]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
submodules: update to latest
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
e1145ad8
AD
33This manual (@value{UPDATED}) is for @acronym{GNU} Bison (version
34@value{VERSION}), the @acronym{GNU} parser generator.
fae437e8 35
a06ea4aa 36Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998,
ecd1b61c
JD
371999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
38Software Foundation, Inc.
fae437e8
AD
39
40@quotation
41Permission is granted to copy, distribute and/or modify this document
c827f760 42under the terms of the @acronym{GNU} Free Documentation License,
592fde95 43Version 1.2 or any later version published by the Free Software
c827f760
PE
44Foundation; with no Invariant Sections, with the Front-Cover texts
45being ``A @acronym{GNU} Manual,'' and with the Back-Cover Texts as in
46(a) below. A copy of the license is included in the section entitled
47``@acronym{GNU} Free Documentation License.''
48
389c8cfd
PE
49(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
50modify this @acronym{GNU} manual. Buying copies from the @acronym{FSF}
51supports it in developing @acronym{GNU} and promoting software
52freedom.''
fae437e8
AD
53@end quotation
54@end copying
55
e62f1a89 56@dircategory Software development
fae437e8 57@direntry
c827f760 58* bison: (bison). @acronym{GNU} parser generator (Yacc replacement).
fae437e8 59@end direntry
bfa74976 60
bfa74976
RS
61@titlepage
62@title Bison
c827f760 63@subtitle The Yacc-compatible Parser Generator
df1af54c 64@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
65
66@author by Charles Donnelly and Richard Stallman
67
68@page
69@vskip 0pt plus 1filll
fae437e8 70@insertcopying
bfa74976
RS
71@sp 2
72Published by the Free Software Foundation @*
0fb669f9
PE
7351 Franklin Street, Fifth Floor @*
74Boston, MA 02110-1301 USA @*
9ecbd125 75Printed copies are available from the Free Software Foundation.@*
c827f760 76@acronym{ISBN} 1-882114-44-2
bfa74976
RS
77@sp 2
78Cover art by Etienne Suvasa.
79@end titlepage
d5796688
JT
80
81@contents
bfa74976 82
342b8b6e
AD
83@ifnottex
84@node Top
85@top Bison
fae437e8 86@insertcopying
342b8b6e 87@end ifnottex
bfa74976
RS
88
89@menu
13863333
AD
90* Introduction::
91* Conditions::
f56274a8
DJ
92* Copying:: The @acronym{GNU} General Public License says
93 how you can copy and share Bison.
bfa74976
RS
94
95Tutorial sections:
f56274a8
DJ
96* Concepts:: Basic concepts for understanding Bison.
97* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
98
99Reference sections:
f56274a8
DJ
100* Grammar File:: Writing Bison declarations and rules.
101* Interface:: C-language interface to the parser function @code{yyparse}.
102* Algorithm:: How the Bison parser works at run-time.
103* Error Recovery:: Writing rules for error recovery.
bfa74976 104* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
105 messy for Bison to handle straightforwardly.
106* Debugging:: Understanding or debugging Bison parsers.
107* Invocation:: How to run Bison (to produce the parser source file).
108* Other Languages:: Creating C++ and Java parsers.
109* FAQ:: Frequently Asked Questions
110* Table of Symbols:: All the keywords of the Bison language are explained.
111* Glossary:: Basic concepts are explained.
112* Copying This Manual:: License for copying this manual.
113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
fa7e68c3
PE
134Writing @acronym{GLR} Parsers
135
f56274a8
DJ
136* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
137* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
139* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
93dd49ab 188* Locations:: Locations and actions.
bfa74976
RS
189* Declarations:: All kinds of Bison declarations are described here.
190* Multiple Parsers:: Putting more than one Bison parser in one program.
191
192Outline of a Bison Grammar
193
f56274a8 194* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 195* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
196* Bison Declarations:: Syntax and usage of the Bison declarations section.
197* Grammar Rules:: Syntax and usage of the grammar rules section.
198* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
199
200Defining Language Semantics
201
202* Value Type:: Specifying one data type for all semantic values.
203* Multiple Types:: Specifying several alternative data types.
204* Actions:: An action is the semantic definition of a grammar rule.
205* Action Types:: Specifying data types for actions to operate on.
206* Mid-Rule Actions:: Most actions go at the end of a rule.
207 This says when, why and how to use the exceptional
208 action in the middle of a rule.
209
93dd49ab
PE
210Tracking Locations
211
212* Location Type:: Specifying a data type for locations.
213* Actions and Locations:: Using locations in actions.
214* Location Default Action:: Defining a general way to compute locations.
215
bfa74976
RS
216Bison Declarations
217
b50d2359 218* Require Decl:: Requiring a Bison version.
bfa74976
RS
219* Token Decl:: Declaring terminal symbols.
220* Precedence Decl:: Declaring terminals with precedence and associativity.
221* Union Decl:: Declaring the set of all semantic value types.
222* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 223* Initial Action Decl:: Code run before parsing starts.
72f889cc 224* Destructor Decl:: Declaring how symbols are freed.
d6328241 225* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
226* Start Decl:: Specifying the start symbol.
227* Pure Decl:: Requesting a reentrant parser.
9987d1b3 228* Push Decl:: Requesting a push parser.
bfa74976
RS
229* Decl Summary:: Table of all Bison declarations.
230
231Parser C-Language Interface
232
f56274a8
DJ
233* Parser Function:: How to call @code{yyparse} and what it returns.
234* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
235* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
236* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
237* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
238* Lexical:: You must supply a function @code{yylex}
239 which reads tokens.
240* Error Reporting:: You must supply a function @code{yyerror}.
241* Action Features:: Special features for use in actions.
242* Internationalization:: How to let the parser speak in the user's
243 native language.
bfa74976
RS
244
245The Lexical Analyzer Function @code{yylex}
246
247* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
248* Token Values:: How @code{yylex} must return the semantic value
249 of the token it has read.
250* Token Locations:: How @code{yylex} must return the text location
251 (line number, etc.) of the token, if the
252 actions want that.
253* Pure Calling:: How the calling convention differs in a pure parser
254 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 255
13863333 256The Bison Parser Algorithm
bfa74976 257
742e4900 258* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
259* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
260* Precedence:: Operator precedence works by resolving conflicts.
261* Contextual Precedence:: When an operator's precedence depends on context.
262* Parser States:: The parser is a finite-state-machine with stack.
263* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 264* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 265* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 266* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
267
268Operator Precedence
269
270* Why Precedence:: An example showing why precedence is needed.
271* Using Precedence:: How to specify precedence in Bison grammars.
272* Precedence Examples:: How these features are used in the previous example.
273* How Precedence:: How they work.
274
275Handling Context Dependencies
276
277* Semantic Tokens:: Token parsing can depend on the semantic context.
278* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
279* Tie-in Recovery:: Lexical tie-ins have implications for how
280 error recovery rules must be written.
281
93dd49ab 282Debugging Your Parser
ec3bc396
AD
283
284* Understanding:: Understanding the structure of your parser.
285* Tracing:: Tracing the execution of your parser.
286
bfa74976
RS
287Invoking Bison
288
13863333 289* Bison Options:: All the options described in detail,
c827f760 290 in alphabetical order by short options.
bfa74976 291* Option Cross Key:: Alphabetical list of long options.
93dd49ab 292* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 293
8405b70c 294Parsers Written In Other Languages
12545799
AD
295
296* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 297* Java Parsers:: The interface to generate Java parser classes
12545799
AD
298
299C++ Parsers
300
301* C++ Bison Interface:: Asking for C++ parser generation
302* C++ Semantic Values:: %union vs. C++
303* C++ Location Values:: The position and location classes
304* C++ Parser Interface:: Instantiating and running the parser
305* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 306* A Complete C++ Example:: Demonstrating their use
12545799
AD
307
308A Complete C++ Example
309
310* Calc++ --- C++ Calculator:: The specifications
311* Calc++ Parsing Driver:: An active parsing context
312* Calc++ Parser:: A parser class
313* Calc++ Scanner:: A pure C++ Flex scanner
314* Calc++ Top Level:: Conducting the band
315
8405b70c
PB
316Java Parsers
317
f56274a8
DJ
318* Java Bison Interface:: Asking for Java parser generation
319* Java Semantic Values:: %type and %token vs. Java
320* Java Location Values:: The position and location classes
321* Java Parser Interface:: Instantiating and running the parser
322* Java Scanner Interface:: Specifying the scanner for the parser
323* Java Action Features:: Special features for use in actions
324* Java Differences:: Differences between C/C++ and Java Grammars
325* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 326
d1a1114f
AD
327Frequently Asked Questions
328
f56274a8
DJ
329* Memory Exhausted:: Breaking the Stack Limits
330* How Can I Reset the Parser:: @code{yyparse} Keeps some State
331* Strings are Destroyed:: @code{yylval} Loses Track of Strings
332* Implementing Gotos/Loops:: Control Flow in the Calculator
333* Multiple start-symbols:: Factoring closely related grammars
334* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
335* I can't build Bison:: Troubleshooting
336* Where can I find help?:: Troubleshouting
337* Bug Reports:: Troublereporting
338* More Languages:: Parsers in C++, Java, and so on
339* Beta Testing:: Experimenting development versions
340* Mailing Lists:: Meeting other Bison users
d1a1114f 341
f2b5126e
PB
342Copying This Manual
343
f56274a8 344* Copying This Manual:: License for copying this manual.
f2b5126e 345
342b8b6e 346@end detailmenu
bfa74976
RS
347@end menu
348
342b8b6e 349@node Introduction
bfa74976
RS
350@unnumbered Introduction
351@cindex introduction
352
6077da58
PE
353@dfn{Bison} is a general-purpose parser generator that converts an
354annotated context-free grammar into an @acronym{LALR}(1) or
355@acronym{GLR} parser for that grammar. Once you are proficient with
1e137b71 356Bison, you can use it to develop a wide range of language parsers, from those
bfa74976
RS
357used in simple desk calculators to complex programming languages.
358
359Bison is upward compatible with Yacc: all properly-written Yacc grammars
360ought to work with Bison with no change. Anyone familiar with Yacc
361should be able to use Bison with little trouble. You need to be fluent in
1e137b71 362C or C++ programming in order to use Bison or to understand this manual.
bfa74976
RS
363
364We begin with tutorial chapters that explain the basic concepts of using
365Bison and show three explained examples, each building on the last. If you
366don't know Bison or Yacc, start by reading these chapters. Reference
367chapters follow which describe specific aspects of Bison in detail.
368
931c7513
RS
369Bison was written primarily by Robert Corbett; Richard Stallman made it
370Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added
14ded682 371multi-character string literals and other features.
931c7513 372
df1af54c 373This edition corresponds to version @value{VERSION} of Bison.
bfa74976 374
342b8b6e 375@node Conditions
bfa74976
RS
376@unnumbered Conditions for Using Bison
377
193d7c70
PE
378The distribution terms for Bison-generated parsers permit using the
379parsers in nonfree programs. Before Bison version 2.2, these extra
380permissions applied only when Bison was generating @acronym{LALR}(1)
381parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 382parsers could be used only in programs that were free software.
a31239f1 383
c827f760
PE
384The other @acronym{GNU} programming tools, such as the @acronym{GNU} C
385compiler, have never
9ecbd125 386had such a requirement. They could always be used for nonfree
a31239f1
RS
387software. The reason Bison was different was not due to a special
388policy decision; it resulted from applying the usual General Public
389License to all of the Bison source code.
390
391The output of the Bison utility---the Bison parser file---contains a
392verbatim copy of a sizable piece of Bison, which is the code for the
193d7c70
PE
393parser's implementation. (The actions from your grammar are inserted
394into this implementation at one point, but most of the rest of the
395implementation is not changed.) When we applied the @acronym{GPL}
396terms to the skeleton code for the parser's implementation,
a31239f1
RS
397the effect was to restrict the use of Bison output to free software.
398
399We didn't change the terms because of sympathy for people who want to
400make software proprietary. @strong{Software should be free.} But we
401concluded that limiting Bison's use to free software was doing little to
402encourage people to make other software free. So we decided to make the
403practical conditions for using Bison match the practical conditions for
c827f760 404using the other @acronym{GNU} tools.
bfa74976 405
193d7c70
PE
406This exception applies when Bison is generating code for a parser.
407You can tell whether the exception applies to a Bison output file by
408inspecting the file for text beginning with ``As a special
409exception@dots{}''. The text spells out the exact terms of the
410exception.
262aa8dd 411
f16b0819
PE
412@node Copying
413@unnumbered GNU GENERAL PUBLIC LICENSE
414@include gpl-3.0.texi
bfa74976 415
342b8b6e 416@node Concepts
bfa74976
RS
417@chapter The Concepts of Bison
418
419This chapter introduces many of the basic concepts without which the
420details of Bison will not make sense. If you do not already know how to
421use Bison or Yacc, we suggest you start by reading this chapter carefully.
422
423@menu
f56274a8
DJ
424* Language and Grammar:: Languages and context-free grammars,
425 as mathematical ideas.
426* Grammar in Bison:: How we represent grammars for Bison's sake.
427* Semantic Values:: Each token or syntactic grouping can have
428 a semantic value (the value of an integer,
429 the name of an identifier, etc.).
430* Semantic Actions:: Each rule can have an action containing C code.
431* GLR Parsers:: Writing parsers for general context-free languages.
432* Locations Overview:: Tracking Locations.
433* Bison Parser:: What are Bison's input and output,
434 how is the output used?
435* Stages:: Stages in writing and running Bison grammars.
436* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
437@end menu
438
342b8b6e 439@node Language and Grammar
bfa74976
RS
440@section Languages and Context-Free Grammars
441
bfa74976
RS
442@cindex context-free grammar
443@cindex grammar, context-free
444In order for Bison to parse a language, it must be described by a
445@dfn{context-free grammar}. This means that you specify one or more
446@dfn{syntactic groupings} and give rules for constructing them from their
447parts. For example, in the C language, one kind of grouping is called an
448`expression'. One rule for making an expression might be, ``An expression
449can be made of a minus sign and another expression''. Another would be,
450``An expression can be an integer''. As you can see, rules are often
451recursive, but there must be at least one rule which leads out of the
452recursion.
453
c827f760 454@cindex @acronym{BNF}
bfa74976
RS
455@cindex Backus-Naur form
456The most common formal system for presenting such rules for humans to read
c827f760
PE
457is @dfn{Backus-Naur Form} or ``@acronym{BNF}'', which was developed in
458order to specify the language Algol 60. Any grammar expressed in
459@acronym{BNF} is a context-free grammar. The input to Bison is
460essentially machine-readable @acronym{BNF}.
bfa74976 461
c827f760
PE
462@cindex @acronym{LALR}(1) grammars
463@cindex @acronym{LR}(1) grammars
676385e2
PH
464There are various important subclasses of context-free grammar. Although it
465can handle almost all context-free grammars, Bison is optimized for what
c827f760 466are called @acronym{LALR}(1) grammars.
676385e2 467In brief, in these grammars, it must be possible to
bfa74976 468tell how to parse any portion of an input string with just a single
742e4900 469token of lookahead. Strictly speaking, that is a description of an
c827f760
PE
470@acronym{LR}(1) grammar, and @acronym{LALR}(1) involves additional
471restrictions that are
bfa74976 472hard to explain simply; but it is rare in actual practice to find an
c827f760
PE
473@acronym{LR}(1) grammar that fails to be @acronym{LALR}(1).
474@xref{Mystery Conflicts, ,Mysterious Reduce/Reduce Conflicts}, for
475more information on this.
bfa74976 476
c827f760
PE
477@cindex @acronym{GLR} parsing
478@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 479@cindex ambiguous grammars
9d9b8b70 480@cindex nondeterministic parsing
9501dc6e
AD
481
482Parsers for @acronym{LALR}(1) grammars are @dfn{deterministic}, meaning
483roughly that the next grammar rule to apply at any point in the input is
484uniquely determined by the preceding input and a fixed, finite portion
742e4900 485(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 486grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 487apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 488grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 489lookahead always suffices to determine the next grammar rule to apply.
9501dc6e
AD
490With the proper declarations, Bison is also able to parse these more
491general context-free grammars, using a technique known as @acronym{GLR}
492parsing (for Generalized @acronym{LR}). Bison's @acronym{GLR} parsers
493are able to handle any context-free grammar for which the number of
494possible parses of any given string is finite.
676385e2 495
bfa74976
RS
496@cindex symbols (abstract)
497@cindex token
498@cindex syntactic grouping
499@cindex grouping, syntactic
9501dc6e
AD
500In the formal grammatical rules for a language, each kind of syntactic
501unit or grouping is named by a @dfn{symbol}. Those which are built by
502grouping smaller constructs according to grammatical rules are called
bfa74976
RS
503@dfn{nonterminal symbols}; those which can't be subdivided are called
504@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
505corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 506corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
507
508We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
509nonterminal, mean. The tokens of C are identifiers, constants (numeric
510and string), and the various keywords, arithmetic operators and
511punctuation marks. So the terminal symbols of a grammar for C include
512`identifier', `number', `string', plus one symbol for each keyword,
513operator or punctuation mark: `if', `return', `const', `static', `int',
514`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
515(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
516lexicography, not grammar.)
517
518Here is a simple C function subdivided into tokens:
519
9edcd895
AD
520@ifinfo
521@example
522int /* @r{keyword `int'} */
14d4662b 523square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
524 @r{identifier, close-paren} */
525@{ /* @r{open-brace} */
aa08666d
AD
526 return x * x; /* @r{keyword `return', identifier, asterisk,}
527 @r{identifier, semicolon} */
9edcd895
AD
528@} /* @r{close-brace} */
529@end example
530@end ifinfo
531@ifnotinfo
bfa74976
RS
532@example
533int /* @r{keyword `int'} */
14d4662b 534square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 535@{ /* @r{open-brace} */
9edcd895 536 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
537@} /* @r{close-brace} */
538@end example
9edcd895 539@end ifnotinfo
bfa74976
RS
540
541The syntactic groupings of C include the expression, the statement, the
542declaration, and the function definition. These are represented in the
543grammar of C by nonterminal symbols `expression', `statement',
544`declaration' and `function definition'. The full grammar uses dozens of
545additional language constructs, each with its own nonterminal symbol, in
546order to express the meanings of these four. The example above is a
547function definition; it contains one declaration, and one statement. In
548the statement, each @samp{x} is an expression and so is @samp{x * x}.
549
550Each nonterminal symbol must have grammatical rules showing how it is made
551out of simpler constructs. For example, one kind of C statement is the
552@code{return} statement; this would be described with a grammar rule which
553reads informally as follows:
554
555@quotation
556A `statement' can be made of a `return' keyword, an `expression' and a
557`semicolon'.
558@end quotation
559
560@noindent
561There would be many other rules for `statement', one for each kind of
562statement in C.
563
564@cindex start symbol
565One nonterminal symbol must be distinguished as the special one which
566defines a complete utterance in the language. It is called the @dfn{start
567symbol}. In a compiler, this means a complete input program. In the C
568language, the nonterminal symbol `sequence of definitions and declarations'
569plays this role.
570
571For example, @samp{1 + 2} is a valid C expression---a valid part of a C
572program---but it is not valid as an @emph{entire} C program. In the
573context-free grammar of C, this follows from the fact that `expression' is
574not the start symbol.
575
576The Bison parser reads a sequence of tokens as its input, and groups the
577tokens using the grammar rules. If the input is valid, the end result is
578that the entire token sequence reduces to a single grouping whose symbol is
579the grammar's start symbol. If we use a grammar for C, the entire input
580must be a `sequence of definitions and declarations'. If not, the parser
581reports a syntax error.
582
342b8b6e 583@node Grammar in Bison
bfa74976
RS
584@section From Formal Rules to Bison Input
585@cindex Bison grammar
586@cindex grammar, Bison
587@cindex formal grammar
588
589A formal grammar is a mathematical construct. To define the language
590for Bison, you must write a file expressing the grammar in Bison syntax:
591a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
592
593A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 594as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
595in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
596
597The Bison representation for a terminal symbol is also called a @dfn{token
598type}. Token types as well can be represented as C-like identifiers. By
599convention, these identifiers should be upper case to distinguish them from
600nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
601@code{RETURN}. A terminal symbol that stands for a particular keyword in
602the language should be named after that keyword converted to upper case.
603The terminal symbol @code{error} is reserved for error recovery.
931c7513 604@xref{Symbols}.
bfa74976
RS
605
606A terminal symbol can also be represented as a character literal, just like
607a C character constant. You should do this whenever a token is just a
608single character (parenthesis, plus-sign, etc.): use that same character in
609a literal as the terminal symbol for that token.
610
931c7513
RS
611A third way to represent a terminal symbol is with a C string constant
612containing several characters. @xref{Symbols}, for more information.
613
bfa74976
RS
614The grammar rules also have an expression in Bison syntax. For example,
615here is the Bison rule for a C @code{return} statement. The semicolon in
616quotes is a literal character token, representing part of the C syntax for
617the statement; the naked semicolon, and the colon, are Bison punctuation
618used in every rule.
619
620@example
621stmt: RETURN expr ';'
622 ;
623@end example
624
625@noindent
626@xref{Rules, ,Syntax of Grammar Rules}.
627
342b8b6e 628@node Semantic Values
bfa74976
RS
629@section Semantic Values
630@cindex semantic value
631@cindex value, semantic
632
633A formal grammar selects tokens only by their classifications: for example,
634if a rule mentions the terminal symbol `integer constant', it means that
635@emph{any} integer constant is grammatically valid in that position. The
636precise value of the constant is irrelevant to how to parse the input: if
637@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 638grammatical.
bfa74976
RS
639
640But the precise value is very important for what the input means once it is
641parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6423989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
643has both a token type and a @dfn{semantic value}. @xref{Semantics,
644,Defining Language Semantics},
bfa74976
RS
645for details.
646
647The token type is a terminal symbol defined in the grammar, such as
648@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
649you need to know to decide where the token may validly appear and how to
650group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 651except their types.
bfa74976
RS
652
653The semantic value has all the rest of the information about the
654meaning of the token, such as the value of an integer, or the name of an
655identifier. (A token such as @code{','} which is just punctuation doesn't
656need to have any semantic value.)
657
658For example, an input token might be classified as token type
659@code{INTEGER} and have the semantic value 4. Another input token might
660have the same token type @code{INTEGER} but value 3989. When a grammar
661rule says that @code{INTEGER} is allowed, either of these tokens is
662acceptable because each is an @code{INTEGER}. When the parser accepts the
663token, it keeps track of the token's semantic value.
664
665Each grouping can also have a semantic value as well as its nonterminal
666symbol. For example, in a calculator, an expression typically has a
667semantic value that is a number. In a compiler for a programming
668language, an expression typically has a semantic value that is a tree
669structure describing the meaning of the expression.
670
342b8b6e 671@node Semantic Actions
bfa74976
RS
672@section Semantic Actions
673@cindex semantic actions
674@cindex actions, semantic
675
676In order to be useful, a program must do more than parse input; it must
677also produce some output based on the input. In a Bison grammar, a grammar
678rule can have an @dfn{action} made up of C statements. Each time the
679parser recognizes a match for that rule, the action is executed.
680@xref{Actions}.
13863333 681
bfa74976
RS
682Most of the time, the purpose of an action is to compute the semantic value
683of the whole construct from the semantic values of its parts. For example,
684suppose we have a rule which says an expression can be the sum of two
685expressions. When the parser recognizes such a sum, each of the
686subexpressions has a semantic value which describes how it was built up.
687The action for this rule should create a similar sort of value for the
688newly recognized larger expression.
689
690For example, here is a rule that says an expression can be the sum of
691two subexpressions:
692
693@example
694expr: expr '+' expr @{ $$ = $1 + $3; @}
695 ;
696@end example
697
698@noindent
699The action says how to produce the semantic value of the sum expression
700from the values of the two subexpressions.
701
676385e2 702@node GLR Parsers
c827f760
PE
703@section Writing @acronym{GLR} Parsers
704@cindex @acronym{GLR} parsing
705@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2
PH
706@findex %glr-parser
707@cindex conflicts
708@cindex shift/reduce conflicts
fa7e68c3 709@cindex reduce/reduce conflicts
676385e2 710
fa7e68c3 711In some grammars, Bison's standard
9501dc6e
AD
712@acronym{LALR}(1) parsing algorithm cannot decide whether to apply a
713certain grammar rule at a given point. That is, it may not be able to
714decide (on the basis of the input read so far) which of two possible
715reductions (applications of a grammar rule) applies, or whether to apply
716a reduction or read more of the input and apply a reduction later in the
717input. These are known respectively as @dfn{reduce/reduce} conflicts
718(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
719(@pxref{Shift/Reduce}).
720
721To use a grammar that is not easily modified to be @acronym{LALR}(1), a
722more general parsing algorithm is sometimes necessary. If you include
676385e2 723@code{%glr-parser} among the Bison declarations in your file
fa7e68c3 724(@pxref{Grammar Outline}), the result is a Generalized @acronym{LR}
9501dc6e
AD
725(@acronym{GLR}) parser. These parsers handle Bison grammars that
726contain no unresolved conflicts (i.e., after applying precedence
727declarations) identically to @acronym{LALR}(1) parsers. However, when
728faced with unresolved shift/reduce and reduce/reduce conflicts,
729@acronym{GLR} parsers use the simple expedient of doing both,
730effectively cloning the parser to follow both possibilities. Each of
731the resulting parsers can again split, so that at any given time, there
732can be any number of possible parses being explored. The parsers
676385e2
PH
733proceed in lockstep; that is, all of them consume (shift) a given input
734symbol before any of them proceed to the next. Each of the cloned
735parsers eventually meets one of two possible fates: either it runs into
736a parsing error, in which case it simply vanishes, or it merges with
737another parser, because the two of them have reduced the input to an
738identical set of symbols.
739
740During the time that there are multiple parsers, semantic actions are
741recorded, but not performed. When a parser disappears, its recorded
742semantic actions disappear as well, and are never performed. When a
743reduction makes two parsers identical, causing them to merge, Bison
744records both sets of semantic actions. Whenever the last two parsers
745merge, reverting to the single-parser case, Bison resolves all the
746outstanding actions either by precedences given to the grammar rules
747involved, or by performing both actions, and then calling a designated
748user-defined function on the resulting values to produce an arbitrary
749merged result.
750
fa7e68c3 751@menu
f56274a8
DJ
752* Simple GLR Parsers:: Using @acronym{GLR} parsers on unambiguous grammars.
753* Merging GLR Parses:: Using @acronym{GLR} parsers to resolve ambiguities.
754* GLR Semantic Actions:: Deferred semantic actions have special concerns.
755* Compiler Requirements:: @acronym{GLR} parsers require a modern C compiler.
fa7e68c3
PE
756@end menu
757
758@node Simple GLR Parsers
759@subsection Using @acronym{GLR} on Unambiguous Grammars
760@cindex @acronym{GLR} parsing, unambiguous grammars
761@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, unambiguous grammars
762@findex %glr-parser
763@findex %expect-rr
764@cindex conflicts
765@cindex reduce/reduce conflicts
766@cindex shift/reduce conflicts
767
768In the simplest cases, you can use the @acronym{GLR} algorithm
769to parse grammars that are unambiguous, but fail to be @acronym{LALR}(1).
742e4900 770Such grammars typically require more than one symbol of lookahead,
fa7e68c3
PE
771or (in rare cases) fall into the category of grammars in which the
772@acronym{LALR}(1) algorithm throws away too much information (they are in
773@acronym{LR}(1), but not @acronym{LALR}(1), @ref{Mystery Conflicts}).
774
775Consider a problem that
776arises in the declaration of enumerated and subrange types in the
777programming language Pascal. Here are some examples:
778
779@example
780type subrange = lo .. hi;
781type enum = (a, b, c);
782@end example
783
784@noindent
785The original language standard allows only numeric
786literals and constant identifiers for the subrange bounds (@samp{lo}
787and @samp{hi}), but Extended Pascal (@acronym{ISO}/@acronym{IEC}
78810206) and many other
789Pascal implementations allow arbitrary expressions there. This gives
790rise to the following situation, containing a superfluous pair of
791parentheses:
792
793@example
794type subrange = (a) .. b;
795@end example
796
797@noindent
798Compare this to the following declaration of an enumerated
799type with only one value:
800
801@example
802type enum = (a);
803@end example
804
805@noindent
806(These declarations are contrived, but they are syntactically
807valid, and more-complicated cases can come up in practical programs.)
808
809These two declarations look identical until the @samp{..} token.
742e4900 810With normal @acronym{LALR}(1) one-token lookahead it is not
fa7e68c3
PE
811possible to decide between the two forms when the identifier
812@samp{a} is parsed. It is, however, desirable
813for a parser to decide this, since in the latter case
814@samp{a} must become a new identifier to represent the enumeration
815value, while in the former case @samp{a} must be evaluated with its
816current meaning, which may be a constant or even a function call.
817
818You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
819to be resolved later, but this typically requires substantial
820contortions in both semantic actions and large parts of the
821grammar, where the parentheses are nested in the recursive rules for
822expressions.
823
824You might think of using the lexer to distinguish between the two
825forms by returning different tokens for currently defined and
826undefined identifiers. But if these declarations occur in a local
827scope, and @samp{a} is defined in an outer scope, then both forms
828are possible---either locally redefining @samp{a}, or using the
829value of @samp{a} from the outer scope. So this approach cannot
830work.
831
e757bb10 832A simple solution to this problem is to declare the parser to
fa7e68c3
PE
833use the @acronym{GLR} algorithm.
834When the @acronym{GLR} parser reaches the critical state, it
835merely splits into two branches and pursues both syntax rules
836simultaneously. Sooner or later, one of them runs into a parsing
837error. If there is a @samp{..} token before the next
838@samp{;}, the rule for enumerated types fails since it cannot
839accept @samp{..} anywhere; otherwise, the subrange type rule
840fails since it requires a @samp{..} token. So one of the branches
841fails silently, and the other one continues normally, performing
842all the intermediate actions that were postponed during the split.
843
844If the input is syntactically incorrect, both branches fail and the parser
845reports a syntax error as usual.
846
847The effect of all this is that the parser seems to ``guess'' the
848correct branch to take, or in other words, it seems to use more
742e4900 849lookahead than the underlying @acronym{LALR}(1) algorithm actually allows
fa7e68c3
PE
850for. In this example, @acronym{LALR}(2) would suffice, but also some cases
851that are not @acronym{LALR}(@math{k}) for any @math{k} can be handled this way.
852
853In general, a @acronym{GLR} parser can take quadratic or cubic worst-case time,
854and the current Bison parser even takes exponential time and space
855for some grammars. In practice, this rarely happens, and for many
856grammars it is possible to prove that it cannot happen.
857The present example contains only one conflict between two
858rules, and the type-declaration context containing the conflict
859cannot be nested. So the number of
860branches that can exist at any time is limited by the constant 2,
861and the parsing time is still linear.
862
863Here is a Bison grammar corresponding to the example above. It
864parses a vastly simplified form of Pascal type declarations.
865
866@example
867%token TYPE DOTDOT ID
868
869@group
870%left '+' '-'
871%left '*' '/'
872@end group
873
874%%
875
876@group
877type_decl : TYPE ID '=' type ';'
878 ;
879@end group
880
881@group
882type : '(' id_list ')'
883 | expr DOTDOT expr
884 ;
885@end group
886
887@group
888id_list : ID
889 | id_list ',' ID
890 ;
891@end group
892
893@group
894expr : '(' expr ')'
895 | expr '+' expr
896 | expr '-' expr
897 | expr '*' expr
898 | expr '/' expr
899 | ID
900 ;
901@end group
902@end example
903
904When used as a normal @acronym{LALR}(1) grammar, Bison correctly complains
905about one reduce/reduce conflict. In the conflicting situation the
906parser chooses one of the alternatives, arbitrarily the one
907declared first. Therefore the following correct input is not
908recognized:
909
910@example
911type t = (a) .. b;
912@end example
913
914The parser can be turned into a @acronym{GLR} parser, while also telling Bison
915to be silent about the one known reduce/reduce conflict, by
e757bb10 916adding these two declarations to the Bison input file (before the first
fa7e68c3
PE
917@samp{%%}):
918
919@example
920%glr-parser
921%expect-rr 1
922@end example
923
924@noindent
925No change in the grammar itself is required. Now the
926parser recognizes all valid declarations, according to the
927limited syntax above, transparently. In fact, the user does not even
928notice when the parser splits.
929
f8e1c9e5
AD
930So here we have a case where we can use the benefits of @acronym{GLR},
931almost without disadvantages. Even in simple cases like this, however,
932there are at least two potential problems to beware. First, always
933analyze the conflicts reported by Bison to make sure that @acronym{GLR}
934splitting is only done where it is intended. A @acronym{GLR} parser
935splitting inadvertently may cause problems less obvious than an
936@acronym{LALR} parser statically choosing the wrong alternative in a
937conflict. Second, consider interactions with the lexer (@pxref{Semantic
938Tokens}) with great care. Since a split parser consumes tokens without
939performing any actions during the split, the lexer cannot obtain
940information via parser actions. Some cases of lexer interactions can be
941eliminated by using @acronym{GLR} to shift the complications from the
942lexer to the parser. You must check the remaining cases for
943correctness.
944
945In our example, it would be safe for the lexer to return tokens based on
946their current meanings in some symbol table, because no new symbols are
947defined in the middle of a type declaration. Though it is possible for
948a parser to define the enumeration constants as they are parsed, before
949the type declaration is completed, it actually makes no difference since
950they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
951
952@node Merging GLR Parses
953@subsection Using @acronym{GLR} to Resolve Ambiguities
954@cindex @acronym{GLR} parsing, ambiguous grammars
955@cindex generalized @acronym{LR} (@acronym{GLR}) parsing, ambiguous grammars
956@findex %dprec
957@findex %merge
958@cindex conflicts
959@cindex reduce/reduce conflicts
960
2a8d363a 961Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
962
963@example
964%@{
38a92d50
PE
965 #include <stdio.h>
966 #define YYSTYPE char const *
967 int yylex (void);
968 void yyerror (char const *);
676385e2
PH
969%@}
970
971%token TYPENAME ID
972
973%right '='
974%left '+'
975
976%glr-parser
977
978%%
979
fae437e8 980prog :
676385e2
PH
981 | prog stmt @{ printf ("\n"); @}
982 ;
983
984stmt : expr ';' %dprec 1
985 | decl %dprec 2
986 ;
987
2a8d363a 988expr : ID @{ printf ("%s ", $$); @}
fae437e8 989 | TYPENAME '(' expr ')'
2a8d363a
AD
990 @{ printf ("%s <cast> ", $1); @}
991 | expr '+' expr @{ printf ("+ "); @}
992 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
993 ;
994
fae437e8 995decl : TYPENAME declarator ';'
2a8d363a 996 @{ printf ("%s <declare> ", $1); @}
676385e2 997 | TYPENAME declarator '=' expr ';'
2a8d363a 998 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
999 ;
1000
2a8d363a 1001declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1002 | '(' declarator ')'
1003 ;
1004@end example
1005
1006@noindent
1007This models a problematic part of the C++ grammar---the ambiguity between
1008certain declarations and statements. For example,
1009
1010@example
1011T (x) = y+z;
1012@end example
1013
1014@noindent
1015parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1016(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1017@samp{x} as an @code{ID}).
676385e2 1018Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1019@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10
AD
1020time it encounters @code{x} in the example above. Since this is a
1021@acronym{GLR} parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1022each choice of resolving the reduce/reduce conflict.
1023Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1024however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1025ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1026the other reduces @code{stmt : decl}, after which both parsers are in an
1027identical state: they've seen @samp{prog stmt} and have the same unprocessed
1028input remaining. We say that these parses have @dfn{merged.}
fa7e68c3
PE
1029
1030At this point, the @acronym{GLR} parser requires a specification in the
1031grammar of how to choose between the competing parses.
1032In the example above, the two @code{%dprec}
e757bb10 1033declarations specify that Bison is to give precedence
fa7e68c3 1034to the parse that interprets the example as a
676385e2
PH
1035@code{decl}, which implies that @code{x} is a declarator.
1036The parser therefore prints
1037
1038@example
fae437e8 1039"x" y z + T <init-declare>
676385e2
PH
1040@end example
1041
fa7e68c3
PE
1042The @code{%dprec} declarations only come into play when more than one
1043parse survives. Consider a different input string for this parser:
676385e2
PH
1044
1045@example
1046T (x) + y;
1047@end example
1048
1049@noindent
e757bb10 1050This is another example of using @acronym{GLR} to parse an unambiguous
fa7e68c3 1051construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1052Here, there is no ambiguity (this cannot be parsed as a declaration).
1053However, at the time the Bison parser encounters @code{x}, it does not
1054have enough information to resolve the reduce/reduce conflict (again,
1055between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1056case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1057into two, one assuming that @code{x} is an @code{expr}, and the other
1058assuming @code{x} is a @code{declarator}. The second of these parsers
1059then vanishes when it sees @code{+}, and the parser prints
1060
1061@example
fae437e8 1062x T <cast> y +
676385e2
PH
1063@end example
1064
1065Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1066the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1067actions of the two possible parsers, rather than choosing one over the
1068other. To do so, you could change the declaration of @code{stmt} as
1069follows:
1070
1071@example
1072stmt : expr ';' %merge <stmtMerge>
1073 | decl %merge <stmtMerge>
1074 ;
1075@end example
1076
1077@noindent
676385e2
PH
1078and define the @code{stmtMerge} function as:
1079
1080@example
38a92d50
PE
1081static YYSTYPE
1082stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1083@{
1084 printf ("<OR> ");
1085 return "";
1086@}
1087@end example
1088
1089@noindent
1090with an accompanying forward declaration
1091in the C declarations at the beginning of the file:
1092
1093@example
1094%@{
38a92d50 1095 #define YYSTYPE char const *
676385e2
PH
1096 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1097%@}
1098@end example
1099
1100@noindent
fa7e68c3
PE
1101With these declarations, the resulting parser parses the first example
1102as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1103
1104@example
fae437e8 1105"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1106@end example
1107
fa7e68c3 1108Bison requires that all of the
e757bb10 1109productions that participate in any particular merge have identical
fa7e68c3
PE
1110@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1111and the parser will report an error during any parse that results in
1112the offending merge.
9501dc6e 1113
32c29292
JD
1114@node GLR Semantic Actions
1115@subsection GLR Semantic Actions
1116
1117@cindex deferred semantic actions
1118By definition, a deferred semantic action is not performed at the same time as
1119the associated reduction.
1120This raises caveats for several Bison features you might use in a semantic
1121action in a @acronym{GLR} parser.
1122
1123@vindex yychar
1124@cindex @acronym{GLR} parsers and @code{yychar}
1125@vindex yylval
1126@cindex @acronym{GLR} parsers and @code{yylval}
1127@vindex yylloc
1128@cindex @acronym{GLR} parsers and @code{yylloc}
1129In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1130the lookahead token present at the time of the associated reduction.
32c29292
JD
1131After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1132you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1133lookahead token's semantic value and location, if any.
32c29292
JD
1134In a nondeferred semantic action, you can also modify any of these variables to
1135influence syntax analysis.
742e4900 1136@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1137
1138@findex yyclearin
1139@cindex @acronym{GLR} parsers and @code{yyclearin}
1140In a deferred semantic action, it's too late to influence syntax analysis.
1141In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1142shallow copies of the values they had at the time of the associated reduction.
1143For this reason alone, modifying them is dangerous.
1144Moreover, the result of modifying them is undefined and subject to change with
1145future versions of Bison.
1146For example, if a semantic action might be deferred, you should never write it
1147to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1148memory referenced by @code{yylval}.
1149
1150@findex YYERROR
1151@cindex @acronym{GLR} parsers and @code{YYERROR}
1152Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1153(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292
JD
1154initiate error recovery.
1155During deterministic @acronym{GLR} operation, the effect of @code{YYERROR} is
1156the same as its effect in an @acronym{LALR}(1) parser.
1157In a deferred semantic action, its effect is undefined.
1158@c The effect is probably a syntax error at the split point.
1159
8710fc41
JD
1160Also, see @ref{Location Default Action, ,Default Action for Locations}, which
1161describes a special usage of @code{YYLLOC_DEFAULT} in @acronym{GLR} parsers.
1162
fa7e68c3
PE
1163@node Compiler Requirements
1164@subsection Considerations when Compiling @acronym{GLR} Parsers
1165@cindex @code{inline}
9501dc6e 1166@cindex @acronym{GLR} parsers and @code{inline}
fa7e68c3 1167
38a92d50
PE
1168The @acronym{GLR} parsers require a compiler for @acronym{ISO} C89 or
1169later. In addition, they use the @code{inline} keyword, which is not
1170C89, but is C99 and is a common extension in pre-C99 compilers. It is
1171up to the user of these parsers to handle
9501dc6e
AD
1172portability issues. For instance, if using Autoconf and the Autoconf
1173macro @code{AC_C_INLINE}, a mere
1174
1175@example
1176%@{
38a92d50 1177 #include <config.h>
9501dc6e
AD
1178%@}
1179@end example
1180
1181@noindent
1182will suffice. Otherwise, we suggest
1183
1184@example
1185%@{
38a92d50
PE
1186 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1187 #define inline
1188 #endif
9501dc6e
AD
1189%@}
1190@end example
676385e2 1191
342b8b6e 1192@node Locations Overview
847bf1f5
AD
1193@section Locations
1194@cindex location
95923bd6
AD
1195@cindex textual location
1196@cindex location, textual
847bf1f5
AD
1197
1198Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1199and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1200the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1201Bison provides a mechanism for handling these locations.
1202
72d2299c 1203Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1204associated location, but the type of locations is the same for all tokens and
72d2299c 1205groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1206structure for storing locations (@pxref{Locations}, for more details).
1207
1208Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1209set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1210is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1211@code{@@3}.
1212
1213When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1214of its left hand side (@pxref{Actions}). In the same way, another default
1215action is used for locations. However, the action for locations is general
847bf1f5 1216enough for most cases, meaning there is usually no need to describe for each
72d2299c 1217rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1218grouping, the default behavior of the output parser is to take the beginning
1219of the first symbol, and the end of the last symbol.
1220
342b8b6e 1221@node Bison Parser
bfa74976
RS
1222@section Bison Output: the Parser File
1223@cindex Bison parser
1224@cindex Bison utility
1225@cindex lexical analyzer, purpose
1226@cindex parser
1227
1228When you run Bison, you give it a Bison grammar file as input. The output
1229is a C source file that parses the language described by the grammar.
1230This file is called a @dfn{Bison parser}. Keep in mind that the Bison
1231utility and the Bison parser are two distinct programs: the Bison utility
1232is a program whose output is the Bison parser that becomes part of your
1233program.
1234
1235The job of the Bison parser is to group tokens into groupings according to
1236the grammar rules---for example, to build identifiers and operators into
1237expressions. As it does this, it runs the actions for the grammar rules it
1238uses.
1239
704a47c4
AD
1240The tokens come from a function called the @dfn{lexical analyzer} that
1241you must supply in some fashion (such as by writing it in C). The Bison
1242parser calls the lexical analyzer each time it wants a new token. It
1243doesn't know what is ``inside'' the tokens (though their semantic values
1244may reflect this). Typically the lexical analyzer makes the tokens by
1245parsing characters of text, but Bison does not depend on this.
1246@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976
RS
1247
1248The Bison parser file is C code which defines a function named
1249@code{yyparse} which implements that grammar. This function does not make
1250a complete C program: you must supply some additional functions. One is
1251the lexical analyzer. Another is an error-reporting function which the
1252parser calls to report an error. In addition, a complete C program must
1253start with a function called @code{main}; you have to provide this, and
1254arrange for it to call @code{yyparse} or the parser will never run.
1255@xref{Interface, ,Parser C-Language Interface}.
1256
f7ab6a50 1257Aside from the token type names and the symbols in the actions you
7093d0f5 1258write, all symbols defined in the Bison parser file itself
bfa74976
RS
1259begin with @samp{yy} or @samp{YY}. This includes interface functions
1260such as the lexical analyzer function @code{yylex}, the error reporting
1261function @code{yyerror} and the parser function @code{yyparse} itself.
1262This also includes numerous identifiers used for internal purposes.
1263Therefore, you should avoid using C identifiers starting with @samp{yy}
1264or @samp{YY} in the Bison grammar file except for the ones defined in
55289366
PE
1265this manual. Also, you should avoid using the C identifiers
1266@samp{malloc} and @samp{free} for anything other than their usual
1267meanings.
bfa74976 1268
7093d0f5
AD
1269In some cases the Bison parser file includes system headers, and in
1270those cases your code should respect the identifiers reserved by those
55289366 1271headers. On some non-@acronym{GNU} hosts, @code{<alloca.h>}, @code{<malloc.h>},
7093d0f5 1272@code{<stddef.h>}, and @code{<stdlib.h>} are included as needed to
30757c8c
PE
1273declare memory allocators and related types. @code{<libintl.h>} is
1274included if message translation is in use
1275(@pxref{Internationalization}). Other system headers may
ec3bc396
AD
1276be included if you define @code{YYDEBUG} to a nonzero value
1277(@pxref{Tracing, ,Tracing Your Parser}).
7093d0f5 1278
342b8b6e 1279@node Stages
bfa74976
RS
1280@section Stages in Using Bison
1281@cindex stages in using Bison
1282@cindex using Bison
1283
1284The actual language-design process using Bison, from grammar specification
1285to a working compiler or interpreter, has these parts:
1286
1287@enumerate
1288@item
1289Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1290(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1291in the language, describe the action that is to be taken when an
1292instance of that rule is recognized. The action is described by a
1293sequence of C statements.
bfa74976
RS
1294
1295@item
704a47c4
AD
1296Write a lexical analyzer to process input and pass tokens to the parser.
1297The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1298Lexical Analyzer Function @code{yylex}}). It could also be produced
1299using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1300
1301@item
1302Write a controlling function that calls the Bison-produced parser.
