]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
parse.lac: document.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
6e30ede8
PE
36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998, 1999,
372000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
241ac701 43Version 1.3 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f56274a8
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f56274a8
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f56274a8
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f56274a8
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f56274a8 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
1f68dca5 209* Named References:: Using named references in actions.
bfa74976 210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
d6328241 226* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
9987d1b3 229* Push Decl:: Requesting a push parser.
bfa74976
RS
230* Decl Summary:: Table of all Bison declarations.
231
232Parser C-Language Interface
233
f56274a8
DJ
234* Parser Function:: How to call @code{yyparse} and what it returns.
235* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
236* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
237* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
238* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
239* Lexical:: You must supply a function @code{yylex}
240 which reads tokens.
241* Error Reporting:: You must supply a function @code{yyerror}.
242* Action Features:: Special features for use in actions.
243* Internationalization:: How to let the parser speak in the user's
244 native language.
bfa74976
RS
245
246The Lexical Analyzer Function @code{yylex}
247
248* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
249* Token Values:: How @code{yylex} must return the semantic value
250 of the token it has read.
251* Token Locations:: How @code{yylex} must return the text location
252 (line number, etc.) of the token, if the
253 actions want that.
254* Pure Calling:: How the calling convention differs in a pure parser
255 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 256
13863333 257The Bison Parser Algorithm
bfa74976 258
742e4900 259* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
260* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
261* Precedence:: Operator precedence works by resolving conflicts.
262* Contextual Precedence:: When an operator's precedence depends on context.
263* Parser States:: The parser is a finite-state-machine with stack.
264* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 265* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 266* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 267* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
268
269Operator Precedence
270
271* Why Precedence:: An example showing why precedence is needed.
272* Using Precedence:: How to specify precedence in Bison grammars.
273* Precedence Examples:: How these features are used in the previous example.
274* How Precedence:: How they work.
275
276Handling Context Dependencies
277
278* Semantic Tokens:: Token parsing can depend on the semantic context.
279* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
280* Tie-in Recovery:: Lexical tie-ins have implications for how
281 error recovery rules must be written.
282
93dd49ab 283Debugging Your Parser
ec3bc396
AD
284
285* Understanding:: Understanding the structure of your parser.
286* Tracing:: Tracing the execution of your parser.
287
bfa74976
RS
288Invoking Bison
289
13863333 290* Bison Options:: All the options described in detail,
c827f760 291 in alphabetical order by short options.
bfa74976 292* Option Cross Key:: Alphabetical list of long options.
93dd49ab 293* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 294
8405b70c 295Parsers Written In Other Languages
12545799
AD
296
297* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 298* Java Parsers:: The interface to generate Java parser classes
12545799
AD
299
300C++ Parsers
301
302* C++ Bison Interface:: Asking for C++ parser generation
303* C++ Semantic Values:: %union vs. C++
304* C++ Location Values:: The position and location classes
305* C++ Parser Interface:: Instantiating and running the parser
306* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 307* A Complete C++ Example:: Demonstrating their use
12545799
AD
308
309A Complete C++ Example
310
311* Calc++ --- C++ Calculator:: The specifications
312* Calc++ Parsing Driver:: An active parsing context
313* Calc++ Parser:: A parser class
314* Calc++ Scanner:: A pure C++ Flex scanner
315* Calc++ Top Level:: Conducting the band
316
8405b70c
PB
317Java Parsers
318
f56274a8
DJ
319* Java Bison Interface:: Asking for Java parser generation
320* Java Semantic Values:: %type and %token vs. Java
321* Java Location Values:: The position and location classes
322* Java Parser Interface:: Instantiating and running the parser
323* Java Scanner Interface:: Specifying the scanner for the parser
324* Java Action Features:: Special features for use in actions
325* Java Differences:: Differences between C/C++ and Java Grammars
326* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 327
d1a1114f
AD
328Frequently Asked Questions
329
f56274a8
DJ
330* Memory Exhausted:: Breaking the Stack Limits
331* How Can I Reset the Parser:: @code{yyparse} Keeps some State
332* Strings are Destroyed:: @code{yylval} Loses Track of Strings
333* Implementing Gotos/Loops:: Control Flow in the Calculator
334* Multiple start-symbols:: Factoring closely related grammars
335* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
336* I can't build Bison:: Troubleshooting
337* Where can I find help?:: Troubleshouting
338* Bug Reports:: Troublereporting
339* More Languages:: Parsers in C++, Java, and so on
340* Beta Testing:: Experimenting development versions
341* Mailing Lists:: Meeting other Bison users
d1a1114f 342
f2b5126e
PB
343Copying This Manual
344
f56274a8 345* Copying This Manual:: License for copying this manual.
f2b5126e 346
342b8b6e 347@end detailmenu
bfa74976
RS
348@end menu
349
342b8b6e 350@node Introduction
bfa74976
RS
351@unnumbered Introduction
352@cindex introduction
353
6077da58 354@dfn{Bison} is a general-purpose parser generator that converts an
51c7ca01
JD
355annotated context-free grammar into a deterministic @acronym{LR} or
356generalized @acronym{LR} (@acronym{GLR}) parser employing
357@acronym{LALR}(1), @acronym{IELR}(1), or canonical @acronym{LR}(1)
358parser tables.
34a6c2d1
JD
359Once you are proficient with Bison, you can use it to develop a wide
360range of language parsers, from those used in simple desk calculators to
361complex programming languages.
bfa74976
RS
362
363Bison is upward compatible with Yacc: all properly-written Yacc grammars
364ought to work with Bison with no change. Anyone familiar with Yacc
365should be able to use Bison with little trouble. You need to be fluent in
1e137b71 366C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
367
368We begin with tutorial chapters that explain the basic concepts of using
369Bison and show three explained examples, each building on the last. If you
370don't know Bison or Yacc, start by reading these chapters. Reference
371chapters follow which describe specific aspects of Bison in detail.
372
931c7513
RS
373Bison was written primarily by Robert Corbett; Richard Stallman made it
374Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 375multi-character string literals and other features.
931c7513 376
df1af54c 377This edition corresponds to version @value{VERSION} of Bison.
bfa74976 378
342b8b6e 379@node Conditions
bfa74976
RS
380@unnumbered Conditions for Using Bison
381
193d7c70
PE
382The distribution terms for Bison-generated parsers permit using the
383parsers in nonfree programs. Before Bison version 2.2, these extra
384permissions applied only when Bison was generating @acronym{LALR}(1)
385parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 386parsers could be used only in programs that were free software.
a31239f1 387
c827f760
PE
388The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
389compiler, have never
9ecbd125 390had such a requirement. They could always be used for nonfree
a31239f1
RS
391software. The reason Bison was different was not due to a special
392policy decision; it resulted from applying the usual General Public
393License to all of the Bison source code.
394
395The output of the Bison utility---the Bison parser file---contains a
396verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
397parser's implementation. (The actions from your grammar are inserted
398into this implementation at one point, but most of the rest of the
399implementation is not changed.) When we applied the @acronym{GPL}
400terms to the skeleton code for the parser's implementation,
a31239f1
RS
401the effect was to restrict the use of Bison output to free software.
402
403We didn't change the terms because of sympathy for people who want to
404make software proprietary. @strong{Software should be free.} But we
405concluded that limiting Bison's use to free software was doing little to
406encourage people to make other software free. So we decided to make the
407practical conditions for using Bison match the practical conditions for
c827f760 408using the other @acronym{GNU} tools.
bfa74976 409
193d7c70
PE
410This exception applies when Bison is generating code for a parser.
411You can tell whether the exception applies to a Bison output file by
412inspecting the file for text beginning with ``As a special
413exception@dots{}''. The text spells out the exact terms of the
414exception.
262aa8dd 415
f16b0819
PE
416@node Copying
417@unnumbered GNU GENERAL PUBLIC LICENSE
418@include gpl-3.0.texi
bfa74976 419
342b8b6e 420@node Concepts
bfa74976
RS
421@chapter The Concepts of Bison
422
423This chapter introduces many of the basic concepts without which the
424details of Bison will not make sense. If you do not already know how to
425use Bison or Yacc, we suggest you start by reading this chapter carefully.
426
427@menu
f56274a8
DJ
428* Language and Grammar:: Languages and context-free grammars,
429 as mathematical ideas.
430* Grammar in Bison:: How we represent grammars for Bison's sake.
431* Semantic Values:: Each token or syntactic grouping can have
432 a semantic value (the value of an integer,
433 the name of an identifier, etc.).
434* Semantic Actions:: Each rule can have an action containing C code.
435* GLR Parsers:: Writing parsers for general context-free languages.
436* Locations Overview:: Tracking Locations.
437* Bison Parser:: What are Bison's input and output,
438 how is the output used?
439* Stages:: Stages in writing and running Bison grammars.
440* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
441@end menu
442
342b8b6e 443@node Language and Grammar
bfa74976
RS
444@section Languages and Context-Free Grammars
445
bfa74976
RS
446@cindex context-free grammar
447@cindex grammar, context-free
448In order for Bison to parse a language, it must be described by a
449@dfn{context-free grammar}. This means that you specify one or more
450@dfn{syntactic groupings} and give rules for constructing them from their
451parts. For example, in the C language, one kind of grouping is called an
452`expression'. One rule for making an expression might be, ``An expression
453can be made of a minus sign and another expression''. Another would be,
454``An expression can be an integer''. As you can see, rules are often
455recursive, but there must be at least one rule which leads out of the
456recursion.
457
c827f760 458@cindex @acronym{BNF}
bfa74976
RS
459@cindex Backus-Naur form
460The most common formal system for presenting such rules for humans to read
c827f760
PE
461is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
462order to specify the language Algol 60. Any grammar expressed in
463@acronym{BNF} is a context-free grammar. The input to Bison is
464essentially machine-readable @acronym{BNF}.
bfa74976 465
c827f760 466@cindex @acronym{LALR}(1) grammars
34a6c2d1 467@cindex @acronym{IELR}(1) grammars
c827f760 468@cindex @acronym{LR}(1) grammars
34a6c2d1
JD
469There are various important subclasses of context-free grammars.
470Although it can handle almost all context-free grammars, Bison is
471optimized for what are called @acronym{LR}(1) grammars.
472In brief, in these grammars, it must be possible to tell how to parse
473any portion of an input string with just a single token of lookahead.
474For historical reasons, Bison by default is limited by the additional
475restrictions of @acronym{LALR}(1), which is hard to explain simply.
c827f760
PE
476@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
477more information on this.
34a6c2d1
JD
478To escape these additional restrictions, you can request
479@acronym{IELR}(1) or canonical @acronym{LR}(1) parser tables.
480@xref{Decl Summary,,lr.type}, to learn how.
bfa74976 481
c827f760
PE
482@cindex @acronym{GLR} parsing
483@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 484@cindex ambiguous grammars
9d9b8b70 485@cindex nondeterministic parsing
9501dc6e 486
34a6c2d1 487Parsers for @acronym{LR}(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
488roughly that the next grammar rule to apply at any point in the input is
489uniquely determined by the preceding input and a fixed, finite portion
742e4900 490(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 491grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 492apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 493grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 494lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
495With the proper declarations, Bison is also able to parse these more
496general context-free grammars, using a technique known as @acronym{GLR}
497parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
498are able to handle any context-free grammar for which the number of
499possible parses of any given string is finite.
676385e2 500
bfa74976
RS
501@cindex symbols (abstract)
502@cindex token
503@cindex syntactic grouping
504@cindex grouping, syntactic
9501dc6e
AD
505In the formal grammatical rules for a language, each kind of syntactic
506unit or grouping is named by a @dfn{symbol}. Those which are built by
507grouping smaller constructs according to grammatical rules are called
bfa74976
RS
508@dfn{nonterminal symbols}; those which can't be subdivided are called
509@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
510corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 511corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
512
513We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
514nonterminal, mean. The tokens of C are identifiers, constants (numeric
515and string), and the various keywords, arithmetic operators and
516punctuation marks. So the terminal symbols of a grammar for C include
517`identifier', `number', `string', plus one symbol for each keyword,
518operator or punctuation mark: `if', `return', `const', `static', `int',
519`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
520(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
521lexicography, not grammar.)
522
523Here is a simple C function subdivided into tokens:
524
9edcd895
AD
525@ifinfo
526@example
527int /* @r{keyword `int'} */
14d4662b 528square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
529 @r{identifier, close-paren} */
530@{ /* @r{open-brace} */
aa08666d
AD
531 return x * x; /* @r{keyword `return', identifier, asterisk,}
532 @r{identifier, semicolon} */
9edcd895
AD
533@} /* @r{close-brace} */
534@end example
535@end ifinfo
536@ifnotinfo
bfa74976
RS
537@example
538int /* @r{keyword `int'} */
14d4662b 539square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 540@{ /* @r{open-brace} */
9edcd895 541 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
542@} /* @r{close-brace} */
543@end example
9edcd895 544@end ifnotinfo
bfa74976
RS
545
546The syntactic groupings of C include the expression, the statement, the
547declaration, and the function definition. These are represented in the
548grammar of C by nonterminal symbols `expression', `statement',
549`declaration' and `function definition'. The full grammar uses dozens of
550additional language constructs, each with its own nonterminal symbol, in
551order to express the meanings of these four. The example above is a
552function definition; it contains one declaration, and one statement. In
553the statement, each @samp{x} is an expression and so is @samp{x * x}.
554
555Each nonterminal symbol must have grammatical rules showing how it is made
556out of simpler constructs. For example, one kind of C statement is the
557@code{return} statement; this would be described with a grammar rule which
558reads informally as follows:
559
560@quotation
561A `statement' can be made of a `return' keyword, an `expression' and a
562`semicolon'.
563@end quotation
564
565@noindent
566There would be many other rules for `statement', one for each kind of
567statement in C.
568
569@cindex start symbol
570One nonterminal symbol must be distinguished as the special one which
571defines a complete utterance in the language. It is called the @dfn{start
572symbol}. In a compiler, this means a complete input program. In the C
573language, the nonterminal symbol `sequence of definitions and declarations'
574plays this role.
575
576For example, @samp{1 + 2} is a valid C expression---a valid part of a C
577program---but it is not valid as an @emph{entire} C program. In the
578context-free grammar of C, this follows from the fact that `expression' is
579not the start symbol.
580
581The Bison parser reads a sequence of tokens as its input, and groups the
582tokens using the grammar rules. If the input is valid, the end result is
583that the entire token sequence reduces to a single grouping whose symbol is
584the grammar's start symbol. If we use a grammar for C, the entire input
585must be a `sequence of definitions and declarations'. If not, the parser
586reports a syntax error.
587
342b8b6e 588@node Grammar in Bison
bfa74976
RS
589@section From Formal Rules to Bison Input
590@cindex Bison grammar
591@cindex grammar, Bison
592@cindex formal grammar
593
594A formal grammar is a mathematical construct. To define the language
595for Bison, you must write a file expressing the grammar in Bison syntax:
596a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
597
598A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 599as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
600in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
601
602The Bison representation for a terminal symbol is also called a @dfn{token
603type}. Token types as well can be represented as C-like identifiers. By
604convention, these identifiers should be upper case to distinguish them from
605nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
606@code{RETURN}. A terminal symbol that stands for a particular keyword in
607the language should be named after that keyword converted to upper case.
608The terminal symbol @code{error} is reserved for error recovery.
931c7513 609@xref{Symbols}.
bfa74976
RS
610
611A terminal symbol can also be represented as a character literal, just like
612a C character constant. You should do this whenever a token is just a
613single character (parenthesis, plus-sign, etc.): use that same character in
614a literal as the terminal symbol for that token.
615
931c7513
RS
616A third way to represent a terminal symbol is with a C string constant
617containing several characters. @xref{Symbols}, for more information.
618
bfa74976
RS
619The grammar rules also have an expression in Bison syntax. For example,
620here is the Bison rule for a C @code{return} statement. The semicolon in
621quotes is a literal character token, representing part of the C syntax for
622the statement; the naked semicolon, and the colon, are Bison punctuation
623used in every rule.
624
625@example
626stmt: RETURN expr ';'
627 ;
628@end example
629
630@noindent
631@xref{Rules, ,Syntax of Grammar Rules}.
632
342b8b6e 633@node Semantic Values
bfa74976
RS
634@section Semantic Values
635@cindex semantic value
636@cindex value, semantic
637
638A formal grammar selects tokens only by their classifications: for example,
639if a rule mentions the terminal symbol `integer constant', it means that
640@emph{any} integer constant is grammatically valid in that position. The
641precise value of the constant is irrelevant to how to parse the input: if
642@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 643grammatical.
bfa74976
RS
644
645But the precise value is very important for what the input means once it is
646parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6473989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
648has both a token type and a @dfn{semantic value}. @xref{Semantics,
649,Defining Language Semantics},
bfa74976
RS
650for details.
651
652The token type is a terminal symbol defined in the grammar, such as
653@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
654you need to know to decide where the token may validly appear and how to
655group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 656except their types.
bfa74976
RS
657
658The semantic value has all the rest of the information about the
659meaning of the token, such as the value of an integer, or the name of an
660identifier. (A token such as @code{','} which is just punctuation doesn't
661need to have any semantic value.)
662
663For example, an input token might be classified as token type
664@code{INTEGER} and have the semantic value 4. Another input token might
665have the same token type @code{INTEGER} but value 3989. When a grammar
666rule says that @code{INTEGER} is allowed, either of these tokens is
667acceptable because each is an @code{INTEGER}. When the parser accepts the
668token, it keeps track of the token's semantic value.
669
670Each grouping can also have a semantic value as well as its nonterminal
671symbol. For example, in a calculator, an expression typically has a
672semantic value that is a number. In a compiler for a programming
673language, an expression typically has a semantic value that is a tree
674structure describing the meaning of the expression.
675
342b8b6e 676@node Semantic Actions
bfa74976
RS
677@section Semantic Actions
678@cindex semantic actions
679@cindex actions, semantic
680
681In order to be useful, a program must do more than parse input; it must
682also produce some output based on the input. In a Bison grammar, a grammar
683rule can have an @dfn{action} made up of C statements. Each time the
684parser recognizes a match for that rule, the action is executed.
685@xref{Actions}.
13863333 686
bfa74976
RS
687Most of the time, the purpose of an action is to compute the semantic value
688of the whole construct from the semantic values of its parts. For example,
689suppose we have a rule which says an expression can be the sum of two
690expressions. When the parser recognizes such a sum, each of the
691subexpressions has a semantic value which describes how it was built up.
692The action for this rule should create a similar sort of value for the
693newly recognized larger expression.
694
695For example, here is a rule that says an expression can be the sum of
696two subexpressions:
697
698@example
699expr: expr '+' expr @{ $$ = $1 + $3; @}
700 ;
701@end example
702
703@noindent
704The action says how to produce the semantic value of the sum expression
705from the values of the two subexpressions.
706
676385e2 707@node GLR Parsers
c827f760
PE
708@section Writing @acronym{GLR} Parsers
709@cindex @acronym{GLR} parsing
710@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
711@findex %glr-parser
712@cindex conflicts
713@cindex shift/reduce conflicts
fa7e68c3 714@cindex reduce/reduce conflicts
676385e2 715
34a6c2d1
JD
716In some grammars, Bison's deterministic
717@acronym{LR}(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
718certain grammar rule at a given point. That is, it may not be able to
719decide (on the basis of the input read so far) which of two possible
720reductions (applications of a grammar rule) applies, or whether to apply
721a reduction or read more of the input and apply a reduction later in the
722input. These are known respectively as @dfn{reduce/reduce} conflicts
723(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
724(@pxref{Shift/Reduce}).
725
34a6c2d1 726To use a grammar that is not easily modified to be @acronym{LR}(1), a
9501dc6e 727more general parsing algorithm is sometimes necessary. If you include
676385e2 728@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 729(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
730(@acronym{GLR}) parser. These parsers handle Bison grammars that
731contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 732declarations) identically to deterministic parsers. However, when
9501dc6e
AD
733faced with unresolved shift/reduce and reduce/reduce conflicts,
734@acronym{GLR} parsers use the simple expedient of doing both,
735effectively cloning the parser to follow both possibilities. Each of
736the resulting parsers can again split, so that at any given time, there
737can be any number of possible parses being explored. The parsers
676385e2
PH
738proceed in lockstep; that is, all of them consume (shift) a given input
739symbol before any of them proceed to the next. Each of the cloned
740parsers eventually meets one of two possible fates: either it runs into
741a parsing error, in which case it simply vanishes, or it merges with
742another parser, because the two of them have reduced the input to an
743identical set of symbols.
744
745During the time that there are multiple parsers, semantic actions are
746recorded, but not performed. When a parser disappears, its recorded
747semantic actions disappear as well, and are never performed. When a
748reduction makes two parsers identical, causing them to merge, Bison
749records both sets of semantic actions. Whenever the last two parsers
750merge, reverting to the single-parser case, Bison resolves all the
751outstanding actions either by precedences given to the grammar rules
752involved, or by performing both actions, and then calling a designated
753user-defined function on the resulting values to produce an arbitrary
754merged result.
755
fa7e68c3 756@menu
f56274a8
DJ
757* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
758* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
759* GLR Semantic Actions:: Deferred semantic actions have special concerns.
760* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
761@end menu
762
763@node Simple GLR Parsers
764@subsection Using @acronym{GLR} on Unambiguous Grammars
765@cindex @acronym{GLR} parsing, unambiguous grammars
766@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
767@findex %glr-parser
768@findex %expect-rr
769@cindex conflicts
770@cindex reduce/reduce conflicts
771@cindex shift/reduce conflicts
772
773In the simplest cases, you can use the @acronym{GLR} algorithm
34a6c2d1
JD
774to parse grammars that are unambiguous but fail to be @acronym{LR}(1).
775Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
776
777Consider a problem that
778arises in the declaration of enumerated and subrange types in the
779programming language Pascal. Here are some examples:
780
781@example
782type subrange = lo .. hi;
783type enum = (a, b, c);
784@end example
785
786@noindent
787The original language standard allows only numeric
788literals and constant identifiers for the subrange bounds (@samp{lo}
789and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
79010206) and many other
791Pascal implementations allow arbitrary expressions there. This gives
792rise to the following situation, containing a superfluous pair of
793parentheses:
794
795@example
796type subrange = (a) .. b;
797@end example
798
799@noindent
800Compare this to the following declaration of an enumerated
801type with only one value:
802
803@example
804type enum = (a);
805@end example
806
807@noindent
808(These declarations are contrived, but they are syntactically
809valid, and more-complicated cases can come up in practical programs.)
810
811These two declarations look identical until the @samp{..} token.
34a6c2d1 812With normal @acronym{LR}(1) one-token lookahead it is not
fa7e68c3
PE
813possible to decide between the two forms when the identifier
814@samp{a} is parsed. It is, however, desirable
815for a parser to decide this, since in the latter case
816@samp{a} must become a new identifier to represent the enumeration
817value, while in the former case @samp{a} must be evaluated with its
818current meaning, which may be a constant or even a function call.
819
820You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
821to be resolved later, but this typically requires substantial
822contortions in both semantic actions and large parts of the
823grammar, where the parentheses are nested in the recursive rules for
824expressions.
825
826You might think of using the lexer to distinguish between the two
827forms by returning different tokens for currently defined and
828undefined identifiers. But if these declarations occur in a local
829scope, and @samp{a} is defined in an outer scope, then both forms
830are possible---either locally redefining @samp{a}, or using the
831value of @samp{a} from the outer scope. So this approach cannot
832work.
833
e757bb10 834A simple solution to this problem is to declare the parser to
fa7e68c3
PE
835use the @acronym{GLR} algorithm.
836When the @acronym{GLR} parser reaches the critical state, it
837merely splits into two branches and pursues both syntax rules
838simultaneously. Sooner or later, one of them runs into a parsing
839error. If there is a @samp{..} token before the next
840@samp{;}, the rule for enumerated types fails since it cannot
841accept @samp{..} anywhere; otherwise, the subrange type rule
842fails since it requires a @samp{..} token. So one of the branches
843fails silently, and the other one continues normally, performing
844all the intermediate actions that were postponed during the split.
845
846If the input is syntactically incorrect, both branches fail and the parser
847reports a syntax error as usual.
848
849The effect of all this is that the parser seems to ``guess'' the
850correct branch to take, or in other words, it seems to use more
34a6c2d1
JD
851lookahead than the underlying @acronym{LR}(1) algorithm actually allows
852for. In this example, @acronym{LR}(2) would suffice, but also some cases
853that are not @acronym{LR}(@math{k}) for any @math{k} can be handled this way.
fa7e68c3
PE
854
855In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
856and the current Bison parser even takes exponential time and space
857for some grammars. In practice, this rarely happens, and for many
858grammars it is possible to prove that it cannot happen.
859The present example contains only one conflict between two
860rules, and the type-declaration context containing the conflict
861cannot be nested. So the number of
862branches that can exist at any time is limited by the constant 2,
863and the parsing time is still linear.
864
865Here is a Bison grammar corresponding to the example above. It
866parses a vastly simplified form of Pascal type declarations.
867
868@example
869%token TYPE DOTDOT ID
870
871@group
872%left '+' '-'
873%left '*' '/'
874@end group
875
876%%
877
878@group
879type_decl : TYPE ID '=' type ';'
880 ;
881@end group
882
883@group
884type : '(' id_list ')'
885 | expr DOTDOT expr
886 ;
887@end group
888
889@group
890id_list : ID
891 | id_list ',' ID
892 ;
893@end group
894
895@group
896expr : '(' expr ')'
897 | expr '+' expr
898 | expr '-' expr
899 | expr '*' expr
900 | expr '/' expr
901 | ID
902 ;
903@end group
904@end example
905
34a6c2d1 906When used as a normal @acronym{LR}(1) grammar, Bison correctly complains
fa7e68c3
PE
907about one reduce/reduce conflict. In the conflicting situation the
908parser chooses one of the alternatives, arbitrarily the one
909declared first. Therefore the following correct input is not
910recognized:
911
912@example
913type t = (a) .. b;
914@end example
915
916The parser can be turned into a @acronym{GLR} parser, while also telling Bison
917to be silent about the one known reduce/reduce conflict, by
e757bb10 918adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
919@samp{%%}):
920
921@example
922%glr-parser
923%expect-rr 1
924@end example
925
926@noindent
927No change in the grammar itself is required. Now the
928parser recognizes all valid declarations, according to the
929limited syntax above, transparently. In fact, the user does not even
930notice when the parser splits.
931
f8e1c9e5
AD
932So here we have a case where we can use the benefits of @acronym{GLR},
933almost without disadvantages. Even in simple cases like this, however,
934there are at least two potential problems to beware. First, always
935analyze the conflicts reported by Bison to make sure that @acronym{GLR}
936splitting is only done where it is intended. A @acronym{GLR} parser
937splitting inadvertently may cause problems less obvious than an
34a6c2d1 938@acronym{LR} parser statically choosing the wrong alternative in a
f8e1c9e5
AD
939conflict. Second, consider interactions with the lexer (@pxref{Semantic
940Tokens}) with great care. Since a split parser consumes tokens without
941performing any actions during the split, the lexer cannot obtain
942information via parser actions. Some cases of lexer interactions can be
943eliminated by using @acronym{GLR} to shift the complications from the
944lexer to the parser. You must check the remaining cases for
945correctness.
946
947In our example, it would be safe for the lexer to return tokens based on
948their current meanings in some symbol table, because no new symbols are
949defined in the middle of a type declaration. Though it is possible for
950a parser to define the enumeration constants as they are parsed, before
951the type declaration is completed, it actually makes no difference since
952they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
953
954@node Merging GLR Parses
955@subsection Using @acronym{GLR} to Resolve Ambiguities
956@cindex @acronym{GLR} parsing, ambiguous grammars
957@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
958@findex %dprec
959@findex %merge
960@cindex conflicts
961@cindex reduce/reduce conflicts
962
2a8d363a 963Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
964
965@example
966%@{
38a92d50
PE
967 #include <stdio.h>
968 #define YYSTYPE char const *
969 int yylex (void);
970 void yyerror (char const *);
676385e2
PH
971%@}
972
973%token TYPENAME ID
974
975%right '='
976%left '+'
977
978%glr-parser
979
980%%
981
fae437e8 982prog :
676385e2
PH
983 | prog stmt @{ printf ("\n"); @}
984 ;
985
986stmt : expr ';' %dprec 1
987 | decl %dprec 2
988 ;
989
2a8d363a 990expr : ID @{ printf ("%s ", $$); @}
fae437e8 991 | TYPENAME '(' expr ')'
2a8d363a
AD
992 @{ printf ("%s <cast> ", $1); @}
993 | expr '+' expr @{ printf ("+ "); @}
994 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
995 ;
996
fae437e8 997decl : TYPENAME declarator ';'
2a8d363a 998 @{ printf ("%s <declare> ", $1); @}
676385e2 999 | TYPENAME declarator '=' expr ';'
2a8d363a 1000 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1001 ;
1002
2a8d363a 1003declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1004 | '(' declarator ')'
1005 ;
1006@end example
1007
1008@noindent
1009This models a problematic part of the C++ grammar---the ambiguity between
1010certain declarations and statements. For example,
1011
1012@example
1013T (x) = y+z;
1014@end example
1015
1016@noindent
1017parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1018(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1019@samp{x} as an @code{ID}).
676385e2 1020Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1021@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1022time it encounters @code{x} in the example above. Since this is a
1023@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1024each choice of resolving the reduce/reduce conflict.
1025Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1026however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1027ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1028the other reduces @code{stmt : decl}, after which both parsers are in an
1029identical state: they've seen @samp{prog stmt} and have the same unprocessed
1030input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1031
1032At this point, the @acronym{GLR} parser requires a specification in the
1033grammar of how to choose between the competing parses.
1034In the example above, the two @code{%dprec}
e757bb10 1035declarations specify that Bison is to give precedence
fa7e68c3 1036to the parse that interprets the example as a
676385e2
PH
1037@code{decl}, which implies that @code{x} is a declarator.
1038The parser therefore prints
1039
1040@example
fae437e8 1041"x" y z + T <init-declare>
676385e2
PH
1042@end example
1043
fa7e68c3
PE
1044The @code{%dprec} declarations only come into play when more than one
1045parse survives. Consider a different input string for this parser:
676385e2
PH
1046
1047@example
1048T (x) + y;
1049@end example
1050
1051@noindent
e757bb10 1052This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1053construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1054Here, there is no ambiguity (this cannot be parsed as a declaration).
1055However, at the time the Bison parser encounters @code{x}, it does not
1056have enough information to resolve the reduce/reduce conflict (again,
1057between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1058case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1059into two, one assuming that @code{x} is an @code{expr}, and the other
1060assuming @code{x} is a @code{declarator}. The second of these parsers
1061then vanishes when it sees @code{+}, and the parser prints
1062
1063@example
fae437e8 1064x T <cast> y +
676385e2
PH
1065@end example
1066
1067Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1068the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1069actions of the two possible parsers, rather than choosing one over the
1070other. To do so, you could change the declaration of @code{stmt} as
1071follows:
1072
1073@example
1074stmt : expr ';' %merge <stmtMerge>
1075 | decl %merge <stmtMerge>
1076 ;
1077@end example
1078
1079@noindent
676385e2
PH
1080and define the @code{stmtMerge} function as:
1081
1082@example
38a92d50
PE
1083static YYSTYPE
1084stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1085@{
1086 printf ("<OR> ");
1087 return "";
1088@}
1089@end example
1090
1091@noindent
1092with an accompanying forward declaration
1093in the C declarations at the beginning of the file:
1094
1095@example
1096%@{
38a92d50 1097 #define YYSTYPE char const *
676385e2
PH
1098 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1099%@}
1100@end example
1101
1102@noindent
fa7e68c3
PE
1103With these declarations, the resulting parser parses the first example
1104as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1105
1106@example
fae437e8 1107"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1108@end example
1109
fa7e68c3 1110Bison requires that all of the
e757bb10 1111productions that participate in any particular merge have identical
fa7e68c3
PE
1112@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1113and the parser will report an error during any parse that results in
1114the offending merge.
9501dc6e 1115
32c29292
JD
1116@node GLR Semantic Actions
1117@subsection GLR Semantic Actions
1118
1119@cindex deferred semantic actions
1120By definition, a deferred semantic action is not performed at the same time as
1121the associated reduction.
1122This raises caveats for several Bison features you might use in a semantic
1123action in a @acronym{GLR} parser.
1124
1125@vindex yychar
1126@cindex @acronym{GLR} parsers and @code{yychar}
1127@vindex yylval
1128@cindex @acronym{GLR} parsers and @code{yylval}
1129@vindex yylloc
1130@cindex @acronym{GLR} parsers and @code{yylloc}
1131In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1132the lookahead token present at the time of the associated reduction.
32c29292
JD
1133After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1134you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1135lookahead token's semantic value and location, if any.
32c29292
JD
1136In a nondeferred semantic action, you can also modify any of these variables to
1137influence syntax analysis.
742e4900 1138@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1139
1140@findex yyclearin
1141@cindex @acronym{GLR} parsers and @code{yyclearin}
1142In a deferred semantic action, it's too late to influence syntax analysis.
1143In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1144shallow copies of the values they had at the time of the associated reduction.
1145For this reason alone, modifying them is dangerous.
1146Moreover, the result of modifying them is undefined and subject to change with
1147future versions of Bison.
1148For example, if a semantic action might be deferred, you should never write it
1149to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1150memory referenced by @code{yylval}.
1151
1152@findex YYERROR
1153@cindex @acronym{GLR} parsers and @code{YYERROR}
1154Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1155(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1156initiate error recovery.
1157During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
34a6c2d1 1158the same as its effect in a deterministic parser.
32c29292
JD
1159In a deferred semantic action, its effect is undefined.
1160@c The effect is probably a syntax error at the split point.
1161
8710fc41
JD
1162Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1163describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1164
fa7e68c3
PE
1165@node Compiler Requirements
1166@subsection Considerations when Compiling @acronym{GLR} Parsers
1167@cindex @code{inline}
9501dc6e 1168@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1169
38a92d50
PE
1170The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1171later. In addition, they use the @code{inline} keyword, which is not
1172C89, but is C99 and is a common extension in pre-C99 compilers. It is
1173up to the user of these parsers to handle
9501dc6e
AD
1174portability issues. For instance, if using Autoconf and the Autoconf
1175macro @code{AC_C_INLINE}, a mere
1176
1177@example
1178%@{
38a92d50 1179 #include <config.h>
9501dc6e
AD
1180%@}
1181@end example
1182
1183@noindent
1184will suffice. Otherwise, we suggest
1185
1186@example
1187%@{
38a92d50
PE
1188 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1189 #define inline
1190 #endif
9501dc6e
AD
1191%@}
1192@end example
676385e2 1193
342b8b6e 1194@node Locations Overview
847bf1f5
AD
1195@section Locations
1196@cindex location
95923bd6
AD
1197@cindex textual location
1198@cindex location, textual
847bf1f5
AD
1199
1200Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1201and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1202the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1203Bison provides a mechanism for handling these locations.
1204
72d2299c 1205Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1206associated location, but the type of locations is the same for all tokens and
72d2299c 1207groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1208structure for storing locations (@pxref{Locations}, for more details).
1209
1210Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1211set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1212is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1213@code{@@3}.
1214
1215When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1216of its left hand side (@pxref{Actions}). In the same way, another default
1217action is used for locations. However, the action for locations is general
847bf1f5 1218enough for most cases, meaning there is usually no need to describe for each
72d2299c 1219rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1220grouping, the default behavior of the output parser is to take the beginning
1221of the first symbol, and the end of the last symbol.
1222
342b8b6e 1223@node Bison Parser
bfa74976
RS
1224@section Bison Output: the Parser File
1225@cindex Bison parser
1226@cindex Bison utility
1227@cindex lexical analyzer, purpose
1228@cindex parser
1229
1230When you run Bison, you give it a Bison grammar file as input. The output
1231is a C source file that parses the language described by the grammar.
1232This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1233utility and the Bison parser are two distinct programs: the Bison utility
1234is a program whose output is the Bison parser that becomes part of your
1235program.
1236
1237The job of the Bison parser is to group tokens into groupings according to
1238the grammar rules---for example, to build identifiers and operators into
1239expressions. As it does this, it runs the actions for the grammar rules it
1240uses.
1241
704a47c4
AD
1242The tokens come from a function called the @dfn{lexical analyzer} that
1243you must supply in some fashion (such as by writing it in C). The Bison
1244parser calls the lexical analyzer each time it wants a new token. It
1245doesn't know what is ``inside'' the tokens (though their semantic values
1246may reflect this). Typically the lexical analyzer makes the tokens by
1247parsing characters of text, but Bison does not depend on this.
1248@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1249
1250The Bison parser file is C code which defines a function named
1251@code{yyparse} which implements that grammar. This function does not make
1252a complete C program: you must supply some additional functions. One is
1253the lexical analyzer. Another is an error-reporting function which the
1254parser calls to report an error. In addition, a complete C program must
1255start with a function called @code{main}; you have to provide this, and
1256arrange for it to call @code{yyparse} or the parser will never run.
1257@xref{Interface, ,Parser C-Language Interface}.
1258
f7ab6a50 1259Aside from the token type names and the symbols in the actions you
7093d0f5 1260write, all symbols defined in the Bison parser file itself
bfa74976
RS
1261begin with @samp{yy} or @samp{YY}. This includes interface functions
1262such as the lexical analyzer function @code{yylex}, the error reporting
1263function @code{yyerror} and the parser function @code{yyparse} itself.
1264This also includes numerous identifiers used for internal purposes.
1265Therefore, you should avoid using C identifiers starting with @samp{yy}
1266or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1267this manual. Also, you should avoid using the C identifiers
1268@samp{malloc} and @samp{free} for anything other than their usual
1269meanings.
bfa74976 1270
7093d0f5
AD
1271In some cases the Bison parser file includes system headers, and in
1272those cases your code should respect the identifiers reserved by those
55289366 1273headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1274@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1275declare memory allocators and related types. @code{<libintl.h>} is
1276included if message translation is in use
1277(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1278be included if you define @code{YYDEBUG} to a nonzero value
1279(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1280
342b8b6e 1281@node Stages
bfa74976
RS
1282@section Stages in Using Bison
1283@cindex stages in using Bison
1284@cindex using Bison
1285
1286The actual language-design process using Bison, from grammar specification
1287to a working compiler or interpreter, has these parts:
1288
1289@enumerate
1290@item
1291Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1292(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1293in the language, describe the action that is to be taken when an
1294instance of that rule is recognized. The action is described by a
1295sequence of C statements.
bfa74976
RS
1296
1297@item
704a47c4
AD
1298Write a lexical analyzer to process input and pass tokens to the parser.
1299The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1300Lexical Analyzer Function @code{yylex}}). It could also be produced
1301using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1302
1303@item
1304Write a controlling function that calls the Bison-produced parser.
1305
1306@item
1307Write error-reporting routines.
1308@end enumerate
1309
1310To turn this source code as written into a runnable program, you
1311must follow these steps:
1312
1313@enumerate
1314@item
1315Run Bison on the grammar to produce the parser.
1316
1317@item
1318Compile the code output by Bison, as well as any other source files.
1319
1320@item
1321Link the object files to produce the finished product.
1322@end enumerate
1323
342b8b6e 1324@node Grammar Layout
bfa74976
RS
1325@section The Overall Layout of a Bison Grammar
1326@cindex grammar file
1327@cindex file format
1328@cindex format of grammar file
1329@cindex layout of Bison grammar
1330
1331The input file for the Bison utility is a @dfn{Bison grammar file}. The
1332general form of a Bison grammar file is as follows:
1333
1334@example
1335%@{
08e49d20 1336@var{Prologue}
bfa74976
RS
1337%@}
1338
1339@var{Bison declarations}
1340
1341%%
1342@var{Grammar rules}
1343%%
08e49d20 1344@var{Epilogue}
bfa74976
RS
1345@end example
1346
1347@noindent
1348The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1349in every Bison grammar file to separate the sections.
1350
72d2299c 1351The prologue may define types and variables used in the actions. You can
342b8b6e 1352also use preprocessor commands to define macros used there, and use
bfa74976 1353@code{#include} to include header files that do any of these things.
38a92d50
PE
1354You need to declare the lexical analyzer @code{yylex} and the error
1355printer @code{yyerror} here, along with any other global identifiers
1356used by the actions in the grammar rules.
bfa74976
RS
1357
1358The Bison declarations declare the names of the terminal and nonterminal
1359symbols, and may also describe operator precedence and the data types of
1360semantic values of various symbols.
1361
1362The grammar rules define how to construct each nonterminal symbol from its
1363parts.
1364
38a92d50
PE
1365The epilogue can contain any code you want to use. Often the
1366definitions of functions declared in the prologue go here. In a
1367simple program, all the rest of the program can go here.
bfa74976 1368
342b8b6e 1369@node Examples
bfa74976
RS
1370@chapter Examples
1371@cindex simple examples
1372@cindex examples, simple
1373
1374Now we show and explain three sample programs written using Bison: a
1375reverse polish notation calculator, an algebraic (infix) notation
1376calculator, and a multi-function calculator. All three have been tested
1377under BSD Unix 4.3; each produces a usable, though limited, interactive
1378desk-top calculator.
1379
1380These examples are simple, but Bison grammars for real programming
aa08666d
AD
1381languages are written the same way. You can copy these examples into a
1382source file to try them.
bfa74976
RS
1383
1384@menu
f56274a8
DJ
1385* RPN Calc:: Reverse polish notation calculator;
1386 a first example with no operator precedence.
1387* Infix Calc:: Infix (algebraic) notation calculator.
1388 Operator precedence is introduced.
bfa74976 1389* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1390* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1391* Multi-function Calc:: Calculator with memory and trig functions.
1392 It uses multiple data-types for semantic values.
1393* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1394@end menu
1395
342b8b6e 1396@node RPN Calc
bfa74976
RS
1397@section Reverse Polish Notation Calculator
1398@cindex reverse polish notation
1399@cindex polish notation calculator
1400@cindex @code{rpcalc}
1401@cindex calculator, simple
1402
1403The first example is that of a simple double-precision @dfn{reverse polish
1404notation} calculator (a calculator using postfix operators). This example
1405provides a good starting point, since operator precedence is not an issue.
1406The second example will illustrate how operator precedence is handled.
1407
1408The source code for this calculator is named @file{rpcalc.y}. The
1409@samp{.y} extension is a convention used for Bison input files.
1410
1411@menu
f56274a8
DJ
1412* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1413* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1414* Rpcalc Lexer:: The lexical analyzer.
1415* Rpcalc Main:: The controlling function.
1416* Rpcalc Error:: The error reporting function.
1417* Rpcalc Generate:: Running Bison on the grammar file.
1418* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1419@end menu
1420
f56274a8 1421@node Rpcalc Declarations
bfa74976
RS
1422@subsection Declarations for @code{rpcalc}
1423
1424Here are the C and Bison declarations for the reverse polish notation
1425calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1426
1427@example
72d2299c 1428/* Reverse polish notation calculator. */
bfa74976
RS
1429
1430%@{
38a92d50
PE
1431 #define YYSTYPE double
1432 #include <math.h>
1433 int yylex (void);
1434 void yyerror (char const *);
bfa74976
RS
1435%@}
1436
1437%token NUM
1438
72d2299c 1439%% /* Grammar rules and actions follow. */
bfa74976
RS
1440@end example
1441
75f5aaea 1442The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1443preprocessor directives and two forward declarations.
bfa74976
RS
1444
1445The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1446specifying the C data type for semantic values of both tokens and
1447groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1448Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1449don't define it, @code{int} is the default. Because we specify
1450@code{double}, each token and each expression has an associated value,
1451which is a floating point number.
bfa74976
RS
1452
1453The @code{#include} directive is used to declare the exponentiation
1454function @code{pow}.
1455
38a92d50
PE
1456The forward declarations for @code{yylex} and @code{yyerror} are
1457needed because the C language requires that functions be declared
1458before they are used. These functions will be defined in the
1459epilogue, but the parser calls them so they must be declared in the
1460prologue.
1461
704a47c4
AD
1462The second section, Bison declarations, provides information to Bison
1463about the token types (@pxref{Bison Declarations, ,The Bison
1464Declarations Section}). Each terminal symbol that is not a
1465single-character literal must be declared here. (Single-character
bfa74976
RS
1466literals normally don't need to be declared.) In this example, all the
1467arithmetic operators are designated by single-character literals, so the
1468only terminal symbol that needs to be declared is @code{NUM}, the token
1469type for numeric constants.
1470
342b8b6e 1471@node Rpcalc Rules
bfa74976
RS
1472@subsection Grammar Rules for @code{rpcalc}
1473
1474Here are the grammar rules for the reverse polish notation calculator.
1475
1476@example
1477input: /* empty */
1478 | input line
1479;
1480
1481line: '\n'
18b519c0 1482 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1483;
1484
18b519c0
AD
1485exp: NUM @{ $$ = $1; @}
1486 | exp exp '+' @{ $$ = $1 + $2; @}
1487 | exp exp '-' @{ $$ = $1 - $2; @}
1488 | exp exp '*' @{ $$ = $1 * $2; @}
1489 | exp exp '/' @{ $$ = $1 / $2; @}
1490 /* Exponentiation */
1491 | exp exp '^' @{ $$ = pow ($1, $2); @}
1492 /* Unary minus */
1493 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1494;
1495%%
1496@end example
1497
1498The groupings of the rpcalc ``language'' defined here are the expression
1499(given the name @code{exp}), the line of input (@code{line}), and the
1500complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1501symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1502which is read as ``or''. The following sections explain what these rules
1503mean.
