bfa74976 3081
931c7513 3082There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3083
3084@itemize @bullet
3085@item
3086A @dfn{named token type} is written with an identifier, like an
c827f760 3087identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3088such name must be defined with a Bison declaration such as
3089@code{%token}. @xref{Token Decl, ,Token Type Names}.
3090
3091@item
3092@cindex character token
3093@cindex literal token
3094@cindex single-character literal
931c7513
RS
3095A @dfn{character token type} (or @dfn{literal character token}) is
3096written in the grammar using the same syntax used in C for character
3097constants; for example, @code{'+'} is a character token type. A
3098character token type doesn't need to be declared unless you need to
3099specify its semantic value data type (@pxref{Value Type, ,Data Types of
3100Semantic Values}), associativity, or precedence (@pxref{Precedence,
3101,Operator Precedence}).
bfa74976
RS
3102
3103By convention, a character token type is used only to represent a
3104token that consists of that particular character. Thus, the token
3105type @code{'+'} is used to represent the character @samp{+} as a
3106token. Nothing enforces this convention, but if you depart from it,
3107your program will confuse other readers.
3108
3109All the usual escape sequences used in character literals in C can be
3110used in Bison as well, but you must not use the null character as a
72d2299c
PE
3111character literal because its numeric code, zero, signifies
3112end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3113for @code{yylex}}). Also, unlike standard C, trigraphs have no
3114special meaning in Bison character literals, nor is backslash-newline
3115allowed.
931c7513
RS
3116
3117@item
3118@cindex string token
3119@cindex literal string token
9ecbd125 3120@cindex multicharacter literal
931c7513
RS
3121A @dfn{literal string token} is written like a C string constant; for
3122example, @code{"<="} is a literal string token. A literal string token
3123doesn't need to be declared unless you need to specify its semantic
14ded682 3124value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3125(@pxref{Precedence}).
3126
3127You can associate the literal string token with a symbolic name as an
3128alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3129Declarations}). If you don't do that, the lexical analyzer has to
3130retrieve the token number for the literal string token from the
3131@code{yytname} table (@pxref{Calling Convention}).
3132
c827f760 3133@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3134
3135By convention, a literal string token is used only to represent a token
3136that consists of that particular string. Thus, you should use the token
3137type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3138does not enforce this convention, but if you depart from it, people who
931c7513
RS
3139read your program will be confused.
3140
3141All the escape sequences used in string literals in C can be used in
92ac3705
PE
3142Bison as well, except that you must not use a null character within a
3143string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3144meaning in Bison string literals, nor is backslash-newline allowed. A
3145literal string token must contain two or more characters; for a token
3146containing just one character, use a character token (see above).
bfa74976
RS
3147@end itemize
3148
3149How you choose to write a terminal symbol has no effect on its
3150grammatical meaning. That depends only on where it appears in rules and
3151on when the parser function returns that symbol.
3152
72d2299c
PE
3153The value returned by @code{yylex} is always one of the terminal
3154symbols, except that a zero or negative value signifies end-of-input.
3155Whichever way you write the token type in the grammar rules, you write
3156it the same way in the definition of @code{yylex}. The numeric code
3157for a character token type is simply the positive numeric code of the
3158character, so @code{yylex} can use the identical value to generate the
3159requisite code, though you may need to convert it to @code{unsigned
3160char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3161Each named token type becomes a C macro in the parser implementation
3162file, so @code{yylex} can use the name to stand for the code. (This
3163is why periods don't make sense in terminal symbols.) @xref{Calling
3164Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3165
3166If @code{yylex} is defined in a separate file, you need to arrange for the
3167token-type macro definitions to be available there. Use the @samp{-d}
3168option when you run Bison, so that it will write these macro definitions
3169into a separate header file @file{@var{name}.tab.h} which you can include
3170in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3171
72d2299c 3172If you want to write a grammar that is portable to any Standard C
9d9b8b70 3173host, you must use only nonnull character tokens taken from the basic
c827f760 3174execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3175digits, the 52 lower- and upper-case English letters, and the
3176characters in the following C-language string:
3177
3178@example
3179"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3180@end example
3181
f8e1c9e5
AD
3182The @code{yylex} function and Bison must use a consistent character set
3183and encoding for character tokens. For example, if you run Bison in an
35430378 3184ASCII environment, but then compile and run the resulting
f8e1c9e5 3185program in an environment that uses an incompatible character set like
35430378
JD
3186EBCDIC, the resulting program may not work because the tables
3187generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3188character tokens. It is standard practice for software distributions to
3189contain C source files that were generated by Bison in an
35430378
JD
3190ASCII environment, so installers on platforms that are
3191incompatible with ASCII must rebuild those files before
f8e1c9e5 3192compiling them.
e966383b 3193
bfa74976
RS
3194The symbol @code{error} is a terminal symbol reserved for error recovery
3195(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3196In particular, @code{yylex} should never return this value. The default
3197value of the error token is 256, unless you explicitly assigned 256 to
3198one of your tokens with a @code{%token} declaration.
bfa74976 3199
342b8b6e 3200@node Rules
bfa74976
RS
3201@section Syntax of Grammar Rules
3202@cindex rule syntax
3203@cindex grammar rule syntax
3204@cindex syntax of grammar rules
3205
3206A Bison grammar rule has the following general form:
3207
3208@example
e425e872 3209@group
bfa74976
RS
3210@var{result}: @var{components}@dots{}
3211 ;
e425e872 3212@end group
bfa74976
RS
3213@end example
3214
3215@noindent
9ecbd125 3216where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3217and @var{components} are various terminal and nonterminal symbols that
13863333 3218are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3219
3220For example,
3221
3222@example
3223@group
3224exp: exp '+' exp
3225 ;
3226@end group
3227@end example
3228
3229@noindent
3230says that two groupings of type @code{exp}, with a @samp{+} token in between,
3231can be combined into a larger grouping of type @code{exp}.
3232
72d2299c
PE
3233White space in rules is significant only to separate symbols. You can add
3234extra white space as you wish.
bfa74976
RS
3235
3236Scattered among the components can be @var{actions} that determine
3237the semantics of the rule. An action looks like this:
3238
3239@example
3240@{@var{C statements}@}
3241@end example
3242
3243@noindent
287c78f6
PE
3244@cindex braced code
3245This is an example of @dfn{braced code}, that is, C code surrounded by
3246braces, much like a compound statement in C@. Braced code can contain
3247any sequence of C tokens, so long as its braces are balanced. Bison
3248does not check the braced code for correctness directly; it merely
9913d6e4
JD
3249copies the code to the parser implementation file, where the C
3250compiler can check it.
287c78f6
PE
3251
3252Within braced code, the balanced-brace count is not affected by braces
3253within comments, string literals, or character constants, but it is
3254affected by the C digraphs @samp{<%} and @samp{%>} that represent
3255braces. At the top level braced code must be terminated by @samp{@}}
3256and not by a digraph. Bison does not look for trigraphs, so if braced
3257code uses trigraphs you should ensure that they do not affect the
3258nesting of braces or the boundaries of comments, string literals, or
3259character constants.
3260
bfa74976
RS
3261Usually there is only one action and it follows the components.
3262@xref{Actions}.
3263
3264@findex |
3265Multiple rules for the same @var{result} can be written separately or can
3266be joined with the vertical-bar character @samp{|} as follows:
3267
bfa74976
RS
3268@example
3269@group
3270@var{result}: @var{rule1-components}@dots{}
3271 | @var{rule2-components}@dots{}
3272 @dots{}
3273 ;
3274@end group
3275@end example
bfa74976
RS
3276
3277@noindent
3278They are still considered distinct rules even when joined in this way.
3279
3280If @var{components} in a rule is empty, it means that @var{result} can
3281match the empty string. For example, here is how to define a
3282comma-separated sequence of zero or more @code{exp} groupings:
3283
3284@example
3285@group
3286expseq: /* empty */
3287 | expseq1
3288 ;
3289@end group
3290
3291@group
3292expseq1: exp
3293 | expseq1 ',' exp
3294 ;
3295@end group
3296@end example
3297
3298@noindent
3299It is customary to write a comment @samp{/* empty */} in each rule
3300with no components.
3301
342b8b6e 3302@node Recursion
bfa74976
RS
3303@section Recursive Rules
3304@cindex recursive rule
3305
f8e1c9e5
AD
3306A rule is called @dfn{recursive} when its @var{result} nonterminal
3307appears also on its right hand side. Nearly all Bison grammars need to
3308use recursion, because that is the only way to define a sequence of any
3309number of a particular thing. Consider this recursive definition of a
9ecbd125 3310comma-separated sequence of one or more expressions:
bfa74976
RS
3311
3312@example
3313@group
3314expseq1: exp
3315 | expseq1 ',' exp
3316 ;
3317@end group
3318@end example
3319
3320@cindex left recursion
3321@cindex right recursion
3322@noindent
3323Since the recursive use of @code{expseq1} is the leftmost symbol in the
3324right hand side, we call this @dfn{left recursion}. By contrast, here
3325the same construct is defined using @dfn{right recursion}:
3326
3327@example
3328@group
3329expseq1: exp
3330 | exp ',' expseq1
3331 ;
3332@end group
3333@end example
3334
3335@noindent
ec3bc396
AD
3336Any kind of sequence can be defined using either left recursion or right
3337recursion, but you should always use left recursion, because it can
3338parse a sequence of any number of elements with bounded stack space.
3339Right recursion uses up space on the Bison stack in proportion to the
3340number of elements in the sequence, because all the elements must be
3341shifted onto the stack before the rule can be applied even once.
3342@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3343of this.
bfa74976
RS
3344
3345@cindex mutual recursion
3346@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3347rule does not appear directly on its right hand side, but does appear
3348in rules for other nonterminals which do appear on its right hand
13863333 3349side.
bfa74976
RS
3350
3351For example:
3352
3353@example
3354@group
3355expr: primary
3356 | primary '+' primary
3357 ;
3358@end group
3359
3360@group
3361primary: constant
3362 | '(' expr ')'
3363 ;
3364@end group
3365@end example
3366
3367@noindent
3368defines two mutually-recursive nonterminals, since each refers to the
3369other.
3370
342b8b6e 3371@node Semantics
bfa74976
RS
3372@section Defining Language Semantics
3373@cindex defining language semantics
13863333 3374@cindex language semantics, defining
bfa74976
RS
3375
3376The grammar rules for a language determine only the syntax. The semantics
3377are determined by the semantic values associated with various tokens and
3378groupings, and by the actions taken when various groupings are recognized.
3379
3380For example, the calculator calculates properly because the value
3381associated with each expression is the proper number; it adds properly
3382because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3383the numbers associated with @var{x} and @var{y}.
3384
3385@menu
3386* Value Type:: Specifying one data type for all semantic values.
3387* Multiple Types:: Specifying several alternative data types.
3388* Actions:: An action is the semantic definition of a grammar rule.
3389* Action Types:: Specifying data types for actions to operate on.
3390* Mid-Rule Actions:: Most actions go at the end of a rule.
3391 This says when, why and how to use the exceptional
3392 action in the middle of a rule.
3393@end menu
3394
342b8b6e 3395@node Value Type
bfa74976
RS
3396@subsection Data Types of Semantic Values
3397@cindex semantic value type
3398@cindex value type, semantic
3399@cindex data types of semantic values
3400@cindex default data type
3401
3402In a simple program it may be sufficient to use the same data type for
3403the semantic values of all language constructs. This was true in the
35430378 3404RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3405Notation Calculator}).
bfa74976 3406
ddc8ede1
PE
3407Bison normally uses the type @code{int} for semantic values if your
3408program uses the same data type for all language constructs. To
bfa74976
RS
3409specify some other type, define @code{YYSTYPE} as a macro, like this:
3410
3411@example
3412#define YYSTYPE double
3413@end example
3414
3415@noindent
50cce58e
PE
3416@code{YYSTYPE}'s replacement list should be a type name
3417that does not contain parentheses or square brackets.
342b8b6e 3418This macro definition must go in the prologue of the grammar file
75f5aaea 3419(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3420
342b8b6e 3421@node Multiple Types
bfa74976
RS
3422@subsection More Than One Value Type
3423
3424In most programs, you will need different data types for different kinds
3425of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3426@code{int} or @code{long int}, while a string constant needs type
3427@code{char *}, and an identifier might need a pointer to an entry in the
3428symbol table.
bfa74976
RS
3429
3430To use more than one data type for semantic values in one parser, Bison
3431requires you to do two things:
3432
3433@itemize @bullet
3434@item
ddc8ede1 3435Specify the entire collection of possible data types, either by using the
704a47c4 3436@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3437Value Types}), or by using a @code{typedef} or a @code{#define} to
3438define @code{YYSTYPE} to be a union type whose member names are
3439the type tags.
bfa74976
RS
3440
3441@item
14ded682
AD
3442Choose one of those types for each symbol (terminal or nonterminal) for
3443which semantic values are used. This is done for tokens with the
3444@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3445and for groupings with the @code{%type} Bison declaration (@pxref{Type
3446Decl, ,Nonterminal Symbols}).
bfa74976
RS
3447@end itemize
3448
342b8b6e 3449@node Actions
bfa74976
RS
3450@subsection Actions
3451@cindex action
3452@vindex $$
3453@vindex $@var{n}
1f68dca5
AR
3454@vindex $@var{name}
3455@vindex $[@var{name}]
bfa74976
RS
3456
3457An action accompanies a syntactic rule and contains C code to be executed
3458each time an instance of that rule is recognized. The task of most actions
3459is to compute a semantic value for the grouping built by the rule from the
3460semantic values associated with tokens or smaller groupings.
3461
287c78f6
PE
3462An action consists of braced code containing C statements, and can be
3463placed at any position in the rule;
704a47c4
AD
3464it is executed at that position. Most rules have just one action at the
3465end of the rule, following all the components. Actions in the middle of
3466a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3467Actions, ,Actions in Mid-Rule}).
bfa74976 3468
9913d6e4
JD
3469The C code in an action can refer to the semantic values of the
3470components matched by the rule with the construct @code{$@var{n}},
3471which stands for the value of the @var{n}th component. The semantic
3472value for the grouping being constructed is @code{$$}. In addition,
3473the semantic values of symbols can be accessed with the named
3474references construct @code{$@var{name}} or @code{$[@var{name}]}.
3475Bison translates both of these constructs into expressions of the
3476appropriate type when it copies the actions into the parser
3477implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3478for the current grouping) is translated to a modifiable lvalue, so it
3479can be assigned to.
bfa74976
RS
3480
3481Here is a typical example:
3482
3483@example
3484@group
3485exp: @dots{}
3486 | exp '+' exp
3487 @{ $$ = $1 + $3; @}
3488@end group
3489@end example
3490
1f68dca5
AR
3491Or, in terms of named references:
3492
3493@example
3494@group
3495exp[result]: @dots{}
3496 | exp[left] '+' exp[right]
3497 @{ $result = $left + $right; @}
3498@end group
3499@end example
3500
bfa74976
RS
3501@noindent
3502This rule constructs an @code{exp} from two smaller @code{exp} groupings
3503connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3504(@code{$left} and @code{$right})
bfa74976
RS
3505refer to the semantic values of the two component @code{exp} groupings,
3506which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3507The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3508semantic value of
bfa74976
RS
3509the addition-expression just recognized by the rule. If there were a
3510useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3511referred to as @code{$2}.
bfa74976 3512
ce24f7f5
JD
3513@xref{Named References}, for more information about using the named
3514references construct.
1f68dca5 3515
3ded9a63
AD
3516Note that the vertical-bar character @samp{|} is really a rule
3517separator, and actions are attached to a single rule. This is a
3518difference with tools like Flex, for which @samp{|} stands for either
3519``or'', or ``the same action as that of the next rule''. In the
3520following example, the action is triggered only when @samp{b} is found:
3521
3522@example
3523@group
3524a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3525@end group
3526@end example
3527
bfa74976
RS
3528@cindex default action
3529If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3530@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3531becomes the value of the whole rule. Of course, the default action is
3532valid only if the two data types match. There is no meaningful default
3533action for an empty rule; every empty rule must have an explicit action
3534unless the rule's value does not matter.
bfa74976
RS
3535
3536@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3537to tokens and groupings on the stack @emph{before} those that match the
3538current rule. This is a very risky practice, and to use it reliably
3539you must be certain of the context in which the rule is applied. Here
3540is a case in which you can use this reliably:
3541
3542@example
3543@group
3544foo: expr bar '+' expr @{ @dots{} @}
3545 | expr bar '-' expr @{ @dots{} @}
3546 ;
3547@end group
3548
3549@group
3550bar: /* empty */
3551 @{ previous_expr = $0; @}
3552 ;
3553@end group
3554@end example
3555
3556As long as @code{bar} is used only in the fashion shown here, @code{$0}
3557always refers to the @code{expr} which precedes @code{bar} in the
3558definition of @code{foo}.
3559
32c29292 3560@vindex yylval
742e4900 3561It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3562any, from a semantic action.
3563This semantic value is stored in @code{yylval}.
3564@xref{Action Features, ,Special Features for Use in Actions}.
3565
342b8b6e 3566@node Action Types
bfa74976
RS
3567@subsection Data Types of Values in Actions
3568@cindex action data types
3569@cindex data types in actions
3570
3571If you have chosen a single data type for semantic values, the @code{$$}
3572and @code{$@var{n}} constructs always have that data type.
3573
3574If you have used @code{%union} to specify a variety of data types, then you
3575must declare a choice among these types for each terminal or nonterminal
3576symbol that can have a semantic value. Then each time you use @code{$$} or
3577@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3578in the rule. In this example,
bfa74976
RS
3579
3580@example
3581@group
3582exp: @dots{}
3583 | exp '+' exp
3584 @{ $$ = $1 + $3; @}
3585@end group
3586@end example
3587
3588@noindent
3589@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3590have the data type declared for the nonterminal symbol @code{exp}. If
3591@code{$2} were used, it would have the data type declared for the
e0c471a9 3592terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3593
3594Alternatively, you can specify the data type when you refer to the value,
3595by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3596reference. For example, if you have defined types as shown here:
3597
3598@example
3599@group
3600%union @{
3601 int itype;
3602 double dtype;
3603@}
3604@end group
3605@end example
3606
3607@noindent
3608then you can write @code{$<itype>1} to refer to the first subunit of the
3609rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3610
342b8b6e 3611@node Mid-Rule Actions
bfa74976
RS
3612@subsection Actions in Mid-Rule
3613@cindex actions in mid-rule
3614@cindex mid-rule actions
3615
3616Occasionally it is useful to put an action in the middle of a rule.
3617These actions are written just like usual end-of-rule actions, but they
3618are executed before the parser even recognizes the following components.
3619
3620A mid-rule action may refer to the components preceding it using
3621@code{$@var{n}}, but it may not refer to subsequent components because
3622it is run before they are parsed.
3623
3624The mid-rule action itself counts as one of the components of the rule.
3625This makes a difference when there is another action later in the same rule
3626(and usually there is another at the end): you have to count the actions
3627along with the symbols when working out which number @var{n} to use in
3628@code{$@var{n}}.
3629
3630The mid-rule action can also have a semantic value. The action can set
3631its value with an assignment to @code{$$}, and actions later in the rule
3632can refer to the value using @code{$@var{n}}. Since there is no symbol
3633to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3634in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3635specify a data type each time you refer to this value.
bfa74976
RS
3636
3637There is no way to set the value of the entire rule with a mid-rule
3638action, because assignments to @code{$$} do not have that effect. The
3639only way to set the value for the entire rule is with an ordinary action
3640at the end of the rule.
3641
3642Here is an example from a hypothetical compiler, handling a @code{let}
3643statement that looks like @samp{let (@var{variable}) @var{statement}} and
3644serves to create a variable named @var{variable} temporarily for the
3645duration of @var{statement}. To parse this construct, we must put
3646@var{variable} into the symbol table while @var{statement} is parsed, then
3647remove it afterward. Here is how it is done:
3648
3649@example
3650@group
3651stmt: LET '(' var ')'
3652 @{ $<context>$ = push_context ();
3653 declare_variable ($3); @}
3654 stmt @{ $$ = $6;
3655 pop_context ($<context>5); @}
3656@end group
3657@end example
3658
3659@noindent
3660As soon as @samp{let (@var{variable})} has been recognized, the first
3661action is run. It saves a copy of the current semantic context (the
3662list of accessible variables) as its semantic value, using alternative
3663@code{context} in the data-type union. Then it calls
3664@code{declare_variable} to add the new variable to that list. Once the
3665first action is finished, the embedded statement @code{stmt} can be
3666parsed. Note that the mid-rule action is component number 5, so the
3667@samp{stmt} is component number 6.
3668
3669After the embedded statement is parsed, its semantic value becomes the
3670value of the entire @code{let}-statement. Then the semantic value from the
3671earlier action is used to restore the prior list of variables. This
3672removes the temporary @code{let}-variable from the list so that it won't
3673appear to exist while the rest of the program is parsed.
3674
841a7737
JD
3675@findex %destructor
3676@cindex discarded symbols, mid-rule actions
3677@cindex error recovery, mid-rule actions
3678In the above example, if the parser initiates error recovery (@pxref{Error
3679Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3680it might discard the previous semantic context @code{$<context>5} without
3681restoring it.
3682Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3683Discarded Symbols}).
ec5479ce
JD
3684However, Bison currently provides no means to declare a destructor specific to
3685a particular mid-rule action's semantic value.
841a7737
JD
3686
3687One solution is to bury the mid-rule action inside a nonterminal symbol and to
3688declare a destructor for that symbol:
3689
3690@example
3691@group
3692%type <context> let
3693%destructor @{ pop_context ($$); @} let
3694
3695%%
3696
3697stmt: let stmt
3698 @{ $$ = $2;
3699 pop_context ($1); @}
3700 ;
3701
3702let: LET '(' var ')'
3703 @{ $$ = push_context ();
3704 declare_variable ($3); @}
3705 ;
3706
3707@end group
3708@end example
3709
3710@noindent
3711Note that the action is now at the end of its rule.
3712Any mid-rule action can be converted to an end-of-rule action in this way, and
3713this is what Bison actually does to implement mid-rule actions.
3714
bfa74976
RS
3715Taking action before a rule is completely recognized often leads to
3716conflicts since the parser must commit to a parse in order to execute the
3717action. For example, the following two rules, without mid-rule actions,
3718can coexist in a working parser because the parser can shift the open-brace
3719token and look at what follows before deciding whether there is a
3720declaration or not:
3721
3722@example
3723@group
3724compound: '@{' declarations statements '@}'
3725 | '@{' statements '@}'
3726 ;
3727@end group
3728@end example
3729
3730@noindent
3731But when we add a mid-rule action as follows, the rules become nonfunctional:
3732
3733@example
3734@group
3735compound: @{ prepare_for_local_variables (); @}
3736 '@{' declarations statements '@}'
3737@end group
3738@group
3739 | '@{' statements '@}'
3740 ;
3741@end group
3742@end example
3743
3744@noindent
3745Now the parser is forced to decide whether to run the mid-rule action
3746when it has read no farther than the open-brace. In other words, it
3747must commit to using one rule or the other, without sufficient
3748information to do it correctly. (The open-brace token is what is called
742e4900
JD
3749the @dfn{lookahead} token at this time, since the parser is still
3750deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3751
3752You might think that you could correct the problem by putting identical
3753actions into the two rules, like this:
3754
3755@example
3756@group
3757compound: @{ prepare_for_local_variables (); @}
3758 '@{' declarations statements '@}'
3759 | @{ prepare_for_local_variables (); @}
3760 '@{' statements '@}'
3761 ;
3762@end group
3763@end example
3764
3765@noindent
3766But this does not help, because Bison does not realize that the two actions
3767are identical. (Bison never tries to understand the C code in an action.)
3768
3769If the grammar is such that a declaration can be distinguished from a
3770statement by the first token (which is true in C), then one solution which
3771does work is to put the action after the open-brace, like this:
3772
3773@example
3774@group
3775compound: '@{' @{ prepare_for_local_variables (); @}
3776 declarations statements '@}'
3777 | '@{' statements '@}'
3778 ;
3779@end group
3780@end example
3781
3782@noindent
3783Now the first token of the following declaration or statement,
3784which would in any case tell Bison which rule to use, can still do so.
3785
3786Another solution is to bury the action inside a nonterminal symbol which
3787serves as a subroutine:
3788
3789@example
3790@group
3791subroutine: /* empty */
3792 @{ prepare_for_local_variables (); @}
3793 ;
3794
3795@end group
3796
3797@group
3798compound: subroutine
3799 '@{' declarations statements '@}'
3800 | subroutine
3801 '@{' statements '@}'
3802 ;
3803@end group
3804@end example
3805
3806@noindent
3807Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3808deciding which rule for @code{compound} it will eventually use.
bfa74976 3809
7404cdf3 3810@node Tracking Locations
847bf1f5
AD
3811@section Tracking Locations
3812@cindex location
95923bd6
AD
3813@cindex textual location
3814@cindex location, textual
847bf1f5
AD
3815
3816Though grammar rules and semantic actions are enough to write a fully
72d2299c 3817functional parser, it can be useful to process some additional information,
3e259915
MA
3818especially symbol locations.
3819
704a47c4
AD
3820The way locations are handled is defined by providing a data type, and
3821actions to take when rules are matched.
847bf1f5
AD
3822
3823@menu
3824* Location Type:: Specifying a data type for locations.
3825* Actions and Locations:: Using locations in actions.
3826* Location Default Action:: Defining a general way to compute locations.
3827@end menu
3828
342b8b6e 3829@node Location Type
847bf1f5
AD
3830@subsection Data Type of Locations
3831@cindex data type of locations
3832@cindex default location type
3833
3834Defining a data type for locations is much simpler than for semantic values,
3835since all tokens and groupings always use the same type.
3836
50cce58e
PE
3837You can specify the type of locations by defining a macro called
3838@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3839defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3840When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3841four members:
3842
3843@example
6273355b 3844typedef struct YYLTYPE
847bf1f5
AD
3845@{
3846 int first_line;
3847 int first_column;
3848 int last_line;
3849 int last_column;
6273355b 3850@} YYLTYPE;
847bf1f5
AD
3851@end example
3852
8fbbeba2
AD
3853When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3854initializes all these fields to 1 for @code{yylloc}. To initialize
3855@code{yylloc} with a custom location type (or to chose a different
3856initialization), use the @code{%initial-action} directive. @xref{Initial
3857Action Decl, , Performing Actions before Parsing}.
cd48d21d 3858
342b8b6e 3859@node Actions and Locations
847bf1f5
AD
3860@subsection Actions and Locations
3861@cindex location actions
3862@cindex actions, location
3863@vindex @@$
3864@vindex @@@var{n}
1f68dca5
AR
3865@vindex @@@var{name}
3866@vindex @@[@var{name}]
847bf1f5
AD
3867
3868Actions are not only useful for defining language semantics, but also for
3869describing the behavior of the output parser with locations.
3870
3871The most obvious way for building locations of syntactic groupings is very
72d2299c 3872similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3873constructs can be used to access the locations of the elements being matched.
3874The location of the @var{n}th component of the right hand side is
3875@code{@@@var{n}}, while the location of the left hand side grouping is
3876@code{@@$}.
3877
1f68dca5
AR
3878In addition, the named references construct @code{@@@var{name}} and
3879@code{@@[@var{name}]} may also be used to address the symbol locations.
ce24f7f5
JD
3880@xref{Named References}, for more information about using the named
3881references construct.
1f68dca5 3882
3e259915 3883Here is a basic example using the default data type for locations:
847bf1f5
AD
3884
3885@example
3886@group
3887exp: @dots{}
3e259915 3888 | exp '/' exp
847bf1f5 3889 @{
3e259915
MA
3890 @@$.first_column = @@1.first_column;
3891 @@$.first_line = @@1.first_line;
847bf1f5
AD
3892 @@$.last_column = @@3.last_column;
3893 @@$.last_line = @@3.last_line;
3e259915
MA
3894 if ($3)
3895 $$ = $1 / $3;
3896 else
3897 @{
3898 $$ = 1;
4e03e201
AD
3899 fprintf (stderr,
3900 "Division by zero, l%d,c%d-l%d,c%d",
3901 @@3.first_line, @@3.first_column,
3902 @@3.last_line, @@3.last_column);
3e259915 3903 @}
847bf1f5
AD
3904 @}
3905@end group
3906@end example
3907
3e259915 3908As for semantic values, there is a default action for locations that is
72d2299c 3909run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3910beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3911last symbol.
3e259915 3912
72d2299c 3913With this default action, the location tracking can be fully automatic. The
3e259915
MA
3914example above simply rewrites this way:
3915
3916@example
3917@group
3918exp: @dots{}
3919 | exp '/' exp
3920 @{
3921 if ($3)
3922 $$ = $1 / $3;
3923 else
3924 @{
3925 $$ = 1;
4e03e201
AD
3926 fprintf (stderr,
3927 "Division by zero, l%d,c%d-l%d,c%d",
3928 @@3.first_line, @@3.first_column,
3929 @@3.last_line, @@3.last_column);
3e259915
MA
3930 @}
3931 @}
3932@end group
3933@end example
847bf1f5 3934
32c29292 3935@vindex yylloc
742e4900 3936It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3937from a semantic action.
3938This location is stored in @code{yylloc}.
3939@xref{Action Features, ,Special Features for Use in Actions}.
3940
342b8b6e 3941@node Location Default Action
847bf1f5
AD
3942@subsection Default Action for Locations
3943@vindex YYLLOC_DEFAULT
35430378 3944@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3945
72d2299c 3946Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3947locations are much more general than semantic values, there is room in
3948the output parser to redefine the default action to take for each
72d2299c 3949rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3950matched, before the associated action is run. It is also invoked
3951while processing a syntax error, to compute the error's location.
35430378 3952Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
3953parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3954of that ambiguity.
847bf1f5 3955
3e259915 3956Most of the time, this macro is general enough to suppress location
79282c6c 3957dedicated code from semantic actions.
847bf1f5 3958
72d2299c 3959The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3960the location of the grouping (the result of the computation). When a
766de5eb 3961rule is matched, the second parameter identifies locations of
96b93a3d 3962all right hand side elements of the rule being matched, and the third
8710fc41 3963parameter is the size of the rule's right hand side.
35430378 3964When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
3965right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3966When processing a syntax error, the second parameter identifies locations
3967of the symbols that were discarded during error processing, and the third
96b93a3d 3968parameter is the number of discarded symbols.
847bf1f5 3969
766de5eb 3970By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3971
766de5eb 3972@smallexample
847bf1f5 3973@group
766de5eb
PE
3974# define YYLLOC_DEFAULT(Current, Rhs, N) \
3975 do \
3976 if (N) \
3977 @{ \
3978 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3979 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3980 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3981 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3982 @} \
3983 else \
3984 @{ \
3985 (Current).first_line = (Current).last_line = \
3986 YYRHSLOC(Rhs, 0).last_line; \
3987 (Current).first_column = (Current).last_column = \
3988 YYRHSLOC(Rhs, 0).last_column; \
3989 @} \
3990 while (0)
847bf1f5 3991@end group
766de5eb 3992@end smallexample
676385e2 3993
766de5eb
PE
3994where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3995in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3996just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3997
3e259915 3998When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3999
3e259915 4000@itemize @bullet
79282c6c 4001@item
72d2299c 4002All arguments are free of side-effects. However, only the first one (the
3e259915 4003result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4004
3e259915 4005@item
766de5eb
PE
4006For consistency with semantic actions, valid indexes within the
4007right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4008valid index, and it refers to the symbol just before the reduction.
4009During error processing @var{n} is always positive.
0ae99356
PE
4010
4011@item
4012Your macro should parenthesize its arguments, if need be, since the
4013actual arguments may not be surrounded by parentheses. Also, your
4014macro should expand to something that can be used as a single
4015statement when it is followed by a semicolon.
3e259915 4016@end itemize
847bf1f5 4017
908c8647 4018@node Named References
ce24f7f5 4019@section Named References
908c8647
JD
4020@cindex named references
4021
7d31f092
JD
4022As described in the preceding sections, the traditional way to refer to any
4023semantic value or location is a @dfn{positional reference}, which takes the
4024form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4025such a reference is not very descriptive. Moreover, if you later decide to
4026insert or remove symbols in the right-hand side of a grammar rule, the need
4027to renumber such references can be tedious and error-prone.
4028
4029To avoid these issues, you can also refer to a semantic value or location
4030using a @dfn{named reference}. First of all, original symbol names may be
4031used as named references. For example:
908c8647
JD
4032
4033@example
4034@group
4035invocation: op '(' args ')'
4036 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4037@end group
4038@end example
4039
4040@noindent
7d31f092 4041Positional and named references can be mixed arbitrarily. For example:
908c8647
JD
4042
4043@example
4044@group
4045invocation: op '(' args ')'
4046 @{ $$ = new_invocation ($op, $args, @@$); @}
4047@end group
4048@end example
4049
4050@noindent
4051However, sometimes regular symbol names are not sufficient due to
4052ambiguities:
4053
4054@example
4055@group
4056exp: exp '/' exp
4057 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4058
4059exp: exp '/' exp
4060 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4061
4062exp: exp '/' exp
4063 @{ $$ = $1 / $3; @} // No error.
4064@end group
4065@end example
4066
4067@noindent
4068When ambiguity occurs, explicitly declared names may be used for values and
4069locations. Explicit names are declared as a bracketed name after a symbol
4070appearance in rule definitions. For example:
4071@example
4072@group
4073exp[result]: exp[left] '/' exp[right]
4074 @{ $result = $left / $right; @}
4075@end group
4076@end example
4077
4078@noindent
ce24f7f5
JD
4079In order to access a semantic value generated by a mid-rule action, an
4080explicit name may also be declared by putting a bracketed name after the
4081closing brace of the mid-rule action code:
908c8647
JD
4082@example
4083@group
4084exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4085 @{ $res = $left + $right; @}
4086@end group
4087@end example
4088
4089@noindent
4090
4091In references, in order to specify names containing dots and dashes, an explicit
4092bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4093@example
4094@group
4095if-stmt: IF '(' expr ')' THEN then.stmt ';'
4096 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4097@end group
4098@end example
4099
4100It often happens that named references are followed by a dot, dash or other
4101C punctuation marks and operators. By default, Bison will read
ce24f7f5
JD
4102@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4103@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4104value. In order to force Bison to recognize @samp{name.suffix} in its
4105entirety as the name of a semantic value, the bracketed syntax
4106@samp{$[name.suffix]} must be used.
4107
4108The named references feature is experimental. More user feedback will help
4109to stabilize it.
908c8647 4110
342b8b6e 4111@node Declarations
bfa74976
RS
4112@section Bison Declarations
4113@cindex declarations, Bison
4114@cindex Bison declarations
4115
4116The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4117used in formulating the grammar and the data types of semantic values.
4118@xref{Symbols}.