1303
1304@item
1305Write error-reporting routines.
1306@end enumerate
1307
1308To turn this source code as written into a runnable program, you
1309must follow these steps:
1310
1311@enumerate
1312@item
1313Run Bison on the grammar to produce the parser.
1314
1315@item
1316Compile the code output by Bison, as well as any other source files.
1317
1318@item
1319Link the object files to produce the finished product.
1320@end enumerate
1321
342b8b6e 1322@node Grammar Layout
bfa74976
RS
1323@section The Overall Layout of a Bison Grammar
1324@cindex grammar file
1325@cindex file format
1326@cindex format of grammar file
1327@cindex layout of Bison grammar
1328
1329The input file for the Bison utility is a @dfn{Bison grammar file}. The
1330general form of a Bison grammar file is as follows:
1331
1332@example
1333%@{
08e49d20 1334@var{Prologue}
bfa74976
RS
1335%@}
1336
1337@var{Bison declarations}
1338
1339%%
1340@var{Grammar rules}
1341%%
08e49d20 1342@var{Epilogue}
bfa74976
RS
1343@end example
1344
1345@noindent
1346The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1347in every Bison grammar file to separate the sections.
1348
72d2299c 1349The prologue may define types and variables used in the actions. You can
342b8b6e 1350also use preprocessor commands to define macros used there, and use
bfa74976 1351@code{#include} to include header files that do any of these things.
38a92d50
PE
1352You need to declare the lexical analyzer @code{yylex} and the error
1353printer @code{yyerror} here, along with any other global identifiers
1354used by the actions in the grammar rules.
bfa74976
RS
1355
1356The Bison declarations declare the names of the terminal and nonterminal
1357symbols, and may also describe operator precedence and the data types of
1358semantic values of various symbols.
1359
1360The grammar rules define how to construct each nonterminal symbol from its
1361parts.
1362
38a92d50
PE
1363The epilogue can contain any code you want to use. Often the
1364definitions of functions declared in the prologue go here. In a
1365simple program, all the rest of the program can go here.
bfa74976 1366
342b8b6e 1367@node Examples
bfa74976
RS
1368@chapter Examples
1369@cindex simple examples
1370@cindex examples, simple
1371
1372Now we show and explain three sample programs written using Bison: a
1373reverse polish notation calculator, an algebraic (infix) notation
1374calculator, and a multi-function calculator. All three have been tested
1375under BSD Unix 4.3; each produces a usable, though limited, interactive
1376desk-top calculator.
1377
1378These examples are simple, but Bison grammars for real programming
aa08666d
AD
1379languages are written the same way. You can copy these examples into a
1380source file to try them.
bfa74976
RS
1381
1382@menu
f56274a8
DJ
1383* RPN Calc:: Reverse polish notation calculator;
1384 a first example with no operator precedence.
1385* Infix Calc:: Infix (algebraic) notation calculator.
1386 Operator precedence is introduced.
bfa74976 1387* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1388* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1389* Multi-function Calc:: Calculator with memory and trig functions.
1390 It uses multiple data-types for semantic values.
1391* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1392@end menu
1393
342b8b6e 1394@node RPN Calc
bfa74976
RS
1395@section Reverse Polish Notation Calculator
1396@cindex reverse polish notation
1397@cindex polish notation calculator
1398@cindex @code{rpcalc}
1399@cindex calculator, simple
1400
1401The first example is that of a simple double-precision @dfn{reverse polish
1402notation} calculator (a calculator using postfix operators). This example
1403provides a good starting point, since operator precedence is not an issue.
1404The second example will illustrate how operator precedence is handled.
1405
1406The source code for this calculator is named @file{rpcalc.y}. The
1407@samp{.y} extension is a convention used for Bison input files.
1408
1409@menu
f56274a8
DJ
1410* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1411* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1412* Rpcalc Lexer:: The lexical analyzer.
1413* Rpcalc Main:: The controlling function.
1414* Rpcalc Error:: The error reporting function.
1415* Rpcalc Generate:: Running Bison on the grammar file.
1416* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1417@end menu
1418
f56274a8 1419@node Rpcalc Declarations
bfa74976
RS
1420@subsection Declarations for @code{rpcalc}
1421
1422Here are the C and Bison declarations for the reverse polish notation
1423calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1424
1425@example
72d2299c 1426/* Reverse polish notation calculator. */
bfa74976
RS
1427
1428%@{
38a92d50
PE
1429 #define YYSTYPE double
1430 #include <math.h>
1431 int yylex (void);
1432 void yyerror (char const *);
bfa74976
RS
1433%@}
1434
1435%token NUM
1436
72d2299c 1437%% /* Grammar rules and actions follow. */
bfa74976
RS
1438@end example
1439
75f5aaea 1440The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1441preprocessor directives and two forward declarations.
bfa74976
RS
1442
1443The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1444specifying the C data type for semantic values of both tokens and
1445groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1446Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1447don't define it, @code{int} is the default. Because we specify
1448@code{double}, each token and each expression has an associated value,
1449which is a floating point number.
bfa74976
RS
1450
1451The @code{#include} directive is used to declare the exponentiation
1452function @code{pow}.
1453
38a92d50
PE
1454The forward declarations for @code{yylex} and @code{yyerror} are
1455needed because the C language requires that functions be declared
1456before they are used. These functions will be defined in the
1457epilogue, but the parser calls them so they must be declared in the
1458prologue.
1459
704a47c4
AD
1460The second section, Bison declarations, provides information to Bison
1461about the token types (@pxref{Bison Declarations, ,The Bison
1462Declarations Section}). Each terminal symbol that is not a
1463single-character literal must be declared here. (Single-character
bfa74976
RS
1464literals normally don't need to be declared.) In this example, all the
1465arithmetic operators are designated by single-character literals, so the
1466only terminal symbol that needs to be declared is @code{NUM}, the token
1467type for numeric constants.
1468
342b8b6e 1469@node Rpcalc Rules
bfa74976
RS
1470@subsection Grammar Rules for @code{rpcalc}
1471
1472Here are the grammar rules for the reverse polish notation calculator.
1473
1474@example
1475input: /* empty */
1476 | input line
1477;
1478
1479line: '\n'
18b519c0 1480 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1481;
1482
18b519c0
AD
1483exp: NUM @{ $$ = $1; @}
1484 | exp exp '+' @{ $$ = $1 + $2; @}
1485 | exp exp '-' @{ $$ = $1 - $2; @}
1486 | exp exp '*' @{ $$ = $1 * $2; @}
1487 | exp exp '/' @{ $$ = $1 / $2; @}
1488 /* Exponentiation */
1489 | exp exp '^' @{ $$ = pow ($1, $2); @}
1490 /* Unary minus */
1491 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1492;
1493%%
1494@end example
1495
1496The groupings of the rpcalc ``language'' defined here are the expression
1497(given the name @code{exp}), the line of input (@code{line}), and the
1498complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1499symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1500which is read as ``or''. The following sections explain what these rules
1501mean.
1502
1503The semantics of the language is determined by the actions taken when a
1504grouping is recognized. The actions are the C code that appears inside
1505braces. @xref{Actions}.
1506
1507You must specify these actions in C, but Bison provides the means for
1508passing semantic values between the rules. In each action, the
1509pseudo-variable @code{$$} stands for the semantic value for the grouping
1510that the rule is going to construct. Assigning a value to @code{$$} is the
1511main job of most actions. The semantic values of the components of the
1512rule are referred to as @code{$1}, @code{$2}, and so on.
1513
1514@menu
13863333
AD
1515* Rpcalc Input::
1516* Rpcalc Line::
1517* Rpcalc Expr::
bfa74976
RS
1518@end menu
1519
342b8b6e 1520@node Rpcalc Input
bfa74976
RS
1521@subsubsection Explanation of @code{input}
1522
1523Consider the definition of @code{input}:
1524
1525@example
1526input: /* empty */
1527 | input line
1528;
1529@end example
1530
1531This definition reads as follows: ``A complete input is either an empty
1532string, or a complete input followed by an input line''. Notice that
1533``complete input'' is defined in terms of itself. This definition is said
1534to be @dfn{left recursive} since @code{input} appears always as the
1535leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1536
1537The first alternative is empty because there are no symbols between the
1538colon and the first @samp{|}; this means that @code{input} can match an
1539empty string of input (no tokens). We write the rules this way because it
1540is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1541It's conventional to put an empty alternative first and write the comment
1542@samp{/* empty */} in it.
1543
1544The second alternate rule (@code{input line}) handles all nontrivial input.
1545It means, ``After reading any number of lines, read one more line if
1546possible.'' The left recursion makes this rule into a loop. Since the
1547first alternative matches empty input, the loop can be executed zero or
1548more times.
1549
1550The parser function @code{yyparse} continues to process input until a
1551grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1552input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1553
342b8b6e 1554@node Rpcalc Line
bfa74976
RS
1555@subsubsection Explanation of @code{line}
1556
1557Now consider the definition of @code{line}:
1558
1559@example
1560line: '\n'
1561 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1562;
1563@end example
1564
1565The first alternative is a token which is a newline character; this means
1566that rpcalc accepts a blank line (and ignores it, since there is no
1567action). The second alternative is an expression followed by a newline.
1568This is the alternative that makes rpcalc useful. The semantic value of
1569the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1570question is the first symbol in the alternative. The action prints this
1571value, which is the result of the computation the user asked for.
1572
1573This action is unusual because it does not assign a value to @code{$$}. As
1574a consequence, the semantic value associated with the @code{line} is
1575uninitialized (its value will be unpredictable). This would be a bug if
1576that value were ever used, but we don't use it: once rpcalc has printed the
1577value of the user's input line, that value is no longer needed.
1578
342b8b6e 1579@node Rpcalc Expr
bfa74976
RS
1580@subsubsection Explanation of @code{expr}
1581
1582The @code{exp} grouping has several rules, one for each kind of expression.
1583The first rule handles the simplest expressions: those that are just numbers.
1584The second handles an addition-expression, which looks like two expressions
1585followed by a plus-sign. The third handles subtraction, and so on.
1586
1587@example
1588exp: NUM
1589 | exp exp '+' @{ $$ = $1 + $2; @}
1590 | exp exp '-' @{ $$ = $1 - $2; @}
1591 @dots{}
1592 ;
1593@end example
1594
1595We have used @samp{|} to join all the rules for @code{exp}, but we could
1596equally well have written them separately:
1597
1598@example
1599exp: NUM ;
1600exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1601exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1602 @dots{}
1603@end example
1604
1605Most of the rules have actions that compute the value of the expression in
1606terms of the value of its parts. For example, in the rule for addition,
1607@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1608the second one. The third component, @code{'+'}, has no meaningful
1609associated semantic value, but if it had one you could refer to it as
1610@code{$3}. When @code{yyparse} recognizes a sum expression using this
1611rule, the sum of the two subexpressions' values is produced as the value of
1612the entire expression. @xref{Actions}.
1613
1614You don't have to give an action for every rule. When a rule has no
1615action, Bison by default copies the value of @code{$1} into @code{$$}.
1616This is what happens in the first rule (the one that uses @code{NUM}).
1617
1618The formatting shown here is the recommended convention, but Bison does
72d2299c 1619not require it. You can add or change white space as much as you wish.
bfa74976
RS
1620For example, this:
1621
1622@example
99a9344e 1623exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1624@end example
1625
1626@noindent
1627means the same thing as this:
1628
1629@example
1630exp: NUM
1631 | exp exp '+' @{ $$ = $1 + $2; @}
1632 | @dots{}
99a9344e 1633;
bfa74976
RS
1634@end example
1635
1636@noindent
1637The latter, however, is much more readable.
1638
342b8b6e 1639@node Rpcalc Lexer
bfa74976
RS
1640@subsection The @code{rpcalc} Lexical Analyzer
1641@cindex writing a lexical analyzer
1642@cindex lexical analyzer, writing
1643
704a47c4
AD
1644The lexical analyzer's job is low-level parsing: converting characters
1645or sequences of characters into tokens. The Bison parser gets its
1646tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1647Analyzer Function @code{yylex}}.
bfa74976 1648
c827f760
PE
1649Only a simple lexical analyzer is needed for the @acronym{RPN}
1650calculator. This
bfa74976
RS
1651lexical analyzer skips blanks and tabs, then reads in numbers as
1652@code{double} and returns them as @code{NUM} tokens. Any other character
1653that isn't part of a number is a separate token. Note that the token-code
1654for such a single-character token is the character itself.
1655
1656The return value of the lexical analyzer function is a numeric code which
1657represents a token type. The same text used in Bison rules to stand for
1658this token type is also a C expression for the numeric code for the type.
1659This works in two ways. If the token type is a character literal, then its
e966383b 1660numeric code is that of the character; you can use the same
bfa74976
RS
1661character literal in the lexical analyzer to express the number. If the
1662token type is an identifier, that identifier is defined by Bison as a C
1663macro whose definition is the appropriate number. In this example,
1664therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1665
1964ad8c
AD
1666The semantic value of the token (if it has one) is stored into the
1667global variable @code{yylval}, which is where the Bison parser will look
1668for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1669defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1670,Declarations for @code{rpcalc}}.)
bfa74976 1671
72d2299c
PE
1672A token type code of zero is returned if the end-of-input is encountered.
1673(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1674
1675Here is the code for the lexical analyzer:
1676
1677@example
1678@group
72d2299c 1679/* The lexical analyzer returns a double floating point
e966383b 1680 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1681 of the character read if not a number. It skips all blanks
1682 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1683
1684#include <ctype.h>
1685@end group
1686
1687@group
13863333
AD
1688int
1689yylex (void)
bfa74976
RS
1690@{
1691 int c;
1692
72d2299c 1693 /* Skip white space. */
13863333 1694 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1695 ;
1696@end group
1697@group
72d2299c 1698 /* Process numbers. */
13863333 1699 if (c == '.' || isdigit (c))
bfa74976
RS
1700 @{
1701 ungetc (c, stdin);
1702 scanf ("%lf", &yylval);
1703 return NUM;
1704 @}
1705@end group
1706@group
72d2299c 1707 /* Return end-of-input. */
13863333 1708 if (c == EOF)
bfa74976 1709 return 0;
72d2299c 1710 /* Return a single char. */
13863333 1711 return c;
bfa74976
RS
1712@}
1713@end group
1714@end example
1715
342b8b6e 1716@node Rpcalc Main
bfa74976
RS
1717@subsection The Controlling Function
1718@cindex controlling function
1719@cindex main function in simple example
1720
1721In keeping with the spirit of this example, the controlling function is
1722kept to the bare minimum. The only requirement is that it call
1723@code{yyparse} to start the process of parsing.
1724
1725@example
1726@group
13863333
AD
1727int
1728main (void)
bfa74976 1729@{
13863333 1730 return yyparse ();
bfa74976
RS
1731@}
1732@end group
1733@end example
1734
342b8b6e 1735@node Rpcalc Error
bfa74976
RS
1736@subsection The Error Reporting Routine
1737@cindex error reporting routine
1738
1739When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1740function @code{yyerror} to print an error message (usually but not
6e649e65 1741always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1742@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1743here is the definition we will use:
bfa74976
RS
1744
1745@example
1746@group
1747#include <stdio.h>
1748
38a92d50 1749/* Called by yyparse on error. */
13863333 1750void
38a92d50 1751yyerror (char const *s)
bfa74976 1752@{
4e03e201 1753 fprintf (stderr, "%s\n", s);
bfa74976
RS
1754@}
1755@end group
1756@end example
1757
1758After @code{yyerror} returns, the Bison parser may recover from the error
1759and continue parsing if the grammar contains a suitable error rule
1760(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1761have not written any error rules in this example, so any invalid input will
1762cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1763real calculator, but it is adequate for the first example.
bfa74976 1764
f56274a8 1765@node Rpcalc Generate
bfa74976
RS
1766@subsection Running Bison to Make the Parser
1767@cindex running Bison (introduction)
1768
ceed8467
AD
1769Before running Bison to produce a parser, we need to decide how to
1770arrange all the source code in one or more source files. For such a
1771simple example, the easiest thing is to put everything in one file. The
1772definitions of @code{yylex}, @code{yyerror} and @code{main} go at the
342b8b6e 1773end, in the epilogue of the file
75f5aaea 1774(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1775
1776For a large project, you would probably have several source files, and use
1777@code{make} to arrange to recompile them.
1778
1779With all the source in a single file, you use the following command to
1780convert it into a parser file:
1781
1782@example
fa4d969f 1783bison @var{file}.y
bfa74976
RS
1784@end example
1785
1786@noindent
1787In this example the file was called @file{rpcalc.y} (for ``Reverse Polish
fa4d969f 1788@sc{calc}ulator''). Bison produces a file named @file{@var{file}.tab.c},
72d2299c 1789removing the @samp{.y} from the original file name. The file output by
bfa74976
RS
1790Bison contains the source code for @code{yyparse}. The additional
1791functions in the input file (@code{yylex}, @code{yyerror} and @code{main})
1792are copied verbatim to the output.
1793
342b8b6e 1794@node Rpcalc Compile
bfa74976
RS
1795@subsection Compiling the Parser File
1796@cindex compiling the parser
1797
1798Here is how to compile and run the parser file:
1799
1800@example
1801@group
1802# @r{List files in current directory.}
9edcd895 1803$ @kbd{ls}
bfa74976
RS
1804rpcalc.tab.c rpcalc.y
1805@end group
1806
1807@group
1808# @r{Compile the Bison parser.}
1809# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1810$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1811@end group
1812
1813@group
1814# @r{List files again.}
9edcd895 1815$ @kbd{ls}
bfa74976
RS
1816rpcalc rpcalc.tab.c rpcalc.y
1817@end group
1818@end example
1819
1820The file @file{rpcalc} now contains the executable code. Here is an
1821example session using @code{rpcalc}.
1822
1823@example
9edcd895
AD
1824$ @kbd{rpcalc}
1825@kbd{4 9 +}
bfa74976 182613
9edcd895 1827@kbd{3 7 + 3 4 5 *+-}
bfa74976 1828-13
9edcd895 1829@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 183013
9edcd895 1831@kbd{5 6 / 4 n +}
bfa74976 1832-3.166666667
9edcd895 1833@kbd{3 4 ^} @r{Exponentiation}
bfa74976 183481
9edcd895
AD
1835@kbd{^D} @r{End-of-file indicator}
1836$
bfa74976
RS
1837@end example
1838
342b8b6e 1839@node Infix Calc
bfa74976
RS
1840@section Infix Notation Calculator: @code{calc}
1841@cindex infix notation calculator
1842@cindex @code{calc}
1843@cindex calculator, infix notation
1844
1845We now modify rpcalc to handle infix operators instead of postfix. Infix
1846notation involves the concept of operator precedence and the need for
1847parentheses nested to arbitrary depth. Here is the Bison code for
1848@file{calc.y}, an infix desk-top calculator.
1849
1850@example
38a92d50 1851/* Infix notation calculator. */
bfa74976
RS
1852
1853%@{
38a92d50
PE
1854 #define YYSTYPE double
1855 #include <math.h>
1856 #include <stdio.h>
1857 int yylex (void);
1858 void yyerror (char const *);
bfa74976
RS
1859%@}
1860
38a92d50 1861/* Bison declarations. */
bfa74976
RS
1862%token NUM
1863%left '-' '+'
1864%left '*' '/'
1865%left NEG /* negation--unary minus */
38a92d50 1866%right '^' /* exponentiation */
bfa74976 1867
38a92d50
PE
1868%% /* The grammar follows. */
1869input: /* empty */
bfa74976
RS
1870 | input line
1871;
1872
1873line: '\n'
1874 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1875;
1876
1877exp: NUM @{ $$ = $1; @}
1878 | exp '+' exp @{ $$ = $1 + $3; @}
1879 | exp '-' exp @{ $$ = $1 - $3; @}
1880 | exp '*' exp @{ $$ = $1 * $3; @}
1881 | exp '/' exp @{ $$ = $1 / $3; @}
1882 | '-' exp %prec NEG @{ $$ = -$2; @}
1883 | exp '^' exp @{ $$ = pow ($1, $3); @}
1884 | '(' exp ')' @{ $$ = $2; @}
1885;
1886%%
1887@end example
1888
1889@noindent
ceed8467
AD
1890The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1891same as before.
bfa74976
RS
1892
1893There are two important new features shown in this code.
1894
1895In the second section (Bison declarations), @code{%left} declares token
1896types and says they are left-associative operators. The declarations
1897@code{%left} and @code{%right} (right associativity) take the place of
1898@code{%token} which is used to declare a token type name without
1899associativity. (These tokens are single-character literals, which
1900ordinarily don't need to be declared. We declare them here to specify
1901the associativity.)
1902
1903Operator precedence is determined by the line ordering of the
1904declarations; the higher the line number of the declaration (lower on
1905the page or screen), the higher the precedence. Hence, exponentiation
1906has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1907by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1908Precedence}.
bfa74976 1909
704a47c4
AD
1910The other important new feature is the @code{%prec} in the grammar
1911section for the unary minus operator. The @code{%prec} simply instructs
1912Bison that the rule @samp{| '-' exp} has the same precedence as
1913@code{NEG}---in this case the next-to-highest. @xref{Contextual
1914Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1915
1916Here is a sample run of @file{calc.y}:
1917
1918@need 500
1919@example
9edcd895
AD
1920$ @kbd{calc}
1921@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19226.880952381
9edcd895 1923@kbd{-56 + 2}
bfa74976 1924-54
9edcd895 1925@kbd{3 ^ 2}
bfa74976
RS
19269
1927@end example
1928
342b8b6e 1929@node Simple Error Recovery
bfa74976
RS
1930@section Simple Error Recovery
1931@cindex error recovery, simple
1932
1933Up to this point, this manual has not addressed the issue of @dfn{error
1934recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1935error. All we have handled is error reporting with @code{yyerror}.
1936Recall that by default @code{yyparse} returns after calling
1937@code{yyerror}. This means that an erroneous input line causes the
1938calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1939
1940The Bison language itself includes the reserved word @code{error}, which
1941may be included in the grammar rules. In the example below it has
1942been added to one of the alternatives for @code{line}:
1943
1944@example
1945@group
1946line: '\n'
1947 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1948 | error '\n' @{ yyerrok; @}
1949;
1950@end group
1951@end example
1952
ceed8467 1953This addition to the grammar allows for simple error recovery in the
6e649e65 1954event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1955read, the error will be recognized by the third rule for @code{line},
1956and parsing will continue. (The @code{yyerror} function is still called
1957upon to print its message as well.) The action executes the statement
1958@code{yyerrok}, a macro defined automatically by Bison; its meaning is
1959that error recovery is complete (@pxref{Error Recovery}). Note the
1960difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 1961misprint.
bfa74976
RS
1962
1963This form of error recovery deals with syntax errors. There are other
1964kinds of errors; for example, division by zero, which raises an exception
1965signal that is normally fatal. A real calculator program must handle this
1966signal and use @code{longjmp} to return to @code{main} and resume parsing
1967input lines; it would also have to discard the rest of the current line of
1968input. We won't discuss this issue further because it is not specific to
1969Bison programs.
1970
342b8b6e
AD
1971@node Location Tracking Calc
1972@section Location Tracking Calculator: @code{ltcalc}
1973@cindex location tracking calculator
1974@cindex @code{ltcalc}
1975@cindex calculator, location tracking
1976
9edcd895
AD
1977This example extends the infix notation calculator with location
1978tracking. This feature will be used to improve the error messages. For
1979the sake of clarity, this example is a simple integer calculator, since
1980most of the work needed to use locations will be done in the lexical
72d2299c 1981analyzer.
342b8b6e
AD
1982
1983@menu
f56274a8
DJ
1984* Ltcalc Declarations:: Bison and C declarations for ltcalc.
1985* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
1986* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
1987@end menu
1988
f56274a8 1989@node Ltcalc Declarations
342b8b6e
AD
1990@subsection Declarations for @code{ltcalc}
1991
9edcd895
AD
1992The C and Bison declarations for the location tracking calculator are
1993the same as the declarations for the infix notation calculator.
342b8b6e
AD
1994
1995@example
1996/* Location tracking calculator. */
1997
1998%@{
38a92d50
PE
1999 #define YYSTYPE int
2000 #include <math.h>
2001 int yylex (void);
2002 void yyerror (char const *);
342b8b6e
AD
2003%@}
2004
2005/* Bison declarations. */
2006%token NUM
2007
2008%left '-' '+'
2009%left '*' '/'
2010%left NEG
2011%right '^'
2012
38a92d50 2013%% /* The grammar follows. */
342b8b6e
AD
2014@end example
2015
9edcd895
AD
2016@noindent
2017Note there are no declarations specific to locations. Defining a data
2018type for storing locations is not needed: we will use the type provided
2019by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2020four member structure with the following integer fields:
2021@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2022@code{last_column}. By conventions, and in accordance with the GNU
2023Coding Standards and common practice, the line and column count both
2024start at 1.
342b8b6e
AD
2025
2026@node Ltcalc Rules
2027@subsection Grammar Rules for @code{ltcalc}
2028
9edcd895
AD
2029Whether handling locations or not has no effect on the syntax of your
2030language. Therefore, grammar rules for this example will be very close
2031to those of the previous example: we will only modify them to benefit
2032from the new information.
342b8b6e 2033
9edcd895
AD
2034Here, we will use locations to report divisions by zero, and locate the
2035wrong expressions or subexpressions.
342b8b6e
AD
2036
2037@example
2038@group
2039input : /* empty */
2040 | input line
2041;
2042@end group
2043
2044@group
2045line : '\n'
2046 | exp '\n' @{ printf ("%d\n", $1); @}
2047;
2048@end group
2049
2050@group
2051exp : NUM @{ $$ = $1; @}
2052 | exp '+' exp @{ $$ = $1 + $3; @}
2053 | exp '-' exp @{ $$ = $1 - $3; @}
2054 | exp '*' exp @{ $$ = $1 * $3; @}
2055@end group
342b8b6e 2056@group
9edcd895 2057 | exp '/' exp
342b8b6e
AD
2058 @{
2059 if ($3)
2060 $$ = $1 / $3;
2061 else
2062 @{
2063 $$ = 1;
9edcd895
AD
2064 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2065 @@3.first_line, @@3.first_column,
2066 @@3.last_line, @@3.last_column);
342b8b6e
AD
2067 @}
2068 @}
2069@end group
2070@group
178e123e 2071 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2072 | exp '^' exp @{ $$ = pow ($1, $3); @}
2073 | '(' exp ')' @{ $$ = $2; @}
2074@end group
2075@end example
2076
2077This code shows how to reach locations inside of semantic actions, by
2078using the pseudo-variables @code{@@@var{n}} for rule components, and the
2079pseudo-variable @code{@@$} for groupings.
2080
9edcd895
AD
2081We don't need to assign a value to @code{@@$}: the output parser does it
2082automatically. By default, before executing the C code of each action,
2083@code{@@$} is set to range from the beginning of @code{@@1} to the end
2084of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2085can be redefined (@pxref{Location Default Action, , Default Action for
2086Locations}), and for very specific rules, @code{@@$} can be computed by
2087hand.
342b8b6e
AD
2088
2089@node Ltcalc Lexer
2090@subsection The @code{ltcalc} Lexical Analyzer.
2091
9edcd895 2092Until now, we relied on Bison's defaults to enable location
72d2299c 2093tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2094able to feed the parser with the token locations, as it already does for
2095semantic values.
342b8b6e 2096
9edcd895
AD
2097To this end, we must take into account every single character of the
2098input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2099
2100@example
2101@group
2102int
2103yylex (void)
2104@{
2105 int c;
18b519c0 2106@end group
342b8b6e 2107
18b519c0 2108@group
72d2299c 2109 /* Skip white space. */
342b8b6e
AD
2110 while ((c = getchar ()) == ' ' || c == '\t')
2111 ++yylloc.last_column;
18b519c0 2112@end group
342b8b6e 2113
18b519c0 2114@group
72d2299c 2115 /* Step. */
342b8b6e
AD
2116 yylloc.first_line = yylloc.last_line;
2117 yylloc.first_column = yylloc.last_column;
2118@end group
2119
2120@group
72d2299c 2121 /* Process numbers. */
342b8b6e
AD
2122 if (isdigit (c))
2123 @{
2124 yylval = c - '0';
2125 ++yylloc.last_column;
2126 while (isdigit (c = getchar ()))
2127 @{
2128 ++yylloc.last_column;
2129 yylval = yylval * 10 + c - '0';
2130 @}
2131 ungetc (c, stdin);
2132 return NUM;
2133 @}
2134@end group
2135
72d2299c 2136 /* Return end-of-input. */
342b8b6e
AD
2137 if (c == EOF)
2138 return 0;
2139
72d2299c 2140 /* Return a single char, and update location. */
342b8b6e
AD
2141 if (c == '\n')
2142 @{
2143 ++yylloc.last_line;
2144 yylloc.last_column = 0;
2145 @}
2146 else
2147 ++yylloc.last_column;
2148 return c;
2149@}
2150@end example
2151
9edcd895
AD
2152Basically, the lexical analyzer performs the same processing as before:
2153it skips blanks and tabs, and reads numbers or single-character tokens.
2154In addition, it updates @code{yylloc}, the global variable (of type
2155@code{YYLTYPE}) containing the token's location.
342b8b6e 2156
9edcd895 2157Now, each time this function returns a token, the parser has its number
72d2299c 2158as well as its semantic value, and its location in the text. The last
9edcd895
AD
2159needed change is to initialize @code{yylloc}, for example in the
2160controlling function:
342b8b6e
AD
2161
2162@example
9edcd895 2163@group
342b8b6e
AD
2164int
2165main (void)
2166@{
2167 yylloc.first_line = yylloc.last_line = 1;
2168 yylloc.first_column = yylloc.last_column = 0;
2169 return yyparse ();
2170@}
9edcd895 2171@end group
342b8b6e
AD
2172@end example
2173
9edcd895
AD
2174Remember that computing locations is not a matter of syntax. Every
2175character must be associated to a location update, whether it is in
2176valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2177
2178@node Multi-function Calc
bfa74976
RS
2179@section Multi-Function Calculator: @code{mfcalc}
2180@cindex multi-function calculator
2181@cindex @code{mfcalc}
2182@cindex calculator, multi-function
2183
2184Now that the basics of Bison have been discussed, it is time to move on to
2185a more advanced problem. The above calculators provided only five
2186functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2187be nice to have a calculator that provides other mathematical functions such
2188as @code{sin}, @code{cos}, etc.
2189
2190It is easy to add new operators to the infix calculator as long as they are
2191only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2192back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2193adding a new operator. But we want something more flexible: built-in
2194functions whose syntax has this form:
2195
2196@example
2197@var{function_name} (@var{argument})
2198@end example
2199
2200@noindent
2201At the same time, we will add memory to the calculator, by allowing you
2202to create named variables, store values in them, and use them later.
2203Here is a sample session with the multi-function calculator:
2204
2205@example
9edcd895
AD
2206$ @kbd{mfcalc}
2207@kbd{pi = 3.141592653589}
bfa74976 22083.1415926536
9edcd895 2209@kbd{sin(pi)}
bfa74976 22100.0000000000
9edcd895 2211@kbd{alpha = beta1 = 2.3}
bfa74976 22122.3000000000
9edcd895 2213@kbd{alpha}
bfa74976 22142.3000000000
9edcd895 2215@kbd{ln(alpha)}
bfa74976 22160.8329091229
9edcd895 2217@kbd{exp(ln(beta1))}
bfa74976 22182.3000000000
9edcd895 2219$
bfa74976
RS
2220@end example
2221
2222Note that multiple assignment and nested function calls are permitted.
2223
2224@menu
f56274a8
DJ
2225* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2226* Mfcalc Rules:: Grammar rules for the calculator.
2227* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2228@end menu
2229
f56274a8 2230@node Mfcalc Declarations
bfa74976
RS
2231@subsection Declarations for @code{mfcalc}
2232
2233Here are the C and Bison declarations for the multi-function calculator.
2234
2235@smallexample
18b519c0 2236@group
bfa74976 2237%@{
38a92d50
PE
2238 #include <math.h> /* For math functions, cos(), sin(), etc. */
2239 #include "calc.h" /* Contains definition of `symrec'. */
2240 int yylex (void);
2241 void yyerror (char const *);
bfa74976 2242%@}
18b519c0
AD
2243@end group
2244@group
bfa74976 2245%union @{
38a92d50
PE
2246 double val; /* For returning numbers. */
2247 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2248@}
18b519c0 2249@end group
38a92d50
PE
2250%token <val> NUM /* Simple double precision number. */
2251%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2252%type <val> exp
2253
18b519c0 2254@group
bfa74976
RS
2255%right '='
2256%left '-' '+'
2257%left '*' '/'
38a92d50
PE
2258%left NEG /* negation--unary minus */
2259%right '^' /* exponentiation */
18b519c0 2260@end group
38a92d50 2261%% /* The grammar follows. */
bfa74976
RS
2262@end smallexample
2263
2264The above grammar introduces only two new features of the Bison language.
2265These features allow semantic values to have various data types
2266(@pxref{Multiple Types, ,More Than One Value Type}).
2267
2268The @code{%union} declaration specifies the entire list of possible types;
2269this is instead of defining @code{YYSTYPE}. The allowable types are now
2270double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2271the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2272
2273Since values can now have various types, it is necessary to associate a
2274type with each grammar symbol whose semantic value is used. These symbols
2275are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2276declarations are augmented with information about their data type (placed
2277between angle brackets).
2278
704a47c4
AD
2279The Bison construct @code{%type} is used for declaring nonterminal
2280symbols, just as @code{%token} is used for declaring token types. We
2281have not used @code{%type} before because nonterminal symbols are
2282normally declared implicitly by the rules that define them. But
2283@code{exp} must be declared explicitly so we can specify its value type.
2284@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2285
342b8b6e 2286@node Mfcalc Rules
bfa74976
RS
2287@subsection Grammar Rules for @code{mfcalc}
2288
2289Here are the grammar rules for the multi-function calculator.
2290Most of them are copied directly from @code{calc}; three rules,
2291those which mention @code{VAR} or @code{FNCT}, are new.
2292
2293@smallexample
18b519c0 2294@group
bfa74976
RS
2295input: /* empty */
2296 | input line
2297;
18b519c0 2298@end group
bfa74976 2299
18b519c0 2300@group
bfa74976
RS
2301line:
2302 '\n'
2303 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2304 | error '\n' @{ yyerrok; @}
2305;
18b519c0 2306@end group
bfa74976 2307
18b519c0 2308@group
bfa74976
RS
2309exp: NUM @{ $$ = $1; @}
2310 | VAR @{ $$ = $1->value.var; @}
2311 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2312 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2313 | exp '+' exp @{ $$ = $1 + $3; @}
2314 | exp '-' exp @{ $$ = $1 - $3; @}
2315 | exp '*' exp @{ $$ = $1 * $3; @}
2316 | exp '/' exp @{ $$ = $1 / $3; @}
2317 | '-' exp %prec NEG @{ $$ = -$2; @}
2318 | exp '^' exp @{ $$ = pow ($1, $3); @}
2319 | '(' exp ')' @{ $$ = $2; @}
2320;
18b519c0 2321@end group
38a92d50 2322/* End of grammar. */
bfa74976
RS
2323%%
2324@end smallexample
2325
f56274a8 2326@node Mfcalc Symbol Table
bfa74976
RS
2327@subsection The @code{mfcalc} Symbol Table
2328@cindex symbol table example
2329
2330The multi-function calculator requires a symbol table to keep track of the
2331names and meanings of variables and functions. This doesn't affect the
2332grammar rules (except for the actions) or the Bison declarations, but it
2333requires some additional C functions for support.
2334
2335The symbol table itself consists of a linked list of records. Its
2336definition, which is kept in the header @file{calc.h}, is as follows. It
2337provides for either functions or variables to be placed in the table.
2338
2339@smallexample
2340@group
38a92d50 2341/* Function type. */
32dfccf8 2342typedef double (*func_t) (double);
72f889cc 2343@end group
32dfccf8 2344
72f889cc 2345@group
38a92d50 2346/* Data type for links in the chain of symbols. */
bfa74976
RS
2347struct symrec
2348@{
38a92d50 2349 char *name; /* name of symbol */
bfa74976 2350 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2351 union
2352 @{
38a92d50
PE
2353 double var; /* value of a VAR */
2354 func_t fnctptr; /* value of a FNCT */
bfa74976 2355 @} value;
38a92d50 2356 struct symrec *next; /* link field */
bfa74976
RS
2357@};
2358@end group
2359
2360@group
2361typedef struct symrec symrec;
2362
38a92d50 2363/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2364extern symrec *sym_table;
2365
a730d142 2366symrec *putsym (char const *, int);
38a92d50 2367symrec *getsym (char const *);
bfa74976
RS
2368@end group
2369@end smallexample
2370
2371The new version of @code{main} includes a call to @code{init_table}, a
2372function that initializes the symbol table. Here it is, and
2373@code{init_table} as well:
2374
2375@smallexample
bfa74976
RS
2376#include <stdio.h>
2377
18b519c0 2378@group
38a92d50 2379/* Called by yyparse on error. */
13863333 2380void
38a92d50 2381yyerror (char const *s)
bfa74976
RS
2382@{
2383 printf ("%s\n", s);
2384@}
18b519c0 2385@end group
bfa74976 2386
18b519c0 2387@group
bfa74976
RS
2388struct init
2389@{
38a92d50
PE
2390 char const *fname;
2391 double (*fnct) (double);
bfa74976
RS
2392@};
2393@end group
2394
2395@group
38a92d50 2396struct init const arith_fncts[] =
13863333 2397@{
32dfccf8
AD
2398 "sin", sin,
2399 "cos", cos,
13863333 2400 "atan", atan,
32dfccf8
AD
2401 "ln", log,
2402 "exp", exp,
13863333
AD
2403 "sqrt", sqrt,
2404 0, 0
2405@};
18b519c0 2406@end group
bfa74976 2407
18b519c0 2408@group
bfa74976 2409/* The symbol table: a chain of `struct symrec'. */
38a92d50 2410symrec *sym_table;
bfa74976
RS
2411@end group
2412
2413@group
72d2299c 2414/* Put arithmetic functions in table. */
13863333
AD
2415void
2416init_table (void)
bfa74976
RS
2417@{
2418 int i;
2419 symrec *ptr;
2420 for (i = 0; arith_fncts[i].fname != 0; i++)
2421 @{
2422 ptr = putsym (arith_fncts[i].fname, FNCT);
2423 ptr->value.fnctptr = arith_fncts[i].fnct;
2424 @}
2425@}
2426@end group
38a92d50
PE
2427
2428@group
2429int
2430main (void)
2431@{
2432 init_table ();
2433 return yyparse ();
2434@}
2435@end group
bfa74976
RS
2436@end smallexample
2437
2438By simply editing the initialization list and adding the necessary include
2439files, you can add additional functions to the calculator.
2440
2441Two important functions allow look-up and installation of symbols in the
2442symbol table. The function @code{putsym} is passed a name and the type
2443(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2444linked to the front of the list, and a pointer to the object is returned.
2445The function @code{getsym} is passed the name of the symbol to look up. If
2446found, a pointer to that symbol is returned; otherwise zero is returned.
2447
2448@smallexample
2449symrec *
38a92d50 2450putsym (char const *sym_name, int sym_type)
bfa74976
RS
2451@{
2452 symrec *ptr;
2453 ptr = (symrec *) malloc (sizeof (symrec));
2454 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2455 strcpy (ptr->name,sym_name);
2456 ptr->type = sym_type;
72d2299c 2457 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2458 ptr->next = (struct symrec *)sym_table;
2459 sym_table = ptr;
2460 return ptr;
2461@}
2462
2463symrec *
38a92d50 2464getsym (char const *sym_name)
bfa74976
RS
2465@{
2466 symrec *ptr;
2467 for (ptr = sym_table; ptr != (symrec *) 0;
2468 ptr = (symrec *)ptr->next)
2469 if (strcmp (ptr->name,sym_name) == 0)
2470 return ptr;
2471 return 0;
2472@}
2473@end smallexample
2474
2475The function @code{yylex} must now recognize variables, numeric values, and
2476the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2477characters with a leading letter are recognized as either variables or
bfa74976
RS
2478functions depending on what the symbol table says about them.
2479
2480The string is passed to @code{getsym} for look up in the symbol table. If
2481the name appears in the table, a pointer to its location and its type
2482(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2483already in the table, then it is installed as a @code{VAR} using
2484@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2485returned to @code{yyparse}.
bfa74976
RS
2486
2487No change is needed in the handling of numeric values and arithmetic
2488operators in @code{yylex}.
2489
2490@smallexample
2491@group
2492#include <ctype.h>
18b519c0 2493@end group
13863333 2494
18b519c0 2495@group
13863333
AD
2496int
2497yylex (void)
bfa74976
RS
2498@{
2499 int c;
2500
72d2299c 2501 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2502 while ((c = getchar ()) == ' ' || c == '\t');
2503
2504 if (c == EOF)
2505 return 0;
2506@end group
2507
2508@group
2509 /* Char starts a number => parse the number. */
2510 if (c == '.' || isdigit (c))
2511 @{
2512 ungetc (c, stdin);
2513 scanf ("%lf", &yylval.val);
2514 return NUM;
2515 @}
2516@end group
2517
2518@group
2519 /* Char starts an identifier => read the name. */
2520 if (isalpha (c))
2521 @{
2522 symrec *s;
2523 static char *symbuf = 0;
2524 static int length = 0;
2525 int i;
2526@end group
2527
2528@group
2529 /* Initially make the buffer long enough
2530 for a 40-character symbol name. */
2531 if (length == 0)
2532 length = 40, symbuf = (char *)malloc (length + 1);
2533
2534 i = 0;
2535 do
2536@end group
2537@group
2538 @{
2539 /* If buffer is full, make it bigger. */
2540 if (i == length)
2541 @{
2542 length *= 2;
18b519c0 2543 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2544 @}
2545 /* Add this character to the buffer. */
2546 symbuf[i++] = c;
2547 /* Get another character. */
2548 c = getchar ();
2549 @}
2550@end group
2551@group
72d2299c 2552 while (isalnum (c));
bfa74976
RS
2553
2554 ungetc (c, stdin);
2555 symbuf[i] = '\0';
2556@end group
2557
2558@group
2559 s = getsym (symbuf);
2560 if (s == 0)
2561 s = putsym (symbuf, VAR);
2562 yylval.tptr = s;
2563 return s->type;
2564 @}
2565
2566 /* Any other character is a token by itself. */
2567 return c;
2568@}
2569@end group
2570@end smallexample
2571
72d2299c 2572This program is both powerful and flexible. You may easily add new
704a47c4
AD
2573functions, and it is a simple job to modify this code to install
2574predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2575
342b8b6e 2576@node Exercises
bfa74976
RS
2577@section Exercises
2578@cindex exercises
2579
2580@enumerate
2581@item
2582Add some new functions from @file{math.h} to the initialization list.
2583
2584@item
2585Add another array that contains constants and their values. Then
2586modify @code{init_table} to add these constants to the symbol table.
2587It will be easiest to give the constants type @code{VAR}.
2588
2589@item
2590Make the program report an error if the user refers to an
2591uninitialized variable in any way except to store a value in it.
2592@end enumerate
2593
342b8b6e 2594@node Grammar File
bfa74976
RS
2595@chapter Bison Grammar Files
2596
2597Bison takes as input a context-free grammar specification and produces a
2598C-language function that recognizes correct instances of the grammar.
2599
2600The Bison grammar input file conventionally has a name ending in @samp{.y}.
234a3be3 2601@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2602
2603@menu
2604* Grammar Outline:: Overall layout of the grammar file.
2605* Symbols:: Terminal and nonterminal symbols.
2606* Rules:: How to write grammar rules.
2607* Recursion:: Writing recursive rules.
2608* Semantics:: Semantic values and actions.
847bf1f5 2609* Locations:: Locations and actions.
bfa74976
RS
2610* Declarations:: All kinds of Bison declarations are described here.
2611* Multiple Parsers:: Putting more than one Bison parser in one program.
2612@end menu
2613
342b8b6e 2614@node Grammar Outline
bfa74976
RS
2615@section Outline of a Bison Grammar
2616
2617A Bison grammar file has four main sections, shown here with the
2618appropriate delimiters:
2619
2620@example
2621%@{
38a92d50 2622 @var{Prologue}
bfa74976
RS
2623%@}
2624
2625@var{Bison declarations}
2626
2627%%
2628@var{Grammar rules}
2629%%
2630
75f5aaea 2631@var{Epilogue}
bfa74976
RS
2632@end example
2633
2634Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
2bfc2e2a
PE
2635As a @acronym{GNU} extension, @samp{//} introduces a comment that
2636continues until end of line.
bfa74976
RS
2637
2638@menu
f56274a8 2639* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2640* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2641* Bison Declarations:: Syntax and usage of the Bison declarations section.
2642* Grammar Rules:: Syntax and usage of the grammar rules section.
2643* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2644@end menu
2645
38a92d50 2646@node Prologue
75f5aaea
MA
2647@subsection The prologue
2648@cindex declarations section
2649@cindex Prologue
2650@cindex declarations
bfa74976 2651
f8e1c9e5
AD
2652The @var{Prologue} section contains macro definitions and declarations
2653of functions and variables that are used in the actions in the grammar
2654rules. These are copied to the beginning of the parser file so that
2655they precede the definition of @code{yyparse}. You can use
2656@samp{#include} to get the declarations from a header file. If you
2657don't need any C declarations, you may omit the @samp{%@{} and
2658@samp{%@}} delimiters that bracket this section.
bfa74976 2659
9c437126 2660The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2661of @samp{%@}} that is outside a comment, a string literal, or a
2662character constant.