1504
1505The semantics of the language is determined by the actions taken when a
1506grouping is recognized. The actions are the C code that appears inside
1507braces. @xref{Actions}.
1508
1509You must specify these actions in C, but Bison provides the means for
1510passing semantic values between the rules. In each action, the
1511pseudo-variable @code{$$} stands for the semantic value for the grouping
1512that the rule is going to construct. Assigning a value to @code{$$} is the
1513main job of most actions. The semantic values of the components of the
1514rule are referred to as @code{$1}, @code{$2}, and so on.
1515
1516@menu
13863333
AD
1517* Rpcalc Input::
1518* Rpcalc Line::
1519* Rpcalc Expr::
bfa74976
RS
1520@end menu
1521
342b8b6e 1522@node Rpcalc Input
bfa74976
RS
1523@subsubsection Explanation of @code{input}
1524
1525Consider the definition of @code{input}:
1526
1527@example
1528input: /* empty */
1529 | input line
1530;
1531@end example
1532
1533This definition reads as follows: ``A complete input is either an empty
1534string, or a complete input followed by an input line''. Notice that
1535``complete input'' is defined in terms of itself. This definition is said
1536to be @dfn{left recursive} since @code{input} appears always as the
1537leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1538
1539The first alternative is empty because there are no symbols between the
1540colon and the first @samp{|}; this means that @code{input} can match an
1541empty string of input (no tokens). We write the rules this way because it
1542is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1543It's conventional to put an empty alternative first and write the comment
1544@samp{/* empty */} in it.
1545
1546The second alternate rule (@code{input line}) handles all nontrivial input.
1547It means, ``After reading any number of lines, read one more line if
1548possible.'' The left recursion makes this rule into a loop. Since the
1549first alternative matches empty input, the loop can be executed zero or
1550more times.
1551
1552The parser function @code{yyparse} continues to process input until a
1553grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1554input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1555
342b8b6e 1556@node Rpcalc Line
bfa74976
RS
1557@subsubsection Explanation of @code{line}
1558
1559Now consider the definition of @code{line}:
1560
1561@example
1562line: '\n'
1563 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1564;
1565@end example
1566
1567The first alternative is a token which is a newline character; this means
1568that rpcalc accepts a blank line (and ignores it, since there is no
1569action). The second alternative is an expression followed by a newline.
1570This is the alternative that makes rpcalc useful. The semantic value of
1571the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1572question is the first symbol in the alternative. The action prints this
1573value, which is the result of the computation the user asked for.
1574
1575This action is unusual because it does not assign a value to @code{$$}. As
1576a consequence, the semantic value associated with the @code{line} is
1577uninitialized (its value will be unpredictable). This would be a bug if
1578that value were ever used, but we don't use it: once rpcalc has printed the
1579value of the user's input line, that value is no longer needed.
1580
342b8b6e 1581@node Rpcalc Expr
bfa74976
RS
1582@subsubsection Explanation of @code{expr}
1583
1584The @code{exp} grouping has several rules, one for each kind of expression.
1585The first rule handles the simplest expressions: those that are just numbers.
1586The second handles an addition-expression, which looks like two expressions
1587followed by a plus-sign. The third handles subtraction, and so on.
1588
1589@example
1590exp: NUM
1591 | exp exp '+' @{ $$ = $1 + $2; @}
1592 | exp exp '-' @{ $$ = $1 - $2; @}
1593 @dots{}
1594 ;
1595@end example
1596
1597We have used @samp{|} to join all the rules for @code{exp}, but we could
1598equally well have written them separately:
1599
1600@example
1601exp: NUM ;
1602exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1603exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1604 @dots{}
1605@end example
1606
1607Most of the rules have actions that compute the value of the expression in
1608terms of the value of its parts. For example, in the rule for addition,
1609@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1610the second one. The third component, @code{'+'}, has no meaningful
1611associated semantic value, but if it had one you could refer to it as
1612@code{$3}. When @code{yyparse} recognizes a sum expression using this
1613rule, the sum of the two subexpressions' values is produced as the value of
1614the entire expression. @xref{Actions}.
1615
1616You don't have to give an action for every rule. When a rule has no
1617action, Bison by default copies the value of @code{$1} into @code{$$}.
1618This is what happens in the first rule (the one that uses @code{NUM}).
1619
1620The formatting shown here is the recommended convention, but Bison does
72d2299c 1621not require it. You can add or change white space as much as you wish.
bfa74976
RS
1622For example, this:
1623
1624@example
99a9344e 1625exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1626@end example
1627
1628@noindent
1629means the same thing as this:
1630
1631@example
1632exp: NUM
1633 | exp exp '+' @{ $$ = $1 + $2; @}
1634 | @dots{}
99a9344e 1635;
bfa74976
RS
1636@end example
1637
1638@noindent
1639The latter, however, is much more readable.
1640
342b8b6e 1641@node Rpcalc Lexer
bfa74976
RS
1642@subsection The @code{rpcalc} Lexical Analyzer
1643@cindex writing a lexical analyzer
1644@cindex lexical analyzer, writing
1645
704a47c4
AD
1646The lexical analyzer's job is low-level parsing: converting characters
1647or sequences of characters into tokens. The Bison parser gets its
1648tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1649Analyzer Function @code{yylex}}.
bfa74976 1650
c827f760
PE
1651Only a simple lexical analyzer is needed for the @acronym{RPN}
1652calculator. This
bfa74976
RS
1653lexical analyzer skips blanks and tabs, then reads in numbers as
1654@code{double} and returns them as @code{NUM} tokens. Any other character
1655that isn't part of a number is a separate token. Note that the token-code
1656for such a single-character token is the character itself.
1657
1658The return value of the lexical analyzer function is a numeric code which
1659represents a token type. The same text used in Bison rules to stand for
1660this token type is also a C expression for the numeric code for the type.
1661This works in two ways. If the token type is a character literal, then its
e966383b 1662numeric code is that of the character; you can use the same
bfa74976
RS
1663character literal in the lexical analyzer to express the number. If the
1664token type is an identifier, that identifier is defined by Bison as a C
1665macro whose definition is the appropriate number. In this example,
1666therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1667
1964ad8c
AD
1668The semantic value of the token (if it has one) is stored into the
1669global variable @code{yylval}, which is where the Bison parser will look
1670for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1671defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1672,Declarations for @code{rpcalc}}.)
bfa74976 1673
72d2299c
PE
1674A token type code of zero is returned if the end-of-input is encountered.
1675(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1676
1677Here is the code for the lexical analyzer:
1678
1679@example
1680@group
72d2299c 1681/* The lexical analyzer returns a double floating point
e966383b 1682 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1683 of the character read if not a number. It skips all blanks
1684 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1685
1686#include <ctype.h>
1687@end group
1688
1689@group
13863333
AD
1690int
1691yylex (void)
bfa74976
RS
1692@{
1693 int c;
1694
72d2299c 1695 /* Skip white space. */
13863333 1696 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1697 ;
1698@end group
1699@group
72d2299c 1700 /* Process numbers. */
13863333 1701 if (c == '.' || isdigit (c))
bfa74976
RS
1702 @{
1703 ungetc (c, stdin);
1704 scanf ("%lf", &yylval);
1705 return NUM;
1706 @}
1707@end group
1708@group
72d2299c 1709 /* Return end-of-input. */
13863333 1710 if (c == EOF)
bfa74976 1711 return 0;
72d2299c 1712 /* Return a single char. */
13863333 1713 return c;
bfa74976
RS
1714@}
1715@end group
1716@end example
1717
342b8b6e 1718@node Rpcalc Main
bfa74976
RS
1719@subsection The Controlling Function
1720@cindex controlling function
1721@cindex main function in simple example
1722
1723In keeping with the spirit of this example, the controlling function is
1724kept to the bare minimum. The only requirement is that it call
1725@code{yyparse} to start the process of parsing.
1726
1727@example
1728@group
13863333
AD
1729int
1730main (void)
bfa74976 1731@{
13863333 1732 return yyparse ();
bfa74976
RS
1733@}
1734@end group
1735@end example
1736
342b8b6e 1737@node Rpcalc Error
bfa74976
RS
1738@subsection The Error Reporting Routine
1739@cindex error reporting routine
1740
1741When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1742function @code{yyerror} to print an error message (usually but not
6e649e65 1743always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1744@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1745here is the definition we will use:
bfa74976
RS
1746
1747@example
1748@group
1749#include <stdio.h>
1750
38a92d50 1751/* Called by yyparse on error. */
13863333 1752void
38a92d50 1753yyerror (char const *s)
bfa74976 1754@{
4e03e201 1755 fprintf (stderr, "%s\n", s);
bfa74976
RS
1756@}
1757@end group
1758@end example
1759
1760After @code{yyerror} returns, the Bison parser may recover from the error
1761and continue parsing if the grammar contains a suitable error rule
1762(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1763have not written any error rules in this example, so any invalid input will
1764cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1765real calculator, but it is adequate for the first example.
bfa74976 1766
f56274a8 1767@node Rpcalc Generate
bfa74976
RS
1768@subsection Running Bison to Make the Parser
1769@cindex running Bison (introduction)
1770
ceed8467
AD
1771Before running Bison to produce a parser, we need to decide how to
1772arrange all the source code in one or more source files. For such a
1773simple example, the easiest thing is to put everything in one file. The
1774definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1775end, in the epilogue of the file
75f5aaea 1776(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1777
1778For a large project, you would probably have several source files, and use
1779@code{make} to arrange to recompile them.
1780
1781With all the source in a single file, you use the following command to
1782convert it into a parser file:
1783
1784@example
fa4d969f 1785bison @var{file}.y
bfa74976
RS
1786@end example
1787
1788@noindent
1789In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1790@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1791removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1792Bison contains the source code for @code{yyparse}. The additional
1793functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1794are copied verbatim to the output.
1795
342b8b6e 1796@node Rpcalc Compile
bfa74976
RS
1797@subsection Compiling the Parser File
1798@cindex compiling the parser
1799
1800Here is how to compile and run the parser file:
1801
1802@example
1803@group
1804# @r{List files in current directory.}
9edcd895 1805$ @kbd{ls}
bfa74976
RS
1806rpcalc.tab.c rpcalc.y
1807@end group
1808
1809@group
1810# @r{Compile the Bison parser.}
1811# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1812$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1813@end group
1814
1815@group
1816# @r{List files again.}
9edcd895 1817$ @kbd{ls}
bfa74976
RS
1818rpcalc rpcalc.tab.c rpcalc.y
1819@end group
1820@end example
1821
1822The file @file{rpcalc} now contains the executable code. Here is an
1823example session using @code{rpcalc}.
1824
1825@example
9edcd895
AD
1826$ @kbd{rpcalc}
1827@kbd{4 9 +}
bfa74976 182813
9edcd895 1829@kbd{3 7 + 3 4 5 *+-}
bfa74976 1830-13
9edcd895 1831@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183213
9edcd895 1833@kbd{5 6 / 4 n +}
bfa74976 1834-3.166666667
9edcd895 1835@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183681
9edcd895
AD
1837@kbd{^D} @r{End-of-file indicator}
1838$
bfa74976
RS
1839@end example
1840
342b8b6e 1841@node Infix Calc
bfa74976
RS
1842@section Infix Notation Calculator: @code{calc}
1843@cindex infix notation calculator
1844@cindex @code{calc}
1845@cindex calculator, infix notation
1846
1847We now modify rpcalc to handle infix operators instead of postfix. Infix
1848notation involves the concept of operator precedence and the need for
1849parentheses nested to arbitrary depth. Here is the Bison code for
1850@file{calc.y}, an infix desk-top calculator.
1851
1852@example
38a92d50 1853/* Infix notation calculator. */
bfa74976
RS
1854
1855%@{
38a92d50
PE
1856 #define YYSTYPE double
1857 #include <math.h>
1858 #include <stdio.h>
1859 int yylex (void);
1860 void yyerror (char const *);
bfa74976
RS
1861%@}
1862
38a92d50 1863/* Bison declarations. */
bfa74976
RS
1864%token NUM
1865%left '-' '+'
1866%left '*' '/'
1867%left NEG /* negation--unary minus */
38a92d50 1868%right '^' /* exponentiation */
bfa74976 1869
38a92d50
PE
1870%% /* The grammar follows. */
1871input: /* empty */
bfa74976
RS
1872 | input line
1873;
1874
1875line: '\n'
1876 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1877;
1878
1879exp: NUM @{ $$ = $1; @}
1880 | exp '+' exp @{ $$ = $1 + $3; @}
1881 | exp '-' exp @{ $$ = $1 - $3; @}
1882 | exp '*' exp @{ $$ = $1 * $3; @}
1883 | exp '/' exp @{ $$ = $1 / $3; @}
1884 | '-' exp %prec NEG @{ $$ = -$2; @}
1885 | exp '^' exp @{ $$ = pow ($1, $3); @}
1886 | '(' exp ')' @{ $$ = $2; @}
1887;
1888%%
1889@end example
1890
1891@noindent
ceed8467
AD
1892The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1893same as before.
bfa74976
RS
1894
1895There are two important new features shown in this code.
1896
1897In the second section (Bison declarations), @code{%left} declares token
1898types and says they are left-associative operators. The declarations
1899@code{%left} and @code{%right} (right associativity) take the place of
1900@code{%token} which is used to declare a token type name without
1901associativity. (These tokens are single-character literals, which
1902ordinarily don't need to be declared. We declare them here to specify
1903the associativity.)
1904
1905Operator precedence is determined by the line ordering of the
1906declarations; the higher the line number of the declaration (lower on
1907the page or screen), the higher the precedence. Hence, exponentiation
1908has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1909by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1910Precedence}.
bfa74976 1911
704a47c4
AD
1912The other important new feature is the @code{%prec} in the grammar
1913section for the unary minus operator. The @code{%prec} simply instructs
1914Bison that the rule @samp{| '-' exp} has the same precedence as
1915@code{NEG}---in this case the next-to-highest. @xref{Contextual
1916Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1917
1918Here is a sample run of @file{calc.y}:
1919
1920@need 500
1921@example
9edcd895
AD
1922$ @kbd{calc}
1923@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19246.880952381
9edcd895 1925@kbd{-56 + 2}
bfa74976 1926-54
9edcd895 1927@kbd{3 ^ 2}
bfa74976
RS
19289
1929@end example
1930
342b8b6e 1931@node Simple Error Recovery
bfa74976
RS
1932@section Simple Error Recovery
1933@cindex error recovery, simple
1934
1935Up to this point, this manual has not addressed the issue of @dfn{error
1936recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1937error. All we have handled is error reporting with @code{yyerror}.
1938Recall that by default @code{yyparse} returns after calling
1939@code{yyerror}. This means that an erroneous input line causes the
1940calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1941
1942The Bison language itself includes the reserved word @code{error}, which
1943may be included in the grammar rules. In the example below it has
1944been added to one of the alternatives for @code{line}:
1945
1946@example
1947@group
1948line: '\n'
1949 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1950 | error '\n' @{ yyerrok; @}
1951;
1952@end group
1953@end example
1954
ceed8467 1955This addition to the grammar allows for simple error recovery in the
6e649e65 1956event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1957read, the error will be recognized by the third rule for @code{line},
1958and parsing will continue. (The @code{yyerror} function is still called
1959upon to print its message as well.) The action executes the statement
1960@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1961that error recovery is complete (@pxref{Error Recovery}). Note the
1962difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1963misprint.
bfa74976
RS
1964
1965This form of error recovery deals with syntax errors. There are other
1966kinds of errors; for example, division by zero, which raises an exception
1967signal that is normally fatal. A real calculator program must handle this
1968signal and use @code{longjmp} to return to @code{main} and resume parsing
1969input lines; it would also have to discard the rest of the current line of
1970input. We won't discuss this issue further because it is not specific to
1971Bison programs.
1972
342b8b6e
AD
1973@node Location Tracking Calc
1974@section Location Tracking Calculator: @code{ltcalc}
1975@cindex location tracking calculator
1976@cindex @code{ltcalc}
1977@cindex calculator, location tracking
1978
9edcd895
AD
1979This example extends the infix notation calculator with location
1980tracking. This feature will be used to improve the error messages. For
1981the sake of clarity, this example is a simple integer calculator, since
1982most of the work needed to use locations will be done in the lexical
72d2299c 1983analyzer.
342b8b6e
AD
1984
1985@menu
f56274a8
DJ
1986* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1987* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1988* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1989@end menu
1990
f56274a8 1991@node Ltcalc Declarations
342b8b6e
AD
1992@subsection Declarations for @code{ltcalc}
1993
9edcd895
AD
1994The C and Bison declarations for the location tracking calculator are
1995the same as the declarations for the infix notation calculator.
342b8b6e
AD
1996
1997@example
1998/* Location tracking calculator. */
1999
2000%@{
38a92d50
PE
2001 #define YYSTYPE int
2002 #include <math.h>
2003 int yylex (void);
2004 void yyerror (char const *);
342b8b6e
AD
2005%@}
2006
2007/* Bison declarations. */
2008%token NUM
2009
2010%left '-' '+'
2011%left '*' '/'
2012%left NEG
2013%right '^'
2014
38a92d50 2015%% /* The grammar follows. */
342b8b6e
AD
2016@end example
2017
9edcd895
AD
2018@noindent
2019Note there are no declarations specific to locations. Defining a data
2020type for storing locations is not needed: we will use the type provided
2021by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2022four member structure with the following integer fields:
2023@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2024@code{last_column}. By conventions, and in accordance with the GNU
2025Coding Standards and common practice, the line and column count both
2026start at 1.
342b8b6e
AD
2027
2028@node Ltcalc Rules
2029@subsection Grammar Rules for @code{ltcalc}
2030
9edcd895
AD
2031Whether handling locations or not has no effect on the syntax of your
2032language. Therefore, grammar rules for this example will be very close
2033to those of the previous example: we will only modify them to benefit
2034from the new information.
342b8b6e 2035
9edcd895
AD
2036Here, we will use locations to report divisions by zero, and locate the
2037wrong expressions or subexpressions.
342b8b6e
AD
2038
2039@example
2040@group
2041input : /* empty */
2042 | input line
2043;
2044@end group
2045
2046@group
2047line : '\n'
2048 | exp '\n' @{ printf ("%d\n", $1); @}
2049;
2050@end group
2051
2052@group
2053exp : NUM @{ $$ = $1; @}
2054 | exp '+' exp @{ $$ = $1 + $3; @}
2055 | exp '-' exp @{ $$ = $1 - $3; @}
2056 | exp '*' exp @{ $$ = $1 * $3; @}
2057@end group
342b8b6e 2058@group
9edcd895 2059 | exp '/' exp
342b8b6e
AD
2060 @{
2061 if ($3)
2062 $$ = $1 / $3;
2063 else
2064 @{
2065 $$ = 1;
9edcd895
AD
2066 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2067 @@3.first_line, @@3.first_column,
2068 @@3.last_line, @@3.last_column);
342b8b6e
AD
2069 @}
2070 @}
2071@end group
2072@group
178e123e 2073 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2074 | exp '^' exp @{ $$ = pow ($1, $3); @}
2075 | '(' exp ')' @{ $$ = $2; @}
2076@end group
2077@end example
2078
2079This code shows how to reach locations inside of semantic actions, by
2080using the pseudo-variables @code{@@@var{n}} for rule components, and the
2081pseudo-variable @code{@@$} for groupings.
2082
9edcd895
AD
2083We don't need to assign a value to @code{@@$}: the output parser does it
2084automatically. By default, before executing the C code of each action,
2085@code{@@$} is set to range from the beginning of @code{@@1} to the end
2086of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2087can be redefined (@pxref{Location Default Action, , Default Action for
2088Locations}), and for very specific rules, @code{@@$} can be computed by
2089hand.
342b8b6e
AD
2090
2091@node Ltcalc Lexer
2092@subsection The @code{ltcalc} Lexical Analyzer.
2093
9edcd895 2094Until now, we relied on Bison's defaults to enable location
72d2299c 2095tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2096able to feed the parser with the token locations, as it already does for
2097semantic values.
342b8b6e 2098
9edcd895
AD
2099To this end, we must take into account every single character of the
2100input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2101
2102@example
2103@group
2104int
2105yylex (void)
2106@{
2107 int c;
18b519c0 2108@end group
342b8b6e 2109
18b519c0 2110@group
72d2299c 2111 /* Skip white space. */
342b8b6e
AD
2112 while ((c = getchar ()) == ' ' || c == '\t')
2113 ++yylloc.last_column;
18b519c0 2114@end group
342b8b6e 2115
18b519c0 2116@group
72d2299c 2117 /* Step. */
342b8b6e
AD
2118 yylloc.first_line = yylloc.last_line;
2119 yylloc.first_column = yylloc.last_column;
2120@end group
2121
2122@group
72d2299c 2123 /* Process numbers. */
342b8b6e
AD
2124 if (isdigit (c))
2125 @{
2126 yylval = c - '0';
2127 ++yylloc.last_column;
2128 while (isdigit (c = getchar ()))
2129 @{
2130 ++yylloc.last_column;
2131 yylval = yylval * 10 + c - '0';
2132 @}
2133 ungetc (c, stdin);
2134 return NUM;
2135 @}
2136@end group
2137
72d2299c 2138 /* Return end-of-input. */
342b8b6e
AD
2139 if (c == EOF)
2140 return 0;
2141
72d2299c 2142 /* Return a single char, and update location. */
342b8b6e
AD
2143 if (c == '\n')
2144 @{
2145 ++yylloc.last_line;
2146 yylloc.last_column = 0;
2147 @}
2148 else
2149 ++yylloc.last_column;
2150 return c;
2151@}
2152@end example
2153
9edcd895
AD
2154Basically, the lexical analyzer performs the same processing as before:
2155it skips blanks and tabs, and reads numbers or single-character tokens.
2156In addition, it updates @code{yylloc}, the global variable (of type
2157@code{YYLTYPE}) containing the token's location.
342b8b6e 2158
9edcd895 2159Now, each time this function returns a token, the parser has its number
72d2299c 2160as well as its semantic value, and its location in the text. The last
9edcd895
AD
2161needed change is to initialize @code{yylloc}, for example in the
2162controlling function:
342b8b6e
AD
2163
2164@example
9edcd895 2165@group
342b8b6e
AD
2166int
2167main (void)
2168@{
2169 yylloc.first_line = yylloc.last_line = 1;
2170 yylloc.first_column = yylloc.last_column = 0;
2171 return yyparse ();
2172@}
9edcd895 2173@end group
342b8b6e
AD
2174@end example
2175
9edcd895
AD
2176Remember that computing locations is not a matter of syntax. Every
2177character must be associated to a location update, whether it is in
2178valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2179
2180@node Multi-function Calc
bfa74976
RS
2181@section Multi-Function Calculator: @code{mfcalc}
2182@cindex multi-function calculator
2183@cindex @code{mfcalc}
2184@cindex calculator, multi-function
2185
2186Now that the basics of Bison have been discussed, it is time to move on to
2187a more advanced problem. The above calculators provided only five
2188functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2189be nice to have a calculator that provides other mathematical functions such
2190as @code{sin}, @code{cos}, etc.
2191
2192It is easy to add new operators to the infix calculator as long as they are
2193only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2194back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2195adding a new operator. But we want something more flexible: built-in
2196functions whose syntax has this form:
2197
2198@example
2199@var{function_name} (@var{argument})
2200@end example
2201
2202@noindent
2203At the same time, we will add memory to the calculator, by allowing you
2204to create named variables, store values in them, and use them later.
2205Here is a sample session with the multi-function calculator:
2206
2207@example
9edcd895
AD
2208$ @kbd{mfcalc}
2209@kbd{pi = 3.141592653589}
bfa74976 22103.1415926536
9edcd895 2211@kbd{sin(pi)}
bfa74976 22120.0000000000
9edcd895 2213@kbd{alpha = beta1 = 2.3}
bfa74976 22142.3000000000
9edcd895 2215@kbd{alpha}
bfa74976 22162.3000000000
9edcd895 2217@kbd{ln(alpha)}
bfa74976 22180.8329091229
9edcd895 2219@kbd{exp(ln(beta1))}
bfa74976 22202.3000000000
9edcd895 2221$
bfa74976
RS
2222@end example
2223
2224Note that multiple assignment and nested function calls are permitted.
2225
2226@menu
f56274a8
DJ
2227* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2228* Mfcalc Rules:: Grammar rules for the calculator.
2229* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2230@end menu
2231
f56274a8 2232@node Mfcalc Declarations
bfa74976
RS
2233@subsection Declarations for @code{mfcalc}
2234
2235Here are the C and Bison declarations for the multi-function calculator.
2236
2237@smallexample
18b519c0 2238@group
bfa74976 2239%@{
38a92d50
PE
2240 #include <math.h> /* For math functions, cos(), sin(), etc. */
2241 #include "calc.h" /* Contains definition of `symrec'. */
2242 int yylex (void);
2243 void yyerror (char const *);
bfa74976 2244%@}
18b519c0
AD
2245@end group
2246@group
bfa74976 2247%union @{
38a92d50
PE
2248 double val; /* For returning numbers. */
2249 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2250@}
18b519c0 2251@end group
38a92d50
PE
2252%token <val> NUM /* Simple double precision number. */
2253%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2254%type <val> exp
2255
18b519c0 2256@group
bfa74976
RS
2257%right '='
2258%left '-' '+'
2259%left '*' '/'
38a92d50
PE
2260%left NEG /* negation--unary minus */
2261%right '^' /* exponentiation */
18b519c0 2262@end group
38a92d50 2263%% /* The grammar follows. */
bfa74976
RS
2264@end smallexample
2265
2266The above grammar introduces only two new features of the Bison language.
2267These features allow semantic values to have various data types
2268(@pxref{Multiple Types, ,More Than One Value Type}).
2269
2270The @code{%union} declaration specifies the entire list of possible types;
2271this is instead of defining @code{YYSTYPE}. The allowable types are now
2272double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2273the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2274
2275Since values can now have various types, it is necessary to associate a
2276type with each grammar symbol whose semantic value is used. These symbols
2277are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2278declarations are augmented with information about their data type (placed
2279between angle brackets).
2280
704a47c4
AD
2281The Bison construct @code{%type} is used for declaring nonterminal
2282symbols, just as @code{%token} is used for declaring token types. We
2283have not used @code{%type} before because nonterminal symbols are
2284normally declared implicitly by the rules that define them. But
2285@code{exp} must be declared explicitly so we can specify its value type.
2286@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2287
342b8b6e 2288@node Mfcalc Rules
bfa74976
RS
2289@subsection Grammar Rules for @code{mfcalc}
2290
2291Here are the grammar rules for the multi-function calculator.
2292Most of them are copied directly from @code{calc}; three rules,
2293those which mention @code{VAR} or @code{FNCT}, are new.
2294
2295@smallexample
18b519c0 2296@group
bfa74976
RS
2297input: /* empty */
2298 | input line
2299;
18b519c0 2300@end group
bfa74976 2301
18b519c0 2302@group
bfa74976
RS
2303line:
2304 '\n'
2305 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2306 | error '\n' @{ yyerrok; @}
2307;
18b519c0 2308@end group
bfa74976 2309
18b519c0 2310@group
bfa74976
RS
2311exp: NUM @{ $$ = $1; @}
2312 | VAR @{ $$ = $1->value.var; @}
2313 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2314 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2315 | exp '+' exp @{ $$ = $1 + $3; @}
2316 | exp '-' exp @{ $$ = $1 - $3; @}
2317 | exp '*' exp @{ $$ = $1 * $3; @}
2318 | exp '/' exp @{ $$ = $1 / $3; @}
2319 | '-' exp %prec NEG @{ $$ = -$2; @}
2320 | exp '^' exp @{ $$ = pow ($1, $3); @}
2321 | '(' exp ')' @{ $$ = $2; @}
2322;
18b519c0 2323@end group
38a92d50 2324/* End of grammar. */
bfa74976
RS
2325%%
2326@end smallexample
2327
f56274a8 2328@node Mfcalc Symbol Table
bfa74976
RS
2329@subsection The @code{mfcalc} Symbol Table
2330@cindex symbol table example
2331
2332The multi-function calculator requires a symbol table to keep track of the
2333names and meanings of variables and functions. This doesn't affect the
2334grammar rules (except for the actions) or the Bison declarations, but it
2335requires some additional C functions for support.
2336
2337The symbol table itself consists of a linked list of records. Its
2338definition, which is kept in the header @file{calc.h}, is as follows. It
2339provides for either functions or variables to be placed in the table.
2340
2341@smallexample
2342@group
38a92d50 2343/* Function type. */
32dfccf8 2344typedef double (*func_t) (double);
72f889cc 2345@end group
32dfccf8 2346
72f889cc 2347@group
38a92d50 2348/* Data type for links in the chain of symbols. */
bfa74976
RS
2349struct symrec
2350@{
38a92d50 2351 char *name; /* name of symbol */
bfa74976 2352 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2353 union
2354 @{
38a92d50
PE
2355 double var; /* value of a VAR */
2356 func_t fnctptr; /* value of a FNCT */
bfa74976 2357 @} value;
38a92d50 2358 struct symrec *next; /* link field */
bfa74976
RS
2359@};
2360@end group
2361
2362@group
2363typedef struct symrec symrec;
2364
38a92d50 2365/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2366extern symrec *sym_table;
2367
a730d142 2368symrec *putsym (char const *, int);
38a92d50 2369symrec *getsym (char const *);
bfa74976
RS
2370@end group
2371@end smallexample
2372
2373The new version of @code{main} includes a call to @code{init_table}, a
2374function that initializes the symbol table. Here it is, and
2375@code{init_table} as well:
2376
2377@smallexample
bfa74976
RS
2378#include <stdio.h>
2379
18b519c0 2380@group
38a92d50 2381/* Called by yyparse on error. */
13863333 2382void
38a92d50 2383yyerror (char const *s)
bfa74976
RS
2384@{
2385 printf ("%s\n", s);
2386@}
18b519c0 2387@end group
bfa74976 2388
18b519c0 2389@group
bfa74976
RS
2390struct init
2391@{
38a92d50
PE
2392 char const *fname;
2393 double (*fnct) (double);
bfa74976
RS
2394@};
2395@end group
2396
2397@group
38a92d50 2398struct init const arith_fncts[] =
13863333 2399@{
32dfccf8
AD
2400 "sin", sin,
2401 "cos", cos,
13863333 2402 "atan", atan,
32dfccf8
AD
2403 "ln", log,
2404 "exp", exp,
13863333
AD
2405 "sqrt", sqrt,
2406 0, 0
2407@};
18b519c0 2408@end group
bfa74976 2409
18b519c0 2410@group
bfa74976 2411/* The symbol table: a chain of `struct symrec'. */
38a92d50 2412symrec *sym_table;
bfa74976
RS
2413@end group
2414
2415@group
72d2299c 2416/* Put arithmetic functions in table. */
13863333
AD
2417void
2418init_table (void)
bfa74976
RS
2419@{
2420 int i;
2421 symrec *ptr;
2422 for (i = 0; arith_fncts[i].fname != 0; i++)
2423 @{
2424 ptr = putsym (arith_fncts[i].fname, FNCT);
2425 ptr->value.fnctptr = arith_fncts[i].fnct;
2426 @}
2427@}
2428@end group
38a92d50
PE
2429
2430@group
2431int
2432main (void)
2433@{
2434 init_table ();
2435 return yyparse ();
2436@}
2437@end group
bfa74976
RS
2438@end smallexample
2439
2440By simply editing the initialization list and adding the necessary include
2441files, you can add additional functions to the calculator.
2442
2443Two important functions allow look-up and installation of symbols in the
2444symbol table. The function @code{putsym} is passed a name and the type
2445(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2446linked to the front of the list, and a pointer to the object is returned.
2447The function @code{getsym} is passed the name of the symbol to look up. If
2448found, a pointer to that symbol is returned; otherwise zero is returned.
2449
2450@smallexample
2451symrec *
38a92d50 2452putsym (char const *sym_name, int sym_type)
bfa74976
RS
2453@{
2454 symrec *ptr;
2455 ptr = (symrec *) malloc (sizeof (symrec));
2456 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2457 strcpy (ptr->name,sym_name);
2458 ptr->type = sym_type;
72d2299c 2459 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2460 ptr->next = (struct symrec *)sym_table;
2461 sym_table = ptr;
2462 return ptr;
2463@}
2464
2465symrec *
38a92d50 2466getsym (char const *sym_name)
bfa74976
RS
2467@{
2468 symrec *ptr;
2469 for (ptr = sym_table; ptr != (symrec *) 0;
2470 ptr = (symrec *)ptr->next)
2471 if (strcmp (ptr->name,sym_name) == 0)
2472 return ptr;
2473 return 0;
2474@}
2475@end smallexample
2476
2477The function @code{yylex} must now recognize variables, numeric values, and
2478the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2479characters with a leading letter are recognized as either variables or
bfa74976
RS
2480functions depending on what the symbol table says about them.
2481
2482The string is passed to @code{getsym} for look up in the symbol table. If
2483the name appears in the table, a pointer to its location and its type
2484(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2485already in the table, then it is installed as a @code{VAR} using
2486@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2487returned to @code{yyparse}.
bfa74976
RS
2488
2489No change is needed in the handling of numeric values and arithmetic
2490operators in @code{yylex}.
2491
2492@smallexample
2493@group
2494#include <ctype.h>
18b519c0 2495@end group
13863333 2496
18b519c0 2497@group
13863333
AD
2498int
2499yylex (void)
bfa74976
RS
2500@{
2501 int c;
2502
72d2299c 2503 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2504 while ((c = getchar ()) == ' ' || c == '\t');
2505
2506 if (c == EOF)
2507 return 0;
2508@end group
2509
2510@group
2511 /* Char starts a number => parse the number. */
2512 if (c == '.' || isdigit (c))
2513 @{
2514 ungetc (c, stdin);
2515 scanf ("%lf", &yylval.val);
2516 return NUM;
2517 @}
2518@end group
2519
2520@group
2521 /* Char starts an identifier => read the name. */
2522 if (isalpha (c))
2523 @{
2524 symrec *s;
2525 static char *symbuf = 0;
2526 static int length = 0;
2527 int i;
2528@end group
2529
2530@group
2531 /* Initially make the buffer long enough
2532 for a 40-character symbol name. */
2533 if (length == 0)
2534 length = 40, symbuf = (char *)malloc (length + 1);
2535
2536 i = 0;
2537 do
2538@end group
2539@group
2540 @{
2541 /* If buffer is full, make it bigger. */
2542 if (i == length)
2543 @{
2544 length *= 2;
18b519c0 2545 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2546 @}
2547 /* Add this character to the buffer. */
2548 symbuf[i++] = c;
2549 /* Get another character. */
2550 c = getchar ();
2551 @}
2552@end group
2553@group
72d2299c 2554 while (isalnum (c));
bfa74976
RS
2555
2556 ungetc (c, stdin);
2557 symbuf[i] = '\0';
2558@end group
2559
2560@group
2561 s = getsym (symbuf);
2562 if (s == 0)
2563 s = putsym (symbuf, VAR);
2564 yylval.tptr = s;
2565 return s->type;
2566 @}
2567
2568 /* Any other character is a token by itself. */
2569 return c;
2570@}
2571@end group
2572@end smallexample
2573
72d2299c 2574This program is both powerful and flexible. You may easily add new
704a47c4
AD
2575functions, and it is a simple job to modify this code to install
2576predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2577
342b8b6e 2578@node Exercises
bfa74976
RS
2579@section Exercises
2580@cindex exercises
2581
2582@enumerate
2583@item
2584Add some new functions from @file{math.h} to the initialization list.
2585
2586@item
2587Add another array that contains constants and their values. Then
2588modify @code{init_table} to add these constants to the symbol table.
2589It will be easiest to give the constants type @code{VAR}.
2590
2591@item
2592Make the program report an error if the user refers to an
2593uninitialized variable in any way except to store a value in it.
2594@end enumerate
2595
342b8b6e 2596@node Grammar File
bfa74976
RS
2597@chapter Bison Grammar Files
2598
2599Bison takes as input a context-free grammar specification and produces a
2600C-language function that recognizes correct instances of the grammar.
2601
2602The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2603@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2604
2605@menu
2606* Grammar Outline:: Overall layout of the grammar file.
2607* Symbols:: Terminal and nonterminal symbols.
2608* Rules:: How to write grammar rules.
2609* Recursion:: Writing recursive rules.
2610* Semantics:: Semantic values and actions.
847bf1f5 2611* Locations:: Locations and actions.
bfa74976
RS
2612* Declarations:: All kinds of Bison declarations are described here.
2613* Multiple Parsers:: Putting more than one Bison parser in one program.
2614@end menu
2615
342b8b6e 2616@node Grammar Outline
bfa74976
RS
2617@section Outline of a Bison Grammar
2618
2619A Bison grammar file has four main sections, shown here with the
2620appropriate delimiters:
2621
2622@example
2623%@{
38a92d50 2624 @var{Prologue}
bfa74976
RS
2625%@}
2626
2627@var{Bison declarations}
2628
2629%%
2630@var{Grammar rules}
2631%%
2632
75f5aaea 2633@var{Epilogue}
bfa74976
RS
2634@end example
2635
2636Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2637As a @acronym{GNU} extension, @samp{//} introduces a comment that
2638continues until end of line.
bfa74976
RS
2639
2640@menu
f56274a8 2641* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2642* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2643* Bison Declarations:: Syntax and usage of the Bison declarations section.
2644* Grammar Rules:: Syntax and usage of the grammar rules section.
2645* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2646@end menu
2647
38a92d50 2648@node Prologue
75f5aaea
MA
2649@subsection The prologue
2650@cindex declarations section
2651@cindex Prologue
2652@cindex declarations
bfa74976 2653
f8e1c9e5
AD
2654The @var{Prologue} section contains macro definitions and declarations
2655of functions and variables that are used in the actions in the grammar
2656rules. These are copied to the beginning of the parser file so that
2657they precede the definition of @code{yyparse}. You can use
2658@samp{#include} to get the declarations from a header file. If you
2659don't need any C declarations, you may omit the @samp{%@{} and
2660@samp{%@}} delimiters that bracket this section.
bfa74976 2661
9c437126 2662The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2663of @samp{%@}} that is outside a comment, a string literal, or a
2664character constant.
2665
c732d2c6
AD
2666You may have more than one @var{Prologue} section, intermixed with the
2667@var{Bison declarations}. This allows you to have C and Bison
2668declarations that refer to each other. For example, the @code{%union}
2669declaration may use types defined in a header file, and you may wish to
2670prototype functions that take arguments of type @code{YYSTYPE}. This
2671can be done with two @var{Prologue} blocks, one before and one after the
2672@code{%union} declaration.
2673
2674@smallexample
2675%@{
aef3da86 2676 #define _GNU_SOURCE
38a92d50
PE
2677 #include <stdio.h>
2678 #include "ptypes.h"
c732d2c6
AD
2679%@}
2680
2681%union @{
779e7ceb 2682 long int n;
c732d2c6
AD
2683 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2684@}
2685
2686%@{
38a92d50
PE
2687 static void print_token_value (FILE *, int, YYSTYPE);
2688 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2689%@}
2690
2691@dots{}
2692@end smallexample
2693
aef3da86
PE
2694When in doubt, it is usually safer to put prologue code before all
2695Bison declarations, rather than after. For example, any definitions
2696of feature test macros like @code{_GNU_SOURCE} or
2697@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2698feature test macros can affect the behavior of Bison-generated
2699@code{#include} directives.
2700
2cbe6b7f
JD
2701@node Prologue Alternatives
2702@subsection Prologue Alternatives
2703@cindex Prologue Alternatives
2704
136a0f76 2705@findex %code
16dc6a9e
JD
2706@findex %code requires
2707@findex %code provides
2708@findex %code top
85894313 2709
2cbe6b7f
JD
2710The functionality of @var{Prologue} sections can often be subtle and
2711inflexible.
8e0a5e9e
JD
2712As an alternative, Bison provides a %code directive with an explicit qualifier
2713field, which identifies the purpose of the code and thus the location(s) where
2714Bison should generate it.
2715For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2716one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2717@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2718
2719Look again at the example of the previous section:
2720
2721@smallexample
2722%@{
2723 #define _GNU_SOURCE
2724 #include <stdio.h>
2725 #include "ptypes.h"
2726%@}
2727
2728%union @{
2729 long int n;
2730 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2731@}
2732
2733%@{
2734 static void print_token_value (FILE *, int, YYSTYPE);
2735 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2736%@}
2737
2738@dots{}
2739@end smallexample
2740
2741@noindent
2742Notice that there are two @var{Prologue} sections here, but there's a subtle
2743distinction between their functionality.
2744For example, if you decide to override Bison's default definition for
2745@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2746definition?
2747You should write it in the first since Bison will insert that code into the
8e0a5e9e 2748parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2749In which @var{Prologue} section should you prototype an internal function,
2750@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2751arguments?
2752You should prototype it in the second since Bison will insert that code
2753@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2754
2755This distinction in functionality between the two @var{Prologue} sections is
2756established by the appearance of the @code{%union} between them.
a501eca9 2757This behavior raises a few questions.
2cbe6b7f
JD
2758First, why should the position of a @code{%union} affect definitions related to
2759@code{YYLTYPE} and @code{yytokentype}?
2760Second, what if there is no @code{%union}?
2761In that case, the second kind of @var{Prologue} section is not available.
2762This behavior is not intuitive.
2763
8e0a5e9e 2764To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2765@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2766Let's go ahead and add the new @code{YYLTYPE} definition and the
2767@code{trace_token} prototype at the same time:
2768
2769@smallexample
16dc6a9e 2770%code top @{
2cbe6b7f
JD
2771 #define _GNU_SOURCE
2772 #include <stdio.h>
8e0a5e9e
JD
2773
2774 /* WARNING: The following code really belongs
16dc6a9e 2775 * in a `%code requires'; see below. */
8e0a5e9e 2776
2cbe6b7f
JD
2777 #include "ptypes.h"
2778 #define YYLTYPE YYLTYPE
2779 typedef struct YYLTYPE
2780 @{
2781 int first_line;
2782 int first_column;
2783 int last_line;
2784 int last_column;
2785 char *filename;
2786 @} YYLTYPE;
2787@}
2788
2789%union @{
2790 long int n;
2791 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2792@}
2793
2794%code @{
2795 static void print_token_value (FILE *, int, YYSTYPE);
2796 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2797 static void trace_token (enum yytokentype token, YYLTYPE loc);
2798@}
2799
2800@dots{}
2801@end smallexample
2802
2803@noindent
16dc6a9e
JD
2804In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2805functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2806explicit which kind you intend.
2cbe6b7f
JD
2807Moreover, both kinds are always available even in the absence of @code{%union}.
2808
16dc6a9e 2809The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2810The first two lines before the warning need to appear near the top of the
2811parser source code file.
2812The first line after the warning is required by @code{YYSTYPE} and thus also
2813needs to appear in the parser source code file.
2cbe6b7f 2814However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2815(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2816the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2817The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2818override the default @code{YYLTYPE} definition there.
2819
16dc6a9e 2820In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2821lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2822definitions.
16dc6a9e 2823Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2824
2825@smallexample
16dc6a9e 2826%code top @{
2cbe6b7f
JD
2827 #define _GNU_SOURCE
2828 #include <stdio.h>
2829@}
2830
16dc6a9e 2831%code requires @{
9bc0dd67
JD
2832 #include "ptypes.h"
2833@}
2834%union @{
2835 long int n;
2836 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2837@}
2838
16dc6a9e 2839%code requires @{
2cbe6b7f
JD
2840 #define YYLTYPE YYLTYPE
2841 typedef struct YYLTYPE
2842 @{
2843 int first_line;
2844 int first_column;
2845 int last_line;
2846 int last_column;
2847 char *filename;
2848 @} YYLTYPE;
2849@}
2850
136a0f76 2851%code @{
2cbe6b7f
JD
2852 static void print_token_value (FILE *, int, YYSTYPE);
2853 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2854 static void trace_token (enum yytokentype token, YYLTYPE loc);
2855@}
2856
2857@dots{}
2858@end smallexample
2859
2860@noindent
2861Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2862definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2863definitions in both the parser source code file and the parser header file.
16dc6a9e 2864(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2865place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2866
a501eca9 2867When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2868should prefer @code{%code requires} over @code{%code top} regardless of whether
2869you instruct Bison to generate a parser header file.
a501eca9 2870When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2871source code file and that has no special need to appear at the top of that
16dc6a9e 2872file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2873These practices will make the purpose of each block of your code explicit to
2874Bison and to other developers reading your grammar file.
8e0a5e9e 2875Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2876@code{%code requires} to be the most important of the four @var{Prologue}
2877alternatives.
a501eca9 2878
2cbe6b7f
JD
2879At some point while developing your parser, you might decide to provide
2880@code{trace_token} to modules that are external to your parser.
2881Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2882header file and the parser source code file.
2883Since this function is not a dependency required by @code{YYSTYPE} or
2884@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2885@code{%code requires}.
2cbe6b7f 2886More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2887@code{%code requires} is not sufficient.