4119
4120All token type names (but not single-character literal tokens such as
4121@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4122declared if you need to specify which data type to use for the semantic
4123value (@pxref{Multiple Types, ,More Than One Value Type}).
4124
9913d6e4
JD
4125The first rule in the grammar file also specifies the start symbol, by
4126default. If you want some other symbol to be the start symbol, you
4127must declare it explicitly (@pxref{Language and Grammar, ,Languages
4128and Context-Free Grammars}).
bfa74976
RS
4129
4130@menu
b50d2359 4131* Require Decl:: Requiring a Bison version.
bfa74976
RS
4132* Token Decl:: Declaring terminal symbols.
4133* Precedence Decl:: Declaring terminals with precedence and associativity.
4134* Union Decl:: Declaring the set of all semantic value types.
4135* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4136* Initial Action Decl:: Code run before parsing starts.
72f889cc 4137* Destructor Decl:: Declaring how symbols are freed.
d6328241 4138* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4139* Start Decl:: Specifying the start symbol.
4140* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4141* Push Decl:: Requesting a push parser.
bfa74976 4142* Decl Summary:: Table of all Bison declarations.
2f4518a1 4143* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 4144* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4145@end menu
4146
b50d2359
AD
4147@node Require Decl
4148@subsection Require a Version of Bison
4149@cindex version requirement
4150@cindex requiring a version of Bison
4151@findex %require
4152
4153You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4154the requirement is not met, @command{bison} exits with an error (exit
4155status 63).
b50d2359
AD
4156
4157@example
4158%require "@var{version}"
4159@end example
4160
342b8b6e 4161@node Token Decl
bfa74976
RS
4162@subsection Token Type Names
4163@cindex declaring token type names
4164@cindex token type names, declaring
931c7513 4165@cindex declaring literal string tokens
bfa74976
RS
4166@findex %token
4167
4168The basic way to declare a token type name (terminal symbol) is as follows:
4169
4170@example
4171%token @var{name}
4172@end example
4173
4174Bison will convert this into a @code{#define} directive in
4175the parser, so that the function @code{yylex} (if it is in this file)
4176can use the name @var{name} to stand for this token type's code.
4177
14ded682
AD
4178Alternatively, you can use @code{%left}, @code{%right}, or
4179@code{%nonassoc} instead of @code{%token}, if you wish to specify
4180associativity and precedence. @xref{Precedence Decl, ,Operator
4181Precedence}.
bfa74976
RS
4182
4183You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4184a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4185following the token name:
bfa74976
RS
4186
4187@example
4188%token NUM 300
1452af69 4189%token XNUM 0x12d // a GNU extension
bfa74976
RS
4190@end example
4191
4192@noindent
4193It is generally best, however, to let Bison choose the numeric codes for
4194all token types. Bison will automatically select codes that don't conflict
e966383b 4195with each other or with normal characters.
bfa74976
RS
4196
4197In the event that the stack type is a union, you must augment the
4198@code{%token} or other token declaration to include the data type
704a47c4
AD
4199alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4200Than One Value Type}).
bfa74976
RS
4201
4202For example:
4203
4204@example
4205@group
4206%union @{ /* define stack type */
4207 double val;
4208 symrec *tptr;
4209@}
4210%token <val> NUM /* define token NUM and its type */
4211@end group
4212@end example
4213
931c7513
RS
4214You can associate a literal string token with a token type name by
4215writing the literal string at the end of a @code{%token}
4216declaration which declares the name. For example:
4217
4218@example
4219%token arrow "=>"
4220@end example
4221
4222@noindent
4223For example, a grammar for the C language might specify these names with
4224equivalent literal string tokens:
4225
4226@example
4227%token <operator> OR "||"
4228%token <operator> LE 134 "<="
4229%left OR "<="
4230@end example
4231
4232@noindent
4233Once you equate the literal string and the token name, you can use them
4234interchangeably in further declarations or the grammar rules. The
4235@code{yylex} function can use the token name or the literal string to
4236obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4237Syntax error messages passed to @code{yyerror} from the parser will reference
4238the literal string instead of the token name.
4239
4240The token numbered as 0 corresponds to end of file; the following line
4241allows for nicer error messages referring to ``end of file'' instead
4242of ``$end'':
4243
4244@example
4245%token END 0 "end of file"
4246@end example
931c7513 4247
342b8b6e 4248@node Precedence Decl
bfa74976
RS
4249@subsection Operator Precedence
4250@cindex precedence declarations
4251@cindex declaring operator precedence
4252@cindex operator precedence, declaring
4253
4254Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4255declare a token and specify its precedence and associativity, all at
4256once. These are called @dfn{precedence declarations}.
704a47c4
AD
4257@xref{Precedence, ,Operator Precedence}, for general information on
4258operator precedence.
bfa74976 4259
ab7f29f8 4260The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4261@code{%token}: either
4262
4263@example
4264%left @var{symbols}@dots{}
4265@end example
4266
4267@noindent
4268or
4269
4270@example
4271%left <@var{type}> @var{symbols}@dots{}
4272@end example
4273
4274And indeed any of these declarations serves the purposes of @code{%token}.
4275But in addition, they specify the associativity and relative precedence for
4276all the @var{symbols}:
4277
4278@itemize @bullet
4279@item
4280The associativity of an operator @var{op} determines how repeated uses
4281of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4282@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4283grouping @var{y} with @var{z} first. @code{%left} specifies
4284left-associativity (grouping @var{x} with @var{y} first) and
4285@code{%right} specifies right-associativity (grouping @var{y} with
4286@var{z} first). @code{%nonassoc} specifies no associativity, which
4287means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4288considered a syntax error.
4289
4290@item
4291The precedence of an operator determines how it nests with other operators.
4292All the tokens declared in a single precedence declaration have equal
4293precedence and nest together according to their associativity.
4294When two tokens declared in different precedence declarations associate,
4295the one declared later has the higher precedence and is grouped first.
4296@end itemize
4297
ab7f29f8
JD
4298For backward compatibility, there is a confusing difference between the
4299argument lists of @code{%token} and precedence declarations.
4300Only a @code{%token} can associate a literal string with a token type name.
4301A precedence declaration always interprets a literal string as a reference to a
4302separate token.
4303For example:
4304
4305@example
4306%left OR "<=" // Does not declare an alias.
4307%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4308@end example
4309
342b8b6e 4310@node Union Decl
bfa74976
RS
4311@subsection The Collection of Value Types
4312@cindex declaring value types
4313@cindex value types, declaring
4314@findex %union
4315
287c78f6
PE
4316The @code{%union} declaration specifies the entire collection of
4317possible data types for semantic values. The keyword @code{%union} is
4318followed by braced code containing the same thing that goes inside a
4319@code{union} in C@.
bfa74976
RS
4320
4321For example:
4322
4323@example
4324@group
4325%union @{
4326 double val;
4327 symrec *tptr;
4328@}
4329@end group
4330@end example
4331
4332@noindent
4333This says that the two alternative types are @code{double} and @code{symrec
4334*}. They are given names @code{val} and @code{tptr}; these names are used
4335in the @code{%token} and @code{%type} declarations to pick one of the types
4336for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4337
35430378 4338As an extension to POSIX, a tag is allowed after the
6273355b
PE
4339@code{union}. For example:
4340
4341@example
4342@group
4343%union value @{
4344 double val;
4345 symrec *tptr;
4346@}
4347@end group
4348@end example
4349
d6ca7905 4350@noindent
6273355b
PE
4351specifies the union tag @code{value}, so the corresponding C type is
4352@code{union value}. If you do not specify a tag, it defaults to
4353@code{YYSTYPE}.
4354
35430378 4355As another extension to POSIX, you may specify multiple
d6ca7905
PE
4356@code{%union} declarations; their contents are concatenated. However,
4357only the first @code{%union} declaration can specify a tag.
4358
6273355b 4359Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4360a semicolon after the closing brace.
4361
ddc8ede1
PE
4362Instead of @code{%union}, you can define and use your own union type
4363@code{YYSTYPE} if your grammar contains at least one
4364@samp{<@var{type}>} tag. For example, you can put the following into
4365a header file @file{parser.h}:
4366
4367@example
4368@group
4369union YYSTYPE @{
4370 double val;
4371 symrec *tptr;
4372@};
4373typedef union YYSTYPE YYSTYPE;
4374@end group
4375@end example
4376
4377@noindent
4378and then your grammar can use the following
4379instead of @code{%union}:
4380
4381@example
4382@group
4383%@{
4384#include "parser.h"
4385%@}
4386%type <val> expr
4387%token <tptr> ID
4388@end group
4389@end example
4390
342b8b6e 4391@node Type Decl
bfa74976
RS
4392@subsection Nonterminal Symbols
4393@cindex declaring value types, nonterminals
4394@cindex value types, nonterminals, declaring
4395@findex %type
4396
4397@noindent
4398When you use @code{%union} to specify multiple value types, you must
4399declare the value type of each nonterminal symbol for which values are
4400used. This is done with a @code{%type} declaration, like this:
4401
4402@example
4403%type <@var{type}> @var{nonterminal}@dots{}
4404@end example
4405
4406@noindent
704a47c4
AD
4407Here @var{nonterminal} is the name of a nonterminal symbol, and
4408@var{type} is the name given in the @code{%union} to the alternative
4409that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4410can give any number of nonterminal symbols in the same @code{%type}
4411declaration, if they have the same value type. Use spaces to separate
4412the symbol names.
bfa74976 4413
931c7513
RS
4414You can also declare the value type of a terminal symbol. To do this,
4415use the same @code{<@var{type}>} construction in a declaration for the
4416terminal symbol. All kinds of token declarations allow
4417@code{<@var{type}>}.
4418
18d192f0
AD
4419@node Initial Action Decl
4420@subsection Performing Actions before Parsing
4421@findex %initial-action
4422
4423Sometimes your parser needs to perform some initializations before
4424parsing. The @code{%initial-action} directive allows for such arbitrary
4425code.
4426
4427@deffn {Directive} %initial-action @{ @var{code} @}
4428@findex %initial-action
287c78f6 4429Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4430@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4431@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4432@code{%parse-param}.
18d192f0
AD
4433@end deffn
4434
451364ed
AD
4435For instance, if your locations use a file name, you may use
4436
4437@example
48b16bbc 4438%parse-param @{ char const *file_name @};
451364ed
AD
4439%initial-action
4440@{
4626a15d 4441 @@$.initialize (file_name);
451364ed
AD
4442@};
4443@end example
4444
18d192f0 4445
72f889cc
AD
4446@node Destructor Decl
4447@subsection Freeing Discarded Symbols
4448@cindex freeing discarded symbols
4449@findex %destructor
12e35840 4450@findex <*>
3ebecc24 4451@findex <>
a85284cf
AD
4452During error recovery (@pxref{Error Recovery}), symbols already pushed
4453on the stack and tokens coming from the rest of the file are discarded
4454until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4455or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4456symbols on the stack must be discarded. Even if the parser succeeds, it
4457must discard the start symbol.
258b75ca
PE
4458
4459When discarded symbols convey heap based information, this memory is
4460lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4461in traditional compilers, it is unacceptable for programs like shells or
4462protocol implementations that may parse and execute indefinitely.
258b75ca 4463
a85284cf
AD
4464The @code{%destructor} directive defines code that is called when a
4465symbol is automatically discarded.
72f889cc
AD
4466
4467@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4468@findex %destructor
287c78f6
PE
4469Invoke the braced @var{code} whenever the parser discards one of the
4470@var{symbols}.
4b367315 4471Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4472with the discarded symbol, and @code{@@$} designates its location.
4473The additional parser parameters are also available (@pxref{Parser Function, ,
4474The Parser Function @code{yyparse}}).
ec5479ce 4475
b2a0b7ca
JD
4476When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4477per-symbol @code{%destructor}.
4478You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4479tag among @var{symbols}.
b2a0b7ca 4480In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4481grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4482per-symbol @code{%destructor}.
4483
12e35840 4484Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4485(These default forms are experimental.
4486More user feedback will help to determine whether they should become permanent
4487features.)
3ebecc24 4488You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4489exactly one @code{%destructor} declaration in your grammar file.
4490The parser will invoke the @var{code} associated with one of these whenever it
4491discards any user-defined grammar symbol that has no per-symbol and no per-type
4492@code{%destructor}.
4493The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4494symbol for which you have formally declared a semantic type tag (@code{%type}
4495counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4496The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4497symbol that has no declared semantic type tag.
72f889cc
AD
4498@end deffn
4499
b2a0b7ca 4500@noindent
12e35840 4501For example:
72f889cc
AD
4502
4503@smallexample
ec5479ce
JD
4504%union @{ char *string; @}
4505%token <string> STRING1
4506%token <string> STRING2
4507%type <string> string1
4508%type <string> string2
b2a0b7ca
JD
4509%union @{ char character; @}
4510%token <character> CHR
4511%type <character> chr
12e35840
JD
4512%token TAGLESS
4513
b2a0b7ca 4514%destructor @{ @} <character>
12e35840
JD
4515%destructor @{ free ($$); @} <*>
4516%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4517%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4518@end smallexample
4519
4520@noindent
b2a0b7ca
JD
4521guarantees that, when the parser discards any user-defined symbol that has a
4522semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4523to @code{free} by default.
ec5479ce
JD
4524However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4525prints its line number to @code{stdout}.
4526It performs only the second @code{%destructor} in this case, so it invokes
4527@code{free} only once.
12e35840
JD
4528Finally, the parser merely prints a message whenever it discards any symbol,
4529such as @code{TAGLESS}, that has no semantic type tag.
4530
4531A Bison-generated parser invokes the default @code{%destructor}s only for
4532user-defined as opposed to Bison-defined symbols.
4533For example, the parser will not invoke either kind of default
4534@code{%destructor} for the special Bison-defined symbols @code{$accept},
4535@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4536none of which you can reference in your grammar.
4537It also will not invoke either for the @code{error} token (@pxref{Table of
4538Symbols, ,error}), which is always defined by Bison regardless of whether you
4539reference it in your grammar.
4540However, it may invoke one of them for the end token (token 0) if you
4541redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4542
4543@smallexample
4544%token END 0
4545@end smallexample
4546
12e35840
JD
4547@cindex actions in mid-rule
4548@cindex mid-rule actions
4549Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4550mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
ce24f7f5
JD
4551That is, Bison does not consider a mid-rule to have a semantic value if you
4552do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4553(where @var{n} is the right-hand side symbol position of the mid-rule) in
4554any later action in that rule. However, if you do reference either, the
4555Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4556it discards the mid-rule symbol.
12e35840 4557
3508ce36
JD
4558@ignore
4559@noindent
4560In the future, it may be possible to redefine the @code{error} token as a
4561nonterminal that captures the discarded symbols.
4562In that case, the parser will invoke the default destructor for it as well.
4563@end ignore
4564
e757bb10
AD
4565@sp 1
4566
4567@cindex discarded symbols
4568@dfn{Discarded symbols} are the following:
4569
4570@itemize
4571@item
4572stacked symbols popped during the first phase of error recovery,
4573@item
4574incoming terminals during the second phase of error recovery,
4575@item
742e4900 4576the current lookahead and the entire stack (except the current
9d9b8b70 4577right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4578@item
4579the start symbol, when the parser succeeds.
e757bb10
AD
4580@end itemize
4581
9d9b8b70
PE
4582The parser can @dfn{return immediately} because of an explicit call to
4583@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4584exhaustion.
4585
29553547 4586Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4587error via @code{YYERROR} are not discarded automatically. As a rule
4588of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4589the memory.
e757bb10 4590
342b8b6e 4591@node Expect Decl
bfa74976
RS
4592@subsection Suppressing Conflict Warnings
4593@cindex suppressing conflict warnings
4594@cindex preventing warnings about conflicts
4595@cindex warnings, preventing
4596@cindex conflicts, suppressing warnings of
4597@findex %expect
d6328241 4598@findex %expect-rr
bfa74976
RS
4599
4600Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4601(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4602have harmless shift/reduce conflicts which are resolved in a predictable
4603way and would be difficult to eliminate. It is desirable to suppress
4604the warning about these conflicts unless the number of conflicts
4605changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4606
4607The declaration looks like this:
4608
4609@example
4610%expect @var{n}
4611@end example
4612
035aa4a0
PE
4613Here @var{n} is a decimal integer. The declaration says there should
4614be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4615Bison reports an error if the number of shift/reduce conflicts differs
4616from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4617
34a6c2d1 4618For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4619serious, and should be eliminated entirely. Bison will always report
35430378 4620reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4621parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4622there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4623also possible to specify an expected number of reduce/reduce conflicts
35430378 4624in GLR parsers, using the declaration:
d6328241
PH
4625
4626@example
4627%expect-rr @var{n}
4628@end example
4629
bfa74976
RS
4630In general, using @code{%expect} involves these steps:
4631
4632@itemize @bullet
4633@item
4634Compile your grammar without @code{%expect}. Use the @samp{-v} option
4635to get a verbose list of where the conflicts occur. Bison will also
4636print the number of conflicts.
4637
4638@item
4639Check each of the conflicts to make sure that Bison's default
4640resolution is what you really want. If not, rewrite the grammar and
4641go back to the beginning.
4642
4643@item
4644Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4645number which Bison printed. With GLR parsers, add an
035aa4a0 4646@code{%expect-rr} declaration as well.
bfa74976
RS
4647@end itemize
4648
cf22447c
JD
4649Now Bison will report an error if you introduce an unexpected conflict,
4650but will keep silent otherwise.
bfa74976 4651
342b8b6e 4652@node Start Decl
bfa74976
RS
4653@subsection The Start-Symbol
4654@cindex declaring the start symbol
4655@cindex start symbol, declaring
4656@cindex default start symbol
4657@findex %start
4658
4659Bison assumes by default that the start symbol for the grammar is the first
4660nonterminal specified in the grammar specification section. The programmer
4661may override this restriction with the @code{%start} declaration as follows:
4662
4663@example
4664%start @var{symbol}
4665@end example
4666
342b8b6e 4667@node Pure Decl
bfa74976
RS
4668@subsection A Pure (Reentrant) Parser
4669@cindex reentrant parser
4670@cindex pure parser
d9df47b6 4671@findex %define api.pure
bfa74976
RS
4672
4673A @dfn{reentrant} program is one which does not alter in the course of
4674execution; in other words, it consists entirely of @dfn{pure} (read-only)
4675code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4676for example, a nonreentrant program may not be safe to call from a signal
4677handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4678program must be called only within interlocks.
4679
70811b85 4680Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4681suitable for most uses, and it permits compatibility with Yacc. (The
4682standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4683statically allocated variables for communication with @code{yylex},
4684including @code{yylval} and @code{yylloc}.)
bfa74976 4685
70811b85 4686Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4687declaration @code{%define api.pure} says that you want the parser to be
70811b85 4688reentrant. It looks like this:
bfa74976
RS
4689
4690@example
d9df47b6 4691%define api.pure
bfa74976
RS
4692@end example
4693
70811b85
RS
4694The result is that the communication variables @code{yylval} and
4695@code{yylloc} become local variables in @code{yyparse}, and a different
4696calling convention is used for the lexical analyzer function
4697@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4698Parsers}, for the details of this. The variable @code{yynerrs}
4699becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4700of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4701Reporting Function @code{yyerror}}). The convention for calling
4702@code{yyparse} itself is unchanged.
4703
4704Whether the parser is pure has nothing to do with the grammar rules.
4705You can generate either a pure parser or a nonreentrant parser from any
4706valid grammar.
bfa74976 4707
9987d1b3
JD
4708@node Push Decl
4709@subsection A Push Parser
4710@cindex push parser
4711@cindex push parser
812775a0 4712@findex %define api.push-pull
9987d1b3 4713
59da312b
JD
4714(The current push parsing interface is experimental and may evolve.
4715More user feedback will help to stabilize it.)
4716
f4101aa6
AD
4717A pull parser is called once and it takes control until all its input
4718is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4719each time a new token is made available.
4720
f4101aa6 4721A push parser is typically useful when the parser is part of a
9987d1b3 4722main event loop in the client's application. This is typically
f4101aa6
AD
4723a requirement of a GUI, when the main event loop needs to be triggered
4724within a certain time period.
9987d1b3 4725
d782395d
JD
4726Normally, Bison generates a pull parser.
4727The following Bison declaration says that you want the parser to be a push
2f4518a1 4728parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4729
4730@example
f37495f6 4731%define api.push-pull push
9987d1b3
JD
4732@end example
4733
4734In almost all cases, you want to ensure that your push parser is also
4735a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4736time you should create an impure push parser is to have backwards
9987d1b3
JD
4737compatibility with the impure Yacc pull mode interface. Unless you know
4738what you are doing, your declarations should look like this:
4739
4740@example
d9df47b6 4741%define api.pure
f37495f6 4742%define api.push-pull push
9987d1b3
JD
4743@end example
4744
f4101aa6
AD
4745There is a major notable functional difference between the pure push parser
4746and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4747many parser instances, of the same type of parser, in memory at the same time.
4748An impure push parser should only use one parser at a time.
4749
4750When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4751the generated parser. @code{yypstate} is a structure that the generated
4752parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4753function that will create a new parser instance. @code{yypstate_delete}
4754will free the resources associated with the corresponding parser instance.
f4101aa6 4755Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4756token is available to provide the parser. A trivial example
4757of using a pure push parser would look like this:
4758
4759@example
4760int status;
4761yypstate *ps = yypstate_new ();
4762do @{
4763 status = yypush_parse (ps, yylex (), NULL);
4764@} while (status == YYPUSH_MORE);
4765yypstate_delete (ps);
4766@end example
4767
4768If the user decided to use an impure push parser, a few things about
f4101aa6 4769the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4770a global variable instead of a variable in the @code{yypush_parse} function.
4771For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4772changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4773example would thus look like this:
4774
4775@example
4776extern int yychar;
4777int status;
4778yypstate *ps = yypstate_new ();
4779do @{
4780 yychar = yylex ();
4781 status = yypush_parse (ps);
4782@} while (status == YYPUSH_MORE);
4783yypstate_delete (ps);
4784@end example
4785
f4101aa6 4786That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4787for use by the next invocation of the @code{yypush_parse} function.
4788
f4101aa6 4789Bison also supports both the push parser interface along with the pull parser
9987d1b3 4790interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4791you should replace the @code{%define api.push-pull push} declaration with the
4792@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4793the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4794and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4795would be used. However, the user should note that it is implemented in the
d782395d
JD
4796generated parser by calling @code{yypull_parse}.
4797This makes the @code{yyparse} function that is generated with the
f37495f6 4798@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4799@code{yyparse} function. If the user
4800calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4801stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4802and then @code{yypull_parse} the rest of the input stream. If you would like
4803to switch back and forth between between parsing styles, you would have to
4804write your own @code{yypull_parse} function that knows when to quit looking
4805for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4806like this:
4807
4808@example
4809yypstate *ps = yypstate_new ();
4810yypull_parse (ps); /* Will call the lexer */
4811yypstate_delete (ps);
4812@end example
4813
d9df47b6 4814Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4815the generated parser with @code{%define api.push-pull both} as it did for
4816@code{%define api.push-pull push}.
9987d1b3 4817
342b8b6e 4818@node Decl Summary
bfa74976
RS
4819@subsection Bison Declaration Summary
4820@cindex Bison declaration summary
4821@cindex declaration summary
4822@cindex summary, Bison declaration
4823
d8988b2f 4824Here is a summary of the declarations used to define a grammar:
bfa74976 4825
18b519c0 4826@deffn {Directive} %union
bfa74976
RS
4827Declare the collection of data types that semantic values may have
4828(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4829@end deffn
bfa74976 4830
18b519c0 4831@deffn {Directive} %token
bfa74976
RS
4832Declare a terminal symbol (token type name) with no precedence
4833or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4834@end deffn
bfa74976 4835
18b519c0 4836@deffn {Directive} %right
bfa74976
RS
4837Declare a terminal symbol (token type name) that is right-associative
4838(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4839@end deffn
bfa74976 4840
18b519c0 4841@deffn {Directive} %left
bfa74976
RS
4842Declare a terminal symbol (token type name) that is left-associative
4843(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4844@end deffn
bfa74976 4845
18b519c0 4846@deffn {Directive} %nonassoc
bfa74976 4847Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4848(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4849Using it in a way that would be associative is a syntax error.
4850@end deffn
4851
91d2c560 4852@ifset defaultprec
39a06c25 4853@deffn {Directive} %default-prec
22fccf95 4854Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4855(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4856@end deffn
91d2c560 4857@end ifset
bfa74976 4858
18b519c0 4859@deffn {Directive} %type
bfa74976
RS
4860Declare the type of semantic values for a nonterminal symbol
4861(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4862@end deffn
bfa74976 4863
18b519c0 4864@deffn {Directive} %start
89cab50d
AD
4865Specify the grammar's start symbol (@pxref{Start Decl, ,The
4866Start-Symbol}).
18b519c0 4867@end deffn
bfa74976 4868
18b519c0 4869@deffn {Directive} %expect
bfa74976
RS
4870Declare the expected number of shift-reduce conflicts
4871(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4872@end deffn
4873
bfa74976 4874
d8988b2f
AD
4875@sp 1
4876@noindent
4877In order to change the behavior of @command{bison}, use the following
4878directives:
4879
148d66d8 4880@deffn {Directive} %code @{@var{code}@}
8e6f2266 4881@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4882@findex %code
8e6f2266
JD
4883Insert @var{code} verbatim into the output parser source at the
4884default location or at the location specified by @var{qualifier}.
4885@xref{%code Summary}.
148d66d8
JD
4886@end deffn
4887
18b519c0 4888@deffn {Directive} %debug
9913d6e4
JD
4889In the parser implementation file, define the macro @code{YYDEBUG} to
48901 if it is not already defined, so that the debugging facilities are
4891compiled. @xref{Tracing, ,Tracing Your Parser}.
bd5df716 4892@end deffn
d8988b2f 4893
2f4518a1
JD
4894@deffn {Directive} %define @var{variable}
4895@deffnx {Directive} %define @var{variable} @var{value}
4896@deffnx {Directive} %define @var{variable} "@var{value}"
4897Define a variable to adjust Bison's behavior. @xref{%define Summary}.
4898@end deffn
4899
4900@deffn {Directive} %defines
4901Write a parser header file containing macro definitions for the token
4902type names defined in the grammar as well as a few other declarations.
4903If the parser implementation file is named @file{@var{name}.c} then
4904the parser header file is named @file{@var{name}.h}.
4905
4906For C parsers, the parser header file declares @code{YYSTYPE} unless
4907@code{YYSTYPE} is already defined as a macro or you have used a
4908@code{<@var{type}>} tag without using @code{%union}. Therefore, if
4909you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
4910Value Type}) with components that require other definitions, or if you
4911have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
4912Type, ,Data Types of Semantic Values}), you need to arrange for these
4913definitions to be propagated to all modules, e.g., by putting them in
4914a prerequisite header that is included both by your parser and by any
4915other module that needs @code{YYSTYPE}.
4916
4917Unless your parser is pure, the parser header file declares
4918@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
4919(Reentrant) Parser}.
4920
4921If you have also used locations, the parser header file declares
7404cdf3
JD
4922@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
4923@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
2f4518a1
JD
4924
4925This parser header file is normally essential if you wish to put the
4926definition of @code{yylex} in a separate source file, because
4927@code{yylex} typically needs to be able to refer to the
4928above-mentioned declarations and to the token type codes. @xref{Token
4929Values, ,Semantic Values of Tokens}.
4930
4931@findex %code requires
4932@findex %code provides
4933If you have declared @code{%code requires} or @code{%code provides}, the output
4934header also contains their code.
4935@xref{%code Summary}.
4936@end deffn
4937
4938@deffn {Directive} %defines @var{defines-file}
4939Same as above, but save in the file @var{defines-file}.
4940@end deffn
4941
4942@deffn {Directive} %destructor
4943Specify how the parser should reclaim the memory associated to
4944discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
4945@end deffn
4946
4947@deffn {Directive} %file-prefix "@var{prefix}"
4948Specify a prefix to use for all Bison output file names. The names
4949are chosen as if the grammar file were named @file{@var{prefix}.y}.
4950@end deffn
4951
4952@deffn {Directive} %language "@var{language}"
4953Specify the programming language for the generated parser. Currently
4954supported languages include C, C++, and Java.
4955@var{language} is case-insensitive.
4956
4957This directive is experimental and its effect may be modified in future
4958releases.
4959@end deffn
4960
4961@deffn {Directive} %locations
4962Generate the code processing the locations (@pxref{Action Features,
4963,Special Features for Use in Actions}). This mode is enabled as soon as
4964the grammar uses the special @samp{@@@var{n}} tokens, but if your
4965grammar does not use it, using @samp{%locations} allows for more
4966accurate syntax error messages.
4967@end deffn
4968
4969@deffn {Directive} %name-prefix "@var{prefix}"
4970Rename the external symbols used in the parser so that they start with
4971@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
4972in C parsers
4973is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
4974@code{yylval}, @code{yychar}, @code{yydebug}, and
4975(if locations are used) @code{yylloc}. If you use a push parser,
4976@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
4977@code{yypstate_new} and @code{yypstate_delete} will
4978also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
4979names become @code{c_parse}, @code{c_lex}, and so on.
4980For C++ parsers, see the @code{%define namespace} documentation in this
4981section.
4982@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
4983@end deffn
4984
4985@ifset defaultprec
4986@deffn {Directive} %no-default-prec
4987Do not assign a precedence to rules lacking an explicit @code{%prec}
4988modifier (@pxref{Contextual Precedence, ,Context-Dependent
4989Precedence}).
4990@end deffn
4991@end ifset
4992
4993@deffn {Directive} %no-lines
4994Don't generate any @code{#line} preprocessor commands in the parser
4995implementation file. Ordinarily Bison writes these commands in the
4996parser implementation file so that the C compiler and debuggers will
4997associate errors and object code with your source file (the grammar
4998file). This directive causes them to associate errors with the parser
4999implementation file, treating it as an independent source file in its
5000own right.
5001@end deffn
5002
5003@deffn {Directive} %output "@var{file}"
5004Specify @var{file} for the parser implementation file.
5005@end deffn
5006
5007@deffn {Directive} %pure-parser
5008Deprecated version of @code{%define api.pure} (@pxref{%define
5009Summary,,api.pure}), for which Bison is more careful to warn about
5010unreasonable usage.
5011@end deffn
5012
5013@deffn {Directive} %require "@var{version}"
5014Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5015Require a Version of Bison}.
5016@end deffn
5017
5018@deffn {Directive} %skeleton "@var{file}"
5019Specify the skeleton to use.
5020
5021@c You probably don't need this option unless you are developing Bison.
5022@c You should use @code{%language} if you want to specify the skeleton for a
5023@c different language, because it is clearer and because it will always choose the
5024@c correct skeleton for non-deterministic or push parsers.
5025
5026If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5027file in the Bison installation directory.
5028If it does, @var{file} is an absolute file name or a file name relative to the
5029directory of the grammar file.
5030This is similar to how most shells resolve commands.
5031@end deffn
5032
5033@deffn {Directive} %token-table
5034Generate an array of token names in the parser implementation file.
5035The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5036the name of the token whose internal Bison token code number is
5037@var{i}. The first three elements of @code{yytname} correspond to the
5038predefined tokens @code{"$end"}, @code{"error"}, and
5039@code{"$undefined"}; after these come the symbols defined in the
5040grammar file.
5041
5042The name in the table includes all the characters needed to represent
5043the token in Bison. For single-character literals and literal
5044strings, this includes the surrounding quoting characters and any
5045escape sequences. For example, the Bison single-character literal
5046@code{'+'} corresponds to a three-character name, represented in C as
5047@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5048corresponds to a five-character name, represented in C as
5049@code{"\"\\\\/\""}.
5050
5051When you specify @code{%token-table}, Bison also generates macro
5052definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5053@code{YYNRULES}, and @code{YYNSTATES}:
5054
5055@table @code
5056@item YYNTOKENS
5057The highest token number, plus one.
5058@item YYNNTS
5059The number of nonterminal symbols.
5060@item YYNRULES
5061The number of grammar rules,
5062@item YYNSTATES
5063The number of parser states (@pxref{Parser States}).
5064@end table
5065@end deffn
5066
5067@deffn {Directive} %verbose
5068Write an extra output file containing verbose descriptions of the
5069parser states and what is done for each type of lookahead token in
5070that state. @xref{Understanding, , Understanding Your Parser}, for more
5071information.
5072@end deffn
5073
5074@deffn {Directive} %yacc
5075Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5076including its naming conventions. @xref{Bison Options}, for more.
5077@end deffn
5078
5079
5080@node %define Summary
5081@subsection %define Summary
406dec82
JD
5082
5083There are many features of Bison's behavior that can be controlled by
5084assigning the feature a single value. For historical reasons, some
5085such features are assigned values by dedicated directives, such as
5086@code{%start}, which assigns the start symbol. However, newer such
5087features are associated with variables, which are assigned by the
5088@code{%define} directive:
5089
c1d19e10 5090@deffn {Directive} %define @var{variable}
f37495f6 5091@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5092@deffnx {Directive} %define @var{variable} "@var{value}"
406dec82 5093Define @var{variable} to @var{value}.
9611cfa2 5094
406dec82
JD
5095@var{value} must be placed in quotation marks if it contains any
5096character other than a letter, underscore, period, or non-initial dash
5097or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5098to specifying @code{""}.
9611cfa2 5099
406dec82
JD
5100It is an error if a @var{variable} is defined by @code{%define}
5101multiple times, but see @ref{Bison Options,,-D
5102@var{name}[=@var{value}]}.
5103@end deffn
f37495f6 5104
406dec82
JD
5105The rest of this section summarizes variables and values that
5106@code{%define} accepts.
9611cfa2 5107
406dec82
JD
5108Some @var{variable}s take Boolean values. In this case, Bison will
5109complain if the variable definition does not meet one of the following
5110four conditions:
9611cfa2
JD
5111
5112@enumerate
f37495f6 5113@item @code{@var{value}} is @code{true}
9611cfa2 5114
f37495f6
JD
5115@item @code{@var{value}} is omitted (or @code{""} is specified).
5116This is equivalent to @code{true}.
9611cfa2 5117
f37495f6 5118@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5119
5120@item @var{variable} is never defined.
628be6c9 5121In this case, Bison selects a default value.
9611cfa2 5122@end enumerate
148d66d8 5123
628be6c9
JD
5124What @var{variable}s are accepted, as well as their meanings and default
5125values, depend on the selected target language and/or the parser
5126skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5127Summary,,%skeleton}).
5128Unaccepted @var{variable}s produce an error.
793fbca5
JD
5129Some of the accepted @var{variable}s are:
5130
5131@itemize @bullet
d9df47b6
JD
5132@item api.pure
5133@findex %define api.pure
5134
5135@itemize @bullet
5136@item Language(s): C
5137
5138@item Purpose: Request a pure (reentrant) parser program.