2663
c732d2c6
AD
2664You may have more than one @var{Prologue} section, intermixed with the
2665@var{Bison declarations}. This allows you to have C and Bison
2666declarations that refer to each other. For example, the @code{%union}
2667declaration may use types defined in a header file, and you may wish to
2668prototype functions that take arguments of type @code{YYSTYPE}. This
2669can be done with two @var{Prologue} blocks, one before and one after the
2670@code{%union} declaration.
2671
2672@smallexample
2673%@{
aef3da86 2674 #define _GNU_SOURCE
38a92d50
PE
2675 #include <stdio.h>
2676 #include "ptypes.h"
c732d2c6
AD
2677%@}
2678
2679%union @{
779e7ceb 2680 long int n;
c732d2c6
AD
2681 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2682@}
2683
2684%@{
38a92d50
PE
2685 static void print_token_value (FILE *, int, YYSTYPE);
2686 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2687%@}
2688
2689@dots{}
2690@end smallexample
2691
aef3da86
PE
2692When in doubt, it is usually safer to put prologue code before all
2693Bison declarations, rather than after. For example, any definitions
2694of feature test macros like @code{_GNU_SOURCE} or
2695@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2696feature test macros can affect the behavior of Bison-generated
2697@code{#include} directives.
2698
2cbe6b7f
JD
2699@node Prologue Alternatives
2700@subsection Prologue Alternatives
2701@cindex Prologue Alternatives
2702
136a0f76 2703@findex %code
16dc6a9e
JD
2704@findex %code requires
2705@findex %code provides
2706@findex %code top
85894313
JD
2707(The prologue alternatives described here are experimental.
2708More user feedback will help to determine whether they should become permanent
2709features.)
2710
2cbe6b7f
JD
2711The functionality of @var{Prologue} sections can often be subtle and
2712inflexible.
8e0a5e9e
JD
2713As an alternative, Bison provides a %code directive with an explicit qualifier
2714field, which identifies the purpose of the code and thus the location(s) where
2715Bison should generate it.
2716For C/C++, the qualifier can be omitted for the default location, or it can be
8405b70c 2717one of @code{requires}, @code{provides}, @code{top}.
148d66d8 2718@xref{Decl Summary,,%code}.
2cbe6b7f
JD
2719
2720Look again at the example of the previous section:
2721
2722@smallexample
2723%@{
2724 #define _GNU_SOURCE
2725 #include <stdio.h>
2726 #include "ptypes.h"
2727%@}
2728
2729%union @{
2730 long int n;
2731 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2732@}
2733
2734%@{
2735 static void print_token_value (FILE *, int, YYSTYPE);
2736 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2737%@}
2738
2739@dots{}
2740@end smallexample
2741
2742@noindent
2743Notice that there are two @var{Prologue} sections here, but there's a subtle
2744distinction between their functionality.
2745For example, if you decide to override Bison's default definition for
2746@code{YYLTYPE}, in which @var{Prologue} section should you write your new
2747definition?
2748You should write it in the first since Bison will insert that code into the
8e0a5e9e 2749parser source code file @emph{before} the default @code{YYLTYPE} definition.
2cbe6b7f
JD
2750In which @var{Prologue} section should you prototype an internal function,
2751@code{trace_token}, that accepts @code{YYLTYPE} and @code{yytokentype} as
2752arguments?
2753You should prototype it in the second since Bison will insert that code
2754@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2755
2756This distinction in functionality between the two @var{Prologue} sections is
2757established by the appearance of the @code{%union} between them.
a501eca9 2758This behavior raises a few questions.
2cbe6b7f
JD
2759First, why should the position of a @code{%union} affect definitions related to
2760@code{YYLTYPE} and @code{yytokentype}?
2761Second, what if there is no @code{%union}?
2762In that case, the second kind of @var{Prologue} section is not available.
2763This behavior is not intuitive.
2764
8e0a5e9e 2765To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2766@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2767Let's go ahead and add the new @code{YYLTYPE} definition and the
2768@code{trace_token} prototype at the same time:
2769
2770@smallexample
16dc6a9e 2771%code top @{
2cbe6b7f
JD
2772 #define _GNU_SOURCE
2773 #include <stdio.h>
8e0a5e9e
JD
2774
2775 /* WARNING: The following code really belongs
16dc6a9e 2776 * in a `%code requires'; see below. */
8e0a5e9e 2777
2cbe6b7f
JD
2778 #include "ptypes.h"
2779 #define YYLTYPE YYLTYPE
2780 typedef struct YYLTYPE
2781 @{
2782 int first_line;
2783 int first_column;
2784 int last_line;
2785 int last_column;
2786 char *filename;
2787 @} YYLTYPE;
2788@}
2789
2790%union @{
2791 long int n;
2792 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2793@}
2794
2795%code @{
2796 static void print_token_value (FILE *, int, YYSTYPE);
2797 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2798 static void trace_token (enum yytokentype token, YYLTYPE loc);
2799@}
2800
2801@dots{}
2802@end smallexample
2803
2804@noindent
16dc6a9e
JD
2805In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2806functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2807explicit which kind you intend.
2cbe6b7f
JD
2808Moreover, both kinds are always available even in the absence of @code{%union}.
2809
16dc6a9e 2810The @code{%code top} block above logically contains two parts.
8e0a5e9e
JD
2811The first two lines before the warning need to appear near the top of the
2812parser source code file.
2813The first line after the warning is required by @code{YYSTYPE} and thus also
2814needs to appear in the parser source code file.
2cbe6b7f 2815However, if you've instructed Bison to generate a parser header file
148d66d8
JD
2816(@pxref{Decl Summary, ,%defines}), you probably want that line to appear before
2817the @code{YYSTYPE} definition in that header file as well.
8e0a5e9e 2818The @code{YYLTYPE} definition should also appear in the parser header file to
2cbe6b7f
JD
2819override the default @code{YYLTYPE} definition there.
2820
16dc6a9e 2821In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2822lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2823definitions.
16dc6a9e 2824Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2825
2826@smallexample
16dc6a9e 2827%code top @{
2cbe6b7f
JD
2828 #define _GNU_SOURCE
2829 #include <stdio.h>
2830@}
2831
16dc6a9e 2832%code requires @{
9bc0dd67
JD
2833 #include "ptypes.h"
2834@}
2835%union @{
2836 long int n;
2837 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2838@}
2839
16dc6a9e 2840%code requires @{
2cbe6b7f
JD
2841 #define YYLTYPE YYLTYPE
2842 typedef struct YYLTYPE
2843 @{
2844 int first_line;
2845 int first_column;
2846 int last_line;
2847 int last_column;
2848 char *filename;
2849 @} YYLTYPE;
2850@}
2851
136a0f76 2852%code @{
2cbe6b7f
JD
2853 static void print_token_value (FILE *, int, YYSTYPE);
2854 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2855 static void trace_token (enum yytokentype token, YYLTYPE loc);
2856@}
2857
2858@dots{}
2859@end smallexample
2860
2861@noindent
2862Now Bison will insert @code{#include "ptypes.h"} and the new @code{YYLTYPE}
2863definition before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
8e0a5e9e 2864definitions in both the parser source code file and the parser header file.
16dc6a9e 2865(By the same reasoning, @code{%code requires} would also be the appropriate
8e0a5e9e 2866place to write your own definition for @code{YYSTYPE}.)
2cbe6b7f 2867
a501eca9 2868When you are writing dependency code for @code{YYSTYPE} and @code{YYLTYPE}, you
16dc6a9e
JD
2869should prefer @code{%code requires} over @code{%code top} regardless of whether
2870you instruct Bison to generate a parser header file.
a501eca9 2871When you are writing code that you need Bison to insert only into the parser
8e0a5e9e 2872source code file and that has no special need to appear at the top of that
16dc6a9e 2873file, you should prefer the unqualified @code{%code} over @code{%code top}.
a501eca9
JD
2874These practices will make the purpose of each block of your code explicit to
2875Bison and to other developers reading your grammar file.
8e0a5e9e 2876Following these practices, we expect the unqualified @code{%code} and
16dc6a9e
JD
2877@code{%code requires} to be the most important of the four @var{Prologue}
2878alternatives.
a501eca9 2879
2cbe6b7f
JD
2880At some point while developing your parser, you might decide to provide
2881@code{trace_token} to modules that are external to your parser.
2882Thus, you might wish for Bison to insert the prototype into both the parser
8e0a5e9e
JD
2883header file and the parser source code file.
2884Since this function is not a dependency required by @code{YYSTYPE} or
2885@code{YYLTYPE}, it doesn't make sense to move its prototype to a
16dc6a9e 2886@code{%code requires}.
2cbe6b7f 2887More importantly, since it depends upon @code{YYLTYPE} and @code{yytokentype},
16dc6a9e 2888@code{%code requires} is not sufficient.
8e0a5e9e 2889Instead, move its prototype from the unqualified @code{%code} to a
16dc6a9e 2890@code{%code provides}:
2cbe6b7f
JD
2891
2892@smallexample
16dc6a9e 2893%code top @{
2cbe6b7f 2894 #define _GNU_SOURCE
136a0f76 2895 #include <stdio.h>
2cbe6b7f 2896@}
136a0f76 2897
16dc6a9e 2898%code requires @{
2cbe6b7f
JD
2899 #include "ptypes.h"
2900@}
2901%union @{
2902 long int n;
2903 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2904@}
2905
16dc6a9e 2906%code requires @{
2cbe6b7f
JD
2907 #define YYLTYPE YYLTYPE
2908 typedef struct YYLTYPE
2909 @{
2910 int first_line;
2911 int first_column;
2912 int last_line;
2913 int last_column;
2914 char *filename;
2915 @} YYLTYPE;
2916@}
2917
16dc6a9e 2918%code provides @{
2cbe6b7f
JD
2919 void trace_token (enum yytokentype token, YYLTYPE loc);
2920@}
2921
2922%code @{
9bc0dd67
JD
2923 static void print_token_value (FILE *, int, YYSTYPE);
2924 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 2925@}
9bc0dd67
JD
2926
2927@dots{}
2928@end smallexample
2929
2cbe6b7f
JD
2930@noindent
2931Bison will insert the @code{trace_token} prototype into both the parser header
8e0a5e9e
JD
2932file and the parser source code file after the definitions for
2933@code{yytokentype}, @code{YYLTYPE}, and @code{YYSTYPE}.
2cbe6b7f
JD
2934
2935The above examples are careful to write directives in an order that reflects
8e0a5e9e 2936the layout of the generated parser source code and header files:
16dc6a9e 2937@code{%code top}, @code{%code requires}, @code{%code provides}, and then
8e0a5e9e 2938@code{%code}.
a501eca9 2939While your grammar files may generally be easier to read if you also follow
2cbe6b7f
JD
2940this order, Bison does not require it.
2941Instead, Bison lets you choose an organization that makes sense to you.
2942
a501eca9 2943You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
2944In that case, Bison concatenates the contained code in declaration order.
2945This is the only way in which the position of one of these directives within
2946the grammar file affects its functionality.
2947
2948The result of the previous two properties is greater flexibility in how you may
2949organize your grammar file.
2950For example, you may organize semantic-type-related directives by semantic
2951type:
2952
2953@smallexample
16dc6a9e 2954%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
2955%union @{ type1 field1; @}
2956%destructor @{ type1_free ($$); @} <field1>
2957%printer @{ type1_print ($$); @} <field1>
2958
16dc6a9e 2959%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
2960%union @{ type2 field2; @}
2961%destructor @{ type2_free ($$); @} <field2>
2962%printer @{ type2_print ($$); @} <field2>
2963@end smallexample
2964
2965@noindent
2966You could even place each of the above directive groups in the rules section of
2967the grammar file next to the set of rules that uses the associated semantic
2968type.
61fee93e
JD
2969(In the rules section, you must terminate each of those directives with a
2970semicolon.)
2cbe6b7f
JD
2971And you don't have to worry that some directive (like a @code{%union}) in the
2972definitions section is going to adversely affect their functionality in some
2973counter-intuitive manner just because it comes first.
2974Such an organization is not possible using @var{Prologue} sections.
2975
a501eca9 2976This section has been concerned with explaining the advantages of the four
8e0a5e9e 2977@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
2978However, in most cases when using these directives, you shouldn't need to
2979think about all the low-level ordering issues discussed here.
2980Instead, you should simply use these directives to label each block of your
2981code according to its purpose and let Bison handle the ordering.
2982@code{%code} is the most generic label.
16dc6a9e
JD
2983Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
2984as needed.
a501eca9 2985
342b8b6e 2986@node Bison Declarations
bfa74976
RS
2987@subsection The Bison Declarations Section
2988@cindex Bison declarations (introduction)
2989@cindex declarations, Bison (introduction)
2990
2991The @var{Bison declarations} section contains declarations that define
2992terminal and nonterminal symbols, specify precedence, and so on.
2993In some simple grammars you may not need any declarations.
2994@xref{Declarations, ,Bison Declarations}.
2995
342b8b6e 2996@node Grammar Rules
bfa74976
RS
2997@subsection The Grammar Rules Section
2998@cindex grammar rules section
2999@cindex rules section for grammar
3000
3001The @dfn{grammar rules} section contains one or more Bison grammar
3002rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3003
3004There must always be at least one grammar rule, and the first
3005@samp{%%} (which precedes the grammar rules) may never be omitted even
3006if it is the first thing in the file.
3007
38a92d50 3008@node Epilogue
75f5aaea 3009@subsection The epilogue
bfa74976 3010@cindex additional C code section
75f5aaea 3011@cindex epilogue
bfa74976
RS
3012@cindex C code, section for additional
3013
08e49d20
PE
3014The @var{Epilogue} is copied verbatim to the end of the parser file, just as
3015the @var{Prologue} is copied to the beginning. This is the most convenient
342b8b6e
AD
3016place to put anything that you want to have in the parser file but which need
3017not come before the definition of @code{yyparse}. For example, the
38a92d50
PE
3018definitions of @code{yylex} and @code{yyerror} often go here. Because
3019C requires functions to be declared before being used, you often need
3020to declare functions like @code{yylex} and @code{yyerror} in the Prologue,
e4f85c39 3021even if you define them in the Epilogue.
75f5aaea 3022@xref{Interface, ,Parser C-Language Interface}.
bfa74976
RS
3023
3024If the last section is empty, you may omit the @samp{%%} that separates it
3025from the grammar rules.
3026
f8e1c9e5
AD
3027The Bison parser itself contains many macros and identifiers whose names
3028start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3029any such names (except those documented in this manual) in the epilogue
3030of the grammar file.
bfa74976 3031
342b8b6e 3032@node Symbols
bfa74976
RS
3033@section Symbols, Terminal and Nonterminal
3034@cindex nonterminal symbol
3035@cindex terminal symbol
3036@cindex token type
3037@cindex symbol
3038
3039@dfn{Symbols} in Bison grammars represent the grammatical classifications
3040of the language.
3041
3042A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3043class of syntactically equivalent tokens. You use the symbol in grammar
3044rules to mean that a token in that class is allowed. The symbol is
3045represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3046function returns a token type code to indicate what kind of token has
3047been read. You don't need to know what the code value is; you can use
3048the symbol to stand for it.
bfa74976 3049
f8e1c9e5
AD
3050A @dfn{nonterminal symbol} stands for a class of syntactically
3051equivalent groupings. The symbol name is used in writing grammar rules.
3052By convention, it should be all lower case.
bfa74976
RS
3053
3054Symbol names can contain letters, digits (not at the beginning),
3055underscores and periods. Periods make sense only in nonterminals.
3056
931c7513 3057There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3058
3059@itemize @bullet
3060@item
3061A @dfn{named token type} is written with an identifier, like an
c827f760 3062identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3063such name must be defined with a Bison declaration such as
3064@code{%token}. @xref{Token Decl, ,Token Type Names}.
3065
3066@item
3067@cindex character token
3068@cindex literal token
3069@cindex single-character literal
931c7513
RS
3070A @dfn{character token type} (or @dfn{literal character token}) is
3071written in the grammar using the same syntax used in C for character
3072constants; for example, @code{'+'} is a character token type. A
3073character token type doesn't need to be declared unless you need to
3074specify its semantic value data type (@pxref{Value Type, ,Data Types of
3075Semantic Values}), associativity, or precedence (@pxref{Precedence,
3076,Operator Precedence}).
bfa74976
RS
3077
3078By convention, a character token type is used only to represent a
3079token that consists of that particular character. Thus, the token
3080type @code{'+'} is used to represent the character @samp{+} as a
3081token. Nothing enforces this convention, but if you depart from it,
3082your program will confuse other readers.
3083
3084All the usual escape sequences used in character literals in C can be
3085used in Bison as well, but you must not use the null character as a
72d2299c
PE
3086character literal because its numeric code, zero, signifies
3087end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3088for @code{yylex}}). Also, unlike standard C, trigraphs have no
3089special meaning in Bison character literals, nor is backslash-newline
3090allowed.
931c7513
RS
3091
3092@item
3093@cindex string token
3094@cindex literal string token
9ecbd125 3095@cindex multicharacter literal
931c7513
RS
3096A @dfn{literal string token} is written like a C string constant; for
3097example, @code{"<="} is a literal string token. A literal string token
3098doesn't need to be declared unless you need to specify its semantic
14ded682 3099value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3100(@pxref{Precedence}).
3101
3102You can associate the literal string token with a symbolic name as an
3103alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3104Declarations}). If you don't do that, the lexical analyzer has to
3105retrieve the token number for the literal string token from the
3106@code{yytname} table (@pxref{Calling Convention}).
3107
c827f760 3108@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3109
3110By convention, a literal string token is used only to represent a token
3111that consists of that particular string. Thus, you should use the token
3112type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3113does not enforce this convention, but if you depart from it, people who
931c7513
RS
3114read your program will be confused.
3115
3116All the escape sequences used in string literals in C can be used in
92ac3705
PE
3117Bison as well, except that you must not use a null character within a
3118string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3119meaning in Bison string literals, nor is backslash-newline allowed. A
3120literal string token must contain two or more characters; for a token
3121containing just one character, use a character token (see above).
bfa74976
RS
3122@end itemize
3123
3124How you choose to write a terminal symbol has no effect on its
3125grammatical meaning. That depends only on where it appears in rules and
3126on when the parser function returns that symbol.
3127
72d2299c
PE
3128The value returned by @code{yylex} is always one of the terminal
3129symbols, except that a zero or negative value signifies end-of-input.
3130Whichever way you write the token type in the grammar rules, you write
3131it the same way in the definition of @code{yylex}. The numeric code
3132for a character token type is simply the positive numeric code of the
3133character, so @code{yylex} can use the identical value to generate the
3134requisite code, though you may need to convert it to @code{unsigned
3135char} to avoid sign-extension on hosts where @code{char} is signed.
3136Each named token type becomes a C macro in
bfa74976 3137the parser file, so @code{yylex} can use the name to stand for the code.
13863333 3138(This is why periods don't make sense in terminal symbols.)
bfa74976
RS
3139@xref{Calling Convention, ,Calling Convention for @code{yylex}}.
3140
3141If @code{yylex} is defined in a separate file, you need to arrange for the
3142token-type macro definitions to be available there. Use the @samp{-d}
3143option when you run Bison, so that it will write these macro definitions
3144into a separate header file @file{@var{name}.tab.h} which you can include
3145in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3146
72d2299c 3147If you want to write a grammar that is portable to any Standard C
9d9b8b70 3148host, you must use only nonnull character tokens taken from the basic
c827f760 3149execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3150digits, the 52 lower- and upper-case English letters, and the
3151characters in the following C-language string:
3152
3153@example
3154"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3155@end example
3156
f8e1c9e5
AD
3157The @code{yylex} function and Bison must use a consistent character set
3158and encoding for character tokens. For example, if you run Bison in an
3159@acronym{ASCII} environment, but then compile and run the resulting
3160program in an environment that uses an incompatible character set like
3161@acronym{EBCDIC}, the resulting program may not work because the tables
3162generated by Bison will assume @acronym{ASCII} numeric values for
3163character tokens. It is standard practice for software distributions to
3164contain C source files that were generated by Bison in an
3165@acronym{ASCII} environment, so installers on platforms that are
3166incompatible with @acronym{ASCII} must rebuild those files before
3167compiling them.
e966383b 3168
bfa74976
RS
3169The symbol @code{error} is a terminal symbol reserved for error recovery
3170(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3171In particular, @code{yylex} should never return this value. The default
3172value of the error token is 256, unless you explicitly assigned 256 to
3173one of your tokens with a @code{%token} declaration.
bfa74976 3174
342b8b6e 3175@node Rules
bfa74976
RS
3176@section Syntax of Grammar Rules
3177@cindex rule syntax
3178@cindex grammar rule syntax
3179@cindex syntax of grammar rules
3180
3181A Bison grammar rule has the following general form:
3182
3183@example
e425e872 3184@group
bfa74976
RS
3185@var{result}: @var{components}@dots{}
3186 ;
e425e872 3187@end group
bfa74976
RS
3188@end example
3189
3190@noindent
9ecbd125 3191where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3192and @var{components} are various terminal and nonterminal symbols that
13863333 3193are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3194
3195For example,
3196
3197@example
3198@group
3199exp: exp '+' exp
3200 ;
3201@end group
3202@end example
3203
3204@noindent
3205says that two groupings of type @code{exp}, with a @samp{+} token in between,
3206can be combined into a larger grouping of type @code{exp}.
3207
72d2299c
PE
3208White space in rules is significant only to separate symbols. You can add
3209extra white space as you wish.
bfa74976
RS
3210
3211Scattered among the components can be @var{actions} that determine
3212the semantics of the rule. An action looks like this:
3213
3214@example
3215@{@var{C statements}@}
3216@end example
3217
3218@noindent
287c78f6
PE
3219@cindex braced code
3220This is an example of @dfn{braced code}, that is, C code surrounded by
3221braces, much like a compound statement in C@. Braced code can contain
3222any sequence of C tokens, so long as its braces are balanced. Bison
3223does not check the braced code for correctness directly; it merely
3224copies the code to the output file, where the C compiler can check it.
3225
3226Within braced code, the balanced-brace count is not affected by braces
3227within comments, string literals, or character constants, but it is
3228affected by the C digraphs @samp{<%} and @samp{%>} that represent
3229braces. At the top level braced code must be terminated by @samp{@}}
3230and not by a digraph. Bison does not look for trigraphs, so if braced
3231code uses trigraphs you should ensure that they do not affect the
3232nesting of braces or the boundaries of comments, string literals, or
3233character constants.
3234
bfa74976
RS
3235Usually there is only one action and it follows the components.
3236@xref{Actions}.
3237
3238@findex |
3239Multiple rules for the same @var{result} can be written separately or can
3240be joined with the vertical-bar character @samp{|} as follows:
3241
bfa74976
RS
3242@example
3243@group
3244@var{result}: @var{rule1-components}@dots{}
3245 | @var{rule2-components}@dots{}
3246 @dots{}
3247 ;
3248@end group
3249@end example
bfa74976
RS
3250
3251@noindent
3252They are still considered distinct rules even when joined in this way.
3253
3254If @var{components} in a rule is empty, it means that @var{result} can
3255match the empty string. For example, here is how to define a
3256comma-separated sequence of zero or more @code{exp} groupings:
3257
3258@example
3259@group
3260expseq: /* empty */
3261 | expseq1
3262 ;
3263@end group
3264
3265@group
3266expseq1: exp
3267 | expseq1 ',' exp
3268 ;
3269@end group
3270@end example
3271
3272@noindent
3273It is customary to write a comment @samp{/* empty */} in each rule
3274with no components.
3275
342b8b6e 3276@node Recursion
bfa74976
RS
3277@section Recursive Rules
3278@cindex recursive rule
3279
f8e1c9e5
AD
3280A rule is called @dfn{recursive} when its @var{result} nonterminal
3281appears also on its right hand side. Nearly all Bison grammars need to
3282use recursion, because that is the only way to define a sequence of any
3283number of a particular thing. Consider this recursive definition of a
9ecbd125 3284comma-separated sequence of one or more expressions:
bfa74976
RS
3285
3286@example
3287@group
3288expseq1: exp
3289 | expseq1 ',' exp
3290 ;
3291@end group
3292@end example
3293
3294@cindex left recursion
3295@cindex right recursion
3296@noindent
3297Since the recursive use of @code{expseq1} is the leftmost symbol in the
3298right hand side, we call this @dfn{left recursion}. By contrast, here
3299the same construct is defined using @dfn{right recursion}:
3300
3301@example
3302@group
3303expseq1: exp
3304 | exp ',' expseq1
3305 ;
3306@end group
3307@end example
3308
3309@noindent
ec3bc396
AD
3310Any kind of sequence can be defined using either left recursion or right
3311recursion, but you should always use left recursion, because it can
3312parse a sequence of any number of elements with bounded stack space.
3313Right recursion uses up space on the Bison stack in proportion to the
3314number of elements in the sequence, because all the elements must be
3315shifted onto the stack before the rule can be applied even once.
3316@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3317of this.
bfa74976
RS
3318
3319@cindex mutual recursion
3320@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3321rule does not appear directly on its right hand side, but does appear
3322in rules for other nonterminals which do appear on its right hand
13863333 3323side.
bfa74976
RS
3324
3325For example:
3326
3327@example
3328@group
3329expr: primary
3330 | primary '+' primary
3331 ;
3332@end group
3333
3334@group
3335primary: constant
3336 | '(' expr ')'
3337 ;
3338@end group
3339@end example
3340
3341@noindent
3342defines two mutually-recursive nonterminals, since each refers to the
3343other.
3344
342b8b6e 3345@node Semantics
bfa74976
RS
3346@section Defining Language Semantics
3347@cindex defining language semantics
13863333 3348@cindex language semantics, defining
bfa74976
RS
3349
3350The grammar rules for a language determine only the syntax. The semantics
3351are determined by the semantic values associated with various tokens and
3352groupings, and by the actions taken when various groupings are recognized.
3353
3354For example, the calculator calculates properly because the value
3355associated with each expression is the proper number; it adds properly
3356because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3357the numbers associated with @var{x} and @var{y}.
3358
3359@menu
3360* Value Type:: Specifying one data type for all semantic values.
3361* Multiple Types:: Specifying several alternative data types.
3362* Actions:: An action is the semantic definition of a grammar rule.
3363* Action Types:: Specifying data types for actions to operate on.
3364* Mid-Rule Actions:: Most actions go at the end of a rule.
3365 This says when, why and how to use the exceptional
3366 action in the middle of a rule.
3367@end menu
3368
342b8b6e 3369@node Value Type
bfa74976
RS
3370@subsection Data Types of Semantic Values
3371@cindex semantic value type
3372@cindex value type, semantic
3373@cindex data types of semantic values
3374@cindex default data type
3375
3376In a simple program it may be sufficient to use the same data type for
3377the semantic values of all language constructs. This was true in the
c827f760 3378@acronym{RPN} and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3379Notation Calculator}).
bfa74976 3380
ddc8ede1
PE
3381Bison normally uses the type @code{int} for semantic values if your
3382program uses the same data type for all language constructs. To
bfa74976
RS
3383specify some other type, define @code{YYSTYPE} as a macro, like this:
3384
3385@example
3386#define YYSTYPE double
3387@end example
3388
3389@noindent
50cce58e
PE
3390@code{YYSTYPE}'s replacement list should be a type name
3391that does not contain parentheses or square brackets.
342b8b6e 3392This macro definition must go in the prologue of the grammar file
75f5aaea 3393(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3394
342b8b6e 3395@node Multiple Types
bfa74976
RS
3396@subsection More Than One Value Type
3397
3398In most programs, you will need different data types for different kinds
3399of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3400@code{int} or @code{long int}, while a string constant needs type
3401@code{char *}, and an identifier might need a pointer to an entry in the
3402symbol table.
bfa74976
RS
3403
3404To use more than one data type for semantic values in one parser, Bison
3405requires you to do two things:
3406
3407@itemize @bullet
3408@item
ddc8ede1 3409Specify the entire collection of possible data types, either by using the
704a47c4 3410@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3411Value Types}), or by using a @code{typedef} or a @code{#define} to
3412define @code{YYSTYPE} to be a union type whose member names are
3413the type tags.
bfa74976
RS
3414
3415@item
14ded682
AD
3416Choose one of those types for each symbol (terminal or nonterminal) for
3417which semantic values are used. This is done for tokens with the
3418@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3419and for groupings with the @code{%type} Bison declaration (@pxref{Type
3420Decl, ,Nonterminal Symbols}).
bfa74976
RS
3421@end itemize
3422
342b8b6e 3423@node Actions
bfa74976
RS
3424@subsection Actions
3425@cindex action
3426@vindex $$
3427@vindex $@var{n}
3428
3429An action accompanies a syntactic rule and contains C code to be executed
3430each time an instance of that rule is recognized. The task of most actions
3431is to compute a semantic value for the grouping built by the rule from the
3432semantic values associated with tokens or smaller groupings.
3433
287c78f6
PE
3434An action consists of braced code containing C statements, and can be
3435placed at any position in the rule;
704a47c4
AD
3436it is executed at that position. Most rules have just one action at the
3437end of the rule, following all the components. Actions in the middle of
3438a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3439Actions, ,Actions in Mid-Rule}).
bfa74976
RS
3440
3441The C code in an action can refer to the semantic values of the components
3442matched by the rule with the construct @code{$@var{n}}, which stands for
3443the value of the @var{n}th component. The semantic value for the grouping
0cc3da3a
PE
3444being constructed is @code{$$}. Bison translates both of these
3445constructs into expressions of the appropriate type when it copies the
3446actions into the parser file. @code{$$} is translated to a modifiable
3447lvalue, so it can be assigned to.
bfa74976
RS
3448
3449Here is a typical example:
3450
3451@example
3452@group
3453exp: @dots{}
3454 | exp '+' exp
3455 @{ $$ = $1 + $3; @}
3456@end group
3457@end example
3458
3459@noindent
3460This rule constructs an @code{exp} from two smaller @code{exp} groupings
3461connected by a plus-sign token. In the action, @code{$1} and @code{$3}
3462refer to the semantic values of the two component @code{exp} groupings,
3463which are the first and third symbols on the right hand side of the rule.
3464The sum is stored into @code{$$} so that it becomes the semantic value of
3465the addition-expression just recognized by the rule. If there were a
3466useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3467referred to as @code{$2}.
bfa74976 3468
3ded9a63
AD
3469Note that the vertical-bar character @samp{|} is really a rule
3470separator, and actions are attached to a single rule. This is a
3471difference with tools like Flex, for which @samp{|} stands for either
3472``or'', or ``the same action as that of the next rule''. In the
3473following example, the action is triggered only when @samp{b} is found:
3474
3475@example
3476@group
3477a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3478@end group
3479@end example
3480
bfa74976
RS
3481@cindex default action
3482If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3483@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3484becomes the value of the whole rule. Of course, the default action is
3485valid only if the two data types match. There is no meaningful default
3486action for an empty rule; every empty rule must have an explicit action
3487unless the rule's value does not matter.
bfa74976
RS
3488
3489@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3490to tokens and groupings on the stack @emph{before} those that match the
3491current rule. This is a very risky practice, and to use it reliably
3492you must be certain of the context in which the rule is applied. Here
3493is a case in which you can use this reliably:
3494
3495@example
3496@group
3497foo: expr bar '+' expr @{ @dots{} @}
3498 | expr bar '-' expr @{ @dots{} @}
3499 ;
3500@end group
3501
3502@group
3503bar: /* empty */
3504 @{ previous_expr = $0; @}
3505 ;
3506@end group
3507@end example
3508
3509As long as @code{bar} is used only in the fashion shown here, @code{$0}
3510always refers to the @code{expr} which precedes @code{bar} in the
3511definition of @code{foo}.
3512
32c29292 3513@vindex yylval
742e4900 3514It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3515any, from a semantic action.
3516This semantic value is stored in @code{yylval}.
3517@xref{Action Features, ,Special Features for Use in Actions}.
3518
342b8b6e 3519@node Action Types
bfa74976
RS
3520@subsection Data Types of Values in Actions
3521@cindex action data types
3522@cindex data types in actions
3523
3524If you have chosen a single data type for semantic values, the @code{$$}
3525and @code{$@var{n}} constructs always have that data type.
3526
3527If you have used @code{%union} to specify a variety of data types, then you
3528must declare a choice among these types for each terminal or nonterminal
3529symbol that can have a semantic value. Then each time you use @code{$$} or
3530@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3531in the rule. In this example,
bfa74976
RS
3532
3533@example
3534@group
3535exp: @dots{}
3536 | exp '+' exp
3537 @{ $$ = $1 + $3; @}
3538@end group
3539@end example
3540
3541@noindent
3542@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3543have the data type declared for the nonterminal symbol @code{exp}. If
3544@code{$2} were used, it would have the data type declared for the
e0c471a9 3545terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3546
3547Alternatively, you can specify the data type when you refer to the value,
3548by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3549reference. For example, if you have defined types as shown here:
3550
3551@example
3552@group
3553%union @{
3554 int itype;
3555 double dtype;
3556@}
3557@end group
3558@end example
3559
3560@noindent
3561then you can write @code{$<itype>1} to refer to the first subunit of the
3562rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3563
342b8b6e 3564@node Mid-Rule Actions
bfa74976
RS
3565@subsection Actions in Mid-Rule
3566@cindex actions in mid-rule
3567@cindex mid-rule actions
3568
3569Occasionally it is useful to put an action in the middle of a rule.
3570These actions are written just like usual end-of-rule actions, but they
3571are executed before the parser even recognizes the following components.
3572
3573A mid-rule action may refer to the components preceding it using
3574@code{$@var{n}}, but it may not refer to subsequent components because
3575it is run before they are parsed.
3576
3577The mid-rule action itself counts as one of the components of the rule.
3578This makes a difference when there is another action later in the same rule
3579(and usually there is another at the end): you have to count the actions
3580along with the symbols when working out which number @var{n} to use in
3581@code{$@var{n}}.
3582
3583The mid-rule action can also have a semantic value. The action can set
3584its value with an assignment to @code{$$}, and actions later in the rule
3585can refer to the value using @code{$@var{n}}. Since there is no symbol
3586to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3587in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3588specify a data type each time you refer to this value.
bfa74976
RS
3589
3590There is no way to set the value of the entire rule with a mid-rule
3591action, because assignments to @code{$$} do not have that effect. The
3592only way to set the value for the entire rule is with an ordinary action
3593at the end of the rule.
3594
3595Here is an example from a hypothetical compiler, handling a @code{let}
3596statement that looks like @samp{let (@var{variable}) @var{statement}} and
3597serves to create a variable named @var{variable} temporarily for the
3598duration of @var{statement}. To parse this construct, we must put
3599@var{variable} into the symbol table while @var{statement} is parsed, then
3600remove it afterward. Here is how it is done:
3601
3602@example
3603@group
3604stmt: LET '(' var ')'
3605 @{ $<context>$ = push_context ();
3606 declare_variable ($3); @}
3607 stmt @{ $$ = $6;
3608 pop_context ($<context>5); @}
3609@end group
3610@end example
3611
3612@noindent
3613As soon as @samp{let (@var{variable})} has been recognized, the first
3614action is run. It saves a copy of the current semantic context (the
3615list of accessible variables) as its semantic value, using alternative
3616@code{context} in the data-type union. Then it calls
3617@code{declare_variable} to add the new variable to that list. Once the
3618first action is finished, the embedded statement @code{stmt} can be
3619parsed. Note that the mid-rule action is component number 5, so the
3620@samp{stmt} is component number 6.
3621
3622After the embedded statement is parsed, its semantic value becomes the
3623value of the entire @code{let}-statement. Then the semantic value from the
3624earlier action is used to restore the prior list of variables. This
3625removes the temporary @code{let}-variable from the list so that it won't
3626appear to exist while the rest of the program is parsed.
3627
841a7737
JD
3628@findex %destructor
3629@cindex discarded symbols, mid-rule actions
3630@cindex error recovery, mid-rule actions
3631In the above example, if the parser initiates error recovery (@pxref{Error
3632Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3633it might discard the previous semantic context @code{$<context>5} without
3634restoring it.
3635Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3636Discarded Symbols}).
ec5479ce
JD
3637However, Bison currently provides no means to declare a destructor specific to
3638a particular mid-rule action's semantic value.
841a7737
JD
3639
3640One solution is to bury the mid-rule action inside a nonterminal symbol and to
3641declare a destructor for that symbol:
3642
3643@example
3644@group
3645%type <context> let
3646%destructor @{ pop_context ($$); @} let
3647
3648%%
3649
3650stmt: let stmt
3651 @{ $$ = $2;
3652 pop_context ($1); @}
3653 ;
3654
3655let: LET '(' var ')'
3656 @{ $$ = push_context ();
3657 declare_variable ($3); @}
3658 ;
3659
3660@end group
3661@end example
3662
3663@noindent
3664Note that the action is now at the end of its rule.
3665Any mid-rule action can be converted to an end-of-rule action in this way, and
3666this is what Bison actually does to implement mid-rule actions.
3667
bfa74976
RS
3668Taking action before a rule is completely recognized often leads to
3669conflicts since the parser must commit to a parse in order to execute the
3670action. For example, the following two rules, without mid-rule actions,
3671can coexist in a working parser because the parser can shift the open-brace
3672token and look at what follows before deciding whether there is a
3673declaration or not:
3674
3675@example
3676@group
3677compound: '@{' declarations statements '@}'
3678 | '@{' statements '@}'
3679 ;
3680@end group
3681@end example
3682
3683@noindent
3684But when we add a mid-rule action as follows, the rules become nonfunctional:
3685
3686@example
3687@group
3688compound: @{ prepare_for_local_variables (); @}
3689 '@{' declarations statements '@}'
3690@end group
3691@group
3692 | '@{' statements '@}'
3693 ;
3694@end group
3695@end example
3696
3697@noindent
3698Now the parser is forced to decide whether to run the mid-rule action
3699when it has read no farther than the open-brace. In other words, it
3700must commit to using one rule or the other, without sufficient
3701information to do it correctly. (The open-brace token is what is called
742e4900
JD
3702the @dfn{lookahead} token at this time, since the parser is still
3703deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3704
3705You might think that you could correct the problem by putting identical
3706actions into the two rules, like this:
3707
3708@example
3709@group
3710compound: @{ prepare_for_local_variables (); @}
3711 '@{' declarations statements '@}'
3712 | @{ prepare_for_local_variables (); @}
3713 '@{' statements '@}'
3714 ;
3715@end group
3716@end example
3717
3718@noindent
3719But this does not help, because Bison does not realize that the two actions
3720are identical. (Bison never tries to understand the C code in an action.)
3721
3722If the grammar is such that a declaration can be distinguished from a
3723statement by the first token (which is true in C), then one solution which
3724does work is to put the action after the open-brace, like this:
3725
3726@example
3727@group
3728compound: '@{' @{ prepare_for_local_variables (); @}
3729 declarations statements '@}'
3730 | '@{' statements '@}'
3731 ;
3732@end group
3733@end example
3734
3735@noindent
3736Now the first token of the following declaration or statement,
3737which would in any case tell Bison which rule to use, can still do so.
3738
3739Another solution is to bury the action inside a nonterminal symbol which
3740serves as a subroutine:
3741
3742@example
3743@group
3744subroutine: /* empty */
3745 @{ prepare_for_local_variables (); @}
3746 ;
3747
3748@end group
3749
3750@group
3751compound: subroutine
3752 '@{' declarations statements '@}'
3753 | subroutine
3754 '@{' statements '@}'
3755 ;
3756@end group
3757@end example
3758
3759@noindent
3760Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3761deciding which rule for @code{compound} it will eventually use.
bfa74976 3762
342b8b6e 3763@node Locations
847bf1f5
AD
3764@section Tracking Locations
3765@cindex location
95923bd6
AD
3766@cindex textual location
3767@cindex location, textual
847bf1f5
AD
3768
3769Though grammar rules and semantic actions are enough to write a fully
72d2299c 3770functional parser, it can be useful to process some additional information,
3e259915
MA
3771especially symbol locations.
3772
704a47c4
AD
3773The way locations are handled is defined by providing a data type, and
3774actions to take when rules are matched.
847bf1f5
AD
3775
3776@menu
3777* Location Type:: Specifying a data type for locations.
3778* Actions and Locations:: Using locations in actions.
3779* Location Default Action:: Defining a general way to compute locations.
3780@end menu
3781
342b8b6e 3782@node Location Type
847bf1f5
AD
3783@subsection Data Type of Locations
3784@cindex data type of locations
3785@cindex default location type
3786
3787Defining a data type for locations is much simpler than for semantic values,
3788since all tokens and groupings always use the same type.
3789
50cce58e
PE
3790You can specify the type of locations by defining a macro called
3791@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3792defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3793When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3794four members:
3795
3796@example
6273355b 3797typedef struct YYLTYPE
847bf1f5
AD
3798@{
3799 int first_line;
3800 int first_column;
3801 int last_line;
3802 int last_column;
6273355b 3803@} YYLTYPE;
847bf1f5
AD
3804@end example
3805
cd48d21d
AD
3806At the beginning of the parsing, Bison initializes all these fields to 1
3807for @code{yylloc}.
3808
342b8b6e 3809@node Actions and Locations
847bf1f5
AD
3810@subsection Actions and Locations
3811@cindex location actions
3812@cindex actions, location
3813@vindex @@$
3814@vindex @@@var{n}
3815
3816Actions are not only useful for defining language semantics, but also for
3817describing the behavior of the output parser with locations.
3818
3819The most obvious way for building locations of syntactic groupings is very
72d2299c 3820similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3821constructs can be used to access the locations of the elements being matched.
3822The location of the @var{n}th component of the right hand side is
3823@code{@@@var{n}}, while the location of the left hand side grouping is
3824@code{@@$}.
3825
3e259915 3826Here is a basic example using the default data type for locations:
847bf1f5
AD
3827
3828@example
3829@group
3830exp: @dots{}
3e259915 3831 | exp '/' exp
847bf1f5 3832 @{
3e259915
MA
3833 @@$.first_column = @@1.first_column;
3834 @@$.first_line = @@1.first_line;
847bf1f5
AD
3835 @@$.last_column = @@3.last_column;
3836 @@$.last_line = @@3.last_line;
3e259915
MA
3837 if ($3)
3838 $$ = $1 / $3;
3839 else
3840 @{
3841 $$ = 1;
4e03e201
AD
3842 fprintf (stderr,
3843 "Division by zero, l%d,c%d-l%d,c%d",
3844 @@3.first_line, @@3.first_column,
3845 @@3.last_line, @@3.last_column);
3e259915 3846 @}
847bf1f5
AD
3847 @}
3848@end group
3849@end example
3850
3e259915 3851As for semantic values, there is a default action for locations that is
72d2299c 3852run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3853beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3854last symbol.
3e259915 3855
72d2299c 3856With this default action, the location tracking can be fully automatic. The
3e259915
MA
3857example above simply rewrites this way:
3858
3859@example
3860@group
3861exp: @dots{}
3862 | exp '/' exp
3863 @{
3864 if ($3)
3865 $$ = $1 / $3;
3866 else
3867 @{
3868 $$ = 1;
4e03e201
AD
3869 fprintf (stderr,
3870 "Division by zero, l%d,c%d-l%d,c%d",
3871 @@3.first_line, @@3.first_column,
3872 @@3.last_line, @@3.last_column);
3e259915
MA
3873 @}
3874 @}
3875@end group
3876@end example
847bf1f5 3877
32c29292 3878@vindex yylloc
742e4900 3879It is also possible to access the location of the lookahead token, if any,
32c29292
JD
3880from a semantic action.
3881This location is stored in @code{yylloc}.
3882@xref{Action Features, ,Special Features for Use in Actions}.
3883
342b8b6e 3884@node Location Default Action
847bf1f5
AD
3885@subsection Default Action for Locations
3886@vindex YYLLOC_DEFAULT
8710fc41 3887@cindex @acronym{GLR} parsers and @code{YYLLOC_DEFAULT}
847bf1f5 3888
72d2299c 3889Actually, actions are not the best place to compute locations. Since
704a47c4
AD
3890locations are much more general than semantic values, there is room in
3891the output parser to redefine the default action to take for each
72d2299c 3892rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
3893matched, before the associated action is run. It is also invoked
3894while processing a syntax error, to compute the error's location.
8710fc41
JD
3895Before reporting an unresolvable syntactic ambiguity, a @acronym{GLR}
3896parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
3897of that ambiguity.
847bf1f5 3898
3e259915 3899Most of the time, this macro is general enough to suppress location
79282c6c 3900dedicated code from semantic actions.
847bf1f5 3901
72d2299c 3902The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 3903the location of the grouping (the result of the computation). When a
766de5eb 3904rule is matched, the second parameter identifies locations of
96b93a3d 3905all right hand side elements of the rule being matched, and the third
8710fc41
JD
3906parameter is the size of the rule's right hand side.
3907When a @acronym{GLR} parser reports an ambiguity, which of multiple candidate
3908right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
3909When processing a syntax error, the second parameter identifies locations
3910of the symbols that were discarded during error processing, and the third
96b93a3d 3911parameter is the number of discarded symbols.
847bf1f5 3912
766de5eb 3913By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 3914
766de5eb 3915@smallexample
847bf1f5 3916@group
766de5eb
PE
3917# define YYLLOC_DEFAULT(Current, Rhs, N) \
3918 do \
3919 if (N) \
3920 @{ \
3921 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
3922 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
3923 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
3924 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
3925 @} \
3926 else \
3927 @{ \
3928 (Current).first_line = (Current).last_line = \
3929 YYRHSLOC(Rhs, 0).last_line; \
3930 (Current).first_column = (Current).last_column = \
3931 YYRHSLOC(Rhs, 0).last_column; \
3932 @} \
3933 while (0)
847bf1f5 3934@end group
766de5eb 3935@end smallexample
676385e2 3936
766de5eb
PE
3937where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
3938in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 3939just before the reduction when @var{k} and @var{n} are both zero.
676385e2 3940
3e259915 3941When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 3942
3e259915 3943@itemize @bullet
79282c6c 3944@item
72d2299c 3945All arguments are free of side-effects. However, only the first one (the
3e259915 3946result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 3947
3e259915 3948@item
766de5eb
PE
3949For consistency with semantic actions, valid indexes within the
3950right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
3951valid index, and it refers to the symbol just before the reduction.