8e0a5e9e 2888Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2889@code{%code provides}:
2cbe6b7f
JD
2890
2891@smallexample
16dc6a9e 2892%code top @{
2cbe6b7f 2893 #define _GNU_SOURCE
136a0f76 2894 #include <stdio.h>
2cbe6b7f 2895@}
136a0f76 2896
16dc6a9e 2897%code requires @{
2cbe6b7f
JD
2898 #include "ptypes.h"
2899@}
2900%union @{
2901 long int n;
2902 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2903@}
2904
16dc6a9e 2905%code requires @{
2cbe6b7f
JD
2906 #define YYLTYPE YYLTYPE
2907 typedef struct YYLTYPE
2908 @{
2909 int first_line;
2910 int first_column;
2911 int last_line;
2912 int last_column;
2913 char *filename;
2914 @} YYLTYPE;
2915@}
2916
16dc6a9e 2917%code provides @{
2cbe6b7f
JD
2918 void trace_token (enum yytokentype token, YYLTYPE loc);
2919@}
2920
2921%code @{
9bc0dd67
JD
2922 static void print_token_value (FILE *, int, YYSTYPE);
2923 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2924@}
9bc0dd67
JD
2925
2926@dots{}
2927@end smallexample
2928
2cbe6b7f
JD
2929@noindent
2930Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2931file and the parser source code file after the definitions for
2932@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2933
2934The above examples are careful to write directives in an order that reflects
8e0a5e9e 2935the layout of the generated parser source code and header files:
16dc6a9e 2936@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2937@code{%code}.
a501eca9 2938While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2939this order, Bison does not require it.
2940Instead, Bison lets you choose an organization that makes sense to you.
2941
a501eca9 2942You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2943In that case, Bison concatenates the contained code in declaration order.
2944This is the only way in which the position of one of these directives within
2945the grammar file affects its functionality.
2946
2947The result of the previous two properties is greater flexibility in how you may
2948organize your grammar file.
2949For example, you may organize semantic-type-related directives by semantic
2950type:
2951
2952@smallexample
16dc6a9e 2953%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2954%union @{ type1 field1; @}
2955%destructor @{ type1_free ($$); @} <field1>
2956%printer @{ type1_print ($$); @} <field1>
2957
16dc6a9e 2958%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2959%union @{ type2 field2; @}
2960%destructor @{ type2_free ($$); @} <field2>
2961%printer @{ type2_print ($$); @} <field2>
2962@end smallexample
2963
2964@noindent
2965You could even place each of the above directive groups in the rules section of
2966the grammar file next to the set of rules that uses the associated semantic
2967type.
61fee93e
JD
2968(In the rules section, you must terminate each of those directives with a
2969semicolon.)
2cbe6b7f
JD
2970And you don't have to worry that some directive (like a @code{%union}) in the
2971definitions section is going to adversely affect their functionality in some
2972counter-intuitive manner just because it comes first.
2973Such an organization is not possible using @var{Prologue} sections.
2974
a501eca9 2975This section has been concerned with explaining the advantages of the four
8e0a5e9e 2976@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2977However, in most cases when using these directives, you shouldn't need to
2978think about all the low-level ordering issues discussed here.
2979Instead, you should simply use these directives to label each block of your
2980code according to its purpose and let Bison handle the ordering.
2981@code{%code} is the most generic label.
16dc6a9e
JD
2982Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2983as needed.
a501eca9 2984
342b8b6e 2985@node Bison Declarations
bfa74976
RS
2986@subsection The Bison Declarations Section
2987@cindex Bison declarations (introduction)
2988@cindex declarations, Bison (introduction)
2989
2990The @var{Bison declarations} section contains declarations that define
2991terminal and nonterminal symbols, specify precedence, and so on.
2992In some simple grammars you may not need any declarations.
2993@xref{Declarations, ,Bison Declarations}.
2994
342b8b6e 2995@node Grammar Rules
bfa74976
RS
2996@subsection The Grammar Rules Section
2997@cindex grammar rules section
2998@cindex rules section for grammar
2999
3000The @dfn{grammar rules} section contains one or more Bison grammar
3001rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3002
3003There must always be at least one grammar rule, and the first
3004@samp{%%} (which precedes the grammar rules) may never be omitted even
3005if it is the first thing in the file.
3006
38a92d50 3007@node Epilogue
75f5aaea 3008@subsection The epilogue
bfa74976 3009@cindex additional C code section
75f5aaea 3010@cindex epilogue
bfa74976
RS
3011@cindex C code, section for additional
3012
08e49d20
PE
3013The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3014the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3015place to put anything that you want to have in the parser file but which need
3016not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3017definitions of @code{yylex} and @code{yyerror} often go here. Because
3018C requires functions to be declared before being used, you often need
3019to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3020even if you define them in the Epilogue.
75f5aaea 3021@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3022
3023If the last section is empty, you may omit the @samp{%%} that separates it
3024from the grammar rules.
3025
f8e1c9e5
AD
3026The Bison parser itself contains many macros and identifiers whose names
3027start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3028any such names (except those documented in this manual) in the epilogue
3029of the grammar file.
bfa74976 3030
342b8b6e 3031@node Symbols
bfa74976
RS
3032@section Symbols, Terminal and Nonterminal
3033@cindex nonterminal symbol
3034@cindex terminal symbol
3035@cindex token type
3036@cindex symbol
3037
3038@dfn{Symbols} in Bison grammars represent the grammatical classifications
3039of the language.
3040
3041A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3042class of syntactically equivalent tokens. You use the symbol in grammar
3043rules to mean that a token in that class is allowed. The symbol is
3044represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3045function returns a token type code to indicate what kind of token has
3046been read. You don't need to know what the code value is; you can use
3047the symbol to stand for it.
bfa74976 3048
f8e1c9e5
AD
3049A @dfn{nonterminal symbol} stands for a class of syntactically
3050equivalent groupings. The symbol name is used in writing grammar rules.
3051By convention, it should be all lower case.
bfa74976 3052
c046698e
AD
3053Symbol names can contain letters, underscores, periods, dashes, and (not
3054at the beginning) digits. Dashes in symbol names are a GNU
663ce7bb
AD
3055extension, incompatible with @acronym{POSIX} Yacc. Terminal symbols
3056that contain periods or dashes make little sense: since they are not
3057valid symbols (in most programming languages) they are not exported as
3058token names.
bfa74976 3059
931c7513 3060There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3061
3062@itemize @bullet
3063@item
3064A @dfn{named token type} is written with an identifier, like an
c827f760 3065identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3066such name must be defined with a Bison declaration such as
3067@code{%token}. @xref{Token Decl, ,Token Type Names}.
3068
3069@item
3070@cindex character token
3071@cindex literal token
3072@cindex single-character literal
931c7513
RS
3073A @dfn{character token type} (or @dfn{literal character token}) is
3074written in the grammar using the same syntax used in C for character
3075constants; for example, @code{'+'} is a character token type. A
3076character token type doesn't need to be declared unless you need to
3077specify its semantic value data type (@pxref{Value Type, ,Data Types of
3078Semantic Values}), associativity, or precedence (@pxref{Precedence,
3079,Operator Precedence}).
bfa74976
RS
3080
3081By convention, a character token type is used only to represent a
3082token that consists of that particular character. Thus, the token
3083type @code{'+'} is used to represent the character @samp{+} as a
3084token. Nothing enforces this convention, but if you depart from it,
3085your program will confuse other readers.
3086
3087All the usual escape sequences used in character literals in C can be
3088used in Bison as well, but you must not use the null character as a
72d2299c
PE
3089character literal because its numeric code, zero, signifies
3090end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3091for @code{yylex}}). Also, unlike standard C, trigraphs have no
3092special meaning in Bison character literals, nor is backslash-newline
3093allowed.
931c7513
RS
3094
3095@item
3096@cindex string token
3097@cindex literal string token
9ecbd125 3098@cindex multicharacter literal
931c7513
RS
3099A @dfn{literal string token} is written like a C string constant; for
3100example, @code{"<="} is a literal string token. A literal string token
3101doesn't need to be declared unless you need to specify its semantic
14ded682 3102value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3103(@pxref{Precedence}).
3104
3105You can associate the literal string token with a symbolic name as an
3106alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3107Declarations}). If you don't do that, the lexical analyzer has to
3108retrieve the token number for the literal string token from the
3109@code{yytname} table (@pxref{Calling Convention}).
3110
c827f760 3111@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3112
3113By convention, a literal string token is used only to represent a token
3114that consists of that particular string. Thus, you should use the token
3115type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3116does not enforce this convention, but if you depart from it, people who
931c7513
RS
3117read your program will be confused.
3118
3119All the escape sequences used in string literals in C can be used in
92ac3705
PE
3120Bison as well, except that you must not use a null character within a
3121string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3122meaning in Bison string literals, nor is backslash-newline allowed. A
3123literal string token must contain two or more characters; for a token
3124containing just one character, use a character token (see above).
bfa74976
RS
3125@end itemize
3126
3127How you choose to write a terminal symbol has no effect on its
3128grammatical meaning. That depends only on where it appears in rules and
3129on when the parser function returns that symbol.
3130
72d2299c
PE
3131The value returned by @code{yylex} is always one of the terminal
3132symbols, except that a zero or negative value signifies end-of-input.
3133Whichever way you write the token type in the grammar rules, you write
3134it the same way in the definition of @code{yylex}. The numeric code
3135for a character token type is simply the positive numeric code of the
3136character, so @code{yylex} can use the identical value to generate the
3137requisite code, though you may need to convert it to @code{unsigned
3138char} to avoid sign-extension on hosts where @code{char} is signed.
3139Each named token type becomes a C macro in
bfa74976 3140the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3141(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3142@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3143
3144If @code{yylex} is defined in a separate file, you need to arrange for the
3145token-type macro definitions to be available there. Use the @samp{-d}
3146option when you run Bison, so that it will write these macro definitions
3147into a separate header file @file{@var{name}.tab.h} which you can include
3148in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3149
72d2299c 3150If you want to write a grammar that is portable to any Standard C
9d9b8b70 3151host, you must use only nonnull character tokens taken from the basic
c827f760 3152execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3153digits, the 52 lower- and upper-case English letters, and the
3154characters in the following C-language string:
3155
3156@example
3157"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3158@end example
3159
f8e1c9e5
AD
3160The @code{yylex} function and Bison must use a consistent character set
3161and encoding for character tokens. For example, if you run Bison in an
3162@acronym{ASCII} environment, but then compile and run the resulting
3163program in an environment that uses an incompatible character set like
3164@acronym{EBCDIC}, the resulting program may not work because the tables
3165generated by Bison will assume @acronym{ASCII} numeric values for
3166character tokens. It is standard practice for software distributions to
3167contain C source files that were generated by Bison in an
3168@acronym{ASCII} environment, so installers on platforms that are
3169incompatible with @acronym{ASCII} must rebuild those files before
3170compiling them.
e966383b 3171
bfa74976
RS
3172The symbol @code{error} is a terminal symbol reserved for error recovery
3173(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3174In particular, @code{yylex} should never return this value. The default
3175value of the error token is 256, unless you explicitly assigned 256 to
3176one of your tokens with a @code{%token} declaration.
bfa74976 3177
342b8b6e 3178@node Rules
bfa74976
RS
3179@section Syntax of Grammar Rules
3180@cindex rule syntax
3181@cindex grammar rule syntax
3182@cindex syntax of grammar rules
3183
3184A Bison grammar rule has the following general form:
3185
3186@example
e425e872 3187@group
bfa74976
RS
3188@var{result}: @var{components}@dots{}
3189 ;
e425e872 3190@end group
bfa74976
RS
3191@end example
3192
3193@noindent
9ecbd125 3194where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3195and @var{components} are various terminal and nonterminal symbols that
13863333 3196are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3197
3198For example,
3199
3200@example
3201@group
3202exp: exp '+' exp
3203 ;
3204@end group
3205@end example
3206
3207@noindent
3208says that two groupings of type @code{exp}, with a @samp{+} token in between,
3209can be combined into a larger grouping of type @code{exp}.
3210
72d2299c
PE
3211White space in rules is significant only to separate symbols. You can add
3212extra white space as you wish.
bfa74976
RS
3213
3214Scattered among the components can be @var{actions} that determine
3215the semantics of the rule. An action looks like this:
3216
3217@example
3218@{@var{C statements}@}
3219@end example
3220
3221@noindent
287c78f6
PE
3222@cindex braced code
3223This is an example of @dfn{braced code}, that is, C code surrounded by
3224braces, much like a compound statement in C@. Braced code can contain
3225any sequence of C tokens, so long as its braces are balanced. Bison
3226does not check the braced code for correctness directly; it merely
3227copies the code to the output file, where the C compiler can check it.
3228
3229Within braced code, the balanced-brace count is not affected by braces
3230within comments, string literals, or character constants, but it is
3231affected by the C digraphs @samp{<%} and @samp{%>} that represent
3232braces. At the top level braced code must be terminated by @samp{@}}
3233and not by a digraph. Bison does not look for trigraphs, so if braced
3234code uses trigraphs you should ensure that they do not affect the
3235nesting of braces or the boundaries of comments, string literals, or
3236character constants.
3237
bfa74976
RS
3238Usually there is only one action and it follows the components.
3239@xref{Actions}.
3240
3241@findex |
3242Multiple rules for the same @var{result} can be written separately or can
3243be joined with the vertical-bar character @samp{|} as follows:
3244
bfa74976
RS
3245@example
3246@group
3247@var{result}: @var{rule1-components}@dots{}
3248 | @var{rule2-components}@dots{}
3249 @dots{}
3250 ;
3251@end group
3252@end example
bfa74976
RS
3253
3254@noindent
3255They are still considered distinct rules even when joined in this way.
3256
3257If @var{components} in a rule is empty, it means that @var{result} can
3258match the empty string. For example, here is how to define a
3259comma-separated sequence of zero or more @code{exp} groupings:
3260
3261@example
3262@group
3263expseq: /* empty */
3264 | expseq1
3265 ;
3266@end group
3267
3268@group
3269expseq1: exp
3270 | expseq1 ',' exp
3271 ;
3272@end group
3273@end example
3274
3275@noindent
3276It is customary to write a comment @samp{/* empty */} in each rule
3277with no components.
3278
342b8b6e 3279@node Recursion
bfa74976
RS
3280@section Recursive Rules
3281@cindex recursive rule
3282
f8e1c9e5
AD
3283A rule is called @dfn{recursive} when its @var{result} nonterminal
3284appears also on its right hand side. Nearly all Bison grammars need to
3285use recursion, because that is the only way to define a sequence of any
3286number of a particular thing. Consider this recursive definition of a
9ecbd125 3287comma-separated sequence of one or more expressions:
bfa74976
RS
3288
3289@example
3290@group
3291expseq1: exp
3292 | expseq1 ',' exp
3293 ;
3294@end group
3295@end example
3296
3297@cindex left recursion
3298@cindex right recursion
3299@noindent
3300Since the recursive use of @code{expseq1} is the leftmost symbol in the
3301right hand side, we call this @dfn{left recursion}. By contrast, here
3302the same construct is defined using @dfn{right recursion}:
3303
3304@example
3305@group
3306expseq1: exp
3307 | exp ',' expseq1
3308 ;
3309@end group
3310@end example
3311
3312@noindent
ec3bc396
AD
3313Any kind of sequence can be defined using either left recursion or right
3314recursion, but you should always use left recursion, because it can
3315parse a sequence of any number of elements with bounded stack space.
3316Right recursion uses up space on the Bison stack in proportion to the
3317number of elements in the sequence, because all the elements must be
3318shifted onto the stack before the rule can be applied even once.
3319@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3320of this.
bfa74976
RS
3321
3322@cindex mutual recursion
3323@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3324rule does not appear directly on its right hand side, but does appear
3325in rules for other nonterminals which do appear on its right hand
13863333 3326side.
bfa74976
RS
3327
3328For example:
3329
3330@example
3331@group
3332expr: primary
3333 | primary '+' primary
3334 ;
3335@end group
3336
3337@group
3338primary: constant
3339 | '(' expr ')'
3340 ;
3341@end group
3342@end example
3343
3344@noindent
3345defines two mutually-recursive nonterminals, since each refers to the
3346other.
3347
342b8b6e 3348@node Semantics
bfa74976
RS
3349@section Defining Language Semantics
3350@cindex defining language semantics
13863333 3351@cindex language semantics, defining
bfa74976
RS
3352
3353The grammar rules for a language determine only the syntax. The semantics
3354are determined by the semantic values associated with various tokens and
3355groupings, and by the actions taken when various groupings are recognized.
3356
3357For example, the calculator calculates properly because the value
3358associated with each expression is the proper number; it adds properly
3359because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3360the numbers associated with @var{x} and @var{y}.
3361
3362@menu
3363* Value Type:: Specifying one data type for all semantic values.
3364* Multiple Types:: Specifying several alternative data types.
3365* Actions:: An action is the semantic definition of a grammar rule.
3366* Action Types:: Specifying data types for actions to operate on.
3367* Mid-Rule Actions:: Most actions go at the end of a rule.
3368 This says when, why and how to use the exceptional
3369 action in the middle of a rule.
1f68dca5 3370* Named References:: Using named references in actions.
bfa74976
RS
3371@end menu
3372
342b8b6e 3373@node Value Type
bfa74976
RS
3374@subsection Data Types of Semantic Values
3375@cindex semantic value type
3376@cindex value type, semantic
3377@cindex data types of semantic values
3378@cindex default data type
3379
3380In a simple program it may be sufficient to use the same data type for
3381the semantic values of all language constructs. This was true in the
c827f760 3382@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3383Notation Calculator}).
bfa74976 3384
ddc8ede1
PE
3385Bison normally uses the type @code{int} for semantic values if your
3386program uses the same data type for all language constructs. To
bfa74976
RS
3387specify some other type, define @code{YYSTYPE} as a macro, like this:
3388
3389@example
3390#define YYSTYPE double
3391@end example
3392
3393@noindent
50cce58e
PE
3394@code{YYSTYPE}'s replacement list should be a type name
3395that does not contain parentheses or square brackets.
342b8b6e 3396This macro definition must go in the prologue of the grammar file
75f5aaea 3397(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3398
342b8b6e 3399@node Multiple Types
bfa74976
RS
3400@subsection More Than One Value Type
3401
3402In most programs, you will need different data types for different kinds
3403of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3404@code{int} or @code{long int}, while a string constant needs type
3405@code{char *}, and an identifier might need a pointer to an entry in the
3406symbol table.
bfa74976
RS
3407
3408To use more than one data type for semantic values in one parser, Bison
3409requires you to do two things:
3410
3411@itemize @bullet
3412@item
ddc8ede1 3413Specify the entire collection of possible data types, either by using the
704a47c4 3414@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3415Value Types}), or by using a @code{typedef} or a @code{#define} to
3416define @code{YYSTYPE} to be a union type whose member names are
3417the type tags.
bfa74976
RS
3418
3419@item
14ded682
AD
3420Choose one of those types for each symbol (terminal or nonterminal) for
3421which semantic values are used. This is done for tokens with the
3422@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3423and for groupings with the @code{%type} Bison declaration (@pxref{Type
3424Decl, ,Nonterminal Symbols}).
bfa74976
RS
3425@end itemize
3426
342b8b6e 3427@node Actions
bfa74976
RS
3428@subsection Actions
3429@cindex action
3430@vindex $$
3431@vindex $@var{n}
1f68dca5
AR
3432@vindex $@var{name}
3433@vindex $[@var{name}]
bfa74976
RS
3434
3435An action accompanies a syntactic rule and contains C code to be executed
3436each time an instance of that rule is recognized. The task of most actions
3437is to compute a semantic value for the grouping built by the rule from the
3438semantic values associated with tokens or smaller groupings.
3439
287c78f6
PE
3440An action consists of braced code containing C statements, and can be
3441placed at any position in the rule;
704a47c4
AD
3442it is executed at that position. Most rules have just one action at the
3443end of the rule, following all the components. Actions in the middle of
3444a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3445Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3446
3447The C code in an action can refer to the semantic values of the components
3448matched by the rule with the construct @code{$@var{n}}, which stands for
3449the value of the @var{n}th component. The semantic value for the grouping
1f68dca5
AR
3450being constructed is @code{$$}. In addition, the semantic values of
3451symbols can be accessed with the named references construct
3452@code{$@var{name}} or @code{$[@var{name}]}. Bison translates both of these
0cc3da3a 3453constructs into expressions of the appropriate type when it copies the
1f68dca5
AR
3454actions into the parser file. @code{$$} (or @code{$@var{name}}, when it
3455stands for the current grouping) is translated to a modifiable
0cc3da3a 3456lvalue, so it can be assigned to.
bfa74976
RS
3457
3458Here is a typical example:
3459
3460@example
3461@group
3462exp: @dots{}
3463 | exp '+' exp
3464 @{ $$ = $1 + $3; @}
3465@end group
3466@end example
3467
1f68dca5
AR
3468Or, in terms of named references:
3469
3470@example
3471@group
3472exp[result]: @dots{}
3473 | exp[left] '+' exp[right]
3474 @{ $result = $left + $right; @}
3475@end group
3476@end example
3477
bfa74976
RS
3478@noindent
3479This rule constructs an @code{exp} from two smaller @code{exp} groupings
3480connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3481(@code{$left} and @code{$right})
bfa74976
RS
3482refer to the semantic values of the two component @code{exp} groupings,
3483which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3484The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3485semantic value of
bfa74976
RS
3486the addition-expression just recognized by the rule. If there were a
3487useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3488referred to as @code{$2}.
bfa74976 3489
1f68dca5
AR
3490@xref{Named References,,Using Named References}, for more information
3491about using the named references construct.
3492
3ded9a63
AD
3493Note that the vertical-bar character @samp{|} is really a rule
3494separator, and actions are attached to a single rule. This is a
3495difference with tools like Flex, for which @samp{|} stands for either
3496``or'', or ``the same action as that of the next rule''. In the
3497following example, the action is triggered only when @samp{b} is found:
3498
3499@example
3500@group
3501a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3502@end group
3503@end example
3504
bfa74976
RS
3505@cindex default action
3506If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3507@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3508becomes the value of the whole rule. Of course, the default action is
3509valid only if the two data types match. There is no meaningful default
3510action for an empty rule; every empty rule must have an explicit action
3511unless the rule's value does not matter.
bfa74976
RS
3512
3513@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3514to tokens and groupings on the stack @emph{before} those that match the
3515current rule. This is a very risky practice, and to use it reliably
3516you must be certain of the context in which the rule is applied. Here
3517is a case in which you can use this reliably:
3518
3519@example
3520@group
3521foo: expr bar '+' expr @{ @dots{} @}
3522 | expr bar '-' expr @{ @dots{} @}
3523 ;
3524@end group
3525
3526@group
3527bar: /* empty */
3528 @{ previous_expr = $0; @}
3529 ;
3530@end group
3531@end example
3532
3533As long as @code{bar} is used only in the fashion shown here, @code{$0}
3534always refers to the @code{expr} which precedes @code{bar} in the
3535definition of @code{foo}.
3536
32c29292 3537@vindex yylval
742e4900 3538It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3539any, from a semantic action.
3540This semantic value is stored in @code{yylval}.
3541@xref{Action Features, ,Special Features for Use in Actions}.
3542
342b8b6e 3543@node Action Types
bfa74976
RS
3544@subsection Data Types of Values in Actions
3545@cindex action data types
3546@cindex data types in actions
3547
3548If you have chosen a single data type for semantic values, the @code{$$}
3549and @code{$@var{n}} constructs always have that data type.
3550
3551If you have used @code{%union} to specify a variety of data types, then you
3552must declare a choice among these types for each terminal or nonterminal
3553symbol that can have a semantic value. Then each time you use @code{$$} or
3554@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3555in the rule. In this example,
bfa74976
RS
3556
3557@example
3558@group
3559exp: @dots{}
3560 | exp '+' exp
3561 @{ $$ = $1 + $3; @}
3562@end group
3563@end example
3564
3565@noindent
3566@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3567have the data type declared for the nonterminal symbol @code{exp}. If
3568@code{$2} were used, it would have the data type declared for the
e0c471a9 3569terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3570
3571Alternatively, you can specify the data type when you refer to the value,
3572by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3573reference. For example, if you have defined types as shown here:
3574
3575@example
3576@group
3577%union @{
3578 int itype;
3579 double dtype;
3580@}
3581@end group
3582@end example
3583
3584@noindent
3585then you can write @code{$<itype>1} to refer to the first subunit of the
3586rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3587
342b8b6e 3588@node Mid-Rule Actions
bfa74976
RS
3589@subsection Actions in Mid-Rule
3590@cindex actions in mid-rule
3591@cindex mid-rule actions
3592
3593Occasionally it is useful to put an action in the middle of a rule.
3594These actions are written just like usual end-of-rule actions, but they
3595are executed before the parser even recognizes the following components.
3596
3597A mid-rule action may refer to the components preceding it using
3598@code{$@var{n}}, but it may not refer to subsequent components because
3599it is run before they are parsed.
3600
3601The mid-rule action itself counts as one of the components of the rule.
3602This makes a difference when there is another action later in the same rule
3603(and usually there is another at the end): you have to count the actions
3604along with the symbols when working out which number @var{n} to use in
3605@code{$@var{n}}.
3606
3607The mid-rule action can also have a semantic value. The action can set
3608its value with an assignment to @code{$$}, and actions later in the rule
3609can refer to the value using @code{$@var{n}}. Since there is no symbol
3610to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3611in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3612specify a data type each time you refer to this value.
bfa74976
RS
3613
3614There is no way to set the value of the entire rule with a mid-rule
3615action, because assignments to @code{$$} do not have that effect. The
3616only way to set the value for the entire rule is with an ordinary action
3617at the end of the rule.
3618
3619Here is an example from a hypothetical compiler, handling a @code{let}
3620statement that looks like @samp{let (@var{variable}) @var{statement}} and
3621serves to create a variable named @var{variable} temporarily for the
3622duration of @var{statement}. To parse this construct, we must put
3623@var{variable} into the symbol table while @var{statement} is parsed, then
3624remove it afterward. Here is how it is done:
3625
3626@example
3627@group
3628stmt: LET '(' var ')'
3629 @{ $<context>$ = push_context ();
3630 declare_variable ($3); @}
3631 stmt @{ $$ = $6;
3632 pop_context ($<context>5); @}
3633@end group
3634@end example
3635
3636@noindent
3637As soon as @samp{let (@var{variable})} has been recognized, the first
3638action is run. It saves a copy of the current semantic context (the
3639list of accessible variables) as its semantic value, using alternative
3640@code{context} in the data-type union. Then it calls
3641@code{declare_variable} to add the new variable to that list. Once the
3642first action is finished, the embedded statement @code{stmt} can be
3643parsed. Note that the mid-rule action is component number 5, so the
3644@samp{stmt} is component number 6.
3645
3646After the embedded statement is parsed, its semantic value becomes the
3647value of the entire @code{let}-statement. Then the semantic value from the
3648earlier action is used to restore the prior list of variables. This
3649removes the temporary @code{let}-variable from the list so that it won't
3650appear to exist while the rest of the program is parsed.
3651
841a7737
JD
3652@findex %destructor
3653@cindex discarded symbols, mid-rule actions
3654@cindex error recovery, mid-rule actions
3655In the above example, if the parser initiates error recovery (@pxref{Error
3656Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3657it might discard the previous semantic context @code{$<context>5} without
3658restoring it.
3659Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3660Discarded Symbols}).
ec5479ce
JD
3661However, Bison currently provides no means to declare a destructor specific to
3662a particular mid-rule action's semantic value.
841a7737
JD
3663
3664One solution is to bury the mid-rule action inside a nonterminal symbol and to
3665declare a destructor for that symbol:
3666
3667@example
3668@group
3669%type <context> let
3670%destructor @{ pop_context ($$); @} let
3671
3672%%
3673
3674stmt: let stmt
3675 @{ $$ = $2;
3676 pop_context ($1); @}
3677 ;
3678
3679let: LET '(' var ')'
3680 @{ $$ = push_context ();
3681 declare_variable ($3); @}
3682 ;
3683
3684@end group
3685@end example
3686
3687@noindent
3688Note that the action is now at the end of its rule.
3689Any mid-rule action can be converted to an end-of-rule action in this way, and
3690this is what Bison actually does to implement mid-rule actions.
3691
bfa74976
RS
3692Taking action before a rule is completely recognized often leads to
3693conflicts since the parser must commit to a parse in order to execute the
3694action. For example, the following two rules, without mid-rule actions,
3695can coexist in a working parser because the parser can shift the open-brace
3696token and look at what follows before deciding whether there is a
3697declaration or not:
3698
3699@example
3700@group
3701compound: '@{' declarations statements '@}'
3702 | '@{' statements '@}'
3703 ;
3704@end group
3705@end example
3706
3707@noindent
3708But when we add a mid-rule action as follows, the rules become nonfunctional:
3709
3710@example
3711@group
3712compound: @{ prepare_for_local_variables (); @}
3713 '@{' declarations statements '@}'
3714@end group
3715@group
3716 | '@{' statements '@}'
3717 ;
3718@end group
3719@end example
3720
3721@noindent
3722Now the parser is forced to decide whether to run the mid-rule action
3723when it has read no farther than the open-brace. In other words, it
3724must commit to using one rule or the other, without sufficient
3725information to do it correctly. (The open-brace token is what is called
742e4900
JD
3726the @dfn{lookahead} token at this time, since the parser is still
3727deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3728
3729You might think that you could correct the problem by putting identical
3730actions into the two rules, like this:
3731
3732@example
3733@group
3734compound: @{ prepare_for_local_variables (); @}
3735 '@{' declarations statements '@}'
3736 | @{ prepare_for_local_variables (); @}
3737 '@{' statements '@}'
3738 ;
3739@end group
3740@end example
3741
3742@noindent
3743But this does not help, because Bison does not realize that the two actions
3744are identical. (Bison never tries to understand the C code in an action.)
3745
3746If the grammar is such that a declaration can be distinguished from a
3747statement by the first token (which is true in C), then one solution which
3748does work is to put the action after the open-brace, like this:
3749
3750@example
3751@group
3752compound: '@{' @{ prepare_for_local_variables (); @}
3753 declarations statements '@}'
3754 | '@{' statements '@}'
3755 ;
3756@end group
3757@end example
3758
3759@noindent
3760Now the first token of the following declaration or statement,
3761which would in any case tell Bison which rule to use, can still do so.
3762
3763Another solution is to bury the action inside a nonterminal symbol which
3764serves as a subroutine:
3765
3766@example
3767@group
3768subroutine: /* empty */
3769 @{ prepare_for_local_variables (); @}
3770 ;
3771
3772@end group
3773
3774@group
3775compound: subroutine
3776 '@{' declarations statements '@}'
3777 | subroutine
3778 '@{' statements '@}'
3779 ;
3780@end group
3781@end example
3782
3783@noindent
3784Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3785deciding which rule for @code{compound} it will eventually use.
bfa74976 3786
1f68dca5
AR
3787@node Named References
3788@subsection Using Named References
3789@cindex named references
3790
3791While every semantic value can be accessed with positional references
3792@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3793them by name. First of all, original symbol names may be used as named
3794references. For example:
3795
3796@example
3797@group
3798invocation: op '(' args ')'
3799 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3800@end group
3801@end example
3802
3803@noindent
3804The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3805mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3806
3807@example
3808@group
3809invocation: op '(' args ')'
3810 @{ $$ = new_invocation ($op, $args, @@$); @}
3811@end group
3812@end example
3813
3814@noindent
3815However, sometimes regular symbol names are not sufficient due to
3816ambiguities:
3817
3818@example
3819@group
3820exp: exp '/' exp
3821 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3822
3823exp: exp '/' exp
3824 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3825
3826exp: exp '/' exp
3827 @{ $$ = $1 / $3; @} // No error.
3828@end group
3829@end example
3830
3831@noindent
3832When ambiguity occurs, explicitly declared names may be used for values and
3833locations. Explicit names are declared as a bracketed name after a symbol
3834appearance in rule definitions. For example:
3835@example
3836@group
3837exp[result]: exp[left] '/' exp[right]
3838 @{ $result = $left / $right; @}
3839@end group
3840@end example
3841
3842@noindent
3843Explicit names may be declared for RHS and for LHS symbols as well. In order
3844to access a semantic value generated by a mid-rule action, an explicit name
3845may also be declared by putting a bracketed name after the closing brace of
3846the mid-rule action code:
3847@example
3848@group
3849exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3850 @{ $res = $left + $right; @}
3851@end group
3852@end example
3853
3854@noindent
3855
3856In references, in order to specify names containing dots and dashes, an explicit
3857bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3858@example
3859@group
3860if-stmt: IF '(' expr ')' THEN then.stmt ';'
3861 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3862@end group
3863@end example
3864
3865It often happens that named references are followed by a dot, dash or other
3866C punctuation marks and operators. By default, Bison will read
3867@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3868@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3869value. In order to force Bison to recognize @code{name.suffix} in its entirety
3870as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3871must be used.
3872
3873
342b8b6e 3874@node Locations
847bf1f5
AD
3875@section Tracking Locations
3876@cindex location
95923bd6
AD
3877@cindex textual location
3878@cindex location, textual
847bf1f5
AD
3879
3880Though grammar rules and semantic actions are enough to write a fully
72d2299c 3881functional parser, it can be useful to process some additional information,
3e259915
MA
3882especially symbol locations.
3883
704a47c4
AD
3884The way locations are handled is defined by providing a data type, and
3885actions to take when rules are matched.
847bf1f5
AD
3886
3887@menu
3888* Location Type:: Specifying a data type for locations.
3889* Actions and Locations:: Using locations in actions.
3890* Location Default Action:: Defining a general way to compute locations.
3891@end menu
3892
342b8b6e 3893@node Location Type
847bf1f5
AD
3894@subsection Data Type of Locations
3895@cindex data type of locations
3896@cindex default location type
3897
3898Defining a data type for locations is much simpler than for semantic values,
3899since all tokens and groupings always use the same type.
3900
50cce58e
PE
3901You can specify the type of locations by defining a macro called
3902@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3903defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3904When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3905four members:
3906
3907@example
6273355b 3908typedef struct YYLTYPE
847bf1f5
AD
3909@{
3910 int first_line;
3911 int first_column;
3912 int last_line;
3913 int last_column;
6273355b 3914@} YYLTYPE;
847bf1f5
AD
3915@end example
3916
8fbbeba2
AD
3917When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3918initializes all these fields to 1 for @code{yylloc}. To initialize
3919@code{yylloc} with a custom location type (or to chose a different
3920initialization), use the @code{%initial-action} directive. @xref{Initial
3921Action Decl, , Performing Actions before Parsing}.
cd48d21d 3922
342b8b6e 3923@node Actions and Locations
847bf1f5
AD
3924@subsection Actions and Locations
3925@cindex location actions
3926@cindex actions, location
3927@vindex @@$
3928@vindex @@@var{n}
1f68dca5
AR
3929@vindex @@@var{name}
3930@vindex @@[@var{name}]
847bf1f5
AD
3931
3932Actions are not only useful for defining language semantics, but also for
3933describing the behavior of the output parser with locations.
3934
3935The most obvious way for building locations of syntactic groupings is very
72d2299c 3936similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3937constructs can be used to access the locations of the elements being matched.
3938The location of the @var{n}th component of the right hand side is
3939@code{@@@var{n}}, while the location of the left hand side grouping is
3940@code{@@$}.
3941
1f68dca5
AR
3942In addition, the named references construct @code{@@@var{name}} and
3943@code{@@[@var{name}]} may also be used to address the symbol locations.
3944@xref{Named References,,Using Named References}, for more information
3945about using the named references construct.
3946
3e259915 3947Here is a basic example using the default data type for locations:
847bf1f5
AD
3948
3949@example
3950@group
3951exp: @dots{}
3e259915 3952 | exp '/' exp
847bf1f5 3953 @{
3e259915
MA
3954 @@$.first_column = @@1.first_column;
3955 @@$.first_line = @@1.first_line;
847bf1f5
AD
3956 @@$.last_column = @@3.last_column;
3957 @@$.last_line = @@3.last_line;
3e259915
MA
3958 if ($3)
3959 $$ = $1 / $3;
3960 else
3961 @{
3962 $$ = 1;
4e03e201
AD
3963 fprintf (stderr,
3964 "Division by zero, l%d,c%d-l%d,c%d",
3965 @@3.first_line, @@3.first_column,
3966 @@3.last_line, @@3.last_column);
3e259915 3967 @}
847bf1f5
AD
3968 @}
3969@end group
3970@end example
3971
3e259915 3972As for semantic values, there is a default action for locations that is
72d2299c 3973run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3974beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3975last symbol.
3e259915 3976
72d2299c 3977With this default action, the location tracking can be fully automatic. The
3e259915
MA
3978example above simply rewrites this way:
3979
3980@example
3981@group
3982exp: @dots{}
3983 | exp '/' exp
3984 @{
3985 if ($3)
3986 $$ = $1 / $3;
3987 else
3988 @{
3989 $$ = 1;
4e03e201
AD
3990 fprintf (stderr,
3991 "Division by zero, l%d,c%d-l%d,c%d",
3992 @@3.first_line, @@3.first_column,
3993 @@3.last_line, @@3.last_column);
3e259915
MA
3994 @}
3995 @}
3996@end group
3997@end example
847bf1f5 3998
32c29292 3999@vindex yylloc
742e4900 4000It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4001from a semantic action.
4002This location is stored in @code{yylloc}.
4003@xref{Action Features, ,Special Features for Use in Actions}.
4004
342b8b6e 4005@node Location Default Action
847bf1f5
AD
4006@subsection Default Action for Locations
4007@vindex YYLLOC_DEFAULT
8710fc41 4008@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4009
72d2299c 4010Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4011locations are much more general than semantic values, there is room in
4012the output parser to redefine the default action to take for each
72d2299c 4013rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4014matched, before the associated action is run. It is also invoked
4015while processing a syntax error, to compute the error's location.
8710fc41
JD
4016Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
4017parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4018of that ambiguity.
847bf1f5 4019
3e259915 4020Most of the time, this macro is general enough to suppress location
79282c6c 4021dedicated code from semantic actions.
847bf1f5 4022
72d2299c 4023The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4024the location of the grouping (the result of the computation). When a
766de5eb 4025rule is matched, the second parameter identifies locations of
96b93a3d 4026all right hand side elements of the rule being matched, and the third
8710fc41
JD
4027parameter is the size of the rule's right hand side.
4028When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
4029right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4030When processing a syntax error, the second parameter identifies locations
4031of the symbols that were discarded during error processing, and the third
96b93a3d 4032parameter is the number of discarded symbols.
847bf1f5 4033
766de5eb 4034By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4035
766de5eb 4036@smallexample
847bf1f5 4037@group
766de5eb
PE
4038# define YYLLOC_DEFAULT(Current, Rhs, N) \
4039 do \
4040 if (N) \
4041 @{ \
4042 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4043 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4044 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4045 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4046 @} \
4047 else \
4048 @{ \
4049 (Current).first_line = (Current).last_line = \
4050 YYRHSLOC(Rhs, 0).last_line; \
4051 (Current).first_column = (Current).last_column = \
4052 YYRHSLOC(Rhs, 0).last_column; \
4053 @} \
4054 while (0)
847bf1f5 4055@end group
766de5eb 4056@end smallexample
676385e2 4057
766de5eb
PE
4058where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4059in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4060just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4061
3e259915 4062When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4063
3e259915 4064@itemize @bullet
79282c6c 4065@item
72d2299c 4066All arguments are free of side-effects. However, only the first one (the
3e259915 4067result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4068
3e259915 4069@item
766de5eb
PE
4070For consistency with semantic actions, valid indexes within the
4071right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4072valid index, and it refers to the symbol just before the reduction.
4073During error processing @var{n} is always positive.
0ae99356
PE
4074
4075@item
4076Your macro should parenthesize its arguments, if need be, since the
4077actual arguments may not be surrounded by parentheses. Also, your
4078macro should expand to something that can be used as a single
4079statement when it is followed by a semicolon.
3e259915 4080@end itemize
847bf1f5 4081
342b8b6e 4082@node Declarations
bfa74976
RS
4083@section Bison Declarations
4084@cindex declarations, Bison
4085@cindex Bison declarations
4086
4087The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4088used in formulating the grammar and the data types of semantic values.
4089@xref{Symbols}.
4090
4091All token type names (but not single-character literal tokens such as
4092@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4093declared if you need to specify which data type to use for the semantic
4094value (@pxref{Multiple Types, ,More Than One Value Type}).
4095
4096The first rule in the file also specifies the start symbol, by default.
4097If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
4098it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
4099Grammars}).
bfa74976
RS
4100
4101@menu
b50d2359 4102* Require Decl:: Requiring a Bison version.
bfa74976
RS
4103* Token Decl:: Declaring terminal symbols.
4104* Precedence Decl:: Declaring terminals with precedence and associativity.
4105* Union Decl:: Declaring the set of all semantic value types.
4106* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4107* Initial Action Decl:: Code run before parsing starts.
72f889cc 4108* Destructor Decl:: Declaring how symbols are freed.
d6328241 4109* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4110* Start Decl:: Specifying the start symbol.
4111* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4112* Push Decl:: Requesting a push parser.
bfa74976
RS
4113* Decl Summary:: Table of all Bison declarations.
4114@end menu
4115
b50d2359
AD
4116@node Require Decl
4117@subsection Require a Version of Bison
4118@cindex version requirement
4119@cindex requiring a version of Bison
4120@findex %require
4121
4122You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4123the requirement is not met, @command{bison} exits with an error (exit
4124status 63).
b50d2359
AD
4125
4126@example
4127%require "@var{version}"
4128@end example
4129
342b8b6e 4130@node Token Decl
bfa74976
RS
4131@subsection Token Type Names
4132@cindex declaring token type names
4133@cindex token type names, declaring
931c7513 4134@cindex declaring literal string tokens
bfa74976
RS
4135@findex %token
4136
4137The basic way to declare a token type name (terminal symbol) is as follows:
4138
4139@example
4140%token @var{name}
4141@end example
4142
4143Bison will convert this into a @code{#define} directive in
4144the parser, so that the function @code{yylex} (if it is in this file)
4145can use the name @var{name} to stand for this token type's code.
4146
14ded682
AD
4147Alternatively, you can use @code{%left}, @code{%right}, or
4148@code{%nonassoc} instead of @code{%token}, if you wish to specify
4149associativity and precedence. @xref{Precedence Decl, ,Operator
4150Precedence}.
bfa74976
RS
4151
4152You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4153a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4154following the token name:
bfa74976
RS
4155
4156@example
4157%token NUM 300
1452af69 4158%token XNUM 0x12d // a GNU extension
bfa74976
RS
4159@end example
4160
4161@noindent
4162It is generally best, however, to let Bison choose the numeric codes for
4163all token types. Bison will automatically select codes that don't conflict
e966383b 4164with each other or with normal characters.
bfa74976
RS
4165
4166In the event that the stack type is a union, you must augment the
4167@code{%token} or other token declaration to include the data type
704a47c4
AD
4168alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4169Than One Value Type}).
bfa74976
RS
4170
4171For example:
4172
4173@example
4174@group
4175%union @{ /* define stack type */
4176 double val;
4177 symrec *tptr;
4178@}
4179%token <val> NUM /* define token NUM and its type */
4180@end group
4181@end example
4182
931c7513
RS
4183You can associate a literal string token with a token type name by
4184writing the literal string at the end of a @code{%token}
4185declaration which declares the name. For example:
4186
4187@example
4188%token arrow "=>"
4189@end example
4190
4191@noindent
4192For example, a grammar for the C language might specify these names with
4193equivalent literal string tokens:
4194
4195@example
4196%token <operator> OR "||"
4197%token <operator> LE 134 "<="
4198%left OR "<="
4199@end example
4200
4201@noindent
4202Once you equate the literal string and the token name, you can use them
4203interchangeably in further declarations or the grammar rules. The
4204@code{yylex} function can use the token name or the literal string to
4205obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4206Syntax error messages passed to @code{yyerror} from the parser will reference
4207the literal string instead of the token name.
4208
4209The token numbered as 0 corresponds to end of file; the following line
4210allows for nicer error messages referring to ``end of file'' instead
4211of ``$end'':
4212
4213@example
4214%token END 0 "end of file"
4215@end example
931c7513 4216
342b8b6e 4217@node Precedence Decl
bfa74976
RS
4218@subsection Operator Precedence
4219@cindex precedence declarations
4220@cindex declaring operator precedence
4221@cindex operator precedence, declaring
4222
4223Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4224declare a token and specify its precedence and associativity, all at
4225once. These are called @dfn{precedence declarations}.
704a47c4
AD
4226@xref{Precedence, ,Operator Precedence}, for general information on
4227operator precedence.
bfa74976 4228
ab7f29f8 4229The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4230@code{%token}: either
4231
4232@example
4233%left @var{symbols}@dots{}
4234@end example
4235
4236@noindent
4237or
4238
4239@example
4240%left <@var{type}> @var{symbols}@dots{}
4241@end example
4242
4243And indeed any of these declarations serves the purposes of @code{%token}.
4244But in addition, they specify the associativity and relative precedence for
4245all the @var{symbols}:
4246
4247@itemize @bullet
4248@item
4249The associativity of an operator @var{op} determines how repeated uses
4250of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4251@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4252grouping @var{y} with @var{z} first. @code{%left} specifies
4253left-associativity (grouping @var{x} with @var{y} first) and
4254@code{%right} specifies right-associativity (grouping @var{y} with
4255@var{z} first). @code{%nonassoc} specifies no associativity, which
4256means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4257considered a syntax error.
4258
4259@item
4260The precedence of an operator determines how it nests with other operators.
4261All the tokens declared in a single precedence declaration have equal
4262precedence and nest together according to their associativity.
4263When two tokens declared in different precedence declarations associate,
4264the one declared later has the higher precedence and is grouped first.
4265@end itemize
4266
ab7f29f8
JD
4267For backward compatibility, there is a confusing difference between the
4268argument lists of @code{%token} and precedence declarations.
4269Only a @code{%token} can associate a literal string with a token type name.
4270A precedence declaration always interprets a literal string as a reference to a
4271separate token.
4272For example:
4273
4274@example
4275%left OR "<=" // Does not declare an alias.