5139@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5140
5141@item Accepted Values: Boolean
5142
f37495f6 5143@item Default Value: @code{false}
d9df47b6
JD
5144@end itemize
5145
812775a0
JD
5146@item api.push-pull
5147@findex %define api.push-pull
793fbca5
JD
5148
5149@itemize @bullet
34a6c2d1 5150@item Language(s): C (deterministic parsers only)
793fbca5 5151
3b1977ea 5152@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5153@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5154(The current push parsing interface is experimental and may evolve.
5155More user feedback will help to stabilize it.)
793fbca5 5156
f37495f6 5157@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5158
f37495f6 5159@item Default Value: @code{pull}
793fbca5
JD
5160@end itemize
5161
232be91a
AD
5162@c ================================================== lr.default-reductions
5163
1d0f55cc 5164@item lr.default-reductions
1d0f55cc 5165@findex %define lr.default-reductions
34a6c2d1
JD
5166
5167@itemize @bullet
5168@item Language(s): all
5169
4c38b19e 5170@item Purpose: Specify the kind of states that are permitted to
6f04ee6c
JD
5171contain default reductions. @xref{Default Reductions}. (The ability to
5172specify where default reductions should be used is experimental. More user
5173feedback will help to stabilize it.)
34a6c2d1 5174
a6e5a280 5175@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
34a6c2d1
JD
5176@item Default Value:
5177@itemize
f37495f6 5178@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
a6e5a280 5179@item @code{most} otherwise.
34a6c2d1
JD
5180@end itemize
5181@end itemize
5182
232be91a
AD
5183@c ============================================ lr.keep-unreachable-states
5184
812775a0
JD
5185@item lr.keep-unreachable-states
5186@findex %define lr.keep-unreachable-states
31984206
JD
5187
5188@itemize @bullet
5189@item Language(s): all
3b1977ea 5190@item Purpose: Request that Bison allow unreachable parser states to
6f04ee6c 5191remain in the parser tables. @xref{Unreachable States}.
31984206 5192@item Accepted Values: Boolean
f37495f6 5193@item Default Value: @code{false}
31984206
JD
5194@end itemize
5195
232be91a
AD
5196@c ================================================== lr.type
5197
34a6c2d1
JD
5198@item lr.type
5199@findex %define lr.type
34a6c2d1
JD
5200
5201@itemize @bullet
5202@item Language(s): all
5203
3b1977ea 5204@item Purpose: Specify the type of parser tables within the
6f04ee6c 5205LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
34a6c2d1
JD
5206More user feedback will help to stabilize it.)
5207
6f04ee6c 5208@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
34a6c2d1 5209
f37495f6 5210@item Default Value: @code{lalr}
34a6c2d1
JD
5211@end itemize
5212
793fbca5
JD
5213@item namespace
5214@findex %define namespace
5215
5216@itemize
5217@item Languages(s): C++
5218
3b1977ea 5219@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5220For example, if you specify:
5221
5222@smallexample
5223%define namespace "foo::bar"
5224@end smallexample
5225
5226Bison uses @code{foo::bar} verbatim in references such as:
5227
5228@smallexample
5229foo::bar::parser::semantic_type
5230@end smallexample
5231
5232However, to open a namespace, Bison removes any leading @code{::} and then
5233splits on any remaining occurrences:
5234
5235@smallexample
5236namespace foo @{ namespace bar @{
5237 class position;
5238 class location;
5239@} @}
5240@end smallexample
5241
5242@item Accepted Values: Any absolute or relative C++ namespace reference without
5243a trailing @code{"::"}.
5244For example, @code{"foo"} or @code{"::foo::bar"}.
5245
5246@item Default Value: The value specified by @code{%name-prefix}, which defaults
5247to @code{yy}.
5248This usage of @code{%name-prefix} is for backward compatibility and can be
5249confusing since @code{%name-prefix} also specifies the textual prefix for the
5250lexical analyzer function.
5251Thus, if you specify @code{%name-prefix}, it is best to also specify
5252@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5253lexical analyzer function.
5254For example, if you specify:
5255
5256@smallexample
5257%define namespace "foo"
5258%name-prefix "bar::"
5259@end smallexample
5260
5261The parser namespace is @code{foo} and @code{yylex} is referenced as
5262@code{bar::lex}.
5263@end itemize
4c38b19e
JD
5264
5265@c ================================================== parse.lac
5266@item parse.lac
5267@findex %define parse.lac
4c38b19e
JD
5268
5269@itemize
6f04ee6c 5270@item Languages(s): C (deterministic parsers only)
4c38b19e 5271
35430378 5272@item Purpose: Enable LAC (lookahead correction) to improve
6f04ee6c 5273syntax error handling. @xref{LAC}.
4c38b19e 5274@item Accepted Values: @code{none}, @code{full}
4c38b19e
JD
5275@item Default Value: @code{none}
5276@end itemize
793fbca5
JD
5277@end itemize
5278
d8988b2f 5279
8e6f2266
JD
5280@node %code Summary
5281@subsection %code Summary
8e6f2266 5282@findex %code
8e6f2266 5283@cindex Prologue
406dec82
JD
5284
5285The @code{%code} directive inserts code verbatim into the output
5286parser source at any of a predefined set of locations. It thus serves
5287as a flexible and user-friendly alternative to the traditional Yacc
5288prologue, @code{%@{@var{code}%@}}. This section summarizes the
5289functionality of @code{%code} for the various target languages
5290supported by Bison. For a detailed discussion of how to use
5291@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5292is advantageous to do so, @pxref{Prologue Alternatives}.
5293
5294@deffn {Directive} %code @{@var{code}@}
5295This is the unqualified form of the @code{%code} directive. It
5296inserts @var{code} verbatim at a language-dependent default location
5297in the parser implementation.
5298
8e6f2266 5299For C/C++, the default location is the parser implementation file
406dec82
JD
5300after the usual contents of the parser header file. Thus, the
5301unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
8e6f2266
JD
5302
5303For Java, the default location is inside the parser class.
5304@end deffn
5305
5306@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5307This is the qualified form of the @code{%code} directive.
406dec82
JD
5308@var{qualifier} identifies the purpose of @var{code} and thus the
5309location(s) where Bison should insert it. That is, if you need to
5310specify location-sensitive @var{code} that does not belong at the
5311default location selected by the unqualified @code{%code} form, use
5312this form instead.
5313@end deffn
5314
5315For any particular qualifier or for the unqualified form, if there are
5316multiple occurrences of the @code{%code} directive, Bison concatenates
5317the specified code in the order in which it appears in the grammar
5318file.
8e6f2266 5319
406dec82
JD
5320Not all qualifiers are accepted for all target languages. Unaccepted
5321qualifiers produce an error. Some of the accepted qualifiers are:
8e6f2266
JD
5322
5323@itemize @bullet
5324@item requires
5325@findex %code requires
5326
5327@itemize @bullet
5328@item Language(s): C, C++
5329
5330@item Purpose: This is the best place to write dependency code required for
5331@code{YYSTYPE} and @code{YYLTYPE}.
5332In other words, it's the best place to define types referenced in @code{%union}
5333directives, and it's the best place to override Bison's default @code{YYSTYPE}
5334and @code{YYLTYPE} definitions.
5335
5336@item Location(s): The parser header file and the parser implementation file
5337before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5338definitions.
5339@end itemize
5340
5341@item provides
5342@findex %code provides
5343
5344@itemize @bullet
5345@item Language(s): C, C++
5346
5347@item Purpose: This is the best place to write additional definitions and
5348declarations that should be provided to other modules.
5349
5350@item Location(s): The parser header file and the parser implementation
5351file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5352token definitions.
5353@end itemize
5354
5355@item top
5356@findex %code top
5357
5358@itemize @bullet
5359@item Language(s): C, C++
5360
5361@item Purpose: The unqualified @code{%code} or @code{%code requires}
5362should usually be more appropriate than @code{%code top}. However,
5363occasionally it is necessary to insert code much nearer the top of the
5364parser implementation file. For example:
5365
5366@smallexample
5367%code top @{
5368 #define _GNU_SOURCE
5369 #include <stdio.h>
5370@}
5371@end smallexample
5372
5373@item Location(s): Near the top of the parser implementation file.
5374@end itemize
5375
5376@item imports
5377@findex %code imports
5378
5379@itemize @bullet
5380@item Language(s): Java
5381
5382@item Purpose: This is the best place to write Java import directives.
5383
5384@item Location(s): The parser Java file after any Java package directive and
5385before any class definitions.
5386@end itemize
5387@end itemize
5388
406dec82
JD
5389Though we say the insertion locations are language-dependent, they are
5390technically skeleton-dependent. Writers of non-standard skeletons
5391however should choose their locations consistently with the behavior
5392of the standard Bison skeletons.
8e6f2266 5393
d8988b2f 5394
342b8b6e 5395@node Multiple Parsers
bfa74976
RS
5396@section Multiple Parsers in the Same Program
5397
5398Most programs that use Bison parse only one language and therefore contain
5399only one Bison parser. But what if you want to parse more than one
5400language with the same program? Then you need to avoid a name conflict
5401between different definitions of @code{yyparse}, @code{yylval}, and so on.
5402
5403The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5404(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5405functions and variables of the Bison parser to start with @var{prefix}
5406instead of @samp{yy}. You can use this to give each parser distinct
5407names that do not conflict.
bfa74976
RS
5408
5409The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5410@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5411@code{yychar} and @code{yydebug}. If you use a push parser,
5412@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5413@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5414For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5415@code{clex}, and so on.
bfa74976
RS
5416
5417@strong{All the other variables and macros associated with Bison are not
5418renamed.} These others are not global; there is no conflict if the same
5419name is used in different parsers. For example, @code{YYSTYPE} is not
5420renamed, but defining this in different ways in different parsers causes
5421no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5422
9913d6e4
JD
5423The @samp{-p} option works by adding macro definitions to the
5424beginning of the parser implementation file, defining @code{yyparse}
5425as @code{@var{prefix}parse}, and so on. This effectively substitutes
5426one name for the other in the entire parser implementation file.
bfa74976 5427
342b8b6e 5428@node Interface
bfa74976
RS
5429@chapter Parser C-Language Interface
5430@cindex C-language interface
5431@cindex interface
5432
5433The Bison parser is actually a C function named @code{yyparse}. Here we
5434describe the interface conventions of @code{yyparse} and the other
5435functions that it needs to use.
5436
5437Keep in mind that the parser uses many C identifiers starting with
5438@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5439identifier (aside from those in this manual) in an action or in epilogue
5440in the grammar file, you are likely to run into trouble.
bfa74976
RS
5441
5442@menu
f56274a8
DJ
5443* Parser Function:: How to call @code{yyparse} and what it returns.
5444* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5445* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5446* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5447* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5448* Lexical:: You must supply a function @code{yylex}
5449 which reads tokens.
5450* Error Reporting:: You must supply a function @code{yyerror}.
5451* Action Features:: Special features for use in actions.
5452* Internationalization:: How to let the parser speak in the user's
5453 native language.
bfa74976
RS
5454@end menu
5455
342b8b6e 5456@node Parser Function
bfa74976
RS
5457@section The Parser Function @code{yyparse}
5458@findex yyparse
5459
5460You call the function @code{yyparse} to cause parsing to occur. This
5461function reads tokens, executes actions, and ultimately returns when it
5462encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5463write an action which directs @code{yyparse} to return immediately
5464without reading further.
bfa74976 5465
2a8d363a
AD
5466
5467@deftypefun int yyparse (void)
bfa74976
RS
5468The value returned by @code{yyparse} is 0 if parsing was successful (return
5469is due to end-of-input).
5470
b47dbebe
PE
5471The value is 1 if parsing failed because of invalid input, i.e., input
5472that contains a syntax error or that causes @code{YYABORT} to be
5473invoked.
5474
5475The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5476@end deftypefun
bfa74976
RS
5477
5478In an action, you can cause immediate return from @code{yyparse} by using
5479these macros:
5480
2a8d363a 5481@defmac YYACCEPT
bfa74976
RS
5482@findex YYACCEPT
5483Return immediately with value 0 (to report success).
2a8d363a 5484@end defmac
bfa74976 5485
2a8d363a 5486@defmac YYABORT
bfa74976
RS
5487@findex YYABORT
5488Return immediately with value 1 (to report failure).
2a8d363a
AD
5489@end defmac
5490
5491If you use a reentrant parser, you can optionally pass additional
5492parameter information to it in a reentrant way. To do so, use the
5493declaration @code{%parse-param}:
5494
feeb0eda 5495@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5496@findex %parse-param
287c78f6
PE
5497Declare that an argument declared by the braced-code
5498@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5499The @var{argument-declaration} is used when declaring
feeb0eda
PE
5500functions or prototypes. The last identifier in
5501@var{argument-declaration} must be the argument name.
2a8d363a
AD
5502@end deffn
5503
5504Here's an example. Write this in the parser:
5505
5506@example
feeb0eda
PE
5507%parse-param @{int *nastiness@}
5508%parse-param @{int *randomness@}
2a8d363a
AD
5509@end example
5510
5511@noindent
5512Then call the parser like this:
5513
5514@example
5515@{
5516 int nastiness, randomness;
5517 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5518 value = yyparse (&nastiness, &randomness);
5519 @dots{}
5520@}
5521@end example
5522
5523@noindent
5524In the grammar actions, use expressions like this to refer to the data:
5525
5526@example
5527exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5528@end example
5529
9987d1b3
JD
5530@node Push Parser Function
5531@section The Push Parser Function @code{yypush_parse}
5532@findex yypush_parse
5533
59da312b
JD
5534(The current push parsing interface is experimental and may evolve.
5535More user feedback will help to stabilize it.)
5536
f4101aa6 5537You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5538function is available if either the @code{%define api.push-pull push} or
5539@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5540@xref{Push Decl, ,A Push Parser}.
5541
5542@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5543The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5544following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5545is required to finish parsing the grammar.
5546@end deftypefun
5547
5548@node Pull Parser Function
5549@section The Pull Parser Function @code{yypull_parse}
5550@findex yypull_parse
5551
59da312b
JD
5552(The current push parsing interface is experimental and may evolve.
5553More user feedback will help to stabilize it.)
5554
f4101aa6 5555You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5556stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5557declaration is used.
9987d1b3
JD
5558@xref{Push Decl, ,A Push Parser}.
5559
5560@deftypefun int yypull_parse (yypstate *yyps)
5561The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5562@end deftypefun
5563
5564@node Parser Create Function
5565@section The Parser Create Function @code{yystate_new}
5566@findex yypstate_new
5567
59da312b
JD
5568(The current push parsing interface is experimental and may evolve.
5569More user feedback will help to stabilize it.)
5570
f4101aa6 5571You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5572This function is available if either the @code{%define api.push-pull push} or
5573@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5574@xref{Push Decl, ,A Push Parser}.
5575
5576@deftypefun yypstate *yypstate_new (void)
c781580d 5577The function will return a valid parser instance if there was memory available
333e670c
JD
5578or 0 if no memory was available.
5579In impure mode, it will also return 0 if a parser instance is currently
5580allocated.
9987d1b3
JD
5581@end deftypefun
5582
5583@node Parser Delete Function
5584@section The Parser Delete Function @code{yystate_delete}
5585@findex yypstate_delete
5586
59da312b
JD
5587(The current push parsing interface is experimental and may evolve.
5588More user feedback will help to stabilize it.)
5589
9987d1b3 5590You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5591function is available if either the @code{%define api.push-pull push} or
5592@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5593@xref{Push Decl, ,A Push Parser}.
5594
5595@deftypefun void yypstate_delete (yypstate *yyps)
5596This function will reclaim the memory associated with a parser instance.
5597After this call, you should no longer attempt to use the parser instance.
5598@end deftypefun
bfa74976 5599
342b8b6e 5600@node Lexical
bfa74976
RS
5601@section The Lexical Analyzer Function @code{yylex}
5602@findex yylex
5603@cindex lexical analyzer
5604
5605The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5606the input stream and returns them to the parser. Bison does not create
5607this function automatically; you must write it so that @code{yyparse} can
5608call it. The function is sometimes referred to as a lexical scanner.
5609
9913d6e4
JD
5610In simple programs, @code{yylex} is often defined at the end of the
5611Bison grammar file. If @code{yylex} is defined in a separate source
5612file, you need to arrange for the token-type macro definitions to be
5613available there. To do this, use the @samp{-d} option when you run
5614Bison, so that it will write these macro definitions into the separate
5615parser header file, @file{@var{name}.tab.h}, which you can include in
5616the other source files that need it. @xref{Invocation, ,Invoking
5617Bison}.
bfa74976
RS
5618
5619@menu
5620* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5621* Token Values:: How @code{yylex} must return the semantic value
5622 of the token it has read.
5623* Token Locations:: How @code{yylex} must return the text location
5624 (line number, etc.) of the token, if the
5625 actions want that.
5626* Pure Calling:: How the calling convention differs in a pure parser
5627 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5628@end menu
5629
342b8b6e 5630@node Calling Convention
bfa74976
RS
5631@subsection Calling Convention for @code{yylex}
5632
72d2299c
PE
5633The value that @code{yylex} returns must be the positive numeric code
5634for the type of token it has just found; a zero or negative value
5635signifies end-of-input.
bfa74976
RS
5636
5637When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5638in the parser implementation file becomes a C macro whose definition
5639is the proper numeric code for that token type. So @code{yylex} can
5640use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5641
5642When a token is referred to in the grammar rules by a character literal,
5643the numeric code for that character is also the code for the token type.
72d2299c
PE
5644So @code{yylex} can simply return that character code, possibly converted
5645to @code{unsigned char} to avoid sign-extension. The null character
5646must not be used this way, because its code is zero and that
bfa74976
RS
5647signifies end-of-input.
5648
5649Here is an example showing these things:
5650
5651@example
13863333
AD
5652int
5653yylex (void)
bfa74976
RS
5654@{
5655 @dots{}
72d2299c 5656 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5657 return 0;
5658 @dots{}
5659 if (c == '+' || c == '-')
72d2299c 5660 return c; /* Assume token type for `+' is '+'. */
bfa74976 5661 @dots{}
72d2299c 5662 return INT; /* Return the type of the token. */
bfa74976
RS
5663 @dots{}
5664@}
5665@end example
5666
5667@noindent
5668This interface has been designed so that the output from the @code{lex}
5669utility can be used without change as the definition of @code{yylex}.
5670
931c7513
RS
5671If the grammar uses literal string tokens, there are two ways that
5672@code{yylex} can determine the token type codes for them:
5673
5674@itemize @bullet
5675@item
5676If the grammar defines symbolic token names as aliases for the
5677literal string tokens, @code{yylex} can use these symbolic names like
5678all others. In this case, the use of the literal string tokens in
5679the grammar file has no effect on @code{yylex}.
5680
5681@item
9ecbd125 5682@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5683table. The index of the token in the table is the token type's code.
9ecbd125 5684The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5685double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5686token's characters are escaped as necessary to be suitable as input
5687to Bison.
931c7513 5688
9e0876fb
PE
5689Here's code for looking up a multicharacter token in @code{yytname},
5690assuming that the characters of the token are stored in
5691@code{token_buffer}, and assuming that the token does not contain any
5692characters like @samp{"} that require escaping.
931c7513
RS
5693
5694@smallexample
5695for (i = 0; i < YYNTOKENS; i++)
5696 @{
5697 if (yytname[i] != 0
5698 && yytname[i][0] == '"'
68449b3a
PE
5699 && ! strncmp (yytname[i] + 1, token_buffer,
5700 strlen (token_buffer))
931c7513
RS
5701 && yytname[i][strlen (token_buffer) + 1] == '"'
5702 && yytname[i][strlen (token_buffer) + 2] == 0)
5703 break;
5704 @}
5705@end smallexample
5706
5707The @code{yytname} table is generated only if you use the
8c9a50be 5708@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5709@end itemize
5710
342b8b6e 5711@node Token Values
bfa74976
RS
5712@subsection Semantic Values of Tokens
5713
5714@vindex yylval
9d9b8b70 5715In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5716be stored into the global variable @code{yylval}. When you are using
5717just one data type for semantic values, @code{yylval} has that type.
5718Thus, if the type is @code{int} (the default), you might write this in
5719@code{yylex}:
5720
5721@example
5722@group
5723 @dots{}
72d2299c
PE
5724 yylval = value; /* Put value onto Bison stack. */
5725 return INT; /* Return the type of the token. */
bfa74976
RS
5726 @dots{}
5727@end group
5728@end example
5729
5730When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5731made from the @code{%union} declaration (@pxref{Union Decl, ,The
5732Collection of Value Types}). So when you store a token's value, you
5733must use the proper member of the union. If the @code{%union}
5734declaration looks like this:
bfa74976
RS
5735
5736@example
5737@group
5738%union @{
5739 int intval;
5740 double val;
5741 symrec *tptr;
5742@}
5743@end group
5744@end example
5745
5746@noindent
5747then the code in @code{yylex} might look like this:
5748
5749@example
5750@group
5751 @dots{}
72d2299c
PE
5752 yylval.intval = value; /* Put value onto Bison stack. */
5753 return INT; /* Return the type of the token. */
bfa74976
RS
5754 @dots{}
5755@end group
5756@end example
5757
95923bd6
AD
5758@node Token Locations
5759@subsection Textual Locations of Tokens
bfa74976
RS
5760
5761@vindex yylloc
7404cdf3
JD
5762If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
5763in actions to keep track of the textual locations of tokens and groupings,
5764then you must provide this information in @code{yylex}. The function
5765@code{yyparse} expects to find the textual location of a token just parsed
5766in the global variable @code{yylloc}. So @code{yylex} must store the proper
5767data in that variable.
847bf1f5
AD
5768
5769By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5770initialize the members that are going to be used by the actions. The
5771four members are called @code{first_line}, @code{first_column},
5772@code{last_line} and @code{last_column}. Note that the use of this
5773feature makes the parser noticeably slower.
bfa74976
RS
5774
5775@tindex YYLTYPE
5776The data type of @code{yylloc} has the name @code{YYLTYPE}.
5777
342b8b6e 5778@node Pure Calling
c656404a 5779@subsection Calling Conventions for Pure Parsers
bfa74976 5780
d9df47b6 5781When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5782pure, reentrant parser, the global communication variables @code{yylval}
5783and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5784Parser}.) In such parsers the two global variables are replaced by
5785pointers passed as arguments to @code{yylex}. You must declare them as
5786shown here, and pass the information back by storing it through those
5787pointers.
bfa74976
RS
5788
5789@example
13863333
AD
5790int
5791yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5792@{
5793 @dots{}
5794 *lvalp = value; /* Put value onto Bison stack. */
5795 return INT; /* Return the type of the token. */
5796 @dots{}
5797@}
5798@end example
5799
5800If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5801textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5802this case, omit the second argument; @code{yylex} will be called with
5803only one argument.
5804
e425e872 5805
2a8d363a
AD
5806If you wish to pass the additional parameter data to @code{yylex}, use
5807@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5808Function}).
e425e872 5809
feeb0eda 5810@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5811@findex %lex-param
287c78f6
PE
5812Declare that the braced-code @var{argument-declaration} is an
5813additional @code{yylex} argument declaration.
2a8d363a 5814@end deffn
e425e872 5815
2a8d363a 5816For instance:
e425e872
RS
5817
5818@example
feeb0eda
PE
5819%parse-param @{int *nastiness@}
5820%lex-param @{int *nastiness@}
5821%parse-param @{int *randomness@}
e425e872
RS
5822@end example
5823
5824@noindent
2a8d363a 5825results in the following signature:
e425e872
RS
5826
5827@example
2a8d363a
AD
5828int yylex (int *nastiness);
5829int yyparse (int *nastiness, int *randomness);
e425e872
RS
5830@end example
5831
d9df47b6 5832If @code{%define api.pure} is added:
c656404a
RS
5833
5834@example
2a8d363a
AD
5835int yylex (YYSTYPE *lvalp, int *nastiness);
5836int yyparse (int *nastiness, int *randomness);
c656404a
RS
5837@end example
5838
2a8d363a 5839@noindent
d9df47b6 5840and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5841
2a8d363a
AD
5842@example
5843int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5844int yyparse (int *nastiness, int *randomness);
5845@end example
931c7513 5846
342b8b6e 5847@node Error Reporting
bfa74976
RS
5848@section The Error Reporting Function @code{yyerror}
5849@cindex error reporting function
5850@findex yyerror
5851@cindex parse error
5852@cindex syntax error
5853
6e649e65 5854The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5855whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5856action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5857macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5858in Actions}).
bfa74976
RS
5859
5860The Bison parser expects to report the error by calling an error
5861reporting function named @code{yyerror}, which you must supply. It is
5862called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5863receives one argument. For a syntax error, the string is normally
5864@w{@code{"syntax error"}}.
bfa74976 5865
2a8d363a 5866@findex %error-verbose
6f04ee6c
JD
5867If you invoke the directive @code{%error-verbose} in the Bison declarations
5868section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
5869Bison provides a more verbose and specific error message string instead of
5870just plain @w{@code{"syntax error"}}. However, that message sometimes
5871contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 5872
1a059451
PE
5873The parser can detect one other kind of error: memory exhaustion. This
5874can happen when the input contains constructions that are very deeply
bfa74976 5875nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5876parser normally extends its stack automatically up to a very large limit. But
5877if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5878fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5879
5880In some cases diagnostics like @w{@code{"syntax error"}} are
5881translated automatically from English to some other language before
5882they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5883
5884The following definition suffices in simple programs:
5885
5886@example
5887@group
13863333 5888void
38a92d50 5889yyerror (char const *s)
bfa74976
RS
5890@{
5891@end group
5892@group
5893 fprintf (stderr, "%s\n", s);
5894@}
5895@end group
5896@end example
5897
5898After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5899error recovery if you have written suitable error recovery grammar rules
5900(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5901immediately return 1.
5902
93724f13 5903Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 5904an access to the current location.
35430378 5905This is indeed the case for the GLR
2a8d363a 5906parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5907@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5908@code{yyerror} are:
5909
5910@example
38a92d50
PE
5911void yyerror (char const *msg); /* Yacc parsers. */
5912void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5913@end example
5914
feeb0eda 5915If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5916
5917@example
b317297e
PE
5918void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5919void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5920@end example
5921
35430378 5922Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5923convention for absolutely pure parsers, i.e., when the calling
5924convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5925@code{%define api.pure} are pure.
5926I.e.:
2a8d363a
AD
5927
5928@example
5929/* Location tracking. */
5930%locations
5931/* Pure yylex. */
d9df47b6 5932%define api.pure
feeb0eda 5933%lex-param @{int *nastiness@}
2a8d363a 5934/* Pure yyparse. */
feeb0eda
PE
5935%parse-param @{int *nastiness@}
5936%parse-param @{int *randomness@}
2a8d363a
AD
5937@end example
5938
5939@noindent
5940results in the following signatures for all the parser kinds:
5941
5942@example
5943int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5944int yyparse (int *nastiness, int *randomness);
93724f13
AD
5945void yyerror (YYLTYPE *locp,
5946 int *nastiness, int *randomness,
38a92d50 5947 char const *msg);
2a8d363a
AD
5948@end example
5949
1c0c3e95 5950@noindent
38a92d50
PE
5951The prototypes are only indications of how the code produced by Bison
5952uses @code{yyerror}. Bison-generated code always ignores the returned
5953value, so @code{yyerror} can return any type, including @code{void}.
5954Also, @code{yyerror} can be a variadic function; that is why the
5955message is always passed last.
5956
5957Traditionally @code{yyerror} returns an @code{int} that is always
5958ignored, but this is purely for historical reasons, and @code{void} is
5959preferable since it more accurately describes the return type for
5960@code{yyerror}.
93724f13 5961
bfa74976
RS
5962@vindex yynerrs
5963The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5964reported so far. Normally this variable is global; but if you
704a47c4
AD
5965request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5966then it is a local variable which only the actions can access.
bfa74976 5967
342b8b6e 5968@node Action Features
bfa74976
RS
5969@section Special Features for Use in Actions
5970@cindex summary, action features
5971@cindex action features summary
5972
5973Here is a table of Bison constructs, variables and macros that
5974are useful in actions.
5975
18b519c0 5976@deffn {Variable} $$
bfa74976
RS
5977Acts like a variable that contains the semantic value for the
5978grouping made by the current rule. @xref{Actions}.
18b519c0 5979@end deffn
bfa74976 5980
18b519c0 5981@deffn {Variable} $@var{n}
bfa74976
RS
5982Acts like a variable that contains the semantic value for the
5983@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5984@end deffn
bfa74976 5985
18b519c0 5986@deffn {Variable} $<@var{typealt}>$
bfa74976 5987Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5988specified by the @code{%union} declaration. @xref{Action Types, ,Data
5989Types of Values in Actions}.
18b519c0 5990@end deffn
bfa74976 5991
18b519c0 5992@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5993Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5994union specified by the @code{%union} declaration.
e0c471a9 5995@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5996@end deffn
bfa74976 5997
18b519c0 5998@deffn {Macro} YYABORT;
bfa74976
RS
5999Return immediately from @code{yyparse}, indicating failure.
6000@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6001@end deffn
bfa74976 6002
18b519c0 6003@deffn {Macro} YYACCEPT;
bfa74976
RS
6004Return immediately from @code{yyparse}, indicating success.
6005@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6006@end deffn
bfa74976 6007
18b519c0 6008@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6009@findex YYBACKUP
6010Unshift a token. This macro is allowed only for rules that reduce
742e4900 6011a single value, and only when there is no lookahead token.
35430378 6012It is also disallowed in GLR parsers.
742e4900 6013It installs a lookahead token with token type @var{token} and
bfa74976
RS
6014semantic value @var{value}; then it discards the value that was
6015going to be reduced by this rule.
6016
6017If the macro is used when it is not valid, such as when there is
742e4900 6018a lookahead token already, then it reports a syntax error with
bfa74976
RS
6019a message @samp{cannot back up} and performs ordinary error
6020recovery.
6021
6022In either case, the rest of the action is not executed.
18b519c0 6023@end deffn
bfa74976 6024
18b519c0 6025@deffn {Macro} YYEMPTY
bfa74976 6026@vindex YYEMPTY
742e4900 6027Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6028@end deffn
bfa74976 6029
32c29292
JD
6030@deffn {Macro} YYEOF
6031@vindex YYEOF
742e4900 6032Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6033stream.
6034@end deffn
6035
18b519c0 6036@deffn {Macro} YYERROR;
bfa74976
RS
6037@findex YYERROR
6038Cause an immediate syntax error. This statement initiates error
6039recovery just as if the parser itself had detected an error; however, it
6040does not call @code{yyerror}, and does not print any message. If you
6041want to print an error message, call @code{yyerror} explicitly before
6042the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6043@end deffn
bfa74976 6044
18b519c0 6045@deffn {Macro} YYRECOVERING
02103984
PE
6046@findex YYRECOVERING
6047The expression @code{YYRECOVERING ()} yields 1 when the parser
6048is recovering from a syntax error, and 0 otherwise.
bfa74976 6049@xref{Error Recovery}.
18b519c0 6050@end deffn
bfa74976 6051
18b519c0 6052@deffn {Variable} yychar
742e4900
JD
6053Variable containing either the lookahead token, or @code{YYEOF} when the
6054lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6055has been performed so the next token is not yet known.
6056Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6057Actions}).
742e4900 6058@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6059@end deffn
bfa74976 6060
18b519c0 6061@deffn {Macro} yyclearin;
742e4900 6062Discard the current lookahead token. This is useful primarily in
32c29292
JD
6063error rules.
6064Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6065Semantic Actions}).
6066@xref{Error Recovery}.
18b519c0 6067@end deffn
bfa74976 6068
18b519c0 6069@deffn {Macro} yyerrok;
bfa74976 6070Resume generating error messages immediately for subsequent syntax
13863333 6071errors. This is useful primarily in error rules.
bfa74976 6072@xref{Error Recovery}.
18b519c0 6073@end deffn
bfa74976 6074
32c29292 6075@deffn {Variable} yylloc
742e4900 6076Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6077to @code{YYEMPTY} or @code{YYEOF}.
6078Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6079Actions}).
6080@xref{Actions and Locations, ,Actions and Locations}.
6081@end deffn
6082
6083@deffn {Variable} yylval
742e4900 6084Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6085not set to @code{YYEMPTY} or @code{YYEOF}.
6086Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6087Actions}).
6088@xref{Actions, ,Actions}.
6089@end deffn
6090
18b519c0 6091@deffn {Value} @@$
847bf1f5 6092@findex @@$
7404cdf3
JD
6093Acts like a structure variable containing information on the textual
6094location of the grouping made by the current rule. @xref{Tracking
6095Locations}.
bfa74976 6096
847bf1f5
AD
6097@c Check if those paragraphs are still useful or not.
6098
6099@c @example
6100@c struct @{
6101@c int first_line, last_line;
6102@c int first_column, last_column;
6103@c @};
6104@c @end example
6105
6106@c Thus, to get the starting line number of the third component, you would
6107@c use @samp{@@3.first_line}.
bfa74976 6108
847bf1f5
AD
6109@c In order for the members of this structure to contain valid information,
6110@c you must make @code{yylex} supply this information about each token.
6111@c If you need only certain members, then @code{yylex} need only fill in
6112@c those members.
bfa74976 6113
847bf1f5 6114@c The use of this feature makes the parser noticeably slower.
18b519c0 6115@end deffn
847bf1f5 6116
18b519c0 6117@deffn {Value} @@@var{n}
847bf1f5 6118@findex @@@var{n}
7404cdf3
JD
6119Acts like a structure variable containing information on the textual
6120location of the @var{n}th component of the current rule. @xref{Tracking
6121Locations}.
18b519c0 6122@end deffn
bfa74976 6123
f7ab6a50
PE
6124@node Internationalization
6125@section Parser Internationalization
6126@cindex internationalization
6127@cindex i18n
6128@cindex NLS
6129@cindex gettext
6130@cindex bison-po
6131
6132A Bison-generated parser can print diagnostics, including error and
6133tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6134also supports outputting diagnostics in the user's native language. To
6135make this work, the user should set the usual environment variables.
6136@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6137For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6138set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6139encoding. The exact set of available locales depends on the user's
6140installation.