3952During error processing @var{n} is always positive.
0ae99356
PE
3953
3954@item
3955Your macro should parenthesize its arguments, if need be, since the
3956actual arguments may not be surrounded by parentheses. Also, your
3957macro should expand to something that can be used as a single
3958statement when it is followed by a semicolon.
3e259915 3959@end itemize
847bf1f5 3960
342b8b6e 3961@node Declarations
bfa74976
RS
3962@section Bison Declarations
3963@cindex declarations, Bison
3964@cindex Bison declarations
3965
3966The @dfn{Bison declarations} section of a Bison grammar defines the symbols
3967used in formulating the grammar and the data types of semantic values.
3968@xref{Symbols}.
3969
3970All token type names (but not single-character literal tokens such as
3971@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
3972declared if you need to specify which data type to use for the semantic
3973value (@pxref{Multiple Types, ,More Than One Value Type}).
3974
3975The first rule in the file also specifies the start symbol, by default.
3976If you want some other symbol to be the start symbol, you must declare
704a47c4
AD
3977it explicitly (@pxref{Language and Grammar, ,Languages and Context-Free
3978Grammars}).
bfa74976
RS
3979
3980@menu
b50d2359 3981* Require Decl:: Requiring a Bison version.
bfa74976
RS
3982* Token Decl:: Declaring terminal symbols.
3983* Precedence Decl:: Declaring terminals with precedence and associativity.
3984* Union Decl:: Declaring the set of all semantic value types.
3985* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 3986* Initial Action Decl:: Code run before parsing starts.
72f889cc 3987* Destructor Decl:: Declaring how symbols are freed.
d6328241 3988* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
3989* Start Decl:: Specifying the start symbol.
3990* Pure Decl:: Requesting a reentrant parser.
9987d1b3 3991* Push Decl:: Requesting a push parser.
bfa74976
RS
3992* Decl Summary:: Table of all Bison declarations.
3993@end menu
3994
b50d2359
AD
3995@node Require Decl
3996@subsection Require a Version of Bison
3997@cindex version requirement
3998@cindex requiring a version of Bison
3999@findex %require
4000
4001You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4002the requirement is not met, @command{bison} exits with an error (exit
4003status 63).
b50d2359
AD
4004
4005@example
4006%require "@var{version}"
4007@end example
4008
342b8b6e 4009@node Token Decl
bfa74976
RS
4010@subsection Token Type Names
4011@cindex declaring token type names
4012@cindex token type names, declaring
931c7513 4013@cindex declaring literal string tokens
bfa74976
RS
4014@findex %token
4015
4016The basic way to declare a token type name (terminal symbol) is as follows:
4017
4018@example
4019%token @var{name}
4020@end example
4021
4022Bison will convert this into a @code{#define} directive in
4023the parser, so that the function @code{yylex} (if it is in this file)
4024can use the name @var{name} to stand for this token type's code.
4025
14ded682
AD
4026Alternatively, you can use @code{%left}, @code{%right}, or
4027@code{%nonassoc} instead of @code{%token}, if you wish to specify
4028associativity and precedence. @xref{Precedence Decl, ,Operator
4029Precedence}.
bfa74976
RS
4030
4031You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4032a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4033following the token name:
bfa74976
RS
4034
4035@example
4036%token NUM 300
1452af69 4037%token XNUM 0x12d // a GNU extension
bfa74976
RS
4038@end example
4039
4040@noindent
4041It is generally best, however, to let Bison choose the numeric codes for
4042all token types. Bison will automatically select codes that don't conflict
e966383b 4043with each other or with normal characters.
bfa74976
RS
4044
4045In the event that the stack type is a union, you must augment the
4046@code{%token} or other token declaration to include the data type
704a47c4
AD
4047alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4048Than One Value Type}).
bfa74976
RS
4049
4050For example:
4051
4052@example
4053@group
4054%union @{ /* define stack type */
4055 double val;
4056 symrec *tptr;
4057@}
4058%token <val> NUM /* define token NUM and its type */
4059@end group
4060@end example
4061
931c7513
RS
4062You can associate a literal string token with a token type name by
4063writing the literal string at the end of a @code{%token}
4064declaration which declares the name. For example:
4065
4066@example
4067%token arrow "=>"
4068@end example
4069
4070@noindent
4071For example, a grammar for the C language might specify these names with
4072equivalent literal string tokens:
4073
4074@example
4075%token <operator> OR "||"
4076%token <operator> LE 134 "<="
4077%left OR "<="
4078@end example
4079
4080@noindent
4081Once you equate the literal string and the token name, you can use them
4082interchangeably in further declarations or the grammar rules. The
4083@code{yylex} function can use the token name or the literal string to
4084obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4085Syntax error messages passed to @code{yyerror} from the parser will reference
4086the literal string instead of the token name.
4087
4088The token numbered as 0 corresponds to end of file; the following line
4089allows for nicer error messages referring to ``end of file'' instead
4090of ``$end'':
4091
4092@example
4093%token END 0 "end of file"
4094@end example
931c7513 4095
342b8b6e 4096@node Precedence Decl
bfa74976
RS
4097@subsection Operator Precedence
4098@cindex precedence declarations
4099@cindex declaring operator precedence
4100@cindex operator precedence, declaring
4101
4102Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4103declare a token and specify its precedence and associativity, all at
4104once. These are called @dfn{precedence declarations}.
704a47c4
AD
4105@xref{Precedence, ,Operator Precedence}, for general information on
4106operator precedence.
bfa74976 4107
ab7f29f8 4108The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4109@code{%token}: either
4110
4111@example
4112%left @var{symbols}@dots{}
4113@end example
4114
4115@noindent
4116or
4117
4118@example
4119%left <@var{type}> @var{symbols}@dots{}
4120@end example
4121
4122And indeed any of these declarations serves the purposes of @code{%token}.
4123But in addition, they specify the associativity and relative precedence for
4124all the @var{symbols}:
4125
4126@itemize @bullet
4127@item
4128The associativity of an operator @var{op} determines how repeated uses
4129of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4130@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4131grouping @var{y} with @var{z} first. @code{%left} specifies
4132left-associativity (grouping @var{x} with @var{y} first) and
4133@code{%right} specifies right-associativity (grouping @var{y} with
4134@var{z} first). @code{%nonassoc} specifies no associativity, which
4135means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4136considered a syntax error.
4137
4138@item
4139The precedence of an operator determines how it nests with other operators.
4140All the tokens declared in a single precedence declaration have equal
4141precedence and nest together according to their associativity.
4142When two tokens declared in different precedence declarations associate,
4143the one declared later has the higher precedence and is grouped first.
4144@end itemize
4145
ab7f29f8
JD
4146For backward compatibility, there is a confusing difference between the
4147argument lists of @code{%token} and precedence declarations.
4148Only a @code{%token} can associate a literal string with a token type name.
4149A precedence declaration always interprets a literal string as a reference to a
4150separate token.
4151For example:
4152
4153@example
4154%left OR "<=" // Does not declare an alias.
4155%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4156@end example
4157
342b8b6e 4158@node Union Decl
bfa74976
RS
4159@subsection The Collection of Value Types
4160@cindex declaring value types
4161@cindex value types, declaring
4162@findex %union
4163
287c78f6
PE
4164The @code{%union} declaration specifies the entire collection of
4165possible data types for semantic values. The keyword @code{%union} is
4166followed by braced code containing the same thing that goes inside a
4167@code{union} in C@.
bfa74976
RS
4168
4169For example:
4170
4171@example
4172@group
4173%union @{
4174 double val;
4175 symrec *tptr;
4176@}
4177@end group
4178@end example
4179
4180@noindent
4181This says that the two alternative types are @code{double} and @code{symrec
4182*}. They are given names @code{val} and @code{tptr}; these names are used
4183in the @code{%token} and @code{%type} declarations to pick one of the types
4184for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4185
6273355b
PE
4186As an extension to @acronym{POSIX}, a tag is allowed after the
4187@code{union}. For example:
4188
4189@example
4190@group
4191%union value @{
4192 double val;
4193 symrec *tptr;
4194@}
4195@end group
4196@end example
4197
d6ca7905 4198@noindent
6273355b
PE
4199specifies the union tag @code{value}, so the corresponding C type is
4200@code{union value}. If you do not specify a tag, it defaults to
4201@code{YYSTYPE}.
4202
d6ca7905
PE
4203As another extension to @acronym{POSIX}, you may specify multiple
4204@code{%union} declarations; their contents are concatenated. However,
4205only the first @code{%union} declaration can specify a tag.
4206
6273355b 4207Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4208a semicolon after the closing brace.
4209
ddc8ede1
PE
4210Instead of @code{%union}, you can define and use your own union type
4211@code{YYSTYPE} if your grammar contains at least one
4212@samp{<@var{type}>} tag. For example, you can put the following into
4213a header file @file{parser.h}:
4214
4215@example
4216@group
4217union YYSTYPE @{
4218 double val;
4219 symrec *tptr;
4220@};
4221typedef union YYSTYPE YYSTYPE;
4222@end group
4223@end example
4224
4225@noindent
4226and then your grammar can use the following
4227instead of @code{%union}:
4228
4229@example
4230@group
4231%@{
4232#include "parser.h"
4233%@}
4234%type <val> expr
4235%token <tptr> ID
4236@end group
4237@end example
4238
342b8b6e 4239@node Type Decl
bfa74976
RS
4240@subsection Nonterminal Symbols
4241@cindex declaring value types, nonterminals
4242@cindex value types, nonterminals, declaring
4243@findex %type
4244
4245@noindent
4246When you use @code{%union} to specify multiple value types, you must
4247declare the value type of each nonterminal symbol for which values are
4248used. This is done with a @code{%type} declaration, like this:
4249
4250@example
4251%type <@var{type}> @var{nonterminal}@dots{}
4252@end example
4253
4254@noindent
704a47c4
AD
4255Here @var{nonterminal} is the name of a nonterminal symbol, and
4256@var{type} is the name given in the @code{%union} to the alternative
4257that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4258can give any number of nonterminal symbols in the same @code{%type}
4259declaration, if they have the same value type. Use spaces to separate
4260the symbol names.
bfa74976 4261
931c7513
RS
4262You can also declare the value type of a terminal symbol. To do this,
4263use the same @code{<@var{type}>} construction in a declaration for the
4264terminal symbol. All kinds of token declarations allow
4265@code{<@var{type}>}.
4266
18d192f0
AD
4267@node Initial Action Decl
4268@subsection Performing Actions before Parsing
4269@findex %initial-action
4270
4271Sometimes your parser needs to perform some initializations before
4272parsing. The @code{%initial-action} directive allows for such arbitrary
4273code.
4274
4275@deffn {Directive} %initial-action @{ @var{code} @}
4276@findex %initial-action
287c78f6 4277Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4278@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4279@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4280@code{%parse-param}.
18d192f0
AD
4281@end deffn
4282
451364ed
AD
4283For instance, if your locations use a file name, you may use
4284
4285@example
48b16bbc 4286%parse-param @{ char const *file_name @};
451364ed
AD
4287%initial-action
4288@{
4626a15d 4289 @@$.initialize (file_name);
451364ed
AD
4290@};
4291@end example
4292
18d192f0 4293
72f889cc
AD
4294@node Destructor Decl
4295@subsection Freeing Discarded Symbols
4296@cindex freeing discarded symbols
4297@findex %destructor
12e35840 4298@findex <*>
3ebecc24 4299@findex <>
a85284cf
AD
4300During error recovery (@pxref{Error Recovery}), symbols already pushed
4301on the stack and tokens coming from the rest of the file are discarded
4302until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4303or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4304symbols on the stack must be discarded. Even if the parser succeeds, it
4305must discard the start symbol.
258b75ca
PE
4306
4307When discarded symbols convey heap based information, this memory is
4308lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4309in traditional compilers, it is unacceptable for programs like shells or
4310protocol implementations that may parse and execute indefinitely.
258b75ca 4311
a85284cf
AD
4312The @code{%destructor} directive defines code that is called when a
4313symbol is automatically discarded.
72f889cc
AD
4314
4315@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4316@findex %destructor
287c78f6
PE
4317Invoke the braced @var{code} whenever the parser discards one of the
4318@var{symbols}.
4b367315 4319Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4320with the discarded symbol, and @code{@@$} designates its location.
4321The additional parser parameters are also available (@pxref{Parser Function, ,
4322The Parser Function @code{yyparse}}).
ec5479ce 4323
b2a0b7ca
JD
4324When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4325per-symbol @code{%destructor}.
4326You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4327tag among @var{symbols}.
b2a0b7ca 4328In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4329grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4330per-symbol @code{%destructor}.
4331
12e35840 4332Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4333(These default forms are experimental.
4334More user feedback will help to determine whether they should become permanent
4335features.)
3ebecc24 4336You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4337exactly one @code{%destructor} declaration in your grammar file.
4338The parser will invoke the @var{code} associated with one of these whenever it
4339discards any user-defined grammar symbol that has no per-symbol and no per-type
4340@code{%destructor}.
4341The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4342symbol for which you have formally declared a semantic type tag (@code{%type}
4343counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4344The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4345symbol that has no declared semantic type tag.
72f889cc
AD
4346@end deffn
4347
b2a0b7ca 4348@noindent
12e35840 4349For example:
72f889cc
AD
4350
4351@smallexample
ec5479ce
JD
4352%union @{ char *string; @}
4353%token <string> STRING1
4354%token <string> STRING2
4355%type <string> string1
4356%type <string> string2
b2a0b7ca
JD
4357%union @{ char character; @}
4358%token <character> CHR
4359%type <character> chr
12e35840
JD
4360%token TAGLESS
4361
b2a0b7ca 4362%destructor @{ @} <character>
12e35840
JD
4363%destructor @{ free ($$); @} <*>
4364%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4365%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4366@end smallexample
4367
4368@noindent
b2a0b7ca
JD
4369guarantees that, when the parser discards any user-defined symbol that has a
4370semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4371to @code{free} by default.
ec5479ce
JD
4372However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4373prints its line number to @code{stdout}.
4374It performs only the second @code{%destructor} in this case, so it invokes
4375@code{free} only once.
12e35840
JD
4376Finally, the parser merely prints a message whenever it discards any symbol,
4377such as @code{TAGLESS}, that has no semantic type tag.
4378
4379A Bison-generated parser invokes the default @code{%destructor}s only for
4380user-defined as opposed to Bison-defined symbols.
4381For example, the parser will not invoke either kind of default
4382@code{%destructor} for the special Bison-defined symbols @code{$accept},
4383@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4384none of which you can reference in your grammar.
4385It also will not invoke either for the @code{error} token (@pxref{Table of
4386Symbols, ,error}), which is always defined by Bison regardless of whether you
4387reference it in your grammar.
4388However, it may invoke one of them for the end token (token 0) if you
4389redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4390
4391@smallexample
4392%token END 0
4393@end smallexample
4394
12e35840
JD
4395@cindex actions in mid-rule
4396@cindex mid-rule actions
4397Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4398mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4399That is, Bison does not consider a mid-rule to have a semantic value if you do
4400not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4401@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4402rule.
4403However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4404@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4405
3508ce36
JD
4406@ignore
4407@noindent
4408In the future, it may be possible to redefine the @code{error} token as a
4409nonterminal that captures the discarded symbols.
4410In that case, the parser will invoke the default destructor for it as well.
4411@end ignore
4412
e757bb10
AD
4413@sp 1
4414
4415@cindex discarded symbols
4416@dfn{Discarded symbols} are the following:
4417
4418@itemize
4419@item
4420stacked symbols popped during the first phase of error recovery,
4421@item
4422incoming terminals during the second phase of error recovery,
4423@item
742e4900 4424the current lookahead and the entire stack (except the current
9d9b8b70 4425right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4426@item
4427the start symbol, when the parser succeeds.
e757bb10
AD
4428@end itemize
4429
9d9b8b70
PE
4430The parser can @dfn{return immediately} because of an explicit call to
4431@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4432exhaustion.
4433
29553547 4434Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4435error via @code{YYERROR} are not discarded automatically. As a rule
4436of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4437the memory.
e757bb10 4438
342b8b6e 4439@node Expect Decl
bfa74976
RS
4440@subsection Suppressing Conflict Warnings
4441@cindex suppressing conflict warnings
4442@cindex preventing warnings about conflicts
4443@cindex warnings, preventing
4444@cindex conflicts, suppressing warnings of
4445@findex %expect
d6328241 4446@findex %expect-rr
bfa74976
RS
4447
4448Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4449(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4450have harmless shift/reduce conflicts which are resolved in a predictable
4451way and would be difficult to eliminate. It is desirable to suppress
4452the warning about these conflicts unless the number of conflicts
4453changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4454
4455The declaration looks like this:
4456
4457@example
4458%expect @var{n}
4459@end example
4460
035aa4a0
PE
4461Here @var{n} is a decimal integer. The declaration says there should
4462be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4463Bison reports an error if the number of shift/reduce conflicts differs
4464from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4465
035aa4a0
PE
4466For normal @acronym{LALR}(1) parsers, reduce/reduce conflicts are more
4467serious, and should be eliminated entirely. Bison will always report
4468reduce/reduce conflicts for these parsers. With @acronym{GLR}
4469parsers, however, both kinds of conflicts are routine; otherwise,
4470there would be no need to use @acronym{GLR} parsing. Therefore, it is
4471also possible to specify an expected number of reduce/reduce conflicts
4472in @acronym{GLR} parsers, using the declaration:
d6328241
PH
4473
4474@example
4475%expect-rr @var{n}
4476@end example
4477
bfa74976
RS
4478In general, using @code{%expect} involves these steps:
4479
4480@itemize @bullet
4481@item
4482Compile your grammar without @code{%expect}. Use the @samp{-v} option
4483to get a verbose list of where the conflicts occur. Bison will also
4484print the number of conflicts.
4485
4486@item
4487Check each of the conflicts to make sure that Bison's default
4488resolution is what you really want. If not, rewrite the grammar and
4489go back to the beginning.
4490
4491@item
4492Add an @code{%expect} declaration, copying the number @var{n} from the
035aa4a0
PE
4493number which Bison printed. With @acronym{GLR} parsers, add an
4494@code{%expect-rr} declaration as well.
bfa74976
RS
4495@end itemize
4496
035aa4a0
PE
4497Now Bison will warn you if you introduce an unexpected conflict, but
4498will keep silent otherwise.
bfa74976 4499
342b8b6e 4500@node Start Decl
bfa74976
RS
4501@subsection The Start-Symbol
4502@cindex declaring the start symbol
4503@cindex start symbol, declaring
4504@cindex default start symbol
4505@findex %start
4506
4507Bison assumes by default that the start symbol for the grammar is the first
4508nonterminal specified in the grammar specification section. The programmer
4509may override this restriction with the @code{%start} declaration as follows:
4510
4511@example
4512%start @var{symbol}
4513@end example
4514
342b8b6e 4515@node Pure Decl
bfa74976
RS
4516@subsection A Pure (Reentrant) Parser
4517@cindex reentrant parser
4518@cindex pure parser
d9df47b6 4519@findex %define api.pure
bfa74976
RS
4520
4521A @dfn{reentrant} program is one which does not alter in the course of
4522execution; in other words, it consists entirely of @dfn{pure} (read-only)
4523code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4524for example, a nonreentrant program may not be safe to call from a signal
4525handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4526program must be called only within interlocks.
4527
70811b85 4528Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4529suitable for most uses, and it permits compatibility with Yacc. (The
4530standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4531statically allocated variables for communication with @code{yylex},
4532including @code{yylval} and @code{yylloc}.)
bfa74976 4533
70811b85 4534Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4535declaration @code{%define api.pure} says that you want the parser to be
70811b85 4536reentrant. It looks like this:
bfa74976
RS
4537
4538@example
d9df47b6 4539%define api.pure
bfa74976
RS
4540@end example
4541
70811b85
RS
4542The result is that the communication variables @code{yylval} and
4543@code{yylloc} become local variables in @code{yyparse}, and a different
4544calling convention is used for the lexical analyzer function
4545@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4546Parsers}, for the details of this. The variable @code{yynerrs}
4547becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4548of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4549Reporting Function @code{yyerror}}). The convention for calling
4550@code{yyparse} itself is unchanged.
4551
4552Whether the parser is pure has nothing to do with the grammar rules.
4553You can generate either a pure parser or a nonreentrant parser from any
4554valid grammar.
bfa74976 4555
9987d1b3
JD
4556@node Push Decl
4557@subsection A Push Parser
4558@cindex push parser
4559@cindex push parser
c373bf8b 4560@findex %define api.push_pull
9987d1b3 4561
59da312b
JD
4562(The current push parsing interface is experimental and may evolve.
4563More user feedback will help to stabilize it.)
4564
f4101aa6
AD
4565A pull parser is called once and it takes control until all its input
4566is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4567each time a new token is made available.
4568
f4101aa6 4569A push parser is typically useful when the parser is part of a
9987d1b3 4570main event loop in the client's application. This is typically
f4101aa6
AD
4571a requirement of a GUI, when the main event loop needs to be triggered
4572within a certain time period.
9987d1b3 4573
d782395d
JD
4574Normally, Bison generates a pull parser.
4575The following Bison declaration says that you want the parser to be a push
c373bf8b 4576parser (@pxref{Decl Summary,,%define api.push_pull}):
9987d1b3
JD
4577
4578@example
c373bf8b 4579%define api.push_pull "push"
9987d1b3
JD
4580@end example
4581
4582In almost all cases, you want to ensure that your push parser is also
4583a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4584time you should create an impure push parser is to have backwards
9987d1b3
JD
4585compatibility with the impure Yacc pull mode interface. Unless you know
4586what you are doing, your declarations should look like this:
4587
4588@example
d9df47b6 4589%define api.pure
c373bf8b 4590%define api.push_pull "push"
9987d1b3
JD
4591@end example
4592
f4101aa6
AD
4593There is a major notable functional difference between the pure push parser
4594and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4595many parser instances, of the same type of parser, in memory at the same time.
4596An impure push parser should only use one parser at a time.
4597
4598When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4599the generated parser. @code{yypstate} is a structure that the generated
4600parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4601function that will create a new parser instance. @code{yypstate_delete}
4602will free the resources associated with the corresponding parser instance.
f4101aa6 4603Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4604token is available to provide the parser. A trivial example
4605of using a pure push parser would look like this:
4606
4607@example
4608int status;
4609yypstate *ps = yypstate_new ();
4610do @{
4611 status = yypush_parse (ps, yylex (), NULL);
4612@} while (status == YYPUSH_MORE);
4613yypstate_delete (ps);
4614@end example
4615
4616If the user decided to use an impure push parser, a few things about
f4101aa6 4617the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4618a global variable instead of a variable in the @code{yypush_parse} function.
4619For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4620changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4621example would thus look like this:
4622
4623@example
4624extern int yychar;
4625int status;
4626yypstate *ps = yypstate_new ();
4627do @{
4628 yychar = yylex ();
4629 status = yypush_parse (ps);
4630@} while (status == YYPUSH_MORE);
4631yypstate_delete (ps);
4632@end example
4633
f4101aa6 4634That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4635for use by the next invocation of the @code{yypush_parse} function.
4636
f4101aa6 4637Bison also supports both the push parser interface along with the pull parser
9987d1b3 4638interface in the same generated parser. In order to get this functionality,
f4101aa6 4639you should replace the @code{%define api.push_pull "push"} declaration with the
c373bf8b
JD
4640@code{%define api.push_pull "both"} declaration. Doing this will create all of
4641the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4642and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4643would be used. However, the user should note that it is implemented in the
d782395d
JD
4644generated parser by calling @code{yypull_parse}.
4645This makes the @code{yyparse} function that is generated with the
c373bf8b 4646@code{%define api.push_pull "both"} declaration slower than the normal
d782395d
JD
4647@code{yyparse} function. If the user
4648calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4649stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4650and then @code{yypull_parse} the rest of the input stream. If you would like
4651to switch back and forth between between parsing styles, you would have to
4652write your own @code{yypull_parse} function that knows when to quit looking
4653for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4654like this:
4655
4656@example
4657yypstate *ps = yypstate_new ();
4658yypull_parse (ps); /* Will call the lexer */
4659yypstate_delete (ps);
4660@end example
4661
d9df47b6 4662Adding the @code{%define api.pure} declaration does exactly the same thing to
f4101aa6 4663the generated parser with @code{%define api.push_pull "both"} as it did for
c373bf8b 4664@code{%define api.push_pull "push"}.
9987d1b3 4665
342b8b6e 4666@node Decl Summary
bfa74976
RS
4667@subsection Bison Declaration Summary
4668@cindex Bison declaration summary
4669@cindex declaration summary
4670@cindex summary, Bison declaration
4671
d8988b2f 4672Here is a summary of the declarations used to define a grammar:
bfa74976 4673
18b519c0 4674@deffn {Directive} %union
bfa74976
RS
4675Declare the collection of data types that semantic values may have
4676(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4677@end deffn
bfa74976 4678
18b519c0 4679@deffn {Directive} %token
bfa74976
RS
4680Declare a terminal symbol (token type name) with no precedence
4681or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4682@end deffn
bfa74976 4683
18b519c0 4684@deffn {Directive} %right
bfa74976
RS
4685Declare a terminal symbol (token type name) that is right-associative
4686(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4687@end deffn
bfa74976 4688
18b519c0 4689@deffn {Directive} %left
bfa74976
RS
4690Declare a terminal symbol (token type name) that is left-associative
4691(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4692@end deffn
bfa74976 4693
18b519c0 4694@deffn {Directive} %nonassoc
bfa74976 4695Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4696(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4697Using it in a way that would be associative is a syntax error.
4698@end deffn
4699
91d2c560 4700@ifset defaultprec
39a06c25 4701@deffn {Directive} %default-prec
22fccf95 4702Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4703(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4704@end deffn
91d2c560 4705@end ifset
bfa74976 4706
18b519c0 4707@deffn {Directive} %type
bfa74976
RS
4708Declare the type of semantic values for a nonterminal symbol
4709(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4710@end deffn
bfa74976 4711
18b519c0 4712@deffn {Directive} %start
89cab50d
AD
4713Specify the grammar's start symbol (@pxref{Start Decl, ,The
4714Start-Symbol}).
18b519c0 4715@end deffn
bfa74976 4716
18b519c0 4717@deffn {Directive} %expect
bfa74976
RS
4718Declare the expected number of shift-reduce conflicts
4719(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4720@end deffn
4721
bfa74976 4722
d8988b2f
AD
4723@sp 1
4724@noindent
4725In order to change the behavior of @command{bison}, use the following
4726directives:
4727
148d66d8
JD
4728@deffn {Directive} %code @{@var{code}@}
4729@findex %code
4730This is the unqualified form of the @code{%code} directive.
8405b70c
PB
4731It inserts @var{code} verbatim at a language-dependent default location in the
4732output@footnote{The default location is actually skeleton-dependent;
4733 writers of non-standard skeletons however should choose the default location
4734 consistently with the behavior of the standard Bison skeletons.}.
148d66d8
JD
4735
4736@cindex Prologue
8405b70c 4737For C/C++, the default location is the parser source code
148d66d8
JD
4738file after the usual contents of the parser header file.
4739Thus, @code{%code} replaces the traditional Yacc prologue,
4740@code{%@{@var{code}%@}}, for most purposes.
4741For a detailed discussion, see @ref{Prologue Alternatives}.
4742
8405b70c 4743For Java, the default location is inside the parser class.
148d66d8
JD
4744
4745(Like all the Yacc prologue alternatives, this directive is experimental.
4746More user feedback will help to determine whether it should become a permanent
4747feature.)
4748@end deffn
4749
4750@deffn {Directive} %code @var{qualifier} @{@var{code}@}
4751This is the qualified form of the @code{%code} directive.
4752If you need to specify location-sensitive verbatim @var{code} that does not
4753belong at the default location selected by the unqualified @code{%code} form,
4754use this form instead.
4755
4756@var{qualifier} identifies the purpose of @var{code} and thus the location(s)
4757where Bison should generate it.
4758Not all values of @var{qualifier} are available for all target languages:
4759
4760@itemize @bullet
148d66d8 4761@item requires
793fbca5 4762@findex %code requires
148d66d8
JD
4763
4764@itemize @bullet
4765@item Language(s): C, C++
4766
4767@item Purpose: This is the best place to write dependency code required for
4768@code{YYSTYPE} and @code{YYLTYPE}.
4769In other words, it's the best place to define types referenced in @code{%union}
4770directives, and it's the best place to override Bison's default @code{YYSTYPE}
4771and @code{YYLTYPE} definitions.
4772
4773@item Location(s): The parser header file and the parser source code file
4774before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE} definitions.
4775@end itemize
4776
4777@item provides
4778@findex %code provides
4779
4780@itemize @bullet
4781@item Language(s): C, C++
4782
4783@item Purpose: This is the best place to write additional definitions and
4784declarations that should be provided to other modules.
4785
4786@item Location(s): The parser header file and the parser source code file after
4787the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and token definitions.
4788@end itemize
4789
4790@item top
4791@findex %code top
4792
4793@itemize @bullet
4794@item Language(s): C, C++
4795
4796@item Purpose: The unqualified @code{%code} or @code{%code requires} should
4797usually be more appropriate than @code{%code top}.
4798However, occasionally it is necessary to insert code much nearer the top of the
4799parser source code file.
4800For example:
4801
4802@smallexample
4803%code top @{
4804 #define _GNU_SOURCE
4805 #include <stdio.h>
4806@}
4807@end smallexample
4808
4809@item Location(s): Near the top of the parser source code file.
4810@end itemize
8405b70c 4811
148d66d8
JD
4812@item imports
4813@findex %code imports
4814
4815@itemize @bullet
4816@item Language(s): Java
4817
4818@item Purpose: This is the best place to write Java import directives.
4819
4820@item Location(s): The parser Java file after any Java package directive and
4821before any class definitions.
4822@end itemize
148d66d8
JD
4823@end itemize
4824
4825(Like all the Yacc prologue alternatives, this directive is experimental.
4826More user feedback will help to determine whether it should become a permanent
4827feature.)
4828
4829@cindex Prologue
4830For a detailed discussion of how to use @code{%code} in place of the
4831traditional Yacc prologue for C/C++, see @ref{Prologue Alternatives}.
4832@end deffn
4833
18b519c0 4834@deffn {Directive} %debug
4947ebdb
PE
4835In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
4836already defined, so that the debugging facilities are compiled.
18b519c0 4837@end deffn
ec3bc396 4838@xref{Tracing, ,Tracing Your Parser}.
d8988b2f 4839
c1d19e10
PB
4840@deffn {Directive} %define @var{variable}
4841@deffnx {Directive} %define @var{variable} "@var{value}"
9611cfa2
JD
4842Define a variable to adjust Bison's behavior.
4843The possible choices for @var{variable}, as well as their meanings, depend on
4844the selected target language and/or the parser skeleton (@pxref{Decl
ed4d67dc 4845Summary,,%language}, @pxref{Decl Summary,,%skeleton}).
9611cfa2
JD
4846
4847Bison will warn if a @var{variable} is defined multiple times.
4848
4849Omitting @code{"@var{value}"} is always equivalent to specifying it as
4850@code{""}.
4851
922bdd7f 4852Some @var{variable}s may be used as Booleans.
9611cfa2
JD
4853In this case, Bison will complain if the variable definition does not meet one
4854of the following four conditions:
4855
4856@enumerate
4857@item @code{"@var{value}"} is @code{"true"}
4858
4859@item @code{"@var{value}"} is omitted (or is @code{""}).
4860This is equivalent to @code{"true"}.
4861
4862@item @code{"@var{value}"} is @code{"false"}.
4863
4864@item @var{variable} is never defined.
4865In this case, Bison selects a default value, which may depend on the selected
4866target language and/or parser skeleton.
4867@end enumerate
148d66d8 4868
793fbca5
JD
4869Some of the accepted @var{variable}s are:
4870
4871@itemize @bullet
d9df47b6
JD
4872@item api.pure
4873@findex %define api.pure
4874
4875@itemize @bullet
4876@item Language(s): C
4877
4878@item Purpose: Request a pure (reentrant) parser program.
4879@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
4880
4881@item Accepted Values: Boolean
4882
4883@item Default Value: @code{"false"}
4884@end itemize
4885
c373bf8b
JD
4886@item api.push_pull
4887@findex %define api.push_pull
793fbca5
JD
4888
4889@itemize @bullet
4890@item Language(s): C (LALR(1) only)
4891
4892@item Purpose: Requests a pull parser, a push parser, or both.
d782395d 4893@xref{Push Decl, ,A Push Parser}.
59da312b
JD
4894(The current push parsing interface is experimental and may evolve.
4895More user feedback will help to stabilize it.)
793fbca5
JD
4896
4897@item Accepted Values: @code{"pull"}, @code{"push"}, @code{"both"}
4898
4899@item Default Value: @code{"pull"}
4900@end itemize
4901
31984206
JD
4902@item lr.keep_unreachable_states
4903@findex %define lr.keep_unreachable_states
4904
4905@itemize @bullet
4906@item Language(s): all
4907
4908@item Purpose: Requests that Bison allow unreachable parser states to remain in
4909the parser tables.
4910Bison considers a state to be unreachable if there exists no sequence of
4911transitions from the start state to that state.
4912A state can become unreachable during conflict resolution if Bison disables a
4913shift action leading to it from a predecessor state.
4914Keeping unreachable states is sometimes useful for analysis purposes, but they
4915are useless in the generated parser.
4916
4917@item Accepted Values: Boolean
4918
4919@item Default Value: @code{"false"}
4920
4921@item Caveats:
4922
4923@itemize @bullet
cff03fb2
JD
4924
4925@item Unreachable states may contain conflicts and may use rules not used in
4926any other state.
31984206
JD
4927Thus, keeping unreachable states may induce warnings that are irrelevant to
4928your parser's behavior, and it may eliminate warnings that are relevant.
4929Of course, the change in warnings may actually be relevant to a parser table
4930analysis that wants to keep unreachable states, so this behavior will likely
4931remain in future Bison releases.
4932
4933@item While Bison is able to remove unreachable states, it is not guaranteed to
4934remove other kinds of useless states.
4935Specifically, when Bison disables reduce actions during conflict resolution,
4936some goto actions may become useless, and thus some additional states may
4937become useless.
4938If Bison were to compute which goto actions were useless and then disable those
4939actions, it could identify such states as unreachable and then remove those
4940states.
4941However, Bison does not compute which goto actions are useless.
4942@end itemize
4943@end itemize
4944
793fbca5
JD
4945@item namespace
4946@findex %define namespace
4947
4948@itemize
4949@item Languages(s): C++
4950
4951@item Purpose: Specifies the namespace for the parser class.
4952For example, if you specify:
4953
4954@smallexample
4955%define namespace "foo::bar"
4956@end smallexample
4957
4958Bison uses @code{foo::bar} verbatim in references such as:
4959
4960@smallexample
4961foo::bar::parser::semantic_type
4962@end smallexample
4963
4964However, to open a namespace, Bison removes any leading @code{::} and then
4965splits on any remaining occurrences:
4966
4967@smallexample
4968namespace foo @{ namespace bar @{
4969 class position;
4970 class location;
4971@} @}
4972@end smallexample
4973
4974@item Accepted Values: Any absolute or relative C++ namespace reference without
4975a trailing @code{"::"}.
4976For example, @code{"foo"} or @code{"::foo::bar"}.
4977
4978@item Default Value: The value specified by @code{%name-prefix}, which defaults
4979to @code{yy}.
4980This usage of @code{%name-prefix} is for backward compatibility and can be
4981confusing since @code{%name-prefix} also specifies the textual prefix for the
4982lexical analyzer function.
4983Thus, if you specify @code{%name-prefix}, it is best to also specify
4984@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
4985lexical analyzer function.
4986For example, if you specify:
4987
4988@smallexample
4989%define namespace "foo"
4990%name-prefix "bar::"
4991@end smallexample
4992
4993The parser namespace is @code{foo} and @code{yylex} is referenced as
4994@code{bar::lex}.
4995@end itemize
4996@end itemize
4997
d782395d
JD
4998@end deffn
4999
18b519c0 5000@deffn {Directive} %defines
4bfd5e4e
PE
5001Write a header file containing macro definitions for the token type
5002names defined in the grammar as well as a few other declarations.
d8988b2f 5003If the parser output file is named @file{@var{name}.c} then this file
e0c471a9 5004is named @file{@var{name}.h}.
d8988b2f 5005
b321737f 5006For C parsers, the output header declares @code{YYSTYPE} unless
ddc8ede1
PE
5007@code{YYSTYPE} is already defined as a macro or you have used a
5008@code{<@var{type}>} tag without using @code{%union}.
5009Therefore, if you are using a @code{%union}
f8e1c9e5
AD
5010(@pxref{Multiple Types, ,More Than One Value Type}) with components that
5011require other definitions, or if you have defined a @code{YYSTYPE} macro
ddc8ede1 5012or type definition
f8e1c9e5
AD
5013(@pxref{Value Type, ,Data Types of Semantic Values}), you need to
5014arrange for these definitions to be propagated to all modules, e.g., by
5015putting them in a prerequisite header that is included both by your
5016parser and by any other module that needs @code{YYSTYPE}.
4bfd5e4e
PE
5017
5018Unless your parser is pure, the output header declares @code{yylval}
5019as an external variable. @xref{Pure Decl, ,A Pure (Reentrant)
5020Parser}.
5021
5022If you have also used locations, the output header declares
5023@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
ddc8ede1 5024the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations, ,Tracking
4bfd5e4e
PE
5025Locations}.
5026
f8e1c9e5
AD
5027This output file is normally essential if you wish to put the definition
5028of @code{yylex} in a separate source file, because @code{yylex}
5029typically needs to be able to refer to the above-mentioned declarations
5030and to the token type codes. @xref{Token Values, ,Semantic Values of
5031Tokens}.
9bc0dd67 5032
16dc6a9e
JD
5033@findex %code requires
5034@findex %code provides
5035If you have declared @code{%code requires} or @code{%code provides}, the output
5036header also contains their code.
148d66d8 5037@xref{Decl Summary, ,%code}.
592d0b1e
PB
5038@end deffn
5039
02975b9a
JD
5040@deffn {Directive} %defines @var{defines-file}
5041Same as above, but save in the file @var{defines-file}.
5042@end deffn
5043
18b519c0 5044@deffn {Directive} %destructor
258b75ca 5045Specify how the parser should reclaim the memory associated to
fa7e68c3 5046discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 5047@end deffn
72f889cc 5048
02975b9a 5049@deffn {Directive} %file-prefix "@var{prefix}"
d8988b2f
AD
5050Specify a prefix to use for all Bison output file names. The names are
5051chosen as if the input file were named @file{@var{prefix}.y}.
18b519c0 5052@end deffn
d8988b2f 5053
e6e704dc 5054@deffn {Directive} %language "@var{language}"
0e021770 5055Specify the programming language for the generated parser. Currently
59da312b 5056supported languages include C, C++, and Java.
e6e704dc 5057@var{language} is case-insensitive.
ed4d67dc
JD
5058
5059This directive is experimental and its effect may be modified in future
5060releases.
0e021770
PE
5061@end deffn
5062
18b519c0 5063@deffn {Directive} %locations
89cab50d
AD
5064Generate the code processing the locations (@pxref{Action Features,
5065,Special Features for Use in Actions}). This mode is enabled as soon as
5066the grammar uses the special @samp{@@@var{n}} tokens, but if your
5067grammar does not use it, using @samp{%locations} allows for more
6e649e65 5068accurate syntax error messages.
18b519c0 5069@end deffn
89cab50d 5070
02975b9a 5071@deffn {Directive} %name-prefix "@var{prefix}"
d8988b2f
AD
5072Rename the external symbols used in the parser so that they start with
5073@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
aa08666d 5074in C parsers
d8988b2f 5075is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
91e3ac9a 5076@code{yylval}, @code{yychar}, @code{yydebug}, and
f4101aa6
AD
5077(if locations are used) @code{yylloc}. If you use a push parser,
5078@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5079@code{yypstate_new} and @code{yypstate_delete} will
5080also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
793fbca5
JD
5081names become @code{c_parse}, @code{c_lex}, and so on.
5082For C++ parsers, see the @code{%define namespace} documentation in this
5083section.
aa08666d 5084@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
18b519c0 5085@end deffn
931c7513 5086
91d2c560 5087@ifset defaultprec
22fccf95
PE
5088@deffn {Directive} %no-default-prec
5089Do not assign a precedence to rules lacking an explicit @code{%prec}
5090modifier (@pxref{Contextual Precedence, ,Context-Dependent
5091Precedence}).
5092@end deffn
91d2c560 5093@end ifset
22fccf95 5094
18b519c0 5095@deffn {Directive} %no-lines
931c7513
RS
5096Don't generate any @code{#line} preprocessor commands in the parser
5097file. Ordinarily Bison writes these commands in the parser file so that
5098the C compiler and debuggers will associate errors and object code with
5099your source file (the grammar file). This directive causes them to
5100associate errors with the parser file, treating it an independent source
5101file in its own right.
18b519c0 5102@end deffn
931c7513 5103
02975b9a 5104@deffn {Directive} %output "@var{file}"
fa4d969f 5105Specify @var{file} for the parser file.
18b519c0 5106@end deffn
6deb4447 5107
18b519c0 5108@deffn {Directive} %pure-parser
d9df47b6
JD
5109Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
5110for which Bison is more careful to warn about unreasonable usage.
18b519c0 5111@end deffn
6deb4447 5112
b50d2359 5113@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
5114Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5115Require a Version of Bison}.
b50d2359
AD
5116@end deffn
5117
0e021770 5118@deffn {Directive} %skeleton "@var{file}"
a7867f53
JD
5119Specify the skeleton to use.
5120
ed4d67dc
JD
5121@c You probably don't need this option unless you are developing Bison.
5122@c You should use @code{%language} if you want to specify the skeleton for a
5123@c different language, because it is clearer and because it will always choose the
5124@c correct skeleton for non-deterministic or push parsers.
a7867f53
JD
5125
5126If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5127file in the Bison installation directory.
5128If it does, @var{file} is an absolute file name or a file name relative to the
5129directory of the grammar file.
5130This is similar to how most shells resolve commands.
0e021770
PE
5131@end deffn
5132
18b519c0 5133@deffn {Directive} %token-table
931c7513
RS
5134Generate an array of token names in the parser file. The name of the
5135array is @code{yytname}; @code{yytname[@var{i}]} is the name of the
3650b4b8 5136token whose internal Bison token code number is @var{i}. The first
f67ad422
PE
5137three elements of @code{yytname} correspond to the predefined tokens
5138@code{"$end"},
88bce5a2
AD
5139@code{"error"}, and @code{"$undefined"}; after these come the symbols
5140defined in the grammar file.
931c7513 5141
9e0876fb
PE
5142The name in the table includes all the characters needed to represent
5143the token in Bison. For single-character literals and literal
5144strings, this includes the surrounding quoting characters and any
5145escape sequences. For example, the Bison single-character literal
5146@code{'+'} corresponds to a three-character name, represented in C as
5147@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5148corresponds to a five-character name, represented in C as
5149@code{"\"\\\\/\""}.
931c7513 5150
8c9a50be 5151When you specify @code{%token-table}, Bison also generates macro
931c7513
RS
5152definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5153@code{YYNRULES}, and @code{YYNSTATES}:
5154
5155@table @code
5156@item YYNTOKENS
5157The highest token number, plus one.
5158@item YYNNTS
9ecbd125 5159The number of nonterminal symbols.
931c7513
RS
5160@item YYNRULES
5161The number of grammar rules,
5162@item YYNSTATES
5163The number of parser states (@pxref{Parser States}).
5164@end table
18b519c0 5165@end deffn
d8988b2f 5166
18b519c0 5167@deffn {Directive} %verbose
d8988b2f 5168Write an extra output file containing verbose descriptions of the
742e4900 5169parser states and what is done for each type of lookahead token in
72d2299c 5170that state. @xref{Understanding, , Understanding Your Parser}, for more
ec3bc396 5171information.
18b519c0 5172@end deffn
d8988b2f 5173
18b519c0 5174@deffn {Directive} %yacc
d8988b2f
AD
5175Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5176including its naming conventions. @xref{Bison Options}, for more.
18b519c0 5177@end deffn
d8988b2f
AD
5178
5179
342b8b6e 5180@node Multiple Parsers
bfa74976
RS
5181@section Multiple Parsers in the Same Program
5182
5183Most programs that use Bison parse only one language and therefore contain
5184only one Bison parser. But what if you want to parse more than one
5185language with the same program? Then you need to avoid a name conflict
5186between different definitions of @code{yyparse}, @code{yylval}, and so on.
5187
5188The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5189(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5190functions and variables of the Bison parser to start with @var{prefix}
5191instead of @samp{yy}. You can use this to give each parser distinct
5192names that do not conflict.
bfa74976
RS
5193
5194The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5195@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5196@code{yychar} and @code{yydebug}. If you use a push parser,
5197@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5198@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5199For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5200@code{clex}, and so on.
bfa74976
RS
5201
5202@strong{All the other variables and macros associated with Bison are not
5203renamed.} These others are not global; there is no conflict if the same
5204name is used in different parsers. For example, @code{YYSTYPE} is not
5205renamed, but defining this in different ways in different parsers causes
5206no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5207
5208The @samp{-p} option works by adding macro definitions to the beginning
5209of the parser source file, defining @code{yyparse} as
5210@code{@var{prefix}parse}, and so on. This effectively substitutes one
5211name for the other in the entire parser file.
5212
342b8b6e 5213@node Interface
bfa74976
RS
5214@chapter Parser C-Language Interface
5215@cindex C-language interface
5216@cindex interface
5217
5218The Bison parser is actually a C function named @code{yyparse}. Here we
5219describe the interface conventions of @code{yyparse} and the other
5220functions that it needs to use.