4276%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4277@end example
4278
342b8b6e 4279@node Union Decl
bfa74976
RS
4280@subsection The Collection of Value Types
4281@cindex declaring value types
4282@cindex value types, declaring
4283@findex %union
4284
287c78f6
PE
4285The @code{%union} declaration specifies the entire collection of
4286possible data types for semantic values. The keyword @code{%union} is
4287followed by braced code containing the same thing that goes inside a
4288@code{union} in C@.
bfa74976
RS
4289
4290For example:
4291
4292@example
4293@group
4294%union @{
4295 double val;
4296 symrec *tptr;
4297@}
4298@end group
4299@end example
4300
4301@noindent
4302This says that the two alternative types are @code{double} and @code{symrec
4303*}. They are given names @code{val} and @code{tptr}; these names are used
4304in the @code{%token} and @code{%type} declarations to pick one of the types
4305for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4306
6273355b
PE
4307As an extension to @acronym{POSIX}, a tag is allowed after the
4308@code{union}. For example:
4309
4310@example
4311@group
4312%union value @{
4313 double val;
4314 symrec *tptr;
4315@}
4316@end group
4317@end example
4318
d6ca7905 4319@noindent
6273355b
PE
4320specifies the union tag @code{value}, so the corresponding C type is
4321@code{union value}. If you do not specify a tag, it defaults to
4322@code{YYSTYPE}.
4323
d6ca7905
PE
4324As another extension to @acronym{POSIX}, you may specify multiple
4325@code{%union} declarations; their contents are concatenated. However,
4326only the first @code{%union} declaration can specify a tag.
4327
6273355b 4328Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4329a semicolon after the closing brace.
4330
ddc8ede1
PE
4331Instead of @code{%union}, you can define and use your own union type
4332@code{YYSTYPE} if your grammar contains at least one
4333@samp{<@var{type}>} tag. For example, you can put the following into
4334a header file @file{parser.h}:
4335
4336@example
4337@group
4338union YYSTYPE @{
4339 double val;
4340 symrec *tptr;
4341@};
4342typedef union YYSTYPE YYSTYPE;
4343@end group
4344@end example
4345
4346@noindent
4347and then your grammar can use the following
4348instead of @code{%union}:
4349
4350@example
4351@group
4352%@{
4353#include "parser.h"
4354%@}
4355%type <val> expr
4356%token <tptr> ID
4357@end group
4358@end example
4359
342b8b6e 4360@node Type Decl
bfa74976
RS
4361@subsection Nonterminal Symbols
4362@cindex declaring value types, nonterminals
4363@cindex value types, nonterminals, declaring
4364@findex %type
4365
4366@noindent
4367When you use @code{%union} to specify multiple value types, you must
4368declare the value type of each nonterminal symbol for which values are
4369used. This is done with a @code{%type} declaration, like this:
4370
4371@example
4372%type <@var{type}> @var{nonterminal}@dots{}
4373@end example
4374
4375@noindent
704a47c4
AD
4376Here @var{nonterminal} is the name of a nonterminal symbol, and
4377@var{type} is the name given in the @code{%union} to the alternative
4378that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4379can give any number of nonterminal symbols in the same @code{%type}
4380declaration, if they have the same value type. Use spaces to separate
4381the symbol names.
bfa74976 4382
931c7513
RS
4383You can also declare the value type of a terminal symbol. To do this,
4384use the same @code{<@var{type}>} construction in a declaration for the
4385terminal symbol. All kinds of token declarations allow
4386@code{<@var{type}>}.
4387
18d192f0
AD
4388@node Initial Action Decl
4389@subsection Performing Actions before Parsing
4390@findex %initial-action
4391
4392Sometimes your parser needs to perform some initializations before
4393parsing. The @code{%initial-action} directive allows for such arbitrary
4394code.
4395
4396@deffn {Directive} %initial-action @{ @var{code} @}
4397@findex %initial-action
287c78f6 4398Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4399@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4400@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4401@code{%parse-param}.
18d192f0
AD
4402@end deffn
4403
451364ed
AD
4404For instance, if your locations use a file name, you may use
4405
4406@example
48b16bbc 4407%parse-param @{ char const *file_name @};
451364ed
AD
4408%initial-action
4409@{
4626a15d 4410 @@$.initialize (file_name);
451364ed
AD
4411@};
4412@end example
4413
18d192f0 4414
72f889cc
AD
4415@node Destructor Decl
4416@subsection Freeing Discarded Symbols
4417@cindex freeing discarded symbols
4418@findex %destructor
12e35840 4419@findex <*>
3ebecc24 4420@findex <>
a85284cf
AD
4421During error recovery (@pxref{Error Recovery}), symbols already pushed
4422on the stack and tokens coming from the rest of the file are discarded
4423until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4424or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4425symbols on the stack must be discarded. Even if the parser succeeds, it
4426must discard the start symbol.
258b75ca
PE
4427
4428When discarded symbols convey heap based information, this memory is
4429lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4430in traditional compilers, it is unacceptable for programs like shells or
4431protocol implementations that may parse and execute indefinitely.
258b75ca 4432
a85284cf
AD
4433The @code{%destructor} directive defines code that is called when a
4434symbol is automatically discarded.
72f889cc
AD
4435
4436@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4437@findex %destructor
287c78f6
PE
4438Invoke the braced @var{code} whenever the parser discards one of the
4439@var{symbols}.
4b367315 4440Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4441with the discarded symbol, and @code{@@$} designates its location.
4442The additional parser parameters are also available (@pxref{Parser Function, ,
4443The Parser Function @code{yyparse}}).
ec5479ce 4444
b2a0b7ca
JD
4445When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4446per-symbol @code{%destructor}.
4447You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4448tag among @var{symbols}.
b2a0b7ca 4449In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4450grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4451per-symbol @code{%destructor}.
4452
12e35840 4453Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4454(These default forms are experimental.
4455More user feedback will help to determine whether they should become permanent
4456features.)
3ebecc24 4457You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4458exactly one @code{%destructor} declaration in your grammar file.
4459The parser will invoke the @var{code} associated with one of these whenever it
4460discards any user-defined grammar symbol that has no per-symbol and no per-type
4461@code{%destructor}.
4462The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4463symbol for which you have formally declared a semantic type tag (@code{%type}
4464counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4465The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4466symbol that has no declared semantic type tag.
72f889cc
AD
4467@end deffn
4468
b2a0b7ca 4469@noindent
12e35840 4470For example:
72f889cc
AD
4471
4472@smallexample
ec5479ce
JD
4473%union @{ char *string; @}
4474%token <string> STRING1
4475%token <string> STRING2
4476%type <string> string1
4477%type <string> string2
b2a0b7ca
JD
4478%union @{ char character; @}
4479%token <character> CHR
4480%type <character> chr
12e35840
JD
4481%token TAGLESS
4482
b2a0b7ca 4483%destructor @{ @} <character>
12e35840
JD
4484%destructor @{ free ($$); @} <*>
4485%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4486%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4487@end smallexample
4488
4489@noindent
b2a0b7ca
JD
4490guarantees that, when the parser discards any user-defined symbol that has a
4491semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4492to @code{free} by default.
ec5479ce
JD
4493However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4494prints its line number to @code{stdout}.
4495It performs only the second @code{%destructor} in this case, so it invokes
4496@code{free} only once.
12e35840
JD
4497Finally, the parser merely prints a message whenever it discards any symbol,
4498such as @code{TAGLESS}, that has no semantic type tag.
4499
4500A Bison-generated parser invokes the default @code{%destructor}s only for
4501user-defined as opposed to Bison-defined symbols.
4502For example, the parser will not invoke either kind of default
4503@code{%destructor} for the special Bison-defined symbols @code{$accept},
4504@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4505none of which you can reference in your grammar.
4506It also will not invoke either for the @code{error} token (@pxref{Table of
4507Symbols, ,error}), which is always defined by Bison regardless of whether you
4508reference it in your grammar.
4509However, it may invoke one of them for the end token (token 0) if you
4510redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4511
4512@smallexample
4513%token END 0
4514@end smallexample
4515
12e35840
JD
4516@cindex actions in mid-rule
4517@cindex mid-rule actions
4518Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4519mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4520That is, Bison does not consider a mid-rule to have a semantic value if you do
4521not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4522@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4523rule.
4524However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4525@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4526
3508ce36
JD
4527@ignore
4528@noindent
4529In the future, it may be possible to redefine the @code{error} token as a
4530nonterminal that captures the discarded symbols.
4531In that case, the parser will invoke the default destructor for it as well.
4532@end ignore
4533
e757bb10
AD
4534@sp 1
4535
4536@cindex discarded symbols
4537@dfn{Discarded symbols} are the following:
4538
4539@itemize
4540@item
4541stacked symbols popped during the first phase of error recovery,
4542@item
4543incoming terminals during the second phase of error recovery,
4544@item
742e4900 4545the current lookahead and the entire stack (except the current
9d9b8b70 4546right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4547@item
4548the start symbol, when the parser succeeds.
e757bb10
AD
4549@end itemize
4550
9d9b8b70
PE
4551The parser can @dfn{return immediately} because of an explicit call to
4552@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4553exhaustion.
4554
29553547 4555Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4556error via @code{YYERROR} are not discarded automatically. As a rule
4557of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4558the memory.
e757bb10 4559
342b8b6e 4560@node Expect Decl
bfa74976
RS
4561@subsection Suppressing Conflict Warnings
4562@cindex suppressing conflict warnings
4563@cindex preventing warnings about conflicts
4564@cindex warnings, preventing
4565@cindex conflicts, suppressing warnings of
4566@findex %expect
d6328241 4567@findex %expect-rr
bfa74976
RS
4568
4569Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4570(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4571have harmless shift/reduce conflicts which are resolved in a predictable
4572way and would be difficult to eliminate. It is desirable to suppress
4573the warning about these conflicts unless the number of conflicts
4574changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4575
4576The declaration looks like this:
4577
4578@example
4579%expect @var{n}
4580@end example
4581
035aa4a0
PE
4582Here @var{n} is a decimal integer. The declaration says there should
4583be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4584Bison reports an error if the number of shift/reduce conflicts differs
4585from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4586
34a6c2d1 4587For deterministic parsers, reduce/reduce conflicts are more
035aa4a0
PE
4588serious, and should be eliminated entirely. Bison will always report
4589reduce/reduce conflicts for these parsers. With @acronym{GLR}
4590parsers, however, both kinds of conflicts are routine; otherwise,
4591there would be no need to use @acronym{GLR} parsing. Therefore, it is
4592also possible to specify an expected number of reduce/reduce conflicts
4593in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4594
4595@example
4596%expect-rr @var{n}
4597@end example
4598
bfa74976
RS
4599In general, using @code{%expect} involves these steps:
4600
4601@itemize @bullet
4602@item
4603Compile your grammar without @code{%expect}. Use the @samp{-v} option
4604to get a verbose list of where the conflicts occur. Bison will also
4605print the number of conflicts.
4606
4607@item
4608Check each of the conflicts to make sure that Bison's default
4609resolution is what you really want. If not, rewrite the grammar and
4610go back to the beginning.
4611
4612@item
4613Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4614number which Bison printed. With @acronym{GLR} parsers, add an
4615@code{%expect-rr} declaration as well.
bfa74976
RS
4616@end itemize
4617
cf22447c
JD
4618Now Bison will report an error if you introduce an unexpected conflict,
4619but will keep silent otherwise.
bfa74976 4620
342b8b6e 4621@node Start Decl
bfa74976
RS
4622@subsection The Start-Symbol
4623@cindex declaring the start symbol
4624@cindex start symbol, declaring
4625@cindex default start symbol
4626@findex %start
4627
4628Bison assumes by default that the start symbol for the grammar is the first
4629nonterminal specified in the grammar specification section. The programmer
4630may override this restriction with the @code{%start} declaration as follows:
4631
4632@example
4633%start @var{symbol}
4634@end example
4635
342b8b6e 4636@node Pure Decl
bfa74976
RS
4637@subsection A Pure (Reentrant) Parser
4638@cindex reentrant parser
4639@cindex pure parser
d9df47b6 4640@findex %define api.pure
bfa74976
RS
4641
4642A @dfn{reentrant} program is one which does not alter in the course of
4643execution; in other words, it consists entirely of @dfn{pure} (read-only)
4644code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4645for example, a nonreentrant program may not be safe to call from a signal
4646handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4647program must be called only within interlocks.
4648
70811b85 4649Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4650suitable for most uses, and it permits compatibility with Yacc. (The
4651standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4652statically allocated variables for communication with @code{yylex},
4653including @code{yylval} and @code{yylloc}.)
bfa74976 4654
70811b85 4655Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4656declaration @code{%define api.pure} says that you want the parser to be
70811b85 4657reentrant. It looks like this:
bfa74976
RS
4658
4659@example
d9df47b6 4660%define api.pure
bfa74976
RS
4661@end example
4662
70811b85
RS
4663The result is that the communication variables @code{yylval} and
4664@code{yylloc} become local variables in @code{yyparse}, and a different
4665calling convention is used for the lexical analyzer function
4666@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4667Parsers}, for the details of this. The variable @code{yynerrs}
4668becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4669of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4670Reporting Function @code{yyerror}}). The convention for calling
4671@code{yyparse} itself is unchanged.
4672
4673Whether the parser is pure has nothing to do with the grammar rules.
4674You can generate either a pure parser or a nonreentrant parser from any
4675valid grammar.
bfa74976 4676
9987d1b3
JD
4677@node Push Decl
4678@subsection A Push Parser
4679@cindex push parser
4680@cindex push parser
812775a0 4681@findex %define api.push-pull
9987d1b3 4682
59da312b
JD
4683(The current push parsing interface is experimental and may evolve.
4684More user feedback will help to stabilize it.)
4685
f4101aa6
AD
4686A pull parser is called once and it takes control until all its input
4687is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4688each time a new token is made available.
4689
f4101aa6 4690A push parser is typically useful when the parser is part of a
9987d1b3 4691main event loop in the client's application. This is typically
f4101aa6
AD
4692a requirement of a GUI, when the main event loop needs to be triggered
4693within a certain time period.
9987d1b3 4694
d782395d
JD
4695Normally, Bison generates a pull parser.
4696The following Bison declaration says that you want the parser to be a push
812775a0 4697parser (@pxref{Decl Summary,,%define api.push-pull}):
9987d1b3
JD
4698
4699@example
f37495f6 4700%define api.push-pull push
9987d1b3
JD
4701@end example
4702
4703In almost all cases, you want to ensure that your push parser is also
4704a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4705time you should create an impure push parser is to have backwards
9987d1b3
JD
4706compatibility with the impure Yacc pull mode interface. Unless you know
4707what you are doing, your declarations should look like this:
4708
4709@example
d9df47b6 4710%define api.pure
f37495f6 4711%define api.push-pull push
9987d1b3
JD
4712@end example
4713
f4101aa6
AD
4714There is a major notable functional difference between the pure push parser
4715and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4716many parser instances, of the same type of parser, in memory at the same time.
4717An impure push parser should only use one parser at a time.
4718
4719When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4720the generated parser. @code{yypstate} is a structure that the generated
4721parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4722function that will create a new parser instance. @code{yypstate_delete}
4723will free the resources associated with the corresponding parser instance.
f4101aa6 4724Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4725token is available to provide the parser. A trivial example
4726of using a pure push parser would look like this:
4727
4728@example
4729int status;
4730yypstate *ps = yypstate_new ();
4731do @{
4732 status = yypush_parse (ps, yylex (), NULL);
4733@} while (status == YYPUSH_MORE);
4734yypstate_delete (ps);
4735@end example
4736
4737If the user decided to use an impure push parser, a few things about
f4101aa6 4738the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4739a global variable instead of a variable in the @code{yypush_parse} function.
4740For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4741changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4742example would thus look like this:
4743
4744@example
4745extern int yychar;
4746int status;
4747yypstate *ps = yypstate_new ();
4748do @{
4749 yychar = yylex ();
4750 status = yypush_parse (ps);
4751@} while (status == YYPUSH_MORE);
4752yypstate_delete (ps);
4753@end example
4754
f4101aa6 4755That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4756for use by the next invocation of the @code{yypush_parse} function.
4757
f4101aa6 4758Bison also supports both the push parser interface along with the pull parser
9987d1b3 4759interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4760you should replace the @code{%define api.push-pull push} declaration with the
4761@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4762the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4763and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4764would be used. However, the user should note that it is implemented in the
d782395d
JD
4765generated parser by calling @code{yypull_parse}.
4766This makes the @code{yyparse} function that is generated with the
f37495f6 4767@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4768@code{yyparse} function. If the user
4769calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4770stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4771and then @code{yypull_parse} the rest of the input stream. If you would like
4772to switch back and forth between between parsing styles, you would have to
4773write your own @code{yypull_parse} function that knows when to quit looking
4774for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4775like this:
4776
4777@example
4778yypstate *ps = yypstate_new ();
4779yypull_parse (ps); /* Will call the lexer */
4780yypstate_delete (ps);
4781@end example
4782
d9df47b6 4783Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4784the generated parser with @code{%define api.push-pull both} as it did for
4785@code{%define api.push-pull push}.
9987d1b3 4786
342b8b6e 4787@node Decl Summary
bfa74976
RS
4788@subsection Bison Declaration Summary
4789@cindex Bison declaration summary
4790@cindex declaration summary
4791@cindex summary, Bison declaration
4792
d8988b2f 4793Here is a summary of the declarations used to define a grammar:
bfa74976 4794
18b519c0 4795@deffn {Directive} %union
bfa74976
RS
4796Declare the collection of data types that semantic values may have
4797(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4798@end deffn
bfa74976 4799
18b519c0 4800@deffn {Directive} %token
bfa74976
RS
4801Declare a terminal symbol (token type name) with no precedence
4802or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4803@end deffn
bfa74976 4804
18b519c0 4805@deffn {Directive} %right
bfa74976
RS
4806Declare a terminal symbol (token type name) that is right-associative
4807(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4808@end deffn
bfa74976 4809
18b519c0 4810@deffn {Directive} %left
bfa74976
RS
4811Declare a terminal symbol (token type name) that is left-associative
4812(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4813@end deffn
bfa74976 4814
18b519c0 4815@deffn {Directive} %nonassoc
bfa74976 4816Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4817(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4818Using it in a way that would be associative is a syntax error.
4819@end deffn
4820
91d2c560 4821@ifset defaultprec
39a06c25 4822@deffn {Directive} %default-prec
22fccf95 4823Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4824(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4825@end deffn
91d2c560 4826@end ifset
bfa74976 4827
18b519c0 4828@deffn {Directive} %type
bfa74976
RS
4829Declare the type of semantic values for a nonterminal symbol
4830(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4831@end deffn
bfa74976 4832
18b519c0 4833@deffn {Directive} %start
89cab50d
AD
4834Specify the grammar's start symbol (@pxref{Start Decl, ,The
4835Start-Symbol}).
18b519c0 4836@end deffn
bfa74976 4837
18b519c0 4838@deffn {Directive} %expect
bfa74976
RS
4839Declare the expected number of shift-reduce conflicts
4840(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4841@end deffn
4842
bfa74976 4843
d8988b2f
AD
4844@sp 1
4845@noindent
4846In order to change the behavior of @command{bison}, use the following
4847directives:
4848
148d66d8
JD
4849@deffn {Directive} %code @{@var{code}@}
4850@findex %code
4851This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4852It inserts @var{code} verbatim at a language-dependent default location in the
4853output@footnote{The default location is actually skeleton-dependent;
4854 writers of non-standard skeletons however should choose the default location
4855 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4856
4857@cindex Prologue
8405b70c 4858For C/C++, the default location is the parser source code
148d66d8
JD
4859file after the usual contents of the parser header file.
4860Thus, @code{%code} replaces the traditional Yacc prologue,
4861@code{%@{@var{code}%@}}, for most purposes.
4862For a detailed discussion, see @ref{Prologue Alternatives}.
4863
8405b70c 4864For Java, the default location is inside the parser class.
148d66d8
JD
4865@end deffn
4866
4867@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4868This is the qualified form of the @code{%code} directive.
4869If you need to specify location-sensitive verbatim @var{code} that does not
4870belong at the default location selected by the unqualified @code{%code} form,
4871use this form instead.
4872
4873@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4874where Bison should generate it.
628be6c9
JD
4875Not all @var{qualifier}s are accepted for all target languages.
4876Unaccepted @var{qualifier}s produce an error.
4877Some of the accepted @var{qualifier}s are:
148d66d8
JD
4878
4879@itemize @bullet
148d66d8 4880@item requires
793fbca5 4881@findex %code requires
148d66d8
JD
4882
4883@itemize @bullet
4884@item Language(s): C, C++
4885
4886@item Purpose: This is the best place to write dependency code required for
4887@code{YYSTYPE} and @code{YYLTYPE}.
4888In other words, it's the best place to define types referenced in @code{%union}
4889directives, and it's the best place to override Bison's default @code{YYSTYPE}
4890and @code{YYLTYPE} definitions.
4891
4892@item Location(s): The parser header file and the parser source code file
4893before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4894@end itemize
4895
4896@item provides
4897@findex %code provides
4898
4899@itemize @bullet
4900@item Language(s): C, C++
4901
4902@item Purpose: This is the best place to write additional definitions and
4903declarations that should be provided to other modules.
4904
4905@item Location(s): The parser header file and the parser source code file after
4906the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4907@end itemize
4908
4909@item top
4910@findex %code top
4911
4912@itemize @bullet
4913@item Language(s): C, C++
4914
4915@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4916usually be more appropriate than @code{%code top}.
4917However, occasionally it is necessary to insert code much nearer the top of the
4918parser source code file.
4919For example:
4920
4921@smallexample
4922%code top @{
4923 #define _GNU_SOURCE
4924 #include <stdio.h>
4925@}
4926@end smallexample
4927
4928@item Location(s): Near the top of the parser source code file.
4929@end itemize
8405b70c 4930
148d66d8
JD
4931@item imports
4932@findex %code imports
4933
4934@itemize @bullet
4935@item Language(s): Java
4936
4937@item Purpose: This is the best place to write Java import directives.
4938
4939@item Location(s): The parser Java file after any Java package directive and
4940before any class definitions.
4941@end itemize
148d66d8
JD
4942@end itemize
4943
148d66d8
JD
4944@cindex Prologue
4945For a detailed discussion of how to use @code{%code} in place of the
4946traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4947@end deffn
4948
18b519c0 4949@deffn {Directive} %debug
4947ebdb
PE
4950In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4951already defined, so that the debugging facilities are compiled.
ec3bc396 4952@xref{Tracing, ,Tracing Your Parser}.
bd5df716 4953@end deffn
d8988b2f 4954
c1d19e10 4955@deffn {Directive} %define @var{variable}
f37495f6 4956@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 4957@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2 4958Define a variable to adjust Bison's behavior.
9611cfa2 4959
e3a33f7c 4960It is an error if a @var{variable} is defined by @code{%define} multiple
c33bc800 4961times, but see @ref{Bison Options,,-D @var{name}[=@var{value}]}.
9611cfa2 4962
f37495f6
JD
4963@var{value} must be placed in quotation marks if it contains any
4964character other than a letter, underscore, period, dash, or non-initial
4965digit.
4966
4967Omitting @code{"@var{value}"} entirely is always equivalent to specifying
9611cfa2
JD
4968@code{""}.
4969
628be6c9 4970Some @var{variable}s take Boolean values.
9611cfa2
JD
4971In this case, Bison will complain if the variable definition does not meet one
4972of the following four conditions:
4973
4974@enumerate
f37495f6 4975@item @code{@var{value}} is @code{true}
9611cfa2 4976
f37495f6
JD
4977@item @code{@var{value}} is omitted (or @code{""} is specified).
4978This is equivalent to @code{true}.
9611cfa2 4979
f37495f6 4980@item @code{@var{value}} is @code{false}.
9611cfa2
JD
4981
4982@item @var{variable} is never defined.
628be6c9 4983In this case, Bison selects a default value.
9611cfa2 4984@end enumerate
148d66d8 4985
628be6c9
JD
4986What @var{variable}s are accepted, as well as their meanings and default
4987values, depend on the selected target language and/or the parser
4988skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
4989Summary,,%skeleton}).
4990Unaccepted @var{variable}s produce an error.
793fbca5
JD
4991Some of the accepted @var{variable}s are:
4992
4993@itemize @bullet
d9df47b6
JD
4994@item api.pure
4995@findex %define api.pure
4996
4997@itemize @bullet
4998@item Language(s): C
4999
5000@item Purpose: Request a pure (reentrant) parser program.
5001@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5002
5003@item Accepted Values: Boolean
5004
f37495f6 5005@item Default Value: @code{false}
d9df47b6
JD
5006@end itemize
5007
812775a0
JD
5008@item api.push-pull
5009@findex %define api.push-pull
793fbca5
JD
5010
5011@itemize @bullet
34a6c2d1 5012@item Language(s): C (deterministic parsers only)
793fbca5
JD
5013
5014@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 5015@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5016(The current push parsing interface is experimental and may evolve.
5017More user feedback will help to stabilize it.)
793fbca5 5018
f37495f6 5019@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5020
f37495f6 5021@item Default Value: @code{pull}
793fbca5
JD
5022@end itemize
5023
232be91a
AD
5024@c ================================================== lr.default-reductions
5025
1d0f55cc 5026@item lr.default-reductions
620b5727 5027@cindex default reductions
1d0f55cc 5028@findex %define lr.default-reductions
34a6c2d1
JD
5029@cindex delayed syntax errors
5030@cindex syntax errors delayed
4c38b19e
JD
5031@cindex @acronym{LAC}
5032@findex %nonassoc
34a6c2d1
JD
5033
5034@itemize @bullet
5035@item Language(s): all
5036
4c38b19e 5037@item Purpose: Specify the kind of states that are permitted to
620b5727 5038contain default reductions.
4c38b19e
JD
5039That is, in such a state, Bison selects the reduction with the largest
5040lookahead set to be the default parser action and then removes that
620b5727 5041lookahead set.
4c38b19e
JD
5042(The ability to specify where default reductions should be used is
5043experimental.
34a6c2d1
JD
5044More user feedback will help to stabilize it.)
5045
5046@item Accepted Values:
5047@itemize
f37495f6 5048@item @code{all}.
4c38b19e
JD
5049This is the traditional Bison behavior.
5050The main advantage is a significant decrease in the size of the parser
5051tables.
5052The disadvantage is that, when the generated parser encounters a
5053syntactically unacceptable token, the parser might then perform
5054unnecessary default reductions before it can detect the syntax error.
5055Such delayed syntax error detection is usually inherent in
5056@acronym{LALR} and @acronym{IELR} parser tables anyway due to
5057@acronym{LR} state merging (@pxref{Decl Summary,,lr.type}).
5058Furthermore, the use of @code{%nonassoc} can contribute to delayed
5059syntax error detection even in the case of canonical @acronym{LR}.
5060As an experimental feature, delayed syntax error detection can be
5061overcome in all cases by enabling @acronym{LAC} (@pxref{Decl
5062Summary,,parse.lac}, for details, including a discussion of the effects
5063of delayed syntax error detection).
34a6c2d1 5064
f37495f6 5065@item @code{consistent}.
34a6c2d1
JD
5066@cindex consistent states
5067A consistent state is a state that has only one possible action.
5068If that action is a reduction, then the parser does not need to request
5069a lookahead token from the scanner before performing that action.
4c38b19e
JD
5070However, the parser recognizes the ability to ignore the lookahead token
5071in this way only when such a reduction is encoded as a default
5072reduction.
5073Thus, if default reductions are permitted only in consistent states,
5074then a canonical @acronym{LR} parser that does not employ
5075@code{%nonassoc} detects a syntax error as soon as it @emph{needs} the
5076syntactically unacceptable token from the scanner.
34a6c2d1 5077
f37495f6 5078@item @code{accepting}.
34a6c2d1 5079@cindex accepting state
4c38b19e
JD
5080In the accepting state, the default reduction is actually the accept
5081action.
5082In this case, a canonical @acronym{LR} parser that does not employ
5083@code{%nonassoc} detects a syntax error as soon as it @emph{reaches} the
5084syntactically unacceptable token in the input.
5085That is, it does not perform any extra reductions.
34a6c2d1
JD
5086@end itemize
5087
5088@item Default Value:
5089@itemize
f37495f6
JD
5090@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
5091@item @code{all} otherwise.
34a6c2d1
JD
5092@end itemize
5093@end itemize
5094
232be91a
AD
5095@c ============================================ lr.keep-unreachable-states
5096
812775a0
JD
5097@item lr.keep-unreachable-states
5098@findex %define lr.keep-unreachable-states
31984206
JD
5099
5100@itemize @bullet
5101@item Language(s): all
5102
5103@item Purpose: Requests that Bison allow unreachable parser states to remain in
5104the parser tables.
5105Bison considers a state to be unreachable if there exists no sequence of
5106transitions from the start state to that state.
5107A state can become unreachable during conflict resolution if Bison disables a
5108shift action leading to it from a predecessor state.
5109Keeping unreachable states is sometimes useful for analysis purposes, but they
5110are useless in the generated parser.
5111
5112@item Accepted Values: Boolean
5113
f37495f6 5114@item Default Value: @code{false}
31984206
JD
5115
5116@item Caveats:
5117
5118@itemize @bullet
cff03fb2
JD
5119
5120@item Unreachable states may contain conflicts and may use rules not used in
5121any other state.
31984206
JD
5122Thus, keeping unreachable states may induce warnings that are irrelevant to
5123your parser's behavior, and it may eliminate warnings that are relevant.
5124Of course, the change in warnings may actually be relevant to a parser table
5125analysis that wants to keep unreachable states, so this behavior will likely
5126remain in future Bison releases.
5127
5128@item While Bison is able to remove unreachable states, it is not guaranteed to
5129remove other kinds of useless states.
5130Specifically, when Bison disables reduce actions during conflict resolution,
5131some goto actions may become useless, and thus some additional states may
5132become useless.
5133If Bison were to compute which goto actions were useless and then disable those
5134actions, it could identify such states as unreachable and then remove those
5135states.
5136However, Bison does not compute which goto actions are useless.
5137@end itemize
5138@end itemize
5139
232be91a
AD
5140@c ================================================== lr.type
5141
34a6c2d1
JD
5142@item lr.type
5143@findex %define lr.type
5144@cindex @acronym{LALR}
5145@cindex @acronym{IELR}
5146@cindex @acronym{LR}
5147
5148@itemize @bullet
5149@item Language(s): all
5150
5151@item Purpose: Specifies the type of parser tables within the
5152@acronym{LR}(1) family.
5153(This feature is experimental.
5154More user feedback will help to stabilize it.)
5155
5156@item Accepted Values:
5157@itemize
f37495f6 5158@item @code{lalr}.
34a6c2d1
JD
5159While Bison generates @acronym{LALR} parser tables by default for
5160historical reasons, @acronym{IELR} or canonical @acronym{LR} is almost
5161always preferable for deterministic parsers.
5162The trouble is that @acronym{LALR} parser tables can suffer from
620b5727
JD
5163mysterious conflicts and thus may not accept the full set of sentences
5164that @acronym{IELR} and canonical @acronym{LR} accept.
34a6c2d1
JD
5165@xref{Mystery Conflicts}, for details.
5166However, there are at least two scenarios where @acronym{LALR} may be
5167worthwhile:
5168@itemize
5169@cindex @acronym{GLR} with @acronym{LALR}
5170@item When employing @acronym{GLR} parsers (@pxref{GLR Parsers}), if you
5171do not resolve any conflicts statically (for example, with @code{%left}
5172or @code{%prec}), then the parser explores all potential parses of any
5173given input.
620b5727
JD
5174In this case, the use of @acronym{LALR} parser tables is guaranteed not
5175to alter the language accepted by the parser.
34a6c2d1
JD
5176@acronym{LALR} parser tables are the smallest parser tables Bison can
5177currently generate, so they may be preferable.
5178
5179@item Occasionally during development, an especially malformed grammar
5180with a major recurring flaw may severely impede the @acronym{IELR} or
5181canonical @acronym{LR} parser table generation algorithm.
5182@acronym{LALR} can be a quick way to generate parser tables in order to
5183investigate such problems while ignoring the more subtle differences
5184from @acronym{IELR} and canonical @acronym{LR}.
5185@end itemize
5186
f37495f6 5187@item @code{ielr}.
34a6c2d1
JD
5188@acronym{IELR} is a minimal @acronym{LR} algorithm.
5189That is, given any grammar (@acronym{LR} or non-@acronym{LR}),
5190@acronym{IELR} and canonical @acronym{LR} always accept exactly the same
5191set of sentences.
5192However, as for @acronym{LALR}, the number of parser states is often an
5193order of magnitude less for @acronym{IELR} than for canonical
5194@acronym{LR}.
5195More importantly, because canonical @acronym{LR}'s extra parser states
5196may contain duplicate conflicts in the case of non-@acronym{LR}
5197grammars, the number of conflicts for @acronym{IELR} is often an order
5198of magnitude less as well.
5199This can significantly reduce the complexity of developing of a grammar.
5200
f37495f6 5201@item @code{canonical-lr}.
34a6c2d1
JD
5202@cindex delayed syntax errors
5203@cindex syntax errors delayed
4c38b19e
JD
5204@cindex @acronym{LAC}
5205@findex %nonassoc
5206While inefficient, canonical @acronym{LR} parser tables can be an
5207interesting means to explore a grammar because they have a property that
5208@acronym{IELR} and @acronym{LALR} tables do not.
5209That is, if @code{%nonassoc} is not used and default reductions are left
5210disabled (@pxref{Decl Summary,,lr.default-reductions}), then, for every
5211left context of every canonical @acronym{LR} state, the set of tokens
5212accepted by that state is guaranteed to be the exact set of tokens that
5213is syntactically acceptable in that left context.
5214It might then seem that an advantage of canonical @acronym{LR} parsers
5215in production is that, under the above constraints, they are guaranteed
5216to detect a syntax error as soon as possible without performing any
5217unnecessary reductions.
5218However, @acronym{IELR} parsers using @acronym{LAC} (@pxref{Decl
5219Summary,,parse.lac}) are also able to achieve this behavior without
5220sacrificing @code{%nonassoc} or default reductions.
34a6c2d1
JD
5221@end itemize
5222
f37495f6 5223@item Default Value: @code{lalr}
34a6c2d1
JD
5224@end itemize
5225
793fbca5
JD
5226@item namespace
5227@findex %define namespace
5228
5229@itemize
5230@item Languages(s): C++
5231
5232@item Purpose: Specifies the namespace for the parser class.
5233For example, if you specify:
5234
5235@smallexample
5236%define namespace "foo::bar"
5237@end smallexample
5238
5239Bison uses @code{foo::bar} verbatim in references such as:
5240
5241@smallexample
5242foo::bar::parser::semantic_type
5243@end smallexample
5244
5245However, to open a namespace, Bison removes any leading @code{::} and then
5246splits on any remaining occurrences:
5247
5248@smallexample
5249namespace foo @{ namespace bar @{
5250 class position;
5251 class location;
5252@} @}
5253@end smallexample
5254
5255@item Accepted Values: Any absolute or relative C++ namespace reference without
5256a trailing @code{"::"}.
5257For example, @code{"foo"} or @code{"::foo::bar"}.
5258
5259@item Default Value: The value specified by @code{%name-prefix}, which defaults
5260to @code{yy}.
5261This usage of @code{%name-prefix} is for backward compatibility and can be
5262confusing since @code{%name-prefix} also specifies the textual prefix for the
5263lexical analyzer function.
5264Thus, if you specify @code{%name-prefix}, it is best to also specify
5265@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5266lexical analyzer function.
5267For example, if you specify:
5268
5269@smallexample
5270%define namespace "foo"
5271%name-prefix "bar::"
5272@end smallexample
5273
5274The parser namespace is @code{foo} and @code{yylex} is referenced as
5275@code{bar::lex}.
5276@end itemize
4c38b19e
JD
5277
5278@c ================================================== parse.lac
5279@item parse.lac
5280@findex %define parse.lac
5281@cindex @acronym{LAC}
5282@cindex lookahead correction
5283
5284@itemize
5285@item Languages(s): C
5286
5287@item Purpose: Enable @acronym{LAC} (lookahead correction) to improve
5288syntax error handling.
5289
5290Canonical @acronym{LR}, @acronym{IELR}, and @acronym{LALR} can suffer
5291from a couple of problems upon encountering a syntax error. First, the
5292parser might perform additional parser stack reductions before
5293discovering the syntax error. Such reductions perform user semantic
5294actions that are unexpected because they are based on an invalid token,
5295and they cause error recovery to begin in a different syntactic context
5296than the one in which the invalid token was encountered. Second, when
5297verbose error messages are enabled (with @code{%error-verbose} or
5298@code{#define YYERROR_VERBOSE}), the expected token list in the syntax
5299error message can both contain invalid tokens and omit valid tokens.
5300
5301The culprits for the above problems are @code{%nonassoc}, default
5302reductions in inconsistent states, and parser state merging. Thus,
5303@acronym{IELR} and @acronym{LALR} suffer the most. Canonical
5304@acronym{LR} can suffer only if @code{%nonassoc} is used or if default
5305reductions are enabled for inconsistent states.
5306
5307@acronym{LAC} is a new mechanism within the parsing algorithm that
5308completely solves these problems for canonical @acronym{LR},
5309@acronym{IELR}, and @acronym{LALR} without sacrificing @code{%nonassoc},
5310default reductions, or state mering. Conceptually, the mechanism is
5311straight-forward. Whenever the parser fetches a new token from the
5312scanner so that it can determine the next parser action, it immediately
5313suspends normal parsing and performs an exploratory parse using a
5314temporary copy of the normal parser state stack. During this
5315exploratory parse, the parser does not perform user semantic actions.
5316If the exploratory parse reaches a shift action, normal parsing then
5317resumes on the normal parser stacks. If the exploratory parse reaches
5318an error instead, the parser reports a syntax error. If verbose syntax
5319error messages are enabled, the parser must then discover the list of
5320expected tokens, so it performs a separate exploratory parse for each
5321token in the grammar.
5322
5323There is one subtlety about the use of @acronym{LAC}. That is, when in
5324a consistent parser state with a default reduction, the parser will not
5325attempt to fetch a token from the scanner because no lookahead is needed
5326to determine the next parser action. Thus, whether default reductions
5327are enabled in consistent states (@pxref{Decl
5328Summary,,lr.default-reductions}) affects how soon the parser detects a
5329syntax error: when it @emph{reaches} an erroneous token or when it
5330eventually @emph{needs} that token as a lookahead. The latter behavior
5331is probably more intuitive, so Bison currently provides no way to
5332achieve the former behavior while default reductions are fully enabled.
5333
5334Thus, when @acronym{LAC} is in use, for some fixed decision of whether
5335to enable default reductions in consistent states, canonical
5336@acronym{LR} and @acronym{IELR} behave exactly the same for both
5337syntactically acceptable and syntactically unacceptable input. While
5338@acronym{LALR} still does not support the full language-recognition
5339power of canonical @acronym{LR} and @acronym{IELR}, @acronym{LAC} at
5340least enables @acronym{LALR}'s syntax error handling to correctly
5341reflect @acronym{LALR}'s language-recognition power.
5342
5343Because @acronym{LAC} requires many parse actions to be performed twice,
5344it can have a performance penalty. However, not all parse actions must
5345be performed twice. Specifically, during a series of default reductions
5346in consistent states and shift actions, the parser never has to initiate
5347an exploratory parse. Moreover, the most time-consuming tasks in a
5348parse are often the file I/O, the lexical analysis performed by the
5349scanner, and the user's semantic actions, but none of these are
5350performed during the exploratory parse. Finally, the base of the
5351temporary stack used during an exploratory parse is a pointer into the
5352normal parser state stack so that the stack is never physically copied.
5353In our experience, the performance penalty of @acronym{LAC} has proven
5354insignificant for practical grammars.
5355
5356@item Accepted Values: @code{none}, @code{full}
5357
5358@item Default Value: @code{none}
5359@end itemize
793fbca5
JD
5360@end itemize
5361
d782395d
JD
5362@end deffn
5363
18b519c0 5364@deffn {Directive} %defines
4bfd5e4e
PE
5365Write a header file containing macro definitions for the token type
5366names defined in the grammar as well as a few other declarations.
d8988b2f 5367If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5368is named @file{@var{name}.h}.
d8988b2f 5369
b321737f 5370For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5371@code{YYSTYPE} is already defined as a macro or you have used a
5372@code{<@var{type}>} tag without using @code{%union}.
5373Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5374(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5375require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5376or type definition
f8e1c9e5
AD
5377(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5378arrange for these definitions to be propagated to all modules, e.g., by
5379putting them in a prerequisite header that is included both by your
5380parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5381
5382Unless your parser is pure, the output header declares @code{yylval}
5383as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5384Parser}.
5385
5386If you have also used locations, the output header declares
5387@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5388the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5389Locations}.
5390
f8e1c9e5
AD
5391This output file is normally essential if you wish to put the definition
5392of @code{yylex} in a separate source file, because @code{yylex}
5393typically needs to be able to refer to the above-mentioned declarations
5394and to the token type codes. @xref{Token Values, ,Semantic Values of
5395Tokens}.
9bc0dd67 5396
16dc6a9e
JD
5397@findex %code requires
5398@findex %code provides
5399If you have declared @code{%code requires} or @code{%code provides}, the output
5400header also contains their code.
148d66d8 5401@xref{Decl Summary, ,%code}.
592d0b1e
PB
5402@end deffn
5403
02975b9a
JD
5404@deffn {Directive} %defines @var{defines-file}
5405Same as above, but save in the file @var{defines-file}.
5406@end deffn
5407
18b519c0 5408@deffn {Directive} %destructor
258b75ca 5409Specify how the parser should reclaim the memory associated to
fa7e68c3 5410discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5411@end deffn
72f889cc 5412
02975b9a 5413@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5414Specify a prefix to use for all Bison output file names. The names are
5415chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5416@end deffn
d8988b2f 5417
e6e704dc 5418@deffn {Directive} %language "@var{language}"
0e021770 5419Specify the programming language for the generated parser. Currently
59da312b 5420supported languages include C, C++, and Java.
e6e704dc 5421@var{language} is case-insensitive.
ed4d67dc
JD
5422
5423This directive is experimental and its effect may be modified in future
5424releases.
0e021770
PE
5425@end deffn
5426
18b519c0 5427@deffn {Directive} %locations
89cab50d
AD
5428Generate the code processing the locations (@pxref{Action Features,
5429,Special Features for Use in Actions}). This mode is enabled as soon as
5430the grammar uses the special @samp{@@@var{n}} tokens, but if your
5431grammar does not use it, using @samp{%locations} allows for more
6e649e65 5432accurate syntax error messages.
18b519c0 5433@end deffn
89cab50d 5434
02975b9a 5435@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5436Rename the external symbols used in the parser so that they start with
5437@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5438in C parsers
d8988b2f 5439is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5440@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5441(if locations are used) @code{yylloc}. If you use a push parser,
5442@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5443@code{yypstate_new} and @code{yypstate_delete} will
5444also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5445names become @code{c_parse}, @code{c_lex}, and so on.
5446For C++ parsers, see the @code{%define namespace} documentation in this
5447section.
aa08666d 5448@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5449@end deffn
931c7513 5450
91d2c560 5451@ifset defaultprec
22fccf95
PE
5452@deffn {Directive} %no-default-prec
5453Do not assign a precedence to rules lacking an explicit @code{%prec}
5454modifier (@pxref{Contextual Precedence, ,Context-Dependent
5455Precedence}).
5456@end deffn
91d2c560 5457@end ifset
22fccf95 5458
18b519c0 5459@deffn {Directive} %no-lines
931c7513
RS
5460Don't generate any @code{#line} preprocessor commands in the parser
5461file. Ordinarily Bison writes these commands in the parser file so that
5462the C compiler and debuggers will associate errors and object code with
5463your source file (the grammar file). This directive causes them to
5464associate errors with the parser file, treating it an independent source
5465file in its own right.
18b519c0 5466@end deffn
931c7513 5467
02975b9a 5468@deffn {Directive} %output "@var{file}"
fa4d969f 5469Specify @var{file} for the parser file.
18b519c0 5470@end deffn
6deb4447 5471
18b519c0 5472@deffn {Directive} %pure-parser
d9df47b6
JD
5473Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5474for which Bison is more careful to warn about unreasonable usage.
18b519c0 5475@end deffn
6deb4447 5476
b50d2359 5477@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5478Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5479Require a Version of Bison}.
b50d2359
AD
5480@end deffn
5481
0e021770 5482@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5483Specify the skeleton to use.
5484
ed4d67dc
JD
5485@c You probably don't need this option unless you are developing Bison.
5486@c You should use @code{%language} if you want to specify the skeleton for a
5487@c different language, because it is clearer and because it will always choose the
5488@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5489
5490If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5491file in the Bison installation directory.
5492If it does, @var{file} is an absolute file name or a file name relative to the
5493directory of the grammar file.
5494This is similar to how most shells resolve commands.
0e021770
PE
5495@end deffn
5496
18b519c0 5497@deffn {Directive} %token-table
931c7513
RS
5498Generate an array of token names in the parser file. The name of the
5499array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5500token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5501three elements of @code{yytname} correspond to the predefined tokens
5502@code{"$end"},
88bce5a2
AD
5503@code{"error"}, and @code{"$undefined"}; after these come the symbols
5504defined in the grammar file.
931c7513 5505
9e0876fb
PE
5506The name in the table includes all the characters needed to represent
5507the token in Bison. For single-character literals and literal
5508strings, this includes the surrounding quoting characters and any
5509escape sequences. For example, the Bison single-character literal
5510@code{'+'} corresponds to a three-character name, represented in C as
5511@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5512corresponds to a five-character name, represented in C as
5513@code{"\"\\\\/\""}.