6141
6142The maintainer of a package that uses a Bison-generated parser enables
6143the internationalization of the parser's output through the following
35430378
JD
6144steps. Here we assume a package that uses GNU Autoconf and
6145GNU Automake.
f7ab6a50
PE
6146
6147@enumerate
6148@item
30757c8c 6149@cindex bison-i18n.m4
35430378 6150Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6151by the package---often called @file{m4}---copy the
6152@file{bison-i18n.m4} file installed by Bison under
6153@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6154For example:
6155
6156@example
6157cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6158@end example
6159
6160@item
30757c8c
PE
6161@findex BISON_I18N
6162@vindex BISON_LOCALEDIR
6163@vindex YYENABLE_NLS
f7ab6a50
PE
6164In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6165invocation, add an invocation of @code{BISON_I18N}. This macro is
6166defined in the file @file{bison-i18n.m4} that you copied earlier. It
6167causes @samp{configure} to find the value of the
30757c8c
PE
6168@code{BISON_LOCALEDIR} variable, and it defines the source-language
6169symbol @code{YYENABLE_NLS} to enable translations in the
6170Bison-generated parser.
f7ab6a50
PE
6171
6172@item
6173In the @code{main} function of your program, designate the directory
6174containing Bison's runtime message catalog, through a call to
6175@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6176For example:
6177
6178@example
6179bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6180@end example
6181
6182Typically this appears after any other call @code{bindtextdomain
6183(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6184@samp{BISON_LOCALEDIR} to be defined as a string through the
6185@file{Makefile}.
6186
6187@item
6188In the @file{Makefile.am} that controls the compilation of the @code{main}
6189function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6190either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6191
6192@example
6193DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6194@end example
6195
6196or:
6197
6198@example
6199AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6200@end example
6201
6202@item
6203Finally, invoke the command @command{autoreconf} to generate the build
6204infrastructure.
6205@end enumerate
6206
bfa74976 6207
342b8b6e 6208@node Algorithm
13863333
AD
6209@chapter The Bison Parser Algorithm
6210@cindex Bison parser algorithm
bfa74976
RS
6211@cindex algorithm of parser
6212@cindex shifting
6213@cindex reduction
6214@cindex parser stack
6215@cindex stack, parser
6216
6217As Bison reads tokens, it pushes them onto a stack along with their
6218semantic values. The stack is called the @dfn{parser stack}. Pushing a
6219token is traditionally called @dfn{shifting}.
6220
6221For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6222@samp{3} to come. The stack will have four elements, one for each token
6223that was shifted.
6224
6225But the stack does not always have an element for each token read. When
6226the last @var{n} tokens and groupings shifted match the components of a
6227grammar rule, they can be combined according to that rule. This is called
6228@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6229single grouping whose symbol is the result (left hand side) of that rule.
6230Running the rule's action is part of the process of reduction, because this
6231is what computes the semantic value of the resulting grouping.
6232
6233For example, if the infix calculator's parser stack contains this:
6234
6235@example
62361 + 5 * 3
6237@end example
6238
6239@noindent
6240and the next input token is a newline character, then the last three
6241elements can be reduced to 15 via the rule:
6242
6243@example
6244expr: expr '*' expr;
6245@end example
6246
6247@noindent
6248Then the stack contains just these three elements:
6249
6250@example
62511 + 15
6252@end example
6253
6254@noindent
6255At this point, another reduction can be made, resulting in the single value
625616. Then the newline token can be shifted.
6257
6258The parser tries, by shifts and reductions, to reduce the entire input down
6259to a single grouping whose symbol is the grammar's start-symbol
6260(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6261
6262This kind of parser is known in the literature as a bottom-up parser.
6263
6264@menu
742e4900 6265* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6266* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6267* Precedence:: Operator precedence works by resolving conflicts.
6268* Contextual Precedence:: When an operator's precedence depends on context.
6269* Parser States:: The parser is a finite-state-machine with stack.
6270* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 6271* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 6272* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6273* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6274* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6275@end menu
6276
742e4900
JD
6277@node Lookahead
6278@section Lookahead Tokens
6279@cindex lookahead token
bfa74976
RS
6280
6281The Bison parser does @emph{not} always reduce immediately as soon as the
6282last @var{n} tokens and groupings match a rule. This is because such a
6283simple strategy is inadequate to handle most languages. Instead, when a
6284reduction is possible, the parser sometimes ``looks ahead'' at the next
6285token in order to decide what to do.
6286
6287When a token is read, it is not immediately shifted; first it becomes the
742e4900 6288@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6289perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6290the lookahead token remains off to the side. When no more reductions
6291should take place, the lookahead token is shifted onto the stack. This
bfa74976 6292does not mean that all possible reductions have been done; depending on the
742e4900 6293token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6294application.
6295
742e4900 6296Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6297expressions which contain binary addition operators and postfix unary
6298factorial operators (@samp{!}), and allow parentheses for grouping.
6299
6300@example
6301@group
6302expr: term '+' expr
6303 | term
6304 ;
6305@end group
6306
6307@group
6308term: '(' expr ')'
6309 | term '!'
6310 | NUMBER
6311 ;
6312@end group
6313@end example
6314
6315Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6316should be done? If the following token is @samp{)}, then the first three
6317tokens must be reduced to form an @code{expr}. This is the only valid
6318course, because shifting the @samp{)} would produce a sequence of symbols
6319@w{@code{term ')'}}, and no rule allows this.
6320
6321If the following token is @samp{!}, then it must be shifted immediately so
6322that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6323parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6324@code{expr}. It would then be impossible to shift the @samp{!} because
6325doing so would produce on the stack the sequence of symbols @code{expr
6326'!'}. No rule allows that sequence.
6327
6328@vindex yychar
32c29292
JD
6329@vindex yylval
6330@vindex yylloc
742e4900 6331The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6332Its semantic value and location, if any, are stored in the variables
6333@code{yylval} and @code{yylloc}.
bfa74976
RS
6334@xref{Action Features, ,Special Features for Use in Actions}.
6335
342b8b6e 6336@node Shift/Reduce
bfa74976
RS
6337@section Shift/Reduce Conflicts
6338@cindex conflicts
6339@cindex shift/reduce conflicts
6340@cindex dangling @code{else}
6341@cindex @code{else}, dangling
6342
6343Suppose we are parsing a language which has if-then and if-then-else
6344statements, with a pair of rules like this:
6345
6346@example
6347@group
6348if_stmt:
6349 IF expr THEN stmt
6350 | IF expr THEN stmt ELSE stmt
6351 ;
6352@end group
6353@end example
6354
6355@noindent
6356Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6357terminal symbols for specific keyword tokens.
6358
742e4900 6359When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6360contents of the stack (assuming the input is valid) are just right for
6361reduction by the first rule. But it is also legitimate to shift the
6362@code{ELSE}, because that would lead to eventual reduction by the second
6363rule.
6364
6365This situation, where either a shift or a reduction would be valid, is
6366called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6367these conflicts by choosing to shift, unless otherwise directed by
6368operator precedence declarations. To see the reason for this, let's
6369contrast it with the other alternative.
6370
6371Since the parser prefers to shift the @code{ELSE}, the result is to attach
6372the else-clause to the innermost if-statement, making these two inputs
6373equivalent:
6374
6375@example
6376if x then if y then win (); else lose;
6377
6378if x then do; if y then win (); else lose; end;
6379@end example
6380
6381But if the parser chose to reduce when possible rather than shift, the
6382result would be to attach the else-clause to the outermost if-statement,
6383making these two inputs equivalent:
6384
6385@example
6386if x then if y then win (); else lose;
6387
6388if x then do; if y then win (); end; else lose;
6389@end example
6390
6391The conflict exists because the grammar as written is ambiguous: either
6392parsing of the simple nested if-statement is legitimate. The established
6393convention is that these ambiguities are resolved by attaching the
6394else-clause to the innermost if-statement; this is what Bison accomplishes
6395by choosing to shift rather than reduce. (It would ideally be cleaner to
6396write an unambiguous grammar, but that is very hard to do in this case.)
6397This particular ambiguity was first encountered in the specifications of
6398Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6399
6400To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6401conflicts, use the @code{%expect @var{n}} declaration.
6402There will be no warning as long as the number of shift/reduce conflicts
6403is exactly @var{n}, and Bison will report an error if there is a
6404different number.
bfa74976
RS
6405@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6406
6407The definition of @code{if_stmt} above is solely to blame for the
6408conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6409rules. Here is a complete Bison grammar file that actually manifests
6410the conflict:
bfa74976
RS
6411
6412@example
6413@group
6414%token IF THEN ELSE variable
6415%%
6416@end group
6417@group
6418stmt: expr
6419 | if_stmt
6420 ;
6421@end group
6422
6423@group
6424if_stmt:
6425 IF expr THEN stmt
6426 | IF expr THEN stmt ELSE stmt
6427 ;
6428@end group
6429
6430expr: variable
6431 ;
6432@end example
6433
342b8b6e 6434@node Precedence
bfa74976
RS
6435@section Operator Precedence
6436@cindex operator precedence
6437@cindex precedence of operators
6438
6439Another situation where shift/reduce conflicts appear is in arithmetic
6440expressions. Here shifting is not always the preferred resolution; the
6441Bison declarations for operator precedence allow you to specify when to
6442shift and when to reduce.
6443
6444@menu
6445* Why Precedence:: An example showing why precedence is needed.
6446* Using Precedence:: How to specify precedence in Bison grammars.
6447* Precedence Examples:: How these features are used in the previous example.
6448* How Precedence:: How they work.
6449@end menu
6450
342b8b6e 6451@node Why Precedence
bfa74976
RS
6452@subsection When Precedence is Needed
6453
6454Consider the following ambiguous grammar fragment (ambiguous because the
6455input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6456
6457@example
6458@group
6459expr: expr '-' expr
6460 | expr '*' expr
6461 | expr '<' expr
6462 | '(' expr ')'
6463 @dots{}
6464 ;
6465@end group
6466@end example
6467
6468@noindent
6469Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6470should it reduce them via the rule for the subtraction operator? It
6471depends on the next token. Of course, if the next token is @samp{)}, we
6472must reduce; shifting is invalid because no single rule can reduce the
6473token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6474the next token is @samp{*} or @samp{<}, we have a choice: either
6475shifting or reduction would allow the parse to complete, but with
6476different results.
6477
6478To decide which one Bison should do, we must consider the results. If
6479the next operator token @var{op} is shifted, then it must be reduced
6480first in order to permit another opportunity to reduce the difference.
6481The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6482hand, if the subtraction is reduced before shifting @var{op}, the result
6483is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6484reduce should depend on the relative precedence of the operators
6485@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6486@samp{<}.
bfa74976
RS
6487
6488@cindex associativity
6489What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6490@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6491operators we prefer the former, which is called @dfn{left association}.
6492The latter alternative, @dfn{right association}, is desirable for
6493assignment operators. The choice of left or right association is a
6494matter of whether the parser chooses to shift or reduce when the stack
742e4900 6495contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6496makes right-associativity.
bfa74976 6497
342b8b6e 6498@node Using Precedence
bfa74976
RS
6499@subsection Specifying Operator Precedence
6500@findex %left
6501@findex %right
6502@findex %nonassoc
6503
6504Bison allows you to specify these choices with the operator precedence
6505declarations @code{%left} and @code{%right}. Each such declaration
6506contains a list of tokens, which are operators whose precedence and
6507associativity is being declared. The @code{%left} declaration makes all
6508those operators left-associative and the @code{%right} declaration makes
6509them right-associative. A third alternative is @code{%nonassoc}, which
6510declares that it is a syntax error to find the same operator twice ``in a
6511row''.
6512
6513The relative precedence of different operators is controlled by the
6514order in which they are declared. The first @code{%left} or
6515@code{%right} declaration in the file declares the operators whose
6516precedence is lowest, the next such declaration declares the operators
6517whose precedence is a little higher, and so on.
6518
342b8b6e 6519@node Precedence Examples
bfa74976
RS
6520@subsection Precedence Examples
6521
6522In our example, we would want the following declarations:
6523
6524@example
6525%left '<'
6526%left '-'
6527%left '*'
6528@end example
6529
6530In a more complete example, which supports other operators as well, we
6531would declare them in groups of equal precedence. For example, @code{'+'} is
6532declared with @code{'-'}:
6533
6534@example
6535%left '<' '>' '=' NE LE GE
6536%left '+' '-'
6537%left '*' '/'
6538@end example
6539
6540@noindent
6541(Here @code{NE} and so on stand for the operators for ``not equal''
6542and so on. We assume that these tokens are more than one character long
6543and therefore are represented by names, not character literals.)
6544
342b8b6e 6545@node How Precedence
bfa74976
RS
6546@subsection How Precedence Works
6547
6548The first effect of the precedence declarations is to assign precedence
6549levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6550precedence levels to certain rules: each rule gets its precedence from
6551the last terminal symbol mentioned in the components. (You can also
6552specify explicitly the precedence of a rule. @xref{Contextual
6553Precedence, ,Context-Dependent Precedence}.)
6554
6555Finally, the resolution of conflicts works by comparing the precedence
742e4900 6556of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6557token's precedence is higher, the choice is to shift. If the rule's
6558precedence is higher, the choice is to reduce. If they have equal
6559precedence, the choice is made based on the associativity of that
6560precedence level. The verbose output file made by @samp{-v}
6561(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6562resolved.
bfa74976
RS
6563
6564Not all rules and not all tokens have precedence. If either the rule or
742e4900 6565the lookahead token has no precedence, then the default is to shift.
bfa74976 6566
342b8b6e 6567@node Contextual Precedence
bfa74976
RS
6568@section Context-Dependent Precedence
6569@cindex context-dependent precedence
6570@cindex unary operator precedence
6571@cindex precedence, context-dependent
6572@cindex precedence, unary operator
6573@findex %prec
6574
6575Often the precedence of an operator depends on the context. This sounds
6576outlandish at first, but it is really very common. For example, a minus
6577sign typically has a very high precedence as a unary operator, and a
6578somewhat lower precedence (lower than multiplication) as a binary operator.
6579
6580The Bison precedence declarations, @code{%left}, @code{%right} and
6581@code{%nonassoc}, can only be used once for a given token; so a token has
6582only one precedence declared in this way. For context-dependent
6583precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6584modifier for rules.
bfa74976
RS
6585
6586The @code{%prec} modifier declares the precedence of a particular rule by
6587specifying a terminal symbol whose precedence should be used for that rule.
6588It's not necessary for that symbol to appear otherwise in the rule. The
6589modifier's syntax is:
6590
6591@example
6592%prec @var{terminal-symbol}
6593@end example
6594
6595@noindent
6596and it is written after the components of the rule. Its effect is to
6597assign the rule the precedence of @var{terminal-symbol}, overriding
6598the precedence that would be deduced for it in the ordinary way. The
6599altered rule precedence then affects how conflicts involving that rule
6600are resolved (@pxref{Precedence, ,Operator Precedence}).
6601
6602Here is how @code{%prec} solves the problem of unary minus. First, declare
6603a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6604are no tokens of this type, but the symbol serves to stand for its
6605precedence:
6606
6607@example
6608@dots{}
6609%left '+' '-'
6610%left '*'
6611%left UMINUS
6612@end example
6613
6614Now the precedence of @code{UMINUS} can be used in specific rules:
6615
6616@example
6617@group
6618exp: @dots{}
6619 | exp '-' exp
6620 @dots{}
6621 | '-' exp %prec UMINUS
6622@end group
6623@end example
6624
91d2c560 6625@ifset defaultprec
39a06c25
PE
6626If you forget to append @code{%prec UMINUS} to the rule for unary
6627minus, Bison silently assumes that minus has its usual precedence.
6628This kind of problem can be tricky to debug, since one typically
6629discovers the mistake only by testing the code.
6630
22fccf95 6631The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6632this kind of problem systematically. It causes rules that lack a
6633@code{%prec} modifier to have no precedence, even if the last terminal
6634symbol mentioned in their components has a declared precedence.
6635
22fccf95 6636If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6637for all rules that participate in precedence conflict resolution.
6638Then you will see any shift/reduce conflict until you tell Bison how
6639to resolve it, either by changing your grammar or by adding an
6640explicit precedence. This will probably add declarations to the
6641grammar, but it helps to protect against incorrect rule precedences.
6642
22fccf95
PE
6643The effect of @code{%no-default-prec;} can be reversed by giving
6644@code{%default-prec;}, which is the default.
91d2c560 6645@end ifset
39a06c25 6646
342b8b6e 6647@node Parser States
bfa74976
RS
6648@section Parser States
6649@cindex finite-state machine
6650@cindex parser state
6651@cindex state (of parser)
6652
6653The function @code{yyparse} is implemented using a finite-state machine.
6654The values pushed on the parser stack are not simply token type codes; they
6655represent the entire sequence of terminal and nonterminal symbols at or
6656near the top of the stack. The current state collects all the information
6657about previous input which is relevant to deciding what to do next.
6658
742e4900
JD
6659Each time a lookahead token is read, the current parser state together
6660with the type of lookahead token are looked up in a table. This table
6661entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6662specifies the new parser state, which is pushed onto the top of the
6663parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6664This means that a certain number of tokens or groupings are taken off
6665the top of the stack, and replaced by one grouping. In other words,
6666that number of states are popped from the stack, and one new state is
6667pushed.
6668
742e4900 6669There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6670is erroneous in the current state. This causes error processing to begin
6671(@pxref{Error Recovery}).
6672
342b8b6e 6673@node Reduce/Reduce
bfa74976
RS
6674@section Reduce/Reduce Conflicts
6675@cindex reduce/reduce conflict
6676@cindex conflicts, reduce/reduce
6677
6678A reduce/reduce conflict occurs if there are two or more rules that apply
6679to the same sequence of input. This usually indicates a serious error
6680in the grammar.
6681
6682For example, here is an erroneous attempt to define a sequence
6683of zero or more @code{word} groupings.
6684
6685@example
6686sequence: /* empty */
6687 @{ printf ("empty sequence\n"); @}
6688 | maybeword
6689 | sequence word
6690 @{ printf ("added word %s\n", $2); @}
6691 ;
6692
6693maybeword: /* empty */
6694 @{ printf ("empty maybeword\n"); @}
6695 | word
6696 @{ printf ("single word %s\n", $1); @}
6697 ;
6698@end example
6699
6700@noindent
6701The error is an ambiguity: there is more than one way to parse a single
6702@code{word} into a @code{sequence}. It could be reduced to a
6703@code{maybeword} and then into a @code{sequence} via the second rule.
6704Alternatively, nothing-at-all could be reduced into a @code{sequence}
6705via the first rule, and this could be combined with the @code{word}
6706using the third rule for @code{sequence}.
6707
6708There is also more than one way to reduce nothing-at-all into a
6709@code{sequence}. This can be done directly via the first rule,
6710or indirectly via @code{maybeword} and then the second rule.
6711
6712You might think that this is a distinction without a difference, because it
6713does not change whether any particular input is valid or not. But it does
6714affect which actions are run. One parsing order runs the second rule's
6715action; the other runs the first rule's action and the third rule's action.
6716In this example, the output of the program changes.
6717
6718Bison resolves a reduce/reduce conflict by choosing to use the rule that
6719appears first in the grammar, but it is very risky to rely on this. Every
6720reduce/reduce conflict must be studied and usually eliminated. Here is the
6721proper way to define @code{sequence}:
6722
6723@example
6724sequence: /* empty */
6725 @{ printf ("empty sequence\n"); @}
6726 | sequence word
6727 @{ printf ("added word %s\n", $2); @}
6728 ;
6729@end example
6730
6731Here is another common error that yields a reduce/reduce conflict:
6732
6733@example
6734sequence: /* empty */
6735 | sequence words
6736 | sequence redirects
6737 ;
6738
6739words: /* empty */
6740 | words word
6741 ;
6742
6743redirects:/* empty */
6744 | redirects redirect
6745 ;
6746@end example
6747
6748@noindent
6749The intention here is to define a sequence which can contain either
6750@code{word} or @code{redirect} groupings. The individual definitions of
6751@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6752three together make a subtle ambiguity: even an empty input can be parsed
6753in infinitely many ways!
6754
6755Consider: nothing-at-all could be a @code{words}. Or it could be two
6756@code{words} in a row, or three, or any number. It could equally well be a
6757@code{redirects}, or two, or any number. Or it could be a @code{words}
6758followed by three @code{redirects} and another @code{words}. And so on.
6759
6760Here are two ways to correct these rules. First, to make it a single level
6761of sequence:
6762
6763@example
6764sequence: /* empty */
6765 | sequence word
6766 | sequence redirect
6767 ;
6768@end example
6769
6770Second, to prevent either a @code{words} or a @code{redirects}
6771from being empty:
6772
6773@example
6774sequence: /* empty */
6775 | sequence words
6776 | sequence redirects
6777 ;
6778
6779words: word
6780 | words word
6781 ;
6782
6783redirects:redirect
6784 | redirects redirect
6785 ;
6786@end example
6787
5da0355a
JD
6788@node Mysterious Conflicts
6789@section Mysterious Conflicts
6f04ee6c 6790@cindex Mysterious Conflicts
bfa74976
RS
6791
6792Sometimes reduce/reduce conflicts can occur that don't look warranted.
6793Here is an example:
6794
6795@example
6796@group
6797%token ID
6798
6799%%
6800def: param_spec return_spec ','
6801 ;
6802param_spec:
6803 type
6804 | name_list ':' type
6805 ;
6806@end group
6807@group
6808return_spec:
6809 type
6810 | name ':' type
6811 ;
6812@end group
6813@group
6814type: ID
6815 ;
6816@end group
6817@group
6818name: ID
6819 ;
6820name_list:
6821 name
6822 | name ',' name_list
6823 ;
6824@end group
6825@end example
6826
6827It would seem that this grammar can be parsed with only a single token
742e4900 6828of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6829a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 6830@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 6831
6f04ee6c
JD
6832@cindex LR
6833@cindex LALR
34a6c2d1 6834However, for historical reasons, Bison cannot by default handle all
35430378 6835LR(1) grammars.
34a6c2d1
JD
6836In this grammar, two contexts, that after an @code{ID} at the beginning
6837of a @code{param_spec} and likewise at the beginning of a
6838@code{return_spec}, are similar enough that Bison assumes they are the
6839same.
6840They appear similar because the same set of rules would be
bfa74976
RS
6841active---the rule for reducing to a @code{name} and that for reducing to
6842a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6843that the rules would require different lookahead tokens in the two
bfa74976
RS
6844contexts, so it makes a single parser state for them both. Combining
6845the two contexts causes a conflict later. In parser terminology, this
35430378 6846occurrence means that the grammar is not LALR(1).
bfa74976 6847
6f04ee6c
JD
6848@cindex IELR
6849@cindex canonical LR
6850For many practical grammars (specifically those that fall into the non-LR(1)
6851class), the limitations of LALR(1) result in difficulties beyond just
6852mysterious reduce/reduce conflicts. The best way to fix all these problems
6853is to select a different parser table construction algorithm. Either
6854IELR(1) or canonical LR(1) would suffice, but the former is more efficient
6855and easier to debug during development. @xref{LR Table Construction}, for
6856details. (Bison's IELR(1) and canonical LR(1) implementations are
6857experimental. More user feedback will help to stabilize them.)
34a6c2d1 6858
35430378 6859If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
6860can often fix a mysterious conflict by identifying the two parser states
6861that are being confused, and adding something to make them look
6862distinct. In the above example, adding one rule to
bfa74976
RS
6863@code{return_spec} as follows makes the problem go away:
6864
6865@example
6866@group
6867%token BOGUS
6868@dots{}
6869%%
6870@dots{}
6871return_spec:
6872 type
6873 | name ':' type
6874 /* This rule is never used. */
6875 | ID BOGUS
6876 ;
6877@end group
6878@end example
6879
6880This corrects the problem because it introduces the possibility of an
6881additional active rule in the context after the @code{ID} at the beginning of
6882@code{return_spec}. This rule is not active in the corresponding context
6883in a @code{param_spec}, so the two contexts receive distinct parser states.
6884As long as the token @code{BOGUS} is never generated by @code{yylex},
6885the added rule cannot alter the way actual input is parsed.
6886
6887In this particular example, there is another way to solve the problem:
6888rewrite the rule for @code{return_spec} to use @code{ID} directly
6889instead of via @code{name}. This also causes the two confusing
6890contexts to have different sets of active rules, because the one for
6891@code{return_spec} activates the altered rule for @code{return_spec}
6892rather than the one for @code{name}.
6893
6894@example
6895param_spec:
6896 type
6897 | name_list ':' type
6898 ;
6899return_spec:
6900 type
6901 | ID ':' type
6902 ;
6903@end example
6904
35430378 6905For a more detailed exposition of LALR(1) parsers and parser
71caec06 6906generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 6907
6f04ee6c
JD
6908@node Tuning LR
6909@section Tuning LR
6910
6911The default behavior of Bison's LR-based parsers is chosen mostly for
6912historical reasons, but that behavior is often not robust. For example, in
6913the previous section, we discussed the mysterious conflicts that can be
6914produced by LALR(1), Bison's default parser table construction algorithm.
6915Another example is Bison's @code{%error-verbose} directive, which instructs
6916the generated parser to produce verbose syntax error messages, which can
6917sometimes contain incorrect information.
6918
6919In this section, we explore several modern features of Bison that allow you
6920to tune fundamental aspects of the generated LR-based parsers. Some of
6921these features easily eliminate shortcomings like those mentioned above.
6922Others can be helpful purely for understanding your parser.
6923
6924Most of the features discussed in this section are still experimental. More
6925user feedback will help to stabilize them.
6926
6927@menu
6928* LR Table Construction:: Choose a different construction algorithm.
6929* Default Reductions:: Disable default reductions.
6930* LAC:: Correct lookahead sets in the parser states.
6931* Unreachable States:: Keep unreachable parser states for debugging.
6932@end menu
6933
6934@node LR Table Construction
6935@subsection LR Table Construction
6936@cindex Mysterious Conflict
6937@cindex LALR
6938@cindex IELR
6939@cindex canonical LR
6940@findex %define lr.type
6941
6942For historical reasons, Bison constructs LALR(1) parser tables by default.
6943However, LALR does not possess the full language-recognition power of LR.
6944As a result, the behavior of parsers employing LALR parser tables is often
5da0355a 6945mysterious. We presented a simple example of this effect in @ref{Mysterious
6f04ee6c
JD
6946Conflicts}.
6947
6948As we also demonstrated in that example, the traditional approach to
6949eliminating such mysterious behavior is to restructure the grammar.
6950Unfortunately, doing so correctly is often difficult. Moreover, merely
6951discovering that LALR causes mysterious behavior in your parser can be
6952difficult as well.
6953
6954Fortunately, Bison provides an easy way to eliminate the possibility of such
6955mysterious behavior altogether. You simply need to activate a more powerful
6956parser table construction algorithm by using the @code{%define lr.type}
6957directive.
6958
6959@deffn {Directive} {%define lr.type @var{TYPE}}
6960Specify the type of parser tables within the LR(1) family. The accepted
6961values for @var{TYPE} are:
6962
6963@itemize
6964@item @code{lalr} (default)
6965@item @code{ielr}
6966@item @code{canonical-lr}
6967@end itemize
6968
6969(This feature is experimental. More user feedback will help to stabilize
6970it.)
6971@end deffn
6972
6973For example, to activate IELR, you might add the following directive to you
6974grammar file:
6975
6976@example
6977%define lr.type ielr
6978@end example
6979
5da0355a 6980@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
6f04ee6c
JD
6981conflict is then eliminated, so there is no need to invest time in
6982comprehending the conflict or restructuring the grammar to fix it. If,
6983during future development, the grammar evolves such that all mysterious
6984behavior would have disappeared using just LALR, you need not fear that
6985continuing to use IELR will result in unnecessarily large parser tables.
6986That is, IELR generates LALR tables when LALR (using a deterministic parsing
6987algorithm) is sufficient to support the full language-recognition power of
6988LR. Thus, by enabling IELR at the start of grammar development, you can
6989safely and completely eliminate the need to consider LALR's shortcomings.
6990
6991While IELR is almost always preferable, there are circumstances where LALR
6992or the canonical LR parser tables described by Knuth
6993(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
6994relative advantages of each parser table construction algorithm within
6995Bison:
6996
6997@itemize
6998@item LALR
6999
7000There are at least two scenarios where LALR can be worthwhile:
7001
7002@itemize
7003@item GLR without static conflict resolution.
7004
7005@cindex GLR with LALR
7006When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7007conflicts statically (for example, with @code{%left} or @code{%prec}), then
7008the parser explores all potential parses of any given input. In this case,
7009the choice of parser table construction algorithm is guaranteed not to alter
7010the language accepted by the parser. LALR parser tables are the smallest
7011parser tables Bison can currently construct, so they may then be preferable.
7012Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7013more like a deterministic parser in the syntactic contexts where those
7014conflicts appear, and so either IELR or canonical LR can then be helpful to
7015avoid LALR's mysterious behavior.
7016
7017@item Malformed grammars.
7018
7019Occasionally during development, an especially malformed grammar with a
7020major recurring flaw may severely impede the IELR or canonical LR parser
7021table construction algorithm. LALR can be a quick way to construct parser
7022tables in order to investigate such problems while ignoring the more subtle
7023differences from IELR and canonical LR.
7024@end itemize
7025
7026@item IELR
7027
7028IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7029any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7030always accept exactly the same set of sentences. However, like LALR, IELR
7031merges parser states during parser table construction so that the number of
7032parser states is often an order of magnitude less than for canonical LR.
7033More importantly, because canonical LR's extra parser states may contain
7034duplicate conflicts in the case of non-LR grammars, the number of conflicts
7035for IELR is often an order of magnitude less as well. This effect can
7036significantly reduce the complexity of developing a grammar.
7037
7038@item Canonical LR
7039
7040@cindex delayed syntax error detection
7041@cindex LAC
7042@findex %nonassoc
7043While inefficient, canonical LR parser tables can be an interesting means to
7044explore a grammar because they possess a property that IELR and LALR tables
7045do not. That is, if @code{%nonassoc} is not used and default reductions are
7046left disabled (@pxref{Default Reductions}), then, for every left context of
7047every canonical LR state, the set of tokens accepted by that state is
7048guaranteed to be the exact set of tokens that is syntactically acceptable in
7049that left context. It might then seem that an advantage of canonical LR
7050parsers in production is that, under the above constraints, they are
7051guaranteed to detect a syntax error as soon as possible without performing
7052any unnecessary reductions. However, IELR parsers that use LAC are also
7053able to achieve this behavior without sacrificing @code{%nonassoc} or
7054default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7055@end itemize
7056
7057For a more detailed exposition of the mysterious behavior in LALR parsers
7058and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7059@ref{Bibliography,,Denny 2010 November}.
7060
7061@node Default Reductions
7062@subsection Default Reductions
7063@cindex default reductions
7064@findex %define lr.default-reductions
7065@findex %nonassoc
7066
7067After parser table construction, Bison identifies the reduction with the
7068largest lookahead set in each parser state. To reduce the size of the
7069parser state, traditional Bison behavior is to remove that lookahead set and
7070to assign that reduction to be the default parser action. Such a reduction
7071is known as a @dfn{default reduction}.
7072
7073Default reductions affect more than the size of the parser tables. They
7074also affect the behavior of the parser:
7075
7076@itemize
7077@item Delayed @code{yylex} invocations.
7078
7079@cindex delayed yylex invocations
7080@cindex consistent states
7081@cindex defaulted states
7082A @dfn{consistent state} is a state that has only one possible parser
7083action. If that action is a reduction and is encoded as a default
7084reduction, then that consistent state is called a @dfn{defaulted state}.
7085Upon reaching a defaulted state, a Bison-generated parser does not bother to
7086invoke @code{yylex} to fetch the next token before performing the reduction.
7087In other words, whether default reductions are enabled in consistent states
7088determines how soon a Bison-generated parser invokes @code{yylex} for a
7089token: immediately when it @emph{reaches} that token in the input or when it
7090eventually @emph{needs} that token as a lookahead to determine the next
7091parser action. Traditionally, default reductions are enabled, and so the
7092parser exhibits the latter behavior.
7093
7094The presence of defaulted states is an important consideration when
7095designing @code{yylex} and the grammar file. That is, if the behavior of
7096@code{yylex} can influence or be influenced by the semantic actions
7097associated with the reductions in defaulted states, then the delay of the
7098next @code{yylex} invocation until after those reductions is significant.
7099For example, the semantic actions might pop a scope stack that @code{yylex}
7100uses to determine what token to return. Thus, the delay might be necessary
7101to ensure that @code{yylex} does not look up the next token in a scope that
7102should already be considered closed.
7103
7104@item Delayed syntax error detection.
7105
7106@cindex delayed syntax error detection
7107When the parser fetches a new token by invoking @code{yylex}, it checks
7108whether there is an action for that token in the current parser state. The
7109parser detects a syntax error if and only if either (1) there is no action
7110for that token or (2) the action for that token is the error action (due to
7111the use of @code{%nonassoc}). However, if there is a default reduction in
7112that state (which might or might not be a defaulted state), then it is
7113impossible for condition 1 to exist. That is, all tokens have an action.
7114Thus, the parser sometimes fails to detect the syntax error until it reaches
7115a later state.
7116
7117@cindex LAC
7118@c If there's an infinite loop, default reductions can prevent an incorrect
7119@c sentence from being rejected.
7120While default reductions never cause the parser to accept syntactically
7121incorrect sentences, the delay of syntax error detection can have unexpected
7122effects on the behavior of the parser. However, the delay can be caused
7123anyway by parser state merging and the use of @code{%nonassoc}, and it can
7124be fixed by another Bison feature, LAC. We discuss the effects of delayed
7125syntax error detection and LAC more in the next section (@pxref{LAC}).
7126@end itemize
7127
7128For canonical LR, the only default reduction that Bison enables by default
7129is the accept action, which appears only in the accepting state, which has
7130no other action and is thus a defaulted state. However, the default accept
7131action does not delay any @code{yylex} invocation or syntax error detection
7132because the accept action ends the parse.
7133
7134For LALR and IELR, Bison enables default reductions in nearly all states by
7135default. There are only two exceptions. First, states that have a shift
7136action on the @code{error} token do not have default reductions because
7137delayed syntax error detection could then prevent the @code{error} token
7138from ever being shifted in that state. However, parser state merging can
7139cause the same effect anyway, and LAC fixes it in both cases, so future
7140versions of Bison might drop this exception when LAC is activated. Second,
7141GLR parsers do not record the default reduction as the action on a lookahead
7142token for which there is a conflict. The correct action in this case is to
7143split the parse instead.
7144
7145To adjust which states have default reductions enabled, use the
7146@code{%define lr.default-reductions} directive.
7147
7148@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7149Specify the kind of states that are permitted to contain default reductions.
7150The accepted values of @var{WHERE} are:
7151@itemize
a6e5a280 7152@item @code{most} (default for LALR and IELR)
6f04ee6c
JD
7153@item @code{consistent}
7154@item @code{accepting} (default for canonical LR)
7155@end itemize
7156
7157(The ability to specify where default reductions are permitted is
7158experimental. More user feedback will help to stabilize it.)