5221
5222Keep in mind that the parser uses many C identifiers starting with
5223@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5224identifier (aside from those in this manual) in an action or in epilogue
5225in the grammar file, you are likely to run into trouble.
bfa74976
RS
5226
5227@menu
f56274a8
DJ
5228* Parser Function:: How to call @code{yyparse} and what it returns.
5229* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5230* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5231* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5232* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5233* Lexical:: You must supply a function @code{yylex}
5234 which reads tokens.
5235* Error Reporting:: You must supply a function @code{yyerror}.
5236* Action Features:: Special features for use in actions.
5237* Internationalization:: How to let the parser speak in the user's
5238 native language.
bfa74976
RS
5239@end menu
5240
342b8b6e 5241@node Parser Function
bfa74976
RS
5242@section The Parser Function @code{yyparse}
5243@findex yyparse
5244
5245You call the function @code{yyparse} to cause parsing to occur. This
5246function reads tokens, executes actions, and ultimately returns when it
5247encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5248write an action which directs @code{yyparse} to return immediately
5249without reading further.
bfa74976 5250
2a8d363a
AD
5251
5252@deftypefun int yyparse (void)
bfa74976
RS
5253The value returned by @code{yyparse} is 0 if parsing was successful (return
5254is due to end-of-input).
5255
b47dbebe
PE
5256The value is 1 if parsing failed because of invalid input, i.e., input
5257that contains a syntax error or that causes @code{YYABORT} to be
5258invoked.
5259
5260The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5261@end deftypefun
bfa74976
RS
5262
5263In an action, you can cause immediate return from @code{yyparse} by using
5264these macros:
5265
2a8d363a 5266@defmac YYACCEPT
bfa74976
RS
5267@findex YYACCEPT
5268Return immediately with value 0 (to report success).
2a8d363a 5269@end defmac
bfa74976 5270
2a8d363a 5271@defmac YYABORT
bfa74976
RS
5272@findex YYABORT
5273Return immediately with value 1 (to report failure).
2a8d363a
AD
5274@end defmac
5275
5276If you use a reentrant parser, you can optionally pass additional
5277parameter information to it in a reentrant way. To do so, use the
5278declaration @code{%parse-param}:
5279
feeb0eda 5280@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5281@findex %parse-param
287c78f6
PE
5282Declare that an argument declared by the braced-code
5283@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5284The @var{argument-declaration} is used when declaring
feeb0eda
PE
5285functions or prototypes. The last identifier in
5286@var{argument-declaration} must be the argument name.
2a8d363a
AD
5287@end deffn
5288
5289Here's an example. Write this in the parser:
5290
5291@example
feeb0eda
PE
5292%parse-param @{int *nastiness@}
5293%parse-param @{int *randomness@}
2a8d363a
AD
5294@end example
5295
5296@noindent
5297Then call the parser like this:
5298
5299@example
5300@{
5301 int nastiness, randomness;
5302 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5303 value = yyparse (&nastiness, &randomness);
5304 @dots{}
5305@}
5306@end example
5307
5308@noindent
5309In the grammar actions, use expressions like this to refer to the data:
5310
5311@example
5312exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5313@end example
5314
9987d1b3
JD
5315@node Push Parser Function
5316@section The Push Parser Function @code{yypush_parse}
5317@findex yypush_parse
5318
59da312b
JD
5319(The current push parsing interface is experimental and may evolve.
5320More user feedback will help to stabilize it.)
5321
f4101aa6
AD
5322You call the function @code{yypush_parse} to parse a single token. This
5323function is available if either the @code{%define api.push_pull "push"} or
5324@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5325@xref{Push Decl, ,A Push Parser}.
5326
5327@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5328The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5329following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5330is required to finish parsing the grammar.
5331@end deftypefun
5332
5333@node Pull Parser Function
5334@section The Pull Parser Function @code{yypull_parse}
5335@findex yypull_parse
5336
59da312b
JD
5337(The current push parsing interface is experimental and may evolve.
5338More user feedback will help to stabilize it.)
5339
f4101aa6
AD
5340You call the function @code{yypull_parse} to parse the rest of the input
5341stream. This function is available if the @code{%define api.push_pull "both"}
5342declaration is used.
9987d1b3
JD
5343@xref{Push Decl, ,A Push Parser}.
5344
5345@deftypefun int yypull_parse (yypstate *yyps)
5346The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5347@end deftypefun
5348
5349@node Parser Create Function
5350@section The Parser Create Function @code{yystate_new}
5351@findex yypstate_new
5352
59da312b
JD
5353(The current push parsing interface is experimental and may evolve.
5354More user feedback will help to stabilize it.)
5355
f4101aa6
AD
5356You call the function @code{yypstate_new} to create a new parser instance.
5357This function is available if either the @code{%define api.push_pull "push"} or
5358@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5359@xref{Push Decl, ,A Push Parser}.
5360
5361@deftypefun yypstate *yypstate_new (void)
5362The fuction will return a valid parser instance if there was memory available
333e670c
JD
5363or 0 if no memory was available.
5364In impure mode, it will also return 0 if a parser instance is currently
5365allocated.
9987d1b3
JD
5366@end deftypefun
5367
5368@node Parser Delete Function
5369@section The Parser Delete Function @code{yystate_delete}
5370@findex yypstate_delete
5371
59da312b
JD
5372(The current push parsing interface is experimental and may evolve.
5373More user feedback will help to stabilize it.)
5374
9987d1b3 5375You call the function @code{yypstate_delete} to delete a parser instance.
f4101aa6
AD
5376function is available if either the @code{%define api.push_pull "push"} or
5377@code{%define api.push_pull "both"} declaration is used.
9987d1b3
JD
5378@xref{Push Decl, ,A Push Parser}.
5379
5380@deftypefun void yypstate_delete (yypstate *yyps)
5381This function will reclaim the memory associated with a parser instance.
5382After this call, you should no longer attempt to use the parser instance.
5383@end deftypefun
bfa74976 5384
342b8b6e 5385@node Lexical
bfa74976
RS
5386@section The Lexical Analyzer Function @code{yylex}
5387@findex yylex
5388@cindex lexical analyzer
5389
5390The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5391the input stream and returns them to the parser. Bison does not create
5392this function automatically; you must write it so that @code{yyparse} can
5393call it. The function is sometimes referred to as a lexical scanner.
5394
5395In simple programs, @code{yylex} is often defined at the end of the Bison
5396grammar file. If @code{yylex} is defined in a separate source file, you
5397need to arrange for the token-type macro definitions to be available there.
5398To do this, use the @samp{-d} option when you run Bison, so that it will
5399write these macro definitions into a separate header file
5400@file{@var{name}.tab.h} which you can include in the other source files
e0c471a9 5401that need it. @xref{Invocation, ,Invoking Bison}.
bfa74976
RS
5402
5403@menu
5404* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5405* Token Values:: How @code{yylex} must return the semantic value
5406 of the token it has read.
5407* Token Locations:: How @code{yylex} must return the text location
5408 (line number, etc.) of the token, if the
5409 actions want that.
5410* Pure Calling:: How the calling convention differs in a pure parser
5411 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5412@end menu
5413
342b8b6e 5414@node Calling Convention
bfa74976
RS
5415@subsection Calling Convention for @code{yylex}
5416
72d2299c
PE
5417The value that @code{yylex} returns must be the positive numeric code
5418for the type of token it has just found; a zero or negative value
5419signifies end-of-input.
bfa74976
RS
5420
5421When a token is referred to in the grammar rules by a name, that name
5422in the parser file becomes a C macro whose definition is the proper
5423numeric code for that token type. So @code{yylex} can use the name
5424to indicate that type. @xref{Symbols}.
5425
5426When a token is referred to in the grammar rules by a character literal,
5427the numeric code for that character is also the code for the token type.
72d2299c
PE
5428So @code{yylex} can simply return that character code, possibly converted
5429to @code{unsigned char} to avoid sign-extension. The null character
5430must not be used this way, because its code is zero and that
bfa74976
RS
5431signifies end-of-input.
5432
5433Here is an example showing these things:
5434
5435@example
13863333
AD
5436int
5437yylex (void)
bfa74976
RS
5438@{
5439 @dots{}
72d2299c 5440 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5441 return 0;
5442 @dots{}
5443 if (c == '+' || c == '-')
72d2299c 5444 return c; /* Assume token type for `+' is '+'. */
bfa74976 5445 @dots{}
72d2299c 5446 return INT; /* Return the type of the token. */
bfa74976
RS
5447 @dots{}
5448@}
5449@end example
5450
5451@noindent
5452This interface has been designed so that the output from the @code{lex}
5453utility can be used without change as the definition of @code{yylex}.
5454
931c7513
RS
5455If the grammar uses literal string tokens, there are two ways that
5456@code{yylex} can determine the token type codes for them:
5457
5458@itemize @bullet
5459@item
5460If the grammar defines symbolic token names as aliases for the
5461literal string tokens, @code{yylex} can use these symbolic names like
5462all others. In this case, the use of the literal string tokens in
5463the grammar file has no effect on @code{yylex}.
5464
5465@item
9ecbd125 5466@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5467table. The index of the token in the table is the token type's code.
9ecbd125 5468The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5469double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5470token's characters are escaped as necessary to be suitable as input
5471to Bison.
931c7513 5472
9e0876fb
PE
5473Here's code for looking up a multicharacter token in @code{yytname},
5474assuming that the characters of the token are stored in
5475@code{token_buffer}, and assuming that the token does not contain any
5476characters like @samp{"} that require escaping.
931c7513
RS
5477
5478@smallexample
5479for (i = 0; i < YYNTOKENS; i++)
5480 @{
5481 if (yytname[i] != 0
5482 && yytname[i][0] == '"'
68449b3a
PE
5483 && ! strncmp (yytname[i] + 1, token_buffer,
5484 strlen (token_buffer))
931c7513
RS
5485 && yytname[i][strlen (token_buffer) + 1] == '"'
5486 && yytname[i][strlen (token_buffer) + 2] == 0)
5487 break;
5488 @}
5489@end smallexample
5490
5491The @code{yytname} table is generated only if you use the
8c9a50be 5492@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5493@end itemize
5494
342b8b6e 5495@node Token Values
bfa74976
RS
5496@subsection Semantic Values of Tokens
5497
5498@vindex yylval
9d9b8b70 5499In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5500be stored into the global variable @code{yylval}. When you are using
5501just one data type for semantic values, @code{yylval} has that type.
5502Thus, if the type is @code{int} (the default), you might write this in
5503@code{yylex}:
5504
5505@example
5506@group
5507 @dots{}
72d2299c
PE
5508 yylval = value; /* Put value onto Bison stack. */
5509 return INT; /* Return the type of the token. */
bfa74976
RS
5510 @dots{}
5511@end group
5512@end example
5513
5514When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5515made from the @code{%union} declaration (@pxref{Union Decl, ,The
5516Collection of Value Types}). So when you store a token's value, you
5517must use the proper member of the union. If the @code{%union}
5518declaration looks like this:
bfa74976
RS
5519
5520@example
5521@group
5522%union @{
5523 int intval;
5524 double val;
5525 symrec *tptr;
5526@}
5527@end group
5528@end example
5529
5530@noindent
5531then the code in @code{yylex} might look like this:
5532
5533@example
5534@group
5535 @dots{}
72d2299c
PE
5536 yylval.intval = value; /* Put value onto Bison stack. */
5537 return INT; /* Return the type of the token. */
bfa74976
RS
5538 @dots{}
5539@end group
5540@end example
5541
95923bd6
AD
5542@node Token Locations
5543@subsection Textual Locations of Tokens
bfa74976
RS
5544
5545@vindex yylloc
847bf1f5 5546If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
5547Tracking Locations}) in actions to keep track of the textual locations
5548of tokens and groupings, then you must provide this information in
5549@code{yylex}. The function @code{yyparse} expects to find the textual
5550location of a token just parsed in the global variable @code{yylloc}.
5551So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
5552
5553By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5554initialize the members that are going to be used by the actions. The
5555four members are called @code{first_line}, @code{first_column},
5556@code{last_line} and @code{last_column}. Note that the use of this
5557feature makes the parser noticeably slower.
bfa74976
RS
5558
5559@tindex YYLTYPE
5560The data type of @code{yylloc} has the name @code{YYLTYPE}.
5561
342b8b6e 5562@node Pure Calling
c656404a 5563@subsection Calling Conventions for Pure Parsers
bfa74976 5564
d9df47b6 5565When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5566pure, reentrant parser, the global communication variables @code{yylval}
5567and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5568Parser}.) In such parsers the two global variables are replaced by
5569pointers passed as arguments to @code{yylex}. You must declare them as
5570shown here, and pass the information back by storing it through those
5571pointers.
bfa74976
RS
5572
5573@example
13863333
AD
5574int
5575yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5576@{
5577 @dots{}
5578 *lvalp = value; /* Put value onto Bison stack. */
5579 return INT; /* Return the type of the token. */
5580 @dots{}
5581@}
5582@end example
5583
5584If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5585textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5586this case, omit the second argument; @code{yylex} will be called with
5587only one argument.
5588
e425e872 5589
2a8d363a
AD
5590If you wish to pass the additional parameter data to @code{yylex}, use
5591@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5592Function}).
e425e872 5593
feeb0eda 5594@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5595@findex %lex-param
287c78f6
PE
5596Declare that the braced-code @var{argument-declaration} is an
5597additional @code{yylex} argument declaration.
2a8d363a 5598@end deffn
e425e872 5599
2a8d363a 5600For instance:
e425e872
RS
5601
5602@example
feeb0eda
PE
5603%parse-param @{int *nastiness@}
5604%lex-param @{int *nastiness@}
5605%parse-param @{int *randomness@}
e425e872
RS
5606@end example
5607
5608@noindent
2a8d363a 5609results in the following signature:
e425e872
RS
5610
5611@example
2a8d363a
AD
5612int yylex (int *nastiness);
5613int yyparse (int *nastiness, int *randomness);
e425e872
RS
5614@end example
5615
d9df47b6 5616If @code{%define api.pure} is added:
c656404a
RS
5617
5618@example
2a8d363a
AD
5619int yylex (YYSTYPE *lvalp, int *nastiness);
5620int yyparse (int *nastiness, int *randomness);
c656404a
RS
5621@end example
5622
2a8d363a 5623@noindent
d9df47b6 5624and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5625
2a8d363a
AD
5626@example
5627int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5628int yyparse (int *nastiness, int *randomness);
5629@end example
931c7513 5630
342b8b6e 5631@node Error Reporting
bfa74976
RS
5632@section The Error Reporting Function @code{yyerror}
5633@cindex error reporting function
5634@findex yyerror
5635@cindex parse error
5636@cindex syntax error
5637
6e649e65 5638The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5639whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5640action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5641macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5642in Actions}).
bfa74976
RS
5643
5644The Bison parser expects to report the error by calling an error
5645reporting function named @code{yyerror}, which you must supply. It is
5646called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5647receives one argument. For a syntax error, the string is normally
5648@w{@code{"syntax error"}}.
bfa74976 5649
2a8d363a
AD
5650@findex %error-verbose
5651If you invoke the directive @code{%error-verbose} in the Bison
5652declarations section (@pxref{Bison Declarations, ,The Bison Declarations
5653Section}), then Bison provides a more verbose and specific error message
6e649e65 5654string instead of just plain @w{@code{"syntax error"}}.
bfa74976 5655
1a059451
PE
5656The parser can detect one other kind of error: memory exhaustion. This
5657can happen when the input contains constructions that are very deeply
bfa74976 5658nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5659parser normally extends its stack automatically up to a very large limit. But
5660if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5661fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5662
5663In some cases diagnostics like @w{@code{"syntax error"}} are
5664translated automatically from English to some other language before
5665they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5666
5667The following definition suffices in simple programs:
5668
5669@example
5670@group
13863333 5671void
38a92d50 5672yyerror (char const *s)
bfa74976
RS
5673@{
5674@end group
5675@group
5676 fprintf (stderr, "%s\n", s);
5677@}
5678@end group
5679@end example
5680
5681After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5682error recovery if you have written suitable error recovery grammar rules
5683(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5684immediately return 1.
5685
93724f13 5686Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3
PE
5687an access to the current location.
5688This is indeed the case for the @acronym{GLR}
2a8d363a 5689parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5690@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5691@code{yyerror} are:
5692
5693@example
38a92d50
PE
5694void yyerror (char const *msg); /* Yacc parsers. */
5695void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5696@end example
5697
feeb0eda 5698If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5699
5700@example
b317297e
PE
5701void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
5702void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
5703@end example
5704
fa7e68c3 5705Finally, @acronym{GLR} and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
5706convention for absolutely pure parsers, i.e., when the calling
5707convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
5708@code{%define api.pure} are pure.
5709I.e.:
2a8d363a
AD
5710
5711@example
5712/* Location tracking. */
5713%locations
5714/* Pure yylex. */
d9df47b6 5715%define api.pure
feeb0eda 5716%lex-param @{int *nastiness@}
2a8d363a 5717/* Pure yyparse. */
feeb0eda
PE
5718%parse-param @{int *nastiness@}
5719%parse-param @{int *randomness@}
2a8d363a
AD
5720@end example
5721
5722@noindent
5723results in the following signatures for all the parser kinds:
5724
5725@example
5726int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5727int yyparse (int *nastiness, int *randomness);
93724f13
AD
5728void yyerror (YYLTYPE *locp,
5729 int *nastiness, int *randomness,
38a92d50 5730 char const *msg);
2a8d363a
AD
5731@end example
5732
1c0c3e95 5733@noindent
38a92d50
PE
5734The prototypes are only indications of how the code produced by Bison
5735uses @code{yyerror}. Bison-generated code always ignores the returned
5736value, so @code{yyerror} can return any type, including @code{void}.
5737Also, @code{yyerror} can be a variadic function; that is why the
5738message is always passed last.
5739
5740Traditionally @code{yyerror} returns an @code{int} that is always
5741ignored, but this is purely for historical reasons, and @code{void} is
5742preferable since it more accurately describes the return type for
5743@code{yyerror}.
93724f13 5744
bfa74976
RS
5745@vindex yynerrs
5746The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 5747reported so far. Normally this variable is global; but if you
704a47c4
AD
5748request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
5749then it is a local variable which only the actions can access.
bfa74976 5750
342b8b6e 5751@node Action Features
bfa74976
RS
5752@section Special Features for Use in Actions
5753@cindex summary, action features
5754@cindex action features summary
5755
5756Here is a table of Bison constructs, variables and macros that
5757are useful in actions.
5758
18b519c0 5759@deffn {Variable} $$
bfa74976
RS
5760Acts like a variable that contains the semantic value for the
5761grouping made by the current rule. @xref{Actions}.
18b519c0 5762@end deffn
bfa74976 5763
18b519c0 5764@deffn {Variable} $@var{n}
bfa74976
RS
5765Acts like a variable that contains the semantic value for the
5766@var{n}th component of the current rule. @xref{Actions}.
18b519c0 5767@end deffn
bfa74976 5768
18b519c0 5769@deffn {Variable} $<@var{typealt}>$
bfa74976 5770Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
5771specified by the @code{%union} declaration. @xref{Action Types, ,Data
5772Types of Values in Actions}.
18b519c0 5773@end deffn
bfa74976 5774
18b519c0 5775@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 5776Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 5777union specified by the @code{%union} declaration.
e0c471a9 5778@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 5779@end deffn
bfa74976 5780
18b519c0 5781@deffn {Macro} YYABORT;
bfa74976
RS
5782Return immediately from @code{yyparse}, indicating failure.
5783@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5784@end deffn
bfa74976 5785
18b519c0 5786@deffn {Macro} YYACCEPT;
bfa74976
RS
5787Return immediately from @code{yyparse}, indicating success.
5788@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 5789@end deffn
bfa74976 5790
18b519c0 5791@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
5792@findex YYBACKUP
5793Unshift a token. This macro is allowed only for rules that reduce
742e4900 5794a single value, and only when there is no lookahead token.
c827f760 5795It is also disallowed in @acronym{GLR} parsers.
742e4900 5796It installs a lookahead token with token type @var{token} and
bfa74976
RS
5797semantic value @var{value}; then it discards the value that was
5798going to be reduced by this rule.
5799
5800If the macro is used when it is not valid, such as when there is
742e4900 5801a lookahead token already, then it reports a syntax error with
bfa74976
RS
5802a message @samp{cannot back up} and performs ordinary error
5803recovery.
5804
5805In either case, the rest of the action is not executed.
18b519c0 5806@end deffn
bfa74976 5807
18b519c0 5808@deffn {Macro} YYEMPTY
bfa74976 5809@vindex YYEMPTY
742e4900 5810Value stored in @code{yychar} when there is no lookahead token.
18b519c0 5811@end deffn
bfa74976 5812
32c29292
JD
5813@deffn {Macro} YYEOF
5814@vindex YYEOF
742e4900 5815Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
5816stream.
5817@end deffn
5818
18b519c0 5819@deffn {Macro} YYERROR;
bfa74976
RS
5820@findex YYERROR
5821Cause an immediate syntax error. This statement initiates error
5822recovery just as if the parser itself had detected an error; however, it
5823does not call @code{yyerror}, and does not print any message. If you
5824want to print an error message, call @code{yyerror} explicitly before
5825the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 5826@end deffn
bfa74976 5827
18b519c0 5828@deffn {Macro} YYRECOVERING
02103984
PE
5829@findex YYRECOVERING
5830The expression @code{YYRECOVERING ()} yields 1 when the parser
5831is recovering from a syntax error, and 0 otherwise.
bfa74976 5832@xref{Error Recovery}.
18b519c0 5833@end deffn
bfa74976 5834
18b519c0 5835@deffn {Variable} yychar
742e4900
JD
5836Variable containing either the lookahead token, or @code{YYEOF} when the
5837lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
5838has been performed so the next token is not yet known.
5839Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
5840Actions}).
742e4900 5841@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 5842@end deffn
bfa74976 5843
18b519c0 5844@deffn {Macro} yyclearin;
742e4900 5845Discard the current lookahead token. This is useful primarily in
32c29292
JD
5846error rules.
5847Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
5848Semantic Actions}).
5849@xref{Error Recovery}.
18b519c0 5850@end deffn
bfa74976 5851
18b519c0 5852@deffn {Macro} yyerrok;
bfa74976 5853Resume generating error messages immediately for subsequent syntax
13863333 5854errors. This is useful primarily in error rules.
bfa74976 5855@xref{Error Recovery}.
18b519c0 5856@end deffn
bfa74976 5857
32c29292 5858@deffn {Variable} yylloc
742e4900 5859Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
5860to @code{YYEMPTY} or @code{YYEOF}.
5861Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
5862Actions}).
5863@xref{Actions and Locations, ,Actions and Locations}.
5864@end deffn
5865
5866@deffn {Variable} yylval
742e4900 5867Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
5868not set to @code{YYEMPTY} or @code{YYEOF}.
5869Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
5870Actions}).
5871@xref{Actions, ,Actions}.
5872@end deffn
5873
18b519c0 5874@deffn {Value} @@$
847bf1f5 5875@findex @@$
95923bd6 5876Acts like a structure variable containing information on the textual location
847bf1f5
AD
5877of the grouping made by the current rule. @xref{Locations, ,
5878Tracking Locations}.
bfa74976 5879
847bf1f5
AD
5880@c Check if those paragraphs are still useful or not.
5881
5882@c @example
5883@c struct @{
5884@c int first_line, last_line;
5885@c int first_column, last_column;
5886@c @};
5887@c @end example
5888
5889@c Thus, to get the starting line number of the third component, you would
5890@c use @samp{@@3.first_line}.
bfa74976 5891
847bf1f5
AD
5892@c In order for the members of this structure to contain valid information,
5893@c you must make @code{yylex} supply this information about each token.
5894@c If you need only certain members, then @code{yylex} need only fill in
5895@c those members.
bfa74976 5896
847bf1f5 5897@c The use of this feature makes the parser noticeably slower.
18b519c0 5898@end deffn
847bf1f5 5899
18b519c0 5900@deffn {Value} @@@var{n}
847bf1f5 5901@findex @@@var{n}
95923bd6 5902Acts like a structure variable containing information on the textual location
847bf1f5
AD
5903of the @var{n}th component of the current rule. @xref{Locations, ,
5904Tracking Locations}.
18b519c0 5905@end deffn
bfa74976 5906
f7ab6a50
PE
5907@node Internationalization
5908@section Parser Internationalization
5909@cindex internationalization
5910@cindex i18n
5911@cindex NLS
5912@cindex gettext
5913@cindex bison-po
5914
5915A Bison-generated parser can print diagnostics, including error and
5916tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
5917also supports outputting diagnostics in the user's native language. To
5918make this work, the user should set the usual environment variables.
5919@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
5920For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
5921set the user's locale to French Canadian using the @acronym{UTF}-8
f7ab6a50
PE
5922encoding. The exact set of available locales depends on the user's
5923installation.
5924
5925The maintainer of a package that uses a Bison-generated parser enables
5926the internationalization of the parser's output through the following
5927steps. Here we assume a package that uses @acronym{GNU} Autoconf and
5928@acronym{GNU} Automake.
5929
5930@enumerate
5931@item
30757c8c 5932@cindex bison-i18n.m4
f7ab6a50
PE
5933Into the directory containing the @acronym{GNU} Autoconf macros used
5934by the package---often called @file{m4}---copy the
5935@file{bison-i18n.m4} file installed by Bison under
5936@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
5937For example:
5938
5939@example
5940cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
5941@end example
5942
5943@item
30757c8c
PE
5944@findex BISON_I18N
5945@vindex BISON_LOCALEDIR
5946@vindex YYENABLE_NLS
f7ab6a50
PE
5947In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
5948invocation, add an invocation of @code{BISON_I18N}. This macro is
5949defined in the file @file{bison-i18n.m4} that you copied earlier. It
5950causes @samp{configure} to find the value of the
30757c8c
PE
5951@code{BISON_LOCALEDIR} variable, and it defines the source-language
5952symbol @code{YYENABLE_NLS} to enable translations in the
5953Bison-generated parser.
f7ab6a50
PE
5954
5955@item
5956In the @code{main} function of your program, designate the directory
5957containing Bison's runtime message catalog, through a call to
5958@samp{bindtextdomain} with domain name @samp{bison-runtime}.
5959For example:
5960
5961@example
5962bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
5963@end example
5964
5965Typically this appears after any other call @code{bindtextdomain
5966(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
5967@samp{BISON_LOCALEDIR} to be defined as a string through the
5968@file{Makefile}.
5969
5970@item
5971In the @file{Makefile.am} that controls the compilation of the @code{main}
5972function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
5973either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
5974
5975@example
5976DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5977@end example
5978
5979or:
5980
5981@example
5982AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
5983@end example
5984
5985@item
5986Finally, invoke the command @command{autoreconf} to generate the build
5987infrastructure.
5988@end enumerate
5989
bfa74976 5990
342b8b6e 5991@node Algorithm
13863333
AD
5992@chapter The Bison Parser Algorithm
5993@cindex Bison parser algorithm
bfa74976
RS
5994@cindex algorithm of parser
5995@cindex shifting
5996@cindex reduction
5997@cindex parser stack
5998@cindex stack, parser
5999
6000As Bison reads tokens, it pushes them onto a stack along with their
6001semantic values. The stack is called the @dfn{parser stack}. Pushing a
6002token is traditionally called @dfn{shifting}.
6003
6004For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6005@samp{3} to come. The stack will have four elements, one for each token
6006that was shifted.
6007
6008But the stack does not always have an element for each token read. When
6009the last @var{n} tokens and groupings shifted match the components of a
6010grammar rule, they can be combined according to that rule. This is called
6011@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6012single grouping whose symbol is the result (left hand side) of that rule.
6013Running the rule's action is part of the process of reduction, because this
6014is what computes the semantic value of the resulting grouping.
6015
6016For example, if the infix calculator's parser stack contains this:
6017
6018@example
60191 + 5 * 3
6020@end example
6021
6022@noindent
6023and the next input token is a newline character, then the last three
6024elements can be reduced to 15 via the rule:
6025
6026@example
6027expr: expr '*' expr;
6028@end example
6029
6030@noindent
6031Then the stack contains just these three elements:
6032
6033@example
60341 + 15
6035@end example
6036
6037@noindent
6038At this point, another reduction can be made, resulting in the single value
603916. Then the newline token can be shifted.
6040
6041The parser tries, by shifts and reductions, to reduce the entire input down
6042to a single grouping whose symbol is the grammar's start-symbol
6043(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6044
6045This kind of parser is known in the literature as a bottom-up parser.
6046
6047@menu
742e4900 6048* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6049* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6050* Precedence:: Operator precedence works by resolving conflicts.
6051* Contextual Precedence:: When an operator's precedence depends on context.
6052* Parser States:: The parser is a finite-state-machine with stack.
6053* Reduce/Reduce:: When two rules are applicable in the same situation.
f56274a8 6054* Mystery Conflicts:: Reduce/reduce conflicts that look unjustified.
676385e2 6055* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6056* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6057@end menu
6058
742e4900
JD
6059@node Lookahead
6060@section Lookahead Tokens
6061@cindex lookahead token
bfa74976
RS
6062
6063The Bison parser does @emph{not} always reduce immediately as soon as the
6064last @var{n} tokens and groupings match a rule. This is because such a
6065simple strategy is inadequate to handle most languages. Instead, when a
6066reduction is possible, the parser sometimes ``looks ahead'' at the next
6067token in order to decide what to do.
6068
6069When a token is read, it is not immediately shifted; first it becomes the
742e4900 6070@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6071perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6072the lookahead token remains off to the side. When no more reductions
6073should take place, the lookahead token is shifted onto the stack. This
bfa74976 6074does not mean that all possible reductions have been done; depending on the
742e4900 6075token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6076application.
6077
742e4900 6078Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6079expressions which contain binary addition operators and postfix unary
6080factorial operators (@samp{!}), and allow parentheses for grouping.
6081
6082@example
6083@group
6084expr: term '+' expr
6085 | term
6086 ;
6087@end group
6088
6089@group
6090term: '(' expr ')'
6091 | term '!'
6092 | NUMBER
6093 ;
6094@end group
6095@end example
6096
6097Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6098should be done? If the following token is @samp{)}, then the first three
6099tokens must be reduced to form an @code{expr}. This is the only valid
6100course, because shifting the @samp{)} would produce a sequence of symbols
6101@w{@code{term ')'}}, and no rule allows this.
6102
6103If the following token is @samp{!}, then it must be shifted immediately so
6104that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6105parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6106@code{expr}. It would then be impossible to shift the @samp{!} because
6107doing so would produce on the stack the sequence of symbols @code{expr
6108'!'}. No rule allows that sequence.
6109
6110@vindex yychar
32c29292
JD
6111@vindex yylval
6112@vindex yylloc
742e4900 6113The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6114Its semantic value and location, if any, are stored in the variables
6115@code{yylval} and @code{yylloc}.
bfa74976
RS
6116@xref{Action Features, ,Special Features for Use in Actions}.
6117
342b8b6e 6118@node Shift/Reduce
bfa74976
RS
6119@section Shift/Reduce Conflicts
6120@cindex conflicts
6121@cindex shift/reduce conflicts
6122@cindex dangling @code{else}
6123@cindex @code{else}, dangling
6124
6125Suppose we are parsing a language which has if-then and if-then-else
6126statements, with a pair of rules like this:
6127
6128@example
6129@group
6130if_stmt:
6131 IF expr THEN stmt
6132 | IF expr THEN stmt ELSE stmt
6133 ;
6134@end group
6135@end example
6136
6137@noindent
6138Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6139terminal symbols for specific keyword tokens.
6140
742e4900 6141When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6142contents of the stack (assuming the input is valid) are just right for
6143reduction by the first rule. But it is also legitimate to shift the
6144@code{ELSE}, because that would lead to eventual reduction by the second
6145rule.
6146
6147This situation, where either a shift or a reduction would be valid, is
6148called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6149these conflicts by choosing to shift, unless otherwise directed by
6150operator precedence declarations. To see the reason for this, let's
6151contrast it with the other alternative.
6152
6153Since the parser prefers to shift the @code{ELSE}, the result is to attach
6154the else-clause to the innermost if-statement, making these two inputs
6155equivalent:
6156
6157@example
6158if x then if y then win (); else lose;
6159
6160if x then do; if y then win (); else lose; end;
6161@end example
6162
6163But if the parser chose to reduce when possible rather than shift, the
6164result would be to attach the else-clause to the outermost if-statement,
6165making these two inputs equivalent:
6166
6167@example
6168if x then if y then win (); else lose;
6169
6170if x then do; if y then win (); end; else lose;
6171@end example
6172
6173The conflict exists because the grammar as written is ambiguous: either
6174parsing of the simple nested if-statement is legitimate. The established
6175convention is that these ambiguities are resolved by attaching the
6176else-clause to the innermost if-statement; this is what Bison accomplishes
6177by choosing to shift rather than reduce. (It would ideally be cleaner to
6178write an unambiguous grammar, but that is very hard to do in this case.)
6179This particular ambiguity was first encountered in the specifications of
6180Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6181
6182To avoid warnings from Bison about predictable, legitimate shift/reduce
6183conflicts, use the @code{%expect @var{n}} declaration. There will be no
6184warning as long as the number of shift/reduce conflicts is exactly @var{n}.
6185@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6186
6187The definition of @code{if_stmt} above is solely to blame for the
6188conflict, but the conflict does not actually appear without additional
6189rules. Here is a complete Bison input file that actually manifests the
6190conflict:
6191
6192@example
6193@group
6194%token IF THEN ELSE variable
6195%%
6196@end group
6197@group
6198stmt: expr
6199 | if_stmt
6200 ;
6201@end group
6202
6203@group
6204if_stmt:
6205 IF expr THEN stmt
6206 | IF expr THEN stmt ELSE stmt
6207 ;
6208@end group
6209
6210expr: variable
6211 ;
6212@end example
6213
342b8b6e 6214@node Precedence
bfa74976
RS
6215@section Operator Precedence
6216@cindex operator precedence
6217@cindex precedence of operators
6218
6219Another situation where shift/reduce conflicts appear is in arithmetic
6220expressions. Here shifting is not always the preferred resolution; the
6221Bison declarations for operator precedence allow you to specify when to
6222shift and when to reduce.
6223
6224@menu
6225* Why Precedence:: An example showing why precedence is needed.
6226* Using Precedence:: How to specify precedence in Bison grammars.
6227* Precedence Examples:: How these features are used in the previous example.
6228* How Precedence:: How they work.
6229@end menu
6230
342b8b6e 6231@node Why Precedence
bfa74976
RS
6232@subsection When Precedence is Needed
6233
6234Consider the following ambiguous grammar fragment (ambiguous because the
6235input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6236
6237@example
6238@group
6239expr: expr '-' expr
6240 | expr '*' expr
6241 | expr '<' expr
6242 | '(' expr ')'
6243 @dots{}
6244 ;
6245@end group
6246@end example
6247
6248@noindent
6249Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6250should it reduce them via the rule for the subtraction operator? It
6251depends on the next token. Of course, if the next token is @samp{)}, we
6252must reduce; shifting is invalid because no single rule can reduce the
6253token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6254the next token is @samp{*} or @samp{<}, we have a choice: either
6255shifting or reduction would allow the parse to complete, but with
6256different results.
6257
6258To decide which one Bison should do, we must consider the results. If
6259the next operator token @var{op} is shifted, then it must be reduced
6260first in order to permit another opportunity to reduce the difference.
6261The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6262hand, if the subtraction is reduced before shifting @var{op}, the result
6263is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6264reduce should depend on the relative precedence of the operators
6265@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6266@samp{<}.
bfa74976
RS
6267
6268@cindex associativity
6269What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6270@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6271operators we prefer the former, which is called @dfn{left association}.
6272The latter alternative, @dfn{right association}, is desirable for
6273assignment operators. The choice of left or right association is a
6274matter of whether the parser chooses to shift or reduce when the stack
742e4900 6275contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6276makes right-associativity.
bfa74976 6277
342b8b6e 6278@node Using Precedence
bfa74976
RS
6279@subsection Specifying Operator Precedence
6280@findex %left
6281@findex %right
6282@findex %nonassoc
6283
6284Bison allows you to specify these choices with the operator precedence
6285declarations @code{%left} and @code{%right}. Each such declaration
6286contains a list of tokens, which are operators whose precedence and
6287associativity is being declared. The @code{%left} declaration makes all
6288those operators left-associative and the @code{%right} declaration makes
6289them right-associative. A third alternative is @code{%nonassoc}, which
6290declares that it is a syntax error to find the same operator twice ``in a
6291row''.
6292
6293The relative precedence of different operators is controlled by the
6294order in which they are declared. The first @code{%left} or
6295@code{%right} declaration in the file declares the operators whose
6296precedence is lowest, the next such declaration declares the operators
6297whose precedence is a little higher, and so on.
6298
342b8b6e 6299@node Precedence Examples
bfa74976
RS
6300@subsection Precedence Examples
6301
6302In our example, we would want the following declarations:
6303
6304@example
6305%left '<'
6306%left '-'
6307%left '*'
6308@end example
6309
6310In a more complete example, which supports other operators as well, we
6311would declare them in groups of equal precedence. For example, @code{'+'} is
6312declared with @code{'-'}:
6313
6314@example
6315%left '<' '>' '=' NE LE GE
6316%left '+' '-'
6317%left '*' '/'
6318@end example
6319
6320@noindent
6321(Here @code{NE} and so on stand for the operators for ``not equal''
6322and so on. We assume that these tokens are more than one character long
6323and therefore are represented by names, not character literals.)
6324
342b8b6e 6325@node How Precedence
bfa74976
RS
6326@subsection How Precedence Works
6327
6328The first effect of the precedence declarations is to assign precedence
6329levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6330precedence levels to certain rules: each rule gets its precedence from
6331the last terminal symbol mentioned in the components. (You can also
6332specify explicitly the precedence of a rule. @xref{Contextual
6333Precedence, ,Context-Dependent Precedence}.)
6334
6335Finally, the resolution of conflicts works by comparing the precedence
742e4900 6336of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6337token's precedence is higher, the choice is to shift. If the rule's
6338precedence is higher, the choice is to reduce. If they have equal
6339precedence, the choice is made based on the associativity of that
6340precedence level. The verbose output file made by @samp{-v}
6341(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6342resolved.
bfa74976
RS
6343
6344Not all rules and not all tokens have precedence. If either the rule or
742e4900 6345the lookahead token has no precedence, then the default is to shift.
bfa74976 6346
342b8b6e 6347@node Contextual Precedence
bfa74976
RS
6348@section Context-Dependent Precedence
6349@cindex context-dependent precedence
6350@cindex unary operator precedence
6351@cindex precedence, context-dependent
6352@cindex precedence, unary operator
6353@findex %prec
6354
6355Often the precedence of an operator depends on the context. This sounds
6356outlandish at first, but it is really very common. For example, a minus
6357sign typically has a very high precedence as a unary operator, and a
6358somewhat lower precedence (lower than multiplication) as a binary operator.
6359
6360The Bison precedence declarations, @code{%left}, @code{%right} and
6361@code{%nonassoc}, can only be used once for a given token; so a token has
6362only one precedence declared in this way. For context-dependent
6363precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6364modifier for rules.
bfa74976
RS
6365
6366The @code{%prec} modifier declares the precedence of a particular rule by
6367specifying a terminal symbol whose precedence should be used for that rule.
6368It's not necessary for that symbol to appear otherwise in the rule. The
6369modifier's syntax is:
6370
6371@example
6372%prec @var{terminal-symbol}
6373@end example
6374
6375@noindent
6376and it is written after the components of the rule. Its effect is to
6377assign the rule the precedence of @var{terminal-symbol}, overriding
6378the precedence that would be deduced for it in the ordinary way. The
6379altered rule precedence then affects how conflicts involving that rule
6380are resolved (@pxref{Precedence, ,Operator Precedence}).
6381
6382Here is how @code{%prec} solves the problem of unary minus. First, declare
6383a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6384are no tokens of this type, but the symbol serves to stand for its
6385precedence:
6386
6387@example
6388@dots{}
6389%left '+' '-'
6390%left '*'
6391%left UMINUS
6392@end example
6393
6394Now the precedence of @code{UMINUS} can be used in specific rules:
6395
6396@example
6397@group
6398exp: @dots{}
6399 | exp '-' exp
6400 @dots{}
6401 | '-' exp %prec UMINUS
6402@end group
6403@end example
6404
91d2c560 6405@ifset defaultprec
39a06c25
PE
6406If you forget to append @code{%prec UMINUS} to the rule for unary
6407minus, Bison silently assumes that minus has its usual precedence.
6408This kind of problem can be tricky to debug, since one typically
6409discovers the mistake only by testing the code.
6410
22fccf95 6411The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6412this kind of problem systematically. It causes rules that lack a
6413@code{%prec} modifier to have no precedence, even if the last terminal
6414symbol mentioned in their components has a declared precedence.
6415
22fccf95 6416If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6417for all rules that participate in precedence conflict resolution.
6418Then you will see any shift/reduce conflict until you tell Bison how
6419to resolve it, either by changing your grammar or by adding an
6420explicit precedence. This will probably add declarations to the
6421grammar, but it helps to protect against incorrect rule precedences.
6422
22fccf95
PE
6423The effect of @code{%no-default-prec;} can be reversed by giving
6424@code{%default-prec;}, which is the default.
91d2c560 6425@end ifset
39a06c25 6426
342b8b6e 6427@node Parser States
bfa74976
RS
6428@section Parser States
6429@cindex finite-state machine
6430@cindex parser state
6431@cindex state (of parser)
6432
6433The function @code{yyparse} is implemented using a finite-state machine.
6434The values pushed on the parser stack are not simply token type codes; they
6435represent the entire sequence of terminal and nonterminal symbols at or
6436near the top of the stack. The current state collects all the information
6437about previous input which is relevant to deciding what to do next.
6438
742e4900
JD
6439Each time a lookahead token is read, the current parser state together
6440with the type of lookahead token are looked up in a table. This table
6441entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6442specifies the new parser state, which is pushed onto the top of the
6443parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6444This means that a certain number of tokens or groupings are taken off
6445the top of the stack, and replaced by one grouping. In other words,
6446that number of states are popped from the stack, and one new state is
6447pushed.
6448
742e4900 6449There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6450is erroneous in the current state. This causes error processing to begin
6451(@pxref{Error Recovery}).
6452
342b8b6e 6453@node Reduce/Reduce
bfa74976
RS
6454@section Reduce/Reduce Conflicts
6455@cindex reduce/reduce conflict
6456@cindex conflicts, reduce/reduce
6457
6458A reduce/reduce conflict occurs if there are two or more rules that apply
6459to the same sequence of input. This usually indicates a serious error
6460in the grammar.
6461
6462For example, here is an erroneous attempt to define a sequence
6463of zero or more @code{word} groupings.
6464
6465@example
6466sequence: /* empty */
6467 @{ printf ("empty sequence\n"); @}
6468 | maybeword
6469 | sequence word
6470 @{ printf ("added word %s\n", $2); @}
6471 ;
6472
6473maybeword: /* empty */
6474 @{ printf ("empty maybeword\n"); @}
6475 | word
6476 @{ printf ("single word %s\n", $1); @}
6477 ;
6478@end example
6479
6480@noindent
6481The error is an ambiguity: there is more than one way to parse a single
6482@code{word} into a @code{sequence}. It could be reduced to a
6483@code{maybeword} and then into a @code{sequence} via the second rule.
6484Alternatively, nothing-at-all could be reduced into a @code{sequence}
6485via the first rule, and this could be combined with the @code{word}
6486using the third rule for @code{sequence}.
6487
6488There is also more than one way to reduce nothing-at-all into a
6489@code{sequence}. This can be done directly via the first rule,
6490or indirectly via @code{maybeword} and then the second rule.
6491
6492You might think that this is a distinction without a difference, because it
6493does not change whether any particular input is valid or not. But it does
6494affect which actions are run. One parsing order runs the second rule's
6495action; the other runs the first rule's action and the third rule's action.
6496In this example, the output of the program changes.
6497
6498Bison resolves a reduce/reduce conflict by choosing to use the rule that
6499appears first in the grammar, but it is very risky to rely on this. Every
6500reduce/reduce conflict must be studied and usually eliminated. Here is the
6501proper way to define @code{sequence}:
6502
6503@example
6504sequence: /* empty */
6505 @{ printf ("empty sequence\n"); @}
6506 | sequence word
6507 @{ printf ("added word %s\n", $2); @}
6508 ;
6509@end example
6510
6511Here is another common error that yields a reduce/reduce conflict:
6512
6513@example
6514sequence: /* empty */
6515 | sequence words
6516 | sequence redirects
6517 ;
6518
6519words: /* empty */
6520 | words word
6521 ;
6522
6523redirects:/* empty */
6524 | redirects redirect
6525 ;
6526@end example
6527
6528@noindent
6529The intention here is to define a sequence which can contain either
6530@code{word} or @code{redirect} groupings. The individual definitions of
6531@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6532three together make a subtle ambiguity: even an empty input can be parsed
6533in infinitely many ways!
6534
6535Consider: nothing-at-all could be a @code{words}. Or it could be two
6536@code{words} in a row, or three, or any number. It could equally well be a
6537@code{redirects}, or two, or any number. Or it could be a @code{words}
6538followed by three @code{redirects} and another @code{words}. And so on.
6539
6540Here are two ways to correct these rules. First, to make it a single level
6541of sequence:
6542
6543@example
6544sequence: /* empty */
6545 | sequence word
6546 | sequence redirect
6547 ;
6548@end example
6549
6550Second, to prevent either a @code{words} or a @code{redirects}
6551from being empty:
6552
6553@example
6554sequence: /* empty */
6555 | sequence words
6556 | sequence redirects
6557 ;
6558
6559words: word
6560 | words word
6561 ;
6562
6563redirects:redirect
6564 | redirects redirect
6565 ;
6566@end example
6567
342b8b6e 6568@node Mystery Conflicts
bfa74976
RS
6569@section Mysterious Reduce/Reduce Conflicts
6570
6571Sometimes reduce/reduce conflicts can occur that don't look warranted.