931c7513 5514
8c9a50be 5515When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5516definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5517@code{YYNRULES}, and @code{YYNSTATES}:
5518
5519@table @code
5520@item YYNTOKENS
5521The highest token number, plus one.
5522@item YYNNTS
9ecbd125 5523The number of nonterminal symbols.
931c7513
RS
5524@item YYNRULES
5525The number of grammar rules,
5526@item YYNSTATES
5527The number of parser states (@pxref{Parser States}).
5528@end table
18b519c0 5529@end deffn
d8988b2f 5530
18b519c0 5531@deffn {Directive} %verbose
d8988b2f 5532Write an extra output file containing verbose descriptions of the
742e4900 5533parser states and what is done for each type of lookahead token in
72d2299c 5534that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5535information.
18b519c0 5536@end deffn
d8988b2f 5537
18b519c0 5538@deffn {Directive} %yacc
d8988b2f
AD
5539Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5540including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5541@end deffn
d8988b2f
AD
5542
5543
342b8b6e 5544@node Multiple Parsers
bfa74976
RS
5545@section Multiple Parsers in the Same Program
5546
5547Most programs that use Bison parse only one language and therefore contain
5548only one Bison parser. But what if you want to parse more than one
5549language with the same program? Then you need to avoid a name conflict
5550between different definitions of @code{yyparse}, @code{yylval}, and so on.
5551
5552The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5553(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5554functions and variables of the Bison parser to start with @var{prefix}
5555instead of @samp{yy}. You can use this to give each parser distinct
5556names that do not conflict.
bfa74976
RS
5557
5558The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5559@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5560@code{yychar} and @code{yydebug}. If you use a push parser,
5561@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5562@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5563For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5564@code{clex}, and so on.
bfa74976
RS
5565
5566@strong{All the other variables and macros associated with Bison are not
5567renamed.} These others are not global; there is no conflict if the same
5568name is used in different parsers. For example, @code{YYSTYPE} is not
5569renamed, but defining this in different ways in different parsers causes
5570no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5571
5572The @samp{-p} option works by adding macro definitions to the beginning
5573of the parser source file, defining @code{yyparse} as
5574@code{@var{prefix}parse}, and so on. This effectively substitutes one
5575name for the other in the entire parser file.
5576
342b8b6e 5577@node Interface
bfa74976
RS
5578@chapter Parser C-Language Interface
5579@cindex C-language interface
5580@cindex interface
5581
5582The Bison parser is actually a C function named @code{yyparse}. Here we
5583describe the interface conventions of @code{yyparse} and the other
5584functions that it needs to use.
5585
5586Keep in mind that the parser uses many C identifiers starting with
5587@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5588identifier (aside from those in this manual) in an action or in epilogue
5589in the grammar file, you are likely to run into trouble.
bfa74976
RS
5590
5591@menu
f56274a8
DJ
5592* Parser Function:: How to call @code{yyparse} and what it returns.
5593* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5594* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5595* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5596* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5597* Lexical:: You must supply a function @code{yylex}
5598 which reads tokens.
5599* Error Reporting:: You must supply a function @code{yyerror}.
5600* Action Features:: Special features for use in actions.
5601* Internationalization:: How to let the parser speak in the user's
5602 native language.
bfa74976
RS
5603@end menu
5604
342b8b6e 5605@node Parser Function
bfa74976
RS
5606@section The Parser Function @code{yyparse}
5607@findex yyparse
5608
5609You call the function @code{yyparse} to cause parsing to occur. This
5610function reads tokens, executes actions, and ultimately returns when it
5611encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5612write an action which directs @code{yyparse} to return immediately
5613without reading further.
bfa74976 5614
2a8d363a
AD
5615
5616@deftypefun int yyparse (void)
bfa74976
RS
5617The value returned by @code{yyparse} is 0 if parsing was successful (return
5618is due to end-of-input).
5619
b47dbebe
PE
5620The value is 1 if parsing failed because of invalid input, i.e., input
5621that contains a syntax error or that causes @code{YYABORT} to be
5622invoked.
5623
5624The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5625@end deftypefun
bfa74976
RS
5626
5627In an action, you can cause immediate return from @code{yyparse} by using
5628these macros:
5629
2a8d363a 5630@defmac YYACCEPT
bfa74976
RS
5631@findex YYACCEPT
5632Return immediately with value 0 (to report success).
2a8d363a 5633@end defmac
bfa74976 5634
2a8d363a 5635@defmac YYABORT
bfa74976
RS
5636@findex YYABORT
5637Return immediately with value 1 (to report failure).
2a8d363a
AD
5638@end defmac
5639
5640If you use a reentrant parser, you can optionally pass additional
5641parameter information to it in a reentrant way. To do so, use the
5642declaration @code{%parse-param}:
5643
feeb0eda 5644@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5645@findex %parse-param
287c78f6
PE
5646Declare that an argument declared by the braced-code
5647@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5648The @var{argument-declaration} is used when declaring
feeb0eda
PE
5649functions or prototypes. The last identifier in
5650@var{argument-declaration} must be the argument name.
2a8d363a
AD
5651@end deffn
5652
5653Here's an example. Write this in the parser:
5654
5655@example
feeb0eda
PE
5656%parse-param @{int *nastiness@}
5657%parse-param @{int *randomness@}
2a8d363a
AD
5658@end example
5659
5660@noindent
5661Then call the parser like this:
5662
5663@example
5664@{
5665 int nastiness, randomness;
5666 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5667 value = yyparse (&nastiness, &randomness);
5668 @dots{}
5669@}
5670@end example
5671
5672@noindent
5673In the grammar actions, use expressions like this to refer to the data:
5674
5675@example
5676exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5677@end example
5678
9987d1b3
JD
5679@node Push Parser Function
5680@section The Push Parser Function @code{yypush_parse}
5681@findex yypush_parse
5682
59da312b
JD
5683(The current push parsing interface is experimental and may evolve.
5684More user feedback will help to stabilize it.)
5685
f4101aa6 5686You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5687function is available if either the @code{%define api.push-pull push} or
5688@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5689@xref{Push Decl, ,A Push Parser}.
5690
5691@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5692The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5693following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5694is required to finish parsing the grammar.
5695@end deftypefun
5696
5697@node Pull Parser Function
5698@section The Pull Parser Function @code{yypull_parse}
5699@findex yypull_parse
5700
59da312b
JD
5701(The current push parsing interface is experimental and may evolve.
5702More user feedback will help to stabilize it.)
5703
f4101aa6 5704You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5705stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5706declaration is used.
9987d1b3
JD
5707@xref{Push Decl, ,A Push Parser}.
5708
5709@deftypefun int yypull_parse (yypstate *yyps)
5710The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5711@end deftypefun
5712
5713@node Parser Create Function
5714@section The Parser Create Function @code{yystate_new}
5715@findex yypstate_new
5716
59da312b
JD
5717(The current push parsing interface is experimental and may evolve.
5718More user feedback will help to stabilize it.)
5719
f4101aa6 5720You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5721This function is available if either the @code{%define api.push-pull push} or
5722@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5723@xref{Push Decl, ,A Push Parser}.
5724
5725@deftypefun yypstate *yypstate_new (void)
c781580d 5726The function will return a valid parser instance if there was memory available
333e670c
JD
5727or 0 if no memory was available.
5728In impure mode, it will also return 0 if a parser instance is currently
5729allocated.
9987d1b3
JD
5730@end deftypefun
5731
5732@node Parser Delete Function
5733@section The Parser Delete Function @code{yystate_delete}
5734@findex yypstate_delete
5735
59da312b
JD
5736(The current push parsing interface is experimental and may evolve.
5737More user feedback will help to stabilize it.)
5738
9987d1b3 5739You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5740function is available if either the @code{%define api.push-pull push} or
5741@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5742@xref{Push Decl, ,A Push Parser}.
5743
5744@deftypefun void yypstate_delete (yypstate *yyps)
5745This function will reclaim the memory associated with a parser instance.
5746After this call, you should no longer attempt to use the parser instance.
5747@end deftypefun
bfa74976 5748
342b8b6e 5749@node Lexical
bfa74976
RS
5750@section The Lexical Analyzer Function @code{yylex}
5751@findex yylex
5752@cindex lexical analyzer
5753
5754The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5755the input stream and returns them to the parser. Bison does not create
5756this function automatically; you must write it so that @code{yyparse} can
5757call it. The function is sometimes referred to as a lexical scanner.
5758
5759In simple programs, @code{yylex} is often defined at the end of the Bison
5760grammar file. If @code{yylex} is defined in a separate source file, you
5761need to arrange for the token-type macro definitions to be available there.
5762To do this, use the @samp{-d} option when you run Bison, so that it will
5763write these macro definitions into a separate header file
5764@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5765that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5766
5767@menu
5768* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5769* Token Values:: How @code{yylex} must return the semantic value
5770 of the token it has read.
5771* Token Locations:: How @code{yylex} must return the text location
5772 (line number, etc.) of the token, if the
5773 actions want that.
5774* Pure Calling:: How the calling convention differs in a pure parser
5775 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5776@end menu
5777
342b8b6e 5778@node Calling Convention
bfa74976
RS
5779@subsection Calling Convention for @code{yylex}
5780
72d2299c
PE
5781The value that @code{yylex} returns must be the positive numeric code
5782for the type of token it has just found; a zero or negative value
5783signifies end-of-input.
bfa74976
RS
5784
5785When a token is referred to in the grammar rules by a name, that name
5786in the parser file becomes a C macro whose definition is the proper
5787numeric code for that token type. So @code{yylex} can use the name
5788to indicate that type. @xref{Symbols}.
5789
5790When a token is referred to in the grammar rules by a character literal,
5791the numeric code for that character is also the code for the token type.
72d2299c
PE
5792So @code{yylex} can simply return that character code, possibly converted
5793to @code{unsigned char} to avoid sign-extension. The null character
5794must not be used this way, because its code is zero and that
bfa74976
RS
5795signifies end-of-input.
5796
5797Here is an example showing these things:
5798
5799@example
13863333
AD
5800int
5801yylex (void)
bfa74976
RS
5802@{
5803 @dots{}
72d2299c 5804 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5805 return 0;
5806 @dots{}
5807 if (c == '+' || c == '-')
72d2299c 5808 return c; /* Assume token type for `+' is '+'. */
bfa74976 5809 @dots{}
72d2299c 5810 return INT; /* Return the type of the token. */
bfa74976
RS
5811 @dots{}
5812@}
5813@end example
5814
5815@noindent
5816This interface has been designed so that the output from the @code{lex}
5817utility can be used without change as the definition of @code{yylex}.
5818
931c7513
RS
5819If the grammar uses literal string tokens, there are two ways that
5820@code{yylex} can determine the token type codes for them:
5821
5822@itemize @bullet
5823@item
5824If the grammar defines symbolic token names as aliases for the
5825literal string tokens, @code{yylex} can use these symbolic names like
5826all others. In this case, the use of the literal string tokens in
5827the grammar file has no effect on @code{yylex}.
5828
5829@item
9ecbd125 5830@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5831table. The index of the token in the table is the token type's code.
9ecbd125 5832The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5833double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5834token's characters are escaped as necessary to be suitable as input
5835to Bison.
931c7513 5836
9e0876fb
PE
5837Here's code for looking up a multicharacter token in @code{yytname},
5838assuming that the characters of the token are stored in
5839@code{token_buffer}, and assuming that the token does not contain any
5840characters like @samp{"} that require escaping.
931c7513
RS
5841
5842@smallexample
5843for (i = 0; i < YYNTOKENS; i++)
5844 @{
5845 if (yytname[i] != 0
5846 && yytname[i][0] == '"'
68449b3a
PE
5847 && ! strncmp (yytname[i] + 1, token_buffer,
5848 strlen (token_buffer))
931c7513
RS
5849 && yytname[i][strlen (token_buffer) + 1] == '"'
5850 && yytname[i][strlen (token_buffer) + 2] == 0)
5851 break;
5852 @}
5853@end smallexample
5854
5855The @code{yytname} table is generated only if you use the
8c9a50be 5856@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5857@end itemize
5858
342b8b6e 5859@node Token Values
bfa74976
RS
5860@subsection Semantic Values of Tokens
5861
5862@vindex yylval
9d9b8b70 5863In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5864be stored into the global variable @code{yylval}. When you are using
5865just one data type for semantic values, @code{yylval} has that type.
5866Thus, if the type is @code{int} (the default), you might write this in
5867@code{yylex}:
5868
5869@example
5870@group
5871 @dots{}
72d2299c
PE
5872 yylval = value; /* Put value onto Bison stack. */
5873 return INT; /* Return the type of the token. */
bfa74976
RS
5874 @dots{}
5875@end group
5876@end example
5877
5878When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5879made from the @code{%union} declaration (@pxref{Union Decl, ,The
5880Collection of Value Types}). So when you store a token's value, you
5881must use the proper member of the union. If the @code{%union}
5882declaration looks like this:
bfa74976
RS
5883
5884@example
5885@group
5886%union @{
5887 int intval;
5888 double val;
5889 symrec *tptr;
5890@}
5891@end group
5892@end example
5893
5894@noindent
5895then the code in @code{yylex} might look like this:
5896
5897@example
5898@group
5899 @dots{}
72d2299c
PE
5900 yylval.intval = value; /* Put value onto Bison stack. */
5901 return INT; /* Return the type of the token. */
bfa74976
RS
5902 @dots{}
5903@end group
5904@end example
5905
95923bd6
AD
5906@node Token Locations
5907@subsection Textual Locations of Tokens
bfa74976
RS
5908
5909@vindex yylloc
847bf1f5 5910If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5911Tracking Locations}) in actions to keep track of the textual locations
5912of tokens and groupings, then you must provide this information in
5913@code{yylex}. The function @code{yyparse} expects to find the textual
5914location of a token just parsed in the global variable @code{yylloc}.
5915So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5916
5917By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5918initialize the members that are going to be used by the actions. The
5919four members are called @code{first_line}, @code{first_column},
5920@code{last_line} and @code{last_column}. Note that the use of this
5921feature makes the parser noticeably slower.
bfa74976
RS
5922
5923@tindex YYLTYPE
5924The data type of @code{yylloc} has the name @code{YYLTYPE}.
5925
342b8b6e 5926@node Pure Calling
c656404a 5927@subsection Calling Conventions for Pure Parsers
bfa74976 5928
d9df47b6 5929When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5930pure, reentrant parser, the global communication variables @code{yylval}
5931and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5932Parser}.) In such parsers the two global variables are replaced by
5933pointers passed as arguments to @code{yylex}. You must declare them as
5934shown here, and pass the information back by storing it through those
5935pointers.
bfa74976
RS
5936
5937@example
13863333
AD
5938int
5939yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5940@{
5941 @dots{}
5942 *lvalp = value; /* Put value onto Bison stack. */
5943 return INT; /* Return the type of the token. */
5944 @dots{}
5945@}
5946@end example
5947
5948If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5949textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5950this case, omit the second argument; @code{yylex} will be called with
5951only one argument.
5952
e425e872 5953
2a8d363a
AD
5954If you wish to pass the additional parameter data to @code{yylex}, use
5955@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5956Function}).
e425e872 5957
feeb0eda 5958@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5959@findex %lex-param
287c78f6
PE
5960Declare that the braced-code @var{argument-declaration} is an
5961additional @code{yylex} argument declaration.
2a8d363a 5962@end deffn
e425e872 5963
2a8d363a 5964For instance:
e425e872
RS
5965
5966@example
feeb0eda
PE
5967%parse-param @{int *nastiness@}
5968%lex-param @{int *nastiness@}
5969%parse-param @{int *randomness@}
e425e872
RS
5970@end example
5971
5972@noindent
2a8d363a 5973results in the following signature:
e425e872
RS
5974
5975@example
2a8d363a
AD
5976int yylex (int *nastiness);
5977int yyparse (int *nastiness, int *randomness);
e425e872
RS
5978@end example
5979
d9df47b6 5980If @code{%define api.pure} is added:
c656404a
RS
5981
5982@example
2a8d363a
AD
5983int yylex (YYSTYPE *lvalp, int *nastiness);
5984int yyparse (int *nastiness, int *randomness);
c656404a
RS
5985@end example
5986
2a8d363a 5987@noindent
d9df47b6 5988and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5989
2a8d363a
AD
5990@example
5991int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5992int yyparse (int *nastiness, int *randomness);
5993@end example
931c7513 5994
342b8b6e 5995@node Error Reporting
bfa74976
RS
5996@section The Error Reporting Function @code{yyerror}
5997@cindex error reporting function
5998@findex yyerror
5999@cindex parse error
6000@cindex syntax error
6001
6e649e65 6002The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 6003whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6004action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6005macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6006in Actions}).
bfa74976
RS
6007
6008The Bison parser expects to report the error by calling an error
6009reporting function named @code{yyerror}, which you must supply. It is
6010called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6011receives one argument. For a syntax error, the string is normally
6012@w{@code{"syntax error"}}.
bfa74976 6013
2a8d363a
AD
6014@findex %error-verbose
6015If you invoke the directive @code{%error-verbose} in the Bison
6016declarations section (@pxref{Bison Declarations, ,The Bison Declarations
6017Section}), then Bison provides a more verbose and specific error message
6e649e65 6018string instead of just plain @w{@code{"syntax error"}}.
bfa74976 6019
1a059451
PE
6020The parser can detect one other kind of error: memory exhaustion. This
6021can happen when the input contains constructions that are very deeply
bfa74976 6022nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6023parser normally extends its stack automatically up to a very large limit. But
6024if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6025fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6026
6027In some cases diagnostics like @w{@code{"syntax error"}} are
6028translated automatically from English to some other language before
6029they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6030
6031The following definition suffices in simple programs:
6032
6033@example
6034@group
13863333 6035void
38a92d50 6036yyerror (char const *s)
bfa74976
RS
6037@{
6038@end group
6039@group
6040 fprintf (stderr, "%s\n", s);
6041@}
6042@end group
6043@end example
6044
6045After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6046error recovery if you have written suitable error recovery grammar rules
6047(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6048immediately return 1.
6049
93724f13 6050Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
6051an access to the current location.
6052This is indeed the case for the @acronym{GLR}
2a8d363a 6053parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6054@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6055@code{yyerror} are:
6056
6057@example
38a92d50
PE
6058void yyerror (char const *msg); /* Yacc parsers. */
6059void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6060@end example
6061
feeb0eda 6062If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6063
6064@example
b317297e
PE
6065void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6066void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6067@end example
6068
fa7e68c3 6069Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6070convention for absolutely pure parsers, i.e., when the calling
6071convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
6072@code{%define api.pure} are pure.
6073I.e.:
2a8d363a
AD
6074
6075@example
6076/* Location tracking. */
6077%locations
6078/* Pure yylex. */
d9df47b6 6079%define api.pure
feeb0eda 6080%lex-param @{int *nastiness@}
2a8d363a 6081/* Pure yyparse. */
feeb0eda
PE
6082%parse-param @{int *nastiness@}
6083%parse-param @{int *randomness@}
2a8d363a
AD
6084@end example
6085
6086@noindent
6087results in the following signatures for all the parser kinds:
6088
6089@example
6090int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6091int yyparse (int *nastiness, int *randomness);
93724f13
AD
6092void yyerror (YYLTYPE *locp,
6093 int *nastiness, int *randomness,
38a92d50 6094 char const *msg);
2a8d363a
AD
6095@end example
6096
1c0c3e95 6097@noindent
38a92d50
PE
6098The prototypes are only indications of how the code produced by Bison
6099uses @code{yyerror}. Bison-generated code always ignores the returned
6100value, so @code{yyerror} can return any type, including @code{void}.
6101Also, @code{yyerror} can be a variadic function; that is why the
6102message is always passed last.
6103
6104Traditionally @code{yyerror} returns an @code{int} that is always
6105ignored, but this is purely for historical reasons, and @code{void} is
6106preferable since it more accurately describes the return type for
6107@code{yyerror}.
93724f13 6108
bfa74976
RS
6109@vindex yynerrs
6110The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6111reported so far. Normally this variable is global; but if you
704a47c4
AD
6112request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6113then it is a local variable which only the actions can access.
bfa74976 6114
342b8b6e 6115@node Action Features
bfa74976
RS
6116@section Special Features for Use in Actions
6117@cindex summary, action features
6118@cindex action features summary
6119
6120Here is a table of Bison constructs, variables and macros that
6121are useful in actions.
6122
18b519c0 6123@deffn {Variable} $$
bfa74976
RS
6124Acts like a variable that contains the semantic value for the
6125grouping made by the current rule. @xref{Actions}.
18b519c0 6126@end deffn
bfa74976 6127
18b519c0 6128@deffn {Variable} $@var{n}
bfa74976
RS
6129Acts like a variable that contains the semantic value for the
6130@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6131@end deffn
bfa74976 6132
18b519c0 6133@deffn {Variable} $<@var{typealt}>$
bfa74976 6134Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6135specified by the @code{%union} declaration. @xref{Action Types, ,Data
6136Types of Values in Actions}.
18b519c0 6137@end deffn
bfa74976 6138
18b519c0 6139@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6140Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6141union specified by the @code{%union} declaration.
e0c471a9 6142@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6143@end deffn
bfa74976 6144
18b519c0 6145@deffn {Macro} YYABORT;
bfa74976
RS
6146Return immediately from @code{yyparse}, indicating failure.
6147@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6148@end deffn
bfa74976 6149
18b519c0 6150@deffn {Macro} YYACCEPT;
bfa74976
RS
6151Return immediately from @code{yyparse}, indicating success.
6152@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6153@end deffn
bfa74976 6154
18b519c0 6155@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6156@findex YYBACKUP
6157Unshift a token. This macro is allowed only for rules that reduce
742e4900 6158a single value, and only when there is no lookahead token.
c827f760 6159It is also disallowed in @acronym{GLR} parsers.
742e4900 6160It installs a lookahead token with token type @var{token} and
bfa74976
RS
6161semantic value @var{value}; then it discards the value that was
6162going to be reduced by this rule.
6163
6164If the macro is used when it is not valid, such as when there is
742e4900 6165a lookahead token already, then it reports a syntax error with
bfa74976
RS
6166a message @samp{cannot back up} and performs ordinary error
6167recovery.
6168
6169In either case, the rest of the action is not executed.
18b519c0 6170@end deffn
bfa74976 6171
18b519c0 6172@deffn {Macro} YYEMPTY
bfa74976 6173@vindex YYEMPTY
742e4900 6174Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6175@end deffn
bfa74976 6176
32c29292
JD
6177@deffn {Macro} YYEOF
6178@vindex YYEOF
742e4900 6179Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6180stream.
6181@end deffn
6182
18b519c0 6183@deffn {Macro} YYERROR;
bfa74976
RS
6184@findex YYERROR
6185Cause an immediate syntax error. This statement initiates error
6186recovery just as if the parser itself had detected an error; however, it
6187does not call @code{yyerror}, and does not print any message. If you
6188want to print an error message, call @code{yyerror} explicitly before
6189the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6190@end deffn
bfa74976 6191
18b519c0 6192@deffn {Macro} YYRECOVERING
02103984
PE
6193@findex YYRECOVERING
6194The expression @code{YYRECOVERING ()} yields 1 when the parser
6195is recovering from a syntax error, and 0 otherwise.
bfa74976 6196@xref{Error Recovery}.
18b519c0 6197@end deffn
bfa74976 6198
18b519c0 6199@deffn {Variable} yychar
742e4900
JD
6200Variable containing either the lookahead token, or @code{YYEOF} when the
6201lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6202has been performed so the next token is not yet known.
6203Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6204Actions}).
742e4900 6205@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6206@end deffn
bfa74976 6207
18b519c0 6208@deffn {Macro} yyclearin;
742e4900 6209Discard the current lookahead token. This is useful primarily in
32c29292
JD
6210error rules.
6211Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6212Semantic Actions}).
6213@xref{Error Recovery}.
18b519c0 6214@end deffn
bfa74976 6215
18b519c0 6216@deffn {Macro} yyerrok;
bfa74976 6217Resume generating error messages immediately for subsequent syntax
13863333 6218errors. This is useful primarily in error rules.
bfa74976 6219@xref{Error Recovery}.
18b519c0 6220@end deffn
bfa74976 6221
32c29292 6222@deffn {Variable} yylloc
742e4900 6223Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6224to @code{YYEMPTY} or @code{YYEOF}.
6225Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6226Actions}).
6227@xref{Actions and Locations, ,Actions and Locations}.
6228@end deffn
6229
6230@deffn {Variable} yylval
742e4900 6231Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6232not set to @code{YYEMPTY} or @code{YYEOF}.
6233Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6234Actions}).
6235@xref{Actions, ,Actions}.
6236@end deffn
6237
18b519c0 6238@deffn {Value} @@$
847bf1f5 6239@findex @@$
95923bd6 6240Acts like a structure variable containing information on the textual location
847bf1f5
AD
6241of the grouping made by the current rule. @xref{Locations, ,
6242Tracking Locations}.
bfa74976 6243
847bf1f5
AD
6244@c Check if those paragraphs are still useful or not.
6245
6246@c @example
6247@c struct @{
6248@c int first_line, last_line;
6249@c int first_column, last_column;
6250@c @};
6251@c @end example
6252
6253@c Thus, to get the starting line number of the third component, you would
6254@c use @samp{@@3.first_line}.
bfa74976 6255
847bf1f5
AD
6256@c In order for the members of this structure to contain valid information,
6257@c you must make @code{yylex} supply this information about each token.
6258@c If you need only certain members, then @code{yylex} need only fill in
6259@c those members.
bfa74976 6260
847bf1f5 6261@c The use of this feature makes the parser noticeably slower.
18b519c0 6262@end deffn
847bf1f5 6263
18b519c0 6264@deffn {Value} @@@var{n}
847bf1f5 6265@findex @@@var{n}
95923bd6 6266Acts like a structure variable containing information on the textual location
847bf1f5
AD
6267of the @var{n}th component of the current rule. @xref{Locations, ,
6268Tracking Locations}.
18b519c0 6269@end deffn
bfa74976 6270
f7ab6a50
PE
6271@node Internationalization
6272@section Parser Internationalization
6273@cindex internationalization
6274@cindex i18n
6275@cindex NLS
6276@cindex gettext
6277@cindex bison-po
6278
6279A Bison-generated parser can print diagnostics, including error and
6280tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6281also supports outputting diagnostics in the user's native language. To
6282make this work, the user should set the usual environment variables.
6283@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6284For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
6285set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
6286encoding. The exact set of available locales depends on the user's
6287installation.
6288
6289The maintainer of a package that uses a Bison-generated parser enables
6290the internationalization of the parser's output through the following
6291steps. Here we assume a package that uses @acronym{GNU} Autoconf and
6292@acronym{GNU} Automake.
6293
6294@enumerate
6295@item
30757c8c 6296@cindex bison-i18n.m4
f7ab6a50
PE
6297Into the directory containing the @acronym{GNU} Autoconf macros used
6298by the package---often called @file{m4}---copy the
6299@file{bison-i18n.m4} file installed by Bison under
6300@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6301For example:
6302
6303@example
6304cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6305@end example
6306
6307@item
30757c8c
PE
6308@findex BISON_I18N
6309@vindex BISON_LOCALEDIR
6310@vindex YYENABLE_NLS
f7ab6a50
PE
6311In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6312invocation, add an invocation of @code{BISON_I18N}. This macro is
6313defined in the file @file{bison-i18n.m4} that you copied earlier. It
6314causes @samp{configure} to find the value of the
30757c8c
PE
6315@code{BISON_LOCALEDIR} variable, and it defines the source-language
6316symbol @code{YYENABLE_NLS} to enable translations in the
6317Bison-generated parser.
f7ab6a50
PE
6318
6319@item
6320In the @code{main} function of your program, designate the directory
6321containing Bison's runtime message catalog, through a call to
6322@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6323For example:
6324
6325@example
6326bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6327@end example
6328
6329Typically this appears after any other call @code{bindtextdomain
6330(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6331@samp{BISON_LOCALEDIR} to be defined as a string through the
6332@file{Makefile}.
6333
6334@item
6335In the @file{Makefile.am} that controls the compilation of the @code{main}
6336function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6337either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6338
6339@example
6340DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6341@end example
6342
6343or:
6344
6345@example
6346AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6347@end example
6348
6349@item
6350Finally, invoke the command @command{autoreconf} to generate the build
6351infrastructure.
6352@end enumerate
6353
bfa74976 6354
342b8b6e 6355@node Algorithm
13863333
AD
6356@chapter The Bison Parser Algorithm
6357@cindex Bison parser algorithm
bfa74976
RS
6358@cindex algorithm of parser
6359@cindex shifting
6360@cindex reduction
6361@cindex parser stack
6362@cindex stack, parser
6363
6364As Bison reads tokens, it pushes them onto a stack along with their
6365semantic values. The stack is called the @dfn{parser stack}. Pushing a
6366token is traditionally called @dfn{shifting}.
6367
6368For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6369@samp{3} to come. The stack will have four elements, one for each token
6370that was shifted.
6371
6372But the stack does not always have an element for each token read. When
6373the last @var{n} tokens and groupings shifted match the components of a
6374grammar rule, they can be combined according to that rule. This is called
6375@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6376single grouping whose symbol is the result (left hand side) of that rule.
6377Running the rule's action is part of the process of reduction, because this
6378is what computes the semantic value of the resulting grouping.
6379
6380For example, if the infix calculator's parser stack contains this:
6381
6382@example
63831 + 5 * 3
6384@end example
6385
6386@noindent
6387and the next input token is a newline character, then the last three
6388elements can be reduced to 15 via the rule:
6389
6390@example
6391expr: expr '*' expr;
6392@end example
6393
6394@noindent
6395Then the stack contains just these three elements:
6396
6397@example
63981 + 15
6399@end example
6400
6401@noindent
6402At this point, another reduction can be made, resulting in the single value
640316. Then the newline token can be shifted.
6404
6405The parser tries, by shifts and reductions, to reduce the entire input down
6406to a single grouping whose symbol is the grammar's start-symbol
6407(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6408
6409This kind of parser is known in the literature as a bottom-up parser.
6410
6411@menu
742e4900 6412* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6413* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6414* Precedence:: Operator precedence works by resolving conflicts.
6415* Contextual Precedence:: When an operator's precedence depends on context.
6416* Parser States:: The parser is a finite-state-machine with stack.
6417* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6418* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6419* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6420* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6421@end menu
6422
742e4900
JD
6423@node Lookahead
6424@section Lookahead Tokens
6425@cindex lookahead token
bfa74976
RS
6426
6427The Bison parser does @emph{not} always reduce immediately as soon as the
6428last @var{n} tokens and groupings match a rule. This is because such a
6429simple strategy is inadequate to handle most languages. Instead, when a
6430reduction is possible, the parser sometimes ``looks ahead'' at the next
6431token in order to decide what to do.
6432
6433When a token is read, it is not immediately shifted; first it becomes the
742e4900 6434@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6435perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6436the lookahead token remains off to the side. When no more reductions
6437should take place, the lookahead token is shifted onto the stack. This
bfa74976 6438does not mean that all possible reductions have been done; depending on the
742e4900 6439token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6440application.
6441
742e4900 6442Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6443expressions which contain binary addition operators and postfix unary
6444factorial operators (@samp{!}), and allow parentheses for grouping.
6445
6446@example
6447@group
6448expr: term '+' expr
6449 | term
6450 ;
6451@end group
6452
6453@group
6454term: '(' expr ')'
6455 | term '!'
6456 | NUMBER
6457 ;
6458@end group
6459@end example
6460
6461Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6462should be done? If the following token is @samp{)}, then the first three
6463tokens must be reduced to form an @code{expr}. This is the only valid
6464course, because shifting the @samp{)} would produce a sequence of symbols
6465@w{@code{term ')'}}, and no rule allows this.
6466
6467If the following token is @samp{!}, then it must be shifted immediately so
6468that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6469parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6470@code{expr}. It would then be impossible to shift the @samp{!} because
6471doing so would produce on the stack the sequence of symbols @code{expr
6472'!'}. No rule allows that sequence.
6473
6474@vindex yychar
32c29292
JD
6475@vindex yylval
6476@vindex yylloc
742e4900 6477The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6478Its semantic value and location, if any, are stored in the variables
6479@code{yylval} and @code{yylloc}.
bfa74976
RS
6480@xref{Action Features, ,Special Features for Use in Actions}.
6481
342b8b6e 6482@node Shift/Reduce
bfa74976
RS
6483@section Shift/Reduce Conflicts
6484@cindex conflicts
6485@cindex shift/reduce conflicts
6486@cindex dangling @code{else}
6487@cindex @code{else}, dangling
6488
6489Suppose we are parsing a language which has if-then and if-then-else
6490statements, with a pair of rules like this:
6491
6492@example
6493@group
6494if_stmt:
6495 IF expr THEN stmt
6496 | IF expr THEN stmt ELSE stmt
6497 ;
6498@end group
6499@end example
6500
6501@noindent
6502Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6503terminal symbols for specific keyword tokens.
6504
742e4900 6505When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6506contents of the stack (assuming the input is valid) are just right for
6507reduction by the first rule. But it is also legitimate to shift the
6508@code{ELSE}, because that would lead to eventual reduction by the second
6509rule.
6510
6511This situation, where either a shift or a reduction would be valid, is
6512called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6513these conflicts by choosing to shift, unless otherwise directed by
6514operator precedence declarations. To see the reason for this, let's
6515contrast it with the other alternative.
6516
6517Since the parser prefers to shift the @code{ELSE}, the result is to attach
6518the else-clause to the innermost if-statement, making these two inputs
6519equivalent:
6520
6521@example
6522if x then if y then win (); else lose;
6523
6524if x then do; if y then win (); else lose; end;
6525@end example
6526
6527But if the parser chose to reduce when possible rather than shift, the
6528result would be to attach the else-clause to the outermost if-statement,
6529making these two inputs equivalent:
6530
6531@example
6532if x then if y then win (); else lose;
6533
6534if x then do; if y then win (); end; else lose;
6535@end example
6536
6537The conflict exists because the grammar as written is ambiguous: either
6538parsing of the simple nested if-statement is legitimate. The established
6539convention is that these ambiguities are resolved by attaching the
6540else-clause to the innermost if-statement; this is what Bison accomplishes
6541by choosing to shift rather than reduce. (It would ideally be cleaner to
6542write an unambiguous grammar, but that is very hard to do in this case.)
6543This particular ambiguity was first encountered in the specifications of
6544Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6545
6546To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6547conflicts, use the @code{%expect @var{n}} declaration.
6548There will be no warning as long as the number of shift/reduce conflicts
6549is exactly @var{n}, and Bison will report an error if there is a
6550different number.
bfa74976
RS
6551@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6552
6553The definition of @code{if_stmt} above is solely to blame for the
6554conflict, but the conflict does not actually appear without additional
6555rules. Here is a complete Bison input file that actually manifests the
6556conflict:
6557
6558@example
6559@group
6560%token IF THEN ELSE variable
6561%%
6562@end group
6563@group
6564stmt: expr
6565 | if_stmt
6566 ;
6567@end group
6568
6569@group
6570if_stmt:
6571 IF expr THEN stmt
6572 | IF expr THEN stmt ELSE stmt
6573 ;
6574@end group
6575
6576expr: variable
6577 ;
6578@end example
6579
342b8b6e 6580@node Precedence
bfa74976
RS
6581@section Operator Precedence
6582@cindex operator precedence
6583@cindex precedence of operators
6584
6585Another situation where shift/reduce conflicts appear is in arithmetic
6586expressions. Here shifting is not always the preferred resolution; the
6587Bison declarations for operator precedence allow you to specify when to
6588shift and when to reduce.
6589
6590@menu
6591* Why Precedence:: An example showing why precedence is needed.
6592* Using Precedence:: How to specify precedence in Bison grammars.
6593* Precedence Examples:: How these features are used in the previous example.
6594* How Precedence:: How they work.
6595@end menu
6596
342b8b6e 6597@node Why Precedence
bfa74976
RS
6598@subsection When Precedence is Needed
6599
6600Consider the following ambiguous grammar fragment (ambiguous because the
6601input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6602
6603@example
6604@group
6605expr: expr '-' expr
6606 | expr '*' expr
6607 | expr '<' expr
6608 | '(' expr ')'
6609 @dots{}
6610 ;
6611@end group
6612@end example
6613
6614@noindent
6615Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6616should it reduce them via the rule for the subtraction operator? It
6617depends on the next token. Of course, if the next token is @samp{)}, we
6618must reduce; shifting is invalid because no single rule can reduce the
6619token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6620the next token is @samp{*} or @samp{<}, we have a choice: either
6621shifting or reduction would allow the parse to complete, but with
6622different results.
6623
6624To decide which one Bison should do, we must consider the results. If
6625the next operator token @var{op} is shifted, then it must be reduced
6626first in order to permit another opportunity to reduce the difference.
6627The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6628hand, if the subtraction is reduced before shifting @var{op}, the result
6629is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6630reduce should depend on the relative precedence of the operators
6631@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6632@samp{<}.
bfa74976
RS
6633
6634@cindex associativity
6635What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6636@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6637operators we prefer the former, which is called @dfn{left association}.
6638The latter alternative, @dfn{right association}, is desirable for
6639assignment operators. The choice of left or right association is a
6640matter of whether the parser chooses to shift or reduce when the stack
742e4900 6641contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6642makes right-associativity.
bfa74976 6643
342b8b6e 6644@node Using Precedence
bfa74976
RS
6645@subsection Specifying Operator Precedence
6646@findex %left
6647@findex %right
6648@findex %nonassoc
6649
6650Bison allows you to specify these choices with the operator precedence
6651declarations @code{%left} and @code{%right}. Each such declaration
6652contains a list of tokens, which are operators whose precedence and
6653associativity is being declared. The @code{%left} declaration makes all
6654those operators left-associative and the @code{%right} declaration makes
6655them right-associative. A third alternative is @code{%nonassoc}, which
6656declares that it is a syntax error to find the same operator twice ``in a
6657row''.
6658
6659The relative precedence of different operators is controlled by the
6660order in which they are declared. The first @code{%left} or
6661@code{%right} declaration in the file declares the operators whose
6662precedence is lowest, the next such declaration declares the operators
6663whose precedence is a little higher, and so on.
6664
342b8b6e 6665@node Precedence Examples
bfa74976
RS
6666@subsection Precedence Examples
6667
6668In our example, we would want the following declarations:
6669
6670@example
6671%left '<'
6672%left '-'
6673%left '*'
6674@end example
6675
6676In a more complete example, which supports other operators as well, we
6677would declare them in groups of equal precedence. For example, @code{'+'} is
6678declared with @code{'-'}:
6679
6680@example
6681%left '<' '>' '=' NE LE GE
6682%left '+' '-'
6683%left '*' '/'
6684@end example
6685
6686@noindent
6687(Here @code{NE} and so on stand for the operators for ``not equal''
6688and so on. We assume that these tokens are more than one character long
6689and therefore are represented by names, not character literals.)
6690
342b8b6e 6691@node How Precedence
bfa74976
RS
6692@subsection How Precedence Works
6693
6694The first effect of the precedence declarations is to assign precedence
6695levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6696precedence levels to certain rules: each rule gets its precedence from
6697the last terminal symbol mentioned in the components. (You can also
6698specify explicitly the precedence of a rule. @xref{Contextual
6699Precedence, ,Context-Dependent Precedence}.)
6700
6701Finally, the resolution of conflicts works by comparing the precedence
742e4900 6702of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6703token's precedence is higher, the choice is to shift. If the rule's
6704precedence is higher, the choice is to reduce. If they have equal
6705precedence, the choice is made based on the associativity of that
6706precedence level. The verbose output file made by @samp{-v}
6707(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6708resolved.
bfa74976
RS
6709
6710Not all rules and not all tokens have precedence. If either the rule or
742e4900 6711the lookahead token has no precedence, then the default is to shift.
bfa74976 6712
342b8b6e 6713@node Contextual Precedence
bfa74976
RS
6714@section Context-Dependent Precedence
6715@cindex context-dependent precedence
6716@cindex unary operator precedence
6717@cindex precedence, context-dependent
6718@cindex precedence, unary operator
6719@findex %prec
6720
6721Often the precedence of an operator depends on the context. This sounds
6722outlandish at first, but it is really very common. For example, a minus
6723sign typically has a very high precedence as a unary operator, and a
6724somewhat lower precedence (lower than multiplication) as a binary operator.
6725
6726The Bison precedence declarations, @code{%left}, @code{%right} and
6727@code{%nonassoc}, can only be used once for a given token; so a token has
6728only one precedence declared in this way. For context-dependent
6729precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6730modifier for rules.
bfa74976
RS
6731
6732The @code{%prec} modifier declares the precedence of a particular rule by
6733specifying a terminal symbol whose precedence should be used for that rule.
6734It's not necessary for that symbol to appear otherwise in the rule. The
6735modifier's syntax is:
6736
6737@example
6738%prec @var{terminal-symbol}
6739@end example
6740
6741@noindent
6742and it is written after the components of the rule. Its effect is to
6743assign the rule the precedence of @var{terminal-symbol}, overriding
6744the precedence that would be deduced for it in the ordinary way. The
6745altered rule precedence then affects how conflicts involving that rule
6746are resolved (@pxref{Precedence, ,Operator Precedence}).
6747
6748Here is how @code{%prec} solves the problem of unary minus. First, declare
6749a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6750are no tokens of this type, but the symbol serves to stand for its
6751precedence:
6752
6753@example
6754@dots{}
6755%left '+' '-'
6756%left '*'
6757%left UMINUS
6758@end example
6759
6760Now the precedence of @code{UMINUS} can be used in specific rules:
6761
6762@example
6763@group
6764exp: @dots{}
6765 | exp '-' exp
6766 @dots{}
6767 | '-' exp %prec UMINUS
6768@end group
6769@end example
6770
91d2c560 6771@ifset defaultprec
39a06c25
PE
6772If you forget to append @code{%prec UMINUS} to the rule for unary
6773minus, Bison silently assumes that minus has its usual precedence.
6774This kind of problem can be tricky to debug, since one typically
6775discovers the mistake only by testing the code.
6776
22fccf95 6777The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6778this kind of problem systematically. It causes rules that lack a
6779@code{%prec} modifier to have no precedence, even if the last terminal
6780symbol mentioned in their components has a declared precedence.
6781
22fccf95 6782If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6783for all rules that participate in precedence conflict resolution.
6784Then you will see any shift/reduce conflict until you tell Bison how
6785to resolve it, either by changing your grammar or by adding an
6786explicit precedence. This will probably add declarations to the
6787grammar, but it helps to protect against incorrect rule precedences.
6788
22fccf95
PE
6789The effect of @code{%no-default-prec;} can be reversed by giving
6790@code{%default-prec;}, which is the default.
91d2c560 6791@end ifset
39a06c25 6792
342b8b6e 6793@node Parser States
bfa74976
RS
6794@section Parser States
6795@cindex finite-state machine
6796@cindex parser state
6797@cindex state (of parser)
6798
6799The function @code{yyparse} is implemented using a finite-state machine.
6800The values pushed on the parser stack are not simply token type codes; they
6801represent the entire sequence of terminal and nonterminal symbols at or
6802near the top of the stack. The current state collects all the information
6803about previous input which is relevant to deciding what to do next.
6804
742e4900
JD
6805Each time a lookahead token is read, the current parser state together
6806with the type of lookahead token are looked up in a table. This table
6807entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6808specifies the new parser state, which is pushed onto the top of the
6809parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6810This means that a certain number of tokens or groupings are taken off
6811the top of the stack, and replaced by one grouping. In other words,
6812that number of states are popped from the stack, and one new state is
6813pushed.
6814
742e4900 6815There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6816is erroneous in the current state. This causes error processing to begin
6817(@pxref{Error Recovery}).
6818
342b8b6e 6819@node Reduce/Reduce
bfa74976
RS
6820@section Reduce/Reduce Conflicts
6821@cindex reduce/reduce conflict
6822@cindex conflicts, reduce/reduce
6823
6824A reduce/reduce conflict occurs if there are two or more rules that apply
6825to the same sequence of input. This usually indicates a serious error
6826in the grammar.
6827
6828For example, here is an erroneous attempt to define a sequence
6829of zero or more @code{word} groupings.
6830
6831@example
6832sequence: /* empty */
6833 @{ printf ("empty sequence\n"); @}
6834 | maybeword
6835 | sequence word
6836 @{ printf ("added word %s\n", $2); @}
6837 ;
6838
6839maybeword: /* empty */
6840 @{ printf ("empty maybeword\n"); @}
6841 | word
6842 @{ printf ("single word %s\n", $1); @}
6843 ;
6844@end example
6845
6846@noindent
6847The error is an ambiguity: there is more than one way to parse a single
6848@code{word} into a @code{sequence}. It could be reduced to a
6849@code{maybeword} and then into a @code{sequence} via the second rule.
6850Alternatively, nothing-at-all could be reduced into a @code{sequence}
6851via the first rule, and this could be combined with the @code{word}
6852using the third rule for @code{sequence}.
6853
6854There is also more than one way to reduce nothing-at-all into a
6855@code{sequence}. This can be done directly via the first rule,
6856or indirectly via @code{maybeword} and then the second rule.
6857
6858You might think that this is a distinction without a difference, because it
6859does not change whether any particular input is valid or not. But it does
6860affect which actions are run. One parsing order runs the second rule's
6861action; the other runs the first rule's action and the third rule's action.
6862In this example, the output of the program changes.