7159@end deffn
7160
6f04ee6c
JD
7161@node LAC
7162@subsection LAC
7163@findex %define parse.lac
7164@cindex LAC
7165@cindex lookahead correction
7166
7167Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7168encountering a syntax error. First, the parser might perform additional
7169parser stack reductions before discovering the syntax error. Such
7170reductions can perform user semantic actions that are unexpected because
7171they are based on an invalid token, and they cause error recovery to begin
7172in a different syntactic context than the one in which the invalid token was
7173encountered. Second, when verbose error messages are enabled (@pxref{Error
7174Reporting}), the expected token list in the syntax error message can both
7175contain invalid tokens and omit valid tokens.
7176
7177The culprits for the above problems are @code{%nonassoc}, default reductions
7178in inconsistent states (@pxref{Default Reductions}), and parser state
7179merging. Because IELR and LALR merge parser states, they suffer the most.
7180Canonical LR can suffer only if @code{%nonassoc} is used or if default
7181reductions are enabled for inconsistent states.
7182
7183LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7184that solves these problems for canonical LR, IELR, and LALR without
7185sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7186enable LAC with the @code{%define parse.lac} directive.
7187
7188@deffn {Directive} {%define parse.lac @var{VALUE}}
7189Enable LAC to improve syntax error handling.
7190@itemize
7191@item @code{none} (default)
7192@item @code{full}
7193@end itemize
7194(This feature is experimental. More user feedback will help to stabilize
7195it. Moreover, it is currently only available for deterministic parsers in
7196C.)
7197@end deffn
7198
7199Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7200fetches a new token from the scanner so that it can determine the next
7201parser action, it immediately suspends normal parsing and performs an
7202exploratory parse using a temporary copy of the normal parser state stack.
7203During this exploratory parse, the parser does not perform user semantic
7204actions. If the exploratory parse reaches a shift action, normal parsing
7205then resumes on the normal parser stacks. If the exploratory parse reaches
7206an error instead, the parser reports a syntax error. If verbose syntax
7207error messages are enabled, the parser must then discover the list of
7208expected tokens, so it performs a separate exploratory parse for each token
7209in the grammar.
7210
7211There is one subtlety about the use of LAC. That is, when in a consistent
7212parser state with a default reduction, the parser will not attempt to fetch
7213a token from the scanner because no lookahead is needed to determine the
7214next parser action. Thus, whether default reductions are enabled in
7215consistent states (@pxref{Default Reductions}) affects how soon the parser
7216detects a syntax error: immediately when it @emph{reaches} an erroneous
7217token or when it eventually @emph{needs} that token as a lookahead to
7218determine the next parser action. The latter behavior is probably more
7219intuitive, so Bison currently provides no way to achieve the former behavior
7220while default reductions are enabled in consistent states.
7221
7222Thus, when LAC is in use, for some fixed decision of whether to enable
7223default reductions in consistent states, canonical LR and IELR behave almost
7224exactly the same for both syntactically acceptable and syntactically
7225unacceptable input. While LALR still does not support the full
7226language-recognition power of canonical LR and IELR, LAC at least enables
7227LALR's syntax error handling to correctly reflect LALR's
7228language-recognition power.
7229
7230There are a few caveats to consider when using LAC:
7231
7232@itemize
7233@item Infinite parsing loops.
7234
7235IELR plus LAC does have one shortcoming relative to canonical LR. Some
7236parsers generated by Bison can loop infinitely. LAC does not fix infinite
7237parsing loops that occur between encountering a syntax error and detecting
7238it, but enabling canonical LR or disabling default reductions sometimes
7239does.
7240
7241@item Verbose error message limitations.
7242
7243Because of internationalization considerations, Bison-generated parsers
7244limit the size of the expected token list they are willing to report in a
7245verbose syntax error message. If the number of expected tokens exceeds that
7246limit, the list is simply dropped from the message. Enabling LAC can
7247increase the size of the list and thus cause the parser to drop it. Of
7248course, dropping the list is better than reporting an incorrect list.
7249
7250@item Performance.
7251
7252Because LAC requires many parse actions to be performed twice, it can have a
7253performance penalty. However, not all parse actions must be performed
7254twice. Specifically, during a series of default reductions in consistent
7255states and shift actions, the parser never has to initiate an exploratory
7256parse. Moreover, the most time-consuming tasks in a parse are often the
7257file I/O, the lexical analysis performed by the scanner, and the user's
7258semantic actions, but none of these are performed during the exploratory
7259parse. Finally, the base of the temporary stack used during an exploratory
7260parse is a pointer into the normal parser state stack so that the stack is
7261never physically copied. In our experience, the performance penalty of LAC
7262has proven insignificant for practical grammars.
7263@end itemize
7264
56706c61
JD
7265While the LAC algorithm shares techniques that have been recognized in the
7266parser community for years, for the publication that introduces LAC,
7267@pxref{Bibliography,,Denny 2010 May}.
121c4982 7268
6f04ee6c
JD
7269@node Unreachable States
7270@subsection Unreachable States
7271@findex %define lr.keep-unreachable-states
7272@cindex unreachable states
7273
7274If there exists no sequence of transitions from the parser's start state to
7275some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7276state}. A state can become unreachable during conflict resolution if Bison
7277disables a shift action leading to it from a predecessor state.
7278
7279By default, Bison removes unreachable states from the parser after conflict
7280resolution because they are useless in the generated parser. However,
7281keeping unreachable states is sometimes useful when trying to understand the
7282relationship between the parser and the grammar.
7283
7284@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7285Request that Bison allow unreachable states to remain in the parser tables.
7286@var{VALUE} must be a Boolean. The default is @code{false}.
7287@end deffn
7288
7289There are a few caveats to consider:
7290
7291@itemize @bullet
7292@item Missing or extraneous warnings.
7293
7294Unreachable states may contain conflicts and may use rules not used in any
7295other state. Thus, keeping unreachable states may induce warnings that are
7296irrelevant to your parser's behavior, and it may eliminate warnings that are
7297relevant. Of course, the change in warnings may actually be relevant to a
7298parser table analysis that wants to keep unreachable states, so this
7299behavior will likely remain in future Bison releases.
7300
7301@item Other useless states.
7302
7303While Bison is able to remove unreachable states, it is not guaranteed to
7304remove other kinds of useless states. Specifically, when Bison disables
7305reduce actions during conflict resolution, some goto actions may become
7306useless, and thus some additional states may become useless. If Bison were
7307to compute which goto actions were useless and then disable those actions,
7308it could identify such states as unreachable and then remove those states.
7309However, Bison does not compute which goto actions are useless.
7310@end itemize
7311
fae437e8 7312@node Generalized LR Parsing
35430378
JD
7313@section Generalized LR (GLR) Parsing
7314@cindex GLR parsing
7315@cindex generalized LR (GLR) parsing
676385e2 7316@cindex ambiguous grammars
9d9b8b70 7317@cindex nondeterministic parsing
676385e2 7318
fae437e8
AD
7319Bison produces @emph{deterministic} parsers that choose uniquely
7320when to reduce and which reduction to apply
742e4900 7321based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7322As a result, normal Bison handles a proper subset of the family of
7323context-free languages.
fae437e8 7324Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7325sequence of reductions cannot have deterministic parsers in this sense.
7326The same is true of languages that require more than one symbol of
742e4900 7327lookahead, since the parser lacks the information necessary to make a
676385e2 7328decision at the point it must be made in a shift-reduce parser.
5da0355a 7329Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
34a6c2d1 7330there are languages where Bison's default choice of how to
676385e2
PH
7331summarize the input seen so far loses necessary information.
7332
7333When you use the @samp{%glr-parser} declaration in your grammar file,
7334Bison generates a parser that uses a different algorithm, called
35430378 7335Generalized LR (or GLR). A Bison GLR
c827f760 7336parser uses the same basic
676385e2
PH
7337algorithm for parsing as an ordinary Bison parser, but behaves
7338differently in cases where there is a shift-reduce conflict that has not
fae437e8 7339been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7340reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7341situation, it
fae437e8 7342effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7343shift or reduction. These parsers then proceed as usual, consuming
7344tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7345and split further, with the result that instead of a sequence of states,
35430378 7346a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7347
7348In effect, each stack represents a guess as to what the proper parse
7349is. Additional input may indicate that a guess was wrong, in which case
7350the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7351actions generated in each stack are saved, rather than being executed
676385e2 7352immediately. When a stack disappears, its saved semantic actions never
fae437e8 7353get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7354their sets of semantic actions are both saved with the state that
7355results from the reduction. We say that two stacks are equivalent
fae437e8 7356when they both represent the same sequence of states,
676385e2
PH
7357and each pair of corresponding states represents a
7358grammar symbol that produces the same segment of the input token
7359stream.
7360
7361Whenever the parser makes a transition from having multiple
34a6c2d1 7362states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7363algorithm, after resolving and executing the saved-up actions.
7364At this transition, some of the states on the stack will have semantic
7365values that are sets (actually multisets) of possible actions. The
7366parser tries to pick one of the actions by first finding one whose rule
7367has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7368declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7369precedence, but there the same merging function is declared for both
fae437e8 7370rules by the @samp{%merge} declaration,
676385e2
PH
7371Bison resolves and evaluates both and then calls the merge function on
7372the result. Otherwise, it reports an ambiguity.
7373
35430378
JD
7374It is possible to use a data structure for the GLR parsing tree that
7375permits the processing of any LR(1) grammar in linear time (in the
c827f760 7376size of the input), any unambiguous (not necessarily
35430378 7377LR(1)) grammar in
fae437e8 7378quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7379context-free grammar in cubic worst-case time. However, Bison currently
7380uses a simpler data structure that requires time proportional to the
7381length of the input times the maximum number of stacks required for any
9d9b8b70 7382prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7383grammars can require exponential time and space to process. Such badly
7384behaving examples, however, are not generally of practical interest.
9d9b8b70 7385Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7386doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7387structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7388grammar, in particular, it is only slightly slower than with the
35430378 7389deterministic LR(1) Bison parser.
676385e2 7390
71caec06
JD
7391For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
73922000}.
f6481e2f 7393
1a059451
PE
7394@node Memory Management
7395@section Memory Management, and How to Avoid Memory Exhaustion
7396@cindex memory exhaustion
7397@cindex memory management
bfa74976
RS
7398@cindex stack overflow
7399@cindex parser stack overflow
7400@cindex overflow of parser stack
7401
1a059451 7402The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7403not reduced. When this happens, the parser function @code{yyparse}
1a059451 7404calls @code{yyerror} and then returns 2.
bfa74976 7405
c827f760 7406Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7407usually results from using a right recursion instead of a left
7408recursion, @xref{Recursion, ,Recursive Rules}.
7409
bfa74976
RS
7410@vindex YYMAXDEPTH
7411By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7412parser stack can become before memory is exhausted. Define the
bfa74976
RS
7413macro with a value that is an integer. This value is the maximum number
7414of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7415
7416The stack space allowed is not necessarily allocated. If you specify a
1a059451 7417large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7418stack at first, and then makes it bigger by stages as needed. This
7419increasing allocation happens automatically and silently. Therefore,
7420you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7421space for ordinary inputs that do not need much stack.
7422
d7e14fc0
PE
7423However, do not allow @code{YYMAXDEPTH} to be a value so large that
7424arithmetic overflow could occur when calculating the size of the stack
7425space. Also, do not allow @code{YYMAXDEPTH} to be less than
7426@code{YYINITDEPTH}.
7427
bfa74976
RS
7428@cindex default stack limit
7429The default value of @code{YYMAXDEPTH}, if you do not define it, is
743010000.
7431
7432@vindex YYINITDEPTH
7433You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7434macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7435parser in C, this value must be a compile-time constant
d7e14fc0
PE
7436unless you are assuming C99 or some other target language or compiler
7437that allows variable-length arrays. The default is 200.
7438
1a059451 7439Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7440
d1a1114f 7441@c FIXME: C++ output.
c781580d 7442Because of semantic differences between C and C++, the deterministic
34a6c2d1 7443parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7444by C++ compilers. In this precise case (compiling a C parser as C++) you are
7445suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7446this deficiency in a future release.
d1a1114f 7447
342b8b6e 7448@node Error Recovery
bfa74976
RS
7449@chapter Error Recovery
7450@cindex error recovery
7451@cindex recovery from errors
7452
6e649e65 7453It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7454error. For example, a compiler should recover sufficiently to parse the
7455rest of the input file and check it for errors; a calculator should accept
7456another expression.
7457
7458In a simple interactive command parser where each input is one line, it may
7459be sufficient to allow @code{yyparse} to return 1 on error and have the
7460caller ignore the rest of the input line when that happens (and then call
7461@code{yyparse} again). But this is inadequate for a compiler, because it
7462forgets all the syntactic context leading up to the error. A syntax error
7463deep within a function in the compiler input should not cause the compiler
7464to treat the following line like the beginning of a source file.
7465
7466@findex error
7467You can define how to recover from a syntax error by writing rules to
7468recognize the special token @code{error}. This is a terminal symbol that
7469is always defined (you need not declare it) and reserved for error
7470handling. The Bison parser generates an @code{error} token whenever a
7471syntax error happens; if you have provided a rule to recognize this token
13863333 7472in the current context, the parse can continue.
bfa74976
RS
7473
7474For example:
7475
7476@example
7477stmnts: /* empty string */
7478 | stmnts '\n'
7479 | stmnts exp '\n'
7480 | stmnts error '\n'
7481@end example
7482
7483The fourth rule in this example says that an error followed by a newline
7484makes a valid addition to any @code{stmnts}.
7485
7486What happens if a syntax error occurs in the middle of an @code{exp}? The
7487error recovery rule, interpreted strictly, applies to the precise sequence
7488of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7489the middle of an @code{exp}, there will probably be some additional tokens
7490and subexpressions on the stack after the last @code{stmnts}, and there
7491will be tokens to read before the next newline. So the rule is not
7492applicable in the ordinary way.
7493
7494But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7495the semantic context and part of the input. First it discards states
7496and objects from the stack until it gets back to a state in which the
bfa74976 7497@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7498already parsed are discarded, back to the last complete @code{stmnts}.)
7499At this point the @code{error} token can be shifted. Then, if the old
742e4900 7500lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7501tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7502this example, Bison reads and discards input until the next newline so
7503that the fourth rule can apply. Note that discarded symbols are
7504possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7505Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7506
7507The choice of error rules in the grammar is a choice of strategies for
7508error recovery. A simple and useful strategy is simply to skip the rest of
7509the current input line or current statement if an error is detected:
7510
7511@example
72d2299c 7512stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7513@end example
7514
7515It is also useful to recover to the matching close-delimiter of an
7516opening-delimiter that has already been parsed. Otherwise the
7517close-delimiter will probably appear to be unmatched, and generate another,
7518spurious error message:
7519
7520@example
7521primary: '(' expr ')'
7522 | '(' error ')'
7523 @dots{}
7524 ;
7525@end example
7526
7527Error recovery strategies are necessarily guesses. When they guess wrong,
7528one syntax error often leads to another. In the above example, the error
7529recovery rule guesses that an error is due to bad input within one
7530@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7531middle of a valid @code{stmnt}. After the error recovery rule recovers
7532from the first error, another syntax error will be found straightaway,
7533since the text following the spurious semicolon is also an invalid
7534@code{stmnt}.
7535
7536To prevent an outpouring of error messages, the parser will output no error
7537message for another syntax error that happens shortly after the first; only
7538after three consecutive input tokens have been successfully shifted will
7539error messages resume.
7540
7541Note that rules which accept the @code{error} token may have actions, just
7542as any other rules can.
7543
7544@findex yyerrok
7545You can make error messages resume immediately by using the macro
7546@code{yyerrok} in an action. If you do this in the error rule's action, no
7547error messages will be suppressed. This macro requires no arguments;
7548@samp{yyerrok;} is a valid C statement.
7549
7550@findex yyclearin
742e4900 7551The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7552this is unacceptable, then the macro @code{yyclearin} may be used to clear
7553this token. Write the statement @samp{yyclearin;} in the error rule's
7554action.
32c29292 7555@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7556
6e649e65 7557For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7558called that advances the input stream to some point where parsing should
7559once again commence. The next symbol returned by the lexical scanner is
742e4900 7560probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7561with @samp{yyclearin;}.
7562
7563@vindex YYRECOVERING
02103984
PE
7564The expression @code{YYRECOVERING ()} yields 1 when the parser
7565is recovering from a syntax error, and 0 otherwise.
7566Syntax error diagnostics are suppressed while recovering from a syntax
7567error.
bfa74976 7568
342b8b6e 7569@node Context Dependency
bfa74976
RS
7570@chapter Handling Context Dependencies
7571
7572The Bison paradigm is to parse tokens first, then group them into larger
7573syntactic units. In many languages, the meaning of a token is affected by
7574its context. Although this violates the Bison paradigm, certain techniques
7575(known as @dfn{kludges}) may enable you to write Bison parsers for such
7576languages.
7577
7578@menu
7579* Semantic Tokens:: Token parsing can depend on the semantic context.
7580* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7581* Tie-in Recovery:: Lexical tie-ins have implications for how
7582 error recovery rules must be written.
7583@end menu
7584
7585(Actually, ``kludge'' means any technique that gets its job done but is
7586neither clean nor robust.)
7587
342b8b6e 7588@node Semantic Tokens
bfa74976
RS
7589@section Semantic Info in Token Types
7590
7591The C language has a context dependency: the way an identifier is used
7592depends on what its current meaning is. For example, consider this:
7593
7594@example
7595foo (x);
7596@end example
7597
7598This looks like a function call statement, but if @code{foo} is a typedef
7599name, then this is actually a declaration of @code{x}. How can a Bison
7600parser for C decide how to parse this input?
7601
35430378 7602The method used in GNU C is to have two different token types,
bfa74976
RS
7603@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7604identifier, it looks up the current declaration of the identifier in order
7605to decide which token type to return: @code{TYPENAME} if the identifier is
7606declared as a typedef, @code{IDENTIFIER} otherwise.
7607
7608The grammar rules can then express the context dependency by the choice of
7609token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7610but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7611@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7612is @emph{not} significant, such as in declarations that can shadow a
7613typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7614accepted---there is one rule for each of the two token types.
7615
7616This technique is simple to use if the decision of which kinds of
7617identifiers to allow is made at a place close to where the identifier is
7618parsed. But in C this is not always so: C allows a declaration to
7619redeclare a typedef name provided an explicit type has been specified
7620earlier:
7621
7622@example
3a4f411f
PE
7623typedef int foo, bar;
7624int baz (void)
7625@{
7626 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7627 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7628 return foo (bar);
7629@}
bfa74976
RS
7630@end example
7631
7632Unfortunately, the name being declared is separated from the declaration
7633construct itself by a complicated syntactic structure---the ``declarator''.
7634
9ecbd125 7635As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7636all the nonterminal names changed: once for parsing a declaration in
7637which a typedef name can be redefined, and once for parsing a
7638declaration in which that can't be done. Here is a part of the
7639duplication, with actions omitted for brevity:
bfa74976
RS
7640
7641@example
7642initdcl:
7643 declarator maybeasm '='
7644 init
7645 | declarator maybeasm
7646 ;
7647
7648notype_initdcl:
7649 notype_declarator maybeasm '='
7650 init
7651 | notype_declarator maybeasm
7652 ;
7653@end example
7654
7655@noindent
7656Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7657cannot. The distinction between @code{declarator} and
7658@code{notype_declarator} is the same sort of thing.
7659
7660There is some similarity between this technique and a lexical tie-in
7661(described next), in that information which alters the lexical analysis is
7662changed during parsing by other parts of the program. The difference is
7663here the information is global, and is used for other purposes in the
7664program. A true lexical tie-in has a special-purpose flag controlled by
7665the syntactic context.
7666
342b8b6e 7667@node Lexical Tie-ins
bfa74976
RS
7668@section Lexical Tie-ins
7669@cindex lexical tie-in
7670
7671One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7672which is set by Bison actions, whose purpose is to alter the way tokens are
7673parsed.
7674
7675For example, suppose we have a language vaguely like C, but with a special
7676construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7677an expression in parentheses in which all integers are hexadecimal. In
7678particular, the token @samp{a1b} must be treated as an integer rather than
7679as an identifier if it appears in that context. Here is how you can do it:
7680
7681@example
7682@group
7683%@{
38a92d50
PE
7684 int hexflag;
7685 int yylex (void);
7686 void yyerror (char const *);
bfa74976
RS
7687%@}
7688%%
7689@dots{}
7690@end group
7691@group
7692expr: IDENTIFIER
7693 | constant
7694 | HEX '('
7695 @{ hexflag = 1; @}
7696 expr ')'
7697 @{ hexflag = 0;
7698 $$ = $4; @}
7699 | expr '+' expr
7700 @{ $$ = make_sum ($1, $3); @}
7701 @dots{}
7702 ;
7703@end group
7704
7705@group
7706constant:
7707 INTEGER
7708 | STRING
7709 ;
7710@end group
7711@end example
7712
7713@noindent
7714Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7715it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7716with letters are parsed as integers if possible.
7717
9913d6e4
JD
7718The declaration of @code{hexflag} shown in the prologue of the grammar
7719file is needed to make it accessible to the actions (@pxref{Prologue,
7720,The Prologue}). You must also write the code in @code{yylex} to obey
7721the flag.
bfa74976 7722
342b8b6e 7723@node Tie-in Recovery
bfa74976
RS
7724@section Lexical Tie-ins and Error Recovery
7725
7726Lexical tie-ins make strict demands on any error recovery rules you have.
7727@xref{Error Recovery}.
7728
7729The reason for this is that the purpose of an error recovery rule is to
7730abort the parsing of one construct and resume in some larger construct.
7731For example, in C-like languages, a typical error recovery rule is to skip
7732tokens until the next semicolon, and then start a new statement, like this:
7733
7734@example
7735stmt: expr ';'
7736 | IF '(' expr ')' stmt @{ @dots{} @}
7737 @dots{}
7738 error ';'
7739 @{ hexflag = 0; @}
7740 ;
7741@end example
7742
7743If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7744construct, this error rule will apply, and then the action for the
7745completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7746remain set for the entire rest of the input, or until the next @code{hex}
7747keyword, causing identifiers to be misinterpreted as integers.
7748
7749To avoid this problem the error recovery rule itself clears @code{hexflag}.
7750
7751There may also be an error recovery rule that works within expressions.
7752For example, there could be a rule which applies within parentheses
7753and skips to the close-parenthesis:
7754
7755@example
7756@group
7757expr: @dots{}
7758 | '(' expr ')'
7759 @{ $$ = $2; @}
7760 | '(' error ')'
7761 @dots{}
7762@end group
7763@end example
7764
7765If this rule acts within the @code{hex} construct, it is not going to abort
7766that construct (since it applies to an inner level of parentheses within
7767the construct). Therefore, it should not clear the flag: the rest of
7768the @code{hex} construct should be parsed with the flag still in effect.
7769
7770What if there is an error recovery rule which might abort out of the
7771@code{hex} construct or might not, depending on circumstances? There is no
7772way you can write the action to determine whether a @code{hex} construct is
7773being aborted or not. So if you are using a lexical tie-in, you had better
7774make sure your error recovery rules are not of this kind. Each rule must
7775be such that you can be sure that it always will, or always won't, have to
7776clear the flag.
7777
ec3bc396
AD
7778@c ================================================== Debugging Your Parser
7779
342b8b6e 7780@node Debugging
bfa74976 7781@chapter Debugging Your Parser
ec3bc396
AD
7782
7783Developing a parser can be a challenge, especially if you don't
7784understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7785Algorithm}). Even so, sometimes a detailed description of the automaton
7786can help (@pxref{Understanding, , Understanding Your Parser}), or
7787tracing the execution of the parser can give some insight on why it
7788behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7789
7790@menu
7791* Understanding:: Understanding the structure of your parser.
7792* Tracing:: Tracing the execution of your parser.
7793@end menu
7794
7795@node Understanding
7796@section Understanding Your Parser
7797
7798As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7799Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7800frequent than one would hope), looking at this automaton is required to
7801tune or simply fix a parser. Bison provides two different
35fe0834 7802representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7803
7804The textual file is generated when the options @option{--report} or
7805@option{--verbose} are specified, see @xref{Invocation, , Invoking
7806Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
7807the parser implementation file name, and adding @samp{.output}
7808instead. Therefore, if the grammar file is @file{foo.y}, then the
7809parser implementation file is called @file{foo.tab.c} by default. As
7810a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
7811
7812The following grammar file, @file{calc.y}, will be used in the sequel:
7813
7814@example
7815%token NUM STR
7816%left '+' '-'
7817%left '*'
7818%%
7819exp: exp '+' exp
7820 | exp '-' exp
7821 | exp '*' exp
7822 | exp '/' exp
7823 | NUM
7824 ;
7825useless: STR;
7826%%
7827@end example
7828
88bce5a2
AD
7829@command{bison} reports:
7830
7831@example
379261b3
JD
7832calc.y: warning: 1 nonterminal useless in grammar
7833calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7834calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7835calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7836calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7837@end example
7838
7839When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7840creates a file @file{calc.output} with contents detailed below. The
7841order of the output and the exact presentation might vary, but the
7842interpretation is the same.
ec3bc396
AD
7843
7844The first section includes details on conflicts that were solved thanks
7845to precedence and/or associativity:
7846
7847@example
7848Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7849Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7850Conflict in state 8 between rule 2 and token '*' resolved as shift.
7851@exdent @dots{}
7852@end example
7853
7854@noindent
7855The next section lists states that still have conflicts.
7856
7857@example
5a99098d
PE
7858State 8 conflicts: 1 shift/reduce
7859State 9 conflicts: 1 shift/reduce
7860State 10 conflicts: 1 shift/reduce
7861State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7862@end example
7863
7864@noindent
7865@cindex token, useless
7866@cindex useless token
7867@cindex nonterminal, useless
7868@cindex useless nonterminal
7869@cindex rule, useless
7870@cindex useless rule
7871The next section reports useless tokens, nonterminal and rules. Useless
7872nonterminals and rules are removed in order to produce a smaller parser,
7873but useless tokens are preserved, since they might be used by the
d80fb37a 7874scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7875below):
7876
7877@example
d80fb37a 7878Nonterminals useless in grammar:
ec3bc396
AD
7879 useless
7880
d80fb37a 7881Terminals unused in grammar:
ec3bc396
AD
7882 STR
7883
cff03fb2 7884Rules useless in grammar:
ec3bc396
AD
7885#6 useless: STR;
7886@end example
7887
7888@noindent
7889The next section reproduces the exact grammar that Bison used:
7890
7891@example
7892Grammar
7893
7894 Number, Line, Rule
88bce5a2 7895 0 5 $accept -> exp $end
ec3bc396
AD
7896 1 5 exp -> exp '+' exp
7897 2 6 exp -> exp '-' exp
7898 3 7 exp -> exp '*' exp
7899 4 8 exp -> exp '/' exp
7900 5 9 exp -> NUM
7901@end example
7902
7903@noindent
7904and reports the uses of the symbols:
7905
7906@example
7907Terminals, with rules where they appear
7908
88bce5a2 7909$end (0) 0
ec3bc396
AD
7910'*' (42) 3
7911'+' (43) 1
7912'-' (45) 2
7913'/' (47) 4
7914error (256)
7915NUM (258) 5
7916
7917Nonterminals, with rules where they appear
7918
88bce5a2 7919$accept (8)
ec3bc396
AD
7920 on left: 0
7921exp (9)
7922 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7923@end example
7924
7925@noindent
7926@cindex item
7927@cindex pointed rule
7928@cindex rule, pointed
7929Bison then proceeds onto the automaton itself, describing each state
7930with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7931item is a production rule together with a point (marked by @samp{.})
7932that the input cursor.
7933
7934@example
7935state 0
7936
88bce5a2 7937 $accept -> . exp $ (rule 0)
ec3bc396 7938
2a8d363a 7939 NUM shift, and go to state 1
ec3bc396 7940
2a8d363a 7941 exp go to state 2
ec3bc396
AD
7942@end example
7943
7944This reads as follows: ``state 0 corresponds to being at the very
7945beginning of the parsing, in the initial rule, right before the start
7946symbol (here, @code{exp}). When the parser returns to this state right
7947after having reduced a rule that produced an @code{exp}, the control
7948flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7949symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7950the parse stack, and the control flow jumps to state 1. Any other
742e4900 7951lookahead triggers a syntax error.''
ec3bc396
AD
7952
7953@cindex core, item set
7954@cindex item set core
7955@cindex kernel, item set
7956@cindex item set core
7957Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7958report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7959at the beginning of any rule deriving an @code{exp}. By default Bison
7960reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7961you want to see more detail you can invoke @command{bison} with
7962@option{--report=itemset} to list all the items, include those that can
7963be derived:
7964
7965@example
7966state 0
7967
88bce5a2 7968 $accept -> . exp $ (rule 0)
ec3bc396
AD
7969 exp -> . exp '+' exp (rule 1)
7970 exp -> . exp '-' exp (rule 2)
7971 exp -> . exp '*' exp (rule 3)
7972 exp -> . exp '/' exp (rule 4)
7973 exp -> . NUM (rule 5)
7974
7975 NUM shift, and go to state 1
7976
7977 exp go to state 2
7978@end example
7979
7980@noindent
7981In the state 1...
7982
7983@example
7984state 1
7985
7986 exp -> NUM . (rule 5)
7987
2a8d363a 7988 $default reduce using rule 5 (exp)
ec3bc396
AD
7989@end example
7990
7991@noindent
742e4900 7992the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7993(@samp{$default}), the parser will reduce it. If it was coming from
7994state 0, then, after this reduction it will return to state 0, and will
7995jump to state 2 (@samp{exp: go to state 2}).
7996
7997@example
7998state 2
7999
88bce5a2 8000 $accept -> exp . $ (rule 0)
ec3bc396
AD
8001 exp -> exp . '+' exp (rule 1)
8002 exp -> exp . '-' exp (rule 2)
8003 exp -> exp . '*' exp (rule 3)
8004 exp -> exp . '/' exp (rule 4)
8005
2a8d363a
AD
8006 $ shift, and go to state 3
8007 '+' shift, and go to state 4
8008 '-' shift, and go to state 5
8009 '*' shift, and go to state 6
8010 '/' shift, and go to state 7
ec3bc396
AD
8011@end example
8012
8013@noindent
8014In state 2, the automaton can only shift a symbol. For instance,
742e4900 8015because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8016@samp{+}, it will be shifted on the parse stack, and the automaton
8017control will jump to state 4, corresponding to the item @samp{exp -> exp
8018'+' . exp}. Since there is no default action, any other token than
6e649e65 8019those listed above will trigger a syntax error.
ec3bc396 8020
34a6c2d1 8021@cindex accepting state
ec3bc396
AD
8022The state 3 is named the @dfn{final state}, or the @dfn{accepting
8023state}:
8024
8025@example
8026state 3
8027
88bce5a2 8028 $accept -> exp $ . (rule 0)
ec3bc396 8029
2a8d363a 8030 $default accept
ec3bc396
AD
8031@end example
8032
8033@noindent
8034the initial rule is completed (the start symbol and the end
8035of input were read), the parsing exits successfully.
8036
8037The interpretation of states 4 to 7 is straightforward, and is left to
8038the reader.
8039
8040@example
8041state 4
8042
8043 exp -> exp '+' . exp (rule 1)
8044
2a8d363a 8045 NUM shift, and go to state 1
ec3bc396 8046
2a8d363a 8047 exp go to state 8
ec3bc396
AD
8048
8049state 5
8050
8051 exp -> exp '-' . exp (rule 2)
8052
2a8d363a 8053 NUM shift, and go to state 1
ec3bc396 8054
2a8d363a 8055 exp go to state 9
ec3bc396
AD
8056
8057state 6
8058
8059 exp -> exp '*' . exp (rule 3)
8060
2a8d363a 8061 NUM shift, and go to state 1
ec3bc396 8062
2a8d363a 8063 exp go to state 10
ec3bc396
AD
8064
8065state 7
8066
8067 exp -> exp '/' . exp (rule 4)
8068
2a8d363a 8069 NUM shift, and go to state 1
ec3bc396 8070
2a8d363a 8071 exp go to state 11
ec3bc396
AD
8072@end example
8073
5a99098d
PE
8074As was announced in beginning of the report, @samp{State 8 conflicts:
80751 shift/reduce}:
ec3bc396
AD
8076
8077@example
8078state 8
8079
8080 exp -> exp . '+' exp (rule 1)
8081 exp -> exp '+' exp . (rule 1)
8082 exp -> exp . '-' exp (rule 2)
8083 exp -> exp . '*' exp (rule 3)
8084 exp -> exp . '/' exp (rule 4)
8085
2a8d363a
AD
8086 '*' shift, and go to state 6
8087 '/' shift, and go to state 7
ec3bc396 8088
2a8d363a
AD
8089 '/' [reduce using rule 1 (exp)]
8090 $default reduce using rule 1 (exp)
ec3bc396
AD
8091@end example
8092
742e4900 8093Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8094either shifting (and going to state 7), or reducing rule 1. The
8095conflict means that either the grammar is ambiguous, or the parser lacks
8096information to make the right decision. Indeed the grammar is
8097ambiguous, as, since we did not specify the precedence of @samp{/}, the
8098sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8099NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8100NUM}, which corresponds to reducing rule 1.
8101
34a6c2d1 8102Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8103arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8104Shift/Reduce Conflicts}. Discarded actions are reported in between
8105square brackets.
8106
8107Note that all the previous states had a single possible action: either
8108shifting the next token and going to the corresponding state, or
8109reducing a single rule. In the other cases, i.e., when shifting
8110@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8111possible, the lookahead is required to select the action. State 8 is
8112one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8113is shifting, otherwise the action is reducing rule 1. In other words,
8114the first two items, corresponding to rule 1, are not eligible when the
742e4900 8115lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8116precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8117with some set of possible lookahead tokens. When run with
8118@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8119
8120@example
8121state 8
8122
88c78747 8123 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8124 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8125 exp -> exp . '-' exp (rule 2)
8126 exp -> exp . '*' exp (rule 3)
8127 exp -> exp . '/' exp (rule 4)
8128
8129 '*' shift, and go to state 6
8130 '/' shift, and go to state 7
8131
8132 '/' [reduce using rule 1 (exp)]
8133 $default reduce using rule 1 (exp)
8134@end example
8135
8136The remaining states are similar:
8137
8138@example
8139state 9
8140
8141 exp -> exp . '+' exp (rule 1)
8142 exp -> exp . '-' exp (rule 2)
8143 exp -> exp '-' exp . (rule 2)
8144 exp -> exp . '*' exp (rule 3)
8145 exp -> exp . '/' exp (rule 4)
8146
2a8d363a
AD
8147 '*' shift, and go to state 6
8148 '/' shift, and go to state 7
ec3bc396 8149
2a8d363a
AD
8150 '/' [reduce using rule 2 (exp)]
8151 $default reduce using rule 2 (exp)
ec3bc396
AD
8152
8153state 10
8154
8155 exp -> exp . '+' exp (rule 1)
8156 exp -> exp . '-' exp (rule 2)
8157 exp -> exp . '*' exp (rule 3)
8158 exp -> exp '*' exp . (rule 3)
8159 exp -> exp . '/' exp (rule 4)
8160
2a8d363a 8161 '/' shift, and go to state 7
ec3bc396 8162
2a8d363a
AD
8163 '/' [reduce using rule 3 (exp)]
8164 $default reduce using rule 3 (exp)
ec3bc396
AD
8165
8166state 11
8167
8168 exp -> exp . '+' exp (rule 1)
8169 exp -> exp . '-' exp (rule 2)
8170 exp -> exp . '*' exp (rule 3)
8171 exp -> exp . '/' exp (rule 4)
8172 exp -> exp '/' exp . (rule 4)
8173
2a8d363a
AD
8174 '+' shift, and go to state 4
8175 '-' shift, and go to state 5
8176 '*' shift, and go to state 6
8177 '/' shift, and go to state 7
ec3bc396 8178
2a8d363a
AD
8179 '+' [reduce using rule 4 (exp)]
8180 '-' [reduce using rule 4 (exp)]
8181 '*' [reduce using rule 4 (exp)]
8182 '/' [reduce using rule 4 (exp)]
8183 $default reduce using rule 4 (exp)
ec3bc396
AD
8184@end example
8185
8186@noindent
fa7e68c3
PE
8187Observe that state 11 contains conflicts not only due to the lack of
8188precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8189@samp{*}, but also because the
ec3bc396
AD
8190associativity of @samp{/} is not specified.