6572Here is an example:
6573
6574@example
6575@group
6576%token ID
6577
6578%%
6579def: param_spec return_spec ','
6580 ;
6581param_spec:
6582 type
6583 | name_list ':' type
6584 ;
6585@end group
6586@group
6587return_spec:
6588 type
6589 | name ':' type
6590 ;
6591@end group
6592@group
6593type: ID
6594 ;
6595@end group
6596@group
6597name: ID
6598 ;
6599name_list:
6600 name
6601 | name ',' name_list
6602 ;
6603@end group
6604@end example
6605
6606It would seem that this grammar can be parsed with only a single token
742e4900 6607of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6608a @code{name} if a comma or colon follows, or a @code{type} if another
c827f760 6609@code{ID} follows. In other words, this grammar is @acronym{LR}(1).
bfa74976 6610
c827f760
PE
6611@cindex @acronym{LR}(1)
6612@cindex @acronym{LALR}(1)
bfa74976 6613However, Bison, like most parser generators, cannot actually handle all
c827f760
PE
6614@acronym{LR}(1) grammars. In this grammar, two contexts, that after
6615an @code{ID}
bfa74976
RS
6616at the beginning of a @code{param_spec} and likewise at the beginning of
6617a @code{return_spec}, are similar enough that Bison assumes they are the
6618same. They appear similar because the same set of rules would be
6619active---the rule for reducing to a @code{name} and that for reducing to
6620a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6621that the rules would require different lookahead tokens in the two
bfa74976
RS
6622contexts, so it makes a single parser state for them both. Combining
6623the two contexts causes a conflict later. In parser terminology, this
c827f760 6624occurrence means that the grammar is not @acronym{LALR}(1).
bfa74976
RS
6625
6626In general, it is better to fix deficiencies than to document them. But
6627this particular deficiency is intrinsically hard to fix; parser
c827f760
PE
6628generators that can handle @acronym{LR}(1) grammars are hard to write
6629and tend to
bfa74976
RS
6630produce parsers that are very large. In practice, Bison is more useful
6631as it is now.
6632
6633When the problem arises, you can often fix it by identifying the two
a220f555
MA
6634parser states that are being confused, and adding something to make them
6635look distinct. In the above example, adding one rule to
bfa74976
RS
6636@code{return_spec} as follows makes the problem go away:
6637
6638@example
6639@group
6640%token BOGUS
6641@dots{}
6642%%
6643@dots{}
6644return_spec:
6645 type
6646 | name ':' type
6647 /* This rule is never used. */
6648 | ID BOGUS
6649 ;
6650@end group
6651@end example
6652
6653This corrects the problem because it introduces the possibility of an
6654additional active rule in the context after the @code{ID} at the beginning of
6655@code{return_spec}. This rule is not active in the corresponding context
6656in a @code{param_spec}, so the two contexts receive distinct parser states.
6657As long as the token @code{BOGUS} is never generated by @code{yylex},
6658the added rule cannot alter the way actual input is parsed.
6659
6660In this particular example, there is another way to solve the problem:
6661rewrite the rule for @code{return_spec} to use @code{ID} directly
6662instead of via @code{name}. This also causes the two confusing
6663contexts to have different sets of active rules, because the one for
6664@code{return_spec} activates the altered rule for @code{return_spec}
6665rather than the one for @code{name}.
6666
6667@example
6668param_spec:
6669 type
6670 | name_list ':' type
6671 ;
6672return_spec:
6673 type
6674 | ID ':' type
6675 ;
6676@end example
6677
e054b190
PE
6678For a more detailed exposition of @acronym{LALR}(1) parsers and parser
6679generators, please see:
6680Frank DeRemer and Thomas Pennello, Efficient Computation of
6681@acronym{LALR}(1) Look-Ahead Sets, @cite{@acronym{ACM} Transactions on
6682Programming Languages and Systems}, Vol.@: 4, No.@: 4 (October 1982),
6683pp.@: 615--649 @uref{http://doi.acm.org/10.1145/69622.357187}.
6684
fae437e8 6685@node Generalized LR Parsing
c827f760
PE
6686@section Generalized @acronym{LR} (@acronym{GLR}) Parsing
6687@cindex @acronym{GLR} parsing
6688@cindex generalized @acronym{LR} (@acronym{GLR}) parsing
676385e2 6689@cindex ambiguous grammars
9d9b8b70 6690@cindex nondeterministic parsing
676385e2 6691
fae437e8
AD
6692Bison produces @emph{deterministic} parsers that choose uniquely
6693when to reduce and which reduction to apply
742e4900 6694based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
6695As a result, normal Bison handles a proper subset of the family of
6696context-free languages.
fae437e8 6697Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
6698sequence of reductions cannot have deterministic parsers in this sense.
6699The same is true of languages that require more than one symbol of
742e4900 6700lookahead, since the parser lacks the information necessary to make a
676385e2 6701decision at the point it must be made in a shift-reduce parser.
fae437e8 6702Finally, as previously mentioned (@pxref{Mystery Conflicts}),
676385e2
PH
6703there are languages where Bison's particular choice of how to
6704summarize the input seen so far loses necessary information.
6705
6706When you use the @samp{%glr-parser} declaration in your grammar file,
6707Bison generates a parser that uses a different algorithm, called
c827f760
PE
6708Generalized @acronym{LR} (or @acronym{GLR}). A Bison @acronym{GLR}
6709parser uses the same basic
676385e2
PH
6710algorithm for parsing as an ordinary Bison parser, but behaves
6711differently in cases where there is a shift-reduce conflict that has not
fae437e8 6712been resolved by precedence rules (@pxref{Precedence}) or a
c827f760
PE
6713reduce-reduce conflict. When a @acronym{GLR} parser encounters such a
6714situation, it
fae437e8 6715effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
6716shift or reduction. These parsers then proceed as usual, consuming
6717tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 6718and split further, with the result that instead of a sequence of states,
c827f760 6719a Bison @acronym{GLR} parsing stack is what is in effect a tree of states.
676385e2
PH
6720
6721In effect, each stack represents a guess as to what the proper parse
6722is. Additional input may indicate that a guess was wrong, in which case
6723the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 6724actions generated in each stack are saved, rather than being executed
676385e2 6725immediately. When a stack disappears, its saved semantic actions never
fae437e8 6726get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
6727their sets of semantic actions are both saved with the state that
6728results from the reduction. We say that two stacks are equivalent
fae437e8 6729when they both represent the same sequence of states,
676385e2
PH
6730and each pair of corresponding states represents a
6731grammar symbol that produces the same segment of the input token
6732stream.
6733
6734Whenever the parser makes a transition from having multiple
c827f760 6735states to having one, it reverts to the normal @acronym{LALR}(1) parsing
676385e2
PH
6736algorithm, after resolving and executing the saved-up actions.
6737At this transition, some of the states on the stack will have semantic
6738values that are sets (actually multisets) of possible actions. The
6739parser tries to pick one of the actions by first finding one whose rule
6740has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 6741declaration. Otherwise, if the alternative actions are not ordered by
676385e2 6742precedence, but there the same merging function is declared for both
fae437e8 6743rules by the @samp{%merge} declaration,
676385e2
PH
6744Bison resolves and evaluates both and then calls the merge function on
6745the result. Otherwise, it reports an ambiguity.
6746
c827f760
PE
6747It is possible to use a data structure for the @acronym{GLR} parsing tree that
6748permits the processing of any @acronym{LALR}(1) grammar in linear time (in the
6749size of the input), any unambiguous (not necessarily
6750@acronym{LALR}(1)) grammar in
fae437e8 6751quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
6752context-free grammar in cubic worst-case time. However, Bison currently
6753uses a simpler data structure that requires time proportional to the
6754length of the input times the maximum number of stacks required for any
9d9b8b70 6755prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
6756grammars can require exponential time and space to process. Such badly
6757behaving examples, however, are not generally of practical interest.
9d9b8b70 6758Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 6759doubt'' only for a few tokens at a time. Therefore, the current data
c827f760 6760structure should generally be adequate. On @acronym{LALR}(1) portions of a
676385e2
PH
6761grammar, in particular, it is only slightly slower than with the default
6762Bison parser.
6763
fa7e68c3 6764For a more detailed exposition of @acronym{GLR} parsers, please see: Elizabeth
f6481e2f
PE
6765Scott, Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style
6766Generalised @acronym{LR} Parsers, Royal Holloway, University of
6767London, Department of Computer Science, TR-00-12,
6768@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps},
6769(2000-12-24).
6770
1a059451
PE
6771@node Memory Management
6772@section Memory Management, and How to Avoid Memory Exhaustion
6773@cindex memory exhaustion
6774@cindex memory management
bfa74976
RS
6775@cindex stack overflow
6776@cindex parser stack overflow
6777@cindex overflow of parser stack
6778
1a059451 6779The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 6780not reduced. When this happens, the parser function @code{yyparse}
1a059451 6781calls @code{yyerror} and then returns 2.
bfa74976 6782
c827f760 6783Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
6784usually results from using a right recursion instead of a left
6785recursion, @xref{Recursion, ,Recursive Rules}.
6786
bfa74976
RS
6787@vindex YYMAXDEPTH
6788By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 6789parser stack can become before memory is exhausted. Define the
bfa74976
RS
6790macro with a value that is an integer. This value is the maximum number
6791of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
6792
6793The stack space allowed is not necessarily allocated. If you specify a
1a059451 6794large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
6795stack at first, and then makes it bigger by stages as needed. This
6796increasing allocation happens automatically and silently. Therefore,
6797you do not need to make @code{YYMAXDEPTH} painfully small merely to save
6798space for ordinary inputs that do not need much stack.
6799
d7e14fc0
PE
6800However, do not allow @code{YYMAXDEPTH} to be a value so large that
6801arithmetic overflow could occur when calculating the size of the stack
6802space. Also, do not allow @code{YYMAXDEPTH} to be less than
6803@code{YYINITDEPTH}.
6804
bfa74976
RS
6805@cindex default stack limit
6806The default value of @code{YYMAXDEPTH}, if you do not define it, is
680710000.
6808
6809@vindex YYINITDEPTH
6810You can control how much stack is allocated initially by defining the
d7e14fc0
PE
6811macro @code{YYINITDEPTH} to a positive integer. For the C
6812@acronym{LALR}(1) parser, this value must be a compile-time constant
6813unless you are assuming C99 or some other target language or compiler
6814that allows variable-length arrays. The default is 200.
6815
1a059451 6816Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 6817
d1a1114f 6818@c FIXME: C++ output.
c827f760 6819Because of semantical differences between C and C++, the
1a059451
PE
6820@acronym{LALR}(1) parsers in C produced by Bison cannot grow when compiled
6821by C++ compilers. In this precise case (compiling a C parser as C++) you are
6822suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
6823this deficiency in a future release.
d1a1114f 6824
342b8b6e 6825@node Error Recovery
bfa74976
RS
6826@chapter Error Recovery
6827@cindex error recovery
6828@cindex recovery from errors
6829
6e649e65 6830It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
6831error. For example, a compiler should recover sufficiently to parse the
6832rest of the input file and check it for errors; a calculator should accept
6833another expression.
6834
6835In a simple interactive command parser where each input is one line, it may
6836be sufficient to allow @code{yyparse} to return 1 on error and have the
6837caller ignore the rest of the input line when that happens (and then call
6838@code{yyparse} again). But this is inadequate for a compiler, because it
6839forgets all the syntactic context leading up to the error. A syntax error
6840deep within a function in the compiler input should not cause the compiler
6841to treat the following line like the beginning of a source file.
6842
6843@findex error
6844You can define how to recover from a syntax error by writing rules to
6845recognize the special token @code{error}. This is a terminal symbol that
6846is always defined (you need not declare it) and reserved for error
6847handling. The Bison parser generates an @code{error} token whenever a
6848syntax error happens; if you have provided a rule to recognize this token
13863333 6849in the current context, the parse can continue.
bfa74976
RS
6850
6851For example:
6852
6853@example
6854stmnts: /* empty string */
6855 | stmnts '\n'
6856 | stmnts exp '\n'
6857 | stmnts error '\n'
6858@end example
6859
6860The fourth rule in this example says that an error followed by a newline
6861makes a valid addition to any @code{stmnts}.
6862
6863What happens if a syntax error occurs in the middle of an @code{exp}? The
6864error recovery rule, interpreted strictly, applies to the precise sequence
6865of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
6866the middle of an @code{exp}, there will probably be some additional tokens
6867and subexpressions on the stack after the last @code{stmnts}, and there
6868will be tokens to read before the next newline. So the rule is not
6869applicable in the ordinary way.
6870
6871But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
6872the semantic context and part of the input. First it discards states
6873and objects from the stack until it gets back to a state in which the
bfa74976 6874@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
6875already parsed are discarded, back to the last complete @code{stmnts}.)
6876At this point the @code{error} token can be shifted. Then, if the old
742e4900 6877lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 6878tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
6879this example, Bison reads and discards input until the next newline so
6880that the fourth rule can apply. Note that discarded symbols are
6881possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
6882Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
6883
6884The choice of error rules in the grammar is a choice of strategies for
6885error recovery. A simple and useful strategy is simply to skip the rest of
6886the current input line or current statement if an error is detected:
6887
6888@example
72d2299c 6889stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
6890@end example
6891
6892It is also useful to recover to the matching close-delimiter of an
6893opening-delimiter that has already been parsed. Otherwise the
6894close-delimiter will probably appear to be unmatched, and generate another,
6895spurious error message:
6896
6897@example
6898primary: '(' expr ')'
6899 | '(' error ')'
6900 @dots{}
6901 ;
6902@end example
6903
6904Error recovery strategies are necessarily guesses. When they guess wrong,
6905one syntax error often leads to another. In the above example, the error
6906recovery rule guesses that an error is due to bad input within one
6907@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
6908middle of a valid @code{stmnt}. After the error recovery rule recovers
6909from the first error, another syntax error will be found straightaway,
6910since the text following the spurious semicolon is also an invalid
6911@code{stmnt}.
6912
6913To prevent an outpouring of error messages, the parser will output no error
6914message for another syntax error that happens shortly after the first; only
6915after three consecutive input tokens have been successfully shifted will
6916error messages resume.
6917
6918Note that rules which accept the @code{error} token may have actions, just
6919as any other rules can.
6920
6921@findex yyerrok
6922You can make error messages resume immediately by using the macro
6923@code{yyerrok} in an action. If you do this in the error rule's action, no
6924error messages will be suppressed. This macro requires no arguments;
6925@samp{yyerrok;} is a valid C statement.
6926
6927@findex yyclearin
742e4900 6928The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
6929this is unacceptable, then the macro @code{yyclearin} may be used to clear
6930this token. Write the statement @samp{yyclearin;} in the error rule's
6931action.
32c29292 6932@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 6933
6e649e65 6934For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
6935called that advances the input stream to some point where parsing should
6936once again commence. The next symbol returned by the lexical scanner is
742e4900 6937probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
6938with @samp{yyclearin;}.
6939
6940@vindex YYRECOVERING
02103984
PE
6941The expression @code{YYRECOVERING ()} yields 1 when the parser
6942is recovering from a syntax error, and 0 otherwise.
6943Syntax error diagnostics are suppressed while recovering from a syntax
6944error.
bfa74976 6945
342b8b6e 6946@node Context Dependency
bfa74976
RS
6947@chapter Handling Context Dependencies
6948
6949The Bison paradigm is to parse tokens first, then group them into larger
6950syntactic units. In many languages, the meaning of a token is affected by
6951its context. Although this violates the Bison paradigm, certain techniques
6952(known as @dfn{kludges}) may enable you to write Bison parsers for such
6953languages.
6954
6955@menu
6956* Semantic Tokens:: Token parsing can depend on the semantic context.
6957* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
6958* Tie-in Recovery:: Lexical tie-ins have implications for how
6959 error recovery rules must be written.
6960@end menu
6961
6962(Actually, ``kludge'' means any technique that gets its job done but is
6963neither clean nor robust.)
6964
342b8b6e 6965@node Semantic Tokens
bfa74976
RS
6966@section Semantic Info in Token Types
6967
6968The C language has a context dependency: the way an identifier is used
6969depends on what its current meaning is. For example, consider this:
6970
6971@example
6972foo (x);
6973@end example
6974
6975This looks like a function call statement, but if @code{foo} is a typedef
6976name, then this is actually a declaration of @code{x}. How can a Bison
6977parser for C decide how to parse this input?
6978
c827f760 6979The method used in @acronym{GNU} C is to have two different token types,
bfa74976
RS
6980@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
6981identifier, it looks up the current declaration of the identifier in order
6982to decide which token type to return: @code{TYPENAME} if the identifier is
6983declared as a typedef, @code{IDENTIFIER} otherwise.
6984
6985The grammar rules can then express the context dependency by the choice of
6986token type to recognize. @code{IDENTIFIER} is accepted as an expression,
6987but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
6988@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
6989is @emph{not} significant, such as in declarations that can shadow a
6990typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
6991accepted---there is one rule for each of the two token types.
6992
6993This technique is simple to use if the decision of which kinds of
6994identifiers to allow is made at a place close to where the identifier is
6995parsed. But in C this is not always so: C allows a declaration to
6996redeclare a typedef name provided an explicit type has been specified
6997earlier:
6998
6999@example
3a4f411f
PE
7000typedef int foo, bar;
7001int baz (void)
7002@{
7003 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7004 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7005 return foo (bar);
7006@}
bfa74976
RS
7007@end example
7008
7009Unfortunately, the name being declared is separated from the declaration
7010construct itself by a complicated syntactic structure---the ``declarator''.
7011
9ecbd125 7012As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7013all the nonterminal names changed: once for parsing a declaration in
7014which a typedef name can be redefined, and once for parsing a
7015declaration in which that can't be done. Here is a part of the
7016duplication, with actions omitted for brevity:
bfa74976
RS
7017
7018@example
7019initdcl:
7020 declarator maybeasm '='
7021 init
7022 | declarator maybeasm
7023 ;
7024
7025notype_initdcl:
7026 notype_declarator maybeasm '='
7027 init
7028 | notype_declarator maybeasm
7029 ;
7030@end example
7031
7032@noindent
7033Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7034cannot. The distinction between @code{declarator} and
7035@code{notype_declarator} is the same sort of thing.
7036
7037There is some similarity between this technique and a lexical tie-in
7038(described next), in that information which alters the lexical analysis is
7039changed during parsing by other parts of the program. The difference is
7040here the information is global, and is used for other purposes in the
7041program. A true lexical tie-in has a special-purpose flag controlled by
7042the syntactic context.
7043
342b8b6e 7044@node Lexical Tie-ins
bfa74976
RS
7045@section Lexical Tie-ins
7046@cindex lexical tie-in
7047
7048One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7049which is set by Bison actions, whose purpose is to alter the way tokens are
7050parsed.
7051
7052For example, suppose we have a language vaguely like C, but with a special
7053construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7054an expression in parentheses in which all integers are hexadecimal. In
7055particular, the token @samp{a1b} must be treated as an integer rather than
7056as an identifier if it appears in that context. Here is how you can do it:
7057
7058@example
7059@group
7060%@{
38a92d50
PE
7061 int hexflag;
7062 int yylex (void);
7063 void yyerror (char const *);
bfa74976
RS
7064%@}
7065%%
7066@dots{}
7067@end group
7068@group
7069expr: IDENTIFIER
7070 | constant
7071 | HEX '('
7072 @{ hexflag = 1; @}
7073 expr ')'
7074 @{ hexflag = 0;
7075 $$ = $4; @}
7076 | expr '+' expr
7077 @{ $$ = make_sum ($1, $3); @}
7078 @dots{}
7079 ;
7080@end group
7081
7082@group
7083constant:
7084 INTEGER
7085 | STRING
7086 ;
7087@end group
7088@end example
7089
7090@noindent
7091Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7092it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7093with letters are parsed as integers if possible.
7094
342b8b6e
AD
7095The declaration of @code{hexflag} shown in the prologue of the parser file
7096is needed to make it accessible to the actions (@pxref{Prologue, ,The Prologue}).
75f5aaea 7097You must also write the code in @code{yylex} to obey the flag.
bfa74976 7098
342b8b6e 7099@node Tie-in Recovery
bfa74976
RS
7100@section Lexical Tie-ins and Error Recovery
7101
7102Lexical tie-ins make strict demands on any error recovery rules you have.
7103@xref{Error Recovery}.
7104
7105The reason for this is that the purpose of an error recovery rule is to
7106abort the parsing of one construct and resume in some larger construct.
7107For example, in C-like languages, a typical error recovery rule is to skip
7108tokens until the next semicolon, and then start a new statement, like this:
7109
7110@example
7111stmt: expr ';'
7112 | IF '(' expr ')' stmt @{ @dots{} @}
7113 @dots{}
7114 error ';'
7115 @{ hexflag = 0; @}
7116 ;
7117@end example
7118
7119If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7120construct, this error rule will apply, and then the action for the
7121completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7122remain set for the entire rest of the input, or until the next @code{hex}
7123keyword, causing identifiers to be misinterpreted as integers.
7124
7125To avoid this problem the error recovery rule itself clears @code{hexflag}.
7126
7127There may also be an error recovery rule that works within expressions.
7128For example, there could be a rule which applies within parentheses
7129and skips to the close-parenthesis:
7130
7131@example
7132@group
7133expr: @dots{}
7134 | '(' expr ')'
7135 @{ $$ = $2; @}
7136 | '(' error ')'
7137 @dots{}
7138@end group
7139@end example
7140
7141If this rule acts within the @code{hex} construct, it is not going to abort
7142that construct (since it applies to an inner level of parentheses within
7143the construct). Therefore, it should not clear the flag: the rest of
7144the @code{hex} construct should be parsed with the flag still in effect.
7145
7146What if there is an error recovery rule which might abort out of the
7147@code{hex} construct or might not, depending on circumstances? There is no
7148way you can write the action to determine whether a @code{hex} construct is
7149being aborted or not. So if you are using a lexical tie-in, you had better
7150make sure your error recovery rules are not of this kind. Each rule must
7151be such that you can be sure that it always will, or always won't, have to
7152clear the flag.
7153
ec3bc396
AD
7154@c ================================================== Debugging Your Parser
7155
342b8b6e 7156@node Debugging
bfa74976 7157@chapter Debugging Your Parser
ec3bc396
AD
7158
7159Developing a parser can be a challenge, especially if you don't
7160understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7161Algorithm}). Even so, sometimes a detailed description of the automaton
7162can help (@pxref{Understanding, , Understanding Your Parser}), or
7163tracing the execution of the parser can give some insight on why it
7164behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7165
7166@menu
7167* Understanding:: Understanding the structure of your parser.
7168* Tracing:: Tracing the execution of your parser.
7169@end menu
7170
7171@node Understanding
7172@section Understanding Your Parser
7173
7174As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7175Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7176frequent than one would hope), looking at this automaton is required to
7177tune or simply fix a parser. Bison provides two different
35fe0834 7178representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7179
7180The textual file is generated when the options @option{--report} or
7181@option{--verbose} are specified, see @xref{Invocation, , Invoking
7182Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
7183the parser output file name, and adding @samp{.output} instead.
7184Therefore, if the input file is @file{foo.y}, then the parser file is
7185called @file{foo.tab.c} by default. As a consequence, the verbose
7186output file is called @file{foo.output}.
7187
7188The following grammar file, @file{calc.y}, will be used in the sequel:
7189
7190@example
7191%token NUM STR
7192%left '+' '-'
7193%left '*'
7194%%
7195exp: exp '+' exp
7196 | exp '-' exp
7197 | exp '*' exp
7198 | exp '/' exp
7199 | NUM
7200 ;
7201useless: STR;
7202%%
7203@end example
7204
88bce5a2
AD
7205@command{bison} reports:
7206
7207@example
cff03fb2
JD
7208calc.y: warning: 1 nonterminal and 1 rule useless in grammar
7209calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7210calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7211calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7212@end example
7213
7214When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7215creates a file @file{calc.output} with contents detailed below. The
7216order of the output and the exact presentation might vary, but the
7217interpretation is the same.
ec3bc396
AD
7218
7219The first section includes details on conflicts that were solved thanks
7220to precedence and/or associativity:
7221
7222@example
7223Conflict in state 8 between rule 2 and token '+' resolved as reduce.
7224Conflict in state 8 between rule 2 and token '-' resolved as reduce.
7225Conflict in state 8 between rule 2 and token '*' resolved as shift.
7226@exdent @dots{}
7227@end example
7228
7229@noindent
7230The next section lists states that still have conflicts.
7231
7232@example
5a99098d
PE
7233State 8 conflicts: 1 shift/reduce
7234State 9 conflicts: 1 shift/reduce
7235State 10 conflicts: 1 shift/reduce
7236State 11 conflicts: 4 shift/reduce
ec3bc396
AD
7237@end example
7238
7239@noindent
7240@cindex token, useless
7241@cindex useless token
7242@cindex nonterminal, useless
7243@cindex useless nonterminal
7244@cindex rule, useless
7245@cindex useless rule
7246The next section reports useless tokens, nonterminal and rules. Useless
7247nonterminals and rules are removed in order to produce a smaller parser,
7248but useless tokens are preserved, since they might be used by the
d80fb37a 7249scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
7250below):
7251
7252@example
d80fb37a 7253Nonterminals useless in grammar:
ec3bc396
AD
7254 useless
7255
d80fb37a 7256Terminals unused in grammar:
ec3bc396
AD
7257 STR
7258
cff03fb2 7259Rules useless in grammar:
ec3bc396
AD
7260#6 useless: STR;
7261@end example
7262
7263@noindent
7264The next section reproduces the exact grammar that Bison used:
7265
7266@example
7267Grammar
7268
7269 Number, Line, Rule
88bce5a2 7270 0 5 $accept -> exp $end
ec3bc396
AD
7271 1 5 exp -> exp '+' exp
7272 2 6 exp -> exp '-' exp
7273 3 7 exp -> exp '*' exp
7274 4 8 exp -> exp '/' exp
7275 5 9 exp -> NUM
7276@end example
7277
7278@noindent
7279and reports the uses of the symbols:
7280
7281@example
7282Terminals, with rules where they appear
7283
88bce5a2 7284$end (0) 0
ec3bc396
AD
7285'*' (42) 3
7286'+' (43) 1
7287'-' (45) 2
7288'/' (47) 4
7289error (256)
7290NUM (258) 5
7291
7292Nonterminals, with rules where they appear
7293
88bce5a2 7294$accept (8)
ec3bc396
AD
7295 on left: 0
7296exp (9)
7297 on left: 1 2 3 4 5, on right: 0 1 2 3 4
7298@end example
7299
7300@noindent
7301@cindex item
7302@cindex pointed rule
7303@cindex rule, pointed
7304Bison then proceeds onto the automaton itself, describing each state
7305with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
7306item is a production rule together with a point (marked by @samp{.})
7307that the input cursor.
7308
7309@example
7310state 0
7311
88bce5a2 7312 $accept -> . exp $ (rule 0)
ec3bc396 7313
2a8d363a 7314 NUM shift, and go to state 1
ec3bc396 7315
2a8d363a 7316 exp go to state 2
ec3bc396
AD
7317@end example
7318
7319This reads as follows: ``state 0 corresponds to being at the very
7320beginning of the parsing, in the initial rule, right before the start
7321symbol (here, @code{exp}). When the parser returns to this state right
7322after having reduced a rule that produced an @code{exp}, the control
7323flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 7324symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 7325the parse stack, and the control flow jumps to state 1. Any other
742e4900 7326lookahead triggers a syntax error.''
ec3bc396
AD
7327
7328@cindex core, item set
7329@cindex item set core
7330@cindex kernel, item set
7331@cindex item set core
7332Even though the only active rule in state 0 seems to be rule 0, the
742e4900 7333report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
7334at the beginning of any rule deriving an @code{exp}. By default Bison
7335reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
7336you want to see more detail you can invoke @command{bison} with
7337@option{--report=itemset} to list all the items, include those that can
7338be derived:
7339
7340@example
7341state 0
7342
88bce5a2 7343 $accept -> . exp $ (rule 0)
ec3bc396
AD
7344 exp -> . exp '+' exp (rule 1)
7345 exp -> . exp '-' exp (rule 2)
7346 exp -> . exp '*' exp (rule 3)
7347 exp -> . exp '/' exp (rule 4)
7348 exp -> . NUM (rule 5)
7349
7350 NUM shift, and go to state 1
7351
7352 exp go to state 2
7353@end example
7354
7355@noindent
7356In the state 1...
7357
7358@example
7359state 1
7360
7361 exp -> NUM . (rule 5)
7362
2a8d363a 7363 $default reduce using rule 5 (exp)
ec3bc396
AD
7364@end example
7365
7366@noindent
742e4900 7367the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
7368(@samp{$default}), the parser will reduce it. If it was coming from
7369state 0, then, after this reduction it will return to state 0, and will
7370jump to state 2 (@samp{exp: go to state 2}).
7371
7372@example
7373state 2
7374
88bce5a2 7375 $accept -> exp . $ (rule 0)
ec3bc396
AD
7376 exp -> exp . '+' exp (rule 1)
7377 exp -> exp . '-' exp (rule 2)
7378 exp -> exp . '*' exp (rule 3)
7379 exp -> exp . '/' exp (rule 4)
7380
2a8d363a
AD
7381 $ shift, and go to state 3
7382 '+' shift, and go to state 4
7383 '-' shift, and go to state 5
7384 '*' shift, and go to state 6
7385 '/' shift, and go to state 7
ec3bc396
AD
7386@end example
7387
7388@noindent
7389In state 2, the automaton can only shift a symbol. For instance,
742e4900 7390because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
7391@samp{+}, it will be shifted on the parse stack, and the automaton
7392control will jump to state 4, corresponding to the item @samp{exp -> exp
7393'+' . exp}. Since there is no default action, any other token than
6e649e65 7394those listed above will trigger a syntax error.
ec3bc396
AD
7395
7396The state 3 is named the @dfn{final state}, or the @dfn{accepting
7397state}:
7398
7399@example
7400state 3
7401
88bce5a2 7402 $accept -> exp $ . (rule 0)
ec3bc396 7403
2a8d363a 7404 $default accept
ec3bc396
AD
7405@end example
7406
7407@noindent
7408the initial rule is completed (the start symbol and the end
7409of input were read), the parsing exits successfully.
7410
7411The interpretation of states 4 to 7 is straightforward, and is left to
7412the reader.
7413
7414@example
7415state 4
7416
7417 exp -> exp '+' . exp (rule 1)
7418
2a8d363a 7419 NUM shift, and go to state 1
ec3bc396 7420
2a8d363a 7421 exp go to state 8
ec3bc396
AD
7422
7423state 5
7424
7425 exp -> exp '-' . exp (rule 2)
7426
2a8d363a 7427 NUM shift, and go to state 1
ec3bc396 7428
2a8d363a 7429 exp go to state 9
ec3bc396
AD
7430
7431state 6
7432
7433 exp -> exp '*' . exp (rule 3)
7434
2a8d363a 7435 NUM shift, and go to state 1
ec3bc396 7436
2a8d363a 7437 exp go to state 10
ec3bc396
AD
7438
7439state 7
7440
7441 exp -> exp '/' . exp (rule 4)
7442
2a8d363a 7443 NUM shift, and go to state 1
ec3bc396 7444
2a8d363a 7445 exp go to state 11
ec3bc396
AD
7446@end example
7447
5a99098d
PE
7448As was announced in beginning of the report, @samp{State 8 conflicts:
74491 shift/reduce}:
ec3bc396
AD
7450
7451@example
7452state 8
7453
7454 exp -> exp . '+' exp (rule 1)
7455 exp -> exp '+' exp . (rule 1)
7456 exp -> exp . '-' exp (rule 2)
7457 exp -> exp . '*' exp (rule 3)
7458 exp -> exp . '/' exp (rule 4)
7459
2a8d363a
AD
7460 '*' shift, and go to state 6
7461 '/' shift, and go to state 7
ec3bc396 7462
2a8d363a
AD
7463 '/' [reduce using rule 1 (exp)]
7464 $default reduce using rule 1 (exp)
ec3bc396
AD
7465@end example
7466
742e4900 7467Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
7468either shifting (and going to state 7), or reducing rule 1. The
7469conflict means that either the grammar is ambiguous, or the parser lacks
7470information to make the right decision. Indeed the grammar is
7471ambiguous, as, since we did not specify the precedence of @samp{/}, the
7472sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
7473NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
7474NUM}, which corresponds to reducing rule 1.
7475
c827f760 7476Because in @acronym{LALR}(1) parsing a single decision can be made, Bison
ec3bc396
AD
7477arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
7478Shift/Reduce Conflicts}. Discarded actions are reported in between
7479square brackets.
7480
7481Note that all the previous states had a single possible action: either
7482shifting the next token and going to the corresponding state, or
7483reducing a single rule. In the other cases, i.e., when shifting
7484@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
7485possible, the lookahead is required to select the action. State 8 is
7486one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
7487is shifting, otherwise the action is reducing rule 1. In other words,
7488the first two items, corresponding to rule 1, are not eligible when the
742e4900 7489lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 7490precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
7491with some set of possible lookahead tokens. When run with
7492@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
7493
7494@example
7495state 8
7496
88c78747 7497 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
7498 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
7499 exp -> exp . '-' exp (rule 2)
7500 exp -> exp . '*' exp (rule 3)
7501 exp -> exp . '/' exp (rule 4)
7502
7503 '*' shift, and go to state 6
7504 '/' shift, and go to state 7
7505
7506 '/' [reduce using rule 1 (exp)]
7507 $default reduce using rule 1 (exp)
7508@end example
7509
7510The remaining states are similar:
7511
7512@example
7513state 9
7514
7515 exp -> exp . '+' exp (rule 1)
7516 exp -> exp . '-' exp (rule 2)
7517 exp -> exp '-' exp . (rule 2)
7518 exp -> exp . '*' exp (rule 3)
7519 exp -> exp . '/' exp (rule 4)
7520
2a8d363a
AD
7521 '*' shift, and go to state 6
7522 '/' shift, and go to state 7
ec3bc396 7523
2a8d363a
AD
7524 '/' [reduce using rule 2 (exp)]
7525 $default reduce using rule 2 (exp)
ec3bc396
AD
7526
7527state 10
7528
7529 exp -> exp . '+' exp (rule 1)
7530 exp -> exp . '-' exp (rule 2)
7531 exp -> exp . '*' exp (rule 3)
7532 exp -> exp '*' exp . (rule 3)
7533 exp -> exp . '/' exp (rule 4)
7534
2a8d363a 7535 '/' shift, and go to state 7
ec3bc396 7536
2a8d363a
AD
7537 '/' [reduce using rule 3 (exp)]
7538 $default reduce using rule 3 (exp)
ec3bc396
AD
7539
7540state 11
7541
7542 exp -> exp . '+' exp (rule 1)
7543 exp -> exp . '-' exp (rule 2)
7544 exp -> exp . '*' exp (rule 3)
7545 exp -> exp . '/' exp (rule 4)
7546 exp -> exp '/' exp . (rule 4)
7547
2a8d363a
AD
7548 '+' shift, and go to state 4
7549 '-' shift, and go to state 5
7550 '*' shift, and go to state 6
7551 '/' shift, and go to state 7
ec3bc396 7552
2a8d363a
AD
7553 '+' [reduce using rule 4 (exp)]
7554 '-' [reduce using rule 4 (exp)]
7555 '*' [reduce using rule 4 (exp)]
7556 '/' [reduce using rule 4 (exp)]
7557 $default reduce using rule 4 (exp)
ec3bc396
AD
7558@end example
7559
7560@noindent
fa7e68c3
PE
7561Observe that state 11 contains conflicts not only due to the lack of
7562precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
7563@samp{*}, but also because the
ec3bc396
AD
7564associativity of @samp{/} is not specified.
7565
7566
7567@node Tracing
7568@section Tracing Your Parser
bfa74976
RS
7569@findex yydebug
7570@cindex debugging
7571@cindex tracing the parser
7572
7573If a Bison grammar compiles properly but doesn't do what you want when it
7574runs, the @code{yydebug} parser-trace feature can help you figure out why.
7575
3ded9a63
AD
7576There are several means to enable compilation of trace facilities:
7577
7578@table @asis
7579@item the macro @code{YYDEBUG}
7580@findex YYDEBUG
7581Define the macro @code{YYDEBUG} to a nonzero value when you compile the
c827f760 7582parser. This is compliant with @acronym{POSIX} Yacc. You could use
3ded9a63
AD
7583@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
7584YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
7585Prologue}).
7586
7587@item the option @option{-t}, @option{--debug}
7588Use the @samp{-t} option when you run Bison (@pxref{Invocation,
c827f760 7589,Invoking Bison}). This is @acronym{POSIX} compliant too.
3ded9a63
AD
7590
7591@item the directive @samp{%debug}
7592@findex %debug
7593Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
7594Declaration Summary}). This is a Bison extension, which will prove
7595useful when Bison will output parsers for languages that don't use a
c827f760
PE
7596preprocessor. Unless @acronym{POSIX} and Yacc portability matter to
7597you, this is
3ded9a63
AD
7598the preferred solution.
7599@end table
7600
7601We suggest that you always enable the debug option so that debugging is
7602always possible.
bfa74976 7603
02a81e05 7604The trace facility outputs messages with macro calls of the form
e2742e46 7605@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 7606@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
7607arguments. If you define @code{YYDEBUG} to a nonzero value but do not
7608define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 7609and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
7610
7611Once you have compiled the program with trace facilities, the way to
7612request a trace is to store a nonzero value in the variable @code{yydebug}.
7613You can do this by making the C code do it (in @code{main}, perhaps), or
7614you can alter the value with a C debugger.
7615
7616Each step taken by the parser when @code{yydebug} is nonzero produces a
7617line or two of trace information, written on @code{stderr}. The trace
7618messages tell you these things:
7619
7620@itemize @bullet
7621@item
7622Each time the parser calls @code{yylex}, what kind of token was read.
7623
7624@item
7625Each time a token is shifted, the depth and complete contents of the
7626state stack (@pxref{Parser States}).
7627
7628@item
7629Each time a rule is reduced, which rule it is, and the complete contents
7630of the state stack afterward.
7631@end itemize
7632
7633To make sense of this information, it helps to refer to the listing file
704a47c4
AD
7634produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
7635Bison}). This file shows the meaning of each state in terms of
7636positions in various rules, and also what each state will do with each
7637possible input token. As you read the successive trace messages, you
7638can see that the parser is functioning according to its specification in
7639the listing file. Eventually you will arrive at the place where
7640something undesirable happens, and you will see which parts of the
7641grammar are to blame.
bfa74976
RS
7642
7643The parser file is a C program and you can use C debuggers on it, but it's
7644not easy to interpret what it is doing. The parser function is a
7645finite-state machine interpreter, and aside from the actions it executes
7646the same code over and over. Only the values of variables show where in
7647the grammar it is working.
7648
7649@findex YYPRINT
7650The debugging information normally gives the token type of each token
7651read, but not its semantic value. You can optionally define a macro
7652named @code{YYPRINT} to provide a way to print the value. If you define
7653@code{YYPRINT}, it should take three arguments. The parser will pass a
7654standard I/O stream, the numeric code for the token type, and the token
7655value (from @code{yylval}).
7656
7657Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 7658calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
7659
7660@smallexample
38a92d50
PE
7661%@{
7662 static void print_token_value (FILE *, int, YYSTYPE);
7663 #define YYPRINT(file, type, value) print_token_value (file, type, value)
7664%@}
7665
7666@dots{} %% @dots{} %% @dots{}
bfa74976
RS
7667
7668static void
831d3c99 7669print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
7670@{
7671 if (type == VAR)
d3c4e709 7672 fprintf (file, "%s", value.tptr->name);
bfa74976 7673 else if (type == NUM)
d3c4e709 7674 fprintf (file, "%d", value.val);
bfa74976
RS
7675@}
7676@end smallexample
7677
ec3bc396
AD
7678@c ================================================= Invoking Bison
7679
342b8b6e 7680@node Invocation
bfa74976
RS
7681@chapter Invoking Bison
7682@cindex invoking Bison
7683@cindex Bison invocation
7684@cindex options for invoking Bison
7685
7686The usual way to invoke Bison is as follows:
7687
7688@example
7689bison @var{infile}
7690@end example
7691
7692Here @var{infile} is the grammar file name, which usually ends in
7693@samp{.y}. The parser file's name is made by replacing the @samp{.y}
fa4d969f
PE
7694with @samp{.tab.c} and removing any leading directory. Thus, the
7695@samp{bison foo.y} file name yields
7696@file{foo.tab.c}, and the @samp{bison hack/foo.y} file name yields
7697@file{foo.tab.c}. It's also possible, in case you are writing
79282c6c 7698C++ code instead of C in your grammar file, to name it @file{foo.ypp}
72d2299c
PE
7699or @file{foo.y++}. Then, the output files will take an extension like
7700the given one as input (respectively @file{foo.tab.cpp} and
7701@file{foo.tab.c++}).
fa4d969f 7702This feature takes effect with all options that manipulate file names like
234a3be3
AD
7703@samp{-o} or @samp{-d}.
7704
7705For example :
7706
7707@example
7708bison -d @var{infile.yxx}
7709@end example
84163231 7710@noindent
72d2299c 7711will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
7712
7713@example
b56471a6 7714bison -d -o @var{output.c++} @var{infile.y}
234a3be3 7715@end example
84163231 7716@noindent
234a3be3
AD
7717will produce @file{output.c++} and @file{outfile.h++}.
7718
397ec073
PE
7719For compatibility with @acronym{POSIX}, the standard Bison
7720distribution also contains a shell script called @command{yacc} that
7721invokes Bison with the @option{-y} option.
7722
bfa74976 7723@menu
13863333 7724* Bison Options:: All the options described in detail,
c827f760 7725 in alphabetical order by short options.
bfa74976 7726* Option Cross Key:: Alphabetical list of long options.
93dd49ab 7727* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
7728@end menu
7729
342b8b6e 7730@node Bison Options
bfa74976
RS
7731@section Bison Options
7732
7733Bison supports both traditional single-letter options and mnemonic long
7734option names. Long option names are indicated with @samp{--} instead of
7735@samp{-}. Abbreviations for option names are allowed as long as they
7736are unique. When a long option takes an argument, like
7737@samp{--file-prefix}, connect the option name and the argument with
7738@samp{=}.
7739
7740Here is a list of options that can be used with Bison, alphabetized by
7741short option. It is followed by a cross key alphabetized by long
7742option.
7743
89cab50d
AD
7744@c Please, keep this ordered as in `bison --help'.
7745@noindent
7746Operations modes:
7747@table @option
7748@item -h
7749@itemx --help
7750Print a summary of the command-line options to Bison and exit.
bfa74976 7751
89cab50d
AD
7752@item -V
7753@itemx --version
7754Print the version number of Bison and exit.
bfa74976 7755
f7ab6a50
PE
7756@item --print-localedir
7757Print the name of the directory containing locale-dependent data.
7758
a0de5091
JD
7759@item --print-datadir
7760Print the name of the directory containing skeletons and XSLT.
7761
89cab50d
AD
7762@item -y
7763@itemx --yacc
54662697
PE
7764Act more like the traditional Yacc command. This can cause
7765different diagnostics to be generated, and may change behavior in
7766other minor ways. Most importantly, imitate Yacc's output
7767file name conventions, so that the parser output file is called
89cab50d 7768@file{y.tab.c}, and the other outputs are called @file{y.output} and
b931235e
JD
7769@file{y.tab.h}.
7770Also, if generating an @acronym{LALR}(1) parser in C, generate @code{#define}
7771statements in addition to an @code{enum} to associate token numbers with token
7772names.
7773Thus, the following shell script can substitute for Yacc, and the Bison
7774distribution contains such a script for compatibility with @acronym{POSIX}:
bfa74976 7775
89cab50d 7776@example
397ec073 7777#! /bin/sh
26e06a21 7778bison -y "$@@"
89cab50d 7779@end example
54662697
PE
7780
7781The @option{-y}/@option{--yacc} option is intended for use with
7782traditional Yacc grammars. If your grammar uses a Bison extension
7783like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
7784this option is specified.
7785
ecd1b61c
JD
7786@item -W [@var{category}]
7787@itemx --warnings[=@var{category}]
118d4978
AD
7788Output warnings falling in @var{category}. @var{category} can be one
7789of:
7790@table @code
7791@item midrule-values
8e55b3aa
JD
7792Warn about mid-rule values that are set but not used within any of the actions
7793of the parent rule.
7794For example, warn about unused @code{$2} in:
118d4978
AD
7795
7796@example
7797exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
7798@end example
7799
8e55b3aa
JD
7800Also warn about mid-rule values that are used but not set.
7801For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
7802
7803@example
7804 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
7805@end example
7806
7807These warnings are not enabled by default since they sometimes prove to
7808be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 7809@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
7810
7811
7812@item yacc
7813Incompatibilities with @acronym{POSIX} Yacc.
7814
7815@item all
8e55b3aa 7816All the warnings.
118d4978 7817@item none
8e55b3aa 7818Turn off all the warnings.
118d4978 7819@item error
8e55b3aa 7820Treat warnings as errors.
118d4978
AD
7821@end table
7822
7823A category can be turned off by prefixing its name with @samp{no-}. For
7824instance, @option{-Wno-syntax} will hide the warnings about unused
7825variables.
89cab50d
AD
7826@end table
7827
7828@noindent
7829Tuning the parser:
7830
7831@table @option
7832@item -t
7833@itemx --debug
4947ebdb
PE
7834In the parser file, define the macro @code{YYDEBUG} to 1 if it is not
7835already defined, so that the debugging facilities are compiled.
ec3bc396 7836@xref{Tracing, ,Tracing Your Parser}.