6863
6864Bison resolves a reduce/reduce conflict by choosing to use the rule that
6865appears first in the grammar, but it is very risky to rely on this. Every
6866reduce/reduce conflict must be studied and usually eliminated. Here is the
6867proper way to define @code{sequence}:
6868
6869@example
6870sequence: /* empty */
6871 @{ printf ("empty sequence\n"); @}
6872 | sequence word
6873 @{ printf ("added word %s\n", $2); @}
6874 ;
6875@end example
6876
6877Here is another common error that yields a reduce/reduce conflict:
6878
6879@example
6880sequence: /* empty */
6881 | sequence words
6882 | sequence redirects
6883 ;
6884
6885words: /* empty */
6886 | words word
6887 ;
6888
6889redirects:/* empty */
6890 | redirects redirect
6891 ;
6892@end example
6893
6894@noindent
6895The intention here is to define a sequence which can contain either
6896@code{word} or @code{redirect} groupings. The individual definitions of
6897@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6898three together make a subtle ambiguity: even an empty input can be parsed
6899in infinitely many ways!
6900
6901Consider: nothing-at-all could be a @code{words}. Or it could be two
6902@code{words} in a row, or three, or any number. It could equally well be a
6903@code{redirects}, or two, or any number. Or it could be a @code{words}
6904followed by three @code{redirects} and another @code{words}. And so on.
6905
6906Here are two ways to correct these rules. First, to make it a single level
6907of sequence:
6908
6909@example
6910sequence: /* empty */
6911 | sequence word
6912 | sequence redirect
6913 ;
6914@end example
6915
6916Second, to prevent either a @code{words} or a @code{redirects}
6917from being empty:
6918
6919@example
6920sequence: /* empty */
6921 | sequence words
6922 | sequence redirects
6923 ;
6924
6925words: word
6926 | words word
6927 ;
6928
6929redirects:redirect
6930 | redirects redirect
6931 ;
6932@end example
6933
342b8b6e 6934@node Mystery Conflicts
bfa74976
RS
6935@section Mysterious Reduce/Reduce Conflicts
6936
6937Sometimes reduce/reduce conflicts can occur that don't look warranted.
6938Here is an example:
6939
6940@example
6941@group
6942%token ID
6943
6944%%
6945def: param_spec return_spec ','
6946 ;
6947param_spec:
6948 type
6949 | name_list ':' type
6950 ;
6951@end group
6952@group
6953return_spec:
6954 type
6955 | name ':' type
6956 ;
6957@end group
6958@group
6959type: ID
6960 ;
6961@end group
6962@group
6963name: ID
6964 ;
6965name_list:
6966 name
6967 | name ',' name_list
6968 ;
6969@end group
6970@end example
6971
6972It would seem that this grammar can be parsed with only a single token
742e4900 6973of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6974a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6975@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6976
c827f760
PE
6977@cindex @acronym{LR}(1)
6978@cindex @acronym{LALR}(1)
34a6c2d1
JD
6979However, for historical reasons, Bison cannot by default handle all
6980@acronym{LR}(1) grammars.
6981In this grammar, two contexts, that after an @code{ID} at the beginning
6982of a @code{param_spec} and likewise at the beginning of a
6983@code{return_spec}, are similar enough that Bison assumes they are the
6984same.
6985They appear similar because the same set of rules would be
bfa74976
RS
6986active---the rule for reducing to a @code{name} and that for reducing to
6987a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6988that the rules would require different lookahead tokens in the two
bfa74976
RS
6989contexts, so it makes a single parser state for them both. Combining
6990the two contexts causes a conflict later. In parser terminology, this
c827f760 6991occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976 6992
34a6c2d1
JD
6993For many practical grammars (specifically those that fall into the
6994non-@acronym{LR}(1) class), the limitations of @acronym{LALR}(1) result in
6995difficulties beyond just mysterious reduce/reduce conflicts.
6996The best way to fix all these problems is to select a different parser
6997table generation algorithm.
6998Either @acronym{IELR}(1) or canonical @acronym{LR}(1) would suffice, but
6999the former is more efficient and easier to debug during development.
7000@xref{Decl Summary,,lr.type}, for details.
7001(Bison's @acronym{IELR}(1) and canonical @acronym{LR}(1) implementations
7002are experimental.
7003More user feedback will help to stabilize them.)
7004
7005If you instead wish to work around @acronym{LALR}(1)'s limitations, you
7006can often fix a mysterious conflict by identifying the two parser states
7007that are being confused, and adding something to make them look
7008distinct. In the above example, adding one rule to
bfa74976
RS
7009@code{return_spec} as follows makes the problem go away:
7010
7011@example
7012@group
7013%token BOGUS
7014@dots{}
7015%%
7016@dots{}
7017return_spec:
7018 type
7019 | name ':' type
7020 /* This rule is never used. */
7021 | ID BOGUS
7022 ;
7023@end group
7024@end example
7025
7026This corrects the problem because it introduces the possibility of an
7027additional active rule in the context after the @code{ID} at the beginning of
7028@code{return_spec}. This rule is not active in the corresponding context
7029in a @code{param_spec}, so the two contexts receive distinct parser states.
7030As long as the token @code{BOGUS} is never generated by @code{yylex},
7031the added rule cannot alter the way actual input is parsed.
7032
7033In this particular example, there is another way to solve the problem:
7034rewrite the rule for @code{return_spec} to use @code{ID} directly
7035instead of via @code{name}. This also causes the two confusing
7036contexts to have different sets of active rules, because the one for
7037@code{return_spec} activates the altered rule for @code{return_spec}
7038rather than the one for @code{name}.
7039
7040@example
7041param_spec:
7042 type
7043 | name_list ':' type
7044 ;
7045return_spec:
7046 type
7047 | ID ':' type
7048 ;
7049@end example
7050
e054b190
PE
7051For a more detailed exposition of @acronym{LALR}(1) parsers and parser
7052generators, please see:
7053Frank DeRemer and Thomas Pennello, Efficient Computation of
7054@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
7055Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
7056pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
7057
fae437e8 7058@node Generalized LR Parsing
c827f760
PE
7059@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
7060@cindex @acronym{GLR} parsing
7061@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 7062@cindex ambiguous grammars
9d9b8b70 7063@cindex nondeterministic parsing
676385e2 7064
fae437e8
AD
7065Bison produces @emph{deterministic} parsers that choose uniquely
7066when to reduce and which reduction to apply
742e4900 7067based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7068As a result, normal Bison handles a proper subset of the family of
7069context-free languages.
fae437e8 7070Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7071sequence of reductions cannot have deterministic parsers in this sense.
7072The same is true of languages that require more than one symbol of
742e4900 7073lookahead, since the parser lacks the information necessary to make a
676385e2 7074decision at the point it must be made in a shift-reduce parser.
fae437e8 7075Finally, as previously mentioned (@pxref{Mystery Conflicts}),
34a6c2d1 7076there are languages where Bison's default choice of how to
676385e2
PH
7077summarize the input seen so far loses necessary information.
7078
7079When you use the @samp{%glr-parser} declaration in your grammar file,
7080Bison generates a parser that uses a different algorithm, called
c827f760
PE
7081Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
7082parser uses the same basic
676385e2
PH
7083algorithm for parsing as an ordinary Bison parser, but behaves
7084differently in cases where there is a shift-reduce conflict that has not
fae437e8 7085been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
7086reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
7087situation, it
fae437e8 7088effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7089shift or reduction. These parsers then proceed as usual, consuming
7090tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7091and split further, with the result that instead of a sequence of states,
c827f760 7092a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
7093
7094In effect, each stack represents a guess as to what the proper parse
7095is. Additional input may indicate that a guess was wrong, in which case
7096the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7097actions generated in each stack are saved, rather than being executed
676385e2 7098immediately. When a stack disappears, its saved semantic actions never
fae437e8 7099get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7100their sets of semantic actions are both saved with the state that
7101results from the reduction. We say that two stacks are equivalent
fae437e8 7102when they both represent the same sequence of states,
676385e2
PH
7103and each pair of corresponding states represents a
7104grammar symbol that produces the same segment of the input token
7105stream.
7106
7107Whenever the parser makes a transition from having multiple
34a6c2d1 7108states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7109algorithm, after resolving and executing the saved-up actions.
7110At this transition, some of the states on the stack will have semantic
7111values that are sets (actually multisets) of possible actions. The
7112parser tries to pick one of the actions by first finding one whose rule
7113has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7114declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7115precedence, but there the same merging function is declared for both
fae437e8 7116rules by the @samp{%merge} declaration,
676385e2
PH
7117Bison resolves and evaluates both and then calls the merge function on
7118the result. Otherwise, it reports an ambiguity.
7119
c827f760 7120It is possible to use a data structure for the @acronym{GLR} parsing tree that
34a6c2d1 7121permits the processing of any @acronym{LR}(1) grammar in linear time (in the
c827f760 7122size of the input), any unambiguous (not necessarily
34a6c2d1 7123@acronym{LR}(1)) grammar in
fae437e8 7124quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7125context-free grammar in cubic worst-case time. However, Bison currently
7126uses a simpler data structure that requires time proportional to the
7127length of the input times the maximum number of stacks required for any
9d9b8b70 7128prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7129grammars can require exponential time and space to process. Such badly
7130behaving examples, however, are not generally of practical interest.
9d9b8b70 7131Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7132doubt'' only for a few tokens at a time. Therefore, the current data
34a6c2d1
JD
7133structure should generally be adequate. On @acronym{LR}(1) portions of a
7134grammar, in particular, it is only slightly slower than with the
7135deterministic @acronym{LR}(1) Bison parser.
676385e2 7136
fa7e68c3 7137For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
7138Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
7139Generalised @acronym{LR} Parsers, Royal Holloway, University of
7140London, Department of Computer Science, TR-00-12,
7141@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
7142(2000-12-24).
7143
1a059451
PE
7144@node Memory Management
7145@section Memory Management, and How to Avoid Memory Exhaustion
7146@cindex memory exhaustion
7147@cindex memory management
bfa74976
RS
7148@cindex stack overflow
7149@cindex parser stack overflow
7150@cindex overflow of parser stack
7151
1a059451 7152The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7153not reduced. When this happens, the parser function @code{yyparse}
1a059451 7154calls @code{yyerror} and then returns 2.
bfa74976 7155
c827f760 7156Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7157usually results from using a right recursion instead of a left
7158recursion, @xref{Recursion, ,Recursive Rules}.
7159
bfa74976
RS
7160@vindex YYMAXDEPTH
7161By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7162parser stack can become before memory is exhausted. Define the
bfa74976
RS
7163macro with a value that is an integer. This value is the maximum number
7164of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7165
7166The stack space allowed is not necessarily allocated. If you specify a
1a059451 7167large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7168stack at first, and then makes it bigger by stages as needed. This
7169increasing allocation happens automatically and silently. Therefore,
7170you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7171space for ordinary inputs that do not need much stack.
7172
d7e14fc0
PE
7173However, do not allow @code{YYMAXDEPTH} to be a value so large that
7174arithmetic overflow could occur when calculating the size of the stack
7175space. Also, do not allow @code{YYMAXDEPTH} to be less than
7176@code{YYINITDEPTH}.
7177
bfa74976
RS
7178@cindex default stack limit
7179The default value of @code{YYMAXDEPTH}, if you do not define it, is
718010000.
7181
7182@vindex YYINITDEPTH
7183You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7184macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7185parser in C, this value must be a compile-time constant
d7e14fc0
PE
7186unless you are assuming C99 or some other target language or compiler
7187that allows variable-length arrays. The default is 200.
7188
1a059451 7189Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7190
d1a1114f 7191@c FIXME: C++ output.
c781580d 7192Because of semantic differences between C and C++, the deterministic
34a6c2d1 7193parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7194by C++ compilers. In this precise case (compiling a C parser as C++) you are
7195suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7196this deficiency in a future release.
d1a1114f 7197
342b8b6e 7198@node Error Recovery
bfa74976
RS
7199@chapter Error Recovery
7200@cindex error recovery
7201@cindex recovery from errors
7202
6e649e65 7203It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7204error. For example, a compiler should recover sufficiently to parse the
7205rest of the input file and check it for errors; a calculator should accept
7206another expression.
7207
7208In a simple interactive command parser where each input is one line, it may
7209be sufficient to allow @code{yyparse} to return 1 on error and have the
7210caller ignore the rest of the input line when that happens (and then call
7211@code{yyparse} again). But this is inadequate for a compiler, because it
7212forgets all the syntactic context leading up to the error. A syntax error
7213deep within a function in the compiler input should not cause the compiler
7214to treat the following line like the beginning of a source file.
7215
7216@findex error
7217You can define how to recover from a syntax error by writing rules to
7218recognize the special token @code{error}. This is a terminal symbol that
7219is always defined (you need not declare it) and reserved for error
7220handling. The Bison parser generates an @code{error} token whenever a
7221syntax error happens; if you have provided a rule to recognize this token
13863333 7222in the current context, the parse can continue.
bfa74976
RS
7223
7224For example:
7225
7226@example
7227stmnts: /* empty string */
7228 | stmnts '\n'
7229 | stmnts exp '\n'
7230 | stmnts error '\n'
7231@end example
7232
7233The fourth rule in this example says that an error followed by a newline
7234makes a valid addition to any @code{stmnts}.
7235
7236What happens if a syntax error occurs in the middle of an @code{exp}? The
7237error recovery rule, interpreted strictly, applies to the precise sequence
7238of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7239the middle of an @code{exp}, there will probably be some additional tokens
7240and subexpressions on the stack after the last @code{stmnts}, and there
7241will be tokens to read before the next newline. So the rule is not
7242applicable in the ordinary way.
7243
7244But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7245the semantic context and part of the input. First it discards states
7246and objects from the stack until it gets back to a state in which the
bfa74976 7247@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7248already parsed are discarded, back to the last complete @code{stmnts}.)
7249At this point the @code{error} token can be shifted. Then, if the old
742e4900 7250lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7251tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7252this example, Bison reads and discards input until the next newline so
7253that the fourth rule can apply. Note that discarded symbols are
7254possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7255Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7256
7257The choice of error rules in the grammar is a choice of strategies for
7258error recovery. A simple and useful strategy is simply to skip the rest of
7259the current input line or current statement if an error is detected:
7260
7261@example
72d2299c 7262stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7263@end example
7264
7265It is also useful to recover to the matching close-delimiter of an
7266opening-delimiter that has already been parsed. Otherwise the
7267close-delimiter will probably appear to be unmatched, and generate another,
7268spurious error message:
7269
7270@example
7271primary: '(' expr ')'
7272 | '(' error ')'
7273 @dots{}
7274 ;
7275@end example
7276
7277Error recovery strategies are necessarily guesses. When they guess wrong,
7278one syntax error often leads to another. In the above example, the error
7279recovery rule guesses that an error is due to bad input within one
7280@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7281middle of a valid @code{stmnt}. After the error recovery rule recovers
7282from the first error, another syntax error will be found straightaway,
7283since the text following the spurious semicolon is also an invalid
7284@code{stmnt}.
7285
7286To prevent an outpouring of error messages, the parser will output no error
7287message for another syntax error that happens shortly after the first; only
7288after three consecutive input tokens have been successfully shifted will
7289error messages resume.
7290
7291Note that rules which accept the @code{error} token may have actions, just
7292as any other rules can.
7293
7294@findex yyerrok
7295You can make error messages resume immediately by using the macro
7296@code{yyerrok} in an action. If you do this in the error rule's action, no
7297error messages will be suppressed. This macro requires no arguments;
7298@samp{yyerrok;} is a valid C statement.
7299
7300@findex yyclearin
742e4900 7301The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7302this is unacceptable, then the macro @code{yyclearin} may be used to clear
7303this token. Write the statement @samp{yyclearin;} in the error rule's
7304action.
32c29292 7305@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7306
6e649e65 7307For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7308called that advances the input stream to some point where parsing should
7309once again commence. The next symbol returned by the lexical scanner is
742e4900 7310probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7311with @samp{yyclearin;}.
7312
7313@vindex YYRECOVERING
02103984
PE
7314The expression @code{YYRECOVERING ()} yields 1 when the parser
7315is recovering from a syntax error, and 0 otherwise.
7316Syntax error diagnostics are suppressed while recovering from a syntax
7317error.
bfa74976 7318
342b8b6e 7319@node Context Dependency
bfa74976
RS
7320@chapter Handling Context Dependencies
7321
7322The Bison paradigm is to parse tokens first, then group them into larger
7323syntactic units. In many languages, the meaning of a token is affected by
7324its context. Although this violates the Bison paradigm, certain techniques
7325(known as @dfn{kludges}) may enable you to write Bison parsers for such
7326languages.
7327
7328@menu
7329* Semantic Tokens:: Token parsing can depend on the semantic context.
7330* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7331* Tie-in Recovery:: Lexical tie-ins have implications for how
7332 error recovery rules must be written.
7333@end menu
7334
7335(Actually, ``kludge'' means any technique that gets its job done but is
7336neither clean nor robust.)
7337
342b8b6e 7338@node Semantic Tokens
bfa74976
RS
7339@section Semantic Info in Token Types
7340
7341The C language has a context dependency: the way an identifier is used
7342depends on what its current meaning is. For example, consider this:
7343
7344@example
7345foo (x);
7346@end example
7347
7348This looks like a function call statement, but if @code{foo} is a typedef
7349name, then this is actually a declaration of @code{x}. How can a Bison
7350parser for C decide how to parse this input?
7351
c827f760 7352The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
7353@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7354identifier, it looks up the current declaration of the identifier in order
7355to decide which token type to return: @code{TYPENAME} if the identifier is
7356declared as a typedef, @code{IDENTIFIER} otherwise.
7357
7358The grammar rules can then express the context dependency by the choice of
7359token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7360but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7361@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7362is @emph{not} significant, such as in declarations that can shadow a
7363typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7364accepted---there is one rule for each of the two token types.
7365
7366This technique is simple to use if the decision of which kinds of
7367identifiers to allow is made at a place close to where the identifier is
7368parsed. But in C this is not always so: C allows a declaration to
7369redeclare a typedef name provided an explicit type has been specified
7370earlier:
7371
7372@example
3a4f411f
PE
7373typedef int foo, bar;
7374int baz (void)
7375@{
7376 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7377 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7378 return foo (bar);
7379@}
bfa74976
RS
7380@end example
7381
7382Unfortunately, the name being declared is separated from the declaration
7383construct itself by a complicated syntactic structure---the ``declarator''.
7384
9ecbd125 7385As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7386all the nonterminal names changed: once for parsing a declaration in
7387which a typedef name can be redefined, and once for parsing a
7388declaration in which that can't be done. Here is a part of the
7389duplication, with actions omitted for brevity:
bfa74976
RS
7390
7391@example
7392initdcl:
7393 declarator maybeasm '='
7394 init
7395 | declarator maybeasm
7396 ;
7397
7398notype_initdcl:
7399 notype_declarator maybeasm '='
7400 init
7401 | notype_declarator maybeasm
7402 ;
7403@end example
7404
7405@noindent
7406Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7407cannot. The distinction between @code{declarator} and
7408@code{notype_declarator} is the same sort of thing.
7409
7410There is some similarity between this technique and a lexical tie-in
7411(described next), in that information which alters the lexical analysis is
7412changed during parsing by other parts of the program. The difference is
7413here the information is global, and is used for other purposes in the
7414program. A true lexical tie-in has a special-purpose flag controlled by
7415the syntactic context.
7416
342b8b6e 7417@node Lexical Tie-ins
bfa74976
RS
7418@section Lexical Tie-ins
7419@cindex lexical tie-in
7420
7421One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7422which is set by Bison actions, whose purpose is to alter the way tokens are
7423parsed.
7424
7425For example, suppose we have a language vaguely like C, but with a special
7426construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7427an expression in parentheses in which all integers are hexadecimal. In
7428particular, the token @samp{a1b} must be treated as an integer rather than
7429as an identifier if it appears in that context. Here is how you can do it:
7430
7431@example
7432@group
7433%@{
38a92d50
PE
7434 int hexflag;
7435 int yylex (void);
7436 void yyerror (char const *);
bfa74976
RS
7437%@}
7438%%
7439@dots{}
7440@end group
7441@group
7442expr: IDENTIFIER
7443 | constant
7444 | HEX '('
7445 @{ hexflag = 1; @}
7446 expr ')'
7447 @{ hexflag = 0;
7448 $$ = $4; @}
7449 | expr '+' expr
7450 @{ $$ = make_sum ($1, $3); @}
7451 @dots{}
7452 ;
7453@end group
7454
7455@group
7456constant:
7457 INTEGER
7458 | STRING
7459 ;
7460@end group
7461@end example
7462
7463@noindent
7464Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7465it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7466with letters are parsed as integers if possible.
7467
342b8b6e
AD
7468The declaration of @code{hexflag} shown in the prologue of the parser file
7469is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7470You must also write the code in @code{yylex} to obey the flag.
bfa74976 7471
342b8b6e 7472@node Tie-in Recovery
bfa74976
RS
7473@section Lexical Tie-ins and Error Recovery
7474
7475Lexical tie-ins make strict demands on any error recovery rules you have.
7476@xref{Error Recovery}.
7477
7478The reason for this is that the purpose of an error recovery rule is to
7479abort the parsing of one construct and resume in some larger construct.
7480For example, in C-like languages, a typical error recovery rule is to skip
7481tokens until the next semicolon, and then start a new statement, like this:
7482
7483@example
7484stmt: expr ';'
7485 | IF '(' expr ')' stmt @{ @dots{} @}
7486 @dots{}
7487 error ';'
7488 @{ hexflag = 0; @}
7489 ;
7490@end example
7491
7492If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7493construct, this error rule will apply, and then the action for the
7494completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7495remain set for the entire rest of the input, or until the next @code{hex}
7496keyword, causing identifiers to be misinterpreted as integers.
7497
7498To avoid this problem the error recovery rule itself clears @code{hexflag}.
7499
7500There may also be an error recovery rule that works within expressions.
7501For example, there could be a rule which applies within parentheses
7502and skips to the close-parenthesis:
7503
7504@example
7505@group
7506expr: @dots{}
7507 | '(' expr ')'
7508 @{ $$ = $2; @}
7509 | '(' error ')'
7510 @dots{}
7511@end group
7512@end example
7513
7514If this rule acts within the @code{hex} construct, it is not going to abort
7515that construct (since it applies to an inner level of parentheses within
7516the construct). Therefore, it should not clear the flag: the rest of
7517the @code{hex} construct should be parsed with the flag still in effect.
7518
7519What if there is an error recovery rule which might abort out of the
7520@code{hex} construct or might not, depending on circumstances? There is no
7521way you can write the action to determine whether a @code{hex} construct is
7522being aborted or not. So if you are using a lexical tie-in, you had better
7523make sure your error recovery rules are not of this kind. Each rule must
7524be such that you can be sure that it always will, or always won't, have to
7525clear the flag.
7526
ec3bc396
AD
7527@c ================================================== Debugging Your Parser
7528
342b8b6e 7529@node Debugging
bfa74976 7530@chapter Debugging Your Parser
ec3bc396
AD
7531
7532Developing a parser can be a challenge, especially if you don't
7533understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7534Algorithm}). Even so, sometimes a detailed description of the automaton
7535can help (@pxref{Understanding, , Understanding Your Parser}), or
7536tracing the execution of the parser can give some insight on why it
7537behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7538
7539@menu
7540* Understanding:: Understanding the structure of your parser.
7541* Tracing:: Tracing the execution of your parser.
7542@end menu
7543
7544@node Understanding
7545@section Understanding Your Parser
7546
7547As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7548Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7549frequent than one would hope), looking at this automaton is required to
7550tune or simply fix a parser. Bison provides two different
35fe0834 7551representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7552
7553The textual file is generated when the options @option{--report} or
7554@option{--verbose} are specified, see @xref{Invocation, , Invoking
7555Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7556the parser output file name, and adding @samp{.output} instead.
7557Therefore, if the input file is @file{foo.y}, then the parser file is
7558called @file{foo.tab.c} by default. As a consequence, the verbose
7559output file is called @file{foo.output}.
7560
7561The following grammar file, @file{calc.y}, will be used in the sequel:
7562
7563@example
7564%token NUM STR
7565%left '+' '-'
7566%left '*'
7567%%
7568exp: exp '+' exp
7569 | exp '-' exp
7570 | exp '*' exp
7571 | exp '/' exp
7572 | NUM
7573 ;
7574useless: STR;
7575%%
7576@end example
7577
88bce5a2
AD
7578@command{bison} reports:
7579
7580@example
379261b3
JD
7581calc.y: warning: 1 nonterminal useless in grammar
7582calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7583calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7584calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7585calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7586@end example
7587
7588When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7589creates a file @file{calc.output} with contents detailed below. The
7590order of the output and the exact presentation might vary, but the
7591interpretation is the same.
ec3bc396
AD
7592
7593The first section includes details on conflicts that were solved thanks
7594to precedence and/or associativity:
7595
7596@example
7597Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7598Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7599Conflict in state 8 between rule 2 and token '*' resolved as shift.
7600@exdent @dots{}
7601@end example
7602
7603@noindent
7604The next section lists states that still have conflicts.
7605
7606@example
5a99098d
PE
7607State 8 conflicts: 1 shift/reduce
7608State 9 conflicts: 1 shift/reduce
7609State 10 conflicts: 1 shift/reduce
7610State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7611@end example
7612
7613@noindent
7614@cindex token, useless
7615@cindex useless token
7616@cindex nonterminal, useless
7617@cindex useless nonterminal
7618@cindex rule, useless
7619@cindex useless rule
7620The next section reports useless tokens, nonterminal and rules. Useless
7621nonterminals and rules are removed in order to produce a smaller parser,
7622but useless tokens are preserved, since they might be used by the
d80fb37a 7623scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7624below):
7625
7626@example
d80fb37a 7627Nonterminals useless in grammar:
ec3bc396
AD
7628 useless
7629
d80fb37a 7630Terminals unused in grammar:
ec3bc396
AD
7631 STR
7632
cff03fb2 7633Rules useless in grammar:
ec3bc396
AD
7634#6 useless: STR;
7635@end example
7636
7637@noindent
7638The next section reproduces the exact grammar that Bison used:
7639
7640@example
7641Grammar
7642
7643 Number, Line, Rule
88bce5a2 7644 0 5 $accept -> exp $end
ec3bc396
AD
7645 1 5 exp -> exp '+' exp
7646 2 6 exp -> exp '-' exp
7647 3 7 exp -> exp '*' exp
7648 4 8 exp -> exp '/' exp
7649 5 9 exp -> NUM
7650@end example
7651
7652@noindent
7653and reports the uses of the symbols:
7654
7655@example
7656Terminals, with rules where they appear
7657
88bce5a2 7658$end (0) 0
ec3bc396
AD
7659'*' (42) 3
7660'+' (43) 1
7661'-' (45) 2
7662'/' (47) 4
7663error (256)
7664NUM (258) 5
7665
7666Nonterminals, with rules where they appear
7667
88bce5a2 7668$accept (8)
ec3bc396
AD
7669 on left: 0
7670exp (9)
7671 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7672@end example
7673
7674@noindent
7675@cindex item
7676@cindex pointed rule
7677@cindex rule, pointed
7678Bison then proceeds onto the automaton itself, describing each state
7679with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7680item is a production rule together with a point (marked by @samp{.})
7681that the input cursor.
7682
7683@example
7684state 0
7685
88bce5a2 7686 $accept -> . exp $ (rule 0)
ec3bc396 7687
2a8d363a 7688 NUM shift, and go to state 1
ec3bc396 7689
2a8d363a 7690 exp go to state 2
ec3bc396
AD
7691@end example
7692
7693This reads as follows: ``state 0 corresponds to being at the very
7694beginning of the parsing, in the initial rule, right before the start
7695symbol (here, @code{exp}). When the parser returns to this state right
7696after having reduced a rule that produced an @code{exp}, the control
7697flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7698symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7699the parse stack, and the control flow jumps to state 1. Any other
742e4900 7700lookahead triggers a syntax error.''
ec3bc396
AD
7701
7702@cindex core, item set
7703@cindex item set core
7704@cindex kernel, item set
7705@cindex item set core
7706Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7707report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7708at the beginning of any rule deriving an @code{exp}. By default Bison
7709reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7710you want to see more detail you can invoke @command{bison} with
7711@option{--report=itemset} to list all the items, include those that can
7712be derived:
7713
7714@example
7715state 0
7716
88bce5a2 7717 $accept -> . exp $ (rule 0)
ec3bc396
AD
7718 exp -> . exp '+' exp (rule 1)
7719 exp -> . exp '-' exp (rule 2)
7720 exp -> . exp '*' exp (rule 3)
7721 exp -> . exp '/' exp (rule 4)
7722 exp -> . NUM (rule 5)
7723
7724 NUM shift, and go to state 1
7725
7726 exp go to state 2
7727@end example
7728
7729@noindent
7730In the state 1...
7731
7732@example
7733state 1
7734
7735 exp -> NUM . (rule 5)
7736
2a8d363a 7737 $default reduce using rule 5 (exp)
ec3bc396
AD
7738@end example
7739
7740@noindent
742e4900 7741the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7742(@samp{$default}), the parser will reduce it. If it was coming from
7743state 0, then, after this reduction it will return to state 0, and will
7744jump to state 2 (@samp{exp: go to state 2}).
7745
7746@example
7747state 2
7748
88bce5a2 7749 $accept -> exp . $ (rule 0)
ec3bc396
AD
7750 exp -> exp . '+' exp (rule 1)
7751 exp -> exp . '-' exp (rule 2)
7752 exp -> exp . '*' exp (rule 3)
7753 exp -> exp . '/' exp (rule 4)
7754
2a8d363a
AD
7755 $ shift, and go to state 3
7756 '+' shift, and go to state 4
7757 '-' shift, and go to state 5
7758 '*' shift, and go to state 6
7759 '/' shift, and go to state 7
ec3bc396
AD
7760@end example
7761
7762@noindent
7763In state 2, the automaton can only shift a symbol. For instance,
742e4900 7764because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7765@samp{+}, it will be shifted on the parse stack, and the automaton
7766control will jump to state 4, corresponding to the item @samp{exp -> exp
7767'+' . exp}. Since there is no default action, any other token than
6e649e65 7768those listed above will trigger a syntax error.
ec3bc396 7769
34a6c2d1 7770@cindex accepting state
ec3bc396
AD
7771The state 3 is named the @dfn{final state}, or the @dfn{accepting
7772state}:
7773
7774@example
7775state 3
7776
88bce5a2 7777 $accept -> exp $ . (rule 0)
ec3bc396 7778
2a8d363a 7779 $default accept
ec3bc396
AD
7780@end example
7781
7782@noindent
7783the initial rule is completed (the start symbol and the end
7784of input were read), the parsing exits successfully.
7785
7786The interpretation of states 4 to 7 is straightforward, and is left to
7787the reader.
7788
7789@example
7790state 4
7791
7792 exp -> exp '+' . exp (rule 1)
7793
2a8d363a 7794 NUM shift, and go to state 1
ec3bc396 7795
2a8d363a 7796 exp go to state 8
ec3bc396
AD
7797
7798state 5
7799
7800 exp -> exp '-' . exp (rule 2)
7801
2a8d363a 7802 NUM shift, and go to state 1
ec3bc396 7803
2a8d363a 7804 exp go to state 9
ec3bc396
AD
7805
7806state 6
7807
7808 exp -> exp '*' . exp (rule 3)
7809
2a8d363a 7810 NUM shift, and go to state 1
ec3bc396 7811
2a8d363a 7812 exp go to state 10
ec3bc396
AD
7813
7814state 7
7815
7816 exp -> exp '/' . exp (rule 4)
7817
2a8d363a 7818 NUM shift, and go to state 1
ec3bc396 7819
2a8d363a 7820 exp go to state 11
ec3bc396
AD
7821@end example
7822
5a99098d
PE
7823As was announced in beginning of the report, @samp{State 8 conflicts:
78241 shift/reduce}:
ec3bc396
AD
7825
7826@example
7827state 8
7828
7829 exp -> exp . '+' exp (rule 1)
7830 exp -> exp '+' exp . (rule 1)
7831 exp -> exp . '-' exp (rule 2)
7832 exp -> exp . '*' exp (rule 3)
7833 exp -> exp . '/' exp (rule 4)
7834
2a8d363a
AD
7835 '*' shift, and go to state 6
7836 '/' shift, and go to state 7
ec3bc396 7837
2a8d363a
AD
7838 '/' [reduce using rule 1 (exp)]
7839 $default reduce using rule 1 (exp)
ec3bc396
AD
7840@end example
7841
742e4900 7842Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7843either shifting (and going to state 7), or reducing rule 1. The
7844conflict means that either the grammar is ambiguous, or the parser lacks
7845information to make the right decision. Indeed the grammar is
7846ambiguous, as, since we did not specify the precedence of @samp{/}, the
7847sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7848NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7849NUM}, which corresponds to reducing rule 1.
7850
34a6c2d1 7851Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
7852arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7853Shift/Reduce Conflicts}. Discarded actions are reported in between
7854square brackets.
7855
7856Note that all the previous states had a single possible action: either
7857shifting the next token and going to the corresponding state, or
7858reducing a single rule. In the other cases, i.e., when shifting
7859@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7860possible, the lookahead is required to select the action. State 8 is
7861one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7862is shifting, otherwise the action is reducing rule 1. In other words,
7863the first two items, corresponding to rule 1, are not eligible when the
742e4900 7864lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7865precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7866with some set of possible lookahead tokens. When run with
7867@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7868
7869@example
7870state 8
7871
88c78747 7872 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7873 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7874 exp -> exp . '-' exp (rule 2)
7875 exp -> exp . '*' exp (rule 3)
7876 exp -> exp . '/' exp (rule 4)
7877
7878 '*' shift, and go to state 6
7879 '/' shift, and go to state 7
7880
7881 '/' [reduce using rule 1 (exp)]
7882 $default reduce using rule 1 (exp)
7883@end example
7884
7885The remaining states are similar:
7886
7887@example
7888state 9
7889
7890 exp -> exp . '+' exp (rule 1)
7891 exp -> exp . '-' exp (rule 2)
7892 exp -> exp '-' exp . (rule 2)
7893 exp -> exp . '*' exp (rule 3)
7894 exp -> exp . '/' exp (rule 4)
7895
2a8d363a
AD
7896 '*' shift, and go to state 6
7897 '/' shift, and go to state 7
ec3bc396 7898
2a8d363a
AD
7899 '/' [reduce using rule 2 (exp)]
7900 $default reduce using rule 2 (exp)
ec3bc396
AD
7901
7902state 10
7903
7904 exp -> exp . '+' exp (rule 1)
7905 exp -> exp . '-' exp (rule 2)
7906 exp -> exp . '*' exp (rule 3)
7907 exp -> exp '*' exp . (rule 3)
7908 exp -> exp . '/' exp (rule 4)
7909
2a8d363a 7910 '/' shift, and go to state 7
ec3bc396 7911
2a8d363a
AD
7912 '/' [reduce using rule 3 (exp)]
7913 $default reduce using rule 3 (exp)
ec3bc396
AD
7914
7915state 11
7916
7917 exp -> exp . '+' exp (rule 1)
7918 exp -> exp . '-' exp (rule 2)
7919 exp -> exp . '*' exp (rule 3)
7920 exp -> exp . '/' exp (rule 4)
7921 exp -> exp '/' exp . (rule 4)
7922
2a8d363a
AD
7923 '+' shift, and go to state 4
7924 '-' shift, and go to state 5
7925 '*' shift, and go to state 6
7926 '/' shift, and go to state 7
ec3bc396 7927
2a8d363a
AD
7928 '+' [reduce using rule 4 (exp)]
7929 '-' [reduce using rule 4 (exp)]
7930 '*' [reduce using rule 4 (exp)]
7931 '/' [reduce using rule 4 (exp)]
7932 $default reduce using rule 4 (exp)
ec3bc396
AD
7933@end example
7934
7935@noindent
fa7e68c3
PE
7936Observe that state 11 contains conflicts not only due to the lack of
7937precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7938@samp{*}, but also because the
ec3bc396
AD
7939associativity of @samp{/} is not specified.
7940
7941
7942@node Tracing
7943@section Tracing Your Parser
bfa74976
RS
7944@findex yydebug
7945@cindex debugging
7946@cindex tracing the parser
7947
7948If a Bison grammar compiles properly but doesn't do what you want when it
7949runs, the @code{yydebug} parser-trace feature can help you figure out why.
7950
3ded9a63
AD
7951There are several means to enable compilation of trace facilities:
7952
7953@table @asis
7954@item the macro @code{YYDEBUG}
7955@findex YYDEBUG
7956Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7957parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7958@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7959YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7960Prologue}).
7961
7962@item the option @option{-t}, @option{--debug}
7963Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7964,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7965
7966@item the directive @samp{%debug}
7967@findex %debug
7968Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7969Declaration Summary}). This is a Bison extension, which will prove
7970useful when Bison will output parsers for languages that don't use a
c827f760
PE
7971preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7972you, this is
3ded9a63
AD
7973the preferred solution.
7974@end table
7975
7976We suggest that you always enable the debug option so that debugging is
7977always possible.
bfa74976 7978
02a81e05 7979The trace facility outputs messages with macro calls of the form
e2742e46 7980@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7981@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7982arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7983define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7984and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7985
7986Once you have compiled the program with trace facilities, the way to
7987request a trace is to store a nonzero value in the variable @code{yydebug}.
7988You can do this by making the C code do it (in @code{main}, perhaps), or
7989you can alter the value with a C debugger.
7990
7991Each step taken by the parser when @code{yydebug} is nonzero produces a
7992line or two of trace information, written on @code{stderr}. The trace
7993messages tell you these things:
7994
7995@itemize @bullet
7996@item
7997Each time the parser calls @code{yylex}, what kind of token was read.
7998
7999@item
8000Each time a token is shifted, the depth and complete contents of the
8001state stack (@pxref{Parser States}).
8002
8003@item
8004Each time a rule is reduced, which rule it is, and the complete contents
8005of the state stack afterward.
8006@end itemize
8007
8008To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8009produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8010Bison}). This file shows the meaning of each state in terms of
8011positions in various rules, and also what each state will do with each
8012possible input token. As you read the successive trace messages, you
8013can see that the parser is functioning according to its specification in
8014the listing file. Eventually you will arrive at the place where
8015something undesirable happens, and you will see which parts of the
8016grammar are to blame.
bfa74976
RS
8017
8018The parser file is a C program and you can use C debuggers on it, but it's
8019not easy to interpret what it is doing. The parser function is a
8020finite-state machine interpreter, and aside from the actions it executes
8021the same code over and over. Only the values of variables show where in
8022the grammar it is working.
8023
8024@findex YYPRINT
8025The debugging information normally gives the token type of each token
8026read, but not its semantic value. You can optionally define a macro
8027named @code{YYPRINT} to provide a way to print the value. If you define
8028@code{YYPRINT}, it should take three arguments. The parser will pass a
8029standard I/O stream, the numeric code for the token type, and the token
8030value (from @code{yylval}).
8031
8032Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8033calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8034
8035@smallexample
38a92d50
PE
8036%@{
8037 static void print_token_value (FILE *, int, YYSTYPE);
8038 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8039%@}
8040
8041@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8042
8043static void
831d3c99 8044print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8045@{
8046 if (type == VAR)
d3c4e709 8047 fprintf (file, "%s", value.tptr->name);
bfa74976 8048 else if (type == NUM)
d3c4e709 8049 fprintf (file, "%d", value.val);
bfa74976
RS
8050@}
8051@end smallexample
8052
ec3bc396
AD
8053@c ================================================= Invoking Bison
8054
342b8b6e 8055@node Invocation
bfa74976
RS
8056@chapter Invoking Bison
8057@cindex invoking Bison
8058@cindex Bison invocation
8059@cindex options for invoking Bison
8060
8061The usual way to invoke Bison is as follows:
8062
8063@example
8064bison @var{infile}
8065@end example
8066
8067Here @var{infile} is the grammar file name, which usually ends in
8068@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
8069with @samp{.tab.c} and removing any leading directory. Thus, the
8070@samp{bison foo.y} file name yields
8071@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
8072@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 8073C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
8074or @file{foo.y++}. Then, the output files will take an extension like
8075the given one as input (respectively @file{foo.tab.cpp} and
8076@file{foo.tab.c++}).
fa4d969f 8077This feature takes effect with all options that manipulate file names like
234a3be3
AD
8078@samp{-o} or @samp{-d}.
8079
8080For example :
8081
8082@example
8083bison -d @var{infile.yxx}
8084@end example
84163231 8085@noindent
72d2299c 8086will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8087
8088@example
b56471a6 8089bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8090@end example
84163231 8091@noindent
234a3be3
AD
8092will produce @file{output.c++} and @file{outfile.h++}.
8093
397ec073
PE
8094For compatibility with @acronym{POSIX}, the standard Bison
8095distribution also contains a shell script called @command{yacc} that
8096invokes Bison with the @option{-y} option.
8097
bfa74976 8098@menu
13863333 8099* Bison Options:: All the options described in detail,
c827f760 8100 in alphabetical order by short options.
bfa74976 8101* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8102* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8103@end menu
8104
342b8b6e 8105@node Bison Options
bfa74976
RS
8106@section Bison Options
8107
8108Bison supports both traditional single-letter options and mnemonic long
8109option names. Long option names are indicated with @samp{--} instead of
8110@samp{-}. Abbreviations for option names are allowed as long as they
8111are unique. When a long option takes an argument, like
8112@samp{--file-prefix}, connect the option name and the argument with
8113@samp{=}.
8114
8115Here is a list of options that can be used with Bison, alphabetized by
8116short option. It is followed by a cross key alphabetized by long
8117option.
8118
89cab50d
AD
8119@c Please, keep this ordered as in `bison --help'.
8120@noindent
8121Operations modes:
8122@table @option
8123@item -h
8124@itemx --help
8125Print a summary of the command-line options to Bison and exit.
bfa74976 8126
89cab50d
AD
8127@item -V
8128@itemx --version
8129Print the version number of Bison and exit.
bfa74976 8130
f7ab6a50
PE
8131@item --print-localedir
8132Print the name of the directory containing locale-dependent data.
8133
a0de5091
JD
8134@item --print-datadir
8135Print the name of the directory containing skeletons and XSLT.
8136
89cab50d
AD
8137@item -y
8138@itemx --yacc
54662697
PE
8139Act more like the traditional Yacc command. This can cause
8140different diagnostics to be generated, and may change behavior in
8141other minor ways. Most importantly, imitate Yacc's output
8142file name conventions, so that the parser output file is called
89cab50d 8143@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e 8144@file{y.tab.h}.
34a6c2d1 8145Also, if generating a deterministic parser in C, generate @code{#define}
b931235e
JD
8146statements in addition to an @code{enum} to associate token numbers with token
8147names.
8148Thus, the following shell script can substitute for Yacc, and the Bison
8149distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 8150
89cab50d 8151@example
397ec073 8152#! /bin/sh
26e06a21 8153bison -y "$@@"
89cab50d 8154@end example
54662697
PE
8155
8156The @option{-y}/@option{--yacc} option is intended for use with
8157traditional Yacc grammars. If your grammar uses a Bison extension
8158like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8159this option is specified.
8160
ecd1b61c
JD
8161@item -W [@var{category}]
8162@itemx --warnings[=@var{category}]
118d4978
AD
8163Output warnings falling in @var{category}. @var{category} can be one
8164of:
8165@table @code
8166@item midrule-values
8e55b3aa
JD
8167Warn about mid-rule values that are set but not used within any of the actions
8168of the parent rule.
8169For example, warn about unused @code{$2} in:
118d4978
AD
8170
8171@example
8172exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8173@end example
8174
8e55b3aa
JD
8175Also warn about mid-rule values that are used but not set.
8176For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8177
8178@example
8179 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8180@end example
8181
8182These warnings are not enabled by default since they sometimes prove to
8183be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8184@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8185
8186
8187@item yacc
8188Incompatibilities with @acronym{POSIX} Yacc.
8189
8190@item all
8e55b3aa 8191All the warnings.
118d4978 8192@item none
8e55b3aa 8193Turn off all the warnings.
118d4978 8194@item error
8e55b3aa 8195Treat warnings as errors.
118d4978
AD
8196@end table
8197
8198A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c
JD
8199instance, @option{-Wno-yacc} will hide the warnings about
8200@acronym{POSIX} Yacc incompatibilities.
89cab50d
AD
8201@end table
8202
8203@noindent
8204Tuning the parser:
8205
8206@table @option
8207@item -t
8208@itemx --debug
4947ebdb
PE
8209In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
8210already defined, so that the debugging facilities are compiled.
ec3bc396 8211@xref{Tracing, ,Tracing Your Parser}.
89cab50d 8212
e14c6831
AD
8213@item -D @var{name}[=@var{value}]
8214@itemx --define=@var{name}[=@var{value}]
c33bc800 8215@itemx -F @var{name}[=@var{value}]
34d41938
JD
8216@itemx --force-define=@var{name}[=@var{value}]
8217Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
8218(@pxref{Decl Summary, ,%define}) except that Bison processes multiple
8219definitions for the same @var{name} as follows:
8220
8221@itemize
8222@item
e3a33f7c
JD
8223Bison quietly ignores all command-line definitions for @var{name} except
8224the last.
34d41938 8225@item
e3a33f7c
JD
8226If that command-line definition is specified by a @code{-D} or
8227@code{--define}, Bison reports an error for any @code{%define}
8228definition for @var{name}.
34d41938 8229@item
e3a33f7c
JD
8230If that command-line definition is specified by a @code{-F} or
8231@code{--force-define} instead, Bison quietly ignores all @code{%define}
8232definitions for @var{name}.