8191
8192
8193@node Tracing
8194@section Tracing Your Parser
bfa74976
RS
8195@findex yydebug
8196@cindex debugging
8197@cindex tracing the parser
8198
8199If a Bison grammar compiles properly but doesn't do what you want when it
8200runs, the @code{yydebug} parser-trace feature can help you figure out why.
8201
3ded9a63
AD
8202There are several means to enable compilation of trace facilities:
8203
8204@table @asis
8205@item the macro @code{YYDEBUG}
8206@findex YYDEBUG
8207Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 8208parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8209@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8210YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8211Prologue}).
8212
8213@item the option @option{-t}, @option{--debug}
8214Use the @samp{-t} option when you run Bison (@pxref{Invocation,
35430378 8215,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8216
8217@item the directive @samp{%debug}
8218@findex %debug
8219Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
8220Declaration Summary}). This is a Bison extension, which will prove
8221useful when Bison will output parsers for languages that don't use a
35430378 8222preprocessor. Unless POSIX and Yacc portability matter to
c827f760 8223you, this is
3ded9a63
AD
8224the preferred solution.
8225@end table
8226
8227We suggest that you always enable the debug option so that debugging is
8228always possible.
bfa74976 8229
02a81e05 8230The trace facility outputs messages with macro calls of the form
e2742e46 8231@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8232@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8233arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8234define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8235and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8236
8237Once you have compiled the program with trace facilities, the way to
8238request a trace is to store a nonzero value in the variable @code{yydebug}.
8239You can do this by making the C code do it (in @code{main}, perhaps), or
8240you can alter the value with a C debugger.
8241
8242Each step taken by the parser when @code{yydebug} is nonzero produces a
8243line or two of trace information, written on @code{stderr}. The trace
8244messages tell you these things:
8245
8246@itemize @bullet
8247@item
8248Each time the parser calls @code{yylex}, what kind of token was read.
8249
8250@item
8251Each time a token is shifted, the depth and complete contents of the
8252state stack (@pxref{Parser States}).
8253
8254@item
8255Each time a rule is reduced, which rule it is, and the complete contents
8256of the state stack afterward.
8257@end itemize
8258
8259To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8260produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8261Bison}). This file shows the meaning of each state in terms of
8262positions in various rules, and also what each state will do with each
8263possible input token. As you read the successive trace messages, you
8264can see that the parser is functioning according to its specification in
8265the listing file. Eventually you will arrive at the place where
8266something undesirable happens, and you will see which parts of the
8267grammar are to blame.
bfa74976 8268
9913d6e4
JD
8269The parser implementation file is a C program and you can use C
8270debuggers on it, but it's not easy to interpret what it is doing. The
8271parser function is a finite-state machine interpreter, and aside from
8272the actions it executes the same code over and over. Only the values
8273of variables show where in the grammar it is working.
bfa74976
RS
8274
8275@findex YYPRINT
8276The debugging information normally gives the token type of each token
8277read, but not its semantic value. You can optionally define a macro
8278named @code{YYPRINT} to provide a way to print the value. If you define
8279@code{YYPRINT}, it should take three arguments. The parser will pass a
8280standard I/O stream, the numeric code for the token type, and the token
8281value (from @code{yylval}).
8282
8283Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8284calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8285
8286@smallexample
38a92d50
PE
8287%@{
8288 static void print_token_value (FILE *, int, YYSTYPE);
8289 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8290%@}
8291
8292@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8293
8294static void
831d3c99 8295print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8296@{
8297 if (type == VAR)
d3c4e709 8298 fprintf (file, "%s", value.tptr->name);
bfa74976 8299 else if (type == NUM)
d3c4e709 8300 fprintf (file, "%d", value.val);
bfa74976
RS
8301@}
8302@end smallexample
8303
ec3bc396
AD
8304@c ================================================= Invoking Bison
8305
342b8b6e 8306@node Invocation
bfa74976
RS
8307@chapter Invoking Bison
8308@cindex invoking Bison
8309@cindex Bison invocation
8310@cindex options for invoking Bison
8311
8312The usual way to invoke Bison is as follows:
8313
8314@example
8315bison @var{infile}
8316@end example
8317
8318Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
8319@samp{.y}. The parser implementation file's name is made by replacing
8320the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8321Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8322the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8323also possible, in case you are writing C++ code instead of C in your
8324grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8325output files will take an extension like the given one as input
8326(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8327feature takes effect with all options that manipulate file names like
234a3be3
AD
8328@samp{-o} or @samp{-d}.
8329
8330For example :
8331
8332@example
8333bison -d @var{infile.yxx}
8334@end example
84163231 8335@noindent
72d2299c 8336will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8337
8338@example
b56471a6 8339bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8340@end example
84163231 8341@noindent
234a3be3
AD
8342will produce @file{output.c++} and @file{outfile.h++}.
8343
35430378 8344For compatibility with POSIX, the standard Bison
397ec073
PE
8345distribution also contains a shell script called @command{yacc} that
8346invokes Bison with the @option{-y} option.
8347
bfa74976 8348@menu
13863333 8349* Bison Options:: All the options described in detail,
c827f760 8350 in alphabetical order by short options.
bfa74976 8351* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8352* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8353@end menu
8354
342b8b6e 8355@node Bison Options
bfa74976
RS
8356@section Bison Options
8357
8358Bison supports both traditional single-letter options and mnemonic long
8359option names. Long option names are indicated with @samp{--} instead of
8360@samp{-}. Abbreviations for option names are allowed as long as they
8361are unique. When a long option takes an argument, like
8362@samp{--file-prefix}, connect the option name and the argument with
8363@samp{=}.
8364
8365Here is a list of options that can be used with Bison, alphabetized by
8366short option. It is followed by a cross key alphabetized by long
8367option.
8368
89cab50d
AD
8369@c Please, keep this ordered as in `bison --help'.
8370@noindent
8371Operations modes:
8372@table @option
8373@item -h
8374@itemx --help
8375Print a summary of the command-line options to Bison and exit.
bfa74976 8376
89cab50d
AD
8377@item -V
8378@itemx --version
8379Print the version number of Bison and exit.
bfa74976 8380
f7ab6a50
PE
8381@item --print-localedir
8382Print the name of the directory containing locale-dependent data.
8383
a0de5091
JD
8384@item --print-datadir
8385Print the name of the directory containing skeletons and XSLT.
8386
89cab50d
AD
8387@item -y
8388@itemx --yacc
9913d6e4
JD
8389Act more like the traditional Yacc command. This can cause different
8390diagnostics to be generated, and may change behavior in other minor
8391ways. Most importantly, imitate Yacc's output file name conventions,
8392so that the parser implementation file is called @file{y.tab.c}, and
8393the other outputs are called @file{y.output} and @file{y.tab.h}.
8394Also, if generating a deterministic parser in C, generate
8395@code{#define} statements in addition to an @code{enum} to associate
8396token numbers with token names. Thus, the following shell script can
8397substitute for Yacc, and the Bison distribution contains such a script
8398for compatibility with POSIX:
bfa74976 8399
89cab50d 8400@example
397ec073 8401#! /bin/sh
26e06a21 8402bison -y "$@@"
89cab50d 8403@end example
54662697
PE
8404
8405The @option{-y}/@option{--yacc} option is intended for use with
8406traditional Yacc grammars. If your grammar uses a Bison extension
8407like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8408this option is specified.
8409
ecd1b61c
JD
8410@item -W [@var{category}]
8411@itemx --warnings[=@var{category}]
118d4978
AD
8412Output warnings falling in @var{category}. @var{category} can be one
8413of:
8414@table @code
8415@item midrule-values
8e55b3aa
JD
8416Warn about mid-rule values that are set but not used within any of the actions
8417of the parent rule.
8418For example, warn about unused @code{$2} in:
118d4978
AD
8419
8420@example
8421exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8422@end example
8423
8e55b3aa
JD
8424Also warn about mid-rule values that are used but not set.
8425For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8426
8427@example
8428 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8429@end example
8430
8431These warnings are not enabled by default since they sometimes prove to
8432be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8433@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8434
118d4978 8435@item yacc
35430378 8436Incompatibilities with POSIX Yacc.
118d4978 8437
6f8bdce2
JD
8438@item conflicts-sr
8439@itemx conflicts-rr
8440S/R and R/R conflicts. These warnings are enabled by default. However, if
8441the @code{%expect} or @code{%expect-rr} directive is specified, an
8442unexpected number of conflicts is an error, and an expected number of
8443conflicts is not reported, so @option{-W} and @option{--warning} then have
8444no effect on the conflict report.
8445
8ffd7912
JD
8446@item other
8447All warnings not categorized above. These warnings are enabled by default.
8448
8449This category is provided merely for the sake of completeness. Future
8450releases of Bison may move warnings from this category to new, more specific
8451categories.
8452
118d4978 8453@item all
8e55b3aa 8454All the warnings.
118d4978 8455@item none
8e55b3aa 8456Turn off all the warnings.
118d4978 8457@item error
8e55b3aa 8458Treat warnings as errors.
118d4978
AD
8459@end table
8460
8461A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 8462instance, @option{-Wno-yacc} will hide the warnings about
35430378 8463POSIX Yacc incompatibilities.
89cab50d
AD
8464@end table
8465
8466@noindent
8467Tuning the parser:
8468
8469@table @option
8470@item -t
8471@itemx --debug
9913d6e4
JD
8472In the parser implementation file, define the macro @code{YYDEBUG} to
84731 if it is not already defined, so that the debugging facilities are
8474compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8475
e14c6831
AD
8476@item -D @var{name}[=@var{value}]
8477@itemx --define=@var{name}[=@var{value}]
c33bc800 8478@itemx -F @var{name}[=@var{value}]
34d41938
JD
8479@itemx --force-define=@var{name}[=@var{value}]
8480Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
2f4518a1 8481(@pxref{%define Summary}) except that Bison processes multiple
34d41938
JD
8482definitions for the same @var{name} as follows:
8483
8484@itemize
8485@item
e3a33f7c
JD
8486Bison quietly ignores all command-line definitions for @var{name} except
8487the last.
34d41938 8488@item
e3a33f7c
JD
8489If that command-line definition is specified by a @code{-D} or
8490@code{--define}, Bison reports an error for any @code{%define}
8491definition for @var{name}.
34d41938 8492@item
e3a33f7c
JD
8493If that command-line definition is specified by a @code{-F} or
8494@code{--force-define} instead, Bison quietly ignores all @code{%define}
8495definitions for @var{name}.
8496@item
8497Otherwise, Bison reports an error if there are multiple @code{%define}
8498definitions for @var{name}.
34d41938
JD
8499@end itemize
8500
8501You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
8502make files unless you are confident that it is safe to quietly ignore
8503any conflicting @code{%define} that may be added to the grammar file.
e14c6831 8504
0e021770
PE
8505@item -L @var{language}
8506@itemx --language=@var{language}
8507Specify the programming language for the generated parser, as if
8508@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8509Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8510@var{language} is case-insensitive.
0e021770 8511
ed4d67dc
JD
8512This option is experimental and its effect may be modified in future
8513releases.
8514
89cab50d 8515@item --locations
d8988b2f 8516Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8517
8518@item -p @var{prefix}
8519@itemx --name-prefix=@var{prefix}
02975b9a 8520Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8521@xref{Decl Summary}.
bfa74976
RS
8522
8523@item -l
8524@itemx --no-lines
9913d6e4
JD
8525Don't put any @code{#line} preprocessor commands in the parser
8526implementation file. Ordinarily Bison puts them in the parser
8527implementation file so that the C compiler and debuggers will
8528associate errors with your source file, the grammar file. This option
8529causes them to associate errors with the parser implementation file,
8530treating it as an independent source file in its own right.
bfa74976 8531
e6e704dc
JD
8532@item -S @var{file}
8533@itemx --skeleton=@var{file}
a7867f53 8534Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8535(@pxref{Decl Summary, , Bison Declaration Summary}).
8536
ed4d67dc
JD
8537@c You probably don't need this option unless you are developing Bison.
8538@c You should use @option{--language} if you want to specify the skeleton for a
8539@c different language, because it is clearer and because it will always
8540@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8541
a7867f53
JD
8542If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8543file in the Bison installation directory.
8544If it does, @var{file} is an absolute file name or a file name relative to the
8545current working directory.
8546This is similar to how most shells resolve commands.
8547
89cab50d
AD
8548@item -k
8549@itemx --token-table
d8988b2f 8550Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8551@end table
bfa74976 8552
89cab50d
AD
8553@noindent
8554Adjust the output:
bfa74976 8555
89cab50d 8556@table @option
8e55b3aa 8557@item --defines[=@var{file}]
d8988b2f 8558Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8559file containing macro definitions for the token type names defined in
4bfd5e4e 8560the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8561
8e55b3aa
JD
8562@item -d
8563This is the same as @code{--defines} except @code{-d} does not accept a
8564@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8565with other short options.
342b8b6e 8566
89cab50d
AD
8567@item -b @var{file-prefix}
8568@itemx --file-prefix=@var{prefix}
9c437126 8569Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8570for all Bison output file names. @xref{Decl Summary}.
bfa74976 8571
ec3bc396
AD
8572@item -r @var{things}
8573@itemx --report=@var{things}
8574Write an extra output file containing verbose description of the comma
8575separated list of @var{things} among:
8576
8577@table @code
8578@item state
8579Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8580parser's automaton.
ec3bc396 8581
742e4900 8582@item lookahead
ec3bc396 8583Implies @code{state} and augments the description of the automaton with
742e4900 8584each rule's lookahead set.
ec3bc396
AD
8585
8586@item itemset
8587Implies @code{state} and augments the description of the automaton with
8588the full set of items for each state, instead of its core only.
8589@end table
8590
1bb2bd75
JD
8591@item --report-file=@var{file}
8592Specify the @var{file} for the verbose description.
8593
bfa74976
RS
8594@item -v
8595@itemx --verbose
9c437126 8596Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8597file containing verbose descriptions of the grammar and
72d2299c 8598parser. @xref{Decl Summary}.
bfa74976 8599
fa4d969f
PE
8600@item -o @var{file}
8601@itemx --output=@var{file}
9913d6e4 8602Specify the @var{file} for the parser implementation file.
bfa74976 8603
fa4d969f 8604The other output files' names are constructed from @var{file} as
d8988b2f 8605described under the @samp{-v} and @samp{-d} options.
342b8b6e 8606
72183df4 8607@item -g [@var{file}]
8e55b3aa 8608@itemx --graph[=@var{file}]
34a6c2d1 8609Output a graphical representation of the parser's
35fe0834 8610automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 8611@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8612@code{@var{file}} is optional.
8613If omitted and the grammar file is @file{foo.y}, the output file will be
8614@file{foo.dot}.
59da312b 8615
72183df4 8616@item -x [@var{file}]
8e55b3aa 8617@itemx --xml[=@var{file}]
34a6c2d1 8618Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8619@code{@var{file}} is optional.
59da312b
JD
8620If omitted and the grammar file is @file{foo.y}, the output file will be
8621@file{foo.xml}.
8622(The current XML schema is experimental and may evolve.
8623More user feedback will help to stabilize it.)
bfa74976
RS
8624@end table
8625
342b8b6e 8626@node Option Cross Key
bfa74976
RS
8627@section Option Cross Key
8628
8629Here is a list of options, alphabetized by long option, to help you find
34d41938 8630the corresponding short option and directive.
bfa74976 8631
34d41938 8632@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8633@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8634@include cross-options.texi
aa08666d 8635@end multitable
bfa74976 8636
93dd49ab
PE
8637@node Yacc Library
8638@section Yacc Library
8639
8640The Yacc library contains default implementations of the
8641@code{yyerror} and @code{main} functions. These default
35430378 8642implementations are normally not useful, but POSIX requires
93dd49ab
PE
8643them. To use the Yacc library, link your program with the
8644@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 8645library is distributed under the terms of the GNU General
93dd49ab
PE
8646Public License (@pxref{Copying}).
8647
8648If you use the Yacc library's @code{yyerror} function, you should
8649declare @code{yyerror} as follows:
8650
8651@example
8652int yyerror (char const *);
8653@end example
8654
8655Bison ignores the @code{int} value returned by this @code{yyerror}.
8656If you use the Yacc library's @code{main} function, your
8657@code{yyparse} function should have the following type signature:
8658
8659@example
8660int yyparse (void);
8661@end example
8662
12545799
AD
8663@c ================================================= C++ Bison
8664
8405b70c
PB
8665@node Other Languages
8666@chapter Parsers Written In Other Languages
12545799
AD
8667
8668@menu
8669* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8670* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8671@end menu
8672
8673@node C++ Parsers
8674@section C++ Parsers
8675
8676@menu
8677* C++ Bison Interface:: Asking for C++ parser generation
8678* C++ Semantic Values:: %union vs. C++
8679* C++ Location Values:: The position and location classes
8680* C++ Parser Interface:: Instantiating and running the parser
8681* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8682* A Complete C++ Example:: Demonstrating their use
12545799
AD
8683@end menu
8684
8685@node C++ Bison Interface
8686@subsection C++ Bison Interface
ed4d67dc 8687@c - %skeleton "lalr1.cc"
12545799
AD
8688@c - Always pure
8689@c - initial action
8690
34a6c2d1 8691The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8692@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8693@option{--skeleton=lalr1.cc}.
e6e704dc 8694@xref{Decl Summary}.
0e021770 8695
793fbca5
JD
8696When run, @command{bison} will create several entities in the @samp{yy}
8697namespace.
8698@findex %define namespace
2f4518a1
JD
8699Use the @samp{%define namespace} directive to change the namespace
8700name, see @ref{%define Summary,,namespace}. The various classes are
8701generated in the following files:
aa08666d 8702
12545799
AD
8703@table @file
8704@item position.hh
8705@itemx location.hh
8706The definition of the classes @code{position} and @code{location},
8707used for location tracking. @xref{C++ Location Values}.
8708
8709@item stack.hh
8710An auxiliary class @code{stack} used by the parser.
8711
fa4d969f
PE
8712@item @var{file}.hh
8713@itemx @var{file}.cc
9913d6e4 8714(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
8715declaration and implementation of the C++ parser class. The basename
8716and extension of these two files follow the same rules as with regular C
8717parsers (@pxref{Invocation}).
12545799 8718
cd8b5791
AD
8719The header is @emph{mandatory}; you must either pass
8720@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8721@samp{%defines} directive.
8722@end table
8723
8724All these files are documented using Doxygen; run @command{doxygen}
8725for a complete and accurate documentation.
8726
8727@node C++ Semantic Values
8728@subsection C++ Semantic Values
8729@c - No objects in unions
178e123e 8730@c - YYSTYPE
12545799
AD
8731@c - Printer and destructor
8732
8733The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8734Collection of Value Types}. In particular it produces a genuine
8735@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8736within pseudo-unions (similar to Boost variants) might be implemented to
8737alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8738@itemize @minus
8739@item
fb9712a9
AD
8740The type @code{YYSTYPE} is defined but its use is discouraged: rather
8741you should refer to the parser's encapsulated type
8742@code{yy::parser::semantic_type}.
12545799
AD
8743@item
8744Non POD (Plain Old Data) types cannot be used. C++ forbids any
8745instance of classes with constructors in unions: only @emph{pointers}
8746to such objects are allowed.
8747@end itemize
8748
8749Because objects have to be stored via pointers, memory is not
8750reclaimed automatically: using the @code{%destructor} directive is the
8751only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8752Symbols}.
8753
8754
8755@node C++ Location Values
8756@subsection C++ Location Values
8757@c - %locations
8758@c - class Position
8759@c - class Location
16dc6a9e 8760@c - %define filename_type "const symbol::Symbol"
12545799
AD
8761
8762When the directive @code{%locations} is used, the C++ parser supports
7404cdf3
JD
8763location tracking, see @ref{Tracking Locations}. Two auxiliary classes
8764define a @code{position}, a single point in a file, and a @code{location}, a
8765range composed of a pair of @code{position}s (possibly spanning several
8766files).
12545799 8767
fa4d969f 8768@deftypemethod {position} {std::string*} file
12545799
AD
8769The name of the file. It will always be handled as a pointer, the
8770parser will never duplicate nor deallocate it. As an experimental
8771feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8772filename_type "@var{type}"}.
12545799
AD
8773@end deftypemethod
8774
8775@deftypemethod {position} {unsigned int} line
8776The line, starting at 1.
8777@end deftypemethod
8778
8779@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8780Advance by @var{height} lines, resetting the column number.
8781@end deftypemethod
8782
8783@deftypemethod {position} {unsigned int} column
8784The column, starting at 0.
8785@end deftypemethod
8786
8787@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8788Advance by @var{width} columns, without changing the line number.
8789@end deftypemethod
8790
8791@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8792@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8793@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8794@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8795Various forms of syntactic sugar for @code{columns}.
8796@end deftypemethod
8797
8798@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8799Report @var{p} on @var{o} like this:
fa4d969f
PE
8800@samp{@var{file}:@var{line}.@var{column}}, or
8801@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8802@end deftypemethod
8803
8804@deftypemethod {location} {position} begin
8805@deftypemethodx {location} {position} end
8806The first, inclusive, position of the range, and the first beyond.
8807@end deftypemethod
8808
8809@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8810@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8811Advance the @code{end} position.
8812@end deftypemethod
8813
8814@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8815@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8816@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8817Various forms of syntactic sugar.
8818@end deftypemethod
8819
8820@deftypemethod {location} {void} step ()
8821Move @code{begin} onto @code{end}.
8822@end deftypemethod
8823
8824
8825@node C++ Parser Interface
8826@subsection C++ Parser Interface
8827@c - define parser_class_name
8828@c - Ctor
8829@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8830@c debug_stream.
8831@c - Reporting errors
8832
8833The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8834declare and define the parser class in the namespace @code{yy}. The
8835class name defaults to @code{parser}, but may be changed using
16dc6a9e 8836@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8837this class is detailed below. It can be extended using the
12545799
AD
8838@code{%parse-param} feature: its semantics is slightly changed since
8839it describes an additional member of the parser class, and an
8840additional argument for its constructor.
8841
baacae49
AD
8842@defcv {Type} {parser} {semantic_type}
8843@defcvx {Type} {parser} {location_type}
12545799 8844The types for semantics value and locations.
8a0adb01 8845@end defcv
12545799 8846
baacae49
AD
8847@defcv {Type} {parser} {token}
8848A structure that contains (only) the definition of the tokens as the
8849@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8850scanner should use @code{yy::parser::token::FOO}. The scanner can use
8851@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8852(@pxref{Calc++ Scanner}).
8853@end defcv
8854
12545799
AD
8855@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8856Build a new parser object. There are no arguments by default, unless
8857@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8858@end deftypemethod
8859
8860@deftypemethod {parser} {int} parse ()
8861Run the syntactic analysis, and return 0 on success, 1 otherwise.
8862@end deftypemethod
8863
8864@deftypemethod {parser} {std::ostream&} debug_stream ()
8865@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8866Get or set the stream used for tracing the parsing. It defaults to
8867@code{std::cerr}.
8868@end deftypemethod
8869
8870@deftypemethod {parser} {debug_level_type} debug_level ()
8871@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8872Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8873or nonzero, full tracing.
12545799
AD
8874@end deftypemethod
8875
8876@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8877The definition for this member function must be supplied by the user:
8878the parser uses it to report a parser error occurring at @var{l},
8879described by @var{m}.
8880@end deftypemethod
8881
8882
8883@node C++ Scanner Interface
8884@subsection C++ Scanner Interface
8885@c - prefix for yylex.
8886@c - Pure interface to yylex
8887@c - %lex-param
8888
8889The parser invokes the scanner by calling @code{yylex}. Contrary to C
8890parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8891@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 8892
baacae49 8893@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
8894Return the next token. Its type is the return value, its semantic
8895value and location being @var{yylval} and @var{yylloc}. Invocations of
8896@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8897@end deftypemethod
8898
8899
8900@node A Complete C++ Example
8405b70c 8901@subsection A Complete C++ Example
12545799
AD
8902
8903This section demonstrates the use of a C++ parser with a simple but
8904complete example. This example should be available on your system,
8905ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8906focuses on the use of Bison, therefore the design of the various C++
8907classes is very naive: no accessors, no encapsulation of members etc.
8908We will use a Lex scanner, and more precisely, a Flex scanner, to
8909demonstrate the various interaction. A hand written scanner is
8910actually easier to interface with.
8911
8912@menu
8913* Calc++ --- C++ Calculator:: The specifications
8914* Calc++ Parsing Driver:: An active parsing context
8915* Calc++ Parser:: A parser class
8916* Calc++ Scanner:: A pure C++ Flex scanner
8917* Calc++ Top Level:: Conducting the band
8918@end menu
8919
8920@node Calc++ --- C++ Calculator
8405b70c 8921@subsubsection Calc++ --- C++ Calculator
12545799
AD
8922
8923Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8924expression, possibly preceded by variable assignments. An
12545799
AD
8925environment containing possibly predefined variables such as
8926@code{one} and @code{two}, is exchanged with the parser. An example
8927of valid input follows.
8928
8929@example
8930three := 3
8931seven := one + two * three
8932seven * seven
8933@end example
8934
8935@node Calc++ Parsing Driver
8405b70c 8936@subsubsection Calc++ Parsing Driver
12545799
AD
8937@c - An env
8938@c - A place to store error messages
8939@c - A place for the result
8940
8941To support a pure interface with the parser (and the scanner) the
8942technique of the ``parsing context'' is convenient: a structure
8943containing all the data to exchange. Since, in addition to simply
8944launch the parsing, there are several auxiliary tasks to execute (open
8945the file for parsing, instantiate the parser etc.), we recommend
8946transforming the simple parsing context structure into a fully blown
8947@dfn{parsing driver} class.
8948
8949The declaration of this driver class, @file{calc++-driver.hh}, is as
8950follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8951required standard library components, and the declaration of the parser
8952class.
12545799 8953
1c59e0a1 8954@comment file: calc++-driver.hh
12545799
AD
8955@example
8956#ifndef CALCXX_DRIVER_HH
8957# define CALCXX_DRIVER_HH
8958# include <string>
8959# include <map>
fb9712a9 8960# include "calc++-parser.hh"
12545799
AD
8961@end example
8962
12545799
AD
8963
8964@noindent
8965Then comes the declaration of the scanning function. Flex expects
8966the signature of @code{yylex} to be defined in the macro
8967@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8968factor both as follows.
1c59e0a1
AD
8969
8970@comment file: calc++-driver.hh
12545799 8971@example
3dc5e96b
PE
8972// Tell Flex the lexer's prototype ...
8973# define YY_DECL \
c095d689
AD
8974 yy::calcxx_parser::token_type \
8975 yylex (yy::calcxx_parser::semantic_type* yylval, \
8976 yy::calcxx_parser::location_type* yylloc, \
8977 calcxx_driver& driver)
12545799
AD
8978// ... and declare it for the parser's sake.
8979YY_DECL;
8980@end example
8981
8982@noindent
8983The @code{calcxx_driver} class is then declared with its most obvious
8984members.
8985
1c59e0a1 8986@comment file: calc++-driver.hh
12545799
AD
8987@example
8988// Conducting the whole scanning and parsing of Calc++.
8989class calcxx_driver
8990@{
8991public:
8992 calcxx_driver ();
8993 virtual ~calcxx_driver ();
8994
8995 std::map<std::string, int> variables;
8996
8997 int result;
8998@end example
8999
9000@noindent
9001To encapsulate the coordination with the Flex scanner, it is useful to
9002have two members function to open and close the scanning phase.
12545799 9003
1c59e0a1 9004@comment file: calc++-driver.hh
12545799
AD
9005@example
9006 // Handling the scanner.
9007 void scan_begin ();
9008 void scan_end ();
9009 bool trace_scanning;
9010@end example
9011
9012@noindent
9013Similarly for the parser itself.
9014
1c59e0a1 9015@comment file: calc++-driver.hh
12545799 9016@example
bb32f4f2
AD
9017 // Run the parser. Return 0 on success.
9018 int parse (const std::string& f);
12545799
AD
9019 std::string file;
9020 bool trace_parsing;
9021@end example
9022
9023@noindent
9024To demonstrate pure handling of parse errors, instead of simply
9025dumping them on the standard error output, we will pass them to the
9026compiler driver using the following two member functions. Finally, we
9027close the class declaration and CPP guard.
9028
1c59e0a1 9029@comment file: calc++-driver.hh
12545799
AD
9030@example
9031 // Error handling.
9032 void error (const yy::location& l, const std::string& m);
9033 void error (const std::string& m);
9034@};
9035#endif // ! CALCXX_DRIVER_HH
9036@end example
9037
9038The implementation of the driver is straightforward. The @code{parse}
9039member function deserves some attention. The @code{error} functions
9040are simple stubs, they should actually register the located error
9041messages and set error state.
9042
1c59e0a1 9043@comment file: calc++-driver.cc
12545799
AD
9044@example
9045#include "calc++-driver.hh"
9046#include "calc++-parser.hh"
9047
9048calcxx_driver::calcxx_driver ()
9049 : trace_scanning (false), trace_parsing (false)
9050@{
9051 variables["one"] = 1;
9052 variables["two"] = 2;
9053@}
9054
9055calcxx_driver::~calcxx_driver ()
9056@{
9057@}
9058
bb32f4f2 9059int
12545799
AD
9060calcxx_driver::parse (const std::string &f)
9061@{
9062 file = f;
9063 scan_begin ();
9064 yy::calcxx_parser parser (*this);
9065 parser.set_debug_level (trace_parsing);
bb32f4f2 9066 int res = parser.parse ();
12545799 9067 scan_end ();
bb32f4f2 9068 return res;
12545799
AD
9069@}
9070
9071void
9072calcxx_driver::error (const yy::location& l, const std::string& m)
9073@{
9074 std::cerr << l << ": " << m << std::endl;
9075@}
9076
9077void
9078calcxx_driver::error (const std::string& m)
9079@{
9080 std::cerr << m << std::endl;
9081@}
9082@end example
9083
9084@node Calc++ Parser
8405b70c 9085@subsubsection Calc++ Parser
12545799 9086
9913d6e4
JD
9087The grammar file @file{calc++-parser.yy} starts by asking for the C++
9088deterministic parser skeleton, the creation of the parser header file,
9089and specifies the name of the parser class. Because the C++ skeleton
9090changed several times, it is safer to require the version you designed
9091the grammar for.
1c59e0a1
AD
9092
9093@comment file: calc++-parser.yy
12545799 9094@example
ed4d67dc 9095%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9096%require "@value{VERSION}"
12545799 9097%defines
16dc6a9e 9098%define parser_class_name "calcxx_parser"
fb9712a9
AD
9099@end example
9100
9101@noindent
16dc6a9e 9102@findex %code requires
fb9712a9
AD
9103Then come the declarations/inclusions needed to define the
9104@code{%union}. Because the parser uses the parsing driver and
9105reciprocally, both cannot include the header of the other. Because the
9106driver's header needs detailed knowledge about the parser class (in
9107particular its inner types), it is the parser's header which will simply
9108use a forward declaration of the driver.
8e6f2266 9109@xref{%code Summary}.
fb9712a9
AD
9110
9111@comment file: calc++-parser.yy
9112@example
16dc6a9e 9113%code requires @{
12545799 9114# include <string>
fb9712a9 9115class calcxx_driver;
9bc0dd67 9116@}
12545799
AD
9117@end example
9118
9119@noindent
9120The driver is passed by reference to the parser and to the scanner.
9121This provides a simple but effective pure interface, not relying on
9122global variables.
9123
1c59e0a1 9124@comment file: calc++-parser.yy
12545799
AD
9125@example
9126// The parsing context.
9127%parse-param @{ calcxx_driver& driver @}
9128%lex-param @{ calcxx_driver& driver @}
9129@end example
9130
9131@noindent
9132Then we request the location tracking feature, and initialize the
c781580d 9133first location's file name. Afterward new locations are computed
12545799
AD
9134relatively to the previous locations: the file name will be
9135automatically propagated.
9136
1c59e0a1 9137@comment file: calc++-parser.yy
12545799
AD
9138@example
9139%locations
9140%initial-action
9141@{
9142 // Initialize the initial location.
b47dbebe 9143 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9144@};
9145@end example
9146
9147@noindent
6f04ee6c
JD
9148Use the two following directives to enable parser tracing and verbose error
9149messages. However, verbose error messages can contain incorrect information
9150(@pxref{LAC}).
12545799 9151
1c59e0a1 9152@comment file: calc++-parser.yy
12545799
AD
9153@example
9154%debug
9155%error-verbose
9156@end example
9157
9158@noindent
9159Semantic values cannot use ``real'' objects, but only pointers to
9160them.
9161
1c59e0a1 9162@comment file: calc++-parser.yy
12545799
AD
9163@example
9164// Symbols.
9165%union
9166@{
9167 int ival;
9168 std::string *sval;
9169@};
9170@end example
9171
fb9712a9 9172@noindent
136a0f76
PB
9173@findex %code
9174The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9175@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9176
9177@comment file: calc++-parser.yy
9178@example
136a0f76 9179%code @{
fb9712a9 9180# include "calc++-driver.hh"
34f98f46 9181@}
fb9712a9
AD
9182@end example
9183
9184
12545799
AD
9185@noindent
9186The token numbered as 0 corresponds to end of file; the following line
9187allows for nicer error messages referring to ``end of file'' instead
9188of ``$end''. Similarly user friendly named are provided for each
9189symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
9190avoid name clashes.