89cab50d 7837
e14c6831
AD
7838@item -D @var{name}[=@var{value}]
7839@itemx --define=@var{name}[=@var{value}]
7840Same as running @samp{%define @var{name} "@var{value}"} (@pxref{Decl
7841Summary, ,%define}).
7842
0e021770
PE
7843@item -L @var{language}
7844@itemx --language=@var{language}
7845Specify the programming language for the generated parser, as if
7846@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 7847Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 7848@var{language} is case-insensitive.
0e021770 7849
ed4d67dc
JD
7850This option is experimental and its effect may be modified in future
7851releases.
7852
89cab50d 7853@item --locations
d8988b2f 7854Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
7855
7856@item -p @var{prefix}
7857@itemx --name-prefix=@var{prefix}
02975b9a 7858Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 7859@xref{Decl Summary}.
bfa74976
RS
7860
7861@item -l
7862@itemx --no-lines
7863Don't put any @code{#line} preprocessor commands in the parser file.
7864Ordinarily Bison puts them in the parser file so that the C compiler
7865and debuggers will associate errors with your source file, the
7866grammar file. This option causes them to associate errors with the
95e742f7 7867parser file, treating it as an independent source file in its own right.
bfa74976 7868
e6e704dc
JD
7869@item -S @var{file}
7870@itemx --skeleton=@var{file}
a7867f53 7871Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
7872(@pxref{Decl Summary, , Bison Declaration Summary}).
7873
ed4d67dc
JD
7874@c You probably don't need this option unless you are developing Bison.
7875@c You should use @option{--language} if you want to specify the skeleton for a
7876@c different language, because it is clearer and because it will always
7877@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 7878
a7867f53
JD
7879If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
7880file in the Bison installation directory.
7881If it does, @var{file} is an absolute file name or a file name relative to the
7882current working directory.
7883This is similar to how most shells resolve commands.
7884
89cab50d
AD
7885@item -k
7886@itemx --token-table
d8988b2f 7887Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 7888@end table
bfa74976 7889
89cab50d
AD
7890@noindent
7891Adjust the output:
bfa74976 7892
89cab50d 7893@table @option
8e55b3aa 7894@item --defines[=@var{file}]
d8988b2f 7895Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 7896file containing macro definitions for the token type names defined in
4bfd5e4e 7897the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 7898
8e55b3aa
JD
7899@item -d
7900This is the same as @code{--defines} except @code{-d} does not accept a
7901@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
7902with other short options.
342b8b6e 7903
89cab50d
AD
7904@item -b @var{file-prefix}
7905@itemx --file-prefix=@var{prefix}
9c437126 7906Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 7907for all Bison output file names. @xref{Decl Summary}.
bfa74976 7908
ec3bc396
AD
7909@item -r @var{things}
7910@itemx --report=@var{things}
7911Write an extra output file containing verbose description of the comma
7912separated list of @var{things} among:
7913
7914@table @code
7915@item state
7916Description of the grammar, conflicts (resolved and unresolved), and
c827f760 7917@acronym{LALR} automaton.
ec3bc396 7918
742e4900 7919@item lookahead
ec3bc396 7920Implies @code{state} and augments the description of the automaton with
742e4900 7921each rule's lookahead set.
ec3bc396
AD
7922
7923@item itemset
7924Implies @code{state} and augments the description of the automaton with
7925the full set of items for each state, instead of its core only.
7926@end table
7927
1bb2bd75
JD
7928@item --report-file=@var{file}
7929Specify the @var{file} for the verbose description.
7930
bfa74976
RS
7931@item -v
7932@itemx --verbose
9c437126 7933Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 7934file containing verbose descriptions of the grammar and
72d2299c 7935parser. @xref{Decl Summary}.
bfa74976 7936
fa4d969f
PE
7937@item -o @var{file}
7938@itemx --output=@var{file}
7939Specify the @var{file} for the parser file.
bfa74976 7940
fa4d969f 7941The other output files' names are constructed from @var{file} as
d8988b2f 7942described under the @samp{-v} and @samp{-d} options.
342b8b6e 7943
72183df4 7944@item -g [@var{file}]
8e55b3aa 7945@itemx --graph[=@var{file}]
35fe0834
PE
7946Output a graphical representation of the @acronym{LALR}(1) grammar
7947automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
7948@uref{http://www.graphviz.org/doc/info/lang.html, @acronym{DOT}} format.
8e55b3aa
JD
7949@code{@var{file}} is optional.
7950If omitted and the grammar file is @file{foo.y}, the output file will be
7951@file{foo.dot}.
59da312b 7952
72183df4 7953@item -x [@var{file}]
8e55b3aa 7954@itemx --xml[=@var{file}]
59da312b 7955Output an XML report of the @acronym{LALR}(1) automaton computed by Bison.
8e55b3aa 7956@code{@var{file}} is optional.
59da312b
JD
7957If omitted and the grammar file is @file{foo.y}, the output file will be
7958@file{foo.xml}.
7959(The current XML schema is experimental and may evolve.
7960More user feedback will help to stabilize it.)
bfa74976
RS
7961@end table
7962
342b8b6e 7963@node Option Cross Key
bfa74976
RS
7964@section Option Cross Key
7965
7966Here is a list of options, alphabetized by long option, to help you find
7967the corresponding short option.
7968
72183df4
DJ
7969@multitable {@option{--defines=@var{defines-file}}} {@option{-D @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
7970@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 7971@include cross-options.texi
aa08666d 7972@end multitable
bfa74976 7973
93dd49ab
PE
7974@node Yacc Library
7975@section Yacc Library
7976
7977The Yacc library contains default implementations of the
7978@code{yyerror} and @code{main} functions. These default
7979implementations are normally not useful, but @acronym{POSIX} requires
7980them. To use the Yacc library, link your program with the
7981@option{-ly} option. Note that Bison's implementation of the Yacc
7982library is distributed under the terms of the @acronym{GNU} General
7983Public License (@pxref{Copying}).
7984
7985If you use the Yacc library's @code{yyerror} function, you should
7986declare @code{yyerror} as follows:
7987
7988@example
7989int yyerror (char const *);
7990@end example
7991
7992Bison ignores the @code{int} value returned by this @code{yyerror}.
7993If you use the Yacc library's @code{main} function, your
7994@code{yyparse} function should have the following type signature:
7995
7996@example
7997int yyparse (void);
7998@end example
7999
12545799
AD
8000@c ================================================= C++ Bison
8001
8405b70c
PB
8002@node Other Languages
8003@chapter Parsers Written In Other Languages
12545799
AD
8004
8005@menu
8006* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8007* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8008@end menu
8009
8010@node C++ Parsers
8011@section C++ Parsers
8012
8013@menu
8014* C++ Bison Interface:: Asking for C++ parser generation
8015* C++ Semantic Values:: %union vs. C++
8016* C++ Location Values:: The position and location classes
8017* C++ Parser Interface:: Instantiating and running the parser
8018* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8019* A Complete C++ Example:: Demonstrating their use
12545799
AD
8020@end menu
8021
8022@node C++ Bison Interface
8023@subsection C++ Bison Interface
ed4d67dc 8024@c - %skeleton "lalr1.cc"
12545799
AD
8025@c - Always pure
8026@c - initial action
8027
ed4d67dc
JD
8028The C++ @acronym{LALR}(1) parser is selected using the skeleton directive,
8029@samp{%skeleton "lalr1.c"}, or the synonymous command-line option
8030@option{--skeleton=lalr1.c}.
e6e704dc 8031@xref{Decl Summary}.
0e021770 8032
793fbca5
JD
8033When run, @command{bison} will create several entities in the @samp{yy}
8034namespace.
8035@findex %define namespace
8036Use the @samp{%define namespace} directive to change the namespace name, see
8037@ref{Decl Summary}.
8038The various classes are generated in the following files:
aa08666d 8039
12545799
AD
8040@table @file
8041@item position.hh
8042@itemx location.hh
8043The definition of the classes @code{position} and @code{location},
8044used for location tracking. @xref{C++ Location Values}.
8045
8046@item stack.hh
8047An auxiliary class @code{stack} used by the parser.
8048
fa4d969f
PE
8049@item @var{file}.hh
8050@itemx @var{file}.cc
cd8b5791
AD
8051(Assuming the extension of the input file was @samp{.yy}.) The
8052declaration and implementation of the C++ parser class. The basename
8053and extension of these two files follow the same rules as with regular C
8054parsers (@pxref{Invocation}).
12545799 8055
cd8b5791
AD
8056The header is @emph{mandatory}; you must either pass
8057@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8058@samp{%defines} directive.
8059@end table
8060
8061All these files are documented using Doxygen; run @command{doxygen}
8062for a complete and accurate documentation.
8063
8064@node C++ Semantic Values
8065@subsection C++ Semantic Values
8066@c - No objects in unions
178e123e 8067@c - YYSTYPE
12545799
AD
8068@c - Printer and destructor
8069
8070The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8071Collection of Value Types}. In particular it produces a genuine
8072@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8073within pseudo-unions (similar to Boost variants) might be implemented to
8074alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8075@itemize @minus
8076@item
fb9712a9
AD
8077The type @code{YYSTYPE} is defined but its use is discouraged: rather
8078you should refer to the parser's encapsulated type
8079@code{yy::parser::semantic_type}.
12545799
AD
8080@item
8081Non POD (Plain Old Data) types cannot be used. C++ forbids any
8082instance of classes with constructors in unions: only @emph{pointers}
8083to such objects are allowed.
8084@end itemize
8085
8086Because objects have to be stored via pointers, memory is not
8087reclaimed automatically: using the @code{%destructor} directive is the
8088only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8089Symbols}.
8090
8091
8092@node C++ Location Values
8093@subsection C++ Location Values
8094@c - %locations
8095@c - class Position
8096@c - class Location
16dc6a9e 8097@c - %define filename_type "const symbol::Symbol"
12545799
AD
8098
8099When the directive @code{%locations} is used, the C++ parser supports
8100location tracking, see @ref{Locations, , Locations Overview}. Two
8101auxiliary classes define a @code{position}, a single point in a file,
8102and a @code{location}, a range composed of a pair of
8103@code{position}s (possibly spanning several files).
8104
fa4d969f 8105@deftypemethod {position} {std::string*} file
12545799
AD
8106The name of the file. It will always be handled as a pointer, the
8107parser will never duplicate nor deallocate it. As an experimental
8108feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8109filename_type "@var{type}"}.
12545799
AD
8110@end deftypemethod
8111
8112@deftypemethod {position} {unsigned int} line
8113The line, starting at 1.
8114@end deftypemethod
8115
8116@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8117Advance by @var{height} lines, resetting the column number.
8118@end deftypemethod
8119
8120@deftypemethod {position} {unsigned int} column
8121The column, starting at 0.
8122@end deftypemethod
8123
8124@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8125Advance by @var{width} columns, without changing the line number.
8126@end deftypemethod
8127
8128@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8129@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8130@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8131@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8132Various forms of syntactic sugar for @code{columns}.
8133@end deftypemethod
8134
8135@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8136Report @var{p} on @var{o} like this:
fa4d969f
PE
8137@samp{@var{file}:@var{line}.@var{column}}, or
8138@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8139@end deftypemethod
8140
8141@deftypemethod {location} {position} begin
8142@deftypemethodx {location} {position} end
8143The first, inclusive, position of the range, and the first beyond.
8144@end deftypemethod
8145
8146@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8147@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8148Advance the @code{end} position.
8149@end deftypemethod
8150
8151@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8152@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8153@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8154Various forms of syntactic sugar.
8155@end deftypemethod
8156
8157@deftypemethod {location} {void} step ()
8158Move @code{begin} onto @code{end}.
8159@end deftypemethod
8160
8161
8162@node C++ Parser Interface
8163@subsection C++ Parser Interface
8164@c - define parser_class_name
8165@c - Ctor
8166@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8167@c debug_stream.
8168@c - Reporting errors
8169
8170The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8171declare and define the parser class in the namespace @code{yy}. The
8172class name defaults to @code{parser}, but may be changed using
16dc6a9e 8173@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8174this class is detailed below. It can be extended using the
12545799
AD
8175@code{%parse-param} feature: its semantics is slightly changed since
8176it describes an additional member of the parser class, and an
8177additional argument for its constructor.
8178
8a0adb01
AD
8179@defcv {Type} {parser} {semantic_value_type}
8180@defcvx {Type} {parser} {location_value_type}
12545799 8181The types for semantics value and locations.
8a0adb01 8182@end defcv
12545799
AD
8183
8184@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8185Build a new parser object. There are no arguments by default, unless
8186@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8187@end deftypemethod
8188
8189@deftypemethod {parser} {int} parse ()
8190Run the syntactic analysis, and return 0 on success, 1 otherwise.
8191@end deftypemethod
8192
8193@deftypemethod {parser} {std::ostream&} debug_stream ()
8194@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8195Get or set the stream used for tracing the parsing. It defaults to
8196@code{std::cerr}.
8197@end deftypemethod
8198
8199@deftypemethod {parser} {debug_level_type} debug_level ()
8200@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8201Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8202or nonzero, full tracing.
12545799
AD
8203@end deftypemethod
8204
8205@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8206The definition for this member function must be supplied by the user:
8207the parser uses it to report a parser error occurring at @var{l},
8208described by @var{m}.
8209@end deftypemethod
8210
8211
8212@node C++ Scanner Interface
8213@subsection C++ Scanner Interface
8214@c - prefix for yylex.
8215@c - Pure interface to yylex
8216@c - %lex-param
8217
8218The parser invokes the scanner by calling @code{yylex}. Contrary to C
8219parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 8220@code{%define api.pure} directive. Therefore the interface is as follows.
12545799
AD
8221
8222@deftypemethod {parser} {int} yylex (semantic_value_type& @var{yylval}, location_type& @var{yylloc}, @var{type1} @var{arg1}, ...)
8223Return the next token. Its type is the return value, its semantic
8224value and location being @var{yylval} and @var{yylloc}. Invocations of
8225@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
8226@end deftypemethod
8227
8228
8229@node A Complete C++ Example
8405b70c 8230@subsection A Complete C++ Example
12545799
AD
8231
8232This section demonstrates the use of a C++ parser with a simple but
8233complete example. This example should be available on your system,
8234ready to compile, in the directory @dfn{../bison/examples/calc++}. It
8235focuses on the use of Bison, therefore the design of the various C++
8236classes is very naive: no accessors, no encapsulation of members etc.
8237We will use a Lex scanner, and more precisely, a Flex scanner, to
8238demonstrate the various interaction. A hand written scanner is
8239actually easier to interface with.
8240
8241@menu
8242* Calc++ --- C++ Calculator:: The specifications
8243* Calc++ Parsing Driver:: An active parsing context
8244* Calc++ Parser:: A parser class
8245* Calc++ Scanner:: A pure C++ Flex scanner
8246* Calc++ Top Level:: Conducting the band
8247@end menu
8248
8249@node Calc++ --- C++ Calculator
8405b70c 8250@subsubsection Calc++ --- C++ Calculator
12545799
AD
8251
8252Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 8253expression, possibly preceded by variable assignments. An
12545799
AD
8254environment containing possibly predefined variables such as
8255@code{one} and @code{two}, is exchanged with the parser. An example
8256of valid input follows.
8257
8258@example
8259three := 3
8260seven := one + two * three
8261seven * seven
8262@end example
8263
8264@node Calc++ Parsing Driver
8405b70c 8265@subsubsection Calc++ Parsing Driver
12545799
AD
8266@c - An env
8267@c - A place to store error messages
8268@c - A place for the result
8269
8270To support a pure interface with the parser (and the scanner) the
8271technique of the ``parsing context'' is convenient: a structure
8272containing all the data to exchange. Since, in addition to simply
8273launch the parsing, there are several auxiliary tasks to execute (open
8274the file for parsing, instantiate the parser etc.), we recommend
8275transforming the simple parsing context structure into a fully blown
8276@dfn{parsing driver} class.
8277
8278The declaration of this driver class, @file{calc++-driver.hh}, is as
8279follows. The first part includes the CPP guard and imports the
fb9712a9
AD
8280required standard library components, and the declaration of the parser
8281class.
12545799 8282
1c59e0a1 8283@comment file: calc++-driver.hh
12545799
AD
8284@example
8285#ifndef CALCXX_DRIVER_HH
8286# define CALCXX_DRIVER_HH
8287# include <string>
8288# include <map>
fb9712a9 8289# include "calc++-parser.hh"
12545799
AD
8290@end example
8291
12545799
AD
8292
8293@noindent
8294Then comes the declaration of the scanning function. Flex expects
8295the signature of @code{yylex} to be defined in the macro
8296@code{YY_DECL}, and the C++ parser expects it to be declared. We can
8297factor both as follows.
1c59e0a1
AD
8298
8299@comment file: calc++-driver.hh
12545799 8300@example
3dc5e96b
PE
8301// Tell Flex the lexer's prototype ...
8302# define YY_DECL \
c095d689
AD
8303 yy::calcxx_parser::token_type \
8304 yylex (yy::calcxx_parser::semantic_type* yylval, \
8305 yy::calcxx_parser::location_type* yylloc, \
8306 calcxx_driver& driver)
12545799
AD
8307// ... and declare it for the parser's sake.
8308YY_DECL;
8309@end example
8310
8311@noindent
8312The @code{calcxx_driver} class is then declared with its most obvious
8313members.
8314
1c59e0a1 8315@comment file: calc++-driver.hh
12545799
AD
8316@example
8317// Conducting the whole scanning and parsing of Calc++.
8318class calcxx_driver
8319@{
8320public:
8321 calcxx_driver ();
8322 virtual ~calcxx_driver ();
8323
8324 std::map<std::string, int> variables;
8325
8326 int result;
8327@end example
8328
8329@noindent
8330To encapsulate the coordination with the Flex scanner, it is useful to
8331have two members function to open and close the scanning phase.
12545799 8332
1c59e0a1 8333@comment file: calc++-driver.hh
12545799
AD
8334@example
8335 // Handling the scanner.
8336 void scan_begin ();
8337 void scan_end ();
8338 bool trace_scanning;
8339@end example
8340
8341@noindent
8342Similarly for the parser itself.
8343
1c59e0a1 8344@comment file: calc++-driver.hh
12545799 8345@example
bb32f4f2
AD
8346 // Run the parser. Return 0 on success.
8347 int parse (const std::string& f);
12545799
AD
8348 std::string file;
8349 bool trace_parsing;
8350@end example
8351
8352@noindent
8353To demonstrate pure handling of parse errors, instead of simply
8354dumping them on the standard error output, we will pass them to the
8355compiler driver using the following two member functions. Finally, we
8356close the class declaration and CPP guard.
8357
1c59e0a1 8358@comment file: calc++-driver.hh
12545799
AD
8359@example
8360 // Error handling.
8361 void error (const yy::location& l, const std::string& m);
8362 void error (const std::string& m);
8363@};
8364#endif // ! CALCXX_DRIVER_HH
8365@end example
8366
8367The implementation of the driver is straightforward. The @code{parse}
8368member function deserves some attention. The @code{error} functions
8369are simple stubs, they should actually register the located error
8370messages and set error state.
8371
1c59e0a1 8372@comment file: calc++-driver.cc
12545799
AD
8373@example
8374#include "calc++-driver.hh"
8375#include "calc++-parser.hh"
8376
8377calcxx_driver::calcxx_driver ()
8378 : trace_scanning (false), trace_parsing (false)
8379@{
8380 variables["one"] = 1;
8381 variables["two"] = 2;
8382@}
8383
8384calcxx_driver::~calcxx_driver ()
8385@{
8386@}
8387
bb32f4f2 8388int
12545799
AD
8389calcxx_driver::parse (const std::string &f)
8390@{
8391 file = f;
8392 scan_begin ();
8393 yy::calcxx_parser parser (*this);
8394 parser.set_debug_level (trace_parsing);
bb32f4f2 8395 int res = parser.parse ();
12545799 8396 scan_end ();
bb32f4f2 8397 return res;
12545799
AD
8398@}
8399
8400void
8401calcxx_driver::error (const yy::location& l, const std::string& m)
8402@{
8403 std::cerr << l << ": " << m << std::endl;
8404@}
8405
8406void
8407calcxx_driver::error (const std::string& m)
8408@{
8409 std::cerr << m << std::endl;
8410@}
8411@end example
8412
8413@node Calc++ Parser
8405b70c 8414@subsubsection Calc++ Parser
12545799 8415
b50d2359
AD
8416The parser definition file @file{calc++-parser.yy} starts by asking for
8417the C++ LALR(1) skeleton, the creation of the parser header file, and
8418specifies the name of the parser class. Because the C++ skeleton
8419changed several times, it is safer to require the version you designed
8420the grammar for.
1c59e0a1
AD
8421
8422@comment file: calc++-parser.yy
12545799 8423@example
ed4d67dc 8424%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 8425%require "@value{VERSION}"
12545799 8426%defines
16dc6a9e 8427%define parser_class_name "calcxx_parser"
fb9712a9
AD
8428@end example
8429
8430@noindent
16dc6a9e 8431@findex %code requires
fb9712a9
AD
8432Then come the declarations/inclusions needed to define the
8433@code{%union}. Because the parser uses the parsing driver and
8434reciprocally, both cannot include the header of the other. Because the
8435driver's header needs detailed knowledge about the parser class (in
8436particular its inner types), it is the parser's header which will simply
8437use a forward declaration of the driver.
148d66d8 8438@xref{Decl Summary, ,%code}.
fb9712a9
AD
8439
8440@comment file: calc++-parser.yy
8441@example
16dc6a9e 8442%code requires @{
12545799 8443# include <string>
fb9712a9 8444class calcxx_driver;
9bc0dd67 8445@}
12545799
AD
8446@end example
8447
8448@noindent
8449The driver is passed by reference to the parser and to the scanner.
8450This provides a simple but effective pure interface, not relying on
8451global variables.
8452
1c59e0a1 8453@comment file: calc++-parser.yy
12545799
AD
8454@example
8455// The parsing context.
8456%parse-param @{ calcxx_driver& driver @}
8457%lex-param @{ calcxx_driver& driver @}
8458@end example
8459
8460@noindent
8461Then we request the location tracking feature, and initialize the
8462first location's file name. Afterwards new locations are computed
8463relatively to the previous locations: the file name will be
8464automatically propagated.
8465
1c59e0a1 8466@comment file: calc++-parser.yy
12545799
AD
8467@example
8468%locations
8469%initial-action
8470@{
8471 // Initialize the initial location.
b47dbebe 8472 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
8473@};
8474@end example
8475
8476@noindent
8477Use the two following directives to enable parser tracing and verbose
8478error messages.
8479
1c59e0a1 8480@comment file: calc++-parser.yy
12545799
AD
8481@example
8482%debug
8483%error-verbose
8484@end example
8485
8486@noindent
8487Semantic values cannot use ``real'' objects, but only pointers to
8488them.
8489
1c59e0a1 8490@comment file: calc++-parser.yy
12545799
AD
8491@example
8492// Symbols.
8493%union
8494@{
8495 int ival;
8496 std::string *sval;
8497@};
8498@end example
8499
fb9712a9 8500@noindent
136a0f76
PB
8501@findex %code
8502The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 8503@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
8504
8505@comment file: calc++-parser.yy
8506@example
136a0f76 8507%code @{
fb9712a9 8508# include "calc++-driver.hh"
34f98f46 8509@}
fb9712a9
AD
8510@end example
8511
8512
12545799
AD
8513@noindent
8514The token numbered as 0 corresponds to end of file; the following line
8515allows for nicer error messages referring to ``end of file'' instead
8516of ``$end''. Similarly user friendly named are provided for each
8517symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
8518avoid name clashes.
8519
1c59e0a1 8520@comment file: calc++-parser.yy
12545799 8521@example
fb9712a9
AD
8522%token END 0 "end of file"
8523%token ASSIGN ":="
8524%token <sval> IDENTIFIER "identifier"
8525%token <ival> NUMBER "number"
a8c2e813 8526%type <ival> exp
12545799
AD
8527@end example
8528
8529@noindent
8530To enable memory deallocation during error recovery, use
8531@code{%destructor}.
8532
287c78f6 8533@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 8534@comment file: calc++-parser.yy
12545799
AD
8535@example
8536%printer @{ debug_stream () << *$$; @} "identifier"
8537%destructor @{ delete $$; @} "identifier"
8538
a8c2e813 8539%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
8540@end example
8541
8542@noindent
8543The grammar itself is straightforward.
8544
1c59e0a1 8545@comment file: calc++-parser.yy
12545799
AD
8546@example
8547%%
8548%start unit;
8549unit: assignments exp @{ driver.result = $2; @};
8550
8551assignments: assignments assignment @{@}
9d9b8b70 8552 | /* Nothing. */ @{@};
12545799 8553
3dc5e96b
PE
8554assignment:
8555 "identifier" ":=" exp
8556 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
8557
8558%left '+' '-';
8559%left '*' '/';
8560exp: exp '+' exp @{ $$ = $1 + $3; @}
8561 | exp '-' exp @{ $$ = $1 - $3; @}
8562 | exp '*' exp @{ $$ = $1 * $3; @}
8563 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 8564 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 8565 | "number" @{ $$ = $1; @};
12545799
AD
8566%%
8567@end example
8568
8569@noindent
8570Finally the @code{error} member function registers the errors to the
8571driver.
8572
1c59e0a1 8573@comment file: calc++-parser.yy
12545799
AD
8574@example
8575void
1c59e0a1
AD
8576yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
8577 const std::string& m)
12545799
AD
8578@{
8579 driver.error (l, m);
8580@}
8581@end example
8582
8583@node Calc++ Scanner
8405b70c 8584@subsubsection Calc++ Scanner
12545799
AD
8585
8586The Flex scanner first includes the driver declaration, then the
8587parser's to get the set of defined tokens.
8588
1c59e0a1 8589@comment file: calc++-scanner.ll
12545799
AD
8590@example
8591%@{ /* -*- C++ -*- */
04098407
PE
8592# include <cstdlib>
8593# include <errno.h>
8594# include <limits.h>
12545799
AD
8595# include <string>
8596# include "calc++-driver.hh"
8597# include "calc++-parser.hh"
eaea13f5
PE
8598
8599/* Work around an incompatibility in flex (at least versions
8600 2.5.31 through 2.5.33): it generates code that does
8601 not conform to C89. See Debian bug 333231
8602 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
8603# undef yywrap
8604# define yywrap() 1
eaea13f5 8605
c095d689
AD
8606/* By default yylex returns int, we use token_type.
8607 Unfortunately yyterminate by default returns 0, which is
8608 not of token_type. */
8c5b881d 8609#define yyterminate() return token::END
12545799
AD
8610%@}
8611@end example
8612
8613@noindent
8614Because there is no @code{#include}-like feature we don't need
8615@code{yywrap}, we don't need @code{unput} either, and we parse an
8616actual file, this is not an interactive session with the user.
8617Finally we enable the scanner tracing features.
8618
1c59e0a1 8619@comment file: calc++-scanner.ll
12545799
AD
8620@example
8621%option noyywrap nounput batch debug
8622@end example
8623
8624@noindent
8625Abbreviations allow for more readable rules.
8626
1c59e0a1 8627@comment file: calc++-scanner.ll
12545799
AD
8628@example
8629id [a-zA-Z][a-zA-Z_0-9]*
8630int [0-9]+
8631blank [ \t]
8632@end example
8633
8634@noindent
9d9b8b70 8635The following paragraph suffices to track locations accurately. Each
12545799
AD
8636time @code{yylex} is invoked, the begin position is moved onto the end
8637position. Then when a pattern is matched, the end position is
8638advanced of its width. In case it matched ends of lines, the end
8639cursor is adjusted, and each time blanks are matched, the begin cursor
8640is moved onto the end cursor to effectively ignore the blanks
8641preceding tokens. Comments would be treated equally.
8642
1c59e0a1 8643@comment file: calc++-scanner.ll
12545799 8644@example
828c373b
AD
8645%@{
8646# define YY_USER_ACTION yylloc->columns (yyleng);
8647%@}
12545799
AD
8648%%
8649%@{
8650 yylloc->step ();
12545799
AD
8651%@}
8652@{blank@}+ yylloc->step ();
8653[\n]+ yylloc->lines (yyleng); yylloc->step ();
8654@end example
8655
8656@noindent
fb9712a9
AD
8657The rules are simple, just note the use of the driver to report errors.
8658It is convenient to use a typedef to shorten
8659@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 8660@code{token::identifier} for instance.
12545799 8661
1c59e0a1 8662@comment file: calc++-scanner.ll
12545799 8663@example
fb9712a9
AD
8664%@{
8665 typedef yy::calcxx_parser::token token;
8666%@}
8c5b881d 8667 /* Convert ints to the actual type of tokens. */
c095d689 8668[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 8669":=" return token::ASSIGN;
04098407
PE
8670@{int@} @{
8671 errno = 0;
8672 long n = strtol (yytext, NULL, 10);
8673 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
8674 driver.error (*yylloc, "integer is out of range");
8675 yylval->ival = n;
fb9712a9 8676 return token::NUMBER;
04098407 8677@}
fb9712a9 8678@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
8679. driver.error (*yylloc, "invalid character");
8680%%
8681@end example
8682
8683@noindent
8684Finally, because the scanner related driver's member function depend
8685on the scanner's data, it is simpler to implement them in this file.
8686
1c59e0a1 8687@comment file: calc++-scanner.ll
12545799
AD
8688@example
8689void
8690calcxx_driver::scan_begin ()
8691@{
8692 yy_flex_debug = trace_scanning;
bb32f4f2
AD
8693 if (file == "-")
8694 yyin = stdin;
8695 else if (!(yyin = fopen (file.c_str (), "r")))
8696 @{
8697 error (std::string ("cannot open ") + file);
8698 exit (1);
8699 @}
12545799
AD
8700@}
8701
8702void
8703calcxx_driver::scan_end ()
8704@{
8705 fclose (yyin);
8706@}
8707@end example
8708
8709@node Calc++ Top Level
8405b70c 8710@subsubsection Calc++ Top Level
12545799
AD
8711
8712The top level file, @file{calc++.cc}, poses no problem.
8713
1c59e0a1 8714@comment file: calc++.cc
12545799
AD
8715@example
8716#include <iostream>
8717#include "calc++-driver.hh"
8718
8719int
fa4d969f 8720main (int argc, char *argv[])
12545799
AD
8721@{
8722 calcxx_driver driver;
8723 for (++argv; argv[0]; ++argv)
8724 if (*argv == std::string ("-p"))
8725 driver.trace_parsing = true;
8726 else if (*argv == std::string ("-s"))
8727 driver.trace_scanning = true;
bb32f4f2
AD
8728 else if (!driver.parse (*argv))
8729 std::cout << driver.result << std::endl;
12545799
AD
8730@}
8731@end example
8732
8405b70c
PB
8733@node Java Parsers
8734@section Java Parsers
8735
8736@menu
f56274a8
DJ
8737* Java Bison Interface:: Asking for Java parser generation
8738* Java Semantic Values:: %type and %token vs. Java
8739* Java Location Values:: The position and location classes
8740* Java Parser Interface:: Instantiating and running the parser
8741* Java Scanner Interface:: Specifying the scanner for the parser
8742* Java Action Features:: Special features for use in actions
8743* Java Differences:: Differences between C/C++ and Java Grammars
8744* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
8745@end menu
8746
8747@node Java Bison Interface
8748@subsection Java Bison Interface
8749@c - %language "Java"
8405b70c 8750
59da312b
JD
8751(The current Java interface is experimental and may evolve.
8752More user feedback will help to stabilize it.)
8753
e254a580
DJ
8754The Java parser skeletons are selected using the @code{%language "Java"}
8755directive or the @option{-L java}/@option{--language=java} option.
8405b70c 8756
e254a580
DJ
8757@c FIXME: Documented bug.
8758When generating a Java parser, @code{bison @var{basename}.y} will create
8759a single Java source file named @file{@var{basename}.java}. Using an
8760input file without a @file{.y} suffix is currently broken. The basename
8761of the output file can be changed by the @code{%file-prefix} directive
8762or the @option{-p}/@option{--name-prefix} option. The entire output file
8763name can be changed by the @code{%output} directive or the
8764@option{-o}/@option{--output} option. The output file contains a single
8765class for the parser.
8405b70c 8766
e254a580 8767You can create documentation for generated parsers using Javadoc.
8405b70c 8768
e254a580
DJ
8769Contrary to C parsers, Java parsers do not use global variables; the
8770state of the parser is always local to an instance of the parser class.
8771Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
8772and @code{%define api.pure} directives does not do anything when used in
8773Java.
8405b70c 8774
e254a580
DJ
8775Push parsers are currently unsupported in Java and @code{%define
8776api.push_pull} have no effect.
01b477c6 8777
e254a580
DJ
8778@acronym{GLR} parsers are currently unsupported in Java. Do not use the
8779@code{glr-parser} directive.
8780
8781No header file can be generated for Java parsers. Do not use the
8782@code{%defines} directive or the @option{-d}/@option{--defines} options.
8783
8784@c FIXME: Possible code change.
8785Currently, support for debugging and verbose errors are always compiled
8786in. Thus the @code{%debug} and @code{%token-table} directives and the
8787@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
8788options have no effect. This may change in the future to eliminate
8789unused code in the generated parser, so use @code{%debug} and
8790@code{%verbose-error} explicitly if needed. Also, in the future the
8791@code{%token-table} directive might enable a public interface to
8792access the token names and codes.
8405b70c
PB
8793
8794@node Java Semantic Values
8795@subsection Java Semantic Values
8796@c - No %union, specify type in %type/%token.
8797@c - YYSTYPE
8798@c - Printer and destructor
8799
8800There is no @code{%union} directive in Java parsers. Instead, the
8801semantic values' types (class names) should be specified in the
8802@code{%type} or @code{%token} directive:
8803
8804@example
8805%type <Expression> expr assignment_expr term factor
8806%type <Integer> number
8807@end example
8808
8809By default, the semantic stack is declared to have @code{Object} members,
8810which means that the class types you specify can be of any class.
8811To improve the type safety of the parser, you can declare the common
e254a580
DJ
8812superclass of all the semantic values using the @code{%define stype}
8813directive. For example, after the following declaration:
8405b70c
PB
8814
8815@example
e254a580 8816%define stype "ASTNode"
8405b70c
PB
8817@end example
8818
8819@noindent
8820any @code{%type} or @code{%token} specifying a semantic type which
8821is not a subclass of ASTNode, will cause a compile-time error.
8822
e254a580 8823@c FIXME: Documented bug.
8405b70c
PB
8824Types used in the directives may be qualified with a package name.
8825Primitive data types are accepted for Java version 1.5 or later. Note
8826that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
8827Generic types may not be used; this is due to a limitation in the
8828implementation of Bison, and may change in future releases.
8405b70c
PB
8829
8830Java parsers do not support @code{%destructor}, since the language
8831adopts garbage collection. The parser will try to hold references
8832to semantic values for as little time as needed.
8833
8834Java parsers do not support @code{%printer}, as @code{toString()}
8835can be used to print the semantic values. This however may change
8836(in a backwards-compatible way) in future versions of Bison.
8837
8838
8839@node Java Location Values
8840@subsection Java Location Values
8841@c - %locations
8842@c - class Position
8843@c - class Location
8844
8845When the directive @code{%locations} is used, the Java parser
8846supports location tracking, see @ref{Locations, , Locations Overview}.
8847An auxiliary user-defined class defines a @dfn{position}, a single point
8848in a file; Bison itself defines a class representing a @dfn{location},
8849a range composed of a pair of positions (possibly spanning several
8850files). The location class is an inner class of the parser; the name
e254a580
DJ
8851is @code{Location} by default, and may also be renamed using
8852@code{%define location_type "@var{class-name}}.
8405b70c
PB
8853
8854The location class treats the position as a completely opaque value.
8855By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
8856with @code{%define position_type "@var{class-name}"}. This class must
8857be supplied by the user.
8405b70c
PB
8858
8859
e254a580
DJ
8860@deftypeivar {Location} {Position} begin
8861@deftypeivarx {Location} {Position} end
8405b70c 8862The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
8863@end deftypeivar
8864
8865@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
8866Create a @code{Location} denoting an empty range located at a given point.
8867@end deftypeop
8405b70c 8868
e254a580
DJ
8869@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
8870Create a @code{Location} from the endpoints of the range.
8871@end deftypeop
8872
8873@deftypemethod {Location} {String} toString ()
8405b70c
PB
8874Prints the range represented by the location. For this to work
8875properly, the position class should override the @code{equals} and
8876@code{toString} methods appropriately.
8877@end deftypemethod
8878
8879
8880@node Java Parser Interface
8881@subsection Java Parser Interface
8882@c - define parser_class_name
8883@c - Ctor
8884@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8885@c debug_stream.
8886@c - Reporting errors
8887
e254a580
DJ
8888The name of the generated parser class defaults to @code{YYParser}. The
8889@code{YY} prefix may be changed using the @code{%name-prefix} directive
8890or the @option{-p}/@option{--name-prefix} option. Alternatively, use
8891@code{%define parser_class_name "@var{name}"} to give a custom name to
8892the class. The interface of this class is detailed below.
8405b70c 8893
e254a580
DJ
8894By default, the parser class has package visibility. A declaration
8895@code{%define public} will change to public visibility. Remember that,
8896according to the Java language specification, the name of the @file{.java}
8897file should match the name of the class in this case. Similarly, you can
8898use @code{abstract}, @code{final} and @code{strictfp} with the
8899@code{%define} declaration to add other modifiers to the parser class.
8900
8901The Java package name of the parser class can be specified using the
8902@code{%define package} directive. The superclass and the implemented
8903interfaces of the parser class can be specified with the @code{%define
8904extends} and @code{%define implements} directives.
8905
8906The parser class defines an inner class, @code{Location}, that is used
8907for location tracking (see @ref{Java Location Values}), and a inner
8908interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
8909these inner class/interface, and the members described in the interface
8910below, all the other members and fields are preceded with a @code{yy} or
8911@code{YY} prefix to avoid clashes with user code.
8912
8913@c FIXME: The following constants and variables are still undocumented:
8914@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
8915
8916The parser class can be extended using the @code{%parse-param}
8917directive. Each occurrence of the directive will add a @code{protected
8918final} field to the parser class, and an argument to its constructor,
8919which initialize them automatically.
8920
8921Token names defined by @code{%token} and the predefined @code{EOF} token
8922name are added as constant fields to the parser class.
8923
8924@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
8925Build a new parser object with embedded @code{%code lexer}. There are
8926no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
8927used.
8928@end deftypeop
8929
8930@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
8931Build a new parser object using the specified scanner. There are no
8932additional parameters unless @code{%parse-param}s are used.
8933
8934If the scanner is defined by @code{%code lexer}, this constructor is
8935declared @code{protected} and is called automatically with a scanner
8936created with the correct @code{%lex-param}s.
8937@end deftypeop
8405b70c
PB
8938
8939@deftypemethod {YYParser} {boolean} parse ()
8940Run the syntactic analysis, and return @code{true} on success,
8941@code{false} otherwise.
8942@end deftypemethod
8943
01b477c6 8944@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 8945During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
8946from a syntax error.
8947@xref{Error Recovery}.
8405b70c
PB
8948@end deftypemethod
8949
8950@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
8951@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
8952Get or set the stream used for tracing the parsing. It defaults to
8953@code{System.err}.
8954@end deftypemethod
8955
8956@deftypemethod {YYParser} {int} getDebugLevel ()
8957@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
8958Get or set the tracing level. Currently its value is either 0, no trace,
8959or nonzero, full tracing.
8960@end deftypemethod
8961
8405b70c
PB
8962
8963@node Java Scanner Interface
8964@subsection Java Scanner Interface
01b477c6 8965@c - %code lexer
8405b70c 8966@c - %lex-param
01b477c6 8967@c - Lexer interface
8405b70c 8968
e254a580
DJ
8969There are two possible ways to interface a Bison-generated Java parser
8970with a scanner: the scanner may be defined by @code{%code lexer}, or
8971defined elsewhere. In either case, the scanner has to implement the
8972@code{Lexer} inner interface of the parser class.
8973
8974In the first case, the body of the scanner class is placed in
8975@code{%code lexer} blocks. If you want to pass parameters from the
8976parser constructor to the scanner constructor, specify them with
8977@code{%lex-param}; they are passed before @code{%parse-param}s to the
8978constructor.
01b477c6 8979
59c5ac72 8980In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
8981which is defined within the parser class (e.g., @code{YYParser.Lexer}).
8982The constructor of the parser object will then accept an object
8983implementing the interface; @code{%lex-param} is not used in this
8984case.
8985
8986In both cases, the scanner has to implement the following methods.
8987
e254a580
DJ
8988@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
8989This method is defined by the user to emit an error message. The first
8990parameter is omitted if location tracking is not active. Its type can be
8991changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
8992@end deftypemethod
8993
e254a580 8994@deftypemethod {Lexer} {int} yylex ()
8405b70c
PB
8995Return the next token. Its type is the return value, its semantic
8996value and location are saved and returned by the ther methods in the
e254a580
DJ
8997interface.
8998
8999Use @code{%define lex_throws} to specify any uncaught exceptions.
9000Default is @code{java.io.IOException}.
8405b70c
PB
9001@end deftypemethod
9002
9003@deftypemethod {Lexer} {Position} getStartPos ()
9004@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9005Return respectively the first position of the last token that
9006@code{yylex} returned, and the first position beyond it. These
9007methods are not needed unless location tracking is active.
8405b70c 9008
e254a580 9009The return type can be changed using @code{%define position_type
8405b70c
PB
9010"@var{class-name}".}
9011@end deftypemethod
9012
9013@deftypemethod {Lexer} {Object} getLVal ()
59c5ac72 9014Return the semantical value of the last token that yylex returned.
8405b70c 9015
e254a580 9016The return type can be changed using @code{%define stype
8405b70c
PB
9017"@var{class-name}".}
9018@end deftypemethod
9019
9020
e254a580
DJ
9021@node Java Action Features
9022@subsection Special Features for Use in Java Actions
9023
9024The following special constructs can be uses in Java actions.
9025Other analogous C action features are currently unavailable for Java.
9026
9027Use @code{%define throws} to specify any uncaught exceptions from parser
9028actions, and initial actions specified by @code{%initial-action}.
9029
9030@defvar $@var{n}
9031The semantic value for the @var{n}th component of the current rule.
9032This may not be assigned to.
9033@xref{Java Semantic Values}.
9034@end defvar
9035
9036@defvar $<@var{typealt}>@var{n}
9037Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9038@xref{Java Semantic Values}.
9039@end defvar
9040
9041@defvar $$
9042The semantic value for the grouping made by the current rule. As a
9043value, this is in the base type (@code{Object} or as specified by
9044@code{%define stype}) as in not cast to the declared subtype because
9045casts are not allowed on the left-hand side of Java assignments.
9046Use an explicit Java cast if the correct subtype is needed.
9047@xref{Java Semantic Values}.
9048@end defvar
9049
9050@defvar $<@var{typealt}>$
9051Same as @code{$$} since Java always allow assigning to the base type.
9052Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9053for setting the value but there is currently no easy way to distinguish
9054these constructs.
9055@xref{Java Semantic Values}.
9056@end defvar
9057
9058@defvar @@@var{n}
9059The location information of the @var{n}th component of the current rule.
9060This may not be assigned to.
9061@xref{Java Location Values}.
9062@end defvar
9063
9064@defvar @@$
9065The location information of the grouping made by the current rule.
9066@xref{Java Location Values}.
9067@end defvar
9068
9069@deffn {Statement} {return YYABORT;}
9070Return immediately from the parser, indicating failure.
9071@xref{Java Parser Interface}.
9072@end deffn
8405b70c 9073
e254a580
DJ
9074@deffn {Statement} {return YYACCEPT;}
9075Return immediately from the parser, indicating success.
9076@xref{Java Parser Interface}.
9077@end deffn
8405b70c 9078
e254a580
DJ
9079@deffn {Statement} {return YYERROR;}
9080Start error recovery without printing an error message.
9081@xref{Error Recovery}.
9082@end deffn
8405b70c 9083
e254a580
DJ
9084@deffn {Statement} {return YYFAIL;}
9085Print an error message and start error recovery.
9086@xref{Error Recovery}.
9087@end deffn
8405b70c 9088
e254a580
DJ
9089@deftypefn {Function} {boolean} recovering ()
9090Return whether error recovery is being done. In this state, the parser
9091reads token until it reaches a known state, and then restarts normal
9092operation.
9093@xref{Error Recovery}.
9094@end deftypefn
8405b70c 9095
e254a580
DJ
9096@deftypefn {Function} {protected void} yyerror (String msg)
9097@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9098@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9099Print an error message using the @code{yyerror} method of the scanner
9100instance in use.
9101@end deftypefn
8405b70c 9102
8405b70c 9103
8405b70c
PB
9104@node Java Differences
9105@subsection Differences between C/C++ and Java Grammars
9106
9107The different structure of the Java language forces several differences
9108between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9109section summarizes these differences.
8405b70c
PB
9110
9111@itemize
9112@item
01b477c6 9113Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9114@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9115macros. Instead, they should be preceded by @code{return} when they
9116appear in an action. The actual definition of these symbols is
8405b70c
PB
9117opaque to the Bison grammar, and it might change in the future. The
9118only meaningful operation that you can do, is to return them.
e254a580 9119See @pxref{Java Action Features}.
8405b70c
PB
9120
9121Note that of these three symbols, only @code{YYACCEPT} and
9122@code{YYABORT} will cause a return from the @code{yyparse}
9123method@footnote{Java parsers include the actions in a separate
9124method than @code{yyparse} in order to have an intuitive syntax that
9125corresponds to these C macros.}.
9126
e254a580
DJ
9127@item
9128Java lacks unions, so @code{%union} has no effect. Instead, semantic
9129values have a common base type: @code{Object} or as specified by
9130@code{%define stype}. Angle backets on @code{%token}, @code{type},
9131@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9132an union. The type of @code{$$}, even with angle brackets, is the base
9133type since Java casts are not allow on the left-hand side of assignments.