8233@item
8234Otherwise, Bison reports an error if there are multiple @code{%define}
8235definitions for @var{name}.
34d41938
JD
8236@end itemize
8237
8238You should avoid using @code{-F} and @code{--force-define} in your
8239makefiles unless you are confident that it is safe to quietly ignore any
8240conflicting @code{%define} that may be added to the grammar file.
e14c6831 8241
0e021770
PE
8242@item -L @var{language}
8243@itemx --language=@var{language}
8244Specify the programming language for the generated parser, as if
8245@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8246Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8247@var{language} is case-insensitive.
0e021770 8248
ed4d67dc
JD
8249This option is experimental and its effect may be modified in future
8250releases.
8251
89cab50d 8252@item --locations
d8988b2f 8253Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8254
8255@item -p @var{prefix}
8256@itemx --name-prefix=@var{prefix}
02975b9a 8257Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8258@xref{Decl Summary}.
bfa74976
RS
8259
8260@item -l
8261@itemx --no-lines
8262Don't put any @code{#line} preprocessor commands in the parser file.
8263Ordinarily Bison puts them in the parser file so that the C compiler
8264and debuggers will associate errors with your source file, the
8265grammar file. This option causes them to associate errors with the
95e742f7 8266parser file, treating it as an independent source file in its own right.
bfa74976 8267
e6e704dc
JD
8268@item -S @var{file}
8269@itemx --skeleton=@var{file}
a7867f53 8270Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8271(@pxref{Decl Summary, , Bison Declaration Summary}).
8272
ed4d67dc
JD
8273@c You probably don't need this option unless you are developing Bison.
8274@c You should use @option{--language} if you want to specify the skeleton for a
8275@c different language, because it is clearer and because it will always
8276@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8277
a7867f53
JD
8278If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8279file in the Bison installation directory.
8280If it does, @var{file} is an absolute file name or a file name relative to the
8281current working directory.
8282This is similar to how most shells resolve commands.
8283
89cab50d
AD
8284@item -k
8285@itemx --token-table
d8988b2f 8286Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8287@end table
bfa74976 8288
89cab50d
AD
8289@noindent
8290Adjust the output:
bfa74976 8291
89cab50d 8292@table @option
8e55b3aa 8293@item --defines[=@var{file}]
d8988b2f 8294Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8295file containing macro definitions for the token type names defined in
4bfd5e4e 8296the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8297
8e55b3aa
JD
8298@item -d
8299This is the same as @code{--defines} except @code{-d} does not accept a
8300@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8301with other short options.
342b8b6e 8302
89cab50d
AD
8303@item -b @var{file-prefix}
8304@itemx --file-prefix=@var{prefix}
9c437126 8305Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8306for all Bison output file names. @xref{Decl Summary}.
bfa74976 8307
ec3bc396
AD
8308@item -r @var{things}
8309@itemx --report=@var{things}
8310Write an extra output file containing verbose description of the comma
8311separated list of @var{things} among:
8312
8313@table @code
8314@item state
8315Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8316parser's automaton.
ec3bc396 8317
742e4900 8318@item lookahead
ec3bc396 8319Implies @code{state} and augments the description of the automaton with
742e4900 8320each rule's lookahead set.
ec3bc396
AD
8321
8322@item itemset
8323Implies @code{state} and augments the description of the automaton with
8324the full set of items for each state, instead of its core only.
8325@end table
8326
1bb2bd75
JD
8327@item --report-file=@var{file}
8328Specify the @var{file} for the verbose description.
8329
bfa74976
RS
8330@item -v
8331@itemx --verbose
9c437126 8332Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8333file containing verbose descriptions of the grammar and
72d2299c 8334parser. @xref{Decl Summary}.
bfa74976 8335
fa4d969f
PE
8336@item -o @var{file}
8337@itemx --output=@var{file}
8338Specify the @var{file} for the parser file.
bfa74976 8339
fa4d969f 8340The other output files' names are constructed from @var{file} as
d8988b2f 8341described under the @samp{-v} and @samp{-d} options.
342b8b6e 8342
72183df4 8343@item -g [@var{file}]
8e55b3aa 8344@itemx --graph[=@var{file}]
34a6c2d1 8345Output a graphical representation of the parser's
35fe0834
PE
8346automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8347@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
8348@code{@var{file}} is optional.
8349If omitted and the grammar file is @file{foo.y}, the output file will be
8350@file{foo.dot}.
59da312b 8351
72183df4 8352@item -x [@var{file}]
8e55b3aa 8353@itemx --xml[=@var{file}]
34a6c2d1 8354Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8355@code{@var{file}} is optional.
59da312b
JD
8356If omitted and the grammar file is @file{foo.y}, the output file will be
8357@file{foo.xml}.
8358(The current XML schema is experimental and may evolve.
8359More user feedback will help to stabilize it.)
bfa74976
RS
8360@end table
8361
342b8b6e 8362@node Option Cross Key
bfa74976
RS
8363@section Option Cross Key
8364
8365Here is a list of options, alphabetized by long option, to help you find
34d41938 8366the corresponding short option and directive.
bfa74976 8367
34d41938 8368@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8369@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8370@include cross-options.texi
aa08666d 8371@end multitable
bfa74976 8372
93dd49ab
PE
8373@node Yacc Library
8374@section Yacc Library
8375
8376The Yacc library contains default implementations of the
8377@code{yyerror} and @code{main} functions. These default
8378implementations are normally not useful, but @acronym{POSIX} requires
8379them. To use the Yacc library, link your program with the
8380@option{-ly} option. Note that Bison's implementation of the Yacc
8381library is distributed under the terms of the @acronym{GNU} General
8382Public License (@pxref{Copying}).
8383
8384If you use the Yacc library's @code{yyerror} function, you should
8385declare @code{yyerror} as follows:
8386
8387@example
8388int yyerror (char const *);
8389@end example
8390
8391Bison ignores the @code{int} value returned by this @code{yyerror}.
8392If you use the Yacc library's @code{main} function, your
8393@code{yyparse} function should have the following type signature:
8394
8395@example
8396int yyparse (void);
8397@end example
8398
12545799
AD
8399@c ================================================= C++ Bison
8400
8405b70c
PB
8401@node Other Languages
8402@chapter Parsers Written In Other Languages
12545799
AD
8403
8404@menu
8405* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8406* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8407@end menu
8408
8409@node C++ Parsers
8410@section C++ Parsers
8411
8412@menu
8413* C++ Bison Interface:: Asking for C++ parser generation
8414* C++ Semantic Values:: %union vs. C++
8415* C++ Location Values:: The position and location classes
8416* C++ Parser Interface:: Instantiating and running the parser
8417* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8418* A Complete C++ Example:: Demonstrating their use
12545799
AD
8419@end menu
8420
8421@node C++ Bison Interface
8422@subsection C++ Bison Interface
ed4d67dc 8423@c - %skeleton "lalr1.cc"
12545799
AD
8424@c - Always pure
8425@c - initial action
8426
34a6c2d1 8427The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8428@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8429@option{--skeleton=lalr1.cc}.
e6e704dc 8430@xref{Decl Summary}.
0e021770 8431
793fbca5
JD
8432When run, @command{bison} will create several entities in the @samp{yy}
8433namespace.
8434@findex %define namespace
8435Use the @samp{%define namespace} directive to change the namespace name, see
8436@ref{Decl Summary}.
8437The various classes are generated in the following files:
aa08666d 8438
12545799
AD
8439@table @file
8440@item position.hh
8441@itemx location.hh
8442The definition of the classes @code{position} and @code{location},
8443used for location tracking. @xref{C++ Location Values}.
8444
8445@item stack.hh
8446An auxiliary class @code{stack} used by the parser.
8447
fa4d969f
PE
8448@item @var{file}.hh
8449@itemx @var{file}.cc
cd8b5791
AD
8450(Assuming the extension of the input file was @samp{.yy}.) The
8451declaration and implementation of the C++ parser class. The basename
8452and extension of these two files follow the same rules as with regular C
8453parsers (@pxref{Invocation}).
12545799 8454
cd8b5791
AD
8455The header is @emph{mandatory}; you must either pass
8456@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8457@samp{%defines} directive.
8458@end table
8459
8460All these files are documented using Doxygen; run @command{doxygen}
8461for a complete and accurate documentation.
8462
8463@node C++ Semantic Values
8464@subsection C++ Semantic Values
8465@c - No objects in unions
178e123e 8466@c - YYSTYPE
12545799
AD
8467@c - Printer and destructor
8468
8469The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8470Collection of Value Types}. In particular it produces a genuine
8471@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8472within pseudo-unions (similar to Boost variants) might be implemented to
8473alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8474@itemize @minus
8475@item
fb9712a9
AD
8476The type @code{YYSTYPE} is defined but its use is discouraged: rather
8477you should refer to the parser's encapsulated type
8478@code{yy::parser::semantic_type}.
12545799
AD
8479@item
8480Non POD (Plain Old Data) types cannot be used. C++ forbids any
8481instance of classes with constructors in unions: only @emph{pointers}
8482to such objects are allowed.
8483@end itemize
8484
8485Because objects have to be stored via pointers, memory is not
8486reclaimed automatically: using the @code{%destructor} directive is the
8487only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8488Symbols}.
8489
8490
8491@node C++ Location Values
8492@subsection C++ Location Values
8493@c - %locations
8494@c - class Position
8495@c - class Location
16dc6a9e 8496@c - %define filename_type "const symbol::Symbol"
12545799
AD
8497
8498When the directive @code{%locations} is used, the C++ parser supports
8499location tracking, see @ref{Locations, , Locations Overview}. Two
8500auxiliary classes define a @code{position}, a single point in a file,
8501and a @code{location}, a range composed of a pair of
8502@code{position}s (possibly spanning several files).
8503
fa4d969f 8504@deftypemethod {position} {std::string*} file
12545799
AD
8505The name of the file. It will always be handled as a pointer, the
8506parser will never duplicate nor deallocate it. As an experimental
8507feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8508filename_type "@var{type}"}.
12545799
AD
8509@end deftypemethod
8510
8511@deftypemethod {position} {unsigned int} line
8512The line, starting at 1.
8513@end deftypemethod
8514
8515@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8516Advance by @var{height} lines, resetting the column number.
8517@end deftypemethod
8518
8519@deftypemethod {position} {unsigned int} column
8520The column, starting at 0.
8521@end deftypemethod
8522
8523@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8524Advance by @var{width} columns, without changing the line number.
8525@end deftypemethod
8526
8527@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8528@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8529@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8530@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8531Various forms of syntactic sugar for @code{columns}.
8532@end deftypemethod
8533
8534@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8535Report @var{p} on @var{o} like this:
fa4d969f
PE
8536@samp{@var{file}:@var{line}.@var{column}}, or
8537@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8538@end deftypemethod
8539
8540@deftypemethod {location} {position} begin
8541@deftypemethodx {location} {position} end
8542The first, inclusive, position of the range, and the first beyond.
8543@end deftypemethod
8544
8545@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8546@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8547Advance the @code{end} position.
8548@end deftypemethod
8549
8550@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8551@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8552@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8553Various forms of syntactic sugar.
8554@end deftypemethod
8555
8556@deftypemethod {location} {void} step ()
8557Move @code{begin} onto @code{end}.
8558@end deftypemethod
8559
8560
8561@node C++ Parser Interface
8562@subsection C++ Parser Interface
8563@c - define parser_class_name
8564@c - Ctor
8565@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8566@c debug_stream.
8567@c - Reporting errors
8568
8569The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8570declare and define the parser class in the namespace @code{yy}. The
8571class name defaults to @code{parser}, but may be changed using
16dc6a9e 8572@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8573this class is detailed below. It can be extended using the
12545799
AD
8574@code{%parse-param} feature: its semantics is slightly changed since
8575it describes an additional member of the parser class, and an
8576additional argument for its constructor.
8577
baacae49
AD
8578@defcv {Type} {parser} {semantic_type}
8579@defcvx {Type} {parser} {location_type}
12545799 8580The types for semantics value and locations.
8a0adb01 8581@end defcv
12545799 8582
baacae49
AD
8583@defcv {Type} {parser} {token}
8584A structure that contains (only) the definition of the tokens as the
8585@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
8586scanner should use @code{yy::parser::token::FOO}. The scanner can use
8587@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8588(@pxref{Calc++ Scanner}).
8589@end defcv
8590
12545799
AD
8591@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8592Build a new parser object. There are no arguments by default, unless
8593@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8594@end deftypemethod
8595
8596@deftypemethod {parser} {int} parse ()
8597Run the syntactic analysis, and return 0 on success, 1 otherwise.
8598@end deftypemethod
8599
8600@deftypemethod {parser} {std::ostream&} debug_stream ()
8601@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8602Get or set the stream used for tracing the parsing. It defaults to
8603@code{std::cerr}.
8604@end deftypemethod
8605
8606@deftypemethod {parser} {debug_level_type} debug_level ()
8607@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8608Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8609or nonzero, full tracing.
12545799
AD
8610@end deftypemethod
8611
8612@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8613The definition for this member function must be supplied by the user:
8614the parser uses it to report a parser error occurring at @var{l},
8615described by @var{m}.
8616@end deftypemethod
8617
8618
8619@node C++ Scanner Interface
8620@subsection C++ Scanner Interface
8621@c - prefix for yylex.
8622@c - Pure interface to yylex
8623@c - %lex-param
8624
8625The parser invokes the scanner by calling @code{yylex}. Contrary to C
8626parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8627@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 8628
baacae49 8629@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
8630Return the next token. Its type is the return value, its semantic
8631value and location being @var{yylval} and @var{yylloc}. Invocations of
8632@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8633@end deftypemethod
8634
8635
8636@node A Complete C++ Example
8405b70c 8637@subsection A Complete C++ Example
12545799
AD
8638
8639This section demonstrates the use of a C++ parser with a simple but
8640complete example. This example should be available on your system,
8641ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8642focuses on the use of Bison, therefore the design of the various C++
8643classes is very naive: no accessors, no encapsulation of members etc.
8644We will use a Lex scanner, and more precisely, a Flex scanner, to
8645demonstrate the various interaction. A hand written scanner is
8646actually easier to interface with.
8647
8648@menu
8649* Calc++ --- C++ Calculator:: The specifications
8650* Calc++ Parsing Driver:: An active parsing context
8651* Calc++ Parser:: A parser class
8652* Calc++ Scanner:: A pure C++ Flex scanner
8653* Calc++ Top Level:: Conducting the band
8654@end menu
8655
8656@node Calc++ --- C++ Calculator
8405b70c 8657@subsubsection Calc++ --- C++ Calculator
12545799
AD
8658
8659Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8660expression, possibly preceded by variable assignments. An
12545799
AD
8661environment containing possibly predefined variables such as
8662@code{one} and @code{two}, is exchanged with the parser. An example
8663of valid input follows.
8664
8665@example
8666three := 3
8667seven := one + two * three
8668seven * seven
8669@end example
8670
8671@node Calc++ Parsing Driver
8405b70c 8672@subsubsection Calc++ Parsing Driver
12545799
AD
8673@c - An env
8674@c - A place to store error messages
8675@c - A place for the result
8676
8677To support a pure interface with the parser (and the scanner) the
8678technique of the ``parsing context'' is convenient: a structure
8679containing all the data to exchange. Since, in addition to simply
8680launch the parsing, there are several auxiliary tasks to execute (open
8681the file for parsing, instantiate the parser etc.), we recommend
8682transforming the simple parsing context structure into a fully blown
8683@dfn{parsing driver} class.
8684
8685The declaration of this driver class, @file{calc++-driver.hh}, is as
8686follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8687required standard library components, and the declaration of the parser
8688class.
12545799 8689
1c59e0a1 8690@comment file: calc++-driver.hh
12545799
AD
8691@example
8692#ifndef CALCXX_DRIVER_HH
8693# define CALCXX_DRIVER_HH
8694# include <string>
8695# include <map>
fb9712a9 8696# include "calc++-parser.hh"
12545799
AD
8697@end example
8698
12545799
AD
8699
8700@noindent
8701Then comes the declaration of the scanning function. Flex expects
8702the signature of @code{yylex} to be defined in the macro
8703@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8704factor both as follows.
1c59e0a1
AD
8705
8706@comment file: calc++-driver.hh
12545799 8707@example
3dc5e96b
PE
8708// Tell Flex the lexer's prototype ...
8709# define YY_DECL \
c095d689
AD
8710 yy::calcxx_parser::token_type \
8711 yylex (yy::calcxx_parser::semantic_type* yylval, \
8712 yy::calcxx_parser::location_type* yylloc, \
8713 calcxx_driver& driver)
12545799
AD
8714// ... and declare it for the parser's sake.
8715YY_DECL;
8716@end example
8717
8718@noindent
8719The @code{calcxx_driver} class is then declared with its most obvious
8720members.
8721
1c59e0a1 8722@comment file: calc++-driver.hh
12545799
AD
8723@example
8724// Conducting the whole scanning and parsing of Calc++.
8725class calcxx_driver
8726@{
8727public:
8728 calcxx_driver ();
8729 virtual ~calcxx_driver ();
8730
8731 std::map<std::string, int> variables;
8732
8733 int result;
8734@end example
8735
8736@noindent
8737To encapsulate the coordination with the Flex scanner, it is useful to
8738have two members function to open and close the scanning phase.
12545799 8739
1c59e0a1 8740@comment file: calc++-driver.hh
12545799
AD
8741@example
8742 // Handling the scanner.
8743 void scan_begin ();
8744 void scan_end ();
8745 bool trace_scanning;
8746@end example
8747
8748@noindent
8749Similarly for the parser itself.
8750
1c59e0a1 8751@comment file: calc++-driver.hh
12545799 8752@example
bb32f4f2
AD
8753 // Run the parser. Return 0 on success.
8754 int parse (const std::string& f);
12545799
AD
8755 std::string file;
8756 bool trace_parsing;
8757@end example
8758
8759@noindent
8760To demonstrate pure handling of parse errors, instead of simply
8761dumping them on the standard error output, we will pass them to the
8762compiler driver using the following two member functions. Finally, we
8763close the class declaration and CPP guard.
8764
1c59e0a1 8765@comment file: calc++-driver.hh
12545799
AD
8766@example
8767 // Error handling.
8768 void error (const yy::location& l, const std::string& m);
8769 void error (const std::string& m);
8770@};
8771#endif // ! CALCXX_DRIVER_HH
8772@end example
8773
8774The implementation of the driver is straightforward. The @code{parse}
8775member function deserves some attention. The @code{error} functions
8776are simple stubs, they should actually register the located error
8777messages and set error state.
8778
1c59e0a1 8779@comment file: calc++-driver.cc
12545799
AD
8780@example
8781#include "calc++-driver.hh"
8782#include "calc++-parser.hh"
8783
8784calcxx_driver::calcxx_driver ()
8785 : trace_scanning (false), trace_parsing (false)
8786@{
8787 variables["one"] = 1;
8788 variables["two"] = 2;
8789@}
8790
8791calcxx_driver::~calcxx_driver ()
8792@{
8793@}
8794
bb32f4f2 8795int
12545799
AD
8796calcxx_driver::parse (const std::string &f)
8797@{
8798 file = f;
8799 scan_begin ();
8800 yy::calcxx_parser parser (*this);
8801 parser.set_debug_level (trace_parsing);
bb32f4f2 8802 int res = parser.parse ();
12545799 8803 scan_end ();
bb32f4f2 8804 return res;
12545799
AD
8805@}
8806
8807void
8808calcxx_driver::error (const yy::location& l, const std::string& m)
8809@{
8810 std::cerr << l << ": " << m << std::endl;
8811@}
8812
8813void
8814calcxx_driver::error (const std::string& m)
8815@{
8816 std::cerr << m << std::endl;
8817@}
8818@end example
8819
8820@node Calc++ Parser
8405b70c 8821@subsubsection Calc++ Parser
12545799 8822
b50d2359 8823The parser definition file @file{calc++-parser.yy} starts by asking for
34a6c2d1
JD
8824the C++ deterministic parser skeleton, the creation of the parser header
8825file, and specifies the name of the parser class.
8826Because the C++ skeleton changed several times, it is safer to require
8827the version you designed the grammar for.
1c59e0a1
AD
8828
8829@comment file: calc++-parser.yy
12545799 8830@example
ed4d67dc 8831%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8832%require "@value{VERSION}"
12545799 8833%defines
16dc6a9e 8834%define parser_class_name "calcxx_parser"
fb9712a9
AD
8835@end example
8836
8837@noindent
16dc6a9e 8838@findex %code requires
fb9712a9
AD
8839Then come the declarations/inclusions needed to define the
8840@code{%union}. Because the parser uses the parsing driver and
8841reciprocally, both cannot include the header of the other. Because the
8842driver's header needs detailed knowledge about the parser class (in
8843particular its inner types), it is the parser's header which will simply
8844use a forward declaration of the driver.
148d66d8 8845@xref{Decl Summary, ,%code}.
fb9712a9
AD
8846
8847@comment file: calc++-parser.yy
8848@example
16dc6a9e 8849%code requires @{
12545799 8850# include <string>
fb9712a9 8851class calcxx_driver;
9bc0dd67 8852@}
12545799
AD
8853@end example
8854
8855@noindent
8856The driver is passed by reference to the parser and to the scanner.
8857This provides a simple but effective pure interface, not relying on
8858global variables.
8859
1c59e0a1 8860@comment file: calc++-parser.yy
12545799
AD
8861@example
8862// The parsing context.
8863%parse-param @{ calcxx_driver& driver @}
8864%lex-param @{ calcxx_driver& driver @}
8865@end example
8866
8867@noindent
8868Then we request the location tracking feature, and initialize the
c781580d 8869first location's file name. Afterward new locations are computed
12545799
AD
8870relatively to the previous locations: the file name will be
8871automatically propagated.
8872
1c59e0a1 8873@comment file: calc++-parser.yy
12545799
AD
8874@example
8875%locations
8876%initial-action
8877@{
8878 // Initialize the initial location.
b47dbebe 8879 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8880@};
8881@end example
8882
8883@noindent
8884Use the two following directives to enable parser tracing and verbose
8885error messages.
8886
1c59e0a1 8887@comment file: calc++-parser.yy
12545799
AD
8888@example
8889%debug
8890%error-verbose
8891@end example
8892
8893@noindent
8894Semantic values cannot use ``real'' objects, but only pointers to
8895them.
8896
1c59e0a1 8897@comment file: calc++-parser.yy
12545799
AD
8898@example
8899// Symbols.
8900%union
8901@{
8902 int ival;
8903 std::string *sval;
8904@};
8905@end example
8906
fb9712a9 8907@noindent
136a0f76
PB
8908@findex %code
8909The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8910@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8911
8912@comment file: calc++-parser.yy
8913@example
136a0f76 8914%code @{
fb9712a9 8915# include "calc++-driver.hh"
34f98f46 8916@}
fb9712a9
AD
8917@end example
8918
8919
12545799
AD
8920@noindent
8921The token numbered as 0 corresponds to end of file; the following line
8922allows for nicer error messages referring to ``end of file'' instead
8923of ``$end''. Similarly user friendly named are provided for each
8924symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8925avoid name clashes.
8926
1c59e0a1 8927@comment file: calc++-parser.yy
12545799 8928@example
fb9712a9
AD
8929%token END 0 "end of file"
8930%token ASSIGN ":="
8931%token <sval> IDENTIFIER "identifier"
8932%token <ival> NUMBER "number"
a8c2e813 8933%type <ival> exp
12545799
AD
8934@end example
8935
8936@noindent
8937To enable memory deallocation during error recovery, use
8938@code{%destructor}.
8939
287c78f6 8940@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8941@comment file: calc++-parser.yy
12545799
AD
8942@example
8943%printer @{ debug_stream () << *$$; @} "identifier"
8944%destructor @{ delete $$; @} "identifier"
8945
a8c2e813 8946%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8947@end example
8948
8949@noindent
8950The grammar itself is straightforward.
8951
1c59e0a1 8952@comment file: calc++-parser.yy
12545799
AD
8953@example
8954%%
8955%start unit;
8956unit: assignments exp @{ driver.result = $2; @};
8957
8958assignments: assignments assignment @{@}
9d9b8b70 8959 | /* Nothing. */ @{@};
12545799 8960
3dc5e96b
PE
8961assignment:
8962 "identifier" ":=" exp
8963 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8964
8965%left '+' '-';
8966%left '*' '/';
8967exp: exp '+' exp @{ $$ = $1 + $3; @}
8968 | exp '-' exp @{ $$ = $1 - $3; @}
8969 | exp '*' exp @{ $$ = $1 * $3; @}
8970 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8971 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8972 | "number" @{ $$ = $1; @};
12545799
AD
8973%%
8974@end example
8975
8976@noindent
8977Finally the @code{error} member function registers the errors to the
8978driver.
8979
1c59e0a1 8980@comment file: calc++-parser.yy
12545799
AD
8981@example
8982void
1c59e0a1
AD
8983yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8984 const std::string& m)
12545799
AD
8985@{
8986 driver.error (l, m);
8987@}
8988@end example
8989
8990@node Calc++ Scanner
8405b70c 8991@subsubsection Calc++ Scanner
12545799
AD
8992
8993The Flex scanner first includes the driver declaration, then the
8994parser's to get the set of defined tokens.
8995
1c59e0a1 8996@comment file: calc++-scanner.ll
12545799
AD
8997@example
8998%@{ /* -*- C++ -*- */
04098407 8999# include <cstdlib>
b10dd689
AD
9000# include <cerrno>
9001# include <climits>
12545799
AD
9002# include <string>
9003# include "calc++-driver.hh"
9004# include "calc++-parser.hh"
eaea13f5
PE
9005
9006/* Work around an incompatibility in flex (at least versions
9007 2.5.31 through 2.5.33): it generates code that does
9008 not conform to C89. See Debian bug 333231
9009 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9010# undef yywrap
9011# define yywrap() 1
eaea13f5 9012
c095d689
AD
9013/* By default yylex returns int, we use token_type.
9014 Unfortunately yyterminate by default returns 0, which is
9015 not of token_type. */
8c5b881d 9016#define yyterminate() return token::END
12545799
AD
9017%@}
9018@end example
9019
9020@noindent
9021Because there is no @code{#include}-like feature we don't need
9022@code{yywrap}, we don't need @code{unput} either, and we parse an
9023actual file, this is not an interactive session with the user.
9024Finally we enable the scanner tracing features.
9025
1c59e0a1 9026@comment file: calc++-scanner.ll
12545799
AD
9027@example
9028%option noyywrap nounput batch debug
9029@end example
9030
9031@noindent
9032Abbreviations allow for more readable rules.
9033
1c59e0a1 9034@comment file: calc++-scanner.ll
12545799
AD
9035@example
9036id [a-zA-Z][a-zA-Z_0-9]*
9037int [0-9]+
9038blank [ \t]
9039@end example
9040
9041@noindent
9d9b8b70 9042The following paragraph suffices to track locations accurately. Each
12545799
AD
9043time @code{yylex} is invoked, the begin position is moved onto the end
9044position. Then when a pattern is matched, the end position is
9045advanced of its width. In case it matched ends of lines, the end
9046cursor is adjusted, and each time blanks are matched, the begin cursor
9047is moved onto the end cursor to effectively ignore the blanks
9048preceding tokens. Comments would be treated equally.
9049
1c59e0a1 9050@comment file: calc++-scanner.ll
12545799 9051@example
828c373b
AD
9052%@{
9053# define YY_USER_ACTION yylloc->columns (yyleng);
9054%@}
12545799
AD
9055%%
9056%@{
9057 yylloc->step ();
12545799
AD
9058%@}
9059@{blank@}+ yylloc->step ();
9060[\n]+ yylloc->lines (yyleng); yylloc->step ();
9061@end example
9062
9063@noindent
fb9712a9
AD
9064The rules are simple, just note the use of the driver to report errors.
9065It is convenient to use a typedef to shorten
9066@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9067@code{token::identifier} for instance.
12545799 9068
1c59e0a1 9069@comment file: calc++-scanner.ll
12545799 9070@example
fb9712a9
AD
9071%@{
9072 typedef yy::calcxx_parser::token token;
9073%@}
8c5b881d 9074 /* Convert ints to the actual type of tokens. */
c095d689 9075[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9076":=" return token::ASSIGN;
04098407
PE
9077@{int@} @{
9078 errno = 0;
9079 long n = strtol (yytext, NULL, 10);
9080 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9081 driver.error (*yylloc, "integer is out of range");
9082 yylval->ival = n;
fb9712a9 9083 return token::NUMBER;
04098407 9084@}
fb9712a9 9085@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9086. driver.error (*yylloc, "invalid character");
9087%%
9088@end example
9089
9090@noindent
9091Finally, because the scanner related driver's member function depend
9092on the scanner's data, it is simpler to implement them in this file.
9093
1c59e0a1 9094@comment file: calc++-scanner.ll
12545799
AD
9095@example
9096void
9097calcxx_driver::scan_begin ()
9098@{
9099 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9100 if (file == "-")
9101 yyin = stdin;
9102 else if (!(yyin = fopen (file.c_str (), "r")))
9103 @{
9104 error (std::string ("cannot open ") + file);
9105 exit (1);
9106 @}
12545799
AD
9107@}
9108
9109void
9110calcxx_driver::scan_end ()
9111@{
9112 fclose (yyin);
9113@}
9114@end example
9115
9116@node Calc++ Top Level
8405b70c 9117@subsubsection Calc++ Top Level
12545799
AD
9118
9119The top level file, @file{calc++.cc}, poses no problem.
9120
1c59e0a1 9121@comment file: calc++.cc
12545799
AD
9122@example
9123#include <iostream>
9124#include "calc++-driver.hh"
9125
9126int
fa4d969f 9127main (int argc, char *argv[])
12545799
AD
9128@{
9129 calcxx_driver driver;
9130 for (++argv; argv[0]; ++argv)
9131 if (*argv == std::string ("-p"))
9132 driver.trace_parsing = true;
9133 else if (*argv == std::string ("-s"))
9134 driver.trace_scanning = true;
bb32f4f2
AD
9135 else if (!driver.parse (*argv))
9136 std::cout << driver.result << std::endl;
12545799
AD
9137@}
9138@end example
9139
8405b70c
PB
9140@node Java Parsers
9141@section Java Parsers
9142
9143@menu
f56274a8
DJ
9144* Java Bison Interface:: Asking for Java parser generation
9145* Java Semantic Values:: %type and %token vs. Java
9146* Java Location Values:: The position and location classes
9147* Java Parser Interface:: Instantiating and running the parser
9148* Java Scanner Interface:: Specifying the scanner for the parser
9149* Java Action Features:: Special features for use in actions
9150* Java Differences:: Differences between C/C++ and Java Grammars
9151* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9152@end menu
9153
9154@node Java Bison Interface
9155@subsection Java Bison Interface
9156@c - %language "Java"
8405b70c 9157
59da312b
JD
9158(The current Java interface is experimental and may evolve.
9159More user feedback will help to stabilize it.)
9160
e254a580
DJ
9161The Java parser skeletons are selected using the @code{%language "Java"}
9162directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9163
e254a580
DJ
9164@c FIXME: Documented bug.
9165When generating a Java parser, @code{bison @var{basename}.y} will create
9166a single Java source file named @file{@var{basename}.java}. Using an
9167input file without a @file{.y} suffix is currently broken. The basename
9168of the output file can be changed by the @code{%file-prefix} directive
9169or the @option{-p}/@option{--name-prefix} option. The entire output file
9170name can be changed by the @code{%output} directive or the
9171@option{-o}/@option{--output} option. The output file contains a single
9172class for the parser.
8405b70c 9173
e254a580 9174You can create documentation for generated parsers using Javadoc.
8405b70c 9175
e254a580
DJ
9176Contrary to C parsers, Java parsers do not use global variables; the
9177state of the parser is always local to an instance of the parser class.
9178Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9179and @code{%define api.pure} directives does not do anything when used in
9180Java.
8405b70c 9181
e254a580 9182Push parsers are currently unsupported in Java and @code{%define
812775a0 9183api.push-pull} have no effect.
01b477c6 9184
e254a580
DJ
9185@acronym{GLR} parsers are currently unsupported in Java. Do not use the
9186@code{glr-parser} directive.
9187
9188No header file can be generated for Java parsers. Do not use the
9189@code{%defines} directive or the @option{-d}/@option{--defines} options.
9190
9191@c FIXME: Possible code change.
9192Currently, support for debugging and verbose errors are always compiled
9193in. Thus the @code{%debug} and @code{%token-table} directives and the
9194@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9195options have no effect. This may change in the future to eliminate
9196unused code in the generated parser, so use @code{%debug} and
9197@code{%verbose-error} explicitly if needed. Also, in the future the
9198@code{%token-table} directive might enable a public interface to
9199access the token names and codes.
8405b70c
PB
9200
9201@node Java Semantic Values
9202@subsection Java Semantic Values
9203@c - No %union, specify type in %type/%token.
9204@c - YYSTYPE
9205@c - Printer and destructor
9206
9207There is no @code{%union} directive in Java parsers. Instead, the
9208semantic values' types (class names) should be specified in the
9209@code{%type} or @code{%token} directive:
9210
9211@example
9212%type <Expression> expr assignment_expr term factor
9213%type <Integer> number
9214@end example
9215
9216By default, the semantic stack is declared to have @code{Object} members,
9217which means that the class types you specify can be of any class.
9218To improve the type safety of the parser, you can declare the common
e254a580
DJ
9219superclass of all the semantic values using the @code{%define stype}
9220directive. For example, after the following declaration:
8405b70c
PB
9221
9222@example
e254a580 9223%define stype "ASTNode"
8405b70c
PB
9224@end example
9225
9226@noindent
9227any @code{%type} or @code{%token} specifying a semantic type which
9228is not a subclass of ASTNode, will cause a compile-time error.
9229
e254a580 9230@c FIXME: Documented bug.
8405b70c
PB
9231Types used in the directives may be qualified with a package name.
9232Primitive data types are accepted for Java version 1.5 or later. Note
9233that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9234Generic types may not be used; this is due to a limitation in the
9235implementation of Bison, and may change in future releases.
8405b70c
PB
9236
9237Java parsers do not support @code{%destructor}, since the language
9238adopts garbage collection. The parser will try to hold references
9239to semantic values for as little time as needed.
9240
9241Java parsers do not support @code{%printer}, as @code{toString()}
9242can be used to print the semantic values. This however may change
9243(in a backwards-compatible way) in future versions of Bison.
9244
9245
9246@node Java Location Values
9247@subsection Java Location Values
9248@c - %locations
9249@c - class Position
9250@c - class Location
9251
9252When the directive @code{%locations} is used, the Java parser
9253supports location tracking, see @ref{Locations, , Locations Overview}.
9254An auxiliary user-defined class defines a @dfn{position}, a single point
9255in a file; Bison itself defines a class representing a @dfn{location},
9256a range composed of a pair of positions (possibly spanning several
9257files). The location class is an inner class of the parser; the name
e254a580 9258is @code{Location} by default, and may also be renamed using
f37495f6 9259@code{%define location_type "@var{class-name}"}.
8405b70c
PB
9260
9261The location class treats the position as a completely opaque value.
9262By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9263with @code{%define position_type "@var{class-name}"}. This class must
9264be supplied by the user.
8405b70c
PB
9265
9266
e254a580
DJ
9267@deftypeivar {Location} {Position} begin
9268@deftypeivarx {Location} {Position} end
8405b70c 9269The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9270@end deftypeivar
9271
9272@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9273Create a @code{Location} denoting an empty range located at a given point.
e254a580 9274@end deftypeop
8405b70c 9275
e254a580
DJ
9276@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9277Create a @code{Location} from the endpoints of the range.
9278@end deftypeop
9279
9280@deftypemethod {Location} {String} toString ()
8405b70c
PB
9281Prints the range represented by the location. For this to work
9282properly, the position class should override the @code{equals} and
9283@code{toString} methods appropriately.
9284@end deftypemethod
9285
9286
9287@node Java Parser Interface
9288@subsection Java Parser Interface
9289@c - define parser_class_name
9290@c - Ctor
9291@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9292@c debug_stream.
9293@c - Reporting errors
9294
e254a580
DJ
9295The name of the generated parser class defaults to @code{YYParser}. The
9296@code{YY} prefix may be changed using the @code{%name-prefix} directive
9297or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9298@code{%define parser_class_name "@var{name}"} to give a custom name to
9299the class. The interface of this class is detailed below.
8405b70c 9300
e254a580
DJ
9301By default, the parser class has package visibility. A declaration
9302@code{%define public} will change to public visibility. Remember that,
9303according to the Java language specification, the name of the @file{.java}
9304file should match the name of the class in this case. Similarly, you can
9305use @code{abstract}, @code{final} and @code{strictfp} with the
9306@code{%define} declaration to add other modifiers to the parser class.
9307
9308The Java package name of the parser class can be specified using the
9309@code{%define package} directive. The superclass and the implemented
9310interfaces of the parser class can be specified with the @code{%define
9311extends} and @code{%define implements} directives.
9312
9313The parser class defines an inner class, @code{Location}, that is used
9314for location tracking (see @ref{Java Location Values}), and a inner
9315interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9316these inner class/interface, and the members described in the interface
9317below, all the other members and fields are preceded with a @code{yy} or
9318@code{YY} prefix to avoid clashes with user code.
9319
9320@c FIXME: The following constants and variables are still undocumented:
9321@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9322
9323The parser class can be extended using the @code{%parse-param}
9324directive. Each occurrence of the directive will add a @code{protected
9325final} field to the parser class, and an argument to its constructor,
9326which initialize them automatically.
9327
9328Token names defined by @code{%token} and the predefined @code{EOF} token
9329name are added as constant fields to the parser class.
9330
9331@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9332Build a new parser object with embedded @code{%code lexer}. There are
9333no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9334used.
9335@end deftypeop
9336
9337@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9338Build a new parser object using the specified scanner. There are no
9339additional parameters unless @code{%parse-param}s are used.
9340
9341If the scanner is defined by @code{%code lexer}, this constructor is
9342declared @code{protected} and is called automatically with a scanner
9343created with the correct @code{%lex-param}s.
9344@end deftypeop
8405b70c
PB
9345
9346@deftypemethod {YYParser} {boolean} parse ()
9347Run the syntactic analysis, and return @code{true} on success,
9348@code{false} otherwise.
9349@end deftypemethod
9350
01b477c6 9351@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9352During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9353from a syntax error.
9354@xref{Error Recovery}.
8405b70c
PB
9355@end deftypemethod
9356
9357@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9358@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9359Get or set the stream used for tracing the parsing. It defaults to
9360@code{System.err}.
9361@end deftypemethod
9362
9363@deftypemethod {YYParser} {int} getDebugLevel ()
9364@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9365Get or set the tracing level. Currently its value is either 0, no trace,
9366or nonzero, full tracing.
9367@end deftypemethod
9368
8405b70c
PB
9369
9370@node Java Scanner Interface
9371@subsection Java Scanner Interface
01b477c6 9372@c - %code lexer
8405b70c 9373@c - %lex-param
01b477c6 9374@c - Lexer interface
8405b70c 9375
e254a580
DJ
9376There are two possible ways to interface a Bison-generated Java parser
9377with a scanner: the scanner may be defined by @code{%code lexer}, or
9378defined elsewhere. In either case, the scanner has to implement the
9379@code{Lexer} inner interface of the parser class.
9380
9381In the first case, the body of the scanner class is placed in
9382@code{%code lexer} blocks. If you want to pass parameters from the
9383parser constructor to the scanner constructor, specify them with
9384@code{%lex-param}; they are passed before @code{%parse-param}s to the
9385constructor.
01b477c6 9386
59c5ac72 9387In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9388which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9389The constructor of the parser object will then accept an object
9390implementing the interface; @code{%lex-param} is not used in this
9391case.
9392
9393In both cases, the scanner has to implement the following methods.
9394
e254a580
DJ
9395@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9396This method is defined by the user to emit an error message. The first
9397parameter is omitted if location tracking is not active. Its type can be
9398changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9399@end deftypemethod
9400
e254a580 9401@deftypemethod {Lexer} {int} yylex ()
8405b70c 9402Return the next token. Its type is the return value, its semantic
c781580d 9403value and location are saved and returned by the their methods in the
e254a580
DJ
9404interface.
9405
9406Use @code{%define lex_throws} to specify any uncaught exceptions.
9407Default is @code{java.io.IOException}.
8405b70c
PB
9408@end deftypemethod
9409
9410@deftypemethod {Lexer} {Position} getStartPos ()
9411@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9412Return respectively the first position of the last token that
9413@code{yylex} returned, and the first position beyond it. These
9414methods are not needed unless location tracking is active.
8405b70c 9415
e254a580 9416The return type can be changed using @code{%define position_type
8405b70c
PB
9417"@var{class-name}".}
9418@end deftypemethod
9419
9420@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9421Return the semantic value of the last token that yylex returned.
8405b70c 9422
e254a580 9423The return type can be changed using @code{%define stype
8405b70c
PB
9424"@var{class-name}".}
9425@end deftypemethod
9426
9427
e254a580
DJ
9428@node Java Action Features
9429@subsection Special Features for Use in Java Actions
9430
9431The following special constructs can be uses in Java actions.
9432Other analogous C action features are currently unavailable for Java.
9433
9434Use @code{%define throws} to specify any uncaught exceptions from parser
9435actions, and initial actions specified by @code{%initial-action}.
9436
9437@defvar $@var{n}
9438The semantic value for the @var{n}th component of the current rule.
9439This may not be assigned to.
9440@xref{Java Semantic Values}.
9441@end defvar
9442
9443@defvar $<@var{typealt}>@var{n}
9444Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9445@xref{Java Semantic Values}.
9446@end defvar
9447
9448@defvar $$
9449The semantic value for the grouping made by the current rule. As a
9450value, this is in the base type (@code{Object} or as specified by
9451@code{%define stype}) as in not cast to the declared subtype because
9452casts are not allowed on the left-hand side of Java assignments.
9453Use an explicit Java cast if the correct subtype is needed.
9454@xref{Java Semantic Values}.
9455@end defvar
9456
9457@defvar $<@var{typealt}>$
9458Same as @code{$$} since Java always allow assigning to the base type.
9459Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9460for setting the value but there is currently no easy way to distinguish
9461these constructs.
9462@xref{Java Semantic Values}.
9463@end defvar
9464
9465@defvar @@@var{n}
9466The location information of the @var{n}th component of the current rule.
9467This may not be assigned to.
9468@xref{Java Location Values}.
9469@end defvar
9470
9471@defvar @@$
9472The location information of the grouping made by the current rule.
9473@xref{Java Location Values}.
9474@end defvar
9475
9476@deffn {Statement} {return YYABORT;}
9477Return immediately from the parser, indicating failure.
9478@xref{Java Parser Interface}.
9479@end deffn
8405b70c 9480
e254a580
DJ
9481@deffn {Statement} {return YYACCEPT;}
9482Return immediately from the parser, indicating success.
9483@xref{Java Parser Interface}.
9484@end deffn
8405b70c 9485
e254a580 9486@deffn {Statement} {return YYERROR;}
c046698e 9487Start error recovery without printing an error message.
e254a580
DJ
9488@xref{Error Recovery}.
9489@end deffn
8405b70c 9490
e254a580
DJ
9491@deftypefn {Function} {boolean} recovering ()
9492Return whether error recovery is being done. In this state, the parser
9493reads token until it reaches a known state, and then restarts normal
9494operation.
9495@xref{Error Recovery}.
9496@end deftypefn
8405b70c 9497
e254a580
DJ
9498@deftypefn {Function} {protected void} yyerror (String msg)
9499@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9500@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9501Print an error message using the @code{yyerror} method of the scanner
9502instance in use.
9503@end deftypefn
8405b70c 9504
8405b70c 9505
8405b70c
PB
9506@node Java Differences
9507@subsection Differences between C/C++ and Java Grammars
9508
9509The different structure of the Java language forces several differences
9510between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9511section summarizes these differences.
8405b70c
PB
9512
9513@itemize
9514@item
01b477c6 9515Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9516@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9517macros. Instead, they should be preceded by @code{return} when they
9518appear in an action. The actual definition of these symbols is
8405b70c
PB
9519opaque to the Bison grammar, and it might change in the future. The
9520only meaningful operation that you can do, is to return them.
e254a580 9521See @pxref{Java Action Features}.
8405b70c
PB
9522
9523Note that of these three symbols, only @code{YYACCEPT} and
9524@code{YYABORT} will cause a return from the @code{yyparse}
9525method@footnote{Java parsers include the actions in a separate
9526method than @code{yyparse} in order to have an intuitive syntax that
9527corresponds to these C macros.}.
9528
e254a580
DJ
9529@item
9530Java lacks unions, so @code{%union} has no effect. Instead, semantic
9531values have a common base type: @code{Object} or as specified by
c781580d 9532@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9533@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9534an union. The type of @code{$$}, even with angle brackets, is the base
9535type since Java casts are not allow on the left-hand side of assignments.
9536Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9537left-hand side of assignments. See @pxref{Java Semantic Values} and
9538@pxref{Java Action Features}.
9539
8405b70c 9540@item
c781580d 9541The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9542@table @asis
9543@item @code{%code imports}
9544blocks are placed at the beginning of the Java source code. They may
9545include copyright notices. For a @code{package} declarations, it is
9546suggested to use @code{%define package} instead.
8405b70c 9547
01b477c6
PB
9548@item unqualified @code{%code}
9549blocks are placed inside the parser class.
9550
9551@item @code{%code lexer}
9552blocks, if specified, should include the implementation of the
9553scanner. If there is no such block, the scanner can be any class
9554that implements the appropriate interface (see @pxref{Java Scanner
9555Interface}).