9191
1c59e0a1 9192@comment file: calc++-parser.yy
12545799 9193@example
fb9712a9
AD
9194%token END 0 "end of file"
9195%token ASSIGN ":="
9196%token <sval> IDENTIFIER "identifier"
9197%token <ival> NUMBER "number"
a8c2e813 9198%type <ival> exp
12545799
AD
9199@end example
9200
9201@noindent
9202To enable memory deallocation during error recovery, use
9203@code{%destructor}.
9204
287c78f6 9205@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 9206@comment file: calc++-parser.yy
12545799
AD
9207@example
9208%printer @{ debug_stream () << *$$; @} "identifier"
9209%destructor @{ delete $$; @} "identifier"
9210
a8c2e813 9211%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
9212@end example
9213
9214@noindent
9215The grammar itself is straightforward.
9216
1c59e0a1 9217@comment file: calc++-parser.yy
12545799
AD
9218@example
9219%%
9220%start unit;
9221unit: assignments exp @{ driver.result = $2; @};
9222
9223assignments: assignments assignment @{@}
9d9b8b70 9224 | /* Nothing. */ @{@};
12545799 9225
3dc5e96b
PE
9226assignment:
9227 "identifier" ":=" exp
9228 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
9229
9230%left '+' '-';
9231%left '*' '/';
9232exp: exp '+' exp @{ $$ = $1 + $3; @}
9233 | exp '-' exp @{ $$ = $1 - $3; @}
9234 | exp '*' exp @{ $$ = $1 * $3; @}
9235 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 9236 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 9237 | "number" @{ $$ = $1; @};
12545799
AD
9238%%
9239@end example
9240
9241@noindent
9242Finally the @code{error} member function registers the errors to the
9243driver.
9244
1c59e0a1 9245@comment file: calc++-parser.yy
12545799
AD
9246@example
9247void
1c59e0a1
AD
9248yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
9249 const std::string& m)
12545799
AD
9250@{
9251 driver.error (l, m);
9252@}
9253@end example
9254
9255@node Calc++ Scanner
8405b70c 9256@subsubsection Calc++ Scanner
12545799
AD
9257
9258The Flex scanner first includes the driver declaration, then the
9259parser's to get the set of defined tokens.
9260
1c59e0a1 9261@comment file: calc++-scanner.ll
12545799
AD
9262@example
9263%@{ /* -*- C++ -*- */
04098407 9264# include <cstdlib>
b10dd689
AD
9265# include <cerrno>
9266# include <climits>
12545799
AD
9267# include <string>
9268# include "calc++-driver.hh"
9269# include "calc++-parser.hh"
eaea13f5
PE
9270
9271/* Work around an incompatibility in flex (at least versions
9272 2.5.31 through 2.5.33): it generates code that does
9273 not conform to C89. See Debian bug 333231
9274 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9275# undef yywrap
9276# define yywrap() 1
eaea13f5 9277
c095d689
AD
9278/* By default yylex returns int, we use token_type.
9279 Unfortunately yyterminate by default returns 0, which is
9280 not of token_type. */
8c5b881d 9281#define yyterminate() return token::END
12545799
AD
9282%@}
9283@end example
9284
9285@noindent
9286Because there is no @code{#include}-like feature we don't need
9287@code{yywrap}, we don't need @code{unput} either, and we parse an
9288actual file, this is not an interactive session with the user.
9289Finally we enable the scanner tracing features.
9290
1c59e0a1 9291@comment file: calc++-scanner.ll
12545799
AD
9292@example
9293%option noyywrap nounput batch debug
9294@end example
9295
9296@noindent
9297Abbreviations allow for more readable rules.
9298
1c59e0a1 9299@comment file: calc++-scanner.ll
12545799
AD
9300@example
9301id [a-zA-Z][a-zA-Z_0-9]*
9302int [0-9]+
9303blank [ \t]
9304@end example
9305
9306@noindent
9d9b8b70 9307The following paragraph suffices to track locations accurately. Each
12545799
AD
9308time @code{yylex} is invoked, the begin position is moved onto the end
9309position. Then when a pattern is matched, the end position is
9310advanced of its width. In case it matched ends of lines, the end
9311cursor is adjusted, and each time blanks are matched, the begin cursor
9312is moved onto the end cursor to effectively ignore the blanks
9313preceding tokens. Comments would be treated equally.
9314
1c59e0a1 9315@comment file: calc++-scanner.ll
12545799 9316@example
828c373b
AD
9317%@{
9318# define YY_USER_ACTION yylloc->columns (yyleng);
9319%@}
12545799
AD
9320%%
9321%@{
9322 yylloc->step ();
12545799
AD
9323%@}
9324@{blank@}+ yylloc->step ();
9325[\n]+ yylloc->lines (yyleng); yylloc->step ();
9326@end example
9327
9328@noindent
fb9712a9
AD
9329The rules are simple, just note the use of the driver to report errors.
9330It is convenient to use a typedef to shorten
9331@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9332@code{token::identifier} for instance.
12545799 9333
1c59e0a1 9334@comment file: calc++-scanner.ll
12545799 9335@example
fb9712a9
AD
9336%@{
9337 typedef yy::calcxx_parser::token token;
9338%@}
8c5b881d 9339 /* Convert ints to the actual type of tokens. */
c095d689 9340[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9341":=" return token::ASSIGN;
04098407
PE
9342@{int@} @{
9343 errno = 0;
9344 long n = strtol (yytext, NULL, 10);
9345 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9346 driver.error (*yylloc, "integer is out of range");
9347 yylval->ival = n;
fb9712a9 9348 return token::NUMBER;
04098407 9349@}
fb9712a9 9350@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9351. driver.error (*yylloc, "invalid character");
9352%%
9353@end example
9354
9355@noindent
9356Finally, because the scanner related driver's member function depend
9357on the scanner's data, it is simpler to implement them in this file.
9358
1c59e0a1 9359@comment file: calc++-scanner.ll
12545799
AD
9360@example
9361void
9362calcxx_driver::scan_begin ()
9363@{
9364 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9365 if (file == "-")
9366 yyin = stdin;
9367 else if (!(yyin = fopen (file.c_str (), "r")))
9368 @{
9369 error (std::string ("cannot open ") + file);
9370 exit (1);
9371 @}
12545799
AD
9372@}
9373
9374void
9375calcxx_driver::scan_end ()
9376@{
9377 fclose (yyin);
9378@}
9379@end example
9380
9381@node Calc++ Top Level
8405b70c 9382@subsubsection Calc++ Top Level
12545799
AD
9383
9384The top level file, @file{calc++.cc}, poses no problem.
9385
1c59e0a1 9386@comment file: calc++.cc
12545799
AD
9387@example
9388#include <iostream>
9389#include "calc++-driver.hh"
9390
9391int
fa4d969f 9392main (int argc, char *argv[])
12545799
AD
9393@{
9394 calcxx_driver driver;
9395 for (++argv; argv[0]; ++argv)
9396 if (*argv == std::string ("-p"))
9397 driver.trace_parsing = true;
9398 else if (*argv == std::string ("-s"))
9399 driver.trace_scanning = true;
bb32f4f2
AD
9400 else if (!driver.parse (*argv))
9401 std::cout << driver.result << std::endl;
12545799
AD
9402@}
9403@end example
9404
8405b70c
PB
9405@node Java Parsers
9406@section Java Parsers
9407
9408@menu
f56274a8
DJ
9409* Java Bison Interface:: Asking for Java parser generation
9410* Java Semantic Values:: %type and %token vs. Java
9411* Java Location Values:: The position and location classes
9412* Java Parser Interface:: Instantiating and running the parser
9413* Java Scanner Interface:: Specifying the scanner for the parser
9414* Java Action Features:: Special features for use in actions
9415* Java Differences:: Differences between C/C++ and Java Grammars
9416* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9417@end menu
9418
9419@node Java Bison Interface
9420@subsection Java Bison Interface
9421@c - %language "Java"
8405b70c 9422
59da312b
JD
9423(The current Java interface is experimental and may evolve.
9424More user feedback will help to stabilize it.)
9425
e254a580
DJ
9426The Java parser skeletons are selected using the @code{%language "Java"}
9427directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9428
e254a580 9429@c FIXME: Documented bug.
9913d6e4
JD
9430When generating a Java parser, @code{bison @var{basename}.y} will
9431create a single Java source file named @file{@var{basename}.java}
9432containing the parser implementation. Using a grammar file without a
9433@file{.y} suffix is currently broken. The basename of the parser
9434implementation file can be changed by the @code{%file-prefix}
9435directive or the @option{-p}/@option{--name-prefix} option. The
9436entire parser implementation file name can be changed by the
9437@code{%output} directive or the @option{-o}/@option{--output} option.
9438The parser implementation file contains a single class for the parser.
8405b70c 9439
e254a580 9440You can create documentation for generated parsers using Javadoc.
8405b70c 9441
e254a580
DJ
9442Contrary to C parsers, Java parsers do not use global variables; the
9443state of the parser is always local to an instance of the parser class.
9444Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9445and @code{%define api.pure} directives does not do anything when used in
9446Java.
8405b70c 9447
e254a580 9448Push parsers are currently unsupported in Java and @code{%define
812775a0 9449api.push-pull} have no effect.
01b477c6 9450
35430378 9451GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9452@code{glr-parser} directive.
9453
9454No header file can be generated for Java parsers. Do not use the
9455@code{%defines} directive or the @option{-d}/@option{--defines} options.
9456
9457@c FIXME: Possible code change.
9458Currently, support for debugging and verbose errors are always compiled
9459in. Thus the @code{%debug} and @code{%token-table} directives and the
9460@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9461options have no effect. This may change in the future to eliminate
9462unused code in the generated parser, so use @code{%debug} and
9463@code{%verbose-error} explicitly if needed. Also, in the future the
9464@code{%token-table} directive might enable a public interface to
9465access the token names and codes.
8405b70c
PB
9466
9467@node Java Semantic Values
9468@subsection Java Semantic Values
9469@c - No %union, specify type in %type/%token.
9470@c - YYSTYPE
9471@c - Printer and destructor
9472
9473There is no @code{%union} directive in Java parsers. Instead, the
9474semantic values' types (class names) should be specified in the
9475@code{%type} or @code{%token} directive:
9476
9477@example
9478%type <Expression> expr assignment_expr term factor
9479%type <Integer> number
9480@end example
9481
9482By default, the semantic stack is declared to have @code{Object} members,
9483which means that the class types you specify can be of any class.
9484To improve the type safety of the parser, you can declare the common
e254a580
DJ
9485superclass of all the semantic values using the @code{%define stype}
9486directive. For example, after the following declaration:
8405b70c
PB
9487
9488@example
e254a580 9489%define stype "ASTNode"
8405b70c
PB
9490@end example
9491
9492@noindent
9493any @code{%type} or @code{%token} specifying a semantic type which
9494is not a subclass of ASTNode, will cause a compile-time error.
9495
e254a580 9496@c FIXME: Documented bug.
8405b70c
PB
9497Types used in the directives may be qualified with a package name.
9498Primitive data types are accepted for Java version 1.5 or later. Note
9499that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9500Generic types may not be used; this is due to a limitation in the
9501implementation of Bison, and may change in future releases.
8405b70c
PB
9502
9503Java parsers do not support @code{%destructor}, since the language
9504adopts garbage collection. The parser will try to hold references
9505to semantic values for as little time as needed.
9506
9507Java parsers do not support @code{%printer}, as @code{toString()}
9508can be used to print the semantic values. This however may change
9509(in a backwards-compatible way) in future versions of Bison.
9510
9511
9512@node Java Location Values
9513@subsection Java Location Values
9514@c - %locations
9515@c - class Position
9516@c - class Location
9517
7404cdf3
JD
9518When the directive @code{%locations} is used, the Java parser supports
9519location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
9520class defines a @dfn{position}, a single point in a file; Bison itself
9521defines a class representing a @dfn{location}, a range composed of a pair of
9522positions (possibly spanning several files). The location class is an inner
9523class of the parser; the name is @code{Location} by default, and may also be
9524renamed using @code{%define location_type "@var{class-name}"}.
8405b70c
PB
9525
9526The location class treats the position as a completely opaque value.
9527By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9528with @code{%define position_type "@var{class-name}"}. This class must
9529be supplied by the user.
8405b70c
PB
9530
9531
e254a580
DJ
9532@deftypeivar {Location} {Position} begin
9533@deftypeivarx {Location} {Position} end
8405b70c 9534The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9535@end deftypeivar
9536
9537@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9538Create a @code{Location} denoting an empty range located at a given point.
e254a580 9539@end deftypeop
8405b70c 9540
e254a580
DJ
9541@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9542Create a @code{Location} from the endpoints of the range.
9543@end deftypeop
9544
9545@deftypemethod {Location} {String} toString ()
8405b70c
PB
9546Prints the range represented by the location. For this to work
9547properly, the position class should override the @code{equals} and
9548@code{toString} methods appropriately.
9549@end deftypemethod
9550
9551
9552@node Java Parser Interface
9553@subsection Java Parser Interface
9554@c - define parser_class_name
9555@c - Ctor
9556@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9557@c debug_stream.
9558@c - Reporting errors
9559
e254a580
DJ
9560The name of the generated parser class defaults to @code{YYParser}. The
9561@code{YY} prefix may be changed using the @code{%name-prefix} directive
9562or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9563@code{%define parser_class_name "@var{name}"} to give a custom name to
9564the class. The interface of this class is detailed below.
8405b70c 9565
e254a580
DJ
9566By default, the parser class has package visibility. A declaration
9567@code{%define public} will change to public visibility. Remember that,
9568according to the Java language specification, the name of the @file{.java}
9569file should match the name of the class in this case. Similarly, you can
9570use @code{abstract}, @code{final} and @code{strictfp} with the
9571@code{%define} declaration to add other modifiers to the parser class.
9572
9573The Java package name of the parser class can be specified using the
9574@code{%define package} directive. The superclass and the implemented
9575interfaces of the parser class can be specified with the @code{%define
9576extends} and @code{%define implements} directives.
9577
9578The parser class defines an inner class, @code{Location}, that is used
9579for location tracking (see @ref{Java Location Values}), and a inner
9580interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9581these inner class/interface, and the members described in the interface
9582below, all the other members and fields are preceded with a @code{yy} or
9583@code{YY} prefix to avoid clashes with user code.
9584
9585@c FIXME: The following constants and variables are still undocumented:
9586@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9587
9588The parser class can be extended using the @code{%parse-param}
9589directive. Each occurrence of the directive will add a @code{protected
9590final} field to the parser class, and an argument to its constructor,
9591which initialize them automatically.
9592
9593Token names defined by @code{%token} and the predefined @code{EOF} token
9594name are added as constant fields to the parser class.
9595
9596@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9597Build a new parser object with embedded @code{%code lexer}. There are
9598no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9599used.
9600@end deftypeop
9601
9602@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9603Build a new parser object using the specified scanner. There are no
9604additional parameters unless @code{%parse-param}s are used.
9605
9606If the scanner is defined by @code{%code lexer}, this constructor is
9607declared @code{protected} and is called automatically with a scanner
9608created with the correct @code{%lex-param}s.
9609@end deftypeop
8405b70c
PB
9610
9611@deftypemethod {YYParser} {boolean} parse ()
9612Run the syntactic analysis, and return @code{true} on success,
9613@code{false} otherwise.
9614@end deftypemethod
9615
01b477c6 9616@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9617During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9618from a syntax error.
9619@xref{Error Recovery}.
8405b70c
PB
9620@end deftypemethod
9621
9622@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9623@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9624Get or set the stream used for tracing the parsing. It defaults to
9625@code{System.err}.
9626@end deftypemethod
9627
9628@deftypemethod {YYParser} {int} getDebugLevel ()
9629@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9630Get or set the tracing level. Currently its value is either 0, no trace,
9631or nonzero, full tracing.
9632@end deftypemethod
9633
8405b70c
PB
9634
9635@node Java Scanner Interface
9636@subsection Java Scanner Interface
01b477c6 9637@c - %code lexer
8405b70c 9638@c - %lex-param
01b477c6 9639@c - Lexer interface
8405b70c 9640
e254a580
DJ
9641There are two possible ways to interface a Bison-generated Java parser
9642with a scanner: the scanner may be defined by @code{%code lexer}, or
9643defined elsewhere. In either case, the scanner has to implement the
9644@code{Lexer} inner interface of the parser class.
9645
9646In the first case, the body of the scanner class is placed in
9647@code{%code lexer} blocks. If you want to pass parameters from the
9648parser constructor to the scanner constructor, specify them with
9649@code{%lex-param}; they are passed before @code{%parse-param}s to the
9650constructor.
01b477c6 9651
59c5ac72 9652In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9653which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9654The constructor of the parser object will then accept an object
9655implementing the interface; @code{%lex-param} is not used in this
9656case.
9657
9658In both cases, the scanner has to implement the following methods.
9659
e254a580
DJ
9660@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9661This method is defined by the user to emit an error message. The first
9662parameter is omitted if location tracking is not active. Its type can be
9663changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9664@end deftypemethod
9665
e254a580 9666@deftypemethod {Lexer} {int} yylex ()
8405b70c 9667Return the next token. Its type is the return value, its semantic
c781580d 9668value and location are saved and returned by the their methods in the
e254a580
DJ
9669interface.
9670
9671Use @code{%define lex_throws} to specify any uncaught exceptions.
9672Default is @code{java.io.IOException}.
8405b70c
PB
9673@end deftypemethod
9674
9675@deftypemethod {Lexer} {Position} getStartPos ()
9676@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9677Return respectively the first position of the last token that
9678@code{yylex} returned, and the first position beyond it. These
9679methods are not needed unless location tracking is active.
8405b70c 9680
e254a580 9681The return type can be changed using @code{%define position_type
8405b70c
PB
9682"@var{class-name}".}
9683@end deftypemethod
9684
9685@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9686Return the semantic value of the last token that yylex returned.
8405b70c 9687
e254a580 9688The return type can be changed using @code{%define stype
8405b70c
PB
9689"@var{class-name}".}
9690@end deftypemethod
9691
9692
e254a580
DJ
9693@node Java Action Features
9694@subsection Special Features for Use in Java Actions
9695
9696The following special constructs can be uses in Java actions.
9697Other analogous C action features are currently unavailable for Java.
9698
9699Use @code{%define throws} to specify any uncaught exceptions from parser
9700actions, and initial actions specified by @code{%initial-action}.
9701
9702@defvar $@var{n}
9703The semantic value for the @var{n}th component of the current rule.
9704This may not be assigned to.
9705@xref{Java Semantic Values}.
9706@end defvar
9707
9708@defvar $<@var{typealt}>@var{n}
9709Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9710@xref{Java Semantic Values}.
9711@end defvar
9712
9713@defvar $$
9714The semantic value for the grouping made by the current rule. As a
9715value, this is in the base type (@code{Object} or as specified by
9716@code{%define stype}) as in not cast to the declared subtype because
9717casts are not allowed on the left-hand side of Java assignments.
9718Use an explicit Java cast if the correct subtype is needed.
9719@xref{Java Semantic Values}.
9720@end defvar
9721
9722@defvar $<@var{typealt}>$
9723Same as @code{$$} since Java always allow assigning to the base type.
9724Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9725for setting the value but there is currently no easy way to distinguish
9726these constructs.
9727@xref{Java Semantic Values}.
9728@end defvar
9729
9730@defvar @@@var{n}
9731The location information of the @var{n}th component of the current rule.
9732This may not be assigned to.
9733@xref{Java Location Values}.
9734@end defvar
9735
9736@defvar @@$
9737The location information of the grouping made by the current rule.
9738@xref{Java Location Values}.
9739@end defvar
9740
9741@deffn {Statement} {return YYABORT;}
9742Return immediately from the parser, indicating failure.
9743@xref{Java Parser Interface}.
9744@end deffn
8405b70c 9745
e254a580
DJ
9746@deffn {Statement} {return YYACCEPT;}
9747Return immediately from the parser, indicating success.
9748@xref{Java Parser Interface}.
9749@end deffn
8405b70c 9750
e254a580 9751@deffn {Statement} {return YYERROR;}
c046698e 9752Start error recovery without printing an error message.
e254a580
DJ
9753@xref{Error Recovery}.
9754@end deffn
8405b70c 9755
e254a580
DJ
9756@deftypefn {Function} {boolean} recovering ()
9757Return whether error recovery is being done. In this state, the parser
9758reads token until it reaches a known state, and then restarts normal
9759operation.
9760@xref{Error Recovery}.
9761@end deftypefn
8405b70c 9762
e254a580
DJ
9763@deftypefn {Function} {protected void} yyerror (String msg)
9764@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9765@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9766Print an error message using the @code{yyerror} method of the scanner
9767instance in use.
9768@end deftypefn
8405b70c 9769
8405b70c 9770
8405b70c
PB
9771@node Java Differences
9772@subsection Differences between C/C++ and Java Grammars
9773
9774The different structure of the Java language forces several differences
9775between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9776section summarizes these differences.
8405b70c
PB
9777
9778@itemize
9779@item
01b477c6 9780Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9781@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9782macros. Instead, they should be preceded by @code{return} when they
9783appear in an action. The actual definition of these symbols is
8405b70c
PB
9784opaque to the Bison grammar, and it might change in the future. The
9785only meaningful operation that you can do, is to return them.
e254a580 9786See @pxref{Java Action Features}.
8405b70c
PB
9787
9788Note that of these three symbols, only @code{YYACCEPT} and
9789@code{YYABORT} will cause a return from the @code{yyparse}
9790method@footnote{Java parsers include the actions in a separate
9791method than @code{yyparse} in order to have an intuitive syntax that
9792corresponds to these C macros.}.
9793
e254a580
DJ
9794@item
9795Java lacks unions, so @code{%union} has no effect. Instead, semantic
9796values have a common base type: @code{Object} or as specified by
c781580d 9797@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9798@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9799an union. The type of @code{$$}, even with angle brackets, is the base
9800type since Java casts are not allow on the left-hand side of assignments.
9801Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9802left-hand side of assignments. See @pxref{Java Semantic Values} and
9803@pxref{Java Action Features}.
9804
8405b70c 9805@item
c781580d 9806The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9807@table @asis
9808@item @code{%code imports}
9809blocks are placed at the beginning of the Java source code. They may
9810include copyright notices. For a @code{package} declarations, it is
9811suggested to use @code{%define package} instead.
8405b70c 9812
01b477c6
PB
9813@item unqualified @code{%code}
9814blocks are placed inside the parser class.
9815
9816@item @code{%code lexer}
9817blocks, if specified, should include the implementation of the
9818scanner. If there is no such block, the scanner can be any class
9819that implements the appropriate interface (see @pxref{Java Scanner
9820Interface}).
29553547 9821@end table
8405b70c
PB
9822
9823Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9824In particular, @code{%@{ @dots{} %@}} blocks should not be used
9825and may give an error in future versions of Bison.
9826
01b477c6 9827The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9828be used to define other classes used by the parser @emph{outside}
9829the parser class.
8405b70c
PB
9830@end itemize
9831
e254a580
DJ
9832
9833@node Java Declarations Summary
9834@subsection Java Declarations Summary
9835
9836This summary only include declarations specific to Java or have special
9837meaning when used in a Java parser.
9838
9839@deffn {Directive} {%language "Java"}
9840Generate a Java class for the parser.
9841@end deffn
9842
9843@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9844A parameter for the lexer class defined by @code{%code lexer}
9845@emph{only}, added as parameters to the lexer constructor and the parser
9846constructor that @emph{creates} a lexer. Default is none.
9847@xref{Java Scanner Interface}.
9848@end deffn
9849
9850@deffn {Directive} %name-prefix "@var{prefix}"
9851The prefix of the parser class name @code{@var{prefix}Parser} if
9852@code{%define parser_class_name} is not used. Default is @code{YY}.
9853@xref{Java Bison Interface}.
9854@end deffn
9855
9856@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9857A parameter for the parser class added as parameters to constructor(s)
9858and as fields initialized by the constructor(s). Default is none.
9859@xref{Java Parser Interface}.
9860@end deffn
9861
9862@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9863Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9864@xref{Java Semantic Values}.
9865@end deffn
9866
9867@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9868Declare the type of nonterminals. Note that the angle brackets enclose
9869a Java @emph{type}.
9870@xref{Java Semantic Values}.
9871@end deffn
9872
9873@deffn {Directive} %code @{ @var{code} @dots{} @}
9874Code appended to the inside of the parser class.
9875@xref{Java Differences}.
9876@end deffn
9877
9878@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9879Code inserted just after the @code{package} declaration.
9880@xref{Java Differences}.
9881@end deffn
9882
9883@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9884Code added to the body of a inner lexer class within the parser class.
9885@xref{Java Scanner Interface}.
9886@end deffn
9887
9888@deffn {Directive} %% @var{code} @dots{}
9889Code (after the second @code{%%}) appended to the end of the file,
9890@emph{outside} the parser class.
9891@xref{Java Differences}.
9892@end deffn
9893
9894@deffn {Directive} %@{ @var{code} @dots{} %@}
9895Not supported. Use @code{%code import} instead.
9896@xref{Java Differences}.
9897@end deffn
9898
9899@deffn {Directive} {%define abstract}
9900Whether the parser class is declared @code{abstract}. Default is false.
9901@xref{Java Bison Interface}.
9902@end deffn
9903
9904@deffn {Directive} {%define extends} "@var{superclass}"
9905The superclass of the parser class. Default is none.
9906@xref{Java Bison Interface}.
9907@end deffn
9908
9909@deffn {Directive} {%define final}
9910Whether the parser class is declared @code{final}. Default is false.
9911@xref{Java Bison Interface}.
9912@end deffn
9913
9914@deffn {Directive} {%define implements} "@var{interfaces}"
9915The implemented interfaces of the parser class, a comma-separated list.
9916Default is none.
9917@xref{Java Bison Interface}.
9918@end deffn
9919
9920@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9921The exceptions thrown by the @code{yylex} method of the lexer, a
9922comma-separated list. Default is @code{java.io.IOException}.
9923@xref{Java Scanner Interface}.
9924@end deffn
9925
9926@deffn {Directive} {%define location_type} "@var{class}"
9927The name of the class used for locations (a range between two
9928positions). This class is generated as an inner class of the parser
9929class by @command{bison}. Default is @code{Location}.
9930@xref{Java Location Values}.
9931@end deffn
9932
9933@deffn {Directive} {%define package} "@var{package}"
9934The package to put the parser class in. Default is none.
9935@xref{Java Bison Interface}.
9936@end deffn
9937
9938@deffn {Directive} {%define parser_class_name} "@var{name}"
9939The name of the parser class. Default is @code{YYParser} or
9940@code{@var{name-prefix}Parser}.
9941@xref{Java Bison Interface}.
9942@end deffn
9943
9944@deffn {Directive} {%define position_type} "@var{class}"
9945The name of the class used for positions. This class must be supplied by
9946the user. Default is @code{Position}.
9947@xref{Java Location Values}.
9948@end deffn
9949
9950@deffn {Directive} {%define public}
9951Whether the parser class is declared @code{public}. Default is false.
9952@xref{Java Bison Interface}.
9953@end deffn
9954
9955@deffn {Directive} {%define stype} "@var{class}"
9956The base type of semantic values. Default is @code{Object}.
9957@xref{Java Semantic Values}.
9958@end deffn
9959
9960@deffn {Directive} {%define strictfp}
9961Whether the parser class is declared @code{strictfp}. Default is false.
9962@xref{Java Bison Interface}.
9963@end deffn
9964
9965@deffn {Directive} {%define throws} "@var{exceptions}"
9966The exceptions thrown by user-supplied parser actions and
9967@code{%initial-action}, a comma-separated list. Default is none.
9968@xref{Java Parser Interface}.
9969@end deffn
9970
9971
12545799 9972@c ================================================= FAQ
d1a1114f
AD
9973
9974@node FAQ
9975@chapter Frequently Asked Questions
9976@cindex frequently asked questions
9977@cindex questions
9978
9979Several questions about Bison come up occasionally. Here some of them
9980are addressed.
9981
9982@menu
55ba27be
AD
9983* Memory Exhausted:: Breaking the Stack Limits
9984* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9985* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9986* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9987* Multiple start-symbols:: Factoring closely related grammars
35430378 9988* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
9989* I can't build Bison:: Troubleshooting
9990* Where can I find help?:: Troubleshouting
9991* Bug Reports:: Troublereporting
8405b70c 9992* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9993* Beta Testing:: Experimenting development versions
9994* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9995@end menu
9996
1a059451
PE
9997@node Memory Exhausted
9998@section Memory Exhausted
d1a1114f
AD
9999
10000@display
1a059451 10001My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10002message. What can I do?
10003@end display
10004
10005This question is already addressed elsewhere, @xref{Recursion,
10006,Recursive Rules}.
10007
e64fec0a
PE
10008@node How Can I Reset the Parser
10009@section How Can I Reset the Parser
5b066063 10010
0e14ad77
PE
10011The following phenomenon has several symptoms, resulting in the
10012following typical questions:
5b066063
AD
10013
10014@display
10015I invoke @code{yyparse} several times, and on correct input it works
10016properly; but when a parse error is found, all the other calls fail
0e14ad77 10017too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10018@end display
10019
10020@noindent
10021or
10022
10023@display
0e14ad77 10024My parser includes support for an @samp{#include}-like feature, in
5b066063 10025which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 10026although I did specify @code{%define api.pure}.
5b066063
AD
10027@end display
10028
0e14ad77
PE
10029These problems typically come not from Bison itself, but from
10030Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10031speed, they might not notice a change of input file. As a
10032demonstration, consider the following source file,
10033@file{first-line.l}:
10034
10035@verbatim
10036%{
10037#include <stdio.h>
10038#include <stdlib.h>
10039%}
10040%%
10041.*\n ECHO; return 1;
10042%%
10043int
0e14ad77 10044yyparse (char const *file)
5b066063
AD
10045{
10046 yyin = fopen (file, "r");
10047 if (!yyin)
10048 exit (2);
fa7e68c3 10049 /* One token only. */
5b066063 10050 yylex ();
0e14ad77 10051 if (fclose (yyin) != 0)
5b066063
AD
10052 exit (3);
10053 return 0;
10054}
10055
10056int
0e14ad77 10057main (void)
5b066063
AD
10058{
10059 yyparse ("input");
10060 yyparse ("input");
10061 return 0;
10062}
10063@end verbatim
10064
10065@noindent
10066If the file @file{input} contains
10067
10068@verbatim
10069input:1: Hello,
10070input:2: World!
10071@end verbatim
10072
10073@noindent
0e14ad77 10074then instead of getting the first line twice, you get:
5b066063
AD
10075
10076@example
10077$ @kbd{flex -ofirst-line.c first-line.l}
10078$ @kbd{gcc -ofirst-line first-line.c -ll}
10079$ @kbd{./first-line}
10080input:1: Hello,
10081input:2: World!
10082@end example
10083
0e14ad77
PE
10084Therefore, whenever you change @code{yyin}, you must tell the
10085Lex-generated scanner to discard its current buffer and switch to the
10086new one. This depends upon your implementation of Lex; see its
10087documentation for more. For Flex, it suffices to call
10088@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10089Flex-generated scanner needs to read from several input streams to
10090handle features like include files, you might consider using Flex
10091functions like @samp{yy_switch_to_buffer} that manipulate multiple
10092input buffers.
5b066063 10093
b165c324
AD
10094If your Flex-generated scanner uses start conditions (@pxref{Start
10095conditions, , Start conditions, flex, The Flex Manual}), you might
10096also want to reset the scanner's state, i.e., go back to the initial
10097start condition, through a call to @samp{BEGIN (0)}.
10098
fef4cb51
AD
10099@node Strings are Destroyed
10100@section Strings are Destroyed
10101
10102@display
c7e441b4 10103My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10104them. Instead of reporting @samp{"foo", "bar"}, it reports
10105@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10106@end display
10107
10108This error is probably the single most frequent ``bug report'' sent to
10109Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10110of the scanner. Consider the following Lex code:
fef4cb51
AD
10111
10112@verbatim
10113%{
10114#include <stdio.h>
10115char *yylval = NULL;
10116%}
10117%%
10118.* yylval = yytext; return 1;
10119\n /* IGNORE */
10120%%
10121int
10122main ()
10123{
fa7e68c3 10124 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10125 char *fst = (yylex (), yylval);
10126 char *snd = (yylex (), yylval);
10127 printf ("\"%s\", \"%s\"\n", fst, snd);
10128 return 0;
10129}
10130@end verbatim
10131
10132If you compile and run this code, you get:
10133
10134@example
10135$ @kbd{flex -osplit-lines.c split-lines.l}
10136$ @kbd{gcc -osplit-lines split-lines.c -ll}
10137$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10138"one
10139two", "two"
10140@end example
10141
10142@noindent
10143this is because @code{yytext} is a buffer provided for @emph{reading}
10144in the action, but if you want to keep it, you have to duplicate it
10145(e.g., using @code{strdup}). Note that the output may depend on how
10146your implementation of Lex handles @code{yytext}. For instance, when
10147given the Lex compatibility option @option{-l} (which triggers the
10148option @samp{%array}) Flex generates a different behavior:
10149
10150@example
10151$ @kbd{flex -l -osplit-lines.c split-lines.l}
10152$ @kbd{gcc -osplit-lines split-lines.c -ll}
10153$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10154"two", "two"
10155@end example
10156
10157
2fa09258
AD
10158@node Implementing Gotos/Loops
10159@section Implementing Gotos/Loops
a06ea4aa
AD
10160
10161@display
10162My simple calculator supports variables, assignments, and functions,
2fa09258 10163but how can I implement gotos, or loops?
a06ea4aa
AD
10164@end display
10165
10166Although very pedagogical, the examples included in the document blur
a1c84f45 10167the distinction to make between the parser---whose job is to recover
a06ea4aa 10168the structure of a text and to transmit it to subsequent modules of
a1c84f45 10169the program---and the processing (such as the execution) of this
a06ea4aa
AD
10170structure. This works well with so called straight line programs,
10171i.e., precisely those that have a straightforward execution model:
10172execute simple instructions one after the others.
10173
10174@cindex abstract syntax tree
35430378 10175@cindex AST
a06ea4aa
AD
10176If you want a richer model, you will probably need to use the parser
10177to construct a tree that does represent the structure it has
10178recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 10179or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10180traversing it in various ways, will enable treatments such as its
10181execution or its translation, which will result in an interpreter or a
10182compiler.
10183
10184This topic is way beyond the scope of this manual, and the reader is
10185invited to consult the dedicated literature.
10186
10187
ed2e6384
AD
10188@node Multiple start-symbols
10189@section Multiple start-symbols
10190
10191@display
10192I have several closely related grammars, and I would like to share their
10193implementations. In fact, I could use a single grammar but with
10194multiple entry points.