9134Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9135left-hand side of assignments. See @pxref{Java Semantic Values} and
9136@pxref{Java Action Features}.
9137
8405b70c
PB
9138@item
9139The prolog declarations have a different meaning than in C/C++ code.
01b477c6
PB
9140@table @asis
9141@item @code{%code imports}
9142blocks are placed at the beginning of the Java source code. They may
9143include copyright notices. For a @code{package} declarations, it is
9144suggested to use @code{%define package} instead.
8405b70c 9145
01b477c6
PB
9146@item unqualified @code{%code}
9147blocks are placed inside the parser class.
9148
9149@item @code{%code lexer}
9150blocks, if specified, should include the implementation of the
9151scanner. If there is no such block, the scanner can be any class
9152that implements the appropriate interface (see @pxref{Java Scanner
9153Interface}).
29553547 9154@end table
8405b70c
PB
9155
9156Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9157In particular, @code{%@{ @dots{} %@}} blocks should not be used
9158and may give an error in future versions of Bison.
9159
01b477c6 9160The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9161be used to define other classes used by the parser @emph{outside}
9162the parser class.
8405b70c
PB
9163@end itemize
9164
e254a580
DJ
9165
9166@node Java Declarations Summary
9167@subsection Java Declarations Summary
9168
9169This summary only include declarations specific to Java or have special
9170meaning when used in a Java parser.
9171
9172@deffn {Directive} {%language "Java"}
9173Generate a Java class for the parser.
9174@end deffn
9175
9176@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9177A parameter for the lexer class defined by @code{%code lexer}
9178@emph{only}, added as parameters to the lexer constructor and the parser
9179constructor that @emph{creates} a lexer. Default is none.
9180@xref{Java Scanner Interface}.
9181@end deffn
9182
9183@deffn {Directive} %name-prefix "@var{prefix}"
9184The prefix of the parser class name @code{@var{prefix}Parser} if
9185@code{%define parser_class_name} is not used. Default is @code{YY}.
9186@xref{Java Bison Interface}.
9187@end deffn
9188
9189@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9190A parameter for the parser class added as parameters to constructor(s)
9191and as fields initialized by the constructor(s). Default is none.
9192@xref{Java Parser Interface}.
9193@end deffn
9194
9195@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9196Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9197@xref{Java Semantic Values}.
9198@end deffn
9199
9200@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9201Declare the type of nonterminals. Note that the angle brackets enclose
9202a Java @emph{type}.
9203@xref{Java Semantic Values}.
9204@end deffn
9205
9206@deffn {Directive} %code @{ @var{code} @dots{} @}
9207Code appended to the inside of the parser class.
9208@xref{Java Differences}.
9209@end deffn
9210
9211@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
9212Code inserted just after the @code{package} declaration.
9213@xref{Java Differences}.
9214@end deffn
9215
9216@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
9217Code added to the body of a inner lexer class within the parser class.
9218@xref{Java Scanner Interface}.
9219@end deffn
9220
9221@deffn {Directive} %% @var{code} @dots{}
9222Code (after the second @code{%%}) appended to the end of the file,
9223@emph{outside} the parser class.
9224@xref{Java Differences}.
9225@end deffn
9226
9227@deffn {Directive} %@{ @var{code} @dots{} %@}
9228Not supported. Use @code{%code import} instead.
9229@xref{Java Differences}.
9230@end deffn
9231
9232@deffn {Directive} {%define abstract}
9233Whether the parser class is declared @code{abstract}. Default is false.
9234@xref{Java Bison Interface}.
9235@end deffn
9236
9237@deffn {Directive} {%define extends} "@var{superclass}"
9238The superclass of the parser class. Default is none.
9239@xref{Java Bison Interface}.
9240@end deffn
9241
9242@deffn {Directive} {%define final}
9243Whether the parser class is declared @code{final}. Default is false.
9244@xref{Java Bison Interface}.
9245@end deffn
9246
9247@deffn {Directive} {%define implements} "@var{interfaces}"
9248The implemented interfaces of the parser class, a comma-separated list.
9249Default is none.
9250@xref{Java Bison Interface}.
9251@end deffn
9252
9253@deffn {Directive} {%define lex_throws} "@var{exceptions}"
9254The exceptions thrown by the @code{yylex} method of the lexer, a
9255comma-separated list. Default is @code{java.io.IOException}.
9256@xref{Java Scanner Interface}.
9257@end deffn
9258
9259@deffn {Directive} {%define location_type} "@var{class}"
9260The name of the class used for locations (a range between two
9261positions). This class is generated as an inner class of the parser
9262class by @command{bison}. Default is @code{Location}.
9263@xref{Java Location Values}.
9264@end deffn
9265
9266@deffn {Directive} {%define package} "@var{package}"
9267The package to put the parser class in. Default is none.
9268@xref{Java Bison Interface}.
9269@end deffn
9270
9271@deffn {Directive} {%define parser_class_name} "@var{name}"
9272The name of the parser class. Default is @code{YYParser} or
9273@code{@var{name-prefix}Parser}.
9274@xref{Java Bison Interface}.
9275@end deffn
9276
9277@deffn {Directive} {%define position_type} "@var{class}"
9278The name of the class used for positions. This class must be supplied by
9279the user. Default is @code{Position}.
9280@xref{Java Location Values}.
9281@end deffn
9282
9283@deffn {Directive} {%define public}
9284Whether the parser class is declared @code{public}. Default is false.
9285@xref{Java Bison Interface}.
9286@end deffn
9287
9288@deffn {Directive} {%define stype} "@var{class}"
9289The base type of semantic values. Default is @code{Object}.
9290@xref{Java Semantic Values}.
9291@end deffn
9292
9293@deffn {Directive} {%define strictfp}
9294Whether the parser class is declared @code{strictfp}. Default is false.
9295@xref{Java Bison Interface}.
9296@end deffn
9297
9298@deffn {Directive} {%define throws} "@var{exceptions}"
9299The exceptions thrown by user-supplied parser actions and
9300@code{%initial-action}, a comma-separated list. Default is none.
9301@xref{Java Parser Interface}.
9302@end deffn
9303
9304
12545799 9305@c ================================================= FAQ
d1a1114f
AD
9306
9307@node FAQ
9308@chapter Frequently Asked Questions
9309@cindex frequently asked questions
9310@cindex questions
9311
9312Several questions about Bison come up occasionally. Here some of them
9313are addressed.
9314
9315@menu
55ba27be
AD
9316* Memory Exhausted:: Breaking the Stack Limits
9317* How Can I Reset the Parser:: @code{yyparse} Keeps some State
9318* Strings are Destroyed:: @code{yylval} Loses Track of Strings
9319* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 9320* Multiple start-symbols:: Factoring closely related grammars
55ba27be
AD
9321* Secure? Conform?:: Is Bison @acronym{POSIX} safe?
9322* I can't build Bison:: Troubleshooting
9323* Where can I find help?:: Troubleshouting
9324* Bug Reports:: Troublereporting
8405b70c 9325* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
9326* Beta Testing:: Experimenting development versions
9327* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
9328@end menu
9329
1a059451
PE
9330@node Memory Exhausted
9331@section Memory Exhausted
d1a1114f
AD
9332
9333@display
1a059451 9334My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
9335message. What can I do?
9336@end display
9337
9338This question is already addressed elsewhere, @xref{Recursion,
9339,Recursive Rules}.
9340
e64fec0a
PE
9341@node How Can I Reset the Parser
9342@section How Can I Reset the Parser
5b066063 9343
0e14ad77
PE
9344The following phenomenon has several symptoms, resulting in the
9345following typical questions:
5b066063
AD
9346
9347@display
9348I invoke @code{yyparse} several times, and on correct input it works
9349properly; but when a parse error is found, all the other calls fail
0e14ad77 9350too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
9351@end display
9352
9353@noindent
9354or
9355
9356@display
0e14ad77 9357My parser includes support for an @samp{#include}-like feature, in
5b066063 9358which case I run @code{yyparse} from @code{yyparse}. This fails
d9df47b6 9359although I did specify @code{%define api.pure}.
5b066063
AD
9360@end display
9361
0e14ad77
PE
9362These problems typically come not from Bison itself, but from
9363Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
9364speed, they might not notice a change of input file. As a
9365demonstration, consider the following source file,
9366@file{first-line.l}:
9367
9368@verbatim
9369%{
9370#include <stdio.h>
9371#include <stdlib.h>
9372%}
9373%%
9374.*\n ECHO; return 1;
9375%%
9376int
0e14ad77 9377yyparse (char const *file)
5b066063
AD
9378{
9379 yyin = fopen (file, "r");
9380 if (!yyin)
9381 exit (2);
fa7e68c3 9382 /* One token only. */
5b066063 9383 yylex ();
0e14ad77 9384 if (fclose (yyin) != 0)
5b066063
AD
9385 exit (3);
9386 return 0;
9387}
9388
9389int
0e14ad77 9390main (void)
5b066063
AD
9391{
9392 yyparse ("input");
9393 yyparse ("input");
9394 return 0;
9395}
9396@end verbatim
9397
9398@noindent
9399If the file @file{input} contains
9400
9401@verbatim
9402input:1: Hello,
9403input:2: World!
9404@end verbatim
9405
9406@noindent
0e14ad77 9407then instead of getting the first line twice, you get:
5b066063
AD
9408
9409@example
9410$ @kbd{flex -ofirst-line.c first-line.l}
9411$ @kbd{gcc -ofirst-line first-line.c -ll}
9412$ @kbd{./first-line}
9413input:1: Hello,
9414input:2: World!
9415@end example
9416
0e14ad77
PE
9417Therefore, whenever you change @code{yyin}, you must tell the
9418Lex-generated scanner to discard its current buffer and switch to the
9419new one. This depends upon your implementation of Lex; see its
9420documentation for more. For Flex, it suffices to call
9421@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
9422Flex-generated scanner needs to read from several input streams to
9423handle features like include files, you might consider using Flex
9424functions like @samp{yy_switch_to_buffer} that manipulate multiple
9425input buffers.
5b066063 9426
b165c324
AD
9427If your Flex-generated scanner uses start conditions (@pxref{Start
9428conditions, , Start conditions, flex, The Flex Manual}), you might
9429also want to reset the scanner's state, i.e., go back to the initial
9430start condition, through a call to @samp{BEGIN (0)}.
9431
fef4cb51
AD
9432@node Strings are Destroyed
9433@section Strings are Destroyed
9434
9435@display
c7e441b4 9436My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
9437them. Instead of reporting @samp{"foo", "bar"}, it reports
9438@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
9439@end display
9440
9441This error is probably the single most frequent ``bug report'' sent to
9442Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 9443of the scanner. Consider the following Lex code:
fef4cb51
AD
9444
9445@verbatim
9446%{
9447#include <stdio.h>
9448char *yylval = NULL;
9449%}
9450%%
9451.* yylval = yytext; return 1;
9452\n /* IGNORE */
9453%%
9454int
9455main ()
9456{
fa7e68c3 9457 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
9458 char *fst = (yylex (), yylval);
9459 char *snd = (yylex (), yylval);
9460 printf ("\"%s\", \"%s\"\n", fst, snd);
9461 return 0;
9462}
9463@end verbatim
9464
9465If you compile and run this code, you get:
9466
9467@example
9468$ @kbd{flex -osplit-lines.c split-lines.l}
9469$ @kbd{gcc -osplit-lines split-lines.c -ll}
9470$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9471"one
9472two", "two"
9473@end example
9474
9475@noindent
9476this is because @code{yytext} is a buffer provided for @emph{reading}
9477in the action, but if you want to keep it, you have to duplicate it
9478(e.g., using @code{strdup}). Note that the output may depend on how
9479your implementation of Lex handles @code{yytext}. For instance, when
9480given the Lex compatibility option @option{-l} (which triggers the
9481option @samp{%array}) Flex generates a different behavior:
9482
9483@example
9484$ @kbd{flex -l -osplit-lines.c split-lines.l}
9485$ @kbd{gcc -osplit-lines split-lines.c -ll}
9486$ @kbd{printf 'one\ntwo\n' | ./split-lines}
9487"two", "two"
9488@end example
9489
9490
2fa09258
AD
9491@node Implementing Gotos/Loops
9492@section Implementing Gotos/Loops
a06ea4aa
AD
9493
9494@display
9495My simple calculator supports variables, assignments, and functions,
2fa09258 9496but how can I implement gotos, or loops?
a06ea4aa
AD
9497@end display
9498
9499Although very pedagogical, the examples included in the document blur
a1c84f45 9500the distinction to make between the parser---whose job is to recover
a06ea4aa 9501the structure of a text and to transmit it to subsequent modules of
a1c84f45 9502the program---and the processing (such as the execution) of this
a06ea4aa
AD
9503structure. This works well with so called straight line programs,
9504i.e., precisely those that have a straightforward execution model:
9505execute simple instructions one after the others.
9506
9507@cindex abstract syntax tree
9508@cindex @acronym{AST}
9509If you want a richer model, you will probably need to use the parser
9510to construct a tree that does represent the structure it has
9511recovered; this tree is usually called the @dfn{abstract syntax tree},
9512or @dfn{@acronym{AST}} for short. Then, walking through this tree,
9513traversing it in various ways, will enable treatments such as its
9514execution or its translation, which will result in an interpreter or a
9515compiler.
9516
9517This topic is way beyond the scope of this manual, and the reader is
9518invited to consult the dedicated literature.
9519
9520
ed2e6384
AD
9521@node Multiple start-symbols
9522@section Multiple start-symbols
9523
9524@display
9525I have several closely related grammars, and I would like to share their
9526implementations. In fact, I could use a single grammar but with
9527multiple entry points.
9528@end display
9529
9530Bison does not support multiple start-symbols, but there is a very
9531simple means to simulate them. If @code{foo} and @code{bar} are the two
9532pseudo start-symbols, then introduce two new tokens, say
9533@code{START_FOO} and @code{START_BAR}, and use them as switches from the
9534real start-symbol:
9535
9536@example
9537%token START_FOO START_BAR;
9538%start start;
9539start: START_FOO foo
9540 | START_BAR bar;
9541@end example
9542
9543These tokens prevents the introduction of new conflicts. As far as the
9544parser goes, that is all that is needed.
9545
9546Now the difficult part is ensuring that the scanner will send these
9547tokens first. If your scanner is hand-written, that should be
9548straightforward. If your scanner is generated by Lex, them there is
9549simple means to do it: recall that anything between @samp{%@{ ... %@}}
9550after the first @code{%%} is copied verbatim in the top of the generated
9551@code{yylex} function. Make sure a variable @code{start_token} is
9552available in the scanner (e.g., a global variable or using
9553@code{%lex-param} etc.), and use the following:
9554
9555@example
9556 /* @r{Prologue.} */
9557%%
9558%@{
9559 if (start_token)
9560 @{
9561 int t = start_token;
9562 start_token = 0;
9563 return t;
9564 @}
9565%@}
9566 /* @r{The rules.} */
9567@end example
9568
9569
55ba27be
AD
9570@node Secure? Conform?
9571@section Secure? Conform?
9572
9573@display
9574Is Bison secure? Does it conform to POSIX?
9575@end display
9576
9577If you're looking for a guarantee or certification, we don't provide it.
9578However, Bison is intended to be a reliable program that conforms to the
9579@acronym{POSIX} specification for Yacc. If you run into problems,
9580please send us a bug report.
9581
9582@node I can't build Bison
9583@section I can't build Bison
9584
9585@display
8c5b881d
PE
9586I can't build Bison because @command{make} complains that
9587@code{msgfmt} is not found.
55ba27be
AD
9588What should I do?
9589@end display
9590
9591Like most GNU packages with internationalization support, that feature
9592is turned on by default. If you have problems building in the @file{po}
9593subdirectory, it indicates that your system's internationalization
9594support is lacking. You can re-configure Bison with
9595@option{--disable-nls} to turn off this support, or you can install GNU
9596gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
9597Bison. See the file @file{ABOUT-NLS} for more information.
9598
9599
9600@node Where can I find help?
9601@section Where can I find help?
9602
9603@display
9604I'm having trouble using Bison. Where can I find help?
9605@end display
9606
9607First, read this fine manual. Beyond that, you can send mail to
9608@email{help-bison@@gnu.org}. This mailing list is intended to be
9609populated with people who are willing to answer questions about using
9610and installing Bison. Please keep in mind that (most of) the people on
9611the list have aspects of their lives which are not related to Bison (!),
9612so you may not receive an answer to your question right away. This can
9613be frustrating, but please try not to honk them off; remember that any
9614help they provide is purely voluntary and out of the kindness of their
9615hearts.
9616
9617@node Bug Reports
9618@section Bug Reports
9619
9620@display
9621I found a bug. What should I include in the bug report?
9622@end display
9623
9624Before you send a bug report, make sure you are using the latest
9625version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
9626mirrors. Be sure to include the version number in your bug report. If
9627the bug is present in the latest version but not in a previous version,
9628try to determine the most recent version which did not contain the bug.
9629
9630If the bug is parser-related, you should include the smallest grammar
9631you can which demonstrates the bug. The grammar file should also be
9632complete (i.e., I should be able to run it through Bison without having
9633to edit or add anything). The smaller and simpler the grammar, the
9634easier it will be to fix the bug.
9635
9636Include information about your compilation environment, including your
9637operating system's name and version and your compiler's name and
9638version. If you have trouble compiling, you should also include a
9639transcript of the build session, starting with the invocation of
9640`configure'. Depending on the nature of the bug, you may be asked to
9641send additional files as well (such as `config.h' or `config.cache').
9642
9643Patches are most welcome, but not required. That is, do not hesitate to
9644send a bug report just because you can not provide a fix.
9645
9646Send bug reports to @email{bug-bison@@gnu.org}.
9647
8405b70c
PB
9648@node More Languages
9649@section More Languages
55ba27be
AD
9650
9651@display
8405b70c 9652Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
9653favorite language here}?
9654@end display
9655
8405b70c 9656C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
9657languages; contributions are welcome.
9658
9659@node Beta Testing
9660@section Beta Testing
9661
9662@display
9663What is involved in being a beta tester?
9664@end display
9665
9666It's not terribly involved. Basically, you would download a test
9667release, compile it, and use it to build and run a parser or two. After
9668that, you would submit either a bug report or a message saying that
9669everything is okay. It is important to report successes as well as
9670failures because test releases eventually become mainstream releases,
9671but only if they are adequately tested. If no one tests, development is
9672essentially halted.
9673
9674Beta testers are particularly needed for operating systems to which the
9675developers do not have easy access. They currently have easy access to
9676recent GNU/Linux and Solaris versions. Reports about other operating
9677systems are especially welcome.
9678
9679@node Mailing Lists
9680@section Mailing Lists
9681
9682@display
9683How do I join the help-bison and bug-bison mailing lists?
9684@end display
9685
9686See @url{http://lists.gnu.org/}.
a06ea4aa 9687
d1a1114f
AD
9688@c ================================================= Table of Symbols
9689
342b8b6e 9690@node Table of Symbols
bfa74976
RS
9691@appendix Bison Symbols
9692@cindex Bison symbols, table of
9693@cindex symbols in Bison, table of
9694
18b519c0 9695@deffn {Variable} @@$
3ded9a63 9696In an action, the location of the left-hand side of the rule.
88bce5a2 9697@xref{Locations, , Locations Overview}.
18b519c0 9698@end deffn
3ded9a63 9699
18b519c0 9700@deffn {Variable} @@@var{n}
3ded9a63
AD
9701In an action, the location of the @var{n}-th symbol of the right-hand
9702side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 9703@end deffn
3ded9a63 9704
18b519c0 9705@deffn {Variable} $$
3ded9a63
AD
9706In an action, the semantic value of the left-hand side of the rule.
9707@xref{Actions}.
18b519c0 9708@end deffn
3ded9a63 9709
18b519c0 9710@deffn {Variable} $@var{n}
3ded9a63
AD
9711In an action, the semantic value of the @var{n}-th symbol of the
9712right-hand side of the rule. @xref{Actions}.
18b519c0 9713@end deffn
3ded9a63 9714
dd8d9022
AD
9715@deffn {Delimiter} %%
9716Delimiter used to separate the grammar rule section from the
9717Bison declarations section or the epilogue.
9718@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 9719@end deffn
bfa74976 9720
dd8d9022
AD
9721@c Don't insert spaces, or check the DVI output.
9722@deffn {Delimiter} %@{@var{code}%@}
9723All code listed between @samp{%@{} and @samp{%@}} is copied directly to
9724the output file uninterpreted. Such code forms the prologue of the input
9725file. @xref{Grammar Outline, ,Outline of a Bison
9726Grammar}.
18b519c0 9727@end deffn
bfa74976 9728
dd8d9022
AD
9729@deffn {Construct} /*@dots{}*/
9730Comment delimiters, as in C.
18b519c0 9731@end deffn
bfa74976 9732
dd8d9022
AD
9733@deffn {Delimiter} :
9734Separates a rule's result from its components. @xref{Rules, ,Syntax of
9735Grammar Rules}.
18b519c0 9736@end deffn
bfa74976 9737
dd8d9022
AD
9738@deffn {Delimiter} ;
9739Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9740@end deffn
bfa74976 9741
dd8d9022
AD
9742@deffn {Delimiter} |
9743Separates alternate rules for the same result nonterminal.
9744@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 9745@end deffn
bfa74976 9746
12e35840
JD
9747@deffn {Directive} <*>
9748Used to define a default tagged @code{%destructor} or default tagged
9749@code{%printer}.
85894313
JD
9750
9751This feature is experimental.
9752More user feedback will help to determine whether it should become a permanent
9753feature.
9754
12e35840
JD
9755@xref{Destructor Decl, , Freeing Discarded Symbols}.
9756@end deffn
9757
3ebecc24 9758@deffn {Directive} <>
12e35840
JD
9759Used to define a default tagless @code{%destructor} or default tagless
9760@code{%printer}.
85894313
JD
9761
9762This feature is experimental.
9763More user feedback will help to determine whether it should become a permanent
9764feature.
9765
12e35840
JD
9766@xref{Destructor Decl, , Freeing Discarded Symbols}.
9767@end deffn
9768
dd8d9022
AD
9769@deffn {Symbol} $accept
9770The predefined nonterminal whose only rule is @samp{$accept: @var{start}
9771$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
9772Start-Symbol}. It cannot be used in the grammar.
18b519c0 9773@end deffn
bfa74976 9774
136a0f76 9775@deffn {Directive} %code @{@var{code}@}
148d66d8
JD
9776@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
9777Insert @var{code} verbatim into output parser source.
9778@xref{Decl Summary,,%code}.
9bc0dd67
JD
9779@end deffn
9780
9781@deffn {Directive} %debug
9782Equip the parser for debugging. @xref{Decl Summary}.
9783@end deffn
9784
18b519c0 9785@deffn {Directive} %debug
6deb4447 9786Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 9787@end deffn
6deb4447 9788
91d2c560 9789@ifset defaultprec
22fccf95
PE
9790@deffn {Directive} %default-prec
9791Assign a precedence to rules that lack an explicit @samp{%prec}
9792modifier. @xref{Contextual Precedence, ,Context-Dependent
9793Precedence}.
39a06c25 9794@end deffn
91d2c560 9795@end ifset
39a06c25 9796
148d66d8
JD
9797@deffn {Directive} %define @var{define-variable}
9798@deffnx {Directive} %define @var{define-variable} @var{value}
9799Define a variable to adjust Bison's behavior.
9800@xref{Decl Summary,,%define}.
9801@end deffn
9802
18b519c0 9803@deffn {Directive} %defines
6deb4447
AD
9804Bison declaration to create a header file meant for the scanner.
9805@xref{Decl Summary}.
18b519c0 9806@end deffn
6deb4447 9807
02975b9a
JD
9808@deffn {Directive} %defines @var{defines-file}
9809Same as above, but save in the file @var{defines-file}.
9810@xref{Decl Summary}.
9811@end deffn
9812
18b519c0 9813@deffn {Directive} %destructor
258b75ca 9814Specify how the parser should reclaim the memory associated to
fa7e68c3 9815discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 9816@end deffn
72f889cc 9817
18b519c0 9818@deffn {Directive} %dprec
676385e2 9819Bison declaration to assign a precedence to a rule that is used at parse
c827f760
PE
9820time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
9821@acronym{GLR} Parsers}.
18b519c0 9822@end deffn
676385e2 9823
dd8d9022
AD
9824@deffn {Symbol} $end
9825The predefined token marking the end of the token stream. It cannot be
9826used in the grammar.
9827@end deffn
9828
9829@deffn {Symbol} error
9830A token name reserved for error recovery. This token may be used in
9831grammar rules so as to allow the Bison parser to recognize an error in
9832the grammar without halting the process. In effect, a sentence
9833containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
9834token @code{error} becomes the current lookahead token. Actions
9835corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
9836token is reset to the token that originally caused the violation.
9837@xref{Error Recovery}.
18d192f0
AD
9838@end deffn
9839
18b519c0 9840@deffn {Directive} %error-verbose
2a8d363a
AD
9841Bison declaration to request verbose, specific error message strings
9842when @code{yyerror} is called.
18b519c0 9843@end deffn
2a8d363a 9844
02975b9a 9845@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 9846Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 9847Summary}.
18b519c0 9848@end deffn
d8988b2f 9849
18b519c0 9850@deffn {Directive} %glr-parser
c827f760
PE
9851Bison declaration to produce a @acronym{GLR} parser. @xref{GLR
9852Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9853@end deffn
676385e2 9854
dd8d9022
AD
9855@deffn {Directive} %initial-action
9856Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
9857@end deffn
9858
e6e704dc
JD
9859@deffn {Directive} %language
9860Specify the programming language for the generated parser.
9861@xref{Decl Summary}.
9862@end deffn
9863
18b519c0 9864@deffn {Directive} %left
bfa74976
RS
9865Bison declaration to assign left associativity to token(s).
9866@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9867@end deffn
bfa74976 9868
feeb0eda 9869@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
9870Bison declaration to specifying an additional parameter that
9871@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
9872for Pure Parsers}.
18b519c0 9873@end deffn
2a8d363a 9874
18b519c0 9875@deffn {Directive} %merge
676385e2 9876Bison declaration to assign a merging function to a rule. If there is a
fae437e8 9877reduce/reduce conflict with a rule having the same merging function, the
676385e2 9878function is applied to the two semantic values to get a single result.
c827f760 9879@xref{GLR Parsers, ,Writing @acronym{GLR} Parsers}.
18b519c0 9880@end deffn
676385e2 9881
02975b9a 9882@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 9883Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 9884@end deffn
d8988b2f 9885
91d2c560 9886@ifset defaultprec
22fccf95
PE
9887@deffn {Directive} %no-default-prec
9888Do not assign a precedence to rules that lack an explicit @samp{%prec}
9889modifier. @xref{Contextual Precedence, ,Context-Dependent
9890Precedence}.
9891@end deffn
91d2c560 9892@end ifset
22fccf95 9893
18b519c0 9894@deffn {Directive} %no-lines
931c7513
RS
9895Bison declaration to avoid generating @code{#line} directives in the
9896parser file. @xref{Decl Summary}.
18b519c0 9897@end deffn
931c7513 9898
18b519c0 9899@deffn {Directive} %nonassoc
9d9b8b70 9900Bison declaration to assign nonassociativity to token(s).
bfa74976 9901@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9902@end deffn
bfa74976 9903
02975b9a 9904@deffn {Directive} %output "@var{file}"
72d2299c 9905Bison declaration to set the name of the parser file. @xref{Decl
d8988b2f 9906Summary}.
18b519c0 9907@end deffn
d8988b2f 9908
feeb0eda 9909@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
9910Bison declaration to specifying an additional parameter that
9911@code{yyparse} should accept. @xref{Parser Function,, The Parser
9912Function @code{yyparse}}.
18b519c0 9913@end deffn
2a8d363a 9914
18b519c0 9915@deffn {Directive} %prec
bfa74976
RS
9916Bison declaration to assign a precedence to a specific rule.
9917@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 9918@end deffn
bfa74976 9919
18b519c0 9920@deffn {Directive} %pure-parser
d9df47b6
JD
9921Deprecated version of @code{%define api.pure} (@pxref{Decl Summary, ,%define}),
9922for which Bison is more careful to warn about unreasonable usage.
18b519c0 9923@end deffn
bfa74976 9924
b50d2359 9925@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
9926Require version @var{version} or higher of Bison. @xref{Require Decl, ,
9927Require a Version of Bison}.
b50d2359
AD
9928@end deffn
9929
18b519c0 9930@deffn {Directive} %right
bfa74976
RS
9931Bison declaration to assign right associativity to token(s).
9932@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 9933@end deffn
bfa74976 9934
e6e704dc
JD
9935@deffn {Directive} %skeleton
9936Specify the skeleton to use; usually for development.
9937@xref{Decl Summary}.
9938@end deffn
9939
18b519c0 9940@deffn {Directive} %start
704a47c4
AD
9941Bison declaration to specify the start symbol. @xref{Start Decl, ,The
9942Start-Symbol}.
18b519c0 9943@end deffn
bfa74976 9944
18b519c0 9945@deffn {Directive} %token
bfa74976
RS
9946Bison declaration to declare token(s) without specifying precedence.
9947@xref{Token Decl, ,Token Type Names}.
18b519c0 9948@end deffn
bfa74976 9949
18b519c0 9950@deffn {Directive} %token-table
931c7513
RS
9951Bison declaration to include a token name table in the parser file.
9952@xref{Decl Summary}.
18b519c0 9953@end deffn
931c7513 9954
18b519c0 9955@deffn {Directive} %type
704a47c4
AD
9956Bison declaration to declare nonterminals. @xref{Type Decl,
9957,Nonterminal Symbols}.
18b519c0 9958@end deffn
bfa74976 9959
dd8d9022
AD
9960@deffn {Symbol} $undefined
9961The predefined token onto which all undefined values returned by
9962@code{yylex} are mapped. It cannot be used in the grammar, rather, use
9963@code{error}.
9964@end deffn
9965
18b519c0 9966@deffn {Directive} %union
bfa74976
RS
9967Bison declaration to specify several possible data types for semantic
9968values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 9969@end deffn
bfa74976 9970
dd8d9022
AD
9971@deffn {Macro} YYABORT
9972Macro to pretend that an unrecoverable syntax error has occurred, by
9973making @code{yyparse} return 1 immediately. The error reporting
9974function @code{yyerror} is not called. @xref{Parser Function, ,The
9975Parser Function @code{yyparse}}.
8405b70c
PB
9976
9977For Java parsers, this functionality is invoked using @code{return YYABORT;}
9978instead.
dd8d9022 9979@end deffn
3ded9a63 9980
dd8d9022
AD
9981@deffn {Macro} YYACCEPT
9982Macro to pretend that a complete utterance of the language has been
9983read, by making @code{yyparse} return 0 immediately.
9984@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
9985
9986For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
9987instead.
dd8d9022 9988@end deffn
bfa74976 9989
dd8d9022 9990@deffn {Macro} YYBACKUP
742e4900 9991Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 9992token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 9993@end deffn
bfa74976 9994
dd8d9022 9995@deffn {Variable} yychar
32c29292 9996External integer variable that contains the integer value of the
742e4900 9997lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
9998@code{yyparse}.) Error-recovery rule actions may examine this variable.
9999@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10000@end deffn
bfa74976 10001
dd8d9022
AD
10002@deffn {Variable} yyclearin
10003Macro used in error-recovery rule actions. It clears the previous
742e4900 10004lookahead token. @xref{Error Recovery}.
18b519c0 10005@end deffn
bfa74976 10006
dd8d9022
AD
10007@deffn {Macro} YYDEBUG
10008Macro to define to equip the parser with tracing code. @xref{Tracing,
10009,Tracing Your Parser}.
18b519c0 10010@end deffn
bfa74976 10011
dd8d9022
AD
10012@deffn {Variable} yydebug
10013External integer variable set to zero by default. If @code{yydebug}
10014is given a nonzero value, the parser will output information on input
10015symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10016@end deffn
bfa74976 10017
dd8d9022
AD
10018@deffn {Macro} yyerrok
10019Macro to cause parser to recover immediately to its normal mode
10020after a syntax error. @xref{Error Recovery}.
10021@end deffn
10022
10023@deffn {Macro} YYERROR
10024Macro to pretend that a syntax error has just been detected: call
10025@code{yyerror} and then perform normal error recovery if possible
10026(@pxref{Error Recovery}), or (if recovery is impossible) make
10027@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10028
10029For Java parsers, this functionality is invoked using @code{return YYERROR;}
10030instead.
dd8d9022
AD
10031@end deffn
10032
10033@deffn {Function} yyerror
10034User-supplied function to be called by @code{yyparse} on error.
10035@xref{Error Reporting, ,The Error
10036Reporting Function @code{yyerror}}.
10037@end deffn
10038
10039@deffn {Macro} YYERROR_VERBOSE
10040An obsolete macro that you define with @code{#define} in the prologue
10041to request verbose, specific error message strings
10042when @code{yyerror} is called. It doesn't matter what definition you
10043use for @code{YYERROR_VERBOSE}, just whether you define it. Using
10044@code{%error-verbose} is preferred.
10045@end deffn
10046
10047@deffn {Macro} YYINITDEPTH
10048Macro for specifying the initial size of the parser stack.
1a059451 10049@xref{Memory Management}.
dd8d9022
AD
10050@end deffn
10051
10052@deffn {Function} yylex
10053User-supplied lexical analyzer function, called with no arguments to get
10054the next token. @xref{Lexical, ,The Lexical Analyzer Function
10055@code{yylex}}.
10056@end deffn
10057
10058@deffn {Macro} YYLEX_PARAM
10059An obsolete macro for specifying an extra argument (or list of extra
32c29292 10060arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10061macro is deprecated, and is supported only for Yacc like parsers.
10062@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10063@end deffn
10064
10065@deffn {Variable} yylloc
10066External variable in which @code{yylex} should place the line and column
10067numbers associated with a token. (In a pure parser, it is a local
10068variable within @code{yyparse}, and its address is passed to
32c29292
JD
10069@code{yylex}.)
10070You can ignore this variable if you don't use the @samp{@@} feature in the
10071grammar actions.
10072@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10073In semantic actions, it stores the location of the lookahead token.
32c29292 10074@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10075@end deffn
10076
10077@deffn {Type} YYLTYPE
10078Data type of @code{yylloc}; by default, a structure with four
10079members. @xref{Location Type, , Data Types of Locations}.
10080@end deffn
10081
10082@deffn {Variable} yylval
10083External variable in which @code{yylex} should place the semantic
10084value associated with a token. (In a pure parser, it is a local
10085variable within @code{yyparse}, and its address is passed to
32c29292
JD
10086@code{yylex}.)
10087@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10088In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10089@xref{Actions, ,Actions}.
dd8d9022
AD
10090@end deffn
10091
10092@deffn {Macro} YYMAXDEPTH
1a059451
PE
10093Macro for specifying the maximum size of the parser stack. @xref{Memory
10094Management}.
dd8d9022
AD
10095@end deffn
10096
10097@deffn {Variable} yynerrs
8a2800e7 10098Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10099(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10100pure push parser, it is a member of yypstate.)
dd8d9022
AD
10101@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10102@end deffn
10103
10104@deffn {Function} yyparse
10105The parser function produced by Bison; call this function to start
10106parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10107@end deffn
10108
9987d1b3 10109@deffn {Function} yypstate_delete
f4101aa6 10110The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10111call this function to delete the memory associated with a parser.
f4101aa6 10112@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10113@code{yypstate_delete}}.
59da312b
JD
10114(The current push parsing interface is experimental and may evolve.
10115More user feedback will help to stabilize it.)
9987d1b3
JD
10116@end deffn
10117
10118@deffn {Function} yypstate_new
f4101aa6 10119The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10120call this function to create a new parser.
f4101aa6 10121@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10122@code{yypstate_new}}.
59da312b
JD
10123(The current push parsing interface is experimental and may evolve.
10124More user feedback will help to stabilize it.)
9987d1b3
JD
10125@end deffn
10126
10127@deffn {Function} yypull_parse
f4101aa6
AD
10128The parser function produced by Bison in push mode; call this function to
10129parse the rest of the input stream.
10130@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10131@code{yypull_parse}}.
59da312b
JD
10132(The current push parsing interface is experimental and may evolve.
10133More user feedback will help to stabilize it.)
9987d1b3
JD
10134@end deffn
10135
10136@deffn {Function} yypush_parse
f4101aa6
AD
10137The parser function produced by Bison in push mode; call this function to
10138parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10139@code{yypush_parse}}.
59da312b
JD
10140(The current push parsing interface is experimental and may evolve.
10141More user feedback will help to stabilize it.)
9987d1b3
JD
10142@end deffn
10143
dd8d9022
AD
10144@deffn {Macro} YYPARSE_PARAM
10145An obsolete macro for specifying the name of a parameter that
10146@code{yyparse} should accept. The use of this macro is deprecated, and
10147is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10148Conventions for Pure Parsers}.
10149@end deffn
10150
10151@deffn {Macro} YYRECOVERING
02103984
PE
10152The expression @code{YYRECOVERING ()} yields 1 when the parser
10153is recovering from a syntax error, and 0 otherwise.
10154@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10155@end deffn
10156
10157@deffn {Macro} YYSTACK_USE_ALLOCA
d7e14fc0
PE
10158Macro used to control the use of @code{alloca} when the C
10159@acronym{LALR}(1) parser needs to extend its stacks. If defined to 0,
10160the parser will use @code{malloc} to extend its stacks. If defined to
101611, the parser will use @code{alloca}. Values other than 0 and 1 are
10162reserved for future Bison extensions. If not defined,
10163@code{YYSTACK_USE_ALLOCA} defaults to 0.
10164
55289366 10165In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10166limited stack and with unreliable stack-overflow checking, you should
10167set @code{YYMAXDEPTH} to a value that cannot possibly result in
10168unchecked stack overflow on any of your target hosts when
10169@code{alloca} is called. You can inspect the code that Bison
10170generates in order to determine the proper numeric values. This will
10171require some expertise in low-level implementation details.
dd8d9022
AD
10172@end deffn
10173
10174@deffn {Type} YYSTYPE
10175Data type of semantic values; @code{int} by default.
10176@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 10177@end deffn
bfa74976 10178
342b8b6e 10179@node Glossary
bfa74976
RS
10180@appendix Glossary
10181@cindex glossary
10182
10183@table @asis
c827f760
PE
10184@item Backus-Naur Form (@acronym{BNF}; also called ``Backus Normal Form'')
10185Formal method of specifying context-free grammars originally proposed
10186by John Backus, and slightly improved by Peter Naur in his 1960-01-02
10187committee document contributing to what became the Algol 60 report.
10188@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10189
10190@item Context-free grammars
10191Grammars specified as rules that can be applied regardless of context.
10192Thus, if there is a rule which says that an integer can be used as an
10193expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
10194permitted. @xref{Language and Grammar, ,Languages and Context-Free
10195Grammars}.
bfa74976
RS
10196
10197@item Dynamic allocation
10198Allocation of memory that occurs during execution, rather than at
10199compile time or on entry to a function.
10200
10201@item Empty string
10202Analogous to the empty set in set theory, the empty string is a
10203character string of length zero.
10204
10205@item Finite-state stack machine
10206A ``machine'' that has discrete states in which it is said to exist at
10207each instant in time. As input to the machine is processed, the
10208machine moves from state to state as specified by the logic of the
10209machine. In the case of the parser, the input is the language being
10210parsed, and the states correspond to various stages in the grammar
c827f760 10211rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 10212
c827f760 10213@item Generalized @acronym{LR} (@acronym{GLR})
676385e2 10214A parsing algorithm that can handle all context-free grammars, including those
c827f760
PE
10215that are not @acronym{LALR}(1). It resolves situations that Bison's
10216usual @acronym{LALR}(1)
676385e2
PH
10217algorithm cannot by effectively splitting off multiple parsers, trying all
10218possible parsers, and discarding those that fail in the light of additional
c827f760
PE
10219right context. @xref{Generalized LR Parsing, ,Generalized
10220@acronym{LR} Parsing}.
676385e2 10221
bfa74976
RS
10222@item Grouping
10223A language construct that is (in general) grammatically divisible;
c827f760 10224for example, `expression' or `declaration' in C@.
bfa74976
RS
10225@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10226
10227@item Infix operator
10228An arithmetic operator that is placed between the operands on which it
10229performs some operation.
10230
10231@item Input stream
10232A continuous flow of data between devices or programs.
10233
10234@item Language construct
10235One of the typical usage schemas of the language. For example, one of
10236the constructs of the C language is the @code{if} statement.
10237@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
10238
10239@item Left associativity
10240Operators having left associativity are analyzed from left to right:
10241@samp{a+b+c} first computes @samp{a+b} and then combines with
10242@samp{c}. @xref{Precedence, ,Operator Precedence}.
10243
10244@item Left recursion
89cab50d
AD
10245A rule whose result symbol is also its first component symbol; for
10246example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
10247Rules}.
bfa74976
RS
10248
10249@item Left-to-right parsing
10250Parsing a sentence of a language by analyzing it token by token from
c827f760 10251left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10252
10253@item Lexical analyzer (scanner)
10254A function that reads an input stream and returns tokens one by one.
10255@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
10256
10257@item Lexical tie-in
10258A flag, set by actions in the grammar rules, which alters the way
10259tokens are parsed. @xref{Lexical Tie-ins}.
10260
931c7513 10261@item Literal string token
14ded682 10262A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 10263
742e4900
JD
10264@item Lookahead token
10265A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 10266Tokens}.
bfa74976 10267
c827f760 10268@item @acronym{LALR}(1)
bfa74976 10269The class of context-free grammars that Bison (like most other parser
c827f760
PE
10270generators) can handle; a subset of @acronym{LR}(1). @xref{Mystery
10271Conflicts, ,Mysterious Reduce/Reduce Conflicts}.
bfa74976 10272
c827f760 10273@item @acronym{LR}(1)
bfa74976 10274The class of context-free grammars in which at most one token of
742e4900 10275lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
10276
10277@item Nonterminal symbol
10278A grammar symbol standing for a grammatical construct that can
10279be expressed through rules in terms of smaller constructs; in other
10280words, a construct that is not a token. @xref{Symbols}.
10281
bfa74976
RS
10282@item Parser
10283A function that recognizes valid sentences of a language by analyzing
10284the syntax structure of a set of tokens passed to it from a lexical
10285analyzer.
10286
10287@item Postfix operator
10288An arithmetic operator that is placed after the operands upon which it
10289performs some operation.
10290
10291@item Reduction
10292Replacing a string of nonterminals and/or terminals with a single
89cab50d 10293nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 10294Parser Algorithm}.
bfa74976
RS
10295
10296@item Reentrant
10297A reentrant subprogram is a subprogram which can be in invoked any
10298number of times in parallel, without interference between the various
10299invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
10300
10301@item Reverse polish notation
10302A language in which all operators are postfix operators.
10303
10304@item Right recursion
89cab50d
AD
10305A rule whose result symbol is also its last component symbol; for
10306example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
10307Rules}.
bfa74976
RS
10308
10309@item Semantics
10310In computer languages, the semantics are specified by the actions
10311taken for each instance of the language, i.e., the meaning of
10312each statement. @xref{Semantics, ,Defining Language Semantics}.
10313
10314@item Shift
10315A parser is said to shift when it makes the choice of analyzing
10316further input from the stream rather than reducing immediately some
c827f760 10317already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
10318
10319@item Single-character literal
10320A single character that is recognized and interpreted as is.
10321@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
10322
10323@item Start symbol
10324The nonterminal symbol that stands for a complete valid utterance in
10325the language being parsed. The start symbol is usually listed as the
13863333 10326first nonterminal symbol in a language specification.
bfa74976
RS
10327@xref{Start Decl, ,The Start-Symbol}.
10328
10329@item Symbol table
10330A data structure where symbol names and associated data are stored
10331during parsing to allow for recognition and use of existing
10332information in repeated uses of a symbol. @xref{Multi-function Calc}.
10333
6e649e65
PE
10334@item Syntax error
10335An error encountered during parsing of an input stream due to invalid
10336syntax. @xref{Error Recovery}.
10337
bfa74976
RS
10338@item Token
10339A basic, grammatically indivisible unit of a language. The symbol
10340that describes a token in the grammar is a terminal symbol.
10341The input of the Bison parser is a stream of tokens which comes from
10342the lexical analyzer. @xref{Symbols}.
10343
10344@item Terminal symbol
89cab50d
AD
10345A grammar symbol that has no rules in the grammar and therefore is
10346grammatically indivisible. The piece of text it represents is a token.
10347@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976
RS
10348@end table
10349
342b8b6e 10350@node Copying This Manual
f2b5126e 10351@appendix Copying This Manual
f2b5126e
PB
10352@include fdl.texi
10353
342b8b6e 10354@node Index
bfa74976
RS
10355@unnumbered Index
10356
10357@printindex cp
10358
bfa74976 10359@bye
a06ea4aa
AD
10360
10361@c LocalWords: texinfo setfilename settitle setchapternewpage finalout
10362@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex
10363@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry
10364@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa
10365@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc
f56274a8 10366@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex
a06ea4aa
AD
10367@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref
10368@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex
10369@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge
10370@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG
10371@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit
10372@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok
178e123e 10373@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln
a06ea4aa
AD
10374@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym
10375@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof
10376@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum
10377@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype
178e123e 10378@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs
a06ea4aa
AD
10379@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES
10380@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param
10381@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP
32c29292 10382@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword
a06ea4aa 10383@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH
35fe0834 10384@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype
a06ea4aa 10385@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args
35fe0834 10386@c LocalWords: infile ypp yxx outfile itemx tex leaderfill
a06ea4aa 10387@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll
178e123e 10388@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST
a06ea4aa 10389@c LocalWords: YYSTACK DVI fdl printindex