29553547 9556@end table
8405b70c
PB
9557
9558Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9559In particular, @code{%@{ @dots{} %@}} blocks should not be used
9560and may give an error in future versions of Bison.
9561
01b477c6 9562The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9563be used to define other classes used by the parser @emph{outside}
9564the parser class.
8405b70c
PB
9565@end itemize
9566
e254a580
DJ
9567
9568@node Java Declarations Summary
9569@subsection Java Declarations Summary
9570
9571This summary only include declarations specific to Java or have special
9572meaning when used in a Java parser.
9573
9574@deffn {Directive} {%language "Java"}
9575Generate a Java class for the parser.
9576@end deffn
9577
9578@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9579A parameter for the lexer class defined by @code{%code lexer}
9580@emph{only}, added as parameters to the lexer constructor and the parser
9581constructor that @emph{creates} a lexer. Default is none.
9582@xref{Java Scanner Interface}.
9583@end deffn
9584
9585@deffn {Directive} %name-prefix "@var{prefix}"
9586The prefix of the parser class name @code{@var{prefix}Parser} if
9587@code{%define parser_class_name} is not used. Default is @code{YY}.
9588@xref{Java Bison Interface}.
9589@end deffn
9590
9591@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9592A parameter for the parser class added as parameters to constructor(s)
9593and as fields initialized by the constructor(s). Default is none.
9594@xref{Java Parser Interface}.
9595@end deffn
9596
9597@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9598Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9599@xref{Java Semantic Values}.
9600@end deffn
9601
9602@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9603Declare the type of nonterminals. Note that the angle brackets enclose
9604a Java @emph{type}.
9605@xref{Java Semantic Values}.
9606@end deffn
9607
9608@deffn {Directive} %code @{ @var{code} @dots{} @}
9609Code appended to the inside of the parser class.
9610@xref{Java Differences}.
9611@end deffn
9612
9613@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9614Code inserted just after the @code{package} declaration.
9615@xref{Java Differences}.
9616@end deffn
9617
9618@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9619Code added to the body of a inner lexer class within the parser class.
9620@xref{Java Scanner Interface}.
9621@end deffn
9622
9623@deffn {Directive} %% @var{code} @dots{}
9624Code (after the second @code{%%}) appended to the end of the file,
9625@emph{outside} the parser class.
9626@xref{Java Differences}.
9627@end deffn
9628
9629@deffn {Directive} %@{ @var{code} @dots{} %@}
9630Not supported. Use @code{%code import} instead.
9631@xref{Java Differences}.
9632@end deffn
9633
9634@deffn {Directive} {%define abstract}
9635Whether the parser class is declared @code{abstract}. Default is false.
9636@xref{Java Bison Interface}.
9637@end deffn
9638
9639@deffn {Directive} {%define extends} "@var{superclass}"
9640The superclass of the parser class. Default is none.
9641@xref{Java Bison Interface}.
9642@end deffn
9643
9644@deffn {Directive} {%define final}
9645Whether the parser class is declared @code{final}. Default is false.
9646@xref{Java Bison Interface}.
9647@end deffn
9648
9649@deffn {Directive} {%define implements} "@var{interfaces}"
9650The implemented interfaces of the parser class, a comma-separated list.
9651Default is none.
9652@xref{Java Bison Interface}.
9653@end deffn
9654
9655@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9656The exceptions thrown by the @code{yylex} method of the lexer, a
9657comma-separated list. Default is @code{java.io.IOException}.
9658@xref{Java Scanner Interface}.
9659@end deffn
9660
9661@deffn {Directive} {%define location_type} "@var{class}"
9662The name of the class used for locations (a range between two
9663positions). This class is generated as an inner class of the parser
9664class by @command{bison}. Default is @code{Location}.
9665@xref{Java Location Values}.
9666@end deffn
9667
9668@deffn {Directive} {%define package} "@var{package}"
9669The package to put the parser class in. Default is none.
9670@xref{Java Bison Interface}.
9671@end deffn
9672
9673@deffn {Directive} {%define parser_class_name} "@var{name}"
9674The name of the parser class. Default is @code{YYParser} or
9675@code{@var{name-prefix}Parser}.
9676@xref{Java Bison Interface}.
9677@end deffn
9678
9679@deffn {Directive} {%define position_type} "@var{class}"
9680The name of the class used for positions. This class must be supplied by
9681the user. Default is @code{Position}.
9682@xref{Java Location Values}.
9683@end deffn
9684
9685@deffn {Directive} {%define public}
9686Whether the parser class is declared @code{public}. Default is false.
9687@xref{Java Bison Interface}.
9688@end deffn
9689
9690@deffn {Directive} {%define stype} "@var{class}"
9691The base type of semantic values. Default is @code{Object}.
9692@xref{Java Semantic Values}.
9693@end deffn
9694
9695@deffn {Directive} {%define strictfp}
9696Whether the parser class is declared @code{strictfp}. Default is false.
9697@xref{Java Bison Interface}.
9698@end deffn
9699
9700@deffn {Directive} {%define throws} "@var{exceptions}"
9701The exceptions thrown by user-supplied parser actions and
9702@code{%initial-action}, a comma-separated list. Default is none.
9703@xref{Java Parser Interface}.
9704@end deffn
9705
9706
12545799 9707@c ================================================= FAQ
d1a1114f
AD
9708
9709@node FAQ
9710@chapter Frequently Asked Questions
9711@cindex frequently asked questions
9712@cindex questions
9713
9714Several questions about Bison come up occasionally. Here some of them
9715are addressed.
9716
9717@menu
55ba27be
AD
9718* Memory Exhausted:: Breaking the Stack Limits
9719* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9720* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9721* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9722* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9723* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9724* I can't build Bison:: Troubleshooting
9725* Where can I find help?:: Troubleshouting
9726* Bug Reports:: Troublereporting
8405b70c 9727* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9728* Beta Testing:: Experimenting development versions
9729* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9730@end menu
9731
1a059451
PE
9732@node Memory Exhausted
9733@section Memory Exhausted
d1a1114f
AD
9734
9735@display
1a059451 9736My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9737message. What can I do?
9738@end display
9739
9740This question is already addressed elsewhere, @xref{Recursion,
9741,Recursive Rules}.
9742
e64fec0a
PE
9743@node How Can I Reset the Parser
9744@section How Can I Reset the Parser
5b066063 9745
0e14ad77
PE
9746The following phenomenon has several symptoms, resulting in the
9747following typical questions:
5b066063
AD
9748
9749@display
9750I invoke @code{yyparse} several times, and on correct input it works
9751properly; but when a parse error is found, all the other calls fail
0e14ad77 9752too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9753@end display
9754
9755@noindent
9756or
9757
9758@display
0e14ad77 9759My parser includes support for an @samp{#include}-like feature, in
5b066063 9760which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9761although I did specify @code{%define api.pure}.
5b066063
AD
9762@end display
9763
0e14ad77
PE
9764These problems typically come not from Bison itself, but from
9765Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9766speed, they might not notice a change of input file. As a
9767demonstration, consider the following source file,
9768@file{first-line.l}:
9769
9770@verbatim
9771%{
9772#include <stdio.h>
9773#include <stdlib.h>
9774%}
9775%%
9776.*\n ECHO; return 1;
9777%%
9778int
0e14ad77 9779yyparse (char const *file)
5b066063
AD
9780{
9781 yyin = fopen (file, "r");
9782 if (!yyin)
9783 exit (2);
fa7e68c3 9784 /* One token only. */
5b066063 9785 yylex ();
0e14ad77 9786 if (fclose (yyin) != 0)
5b066063
AD
9787 exit (3);
9788 return 0;
9789}
9790
9791int
0e14ad77 9792main (void)
5b066063
AD
9793{
9794 yyparse ("input");
9795 yyparse ("input");
9796 return 0;
9797}
9798@end verbatim
9799
9800@noindent
9801If the file @file{input} contains
9802
9803@verbatim
9804input:1: Hello,
9805input:2: World!
9806@end verbatim
9807
9808@noindent
0e14ad77 9809then instead of getting the first line twice, you get:
5b066063
AD
9810
9811@example
9812$ @kbd{flex -ofirst-line.c first-line.l}
9813$ @kbd{gcc -ofirst-line first-line.c -ll}
9814$ @kbd{./first-line}
9815input:1: Hello,
9816input:2: World!
9817@end example
9818
0e14ad77
PE
9819Therefore, whenever you change @code{yyin}, you must tell the
9820Lex-generated scanner to discard its current buffer and switch to the
9821new one. This depends upon your implementation of Lex; see its
9822documentation for more. For Flex, it suffices to call
9823@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9824Flex-generated scanner needs to read from several input streams to
9825handle features like include files, you might consider using Flex
9826functions like @samp{yy_switch_to_buffer} that manipulate multiple
9827input buffers.
5b066063 9828
b165c324
AD
9829If your Flex-generated scanner uses start conditions (@pxref{Start
9830conditions, , Start conditions, flex, The Flex Manual}), you might
9831also want to reset the scanner's state, i.e., go back to the initial
9832start condition, through a call to @samp{BEGIN (0)}.
9833
fef4cb51
AD
9834@node Strings are Destroyed
9835@section Strings are Destroyed
9836
9837@display
c7e441b4 9838My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9839them. Instead of reporting @samp{"foo", "bar"}, it reports
9840@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9841@end display
9842
9843This error is probably the single most frequent ``bug report'' sent to
9844Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9845of the scanner. Consider the following Lex code:
fef4cb51
AD
9846
9847@verbatim
9848%{
9849#include <stdio.h>
9850char *yylval = NULL;
9851%}
9852%%
9853.* yylval = yytext; return 1;
9854\n /* IGNORE */
9855%%
9856int
9857main ()
9858{
fa7e68c3 9859 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9860 char *fst = (yylex (), yylval);
9861 char *snd = (yylex (), yylval);
9862 printf ("\"%s\", \"%s\"\n", fst, snd);
9863 return 0;
9864}
9865@end verbatim
9866
9867If you compile and run this code, you get:
9868
9869@example
9870$ @kbd{flex -osplit-lines.c split-lines.l}
9871$ @kbd{gcc -osplit-lines split-lines.c -ll}
9872$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9873"one
9874two", "two"
9875@end example
9876
9877@noindent
9878this is because @code{yytext} is a buffer provided for @emph{reading}
9879in the action, but if you want to keep it, you have to duplicate it
9880(e.g., using @code{strdup}). Note that the output may depend on how
9881your implementation of Lex handles @code{yytext}. For instance, when
9882given the Lex compatibility option @option{-l} (which triggers the
9883option @samp{%array}) Flex generates a different behavior:
9884
9885@example
9886$ @kbd{flex -l -osplit-lines.c split-lines.l}
9887$ @kbd{gcc -osplit-lines split-lines.c -ll}
9888$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9889"two", "two"
9890@end example
9891
9892
2fa09258
AD
9893@node Implementing Gotos/Loops
9894@section Implementing Gotos/Loops
a06ea4aa
AD
9895
9896@display
9897My simple calculator supports variables, assignments, and functions,
2fa09258 9898but how can I implement gotos, or loops?
a06ea4aa
AD
9899@end display
9900
9901Although very pedagogical, the examples included in the document blur
a1c84f45 9902the distinction to make between the parser---whose job is to recover
a06ea4aa 9903the structure of a text and to transmit it to subsequent modules of
a1c84f45 9904the program---and the processing (such as the execution) of this
a06ea4aa
AD
9905structure. This works well with so called straight line programs,
9906i.e., precisely those that have a straightforward execution model:
9907execute simple instructions one after the others.
9908
9909@cindex abstract syntax tree
9910@cindex @acronym{AST}
9911If you want a richer model, you will probably need to use the parser
9912to construct a tree that does represent the structure it has
9913recovered; this tree is usually called the @dfn{abstract syntax tree},
9914or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9915traversing it in various ways, will enable treatments such as its
9916execution or its translation, which will result in an interpreter or a
9917compiler.
9918
9919This topic is way beyond the scope of this manual, and the reader is
9920invited to consult the dedicated literature.
9921
9922
ed2e6384
AD
9923@node Multiple start-symbols
9924@section Multiple start-symbols
9925
9926@display
9927I have several closely related grammars, and I would like to share their
9928implementations. In fact, I could use a single grammar but with
9929multiple entry points.
9930@end display
9931
9932Bison does not support multiple start-symbols, but there is a very
9933simple means to simulate them. If @code{foo} and @code{bar} are the two
9934pseudo start-symbols, then introduce two new tokens, say
9935@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9936real start-symbol:
9937
9938@example
9939%token START_FOO START_BAR;
9940%start start;
9941start: START_FOO foo
9942 | START_BAR bar;
9943@end example
9944
9945These tokens prevents the introduction of new conflicts. As far as the
9946parser goes, that is all that is needed.
9947
9948Now the difficult part is ensuring that the scanner will send these
9949tokens first. If your scanner is hand-written, that should be
9950straightforward. If your scanner is generated by Lex, them there is
9951simple means to do it: recall that anything between @samp{%@{ ... %@}}
9952after the first @code{%%} is copied verbatim in the top of the generated
9953@code{yylex} function. Make sure a variable @code{start_token} is
9954available in the scanner (e.g., a global variable or using
9955@code{%lex-param} etc.), and use the following:
9956
9957@example
9958 /* @r{Prologue.} */
9959%%
9960%@{
9961 if (start_token)
9962 @{
9963 int t = start_token;
9964 start_token = 0;
9965 return t;
9966 @}
9967%@}
9968 /* @r{The rules.} */
9969@end example
9970
9971
55ba27be
AD
9972@node Secure? Conform?
9973@section Secure? Conform?
9974
9975@display
9976Is Bison secure? Does it conform to POSIX?
9977@end display
9978
9979If you're looking for a guarantee or certification, we don't provide it.
9980However, Bison is intended to be a reliable program that conforms to the
9981@acronym{POSIX} specification for Yacc. If you run into problems,
9982please send us a bug report.
9983
9984@node I can't build Bison
9985@section I can't build Bison
9986
9987@display
8c5b881d
PE
9988I can't build Bison because @command{make} complains that
9989@code{msgfmt} is not found.
55ba27be
AD
9990What should I do?
9991@end display
9992
9993Like most GNU packages with internationalization support, that feature
9994is turned on by default. If you have problems building in the @file{po}
9995subdirectory, it indicates that your system's internationalization
9996support is lacking. You can re-configure Bison with
9997@option{--disable-nls} to turn off this support, or you can install GNU
9998gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9999Bison. See the file @file{ABOUT-NLS} for more information.
10000
10001
10002@node Where can I find help?
10003@section Where can I find help?
10004
10005@display
10006I'm having trouble using Bison. Where can I find help?
10007@end display
10008
10009First, read this fine manual. Beyond that, you can send mail to
10010@email{help-bison@@gnu.org}. This mailing list is intended to be
10011populated with people who are willing to answer questions about using
10012and installing Bison. Please keep in mind that (most of) the people on
10013the list have aspects of their lives which are not related to Bison (!),
10014so you may not receive an answer to your question right away. This can
10015be frustrating, but please try not to honk them off; remember that any
10016help they provide is purely voluntary and out of the kindness of their
10017hearts.
10018
10019@node Bug Reports
10020@section Bug Reports
10021
10022@display
10023I found a bug. What should I include in the bug report?
10024@end display
10025
10026Before you send a bug report, make sure you are using the latest
10027version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10028mirrors. Be sure to include the version number in your bug report. If
10029the bug is present in the latest version but not in a previous version,
10030try to determine the most recent version which did not contain the bug.
10031
10032If the bug is parser-related, you should include the smallest grammar
10033you can which demonstrates the bug. The grammar file should also be
10034complete (i.e., I should be able to run it through Bison without having
10035to edit or add anything). The smaller and simpler the grammar, the
10036easier it will be to fix the bug.
10037
10038Include information about your compilation environment, including your
10039operating system's name and version and your compiler's name and
10040version. If you have trouble compiling, you should also include a
10041transcript of the build session, starting with the invocation of
10042`configure'. Depending on the nature of the bug, you may be asked to
10043send additional files as well (such as `config.h' or `config.cache').
10044
10045Patches are most welcome, but not required. That is, do not hesitate to
10046send a bug report just because you can not provide a fix.
10047
10048Send bug reports to @email{bug-bison@@gnu.org}.
10049
8405b70c
PB
10050@node More Languages
10051@section More Languages
55ba27be
AD
10052
10053@display
8405b70c 10054Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10055favorite language here}?
10056@end display
10057
8405b70c 10058C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10059languages; contributions are welcome.
10060
10061@node Beta Testing
10062@section Beta Testing
10063
10064@display
10065What is involved in being a beta tester?
10066@end display
10067
10068It's not terribly involved. Basically, you would download a test
10069release, compile it, and use it to build and run a parser or two. After
10070that, you would submit either a bug report or a message saying that
10071everything is okay. It is important to report successes as well as
10072failures because test releases eventually become mainstream releases,
10073but only if they are adequately tested. If no one tests, development is
10074essentially halted.
10075
10076Beta testers are particularly needed for operating systems to which the
10077developers do not have easy access. They currently have easy access to
10078recent GNU/Linux and Solaris versions. Reports about other operating
10079systems are especially welcome.
10080
10081@node Mailing Lists
10082@section Mailing Lists
10083
10084@display
10085How do I join the help-bison and bug-bison mailing lists?
10086@end display
10087
10088See @url{http://lists.gnu.org/}.
a06ea4aa 10089
d1a1114f
AD
10090@c ================================================= Table of Symbols
10091
342b8b6e 10092@node Table of Symbols
bfa74976
RS
10093@appendix Bison Symbols
10094@cindex Bison symbols, table of
10095@cindex symbols in Bison, table of
10096
18b519c0 10097@deffn {Variable} @@$
3ded9a63 10098In an action, the location of the left-hand side of the rule.
88bce5a2 10099@xref{Locations, , Locations Overview}.
18b519c0 10100@end deffn
3ded9a63 10101
18b519c0 10102@deffn {Variable} @@@var{n}
3ded9a63
AD
10103In an action, the location of the @var{n}-th symbol of the right-hand
10104side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10105@end deffn
3ded9a63 10106
1f68dca5
AR
10107@deffn {Variable} @@@var{name}
10108In an action, the location of a symbol addressed by name.
10109@xref{Locations, , Locations Overview}.
10110@end deffn
10111
10112@deffn {Variable} @@[@var{name}]
10113In an action, the location of a symbol addressed by name.
10114@xref{Locations, , Locations Overview}.
10115@end deffn
10116
18b519c0 10117@deffn {Variable} $$
3ded9a63
AD
10118In an action, the semantic value of the left-hand side of the rule.
10119@xref{Actions}.
18b519c0 10120@end deffn
3ded9a63 10121
18b519c0 10122@deffn {Variable} $@var{n}
3ded9a63
AD
10123In an action, the semantic value of the @var{n}-th symbol of the
10124right-hand side of the rule. @xref{Actions}.
18b519c0 10125@end deffn
3ded9a63 10126
1f68dca5
AR
10127@deffn {Variable} $@var{name}
10128In an action, the semantic value of a symbol addressed by name.
10129@xref{Actions}.
10130@end deffn
10131
10132@deffn {Variable} $[@var{name}]
10133In an action, the semantic value of a symbol addressed by name.
10134@xref{Actions}.
10135@end deffn
10136
dd8d9022
AD
10137@deffn {Delimiter} %%
10138Delimiter used to separate the grammar rule section from the
10139Bison declarations section or the epilogue.
10140@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10141@end deffn
bfa74976 10142
dd8d9022
AD
10143@c Don't insert spaces, or check the DVI output.
10144@deffn {Delimiter} %@{@var{code}%@}
10145All code listed between @samp{%@{} and @samp{%@}} is copied directly to
10146the output file uninterpreted. Such code forms the prologue of the input
10147file. @xref{Grammar Outline, ,Outline of a Bison
10148Grammar}.
18b519c0 10149@end deffn
bfa74976 10150
dd8d9022
AD
10151@deffn {Construct} /*@dots{}*/
10152Comment delimiters, as in C.
18b519c0 10153@end deffn
bfa74976 10154
dd8d9022
AD
10155@deffn {Delimiter} :
10156Separates a rule's result from its components. @xref{Rules, ,Syntax of
10157Grammar Rules}.
18b519c0 10158@end deffn
bfa74976 10159
dd8d9022
AD
10160@deffn {Delimiter} ;
10161Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10162@end deffn
bfa74976 10163
dd8d9022
AD
10164@deffn {Delimiter} |
10165Separates alternate rules for the same result nonterminal.
10166@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10167@end deffn
bfa74976 10168
12e35840
JD
10169@deffn {Directive} <*>
10170Used to define a default tagged @code{%destructor} or default tagged
10171@code{%printer}.
85894313
JD
10172
10173This feature is experimental.
10174More user feedback will help to determine whether it should become a permanent
10175feature.
10176
12e35840
JD
10177@xref{Destructor Decl, , Freeing Discarded Symbols}.
10178@end deffn
10179
3ebecc24 10180@deffn {Directive} <>
12e35840
JD
10181Used to define a default tagless @code{%destructor} or default tagless
10182@code{%printer}.
85894313
JD
10183
10184This feature is experimental.
10185More user feedback will help to determine whether it should become a permanent
10186feature.
10187
12e35840
JD
10188@xref{Destructor Decl, , Freeing Discarded Symbols}.
10189@end deffn
10190
dd8d9022
AD
10191@deffn {Symbol} $accept
10192The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10193$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10194Start-Symbol}. It cannot be used in the grammar.
18b519c0 10195@end deffn
bfa74976 10196
136a0f76 10197@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
10198@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
10199Insert @var{code} verbatim into output parser source.
10200@xref{Decl Summary,,%code}.
9bc0dd67 10201@end deffn
9bc0dd67 10202
18b519c0 10203@deffn {Directive} %debug
6deb4447 10204Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10205@end deffn
6deb4447 10206
91d2c560 10207@ifset defaultprec
22fccf95
PE
10208@deffn {Directive} %default-prec
10209Assign a precedence to rules that lack an explicit @samp{%prec}
10210modifier. @xref{Contextual Precedence, ,Context-Dependent
10211Precedence}.
39a06c25 10212@end deffn
91d2c560 10213@end ifset
39a06c25 10214
148d66d8
JD
10215@deffn {Directive} %define @var{define-variable}
10216@deffnx {Directive} %define @var{define-variable} @var{value}
f37495f6 10217@deffnx {Directive} %define @var{define-variable} "@var{value}"
148d66d8
JD
10218Define a variable to adjust Bison's behavior.
10219@xref{Decl Summary,,%define}.
10220@end deffn
10221
18b519c0 10222@deffn {Directive} %defines
6deb4447
AD
10223Bison declaration to create a header file meant for the scanner.
10224@xref{Decl Summary}.
18b519c0 10225@end deffn
6deb4447 10226
02975b9a
JD
10227@deffn {Directive} %defines @var{defines-file}
10228Same as above, but save in the file @var{defines-file}.
10229@xref{Decl Summary}.
10230@end deffn
10231
18b519c0 10232@deffn {Directive} %destructor
258b75ca 10233Specify how the parser should reclaim the memory associated to
fa7e68c3 10234discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10235@end deffn
72f889cc 10236
18b519c0 10237@deffn {Directive} %dprec
676385e2 10238Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
10239time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
10240@acronym{GLR} Parsers}.
18b519c0 10241@end deffn
676385e2 10242
dd8d9022
AD
10243@deffn {Symbol} $end
10244The predefined token marking the end of the token stream. It cannot be
10245used in the grammar.
10246@end deffn
10247
10248@deffn {Symbol} error
10249A token name reserved for error recovery. This token may be used in
10250grammar rules so as to allow the Bison parser to recognize an error in
10251the grammar without halting the process. In effect, a sentence
10252containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10253token @code{error} becomes the current lookahead token. Actions
10254corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10255token is reset to the token that originally caused the violation.
10256@xref{Error Recovery}.
18d192f0
AD
10257@end deffn
10258
18b519c0 10259@deffn {Directive} %error-verbose
2a8d363a
AD
10260Bison declaration to request verbose, specific error message strings
10261when @code{yyerror} is called.
18b519c0 10262@end deffn
2a8d363a 10263
02975b9a 10264@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10265Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10266Summary}.
18b519c0 10267@end deffn
d8988b2f 10268
18b519c0 10269@deffn {Directive} %glr-parser
c827f760
PE
10270Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
10271Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10272@end deffn
676385e2 10273
dd8d9022
AD
10274@deffn {Directive} %initial-action
10275Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10276@end deffn
10277
e6e704dc
JD
10278@deffn {Directive} %language
10279Specify the programming language for the generated parser.
10280@xref{Decl Summary}.
10281@end deffn
10282
18b519c0 10283@deffn {Directive} %left
bfa74976
RS
10284Bison declaration to assign left associativity to token(s).
10285@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10286@end deffn
bfa74976 10287
feeb0eda 10288@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10289Bison declaration to specifying an additional parameter that
10290@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10291for Pure Parsers}.
18b519c0 10292@end deffn
2a8d363a 10293
18b519c0 10294@deffn {Directive} %merge
676385e2 10295Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10296reduce/reduce conflict with a rule having the same merging function, the
676385e2 10297function is applied to the two semantic values to get a single result.
c827f760 10298@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 10299@end deffn
676385e2 10300
02975b9a 10301@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10302Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10303@end deffn
d8988b2f 10304
91d2c560 10305@ifset defaultprec
22fccf95
PE
10306@deffn {Directive} %no-default-prec
10307Do not assign a precedence to rules that lack an explicit @samp{%prec}
10308modifier. @xref{Contextual Precedence, ,Context-Dependent
10309Precedence}.
10310@end deffn
91d2c560 10311@end ifset
22fccf95 10312
18b519c0 10313@deffn {Directive} %no-lines
931c7513
RS
10314Bison declaration to avoid generating @code{#line} directives in the
10315parser file. @xref{Decl Summary}.
18b519c0 10316@end deffn
931c7513 10317
18b519c0 10318@deffn {Directive} %nonassoc
9d9b8b70 10319Bison declaration to assign nonassociativity to token(s).
bfa74976 10320@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10321@end deffn
bfa74976 10322
02975b9a 10323@deffn {Directive} %output "@var{file}"
72d2299c 10324Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 10325Summary}.
18b519c0 10326@end deffn
d8988b2f 10327
feeb0eda 10328@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10329Bison declaration to specifying an additional parameter that
10330@code{yyparse} should accept. @xref{Parser Function,, The Parser
10331Function @code{yyparse}}.
18b519c0 10332@end deffn
2a8d363a 10333
18b519c0 10334@deffn {Directive} %prec
bfa74976
RS
10335Bison declaration to assign a precedence to a specific rule.
10336@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10337@end deffn
bfa74976 10338
18b519c0 10339@deffn {Directive} %pure-parser
d9df47b6
JD
10340Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
10341for which Bison is more careful to warn about unreasonable usage.
18b519c0 10342@end deffn
bfa74976 10343
b50d2359 10344@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10345Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10346Require a Version of Bison}.
b50d2359
AD
10347@end deffn
10348
18b519c0 10349@deffn {Directive} %right
bfa74976
RS
10350Bison declaration to assign right associativity to token(s).
10351@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10352@end deffn
bfa74976 10353
e6e704dc
JD
10354@deffn {Directive} %skeleton
10355Specify the skeleton to use; usually for development.
10356@xref{Decl Summary}.
10357@end deffn
10358
18b519c0 10359@deffn {Directive} %start
704a47c4
AD
10360Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10361Start-Symbol}.
18b519c0 10362@end deffn
bfa74976 10363
18b519c0 10364@deffn {Directive} %token
bfa74976
RS
10365Bison declaration to declare token(s) without specifying precedence.
10366@xref{Token Decl, ,Token Type Names}.
18b519c0 10367@end deffn
bfa74976 10368
18b519c0 10369@deffn {Directive} %token-table
931c7513
RS
10370Bison declaration to include a token name table in the parser file.
10371@xref{Decl Summary}.
18b519c0 10372@end deffn
931c7513 10373
18b519c0 10374@deffn {Directive} %type
704a47c4
AD
10375Bison declaration to declare nonterminals. @xref{Type Decl,
10376,Nonterminal Symbols}.
18b519c0 10377@end deffn
bfa74976 10378
dd8d9022
AD
10379@deffn {Symbol} $undefined
10380The predefined token onto which all undefined values returned by
10381@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10382@code{error}.
10383@end deffn
10384
18b519c0 10385@deffn {Directive} %union
bfa74976
RS
10386Bison declaration to specify several possible data types for semantic
10387values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10388@end deffn
bfa74976 10389
dd8d9022
AD
10390@deffn {Macro} YYABORT
10391Macro to pretend that an unrecoverable syntax error has occurred, by
10392making @code{yyparse} return 1 immediately. The error reporting
10393function @code{yyerror} is not called. @xref{Parser Function, ,The
10394Parser Function @code{yyparse}}.
8405b70c
PB
10395
10396For Java parsers, this functionality is invoked using @code{return YYABORT;}
10397instead.
dd8d9022 10398@end deffn
3ded9a63 10399
dd8d9022
AD
10400@deffn {Macro} YYACCEPT
10401Macro to pretend that a complete utterance of the language has been
10402read, by making @code{yyparse} return 0 immediately.
10403@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10404
10405For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10406instead.
dd8d9022 10407@end deffn
bfa74976 10408
dd8d9022 10409@deffn {Macro} YYBACKUP
742e4900 10410Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10411token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10412@end deffn
bfa74976 10413
dd8d9022 10414@deffn {Variable} yychar
32c29292 10415External integer variable that contains the integer value of the
742e4900 10416lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10417@code{yyparse}.) Error-recovery rule actions may examine this variable.
10418@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10419@end deffn
bfa74976 10420
dd8d9022
AD
10421@deffn {Variable} yyclearin
10422Macro used in error-recovery rule actions. It clears the previous
742e4900 10423lookahead token. @xref{Error Recovery}.
18b519c0 10424@end deffn
bfa74976 10425
dd8d9022
AD
10426@deffn {Macro} YYDEBUG
10427Macro to define to equip the parser with tracing code. @xref{Tracing,
10428,Tracing Your Parser}.
18b519c0 10429@end deffn
bfa74976 10430
dd8d9022
AD
10431@deffn {Variable} yydebug
10432External integer variable set to zero by default. If @code{yydebug}
10433is given a nonzero value, the parser will output information on input
10434symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10435@end deffn
bfa74976 10436
dd8d9022
AD
10437@deffn {Macro} yyerrok
10438Macro to cause parser to recover immediately to its normal mode
10439after a syntax error. @xref{Error Recovery}.
10440@end deffn
10441
10442@deffn {Macro} YYERROR
10443Macro to pretend that a syntax error has just been detected: call
10444@code{yyerror} and then perform normal error recovery if possible
10445(@pxref{Error Recovery}), or (if recovery is impossible) make
10446@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10447
10448For Java parsers, this functionality is invoked using @code{return YYERROR;}
10449instead.
dd8d9022
AD
10450@end deffn
10451
10452@deffn {Function} yyerror
10453User-supplied function to be called by @code{yyparse} on error.
10454@xref{Error Reporting, ,The Error
10455Reporting Function @code{yyerror}}.
10456@end deffn
10457
10458@deffn {Macro} YYERROR_VERBOSE
10459An obsolete macro that you define with @code{#define} in the prologue
10460to request verbose, specific error message strings
10461when @code{yyerror} is called. It doesn't matter what definition you
10462use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10463@code{%error-verbose} is preferred.
10464@end deffn
10465
10466@deffn {Macro} YYINITDEPTH
10467Macro for specifying the initial size of the parser stack.
1a059451 10468@xref{Memory Management}.
dd8d9022
AD
10469@end deffn
10470
10471@deffn {Function} yylex
10472User-supplied lexical analyzer function, called with no arguments to get
10473the next token. @xref{Lexical, ,The Lexical Analyzer Function
10474@code{yylex}}.
10475@end deffn
10476
10477@deffn {Macro} YYLEX_PARAM
10478An obsolete macro for specifying an extra argument (or list of extra
32c29292 10479arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10480macro is deprecated, and is supported only for Yacc like parsers.
10481@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10482@end deffn
10483
10484@deffn {Variable} yylloc
10485External variable in which @code{yylex} should place the line and column
10486numbers associated with a token. (In a pure parser, it is a local
10487variable within @code{yyparse}, and its address is passed to
32c29292
JD
10488@code{yylex}.)
10489You can ignore this variable if you don't use the @samp{@@} feature in the
10490grammar actions.
10491@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10492In semantic actions, it stores the location of the lookahead token.
32c29292 10493@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10494@end deffn
10495
10496@deffn {Type} YYLTYPE
10497Data type of @code{yylloc}; by default, a structure with four
10498members. @xref{Location Type, , Data Types of Locations}.
10499@end deffn
10500
10501@deffn {Variable} yylval
10502External variable in which @code{yylex} should place the semantic
10503value associated with a token. (In a pure parser, it is a local
10504variable within @code{yyparse}, and its address is passed to
32c29292
JD
10505@code{yylex}.)
10506@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10507In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10508@xref{Actions, ,Actions}.
dd8d9022
AD
10509@end deffn
10510
10511@deffn {Macro} YYMAXDEPTH
1a059451
PE
10512Macro for specifying the maximum size of the parser stack. @xref{Memory
10513Management}.
dd8d9022
AD
10514@end deffn
10515
10516@deffn {Variable} yynerrs
8a2800e7 10517Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10518(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10519pure push parser, it is a member of yypstate.)
dd8d9022
AD
10520@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10521@end deffn
10522
10523@deffn {Function} yyparse
10524The parser function produced by Bison; call this function to start
10525parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10526@end deffn
10527
9987d1b3 10528@deffn {Function} yypstate_delete
f4101aa6 10529The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10530call this function to delete the memory associated with a parser.
f4101aa6 10531@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10532@code{yypstate_delete}}.
59da312b
JD
10533(The current push parsing interface is experimental and may evolve.
10534More user feedback will help to stabilize it.)
9987d1b3
JD
10535@end deffn
10536
10537@deffn {Function} yypstate_new
f4101aa6 10538The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10539call this function to create a new parser.
f4101aa6 10540@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10541@code{yypstate_new}}.
59da312b
JD
10542(The current push parsing interface is experimental and may evolve.
10543More user feedback will help to stabilize it.)
9987d1b3
JD
10544@end deffn
10545
10546@deffn {Function} yypull_parse
f4101aa6
AD
10547The parser function produced by Bison in push mode; call this function to
10548parse the rest of the input stream.
10549@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10550@code{yypull_parse}}.
59da312b
JD
10551(The current push parsing interface is experimental and may evolve.
10552More user feedback will help to stabilize it.)
9987d1b3
JD
10553@end deffn
10554
10555@deffn {Function} yypush_parse
f4101aa6
AD
10556The parser function produced by Bison in push mode; call this function to
10557parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10558@code{yypush_parse}}.
59da312b
JD
10559(The current push parsing interface is experimental and may evolve.
10560More user feedback will help to stabilize it.)
9987d1b3
JD
10561@end deffn
10562
dd8d9022
AD
10563@deffn {Macro} YYPARSE_PARAM
10564An obsolete macro for specifying the name of a parameter that
10565@code{yyparse} should accept. The use of this macro is deprecated, and
10566is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10567Conventions for Pure Parsers}.
10568@end deffn
10569
10570@deffn {Macro} YYRECOVERING
02103984
PE
10571The expression @code{YYRECOVERING ()} yields 1 when the parser
10572is recovering from a syntax error, and 0 otherwise.
10573@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10574@end deffn
10575
10576@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10577Macro used to control the use of @code{alloca} when the
10578deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10579the parser will use @code{malloc} to extend its stacks. If defined to
105801, the parser will use @code{alloca}. Values other than 0 and 1 are
10581reserved for future Bison extensions. If not defined,
10582@code{YYSTACK_USE_ALLOCA} defaults to 0.
10583
55289366 10584In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10585limited stack and with unreliable stack-overflow checking, you should
10586set @code{YYMAXDEPTH} to a value that cannot possibly result in
10587unchecked stack overflow on any of your target hosts when
10588@code{alloca} is called. You can inspect the code that Bison
10589generates in order to determine the proper numeric values. This will
10590require some expertise in low-level implementation details.
dd8d9022
AD
10591@end deffn
10592
10593@deffn {Type} YYSTYPE
10594Data type of semantic values; @code{int} by default.
10595@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10596@end deffn
bfa74976 10597
342b8b6e 10598@node Glossary
bfa74976
RS
10599@appendix Glossary
10600@cindex glossary
10601
10602@table @asis
34a6c2d1
JD
10603@item Accepting State
10604A state whose only action is the accept action.
10605The accepting state is thus a consistent state.
10606@xref{Understanding,,}.
10607
c827f760
PE
10608@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10609Formal method of specifying context-free grammars originally proposed
10610by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10611committee document contributing to what became the Algol 60 report.
10612@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 10613
34a6c2d1
JD
10614@item Consistent State
10615A state containing only one possible action.
1d0f55cc 10616@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10617
bfa74976
RS
10618@item Context-free grammars
10619Grammars specified as rules that can be applied regardless of context.
10620Thus, if there is a rule which says that an integer can be used as an
10621expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10622permitted. @xref{Language and Grammar, ,Languages and Context-Free
10623Grammars}.
bfa74976 10624
620b5727
JD
10625@item Default Reduction
10626The reduction that a parser should perform if the current parser state
34a6c2d1 10627contains no other action for the lookahead token.
620b5727
JD
10628In permitted parser states, Bison declares the reduction with the
10629largest lookahead set to be the default reduction and removes that
10630lookahead set.
1d0f55cc 10631@xref{Decl Summary,,lr.default-reductions}.
34a6c2d1 10632
bfa74976
RS
10633@item Dynamic allocation
10634Allocation of memory that occurs during execution, rather than at
10635compile time or on entry to a function.
10636
10637@item Empty string
10638Analogous to the empty set in set theory, the empty string is a
10639character string of length zero.
10640
10641@item Finite-state stack machine
10642A ``machine'' that has discrete states in which it is said to exist at
10643each instant in time. As input to the machine is processed, the
10644machine moves from state to state as specified by the logic of the
10645machine. In the case of the parser, the input is the language being
10646parsed, and the states correspond to various stages in the grammar
c827f760 10647rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10648
c827f760 10649@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10650A parsing algorithm that can handle all context-free grammars, including those
34a6c2d1
JD
10651that are not @acronym{LR}(1). It resolves situations that Bison's
10652deterministic parsing
676385e2
PH
10653algorithm cannot by effectively splitting off multiple parsers, trying all
10654possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10655right context. @xref{Generalized LR Parsing, ,Generalized
10656@acronym{LR} Parsing}.
676385e2 10657
bfa74976
RS
10658@item Grouping
10659A language construct that is (in general) grammatically divisible;
c827f760 10660for example, `expression' or `declaration' in C@.
bfa74976
RS
10661@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10662
34a6c2d1
JD
10663@item @acronym{IELR}(1)
10664A minimal @acronym{LR}(1) parser table generation algorithm.
10665That is, given any context-free grammar, @acronym{IELR}(1) generates
10666parser tables with the full language recognition power of canonical
10667@acronym{LR}(1) but with nearly the same number of parser states as
10668@acronym{LALR}(1).
10669This reduction in parser states is often an order of magnitude.
10670More importantly, because canonical @acronym{LR}(1)'s extra parser
10671states may contain duplicate conflicts in the case of
10672non-@acronym{LR}(1) grammars, the number of conflicts for
10673@acronym{IELR}(1) is often an order of magnitude less as well.
10674This can significantly reduce the complexity of developing of a grammar.
10675@xref{Decl Summary,,lr.type}.
10676
bfa74976
RS
10677@item Infix operator
10678An arithmetic operator that is placed between the operands on which it
10679performs some operation.
10680
10681@item Input stream
10682A continuous flow of data between devices or programs.
10683
4c38b19e
JD
10684@item @acronym{LAC} (Lookahead Correction)
10685A parsing mechanism that fixes the problem of delayed syntax error
10686detection, which is caused by LR state merging, default reductions, and
10687the use of @code{%nonassoc}. Delayed syntax error detection results in
10688unexpected semantic actions, initiation of error recovery in the wrong
10689syntactic context, and an incorrect list of expected tokens in a verbose
10690syntax error message. @xref{Decl Summary,,parse.lac}.
10691
bfa74976
RS
10692@item Language construct
10693One of the typical usage schemas of the language. For example, one of
10694the constructs of the C language is the @code{if} statement.
10695@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10696
10697@item Left associativity
10698Operators having left associativity are analyzed from left to right:
10699@samp{a+b+c} first computes @samp{a+b} and then combines with
10700@samp{c}. @xref{Precedence, ,Operator Precedence}.
10701
10702@item Left recursion
89cab50d
AD
10703A rule whose result symbol is also its first component symbol; for
10704example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10705Rules}.
bfa74976
RS
10706
10707@item Left-to-right parsing
10708Parsing a sentence of a language by analyzing it token by token from
c827f760 10709left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10710
10711@item Lexical analyzer (scanner)
10712A function that reads an input stream and returns tokens one by one.
10713@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10714
10715@item Lexical tie-in
10716A flag, set by actions in the grammar rules, which alters the way
10717tokens are parsed. @xref{Lexical Tie-ins}.
10718
931c7513 10719@item Literal string token
14ded682 10720A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10721
742e4900
JD
10722@item Lookahead token
10723A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10724Tokens}.
bfa74976 10725
c827f760 10726@item @acronym{LALR}(1)
bfa74976 10727The class of context-free grammars that Bison (like most other parser
34a6c2d1
JD
10728generators) can handle by default; a subset of @acronym{LR}(1).
10729@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10730
c827f760 10731@item @acronym{LR}(1)
bfa74976 10732The class of context-free grammars in which at most one token of
742e4900 10733lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10734
10735@item Nonterminal symbol
10736A grammar symbol standing for a grammatical construct that can
10737be expressed through rules in terms of smaller constructs; in other
10738words, a construct that is not a token. @xref{Symbols}.
10739
bfa74976
RS
10740@item Parser
10741A function that recognizes valid sentences of a language by analyzing
10742the syntax structure of a set of tokens passed to it from a lexical
10743analyzer.
10744
10745@item Postfix operator
10746An arithmetic operator that is placed after the operands upon which it
10747performs some operation.
10748
10749@item Reduction
10750Replacing a string of nonterminals and/or terminals with a single
89cab50d 10751nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10752Parser Algorithm}.
bfa74976
RS
10753
10754@item Reentrant
10755A reentrant subprogram is a subprogram which can be in invoked any
10756number of times in parallel, without interference between the various
10757invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10758
10759@item Reverse polish notation
10760A language in which all operators are postfix operators.
10761
10762@item Right recursion
89cab50d
AD
10763A rule whose result symbol is also its last component symbol; for
10764example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10765Rules}.
bfa74976
RS
10766
10767@item Semantics
10768In computer languages, the semantics are specified by the actions
10769taken for each instance of the language, i.e., the meaning of
10770each statement. @xref{Semantics, ,Defining Language Semantics}.
10771
10772@item Shift
10773A parser is said to shift when it makes the choice of analyzing
10774further input from the stream rather than reducing immediately some
c827f760 10775already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10776
10777@item Single-character literal
10778A single character that is recognized and interpreted as is.
10779@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10780
10781@item Start symbol
10782The nonterminal symbol that stands for a complete valid utterance in
10783the language being parsed. The start symbol is usually listed as the
13863333 10784first nonterminal symbol in a language specification.
bfa74976
RS
10785@xref{Start Decl, ,The Start-Symbol}.
10786
10787@item Symbol table
10788A data structure where symbol names and associated data are stored
10789during parsing to allow for recognition and use of existing
10790information in repeated uses of a symbol. @xref{Multi-function Calc}.
10791
6e649e65
PE
10792@item Syntax error
10793An error encountered during parsing of an input stream due to invalid
10794syntax. @xref{Error Recovery}.
10795
bfa74976
RS
10796@item Token
10797A basic, grammatically indivisible unit of a language. The symbol
10798that describes a token in the grammar is a terminal symbol.
10799The input of the Bison parser is a stream of tokens which comes from
10800the lexical analyzer. @xref{Symbols}.
10801
10802@item Terminal symbol
89cab50d
AD
10803A grammar symbol that has no rules in the grammar and therefore is
10804grammatically indivisible. The piece of text it represents is a token.
10805@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10806@end table
10807
342b8b6e 10808@node Copying This Manual
f2b5126e 10809@appendix Copying This Manual
f2b5126e
PB
10810@include fdl.texi
10811
342b8b6e 10812@node Index
bfa74976
RS
10813@unnumbered Index
10814
10815@printindex cp
10816
bfa74976 10817@bye
a06ea4aa 10818
8fbbeba2
AD
10819@c Local Variables:
10820@c fill-column: 76
10821@c End:
10822
232be91a
AD
10823@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
10824@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
10825@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
10826@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
10827@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
10828@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
10829@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
10830@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
10831@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
10832@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
10833@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
10834@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
10835@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
10836@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
10837@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
10838@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
10839@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
10840@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
10841@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
10842@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
10843@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
10844@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
10845@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
10846@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
10847@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
10848@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
10849@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
10850@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
10851@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 10852@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
232be91a
AD
10853@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
10854@c LocalWords: yytokentype filename destructor multicharacter nonnull EBCDIC
10855@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
10856@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
10857@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
10858@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
10859@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
10860@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
10861@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
10862@c LocalWords: makefiles Graphviz multitable headitem hh basename Doxygen fno
10863@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
10864@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
10865@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
10866@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
10867@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
10868@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
10869@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
10870@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
10871@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
10872@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
41d35e54 10873@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt
232be91a 10874@c LocalWords: subdirectory Solaris nonassociativity