10195@end display
10196
10197Bison does not support multiple start-symbols, but there is a very
10198simple means to simulate them. If @code{foo} and @code{bar} are the two
10199pseudo start-symbols, then introduce two new tokens, say
10200@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10201real start-symbol:
10202
10203@example
10204%token START_FOO START_BAR;
10205%start start;
10206start: START_FOO foo
10207 | START_BAR bar;
10208@end example
10209
10210These tokens prevents the introduction of new conflicts. As far as the
10211parser goes, that is all that is needed.
10212
10213Now the difficult part is ensuring that the scanner will send these
10214tokens first. If your scanner is hand-written, that should be
10215straightforward. If your scanner is generated by Lex, them there is
10216simple means to do it: recall that anything between @samp{%@{ ... %@}}
10217after the first @code{%%} is copied verbatim in the top of the generated
10218@code{yylex} function. Make sure a variable @code{start_token} is
10219available in the scanner (e.g., a global variable or using
10220@code{%lex-param} etc.), and use the following:
10221
10222@example
10223 /* @r{Prologue.} */
10224%%
10225%@{
10226 if (start_token)
10227 @{
10228 int t = start_token;
10229 start_token = 0;
10230 return t;
10231 @}
10232%@}
10233 /* @r{The rules.} */
10234@end example
10235
10236
55ba27be
AD
10237@node Secure? Conform?
10238@section Secure? Conform?
10239
10240@display
10241Is Bison secure? Does it conform to POSIX?
10242@end display
10243
10244If you're looking for a guarantee or certification, we don't provide it.
10245However, Bison is intended to be a reliable program that conforms to the
35430378 10246POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10247please send us a bug report.
10248
10249@node I can't build Bison
10250@section I can't build Bison
10251
10252@display
8c5b881d
PE
10253I can't build Bison because @command{make} complains that
10254@code{msgfmt} is not found.
55ba27be
AD
10255What should I do?
10256@end display
10257
10258Like most GNU packages with internationalization support, that feature
10259is turned on by default. If you have problems building in the @file{po}
10260subdirectory, it indicates that your system's internationalization
10261support is lacking. You can re-configure Bison with
10262@option{--disable-nls} to turn off this support, or you can install GNU
10263gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10264Bison. See the file @file{ABOUT-NLS} for more information.
10265
10266
10267@node Where can I find help?
10268@section Where can I find help?
10269
10270@display
10271I'm having trouble using Bison. Where can I find help?
10272@end display
10273
10274First, read this fine manual. Beyond that, you can send mail to
10275@email{help-bison@@gnu.org}. This mailing list is intended to be
10276populated with people who are willing to answer questions about using
10277and installing Bison. Please keep in mind that (most of) the people on
10278the list have aspects of their lives which are not related to Bison (!),
10279so you may not receive an answer to your question right away. This can
10280be frustrating, but please try not to honk them off; remember that any
10281help they provide is purely voluntary and out of the kindness of their
10282hearts.
10283
10284@node Bug Reports
10285@section Bug Reports
10286
10287@display
10288I found a bug. What should I include in the bug report?
10289@end display
10290
10291Before you send a bug report, make sure you are using the latest
10292version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10293mirrors. Be sure to include the version number in your bug report. If
10294the bug is present in the latest version but not in a previous version,
10295try to determine the most recent version which did not contain the bug.
10296
10297If the bug is parser-related, you should include the smallest grammar
10298you can which demonstrates the bug. The grammar file should also be
10299complete (i.e., I should be able to run it through Bison without having
10300to edit or add anything). The smaller and simpler the grammar, the
10301easier it will be to fix the bug.
10302
10303Include information about your compilation environment, including your
10304operating system's name and version and your compiler's name and
10305version. If you have trouble compiling, you should also include a
10306transcript of the build session, starting with the invocation of
10307`configure'. Depending on the nature of the bug, you may be asked to
10308send additional files as well (such as `config.h' or `config.cache').
10309
10310Patches are most welcome, but not required. That is, do not hesitate to
10311send a bug report just because you can not provide a fix.
10312
10313Send bug reports to @email{bug-bison@@gnu.org}.
10314
8405b70c
PB
10315@node More Languages
10316@section More Languages
55ba27be
AD
10317
10318@display
8405b70c 10319Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10320favorite language here}?
10321@end display
10322
8405b70c 10323C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10324languages; contributions are welcome.
10325
10326@node Beta Testing
10327@section Beta Testing
10328
10329@display
10330What is involved in being a beta tester?
10331@end display
10332
10333It's not terribly involved. Basically, you would download a test
10334release, compile it, and use it to build and run a parser or two. After
10335that, you would submit either a bug report or a message saying that
10336everything is okay. It is important to report successes as well as
10337failures because test releases eventually become mainstream releases,
10338but only if they are adequately tested. If no one tests, development is
10339essentially halted.
10340
10341Beta testers are particularly needed for operating systems to which the
10342developers do not have easy access. They currently have easy access to
10343recent GNU/Linux and Solaris versions. Reports about other operating
10344systems are especially welcome.
10345
10346@node Mailing Lists
10347@section Mailing Lists
10348
10349@display
10350How do I join the help-bison and bug-bison mailing lists?
10351@end display
10352
10353See @url{http://lists.gnu.org/}.
a06ea4aa 10354
d1a1114f
AD
10355@c ================================================= Table of Symbols
10356
342b8b6e 10357@node Table of Symbols
bfa74976
RS
10358@appendix Bison Symbols
10359@cindex Bison symbols, table of
10360@cindex symbols in Bison, table of
10361
18b519c0 10362@deffn {Variable} @@$
3ded9a63 10363In an action, the location of the left-hand side of the rule.
7404cdf3 10364@xref{Tracking Locations}.
18b519c0 10365@end deffn
3ded9a63 10366
18b519c0 10367@deffn {Variable} @@@var{n}
7404cdf3
JD
10368In an action, the location of the @var{n}-th symbol of the right-hand side
10369of the rule. @xref{Tracking Locations}.
18b519c0 10370@end deffn
3ded9a63 10371
1f68dca5 10372@deffn {Variable} @@@var{name}
7404cdf3
JD
10373In an action, the location of a symbol addressed by name. @xref{Tracking
10374Locations}.
1f68dca5
AR
10375@end deffn
10376
10377@deffn {Variable} @@[@var{name}]
7404cdf3
JD
10378In an action, the location of a symbol addressed by name. @xref{Tracking
10379Locations}.
1f68dca5
AR
10380@end deffn
10381
18b519c0 10382@deffn {Variable} $$
3ded9a63
AD
10383In an action, the semantic value of the left-hand side of the rule.
10384@xref{Actions}.
18b519c0 10385@end deffn
3ded9a63 10386
18b519c0 10387@deffn {Variable} $@var{n}
3ded9a63
AD
10388In an action, the semantic value of the @var{n}-th symbol of the
10389right-hand side of the rule. @xref{Actions}.
18b519c0 10390@end deffn
3ded9a63 10391
1f68dca5
AR
10392@deffn {Variable} $@var{name}
10393In an action, the semantic value of a symbol addressed by name.
10394@xref{Actions}.
10395@end deffn
10396
10397@deffn {Variable} $[@var{name}]
10398In an action, the semantic value of a symbol addressed by name.
10399@xref{Actions}.
10400@end deffn
10401
dd8d9022
AD
10402@deffn {Delimiter} %%
10403Delimiter used to separate the grammar rule section from the
10404Bison declarations section or the epilogue.
10405@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10406@end deffn
bfa74976 10407
dd8d9022
AD
10408@c Don't insert spaces, or check the DVI output.
10409@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
10410All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
10411to the parser implementation file. Such code forms the prologue of
10412the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 10413Grammar}.
18b519c0 10414@end deffn
bfa74976 10415
dd8d9022
AD
10416@deffn {Construct} /*@dots{}*/
10417Comment delimiters, as in C.
18b519c0 10418@end deffn
bfa74976 10419
dd8d9022
AD
10420@deffn {Delimiter} :
10421Separates a rule's result from its components. @xref{Rules, ,Syntax of
10422Grammar Rules}.
18b519c0 10423@end deffn
bfa74976 10424
dd8d9022
AD
10425@deffn {Delimiter} ;
10426Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10427@end deffn
bfa74976 10428
dd8d9022
AD
10429@deffn {Delimiter} |
10430Separates alternate rules for the same result nonterminal.
10431@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10432@end deffn
bfa74976 10433
12e35840
JD
10434@deffn {Directive} <*>
10435Used to define a default tagged @code{%destructor} or default tagged
10436@code{%printer}.
85894313
JD
10437
10438This feature is experimental.
10439More user feedback will help to determine whether it should become a permanent
10440feature.
10441
12e35840
JD
10442@xref{Destructor Decl, , Freeing Discarded Symbols}.
10443@end deffn
10444
3ebecc24 10445@deffn {Directive} <>
12e35840
JD
10446Used to define a default tagless @code{%destructor} or default tagless
10447@code{%printer}.
85894313
JD
10448
10449This feature is experimental.
10450More user feedback will help to determine whether it should become a permanent
10451feature.
10452
12e35840
JD
10453@xref{Destructor Decl, , Freeing Discarded Symbols}.
10454@end deffn
10455
dd8d9022
AD
10456@deffn {Symbol} $accept
10457The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10458$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10459Start-Symbol}. It cannot be used in the grammar.
18b519c0 10460@end deffn
bfa74976 10461
136a0f76 10462@deffn {Directive} %code @{@var{code}@}
148d66d8 10463@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
406dec82
JD
10464Insert @var{code} verbatim into the output parser source at the
10465default location or at the location specified by @var{qualifier}.
8e6f2266 10466@xref{%code Summary}.
9bc0dd67 10467@end deffn
9bc0dd67 10468
18b519c0 10469@deffn {Directive} %debug
6deb4447 10470Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10471@end deffn
6deb4447 10472
91d2c560 10473@ifset defaultprec
22fccf95
PE
10474@deffn {Directive} %default-prec
10475Assign a precedence to rules that lack an explicit @samp{%prec}
10476modifier. @xref{Contextual Precedence, ,Context-Dependent
10477Precedence}.
39a06c25 10478@end deffn
91d2c560 10479@end ifset
39a06c25 10480
6f04ee6c
JD
10481@deffn {Directive} %define @var{variable}
10482@deffnx {Directive} %define @var{variable} @var{value}
10483@deffnx {Directive} %define @var{variable} "@var{value}"
2f4518a1 10484Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
10485@end deffn
10486
18b519c0 10487@deffn {Directive} %defines
9913d6e4
JD
10488Bison declaration to create a parser header file, which is usually
10489meant for the scanner. @xref{Decl Summary}.
18b519c0 10490@end deffn
6deb4447 10491
02975b9a
JD
10492@deffn {Directive} %defines @var{defines-file}
10493Same as above, but save in the file @var{defines-file}.
10494@xref{Decl Summary}.
10495@end deffn
10496
18b519c0 10497@deffn {Directive} %destructor
258b75ca 10498Specify how the parser should reclaim the memory associated to
fa7e68c3 10499discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10500@end deffn
72f889cc 10501
18b519c0 10502@deffn {Directive} %dprec
676385e2 10503Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10504time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 10505GLR Parsers}.
18b519c0 10506@end deffn
676385e2 10507
dd8d9022
AD
10508@deffn {Symbol} $end
10509The predefined token marking the end of the token stream. It cannot be
10510used in the grammar.
10511@end deffn
10512
10513@deffn {Symbol} error
10514A token name reserved for error recovery. This token may be used in
10515grammar rules so as to allow the Bison parser to recognize an error in
10516the grammar without halting the process. In effect, a sentence
10517containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10518token @code{error} becomes the current lookahead token. Actions
10519corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10520token is reset to the token that originally caused the violation.
10521@xref{Error Recovery}.
18d192f0
AD
10522@end deffn
10523
18b519c0 10524@deffn {Directive} %error-verbose
2a8d363a 10525Bison declaration to request verbose, specific error message strings
6f04ee6c 10526when @code{yyerror} is called. @xref{Error Reporting}.
18b519c0 10527@end deffn
2a8d363a 10528
02975b9a 10529@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10530Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10531Summary}.
18b519c0 10532@end deffn
d8988b2f 10533
18b519c0 10534@deffn {Directive} %glr-parser
35430378
JD
10535Bison declaration to produce a GLR parser. @xref{GLR
10536Parsers, ,Writing GLR Parsers}.
18b519c0 10537@end deffn
676385e2 10538
dd8d9022
AD
10539@deffn {Directive} %initial-action
10540Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10541@end deffn
10542
e6e704dc
JD
10543@deffn {Directive} %language
10544Specify the programming language for the generated parser.
10545@xref{Decl Summary}.
10546@end deffn
10547
18b519c0 10548@deffn {Directive} %left
bfa74976
RS
10549Bison declaration to assign left associativity to token(s).
10550@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10551@end deffn
bfa74976 10552
feeb0eda 10553@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10554Bison declaration to specifying an additional parameter that
10555@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10556for Pure Parsers}.
18b519c0 10557@end deffn
2a8d363a 10558
18b519c0 10559@deffn {Directive} %merge
676385e2 10560Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10561reduce/reduce conflict with a rule having the same merging function, the
676385e2 10562function is applied to the two semantic values to get a single result.
35430378 10563@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10564@end deffn
676385e2 10565
02975b9a 10566@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10567Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10568@end deffn
d8988b2f 10569
91d2c560 10570@ifset defaultprec
22fccf95
PE
10571@deffn {Directive} %no-default-prec
10572Do not assign a precedence to rules that lack an explicit @samp{%prec}
10573modifier. @xref{Contextual Precedence, ,Context-Dependent
10574Precedence}.
10575@end deffn
91d2c560 10576@end ifset
22fccf95 10577
18b519c0 10578@deffn {Directive} %no-lines
931c7513 10579Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 10580parser implementation file. @xref{Decl Summary}.
18b519c0 10581@end deffn
931c7513 10582
18b519c0 10583@deffn {Directive} %nonassoc
9d9b8b70 10584Bison declaration to assign nonassociativity to token(s).
bfa74976 10585@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10586@end deffn
bfa74976 10587
02975b9a 10588@deffn {Directive} %output "@var{file}"
9913d6e4
JD
10589Bison declaration to set the name of the parser implementation file.
10590@xref{Decl Summary}.
18b519c0 10591@end deffn
d8988b2f 10592
feeb0eda 10593@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10594Bison declaration to specifying an additional parameter that
10595@code{yyparse} should accept. @xref{Parser Function,, The Parser
10596Function @code{yyparse}}.
18b519c0 10597@end deffn
2a8d363a 10598
18b519c0 10599@deffn {Directive} %prec
bfa74976
RS
10600Bison declaration to assign a precedence to a specific rule.
10601@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10602@end deffn
bfa74976 10603
18b519c0 10604@deffn {Directive} %pure-parser
2f4518a1
JD
10605Deprecated version of @code{%define api.pure} (@pxref{%define
10606Summary,,api.pure}), for which Bison is more careful to warn about
10607unreasonable usage.
18b519c0 10608@end deffn
bfa74976 10609
b50d2359 10610@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10611Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10612Require a Version of Bison}.
b50d2359
AD
10613@end deffn
10614
18b519c0 10615@deffn {Directive} %right
bfa74976
RS
10616Bison declaration to assign right associativity to token(s).
10617@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10618@end deffn
bfa74976 10619
e6e704dc
JD
10620@deffn {Directive} %skeleton
10621Specify the skeleton to use; usually for development.
10622@xref{Decl Summary}.
10623@end deffn
10624
18b519c0 10625@deffn {Directive} %start
704a47c4
AD
10626Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10627Start-Symbol}.
18b519c0 10628@end deffn
bfa74976 10629
18b519c0 10630@deffn {Directive} %token
bfa74976
RS
10631Bison declaration to declare token(s) without specifying precedence.
10632@xref{Token Decl, ,Token Type Names}.
18b519c0 10633@end deffn
bfa74976 10634
18b519c0 10635@deffn {Directive} %token-table
9913d6e4
JD
10636Bison declaration to include a token name table in the parser
10637implementation file. @xref{Decl Summary}.
18b519c0 10638@end deffn
931c7513 10639
18b519c0 10640@deffn {Directive} %type
704a47c4
AD
10641Bison declaration to declare nonterminals. @xref{Type Decl,
10642,Nonterminal Symbols}.
18b519c0 10643@end deffn
bfa74976 10644
dd8d9022
AD
10645@deffn {Symbol} $undefined
10646The predefined token onto which all undefined values returned by
10647@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10648@code{error}.
10649@end deffn
10650
18b519c0 10651@deffn {Directive} %union
bfa74976
RS
10652Bison declaration to specify several possible data types for semantic
10653values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10654@end deffn
bfa74976 10655
dd8d9022
AD
10656@deffn {Macro} YYABORT
10657Macro to pretend that an unrecoverable syntax error has occurred, by
10658making @code{yyparse} return 1 immediately. The error reporting
10659function @code{yyerror} is not called. @xref{Parser Function, ,The
10660Parser Function @code{yyparse}}.
8405b70c
PB
10661
10662For Java parsers, this functionality is invoked using @code{return YYABORT;}
10663instead.
dd8d9022 10664@end deffn
3ded9a63 10665
dd8d9022
AD
10666@deffn {Macro} YYACCEPT
10667Macro to pretend that a complete utterance of the language has been
10668read, by making @code{yyparse} return 0 immediately.
10669@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10670
10671For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10672instead.
dd8d9022 10673@end deffn
bfa74976 10674
dd8d9022 10675@deffn {Macro} YYBACKUP
742e4900 10676Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10677token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10678@end deffn
bfa74976 10679
dd8d9022 10680@deffn {Variable} yychar
32c29292 10681External integer variable that contains the integer value of the
742e4900 10682lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10683@code{yyparse}.) Error-recovery rule actions may examine this variable.
10684@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10685@end deffn
bfa74976 10686
dd8d9022
AD
10687@deffn {Variable} yyclearin
10688Macro used in error-recovery rule actions. It clears the previous
742e4900 10689lookahead token. @xref{Error Recovery}.
18b519c0 10690@end deffn
bfa74976 10691
dd8d9022
AD
10692@deffn {Macro} YYDEBUG
10693Macro to define to equip the parser with tracing code. @xref{Tracing,
10694,Tracing Your Parser}.
18b519c0 10695@end deffn
bfa74976 10696
dd8d9022
AD
10697@deffn {Variable} yydebug
10698External integer variable set to zero by default. If @code{yydebug}
10699is given a nonzero value, the parser will output information on input
10700symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10701@end deffn
bfa74976 10702
dd8d9022
AD
10703@deffn {Macro} yyerrok
10704Macro to cause parser to recover immediately to its normal mode
10705after a syntax error. @xref{Error Recovery}.
10706@end deffn
10707
10708@deffn {Macro} YYERROR
10709Macro to pretend that a syntax error has just been detected: call
10710@code{yyerror} and then perform normal error recovery if possible
10711(@pxref{Error Recovery}), or (if recovery is impossible) make
10712@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10713
10714For Java parsers, this functionality is invoked using @code{return YYERROR;}
10715instead.
dd8d9022
AD
10716@end deffn
10717
10718@deffn {Function} yyerror
10719User-supplied function to be called by @code{yyparse} on error.
10720@xref{Error Reporting, ,The Error
10721Reporting Function @code{yyerror}}.
10722@end deffn
10723
10724@deffn {Macro} YYERROR_VERBOSE
10725An obsolete macro that you define with @code{#define} in the prologue
10726to request verbose, specific error message strings
10727when @code{yyerror} is called. It doesn't matter what definition you
10728use for @code{YYERROR_VERBOSE}, just whether you define it. Using
6f04ee6c 10729@code{%error-verbose} is preferred. @xref{Error Reporting}.
dd8d9022
AD
10730@end deffn
10731
10732@deffn {Macro} YYINITDEPTH
10733Macro for specifying the initial size of the parser stack.
1a059451 10734@xref{Memory Management}.
dd8d9022
AD
10735@end deffn
10736
10737@deffn {Function} yylex
10738User-supplied lexical analyzer function, called with no arguments to get
10739the next token. @xref{Lexical, ,The Lexical Analyzer Function
10740@code{yylex}}.
10741@end deffn
10742
10743@deffn {Macro} YYLEX_PARAM
10744An obsolete macro for specifying an extra argument (or list of extra
32c29292 10745arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10746macro is deprecated, and is supported only for Yacc like parsers.
10747@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10748@end deffn
10749
10750@deffn {Variable} yylloc
10751External variable in which @code{yylex} should place the line and column
10752numbers associated with a token. (In a pure parser, it is a local
10753variable within @code{yyparse}, and its address is passed to
32c29292
JD
10754@code{yylex}.)
10755You can ignore this variable if you don't use the @samp{@@} feature in the
10756grammar actions.
10757@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10758In semantic actions, it stores the location of the lookahead token.
32c29292 10759@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10760@end deffn
10761
10762@deffn {Type} YYLTYPE
10763Data type of @code{yylloc}; by default, a structure with four
10764members. @xref{Location Type, , Data Types of Locations}.
10765@end deffn
10766
10767@deffn {Variable} yylval
10768External variable in which @code{yylex} should place the semantic
10769value associated with a token. (In a pure parser, it is a local
10770variable within @code{yyparse}, and its address is passed to
32c29292
JD
10771@code{yylex}.)
10772@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10773In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10774@xref{Actions, ,Actions}.
dd8d9022
AD
10775@end deffn
10776
10777@deffn {Macro} YYMAXDEPTH
1a059451
PE
10778Macro for specifying the maximum size of the parser stack. @xref{Memory
10779Management}.
dd8d9022
AD
10780@end deffn
10781
10782@deffn {Variable} yynerrs
8a2800e7 10783Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10784(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10785pure push parser, it is a member of yypstate.)
dd8d9022
AD
10786@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10787@end deffn
10788
10789@deffn {Function} yyparse
10790The parser function produced by Bison; call this function to start
10791parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10792@end deffn
10793
9987d1b3 10794@deffn {Function} yypstate_delete
f4101aa6 10795The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10796call this function to delete the memory associated with a parser.
f4101aa6 10797@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10798@code{yypstate_delete}}.
59da312b
JD
10799(The current push parsing interface is experimental and may evolve.
10800More user feedback will help to stabilize it.)
9987d1b3
JD
10801@end deffn
10802
10803@deffn {Function} yypstate_new
f4101aa6 10804The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10805call this function to create a new parser.
f4101aa6 10806@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10807@code{yypstate_new}}.
59da312b
JD
10808(The current push parsing interface is experimental and may evolve.
10809More user feedback will help to stabilize it.)
9987d1b3
JD
10810@end deffn
10811
10812@deffn {Function} yypull_parse
f4101aa6
AD
10813The parser function produced by Bison in push mode; call this function to
10814parse the rest of the input stream.
10815@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10816@code{yypull_parse}}.
59da312b
JD
10817(The current push parsing interface is experimental and may evolve.
10818More user feedback will help to stabilize it.)
9987d1b3
JD
10819@end deffn
10820
10821@deffn {Function} yypush_parse
f4101aa6
AD
10822The parser function produced by Bison in push mode; call this function to
10823parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10824@code{yypush_parse}}.
59da312b
JD
10825(The current push parsing interface is experimental and may evolve.
10826More user feedback will help to stabilize it.)
9987d1b3
JD
10827@end deffn
10828
dd8d9022
AD
10829@deffn {Macro} YYPARSE_PARAM
10830An obsolete macro for specifying the name of a parameter that
10831@code{yyparse} should accept. The use of this macro is deprecated, and
10832is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10833Conventions for Pure Parsers}.
10834@end deffn
10835
10836@deffn {Macro} YYRECOVERING
02103984
PE
10837The expression @code{YYRECOVERING ()} yields 1 when the parser
10838is recovering from a syntax error, and 0 otherwise.
10839@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10840@end deffn
10841
10842@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10843Macro used to control the use of @code{alloca} when the
10844deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10845the parser will use @code{malloc} to extend its stacks. If defined to
108461, the parser will use @code{alloca}. Values other than 0 and 1 are
10847reserved for future Bison extensions. If not defined,
10848@code{YYSTACK_USE_ALLOCA} defaults to 0.
10849
55289366 10850In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10851limited stack and with unreliable stack-overflow checking, you should
10852set @code{YYMAXDEPTH} to a value that cannot possibly result in
10853unchecked stack overflow on any of your target hosts when
10854@code{alloca} is called. You can inspect the code that Bison
10855generates in order to determine the proper numeric values. This will
10856require some expertise in low-level implementation details.
dd8d9022
AD
10857@end deffn
10858
10859@deffn {Type} YYSTYPE
10860Data type of semantic values; @code{int} by default.
10861@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10862@end deffn
bfa74976 10863
342b8b6e 10864@node Glossary
bfa74976
RS
10865@appendix Glossary
10866@cindex glossary
10867
10868@table @asis
6f04ee6c 10869@item Accepting state
34a6c2d1
JD
10870A state whose only action is the accept action.
10871The accepting state is thus a consistent state.
10872@xref{Understanding,,}.
10873
35430378 10874@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
10875Formal method of specifying context-free grammars originally proposed
10876by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10877committee document contributing to what became the Algol 60 report.
10878@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10879
6f04ee6c
JD
10880@item Consistent state
10881A state containing only one possible action. @xref{Default Reductions}.
34a6c2d1 10882
bfa74976
RS
10883@item Context-free grammars
10884Grammars specified as rules that can be applied regardless of context.
10885Thus, if there is a rule which says that an integer can be used as an
10886expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10887permitted. @xref{Language and Grammar, ,Languages and Context-Free
10888Grammars}.
bfa74976 10889
6f04ee6c 10890@item Default reduction
620b5727 10891The reduction that a parser should perform if the current parser state
2f4518a1 10892contains no other action for the lookahead token. In permitted parser
6f04ee6c
JD
10893states, Bison declares the reduction with the largest lookahead set to be
10894the default reduction and removes that lookahead set. @xref{Default
10895Reductions}.
10896
10897@item Defaulted state
10898A consistent state with a default reduction. @xref{Default Reductions}.
34a6c2d1 10899
bfa74976
RS
10900@item Dynamic allocation
10901Allocation of memory that occurs during execution, rather than at
10902compile time or on entry to a function.
10903
10904@item Empty string
10905Analogous to the empty set in set theory, the empty string is a
10906character string of length zero.
10907
10908@item Finite-state stack machine
10909A ``machine'' that has discrete states in which it is said to exist at
10910each instant in time. As input to the machine is processed, the
10911machine moves from state to state as specified by the logic of the
10912machine. In the case of the parser, the input is the language being
10913parsed, and the states correspond to various stages in the grammar
c827f760 10914rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10915
35430378 10916@item Generalized LR (GLR)
676385e2 10917A parsing algorithm that can handle all context-free grammars, including those
35430378 10918that are not LR(1). It resolves situations that Bison's
34a6c2d1 10919deterministic parsing
676385e2
PH
10920algorithm cannot by effectively splitting off multiple parsers, trying all
10921possible parsers, and discarding those that fail in the light of additional
c827f760 10922right context. @xref{Generalized LR Parsing, ,Generalized
35430378 10923LR Parsing}.
676385e2 10924
bfa74976
RS
10925@item Grouping
10926A language construct that is (in general) grammatically divisible;
c827f760 10927for example, `expression' or `declaration' in C@.
bfa74976
RS
10928@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10929
6f04ee6c
JD
10930@item IELR(1) (Inadequacy Elimination LR(1))
10931A minimal LR(1) parser table construction algorithm. That is, given any
2f4518a1 10932context-free grammar, IELR(1) generates parser tables with the full
6f04ee6c
JD
10933language-recognition power of canonical LR(1) but with nearly the same
10934number of parser states as LALR(1). This reduction in parser states is
10935often an order of magnitude. More importantly, because canonical LR(1)'s
10936extra parser states may contain duplicate conflicts in the case of non-LR(1)
10937grammars, the number of conflicts for IELR(1) is often an order of magnitude
10938less as well. This can significantly reduce the complexity of developing a
10939grammar. @xref{LR Table Construction}.
34a6c2d1 10940
bfa74976
RS
10941@item Infix operator
10942An arithmetic operator that is placed between the operands on which it
10943performs some operation.
10944
10945@item Input stream
10946A continuous flow of data between devices or programs.
10947
35430378 10948@item LAC (Lookahead Correction)
4c38b19e 10949A parsing mechanism that fixes the problem of delayed syntax error
6f04ee6c
JD
10950detection, which is caused by LR state merging, default reductions, and the
10951use of @code{%nonassoc}. Delayed syntax error detection results in
10952unexpected semantic actions, initiation of error recovery in the wrong
10953syntactic context, and an incorrect list of expected tokens in a verbose
10954syntax error message. @xref{LAC}.
4c38b19e 10955
bfa74976
RS
10956@item Language construct
10957One of the typical usage schemas of the language. For example, one of
10958the constructs of the C language is the @code{if} statement.
10959@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10960
10961@item Left associativity
10962Operators having left associativity are analyzed from left to right:
10963@samp{a+b+c} first computes @samp{a+b} and then combines with
10964@samp{c}. @xref{Precedence, ,Operator Precedence}.
10965
10966@item Left recursion
89cab50d
AD
10967A rule whose result symbol is also its first component symbol; for
10968example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10969Rules}.
bfa74976
RS
10970
10971@item Left-to-right parsing
10972Parsing a sentence of a language by analyzing it token by token from
c827f760 10973left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10974
10975@item Lexical analyzer (scanner)
10976A function that reads an input stream and returns tokens one by one.
10977@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10978
10979@item Lexical tie-in
10980A flag, set by actions in the grammar rules, which alters the way
10981tokens are parsed. @xref{Lexical Tie-ins}.
10982
931c7513 10983@item Literal string token
14ded682 10984A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10985
742e4900
JD
10986@item Lookahead token
10987A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10988Tokens}.
bfa74976 10989
35430378 10990@item LALR(1)
bfa74976 10991The class of context-free grammars that Bison (like most other parser
35430378 10992generators) can handle by default; a subset of LR(1).
5da0355a 10993@xref{Mysterious Conflicts}.
bfa74976 10994
35430378 10995@item LR(1)
bfa74976 10996The class of context-free grammars in which at most one token of
742e4900 10997lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10998
10999@item Nonterminal symbol
11000A grammar symbol standing for a grammatical construct that can
11001be expressed through rules in terms of smaller constructs; in other
11002words, a construct that is not a token. @xref{Symbols}.
11003
bfa74976
RS
11004@item Parser
11005A function that recognizes valid sentences of a language by analyzing
11006the syntax structure of a set of tokens passed to it from a lexical
11007analyzer.
11008
11009@item Postfix operator
11010An arithmetic operator that is placed after the operands upon which it
11011performs some operation.
11012
11013@item Reduction
11014Replacing a string of nonterminals and/or terminals with a single
89cab50d 11015nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11016Parser Algorithm}.
bfa74976
RS
11017
11018@item Reentrant
11019A reentrant subprogram is a subprogram which can be in invoked any
11020number of times in parallel, without interference between the various
11021invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11022
11023@item Reverse polish notation
11024A language in which all operators are postfix operators.
11025
11026@item Right recursion
89cab50d
AD
11027A rule whose result symbol is also its last component symbol; for
11028example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11029Rules}.
bfa74976
RS
11030
11031@item Semantics
11032In computer languages, the semantics are specified by the actions
11033taken for each instance of the language, i.e., the meaning of
11034each statement. @xref{Semantics, ,Defining Language Semantics}.
11035
11036@item Shift
11037A parser is said to shift when it makes the choice of analyzing
11038further input from the stream rather than reducing immediately some
c827f760 11039already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11040
11041@item Single-character literal
11042A single character that is recognized and interpreted as is.
11043@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11044
11045@item Start symbol
11046The nonterminal symbol that stands for a complete valid utterance in
11047the language being parsed. The start symbol is usually listed as the
13863333 11048first nonterminal symbol in a language specification.
bfa74976
RS
11049@xref{Start Decl, ,The Start-Symbol}.
11050
11051@item Symbol table
11052A data structure where symbol names and associated data are stored
11053during parsing to allow for recognition and use of existing
11054information in repeated uses of a symbol. @xref{Multi-function Calc}.
11055
6e649e65
PE
11056@item Syntax error
11057An error encountered during parsing of an input stream due to invalid
11058syntax. @xref{Error Recovery}.
11059
bfa74976
RS
11060@item Token
11061A basic, grammatically indivisible unit of a language. The symbol
11062that describes a token in the grammar is a terminal symbol.
11063The input of the Bison parser is a stream of tokens which comes from
11064the lexical analyzer. @xref{Symbols}.
11065
11066@item Terminal symbol
89cab50d
AD
11067A grammar symbol that has no rules in the grammar and therefore is
11068grammatically indivisible. The piece of text it represents is a token.
11069@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
6f04ee6c
JD
11070
11071@item Unreachable state
11072A parser state to which there does not exist a sequence of transitions from
11073the parser's start state. A state can become unreachable during conflict
11074resolution. @xref{Unreachable States}.
bfa74976
RS
11075@end table
11076
342b8b6e 11077@node Copying This Manual
f2b5126e 11078@appendix Copying This Manual
f2b5126e
PB
11079@include fdl.texi
11080
71caec06
JD
11081@node Bibliography
11082@unnumbered Bibliography
11083
11084@table @asis
11085@item [Denny 2008]
11086Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11087for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
110882008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11089pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11090
11091@item [Denny 2010 May]
11092Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11093Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11094University, Clemson, SC, USA (May 2010).
11095@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11096
11097@item [Denny 2010 November]
11098Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11099Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11100in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
111012010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11102
11103@item [DeRemer 1982]
11104Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11105Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11106Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11107615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11108
11109@item [Knuth 1965]
11110Donald E. Knuth, On the Translation of Languages from Left to Right, in
11111@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11112607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11113
11114@item [Scott 2000]
11115Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11116@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11117London, Department of Computer Science, TR-00-12 (December 2000).
11118@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11119@end table
11120
342b8b6e 11121@node Index
bfa74976
RS
11122@unnumbered Index
11123
11124@printindex cp
11125
bfa74976 11126@bye
a06ea4aa 11127
232be91a
AD
11128@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11129@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11130@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11131@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11132@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11133@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11134@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11135@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11136@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11137@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11138@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11139@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11140@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11141@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11142@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11143@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11144@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11145@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11146@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11147@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11148@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11149@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11150@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11151@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11152@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11153@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11154@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11155@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11156@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 11157@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
232be91a 11158@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
9913d6e4 11159@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
232be91a
AD
11160@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11161@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11162@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11163@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11164@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11165@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11166@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
9913d6e4 11167@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
232be91a
AD
11168@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11169@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11170@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11171@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11172@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11173@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11174@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11175@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11176@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11177@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
840341d6 11178@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
232be91a 11179@c LocalWords: subdirectory Solaris nonassociativity
f3103c5b
AD
11180
11181@c Local Variables:
11182@c ispell-dictionary: "american"
11183@c fill-column: 76
11184@c End: