]> git.saurik.com Git - bison.git/blame - doc/bison.texi
YYLEX_PARAM: drop support
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
be22823e
AD
214Actions in Mid-Rule
215
216* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
217* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
218* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
219
93dd49ab
PE
220Tracking Locations
221
222* Location Type:: Specifying a data type for locations.
223* Actions and Locations:: Using locations in actions.
224* Location Default Action:: Defining a general way to compute locations.
225
bfa74976
RS
226Bison Declarations
227
b50d2359 228* Require Decl:: Requiring a Bison version.
bfa74976
RS
229* Token Decl:: Declaring terminal symbols.
230* Precedence Decl:: Declaring terminals with precedence and associativity.
231* Union Decl:: Declaring the set of all semantic value types.
232* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 233* Initial Action Decl:: Code run before parsing starts.
72f889cc 234* Destructor Decl:: Declaring how symbols are freed.
93c150b6 235* Printer Decl:: Declaring how symbol values are displayed.
d6328241 236* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
237* Start Decl:: Specifying the start symbol.
238* Pure Decl:: Requesting a reentrant parser.
9987d1b3 239* Push Decl:: Requesting a push parser.
bfa74976 240* Decl Summary:: Table of all Bison declarations.
35c1e5f0 241* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 242* %code Summary:: Inserting code into the parser source.
bfa74976
RS
243
244Parser C-Language Interface
245
f5f419de
DJ
246* Parser Function:: How to call @code{yyparse} and what it returns.
247* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
248* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
249* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
250* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
251* Lexical:: You must supply a function @code{yylex}
252 which reads tokens.
253* Error Reporting:: You must supply a function @code{yyerror}.
254* Action Features:: Special features for use in actions.
255* Internationalization:: How to let the parser speak in the user's
256 native language.
bfa74976
RS
257
258The Lexical Analyzer Function @code{yylex}
259
260* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
261* Token Values:: How @code{yylex} must return the semantic value
262 of the token it has read.
263* Token Locations:: How @code{yylex} must return the text location
264 (line number, etc.) of the token, if the
265 actions want that.
266* Pure Calling:: How the calling convention differs in a pure parser
267 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 268
13863333 269The Bison Parser Algorithm
bfa74976 270
742e4900 271* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
272* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
273* Precedence:: Operator precedence works by resolving conflicts.
274* Contextual Precedence:: When an operator's precedence depends on context.
275* Parser States:: The parser is a finite-state-machine with stack.
276* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 277* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 278* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 279* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 280* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
281
282Operator Precedence
283
284* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
285* Using Precedence:: How to specify precedence and associativity.
286* Precedence Only:: How to specify precedence only.
bfa74976
RS
287* Precedence Examples:: How these features are used in the previous example.
288* How Precedence:: How they work.
c28cd5dc 289* Non Operators:: Using precedence for general conflicts.
bfa74976 290
7fceb615
JD
291Tuning LR
292
293* LR Table Construction:: Choose a different construction algorithm.
294* Default Reductions:: Disable default reductions.
295* LAC:: Correct lookahead sets in the parser states.
296* Unreachable States:: Keep unreachable parser states for debugging.
297
bfa74976
RS
298Handling Context Dependencies
299
300* Semantic Tokens:: Token parsing can depend on the semantic context.
301* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
302* Tie-in Recovery:: Lexical tie-ins have implications for how
303 error recovery rules must be written.
304
93dd49ab 305Debugging Your Parser
ec3bc396
AD
306
307* Understanding:: Understanding the structure of your parser.
fc4fdd62 308* Graphviz:: Getting a visual representation of the parser.
9c16d399 309* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
310* Tracing:: Tracing the execution of your parser.
311
93c150b6
AD
312Tracing Your Parser
313
314* Enabling Traces:: Activating run-time trace support
315* Mfcalc Traces:: Extending @code{mfcalc} to support traces
316* The YYPRINT Macro:: Obsolete interface for semantic value reports
317
bfa74976
RS
318Invoking Bison
319
13863333 320* Bison Options:: All the options described in detail,
c827f760 321 in alphabetical order by short options.
bfa74976 322* Option Cross Key:: Alphabetical list of long options.
93dd49ab 323* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 324
8405b70c 325Parsers Written In Other Languages
12545799
AD
326
327* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 328* Java Parsers:: The interface to generate Java parser classes
12545799
AD
329
330C++ Parsers
331
332* C++ Bison Interface:: Asking for C++ parser generation
333* C++ Semantic Values:: %union vs. C++
334* C++ Location Values:: The position and location classes
335* C++ Parser Interface:: Instantiating and running the parser
336* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 337* A Complete C++ Example:: Demonstrating their use
12545799 338
936c88d1
AD
339C++ Location Values
340
341* C++ position:: One point in the source file
342* C++ location:: Two points in the source file
db8ab2be 343* User Defined Location Type:: Required interface for locations
936c88d1 344
12545799
AD
345A Complete C++ Example
346
347* Calc++ --- C++ Calculator:: The specifications
348* Calc++ Parsing Driver:: An active parsing context
349* Calc++ Parser:: A parser class
350* Calc++ Scanner:: A pure C++ Flex scanner
351* Calc++ Top Level:: Conducting the band
352
8405b70c
PB
353Java Parsers
354
f5f419de
DJ
355* Java Bison Interface:: Asking for Java parser generation
356* Java Semantic Values:: %type and %token vs. Java
357* Java Location Values:: The position and location classes
358* Java Parser Interface:: Instantiating and running the parser
359* Java Scanner Interface:: Specifying the scanner for the parser
360* Java Action Features:: Special features for use in actions
361* Java Differences:: Differences between C/C++ and Java Grammars
362* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 363
d1a1114f
AD
364Frequently Asked Questions
365
f5f419de
DJ
366* Memory Exhausted:: Breaking the Stack Limits
367* How Can I Reset the Parser:: @code{yyparse} Keeps some State
368* Strings are Destroyed:: @code{yylval} Loses Track of Strings
369* Implementing Gotos/Loops:: Control Flow in the Calculator
370* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 371* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
372* I can't build Bison:: Troubleshooting
373* Where can I find help?:: Troubleshouting
374* Bug Reports:: Troublereporting
375* More Languages:: Parsers in C++, Java, and so on
376* Beta Testing:: Experimenting development versions
377* Mailing Lists:: Meeting other Bison users
d1a1114f 378
f2b5126e
PB
379Copying This Manual
380
f5f419de 381* Copying This Manual:: License for copying this manual.
f2b5126e 382
342b8b6e 383@end detailmenu
bfa74976
RS
384@end menu
385
342b8b6e 386@node Introduction
bfa74976
RS
387@unnumbered Introduction
388@cindex introduction
389
6077da58 390@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
391annotated context-free grammar into a deterministic LR or generalized
392LR (GLR) parser employing LALR(1) parser tables. As an experimental
393feature, Bison can also generate IELR(1) or canonical LR(1) parser
394tables. Once you are proficient with Bison, you can use it to develop
395a wide range of language parsers, from those used in simple desk
396calculators to complex programming languages.
397
398Bison is upward compatible with Yacc: all properly-written Yacc
399grammars ought to work with Bison with no change. Anyone familiar
400with Yacc should be able to use Bison with little trouble. You need
401to be fluent in C or C++ programming in order to use Bison or to
402understand this manual. Java is also supported as an experimental
403feature.
404
405We begin with tutorial chapters that explain the basic concepts of
406using Bison and show three explained examples, each building on the
407last. If you don't know Bison or Yacc, start by reading these
408chapters. Reference chapters follow, which describe specific aspects
409of Bison in detail.
bfa74976 410
679e9935
JD
411Bison was written originally by Robert Corbett. Richard Stallman made
412it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
413added multi-character string literals and other features. Since then,
414Bison has grown more robust and evolved many other new features thanks
415to the hard work of a long list of volunteers. For details, see the
416@file{THANKS} and @file{ChangeLog} files included in the Bison
417distribution.
931c7513 418
df1af54c 419This edition corresponds to version @value{VERSION} of Bison.
bfa74976 420
342b8b6e 421@node Conditions
bfa74976
RS
422@unnumbered Conditions for Using Bison
423
193d7c70
PE
424The distribution terms for Bison-generated parsers permit using the
425parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 426permissions applied only when Bison was generating LALR(1)
193d7c70 427parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 428parsers could be used only in programs that were free software.
a31239f1 429
8a4281b9 430The other GNU programming tools, such as the GNU C
c827f760 431compiler, have never
9ecbd125 432had such a requirement. They could always be used for nonfree
a31239f1
RS
433software. The reason Bison was different was not due to a special
434policy decision; it resulted from applying the usual General Public
435License to all of the Bison source code.
436
ff7571c0
JD
437The main output of the Bison utility---the Bison parser implementation
438file---contains a verbatim copy of a sizable piece of Bison, which is
439the code for the parser's implementation. (The actions from your
440grammar are inserted into this implementation at one point, but most
441of the rest of the implementation is not changed.) When we applied
442the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
443the effect was to restrict the use of Bison output to free software.
444
445We didn't change the terms because of sympathy for people who want to
446make software proprietary. @strong{Software should be free.} But we
447concluded that limiting Bison's use to free software was doing little to
448encourage people to make other software free. So we decided to make the
449practical conditions for using Bison match the practical conditions for
8a4281b9 450using the other GNU tools.
bfa74976 451
193d7c70
PE
452This exception applies when Bison is generating code for a parser.
453You can tell whether the exception applies to a Bison output file by
454inspecting the file for text beginning with ``As a special
455exception@dots{}''. The text spells out the exact terms of the
456exception.
262aa8dd 457
f16b0819
PE
458@node Copying
459@unnumbered GNU GENERAL PUBLIC LICENSE
460@include gpl-3.0.texi
bfa74976 461
342b8b6e 462@node Concepts
bfa74976
RS
463@chapter The Concepts of Bison
464
465This chapter introduces many of the basic concepts without which the
466details of Bison will not make sense. If you do not already know how to
467use Bison or Yacc, we suggest you start by reading this chapter carefully.
468
469@menu
f5f419de
DJ
470* Language and Grammar:: Languages and context-free grammars,
471 as mathematical ideas.
472* Grammar in Bison:: How we represent grammars for Bison's sake.
473* Semantic Values:: Each token or syntactic grouping can have
474 a semantic value (the value of an integer,
475 the name of an identifier, etc.).
476* Semantic Actions:: Each rule can have an action containing C code.
477* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 478* Locations:: Overview of location tracking.
f5f419de
DJ
479* Bison Parser:: What are Bison's input and output,
480 how is the output used?
481* Stages:: Stages in writing and running Bison grammars.
482* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
483@end menu
484
342b8b6e 485@node Language and Grammar
bfa74976
RS
486@section Languages and Context-Free Grammars
487
bfa74976
RS
488@cindex context-free grammar
489@cindex grammar, context-free
490In order for Bison to parse a language, it must be described by a
491@dfn{context-free grammar}. This means that you specify one or more
492@dfn{syntactic groupings} and give rules for constructing them from their
493parts. For example, in the C language, one kind of grouping is called an
494`expression'. One rule for making an expression might be, ``An expression
495can be made of a minus sign and another expression''. Another would be,
496``An expression can be an integer''. As you can see, rules are often
497recursive, but there must be at least one rule which leads out of the
498recursion.
499
8a4281b9 500@cindex BNF
bfa74976
RS
501@cindex Backus-Naur form
502The most common formal system for presenting such rules for humans to read
8a4281b9 503is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 504order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
505BNF is a context-free grammar. The input to Bison is
506essentially machine-readable BNF.
bfa74976 507
7fceb615
JD
508@cindex LALR grammars
509@cindex IELR grammars
510@cindex LR grammars
511There are various important subclasses of context-free grammars. Although
512it can handle almost all context-free grammars, Bison is optimized for what
513are called LR(1) grammars. In brief, in these grammars, it must be possible
514to tell how to parse any portion of an input string with just a single token
515of lookahead. For historical reasons, Bison by default is limited by the
516additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
517@xref{Mysterious Conflicts}, for more information on this. As an
518experimental feature, you can escape these additional restrictions by
519requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
520Construction}, to learn how.
bfa74976 521
8a4281b9
JD
522@cindex GLR parsing
523@cindex generalized LR (GLR) parsing
676385e2 524@cindex ambiguous grammars
9d9b8b70 525@cindex nondeterministic parsing
9501dc6e 526
8a4281b9 527Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
528roughly that the next grammar rule to apply at any point in the input is
529uniquely determined by the preceding input and a fixed, finite portion
742e4900 530(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 531grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 532apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 533grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 534lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 535With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
536general context-free grammars, using a technique known as GLR
537parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
538are able to handle any context-free grammar for which the number of
539possible parses of any given string is finite.
676385e2 540
bfa74976
RS
541@cindex symbols (abstract)
542@cindex token
543@cindex syntactic grouping
544@cindex grouping, syntactic
9501dc6e
AD
545In the formal grammatical rules for a language, each kind of syntactic
546unit or grouping is named by a @dfn{symbol}. Those which are built by
547grouping smaller constructs according to grammatical rules are called
bfa74976
RS
548@dfn{nonterminal symbols}; those which can't be subdivided are called
549@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
550corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 551corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
552
553We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
554nonterminal, mean. The tokens of C are identifiers, constants (numeric
555and string), and the various keywords, arithmetic operators and
556punctuation marks. So the terminal symbols of a grammar for C include
557`identifier', `number', `string', plus one symbol for each keyword,
558operator or punctuation mark: `if', `return', `const', `static', `int',
559`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
560(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
561lexicography, not grammar.)
562
563Here is a simple C function subdivided into tokens:
564
9edcd895
AD
565@example
566int /* @r{keyword `int'} */
14d4662b 567square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
568 @r{identifier, close-paren} */
569@{ /* @r{open-brace} */
aa08666d
AD
570 return x * x; /* @r{keyword `return', identifier, asterisk,}
571 @r{identifier, semicolon} */
9edcd895
AD
572@} /* @r{close-brace} */
573@end example
bfa74976
RS
574
575The syntactic groupings of C include the expression, the statement, the
576declaration, and the function definition. These are represented in the
577grammar of C by nonterminal symbols `expression', `statement',
578`declaration' and `function definition'. The full grammar uses dozens of
579additional language constructs, each with its own nonterminal symbol, in
580order to express the meanings of these four. The example above is a
581function definition; it contains one declaration, and one statement. In
582the statement, each @samp{x} is an expression and so is @samp{x * x}.
583
584Each nonterminal symbol must have grammatical rules showing how it is made
585out of simpler constructs. For example, one kind of C statement is the
586@code{return} statement; this would be described with a grammar rule which
587reads informally as follows:
588
589@quotation
590A `statement' can be made of a `return' keyword, an `expression' and a
591`semicolon'.
592@end quotation
593
594@noindent
595There would be many other rules for `statement', one for each kind of
596statement in C.
597
598@cindex start symbol
599One nonterminal symbol must be distinguished as the special one which
600defines a complete utterance in the language. It is called the @dfn{start
601symbol}. In a compiler, this means a complete input program. In the C
602language, the nonterminal symbol `sequence of definitions and declarations'
603plays this role.
604
605For example, @samp{1 + 2} is a valid C expression---a valid part of a C
606program---but it is not valid as an @emph{entire} C program. In the
607context-free grammar of C, this follows from the fact that `expression' is
608not the start symbol.
609
610The Bison parser reads a sequence of tokens as its input, and groups the
611tokens using the grammar rules. If the input is valid, the end result is
612that the entire token sequence reduces to a single grouping whose symbol is
613the grammar's start symbol. If we use a grammar for C, the entire input
614must be a `sequence of definitions and declarations'. If not, the parser
615reports a syntax error.
616
342b8b6e 617@node Grammar in Bison
bfa74976
RS
618@section From Formal Rules to Bison Input
619@cindex Bison grammar
620@cindex grammar, Bison
621@cindex formal grammar
622
623A formal grammar is a mathematical construct. To define the language
624for Bison, you must write a file expressing the grammar in Bison syntax:
625a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
626
627A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 628as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
629in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
630
631The Bison representation for a terminal symbol is also called a @dfn{token
632type}. Token types as well can be represented as C-like identifiers. By
633convention, these identifiers should be upper case to distinguish them from
634nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
635@code{RETURN}. A terminal symbol that stands for a particular keyword in
636the language should be named after that keyword converted to upper case.
637The terminal symbol @code{error} is reserved for error recovery.
931c7513 638@xref{Symbols}.
bfa74976
RS
639
640A terminal symbol can also be represented as a character literal, just like
641a C character constant. You should do this whenever a token is just a
642single character (parenthesis, plus-sign, etc.): use that same character in
643a literal as the terminal symbol for that token.
644
931c7513
RS
645A third way to represent a terminal symbol is with a C string constant
646containing several characters. @xref{Symbols}, for more information.
647
bfa74976
RS
648The grammar rules also have an expression in Bison syntax. For example,
649here is the Bison rule for a C @code{return} statement. The semicolon in
650quotes is a literal character token, representing part of the C syntax for
651the statement; the naked semicolon, and the colon, are Bison punctuation
652used in every rule.
653
654@example
5e9b6624 655stmt: RETURN expr ';' ;
bfa74976
RS
656@end example
657
658@noindent
659@xref{Rules, ,Syntax of Grammar Rules}.
660
342b8b6e 661@node Semantic Values
bfa74976
RS
662@section Semantic Values
663@cindex semantic value
664@cindex value, semantic
665
666A formal grammar selects tokens only by their classifications: for example,
667if a rule mentions the terminal symbol `integer constant', it means that
668@emph{any} integer constant is grammatically valid in that position. The
669precise value of the constant is irrelevant to how to parse the input: if
670@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 671grammatical.
bfa74976
RS
672
673But the precise value is very important for what the input means once it is
674parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6753989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
676has both a token type and a @dfn{semantic value}. @xref{Semantics,
677,Defining Language Semantics},
bfa74976
RS
678for details.
679
680The token type is a terminal symbol defined in the grammar, such as
681@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
682you need to know to decide where the token may validly appear and how to
683group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 684except their types.
bfa74976
RS
685
686The semantic value has all the rest of the information about the
687meaning of the token, such as the value of an integer, or the name of an
688identifier. (A token such as @code{','} which is just punctuation doesn't
689need to have any semantic value.)
690
691For example, an input token might be classified as token type
692@code{INTEGER} and have the semantic value 4. Another input token might
693have the same token type @code{INTEGER} but value 3989. When a grammar
694rule says that @code{INTEGER} is allowed, either of these tokens is
695acceptable because each is an @code{INTEGER}. When the parser accepts the
696token, it keeps track of the token's semantic value.
697
698Each grouping can also have a semantic value as well as its nonterminal
699symbol. For example, in a calculator, an expression typically has a
700semantic value that is a number. In a compiler for a programming
701language, an expression typically has a semantic value that is a tree
702structure describing the meaning of the expression.
703
342b8b6e 704@node Semantic Actions
bfa74976
RS
705@section Semantic Actions
706@cindex semantic actions
707@cindex actions, semantic
708
709In order to be useful, a program must do more than parse input; it must
710also produce some output based on the input. In a Bison grammar, a grammar
711rule can have an @dfn{action} made up of C statements. Each time the
712parser recognizes a match for that rule, the action is executed.
713@xref{Actions}.
13863333 714
bfa74976
RS
715Most of the time, the purpose of an action is to compute the semantic value
716of the whole construct from the semantic values of its parts. For example,
717suppose we have a rule which says an expression can be the sum of two
718expressions. When the parser recognizes such a sum, each of the
719subexpressions has a semantic value which describes how it was built up.
720The action for this rule should create a similar sort of value for the
721newly recognized larger expression.
722
723For example, here is a rule that says an expression can be the sum of
724two subexpressions:
725
726@example
5e9b6624 727expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
728@end example
729
730@noindent
731The action says how to produce the semantic value of the sum expression
732from the values of the two subexpressions.
733
676385e2 734@node GLR Parsers
8a4281b9
JD
735@section Writing GLR Parsers
736@cindex GLR parsing
737@cindex generalized LR (GLR) parsing
676385e2
PH
738@findex %glr-parser
739@cindex conflicts
740@cindex shift/reduce conflicts
fa7e68c3 741@cindex reduce/reduce conflicts
676385e2 742
eb45ef3b 743In some grammars, Bison's deterministic
8a4281b9 744LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
745certain grammar rule at a given point. That is, it may not be able to
746decide (on the basis of the input read so far) which of two possible
747reductions (applications of a grammar rule) applies, or whether to apply
748a reduction or read more of the input and apply a reduction later in the
749input. These are known respectively as @dfn{reduce/reduce} conflicts
750(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
751(@pxref{Shift/Reduce}).
752
8a4281b9 753To use a grammar that is not easily modified to be LR(1), a
9501dc6e 754more general parsing algorithm is sometimes necessary. If you include
676385e2 755@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
756(@pxref{Grammar Outline}), the result is a Generalized LR
757(GLR) parser. These parsers handle Bison grammars that
9501dc6e 758contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 759declarations) identically to deterministic parsers. However, when
9501dc6e 760faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 761GLR parsers use the simple expedient of doing both,
9501dc6e
AD
762effectively cloning the parser to follow both possibilities. Each of
763the resulting parsers can again split, so that at any given time, there
764can be any number of possible parses being explored. The parsers
676385e2
PH
765proceed in lockstep; that is, all of them consume (shift) a given input
766symbol before any of them proceed to the next. Each of the cloned
767parsers eventually meets one of two possible fates: either it runs into
768a parsing error, in which case it simply vanishes, or it merges with
769another parser, because the two of them have reduced the input to an
770identical set of symbols.
771
772During the time that there are multiple parsers, semantic actions are
773recorded, but not performed. When a parser disappears, its recorded
774semantic actions disappear as well, and are never performed. When a
775reduction makes two parsers identical, causing them to merge, Bison
776records both sets of semantic actions. Whenever the last two parsers
777merge, reverting to the single-parser case, Bison resolves all the
778outstanding actions either by precedences given to the grammar rules
779involved, or by performing both actions, and then calling a designated
780user-defined function on the resulting values to produce an arbitrary
781merged result.
782
fa7e68c3 783@menu
8a4281b9
JD
784* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
785* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 786* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 787* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 788* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
789@end menu
790
791@node Simple GLR Parsers
8a4281b9
JD
792@subsection Using GLR on Unambiguous Grammars
793@cindex GLR parsing, unambiguous grammars
794@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
795@findex %glr-parser
796@findex %expect-rr
797@cindex conflicts
798@cindex reduce/reduce conflicts
799@cindex shift/reduce conflicts
800
8a4281b9
JD
801In the simplest cases, you can use the GLR algorithm
802to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 803Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
804
805Consider a problem that
806arises in the declaration of enumerated and subrange types in the
807programming language Pascal. Here are some examples:
808
809@example
810type subrange = lo .. hi;
811type enum = (a, b, c);
812@end example
813
814@noindent
815The original language standard allows only numeric
816literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 817and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
81810206) and many other
819Pascal implementations allow arbitrary expressions there. This gives
820rise to the following situation, containing a superfluous pair of
821parentheses:
822
823@example
824type subrange = (a) .. b;
825@end example
826
827@noindent
828Compare this to the following declaration of an enumerated
829type with only one value:
830
831@example
832type enum = (a);
833@end example
834
835@noindent
836(These declarations are contrived, but they are syntactically
837valid, and more-complicated cases can come up in practical programs.)
838
839These two declarations look identical until the @samp{..} token.
8a4281b9 840With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
841possible to decide between the two forms when the identifier
842@samp{a} is parsed. It is, however, desirable
843for a parser to decide this, since in the latter case
844@samp{a} must become a new identifier to represent the enumeration
845value, while in the former case @samp{a} must be evaluated with its
846current meaning, which may be a constant or even a function call.
847
848You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
849to be resolved later, but this typically requires substantial
850contortions in both semantic actions and large parts of the
851grammar, where the parentheses are nested in the recursive rules for
852expressions.
853
854You might think of using the lexer to distinguish between the two
855forms by returning different tokens for currently defined and
856undefined identifiers. But if these declarations occur in a local
857scope, and @samp{a} is defined in an outer scope, then both forms
858are possible---either locally redefining @samp{a}, or using the
859value of @samp{a} from the outer scope. So this approach cannot
860work.
861
e757bb10 862A simple solution to this problem is to declare the parser to
8a4281b9
JD
863use the GLR algorithm.
864When the GLR parser reaches the critical state, it
fa7e68c3
PE
865merely splits into two branches and pursues both syntax rules
866simultaneously. Sooner or later, one of them runs into a parsing
867error. If there is a @samp{..} token before the next
868@samp{;}, the rule for enumerated types fails since it cannot
869accept @samp{..} anywhere; otherwise, the subrange type rule
870fails since it requires a @samp{..} token. So one of the branches
871fails silently, and the other one continues normally, performing
872all the intermediate actions that were postponed during the split.
873
874If the input is syntactically incorrect, both branches fail and the parser
875reports a syntax error as usual.
876
877The effect of all this is that the parser seems to ``guess'' the
878correct branch to take, or in other words, it seems to use more
8a4281b9
JD
879lookahead than the underlying LR(1) algorithm actually allows
880for. In this example, LR(2) would suffice, but also some cases
881that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 882
8a4281b9 883In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
884and the current Bison parser even takes exponential time and space
885for some grammars. In practice, this rarely happens, and for many
886grammars it is possible to prove that it cannot happen.
887The present example contains only one conflict between two
888rules, and the type-declaration context containing the conflict
889cannot be nested. So the number of
890branches that can exist at any time is limited by the constant 2,
891and the parsing time is still linear.
892
893Here is a Bison grammar corresponding to the example above. It
894parses a vastly simplified form of Pascal type declarations.
895
896@example
897%token TYPE DOTDOT ID
898
899@group
900%left '+' '-'
901%left '*' '/'
902@end group
903
904%%
5e9b6624 905type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
906
907@group
5e9b6624
AD
908type:
909 '(' id_list ')'
910| expr DOTDOT expr
911;
fa7e68c3
PE
912@end group
913
914@group
5e9b6624
AD
915id_list:
916 ID
917| id_list ',' ID
918;
fa7e68c3
PE
919@end group
920
921@group
5e9b6624
AD
922expr:
923 '(' expr ')'
924| expr '+' expr
925| expr '-' expr
926| expr '*' expr
927| expr '/' expr
928| ID
929;
fa7e68c3
PE
930@end group
931@end example
932
8a4281b9 933When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
934about one reduce/reduce conflict. In the conflicting situation the
935parser chooses one of the alternatives, arbitrarily the one
936declared first. Therefore the following correct input is not
937recognized:
938
939@example
940type t = (a) .. b;
941@end example
942
8a4281b9 943The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
944to be silent about the one known reduce/reduce conflict, by adding
945these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
946@samp{%%}):
947
948@example
949%glr-parser
950%expect-rr 1
951@end example
952
953@noindent
954No change in the grammar itself is required. Now the
955parser recognizes all valid declarations, according to the
956limited syntax above, transparently. In fact, the user does not even
957notice when the parser splits.
958
8a4281b9 959So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
960almost without disadvantages. Even in simple cases like this, however,
961there are at least two potential problems to beware. First, always
8a4281b9
JD
962analyze the conflicts reported by Bison to make sure that GLR
963splitting is only done where it is intended. A GLR parser
f8e1c9e5 964splitting inadvertently may cause problems less obvious than an
8a4281b9 965LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
966conflict. Second, consider interactions with the lexer (@pxref{Semantic
967Tokens}) with great care. Since a split parser consumes tokens without
968performing any actions during the split, the lexer cannot obtain
969information via parser actions. Some cases of lexer interactions can be
8a4281b9 970eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
971lexer to the parser. You must check the remaining cases for
972correctness.
973
974In our example, it would be safe for the lexer to return tokens based on
975their current meanings in some symbol table, because no new symbols are
976defined in the middle of a type declaration. Though it is possible for
977a parser to define the enumeration constants as they are parsed, before
978the type declaration is completed, it actually makes no difference since
979they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
980
981@node Merging GLR Parses
8a4281b9
JD
982@subsection Using GLR to Resolve Ambiguities
983@cindex GLR parsing, ambiguous grammars
984@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
985@findex %dprec
986@findex %merge
987@cindex conflicts
988@cindex reduce/reduce conflicts
989
2a8d363a 990Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
991
992@example
993%@{
38a92d50
PE
994 #include <stdio.h>
995 #define YYSTYPE char const *
996 int yylex (void);
997 void yyerror (char const *);
676385e2
PH
998%@}
999
1000%token TYPENAME ID
1001
1002%right '='
1003%left '+'
1004
1005%glr-parser
1006
1007%%
1008
5e9b6624
AD
1009prog:
1010 /* Nothing. */
1011| prog stmt @{ printf ("\n"); @}
1012;
676385e2 1013
5e9b6624
AD
1014stmt:
1015 expr ';' %dprec 1
1016| decl %dprec 2
1017;
676385e2 1018
5e9b6624
AD
1019expr:
1020 ID @{ printf ("%s ", $$); @}
1021| TYPENAME '(' expr ')'
1022 @{ printf ("%s <cast> ", $1); @}
1023| expr '+' expr @{ printf ("+ "); @}
1024| expr '=' expr @{ printf ("= "); @}
1025;
676385e2 1026
5e9b6624
AD
1027decl:
1028 TYPENAME declarator ';'
1029 @{ printf ("%s <declare> ", $1); @}
1030| TYPENAME declarator '=' expr ';'
1031 @{ printf ("%s <init-declare> ", $1); @}
1032;
676385e2 1033
5e9b6624
AD
1034declarator:
1035 ID @{ printf ("\"%s\" ", $1); @}
1036| '(' declarator ')'
1037;
676385e2
PH
1038@end example
1039
1040@noindent
1041This models a problematic part of the C++ grammar---the ambiguity between
1042certain declarations and statements. For example,
1043
1044@example
1045T (x) = y+z;
1046@end example
1047
1048@noindent
1049parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1050(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1051@samp{x} as an @code{ID}).
676385e2 1052Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1053@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1054time it encounters @code{x} in the example above. Since this is a
8a4281b9 1055GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1056each choice of resolving the reduce/reduce conflict.
1057Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1058however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1059ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1060the other reduces @code{stmt : decl}, after which both parsers are in an
1061identical state: they've seen @samp{prog stmt} and have the same unprocessed
1062input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1063
8a4281b9 1064At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1065grammar of how to choose between the competing parses.
1066In the example above, the two @code{%dprec}
e757bb10 1067declarations specify that Bison is to give precedence
fa7e68c3 1068to the parse that interprets the example as a
676385e2
PH
1069@code{decl}, which implies that @code{x} is a declarator.
1070The parser therefore prints
1071
1072@example
fae437e8 1073"x" y z + T <init-declare>
676385e2
PH
1074@end example
1075
fa7e68c3
PE
1076The @code{%dprec} declarations only come into play when more than one
1077parse survives. Consider a different input string for this parser:
676385e2
PH
1078
1079@example
1080T (x) + y;
1081@end example
1082
1083@noindent
8a4281b9 1084This is another example of using GLR to parse an unambiguous
fa7e68c3 1085construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1086Here, there is no ambiguity (this cannot be parsed as a declaration).
1087However, at the time the Bison parser encounters @code{x}, it does not
1088have enough information to resolve the reduce/reduce conflict (again,
1089between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1090case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1091into two, one assuming that @code{x} is an @code{expr}, and the other
1092assuming @code{x} is a @code{declarator}. The second of these parsers
1093then vanishes when it sees @code{+}, and the parser prints
1094
1095@example
fae437e8 1096x T <cast> y +
676385e2
PH
1097@end example
1098
1099Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1100the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1101actions of the two possible parsers, rather than choosing one over the
1102other. To do so, you could change the declaration of @code{stmt} as
1103follows:
1104
1105@example
5e9b6624
AD
1106stmt:
1107 expr ';' %merge <stmtMerge>
1108| decl %merge <stmtMerge>
1109;
676385e2
PH
1110@end example
1111
1112@noindent
676385e2
PH
1113and define the @code{stmtMerge} function as:
1114
1115@example
38a92d50
PE
1116static YYSTYPE
1117stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1118@{
1119 printf ("<OR> ");
1120 return "";
1121@}
1122@end example
1123
1124@noindent
1125with an accompanying forward declaration
1126in the C declarations at the beginning of the file:
1127
1128@example
1129%@{
38a92d50 1130 #define YYSTYPE char const *
676385e2
PH
1131 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1132%@}
1133@end example
1134
1135@noindent
fa7e68c3
PE
1136With these declarations, the resulting parser parses the first example
1137as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1138
1139@example
fae437e8 1140"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1141@end example
1142
fa7e68c3 1143Bison requires that all of the
e757bb10 1144productions that participate in any particular merge have identical
fa7e68c3
PE
1145@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1146and the parser will report an error during any parse that results in
1147the offending merge.
9501dc6e 1148
32c29292
JD
1149@node GLR Semantic Actions
1150@subsection GLR Semantic Actions
1151
8a4281b9 1152The nature of GLR parsing and the structure of the generated
20be2f92
PH
1153parsers give rise to certain restrictions on semantic values and actions.
1154
1155@subsubsection Deferred semantic actions
32c29292
JD
1156@cindex deferred semantic actions
1157By definition, a deferred semantic action is not performed at the same time as
1158the associated reduction.
1159This raises caveats for several Bison features you might use in a semantic
8a4281b9 1160action in a GLR parser.
32c29292
JD
1161
1162@vindex yychar
8a4281b9 1163@cindex GLR parsers and @code{yychar}
32c29292 1164@vindex yylval
8a4281b9 1165@cindex GLR parsers and @code{yylval}
32c29292 1166@vindex yylloc
8a4281b9 1167@cindex GLR parsers and @code{yylloc}
32c29292 1168In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1169the lookahead token present at the time of the associated reduction.
32c29292
JD
1170After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1171you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1172lookahead token's semantic value and location, if any.
32c29292
JD
1173In a nondeferred semantic action, you can also modify any of these variables to
1174influence syntax analysis.
742e4900 1175@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1176
1177@findex yyclearin
8a4281b9 1178@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1179In a deferred semantic action, it's too late to influence syntax analysis.
1180In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1181shallow copies of the values they had at the time of the associated reduction.
1182For this reason alone, modifying them is dangerous.
1183Moreover, the result of modifying them is undefined and subject to change with
1184future versions of Bison.
1185For example, if a semantic action might be deferred, you should never write it
1186to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1187memory referenced by @code{yylval}.
1188
20be2f92 1189@subsubsection YYERROR
32c29292 1190@findex YYERROR
8a4281b9 1191@cindex GLR parsers and @code{YYERROR}
32c29292 1192Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1193(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1194initiate error recovery.
8a4281b9 1195During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1196the same as its effect in a deterministic parser.
411614fa
JM
1197The effect in a deferred action is similar, but the precise point of the
1198error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1199selecting an unspecified stack on which to continue with a syntax error.
1200In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1201parsing, @code{YYERROR} silently prunes
1202the parse that invoked the test.
1203
1204@subsubsection Restrictions on semantic values and locations
8a4281b9 1205GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1206semantic values and location types when using the generated parsers as
1207C++ code.
8710fc41 1208
ca2a6d15
PH
1209@node Semantic Predicates
1210@subsection Controlling a Parse with Arbitrary Predicates
1211@findex %?
8a4281b9 1212@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1213
1214In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1215GLR parsers
ca2a6d15
PH
1216allow you to reject parses on the basis of arbitrary computations executed
1217in user code, without having Bison treat this rejection as an error
1218if there are alternative parses. (This feature is experimental and may
1219evolve. We welcome user feedback.) For example,
1220
c93f22fc
AD
1221@example
1222widget:
5e9b6624
AD
1223 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1224| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1225;
c93f22fc 1226@end example
ca2a6d15
PH
1227
1228@noindent
411614fa 1229is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1230widgets. The clause preceded by @code{%?} is treated like an ordinary
1231action, except that its text is treated as an expression and is always
411614fa 1232evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1233expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1234which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1235to die. In a deterministic parser, it acts like YYERROR.
1236
1237As the example shows, predicates otherwise look like semantic actions, and
1238therefore you must be take them into account when determining the numbers
1239to use for denoting the semantic values of right-hand side symbols.
1240Predicate actions, however, have no defined value, and may not be given
1241labels.
1242
1243There is a subtle difference between semantic predicates and ordinary
1244actions in nondeterministic mode, since the latter are deferred.
411614fa 1245For example, we could try to rewrite the previous example as
ca2a6d15 1246
c93f22fc
AD
1247@example
1248widget:
5e9b6624
AD
1249 @{ if (!new_syntax) YYERROR; @}
1250 "widget" id new_args @{ $$ = f($3, $4); @}
1251| @{ if (new_syntax) YYERROR; @}
1252 "widget" id old_args @{ $$ = f($3, $4); @}
1253;
c93f22fc 1254@end example
ca2a6d15
PH
1255
1256@noindent
1257(reversing the sense of the predicate tests to cause an error when they are
1258false). However, this
1259does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1260have overlapping syntax.
411614fa 1261Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1262a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1263for cases where @code{new_args} and @code{old_args} recognize the same string
1264@emph{before} performing the tests of @code{new_syntax}. It therefore
1265reports an error.
1266
1267Finally, be careful in writing predicates: deferred actions have not been
1268evaluated, so that using them in a predicate will have undefined effects.
1269
fa7e68c3 1270@node Compiler Requirements
8a4281b9 1271@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1272@cindex @code{inline}
8a4281b9 1273@cindex GLR parsers and @code{inline}
fa7e68c3 1274
8a4281b9 1275The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1276later. In addition, they use the @code{inline} keyword, which is not
1277C89, but is C99 and is a common extension in pre-C99 compilers. It is
1278up to the user of these parsers to handle
9501dc6e
AD
1279portability issues. For instance, if using Autoconf and the Autoconf
1280macro @code{AC_C_INLINE}, a mere
1281
1282@example
1283%@{
38a92d50 1284 #include <config.h>
9501dc6e
AD
1285%@}
1286@end example
1287
1288@noindent
1289will suffice. Otherwise, we suggest
1290
1291@example
1292%@{
aaaa2aae
AD
1293 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1294 && ! defined inline)
1295 # define inline
38a92d50 1296 #endif
9501dc6e
AD
1297%@}
1298@end example
676385e2 1299
1769eb30 1300@node Locations
847bf1f5
AD
1301@section Locations
1302@cindex location
95923bd6
AD
1303@cindex textual location
1304@cindex location, textual
847bf1f5
AD
1305
1306Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1307and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1308the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1309Bison provides a mechanism for handling these locations.
1310
72d2299c 1311Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1312associated location, but the type of locations is the same for all tokens
1313and groupings. Moreover, the output parser is equipped with a default data
1314structure for storing locations (@pxref{Tracking Locations}, for more
1315details).
847bf1f5
AD
1316
1317Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1318set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1319is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1320@code{@@3}.
1321
1322When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1323of its left hand side (@pxref{Actions}). In the same way, another default
1324action is used for locations. However, the action for locations is general
847bf1f5 1325enough for most cases, meaning there is usually no need to describe for each
72d2299c 1326rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1327grouping, the default behavior of the output parser is to take the beginning
1328of the first symbol, and the end of the last symbol.
1329
342b8b6e 1330@node Bison Parser
ff7571c0 1331@section Bison Output: the Parser Implementation File
bfa74976
RS
1332@cindex Bison parser
1333@cindex Bison utility
1334@cindex lexical analyzer, purpose
1335@cindex parser
1336
ff7571c0
JD
1337When you run Bison, you give it a Bison grammar file as input. The
1338most important output is a C source file that implements a parser for
1339the language described by the grammar. This parser is called a
1340@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1341implementation file}. Keep in mind that the Bison utility and the
1342Bison parser are two distinct programs: the Bison utility is a program
1343whose output is the Bison parser implementation file that becomes part
1344of your program.
bfa74976
RS
1345
1346The job of the Bison parser is to group tokens into groupings according to
1347the grammar rules---for example, to build identifiers and operators into
1348expressions. As it does this, it runs the actions for the grammar rules it
1349uses.
1350
704a47c4
AD
1351The tokens come from a function called the @dfn{lexical analyzer} that
1352you must supply in some fashion (such as by writing it in C). The Bison
1353parser calls the lexical analyzer each time it wants a new token. It
1354doesn't know what is ``inside'' the tokens (though their semantic values
1355may reflect this). Typically the lexical analyzer makes the tokens by
1356parsing characters of text, but Bison does not depend on this.
1357@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1358
ff7571c0
JD
1359The Bison parser implementation file is C code which defines a
1360function named @code{yyparse} which implements that grammar. This
1361function does not make a complete C program: you must supply some
1362additional functions. One is the lexical analyzer. Another is an
1363error-reporting function which the parser calls to report an error.
1364In addition, a complete C program must start with a function called
1365@code{main}; you have to provide this, and arrange for it to call
1366@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1367C-Language Interface}.
bfa74976 1368
f7ab6a50 1369Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1370write, all symbols defined in the Bison parser implementation file
1371itself begin with @samp{yy} or @samp{YY}. This includes interface
1372functions such as the lexical analyzer function @code{yylex}, the
1373error reporting function @code{yyerror} and the parser function
1374@code{yyparse} itself. This also includes numerous identifiers used
1375for internal purposes. Therefore, you should avoid using C
1376identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1377file except for the ones defined in this manual. Also, you should
1378avoid using the C identifiers @samp{malloc} and @samp{free} for
1379anything other than their usual meanings.
1380
1381In some cases the Bison parser implementation file includes system
1382headers, and in those cases your code should respect the identifiers
1383reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1384@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1385included as needed to declare memory allocators and related types.
1386@code{<libintl.h>} is included if message translation is in use
1387(@pxref{Internationalization}). Other system headers may be included
1388if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1389,Tracing Your Parser}).
7093d0f5 1390
342b8b6e 1391@node Stages
bfa74976
RS
1392@section Stages in Using Bison
1393@cindex stages in using Bison
1394@cindex using Bison
1395
1396The actual language-design process using Bison, from grammar specification
1397to a working compiler or interpreter, has these parts:
1398
1399@enumerate
1400@item
1401Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1402(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1403in the language, describe the action that is to be taken when an
1404instance of that rule is recognized. The action is described by a
1405sequence of C statements.
bfa74976
RS
1406
1407@item
704a47c4
AD
1408Write a lexical analyzer to process input and pass tokens to the parser.
1409The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1410Lexical Analyzer Function @code{yylex}}). It could also be produced
1411using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1412
1413@item
1414Write a controlling function that calls the Bison-produced parser.
1415
1416@item
1417Write error-reporting routines.
1418@end enumerate
1419
1420To turn this source code as written into a runnable program, you
1421must follow these steps:
1422
1423@enumerate
1424@item
1425Run Bison on the grammar to produce the parser.
1426
1427@item
1428Compile the code output by Bison, as well as any other source files.
1429
1430@item
1431Link the object files to produce the finished product.
1432@end enumerate
1433
342b8b6e 1434@node Grammar Layout
bfa74976
RS
1435@section The Overall Layout of a Bison Grammar
1436@cindex grammar file
1437@cindex file format
1438@cindex format of grammar file
1439@cindex layout of Bison grammar
1440
1441The input file for the Bison utility is a @dfn{Bison grammar file}. The
1442general form of a Bison grammar file is as follows:
1443
1444@example
1445%@{
08e49d20 1446@var{Prologue}
bfa74976
RS
1447%@}
1448
1449@var{Bison declarations}
1450
1451%%
1452@var{Grammar rules}
1453%%
08e49d20 1454@var{Epilogue}
bfa74976
RS
1455@end example
1456
1457@noindent
1458The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1459in every Bison grammar file to separate the sections.
1460
72d2299c 1461The prologue may define types and variables used in the actions. You can
342b8b6e 1462also use preprocessor commands to define macros used there, and use
bfa74976 1463@code{#include} to include header files that do any of these things.
38a92d50
PE
1464You need to declare the lexical analyzer @code{yylex} and the error
1465printer @code{yyerror} here, along with any other global identifiers
1466used by the actions in the grammar rules.
bfa74976
RS
1467
1468The Bison declarations declare the names of the terminal and nonterminal
1469symbols, and may also describe operator precedence and the data types of
1470semantic values of various symbols.
1471
1472The grammar rules define how to construct each nonterminal symbol from its
1473parts.
1474
38a92d50
PE
1475The epilogue can contain any code you want to use. Often the
1476definitions of functions declared in the prologue go here. In a
1477simple program, all the rest of the program can go here.
bfa74976 1478
342b8b6e 1479@node Examples
bfa74976
RS
1480@chapter Examples
1481@cindex simple examples
1482@cindex examples, simple
1483
aaaa2aae 1484Now we show and explain several sample programs written using Bison: a
bfa74976 1485reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1486calculator --- later extended to track ``locations'' ---
1487and a multi-function calculator. All
1488produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1489
1490These examples are simple, but Bison grammars for real programming
aa08666d
AD
1491languages are written the same way. You can copy these examples into a
1492source file to try them.
bfa74976
RS
1493
1494@menu
f5f419de
DJ
1495* RPN Calc:: Reverse polish notation calculator;
1496 a first example with no operator precedence.
1497* Infix Calc:: Infix (algebraic) notation calculator.
1498 Operator precedence is introduced.
bfa74976 1499* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1500* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1501* Multi-function Calc:: Calculator with memory and trig functions.
1502 It uses multiple data-types for semantic values.
1503* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1504@end menu
1505
342b8b6e 1506@node RPN Calc
bfa74976
RS
1507@section Reverse Polish Notation Calculator
1508@cindex reverse polish notation
1509@cindex polish notation calculator
1510@cindex @code{rpcalc}
1511@cindex calculator, simple
1512
1513The first example is that of a simple double-precision @dfn{reverse polish
1514notation} calculator (a calculator using postfix operators). This example
1515provides a good starting point, since operator precedence is not an issue.
1516The second example will illustrate how operator precedence is handled.
1517
1518The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1519@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1520
1521@menu
f5f419de
DJ
1522* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1523* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1524* Rpcalc Lexer:: The lexical analyzer.
1525* Rpcalc Main:: The controlling function.
1526* Rpcalc Error:: The error reporting function.
1527* Rpcalc Generate:: Running Bison on the grammar file.
1528* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1529@end menu
1530
f5f419de 1531@node Rpcalc Declarations
bfa74976
RS
1532@subsection Declarations for @code{rpcalc}
1533
1534Here are the C and Bison declarations for the reverse polish notation
1535calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1536
24ec0837 1537@comment file: rpcalc.y
bfa74976 1538@example
72d2299c 1539/* Reverse polish notation calculator. */
bfa74976
RS
1540
1541%@{
38a92d50 1542 #define YYSTYPE double
24ec0837 1543 #include <stdio.h>
38a92d50
PE
1544 #include <math.h>
1545 int yylex (void);
1546 void yyerror (char const *);
bfa74976
RS
1547%@}
1548
1549%token NUM
1550
72d2299c 1551%% /* Grammar rules and actions follow. */
bfa74976
RS
1552@end example
1553
75f5aaea 1554The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1555preprocessor directives and two forward declarations.
bfa74976
RS
1556
1557The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1558specifying the C data type for semantic values of both tokens and
1559groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1560Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1561don't define it, @code{int} is the default. Because we specify
1562@code{double}, each token and each expression has an associated value,
1563which is a floating point number.
bfa74976
RS
1564
1565The @code{#include} directive is used to declare the exponentiation
1566function @code{pow}.
1567
38a92d50
PE
1568The forward declarations for @code{yylex} and @code{yyerror} are
1569needed because the C language requires that functions be declared
1570before they are used. These functions will be defined in the
1571epilogue, but the parser calls them so they must be declared in the
1572prologue.
1573
704a47c4
AD
1574The second section, Bison declarations, provides information to Bison
1575about the token types (@pxref{Bison Declarations, ,The Bison
1576Declarations Section}). Each terminal symbol that is not a
1577single-character literal must be declared here. (Single-character
bfa74976
RS
1578literals normally don't need to be declared.) In this example, all the
1579arithmetic operators are designated by single-character literals, so the
1580only terminal symbol that needs to be declared is @code{NUM}, the token
1581type for numeric constants.
1582
342b8b6e 1583@node Rpcalc Rules
bfa74976
RS
1584@subsection Grammar Rules for @code{rpcalc}
1585
1586Here are the grammar rules for the reverse polish notation calculator.
1587
24ec0837 1588@comment file: rpcalc.y
bfa74976 1589@example
aaaa2aae 1590@group
5e9b6624
AD
1591input:
1592 /* empty */
1593| input line
bfa74976 1594;
aaaa2aae 1595@end group
bfa74976 1596
aaaa2aae 1597@group
5e9b6624
AD
1598line:
1599 '\n'
1600| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1601;
aaaa2aae 1602@end group
bfa74976 1603
aaaa2aae 1604@group
5e9b6624
AD
1605exp:
1606 NUM @{ $$ = $1; @}
1607| exp exp '+' @{ $$ = $1 + $2; @}
1608| exp exp '-' @{ $$ = $1 - $2; @}
1609| exp exp '*' @{ $$ = $1 * $2; @}
1610| exp exp '/' @{ $$ = $1 / $2; @}
1611| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1612| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1613;
aaaa2aae 1614@end group
bfa74976
RS
1615%%
1616@end example
1617
1618The groupings of the rpcalc ``language'' defined here are the expression
1619(given the name @code{exp}), the line of input (@code{line}), and the
1620complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1621symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1622which is read as ``or''. The following sections explain what these rules
1623mean.
1624
1625The semantics of the language is determined by the actions taken when a
1626grouping is recognized. The actions are the C code that appears inside
1627braces. @xref{Actions}.
1628
1629You must specify these actions in C, but Bison provides the means for
1630passing semantic values between the rules. In each action, the
1631pseudo-variable @code{$$} stands for the semantic value for the grouping
1632that the rule is going to construct. Assigning a value to @code{$$} is the
1633main job of most actions. The semantic values of the components of the
1634rule are referred to as @code{$1}, @code{$2}, and so on.
1635
1636@menu
24ec0837
AD
1637* Rpcalc Input:: Explanation of the @code{input} nonterminal
1638* Rpcalc Line:: Explanation of the @code{line} nonterminal
1639* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1640@end menu
1641
342b8b6e 1642@node Rpcalc Input
bfa74976
RS
1643@subsubsection Explanation of @code{input}
1644
1645Consider the definition of @code{input}:
1646
1647@example
5e9b6624
AD
1648input:
1649 /* empty */
1650| input line
bfa74976
RS
1651;
1652@end example
1653
1654This definition reads as follows: ``A complete input is either an empty
1655string, or a complete input followed by an input line''. Notice that
1656``complete input'' is defined in terms of itself. This definition is said
1657to be @dfn{left recursive} since @code{input} appears always as the
1658leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1659
1660The first alternative is empty because there are no symbols between the
1661colon and the first @samp{|}; this means that @code{input} can match an
1662empty string of input (no tokens). We write the rules this way because it
1663is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1664It's conventional to put an empty alternative first and write the comment
1665@samp{/* empty */} in it.
1666
1667The second alternate rule (@code{input line}) handles all nontrivial input.
1668It means, ``After reading any number of lines, read one more line if
1669possible.'' The left recursion makes this rule into a loop. Since the
1670first alternative matches empty input, the loop can be executed zero or
1671more times.
1672
1673The parser function @code{yyparse} continues to process input until a
1674grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1675input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1676
342b8b6e 1677@node Rpcalc Line
bfa74976
RS
1678@subsubsection Explanation of @code{line}
1679
1680Now consider the definition of @code{line}:
1681
1682@example
5e9b6624
AD
1683line:
1684 '\n'
1685| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1686;
1687@end example
1688
1689The first alternative is a token which is a newline character; this means
1690that rpcalc accepts a blank line (and ignores it, since there is no
1691action). The second alternative is an expression followed by a newline.
1692This is the alternative that makes rpcalc useful. The semantic value of
1693the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1694question is the first symbol in the alternative. The action prints this
1695value, which is the result of the computation the user asked for.
1696
1697This action is unusual because it does not assign a value to @code{$$}. As
1698a consequence, the semantic value associated with the @code{line} is
1699uninitialized (its value will be unpredictable). This would be a bug if
1700that value were ever used, but we don't use it: once rpcalc has printed the
1701value of the user's input line, that value is no longer needed.
1702
342b8b6e 1703@node Rpcalc Expr
bfa74976
RS
1704@subsubsection Explanation of @code{expr}
1705
1706The @code{exp} grouping has several rules, one for each kind of expression.
1707The first rule handles the simplest expressions: those that are just numbers.
1708The second handles an addition-expression, which looks like two expressions
1709followed by a plus-sign. The third handles subtraction, and so on.
1710
1711@example
5e9b6624
AD
1712exp:
1713 NUM
1714| exp exp '+' @{ $$ = $1 + $2; @}
1715| exp exp '-' @{ $$ = $1 - $2; @}
1716@dots{}
1717;
bfa74976
RS
1718@end example
1719
1720We have used @samp{|} to join all the rules for @code{exp}, but we could
1721equally well have written them separately:
1722
1723@example
5e9b6624
AD
1724exp: NUM ;
1725exp: exp exp '+' @{ $$ = $1 + $2; @};
1726exp: exp exp '-' @{ $$ = $1 - $2; @};
1727@dots{}
bfa74976
RS
1728@end example
1729
1730Most of the rules have actions that compute the value of the expression in
1731terms of the value of its parts. For example, in the rule for addition,
1732@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1733the second one. The third component, @code{'+'}, has no meaningful
1734associated semantic value, but if it had one you could refer to it as
1735@code{$3}. When @code{yyparse} recognizes a sum expression using this
1736rule, the sum of the two subexpressions' values is produced as the value of
1737the entire expression. @xref{Actions}.
1738
1739You don't have to give an action for every rule. When a rule has no
1740action, Bison by default copies the value of @code{$1} into @code{$$}.
1741This is what happens in the first rule (the one that uses @code{NUM}).
1742
1743The formatting shown here is the recommended convention, but Bison does
72d2299c 1744not require it. You can add or change white space as much as you wish.
bfa74976
RS
1745For example, this:
1746
1747@example
5e9b6624 1748exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1749@end example
1750
1751@noindent
1752means the same thing as this:
1753
1754@example
5e9b6624
AD
1755exp:
1756 NUM
1757| exp exp '+' @{ $$ = $1 + $2; @}
1758| @dots{}
99a9344e 1759;
bfa74976
RS
1760@end example
1761
1762@noindent
1763The latter, however, is much more readable.
1764
342b8b6e 1765@node Rpcalc Lexer
bfa74976
RS
1766@subsection The @code{rpcalc} Lexical Analyzer
1767@cindex writing a lexical analyzer
1768@cindex lexical analyzer, writing
1769
704a47c4
AD
1770The lexical analyzer's job is low-level parsing: converting characters
1771or sequences of characters into tokens. The Bison parser gets its
1772tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1773Analyzer Function @code{yylex}}.
bfa74976 1774
8a4281b9 1775Only a simple lexical analyzer is needed for the RPN
c827f760 1776calculator. This
bfa74976
RS
1777lexical analyzer skips blanks and tabs, then reads in numbers as
1778@code{double} and returns them as @code{NUM} tokens. Any other character
1779that isn't part of a number is a separate token. Note that the token-code
1780for such a single-character token is the character itself.
1781
1782The return value of the lexical analyzer function is a numeric code which
1783represents a token type. The same text used in Bison rules to stand for
1784this token type is also a C expression for the numeric code for the type.
1785This works in two ways. If the token type is a character literal, then its
e966383b 1786numeric code is that of the character; you can use the same
bfa74976
RS
1787character literal in the lexical analyzer to express the number. If the
1788token type is an identifier, that identifier is defined by Bison as a C
1789macro whose definition is the appropriate number. In this example,
1790therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1791
1964ad8c
AD
1792The semantic value of the token (if it has one) is stored into the
1793global variable @code{yylval}, which is where the Bison parser will look
1794for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1795defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1796,Declarations for @code{rpcalc}}.)
bfa74976 1797
72d2299c
PE
1798A token type code of zero is returned if the end-of-input is encountered.
1799(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1800
1801Here is the code for the lexical analyzer:
1802
24ec0837 1803@comment file: rpcalc.y
bfa74976
RS
1804@example
1805@group
72d2299c 1806/* The lexical analyzer returns a double floating point
e966383b 1807 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1808 of the character read if not a number. It skips all blanks
1809 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1810
1811#include <ctype.h>
1812@end group
1813
1814@group
13863333
AD
1815int
1816yylex (void)
bfa74976
RS
1817@{
1818 int c;
1819
72d2299c 1820 /* Skip white space. */
13863333 1821 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1822 continue;
bfa74976
RS
1823@end group
1824@group
72d2299c 1825 /* Process numbers. */
13863333 1826 if (c == '.' || isdigit (c))
bfa74976
RS
1827 @{
1828 ungetc (c, stdin);
1829 scanf ("%lf", &yylval);
1830 return NUM;
1831 @}
1832@end group
1833@group
72d2299c 1834 /* Return end-of-input. */
13863333 1835 if (c == EOF)
bfa74976 1836 return 0;
72d2299c 1837 /* Return a single char. */
13863333 1838 return c;
bfa74976
RS
1839@}
1840@end group
1841@end example
1842
342b8b6e 1843@node Rpcalc Main
bfa74976
RS
1844@subsection The Controlling Function
1845@cindex controlling function
1846@cindex main function in simple example
1847
1848In keeping with the spirit of this example, the controlling function is
1849kept to the bare minimum. The only requirement is that it call
1850@code{yyparse} to start the process of parsing.
1851
24ec0837 1852@comment file: rpcalc.y
bfa74976
RS
1853@example
1854@group
13863333
AD
1855int
1856main (void)
bfa74976 1857@{
13863333 1858 return yyparse ();
bfa74976
RS
1859@}
1860@end group
1861@end example
1862
342b8b6e 1863@node Rpcalc Error
bfa74976
RS
1864@subsection The Error Reporting Routine
1865@cindex error reporting routine
1866
1867When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1868function @code{yyerror} to print an error message (usually but not
6e649e65 1869always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1870@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1871here is the definition we will use:
bfa74976 1872
24ec0837 1873@comment file: rpcalc.y
bfa74976 1874@example
bfa74976
RS
1875#include <stdio.h>
1876
aaaa2aae 1877@group
38a92d50 1878/* Called by yyparse on error. */
13863333 1879void
38a92d50 1880yyerror (char const *s)
bfa74976 1881@{
4e03e201 1882 fprintf (stderr, "%s\n", s);
bfa74976
RS
1883@}
1884@end group
1885@end example
1886
1887After @code{yyerror} returns, the Bison parser may recover from the error
1888and continue parsing if the grammar contains a suitable error rule
1889(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1890have not written any error rules in this example, so any invalid input will
1891cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1892real calculator, but it is adequate for the first example.
bfa74976 1893
f5f419de 1894@node Rpcalc Generate
bfa74976
RS
1895@subsection Running Bison to Make the Parser
1896@cindex running Bison (introduction)
1897
ceed8467
AD
1898Before running Bison to produce a parser, we need to decide how to
1899arrange all the source code in one or more source files. For such a
ff7571c0
JD
1900simple example, the easiest thing is to put everything in one file,
1901the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1902@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1903(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1904
1905For a large project, you would probably have several source files, and use
1906@code{make} to arrange to recompile them.
1907
ff7571c0
JD
1908With all the source in the grammar file, you use the following command
1909to convert it into a parser implementation file:
bfa74976
RS
1910
1911@example
fa4d969f 1912bison @var{file}.y
bfa74976
RS
1913@end example
1914
1915@noindent
ff7571c0
JD
1916In this example, the grammar file is called @file{rpcalc.y} (for
1917``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1918implementation file named @file{@var{file}.tab.c}, removing the
1919@samp{.y} from the grammar file name. The parser implementation file
1920contains the source code for @code{yyparse}. The additional functions
1921in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1922copied verbatim to the parser implementation file.
bfa74976 1923
342b8b6e 1924@node Rpcalc Compile
ff7571c0 1925@subsection Compiling the Parser Implementation File
bfa74976
RS
1926@cindex compiling the parser
1927
ff7571c0 1928Here is how to compile and run the parser implementation file:
bfa74976
RS
1929
1930@example
1931@group
1932# @r{List files in current directory.}
9edcd895 1933$ @kbd{ls}
bfa74976
RS
1934rpcalc.tab.c rpcalc.y
1935@end group
1936
1937@group
1938# @r{Compile the Bison parser.}
1939# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1940$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1941@end group
1942
1943@group
1944# @r{List files again.}
9edcd895 1945$ @kbd{ls}
bfa74976
RS
1946rpcalc rpcalc.tab.c rpcalc.y
1947@end group
1948@end example
1949
1950The file @file{rpcalc} now contains the executable code. Here is an
1951example session using @code{rpcalc}.
1952
1953@example
9edcd895
AD
1954$ @kbd{rpcalc}
1955@kbd{4 9 +}
24ec0837 1956@result{} 13
9edcd895 1957@kbd{3 7 + 3 4 5 *+-}
24ec0837 1958@result{} -13
9edcd895 1959@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1960@result{} 13
9edcd895 1961@kbd{5 6 / 4 n +}
24ec0837 1962@result{} -3.166666667
9edcd895 1963@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1964@result{} 81
9edcd895
AD
1965@kbd{^D} @r{End-of-file indicator}
1966$
bfa74976
RS
1967@end example
1968
342b8b6e 1969@node Infix Calc
bfa74976
RS
1970@section Infix Notation Calculator: @code{calc}
1971@cindex infix notation calculator
1972@cindex @code{calc}
1973@cindex calculator, infix notation
1974
1975We now modify rpcalc to handle infix operators instead of postfix. Infix
1976notation involves the concept of operator precedence and the need for
1977parentheses nested to arbitrary depth. Here is the Bison code for
1978@file{calc.y}, an infix desk-top calculator.
1979
1980@example
38a92d50 1981/* Infix notation calculator. */
bfa74976 1982
aaaa2aae 1983@group
bfa74976 1984%@{
38a92d50
PE
1985 #define YYSTYPE double
1986 #include <math.h>
1987 #include <stdio.h>
1988 int yylex (void);
1989 void yyerror (char const *);
bfa74976 1990%@}
aaaa2aae 1991@end group
bfa74976 1992
aaaa2aae 1993@group
38a92d50 1994/* Bison declarations. */
bfa74976
RS
1995%token NUM
1996%left '-' '+'
1997%left '*' '/'
d78f0ac9
AD
1998%precedence NEG /* negation--unary minus */
1999%right '^' /* exponentiation */
aaaa2aae 2000@end group
bfa74976 2001
38a92d50 2002%% /* The grammar follows. */
aaaa2aae 2003@group
5e9b6624
AD
2004input:
2005 /* empty */
2006| input line
bfa74976 2007;
aaaa2aae 2008@end group
bfa74976 2009
aaaa2aae 2010@group
5e9b6624
AD
2011line:
2012 '\n'
2013| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2014;
aaaa2aae 2015@end group
bfa74976 2016
aaaa2aae 2017@group
5e9b6624
AD
2018exp:
2019 NUM @{ $$ = $1; @}
2020| exp '+' exp @{ $$ = $1 + $3; @}
2021| exp '-' exp @{ $$ = $1 - $3; @}
2022| exp '*' exp @{ $$ = $1 * $3; @}
2023| exp '/' exp @{ $$ = $1 / $3; @}
2024| '-' exp %prec NEG @{ $$ = -$2; @}
2025| exp '^' exp @{ $$ = pow ($1, $3); @}
2026| '(' exp ')' @{ $$ = $2; @}
bfa74976 2027;
aaaa2aae 2028@end group
bfa74976
RS
2029%%
2030@end example
2031
2032@noindent
ceed8467
AD
2033The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2034same as before.
bfa74976
RS
2035
2036There are two important new features shown in this code.
2037
2038In the second section (Bison declarations), @code{%left} declares token
2039types and says they are left-associative operators. The declarations
2040@code{%left} and @code{%right} (right associativity) take the place of
2041@code{%token} which is used to declare a token type name without
d78f0ac9 2042associativity/precedence. (These tokens are single-character literals, which
bfa74976 2043ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2044the associativity/precedence.)
bfa74976
RS
2045
2046Operator precedence is determined by the line ordering of the
2047declarations; the higher the line number of the declaration (lower on
2048the page or screen), the higher the precedence. Hence, exponentiation
2049has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2050by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2051only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2052Precedence}.
bfa74976 2053
704a47c4
AD
2054The other important new feature is the @code{%prec} in the grammar
2055section for the unary minus operator. The @code{%prec} simply instructs
2056Bison that the rule @samp{| '-' exp} has the same precedence as
2057@code{NEG}---in this case the next-to-highest. @xref{Contextual
2058Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2059
2060Here is a sample run of @file{calc.y}:
2061
2062@need 500
2063@example
9edcd895
AD
2064$ @kbd{calc}
2065@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20666.880952381
9edcd895 2067@kbd{-56 + 2}
bfa74976 2068-54
9edcd895 2069@kbd{3 ^ 2}
bfa74976
RS
20709
2071@end example
2072
342b8b6e 2073@node Simple Error Recovery
bfa74976
RS
2074@section Simple Error Recovery
2075@cindex error recovery, simple
2076
2077Up to this point, this manual has not addressed the issue of @dfn{error
2078recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2079error. All we have handled is error reporting with @code{yyerror}.
2080Recall that by default @code{yyparse} returns after calling
2081@code{yyerror}. This means that an erroneous input line causes the
2082calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2083
2084The Bison language itself includes the reserved word @code{error}, which
2085may be included in the grammar rules. In the example below it has
2086been added to one of the alternatives for @code{line}:
2087
2088@example
2089@group
5e9b6624
AD
2090line:
2091 '\n'
2092| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2093| error '\n' @{ yyerrok; @}
bfa74976
RS
2094;
2095@end group
2096@end example
2097
ceed8467 2098This addition to the grammar allows for simple error recovery in the
6e649e65 2099event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2100read, the error will be recognized by the third rule for @code{line},
2101and parsing will continue. (The @code{yyerror} function is still called
2102upon to print its message as well.) The action executes the statement
2103@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2104that error recovery is complete (@pxref{Error Recovery}). Note the
2105difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2106misprint.
bfa74976
RS
2107
2108This form of error recovery deals with syntax errors. There are other
2109kinds of errors; for example, division by zero, which raises an exception
2110signal that is normally fatal. A real calculator program must handle this
2111signal and use @code{longjmp} to return to @code{main} and resume parsing
2112input lines; it would also have to discard the rest of the current line of
2113input. We won't discuss this issue further because it is not specific to
2114Bison programs.
2115
342b8b6e
AD
2116@node Location Tracking Calc
2117@section Location Tracking Calculator: @code{ltcalc}
2118@cindex location tracking calculator
2119@cindex @code{ltcalc}
2120@cindex calculator, location tracking
2121
9edcd895
AD
2122This example extends the infix notation calculator with location
2123tracking. This feature will be used to improve the error messages. For
2124the sake of clarity, this example is a simple integer calculator, since
2125most of the work needed to use locations will be done in the lexical
72d2299c 2126analyzer.
342b8b6e
AD
2127
2128@menu
f5f419de
DJ
2129* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2130* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2131* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2132@end menu
2133
f5f419de 2134@node Ltcalc Declarations
342b8b6e
AD
2135@subsection Declarations for @code{ltcalc}
2136
9edcd895
AD
2137The C and Bison declarations for the location tracking calculator are
2138the same as the declarations for the infix notation calculator.
342b8b6e
AD
2139
2140@example
2141/* Location tracking calculator. */
2142
2143%@{
38a92d50
PE
2144 #define YYSTYPE int
2145 #include <math.h>
2146 int yylex (void);
2147 void yyerror (char const *);
342b8b6e
AD
2148%@}
2149
2150/* Bison declarations. */
2151%token NUM
2152
2153%left '-' '+'
2154%left '*' '/'
d78f0ac9 2155%precedence NEG
342b8b6e
AD
2156%right '^'
2157
38a92d50 2158%% /* The grammar follows. */
342b8b6e
AD
2159@end example
2160
9edcd895
AD
2161@noindent
2162Note there are no declarations specific to locations. Defining a data
2163type for storing locations is not needed: we will use the type provided
2164by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2165four member structure with the following integer fields:
2166@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2167@code{last_column}. By conventions, and in accordance with the GNU
2168Coding Standards and common practice, the line and column count both
2169start at 1.
342b8b6e
AD
2170
2171@node Ltcalc Rules
2172@subsection Grammar Rules for @code{ltcalc}
2173
9edcd895
AD
2174Whether handling locations or not has no effect on the syntax of your
2175language. Therefore, grammar rules for this example will be very close
2176to those of the previous example: we will only modify them to benefit
2177from the new information.
342b8b6e 2178
9edcd895
AD
2179Here, we will use locations to report divisions by zero, and locate the
2180wrong expressions or subexpressions.
342b8b6e
AD
2181
2182@example
2183@group
5e9b6624
AD
2184input:
2185 /* empty */
2186| input line
342b8b6e
AD
2187;
2188@end group
2189
2190@group
5e9b6624
AD
2191line:
2192 '\n'
2193| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2194;
2195@end group
2196
2197@group
5e9b6624
AD
2198exp:
2199 NUM @{ $$ = $1; @}
2200| exp '+' exp @{ $$ = $1 + $3; @}
2201| exp '-' exp @{ $$ = $1 - $3; @}
2202| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2203@end group
342b8b6e 2204@group
5e9b6624
AD
2205| exp '/' exp
2206 @{
2207 if ($3)
2208 $$ = $1 / $3;
2209 else
2210 @{
2211 $$ = 1;
2212 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2213 @@3.first_line, @@3.first_column,
2214 @@3.last_line, @@3.last_column);
2215 @}
2216 @}
342b8b6e
AD
2217@end group
2218@group
5e9b6624
AD
2219| '-' exp %prec NEG @{ $$ = -$2; @}
2220| exp '^' exp @{ $$ = pow ($1, $3); @}
2221| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2222@end group
2223@end example
2224
2225This code shows how to reach locations inside of semantic actions, by
2226using the pseudo-variables @code{@@@var{n}} for rule components, and the
2227pseudo-variable @code{@@$} for groupings.
2228
9edcd895
AD
2229We don't need to assign a value to @code{@@$}: the output parser does it
2230automatically. By default, before executing the C code of each action,
2231@code{@@$} is set to range from the beginning of @code{@@1} to the end
2232of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2233can be redefined (@pxref{Location Default Action, , Default Action for
2234Locations}), and for very specific rules, @code{@@$} can be computed by
2235hand.
342b8b6e
AD
2236
2237@node Ltcalc Lexer
2238@subsection The @code{ltcalc} Lexical Analyzer.
2239
9edcd895 2240Until now, we relied on Bison's defaults to enable location
72d2299c 2241tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2242able to feed the parser with the token locations, as it already does for
2243semantic values.
342b8b6e 2244
9edcd895
AD
2245To this end, we must take into account every single character of the
2246input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2247
2248@example
2249@group
2250int
2251yylex (void)
2252@{
2253 int c;
18b519c0 2254@end group
342b8b6e 2255
18b519c0 2256@group
72d2299c 2257 /* Skip white space. */
342b8b6e
AD
2258 while ((c = getchar ()) == ' ' || c == '\t')
2259 ++yylloc.last_column;
18b519c0 2260@end group
342b8b6e 2261
18b519c0 2262@group
72d2299c 2263 /* Step. */
342b8b6e
AD
2264 yylloc.first_line = yylloc.last_line;
2265 yylloc.first_column = yylloc.last_column;
2266@end group
2267
2268@group
72d2299c 2269 /* Process numbers. */
342b8b6e
AD
2270 if (isdigit (c))
2271 @{
2272 yylval = c - '0';
2273 ++yylloc.last_column;
2274 while (isdigit (c = getchar ()))
2275 @{
2276 ++yylloc.last_column;
2277 yylval = yylval * 10 + c - '0';
2278 @}
2279 ungetc (c, stdin);
2280 return NUM;
2281 @}
2282@end group
2283
72d2299c 2284 /* Return end-of-input. */
342b8b6e
AD
2285 if (c == EOF)
2286 return 0;
2287
d4fca427 2288@group
72d2299c 2289 /* Return a single char, and update location. */
342b8b6e
AD
2290 if (c == '\n')
2291 @{
2292 ++yylloc.last_line;
2293 yylloc.last_column = 0;
2294 @}
2295 else
2296 ++yylloc.last_column;
2297 return c;
2298@}
d4fca427 2299@end group
342b8b6e
AD
2300@end example
2301
9edcd895
AD
2302Basically, the lexical analyzer performs the same processing as before:
2303it skips blanks and tabs, and reads numbers or single-character tokens.
2304In addition, it updates @code{yylloc}, the global variable (of type
2305@code{YYLTYPE}) containing the token's location.
342b8b6e 2306
9edcd895 2307Now, each time this function returns a token, the parser has its number
72d2299c 2308as well as its semantic value, and its location in the text. The last
9edcd895
AD
2309needed change is to initialize @code{yylloc}, for example in the
2310controlling function:
342b8b6e
AD
2311
2312@example
9edcd895 2313@group
342b8b6e
AD
2314int
2315main (void)
2316@{
2317 yylloc.first_line = yylloc.last_line = 1;
2318 yylloc.first_column = yylloc.last_column = 0;
2319 return yyparse ();
2320@}
9edcd895 2321@end group
342b8b6e
AD
2322@end example
2323
9edcd895
AD
2324Remember that computing locations is not a matter of syntax. Every
2325character must be associated to a location update, whether it is in
2326valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2327
2328@node Multi-function Calc
bfa74976
RS
2329@section Multi-Function Calculator: @code{mfcalc}
2330@cindex multi-function calculator
2331@cindex @code{mfcalc}
2332@cindex calculator, multi-function
2333
2334Now that the basics of Bison have been discussed, it is time to move on to
2335a more advanced problem. The above calculators provided only five
2336functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2337be nice to have a calculator that provides other mathematical functions such
2338as @code{sin}, @code{cos}, etc.
2339
2340It is easy to add new operators to the infix calculator as long as they are
2341only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2342back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2343adding a new operator. But we want something more flexible: built-in
2344functions whose syntax has this form:
2345
2346@example
2347@var{function_name} (@var{argument})
2348@end example
2349
2350@noindent
2351At the same time, we will add memory to the calculator, by allowing you
2352to create named variables, store values in them, and use them later.
2353Here is a sample session with the multi-function calculator:
2354
2355@example
d4fca427 2356@group
9edcd895
AD
2357$ @kbd{mfcalc}
2358@kbd{pi = 3.141592653589}
f9c75dd0 2359@result{} 3.1415926536
d4fca427
AD
2360@end group
2361@group
9edcd895 2362@kbd{sin(pi)}
f9c75dd0 2363@result{} 0.0000000000
d4fca427 2364@end group
9edcd895 2365@kbd{alpha = beta1 = 2.3}
f9c75dd0 2366@result{} 2.3000000000
9edcd895 2367@kbd{alpha}
f9c75dd0 2368@result{} 2.3000000000
9edcd895 2369@kbd{ln(alpha)}
f9c75dd0 2370@result{} 0.8329091229
9edcd895 2371@kbd{exp(ln(beta1))}
f9c75dd0 2372@result{} 2.3000000000
9edcd895 2373$
bfa74976
RS
2374@end example
2375
2376Note that multiple assignment and nested function calls are permitted.
2377
2378@menu
f5f419de
DJ
2379* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2380* Mfcalc Rules:: Grammar rules for the calculator.
2381* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2382* Mfcalc Lexer:: The lexical analyzer.
2383* Mfcalc Main:: The controlling function.
bfa74976
RS
2384@end menu
2385
f5f419de 2386@node Mfcalc Declarations
bfa74976
RS
2387@subsection Declarations for @code{mfcalc}
2388
2389Here are the C and Bison declarations for the multi-function calculator.
2390
93c150b6 2391@comment file: mfcalc.y: 1
c93f22fc 2392@example
18b519c0 2393@group
bfa74976 2394%@{
f9c75dd0 2395 #include <stdio.h> /* For printf, etc. */
578e3413 2396 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2397 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2398 int yylex (void);
2399 void yyerror (char const *);
bfa74976 2400%@}
18b519c0 2401@end group
93c150b6 2402
18b519c0 2403@group
bfa74976 2404%union @{
38a92d50
PE
2405 double val; /* For returning numbers. */
2406 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2407@}
18b519c0 2408@end group
38a92d50 2409%token <val> NUM /* Simple double precision number. */
93c150b6 2410%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2411%type <val> exp
2412
18b519c0 2413@group
bfa74976
RS
2414%right '='
2415%left '-' '+'
2416%left '*' '/'
d78f0ac9
AD
2417%precedence NEG /* negation--unary minus */
2418%right '^' /* exponentiation */
18b519c0 2419@end group
c93f22fc 2420@end example
bfa74976
RS
2421
2422The above grammar introduces only two new features of the Bison language.
2423These features allow semantic values to have various data types
2424(@pxref{Multiple Types, ,More Than One Value Type}).
2425
2426The @code{%union} declaration specifies the entire list of possible types;
2427this is instead of defining @code{YYSTYPE}. The allowable types are now
2428double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2429the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2430
2431Since values can now have various types, it is necessary to associate a
2432type with each grammar symbol whose semantic value is used. These symbols
2433are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2434declarations are augmented with information about their data type (placed
2435between angle brackets).
2436
704a47c4
AD
2437The Bison construct @code{%type} is used for declaring nonterminal
2438symbols, just as @code{%token} is used for declaring token types. We
2439have not used @code{%type} before because nonterminal symbols are
2440normally declared implicitly by the rules that define them. But
2441@code{exp} must be declared explicitly so we can specify its value type.
2442@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2443
342b8b6e 2444@node Mfcalc Rules
bfa74976
RS
2445@subsection Grammar Rules for @code{mfcalc}
2446
2447Here are the grammar rules for the multi-function calculator.
2448Most of them are copied directly from @code{calc}; three rules,
2449those which mention @code{VAR} or @code{FNCT}, are new.
2450
93c150b6 2451@comment file: mfcalc.y: 3
c93f22fc 2452@example
93c150b6 2453%% /* The grammar follows. */
18b519c0 2454@group
5e9b6624
AD
2455input:
2456 /* empty */
2457| input line
bfa74976 2458;
18b519c0 2459@end group
bfa74976 2460
18b519c0 2461@group
bfa74976 2462line:
5e9b6624
AD
2463 '\n'
2464| exp '\n' @{ printf ("%.10g\n", $1); @}
2465| error '\n' @{ yyerrok; @}
bfa74976 2466;
18b519c0 2467@end group
bfa74976 2468
18b519c0 2469@group
5e9b6624
AD
2470exp:
2471 NUM @{ $$ = $1; @}
2472| VAR @{ $$ = $1->value.var; @}
2473| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2474| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2475| exp '+' exp @{ $$ = $1 + $3; @}
2476| exp '-' exp @{ $$ = $1 - $3; @}
2477| exp '*' exp @{ $$ = $1 * $3; @}
2478| exp '/' exp @{ $$ = $1 / $3; @}
2479| '-' exp %prec NEG @{ $$ = -$2; @}
2480| exp '^' exp @{ $$ = pow ($1, $3); @}
2481| '(' exp ')' @{ $$ = $2; @}
bfa74976 2482;
18b519c0 2483@end group
38a92d50 2484/* End of grammar. */
bfa74976 2485%%
c93f22fc 2486@end example
bfa74976 2487
f5f419de 2488@node Mfcalc Symbol Table
bfa74976
RS
2489@subsection The @code{mfcalc} Symbol Table
2490@cindex symbol table example
2491
2492The multi-function calculator requires a symbol table to keep track of the
2493names and meanings of variables and functions. This doesn't affect the
2494grammar rules (except for the actions) or the Bison declarations, but it
2495requires some additional C functions for support.
2496
2497The symbol table itself consists of a linked list of records. Its
2498definition, which is kept in the header @file{calc.h}, is as follows. It
2499provides for either functions or variables to be placed in the table.
2500
f9c75dd0 2501@comment file: calc.h
c93f22fc 2502@example
bfa74976 2503@group
38a92d50 2504/* Function type. */
32dfccf8 2505typedef double (*func_t) (double);
72f889cc 2506@end group
32dfccf8 2507
72f889cc 2508@group
38a92d50 2509/* Data type for links in the chain of symbols. */
bfa74976
RS
2510struct symrec
2511@{
38a92d50 2512 char *name; /* name of symbol */
bfa74976 2513 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2514 union
2515 @{
38a92d50
PE
2516 double var; /* value of a VAR */
2517 func_t fnctptr; /* value of a FNCT */
bfa74976 2518 @} value;
38a92d50 2519 struct symrec *next; /* link field */
bfa74976
RS
2520@};
2521@end group
2522
2523@group
2524typedef struct symrec symrec;
2525
38a92d50 2526/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2527extern symrec *sym_table;
2528
a730d142 2529symrec *putsym (char const *, int);
38a92d50 2530symrec *getsym (char const *);
bfa74976 2531@end group
c93f22fc 2532@end example
bfa74976 2533
aeb57fb6
AD
2534The new version of @code{main} will call @code{init_table} to initialize
2535the symbol table:
bfa74976 2536
93c150b6 2537@comment file: mfcalc.y: 3
c93f22fc 2538@example
18b519c0 2539@group
bfa74976
RS
2540struct init
2541@{
38a92d50
PE
2542 char const *fname;
2543 double (*fnct) (double);
bfa74976
RS
2544@};
2545@end group
2546
2547@group
38a92d50 2548struct init const arith_fncts[] =
13863333 2549@{
f9c75dd0
AD
2550 @{ "atan", atan @},
2551 @{ "cos", cos @},
2552 @{ "exp", exp @},
2553 @{ "ln", log @},
2554 @{ "sin", sin @},
2555 @{ "sqrt", sqrt @},
2556 @{ 0, 0 @},
13863333 2557@};
18b519c0 2558@end group
bfa74976 2559
18b519c0 2560@group
bfa74976 2561/* The symbol table: a chain of `struct symrec'. */
38a92d50 2562symrec *sym_table;
bfa74976
RS
2563@end group
2564
2565@group
72d2299c 2566/* Put arithmetic functions in table. */
f9c75dd0 2567static
13863333
AD
2568void
2569init_table (void)
bfa74976
RS
2570@{
2571 int i;
bfa74976
RS
2572 for (i = 0; arith_fncts[i].fname != 0; i++)
2573 @{
aaaa2aae 2574 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2575 ptr->value.fnctptr = arith_fncts[i].fnct;
2576 @}
2577@}
2578@end group
c93f22fc 2579@end example
bfa74976
RS
2580
2581By simply editing the initialization list and adding the necessary include
2582files, you can add additional functions to the calculator.
2583
2584Two important functions allow look-up and installation of symbols in the
2585symbol table. The function @code{putsym} is passed a name and the type
2586(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2587linked to the front of the list, and a pointer to the object is returned.
2588The function @code{getsym} is passed the name of the symbol to look up. If
2589found, a pointer to that symbol is returned; otherwise zero is returned.
2590
93c150b6 2591@comment file: mfcalc.y: 3
c93f22fc 2592@example
f9c75dd0
AD
2593#include <stdlib.h> /* malloc. */
2594#include <string.h> /* strlen. */
2595
d4fca427 2596@group
bfa74976 2597symrec *
38a92d50 2598putsym (char const *sym_name, int sym_type)
bfa74976 2599@{
aaaa2aae 2600 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2601 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2602 strcpy (ptr->name,sym_name);
2603 ptr->type = sym_type;
72d2299c 2604 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2605 ptr->next = (struct symrec *)sym_table;
2606 sym_table = ptr;
2607 return ptr;
2608@}
d4fca427 2609@end group
bfa74976 2610
d4fca427 2611@group
bfa74976 2612symrec *
38a92d50 2613getsym (char const *sym_name)
bfa74976
RS
2614@{
2615 symrec *ptr;
2616 for (ptr = sym_table; ptr != (symrec *) 0;
2617 ptr = (symrec *)ptr->next)
f518dbaf 2618 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2619 return ptr;
2620 return 0;
2621@}
d4fca427 2622@end group
c93f22fc 2623@end example
bfa74976 2624
aeb57fb6
AD
2625@node Mfcalc Lexer
2626@subsection The @code{mfcalc} Lexer
2627
bfa74976
RS
2628The function @code{yylex} must now recognize variables, numeric values, and
2629the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2630characters with a leading letter are recognized as either variables or
bfa74976
RS
2631functions depending on what the symbol table says about them.
2632
2633The string is passed to @code{getsym} for look up in the symbol table. If
2634the name appears in the table, a pointer to its location and its type
2635(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2636already in the table, then it is installed as a @code{VAR} using
2637@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2638returned to @code{yyparse}.
bfa74976
RS
2639
2640No change is needed in the handling of numeric values and arithmetic
2641operators in @code{yylex}.
2642
93c150b6 2643@comment file: mfcalc.y: 3
c93f22fc 2644@example
bfa74976 2645#include <ctype.h>
13863333 2646
18b519c0 2647@group
13863333
AD
2648int
2649yylex (void)
bfa74976
RS
2650@{
2651 int c;
2652
72d2299c 2653 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2654 while ((c = getchar ()) == ' ' || c == '\t')
2655 continue;
bfa74976
RS
2656
2657 if (c == EOF)
2658 return 0;
2659@end group
2660
2661@group
2662 /* Char starts a number => parse the number. */
2663 if (c == '.' || isdigit (c))
2664 @{
2665 ungetc (c, stdin);
2666 scanf ("%lf", &yylval.val);
2667 return NUM;
2668 @}
2669@end group
2670
2671@group
2672 /* Char starts an identifier => read the name. */
2673 if (isalpha (c))
2674 @{
aaaa2aae
AD
2675 /* Initially make the buffer long enough
2676 for a 40-character symbol name. */
2677 static size_t length = 40;
bfa74976 2678 static char *symbuf = 0;
aaaa2aae 2679 symrec *s;
bfa74976
RS
2680 int i;
2681@end group
aaaa2aae
AD
2682 if (!symbuf)
2683 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2684
2685 i = 0;
2686 do
bfa74976
RS
2687@group
2688 @{
2689 /* If buffer is full, make it bigger. */
2690 if (i == length)
2691 @{
2692 length *= 2;
18b519c0 2693 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2694 @}
2695 /* Add this character to the buffer. */
2696 symbuf[i++] = c;
2697 /* Get another character. */
2698 c = getchar ();
2699 @}
2700@end group
2701@group
72d2299c 2702 while (isalnum (c));
bfa74976
RS
2703
2704 ungetc (c, stdin);
2705 symbuf[i] = '\0';
2706@end group
2707
2708@group
2709 s = getsym (symbuf);
2710 if (s == 0)
2711 s = putsym (symbuf, VAR);
2712 yylval.tptr = s;
2713 return s->type;
2714 @}
2715
2716 /* Any other character is a token by itself. */
2717 return c;
2718@}
2719@end group
c93f22fc 2720@end example
bfa74976 2721
aeb57fb6
AD
2722@node Mfcalc Main
2723@subsection The @code{mfcalc} Main
2724
2725The error reporting function is unchanged, and the new version of
93c150b6
AD
2726@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2727on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2728
93c150b6 2729@comment file: mfcalc.y: 3
c93f22fc 2730@example
aeb57fb6
AD
2731@group
2732/* Called by yyparse on error. */
2733void
2734yyerror (char const *s)
2735@{
2736 fprintf (stderr, "%s\n", s);
2737@}
2738@end group
2739
aaaa2aae 2740@group
aeb57fb6
AD
2741int
2742main (int argc, char const* argv[])
2743@{
93c150b6
AD
2744 int i;
2745 /* Enable parse traces on option -p. */
2746 for (i = 1; i < argc; ++i)
2747 if (!strcmp(argv[i], "-p"))
2748 yydebug = 1;
aeb57fb6
AD
2749 init_table ();
2750 return yyparse ();
2751@}
2752@end group
c93f22fc 2753@end example
aeb57fb6 2754
72d2299c 2755This program is both powerful and flexible. You may easily add new
704a47c4
AD
2756functions, and it is a simple job to modify this code to install
2757predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2758
342b8b6e 2759@node Exercises
bfa74976
RS
2760@section Exercises
2761@cindex exercises
2762
2763@enumerate
2764@item
2765Add some new functions from @file{math.h} to the initialization list.
2766
2767@item
2768Add another array that contains constants and their values. Then
2769modify @code{init_table} to add these constants to the symbol table.
2770It will be easiest to give the constants type @code{VAR}.
2771
2772@item
2773Make the program report an error if the user refers to an
2774uninitialized variable in any way except to store a value in it.
2775@end enumerate
2776
342b8b6e 2777@node Grammar File
bfa74976
RS
2778@chapter Bison Grammar Files
2779
2780Bison takes as input a context-free grammar specification and produces a
2781C-language function that recognizes correct instances of the grammar.
2782
ff7571c0 2783The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2784@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2785
2786@menu
303834cc
JD
2787* Grammar Outline:: Overall layout of the grammar file.
2788* Symbols:: Terminal and nonterminal symbols.
2789* Rules:: How to write grammar rules.
2790* Recursion:: Writing recursive rules.
2791* Semantics:: Semantic values and actions.
2792* Tracking Locations:: Locations and actions.
2793* Named References:: Using named references in actions.
2794* Declarations:: All kinds of Bison declarations are described here.
2795* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2796@end menu
2797
342b8b6e 2798@node Grammar Outline
bfa74976 2799@section Outline of a Bison Grammar
c949ada3
AD
2800@cindex comment
2801@findex // @dots{}
2802@findex /* @dots{} */
bfa74976
RS
2803
2804A Bison grammar file has four main sections, shown here with the
2805appropriate delimiters:
2806
2807@example
2808%@{
38a92d50 2809 @var{Prologue}
bfa74976
RS
2810%@}
2811
2812@var{Bison declarations}
2813
2814%%
2815@var{Grammar rules}
2816%%
2817
75f5aaea 2818@var{Epilogue}
bfa74976
RS
2819@end example
2820
2821Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
c949ada3
AD
2822As a GNU extension, @samp{//} introduces a comment that continues until end
2823of line.
bfa74976
RS
2824
2825@menu
f5f419de 2826* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2827* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2828* Bison Declarations:: Syntax and usage of the Bison declarations section.
2829* Grammar Rules:: Syntax and usage of the grammar rules section.
2830* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2831@end menu
2832
38a92d50 2833@node Prologue
75f5aaea
MA
2834@subsection The prologue
2835@cindex declarations section
2836@cindex Prologue
2837@cindex declarations
bfa74976 2838
f8e1c9e5
AD
2839The @var{Prologue} section contains macro definitions and declarations
2840of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2841rules. These are copied to the beginning of the parser implementation
2842file so that they precede the definition of @code{yyparse}. You can
2843use @samp{#include} to get the declarations from a header file. If
2844you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2845@samp{%@}} delimiters that bracket this section.
bfa74976 2846
9c437126 2847The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2848of @samp{%@}} that is outside a comment, a string literal, or a
2849character constant.
2850
c732d2c6
AD
2851You may have more than one @var{Prologue} section, intermixed with the
2852@var{Bison declarations}. This allows you to have C and Bison
2853declarations that refer to each other. For example, the @code{%union}
2854declaration may use types defined in a header file, and you may wish to
2855prototype functions that take arguments of type @code{YYSTYPE}. This
2856can be done with two @var{Prologue} blocks, one before and one after the
2857@code{%union} declaration.
2858
c93f22fc 2859@example
c732d2c6 2860%@{
aef3da86 2861 #define _GNU_SOURCE
38a92d50
PE
2862 #include <stdio.h>
2863 #include "ptypes.h"
c732d2c6
AD
2864%@}
2865
2866%union @{
779e7ceb 2867 long int n;
c732d2c6
AD
2868 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2869@}
2870
2871%@{
38a92d50
PE
2872 static void print_token_value (FILE *, int, YYSTYPE);
2873 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2874%@}
2875
2876@dots{}
c93f22fc 2877@end example
c732d2c6 2878
aef3da86
PE
2879When in doubt, it is usually safer to put prologue code before all
2880Bison declarations, rather than after. For example, any definitions
2881of feature test macros like @code{_GNU_SOURCE} or
2882@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2883feature test macros can affect the behavior of Bison-generated
2884@code{#include} directives.
2885
2cbe6b7f
JD
2886@node Prologue Alternatives
2887@subsection Prologue Alternatives
2888@cindex Prologue Alternatives
2889
136a0f76 2890@findex %code
16dc6a9e
JD
2891@findex %code requires
2892@findex %code provides
2893@findex %code top
85894313 2894
2cbe6b7f 2895The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2896inflexible. As an alternative, Bison provides a @code{%code}
2897directive with an explicit qualifier field, which identifies the
2898purpose of the code and thus the location(s) where Bison should
2899generate it. For C/C++, the qualifier can be omitted for the default
2900location, or it can be one of @code{requires}, @code{provides},
e0c07222 2901@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2902
2903Look again at the example of the previous section:
2904
c93f22fc 2905@example
2cbe6b7f
JD
2906%@{
2907 #define _GNU_SOURCE
2908 #include <stdio.h>
2909 #include "ptypes.h"
2910%@}
2911
2912%union @{
2913 long int n;
2914 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2915@}
2916
2917%@{
2918 static void print_token_value (FILE *, int, YYSTYPE);
2919 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2920%@}
2921
2922@dots{}
c93f22fc 2923@end example
2cbe6b7f
JD
2924
2925@noindent
ff7571c0
JD
2926Notice that there are two @var{Prologue} sections here, but there's a
2927subtle distinction between their functionality. For example, if you
2928decide to override Bison's default definition for @code{YYLTYPE}, in
2929which @var{Prologue} section should you write your new definition?
2930You should write it in the first since Bison will insert that code
2931into the parser implementation file @emph{before} the default
2932@code{YYLTYPE} definition. In which @var{Prologue} section should you
2933prototype an internal function, @code{trace_token}, that accepts
2934@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2935prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2936@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2937
2938This distinction in functionality between the two @var{Prologue} sections is
2939established by the appearance of the @code{%union} between them.
a501eca9 2940This behavior raises a few questions.
2cbe6b7f
JD
2941First, why should the position of a @code{%union} affect definitions related to
2942@code{YYLTYPE} and @code{yytokentype}?
2943Second, what if there is no @code{%union}?
2944In that case, the second kind of @var{Prologue} section is not available.
2945This behavior is not intuitive.
2946
8e0a5e9e 2947To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2948@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2949Let's go ahead and add the new @code{YYLTYPE} definition and the
2950@code{trace_token} prototype at the same time:
2951
c93f22fc 2952@example
16dc6a9e 2953%code top @{
2cbe6b7f
JD
2954 #define _GNU_SOURCE
2955 #include <stdio.h>
8e0a5e9e
JD
2956
2957 /* WARNING: The following code really belongs
16dc6a9e 2958 * in a `%code requires'; see below. */
8e0a5e9e 2959
2cbe6b7f
JD
2960 #include "ptypes.h"
2961 #define YYLTYPE YYLTYPE
2962 typedef struct YYLTYPE
2963 @{
2964 int first_line;
2965 int first_column;
2966 int last_line;
2967 int last_column;
2968 char *filename;
2969 @} YYLTYPE;
2970@}
2971
2972%union @{
2973 long int n;
2974 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2975@}
2976
2977%code @{
2978 static void print_token_value (FILE *, int, YYSTYPE);
2979 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2980 static void trace_token (enum yytokentype token, YYLTYPE loc);
2981@}
2982
2983@dots{}
c93f22fc 2984@end example
2cbe6b7f
JD
2985
2986@noindent
16dc6a9e
JD
2987In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2988functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2989explicit which kind you intend.
2cbe6b7f
JD
2990Moreover, both kinds are always available even in the absence of @code{%union}.
2991
ff7571c0
JD
2992The @code{%code top} block above logically contains two parts. The
2993first two lines before the warning need to appear near the top of the
2994parser implementation file. The first line after the warning is
2995required by @code{YYSTYPE} and thus also needs to appear in the parser
2996implementation file. However, if you've instructed Bison to generate
2997a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2998want that line to appear before the @code{YYSTYPE} definition in that
2999header file as well. The @code{YYLTYPE} definition should also appear
3000in the parser header file to override the default @code{YYLTYPE}
3001definition there.
2cbe6b7f 3002
16dc6a9e 3003In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3004lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3005definitions.
16dc6a9e 3006Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3007
c93f22fc 3008@example
d4fca427 3009@group
16dc6a9e 3010%code top @{
2cbe6b7f
JD
3011 #define _GNU_SOURCE
3012 #include <stdio.h>
3013@}
d4fca427 3014@end group
2cbe6b7f 3015
d4fca427 3016@group
16dc6a9e 3017%code requires @{
9bc0dd67
JD
3018 #include "ptypes.h"
3019@}
d4fca427
AD
3020@end group
3021@group
9bc0dd67
JD
3022%union @{
3023 long int n;
3024 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3025@}
d4fca427 3026@end group
9bc0dd67 3027
d4fca427 3028@group
16dc6a9e 3029%code requires @{
2cbe6b7f
JD
3030 #define YYLTYPE YYLTYPE
3031 typedef struct YYLTYPE
3032 @{
3033 int first_line;
3034 int first_column;
3035 int last_line;
3036 int last_column;
3037 char *filename;
3038 @} YYLTYPE;
3039@}
d4fca427 3040@end group
2cbe6b7f 3041
d4fca427 3042@group
136a0f76 3043%code @{
2cbe6b7f
JD
3044 static void print_token_value (FILE *, int, YYSTYPE);
3045 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3046 static void trace_token (enum yytokentype token, YYLTYPE loc);
3047@}
d4fca427 3048@end group
2cbe6b7f
JD
3049
3050@dots{}
c93f22fc 3051@end example
2cbe6b7f
JD
3052
3053@noindent
ff7571c0
JD
3054Now Bison will insert @code{#include "ptypes.h"} and the new
3055@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3056and @code{YYLTYPE} definitions in both the parser implementation file
3057and the parser header file. (By the same reasoning, @code{%code
3058requires} would also be the appropriate place to write your own
3059definition for @code{YYSTYPE}.)
3060
3061When you are writing dependency code for @code{YYSTYPE} and
3062@code{YYLTYPE}, you should prefer @code{%code requires} over
3063@code{%code top} regardless of whether you instruct Bison to generate
3064a parser header file. When you are writing code that you need Bison
3065to insert only into the parser implementation file and that has no
3066special need to appear at the top of that file, you should prefer the
3067unqualified @code{%code} over @code{%code top}. These practices will
3068make the purpose of each block of your code explicit to Bison and to
3069other developers reading your grammar file. Following these
3070practices, we expect the unqualified @code{%code} and @code{%code
3071requires} to be the most important of the four @var{Prologue}
16dc6a9e 3072alternatives.
a501eca9 3073
ff7571c0
JD
3074At some point while developing your parser, you might decide to
3075provide @code{trace_token} to modules that are external to your
3076parser. Thus, you might wish for Bison to insert the prototype into
3077both the parser header file and the parser implementation file. Since
3078this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3079@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3080@code{%code requires}. More importantly, since it depends upon
3081@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3082sufficient. Instead, move its prototype from the unqualified
3083@code{%code} to a @code{%code provides}:
2cbe6b7f 3084
c93f22fc 3085@example
d4fca427 3086@group
16dc6a9e 3087%code top @{
2cbe6b7f 3088 #define _GNU_SOURCE
136a0f76 3089 #include <stdio.h>
2cbe6b7f 3090@}
d4fca427 3091@end group
136a0f76 3092
d4fca427 3093@group
16dc6a9e 3094%code requires @{
2cbe6b7f
JD
3095 #include "ptypes.h"
3096@}
d4fca427
AD
3097@end group
3098@group
2cbe6b7f
JD
3099%union @{
3100 long int n;
3101 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3102@}
d4fca427 3103@end group
2cbe6b7f 3104
d4fca427 3105@group
16dc6a9e 3106%code requires @{
2cbe6b7f
JD
3107 #define YYLTYPE YYLTYPE
3108 typedef struct YYLTYPE
3109 @{
3110 int first_line;
3111 int first_column;
3112 int last_line;
3113 int last_column;
3114 char *filename;
3115 @} YYLTYPE;
3116@}
d4fca427 3117@end group
2cbe6b7f 3118
d4fca427 3119@group
16dc6a9e 3120%code provides @{
2cbe6b7f
JD
3121 void trace_token (enum yytokentype token, YYLTYPE loc);
3122@}
d4fca427 3123@end group
2cbe6b7f 3124
d4fca427 3125@group
2cbe6b7f 3126%code @{
9bc0dd67
JD
3127 static void print_token_value (FILE *, int, YYSTYPE);
3128 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3129@}
d4fca427 3130@end group
9bc0dd67
JD
3131
3132@dots{}
c93f22fc 3133@end example
9bc0dd67 3134
2cbe6b7f 3135@noindent
ff7571c0
JD
3136Bison will insert the @code{trace_token} prototype into both the
3137parser header file and the parser implementation file after the
3138definitions for @code{yytokentype}, @code{YYLTYPE}, and
3139@code{YYSTYPE}.
2cbe6b7f 3140
ff7571c0
JD
3141The above examples are careful to write directives in an order that
3142reflects the layout of the generated parser implementation and header
3143files: @code{%code top}, @code{%code requires}, @code{%code provides},
3144and then @code{%code}. While your grammar files may generally be
3145easier to read if you also follow this order, Bison does not require
3146it. Instead, Bison lets you choose an organization that makes sense
3147to you.
2cbe6b7f 3148
a501eca9 3149You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3150In that case, Bison concatenates the contained code in declaration order.
3151This is the only way in which the position of one of these directives within
3152the grammar file affects its functionality.
3153
3154The result of the previous two properties is greater flexibility in how you may
3155organize your grammar file.
3156For example, you may organize semantic-type-related directives by semantic
3157type:
3158
c93f22fc 3159@example
d4fca427 3160@group
16dc6a9e 3161%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3162%union @{ type1 field1; @}
3163%destructor @{ type1_free ($$); @} <field1>
c5026327 3164%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3165@end group
2cbe6b7f 3166
d4fca427 3167@group
16dc6a9e 3168%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3169%union @{ type2 field2; @}
3170%destructor @{ type2_free ($$); @} <field2>
c5026327 3171%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3172@end group
c93f22fc 3173@end example
2cbe6b7f
JD
3174
3175@noindent
3176You could even place each of the above directive groups in the rules section of
3177the grammar file next to the set of rules that uses the associated semantic
3178type.
61fee93e
JD
3179(In the rules section, you must terminate each of those directives with a
3180semicolon.)
2cbe6b7f
JD
3181And you don't have to worry that some directive (like a @code{%union}) in the
3182definitions section is going to adversely affect their functionality in some
3183counter-intuitive manner just because it comes first.
3184Such an organization is not possible using @var{Prologue} sections.
3185
a501eca9 3186This section has been concerned with explaining the advantages of the four
8e0a5e9e 3187@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3188However, in most cases when using these directives, you shouldn't need to
3189think about all the low-level ordering issues discussed here.
3190Instead, you should simply use these directives to label each block of your
3191code according to its purpose and let Bison handle the ordering.
3192@code{%code} is the most generic label.
16dc6a9e
JD
3193Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3194as needed.
a501eca9 3195
342b8b6e 3196@node Bison Declarations
bfa74976
RS
3197@subsection The Bison Declarations Section
3198@cindex Bison declarations (introduction)
3199@cindex declarations, Bison (introduction)
3200
3201The @var{Bison declarations} section contains declarations that define
3202terminal and nonterminal symbols, specify precedence, and so on.
3203In some simple grammars you may not need any declarations.
3204@xref{Declarations, ,Bison Declarations}.
3205
342b8b6e 3206@node Grammar Rules
bfa74976
RS
3207@subsection The Grammar Rules Section
3208@cindex grammar rules section
3209@cindex rules section for grammar
3210
3211The @dfn{grammar rules} section contains one or more Bison grammar
3212rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3213
3214There must always be at least one grammar rule, and the first
3215@samp{%%} (which precedes the grammar rules) may never be omitted even
3216if it is the first thing in the file.
3217
38a92d50 3218@node Epilogue
75f5aaea 3219@subsection The epilogue
bfa74976 3220@cindex additional C code section
75f5aaea 3221@cindex epilogue
bfa74976
RS
3222@cindex C code, section for additional
3223
ff7571c0
JD
3224The @var{Epilogue} is copied verbatim to the end of the parser
3225implementation file, just as the @var{Prologue} is copied to the
3226beginning. This is the most convenient place to put anything that you
3227want to have in the parser implementation file but which need not come
3228before the definition of @code{yyparse}. For example, the definitions
3229of @code{yylex} and @code{yyerror} often go here. Because C requires
3230functions to be declared before being used, you often need to declare
3231functions like @code{yylex} and @code{yyerror} in the Prologue, even
3232if you define them in the Epilogue. @xref{Interface, ,Parser
3233C-Language Interface}.
bfa74976
RS
3234
3235If the last section is empty, you may omit the @samp{%%} that separates it
3236from the grammar rules.
3237
f8e1c9e5
AD
3238The Bison parser itself contains many macros and identifiers whose names
3239start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3240any such names (except those documented in this manual) in the epilogue
3241of the grammar file.
bfa74976 3242
342b8b6e 3243@node Symbols
bfa74976
RS
3244@section Symbols, Terminal and Nonterminal
3245@cindex nonterminal symbol
3246@cindex terminal symbol
3247@cindex token type
3248@cindex symbol
3249
3250@dfn{Symbols} in Bison grammars represent the grammatical classifications
3251of the language.
3252
3253A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3254class of syntactically equivalent tokens. You use the symbol in grammar
3255rules to mean that a token in that class is allowed. The symbol is
3256represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3257function returns a token type code to indicate what kind of token has
3258been read. You don't need to know what the code value is; you can use
3259the symbol to stand for it.
bfa74976 3260
f8e1c9e5
AD
3261A @dfn{nonterminal symbol} stands for a class of syntactically
3262equivalent groupings. The symbol name is used in writing grammar rules.
3263By convention, it should be all lower case.
bfa74976 3264
82f3355e
JD
3265Symbol names can contain letters, underscores, periods, and non-initial
3266digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3267with POSIX Yacc. Periods and dashes make symbol names less convenient to
3268use with named references, which require brackets around such names
3269(@pxref{Named References}). Terminal symbols that contain periods or dashes
3270make little sense: since they are not valid symbols (in most programming
3271languages) they are not exported as token names.
bfa74976 3272
931c7513 3273There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3274
3275@itemize @bullet
3276@item
3277A @dfn{named token type} is written with an identifier, like an
c827f760 3278identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3279such name must be defined with a Bison declaration such as
3280@code{%token}. @xref{Token Decl, ,Token Type Names}.
3281
3282@item
3283@cindex character token
3284@cindex literal token
3285@cindex single-character literal
931c7513
RS
3286A @dfn{character token type} (or @dfn{literal character token}) is
3287written in the grammar using the same syntax used in C for character
3288constants; for example, @code{'+'} is a character token type. A
3289character token type doesn't need to be declared unless you need to
3290specify its semantic value data type (@pxref{Value Type, ,Data Types of
3291Semantic Values}), associativity, or precedence (@pxref{Precedence,
3292,Operator Precedence}).
bfa74976
RS
3293
3294By convention, a character token type is used only to represent a
3295token that consists of that particular character. Thus, the token
3296type @code{'+'} is used to represent the character @samp{+} as a
3297token. Nothing enforces this convention, but if you depart from it,
3298your program will confuse other readers.
3299
3300All the usual escape sequences used in character literals in C can be
3301used in Bison as well, but you must not use the null character as a
72d2299c
PE
3302character literal because its numeric code, zero, signifies
3303end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3304for @code{yylex}}). Also, unlike standard C, trigraphs have no
3305special meaning in Bison character literals, nor is backslash-newline
3306allowed.
931c7513
RS
3307
3308@item
3309@cindex string token
3310@cindex literal string token
9ecbd125 3311@cindex multicharacter literal
931c7513
RS
3312A @dfn{literal string token} is written like a C string constant; for
3313example, @code{"<="} is a literal string token. A literal string token
3314doesn't need to be declared unless you need to specify its semantic
14ded682 3315value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3316(@pxref{Precedence}).
3317
3318You can associate the literal string token with a symbolic name as an
3319alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3320Declarations}). If you don't do that, the lexical analyzer has to
3321retrieve the token number for the literal string token from the
3322@code{yytname} table (@pxref{Calling Convention}).
3323
c827f760 3324@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3325
3326By convention, a literal string token is used only to represent a token
3327that consists of that particular string. Thus, you should use the token
3328type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3329does not enforce this convention, but if you depart from it, people who
931c7513
RS
3330read your program will be confused.
3331
3332All the escape sequences used in string literals in C can be used in
92ac3705
PE
3333Bison as well, except that you must not use a null character within a
3334string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3335meaning in Bison string literals, nor is backslash-newline allowed. A
3336literal string token must contain two or more characters; for a token
3337containing just one character, use a character token (see above).
bfa74976
RS
3338@end itemize
3339
3340How you choose to write a terminal symbol has no effect on its
3341grammatical meaning. That depends only on where it appears in rules and
3342on when the parser function returns that symbol.
3343
72d2299c
PE
3344The value returned by @code{yylex} is always one of the terminal
3345symbols, except that a zero or negative value signifies end-of-input.
3346Whichever way you write the token type in the grammar rules, you write
3347it the same way in the definition of @code{yylex}. The numeric code
3348for a character token type is simply the positive numeric code of the
3349character, so @code{yylex} can use the identical value to generate the
3350requisite code, though you may need to convert it to @code{unsigned
3351char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3352Each named token type becomes a C macro in the parser implementation
3353file, so @code{yylex} can use the name to stand for the code. (This
3354is why periods don't make sense in terminal symbols.) @xref{Calling
3355Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3356
3357If @code{yylex} is defined in a separate file, you need to arrange for the
3358token-type macro definitions to be available there. Use the @samp{-d}
3359option when you run Bison, so that it will write these macro definitions
3360into a separate header file @file{@var{name}.tab.h} which you can include
3361in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3362
72d2299c 3363If you want to write a grammar that is portable to any Standard C
9d9b8b70 3364host, you must use only nonnull character tokens taken from the basic
c827f760 3365execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3366digits, the 52 lower- and upper-case English letters, and the
3367characters in the following C-language string:
3368
3369@example
3370"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3371@end example
3372
f8e1c9e5
AD
3373The @code{yylex} function and Bison must use a consistent character set
3374and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3375ASCII environment, but then compile and run the resulting
f8e1c9e5 3376program in an environment that uses an incompatible character set like
8a4281b9
JD
3377EBCDIC, the resulting program may not work because the tables
3378generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3379character tokens. It is standard practice for software distributions to
3380contain C source files that were generated by Bison in an
8a4281b9
JD
3381ASCII environment, so installers on platforms that are
3382incompatible with ASCII must rebuild those files before
f8e1c9e5 3383compiling them.
e966383b 3384
bfa74976
RS
3385The symbol @code{error} is a terminal symbol reserved for error recovery
3386(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3387In particular, @code{yylex} should never return this value. The default
3388value of the error token is 256, unless you explicitly assigned 256 to
3389one of your tokens with a @code{%token} declaration.
bfa74976 3390
342b8b6e 3391@node Rules
bfa74976
RS
3392@section Syntax of Grammar Rules
3393@cindex rule syntax
3394@cindex grammar rule syntax
3395@cindex syntax of grammar rules
3396
3397A Bison grammar rule has the following general form:
3398
3399@example
5e9b6624 3400@var{result}: @var{components}@dots{};
bfa74976
RS
3401@end example
3402
3403@noindent
9ecbd125 3404where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3405and @var{components} are various terminal and nonterminal symbols that
13863333 3406are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3407
3408For example,
3409
3410@example
5e9b6624 3411exp: exp '+' exp;
bfa74976
RS
3412@end example
3413
3414@noindent
3415says that two groupings of type @code{exp}, with a @samp{+} token in between,
3416can be combined into a larger grouping of type @code{exp}.
3417
72d2299c
PE
3418White space in rules is significant only to separate symbols. You can add
3419extra white space as you wish.
bfa74976
RS
3420
3421Scattered among the components can be @var{actions} that determine
3422the semantics of the rule. An action looks like this:
3423
3424@example
3425@{@var{C statements}@}
3426@end example
3427
3428@noindent
287c78f6
PE
3429@cindex braced code
3430This is an example of @dfn{braced code}, that is, C code surrounded by
3431braces, much like a compound statement in C@. Braced code can contain
3432any sequence of C tokens, so long as its braces are balanced. Bison
3433does not check the braced code for correctness directly; it merely
ff7571c0
JD
3434copies the code to the parser implementation file, where the C
3435compiler can check it.
287c78f6
PE
3436
3437Within braced code, the balanced-brace count is not affected by braces
3438within comments, string literals, or character constants, but it is
3439affected by the C digraphs @samp{<%} and @samp{%>} that represent
3440braces. At the top level braced code must be terminated by @samp{@}}
3441and not by a digraph. Bison does not look for trigraphs, so if braced
3442code uses trigraphs you should ensure that they do not affect the
3443nesting of braces or the boundaries of comments, string literals, or
3444character constants.
3445
bfa74976
RS
3446Usually there is only one action and it follows the components.
3447@xref{Actions}.
3448
3449@findex |
3450Multiple rules for the same @var{result} can be written separately or can
3451be joined with the vertical-bar character @samp{|} as follows:
3452
bfa74976
RS
3453@example
3454@group
5e9b6624
AD
3455@var{result}:
3456 @var{rule1-components}@dots{}
3457| @var{rule2-components}@dots{}
3458@dots{}
3459;
bfa74976
RS
3460@end group
3461@end example
bfa74976
RS
3462
3463@noindent
3464They are still considered distinct rules even when joined in this way.
3465
3466If @var{components} in a rule is empty, it means that @var{result} can
3467match the empty string. For example, here is how to define a
3468comma-separated sequence of zero or more @code{exp} groupings:
3469
3470@example
3471@group
5e9b6624
AD
3472expseq:
3473 /* empty */
3474| expseq1
3475;
bfa74976
RS
3476@end group
3477
3478@group
5e9b6624
AD
3479expseq1:
3480 exp
3481| expseq1 ',' exp
3482;
bfa74976
RS
3483@end group
3484@end example
3485
3486@noindent
3487It is customary to write a comment @samp{/* empty */} in each rule
3488with no components.
3489
342b8b6e 3490@node Recursion
bfa74976
RS
3491@section Recursive Rules
3492@cindex recursive rule
3493
f8e1c9e5
AD
3494A rule is called @dfn{recursive} when its @var{result} nonterminal
3495appears also on its right hand side. Nearly all Bison grammars need to
3496use recursion, because that is the only way to define a sequence of any
3497number of a particular thing. Consider this recursive definition of a
9ecbd125 3498comma-separated sequence of one or more expressions:
bfa74976
RS
3499
3500@example
3501@group
5e9b6624
AD
3502expseq1:
3503 exp
3504| expseq1 ',' exp
3505;
bfa74976
RS
3506@end group
3507@end example
3508
3509@cindex left recursion
3510@cindex right recursion
3511@noindent
3512Since the recursive use of @code{expseq1} is the leftmost symbol in the
3513right hand side, we call this @dfn{left recursion}. By contrast, here
3514the same construct is defined using @dfn{right recursion}:
3515
3516@example
3517@group
5e9b6624
AD
3518expseq1:
3519 exp
3520| exp ',' expseq1
3521;
bfa74976
RS
3522@end group
3523@end example
3524
3525@noindent
ec3bc396
AD
3526Any kind of sequence can be defined using either left recursion or right
3527recursion, but you should always use left recursion, because it can
3528parse a sequence of any number of elements with bounded stack space.
3529Right recursion uses up space on the Bison stack in proportion to the
3530number of elements in the sequence, because all the elements must be
3531shifted onto the stack before the rule can be applied even once.
3532@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3533of this.
bfa74976
RS
3534
3535@cindex mutual recursion
3536@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3537rule does not appear directly on its right hand side, but does appear
3538in rules for other nonterminals which do appear on its right hand
13863333 3539side.
bfa74976
RS
3540
3541For example:
3542
3543@example
3544@group
5e9b6624
AD
3545expr:
3546 primary
3547| primary '+' primary
3548;
bfa74976
RS
3549@end group
3550
3551@group
5e9b6624
AD
3552primary:
3553 constant
3554| '(' expr ')'
3555;
bfa74976
RS
3556@end group
3557@end example
3558
3559@noindent
3560defines two mutually-recursive nonterminals, since each refers to the
3561other.
3562
342b8b6e 3563@node Semantics
bfa74976
RS
3564@section Defining Language Semantics
3565@cindex defining language semantics
13863333 3566@cindex language semantics, defining
bfa74976
RS
3567
3568The grammar rules for a language determine only the syntax. The semantics
3569are determined by the semantic values associated with various tokens and
3570groupings, and by the actions taken when various groupings are recognized.
3571
3572For example, the calculator calculates properly because the value
3573associated with each expression is the proper number; it adds properly
3574because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3575the numbers associated with @var{x} and @var{y}.
3576
3577@menu
3578* Value Type:: Specifying one data type for all semantic values.
3579* Multiple Types:: Specifying several alternative data types.
3580* Actions:: An action is the semantic definition of a grammar rule.
3581* Action Types:: Specifying data types for actions to operate on.
3582* Mid-Rule Actions:: Most actions go at the end of a rule.
3583 This says when, why and how to use the exceptional
3584 action in the middle of a rule.
3585@end menu
3586
342b8b6e 3587@node Value Type
bfa74976
RS
3588@subsection Data Types of Semantic Values
3589@cindex semantic value type
3590@cindex value type, semantic
3591@cindex data types of semantic values
3592@cindex default data type
3593
3594In a simple program it may be sufficient to use the same data type for
3595the semantic values of all language constructs. This was true in the
8a4281b9 3596RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3597Notation Calculator}).
bfa74976 3598
ddc8ede1
PE
3599Bison normally uses the type @code{int} for semantic values if your
3600program uses the same data type for all language constructs. To
bfa74976
RS
3601specify some other type, define @code{YYSTYPE} as a macro, like this:
3602
3603@example
3604#define YYSTYPE double
3605@end example
3606
3607@noindent
50cce58e
PE
3608@code{YYSTYPE}'s replacement list should be a type name
3609that does not contain parentheses or square brackets.
342b8b6e 3610This macro definition must go in the prologue of the grammar file
75f5aaea 3611(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3612
342b8b6e 3613@node Multiple Types
bfa74976
RS
3614@subsection More Than One Value Type
3615
3616In most programs, you will need different data types for different kinds
3617of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3618@code{int} or @code{long int}, while a string constant needs type
3619@code{char *}, and an identifier might need a pointer to an entry in the
3620symbol table.
bfa74976
RS
3621
3622To use more than one data type for semantic values in one parser, Bison
3623requires you to do two things:
3624
3625@itemize @bullet
3626@item
ddc8ede1 3627Specify the entire collection of possible data types, either by using the
704a47c4 3628@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3629Value Types}), or by using a @code{typedef} or a @code{#define} to
3630define @code{YYSTYPE} to be a union type whose member names are
3631the type tags.
bfa74976
RS
3632
3633@item
14ded682
AD
3634Choose one of those types for each symbol (terminal or nonterminal) for
3635which semantic values are used. This is done for tokens with the
3636@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3637and for groupings with the @code{%type} Bison declaration (@pxref{Type
3638Decl, ,Nonterminal Symbols}).
bfa74976
RS
3639@end itemize
3640
342b8b6e 3641@node Actions
bfa74976
RS
3642@subsection Actions
3643@cindex action
3644@vindex $$
3645@vindex $@var{n}
d013372c
AR
3646@vindex $@var{name}
3647@vindex $[@var{name}]
bfa74976
RS
3648
3649An action accompanies a syntactic rule and contains C code to be executed
3650each time an instance of that rule is recognized. The task of most actions
3651is to compute a semantic value for the grouping built by the rule from the
3652semantic values associated with tokens or smaller groupings.
3653
287c78f6
PE
3654An action consists of braced code containing C statements, and can be
3655placed at any position in the rule;
704a47c4
AD
3656it is executed at that position. Most rules have just one action at the
3657end of the rule, following all the components. Actions in the middle of
3658a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3659Actions, ,Actions in Mid-Rule}).
bfa74976 3660
ff7571c0
JD
3661The C code in an action can refer to the semantic values of the
3662components matched by the rule with the construct @code{$@var{n}},
3663which stands for the value of the @var{n}th component. The semantic
3664value for the grouping being constructed is @code{$$}. In addition,
3665the semantic values of symbols can be accessed with the named
3666references construct @code{$@var{name}} or @code{$[@var{name}]}.
3667Bison translates both of these constructs into expressions of the
3668appropriate type when it copies the actions into the parser
3669implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3670for the current grouping) is translated to a modifiable lvalue, so it
3671can be assigned to.
bfa74976
RS
3672
3673Here is a typical example:
3674
3675@example
3676@group
5e9b6624
AD
3677exp:
3678@dots{}
3679| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3680@end group
3681@end example
3682
d013372c
AR
3683Or, in terms of named references:
3684
3685@example
3686@group
5e9b6624
AD
3687exp[result]:
3688@dots{}
3689| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3690@end group
3691@end example
3692
bfa74976
RS
3693@noindent
3694This rule constructs an @code{exp} from two smaller @code{exp} groupings
3695connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3696(@code{$left} and @code{$right})
bfa74976
RS
3697refer to the semantic values of the two component @code{exp} groupings,
3698which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3699The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3700semantic value of
bfa74976
RS
3701the addition-expression just recognized by the rule. If there were a
3702useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3703referred to as @code{$2}.
bfa74976 3704
a7b15ab9
JD
3705@xref{Named References}, for more information about using the named
3706references construct.
d013372c 3707
3ded9a63
AD
3708Note that the vertical-bar character @samp{|} is really a rule
3709separator, and actions are attached to a single rule. This is a
3710difference with tools like Flex, for which @samp{|} stands for either
3711``or'', or ``the same action as that of the next rule''. In the
3712following example, the action is triggered only when @samp{b} is found:
3713
3714@example
3ded9a63 3715a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3ded9a63
AD
3716@end example
3717
bfa74976
RS
3718@cindex default action
3719If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3720@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3721becomes the value of the whole rule. Of course, the default action is
3722valid only if the two data types match. There is no meaningful default
3723action for an empty rule; every empty rule must have an explicit action
3724unless the rule's value does not matter.
bfa74976
RS
3725
3726@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3727to tokens and groupings on the stack @emph{before} those that match the
3728current rule. This is a very risky practice, and to use it reliably
3729you must be certain of the context in which the rule is applied. Here
3730is a case in which you can use this reliably:
3731
3732@example
3733@group
5e9b6624
AD
3734foo:
3735 expr bar '+' expr @{ @dots{} @}
3736| expr bar '-' expr @{ @dots{} @}
3737;
bfa74976
RS
3738@end group
3739
3740@group
5e9b6624
AD
3741bar:
3742 /* empty */ @{ previous_expr = $0; @}
3743;
bfa74976
RS
3744@end group
3745@end example
3746
3747As long as @code{bar} is used only in the fashion shown here, @code{$0}
3748always refers to the @code{expr} which precedes @code{bar} in the
3749definition of @code{foo}.
3750
32c29292 3751@vindex yylval
742e4900 3752It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3753any, from a semantic action.
3754This semantic value is stored in @code{yylval}.
3755@xref{Action Features, ,Special Features for Use in Actions}.
3756
342b8b6e 3757@node Action Types
bfa74976
RS
3758@subsection Data Types of Values in Actions
3759@cindex action data types
3760@cindex data types in actions
3761
3762If you have chosen a single data type for semantic values, the @code{$$}
3763and @code{$@var{n}} constructs always have that data type.
3764
3765If you have used @code{%union} to specify a variety of data types, then you
3766must declare a choice among these types for each terminal or nonterminal
3767symbol that can have a semantic value. Then each time you use @code{$$} or
3768@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3769in the rule. In this example,
bfa74976
RS
3770
3771@example
3772@group
5e9b6624
AD
3773exp:
3774 @dots{}
3775| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3776@end group
3777@end example
3778
3779@noindent
3780@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3781have the data type declared for the nonterminal symbol @code{exp}. If
3782@code{$2} were used, it would have the data type declared for the
e0c471a9 3783terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3784
3785Alternatively, you can specify the data type when you refer to the value,
3786by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3787reference. For example, if you have defined types as shown here:
3788
3789@example
3790@group
3791%union @{
3792 int itype;
3793 double dtype;
3794@}
3795@end group
3796@end example
3797
3798@noindent
3799then you can write @code{$<itype>1} to refer to the first subunit of the
3800rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3801
342b8b6e 3802@node Mid-Rule Actions
bfa74976
RS
3803@subsection Actions in Mid-Rule
3804@cindex actions in mid-rule
3805@cindex mid-rule actions
3806
3807Occasionally it is useful to put an action in the middle of a rule.
3808These actions are written just like usual end-of-rule actions, but they
3809are executed before the parser even recognizes the following components.
3810
be22823e
AD
3811@menu
3812* Using Mid-Rule Actions:: Putting an action in the middle of a rule.
3813* Mid-Rule Action Translation:: How mid-rule actions are actually processed.
3814* Mid-Rule Conflicts:: Mid-rule actions can cause conflicts.
3815@end menu
3816
3817@node Using Mid-Rule Actions
3818@subsubsection Using Mid-Rule Actions
3819
bfa74976
RS
3820A mid-rule action may refer to the components preceding it using
3821@code{$@var{n}}, but it may not refer to subsequent components because
3822it is run before they are parsed.
3823
3824The mid-rule action itself counts as one of the components of the rule.
3825This makes a difference when there is another action later in the same rule
3826(and usually there is another at the end): you have to count the actions
3827along with the symbols when working out which number @var{n} to use in
3828@code{$@var{n}}.
3829
3830The mid-rule action can also have a semantic value. The action can set
3831its value with an assignment to @code{$$}, and actions later in the rule
3832can refer to the value using @code{$@var{n}}. Since there is no symbol
3833to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3834in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3835specify a data type each time you refer to this value.
bfa74976
RS
3836
3837There is no way to set the value of the entire rule with a mid-rule
3838action, because assignments to @code{$$} do not have that effect. The
3839only way to set the value for the entire rule is with an ordinary action
3840at the end of the rule.
3841
3842Here is an example from a hypothetical compiler, handling a @code{let}
3843statement that looks like @samp{let (@var{variable}) @var{statement}} and
3844serves to create a variable named @var{variable} temporarily for the
3845duration of @var{statement}. To parse this construct, we must put
3846@var{variable} into the symbol table while @var{statement} is parsed, then
3847remove it afterward. Here is how it is done:
3848
3849@example
3850@group
5e9b6624 3851stmt:
c949ada3
AD
3852 "let" '(' var ')'
3853 @{
3854 $<context>$ = push_context ();
3855 declare_variable ($3);
3856 @}
5e9b6624 3857 stmt
c949ada3
AD
3858 @{
3859 $$ = $6;
3860 pop_context ($<context>5);
3861 @}
bfa74976
RS
3862@end group
3863@end example
3864
3865@noindent
3866As soon as @samp{let (@var{variable})} has been recognized, the first
3867action is run. It saves a copy of the current semantic context (the
3868list of accessible variables) as its semantic value, using alternative
3869@code{context} in the data-type union. Then it calls
3870@code{declare_variable} to add the new variable to that list. Once the
3871first action is finished, the embedded statement @code{stmt} can be
be22823e
AD
3872parsed.
3873
3874Note that the mid-rule action is component number 5, so the @samp{stmt} is
3875component number 6. Named references can be used to improve the readability
3876and maintainability (@pxref{Named References}):
3877
3878@example
3879@group
3880stmt:
3881 "let" '(' var ')'
3882 @{
3883 $<context>let = push_context ();
3884 declare_variable ($3);
3885 @}[let]
3886 stmt
3887 @{
3888 $$ = $6;
3889 pop_context ($<context>let);
3890 @}
3891@end group
3892@end example
bfa74976
RS
3893
3894After the embedded statement is parsed, its semantic value becomes the
3895value of the entire @code{let}-statement. Then the semantic value from the
3896earlier action is used to restore the prior list of variables. This
3897removes the temporary @code{let}-variable from the list so that it won't
3898appear to exist while the rest of the program is parsed.
3899
841a7737
JD
3900@findex %destructor
3901@cindex discarded symbols, mid-rule actions
3902@cindex error recovery, mid-rule actions
3903In the above example, if the parser initiates error recovery (@pxref{Error
3904Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3905it might discard the previous semantic context @code{$<context>5} without
3906restoring it.
3907Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3908Discarded Symbols}).
ec5479ce
JD
3909However, Bison currently provides no means to declare a destructor specific to
3910a particular mid-rule action's semantic value.
841a7737
JD
3911
3912One solution is to bury the mid-rule action inside a nonterminal symbol and to
3913declare a destructor for that symbol:
3914
3915@example
3916@group
3917%type <context> let
3918%destructor @{ pop_context ($$); @} let
3919
3920%%
3921
5e9b6624
AD
3922stmt:
3923 let stmt
3924 @{
3925 $$ = $2;
be22823e 3926 pop_context ($let);
5e9b6624 3927 @};
841a7737 3928
5e9b6624 3929let:
c949ada3 3930 "let" '(' var ')'
5e9b6624 3931 @{
be22823e 3932 $let = push_context ();
5e9b6624
AD
3933 declare_variable ($3);
3934 @};
841a7737
JD
3935
3936@end group
3937@end example
3938
3939@noindent
3940Note that the action is now at the end of its rule.
3941Any mid-rule action can be converted to an end-of-rule action in this way, and
3942this is what Bison actually does to implement mid-rule actions.
3943
be22823e
AD
3944@node Mid-Rule Action Translation
3945@subsubsection Mid-Rule Action Translation
3946@vindex $@@@var{n}
3947@vindex @@@var{n}
3948
3949As hinted earlier, mid-rule actions are actually transformed into regular
3950rules and actions. The various reports generated by Bison (textual,
3951graphical, etc., see @ref{Understanding, , Understanding Your Parser})
3952reveal this translation, best explained by means of an example. The
3953following rule:
3954
3955@example
3956exp: @{ a(); @} "b" @{ c(); @} @{ d(); @} "e" @{ f(); @};
3957@end example
3958
3959@noindent
3960is translated into:
3961
3962@example
3963$@@1: /* empty */ @{ a(); @};
3964$@@2: /* empty */ @{ c(); @};
3965$@@3: /* empty */ @{ d(); @};
3966exp: $@@1 "b" $@@2 $@@3 "e" @{ f(); @};
3967@end example
3968
3969@noindent
3970with new nonterminal symbols @code{$@@@var{n}}, where @var{n} is a number.
3971
3972A mid-rule action is expected to generate a value if it uses @code{$$}, or
3973the (final) action uses @code{$@var{n}} where @var{n} denote the mid-rule
3974action. In that case its nonterminal is rather named @code{@@@var{n}}:
3975
3976@example
3977exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
3978@end example
3979
3980@noindent
3981is translated into
3982
3983@example
3984@@1: /* empty */ @{ a(); @};
3985@@2: /* empty */ @{ $$ = c(); @};
3986$@@3: /* empty */ @{ d(); @};
3987exp: @@1 "b" @@2 $@@3 "e" @{ f = $1; @}
3988@end example
3989
3990There are probably two errors in the above example: the first mid-rule
3991action does not generate a value (it does not use @code{$$} although the
3992final action uses it), and the value of the second one is not used (the
3993final action does not use @code{$3}). Bison reports these errors when the
3994@code{midrule-value} warnings are enabled (@pxref{Invocation, ,Invoking
3995Bison}):
3996
3997@example
3998$ bison -fcaret -Wmidrule-value mid.y
3999@group
4000mid.y:2.6-13: warning: unset value: $$
4001 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4002 ^^^^^^^^
4003@end group
4004@group
4005mid.y:2.19-31: warning: unused value: $3
4006 exp: @{ a(); @} "b" @{ $$ = c(); @} @{ d(); @} "e" @{ f = $1; @};
4007 ^^^^^^^^^^^^^
4008@end group
4009@end example
4010
4011
4012@node Mid-Rule Conflicts
4013@subsubsection Conflicts due to Mid-Rule Actions
bfa74976
RS
4014Taking action before a rule is completely recognized often leads to
4015conflicts since the parser must commit to a parse in order to execute the
4016action. For example, the following two rules, without mid-rule actions,
4017can coexist in a working parser because the parser can shift the open-brace
4018token and look at what follows before deciding whether there is a
4019declaration or not:
4020
4021@example
4022@group
5e9b6624
AD
4023compound:
4024 '@{' declarations statements '@}'
4025| '@{' statements '@}'
4026;
bfa74976
RS
4027@end group
4028@end example
4029
4030@noindent
4031But when we add a mid-rule action as follows, the rules become nonfunctional:
4032
4033@example
4034@group
5e9b6624
AD
4035compound:
4036 @{ prepare_for_local_variables (); @}
4037 '@{' declarations statements '@}'
bfa74976
RS
4038@end group
4039@group
5e9b6624
AD
4040| '@{' statements '@}'
4041;
bfa74976
RS
4042@end group
4043@end example
4044
4045@noindent
4046Now the parser is forced to decide whether to run the mid-rule action
4047when it has read no farther than the open-brace. In other words, it
4048must commit to using one rule or the other, without sufficient
4049information to do it correctly. (The open-brace token is what is called
742e4900
JD
4050the @dfn{lookahead} token at this time, since the parser is still
4051deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
4052
4053You might think that you could correct the problem by putting identical
4054actions into the two rules, like this:
4055
4056@example
4057@group
5e9b6624
AD
4058compound:
4059 @{ prepare_for_local_variables (); @}
4060 '@{' declarations statements '@}'
4061| @{ prepare_for_local_variables (); @}
4062 '@{' statements '@}'
4063;
bfa74976
RS
4064@end group
4065@end example
4066
4067@noindent
4068But this does not help, because Bison does not realize that the two actions
4069are identical. (Bison never tries to understand the C code in an action.)
4070
4071If the grammar is such that a declaration can be distinguished from a
4072statement by the first token (which is true in C), then one solution which
4073does work is to put the action after the open-brace, like this:
4074
4075@example
4076@group
5e9b6624
AD
4077compound:
4078 '@{' @{ prepare_for_local_variables (); @}
4079 declarations statements '@}'
4080| '@{' statements '@}'
4081;
bfa74976
RS
4082@end group
4083@end example
4084
4085@noindent
4086Now the first token of the following declaration or statement,
4087which would in any case tell Bison which rule to use, can still do so.
4088
4089Another solution is to bury the action inside a nonterminal symbol which
4090serves as a subroutine:
4091
4092@example
4093@group
5e9b6624
AD
4094subroutine:
4095 /* empty */ @{ prepare_for_local_variables (); @}
4096;
bfa74976
RS
4097@end group
4098
4099@group
5e9b6624
AD
4100compound:
4101 subroutine '@{' declarations statements '@}'
4102| subroutine '@{' statements '@}'
4103;
bfa74976
RS
4104@end group
4105@end example
4106
4107@noindent
4108Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4109deciding which rule for @code{compound} it will eventually use.
bfa74976 4110
be22823e 4111
303834cc 4112@node Tracking Locations
847bf1f5
AD
4113@section Tracking Locations
4114@cindex location
95923bd6
AD
4115@cindex textual location
4116@cindex location, textual
847bf1f5
AD
4117
4118Though grammar rules and semantic actions are enough to write a fully
72d2299c 4119functional parser, it can be useful to process some additional information,
3e259915
MA
4120especially symbol locations.
4121
704a47c4
AD
4122The way locations are handled is defined by providing a data type, and
4123actions to take when rules are matched.
847bf1f5
AD
4124
4125@menu
4126* Location Type:: Specifying a data type for locations.
4127* Actions and Locations:: Using locations in actions.
4128* Location Default Action:: Defining a general way to compute locations.
4129@end menu
4130
342b8b6e 4131@node Location Type
847bf1f5
AD
4132@subsection Data Type of Locations
4133@cindex data type of locations
4134@cindex default location type
4135
4136Defining a data type for locations is much simpler than for semantic values,
4137since all tokens and groupings always use the same type.
4138
50cce58e
PE
4139You can specify the type of locations by defining a macro called
4140@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4141defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4142When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4143four members:
4144
4145@example
6273355b 4146typedef struct YYLTYPE
847bf1f5
AD
4147@{
4148 int first_line;
4149 int first_column;
4150 int last_line;
4151 int last_column;
6273355b 4152@} YYLTYPE;
847bf1f5
AD
4153@end example
4154
d59e456d
AD
4155When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4156initializes all these fields to 1 for @code{yylloc}. To initialize
4157@code{yylloc} with a custom location type (or to chose a different
4158initialization), use the @code{%initial-action} directive. @xref{Initial
4159Action Decl, , Performing Actions before Parsing}.
cd48d21d 4160
342b8b6e 4161@node Actions and Locations
847bf1f5
AD
4162@subsection Actions and Locations
4163@cindex location actions
4164@cindex actions, location
4165@vindex @@$
4166@vindex @@@var{n}
d013372c
AR
4167@vindex @@@var{name}
4168@vindex @@[@var{name}]
847bf1f5
AD
4169
4170Actions are not only useful for defining language semantics, but also for
4171describing the behavior of the output parser with locations.
4172
4173The most obvious way for building locations of syntactic groupings is very
72d2299c 4174similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4175constructs can be used to access the locations of the elements being matched.
4176The location of the @var{n}th component of the right hand side is
4177@code{@@@var{n}}, while the location of the left hand side grouping is
4178@code{@@$}.
4179
d013372c
AR
4180In addition, the named references construct @code{@@@var{name}} and
4181@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4182@xref{Named References}, for more information about using the named
4183references construct.
d013372c 4184
3e259915 4185Here is a basic example using the default data type for locations:
847bf1f5
AD
4186
4187@example
4188@group
5e9b6624
AD
4189exp:
4190 @dots{}
4191| exp '/' exp
4192 @{
4193 @@$.first_column = @@1.first_column;
4194 @@$.first_line = @@1.first_line;
4195 @@$.last_column = @@3.last_column;
4196 @@$.last_line = @@3.last_line;
4197 if ($3)
4198 $$ = $1 / $3;
4199 else
4200 @{
4201 $$ = 1;
4202 fprintf (stderr,
4203 "Division by zero, l%d,c%d-l%d,c%d",
4204 @@3.first_line, @@3.first_column,
4205 @@3.last_line, @@3.last_column);
4206 @}
4207 @}
847bf1f5
AD
4208@end group
4209@end example
4210
3e259915 4211As for semantic values, there is a default action for locations that is
72d2299c 4212run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4213beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4214last symbol.
3e259915 4215
72d2299c 4216With this default action, the location tracking can be fully automatic. The
3e259915
MA
4217example above simply rewrites this way:
4218
4219@example
4220@group
5e9b6624
AD
4221exp:
4222 @dots{}
4223| exp '/' exp
4224 @{
4225 if ($3)
4226 $$ = $1 / $3;
4227 else
4228 @{
4229 $$ = 1;
4230 fprintf (stderr,
4231 "Division by zero, l%d,c%d-l%d,c%d",
4232 @@3.first_line, @@3.first_column,
4233 @@3.last_line, @@3.last_column);
4234 @}
4235 @}
3e259915
MA
4236@end group
4237@end example
847bf1f5 4238
32c29292 4239@vindex yylloc
742e4900 4240It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4241from a semantic action.
4242This location is stored in @code{yylloc}.
4243@xref{Action Features, ,Special Features for Use in Actions}.
4244
342b8b6e 4245@node Location Default Action
847bf1f5
AD
4246@subsection Default Action for Locations
4247@vindex YYLLOC_DEFAULT
8a4281b9 4248@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4249
72d2299c 4250Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4251locations are much more general than semantic values, there is room in
4252the output parser to redefine the default action to take for each
72d2299c 4253rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4254matched, before the associated action is run. It is also invoked
4255while processing a syntax error, to compute the error's location.
8a4281b9 4256Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4257parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4258of that ambiguity.
847bf1f5 4259
3e259915 4260Most of the time, this macro is general enough to suppress location
79282c6c 4261dedicated code from semantic actions.
847bf1f5 4262
72d2299c 4263The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4264the location of the grouping (the result of the computation). When a
766de5eb 4265rule is matched, the second parameter identifies locations of
96b93a3d 4266all right hand side elements of the rule being matched, and the third
8710fc41 4267parameter is the size of the rule's right hand side.
8a4281b9 4268When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4269right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4270When processing a syntax error, the second parameter identifies locations
4271of the symbols that were discarded during error processing, and the third
96b93a3d 4272parameter is the number of discarded symbols.
847bf1f5 4273
766de5eb 4274By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4275
c93f22fc
AD
4276@example
4277@group
4278# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4279do \
4280 if (N) \
4281 @{ \
4282 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4283 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4284 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4285 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4286 @} \
4287 else \
4288 @{ \
4289 (Cur).first_line = (Cur).last_line = \
4290 YYRHSLOC(Rhs, 0).last_line; \
4291 (Cur).first_column = (Cur).last_column = \
4292 YYRHSLOC(Rhs, 0).last_column; \
4293 @} \
4294while (0)
4295@end group
4296@end example
676385e2 4297
aaaa2aae 4298@noindent
766de5eb
PE
4299where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4300in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4301just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4302
3e259915 4303When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4304
3e259915 4305@itemize @bullet
79282c6c 4306@item
72d2299c 4307All arguments are free of side-effects. However, only the first one (the
3e259915 4308result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4309
3e259915 4310@item
766de5eb
PE
4311For consistency with semantic actions, valid indexes within the
4312right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4313valid index, and it refers to the symbol just before the reduction.
4314During error processing @var{n} is always positive.
0ae99356
PE
4315
4316@item
4317Your macro should parenthesize its arguments, if need be, since the
4318actual arguments may not be surrounded by parentheses. Also, your
4319macro should expand to something that can be used as a single
4320statement when it is followed by a semicolon.
3e259915 4321@end itemize
847bf1f5 4322
378e917c 4323@node Named References
a7b15ab9 4324@section Named References
378e917c
JD
4325@cindex named references
4326
a40e77eb
JD
4327As described in the preceding sections, the traditional way to refer to any
4328semantic value or location is a @dfn{positional reference}, which takes the
4329form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4330such a reference is not very descriptive. Moreover, if you later decide to
4331insert or remove symbols in the right-hand side of a grammar rule, the need
4332to renumber such references can be tedious and error-prone.
4333
4334To avoid these issues, you can also refer to a semantic value or location
4335using a @dfn{named reference}. First of all, original symbol names may be
4336used as named references. For example:
378e917c
JD
4337
4338@example
4339@group
4340invocation: op '(' args ')'
4341 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4342@end group
4343@end example
4344
4345@noindent
a40e77eb 4346Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4347
4348@example
4349@group
4350invocation: op '(' args ')'
4351 @{ $$ = new_invocation ($op, $args, @@$); @}
4352@end group
4353@end example
4354
4355@noindent
4356However, sometimes regular symbol names are not sufficient due to
4357ambiguities:
4358
4359@example
4360@group
4361exp: exp '/' exp
4362 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4363
4364exp: exp '/' exp
4365 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4366
4367exp: exp '/' exp
4368 @{ $$ = $1 / $3; @} // No error.
4369@end group
4370@end example
4371
4372@noindent
4373When ambiguity occurs, explicitly declared names may be used for values and
4374locations. Explicit names are declared as a bracketed name after a symbol
4375appearance in rule definitions. For example:
4376@example
4377@group
4378exp[result]: exp[left] '/' exp[right]
4379 @{ $result = $left / $right; @}
4380@end group
4381@end example
4382
4383@noindent
a7b15ab9
JD
4384In order to access a semantic value generated by a mid-rule action, an
4385explicit name may also be declared by putting a bracketed name after the
4386closing brace of the mid-rule action code:
378e917c
JD
4387@example
4388@group
4389exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4390 @{ $res = $left + $right; @}
4391@end group
4392@end example
4393
4394@noindent
4395
4396In references, in order to specify names containing dots and dashes, an explicit
4397bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4398@example
4399@group
762caaf6 4400if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4401 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4402@end group
4403@end example
4404
4405It often happens that named references are followed by a dot, dash or other
4406C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4407@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4408@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4409value. In order to force Bison to recognize @samp{name.suffix} in its
4410entirety as the name of a semantic value, the bracketed syntax
4411@samp{$[name.suffix]} must be used.
4412
4413The named references feature is experimental. More user feedback will help
4414to stabilize it.
378e917c 4415
342b8b6e 4416@node Declarations
bfa74976
RS
4417@section Bison Declarations
4418@cindex declarations, Bison
4419@cindex Bison declarations
4420
4421The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4422used in formulating the grammar and the data types of semantic values.
4423@xref{Symbols}.
4424
4425All token type names (but not single-character literal tokens such as
4426@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4427declared if you need to specify which data type to use for the semantic
4428value (@pxref{Multiple Types, ,More Than One Value Type}).
4429
ff7571c0
JD
4430The first rule in the grammar file also specifies the start symbol, by
4431default. If you want some other symbol to be the start symbol, you
4432must declare it explicitly (@pxref{Language and Grammar, ,Languages
4433and Context-Free Grammars}).
bfa74976
RS
4434
4435@menu
b50d2359 4436* Require Decl:: Requiring a Bison version.
bfa74976
RS
4437* Token Decl:: Declaring terminal symbols.
4438* Precedence Decl:: Declaring terminals with precedence and associativity.
4439* Union Decl:: Declaring the set of all semantic value types.
4440* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4441* Initial Action Decl:: Code run before parsing starts.
72f889cc 4442* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4443* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4444* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4445* Start Decl:: Specifying the start symbol.
4446* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4447* Push Decl:: Requesting a push parser.
bfa74976 4448* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4449* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4450* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4451@end menu
4452
b50d2359
AD
4453@node Require Decl
4454@subsection Require a Version of Bison
4455@cindex version requirement
4456@cindex requiring a version of Bison
4457@findex %require
4458
4459You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4460the requirement is not met, @command{bison} exits with an error (exit
4461status 63).
b50d2359
AD
4462
4463@example
4464%require "@var{version}"
4465@end example
4466
342b8b6e 4467@node Token Decl
bfa74976
RS
4468@subsection Token Type Names
4469@cindex declaring token type names
4470@cindex token type names, declaring
931c7513 4471@cindex declaring literal string tokens
bfa74976
RS
4472@findex %token
4473
4474The basic way to declare a token type name (terminal symbol) is as follows:
4475
4476@example
4477%token @var{name}
4478@end example
4479
4480Bison will convert this into a @code{#define} directive in
4481the parser, so that the function @code{yylex} (if it is in this file)
4482can use the name @var{name} to stand for this token type's code.
4483
d78f0ac9
AD
4484Alternatively, you can use @code{%left}, @code{%right},
4485@code{%precedence}, or
14ded682
AD
4486@code{%nonassoc} instead of @code{%token}, if you wish to specify
4487associativity and precedence. @xref{Precedence Decl, ,Operator
4488Precedence}.
bfa74976
RS
4489
4490You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4491a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4492following the token name:
bfa74976
RS
4493
4494@example
4495%token NUM 300
1452af69 4496%token XNUM 0x12d // a GNU extension
bfa74976
RS
4497@end example
4498
4499@noindent
4500It is generally best, however, to let Bison choose the numeric codes for
4501all token types. Bison will automatically select codes that don't conflict
e966383b 4502with each other or with normal characters.
bfa74976
RS
4503
4504In the event that the stack type is a union, you must augment the
4505@code{%token} or other token declaration to include the data type
704a47c4
AD
4506alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4507Than One Value Type}).
bfa74976
RS
4508
4509For example:
4510
4511@example
4512@group
4513%union @{ /* define stack type */
4514 double val;
4515 symrec *tptr;
4516@}
4517%token <val> NUM /* define token NUM and its type */
4518@end group
4519@end example
4520
931c7513
RS
4521You can associate a literal string token with a token type name by
4522writing the literal string at the end of a @code{%token}
4523declaration which declares the name. For example:
4524
4525@example
4526%token arrow "=>"
4527@end example
4528
4529@noindent
4530For example, a grammar for the C language might specify these names with
4531equivalent literal string tokens:
4532
4533@example
4534%token <operator> OR "||"
4535%token <operator> LE 134 "<="
4536%left OR "<="
4537@end example
4538
4539@noindent
4540Once you equate the literal string and the token name, you can use them
4541interchangeably in further declarations or the grammar rules. The
4542@code{yylex} function can use the token name or the literal string to
4543obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4544Syntax error messages passed to @code{yyerror} from the parser will reference
4545the literal string instead of the token name.
4546
4547The token numbered as 0 corresponds to end of file; the following line
4548allows for nicer error messages referring to ``end of file'' instead
4549of ``$end'':
4550
4551@example
4552%token END 0 "end of file"
4553@end example
931c7513 4554
342b8b6e 4555@node Precedence Decl
bfa74976
RS
4556@subsection Operator Precedence
4557@cindex precedence declarations
4558@cindex declaring operator precedence
4559@cindex operator precedence, declaring
4560
d78f0ac9
AD
4561Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4562@code{%precedence} declaration to
bfa74976
RS
4563declare a token and specify its precedence and associativity, all at
4564once. These are called @dfn{precedence declarations}.
704a47c4
AD
4565@xref{Precedence, ,Operator Precedence}, for general information on
4566operator precedence.
bfa74976 4567
ab7f29f8 4568The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4569@code{%token}: either
4570
4571@example
4572%left @var{symbols}@dots{}
4573@end example
4574
4575@noindent
4576or
4577
4578@example
4579%left <@var{type}> @var{symbols}@dots{}
4580@end example
4581
4582And indeed any of these declarations serves the purposes of @code{%token}.
4583But in addition, they specify the associativity and relative precedence for
4584all the @var{symbols}:
4585
4586@itemize @bullet
4587@item
4588The associativity of an operator @var{op} determines how repeated uses
4589of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4590@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4591grouping @var{y} with @var{z} first. @code{%left} specifies
4592left-associativity (grouping @var{x} with @var{y} first) and
4593@code{%right} specifies right-associativity (grouping @var{y} with
4594@var{z} first). @code{%nonassoc} specifies no associativity, which
4595means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4596considered a syntax error.
4597
d78f0ac9
AD
4598@code{%precedence} gives only precedence to the @var{symbols}, and
4599defines no associativity at all. Use this to define precedence only,
4600and leave any potential conflict due to associativity enabled.
4601
bfa74976
RS
4602@item
4603The precedence of an operator determines how it nests with other operators.
4604All the tokens declared in a single precedence declaration have equal
4605precedence and nest together according to their associativity.
4606When two tokens declared in different precedence declarations associate,
4607the one declared later has the higher precedence and is grouped first.
4608@end itemize
4609
ab7f29f8
JD
4610For backward compatibility, there is a confusing difference between the
4611argument lists of @code{%token} and precedence declarations.
4612Only a @code{%token} can associate a literal string with a token type name.
4613A precedence declaration always interprets a literal string as a reference to a
4614separate token.
4615For example:
4616
4617@example
4618%left OR "<=" // Does not declare an alias.
4619%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4620@end example
4621
342b8b6e 4622@node Union Decl
bfa74976
RS
4623@subsection The Collection of Value Types
4624@cindex declaring value types
4625@cindex value types, declaring
4626@findex %union
4627
287c78f6
PE
4628The @code{%union} declaration specifies the entire collection of
4629possible data types for semantic values. The keyword @code{%union} is
4630followed by braced code containing the same thing that goes inside a
4631@code{union} in C@.
bfa74976
RS
4632
4633For example:
4634
4635@example
4636@group
4637%union @{
4638 double val;
4639 symrec *tptr;
4640@}
4641@end group
4642@end example
4643
4644@noindent
4645This says that the two alternative types are @code{double} and @code{symrec
4646*}. They are given names @code{val} and @code{tptr}; these names are used
4647in the @code{%token} and @code{%type} declarations to pick one of the types
4648for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4649
8a4281b9 4650As an extension to POSIX, a tag is allowed after the
6273355b
PE
4651@code{union}. For example:
4652
4653@example
4654@group
4655%union value @{
4656 double val;
4657 symrec *tptr;
4658@}
4659@end group
4660@end example
4661
d6ca7905 4662@noindent
6273355b
PE
4663specifies the union tag @code{value}, so the corresponding C type is
4664@code{union value}. If you do not specify a tag, it defaults to
4665@code{YYSTYPE}.
4666
8a4281b9 4667As another extension to POSIX, you may specify multiple
d6ca7905
PE
4668@code{%union} declarations; their contents are concatenated. However,
4669only the first @code{%union} declaration can specify a tag.
4670
6273355b 4671Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4672a semicolon after the closing brace.
4673
ddc8ede1
PE
4674Instead of @code{%union}, you can define and use your own union type
4675@code{YYSTYPE} if your grammar contains at least one
4676@samp{<@var{type}>} tag. For example, you can put the following into
4677a header file @file{parser.h}:
4678
4679@example
4680@group
4681union YYSTYPE @{
4682 double val;
4683 symrec *tptr;
4684@};
4685typedef union YYSTYPE YYSTYPE;
4686@end group
4687@end example
4688
4689@noindent
4690and then your grammar can use the following
4691instead of @code{%union}:
4692
4693@example
4694@group
4695%@{
4696#include "parser.h"
4697%@}
4698%type <val> expr
4699%token <tptr> ID
4700@end group
4701@end example
4702
342b8b6e 4703@node Type Decl
bfa74976
RS
4704@subsection Nonterminal Symbols
4705@cindex declaring value types, nonterminals
4706@cindex value types, nonterminals, declaring
4707@findex %type
4708
4709@noindent
4710When you use @code{%union} to specify multiple value types, you must
4711declare the value type of each nonterminal symbol for which values are
4712used. This is done with a @code{%type} declaration, like this:
4713
4714@example
4715%type <@var{type}> @var{nonterminal}@dots{}
4716@end example
4717
4718@noindent
704a47c4
AD
4719Here @var{nonterminal} is the name of a nonterminal symbol, and
4720@var{type} is the name given in the @code{%union} to the alternative
4721that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4722can give any number of nonterminal symbols in the same @code{%type}
4723declaration, if they have the same value type. Use spaces to separate
4724the symbol names.
bfa74976 4725
931c7513
RS
4726You can also declare the value type of a terminal symbol. To do this,
4727use the same @code{<@var{type}>} construction in a declaration for the
4728terminal symbol. All kinds of token declarations allow
4729@code{<@var{type}>}.
4730
18d192f0
AD
4731@node Initial Action Decl
4732@subsection Performing Actions before Parsing
4733@findex %initial-action
4734
4735Sometimes your parser needs to perform some initializations before
4736parsing. The @code{%initial-action} directive allows for such arbitrary
4737code.
4738
4739@deffn {Directive} %initial-action @{ @var{code} @}
4740@findex %initial-action
287c78f6 4741Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4742@code{yyparse} is called. The @var{code} may use @code{$$} (or
4743@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4744lookahead --- and the @code{%parse-param}.
18d192f0
AD
4745@end deffn
4746
451364ed
AD
4747For instance, if your locations use a file name, you may use
4748
4749@example
48b16bbc 4750%parse-param @{ char const *file_name @};
451364ed
AD
4751%initial-action
4752@{
4626a15d 4753 @@$.initialize (file_name);
451364ed
AD
4754@};
4755@end example
4756
18d192f0 4757
72f889cc
AD
4758@node Destructor Decl
4759@subsection Freeing Discarded Symbols
4760@cindex freeing discarded symbols
4761@findex %destructor
12e35840 4762@findex <*>
3ebecc24 4763@findex <>
a85284cf
AD
4764During error recovery (@pxref{Error Recovery}), symbols already pushed
4765on the stack and tokens coming from the rest of the file are discarded
4766until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4767or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4768symbols on the stack must be discarded. Even if the parser succeeds, it
4769must discard the start symbol.
258b75ca
PE
4770
4771When discarded symbols convey heap based information, this memory is
4772lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4773in traditional compilers, it is unacceptable for programs like shells or
4774protocol implementations that may parse and execute indefinitely.
258b75ca 4775
a85284cf
AD
4776The @code{%destructor} directive defines code that is called when a
4777symbol is automatically discarded.
72f889cc
AD
4778
4779@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4780@findex %destructor
287c78f6 4781Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4782@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4783designates the semantic value associated with the discarded symbol, and
4784@code{@@$} designates its location. The additional parser parameters are
4785also available (@pxref{Parser Function, , The Parser Function
4786@code{yyparse}}).
ec5479ce 4787
b2a0b7ca
JD
4788When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4789per-symbol @code{%destructor}.
4790You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4791tag among @var{symbols}.
b2a0b7ca 4792In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4793grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4794per-symbol @code{%destructor}.
4795
12e35840 4796Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4797(These default forms are experimental.
4798More user feedback will help to determine whether they should become permanent
4799features.)
3ebecc24 4800You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4801exactly one @code{%destructor} declaration in your grammar file.
4802The parser will invoke the @var{code} associated with one of these whenever it
4803discards any user-defined grammar symbol that has no per-symbol and no per-type
4804@code{%destructor}.
4805The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4806symbol for which you have formally declared a semantic type tag (@code{%type}
4807counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4808The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4809symbol that has no declared semantic type tag.
72f889cc
AD
4810@end deffn
4811
b2a0b7ca 4812@noindent
12e35840 4813For example:
72f889cc 4814
c93f22fc 4815@example
ec5479ce
JD
4816%union @{ char *string; @}
4817%token <string> STRING1
4818%token <string> STRING2
4819%type <string> string1
4820%type <string> string2
b2a0b7ca
JD
4821%union @{ char character; @}
4822%token <character> CHR
4823%type <character> chr
12e35840
JD
4824%token TAGLESS
4825
b2a0b7ca 4826%destructor @{ @} <character>
12e35840
JD
4827%destructor @{ free ($$); @} <*>
4828%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4829%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4830@end example
72f889cc
AD
4831
4832@noindent
b2a0b7ca
JD
4833guarantees that, when the parser discards any user-defined symbol that has a
4834semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4835to @code{free} by default.
ec5479ce
JD
4836However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4837prints its line number to @code{stdout}.
4838It performs only the second @code{%destructor} in this case, so it invokes
4839@code{free} only once.
12e35840
JD
4840Finally, the parser merely prints a message whenever it discards any symbol,
4841such as @code{TAGLESS}, that has no semantic type tag.
4842
4843A Bison-generated parser invokes the default @code{%destructor}s only for
4844user-defined as opposed to Bison-defined symbols.
4845For example, the parser will not invoke either kind of default
4846@code{%destructor} for the special Bison-defined symbols @code{$accept},
4847@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4848none of which you can reference in your grammar.
4849It also will not invoke either for the @code{error} token (@pxref{Table of
4850Symbols, ,error}), which is always defined by Bison regardless of whether you
4851reference it in your grammar.
4852However, it may invoke one of them for the end token (token 0) if you
4853redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4854
c93f22fc 4855@example
3508ce36 4856%token END 0
c93f22fc 4857@end example
3508ce36 4858
12e35840
JD
4859@cindex actions in mid-rule
4860@cindex mid-rule actions
4861Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4862mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4863That is, Bison does not consider a mid-rule to have a semantic value if you
4864do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4865(where @var{n} is the right-hand side symbol position of the mid-rule) in
4866any later action in that rule. However, if you do reference either, the
4867Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4868it discards the mid-rule symbol.
12e35840 4869
3508ce36
JD
4870@ignore
4871@noindent
4872In the future, it may be possible to redefine the @code{error} token as a
4873nonterminal that captures the discarded symbols.
4874In that case, the parser will invoke the default destructor for it as well.
4875@end ignore
4876
e757bb10
AD
4877@sp 1
4878
4879@cindex discarded symbols
4880@dfn{Discarded symbols} are the following:
4881
4882@itemize
4883@item
4884stacked symbols popped during the first phase of error recovery,
4885@item
4886incoming terminals during the second phase of error recovery,
4887@item
742e4900 4888the current lookahead and the entire stack (except the current
9d9b8b70 4889right-hand side symbols) when the parser returns immediately, and
258b75ca 4890@item
d3e4409a
AD
4891the current lookahead and the entire stack (including the current right-hand
4892side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4893@code{parse},
4894@item
258b75ca 4895the start symbol, when the parser succeeds.
e757bb10
AD
4896@end itemize
4897
9d9b8b70
PE
4898The parser can @dfn{return immediately} because of an explicit call to
4899@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4900exhaustion.
4901
29553547 4902Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4903error via @code{YYERROR} are not discarded automatically. As a rule
4904of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4905the memory.
e757bb10 4906
93c150b6
AD
4907@node Printer Decl
4908@subsection Printing Semantic Values
4909@cindex printing semantic values
4910@findex %printer
4911@findex <*>
4912@findex <>
4913When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4914the parser reports its actions, such as reductions. When a symbol involved
4915in an action is reported, only its kind is displayed, as the parser cannot
4916know how semantic values should be formatted.
4917
4918The @code{%printer} directive defines code that is called when a symbol is
4919reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4920Decl, , Freeing Discarded Symbols}).
4921
4922@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4923@findex %printer
4924@vindex yyoutput
4925@c This is the same text as for %destructor.
4926Invoke the braced @var{code} whenever the parser displays one of the
4927@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4928(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4929@code{$<@var{tag}>$}) designates the semantic value associated with the
4930symbol, and @code{@@$} its location. The additional parser parameters are
4931also available (@pxref{Parser Function, , The Parser Function
4932@code{yyparse}}).
93c150b6
AD
4933
4934The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4935Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4936@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4937typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4938@samp{<>}).
4939@end deffn
4940
4941@noindent
4942For example:
4943
4944@example
4945%union @{ char *string; @}
4946%token <string> STRING1
4947%token <string> STRING2
4948%type <string> string1
4949%type <string> string2
4950%union @{ char character; @}
4951%token <character> CHR
4952%type <character> chr
4953%token TAGLESS
4954
4955%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4956%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4957%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4958%printer @{ fprintf (yyoutput, "<>"); @} <>
4959@end example
4960
4961@noindent
4962guarantees that, when the parser print any symbol that has a semantic type
4963tag other than @code{<character>}, it display the address of the semantic
4964value by default. However, when the parser displays a @code{STRING1} or a
4965@code{string1}, it formats it as a string in double quotes. It performs
4966only the second @code{%printer} in this case, so it prints only once.
4967Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4968that has no semantic type tag. See also
4969
4970
342b8b6e 4971@node Expect Decl
bfa74976
RS
4972@subsection Suppressing Conflict Warnings
4973@cindex suppressing conflict warnings
4974@cindex preventing warnings about conflicts
4975@cindex warnings, preventing
4976@cindex conflicts, suppressing warnings of
4977@findex %expect
d6328241 4978@findex %expect-rr
bfa74976
RS
4979
4980Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4981(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4982have harmless shift/reduce conflicts which are resolved in a predictable
4983way and would be difficult to eliminate. It is desirable to suppress
4984the warning about these conflicts unless the number of conflicts
4985changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4986
4987The declaration looks like this:
4988
4989@example
4990%expect @var{n}
4991@end example
4992
035aa4a0
PE
4993Here @var{n} is a decimal integer. The declaration says there should
4994be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4995Bison reports an error if the number of shift/reduce conflicts differs
4996from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4997
eb45ef3b 4998For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4999serious, and should be eliminated entirely. Bison will always report
8a4281b9 5000reduce/reduce conflicts for these parsers. With GLR
035aa4a0 5001parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 5002there would be no need to use GLR parsing. Therefore, it is
035aa4a0 5003also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 5004in GLR parsers, using the declaration:
d6328241
PH
5005
5006@example
5007%expect-rr @var{n}
5008@end example
5009
bfa74976
RS
5010In general, using @code{%expect} involves these steps:
5011
5012@itemize @bullet
5013@item
5014Compile your grammar without @code{%expect}. Use the @samp{-v} option
5015to get a verbose list of where the conflicts occur. Bison will also
5016print the number of conflicts.
5017
5018@item
5019Check each of the conflicts to make sure that Bison's default
5020resolution is what you really want. If not, rewrite the grammar and
5021go back to the beginning.
5022
5023@item
5024Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 5025number which Bison printed. With GLR parsers, add an
035aa4a0 5026@code{%expect-rr} declaration as well.
bfa74976
RS
5027@end itemize
5028
93d7dde9
JD
5029Now Bison will report an error if you introduce an unexpected conflict,
5030but will keep silent otherwise.
bfa74976 5031
342b8b6e 5032@node Start Decl
bfa74976
RS
5033@subsection The Start-Symbol
5034@cindex declaring the start symbol
5035@cindex start symbol, declaring
5036@cindex default start symbol
5037@findex %start
5038
5039Bison assumes by default that the start symbol for the grammar is the first
5040nonterminal specified in the grammar specification section. The programmer
5041may override this restriction with the @code{%start} declaration as follows:
5042
5043@example
5044%start @var{symbol}
5045@end example
5046
342b8b6e 5047@node Pure Decl
bfa74976
RS
5048@subsection A Pure (Reentrant) Parser
5049@cindex reentrant parser
5050@cindex pure parser
d9df47b6 5051@findex %define api.pure
bfa74976
RS
5052
5053A @dfn{reentrant} program is one which does not alter in the course of
5054execution; in other words, it consists entirely of @dfn{pure} (read-only)
5055code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
5056for example, a nonreentrant program may not be safe to call from a signal
5057handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
5058program must be called only within interlocks.
5059
70811b85 5060Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
5061suitable for most uses, and it permits compatibility with Yacc. (The
5062standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
5063statically allocated variables for communication with @code{yylex},
5064including @code{yylval} and @code{yylloc}.)
bfa74976 5065
70811b85 5066Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 5067declaration @samp{%define api.pure} says that you want the parser to be
70811b85 5068reentrant. It looks like this:
bfa74976
RS
5069
5070@example
1f1bd572 5071%define api.pure full
bfa74976
RS
5072@end example
5073
70811b85
RS
5074The result is that the communication variables @code{yylval} and
5075@code{yylloc} become local variables in @code{yyparse}, and a different
5076calling convention is used for the lexical analyzer function
5077@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
5078Parsers}, for the details of this. The variable @code{yynerrs}
5079becomes local in @code{yyparse} in pull mode but it becomes a member
a73aa764 5080of @code{yypstate} in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
5081Reporting Function @code{yyerror}}). The convention for calling
5082@code{yyparse} itself is unchanged.
5083
5084Whether the parser is pure has nothing to do with the grammar rules.
5085You can generate either a pure parser or a nonreentrant parser from any
5086valid grammar.
bfa74976 5087
9987d1b3
JD
5088@node Push Decl
5089@subsection A Push Parser
5090@cindex push parser
5091@cindex push parser
67212941 5092@findex %define api.push-pull
9987d1b3 5093
59da312b
JD
5094(The current push parsing interface is experimental and may evolve.
5095More user feedback will help to stabilize it.)
5096
f4101aa6
AD
5097A pull parser is called once and it takes control until all its input
5098is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
5099each time a new token is made available.
5100
f4101aa6 5101A push parser is typically useful when the parser is part of a
9987d1b3 5102main event loop in the client's application. This is typically
f4101aa6
AD
5103a requirement of a GUI, when the main event loop needs to be triggered
5104within a certain time period.
9987d1b3 5105
d782395d
JD
5106Normally, Bison generates a pull parser.
5107The following Bison declaration says that you want the parser to be a push
35c1e5f0 5108parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5109
5110@example
cf499cff 5111%define api.push-pull push
9987d1b3
JD
5112@end example
5113
5114In almost all cases, you want to ensure that your push parser is also
5115a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5116time you should create an impure push parser is to have backwards
9987d1b3
JD
5117compatibility with the impure Yacc pull mode interface. Unless you know
5118what you are doing, your declarations should look like this:
5119
5120@example
1f1bd572 5121%define api.pure full
cf499cff 5122%define api.push-pull push
9987d1b3
JD
5123@end example
5124
f4101aa6
AD
5125There is a major notable functional difference between the pure push parser
5126and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5127many parser instances, of the same type of parser, in memory at the same time.
5128An impure push parser should only use one parser at a time.
5129
5130When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5131the generated parser. @code{yypstate} is a structure that the generated
5132parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5133function that will create a new parser instance. @code{yypstate_delete}
5134will free the resources associated with the corresponding parser instance.
f4101aa6 5135Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5136token is available to provide the parser. A trivial example
5137of using a pure push parser would look like this:
5138
5139@example
5140int status;
5141yypstate *ps = yypstate_new ();
5142do @{
5143 status = yypush_parse (ps, yylex (), NULL);
5144@} while (status == YYPUSH_MORE);
5145yypstate_delete (ps);
5146@end example
5147
5148If the user decided to use an impure push parser, a few things about
f4101aa6 5149the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5150a global variable instead of a variable in the @code{yypush_parse} function.
5151For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5152changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5153example would thus look like this:
5154
5155@example
5156extern int yychar;
5157int status;
5158yypstate *ps = yypstate_new ();
5159do @{
5160 yychar = yylex ();
5161 status = yypush_parse (ps);
5162@} while (status == YYPUSH_MORE);
5163yypstate_delete (ps);
5164@end example
5165
f4101aa6 5166That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5167for use by the next invocation of the @code{yypush_parse} function.
5168
f4101aa6 5169Bison also supports both the push parser interface along with the pull parser
9987d1b3 5170interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5171you should replace the @samp{%define api.push-pull push} declaration with the
5172@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5173the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5174and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5175would be used. However, the user should note that it is implemented in the
d782395d
JD
5176generated parser by calling @code{yypull_parse}.
5177This makes the @code{yyparse} function that is generated with the
cf499cff 5178@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5179@code{yyparse} function. If the user
5180calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5181stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5182and then @code{yypull_parse} the rest of the input stream. If you would like
5183to switch back and forth between between parsing styles, you would have to
5184write your own @code{yypull_parse} function that knows when to quit looking
5185for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5186like this:
5187
5188@example
5189yypstate *ps = yypstate_new ();
5190yypull_parse (ps); /* Will call the lexer */
5191yypstate_delete (ps);
5192@end example
5193
67501061 5194Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5195the generated parser with @samp{%define api.push-pull both} as it did for
5196@samp{%define api.push-pull push}.
9987d1b3 5197
342b8b6e 5198@node Decl Summary
bfa74976
RS
5199@subsection Bison Declaration Summary
5200@cindex Bison declaration summary
5201@cindex declaration summary
5202@cindex summary, Bison declaration
5203
d8988b2f 5204Here is a summary of the declarations used to define a grammar:
bfa74976 5205
18b519c0 5206@deffn {Directive} %union
bfa74976
RS
5207Declare the collection of data types that semantic values may have
5208(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5209@end deffn
bfa74976 5210
18b519c0 5211@deffn {Directive} %token
bfa74976
RS
5212Declare a terminal symbol (token type name) with no precedence
5213or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5214@end deffn
bfa74976 5215
18b519c0 5216@deffn {Directive} %right
bfa74976
RS
5217Declare a terminal symbol (token type name) that is right-associative
5218(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5219@end deffn
bfa74976 5220
18b519c0 5221@deffn {Directive} %left
bfa74976
RS
5222Declare a terminal symbol (token type name) that is left-associative
5223(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5224@end deffn
bfa74976 5225
18b519c0 5226@deffn {Directive} %nonassoc
bfa74976 5227Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5228(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5229Using it in a way that would be associative is a syntax error.
5230@end deffn
5231
91d2c560 5232@ifset defaultprec
39a06c25 5233@deffn {Directive} %default-prec
22fccf95 5234Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5235(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5236@end deffn
91d2c560 5237@end ifset
bfa74976 5238
18b519c0 5239@deffn {Directive} %type
bfa74976
RS
5240Declare the type of semantic values for a nonterminal symbol
5241(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5242@end deffn
bfa74976 5243
18b519c0 5244@deffn {Directive} %start
89cab50d
AD
5245Specify the grammar's start symbol (@pxref{Start Decl, ,The
5246Start-Symbol}).
18b519c0 5247@end deffn
bfa74976 5248
18b519c0 5249@deffn {Directive} %expect
bfa74976
RS
5250Declare the expected number of shift-reduce conflicts
5251(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5252@end deffn
5253
bfa74976 5254
d8988b2f
AD
5255@sp 1
5256@noindent
5257In order to change the behavior of @command{bison}, use the following
5258directives:
5259
148d66d8 5260@deffn {Directive} %code @{@var{code}@}
e0c07222 5261@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5262@findex %code
e0c07222
JD
5263Insert @var{code} verbatim into the output parser source at the
5264default location or at the location specified by @var{qualifier}.
5265@xref{%code Summary}.
148d66d8
JD
5266@end deffn
5267
18b519c0 5268@deffn {Directive} %debug
60aa04a2 5269Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5270parse.trace}.
ec3bc396 5271@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5272@end deffn
d8988b2f 5273
35c1e5f0
JD
5274@deffn {Directive} %define @var{variable}
5275@deffnx {Directive} %define @var{variable} @var{value}
5276@deffnx {Directive} %define @var{variable} "@var{value}"
5277Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5278@end deffn
5279
5280@deffn {Directive} %defines
5281Write a parser header file containing macro definitions for the token
5282type names defined in the grammar as well as a few other declarations.
5283If the parser implementation file is named @file{@var{name}.c} then
5284the parser header file is named @file{@var{name}.h}.
5285
5286For C parsers, the parser header file declares @code{YYSTYPE} unless
5287@code{YYSTYPE} is already defined as a macro or you have used a
5288@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5289you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5290Value Type}) with components that require other definitions, or if you
5291have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5292Type, ,Data Types of Semantic Values}), you need to arrange for these
5293definitions to be propagated to all modules, e.g., by putting them in
5294a prerequisite header that is included both by your parser and by any
5295other module that needs @code{YYSTYPE}.
5296
5297Unless your parser is pure, the parser header file declares
5298@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5299(Reentrant) Parser}.
5300
5301If you have also used locations, the parser header file declares
303834cc
JD
5302@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5303@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5304
5305This parser header file is normally essential if you wish to put the
5306definition of @code{yylex} in a separate source file, because
5307@code{yylex} typically needs to be able to refer to the
5308above-mentioned declarations and to the token type codes. @xref{Token
5309Values, ,Semantic Values of Tokens}.
5310
5311@findex %code requires
5312@findex %code provides
5313If you have declared @code{%code requires} or @code{%code provides}, the output
5314header also contains their code.
5315@xref{%code Summary}.
c9d5bcc9
AD
5316
5317@cindex Header guard
5318The generated header is protected against multiple inclusions with a C
5319preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5320@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5321,Multiple Parsers in the Same Program}) and generated file name turned
5322uppercase, with each series of non alphanumerical characters converted to a
5323single underscore.
5324
5325For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5326"lib/parse.h"}, the header will be guarded as follows.
5327@example
5328#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5329# define YY_CALC_LIB_PARSE_H_INCLUDED
5330...
5331#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5332@end example
35c1e5f0
JD
5333@end deffn
5334
5335@deffn {Directive} %defines @var{defines-file}
5336Same as above, but save in the file @var{defines-file}.
5337@end deffn
5338
5339@deffn {Directive} %destructor
5340Specify how the parser should reclaim the memory associated to
5341discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5342@end deffn
5343
5344@deffn {Directive} %file-prefix "@var{prefix}"
5345Specify a prefix to use for all Bison output file names. The names
5346are chosen as if the grammar file were named @file{@var{prefix}.y}.
5347@end deffn
5348
5349@deffn {Directive} %language "@var{language}"
5350Specify the programming language for the generated parser. Currently
5351supported languages include C, C++, and Java.
5352@var{language} is case-insensitive.
5353
35c1e5f0
JD
5354@end deffn
5355
5356@deffn {Directive} %locations
5357Generate the code processing the locations (@pxref{Action Features,
5358,Special Features for Use in Actions}). This mode is enabled as soon as
5359the grammar uses the special @samp{@@@var{n}} tokens, but if your
5360grammar does not use it, using @samp{%locations} allows for more
5361accurate syntax error messages.
5362@end deffn
5363
5364@deffn {Directive} %name-prefix "@var{prefix}"
5365Rename the external symbols used in the parser so that they start with
5366@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5367in C parsers
5368is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5369@code{yylval}, @code{yychar}, @code{yydebug}, and
5370(if locations are used) @code{yylloc}. If you use a push parser,
5371@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5372@code{yypstate_new} and @code{yypstate_delete} will
5373also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5374names become @code{c_parse}, @code{c_lex}, and so on.
5375For C++ parsers, see the @samp{%define api.namespace} documentation in this
5376section.
5377@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5378@end deffn
5379
5380@ifset defaultprec
5381@deffn {Directive} %no-default-prec
5382Do not assign a precedence to rules lacking an explicit @code{%prec}
5383modifier (@pxref{Contextual Precedence, ,Context-Dependent
5384Precedence}).
5385@end deffn
5386@end ifset
5387
5388@deffn {Directive} %no-lines
5389Don't generate any @code{#line} preprocessor commands in the parser
5390implementation file. Ordinarily Bison writes these commands in the
5391parser implementation file so that the C compiler and debuggers will
5392associate errors and object code with your source file (the grammar
5393file). This directive causes them to associate errors with the parser
5394implementation file, treating it as an independent source file in its
5395own right.
5396@end deffn
5397
5398@deffn {Directive} %output "@var{file}"
5399Specify @var{file} for the parser implementation file.
5400@end deffn
5401
5402@deffn {Directive} %pure-parser
5403Deprecated version of @samp{%define api.pure} (@pxref{%define
5404Summary,,api.pure}), for which Bison is more careful to warn about
5405unreasonable usage.
5406@end deffn
5407
5408@deffn {Directive} %require "@var{version}"
5409Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5410Require a Version of Bison}.
5411@end deffn
5412
5413@deffn {Directive} %skeleton "@var{file}"
5414Specify the skeleton to use.
5415
5416@c You probably don't need this option unless you are developing Bison.
5417@c You should use @code{%language} if you want to specify the skeleton for a
5418@c different language, because it is clearer and because it will always choose the
5419@c correct skeleton for non-deterministic or push parsers.
5420
5421If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5422file in the Bison installation directory.
5423If it does, @var{file} is an absolute file name or a file name relative to the
5424directory of the grammar file.
5425This is similar to how most shells resolve commands.
5426@end deffn
5427
5428@deffn {Directive} %token-table
5429Generate an array of token names in the parser implementation file.
5430The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5431the name of the token whose internal Bison token code number is
5432@var{i}. The first three elements of @code{yytname} correspond to the
5433predefined tokens @code{"$end"}, @code{"error"}, and
5434@code{"$undefined"}; after these come the symbols defined in the
5435grammar file.
5436
5437The name in the table includes all the characters needed to represent
5438the token in Bison. For single-character literals and literal
5439strings, this includes the surrounding quoting characters and any
5440escape sequences. For example, the Bison single-character literal
5441@code{'+'} corresponds to a three-character name, represented in C as
5442@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5443corresponds to a five-character name, represented in C as
5444@code{"\"\\\\/\""}.
5445
5446When you specify @code{%token-table}, Bison also generates macro
5447definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5448@code{YYNRULES}, and @code{YYNSTATES}:
5449
5450@table @code
5451@item YYNTOKENS
5452The highest token number, plus one.
5453@item YYNNTS
5454The number of nonterminal symbols.
5455@item YYNRULES
5456The number of grammar rules,
5457@item YYNSTATES
5458The number of parser states (@pxref{Parser States}).
5459@end table
5460@end deffn
5461
5462@deffn {Directive} %verbose
5463Write an extra output file containing verbose descriptions of the
5464parser states and what is done for each type of lookahead token in
5465that state. @xref{Understanding, , Understanding Your Parser}, for more
5466information.
5467@end deffn
5468
5469@deffn {Directive} %yacc
5470Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5471including its naming conventions. @xref{Bison Options}, for more.
5472@end deffn
5473
5474
5475@node %define Summary
5476@subsection %define Summary
51151d91
JD
5477
5478There are many features of Bison's behavior that can be controlled by
5479assigning the feature a single value. For historical reasons, some
5480such features are assigned values by dedicated directives, such as
5481@code{%start}, which assigns the start symbol. However, newer such
5482features are associated with variables, which are assigned by the
5483@code{%define} directive:
5484
c1d19e10 5485@deffn {Directive} %define @var{variable}
cf499cff 5486@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5487@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5488Define @var{variable} to @var{value}.
9611cfa2 5489
51151d91
JD
5490@var{value} must be placed in quotation marks if it contains any
5491character other than a letter, underscore, period, or non-initial dash
5492or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5493to specifying @code{""}.
9611cfa2 5494
51151d91
JD
5495It is an error if a @var{variable} is defined by @code{%define}
5496multiple times, but see @ref{Bison Options,,-D
5497@var{name}[=@var{value}]}.
5498@end deffn
cf499cff 5499
51151d91
JD
5500The rest of this section summarizes variables and values that
5501@code{%define} accepts.
9611cfa2 5502
51151d91
JD
5503Some @var{variable}s take Boolean values. In this case, Bison will
5504complain if the variable definition does not meet one of the following
5505four conditions:
9611cfa2
JD
5506
5507@enumerate
cf499cff 5508@item @code{@var{value}} is @code{true}
9611cfa2 5509
cf499cff
JD
5510@item @code{@var{value}} is omitted (or @code{""} is specified).
5511This is equivalent to @code{true}.
9611cfa2 5512
cf499cff 5513@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5514
5515@item @var{variable} is never defined.
c6abeab1 5516In this case, Bison selects a default value.
9611cfa2 5517@end enumerate
148d66d8 5518
c6abeab1
JD
5519What @var{variable}s are accepted, as well as their meanings and default
5520values, depend on the selected target language and/or the parser
5521skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5522Summary,,%skeleton}).
5523Unaccepted @var{variable}s produce an error.
793fbca5
JD
5524Some of the accepted @var{variable}s are:
5525
fa819509 5526@table @code
6b5a0de9 5527@c ================================================== api.namespace
67501061
AD
5528@item api.namespace
5529@findex %define api.namespace
5530@itemize
5531@item Languages(s): C++
5532
f1b238df 5533@item Purpose: Specify the namespace for the parser class.
67501061
AD
5534For example, if you specify:
5535
c93f22fc 5536@example
67501061 5537%define api.namespace "foo::bar"
c93f22fc 5538@end example
67501061
AD
5539
5540Bison uses @code{foo::bar} verbatim in references such as:
5541
c93f22fc 5542@example
67501061 5543foo::bar::parser::semantic_type
c93f22fc 5544@end example
67501061
AD
5545
5546However, to open a namespace, Bison removes any leading @code{::} and then
5547splits on any remaining occurrences:
5548
c93f22fc 5549@example
67501061
AD
5550namespace foo @{ namespace bar @{
5551 class position;
5552 class location;
5553@} @}
c93f22fc 5554@end example
67501061
AD
5555
5556@item Accepted Values:
5557Any absolute or relative C++ namespace reference without a trailing
5558@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5559
5560@item Default Value:
5561The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5562This usage of @code{%name-prefix} is for backward compatibility and can
5563be confusing since @code{%name-prefix} also specifies the textual prefix
5564for the lexical analyzer function. Thus, if you specify
5565@code{%name-prefix}, it is best to also specify @samp{%define
5566api.namespace} so that @code{%name-prefix} @emph{only} affects the
5567lexical analyzer function. For example, if you specify:
5568
c93f22fc 5569@example
67501061
AD
5570%define api.namespace "foo"
5571%name-prefix "bar::"
c93f22fc 5572@end example
67501061
AD
5573
5574The parser namespace is @code{foo} and @code{yylex} is referenced as
5575@code{bar::lex}.
5576@end itemize
5577@c namespace
5578
db8ab2be
AD
5579@c ================================================== api.location.type
5580@item @code{api.location.type}
5581@findex %define api.location.type
5582
5583@itemize @bullet
7287be84 5584@item Language(s): C++, Java
db8ab2be
AD
5585
5586@item Purpose: Define the location type.
5587@xref{User Defined Location Type}.
5588
5589@item Accepted Values: String
5590
5591@item Default Value: none
5592
5593@item History: introduced in Bison 2.7
5594@end itemize
67501061 5595
4b3847c3 5596@c ================================================== api.prefix
5458913a 5597@item api.prefix
4b3847c3
AD
5598@findex %define api.prefix
5599
5600@itemize @bullet
5601@item Language(s): All
5602
db8ab2be 5603@item Purpose: Rename exported symbols.
4b3847c3
AD
5604@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5605
5606@item Accepted Values: String
5607
5608@item Default Value: @code{yy}
e358222b
AD
5609
5610@item History: introduced in Bison 2.6
4b3847c3 5611@end itemize
67501061
AD
5612
5613@c ================================================== api.pure
d9df47b6
JD
5614@item api.pure
5615@findex %define api.pure
5616
5617@itemize @bullet
5618@item Language(s): C
5619
5620@item Purpose: Request a pure (reentrant) parser program.
5621@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5622
1f1bd572
TR
5623@item Accepted Values: @code{true}, @code{false}, @code{full}
5624
5625The value may be omitted: this is equivalent to specifying @code{true}, as is
5626the case for Boolean values.
5627
5628When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5629changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5630@code{yyerror} when the tracking of locations has been activated, as shown
5631below.
1f1bd572
TR
5632
5633The @code{true} value is very similar to the @code{full} value, the only
5634difference is in the signature of @code{yyerror} on Yacc parsers without
5635@code{%parse-param}, for historical reasons.
5636
5637I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5638@code{yyerror} are:
5639
5640@example
c949ada3
AD
5641void yyerror (char const *msg); // Yacc parsers.
5642void yyerror (YYLTYPE *locp, char const *msg); // GLR parsers.
1f1bd572
TR
5643@end example
5644
5645But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5646used, then both parsers have the same signature:
5647
5648@example
5649void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5650@end example
5651
5652(@pxref{Error Reporting, ,The Error
5653Reporting Function @code{yyerror}})
d9df47b6 5654
cf499cff 5655@item Default Value: @code{false}
1f1bd572
TR
5656
5657@item History: the @code{full} value was introduced in Bison 2.7
d9df47b6 5658@end itemize
71b00ed8 5659@c api.pure
d9df47b6 5660
67501061
AD
5661
5662
5663@c ================================================== api.push-pull
67212941
JD
5664@item api.push-pull
5665@findex %define api.push-pull
793fbca5
JD
5666
5667@itemize @bullet
eb45ef3b 5668@item Language(s): C (deterministic parsers only)
793fbca5 5669
f1b238df 5670@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5671@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5672(The current push parsing interface is experimental and may evolve.
5673More user feedback will help to stabilize it.)
793fbca5 5674
cf499cff 5675@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5676
cf499cff 5677@item Default Value: @code{pull}
793fbca5 5678@end itemize
67212941 5679@c api.push-pull
71b00ed8 5680
6b5a0de9
AD
5681
5682
e36ec1f4
AD
5683@c ================================================== api.token.constructor
5684@item api.token.constructor
5685@findex %define api.token.constructor
5686
5687@itemize @bullet
5688@item Language(s):
5689C++
5690
5691@item Purpose:
5692When variant-based semantic values are enabled (@pxref{C++ Variants}),
5693request that symbols be handled as a whole (type, value, and possibly
5694location) in the scanner. @xref{Complete Symbols}, for details.
5695
5696@item Accepted Values:
5697Boolean.
5698
5699@item Default Value:
5700@code{false}
5701@item History:
5702introduced in Bison 2.8
5703@end itemize
5704@c api.token.constructor
5705
5706
2a6b66c5
AD
5707@c ================================================== api.token.prefix
5708@item api.token.prefix
5709@findex %define api.token.prefix
4c6622c2
AD
5710
5711@itemize
5712@item Languages(s): all
5713
5714@item Purpose:
5715Add a prefix to the token names when generating their definition in the
5716target language. For instance
5717
5718@example
5719%token FILE for ERROR
2a6b66c5 5720%define api.token.prefix "TOK_"
4c6622c2
AD
5721%%
5722start: FILE for ERROR;
5723@end example
5724
5725@noindent
5726generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5727and @code{TOK_ERROR} in the generated source files. In particular, the
5728scanner must use these prefixed token names, while the grammar itself
5729may still use the short names (as in the sample rule given above). The
5730generated informational files (@file{*.output}, @file{*.xml},
5731@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5732and @ref{Calc++ Scanner}, for a complete example.
5733
5734@item Accepted Values:
5735Any string. Should be a valid identifier prefix in the target language,
5736in other words, it should typically be an identifier itself (sequence of
5737letters, underscores, and ---not at the beginning--- digits).
5738
5739@item Default Value:
5740empty
2a6b66c5
AD
5741@item History:
5742introduced in Bison 2.8
4c6622c2 5743@end itemize
2a6b66c5 5744@c api.token.prefix
4c6622c2
AD
5745
5746
ae8880de
AD
5747@c ================================================== api.value.type
5748@item %define api.value.type variant
5749@findex %define api.value.type variant
5750
5751@itemize @bullet
5752@item Language(s):
5753C++
5754
5755@item Purpose:
5756Request variant-based semantic values.
5757@xref{C++ Variants}.
5758
5759@c FIXME: @item Accepted Values:
5760@c FIXME: Boolean.
5761
5762@c @item Default Value:
5763@c @code{false}
5764@ @end itemize
5765@c api.value.type
5766
f3bc3386 5767@c ================================================== lr.default-reduction
6b5a0de9 5768
f3bc3386
AD
5769@item lr.default-reduction
5770@findex %define lr.default-reduction
eb45ef3b
JD
5771
5772@itemize @bullet
5773@item Language(s): all
5774
fcf834f9 5775@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5776contain default reductions. @xref{Default Reductions}. (The ability to
5777specify where default reductions should be used is experimental. More user
5778feedback will help to stabilize it.)
eb45ef3b 5779
f0ad1b2f 5780@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5781@item Default Value:
5782@itemize
cf499cff 5783@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5784@item @code{most} otherwise.
eb45ef3b 5785@end itemize
f3bc3386
AD
5786@item History:
5787introduced as @code{lr.default-reduction} in 2.5, renamed as
5788@code{lr.default-reduction} in 2.8.
eb45ef3b
JD
5789@end itemize
5790
f3bc3386 5791@c ============================================ lr.keep-unreachable-state
6b5a0de9 5792
f3bc3386
AD
5793@item lr.keep-unreachable-state
5794@findex %define lr.keep-unreachable-state
31984206
JD
5795
5796@itemize @bullet
5797@item Language(s): all
f1b238df 5798@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5799remain in the parser tables. @xref{Unreachable States}.
31984206 5800@item Accepted Values: Boolean
cf499cff 5801@item Default Value: @code{false}
31984206 5802@end itemize
f3bc3386 5803introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5807bb91 5804@code{lr.keep-unreachable-states} in 2.5, and as
f3bc3386
AD
5805@code{lr.keep-unreachable-state} in 2.8.
5806@c lr.keep-unreachable-state
31984206 5807
6b5a0de9
AD
5808@c ================================================== lr.type
5809
eb45ef3b
JD
5810@item lr.type
5811@findex %define lr.type
eb45ef3b
JD
5812
5813@itemize @bullet
5814@item Language(s): all
5815
f1b238df 5816@item Purpose: Specify the type of parser tables within the
7fceb615 5817LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5818More user feedback will help to stabilize it.)
5819
7fceb615 5820@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5821
cf499cff 5822@item Default Value: @code{lalr}
eb45ef3b
JD
5823@end itemize
5824
67501061
AD
5825
5826@c ================================================== namespace
793fbca5
JD
5827@item namespace
5828@findex %define namespace
67501061 5829Obsoleted by @code{api.namespace}
fa819509
AD
5830@c namespace
5831
31b850d2
AD
5832
5833@c ================================================== parse.assert
0c90a1f5
AD
5834@item parse.assert
5835@findex %define parse.assert
5836
5837@itemize
5838@item Languages(s): C++
5839
5840@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5841In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5842constructed and
0c90a1f5
AD
5843destroyed properly. This option checks these constraints.
5844
5845@item Accepted Values: Boolean
5846
5847@item Default Value: @code{false}
5848@end itemize
5849@c parse.assert
5850
31b850d2
AD
5851
5852@c ================================================== parse.error
5853@item parse.error
5854@findex %define parse.error
5855@itemize
5856@item Languages(s):
fcf834f9 5857all
31b850d2
AD
5858@item Purpose:
5859Control the kind of error messages passed to the error reporting
5860function. @xref{Error Reporting, ,The Error Reporting Function
5861@code{yyerror}}.
5862@item Accepted Values:
5863@itemize
cf499cff 5864@item @code{simple}
31b850d2
AD
5865Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5866error"}}.
cf499cff 5867@item @code{verbose}
7fceb615
JD
5868Error messages report the unexpected token, and possibly the expected ones.
5869However, this report can often be incorrect when LAC is not enabled
5870(@pxref{LAC}).
31b850d2
AD
5871@end itemize
5872
5873@item Default Value:
5874@code{simple}
5875@end itemize
5876@c parse.error
5877
5878
fcf834f9
JD
5879@c ================================================== parse.lac
5880@item parse.lac
5881@findex %define parse.lac
fcf834f9
JD
5882
5883@itemize
7fceb615 5884@item Languages(s): C (deterministic parsers only)
fcf834f9 5885
8a4281b9 5886@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5887syntax error handling. @xref{LAC}.
fcf834f9 5888@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5889@item Default Value: @code{none}
5890@end itemize
5891@c parse.lac
5892
31b850d2 5893@c ================================================== parse.trace
fa819509
AD
5894@item parse.trace
5895@findex %define parse.trace
5896
5897@itemize
60aa04a2 5898@item Languages(s): C, C++, Java
fa819509
AD
5899
5900@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
5901@xref{Tracing, ,Tracing Your Parser}.
5902
5903In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
5904@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
5905,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 5906file if it is not already defined, so that the debugging facilities are
60aa04a2 5907compiled.
793fbca5 5908
fa819509
AD
5909@item Accepted Values: Boolean
5910
5911@item Default Value: @code{false}
5912@end itemize
fa819509 5913@c parse.trace
99c08fb6 5914@end table
592d0b1e 5915
e0c07222
JD
5916@node %code Summary
5917@subsection %code Summary
e0c07222 5918@findex %code
e0c07222 5919@cindex Prologue
51151d91
JD
5920
5921The @code{%code} directive inserts code verbatim into the output
5922parser source at any of a predefined set of locations. It thus serves
5923as a flexible and user-friendly alternative to the traditional Yacc
5924prologue, @code{%@{@var{code}%@}}. This section summarizes the
5925functionality of @code{%code} for the various target languages
5926supported by Bison. For a detailed discussion of how to use
5927@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5928is advantageous to do so, @pxref{Prologue Alternatives}.
5929
5930@deffn {Directive} %code @{@var{code}@}
5931This is the unqualified form of the @code{%code} directive. It
5932inserts @var{code} verbatim at a language-dependent default location
5933in the parser implementation.
5934
e0c07222 5935For C/C++, the default location is the parser implementation file
51151d91
JD
5936after the usual contents of the parser header file. Thus, the
5937unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5938
5939For Java, the default location is inside the parser class.
5940@end deffn
5941
5942@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5943This is the qualified form of the @code{%code} directive.
51151d91
JD
5944@var{qualifier} identifies the purpose of @var{code} and thus the
5945location(s) where Bison should insert it. That is, if you need to
5946specify location-sensitive @var{code} that does not belong at the
5947default location selected by the unqualified @code{%code} form, use
5948this form instead.
5949@end deffn
5950
5951For any particular qualifier or for the unqualified form, if there are
5952multiple occurrences of the @code{%code} directive, Bison concatenates
5953the specified code in the order in which it appears in the grammar
5954file.
e0c07222 5955
51151d91
JD
5956Not all qualifiers are accepted for all target languages. Unaccepted
5957qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5958
84072495 5959@table @code
e0c07222
JD
5960@item requires
5961@findex %code requires
5962
5963@itemize @bullet
5964@item Language(s): C, C++
5965
5966@item Purpose: This is the best place to write dependency code required for
5967@code{YYSTYPE} and @code{YYLTYPE}.
5968In other words, it's the best place to define types referenced in @code{%union}
5969directives, and it's the best place to override Bison's default @code{YYSTYPE}
5970and @code{YYLTYPE} definitions.
5971
5972@item Location(s): The parser header file and the parser implementation file
5973before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5974definitions.
5975@end itemize
5976
5977@item provides
5978@findex %code provides
5979
5980@itemize @bullet
5981@item Language(s): C, C++
5982
5983@item Purpose: This is the best place to write additional definitions and
5984declarations that should be provided to other modules.
5985
5986@item Location(s): The parser header file and the parser implementation
5987file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5988token definitions.
5989@end itemize
5990
5991@item top
5992@findex %code top
5993
5994@itemize @bullet
5995@item Language(s): C, C++
5996
5997@item Purpose: The unqualified @code{%code} or @code{%code requires}
5998should usually be more appropriate than @code{%code top}. However,
5999occasionally it is necessary to insert code much nearer the top of the
6000parser implementation file. For example:
6001
c93f22fc 6002@example
e0c07222
JD
6003%code top @{
6004 #define _GNU_SOURCE
6005 #include <stdio.h>
6006@}
c93f22fc 6007@end example
e0c07222
JD
6008
6009@item Location(s): Near the top of the parser implementation file.
6010@end itemize
6011
6012@item imports
6013@findex %code imports
6014
6015@itemize @bullet
6016@item Language(s): Java
6017
6018@item Purpose: This is the best place to write Java import directives.
6019
6020@item Location(s): The parser Java file after any Java package directive and
6021before any class definitions.
6022@end itemize
84072495 6023@end table
e0c07222 6024
51151d91
JD
6025Though we say the insertion locations are language-dependent, they are
6026technically skeleton-dependent. Writers of non-standard skeletons
6027however should choose their locations consistently with the behavior
6028of the standard Bison skeletons.
e0c07222 6029
d8988b2f 6030
342b8b6e 6031@node Multiple Parsers
bfa74976
RS
6032@section Multiple Parsers in the Same Program
6033
6034Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
6035only one Bison parser. But what if you want to parse more than one language
6036with the same program? Then you need to avoid name conflicts between
6037different definitions of functions and variables such as @code{yyparse},
6038@code{yylval}. To use different parsers from the same compilation unit, you
6039also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
6040exported in the generated header.
6041
6042The easy way to do this is to define the @code{%define} variable
e358222b
AD
6043@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
6044headers do not conflict when included together, and that compiled objects
6045can be linked together too. Specifying @samp{%define api.prefix
6046@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
6047@ref{Invocation, ,Invoking Bison}) renames the interface functions and
6048variables of the Bison parser to start with @var{prefix} instead of
6049@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
6050upper-cased) instead of @samp{YY}.
4b3847c3
AD
6051
6052The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
6053@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
6054@code{yydebug}. If you use a push parser, @code{yypush_parse},
6055@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
6056@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
6057@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
6058specifically --- more about this below.
4b3847c3
AD
6059
6060For example, if you use @samp{%define api.prefix c}, the names become
6061@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
6062on.
6063
6064The @code{%define} variable @code{api.prefix} works in two different ways.
6065In the implementation file, it works by adding macro definitions to the
6066beginning of the parser implementation file, defining @code{yyparse} as
6067@code{@var{prefix}parse}, and so on:
6068
6069@example
6070#define YYSTYPE CTYPE
6071#define yyparse cparse
6072#define yylval clval
6073...
6074YYSTYPE yylval;
6075int yyparse (void);
6076@end example
6077
6078This effectively substitutes one name for the other in the entire parser
6079implementation file, thus the ``original'' names (@code{yylex},
6080@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
6081
6082However, in the parser header file, the symbols are defined renamed, for
6083instance:
bfa74976 6084
4b3847c3
AD
6085@example
6086extern CSTYPE clval;
6087int cparse (void);
6088@end example
bfa74976 6089
e358222b
AD
6090The macro @code{YYDEBUG} is commonly used to enable the tracing support in
6091parsers. To comply with this tradition, when @code{api.prefix} is used,
6092@code{YYDEBUG} (not renamed) is used as a default value:
6093
6094@example
4d9bdbe3 6095/* Debug traces. */
e358222b
AD
6096#ifndef CDEBUG
6097# if defined YYDEBUG
6098# if YYDEBUG
6099# define CDEBUG 1
6100# else
6101# define CDEBUG 0
6102# endif
6103# else
6104# define CDEBUG 0
6105# endif
6106#endif
6107#if CDEBUG
6108extern int cdebug;
6109#endif
6110@end example
6111
6112@sp 2
6113
6114Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
6115the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
6116Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 6117
342b8b6e 6118@node Interface
bfa74976
RS
6119@chapter Parser C-Language Interface
6120@cindex C-language interface
6121@cindex interface
6122
6123The Bison parser is actually a C function named @code{yyparse}. Here we
6124describe the interface conventions of @code{yyparse} and the other
6125functions that it needs to use.
6126
6127Keep in mind that the parser uses many C identifiers starting with
6128@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
6129identifier (aside from those in this manual) in an action or in epilogue
6130in the grammar file, you are likely to run into trouble.
bfa74976
RS
6131
6132@menu
f5f419de
DJ
6133* Parser Function:: How to call @code{yyparse} and what it returns.
6134* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6135* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6136* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6137* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6138* Lexical:: You must supply a function @code{yylex}
6139 which reads tokens.
6140* Error Reporting:: You must supply a function @code{yyerror}.
6141* Action Features:: Special features for use in actions.
6142* Internationalization:: How to let the parser speak in the user's
6143 native language.
bfa74976
RS
6144@end menu
6145
342b8b6e 6146@node Parser Function
bfa74976
RS
6147@section The Parser Function @code{yyparse}
6148@findex yyparse
6149
6150You call the function @code{yyparse} to cause parsing to occur. This
6151function reads tokens, executes actions, and ultimately returns when it
6152encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6153write an action which directs @code{yyparse} to return immediately
6154without reading further.
bfa74976 6155
2a8d363a
AD
6156
6157@deftypefun int yyparse (void)
bfa74976
RS
6158The value returned by @code{yyparse} is 0 if parsing was successful (return
6159is due to end-of-input).
6160
b47dbebe
PE
6161The value is 1 if parsing failed because of invalid input, i.e., input
6162that contains a syntax error or that causes @code{YYABORT} to be
6163invoked.
6164
6165The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6166@end deftypefun
bfa74976
RS
6167
6168In an action, you can cause immediate return from @code{yyparse} by using
6169these macros:
6170
2a8d363a 6171@defmac YYACCEPT
bfa74976
RS
6172@findex YYACCEPT
6173Return immediately with value 0 (to report success).
2a8d363a 6174@end defmac
bfa74976 6175
2a8d363a 6176@defmac YYABORT
bfa74976
RS
6177@findex YYABORT
6178Return immediately with value 1 (to report failure).
2a8d363a
AD
6179@end defmac
6180
6181If you use a reentrant parser, you can optionally pass additional
6182parameter information to it in a reentrant way. To do so, use the
6183declaration @code{%parse-param}:
6184
2055a44e 6185@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6186@findex %parse-param
2055a44e
AD
6187Declare that one or more
6188@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6189The @var{argument-declaration} is used when declaring
feeb0eda
PE
6190functions or prototypes. The last identifier in
6191@var{argument-declaration} must be the argument name.
2a8d363a
AD
6192@end deffn
6193
6194Here's an example. Write this in the parser:
6195
6196@example
2055a44e 6197%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6198@end example
6199
6200@noindent
6201Then call the parser like this:
6202
6203@example
6204@{
6205 int nastiness, randomness;
6206 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6207 value = yyparse (&nastiness, &randomness);
6208 @dots{}
6209@}
6210@end example
6211
6212@noindent
6213In the grammar actions, use expressions like this to refer to the data:
6214
6215@example
6216exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6217@end example
6218
1f1bd572
TR
6219@noindent
6220Using the following:
6221@example
6222%parse-param @{int *randomness@}
6223@end example
6224
6225Results in these signatures:
6226@example
6227void yyerror (int *randomness, const char *msg);
6228int yyparse (int *randomness);
6229@end example
6230
6231@noindent
6232Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
6233and @code{%locations} are used:
6234
6235@example
6236void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
6237int yyparse (int *randomness);
6238@end example
6239
9987d1b3
JD
6240@node Push Parser Function
6241@section The Push Parser Function @code{yypush_parse}
6242@findex yypush_parse
6243
59da312b
JD
6244(The current push parsing interface is experimental and may evolve.
6245More user feedback will help to stabilize it.)
6246
f4101aa6 6247You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6248function is available if either the @samp{%define api.push-pull push} or
6249@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6250@xref{Push Decl, ,A Push Parser}.
6251
a73aa764 6252@deftypefun int yypush_parse (yypstate *@var{yyps})
ad60e80f
AD
6253The value returned by @code{yypush_parse} is the same as for yyparse with
6254the following exception: it returns @code{YYPUSH_MORE} if more input is
6255required to finish parsing the grammar.
9987d1b3
JD
6256@end deftypefun
6257
6258@node Pull Parser Function
6259@section The Pull Parser Function @code{yypull_parse}
6260@findex yypull_parse
6261
59da312b
JD
6262(The current push parsing interface is experimental and may evolve.
6263More user feedback will help to stabilize it.)
6264
f4101aa6 6265You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6266stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6267declaration is used.
9987d1b3
JD
6268@xref{Push Decl, ,A Push Parser}.
6269
a73aa764 6270@deftypefun int yypull_parse (yypstate *@var{yyps})
9987d1b3
JD
6271The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6272@end deftypefun
6273
6274@node Parser Create Function
6275@section The Parser Create Function @code{yystate_new}
6276@findex yypstate_new
6277
59da312b
JD
6278(The current push parsing interface is experimental and may evolve.
6279More user feedback will help to stabilize it.)
6280
f4101aa6 6281You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6282This function is available if either the @samp{%define api.push-pull push} or
6283@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6284@xref{Push Decl, ,A Push Parser}.
6285
34a41a93 6286@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6287The function will return a valid parser instance if there was memory available
333e670c
JD
6288or 0 if no memory was available.
6289In impure mode, it will also return 0 if a parser instance is currently
6290allocated.
9987d1b3
JD
6291@end deftypefun
6292
6293@node Parser Delete Function
6294@section The Parser Delete Function @code{yystate_delete}
6295@findex yypstate_delete
6296
59da312b
JD
6297(The current push parsing interface is experimental and may evolve.
6298More user feedback will help to stabilize it.)
6299
9987d1b3 6300You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6301function is available if either the @samp{%define api.push-pull push} or
6302@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6303@xref{Push Decl, ,A Push Parser}.
6304
a73aa764 6305@deftypefun void yypstate_delete (yypstate *@var{yyps})
9987d1b3
JD
6306This function will reclaim the memory associated with a parser instance.
6307After this call, you should no longer attempt to use the parser instance.
6308@end deftypefun
bfa74976 6309
342b8b6e 6310@node Lexical
bfa74976
RS
6311@section The Lexical Analyzer Function @code{yylex}
6312@findex yylex
6313@cindex lexical analyzer
6314
6315The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6316the input stream and returns them to the parser. Bison does not create
6317this function automatically; you must write it so that @code{yyparse} can
6318call it. The function is sometimes referred to as a lexical scanner.
6319
ff7571c0
JD
6320In simple programs, @code{yylex} is often defined at the end of the
6321Bison grammar file. If @code{yylex} is defined in a separate source
6322file, you need to arrange for the token-type macro definitions to be
6323available there. To do this, use the @samp{-d} option when you run
6324Bison, so that it will write these macro definitions into the separate
6325parser header file, @file{@var{name}.tab.h}, which you can include in
6326the other source files that need it. @xref{Invocation, ,Invoking
6327Bison}.
bfa74976
RS
6328
6329@menu
6330* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6331* Token Values:: How @code{yylex} must return the semantic value
6332 of the token it has read.
6333* Token Locations:: How @code{yylex} must return the text location
6334 (line number, etc.) of the token, if the
6335 actions want that.
6336* Pure Calling:: How the calling convention differs in a pure parser
6337 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6338@end menu
6339
342b8b6e 6340@node Calling Convention
bfa74976
RS
6341@subsection Calling Convention for @code{yylex}
6342
72d2299c
PE
6343The value that @code{yylex} returns must be the positive numeric code
6344for the type of token it has just found; a zero or negative value
6345signifies end-of-input.
bfa74976
RS
6346
6347When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6348in the parser implementation file becomes a C macro whose definition
6349is the proper numeric code for that token type. So @code{yylex} can
6350use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6351
6352When a token is referred to in the grammar rules by a character literal,
6353the numeric code for that character is also the code for the token type.
72d2299c
PE
6354So @code{yylex} can simply return that character code, possibly converted
6355to @code{unsigned char} to avoid sign-extension. The null character
6356must not be used this way, because its code is zero and that
bfa74976
RS
6357signifies end-of-input.
6358
6359Here is an example showing these things:
6360
6361@example
13863333
AD
6362int
6363yylex (void)
bfa74976
RS
6364@{
6365 @dots{}
72d2299c 6366 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6367 return 0;
6368 @dots{}
6369 if (c == '+' || c == '-')
72d2299c 6370 return c; /* Assume token type for `+' is '+'. */
bfa74976 6371 @dots{}
72d2299c 6372 return INT; /* Return the type of the token. */
bfa74976
RS
6373 @dots{}
6374@}
6375@end example
6376
6377@noindent
6378This interface has been designed so that the output from the @code{lex}
6379utility can be used without change as the definition of @code{yylex}.
6380
931c7513
RS
6381If the grammar uses literal string tokens, there are two ways that
6382@code{yylex} can determine the token type codes for them:
6383
6384@itemize @bullet
6385@item
6386If the grammar defines symbolic token names as aliases for the
6387literal string tokens, @code{yylex} can use these symbolic names like
6388all others. In this case, the use of the literal string tokens in
6389the grammar file has no effect on @code{yylex}.
6390
6391@item
9ecbd125 6392@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6393table. The index of the token in the table is the token type's code.
9ecbd125 6394The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6395double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6396token's characters are escaped as necessary to be suitable as input
6397to Bison.
931c7513 6398
9e0876fb
PE
6399Here's code for looking up a multicharacter token in @code{yytname},
6400assuming that the characters of the token are stored in
6401@code{token_buffer}, and assuming that the token does not contain any
6402characters like @samp{"} that require escaping.
931c7513 6403
c93f22fc 6404@example
931c7513
RS
6405for (i = 0; i < YYNTOKENS; i++)
6406 @{
6407 if (yytname[i] != 0
6408 && yytname[i][0] == '"'
68449b3a
PE
6409 && ! strncmp (yytname[i] + 1, token_buffer,
6410 strlen (token_buffer))
931c7513
RS
6411 && yytname[i][strlen (token_buffer) + 1] == '"'
6412 && yytname[i][strlen (token_buffer) + 2] == 0)
6413 break;
6414 @}
c93f22fc 6415@end example
931c7513
RS
6416
6417The @code{yytname} table is generated only if you use the
8c9a50be 6418@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6419@end itemize
6420
342b8b6e 6421@node Token Values
bfa74976
RS
6422@subsection Semantic Values of Tokens
6423
6424@vindex yylval
9d9b8b70 6425In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6426be stored into the global variable @code{yylval}. When you are using
6427just one data type for semantic values, @code{yylval} has that type.
6428Thus, if the type is @code{int} (the default), you might write this in
6429@code{yylex}:
6430
6431@example
6432@group
6433 @dots{}
72d2299c
PE
6434 yylval = value; /* Put value onto Bison stack. */
6435 return INT; /* Return the type of the token. */
bfa74976
RS
6436 @dots{}
6437@end group
6438@end example
6439
6440When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6441made from the @code{%union} declaration (@pxref{Union Decl, ,The
6442Collection of Value Types}). So when you store a token's value, you
6443must use the proper member of the union. If the @code{%union}
6444declaration looks like this:
bfa74976
RS
6445
6446@example
6447@group
6448%union @{
6449 int intval;
6450 double val;
6451 symrec *tptr;
6452@}
6453@end group
6454@end example
6455
6456@noindent
6457then the code in @code{yylex} might look like this:
6458
6459@example
6460@group
6461 @dots{}
72d2299c
PE
6462 yylval.intval = value; /* Put value onto Bison stack. */
6463 return INT; /* Return the type of the token. */
bfa74976
RS
6464 @dots{}
6465@end group
6466@end example
6467
95923bd6
AD
6468@node Token Locations
6469@subsection Textual Locations of Tokens
bfa74976
RS
6470
6471@vindex yylloc
303834cc
JD
6472If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6473in actions to keep track of the textual locations of tokens and groupings,
6474then you must provide this information in @code{yylex}. The function
6475@code{yyparse} expects to find the textual location of a token just parsed
6476in the global variable @code{yylloc}. So @code{yylex} must store the proper
6477data in that variable.
847bf1f5
AD
6478
6479By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6480initialize the members that are going to be used by the actions. The
6481four members are called @code{first_line}, @code{first_column},
6482@code{last_line} and @code{last_column}. Note that the use of this
6483feature makes the parser noticeably slower.
bfa74976
RS
6484
6485@tindex YYLTYPE
6486The data type of @code{yylloc} has the name @code{YYLTYPE}.
6487
342b8b6e 6488@node Pure Calling
c656404a 6489@subsection Calling Conventions for Pure Parsers
bfa74976 6490
1f1bd572 6491When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6492pure, reentrant parser, the global communication variables @code{yylval}
6493and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6494Parser}.) In such parsers the two global variables are replaced by
6495pointers passed as arguments to @code{yylex}. You must declare them as
6496shown here, and pass the information back by storing it through those
6497pointers.
bfa74976
RS
6498
6499@example
13863333
AD
6500int
6501yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6502@{
6503 @dots{}
6504 *lvalp = value; /* Put value onto Bison stack. */
6505 return INT; /* Return the type of the token. */
6506 @dots{}
6507@}
6508@end example
6509
6510If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6511textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6512this case, omit the second argument; @code{yylex} will be called with
6513only one argument.
6514
2055a44e 6515If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6516@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6517Function}). To pass additional arguments to both @code{yylex} and
6518@code{yyparse}, use @code{%param}.
e425e872 6519
2055a44e 6520@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6521@findex %lex-param
2055a44e
AD
6522Specify that @var{argument-declaration} are additional @code{yylex} argument
6523declarations. You may pass one or more such declarations, which is
6524equivalent to repeating @code{%lex-param}.
6525@end deffn
6526
6527@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6528@findex %param
6529Specify that @var{argument-declaration} are additional
6530@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6531@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6532@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6533declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6534@end deffn
e425e872 6535
1f1bd572 6536@noindent
2a8d363a 6537For instance:
e425e872
RS
6538
6539@example
2055a44e
AD
6540%lex-param @{scanner_mode *mode@}
6541%parse-param @{parser_mode *mode@}
6542%param @{environment_type *env@}
e425e872
RS
6543@end example
6544
6545@noindent
18ad57b3 6546results in the following signatures:
e425e872
RS
6547
6548@example
2055a44e
AD
6549int yylex (scanner_mode *mode, environment_type *env);
6550int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6551@end example
6552
5807bb91 6553If @samp{%define api.pure full} is added:
c656404a
RS
6554
6555@example
2055a44e
AD
6556int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6557int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6558@end example
6559
2a8d363a 6560@noindent
5807bb91
AD
6561and finally, if both @samp{%define api.pure full} and @code{%locations} are
6562used:
c656404a 6563
2a8d363a 6564@example
2055a44e
AD
6565int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6566 scanner_mode *mode, environment_type *env);
6567int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6568@end example
931c7513 6569
342b8b6e 6570@node Error Reporting
bfa74976
RS
6571@section The Error Reporting Function @code{yyerror}
6572@cindex error reporting function
6573@findex yyerror
6574@cindex parse error
6575@cindex syntax error
6576
31b850d2 6577The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6578whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6579action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6580macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6581in Actions}).
bfa74976
RS
6582
6583The Bison parser expects to report the error by calling an error
6584reporting function named @code{yyerror}, which you must supply. It is
6585called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6586receives one argument. For a syntax error, the string is normally
6587@w{@code{"syntax error"}}.
bfa74976 6588
31b850d2 6589@findex %define parse.error
7fceb615
JD
6590If you invoke @samp{%define parse.error verbose} in the Bison declarations
6591section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6592Bison provides a more verbose and specific error message string instead of
6593just plain @w{@code{"syntax error"}}. However, that message sometimes
6594contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6595
1a059451
PE
6596The parser can detect one other kind of error: memory exhaustion. This
6597can happen when the input contains constructions that are very deeply
bfa74976 6598nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6599parser normally extends its stack automatically up to a very large limit. But
6600if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6601fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6602
6603In some cases diagnostics like @w{@code{"syntax error"}} are
6604translated automatically from English to some other language before
6605they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6606
6607The following definition suffices in simple programs:
6608
6609@example
6610@group
13863333 6611void
38a92d50 6612yyerror (char const *s)
bfa74976
RS
6613@{
6614@end group
6615@group
6616 fprintf (stderr, "%s\n", s);
6617@}
6618@end group
6619@end example
6620
6621After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6622error recovery if you have written suitable error recovery grammar rules
6623(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6624immediately return 1.
6625
93724f13 6626Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6627an access to the current location. With @code{%define api.pure}, this is
6628indeed the case for the GLR parsers, but not for the Yacc parser, for
6629historical reasons, and this is the why @code{%define api.pure full} should be
6630prefered over @code{%define api.pure}.
2a8d363a 6631
1f1bd572
TR
6632When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6633following signature:
2a8d363a
AD
6634
6635@example
1f1bd572 6636void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6637@end example
6638
1c0c3e95 6639@noindent
38a92d50
PE
6640The prototypes are only indications of how the code produced by Bison
6641uses @code{yyerror}. Bison-generated code always ignores the returned
6642value, so @code{yyerror} can return any type, including @code{void}.
6643Also, @code{yyerror} can be a variadic function; that is why the
6644message is always passed last.
6645
6646Traditionally @code{yyerror} returns an @code{int} that is always
6647ignored, but this is purely for historical reasons, and @code{void} is
6648preferable since it more accurately describes the return type for
6649@code{yyerror}.
93724f13 6650
bfa74976
RS
6651@vindex yynerrs
6652The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6653reported so far. Normally this variable is global; but if you
704a47c4
AD
6654request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6655then it is a local variable which only the actions can access.
bfa74976 6656
342b8b6e 6657@node Action Features
bfa74976
RS
6658@section Special Features for Use in Actions
6659@cindex summary, action features
6660@cindex action features summary
6661
6662Here is a table of Bison constructs, variables and macros that
6663are useful in actions.
6664
18b519c0 6665@deffn {Variable} $$
bfa74976
RS
6666Acts like a variable that contains the semantic value for the
6667grouping made by the current rule. @xref{Actions}.
18b519c0 6668@end deffn
bfa74976 6669
18b519c0 6670@deffn {Variable} $@var{n}
bfa74976
RS
6671Acts like a variable that contains the semantic value for the
6672@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6673@end deffn
bfa74976 6674
18b519c0 6675@deffn {Variable} $<@var{typealt}>$
bfa74976 6676Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6677specified by the @code{%union} declaration. @xref{Action Types, ,Data
6678Types of Values in Actions}.
18b519c0 6679@end deffn
bfa74976 6680
18b519c0 6681@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6682Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6683union specified by the @code{%union} declaration.
e0c471a9 6684@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6685@end deffn
bfa74976 6686
34a41a93 6687@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6688Return immediately from @code{yyparse}, indicating failure.
6689@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6690@end deffn
bfa74976 6691
34a41a93 6692@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6693Return immediately from @code{yyparse}, indicating success.
6694@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6695@end deffn
bfa74976 6696
34a41a93 6697@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6698@findex YYBACKUP
6699Unshift a token. This macro is allowed only for rules that reduce
742e4900 6700a single value, and only when there is no lookahead token.
8a4281b9 6701It is also disallowed in GLR parsers.
742e4900 6702It installs a lookahead token with token type @var{token} and
bfa74976
RS
6703semantic value @var{value}; then it discards the value that was
6704going to be reduced by this rule.
6705
6706If the macro is used when it is not valid, such as when there is
742e4900 6707a lookahead token already, then it reports a syntax error with
bfa74976
RS
6708a message @samp{cannot back up} and performs ordinary error
6709recovery.
6710
6711In either case, the rest of the action is not executed.
18b519c0 6712@end deffn
bfa74976 6713
18b519c0 6714@deffn {Macro} YYEMPTY
742e4900 6715Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6716@end deffn
bfa74976 6717
32c29292 6718@deffn {Macro} YYEOF
742e4900 6719Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6720stream.
6721@end deffn
6722
34a41a93 6723@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6724Cause an immediate syntax error. This statement initiates error
6725recovery just as if the parser itself had detected an error; however, it
6726does not call @code{yyerror}, and does not print any message. If you
6727want to print an error message, call @code{yyerror} explicitly before
6728the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6729@end deffn
bfa74976 6730
18b519c0 6731@deffn {Macro} YYRECOVERING
02103984
PE
6732@findex YYRECOVERING
6733The expression @code{YYRECOVERING ()} yields 1 when the parser
6734is recovering from a syntax error, and 0 otherwise.
bfa74976 6735@xref{Error Recovery}.
18b519c0 6736@end deffn
bfa74976 6737
18b519c0 6738@deffn {Variable} yychar
742e4900
JD
6739Variable containing either the lookahead token, or @code{YYEOF} when the
6740lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6741has been performed so the next token is not yet known.
6742Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6743Actions}).
742e4900 6744@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6745@end deffn
bfa74976 6746
34a41a93 6747@deffn {Macro} yyclearin @code{;}
742e4900 6748Discard the current lookahead token. This is useful primarily in
32c29292
JD
6749error rules.
6750Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6751Semantic Actions}).
6752@xref{Error Recovery}.
18b519c0 6753@end deffn
bfa74976 6754
34a41a93 6755@deffn {Macro} yyerrok @code{;}
bfa74976 6756Resume generating error messages immediately for subsequent syntax
13863333 6757errors. This is useful primarily in error rules.
bfa74976 6758@xref{Error Recovery}.
18b519c0 6759@end deffn
bfa74976 6760
32c29292 6761@deffn {Variable} yylloc
742e4900 6762Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6763to @code{YYEMPTY} or @code{YYEOF}.
6764Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6765Actions}).
6766@xref{Actions and Locations, ,Actions and Locations}.
6767@end deffn
6768
6769@deffn {Variable} yylval
742e4900 6770Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6771not set to @code{YYEMPTY} or @code{YYEOF}.
6772Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6773Actions}).
6774@xref{Actions, ,Actions}.
6775@end deffn
6776
18b519c0 6777@deffn {Value} @@$
303834cc
JD
6778Acts like a structure variable containing information on the textual
6779location of the grouping made by the current rule. @xref{Tracking
6780Locations}.
bfa74976 6781
847bf1f5
AD
6782@c Check if those paragraphs are still useful or not.
6783
6784@c @example
6785@c struct @{
6786@c int first_line, last_line;
6787@c int first_column, last_column;
6788@c @};
6789@c @end example
6790
6791@c Thus, to get the starting line number of the third component, you would
6792@c use @samp{@@3.first_line}.
bfa74976 6793
847bf1f5
AD
6794@c In order for the members of this structure to contain valid information,
6795@c you must make @code{yylex} supply this information about each token.
6796@c If you need only certain members, then @code{yylex} need only fill in
6797@c those members.
bfa74976 6798
847bf1f5 6799@c The use of this feature makes the parser noticeably slower.
18b519c0 6800@end deffn
847bf1f5 6801
18b519c0 6802@deffn {Value} @@@var{n}
847bf1f5 6803@findex @@@var{n}
303834cc
JD
6804Acts like a structure variable containing information on the textual
6805location of the @var{n}th component of the current rule. @xref{Tracking
6806Locations}.
18b519c0 6807@end deffn
bfa74976 6808
f7ab6a50
PE
6809@node Internationalization
6810@section Parser Internationalization
6811@cindex internationalization
6812@cindex i18n
6813@cindex NLS
6814@cindex gettext
6815@cindex bison-po
6816
6817A Bison-generated parser can print diagnostics, including error and
6818tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6819also supports outputting diagnostics in the user's native language. To
6820make this work, the user should set the usual environment variables.
6821@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6822For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6823set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6824encoding. The exact set of available locales depends on the user's
6825installation.
6826
6827The maintainer of a package that uses a Bison-generated parser enables
6828the internationalization of the parser's output through the following
8a4281b9
JD
6829steps. Here we assume a package that uses GNU Autoconf and
6830GNU Automake.
f7ab6a50
PE
6831
6832@enumerate
6833@item
30757c8c 6834@cindex bison-i18n.m4
8a4281b9 6835Into the directory containing the GNU Autoconf macros used
c949ada3 6836by the package ---often called @file{m4}--- copy the
f7ab6a50
PE
6837@file{bison-i18n.m4} file installed by Bison under
6838@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6839For example:
6840
6841@example
6842cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6843@end example
6844
6845@item
30757c8c
PE
6846@findex BISON_I18N
6847@vindex BISON_LOCALEDIR
6848@vindex YYENABLE_NLS
f7ab6a50
PE
6849In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6850invocation, add an invocation of @code{BISON_I18N}. This macro is
6851defined in the file @file{bison-i18n.m4} that you copied earlier. It
6852causes @samp{configure} to find the value of the
30757c8c
PE
6853@code{BISON_LOCALEDIR} variable, and it defines the source-language
6854symbol @code{YYENABLE_NLS} to enable translations in the
6855Bison-generated parser.
f7ab6a50
PE
6856
6857@item
6858In the @code{main} function of your program, designate the directory
6859containing Bison's runtime message catalog, through a call to
6860@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6861For example:
6862
6863@example
6864bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6865@end example
6866
6867Typically this appears after any other call @code{bindtextdomain
6868(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6869@samp{BISON_LOCALEDIR} to be defined as a string through the
6870@file{Makefile}.
6871
6872@item
6873In the @file{Makefile.am} that controls the compilation of the @code{main}
6874function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6875either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6876
6877@example
6878DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6879@end example
6880
6881or:
6882
6883@example
6884AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6885@end example
6886
6887@item
6888Finally, invoke the command @command{autoreconf} to generate the build
6889infrastructure.
6890@end enumerate
6891
bfa74976 6892
342b8b6e 6893@node Algorithm
13863333
AD
6894@chapter The Bison Parser Algorithm
6895@cindex Bison parser algorithm
bfa74976
RS
6896@cindex algorithm of parser
6897@cindex shifting
6898@cindex reduction
6899@cindex parser stack
6900@cindex stack, parser
6901
6902As Bison reads tokens, it pushes them onto a stack along with their
6903semantic values. The stack is called the @dfn{parser stack}. Pushing a
6904token is traditionally called @dfn{shifting}.
6905
6906For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6907@samp{3} to come. The stack will have four elements, one for each token
6908that was shifted.
6909
6910But the stack does not always have an element for each token read. When
6911the last @var{n} tokens and groupings shifted match the components of a
6912grammar rule, they can be combined according to that rule. This is called
6913@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6914single grouping whose symbol is the result (left hand side) of that rule.
6915Running the rule's action is part of the process of reduction, because this
6916is what computes the semantic value of the resulting grouping.
6917
6918For example, if the infix calculator's parser stack contains this:
6919
6920@example
69211 + 5 * 3
6922@end example
6923
6924@noindent
6925and the next input token is a newline character, then the last three
6926elements can be reduced to 15 via the rule:
6927
6928@example
6929expr: expr '*' expr;
6930@end example
6931
6932@noindent
6933Then the stack contains just these three elements:
6934
6935@example
69361 + 15
6937@end example
6938
6939@noindent
6940At this point, another reduction can be made, resulting in the single value
694116. Then the newline token can be shifted.
6942
6943The parser tries, by shifts and reductions, to reduce the entire input down
6944to a single grouping whose symbol is the grammar's start-symbol
6945(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6946
6947This kind of parser is known in the literature as a bottom-up parser.
6948
6949@menu
742e4900 6950* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6951* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6952* Precedence:: Operator precedence works by resolving conflicts.
6953* Contextual Precedence:: When an operator's precedence depends on context.
6954* Parser States:: The parser is a finite-state-machine with stack.
6955* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6956* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6957* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6958* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6959* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6960@end menu
6961
742e4900
JD
6962@node Lookahead
6963@section Lookahead Tokens
6964@cindex lookahead token
bfa74976
RS
6965
6966The Bison parser does @emph{not} always reduce immediately as soon as the
6967last @var{n} tokens and groupings match a rule. This is because such a
6968simple strategy is inadequate to handle most languages. Instead, when a
6969reduction is possible, the parser sometimes ``looks ahead'' at the next
6970token in order to decide what to do.
6971
6972When a token is read, it is not immediately shifted; first it becomes the
742e4900 6973@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6974perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6975the lookahead token remains off to the side. When no more reductions
6976should take place, the lookahead token is shifted onto the stack. This
bfa74976 6977does not mean that all possible reductions have been done; depending on the
742e4900 6978token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6979application.
6980
742e4900 6981Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6982expressions which contain binary addition operators and postfix unary
6983factorial operators (@samp{!}), and allow parentheses for grouping.
6984
6985@example
6986@group
5e9b6624
AD
6987expr:
6988 term '+' expr
6989| term
6990;
bfa74976
RS
6991@end group
6992
6993@group
5e9b6624
AD
6994term:
6995 '(' expr ')'
6996| term '!'
534cee7a 6997| "number"
5e9b6624 6998;
bfa74976
RS
6999@end group
7000@end example
7001
7002Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
7003should be done? If the following token is @samp{)}, then the first three
7004tokens must be reduced to form an @code{expr}. This is the only valid
7005course, because shifting the @samp{)} would produce a sequence of symbols
7006@w{@code{term ')'}}, and no rule allows this.
7007
7008If the following token is @samp{!}, then it must be shifted immediately so
7009that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
7010parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
7011@code{expr}. It would then be impossible to shift the @samp{!} because
7012doing so would produce on the stack the sequence of symbols @code{expr
7013'!'}. No rule allows that sequence.
7014
7015@vindex yychar
32c29292
JD
7016@vindex yylval
7017@vindex yylloc
742e4900 7018The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
7019Its semantic value and location, if any, are stored in the variables
7020@code{yylval} and @code{yylloc}.
bfa74976
RS
7021@xref{Action Features, ,Special Features for Use in Actions}.
7022
342b8b6e 7023@node Shift/Reduce
bfa74976
RS
7024@section Shift/Reduce Conflicts
7025@cindex conflicts
7026@cindex shift/reduce conflicts
7027@cindex dangling @code{else}
7028@cindex @code{else}, dangling
7029
7030Suppose we are parsing a language which has if-then and if-then-else
7031statements, with a pair of rules like this:
7032
7033@example
7034@group
7035if_stmt:
534cee7a
AD
7036 "if" expr "then" stmt
7037| "if" expr "then" stmt "else" stmt
5e9b6624 7038;
bfa74976
RS
7039@end group
7040@end example
7041
7042@noindent
534cee7a
AD
7043Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
7044specific keyword tokens.
bfa74976 7045
534cee7a 7046When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
7047contents of the stack (assuming the input is valid) are just right for
7048reduction by the first rule. But it is also legitimate to shift the
534cee7a 7049@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
7050rule.
7051
7052This situation, where either a shift or a reduction would be valid, is
7053called a @dfn{shift/reduce conflict}. Bison is designed to resolve
7054these conflicts by choosing to shift, unless otherwise directed by
7055operator precedence declarations. To see the reason for this, let's
7056contrast it with the other alternative.
7057
534cee7a 7058Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
7059the else-clause to the innermost if-statement, making these two inputs
7060equivalent:
7061
7062@example
534cee7a 7063if x then if y then win; else lose;
bfa74976 7064
534cee7a 7065if x then do; if y then win; else lose; end;
bfa74976
RS
7066@end example
7067
7068But if the parser chose to reduce when possible rather than shift, the
7069result would be to attach the else-clause to the outermost if-statement,
7070making these two inputs equivalent:
7071
7072@example
534cee7a 7073if x then if y then win; else lose;
bfa74976 7074
534cee7a 7075if x then do; if y then win; end; else lose;
bfa74976
RS
7076@end example
7077
7078The conflict exists because the grammar as written is ambiguous: either
7079parsing of the simple nested if-statement is legitimate. The established
7080convention is that these ambiguities are resolved by attaching the
7081else-clause to the innermost if-statement; this is what Bison accomplishes
7082by choosing to shift rather than reduce. (It would ideally be cleaner to
7083write an unambiguous grammar, but that is very hard to do in this case.)
7084This particular ambiguity was first encountered in the specifications of
7085Algol 60 and is called the ``dangling @code{else}'' ambiguity.
7086
7087To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 7088conflicts, you can use the @code{%expect @var{n}} declaration.
93d7dde9
JD
7089There will be no warning as long as the number of shift/reduce conflicts
7090is exactly @var{n}, and Bison will report an error if there is a
7091different number.
c28cd5dc
AD
7092@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
7093recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
7094number of conflicts does not mean that they are the @emph{same}. When
7095possible, you should rather use precedence directives to @emph{fix} the
7096conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
7097Operators}).
bfa74976
RS
7098
7099The definition of @code{if_stmt} above is solely to blame for the
7100conflict, but the conflict does not actually appear without additional
ff7571c0
JD
7101rules. Here is a complete Bison grammar file that actually manifests
7102the conflict:
bfa74976
RS
7103
7104@example
bfa74976 7105%%
bfa74976 7106@group
5e9b6624
AD
7107stmt:
7108 expr
7109| if_stmt
7110;
bfa74976
RS
7111@end group
7112
7113@group
7114if_stmt:
534cee7a
AD
7115 "if" expr "then" stmt
7116| "if" expr "then" stmt "else" stmt
5e9b6624 7117;
bfa74976
RS
7118@end group
7119
5e9b6624 7120expr:
534cee7a 7121 "identifier"
5e9b6624 7122;
bfa74976
RS
7123@end example
7124
342b8b6e 7125@node Precedence
bfa74976
RS
7126@section Operator Precedence
7127@cindex operator precedence
7128@cindex precedence of operators
7129
7130Another situation where shift/reduce conflicts appear is in arithmetic
7131expressions. Here shifting is not always the preferred resolution; the
7132Bison declarations for operator precedence allow you to specify when to
7133shift and when to reduce.
7134
7135@menu
7136* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7137* Using Precedence:: How to specify precedence and associativity.
7138* Precedence Only:: How to specify precedence only.
bfa74976
RS
7139* Precedence Examples:: How these features are used in the previous example.
7140* How Precedence:: How they work.
c28cd5dc 7141* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
7142@end menu
7143
342b8b6e 7144@node Why Precedence
bfa74976
RS
7145@subsection When Precedence is Needed
7146
7147Consider the following ambiguous grammar fragment (ambiguous because the
7148input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7149
7150@example
7151@group
5e9b6624
AD
7152expr:
7153 expr '-' expr
7154| expr '*' expr
7155| expr '<' expr
7156| '(' expr ')'
7157@dots{}
7158;
bfa74976
RS
7159@end group
7160@end example
7161
7162@noindent
7163Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7164should it reduce them via the rule for the subtraction operator? It
7165depends on the next token. Of course, if the next token is @samp{)}, we
7166must reduce; shifting is invalid because no single rule can reduce the
7167token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7168the next token is @samp{*} or @samp{<}, we have a choice: either
7169shifting or reduction would allow the parse to complete, but with
7170different results.
7171
7172To decide which one Bison should do, we must consider the results. If
7173the next operator token @var{op} is shifted, then it must be reduced
7174first in order to permit another opportunity to reduce the difference.
7175The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7176hand, if the subtraction is reduced before shifting @var{op}, the result
7177is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7178reduce should depend on the relative precedence of the operators
7179@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7180@samp{<}.
bfa74976
RS
7181
7182@cindex associativity
7183What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7184@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7185operators we prefer the former, which is called @dfn{left association}.
7186The latter alternative, @dfn{right association}, is desirable for
7187assignment operators. The choice of left or right association is a
7188matter of whether the parser chooses to shift or reduce when the stack
742e4900 7189contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7190makes right-associativity.
bfa74976 7191
342b8b6e 7192@node Using Precedence
bfa74976
RS
7193@subsection Specifying Operator Precedence
7194@findex %left
bfa74976 7195@findex %nonassoc
d78f0ac9
AD
7196@findex %precedence
7197@findex %right
bfa74976
RS
7198
7199Bison allows you to specify these choices with the operator precedence
7200declarations @code{%left} and @code{%right}. Each such declaration
7201contains a list of tokens, which are operators whose precedence and
7202associativity is being declared. The @code{%left} declaration makes all
7203those operators left-associative and the @code{%right} declaration makes
7204them right-associative. A third alternative is @code{%nonassoc}, which
7205declares that it is a syntax error to find the same operator twice ``in a
7206row''.
d78f0ac9
AD
7207The last alternative, @code{%precedence}, allows to define only
7208precedence and no associativity at all. As a result, any
7209associativity-related conflict that remains will be reported as an
7210compile-time error. The directive @code{%nonassoc} creates run-time
7211error: using the operator in a associative way is a syntax error. The
7212directive @code{%precedence} creates compile-time errors: an operator
7213@emph{can} be involved in an associativity-related conflict, contrary to
7214what expected the grammar author.
bfa74976
RS
7215
7216The relative precedence of different operators is controlled by the
d78f0ac9
AD
7217order in which they are declared. The first precedence/associativity
7218declaration in the file declares the operators whose
bfa74976
RS
7219precedence is lowest, the next such declaration declares the operators
7220whose precedence is a little higher, and so on.
7221
d78f0ac9
AD
7222@node Precedence Only
7223@subsection Specifying Precedence Only
7224@findex %precedence
7225
8a4281b9 7226Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7227@code{%nonassoc}, which all defines precedence and associativity, little
7228attention is paid to the fact that precedence cannot be defined without
7229defining associativity. Yet, sometimes, when trying to solve a
7230conflict, precedence suffices. In such a case, using @code{%left},
7231@code{%right}, or @code{%nonassoc} might hide future (associativity
7232related) conflicts that would remain hidden.
7233
7234The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7235Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7236in the following situation, where the period denotes the current parsing
7237state:
7238
7239@example
7240if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7241@end example
7242
7243The conflict involves the reduction of the rule @samp{IF expr THEN
7244stmt}, which precedence is by default that of its last token
7245(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7246disambiguation (attach the @code{else} to the closest @code{if}),
7247shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7248higher than that of @code{THEN}. But neither is expected to be involved
7249in an associativity related conflict, which can be specified as follows.
7250
7251@example
7252%precedence THEN
7253%precedence ELSE
7254@end example
7255
7256The unary-minus is another typical example where associativity is
7257usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7258Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7259used to declare the precedence of @code{NEG}, which is more than needed
7260since it also defines its associativity. While this is harmless in the
7261traditional example, who knows how @code{NEG} might be used in future
7262evolutions of the grammar@dots{}
7263
342b8b6e 7264@node Precedence Examples
bfa74976
RS
7265@subsection Precedence Examples
7266
7267In our example, we would want the following declarations:
7268
7269@example
7270%left '<'
7271%left '-'
7272%left '*'
7273@end example
7274
7275In a more complete example, which supports other operators as well, we
7276would declare them in groups of equal precedence. For example, @code{'+'} is
7277declared with @code{'-'}:
7278
7279@example
534cee7a 7280%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
7281%left '+' '-'
7282%left '*' '/'
7283@end example
7284
342b8b6e 7285@node How Precedence
bfa74976
RS
7286@subsection How Precedence Works
7287
7288The first effect of the precedence declarations is to assign precedence
7289levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7290precedence levels to certain rules: each rule gets its precedence from
7291the last terminal symbol mentioned in the components. (You can also
7292specify explicitly the precedence of a rule. @xref{Contextual
7293Precedence, ,Context-Dependent Precedence}.)
7294
7295Finally, the resolution of conflicts works by comparing the precedence
742e4900 7296of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7297token's precedence is higher, the choice is to shift. If the rule's
7298precedence is higher, the choice is to reduce. If they have equal
7299precedence, the choice is made based on the associativity of that
7300precedence level. The verbose output file made by @samp{-v}
7301(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7302resolved.
bfa74976
RS
7303
7304Not all rules and not all tokens have precedence. If either the rule or
742e4900 7305the lookahead token has no precedence, then the default is to shift.
bfa74976 7306
c28cd5dc
AD
7307@node Non Operators
7308@subsection Using Precedence For Non Operators
7309
7310Using properly precedence and associativity directives can help fixing
7311shift/reduce conflicts that do not involve arithmetics-like operators. For
7312instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
7313Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
7314
7315In the present case, the conflict is between the token @code{"else"} willing
7316to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
7317for reduction. By default, the precedence of a rule is that of its last
7318token, here @code{"then"}, so the conflict will be solved appropriately
7319by giving @code{"else"} a precedence higher than that of @code{"then"}, for
7320instance as follows:
7321
7322@example
7323@group
589149dc
AD
7324%precedence "then"
7325%precedence "else"
c28cd5dc
AD
7326@end group
7327@end example
7328
7329Alternatively, you may give both tokens the same precedence, in which case
7330associativity is used to solve the conflict. To preserve the shift action,
7331use right associativity:
7332
7333@example
7334%right "then" "else"
7335@end example
7336
7337Neither solution is perfect however. Since Bison does not provide, so far,
589149dc 7338``scoped'' precedence, both force you to declare the precedence
c28cd5dc
AD
7339of these keywords with respect to the other operators your grammar.
7340Therefore, instead of being warned about new conflicts you would be unaware
7341of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
7342being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
7343else 2) + 3}?), the conflict will be already ``fixed''.
7344
342b8b6e 7345@node Contextual Precedence
bfa74976
RS
7346@section Context-Dependent Precedence
7347@cindex context-dependent precedence
7348@cindex unary operator precedence
7349@cindex precedence, context-dependent
7350@cindex precedence, unary operator
7351@findex %prec
7352
7353Often the precedence of an operator depends on the context. This sounds
7354outlandish at first, but it is really very common. For example, a minus
7355sign typically has a very high precedence as a unary operator, and a
7356somewhat lower precedence (lower than multiplication) as a binary operator.
7357
d78f0ac9
AD
7358The Bison precedence declarations
7359can only be used once for a given token; so a token has
bfa74976
RS
7360only one precedence declared in this way. For context-dependent
7361precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7362modifier for rules.
bfa74976
RS
7363
7364The @code{%prec} modifier declares the precedence of a particular rule by
7365specifying a terminal symbol whose precedence should be used for that rule.
7366It's not necessary for that symbol to appear otherwise in the rule. The
7367modifier's syntax is:
7368
7369@example
7370%prec @var{terminal-symbol}
7371@end example
7372
7373@noindent
7374and it is written after the components of the rule. Its effect is to
7375assign the rule the precedence of @var{terminal-symbol}, overriding
7376the precedence that would be deduced for it in the ordinary way. The
7377altered rule precedence then affects how conflicts involving that rule
7378are resolved (@pxref{Precedence, ,Operator Precedence}).
7379
7380Here is how @code{%prec} solves the problem of unary minus. First, declare
7381a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7382are no tokens of this type, but the symbol serves to stand for its
7383precedence:
7384
7385@example
7386@dots{}
7387%left '+' '-'
7388%left '*'
7389%left UMINUS
7390@end example
7391
7392Now the precedence of @code{UMINUS} can be used in specific rules:
7393
7394@example
7395@group
5e9b6624
AD
7396exp:
7397 @dots{}
7398| exp '-' exp
7399 @dots{}
7400| '-' exp %prec UMINUS
bfa74976
RS
7401@end group
7402@end example
7403
91d2c560 7404@ifset defaultprec
39a06c25
PE
7405If you forget to append @code{%prec UMINUS} to the rule for unary
7406minus, Bison silently assumes that minus has its usual precedence.
7407This kind of problem can be tricky to debug, since one typically
7408discovers the mistake only by testing the code.
7409
22fccf95 7410The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7411this kind of problem systematically. It causes rules that lack a
7412@code{%prec} modifier to have no precedence, even if the last terminal
7413symbol mentioned in their components has a declared precedence.
7414
22fccf95 7415If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7416for all rules that participate in precedence conflict resolution.
7417Then you will see any shift/reduce conflict until you tell Bison how
7418to resolve it, either by changing your grammar or by adding an
7419explicit precedence. This will probably add declarations to the
7420grammar, but it helps to protect against incorrect rule precedences.
7421
22fccf95
PE
7422The effect of @code{%no-default-prec;} can be reversed by giving
7423@code{%default-prec;}, which is the default.
91d2c560 7424@end ifset
39a06c25 7425
342b8b6e 7426@node Parser States
bfa74976
RS
7427@section Parser States
7428@cindex finite-state machine
7429@cindex parser state
7430@cindex state (of parser)
7431
7432The function @code{yyparse} is implemented using a finite-state machine.
7433The values pushed on the parser stack are not simply token type codes; they
7434represent the entire sequence of terminal and nonterminal symbols at or
7435near the top of the stack. The current state collects all the information
7436about previous input which is relevant to deciding what to do next.
7437
742e4900
JD
7438Each time a lookahead token is read, the current parser state together
7439with the type of lookahead token are looked up in a table. This table
7440entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7441specifies the new parser state, which is pushed onto the top of the
7442parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7443This means that a certain number of tokens or groupings are taken off
7444the top of the stack, and replaced by one grouping. In other words,
7445that number of states are popped from the stack, and one new state is
7446pushed.
7447
742e4900 7448There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7449is erroneous in the current state. This causes error processing to begin
7450(@pxref{Error Recovery}).
7451
342b8b6e 7452@node Reduce/Reduce
bfa74976
RS
7453@section Reduce/Reduce Conflicts
7454@cindex reduce/reduce conflict
7455@cindex conflicts, reduce/reduce
7456
7457A reduce/reduce conflict occurs if there are two or more rules that apply
7458to the same sequence of input. This usually indicates a serious error
7459in the grammar.
7460
7461For example, here is an erroneous attempt to define a sequence
7462of zero or more @code{word} groupings.
7463
7464@example
d4fca427 7465@group
5e9b6624
AD
7466sequence:
7467 /* empty */ @{ printf ("empty sequence\n"); @}
7468| maybeword
7469| sequence word @{ printf ("added word %s\n", $2); @}
7470;
d4fca427 7471@end group
bfa74976 7472
d4fca427 7473@group
5e9b6624
AD
7474maybeword:
7475 /* empty */ @{ printf ("empty maybeword\n"); @}
7476| word @{ printf ("single word %s\n", $1); @}
7477;
d4fca427 7478@end group
bfa74976
RS
7479@end example
7480
7481@noindent
7482The error is an ambiguity: there is more than one way to parse a single
7483@code{word} into a @code{sequence}. It could be reduced to a
7484@code{maybeword} and then into a @code{sequence} via the second rule.
7485Alternatively, nothing-at-all could be reduced into a @code{sequence}
7486via the first rule, and this could be combined with the @code{word}
7487using the third rule for @code{sequence}.
7488
7489There is also more than one way to reduce nothing-at-all into a
7490@code{sequence}. This can be done directly via the first rule,
7491or indirectly via @code{maybeword} and then the second rule.
7492
7493You might think that this is a distinction without a difference, because it
7494does not change whether any particular input is valid or not. But it does
7495affect which actions are run. One parsing order runs the second rule's
7496action; the other runs the first rule's action and the third rule's action.
7497In this example, the output of the program changes.
7498
7499Bison resolves a reduce/reduce conflict by choosing to use the rule that
7500appears first in the grammar, but it is very risky to rely on this. Every
7501reduce/reduce conflict must be studied and usually eliminated. Here is the
7502proper way to define @code{sequence}:
7503
7504@example
51356dd2 7505@group
5e9b6624
AD
7506sequence:
7507 /* empty */ @{ printf ("empty sequence\n"); @}
7508| sequence word @{ printf ("added word %s\n", $2); @}
7509;
51356dd2 7510@end group
bfa74976
RS
7511@end example
7512
7513Here is another common error that yields a reduce/reduce conflict:
7514
7515@example
51356dd2 7516@group
589149dc 7517sequence:
5e9b6624
AD
7518 /* empty */
7519| sequence words
7520| sequence redirects
7521;
51356dd2 7522@end group
bfa74976 7523
51356dd2 7524@group
5e9b6624
AD
7525words:
7526 /* empty */
7527| words word
7528;
51356dd2 7529@end group
bfa74976 7530
51356dd2 7531@group
5e9b6624
AD
7532redirects:
7533 /* empty */
7534| redirects redirect
7535;
51356dd2 7536@end group
bfa74976
RS
7537@end example
7538
7539@noindent
7540The intention here is to define a sequence which can contain either
7541@code{word} or @code{redirect} groupings. The individual definitions of
7542@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7543three together make a subtle ambiguity: even an empty input can be parsed
7544in infinitely many ways!
7545
7546Consider: nothing-at-all could be a @code{words}. Or it could be two
7547@code{words} in a row, or three, or any number. It could equally well be a
7548@code{redirects}, or two, or any number. Or it could be a @code{words}
7549followed by three @code{redirects} and another @code{words}. And so on.
7550
7551Here are two ways to correct these rules. First, to make it a single level
7552of sequence:
7553
7554@example
5e9b6624
AD
7555sequence:
7556 /* empty */
7557| sequence word
7558| sequence redirect
7559;
bfa74976
RS
7560@end example
7561
7562Second, to prevent either a @code{words} or a @code{redirects}
7563from being empty:
7564
7565@example
d4fca427 7566@group
5e9b6624
AD
7567sequence:
7568 /* empty */
7569| sequence words
7570| sequence redirects
7571;
d4fca427 7572@end group
bfa74976 7573
d4fca427 7574@group
5e9b6624
AD
7575words:
7576 word
7577| words word
7578;
d4fca427 7579@end group
bfa74976 7580
d4fca427 7581@group
5e9b6624
AD
7582redirects:
7583 redirect
7584| redirects redirect
7585;
d4fca427 7586@end group
bfa74976
RS
7587@end example
7588
53e2cd1e
AD
7589Yet this proposal introduces another kind of ambiguity! The input
7590@samp{word word} can be parsed as a single @code{words} composed of two
7591@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7592@code{redirect}/@code{redirects}). However this ambiguity is now a
7593shift/reduce conflict, and therefore it can now be addressed with precedence
7594directives.
7595
7596To simplify the matter, we will proceed with @code{word} and @code{redirect}
7597being tokens: @code{"word"} and @code{"redirect"}.
7598
7599To prefer the longest @code{words}, the conflict between the token
7600@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7601as a shift. To this end, we use the same techniques as exposed above, see
7602@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7603relies on precedences: use @code{%prec} to give a lower precedence to the
7604rule:
7605
7606@example
589149dc
AD
7607%precedence "word"
7608%precedence "sequence"
53e2cd1e
AD
7609%%
7610@group
7611sequence:
7612 /* empty */
7613| sequence word %prec "sequence"
7614| sequence redirect %prec "sequence"
7615;
7616@end group
7617
7618@group
7619words:
7620 word
7621| words "word"
7622;
7623@end group
7624@end example
7625
7626Another solution relies on associativity: provide both the token and the
7627rule with the same precedence, but make them right-associative:
7628
7629@example
7630%right "word" "redirect"
7631%%
7632@group
7633sequence:
7634 /* empty */
7635| sequence word %prec "word"
7636| sequence redirect %prec "redirect"
7637;
7638@end group
7639@end example
7640
cc09e5be
JD
7641@node Mysterious Conflicts
7642@section Mysterious Conflicts
7fceb615 7643@cindex Mysterious Conflicts
bfa74976
RS
7644
7645Sometimes reduce/reduce conflicts can occur that don't look warranted.
7646Here is an example:
7647
7648@example
7649@group
bfa74976 7650%%
5e9b6624 7651def: param_spec return_spec ',';
bfa74976 7652param_spec:
5e9b6624
AD
7653 type
7654| name_list ':' type
7655;
bfa74976 7656@end group
589149dc 7657
bfa74976
RS
7658@group
7659return_spec:
5e9b6624
AD
7660 type
7661| name ':' type
7662;
bfa74976 7663@end group
589149dc 7664
534cee7a 7665type: "id";
589149dc 7666
bfa74976 7667@group
534cee7a 7668name: "id";
bfa74976 7669name_list:
5e9b6624
AD
7670 name
7671| name ',' name_list
7672;
bfa74976
RS
7673@end group
7674@end example
7675
534cee7a
AD
7676It would seem that this grammar can be parsed with only a single token of
7677lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7678@code{name} if a comma or colon follows, or a @code{type} if another
7679@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7680
7fceb615
JD
7681@cindex LR
7682@cindex LALR
eb45ef3b 7683However, for historical reasons, Bison cannot by default handle all
8a4281b9 7684LR(1) grammars.
534cee7a 7685In this grammar, two contexts, that after an @code{"id"} at the beginning
eb45ef3b
JD
7686of a @code{param_spec} and likewise at the beginning of a
7687@code{return_spec}, are similar enough that Bison assumes they are the
7688same.
7689They appear similar because the same set of rules would be
bfa74976
RS
7690active---the rule for reducing to a @code{name} and that for reducing to
7691a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7692that the rules would require different lookahead tokens in the two
bfa74976
RS
7693contexts, so it makes a single parser state for them both. Combining
7694the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7695occurrence means that the grammar is not LALR(1).
bfa74976 7696
7fceb615
JD
7697@cindex IELR
7698@cindex canonical LR
7699For many practical grammars (specifically those that fall into the non-LR(1)
7700class), the limitations of LALR(1) result in difficulties beyond just
7701mysterious reduce/reduce conflicts. The best way to fix all these problems
7702is to select a different parser table construction algorithm. Either
7703IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7704and easier to debug during development. @xref{LR Table Construction}, for
7705details. (Bison's IELR(1) and canonical LR(1) implementations are
7706experimental. More user feedback will help to stabilize them.)
eb45ef3b 7707
8a4281b9 7708If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7709can often fix a mysterious conflict by identifying the two parser states
7710that are being confused, and adding something to make them look
7711distinct. In the above example, adding one rule to
bfa74976
RS
7712@code{return_spec} as follows makes the problem go away:
7713
7714@example
7715@group
bfa74976
RS
7716@dots{}
7717return_spec:
5e9b6624
AD
7718 type
7719| name ':' type
534cee7a 7720| "id" "bogus" /* This rule is never used. */
5e9b6624 7721;
bfa74976
RS
7722@end group
7723@end example
7724
7725This corrects the problem because it introduces the possibility of an
534cee7a 7726additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7727@code{return_spec}. This rule is not active in the corresponding context
7728in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7729As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7730the added rule cannot alter the way actual input is parsed.
7731
7732In this particular example, there is another way to solve the problem:
534cee7a 7733rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
7734instead of via @code{name}. This also causes the two confusing
7735contexts to have different sets of active rules, because the one for
7736@code{return_spec} activates the altered rule for @code{return_spec}
7737rather than the one for @code{name}.
7738
7739@example
589149dc 7740@group
bfa74976 7741param_spec:
5e9b6624
AD
7742 type
7743| name_list ':' type
7744;
589149dc
AD
7745@end group
7746
7747@group
bfa74976 7748return_spec:
5e9b6624 7749 type
534cee7a 7750| "id" ':' type
5e9b6624 7751;
589149dc 7752@end group
bfa74976
RS
7753@end example
7754
8a4281b9 7755For a more detailed exposition of LALR(1) parsers and parser
5e528941 7756generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7757
7fceb615
JD
7758@node Tuning LR
7759@section Tuning LR
7760
7761The default behavior of Bison's LR-based parsers is chosen mostly for
7762historical reasons, but that behavior is often not robust. For example, in
7763the previous section, we discussed the mysterious conflicts that can be
7764produced by LALR(1), Bison's default parser table construction algorithm.
7765Another example is Bison's @code{%define parse.error verbose} directive,
7766which instructs the generated parser to produce verbose syntax error
7767messages, which can sometimes contain incorrect information.
7768
7769In this section, we explore several modern features of Bison that allow you
7770to tune fundamental aspects of the generated LR-based parsers. Some of
7771these features easily eliminate shortcomings like those mentioned above.
7772Others can be helpful purely for understanding your parser.
7773
7774Most of the features discussed in this section are still experimental. More
7775user feedback will help to stabilize them.
7776
7777@menu
7778* LR Table Construction:: Choose a different construction algorithm.
7779* Default Reductions:: Disable default reductions.
7780* LAC:: Correct lookahead sets in the parser states.
7781* Unreachable States:: Keep unreachable parser states for debugging.
7782@end menu
7783
7784@node LR Table Construction
7785@subsection LR Table Construction
7786@cindex Mysterious Conflict
7787@cindex LALR
7788@cindex IELR
7789@cindex canonical LR
7790@findex %define lr.type
7791
7792For historical reasons, Bison constructs LALR(1) parser tables by default.
7793However, LALR does not possess the full language-recognition power of LR.
7794As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7795mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7796Conflicts}.
7797
7798As we also demonstrated in that example, the traditional approach to
7799eliminating such mysterious behavior is to restructure the grammar.
7800Unfortunately, doing so correctly is often difficult. Moreover, merely
7801discovering that LALR causes mysterious behavior in your parser can be
7802difficult as well.
7803
7804Fortunately, Bison provides an easy way to eliminate the possibility of such
7805mysterious behavior altogether. You simply need to activate a more powerful
7806parser table construction algorithm by using the @code{%define lr.type}
7807directive.
7808
511dd971 7809@deffn {Directive} {%define lr.type} @var{type}
7fceb615 7810Specify the type of parser tables within the LR(1) family. The accepted
511dd971 7811values for @var{type} are:
7fceb615
JD
7812
7813@itemize
7814@item @code{lalr} (default)
7815@item @code{ielr}
7816@item @code{canonical-lr}
7817@end itemize
7818
7819(This feature is experimental. More user feedback will help to stabilize
7820it.)
7821@end deffn
7822
7823For example, to activate IELR, you might add the following directive to you
7824grammar file:
7825
7826@example
7827%define lr.type ielr
7828@end example
7829
cc09e5be 7830@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7831conflict is then eliminated, so there is no need to invest time in
7832comprehending the conflict or restructuring the grammar to fix it. If,
7833during future development, the grammar evolves such that all mysterious
7834behavior would have disappeared using just LALR, you need not fear that
7835continuing to use IELR will result in unnecessarily large parser tables.
7836That is, IELR generates LALR tables when LALR (using a deterministic parsing
7837algorithm) is sufficient to support the full language-recognition power of
7838LR. Thus, by enabling IELR at the start of grammar development, you can
7839safely and completely eliminate the need to consider LALR's shortcomings.
7840
7841While IELR is almost always preferable, there are circumstances where LALR
7842or the canonical LR parser tables described by Knuth
7843(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7844relative advantages of each parser table construction algorithm within
7845Bison:
7846
7847@itemize
7848@item LALR
7849
7850There are at least two scenarios where LALR can be worthwhile:
7851
7852@itemize
7853@item GLR without static conflict resolution.
7854
7855@cindex GLR with LALR
7856When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
589149dc
AD
7857conflicts statically (for example, with @code{%left} or @code{%precedence}),
7858then
7fceb615
JD
7859the parser explores all potential parses of any given input. In this case,
7860the choice of parser table construction algorithm is guaranteed not to alter
7861the language accepted by the parser. LALR parser tables are the smallest
7862parser tables Bison can currently construct, so they may then be preferable.
7863Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7864more like a deterministic parser in the syntactic contexts where those
7865conflicts appear, and so either IELR or canonical LR can then be helpful to
7866avoid LALR's mysterious behavior.
7867
7868@item Malformed grammars.
7869
7870Occasionally during development, an especially malformed grammar with a
7871major recurring flaw may severely impede the IELR or canonical LR parser
7872table construction algorithm. LALR can be a quick way to construct parser
7873tables in order to investigate such problems while ignoring the more subtle
7874differences from IELR and canonical LR.
7875@end itemize
7876
7877@item IELR
7878
7879IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7880any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7881always accept exactly the same set of sentences. However, like LALR, IELR
7882merges parser states during parser table construction so that the number of
7883parser states is often an order of magnitude less than for canonical LR.
7884More importantly, because canonical LR's extra parser states may contain
7885duplicate conflicts in the case of non-LR grammars, the number of conflicts
7886for IELR is often an order of magnitude less as well. This effect can
7887significantly reduce the complexity of developing a grammar.
7888
7889@item Canonical LR
7890
7891@cindex delayed syntax error detection
7892@cindex LAC
7893@findex %nonassoc
7894While inefficient, canonical LR parser tables can be an interesting means to
7895explore a grammar because they possess a property that IELR and LALR tables
7896do not. That is, if @code{%nonassoc} is not used and default reductions are
7897left disabled (@pxref{Default Reductions}), then, for every left context of
7898every canonical LR state, the set of tokens accepted by that state is
7899guaranteed to be the exact set of tokens that is syntactically acceptable in
7900that left context. It might then seem that an advantage of canonical LR
7901parsers in production is that, under the above constraints, they are
7902guaranteed to detect a syntax error as soon as possible without performing
7903any unnecessary reductions. However, IELR parsers that use LAC are also
7904able to achieve this behavior without sacrificing @code{%nonassoc} or
7905default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7906@end itemize
7907
7908For a more detailed exposition of the mysterious behavior in LALR parsers
7909and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7910@ref{Bibliography,,Denny 2010 November}.
7911
7912@node Default Reductions
7913@subsection Default Reductions
7914@cindex default reductions
f3bc3386 7915@findex %define lr.default-reduction
7fceb615
JD
7916@findex %nonassoc
7917
7918After parser table construction, Bison identifies the reduction with the
7919largest lookahead set in each parser state. To reduce the size of the
7920parser state, traditional Bison behavior is to remove that lookahead set and
7921to assign that reduction to be the default parser action. Such a reduction
7922is known as a @dfn{default reduction}.
7923
7924Default reductions affect more than the size of the parser tables. They
7925also affect the behavior of the parser:
7926
7927@itemize
7928@item Delayed @code{yylex} invocations.
7929
7930@cindex delayed yylex invocations
7931@cindex consistent states
7932@cindex defaulted states
7933A @dfn{consistent state} is a state that has only one possible parser
7934action. If that action is a reduction and is encoded as a default
7935reduction, then that consistent state is called a @dfn{defaulted state}.
7936Upon reaching a defaulted state, a Bison-generated parser does not bother to
7937invoke @code{yylex} to fetch the next token before performing the reduction.
7938In other words, whether default reductions are enabled in consistent states
7939determines how soon a Bison-generated parser invokes @code{yylex} for a
7940token: immediately when it @emph{reaches} that token in the input or when it
7941eventually @emph{needs} that token as a lookahead to determine the next
7942parser action. Traditionally, default reductions are enabled, and so the
7943parser exhibits the latter behavior.
7944
7945The presence of defaulted states is an important consideration when
7946designing @code{yylex} and the grammar file. That is, if the behavior of
7947@code{yylex} can influence or be influenced by the semantic actions
7948associated with the reductions in defaulted states, then the delay of the
7949next @code{yylex} invocation until after those reductions is significant.
7950For example, the semantic actions might pop a scope stack that @code{yylex}
7951uses to determine what token to return. Thus, the delay might be necessary
7952to ensure that @code{yylex} does not look up the next token in a scope that
7953should already be considered closed.
7954
7955@item Delayed syntax error detection.
7956
7957@cindex delayed syntax error detection
7958When the parser fetches a new token by invoking @code{yylex}, it checks
7959whether there is an action for that token in the current parser state. The
7960parser detects a syntax error if and only if either (1) there is no action
7961for that token or (2) the action for that token is the error action (due to
7962the use of @code{%nonassoc}). However, if there is a default reduction in
7963that state (which might or might not be a defaulted state), then it is
7964impossible for condition 1 to exist. That is, all tokens have an action.
7965Thus, the parser sometimes fails to detect the syntax error until it reaches
7966a later state.
7967
7968@cindex LAC
7969@c If there's an infinite loop, default reductions can prevent an incorrect
7970@c sentence from being rejected.
7971While default reductions never cause the parser to accept syntactically
7972incorrect sentences, the delay of syntax error detection can have unexpected
7973effects on the behavior of the parser. However, the delay can be caused
7974anyway by parser state merging and the use of @code{%nonassoc}, and it can
7975be fixed by another Bison feature, LAC. We discuss the effects of delayed
7976syntax error detection and LAC more in the next section (@pxref{LAC}).
7977@end itemize
7978
7979For canonical LR, the only default reduction that Bison enables by default
7980is the accept action, which appears only in the accepting state, which has
7981no other action and is thus a defaulted state. However, the default accept
7982action does not delay any @code{yylex} invocation or syntax error detection
7983because the accept action ends the parse.
7984
7985For LALR and IELR, Bison enables default reductions in nearly all states by
7986default. There are only two exceptions. First, states that have a shift
7987action on the @code{error} token do not have default reductions because
7988delayed syntax error detection could then prevent the @code{error} token
7989from ever being shifted in that state. However, parser state merging can
7990cause the same effect anyway, and LAC fixes it in both cases, so future
7991versions of Bison might drop this exception when LAC is activated. Second,
7992GLR parsers do not record the default reduction as the action on a lookahead
7993token for which there is a conflict. The correct action in this case is to
7994split the parse instead.
7995
7996To adjust which states have default reductions enabled, use the
f3bc3386 7997@code{%define lr.default-reduction} directive.
7fceb615 7998
5807bb91 7999@deffn {Directive} {%define lr.default-reduction} @var{where}
7fceb615 8000Specify the kind of states that are permitted to contain default reductions.
511dd971 8001The accepted values of @var{where} are:
7fceb615 8002@itemize
f0ad1b2f 8003@item @code{most} (default for LALR and IELR)
7fceb615
JD
8004@item @code{consistent}
8005@item @code{accepting} (default for canonical LR)
8006@end itemize
8007
8008(The ability to specify where default reductions are permitted is
8009experimental. More user feedback will help to stabilize it.)
8010@end deffn
8011
7fceb615
JD
8012@node LAC
8013@subsection LAC
8014@findex %define parse.lac
8015@cindex LAC
8016@cindex lookahead correction
8017
8018Canonical LR, IELR, and LALR can suffer from a couple of problems upon
8019encountering a syntax error. First, the parser might perform additional
8020parser stack reductions before discovering the syntax error. Such
8021reductions can perform user semantic actions that are unexpected because
8022they are based on an invalid token, and they cause error recovery to begin
8023in a different syntactic context than the one in which the invalid token was
8024encountered. Second, when verbose error messages are enabled (@pxref{Error
8025Reporting}), the expected token list in the syntax error message can both
8026contain invalid tokens and omit valid tokens.
8027
8028The culprits for the above problems are @code{%nonassoc}, default reductions
8029in inconsistent states (@pxref{Default Reductions}), and parser state
8030merging. Because IELR and LALR merge parser states, they suffer the most.
8031Canonical LR can suffer only if @code{%nonassoc} is used or if default
8032reductions are enabled for inconsistent states.
8033
8034LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
8035that solves these problems for canonical LR, IELR, and LALR without
8036sacrificing @code{%nonassoc}, default reductions, or state merging. You can
8037enable LAC with the @code{%define parse.lac} directive.
8038
511dd971 8039@deffn {Directive} {%define parse.lac} @var{value}
7fceb615
JD
8040Enable LAC to improve syntax error handling.
8041@itemize
8042@item @code{none} (default)
8043@item @code{full}
8044@end itemize
8045(This feature is experimental. More user feedback will help to stabilize
8046it. Moreover, it is currently only available for deterministic parsers in
8047C.)
8048@end deffn
8049
8050Conceptually, the LAC mechanism is straight-forward. Whenever the parser
8051fetches a new token from the scanner so that it can determine the next
8052parser action, it immediately suspends normal parsing and performs an
8053exploratory parse using a temporary copy of the normal parser state stack.
8054During this exploratory parse, the parser does not perform user semantic
8055actions. If the exploratory parse reaches a shift action, normal parsing
8056then resumes on the normal parser stacks. If the exploratory parse reaches
8057an error instead, the parser reports a syntax error. If verbose syntax
8058error messages are enabled, the parser must then discover the list of
8059expected tokens, so it performs a separate exploratory parse for each token
8060in the grammar.
8061
8062There is one subtlety about the use of LAC. That is, when in a consistent
8063parser state with a default reduction, the parser will not attempt to fetch
8064a token from the scanner because no lookahead is needed to determine the
8065next parser action. Thus, whether default reductions are enabled in
8066consistent states (@pxref{Default Reductions}) affects how soon the parser
8067detects a syntax error: immediately when it @emph{reaches} an erroneous
8068token or when it eventually @emph{needs} that token as a lookahead to
8069determine the next parser action. The latter behavior is probably more
8070intuitive, so Bison currently provides no way to achieve the former behavior
8071while default reductions are enabled in consistent states.
8072
8073Thus, when LAC is in use, for some fixed decision of whether to enable
8074default reductions in consistent states, canonical LR and IELR behave almost
8075exactly the same for both syntactically acceptable and syntactically
8076unacceptable input. While LALR still does not support the full
8077language-recognition power of canonical LR and IELR, LAC at least enables
8078LALR's syntax error handling to correctly reflect LALR's
8079language-recognition power.
8080
8081There are a few caveats to consider when using LAC:
8082
8083@itemize
8084@item Infinite parsing loops.
8085
8086IELR plus LAC does have one shortcoming relative to canonical LR. Some
8087parsers generated by Bison can loop infinitely. LAC does not fix infinite
8088parsing loops that occur between encountering a syntax error and detecting
8089it, but enabling canonical LR or disabling default reductions sometimes
8090does.
8091
8092@item Verbose error message limitations.
8093
8094Because of internationalization considerations, Bison-generated parsers
8095limit the size of the expected token list they are willing to report in a
8096verbose syntax error message. If the number of expected tokens exceeds that
8097limit, the list is simply dropped from the message. Enabling LAC can
8098increase the size of the list and thus cause the parser to drop it. Of
8099course, dropping the list is better than reporting an incorrect list.
8100
8101@item Performance.
8102
8103Because LAC requires many parse actions to be performed twice, it can have a
8104performance penalty. However, not all parse actions must be performed
8105twice. Specifically, during a series of default reductions in consistent
8106states and shift actions, the parser never has to initiate an exploratory
8107parse. Moreover, the most time-consuming tasks in a parse are often the
8108file I/O, the lexical analysis performed by the scanner, and the user's
8109semantic actions, but none of these are performed during the exploratory
8110parse. Finally, the base of the temporary stack used during an exploratory
8111parse is a pointer into the normal parser state stack so that the stack is
8112never physically copied. In our experience, the performance penalty of LAC
5a321748 8113has proved insignificant for practical grammars.
7fceb615
JD
8114@end itemize
8115
709c7d11
JD
8116While the LAC algorithm shares techniques that have been recognized in the
8117parser community for years, for the publication that introduces LAC,
8118@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 8119
7fceb615
JD
8120@node Unreachable States
8121@subsection Unreachable States
f3bc3386 8122@findex %define lr.keep-unreachable-state
7fceb615
JD
8123@cindex unreachable states
8124
8125If there exists no sequence of transitions from the parser's start state to
8126some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
8127state}. A state can become unreachable during conflict resolution if Bison
8128disables a shift action leading to it from a predecessor state.
8129
8130By default, Bison removes unreachable states from the parser after conflict
8131resolution because they are useless in the generated parser. However,
8132keeping unreachable states is sometimes useful when trying to understand the
8133relationship between the parser and the grammar.
8134
5807bb91 8135@deffn {Directive} {%define lr.keep-unreachable-state} @var{value}
7fceb615 8136Request that Bison allow unreachable states to remain in the parser tables.
511dd971 8137@var{value} must be a Boolean. The default is @code{false}.
7fceb615
JD
8138@end deffn
8139
8140There are a few caveats to consider:
8141
8142@itemize @bullet
8143@item Missing or extraneous warnings.
8144
8145Unreachable states may contain conflicts and may use rules not used in any
8146other state. Thus, keeping unreachable states may induce warnings that are
8147irrelevant to your parser's behavior, and it may eliminate warnings that are
8148relevant. Of course, the change in warnings may actually be relevant to a
8149parser table analysis that wants to keep unreachable states, so this
8150behavior will likely remain in future Bison releases.
8151
8152@item Other useless states.
8153
8154While Bison is able to remove unreachable states, it is not guaranteed to
8155remove other kinds of useless states. Specifically, when Bison disables
8156reduce actions during conflict resolution, some goto actions may become
8157useless, and thus some additional states may become useless. If Bison were
8158to compute which goto actions were useless and then disable those actions,
8159it could identify such states as unreachable and then remove those states.
8160However, Bison does not compute which goto actions are useless.
8161@end itemize
8162
fae437e8 8163@node Generalized LR Parsing
8a4281b9
JD
8164@section Generalized LR (GLR) Parsing
8165@cindex GLR parsing
8166@cindex generalized LR (GLR) parsing
676385e2 8167@cindex ambiguous grammars
9d9b8b70 8168@cindex nondeterministic parsing
676385e2 8169
fae437e8
AD
8170Bison produces @emph{deterministic} parsers that choose uniquely
8171when to reduce and which reduction to apply
742e4900 8172based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
8173As a result, normal Bison handles a proper subset of the family of
8174context-free languages.
fae437e8 8175Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
8176sequence of reductions cannot have deterministic parsers in this sense.
8177The same is true of languages that require more than one symbol of
742e4900 8178lookahead, since the parser lacks the information necessary to make a
676385e2 8179decision at the point it must be made in a shift-reduce parser.
cc09e5be 8180Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 8181there are languages where Bison's default choice of how to
676385e2
PH
8182summarize the input seen so far loses necessary information.
8183
8184When you use the @samp{%glr-parser} declaration in your grammar file,
8185Bison generates a parser that uses a different algorithm, called
8a4281b9 8186Generalized LR (or GLR). A Bison GLR
c827f760 8187parser uses the same basic
676385e2
PH
8188algorithm for parsing as an ordinary Bison parser, but behaves
8189differently in cases where there is a shift-reduce conflict that has not
fae437e8 8190been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 8191reduce-reduce conflict. When a GLR parser encounters such a
c827f760 8192situation, it
fae437e8 8193effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
8194shift or reduction. These parsers then proceed as usual, consuming
8195tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 8196and split further, with the result that instead of a sequence of states,
8a4281b9 8197a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
8198
8199In effect, each stack represents a guess as to what the proper parse
8200is. Additional input may indicate that a guess was wrong, in which case
8201the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 8202actions generated in each stack are saved, rather than being executed
676385e2 8203immediately. When a stack disappears, its saved semantic actions never
fae437e8 8204get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
8205their sets of semantic actions are both saved with the state that
8206results from the reduction. We say that two stacks are equivalent
fae437e8 8207when they both represent the same sequence of states,
676385e2
PH
8208and each pair of corresponding states represents a
8209grammar symbol that produces the same segment of the input token
8210stream.
8211
8212Whenever the parser makes a transition from having multiple
eb45ef3b 8213states to having one, it reverts to the normal deterministic parsing
676385e2
PH
8214algorithm, after resolving and executing the saved-up actions.
8215At this transition, some of the states on the stack will have semantic
8216values that are sets (actually multisets) of possible actions. The
8217parser tries to pick one of the actions by first finding one whose rule
8218has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 8219declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8220precedence, but there the same merging function is declared for both
fae437e8 8221rules by the @samp{%merge} declaration,
676385e2
PH
8222Bison resolves and evaluates both and then calls the merge function on
8223the result. Otherwise, it reports an ambiguity.
8224
8a4281b9
JD
8225It is possible to use a data structure for the GLR parsing tree that
8226permits the processing of any LR(1) grammar in linear time (in the
c827f760 8227size of the input), any unambiguous (not necessarily
8a4281b9 8228LR(1)) grammar in
fae437e8 8229quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8230context-free grammar in cubic worst-case time. However, Bison currently
8231uses a simpler data structure that requires time proportional to the
8232length of the input times the maximum number of stacks required for any
9d9b8b70 8233prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8234grammars can require exponential time and space to process. Such badly
8235behaving examples, however, are not generally of practical interest.
9d9b8b70 8236Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8237doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8238structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8239grammar, in particular, it is only slightly slower than with the
8a4281b9 8240deterministic LR(1) Bison parser.
676385e2 8241
5e528941
JD
8242For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
82432000}.
f6481e2f 8244
1a059451
PE
8245@node Memory Management
8246@section Memory Management, and How to Avoid Memory Exhaustion
8247@cindex memory exhaustion
8248@cindex memory management
bfa74976
RS
8249@cindex stack overflow
8250@cindex parser stack overflow
8251@cindex overflow of parser stack
8252
1a059451 8253The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8254not reduced. When this happens, the parser function @code{yyparse}
1a059451 8255calls @code{yyerror} and then returns 2.
bfa74976 8256
c827f760 8257Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8258usually results from using a right recursion instead of a left
188867ac 8259recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8260
bfa74976
RS
8261@vindex YYMAXDEPTH
8262By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8263parser stack can become before memory is exhausted. Define the
bfa74976
RS
8264macro with a value that is an integer. This value is the maximum number
8265of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8266
8267The stack space allowed is not necessarily allocated. If you specify a
1a059451 8268large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8269stack at first, and then makes it bigger by stages as needed. This
8270increasing allocation happens automatically and silently. Therefore,
8271you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8272space for ordinary inputs that do not need much stack.
8273
d7e14fc0
PE
8274However, do not allow @code{YYMAXDEPTH} to be a value so large that
8275arithmetic overflow could occur when calculating the size of the stack
8276space. Also, do not allow @code{YYMAXDEPTH} to be less than
8277@code{YYINITDEPTH}.
8278
bfa74976
RS
8279@cindex default stack limit
8280The default value of @code{YYMAXDEPTH}, if you do not define it, is
828110000.
8282
8283@vindex YYINITDEPTH
8284You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8285macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8286parser in C, this value must be a compile-time constant
d7e14fc0
PE
8287unless you are assuming C99 or some other target language or compiler
8288that allows variable-length arrays. The default is 200.
8289
1a059451 8290Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8291
20be2f92 8292You can generate a deterministic parser containing C++ user code from
411614fa 8293the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8294(@pxref{C++ Parsers}). However, if you do use the default skeleton
8295and want to allow the parsing stack to grow,
8296be careful not to use semantic types or location types that require
8297non-trivial copy constructors.
8298The C skeleton bypasses these constructors when copying data to
8299new, larger stacks.
d1a1114f 8300
342b8b6e 8301@node Error Recovery
bfa74976
RS
8302@chapter Error Recovery
8303@cindex error recovery
8304@cindex recovery from errors
8305
6e649e65 8306It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8307error. For example, a compiler should recover sufficiently to parse the
8308rest of the input file and check it for errors; a calculator should accept
8309another expression.
8310
8311In a simple interactive command parser where each input is one line, it may
8312be sufficient to allow @code{yyparse} to return 1 on error and have the
8313caller ignore the rest of the input line when that happens (and then call
8314@code{yyparse} again). But this is inadequate for a compiler, because it
8315forgets all the syntactic context leading up to the error. A syntax error
8316deep within a function in the compiler input should not cause the compiler
8317to treat the following line like the beginning of a source file.
8318
8319@findex error
8320You can define how to recover from a syntax error by writing rules to
8321recognize the special token @code{error}. This is a terminal symbol that
8322is always defined (you need not declare it) and reserved for error
8323handling. The Bison parser generates an @code{error} token whenever a
8324syntax error happens; if you have provided a rule to recognize this token
13863333 8325in the current context, the parse can continue.
bfa74976
RS
8326
8327For example:
8328
8329@example
0860e383 8330stmts:
5e9b6624 8331 /* empty string */
0860e383
AD
8332| stmts '\n'
8333| stmts exp '\n'
8334| stmts error '\n'
bfa74976
RS
8335@end example
8336
8337The fourth rule in this example says that an error followed by a newline
0860e383 8338makes a valid addition to any @code{stmts}.
bfa74976
RS
8339
8340What happens if a syntax error occurs in the middle of an @code{exp}? The
8341error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8342of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8343the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8344and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8345will be tokens to read before the next newline. So the rule is not
8346applicable in the ordinary way.
8347
8348But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8349the semantic context and part of the input. First it discards states
8350and objects from the stack until it gets back to a state in which the
bfa74976 8351@code{error} token is acceptable. (This means that the subexpressions
0860e383 8352already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8353At this point the @code{error} token can be shifted. Then, if the old
742e4900 8354lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8355tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8356this example, Bison reads and discards input until the next newline so
8357that the fourth rule can apply. Note that discarded symbols are
8358possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8359Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8360
8361The choice of error rules in the grammar is a choice of strategies for
8362error recovery. A simple and useful strategy is simply to skip the rest of
8363the current input line or current statement if an error is detected:
8364
8365@example
0860e383 8366stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8367@end example
8368
8369It is also useful to recover to the matching close-delimiter of an
8370opening-delimiter that has already been parsed. Otherwise the
8371close-delimiter will probably appear to be unmatched, and generate another,
8372spurious error message:
8373
8374@example
5e9b6624
AD
8375primary:
8376 '(' expr ')'
8377| '(' error ')'
8378@dots{}
8379;
bfa74976
RS
8380@end example
8381
8382Error recovery strategies are necessarily guesses. When they guess wrong,
8383one syntax error often leads to another. In the above example, the error
8384recovery rule guesses that an error is due to bad input within one
0860e383
AD
8385@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8386middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8387from the first error, another syntax error will be found straightaway,
8388since the text following the spurious semicolon is also an invalid
0860e383 8389@code{stmt}.
bfa74976
RS
8390
8391To prevent an outpouring of error messages, the parser will output no error
8392message for another syntax error that happens shortly after the first; only
8393after three consecutive input tokens have been successfully shifted will
8394error messages resume.
8395
8396Note that rules which accept the @code{error} token may have actions, just
8397as any other rules can.
8398
8399@findex yyerrok
8400You can make error messages resume immediately by using the macro
8401@code{yyerrok} in an action. If you do this in the error rule's action, no
8402error messages will be suppressed. This macro requires no arguments;
8403@samp{yyerrok;} is a valid C statement.
8404
8405@findex yyclearin
742e4900 8406The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8407this is unacceptable, then the macro @code{yyclearin} may be used to clear
8408this token. Write the statement @samp{yyclearin;} in the error rule's
8409action.
32c29292 8410@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8411
6e649e65 8412For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8413called that advances the input stream to some point where parsing should
8414once again commence. The next symbol returned by the lexical scanner is
742e4900 8415probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8416with @samp{yyclearin;}.
8417
8418@vindex YYRECOVERING
02103984
PE
8419The expression @code{YYRECOVERING ()} yields 1 when the parser
8420is recovering from a syntax error, and 0 otherwise.
8421Syntax error diagnostics are suppressed while recovering from a syntax
8422error.
bfa74976 8423
342b8b6e 8424@node Context Dependency
bfa74976
RS
8425@chapter Handling Context Dependencies
8426
8427The Bison paradigm is to parse tokens first, then group them into larger
8428syntactic units. In many languages, the meaning of a token is affected by
8429its context. Although this violates the Bison paradigm, certain techniques
8430(known as @dfn{kludges}) may enable you to write Bison parsers for such
8431languages.
8432
8433@menu
8434* Semantic Tokens:: Token parsing can depend on the semantic context.
8435* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8436* Tie-in Recovery:: Lexical tie-ins have implications for how
8437 error recovery rules must be written.
8438@end menu
8439
8440(Actually, ``kludge'' means any technique that gets its job done but is
8441neither clean nor robust.)
8442
342b8b6e 8443@node Semantic Tokens
bfa74976
RS
8444@section Semantic Info in Token Types
8445
8446The C language has a context dependency: the way an identifier is used
8447depends on what its current meaning is. For example, consider this:
8448
8449@example
8450foo (x);
8451@end example
8452
8453This looks like a function call statement, but if @code{foo} is a typedef
8454name, then this is actually a declaration of @code{x}. How can a Bison
8455parser for C decide how to parse this input?
8456
8a4281b9 8457The method used in GNU C is to have two different token types,
bfa74976
RS
8458@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8459identifier, it looks up the current declaration of the identifier in order
8460to decide which token type to return: @code{TYPENAME} if the identifier is
8461declared as a typedef, @code{IDENTIFIER} otherwise.
8462
8463The grammar rules can then express the context dependency by the choice of
8464token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8465but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8466@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8467is @emph{not} significant, such as in declarations that can shadow a
8468typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8469accepted---there is one rule for each of the two token types.
8470
8471This technique is simple to use if the decision of which kinds of
8472identifiers to allow is made at a place close to where the identifier is
8473parsed. But in C this is not always so: C allows a declaration to
8474redeclare a typedef name provided an explicit type has been specified
8475earlier:
8476
8477@example
3a4f411f
PE
8478typedef int foo, bar;
8479int baz (void)
d4fca427 8480@group
3a4f411f
PE
8481@{
8482 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8483 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8484 return foo (bar);
8485@}
d4fca427 8486@end group
bfa74976
RS
8487@end example
8488
8489Unfortunately, the name being declared is separated from the declaration
8490construct itself by a complicated syntactic structure---the ``declarator''.
8491
9ecbd125 8492As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8493all the nonterminal names changed: once for parsing a declaration in
8494which a typedef name can be redefined, and once for parsing a
8495declaration in which that can't be done. Here is a part of the
8496duplication, with actions omitted for brevity:
bfa74976
RS
8497
8498@example
d4fca427 8499@group
bfa74976 8500initdcl:
5e9b6624
AD
8501 declarator maybeasm '=' init
8502| declarator maybeasm
8503;
d4fca427 8504@end group
bfa74976 8505
d4fca427 8506@group
bfa74976 8507notype_initdcl:
5e9b6624
AD
8508 notype_declarator maybeasm '=' init
8509| notype_declarator maybeasm
8510;
d4fca427 8511@end group
bfa74976
RS
8512@end example
8513
8514@noindent
8515Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8516cannot. The distinction between @code{declarator} and
8517@code{notype_declarator} is the same sort of thing.
8518
8519There is some similarity between this technique and a lexical tie-in
8520(described next), in that information which alters the lexical analysis is
8521changed during parsing by other parts of the program. The difference is
8522here the information is global, and is used for other purposes in the
8523program. A true lexical tie-in has a special-purpose flag controlled by
8524the syntactic context.
8525
342b8b6e 8526@node Lexical Tie-ins
bfa74976
RS
8527@section Lexical Tie-ins
8528@cindex lexical tie-in
8529
8530One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8531which is set by Bison actions, whose purpose is to alter the way tokens are
8532parsed.
8533
8534For example, suppose we have a language vaguely like C, but with a special
8535construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8536an expression in parentheses in which all integers are hexadecimal. In
8537particular, the token @samp{a1b} must be treated as an integer rather than
8538as an identifier if it appears in that context. Here is how you can do it:
8539
8540@example
8541@group
8542%@{
38a92d50
PE
8543 int hexflag;
8544 int yylex (void);
8545 void yyerror (char const *);
bfa74976
RS
8546%@}
8547%%
8548@dots{}
8549@end group
8550@group
5e9b6624
AD
8551expr:
8552 IDENTIFIER
8553| constant
8554| HEX '(' @{ hexflag = 1; @}
8555 expr ')' @{ hexflag = 0; $$ = $4; @}
8556| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8557@dots{}
8558;
bfa74976
RS
8559@end group
8560
8561@group
8562constant:
5e9b6624
AD
8563 INTEGER
8564| STRING
8565;
bfa74976
RS
8566@end group
8567@end example
8568
8569@noindent
8570Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8571it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8572with letters are parsed as integers if possible.
8573
ff7571c0
JD
8574The declaration of @code{hexflag} shown in the prologue of the grammar
8575file is needed to make it accessible to the actions (@pxref{Prologue,
8576,The Prologue}). You must also write the code in @code{yylex} to obey
8577the flag.
bfa74976 8578
342b8b6e 8579@node Tie-in Recovery
bfa74976
RS
8580@section Lexical Tie-ins and Error Recovery
8581
8582Lexical tie-ins make strict demands on any error recovery rules you have.
8583@xref{Error Recovery}.
8584
8585The reason for this is that the purpose of an error recovery rule is to
8586abort the parsing of one construct and resume in some larger construct.
8587For example, in C-like languages, a typical error recovery rule is to skip
8588tokens until the next semicolon, and then start a new statement, like this:
8589
8590@example
5e9b6624
AD
8591stmt:
8592 expr ';'
8593| IF '(' expr ')' stmt @{ @dots{} @}
8594@dots{}
8595| error ';' @{ hexflag = 0; @}
8596;
bfa74976
RS
8597@end example
8598
8599If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8600construct, this error rule will apply, and then the action for the
8601completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8602remain set for the entire rest of the input, or until the next @code{hex}
8603keyword, causing identifiers to be misinterpreted as integers.
8604
8605To avoid this problem the error recovery rule itself clears @code{hexflag}.
8606
8607There may also be an error recovery rule that works within expressions.
8608For example, there could be a rule which applies within parentheses
8609and skips to the close-parenthesis:
8610
8611@example
8612@group
5e9b6624
AD
8613expr:
8614 @dots{}
8615| '(' expr ')' @{ $$ = $2; @}
8616| '(' error ')'
8617@dots{}
bfa74976
RS
8618@end group
8619@end example
8620
8621If this rule acts within the @code{hex} construct, it is not going to abort
8622that construct (since it applies to an inner level of parentheses within
8623the construct). Therefore, it should not clear the flag: the rest of
8624the @code{hex} construct should be parsed with the flag still in effect.
8625
8626What if there is an error recovery rule which might abort out of the
8627@code{hex} construct or might not, depending on circumstances? There is no
8628way you can write the action to determine whether a @code{hex} construct is
8629being aborted or not. So if you are using a lexical tie-in, you had better
8630make sure your error recovery rules are not of this kind. Each rule must
8631be such that you can be sure that it always will, or always won't, have to
8632clear the flag.
8633
ec3bc396
AD
8634@c ================================================== Debugging Your Parser
8635
342b8b6e 8636@node Debugging
bfa74976 8637@chapter Debugging Your Parser
ec3bc396 8638
93c150b6
AD
8639Developing a parser can be a challenge, especially if you don't understand
8640the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
c949ada3
AD
8641chapter explains how understand and debug a parser.
8642
8643The first sections focus on the static part of the parser: its structure.
8644They explain how to generate and read the detailed description of the
8645automaton. There are several formats available:
8646@itemize @minus
8647@item
8648as text, see @ref{Understanding, , Understanding Your Parser};
8649
8650@item
8651as a graph, see @ref{Graphviz,, Visualizing Your Parser};
8652
8653@item
8654or as a markup report that can be turned, for instance, into HTML, see
8655@ref{Xml,, Visualizing your parser in multiple formats}.
8656@end itemize
8657
8658The last section focuses on the dynamic part of the parser: how to enable
8659and understand the parser run-time traces (@pxref{Tracing, ,Tracing Your
8660Parser}).
ec3bc396
AD
8661
8662@menu
8663* Understanding:: Understanding the structure of your parser.
fc4fdd62 8664* Graphviz:: Getting a visual representation of the parser.
9c16d399 8665* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8666* Tracing:: Tracing the execution of your parser.
8667@end menu
8668
8669@node Understanding
8670@section Understanding Your Parser
8671
8672As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8673Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8674frequent than one would hope), looking at this automaton is required to
c949ada3 8675tune or simply fix a parser.
ec3bc396
AD
8676
8677The textual file is generated when the options @option{--report} or
e3fd1dcb 8678@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8679Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8680the parser implementation file name, and adding @samp{.output}
8681instead. Therefore, if the grammar file is @file{foo.y}, then the
8682parser implementation file is called @file{foo.tab.c} by default. As
8683a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8684
8685The following grammar file, @file{calc.y}, will be used in the sequel:
8686
8687@example
8688%token NUM STR
c949ada3 8689@group
ec3bc396
AD
8690%left '+' '-'
8691%left '*'
c949ada3 8692@end group
ec3bc396 8693%%
c949ada3 8694@group
5e9b6624
AD
8695exp:
8696 exp '+' exp
8697| exp '-' exp
8698| exp '*' exp
8699| exp '/' exp
8700| NUM
8701;
c949ada3 8702@end group
ec3bc396
AD
8703useless: STR;
8704%%
8705@end example
8706
88bce5a2
AD
8707@command{bison} reports:
8708
8709@example
8f0d265e
JD
8710calc.y: warning: 1 nonterminal useless in grammar
8711calc.y: warning: 1 rule useless in grammar
c949ada3
AD
8712calc.y:12.1-7: warning: nonterminal useless in grammar: useless
8713calc.y:12.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8714calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8715@end example
8716
8717When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8718creates a file @file{calc.output} with contents detailed below. The
8719order of the output and the exact presentation might vary, but the
8720interpretation is the same.
ec3bc396 8721
ec3bc396
AD
8722@noindent
8723@cindex token, useless
8724@cindex useless token
8725@cindex nonterminal, useless
8726@cindex useless nonterminal
8727@cindex rule, useless
8728@cindex useless rule
62243aa5 8729The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8730nonterminals and rules are removed in order to produce a smaller parser, but
8731useless tokens are preserved, since they might be used by the scanner (note
8732the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8733
8734@example
29e20e22 8735Nonterminals useless in grammar
ec3bc396
AD
8736 useless
8737
29e20e22 8738Terminals unused in grammar
ec3bc396
AD
8739 STR
8740
29e20e22
AD
8741Rules useless in grammar
8742 6 useless: STR
ec3bc396
AD
8743@end example
8744
8745@noindent
29e20e22
AD
8746The next section lists states that still have conflicts.
8747
8748@example
8749State 8 conflicts: 1 shift/reduce
8750State 9 conflicts: 1 shift/reduce
8751State 10 conflicts: 1 shift/reduce
8752State 11 conflicts: 4 shift/reduce
8753@end example
8754
8755@noindent
8756Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8757
8758@example
8759Grammar
8760
29e20e22
AD
8761 0 $accept: exp $end
8762
8763 1 exp: exp '+' exp
8764 2 | exp '-' exp
8765 3 | exp '*' exp
8766 4 | exp '/' exp
8767 5 | NUM
ec3bc396
AD
8768@end example
8769
8770@noindent
8771and reports the uses of the symbols:
8772
8773@example
d4fca427 8774@group
ec3bc396
AD
8775Terminals, with rules where they appear
8776
88bce5a2 8777$end (0) 0
ec3bc396
AD
8778'*' (42) 3
8779'+' (43) 1
8780'-' (45) 2
8781'/' (47) 4
8782error (256)
8783NUM (258) 5
29e20e22 8784STR (259)
d4fca427 8785@end group
ec3bc396 8786
d4fca427 8787@group
ec3bc396
AD
8788Nonterminals, with rules where they appear
8789
29e20e22 8790$accept (9)
ec3bc396 8791 on left: 0
29e20e22 8792exp (10)
ec3bc396 8793 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8794@end group
ec3bc396
AD
8795@end example
8796
8797@noindent
8798@cindex item
8799@cindex pointed rule
8800@cindex rule, pointed
8801Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8802with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8803item is a production rule together with a point (@samp{.}) marking
8804the location of the input cursor.
ec3bc396
AD
8805
8806@example
c949ada3 8807State 0
ec3bc396 8808
29e20e22 8809 0 $accept: . exp $end
ec3bc396 8810
29e20e22 8811 NUM shift, and go to state 1
ec3bc396 8812
29e20e22 8813 exp go to state 2
ec3bc396
AD
8814@end example
8815
8816This reads as follows: ``state 0 corresponds to being at the very
8817beginning of the parsing, in the initial rule, right before the start
8818symbol (here, @code{exp}). When the parser returns to this state right
8819after having reduced a rule that produced an @code{exp}, the control
8820flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8821symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8822the parse stack, and the control flow jumps to state 1. Any other
742e4900 8823lookahead triggers a syntax error.''
ec3bc396
AD
8824
8825@cindex core, item set
8826@cindex item set core
8827@cindex kernel, item set
8828@cindex item set core
8829Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8830report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8831at the beginning of any rule deriving an @code{exp}. By default Bison
8832reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8833you want to see more detail you can invoke @command{bison} with
35880c82 8834@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8835
8836@example
c949ada3 8837State 0
ec3bc396 8838
29e20e22
AD
8839 0 $accept: . exp $end
8840 1 exp: . exp '+' exp
8841 2 | . exp '-' exp
8842 3 | . exp '*' exp
8843 4 | . exp '/' exp
8844 5 | . NUM
ec3bc396 8845
29e20e22 8846 NUM shift, and go to state 1
ec3bc396 8847
29e20e22 8848 exp go to state 2
ec3bc396
AD
8849@end example
8850
8851@noindent
29e20e22 8852In the state 1@dots{}
ec3bc396
AD
8853
8854@example
c949ada3 8855State 1
ec3bc396 8856
29e20e22 8857 5 exp: NUM .
ec3bc396 8858
29e20e22 8859 $default reduce using rule 5 (exp)
ec3bc396
AD
8860@end example
8861
8862@noindent
742e4900 8863the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396 8864(@samp{$default}), the parser will reduce it. If it was coming from
c949ada3 8865State 0, then, after this reduction it will return to state 0, and will
ec3bc396
AD
8866jump to state 2 (@samp{exp: go to state 2}).
8867
8868@example
c949ada3 8869State 2
ec3bc396 8870
29e20e22
AD
8871 0 $accept: exp . $end
8872 1 exp: exp . '+' exp
8873 2 | exp . '-' exp
8874 3 | exp . '*' exp
8875 4 | exp . '/' exp
ec3bc396 8876
29e20e22
AD
8877 $end shift, and go to state 3
8878 '+' shift, and go to state 4
8879 '-' shift, and go to state 5
8880 '*' shift, and go to state 6
8881 '/' shift, and go to state 7
ec3bc396
AD
8882@end example
8883
8884@noindent
8885In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8886because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8887@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8888jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8889Since there is no default action, any lookahead not listed triggers a syntax
8890error.
ec3bc396 8891
eb45ef3b 8892@cindex accepting state
ec3bc396
AD
8893The state 3 is named the @dfn{final state}, or the @dfn{accepting
8894state}:
8895
8896@example
c949ada3 8897State 3
ec3bc396 8898
29e20e22 8899 0 $accept: exp $end .
ec3bc396 8900
29e20e22 8901 $default accept
ec3bc396
AD
8902@end example
8903
8904@noindent
29e20e22
AD
8905the initial rule is completed (the start symbol and the end-of-input were
8906read), the parsing exits successfully.
ec3bc396
AD
8907
8908The interpretation of states 4 to 7 is straightforward, and is left to
8909the reader.
8910
8911@example
c949ada3 8912State 4
ec3bc396 8913
29e20e22 8914 1 exp: exp '+' . exp
ec3bc396 8915
29e20e22
AD
8916 NUM shift, and go to state 1
8917
8918 exp go to state 8
ec3bc396 8919
ec3bc396 8920
c949ada3 8921State 5
ec3bc396 8922
29e20e22
AD
8923 2 exp: exp '-' . exp
8924
8925 NUM shift, and go to state 1
ec3bc396 8926
29e20e22 8927 exp go to state 9
ec3bc396 8928
ec3bc396 8929
c949ada3 8930State 6
ec3bc396 8931
29e20e22 8932 3 exp: exp '*' . exp
ec3bc396 8933
29e20e22
AD
8934 NUM shift, and go to state 1
8935
8936 exp go to state 10
ec3bc396 8937
ec3bc396 8938
c949ada3 8939State 7
ec3bc396 8940
29e20e22 8941 4 exp: exp '/' . exp
ec3bc396 8942
29e20e22 8943 NUM shift, and go to state 1
ec3bc396 8944
29e20e22 8945 exp go to state 11
ec3bc396
AD
8946@end example
8947
5a99098d
PE
8948As was announced in beginning of the report, @samp{State 8 conflicts:
89491 shift/reduce}:
ec3bc396
AD
8950
8951@example
c949ada3 8952State 8
ec3bc396 8953
29e20e22
AD
8954 1 exp: exp . '+' exp
8955 1 | exp '+' exp .
8956 2 | exp . '-' exp
8957 3 | exp . '*' exp
8958 4 | exp . '/' exp
ec3bc396 8959
29e20e22
AD
8960 '*' shift, and go to state 6
8961 '/' shift, and go to state 7
ec3bc396 8962
29e20e22
AD
8963 '/' [reduce using rule 1 (exp)]
8964 $default reduce using rule 1 (exp)
ec3bc396
AD
8965@end example
8966
742e4900 8967Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8968either shifting (and going to state 7), or reducing rule 1. The
8969conflict means that either the grammar is ambiguous, or the parser lacks
8970information to make the right decision. Indeed the grammar is
8971ambiguous, as, since we did not specify the precedence of @samp{/}, the
8972sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8973NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8974NUM}, which corresponds to reducing rule 1.
8975
eb45ef3b 8976Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8977arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 8978Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8979square brackets.
8980
8981Note that all the previous states had a single possible action: either
8982shifting the next token and going to the corresponding state, or
8983reducing a single rule. In the other cases, i.e., when shifting
8984@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8985possible, the lookahead is required to select the action. State 8 is
8986one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8987is shifting, otherwise the action is reducing rule 1. In other words,
8988the first two items, corresponding to rule 1, are not eligible when the
742e4900 8989lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8990precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8991with some set of possible lookahead tokens. When run with
8992@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8993
8994@example
c949ada3 8995State 8
ec3bc396 8996
29e20e22
AD
8997 1 exp: exp . '+' exp
8998 1 | exp '+' exp . [$end, '+', '-', '/']
8999 2 | exp . '-' exp
9000 3 | exp . '*' exp
9001 4 | exp . '/' exp
9002
9003 '*' shift, and go to state 6
9004 '/' shift, and go to state 7
ec3bc396 9005
29e20e22
AD
9006 '/' [reduce using rule 1 (exp)]
9007 $default reduce using rule 1 (exp)
9008@end example
9009
9010Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
9011the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
9012solved thanks to associativity and precedence directives. If invoked with
9013@option{--report=solved}, Bison includes information about the solved
9014conflicts in the report:
ec3bc396 9015
29e20e22
AD
9016@example
9017Conflict between rule 1 and token '+' resolved as reduce (%left '+').
9018Conflict between rule 1 and token '-' resolved as reduce (%left '-').
9019Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
9020@end example
9021
29e20e22 9022
ec3bc396
AD
9023The remaining states are similar:
9024
9025@example
d4fca427 9026@group
c949ada3 9027State 9
ec3bc396 9028
29e20e22
AD
9029 1 exp: exp . '+' exp
9030 2 | exp . '-' exp
9031 2 | exp '-' exp .
9032 3 | exp . '*' exp
9033 4 | exp . '/' exp
ec3bc396 9034
29e20e22
AD
9035 '*' shift, and go to state 6
9036 '/' shift, and go to state 7
ec3bc396 9037
29e20e22
AD
9038 '/' [reduce using rule 2 (exp)]
9039 $default reduce using rule 2 (exp)
d4fca427 9040@end group
ec3bc396 9041
d4fca427 9042@group
c949ada3 9043State 10
ec3bc396 9044
29e20e22
AD
9045 1 exp: exp . '+' exp
9046 2 | exp . '-' exp
9047 3 | exp . '*' exp
9048 3 | exp '*' exp .
9049 4 | exp . '/' exp
ec3bc396 9050
29e20e22 9051 '/' shift, and go to state 7
ec3bc396 9052
29e20e22
AD
9053 '/' [reduce using rule 3 (exp)]
9054 $default reduce using rule 3 (exp)
d4fca427 9055@end group
ec3bc396 9056
d4fca427 9057@group
c949ada3 9058State 11
ec3bc396 9059
29e20e22
AD
9060 1 exp: exp . '+' exp
9061 2 | exp . '-' exp
9062 3 | exp . '*' exp
9063 4 | exp . '/' exp
9064 4 | exp '/' exp .
9065
9066 '+' shift, and go to state 4
9067 '-' shift, and go to state 5
9068 '*' shift, and go to state 6
9069 '/' shift, and go to state 7
9070
9071 '+' [reduce using rule 4 (exp)]
9072 '-' [reduce using rule 4 (exp)]
9073 '*' [reduce using rule 4 (exp)]
9074 '/' [reduce using rule 4 (exp)]
9075 $default reduce using rule 4 (exp)
d4fca427 9076@end group
ec3bc396
AD
9077@end example
9078
9079@noindent
fa7e68c3 9080Observe that state 11 contains conflicts not only due to the lack of
c949ada3
AD
9081precedence of @samp{/} with respect to @samp{+}, @samp{-}, and @samp{*}, but
9082also because the associativity of @samp{/} is not specified.
ec3bc396 9083
c949ada3
AD
9084Bison may also produce an HTML version of this output, via an XML file and
9085XSLT processing (@pxref{Xml,,Visualizing your parser in multiple formats}).
9c16d399 9086
fc4fdd62
TR
9087@c ================================================= Graphical Representation
9088
9089@node Graphviz
9090@section Visualizing Your Parser
9091@cindex dot
9092
9093As another means to gain better understanding of the shift/reduce
9094automaton corresponding to the Bison parser, a DOT file can be generated. Note
9095that debugging a real grammar with this is tedious at best, and impractical
9096most of the times, because the generated files are huge (the generation of
9097a PDF or PNG file from it will take very long, and more often than not it will
9098fail due to memory exhaustion). This option was rather designed for beginners,
9099to help them understand LR parsers.
9100
bfdcc3a0
AD
9101This file is generated when the @option{--graph} option is specified
9102(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
9103@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
9104adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
c949ada3
AD
9105Graphviz output file is called @file{foo.dot}. A DOT file may also be
9106produced via an XML file and XSLT processing (@pxref{Xml,,Visualizing your
9107parser in multiple formats}).
9108
fc4fdd62
TR
9109
9110The following grammar file, @file{rr.y}, will be used in the sequel:
9111
9112@example
9113%%
9114@group
9115exp: a ";" | b ".";
9116a: "0";
9117b: "0";
9118@end group
9119@end example
9120
c949ada3
AD
9121The graphical output
9122@ifnotinfo
9123(see @ref{fig:graph})
9124@end ifnotinfo
9125is very similar to the textual one, and as such it is easier understood by
9126making direct comparisons between them. @xref{Debugging, , Debugging Your
9127Parser}, for a detailled analysis of the textual report.
9128
9129@ifnotinfo
9130@float Figure,fig:graph
9131@image{figs/example, 430pt}
9132@caption{A graphical rendering of the parser.}
9133@end float
9134@end ifnotinfo
fc4fdd62
TR
9135
9136@subheading Graphical Representation of States
9137
9138The items (pointed rules) for each state are grouped together in graph nodes.
9139Their numbering is the same as in the verbose file. See the following points,
9140about transitions, for examples
9141
9142When invoked with @option{--report=lookaheads}, the lookahead tokens, when
9143needed, are shown next to the relevant rule between square brackets as a
9144comma separated list. This is the case in the figure for the representation of
9145reductions, below.
9146
9147@sp 1
9148
9149The transitions are represented as directed edges between the current and
9150the target states.
9151
9152@subheading Graphical Representation of Shifts
9153
9154Shifts are shown as solid arrows, labelled with the lookahead token for that
9155shift. The following describes a reduction in the @file{rr.output} file:
9156
9157@example
9158@group
c949ada3 9159State 3
fc4fdd62
TR
9160
9161 1 exp: a . ";"
9162
9163 ";" shift, and go to state 6
9164@end group
9165@end example
9166
9167A Graphviz rendering of this portion of the graph could be:
9168
9169@center @image{figs/example-shift, 100pt}
9170
9171@subheading Graphical Representation of Reductions
9172
9173Reductions are shown as solid arrows, leading to a diamond-shaped node
9174bearing the number of the reduction rule. The arrow is labelled with the
9175appropriate comma separated lookahead tokens. If the reduction is the default
9176action for the given state, there is no such label.
9177
9178This is how reductions are represented in the verbose file @file{rr.output}:
9179@example
c949ada3 9180State 1
fc4fdd62
TR
9181
9182 3 a: "0" . [";"]
9183 4 b: "0" . ["."]
9184
9185 "." reduce using rule 4 (b)
9186 $default reduce using rule 3 (a)
9187@end example
9188
9189A Graphviz rendering of this portion of the graph could be:
9190
9191@center @image{figs/example-reduce, 120pt}
9192
9193When unresolved conflicts are present, because in deterministic parsing
9194a single decision can be made, Bison can arbitrarily choose to disable a
9195reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
9196are distinguished by a red filling color on these nodes, just like how they are
9197reported between square brackets in the verbose file.
9198
c949ada3
AD
9199The reduction corresponding to the rule number 0 is the acceptation
9200state. It is shown as a blue diamond, labelled ``Acc''.
fc4fdd62
TR
9201
9202@subheading Graphical representation of go tos
9203
9204The @samp{go to} jump transitions are represented as dotted lines bearing
9205the name of the rule being jumped to.
9206
9c16d399
TR
9207@c ================================================= XML
9208
9209@node Xml
9210@section Visualizing your parser in multiple formats
9211@cindex xml
9212
9213Bison supports two major report formats: textual output
c949ada3
AD
9214(@pxref{Understanding, ,Understanding Your Parser}) when invoked
9215with option @option{--verbose}, and DOT
9216(@pxref{Graphviz,, Visualizing Your Parser}) when invoked with
9217option @option{--graph}. However,
9c16d399
TR
9218another alternative is to output an XML file that may then be, with
9219@command{xsltproc}, rendered as either a raw text format equivalent to the
9220verbose file, or as an HTML version of the same file, with clickable
9221transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
9222XSLT have no difference whatsoever with those obtained by invoking
9223@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399 9224
c949ada3 9225The XML file is generated when the options @option{-x} or
9c16d399
TR
9226@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
9227If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
9228from the parser implementation file name, and adding @samp{.xml} instead.
9229For instance, if the grammar file is @file{foo.y}, the default XML output
9230file is @file{foo.xml}.
9231
9232Bison ships with a @file{data/xslt} directory, containing XSL Transformation
9233files to apply to the XML file. Their names are non-ambiguous:
9234
9235@table @file
9236@item xml2dot.xsl
be3517b0 9237Used to output a copy of the DOT visualization of the automaton.
9c16d399 9238@item xml2text.xsl
c949ada3 9239Used to output a copy of the @samp{.output} file.
9c16d399 9240@item xml2xhtml.xsl
c949ada3 9241Used to output an xhtml enhancement of the @samp{.output} file.
9c16d399
TR
9242@end table
9243
c949ada3 9244Sample usage (requires @command{xsltproc}):
9c16d399 9245@example
c949ada3 9246$ bison -x gr.y
9c16d399
TR
9247@group
9248$ bison --print-datadir
9249/usr/local/share/bison
9250@end group
c949ada3 9251$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl gr.xml >gr.html
9c16d399
TR
9252@end example
9253
fc4fdd62 9254@c ================================================= Tracing
ec3bc396
AD
9255
9256@node Tracing
9257@section Tracing Your Parser
bfa74976
RS
9258@findex yydebug
9259@cindex debugging
9260@cindex tracing the parser
9261
93c150b6
AD
9262When a Bison grammar compiles properly but parses ``incorrectly'', the
9263@code{yydebug} parser-trace feature helps figuring out why.
9264
9265@menu
9266* Enabling Traces:: Activating run-time trace support
9267* Mfcalc Traces:: Extending @code{mfcalc} to support traces
9268* The YYPRINT Macro:: Obsolete interface for semantic value reports
9269@end menu
bfa74976 9270
93c150b6
AD
9271@node Enabling Traces
9272@subsection Enabling Traces
3ded9a63
AD
9273There are several means to enable compilation of trace facilities:
9274
9275@table @asis
9276@item the macro @code{YYDEBUG}
9277@findex YYDEBUG
9278Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 9279parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
9280@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
9281YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
9282Prologue}).
9283
e6ae99fe 9284If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
9285Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
9286api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
9287tracing feature (enabled if and only if nonzero); otherwise tracing is
9288enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
9289
9290@item the option @option{-t} (POSIX Yacc compliant)
9291@itemx the option @option{--debug} (Bison extension)
9292Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
9293Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
9294otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
9295
9296@item the directive @samp{%debug}
9297@findex %debug
fa819509
AD
9298Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
9299Summary}). This Bison extension is maintained for backward
9300compatibility with previous versions of Bison.
9301
9302@item the variable @samp{parse.trace}
9303@findex %define parse.trace
35c1e5f0
JD
9304Add the @samp{%define parse.trace} directive (@pxref{%define
9305Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9306(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9307useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9308portability matter to you, this is the preferred solution.
3ded9a63
AD
9309@end table
9310
fa819509 9311We suggest that you always enable the trace option so that debugging is
3ded9a63 9312always possible.
bfa74976 9313
93c150b6 9314@findex YYFPRINTF
02a81e05 9315The trace facility outputs messages with macro calls of the form
e2742e46 9316@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9317@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9318arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9319define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9320and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9321
9322Once you have compiled the program with trace facilities, the way to
9323request a trace is to store a nonzero value in the variable @code{yydebug}.
9324You can do this by making the C code do it (in @code{main}, perhaps), or
9325you can alter the value with a C debugger.
9326
9327Each step taken by the parser when @code{yydebug} is nonzero produces a
9328line or two of trace information, written on @code{stderr}. The trace
9329messages tell you these things:
9330
9331@itemize @bullet
9332@item
9333Each time the parser calls @code{yylex}, what kind of token was read.
9334
9335@item
9336Each time a token is shifted, the depth and complete contents of the
9337state stack (@pxref{Parser States}).
9338
9339@item
9340Each time a rule is reduced, which rule it is, and the complete contents
9341of the state stack afterward.
9342@end itemize
9343
93c150b6
AD
9344To make sense of this information, it helps to refer to the automaton
9345description file (@pxref{Understanding, ,Understanding Your Parser}).
9346This file shows the meaning of each state in terms of
704a47c4
AD
9347positions in various rules, and also what each state will do with each
9348possible input token. As you read the successive trace messages, you
9349can see that the parser is functioning according to its specification in
9350the listing file. Eventually you will arrive at the place where
9351something undesirable happens, and you will see which parts of the
9352grammar are to blame.
bfa74976 9353
93c150b6 9354The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9355debuggers on it, but it's not easy to interpret what it is doing. The
9356parser function is a finite-state machine interpreter, and aside from
9357the actions it executes the same code over and over. Only the values
9358of variables show where in the grammar it is working.
bfa74976 9359
93c150b6
AD
9360@node Mfcalc Traces
9361@subsection Enabling Debug Traces for @code{mfcalc}
9362
9363The debugging information normally gives the token type of each token read,
9364but not its semantic value. The @code{%printer} directive allows specify
9365how semantic values are reported, see @ref{Printer Decl, , Printing
9366Semantic Values}. For backward compatibility, Yacc like C parsers may also
9367use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9368Macro}), but its use is discouraged.
9369
9370As a demonstration of @code{%printer}, consider the multi-function
9371calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9372traces, and semantic value reports, insert the following directives in its
9373prologue:
9374
9375@comment file: mfcalc.y: 2
9376@example
9377/* Generate the parser description file. */
9378%verbose
9379/* Enable run-time traces (yydebug). */
9380%define parse.trace
9381
9382/* Formatting semantic values. */
9383%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9384%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
9385%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
9386@end example
9387
9388The @code{%define} directive instructs Bison to generate run-time trace
9389support. Then, activation of these traces is controlled at run-time by the
9390@code{yydebug} variable, which is disabled by default. Because these traces
9391will refer to the ``states'' of the parser, it is helpful to ask for the
9392creation of a description of that parser; this is the purpose of (admittedly
9393ill-named) @code{%verbose} directive.
9394
9395The set of @code{%printer} directives demonstrates how to format the
9396semantic value in the traces. Note that the specification can be done
9397either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
9398tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
9399printer will be used for them.
9400
9401Here is a sample of the information provided by run-time traces. The traces
9402are sent onto standard error.
9403
9404@example
9405$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9406Starting parse
9407Entering state 0
9408Reducing stack by rule 1 (line 34):
9409-> $$ = nterm input ()
9410Stack now 0
9411Entering state 1
9412@end example
9413
9414@noindent
9415This first batch shows a specific feature of this grammar: the first rule
9416(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9417to look for the first token. The resulting left-hand symbol (@code{$$}) is
9418a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9419
9420Then the parser calls the scanner.
9421@example
9422Reading a token: Next token is token FNCT (sin())
9423Shifting token FNCT (sin())
9424Entering state 6
9425@end example
9426
9427@noindent
9428That token (@code{token}) is a function (@code{FNCT}) whose value is
9429@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9430The parser stores (@code{Shifting}) that token, and others, until it can do
9431something about it.
9432
9433@example
9434Reading a token: Next token is token '(' ()
9435Shifting token '(' ()
9436Entering state 14
9437Reading a token: Next token is token NUM (1.000000)
9438Shifting token NUM (1.000000)
9439Entering state 4
9440Reducing stack by rule 6 (line 44):
9441 $1 = token NUM (1.000000)
9442-> $$ = nterm exp (1.000000)
9443Stack now 0 1 6 14
9444Entering state 24
9445@end example
9446
9447@noindent
9448The previous reduction demonstrates the @code{%printer} directive for
c949ada3 9449@code{<val>}: both the token @code{NUM} and the resulting nonterminal
93c150b6
AD
9450@code{exp} have @samp{1} as value.
9451
9452@example
9453Reading a token: Next token is token '-' ()
9454Shifting token '-' ()
9455Entering state 17
9456Reading a token: Next token is token NUM (1.000000)
9457Shifting token NUM (1.000000)
9458Entering state 4
9459Reducing stack by rule 6 (line 44):
9460 $1 = token NUM (1.000000)
9461-> $$ = nterm exp (1.000000)
9462Stack now 0 1 6 14 24 17
9463Entering state 26
9464Reading a token: Next token is token ')' ()
9465Reducing stack by rule 11 (line 49):
9466 $1 = nterm exp (1.000000)
9467 $2 = token '-' ()
9468 $3 = nterm exp (1.000000)
9469-> $$ = nterm exp (0.000000)
9470Stack now 0 1 6 14
9471Entering state 24
9472@end example
9473
9474@noindent
9475The rule for the subtraction was just reduced. The parser is about to
9476discover the end of the call to @code{sin}.
9477
9478@example
9479Next token is token ')' ()
9480Shifting token ')' ()
9481Entering state 31
9482Reducing stack by rule 9 (line 47):
9483 $1 = token FNCT (sin())
9484 $2 = token '(' ()
9485 $3 = nterm exp (0.000000)
9486 $4 = token ')' ()
9487-> $$ = nterm exp (0.000000)
9488Stack now 0 1
9489Entering state 11
9490@end example
9491
9492@noindent
9493Finally, the end-of-line allow the parser to complete the computation, and
9494display its result.
9495
9496@example
9497Reading a token: Next token is token '\n' ()
9498Shifting token '\n' ()
9499Entering state 22
9500Reducing stack by rule 4 (line 40):
9501 $1 = nterm exp (0.000000)
9502 $2 = token '\n' ()
9503@result{} 0
9504-> $$ = nterm line ()
9505Stack now 0 1
9506Entering state 10
9507Reducing stack by rule 2 (line 35):
9508 $1 = nterm input ()
9509 $2 = nterm line ()
9510-> $$ = nterm input ()
9511Stack now 0
9512Entering state 1
9513@end example
9514
9515The parser has returned into state 1, in which it is waiting for the next
9516expression to evaluate, or for the end-of-file token, which causes the
9517completion of the parsing.
9518
9519@example
9520Reading a token: Now at end of input.
9521Shifting token $end ()
9522Entering state 2
9523Stack now 0 1 2
9524Cleanup: popping token $end ()
9525Cleanup: popping nterm input ()
9526@end example
9527
9528
9529@node The YYPRINT Macro
9530@subsection The @code{YYPRINT} Macro
9531
bfa74976 9532@findex YYPRINT
93c150b6
AD
9533Before @code{%printer} support, semantic values could be displayed using the
9534@code{YYPRINT} macro, which works only for terminal symbols and only with
9535the @file{yacc.c} skeleton.
9536
9537@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9538@findex YYPRINT
9539If you define @code{YYPRINT}, it should take three arguments. The parser
9540will pass a standard I/O stream, the numeric code for the token type, and
9541the token value (from @code{yylval}).
9542
9543For @file{yacc.c} only. Obsoleted by @code{%printer}.
9544@end deffn
bfa74976
RS
9545
9546Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9547calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9548
c93f22fc 9549@example
38a92d50
PE
9550%@{
9551 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9552 #define YYPRINT(File, Type, Value) \
9553 print_token_value (File, Type, Value)
38a92d50
PE
9554%@}
9555
9556@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9557
9558static void
831d3c99 9559print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9560@{
9561 if (type == VAR)
d3c4e709 9562 fprintf (file, "%s", value.tptr->name);
bfa74976 9563 else if (type == NUM)
d3c4e709 9564 fprintf (file, "%d", value.val);
bfa74976 9565@}
c93f22fc 9566@end example
bfa74976 9567
ec3bc396
AD
9568@c ================================================= Invoking Bison
9569
342b8b6e 9570@node Invocation
bfa74976
RS
9571@chapter Invoking Bison
9572@cindex invoking Bison
9573@cindex Bison invocation
9574@cindex options for invoking Bison
9575
9576The usual way to invoke Bison is as follows:
9577
9578@example
9579bison @var{infile}
9580@end example
9581
9582Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9583@samp{.y}. The parser implementation file's name is made by replacing
9584the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9585Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9586the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9587also possible, in case you are writing C++ code instead of C in your
9588grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9589output files will take an extension like the given one as input
9590(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9591feature takes effect with all options that manipulate file names like
234a3be3
AD
9592@samp{-o} or @samp{-d}.
9593
9594For example :
9595
9596@example
9597bison -d @var{infile.yxx}
9598@end example
84163231 9599@noindent
72d2299c 9600will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9601
9602@example
b56471a6 9603bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9604@end example
84163231 9605@noindent
234a3be3
AD
9606will produce @file{output.c++} and @file{outfile.h++}.
9607
8a4281b9 9608For compatibility with POSIX, the standard Bison
397ec073
PE
9609distribution also contains a shell script called @command{yacc} that
9610invokes Bison with the @option{-y} option.
9611
bfa74976 9612@menu
13863333 9613* Bison Options:: All the options described in detail,
c827f760 9614 in alphabetical order by short options.
bfa74976 9615* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9616* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9617@end menu
9618
342b8b6e 9619@node Bison Options
bfa74976
RS
9620@section Bison Options
9621
9622Bison supports both traditional single-letter options and mnemonic long
9623option names. Long option names are indicated with @samp{--} instead of
9624@samp{-}. Abbreviations for option names are allowed as long as they
9625are unique. When a long option takes an argument, like
9626@samp{--file-prefix}, connect the option name and the argument with
9627@samp{=}.
9628
9629Here is a list of options that can be used with Bison, alphabetized by
9630short option. It is followed by a cross key alphabetized by long
9631option.
9632
89cab50d
AD
9633@c Please, keep this ordered as in `bison --help'.
9634@noindent
9635Operations modes:
9636@table @option
9637@item -h
9638@itemx --help
9639Print a summary of the command-line options to Bison and exit.
bfa74976 9640
89cab50d
AD
9641@item -V
9642@itemx --version
9643Print the version number of Bison and exit.
bfa74976 9644
f7ab6a50
PE
9645@item --print-localedir
9646Print the name of the directory containing locale-dependent data.
9647
a0de5091
JD
9648@item --print-datadir
9649Print the name of the directory containing skeletons and XSLT.
9650
89cab50d
AD
9651@item -y
9652@itemx --yacc
ff7571c0
JD
9653Act more like the traditional Yacc command. This can cause different
9654diagnostics to be generated, and may change behavior in other minor
9655ways. Most importantly, imitate Yacc's output file name conventions,
9656so that the parser implementation file is called @file{y.tab.c}, and
9657the other outputs are called @file{y.output} and @file{y.tab.h}.
9658Also, if generating a deterministic parser in C, generate
9659@code{#define} statements in addition to an @code{enum} to associate
9660token numbers with token names. Thus, the following shell script can
9661substitute for Yacc, and the Bison distribution contains such a script
9662for compatibility with POSIX:
bfa74976 9663
89cab50d 9664@example
397ec073 9665#! /bin/sh
26e06a21 9666bison -y "$@@"
89cab50d 9667@end example
54662697
PE
9668
9669The @option{-y}/@option{--yacc} option is intended for use with
9670traditional Yacc grammars. If your grammar uses a Bison extension
9671like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9672this option is specified.
9673
1d5b3c08
JD
9674@item -W [@var{category}]
9675@itemx --warnings[=@var{category}]
118d4978
AD
9676Output warnings falling in @var{category}. @var{category} can be one
9677of:
9678@table @code
9679@item midrule-values
8e55b3aa
JD
9680Warn about mid-rule values that are set but not used within any of the actions
9681of the parent rule.
9682For example, warn about unused @code{$2} in:
118d4978
AD
9683
9684@example
9685exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9686@end example
9687
8e55b3aa
JD
9688Also warn about mid-rule values that are used but not set.
9689For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9690
9691@example
5e9b6624 9692exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9693@end example
9694
9695These warnings are not enabled by default since they sometimes prove to
9696be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9697@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9698
118d4978 9699@item yacc
8a4281b9 9700Incompatibilities with POSIX Yacc.
118d4978 9701
786743d5
JD
9702@item conflicts-sr
9703@itemx conflicts-rr
9704S/R and R/R conflicts. These warnings are enabled by default. However, if
9705the @code{%expect} or @code{%expect-rr} directive is specified, an
9706unexpected number of conflicts is an error, and an expected number of
9707conflicts is not reported, so @option{-W} and @option{--warning} then have
9708no effect on the conflict report.
9709
518e8830
AD
9710@item deprecated
9711Deprecated constructs whose support will be removed in future versions of
9712Bison.
9713
c39014ae
JD
9714@item other
9715All warnings not categorized above. These warnings are enabled by default.
9716
9717This category is provided merely for the sake of completeness. Future
9718releases of Bison may move warnings from this category to new, more specific
9719categories.
9720
118d4978 9721@item all
8e55b3aa 9722All the warnings.
118d4978 9723@item none
8e55b3aa 9724Turn off all the warnings.
118d4978 9725@item error
1048a1c9 9726See @option{-Werror}, below.
118d4978
AD
9727@end table
9728
9729A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9730instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9731POSIX Yacc incompatibilities.
1048a1c9
AD
9732
9733@item -Werror[=@var{category}]
9734@itemx -Wno-error[=@var{category}]
9735Enable warnings falling in @var{category}, and treat them as errors. If no
9736@var{category} is given, it defaults to making all enabled warnings into errors.
9737
9738@var{category} is the same as for @option{--warnings}, with the exception that
9739it may not be prefixed with @samp{no-} (see above).
9740
9741Prefixed with @samp{no}, it deactivates the error treatment for this
9742@var{category}. However, the warning itself won't be disabled, or enabled, by
9743this option.
9744
9745Note that the precedence of the @samp{=} and @samp{,} operators is such that
9746the following commands are @emph{not} equivalent, as the first will not treat
9747S/R conflicts as errors.
9748
9749@example
9750$ bison -Werror=yacc,conflicts-sr input.y
9751$ bison -Werror=yacc,error=conflicts-sr input.y
9752@end example
f3ead217 9753
7bada535
TR
9754@item -f [@var{feature}]
9755@itemx --feature[=@var{feature}]
9756Activate miscellaneous @var{feature}. @var{feature} can be one of:
9757@table @code
9758@item caret
9759@itemx diagnostics-show-caret
9760Show caret errors, in a manner similar to GCC's
9761@option{-fdiagnostics-show-caret}, or Clang's @option{-fcaret-diagnotics}. The
9762location provided with the message is used to quote the corresponding line of
9763the source file, underlining the important part of it with carets (^). Here is
c949ada3 9764an example, using the following file @file{in.y}:
7bada535
TR
9765
9766@example
9767%type <ival> exp
9768%%
9769exp: exp '+' exp @{ $exp = $1 + $2; @};
9770@end example
9771
9772When invoked with @option{-fcaret}, Bison will report:
9773
9774@example
9775@group
c949ada3 9776in.y:3.20-23: error: ambiguous reference: '$exp'
7bada535
TR
9777 exp: exp '+' exp @{ $exp = $1 + $2; @};
9778 ^^^^
9779@end group
9780@group
c949ada3 9781in.y:3.1-3: refers to: $exp at $$
7bada535
TR
9782 exp: exp '+' exp @{ $exp = $1 + $2; @};
9783 ^^^
9784@end group
9785@group
c949ada3 9786in.y:3.6-8: refers to: $exp at $1
7bada535
TR
9787 exp: exp '+' exp @{ $exp = $1 + $2; @};
9788 ^^^
9789@end group
9790@group
c949ada3 9791in.y:3.14-16: refers to: $exp at $3
7bada535
TR
9792 exp: exp '+' exp @{ $exp = $1 + $2; @};
9793 ^^^
9794@end group
9795@group
c949ada3 9796in.y:3.32-33: error: $2 of 'exp' has no declared type
7bada535
TR
9797 exp: exp '+' exp @{ $exp = $1 + $2; @};
9798 ^^
9799@end group
9800@end example
9801
9802@end table
89cab50d
AD
9803@end table
9804
9805@noindent
9806Tuning the parser:
9807
9808@table @option
9809@item -t
9810@itemx --debug
ff7571c0
JD
9811In the parser implementation file, define the macro @code{YYDEBUG} to
98121 if it is not already defined, so that the debugging facilities are
9813compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9814
58697c6d
AD
9815@item -D @var{name}[=@var{value}]
9816@itemx --define=@var{name}[=@var{value}]
17aed602 9817@itemx -F @var{name}[=@var{value}]
de5ab940
JD
9818@itemx --force-define=@var{name}[=@var{value}]
9819Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 9820(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
9821definitions for the same @var{name} as follows:
9822
9823@itemize
9824@item
0b6d43c5
JD
9825Bison quietly ignores all command-line definitions for @var{name} except
9826the last.
de5ab940 9827@item
0b6d43c5
JD
9828If that command-line definition is specified by a @code{-D} or
9829@code{--define}, Bison reports an error for any @code{%define}
9830definition for @var{name}.
de5ab940 9831@item
0b6d43c5
JD
9832If that command-line definition is specified by a @code{-F} or
9833@code{--force-define} instead, Bison quietly ignores all @code{%define}
9834definitions for @var{name}.
9835@item
9836Otherwise, Bison reports an error if there are multiple @code{%define}
9837definitions for @var{name}.
de5ab940
JD
9838@end itemize
9839
9840You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
9841make files unless you are confident that it is safe to quietly ignore
9842any conflicting @code{%define} that may be added to the grammar file.
58697c6d 9843
0e021770
PE
9844@item -L @var{language}
9845@itemx --language=@var{language}
9846Specify the programming language for the generated parser, as if
9847@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9848Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9849@var{language} is case-insensitive.
0e021770 9850
89cab50d 9851@item --locations
d8988b2f 9852Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9853
9854@item -p @var{prefix}
9855@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9856Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9857Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9858Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9859
9860@item -l
9861@itemx --no-lines
ff7571c0
JD
9862Don't put any @code{#line} preprocessor commands in the parser
9863implementation file. Ordinarily Bison puts them in the parser
9864implementation file so that the C compiler and debuggers will
9865associate errors with your source file, the grammar file. This option
9866causes them to associate errors with the parser implementation file,
9867treating it as an independent source file in its own right.
bfa74976 9868
e6e704dc
JD
9869@item -S @var{file}
9870@itemx --skeleton=@var{file}
a7867f53 9871Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9872(@pxref{Decl Summary, , Bison Declaration Summary}).
9873
ed4d67dc
JD
9874@c You probably don't need this option unless you are developing Bison.
9875@c You should use @option{--language} if you want to specify the skeleton for a
9876@c different language, because it is clearer and because it will always
9877@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9878
a7867f53
JD
9879If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9880file in the Bison installation directory.
9881If it does, @var{file} is an absolute file name or a file name relative to the
9882current working directory.
9883This is similar to how most shells resolve commands.
9884
89cab50d
AD
9885@item -k
9886@itemx --token-table
d8988b2f 9887Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9888@end table
bfa74976 9889
89cab50d
AD
9890@noindent
9891Adjust the output:
bfa74976 9892
89cab50d 9893@table @option
8e55b3aa 9894@item --defines[=@var{file}]
d8988b2f 9895Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9896file containing macro definitions for the token type names defined in
4bfd5e4e 9897the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9898
8e55b3aa
JD
9899@item -d
9900This is the same as @code{--defines} except @code{-d} does not accept a
9901@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9902with other short options.
342b8b6e 9903
89cab50d
AD
9904@item -b @var{file-prefix}
9905@itemx --file-prefix=@var{prefix}
9c437126 9906Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9907for all Bison output file names. @xref{Decl Summary}.
bfa74976 9908
ec3bc396
AD
9909@item -r @var{things}
9910@itemx --report=@var{things}
9911Write an extra output file containing verbose description of the comma
9912separated list of @var{things} among:
9913
9914@table @code
9915@item state
9916Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9917parser's automaton.
ec3bc396 9918
57f8bd8d
AD
9919@item itemset
9920Implies @code{state} and augments the description of the automaton with
9921the full set of items for each state, instead of its core only.
9922
742e4900 9923@item lookahead
ec3bc396 9924Implies @code{state} and augments the description of the automaton with
742e4900 9925each rule's lookahead set.
ec3bc396 9926
57f8bd8d
AD
9927@item solved
9928Implies @code{state}. Explain how conflicts were solved thanks to
9929precedence and associativity directives.
9930
9931@item all
9932Enable all the items.
9933
9934@item none
9935Do not generate the report.
ec3bc396
AD
9936@end table
9937
1bb2bd75
JD
9938@item --report-file=@var{file}
9939Specify the @var{file} for the verbose description.
9940
bfa74976
RS
9941@item -v
9942@itemx --verbose
9c437126 9943Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9944file containing verbose descriptions of the grammar and
72d2299c 9945parser. @xref{Decl Summary}.
bfa74976 9946
fa4d969f
PE
9947@item -o @var{file}
9948@itemx --output=@var{file}
ff7571c0 9949Specify the @var{file} for the parser implementation file.
bfa74976 9950
fa4d969f 9951The other output files' names are constructed from @var{file} as
d8988b2f 9952described under the @samp{-v} and @samp{-d} options.
342b8b6e 9953
a7c09cba 9954@item -g [@var{file}]
8e55b3aa 9955@itemx --graph[=@var{file}]
eb45ef3b 9956Output a graphical representation of the parser's
35fe0834 9957automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9958@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9959@code{@var{file}} is optional.
9960If omitted and the grammar file is @file{foo.y}, the output file will be
9961@file{foo.dot}.
59da312b 9962
a7c09cba 9963@item -x [@var{file}]
8e55b3aa 9964@itemx --xml[=@var{file}]
eb45ef3b 9965Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9966@code{@var{file}} is optional.
59da312b
JD
9967If omitted and the grammar file is @file{foo.y}, the output file will be
9968@file{foo.xml}.
9969(The current XML schema is experimental and may evolve.
9970More user feedback will help to stabilize it.)
bfa74976
RS
9971@end table
9972
342b8b6e 9973@node Option Cross Key
bfa74976
RS
9974@section Option Cross Key
9975
9976Here is a list of options, alphabetized by long option, to help you find
de5ab940 9977the corresponding short option and directive.
bfa74976 9978
de5ab940 9979@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9980@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9981@include cross-options.texi
aa08666d 9982@end multitable
bfa74976 9983
93dd49ab
PE
9984@node Yacc Library
9985@section Yacc Library
9986
9987The Yacc library contains default implementations of the
9988@code{yyerror} and @code{main} functions. These default
8a4281b9 9989implementations are normally not useful, but POSIX requires
93dd49ab
PE
9990them. To use the Yacc library, link your program with the
9991@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9992library is distributed under the terms of the GNU General
93dd49ab
PE
9993Public License (@pxref{Copying}).
9994
9995If you use the Yacc library's @code{yyerror} function, you should
9996declare @code{yyerror} as follows:
9997
9998@example
9999int yyerror (char const *);
10000@end example
10001
10002Bison ignores the @code{int} value returned by this @code{yyerror}.
10003If you use the Yacc library's @code{main} function, your
10004@code{yyparse} function should have the following type signature:
10005
10006@example
10007int yyparse (void);
10008@end example
10009
12545799
AD
10010@c ================================================= C++ Bison
10011
8405b70c
PB
10012@node Other Languages
10013@chapter Parsers Written In Other Languages
12545799
AD
10014
10015@menu
10016* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 10017* Java Parsers:: The interface to generate Java parser classes
12545799
AD
10018@end menu
10019
10020@node C++ Parsers
10021@section C++ Parsers
10022
10023@menu
10024* C++ Bison Interface:: Asking for C++ parser generation
10025* C++ Semantic Values:: %union vs. C++
10026* C++ Location Values:: The position and location classes
10027* C++ Parser Interface:: Instantiating and running the parser
10028* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 10029* A Complete C++ Example:: Demonstrating their use
12545799
AD
10030@end menu
10031
10032@node C++ Bison Interface
10033@subsection C++ Bison Interface
ed4d67dc 10034@c - %skeleton "lalr1.cc"
12545799
AD
10035@c - Always pure
10036@c - initial action
10037
eb45ef3b 10038The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
10039@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
10040@option{--skeleton=lalr1.cc}.
e6e704dc 10041@xref{Decl Summary}.
0e021770 10042
793fbca5
JD
10043When run, @command{bison} will create several entities in the @samp{yy}
10044namespace.
67501061 10045@findex %define api.namespace
35c1e5f0
JD
10046Use the @samp{%define api.namespace} directive to change the namespace name,
10047see @ref{%define Summary,,api.namespace}. The various classes are generated
10048in the following files:
aa08666d 10049
12545799
AD
10050@table @file
10051@item position.hh
10052@itemx location.hh
db8ab2be 10053The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
10054location tracking when enabled. These files are not generated if the
10055@code{%define} variable @code{api.location.type} is defined. @xref{C++
10056Location Values}.
12545799
AD
10057
10058@item stack.hh
10059An auxiliary class @code{stack} used by the parser.
10060
fa4d969f
PE
10061@item @var{file}.hh
10062@itemx @var{file}.cc
ff7571c0 10063(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
10064declaration and implementation of the C++ parser class. The basename
10065and extension of these two files follow the same rules as with regular C
10066parsers (@pxref{Invocation}).
12545799 10067
cd8b5791
AD
10068The header is @emph{mandatory}; you must either pass
10069@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
10070@samp{%defines} directive.
10071@end table
10072
10073All these files are documented using Doxygen; run @command{doxygen}
10074for a complete and accurate documentation.
10075
10076@node C++ Semantic Values
10077@subsection C++ Semantic Values
10078@c - No objects in unions
178e123e 10079@c - YYSTYPE
12545799
AD
10080@c - Printer and destructor
10081
3cdc21cf
AD
10082Bison supports two different means to handle semantic values in C++. One is
10083alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
10084practitioners know, unions are inconvenient in C++, therefore another
10085approach is provided, based on variants (@pxref{C++ Variants}).
10086
10087@menu
10088* C++ Unions:: Semantic values cannot be objects
10089* C++ Variants:: Using objects as semantic values
10090@end menu
10091
10092@node C++ Unions
10093@subsubsection C++ Unions
10094
12545799
AD
10095The @code{%union} directive works as for C, see @ref{Union Decl, ,The
10096Collection of Value Types}. In particular it produces a genuine
3cdc21cf 10097@code{union}, which have a few specific features in C++.
12545799
AD
10098@itemize @minus
10099@item
fb9712a9
AD
10100The type @code{YYSTYPE} is defined but its use is discouraged: rather
10101you should refer to the parser's encapsulated type
10102@code{yy::parser::semantic_type}.
12545799
AD
10103@item
10104Non POD (Plain Old Data) types cannot be used. C++ forbids any
10105instance of classes with constructors in unions: only @emph{pointers}
10106to such objects are allowed.
10107@end itemize
10108
10109Because objects have to be stored via pointers, memory is not
10110reclaimed automatically: using the @code{%destructor} directive is the
10111only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
10112Symbols}.
10113
3cdc21cf
AD
10114@node C++ Variants
10115@subsubsection C++ Variants
10116
ae8880de
AD
10117Bison provides a @emph{variant} based implementation of semantic values for
10118C++. This alleviates all the limitations reported in the previous section,
10119and in particular, object types can be used without pointers.
3cdc21cf
AD
10120
10121To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 10122@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
10123@code{%union} is ignored, and instead of using the name of the fields of the
10124@code{%union} to ``type'' the symbols, use genuine types.
10125
10126For instance, instead of
10127
10128@example
10129%union
10130@{
10131 int ival;
10132 std::string* sval;
10133@}
10134%token <ival> NUMBER;
10135%token <sval> STRING;
10136@end example
10137
10138@noindent
10139write
10140
10141@example
10142%token <int> NUMBER;
10143%token <std::string> STRING;
10144@end example
10145
10146@code{STRING} is no longer a pointer, which should fairly simplify the user
10147actions in the grammar and in the scanner (in particular the memory
10148management).
10149
10150Since C++ features destructors, and since it is customary to specialize
10151@code{operator<<} to support uniform printing of values, variants also
10152typically simplify Bison printers and destructors.
10153
10154Variants are stricter than unions. When based on unions, you may play any
10155dirty game with @code{yylval}, say storing an @code{int}, reading a
10156@code{char*}, and then storing a @code{double} in it. This is no longer
10157possible with variants: they must be initialized, then assigned to, and
10158eventually, destroyed.
10159
10160@deftypemethod {semantic_type} {T&} build<T> ()
10161Initialize, but leave empty. Returns the address where the actual value may
10162be stored. Requires that the variant was not initialized yet.
10163@end deftypemethod
10164
10165@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
10166Initialize, and copy-construct from @var{t}.
10167@end deftypemethod
10168
10169
10170@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
10171appeared unacceptable to require Boost on the user's machine (i.e., the
10172machine on which the generated parser will be compiled, not the machine on
10173which @command{bison} was run). Second, for each possible semantic value,
10174Boost.Variant not only stores the value, but also a tag specifying its
10175type. But the parser already ``knows'' the type of the semantic value, so
10176that would be duplicating the information.
10177
10178Therefore we developed light-weight variants whose type tag is external (so
10179they are really like @code{unions} for C++ actually). But our code is much
10180less mature that Boost.Variant. So there is a number of limitations in
10181(the current implementation of) variants:
10182@itemize
10183@item
10184Alignment must be enforced: values should be aligned in memory according to
10185the most demanding type. Computing the smallest alignment possible requires
10186meta-programming techniques that are not currently implemented in Bison, and
10187therefore, since, as far as we know, @code{double} is the most demanding
10188type on all platforms, alignments are enforced for @code{double} whatever
10189types are actually used. This may waste space in some cases.
10190
10191@item
10192Our implementation is not conforming with strict aliasing rules. Alias
10193analysis is a technique used in optimizing compilers to detect when two
10194pointers are disjoint (they cannot ``meet''). Our implementation breaks
10195some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
10196alias analysis must be disabled}. Use the option
10197@option{-fno-strict-aliasing} to compile the generated parser.
10198
10199@item
10200There might be portability issues we are not aware of.
10201@end itemize
10202
a6ca4ce2 10203As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 10204is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
10205
10206@node C++ Location Values
10207@subsection C++ Location Values
10208@c - %locations
10209@c - class Position
10210@c - class Location
16dc6a9e 10211@c - %define filename_type "const symbol::Symbol"
12545799
AD
10212
10213When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
10214location tracking, see @ref{Tracking Locations}.
10215
10216By default, two auxiliary classes define a @code{position}, a single point
10217in a file, and a @code{location}, a range composed of a pair of
10218@code{position}s (possibly spanning several files). But if the
10219@code{%define} variable @code{api.location.type} is defined, then these
10220classes will not be generated, and the user defined type will be used.
12545799 10221
936c88d1
AD
10222@tindex uint
10223In this section @code{uint} is an abbreviation for @code{unsigned int}: in
10224genuine code only the latter is used.
10225
10226@menu
10227* C++ position:: One point in the source file
10228* C++ location:: Two points in the source file
db8ab2be 10229* User Defined Location Type:: Required interface for locations
936c88d1
AD
10230@end menu
10231
10232@node C++ position
10233@subsubsection C++ @code{position}
10234
10235@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10236Create a @code{position} denoting a given point. Note that @code{file} is
10237not reclaimed when the @code{position} is destroyed: memory managed must be
10238handled elsewhere.
10239@end deftypeop
10240
10241@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10242Reset the position to the given values.
10243@end deftypemethod
10244
10245@deftypeivar {position} {std::string*} file
12545799
AD
10246The name of the file. It will always be handled as a pointer, the
10247parser will never duplicate nor deallocate it. As an experimental
10248feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 10249filename_type "@var{type}"}.
936c88d1 10250@end deftypeivar
12545799 10251
936c88d1 10252@deftypeivar {position} {uint} line
12545799 10253The line, starting at 1.
936c88d1 10254@end deftypeivar
12545799 10255
936c88d1 10256@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
10257Advance by @var{height} lines, resetting the column number.
10258@end deftypemethod
10259
936c88d1
AD
10260@deftypeivar {position} {uint} column
10261The column, starting at 1.
10262@end deftypeivar
12545799 10263
936c88d1 10264@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
10265Advance by @var{width} columns, without changing the line number.
10266@end deftypemethod
10267
936c88d1
AD
10268@deftypemethod {position} {position&} operator+= (int @var{width})
10269@deftypemethodx {position} {position} operator+ (int @var{width})
10270@deftypemethodx {position} {position&} operator-= (int @var{width})
10271@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
10272Various forms of syntactic sugar for @code{columns}.
10273@end deftypemethod
10274
936c88d1
AD
10275@deftypemethod {position} {bool} operator== (const position& @var{that})
10276@deftypemethodx {position} {bool} operator!= (const position& @var{that})
10277Whether @code{*this} and @code{that} denote equal/different positions.
10278@end deftypemethod
10279
10280@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 10281Report @var{p} on @var{o} like this:
fa4d969f
PE
10282@samp{@var{file}:@var{line}.@var{column}}, or
10283@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
10284@end deftypefun
10285
10286@node C++ location
10287@subsubsection C++ @code{location}
10288
10289@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
10290Create a @code{Location} from the endpoints of the range.
10291@end deftypeop
10292
10293@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
10294@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
10295Create a @code{Location} denoting an empty range located at a given point.
10296@end deftypeop
10297
10298@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
10299Reset the location to an empty range at the given values.
12545799
AD
10300@end deftypemethod
10301
936c88d1
AD
10302@deftypeivar {location} {position} begin
10303@deftypeivarx {location} {position} end
12545799 10304The first, inclusive, position of the range, and the first beyond.
936c88d1 10305@end deftypeivar
12545799 10306
936c88d1
AD
10307@deftypemethod {location} {uint} columns (int @var{width} = 1)
10308@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
10309Advance the @code{end} position.
10310@end deftypemethod
10311
936c88d1
AD
10312@deftypemethod {location} {location} operator+ (const location& @var{end})
10313@deftypemethodx {location} {location} operator+ (int @var{width})
10314@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
10315Various forms of syntactic sugar.
10316@end deftypemethod
10317
10318@deftypemethod {location} {void} step ()
10319Move @code{begin} onto @code{end}.
10320@end deftypemethod
10321
936c88d1
AD
10322@deftypemethod {location} {bool} operator== (const location& @var{that})
10323@deftypemethodx {location} {bool} operator!= (const location& @var{that})
10324Whether @code{*this} and @code{that} denote equal/different ranges of
10325positions.
10326@end deftypemethod
10327
10328@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
10329Report @var{p} on @var{o}, taking care of special cases such as: no
10330@code{filename} defined, or equal filename/line or column.
10331@end deftypefun
12545799 10332
db8ab2be
AD
10333@node User Defined Location Type
10334@subsubsection User Defined Location Type
10335@findex %define api.location.type
10336
10337Instead of using the built-in types you may use the @code{%define} variable
10338@code{api.location.type} to specify your own type:
10339
10340@example
10341%define api.location.type @var{LocationType}
10342@end example
10343
10344The requirements over your @var{LocationType} are:
10345@itemize
10346@item
10347it must be copyable;
10348
10349@item
10350in order to compute the (default) value of @code{@@$} in a reduction, the
10351parser basically runs
10352@example
10353@@$.begin = @@$1.begin;
10354@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10355@end example
10356@noindent
10357so there must be copyable @code{begin} and @code{end} members;
10358
10359@item
10360alternatively you may redefine the computation of the default location, in
10361which case these members are not required (@pxref{Location Default Action});
10362
10363@item
10364if traces are enabled, then there must exist an @samp{std::ostream&
10365 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10366@end itemize
10367
10368@sp 1
10369
10370In programs with several C++ parsers, you may also use the @code{%define}
10371variable @code{api.location.type} to share a common set of built-in
10372definitions for @code{position} and @code{location}. For instance, one
10373parser @file{master/parser.yy} might use:
10374
10375@example
10376%defines
10377%locations
10378%define namespace "master::"
10379@end example
10380
10381@noindent
10382to generate the @file{master/position.hh} and @file{master/location.hh}
10383files, reused by other parsers as follows:
10384
10385@example
7287be84 10386%define api.location.type "master::location"
db8ab2be
AD
10387%code requires @{ #include <master/location.hh> @}
10388@end example
10389
12545799
AD
10390@node C++ Parser Interface
10391@subsection C++ Parser Interface
10392@c - define parser_class_name
10393@c - Ctor
10394@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10395@c debug_stream.
10396@c - Reporting errors
10397
10398The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10399declare and define the parser class in the namespace @code{yy}. The
10400class name defaults to @code{parser}, but may be changed using
16dc6a9e 10401@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 10402this class is detailed below. It can be extended using the
12545799
AD
10403@code{%parse-param} feature: its semantics is slightly changed since
10404it describes an additional member of the parser class, and an
10405additional argument for its constructor.
10406
3cdc21cf
AD
10407@defcv {Type} {parser} {semantic_type}
10408@defcvx {Type} {parser} {location_type}
10409The types for semantic values and locations (if enabled).
10410@end defcv
10411
86e5b440 10412@defcv {Type} {parser} {token}
aaaa2aae
AD
10413A structure that contains (only) the @code{yytokentype} enumeration, which
10414defines the tokens. To refer to the token @code{FOO},
10415use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10416@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10417(@pxref{Calc++ Scanner}).
10418@end defcv
10419
3cdc21cf
AD
10420@defcv {Type} {parser} {syntax_error}
10421This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10422from the scanner or from the user actions to raise parse errors. This is
10423equivalent with first
3cdc21cf
AD
10424invoking @code{error} to report the location and message of the syntax
10425error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10426But contrary to @code{YYERROR} which can only be invoked from user actions
10427(i.e., written in the action itself), the exception can be thrown from
10428function invoked from the user action.
8a0adb01 10429@end defcv
12545799
AD
10430
10431@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10432Build a new parser object. There are no arguments by default, unless
10433@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10434@end deftypemethod
10435
3cdc21cf
AD
10436@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10437@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10438Instantiate a syntax-error exception.
10439@end deftypemethod
10440
12545799
AD
10441@deftypemethod {parser} {int} parse ()
10442Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10443
10444@cindex exceptions
10445The whole function is wrapped in a @code{try}/@code{catch} block, so that
10446when an exception is thrown, the @code{%destructor}s are called to release
10447the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10448@end deftypemethod
10449
10450@deftypemethod {parser} {std::ostream&} debug_stream ()
10451@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10452Get or set the stream used for tracing the parsing. It defaults to
10453@code{std::cerr}.
10454@end deftypemethod
10455
10456@deftypemethod {parser} {debug_level_type} debug_level ()
10457@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10458Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10459or nonzero, full tracing.
12545799
AD
10460@end deftypemethod
10461
10462@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10463@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10464The definition for this member function must be supplied by the user:
10465the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10466described by @var{m}. If location tracking is not enabled, the second
10467signature is used.
12545799
AD
10468@end deftypemethod
10469
10470
10471@node C++ Scanner Interface
10472@subsection C++ Scanner Interface
10473@c - prefix for yylex.
10474@c - Pure interface to yylex
10475@c - %lex-param
10476
10477The parser invokes the scanner by calling @code{yylex}. Contrary to C
10478parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10479@samp{%define api.pure} directive. The actual interface with @code{yylex}
10480depends whether you use unions, or variants.
12545799 10481
3cdc21cf
AD
10482@menu
10483* Split Symbols:: Passing symbols as two/three components
10484* Complete Symbols:: Making symbols a whole
10485@end menu
10486
10487@node Split Symbols
10488@subsubsection Split Symbols
10489
5807bb91 10490The interface is as follows.
3cdc21cf 10491
86e5b440
AD
10492@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10493@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10494Return the next token. Its type is the return value, its semantic value and
10495location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10496@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10497@end deftypemethod
10498
3cdc21cf
AD
10499Note that when using variants, the interface for @code{yylex} is the same,
10500but @code{yylval} is handled differently.
10501
10502Regular union-based code in Lex scanner typically look like:
10503
10504@example
10505[0-9]+ @{
10506 yylval.ival = text_to_int (yytext);
10507 return yy::parser::INTEGER;
10508 @}
10509[a-z]+ @{
10510 yylval.sval = new std::string (yytext);
10511 return yy::parser::IDENTIFIER;
10512 @}
10513@end example
10514
10515Using variants, @code{yylval} is already constructed, but it is not
10516initialized. So the code would look like:
10517
10518@example
10519[0-9]+ @{
10520 yylval.build<int>() = text_to_int (yytext);
10521 return yy::parser::INTEGER;
10522 @}
10523[a-z]+ @{
10524 yylval.build<std::string> = yytext;
10525 return yy::parser::IDENTIFIER;
10526 @}
10527@end example
10528
10529@noindent
10530or
10531
10532@example
10533[0-9]+ @{
10534 yylval.build(text_to_int (yytext));
10535 return yy::parser::INTEGER;
10536 @}
10537[a-z]+ @{
10538 yylval.build(yytext);
10539 return yy::parser::IDENTIFIER;
10540 @}
10541@end example
10542
10543
10544@node Complete Symbols
10545@subsubsection Complete Symbols
10546
ae8880de 10547If you specified both @code{%define api.value.type variant} and
e36ec1f4 10548@code{%define api.token.constructor},
3cdc21cf
AD
10549the @code{parser} class also defines the class @code{parser::symbol_type}
10550which defines a @emph{complete} symbol, aggregating its type (i.e., the
10551traditional value returned by @code{yylex}), its semantic value (i.e., the
10552value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10553
10554@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10555Build a complete terminal symbol which token type is @var{type}, and which
10556semantic value is @var{value}. If location tracking is enabled, also pass
10557the @var{location}.
10558@end deftypemethod
10559
10560This interface is low-level and should not be used for two reasons. First,
10561it is inconvenient, as you still have to build the semantic value, which is
10562a variant, and second, because consistency is not enforced: as with unions,
10563it is still possible to give an integer as semantic value for a string.
10564
10565So for each token type, Bison generates named constructors as follows.
10566
10567@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10568@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10569Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10570including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10571@var{value} of adequate @var{value_type}. If location tracking is enabled,
10572also pass the @var{location}.
10573@end deftypemethod
10574
10575For instance, given the following declarations:
10576
10577@example
2a6b66c5 10578%define api.token.prefix "TOK_"
3cdc21cf
AD
10579%token <std::string> IDENTIFIER;
10580%token <int> INTEGER;
10581%token COLON;
10582@end example
10583
10584@noindent
10585Bison generates the following functions:
10586
10587@example
10588symbol_type make_IDENTIFIER(const std::string& v,
10589 const location_type& l);
10590symbol_type make_INTEGER(const int& v,
10591 const location_type& loc);
10592symbol_type make_COLON(const location_type& loc);
10593@end example
10594
10595@noindent
10596which should be used in a Lex-scanner as follows.
10597
10598@example
10599[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10600[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10601":" return yy::parser::make_COLON(loc);
10602@end example
10603
10604Tokens that do not have an identifier are not accessible: you cannot simply
10605use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10606
10607@node A Complete C++ Example
8405b70c 10608@subsection A Complete C++ Example
12545799
AD
10609
10610This section demonstrates the use of a C++ parser with a simple but
10611complete example. This example should be available on your system,
3cdc21cf 10612ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10613focuses on the use of Bison, therefore the design of the various C++
10614classes is very naive: no accessors, no encapsulation of members etc.
10615We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10616demonstrate the various interactions. A hand-written scanner is
12545799
AD
10617actually easier to interface with.
10618
10619@menu
10620* Calc++ --- C++ Calculator:: The specifications
10621* Calc++ Parsing Driver:: An active parsing context
10622* Calc++ Parser:: A parser class
10623* Calc++ Scanner:: A pure C++ Flex scanner
10624* Calc++ Top Level:: Conducting the band
10625@end menu
10626
10627@node Calc++ --- C++ Calculator
8405b70c 10628@subsubsection Calc++ --- C++ Calculator
12545799
AD
10629
10630Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10631expression, possibly preceded by variable assignments. An
12545799
AD
10632environment containing possibly predefined variables such as
10633@code{one} and @code{two}, is exchanged with the parser. An example
10634of valid input follows.
10635
10636@example
10637three := 3
10638seven := one + two * three
10639seven * seven
10640@end example
10641
10642@node Calc++ Parsing Driver
8405b70c 10643@subsubsection Calc++ Parsing Driver
12545799
AD
10644@c - An env
10645@c - A place to store error messages
10646@c - A place for the result
10647
10648To support a pure interface with the parser (and the scanner) the
10649technique of the ``parsing context'' is convenient: a structure
10650containing all the data to exchange. Since, in addition to simply
10651launch the parsing, there are several auxiliary tasks to execute (open
10652the file for parsing, instantiate the parser etc.), we recommend
10653transforming the simple parsing context structure into a fully blown
10654@dfn{parsing driver} class.
10655
10656The declaration of this driver class, @file{calc++-driver.hh}, is as
10657follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10658required standard library components, and the declaration of the parser
10659class.
12545799 10660
1c59e0a1 10661@comment file: calc++-driver.hh
12545799
AD
10662@example
10663#ifndef CALCXX_DRIVER_HH
10664# define CALCXX_DRIVER_HH
10665# include <string>
10666# include <map>
fb9712a9 10667# include "calc++-parser.hh"
12545799
AD
10668@end example
10669
12545799
AD
10670
10671@noindent
10672Then comes the declaration of the scanning function. Flex expects
10673the signature of @code{yylex} to be defined in the macro
10674@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10675factor both as follows.
1c59e0a1
AD
10676
10677@comment file: calc++-driver.hh
12545799 10678@example
3dc5e96b 10679// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10680# define YY_DECL \
10681 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10682// ... and declare it for the parser's sake.
10683YY_DECL;
10684@end example
10685
10686@noindent
10687The @code{calcxx_driver} class is then declared with its most obvious
10688members.
10689
1c59e0a1 10690@comment file: calc++-driver.hh
12545799
AD
10691@example
10692// Conducting the whole scanning and parsing of Calc++.
10693class calcxx_driver
10694@{
10695public:
10696 calcxx_driver ();
10697 virtual ~calcxx_driver ();
10698
10699 std::map<std::string, int> variables;
10700
10701 int result;
10702@end example
10703
10704@noindent
3cdc21cf
AD
10705To encapsulate the coordination with the Flex scanner, it is useful to have
10706member functions to open and close the scanning phase.
12545799 10707
1c59e0a1 10708@comment file: calc++-driver.hh
12545799
AD
10709@example
10710 // Handling the scanner.
10711 void scan_begin ();
10712 void scan_end ();
10713 bool trace_scanning;
10714@end example
10715
10716@noindent
10717Similarly for the parser itself.
10718
1c59e0a1 10719@comment file: calc++-driver.hh
12545799 10720@example
3cdc21cf
AD
10721 // Run the parser on file F.
10722 // Return 0 on success.
bb32f4f2 10723 int parse (const std::string& f);
3cdc21cf
AD
10724 // The name of the file being parsed.
10725 // Used later to pass the file name to the location tracker.
12545799 10726 std::string file;
3cdc21cf 10727 // Whether parser traces should be generated.
12545799
AD
10728 bool trace_parsing;
10729@end example
10730
10731@noindent
10732To demonstrate pure handling of parse errors, instead of simply
10733dumping them on the standard error output, we will pass them to the
10734compiler driver using the following two member functions. Finally, we
10735close the class declaration and CPP guard.
10736
1c59e0a1 10737@comment file: calc++-driver.hh
12545799
AD
10738@example
10739 // Error handling.
10740 void error (const yy::location& l, const std::string& m);
10741 void error (const std::string& m);
10742@};
10743#endif // ! CALCXX_DRIVER_HH
10744@end example
10745
10746The implementation of the driver is straightforward. The @code{parse}
10747member function deserves some attention. The @code{error} functions
10748are simple stubs, they should actually register the located error
10749messages and set error state.
10750
1c59e0a1 10751@comment file: calc++-driver.cc
12545799
AD
10752@example
10753#include "calc++-driver.hh"
10754#include "calc++-parser.hh"
10755
10756calcxx_driver::calcxx_driver ()
10757 : trace_scanning (false), trace_parsing (false)
10758@{
10759 variables["one"] = 1;
10760 variables["two"] = 2;
10761@}
10762
10763calcxx_driver::~calcxx_driver ()
10764@{
10765@}
10766
bb32f4f2 10767int
12545799
AD
10768calcxx_driver::parse (const std::string &f)
10769@{
10770 file = f;
10771 scan_begin ();
10772 yy::calcxx_parser parser (*this);
10773 parser.set_debug_level (trace_parsing);
bb32f4f2 10774 int res = parser.parse ();
12545799 10775 scan_end ();
bb32f4f2 10776 return res;
12545799
AD
10777@}
10778
10779void
10780calcxx_driver::error (const yy::location& l, const std::string& m)
10781@{
10782 std::cerr << l << ": " << m << std::endl;
10783@}
10784
10785void
10786calcxx_driver::error (const std::string& m)
10787@{
10788 std::cerr << m << std::endl;
10789@}
10790@end example
10791
10792@node Calc++ Parser
8405b70c 10793@subsubsection Calc++ Parser
12545799 10794
ff7571c0
JD
10795The grammar file @file{calc++-parser.yy} starts by asking for the C++
10796deterministic parser skeleton, the creation of the parser header file,
10797and specifies the name of the parser class. Because the C++ skeleton
10798changed several times, it is safer to require the version you designed
10799the grammar for.
1c59e0a1
AD
10800
10801@comment file: calc++-parser.yy
12545799 10802@example
c93f22fc 10803%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10804%require "@value{VERSION}"
12545799 10805%defines
16dc6a9e 10806%define parser_class_name "calcxx_parser"
fb9712a9
AD
10807@end example
10808
3cdc21cf 10809@noindent
e36ec1f4 10810@findex %define api.token.constructor
ae8880de 10811@findex %define api.value.type variant
3cdc21cf
AD
10812This example will use genuine C++ objects as semantic values, therefore, we
10813require the variant-based interface. To make sure we properly use it, we
10814enable assertions. To fully benefit from type-safety and more natural
e36ec1f4 10815definition of ``symbol'', we enable @code{api.token.constructor}.
3cdc21cf
AD
10816
10817@comment file: calc++-parser.yy
10818@example
e36ec1f4 10819%define api.token.constructor
ae8880de 10820%define api.value.type variant
3cdc21cf 10821%define parse.assert
3cdc21cf
AD
10822@end example
10823
fb9712a9 10824@noindent
16dc6a9e 10825@findex %code requires
3cdc21cf
AD
10826Then come the declarations/inclusions needed by the semantic values.
10827Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 10828to include the header of the other, which is, of course, insane. This
3cdc21cf 10829mutual dependency will be broken using forward declarations. Because the
fb9712a9 10830driver's header needs detailed knowledge about the parser class (in
3cdc21cf 10831particular its inner types), it is the parser's header which will use a
e0c07222 10832forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
10833
10834@comment file: calc++-parser.yy
10835@example
3cdc21cf
AD
10836%code requires
10837@{
12545799 10838# include <string>
fb9712a9 10839class calcxx_driver;
9bc0dd67 10840@}
12545799
AD
10841@end example
10842
10843@noindent
10844The driver is passed by reference to the parser and to the scanner.
10845This provides a simple but effective pure interface, not relying on
10846global variables.
10847
1c59e0a1 10848@comment file: calc++-parser.yy
12545799
AD
10849@example
10850// The parsing context.
2055a44e 10851%param @{ calcxx_driver& driver @}
12545799
AD
10852@end example
10853
10854@noindent
2055a44e 10855Then we request location tracking, and initialize the
f50bfcd6 10856first location's file name. Afterward new locations are computed
12545799 10857relatively to the previous locations: the file name will be
2055a44e 10858propagated.
12545799 10859
1c59e0a1 10860@comment file: calc++-parser.yy
12545799
AD
10861@example
10862%locations
10863%initial-action
10864@{
10865 // Initialize the initial location.
b47dbebe 10866 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
10867@};
10868@end example
10869
10870@noindent
7fceb615
JD
10871Use the following two directives to enable parser tracing and verbose error
10872messages. However, verbose error messages can contain incorrect information
10873(@pxref{LAC}).
12545799 10874
1c59e0a1 10875@comment file: calc++-parser.yy
12545799 10876@example
fa819509 10877%define parse.trace
cf499cff 10878%define parse.error verbose
12545799
AD
10879@end example
10880
fb9712a9 10881@noindent
136a0f76
PB
10882@findex %code
10883The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 10884@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
10885
10886@comment file: calc++-parser.yy
10887@example
3cdc21cf
AD
10888%code
10889@{
fb9712a9 10890# include "calc++-driver.hh"
34f98f46 10891@}
fb9712a9
AD
10892@end example
10893
10894
12545799
AD
10895@noindent
10896The token numbered as 0 corresponds to end of file; the following line
99c08fb6 10897allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
10898``$end''. Similarly user friendly names are provided for each symbol. To
10899avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 10900tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 10901
1c59e0a1 10902@comment file: calc++-parser.yy
12545799 10903@example
2a6b66c5 10904%define api.token.prefix "TOK_"
3cdc21cf
AD
10905%token
10906 END 0 "end of file"
10907 ASSIGN ":="
10908 MINUS "-"
10909 PLUS "+"
10910 STAR "*"
10911 SLASH "/"
10912 LPAREN "("
10913 RPAREN ")"
10914;
12545799
AD
10915@end example
10916
10917@noindent
3cdc21cf
AD
10918Since we use variant-based semantic values, @code{%union} is not used, and
10919both @code{%type} and @code{%token} expect genuine types, as opposed to type
10920tags.
12545799 10921
1c59e0a1 10922@comment file: calc++-parser.yy
12545799 10923@example
3cdc21cf
AD
10924%token <std::string> IDENTIFIER "identifier"
10925%token <int> NUMBER "number"
10926%type <int> exp
10927@end example
10928
10929@noindent
10930No @code{%destructor} is needed to enable memory deallocation during error
10931recovery; the memory, for strings for instance, will be reclaimed by the
10932regular destructors. All the values are printed using their
a76c741d 10933@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 10934
3cdc21cf
AD
10935@comment file: calc++-parser.yy
10936@example
c5026327 10937%printer @{ yyoutput << $$; @} <*>;
12545799
AD
10938@end example
10939
10940@noindent
3cdc21cf
AD
10941The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
10942Location Tracking Calculator: @code{ltcalc}}).
12545799 10943
1c59e0a1 10944@comment file: calc++-parser.yy
12545799
AD
10945@example
10946%%
10947%start unit;
10948unit: assignments exp @{ driver.result = $2; @};
10949
99c08fb6 10950assignments:
5e9b6624
AD
10951 /* Nothing. */ @{@}
10952| assignments assignment @{@};
12545799 10953
3dc5e96b 10954assignment:
3cdc21cf 10955 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 10956
3cdc21cf
AD
10957%left "+" "-";
10958%left "*" "/";
99c08fb6 10959exp:
3cdc21cf
AD
10960 exp "+" exp @{ $$ = $1 + $3; @}
10961| exp "-" exp @{ $$ = $1 - $3; @}
10962| exp "*" exp @{ $$ = $1 * $3; @}
10963| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 10964| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 10965| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 10966| "number" @{ std::swap ($$, $1); @};
12545799
AD
10967%%
10968@end example
10969
10970@noindent
10971Finally the @code{error} member function registers the errors to the
10972driver.
10973
1c59e0a1 10974@comment file: calc++-parser.yy
12545799
AD
10975@example
10976void
3cdc21cf 10977yy::calcxx_parser::error (const location_type& l,
1c59e0a1 10978 const std::string& m)
12545799
AD
10979@{
10980 driver.error (l, m);
10981@}
10982@end example
10983
10984@node Calc++ Scanner
8405b70c 10985@subsubsection Calc++ Scanner
12545799
AD
10986
10987The Flex scanner first includes the driver declaration, then the
10988parser's to get the set of defined tokens.
10989
1c59e0a1 10990@comment file: calc++-scanner.ll
12545799 10991@example
c93f22fc 10992%@{ /* -*- C++ -*- */
3c248d70
AD
10993# include <cerrno>
10994# include <climits>
3cdc21cf 10995# include <cstdlib>
12545799
AD
10996# include <string>
10997# include "calc++-driver.hh"
10998# include "calc++-parser.hh"
eaea13f5 10999
3cdc21cf
AD
11000// Work around an incompatibility in flex (at least versions
11001// 2.5.31 through 2.5.33): it generates code that does
11002// not conform to C89. See Debian bug 333231
11003// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
11004# undef yywrap
11005# define yywrap() 1
eaea13f5 11006
3cdc21cf
AD
11007// The location of the current token.
11008static yy::location loc;
12545799
AD
11009%@}
11010@end example
11011
11012@noindent
11013Because there is no @code{#include}-like feature we don't need
11014@code{yywrap}, we don't need @code{unput} either, and we parse an
11015actual file, this is not an interactive session with the user.
3cdc21cf 11016Finally, we enable scanner tracing.
12545799 11017
1c59e0a1 11018@comment file: calc++-scanner.ll
12545799
AD
11019@example
11020%option noyywrap nounput batch debug
11021@end example
11022
11023@noindent
11024Abbreviations allow for more readable rules.
11025
1c59e0a1 11026@comment file: calc++-scanner.ll
12545799
AD
11027@example
11028id [a-zA-Z][a-zA-Z_0-9]*
11029int [0-9]+
11030blank [ \t]
11031@end example
11032
11033@noindent
9d9b8b70 11034The following paragraph suffices to track locations accurately. Each
12545799 11035time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
11036position. Then when a pattern is matched, its width is added to the end
11037column. When matching ends of lines, the end
12545799
AD
11038cursor is adjusted, and each time blanks are matched, the begin cursor
11039is moved onto the end cursor to effectively ignore the blanks
11040preceding tokens. Comments would be treated equally.
11041
1c59e0a1 11042@comment file: calc++-scanner.ll
12545799 11043@example
d4fca427 11044@group
828c373b 11045%@{
3cdc21cf
AD
11046 // Code run each time a pattern is matched.
11047 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 11048%@}
d4fca427 11049@end group
12545799 11050%%
d4fca427 11051@group
12545799 11052%@{
3cdc21cf
AD
11053 // Code run each time yylex is called.
11054 loc.step ();
12545799 11055%@}
d4fca427 11056@end group
3cdc21cf
AD
11057@{blank@}+ loc.step ();
11058[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
11059@end example
11060
11061@noindent
3cdc21cf 11062The rules are simple. The driver is used to report errors.
12545799 11063
1c59e0a1 11064@comment file: calc++-scanner.ll
12545799 11065@example
3cdc21cf
AD
11066"-" return yy::calcxx_parser::make_MINUS(loc);
11067"+" return yy::calcxx_parser::make_PLUS(loc);
11068"*" return yy::calcxx_parser::make_STAR(loc);
11069"/" return yy::calcxx_parser::make_SLASH(loc);
11070"(" return yy::calcxx_parser::make_LPAREN(loc);
11071")" return yy::calcxx_parser::make_RPAREN(loc);
11072":=" return yy::calcxx_parser::make_ASSIGN(loc);
11073
d4fca427 11074@group
04098407
PE
11075@{int@} @{
11076 errno = 0;
11077 long n = strtol (yytext, NULL, 10);
11078 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
11079 driver.error (loc, "integer is out of range");
11080 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 11081@}
d4fca427 11082@end group
3cdc21cf
AD
11083@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
11084. driver.error (loc, "invalid character");
11085<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
11086%%
11087@end example
11088
11089@noindent
3cdc21cf 11090Finally, because the scanner-related driver's member-functions depend
12545799
AD
11091on the scanner's data, it is simpler to implement them in this file.
11092
1c59e0a1 11093@comment file: calc++-scanner.ll
12545799 11094@example
d4fca427 11095@group
12545799
AD
11096void
11097calcxx_driver::scan_begin ()
11098@{
11099 yy_flex_debug = trace_scanning;
93c150b6 11100 if (file.empty () || file == "-")
bb32f4f2
AD
11101 yyin = stdin;
11102 else if (!(yyin = fopen (file.c_str (), "r")))
11103 @{
aaaa2aae 11104 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 11105 exit (EXIT_FAILURE);
bb32f4f2 11106 @}
12545799 11107@}
d4fca427 11108@end group
12545799 11109
d4fca427 11110@group
12545799
AD
11111void
11112calcxx_driver::scan_end ()
11113@{
11114 fclose (yyin);
11115@}
d4fca427 11116@end group
12545799
AD
11117@end example
11118
11119@node Calc++ Top Level
8405b70c 11120@subsubsection Calc++ Top Level
12545799
AD
11121
11122The top level file, @file{calc++.cc}, poses no problem.
11123
1c59e0a1 11124@comment file: calc++.cc
12545799
AD
11125@example
11126#include <iostream>
11127#include "calc++-driver.hh"
11128
d4fca427 11129@group
12545799 11130int
fa4d969f 11131main (int argc, char *argv[])
12545799 11132@{
414c76a4 11133 int res = 0;
12545799 11134 calcxx_driver driver;
93c150b6
AD
11135 for (int i = 1; i < argc; ++i)
11136 if (argv[i] == std::string ("-p"))
12545799 11137 driver.trace_parsing = true;
93c150b6 11138 else if (argv[i] == std::string ("-s"))
12545799 11139 driver.trace_scanning = true;
93c150b6 11140 else if (!driver.parse (argv[i]))
bb32f4f2 11141 std::cout << driver.result << std::endl;
414c76a4
AD
11142 else
11143 res = 1;
11144 return res;
12545799 11145@}
d4fca427 11146@end group
12545799
AD
11147@end example
11148
8405b70c
PB
11149@node Java Parsers
11150@section Java Parsers
11151
11152@menu
f5f419de
DJ
11153* Java Bison Interface:: Asking for Java parser generation
11154* Java Semantic Values:: %type and %token vs. Java
11155* Java Location Values:: The position and location classes
11156* Java Parser Interface:: Instantiating and running the parser
11157* Java Scanner Interface:: Specifying the scanner for the parser
11158* Java Action Features:: Special features for use in actions
11159* Java Differences:: Differences between C/C++ and Java Grammars
11160* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
11161@end menu
11162
11163@node Java Bison Interface
11164@subsection Java Bison Interface
11165@c - %language "Java"
8405b70c 11166
59da312b
JD
11167(The current Java interface is experimental and may evolve.
11168More user feedback will help to stabilize it.)
11169
e254a580
DJ
11170The Java parser skeletons are selected using the @code{%language "Java"}
11171directive or the @option{-L java}/@option{--language=java} option.
8405b70c 11172
e254a580 11173@c FIXME: Documented bug.
ff7571c0
JD
11174When generating a Java parser, @code{bison @var{basename}.y} will
11175create a single Java source file named @file{@var{basename}.java}
11176containing the parser implementation. Using a grammar file without a
11177@file{.y} suffix is currently broken. The basename of the parser
11178implementation file can be changed by the @code{%file-prefix}
11179directive or the @option{-p}/@option{--name-prefix} option. The
11180entire parser implementation file name can be changed by the
11181@code{%output} directive or the @option{-o}/@option{--output} option.
11182The parser implementation file contains a single class for the parser.
8405b70c 11183
e254a580 11184You can create documentation for generated parsers using Javadoc.
8405b70c 11185
e254a580
DJ
11186Contrary to C parsers, Java parsers do not use global variables; the
11187state of the parser is always local to an instance of the parser class.
11188Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
5807bb91 11189and @code{%define api.pure} directives do nothing when used in Java.
8405b70c 11190
e254a580 11191Push parsers are currently unsupported in Java and @code{%define
67212941 11192api.push-pull} have no effect.
01b477c6 11193
8a4281b9 11194GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
11195@code{glr-parser} directive.
11196
11197No header file can be generated for Java parsers. Do not use the
11198@code{%defines} directive or the @option{-d}/@option{--defines} options.
11199
11200@c FIXME: Possible code change.
fa819509
AD
11201Currently, support for tracing is always compiled
11202in. Thus the @samp{%define parse.trace} and @samp{%token-table}
11203directives and the
e254a580
DJ
11204@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
11205options have no effect. This may change in the future to eliminate
fa819509
AD
11206unused code in the generated parser, so use @samp{%define parse.trace}
11207explicitly
1979121c 11208if needed. Also, in the future the
e254a580
DJ
11209@code{%token-table} directive might enable a public interface to
11210access the token names and codes.
8405b70c 11211
09ccae9b 11212Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 11213hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
11214Try reducing the amount of code in actions and static initializers;
11215otherwise, report a bug so that the parser skeleton will be improved.
11216
11217
8405b70c
PB
11218@node Java Semantic Values
11219@subsection Java Semantic Values
11220@c - No %union, specify type in %type/%token.
11221@c - YYSTYPE
11222@c - Printer and destructor
11223
11224There is no @code{%union} directive in Java parsers. Instead, the
11225semantic values' types (class names) should be specified in the
11226@code{%type} or @code{%token} directive:
11227
11228@example
11229%type <Expression> expr assignment_expr term factor
11230%type <Integer> number
11231@end example
11232
11233By default, the semantic stack is declared to have @code{Object} members,
11234which means that the class types you specify can be of any class.
11235To improve the type safety of the parser, you can declare the common
67501061 11236superclass of all the semantic values using the @samp{%define stype}
e254a580 11237directive. For example, after the following declaration:
8405b70c
PB
11238
11239@example
e254a580 11240%define stype "ASTNode"
8405b70c
PB
11241@end example
11242
11243@noindent
11244any @code{%type} or @code{%token} specifying a semantic type which
11245is not a subclass of ASTNode, will cause a compile-time error.
11246
e254a580 11247@c FIXME: Documented bug.
8405b70c
PB
11248Types used in the directives may be qualified with a package name.
11249Primitive data types are accepted for Java version 1.5 or later. Note
11250that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
11251Generic types may not be used; this is due to a limitation in the
11252implementation of Bison, and may change in future releases.
8405b70c
PB
11253
11254Java parsers do not support @code{%destructor}, since the language
11255adopts garbage collection. The parser will try to hold references
11256to semantic values for as little time as needed.
11257
11258Java parsers do not support @code{%printer}, as @code{toString()}
11259can be used to print the semantic values. This however may change
11260(in a backwards-compatible way) in future versions of Bison.
11261
11262
11263@node Java Location Values
11264@subsection Java Location Values
11265@c - %locations
11266@c - class Position
11267@c - class Location
11268
303834cc
JD
11269When the directive @code{%locations} is used, the Java parser supports
11270location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
11271class defines a @dfn{position}, a single point in a file; Bison itself
11272defines a class representing a @dfn{location}, a range composed of a pair of
11273positions (possibly spanning several files). The location class is an inner
11274class of the parser; the name is @code{Location} by default, and may also be
7287be84 11275renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
11276
11277The location class treats the position as a completely opaque value.
11278By default, the class name is @code{Position}, but this can be changed
7287be84 11279with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 11280be supplied by the user.
8405b70c
PB
11281
11282
e254a580
DJ
11283@deftypeivar {Location} {Position} begin
11284@deftypeivarx {Location} {Position} end
8405b70c 11285The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
11286@end deftypeivar
11287
11288@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 11289Create a @code{Location} denoting an empty range located at a given point.
e254a580 11290@end deftypeop
8405b70c 11291
e254a580
DJ
11292@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
11293Create a @code{Location} from the endpoints of the range.
11294@end deftypeop
11295
11296@deftypemethod {Location} {String} toString ()
8405b70c
PB
11297Prints the range represented by the location. For this to work
11298properly, the position class should override the @code{equals} and
11299@code{toString} methods appropriately.
11300@end deftypemethod
11301
11302
11303@node Java Parser Interface
11304@subsection Java Parser Interface
11305@c - define parser_class_name
11306@c - Ctor
11307@c - parse, error, set_debug_level, debug_level, set_debug_stream,
11308@c debug_stream.
11309@c - Reporting errors
11310
e254a580
DJ
11311The name of the generated parser class defaults to @code{YYParser}. The
11312@code{YY} prefix may be changed using the @code{%name-prefix} directive
11313or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 11314@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 11315the class. The interface of this class is detailed below.
8405b70c 11316
e254a580 11317By default, the parser class has package visibility. A declaration
67501061 11318@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
11319according to the Java language specification, the name of the @file{.java}
11320file should match the name of the class in this case. Similarly, you can
11321use @code{abstract}, @code{final} and @code{strictfp} with the
11322@code{%define} declaration to add other modifiers to the parser class.
67501061 11323A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 11324be used to add any number of annotations to the parser class.
e254a580
DJ
11325
11326The Java package name of the parser class can be specified using the
67501061 11327@samp{%define package} directive. The superclass and the implemented
e254a580 11328interfaces of the parser class can be specified with the @code{%define
67501061 11329extends} and @samp{%define implements} directives.
e254a580
DJ
11330
11331The parser class defines an inner class, @code{Location}, that is used
11332for location tracking (see @ref{Java Location Values}), and a inner
11333interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
11334these inner class/interface, and the members described in the interface
11335below, all the other members and fields are preceded with a @code{yy} or
11336@code{YY} prefix to avoid clashes with user code.
11337
e254a580
DJ
11338The parser class can be extended using the @code{%parse-param}
11339directive. Each occurrence of the directive will add a @code{protected
11340final} field to the parser class, and an argument to its constructor,
11341which initialize them automatically.
11342
e254a580
DJ
11343@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
11344Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
11345no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
11346@code{%lex-param}s are used.
1979121c
DJ
11347
11348Use @code{%code init} for code added to the start of the constructor
11349body. This is especially useful to initialize superclasses. Use
f50bfcd6 11350@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11351@end deftypeop
11352
11353@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11354Build a new parser object using the specified scanner. There are no
2055a44e
AD
11355additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11356used.
e254a580
DJ
11357
11358If the scanner is defined by @code{%code lexer}, this constructor is
11359declared @code{protected} and is called automatically with a scanner
2055a44e 11360created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11361
11362Use @code{%code init} for code added to the start of the constructor
11363body. This is especially useful to initialize superclasses. Use
5a321748 11364@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11365@end deftypeop
8405b70c
PB
11366
11367@deftypemethod {YYParser} {boolean} parse ()
11368Run the syntactic analysis, and return @code{true} on success,
11369@code{false} otherwise.
11370@end deftypemethod
11371
1979121c
DJ
11372@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11373@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11374Get or set the option to produce verbose error messages. These are only
cf499cff 11375available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11376verbose error messages.
11377@end deftypemethod
11378
11379@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11380@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11381@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11382Print an error message using the @code{yyerror} method of the scanner
11383instance in use. The @code{Location} and @code{Position} parameters are
11384available only if location tracking is active.
11385@end deftypemethod
11386
01b477c6 11387@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11388During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11389from a syntax error.
11390@xref{Error Recovery}.
8405b70c
PB
11391@end deftypemethod
11392
11393@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11394@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11395Get or set the stream used for tracing the parsing. It defaults to
11396@code{System.err}.
11397@end deftypemethod
11398
11399@deftypemethod {YYParser} {int} getDebugLevel ()
11400@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11401Get or set the tracing level. Currently its value is either 0, no trace,
11402or nonzero, full tracing.
11403@end deftypemethod
11404
1979121c
DJ
11405@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11406@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11407Identify the Bison version and skeleton used to generate this parser.
11408@end deftypecv
11409
8405b70c
PB
11410
11411@node Java Scanner Interface
11412@subsection Java Scanner Interface
01b477c6 11413@c - %code lexer
8405b70c 11414@c - %lex-param
01b477c6 11415@c - Lexer interface
8405b70c 11416
e254a580
DJ
11417There are two possible ways to interface a Bison-generated Java parser
11418with a scanner: the scanner may be defined by @code{%code lexer}, or
11419defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11420@code{Lexer} inner interface of the parser class. This interface also
11421contain constants for all user-defined token names and the predefined
11422@code{EOF} token.
e254a580
DJ
11423
11424In the first case, the body of the scanner class is placed in
11425@code{%code lexer} blocks. If you want to pass parameters from the
11426parser constructor to the scanner constructor, specify them with
11427@code{%lex-param}; they are passed before @code{%parse-param}s to the
11428constructor.
01b477c6 11429
59c5ac72 11430In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11431which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11432The constructor of the parser object will then accept an object
11433implementing the interface; @code{%lex-param} is not used in this
11434case.
11435
11436In both cases, the scanner has to implement the following methods.
11437
e254a580
DJ
11438@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11439This method is defined by the user to emit an error message. The first
11440parameter is omitted if location tracking is not active. Its type can be
7287be84 11441changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
11442@end deftypemethod
11443
e254a580 11444@deftypemethod {Lexer} {int} yylex ()
8405b70c 11445Return the next token. Its type is the return value, its semantic
f50bfcd6 11446value and location are saved and returned by the their methods in the
e254a580
DJ
11447interface.
11448
67501061 11449Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11450Default is @code{java.io.IOException}.
8405b70c
PB
11451@end deftypemethod
11452
11453@deftypemethod {Lexer} {Position} getStartPos ()
11454@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11455Return respectively the first position of the last token that
11456@code{yylex} returned, and the first position beyond it. These
11457methods are not needed unless location tracking is active.
8405b70c 11458
7287be84 11459The return type can be changed using @code{%define api.position.type
8405b70c
PB
11460"@var{class-name}".}
11461@end deftypemethod
11462
11463@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11464Return the semantic value of the last token that yylex returned.
8405b70c 11465
67501061 11466The return type can be changed using @samp{%define stype
8405b70c
PB
11467"@var{class-name}".}
11468@end deftypemethod
11469
11470
e254a580
DJ
11471@node Java Action Features
11472@subsection Special Features for Use in Java Actions
11473
11474The following special constructs can be uses in Java actions.
11475Other analogous C action features are currently unavailable for Java.
11476
67501061 11477Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11478actions, and initial actions specified by @code{%initial-action}.
11479
11480@defvar $@var{n}
11481The semantic value for the @var{n}th component of the current rule.
11482This may not be assigned to.
11483@xref{Java Semantic Values}.
11484@end defvar
11485
11486@defvar $<@var{typealt}>@var{n}
11487Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11488@xref{Java Semantic Values}.
11489@end defvar
11490
11491@defvar $$
11492The semantic value for the grouping made by the current rule. As a
11493value, this is in the base type (@code{Object} or as specified by
67501061 11494@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
11495casts are not allowed on the left-hand side of Java assignments.
11496Use an explicit Java cast if the correct subtype is needed.
11497@xref{Java Semantic Values}.
11498@end defvar
11499
11500@defvar $<@var{typealt}>$
11501Same as @code{$$} since Java always allow assigning to the base type.
11502Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11503for setting the value but there is currently no easy way to distinguish
11504these constructs.
11505@xref{Java Semantic Values}.
11506@end defvar
11507
11508@defvar @@@var{n}
11509The location information of the @var{n}th component of the current rule.
11510This may not be assigned to.
11511@xref{Java Location Values}.
11512@end defvar
11513
11514@defvar @@$
11515The location information of the grouping made by the current rule.
11516@xref{Java Location Values}.
11517@end defvar
11518
34a41a93 11519@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11520Return immediately from the parser, indicating failure.
11521@xref{Java Parser Interface}.
34a41a93 11522@end deftypefn
8405b70c 11523
34a41a93 11524@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11525Return immediately from the parser, indicating success.
11526@xref{Java Parser Interface}.
34a41a93 11527@end deftypefn
8405b70c 11528
34a41a93 11529@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11530Start error recovery (without printing an error message).
e254a580 11531@xref{Error Recovery}.
34a41a93 11532@end deftypefn
8405b70c 11533
e254a580
DJ
11534@deftypefn {Function} {boolean} recovering ()
11535Return whether error recovery is being done. In this state, the parser
11536reads token until it reaches a known state, and then restarts normal
11537operation.
11538@xref{Error Recovery}.
11539@end deftypefn
8405b70c 11540
1979121c
DJ
11541@deftypefn {Function} {void} yyerror (String @var{msg})
11542@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11543@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11544Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11545instance in use. The @code{Location} and @code{Position} parameters are
11546available only if location tracking is active.
e254a580 11547@end deftypefn
8405b70c 11548
8405b70c 11549
8405b70c
PB
11550@node Java Differences
11551@subsection Differences between C/C++ and Java Grammars
11552
11553The different structure of the Java language forces several differences
11554between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11555section summarizes these differences.
8405b70c
PB
11556
11557@itemize
11558@item
01b477c6 11559Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11560@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11561macros. Instead, they should be preceded by @code{return} when they
11562appear in an action. The actual definition of these symbols is
8405b70c
PB
11563opaque to the Bison grammar, and it might change in the future. The
11564only meaningful operation that you can do, is to return them.
e3fd1dcb 11565@xref{Java Action Features}.
8405b70c
PB
11566
11567Note that of these three symbols, only @code{YYACCEPT} and
11568@code{YYABORT} will cause a return from the @code{yyparse}
11569method@footnote{Java parsers include the actions in a separate
11570method than @code{yyparse} in order to have an intuitive syntax that
11571corresponds to these C macros.}.
11572
e254a580
DJ
11573@item
11574Java lacks unions, so @code{%union} has no effect. Instead, semantic
11575values have a common base type: @code{Object} or as specified by
f50bfcd6 11576@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11577@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11578an union. The type of @code{$$}, even with angle brackets, is the base
11579type since Java casts are not allow on the left-hand side of assignments.
11580Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11581left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11582@ref{Java Action Features}.
e254a580 11583
8405b70c 11584@item
f50bfcd6 11585The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11586@table @asis
11587@item @code{%code imports}
11588blocks are placed at the beginning of the Java source code. They may
11589include copyright notices. For a @code{package} declarations, it is
67501061 11590suggested to use @samp{%define package} instead.
8405b70c 11591
01b477c6
PB
11592@item unqualified @code{%code}
11593blocks are placed inside the parser class.
11594
11595@item @code{%code lexer}
11596blocks, if specified, should include the implementation of the
11597scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11598that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11599Interface}).
29553547 11600@end table
8405b70c
PB
11601
11602Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11603In particular, @code{%@{ @dots{} %@}} blocks should not be used
11604and may give an error in future versions of Bison.
11605
01b477c6 11606The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11607be used to define other classes used by the parser @emph{outside}
11608the parser class.
8405b70c
PB
11609@end itemize
11610
e254a580
DJ
11611
11612@node Java Declarations Summary
11613@subsection Java Declarations Summary
11614
11615This summary only include declarations specific to Java or have special
11616meaning when used in a Java parser.
11617
11618@deffn {Directive} {%language "Java"}
11619Generate a Java class for the parser.
11620@end deffn
11621
11622@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11623A parameter for the lexer class defined by @code{%code lexer}
11624@emph{only}, added as parameters to the lexer constructor and the parser
11625constructor that @emph{creates} a lexer. Default is none.
11626@xref{Java Scanner Interface}.
11627@end deffn
11628
11629@deffn {Directive} %name-prefix "@var{prefix}"
11630The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11631@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11632@xref{Java Bison Interface}.
11633@end deffn
11634
11635@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11636A parameter for the parser class added as parameters to constructor(s)
11637and as fields initialized by the constructor(s). Default is none.
11638@xref{Java Parser Interface}.
11639@end deffn
11640
11641@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11642Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11643@xref{Java Semantic Values}.
11644@end deffn
11645
11646@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11647Declare the type of nonterminals. Note that the angle brackets enclose
11648a Java @emph{type}.
11649@xref{Java Semantic Values}.
11650@end deffn
11651
11652@deffn {Directive} %code @{ @var{code} @dots{} @}
11653Code appended to the inside of the parser class.
11654@xref{Java Differences}.
11655@end deffn
11656
11657@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11658Code inserted just after the @code{package} declaration.
11659@xref{Java Differences}.
11660@end deffn
11661
1979121c
DJ
11662@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11663Code inserted at the beginning of the parser constructor body.
11664@xref{Java Parser Interface}.
11665@end deffn
11666
e254a580
DJ
11667@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11668Code added to the body of a inner lexer class within the parser class.
11669@xref{Java Scanner Interface}.
11670@end deffn
11671
11672@deffn {Directive} %% @var{code} @dots{}
11673Code (after the second @code{%%}) appended to the end of the file,
11674@emph{outside} the parser class.
11675@xref{Java Differences}.
11676@end deffn
11677
11678@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11679Not supported. Use @code{%code imports} instead.
e254a580
DJ
11680@xref{Java Differences}.
11681@end deffn
11682
11683@deffn {Directive} {%define abstract}
11684Whether the parser class is declared @code{abstract}. Default is false.
11685@xref{Java Bison Interface}.
11686@end deffn
11687
1979121c
DJ
11688@deffn {Directive} {%define annotations} "@var{annotations}"
11689The Java annotations for the parser class. Default is none.
11690@xref{Java Bison Interface}.
11691@end deffn
11692
e254a580
DJ
11693@deffn {Directive} {%define extends} "@var{superclass}"
11694The superclass of the parser class. Default is none.
11695@xref{Java Bison Interface}.
11696@end deffn
11697
11698@deffn {Directive} {%define final}
11699Whether the parser class is declared @code{final}. Default is false.
11700@xref{Java Bison Interface}.
11701@end deffn
11702
11703@deffn {Directive} {%define implements} "@var{interfaces}"
11704The implemented interfaces of the parser class, a comma-separated list.
11705Default is none.
11706@xref{Java Bison Interface}.
11707@end deffn
11708
1979121c
DJ
11709@deffn {Directive} {%define init_throws} "@var{exceptions}"
11710The exceptions thrown by @code{%code init} from the parser class
11711constructor. Default is none.
11712@xref{Java Parser Interface}.
11713@end deffn
11714
e254a580
DJ
11715@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11716The exceptions thrown by the @code{yylex} method of the lexer, a
11717comma-separated list. Default is @code{java.io.IOException}.
11718@xref{Java Scanner Interface}.
11719@end deffn
11720
7287be84 11721@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
11722The name of the class used for locations (a range between two
11723positions). This class is generated as an inner class of the parser
11724class by @command{bison}. Default is @code{Location}.
7287be84 11725Formerly named @code{location_type}.
e254a580
DJ
11726@xref{Java Location Values}.
11727@end deffn
11728
11729@deffn {Directive} {%define package} "@var{package}"
11730The package to put the parser class in. Default is none.
11731@xref{Java Bison Interface}.
11732@end deffn
11733
11734@deffn {Directive} {%define parser_class_name} "@var{name}"
11735The name of the parser class. Default is @code{YYParser} or
11736@code{@var{name-prefix}Parser}.
11737@xref{Java Bison Interface}.
11738@end deffn
11739
7287be84 11740@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
11741The name of the class used for positions. This class must be supplied by
11742the user. Default is @code{Position}.
7287be84 11743Formerly named @code{position_type}.
e254a580
DJ
11744@xref{Java Location Values}.
11745@end deffn
11746
11747@deffn {Directive} {%define public}
11748Whether the parser class is declared @code{public}. Default is false.
11749@xref{Java Bison Interface}.
11750@end deffn
11751
11752@deffn {Directive} {%define stype} "@var{class}"
11753The base type of semantic values. Default is @code{Object}.
11754@xref{Java Semantic Values}.
11755@end deffn
11756
11757@deffn {Directive} {%define strictfp}
11758Whether the parser class is declared @code{strictfp}. Default is false.
11759@xref{Java Bison Interface}.
11760@end deffn
11761
11762@deffn {Directive} {%define throws} "@var{exceptions}"
11763The exceptions thrown by user-supplied parser actions and
11764@code{%initial-action}, a comma-separated list. Default is none.
11765@xref{Java Parser Interface}.
11766@end deffn
11767
11768
12545799 11769@c ================================================= FAQ
d1a1114f
AD
11770
11771@node FAQ
11772@chapter Frequently Asked Questions
11773@cindex frequently asked questions
11774@cindex questions
11775
11776Several questions about Bison come up occasionally. Here some of them
11777are addressed.
11778
11779@menu
55ba27be
AD
11780* Memory Exhausted:: Breaking the Stack Limits
11781* How Can I Reset the Parser:: @code{yyparse} Keeps some State
11782* Strings are Destroyed:: @code{yylval} Loses Track of Strings
11783* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 11784* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 11785* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
11786* I can't build Bison:: Troubleshooting
11787* Where can I find help?:: Troubleshouting
11788* Bug Reports:: Troublereporting
8405b70c 11789* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
11790* Beta Testing:: Experimenting development versions
11791* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
11792@end menu
11793
1a059451
PE
11794@node Memory Exhausted
11795@section Memory Exhausted
d1a1114f 11796
71b52b13 11797@quotation
1a059451 11798My parser returns with error with a @samp{memory exhausted}
d1a1114f 11799message. What can I do?
71b52b13 11800@end quotation
d1a1114f 11801
188867ac
AD
11802This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
11803Rules}.
d1a1114f 11804
e64fec0a
PE
11805@node How Can I Reset the Parser
11806@section How Can I Reset the Parser
5b066063 11807
0e14ad77
PE
11808The following phenomenon has several symptoms, resulting in the
11809following typical questions:
5b066063 11810
71b52b13 11811@quotation
5b066063
AD
11812I invoke @code{yyparse} several times, and on correct input it works
11813properly; but when a parse error is found, all the other calls fail
0e14ad77 11814too. How can I reset the error flag of @code{yyparse}?
71b52b13 11815@end quotation
5b066063
AD
11816
11817@noindent
11818or
11819
71b52b13 11820@quotation
0e14ad77 11821My parser includes support for an @samp{#include}-like feature, in
5b066063 11822which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 11823although I did specify @samp{%define api.pure full}.
71b52b13 11824@end quotation
5b066063 11825
0e14ad77
PE
11826These problems typically come not from Bison itself, but from
11827Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
11828speed, they might not notice a change of input file. As a
11829demonstration, consider the following source file,
11830@file{first-line.l}:
11831
d4fca427
AD
11832@example
11833@group
11834%@{
5b066063
AD
11835#include <stdio.h>
11836#include <stdlib.h>
d4fca427
AD
11837%@}
11838@end group
5b066063
AD
11839%%
11840.*\n ECHO; return 1;
11841%%
d4fca427 11842@group
5b066063 11843int
0e14ad77 11844yyparse (char const *file)
d4fca427 11845@{
5b066063
AD
11846 yyin = fopen (file, "r");
11847 if (!yyin)
d4fca427
AD
11848 @{
11849 perror ("fopen");
11850 exit (EXIT_FAILURE);
11851 @}
11852@end group
11853@group
fa7e68c3 11854 /* One token only. */
5b066063 11855 yylex ();
0e14ad77 11856 if (fclose (yyin) != 0)
d4fca427
AD
11857 @{
11858 perror ("fclose");
11859 exit (EXIT_FAILURE);
11860 @}
5b066063 11861 return 0;
d4fca427
AD
11862@}
11863@end group
5b066063 11864
d4fca427 11865@group
5b066063 11866int
0e14ad77 11867main (void)
d4fca427 11868@{
5b066063
AD
11869 yyparse ("input");
11870 yyparse ("input");
11871 return 0;
d4fca427
AD
11872@}
11873@end group
11874@end example
5b066063
AD
11875
11876@noindent
11877If the file @file{input} contains
11878
71b52b13 11879@example
5b066063
AD
11880input:1: Hello,
11881input:2: World!
71b52b13 11882@end example
5b066063
AD
11883
11884@noindent
0e14ad77 11885then instead of getting the first line twice, you get:
5b066063
AD
11886
11887@example
11888$ @kbd{flex -ofirst-line.c first-line.l}
11889$ @kbd{gcc -ofirst-line first-line.c -ll}
11890$ @kbd{./first-line}
11891input:1: Hello,
11892input:2: World!
11893@end example
11894
0e14ad77
PE
11895Therefore, whenever you change @code{yyin}, you must tell the
11896Lex-generated scanner to discard its current buffer and switch to the
11897new one. This depends upon your implementation of Lex; see its
11898documentation for more. For Flex, it suffices to call
11899@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
11900Flex-generated scanner needs to read from several input streams to
11901handle features like include files, you might consider using Flex
11902functions like @samp{yy_switch_to_buffer} that manipulate multiple
11903input buffers.
5b066063 11904
b165c324
AD
11905If your Flex-generated scanner uses start conditions (@pxref{Start
11906conditions, , Start conditions, flex, The Flex Manual}), you might
11907also want to reset the scanner's state, i.e., go back to the initial
11908start condition, through a call to @samp{BEGIN (0)}.
11909
fef4cb51
AD
11910@node Strings are Destroyed
11911@section Strings are Destroyed
11912
71b52b13 11913@quotation
c7e441b4 11914My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
11915them. Instead of reporting @samp{"foo", "bar"}, it reports
11916@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 11917@end quotation
fef4cb51
AD
11918
11919This error is probably the single most frequent ``bug report'' sent to
11920Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 11921of the scanner. Consider the following Lex code:
fef4cb51 11922
71b52b13 11923@example
d4fca427 11924@group
71b52b13 11925%@{
fef4cb51
AD
11926#include <stdio.h>
11927char *yylval = NULL;
71b52b13 11928%@}
d4fca427
AD
11929@end group
11930@group
fef4cb51
AD
11931%%
11932.* yylval = yytext; return 1;
11933\n /* IGNORE */
11934%%
d4fca427
AD
11935@end group
11936@group
fef4cb51
AD
11937int
11938main ()
71b52b13 11939@{
fa7e68c3 11940 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
11941 char *fst = (yylex (), yylval);
11942 char *snd = (yylex (), yylval);
11943 printf ("\"%s\", \"%s\"\n", fst, snd);
11944 return 0;
71b52b13 11945@}
d4fca427 11946@end group
71b52b13 11947@end example
fef4cb51
AD
11948
11949If you compile and run this code, you get:
11950
11951@example
11952$ @kbd{flex -osplit-lines.c split-lines.l}
11953$ @kbd{gcc -osplit-lines split-lines.c -ll}
11954$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11955"one
11956two", "two"
11957@end example
11958
11959@noindent
11960this is because @code{yytext} is a buffer provided for @emph{reading}
11961in the action, but if you want to keep it, you have to duplicate it
11962(e.g., using @code{strdup}). Note that the output may depend on how
11963your implementation of Lex handles @code{yytext}. For instance, when
11964given the Lex compatibility option @option{-l} (which triggers the
11965option @samp{%array}) Flex generates a different behavior:
11966
11967@example
11968$ @kbd{flex -l -osplit-lines.c split-lines.l}
11969$ @kbd{gcc -osplit-lines split-lines.c -ll}
11970$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11971"two", "two"
11972@end example
11973
11974
2fa09258
AD
11975@node Implementing Gotos/Loops
11976@section Implementing Gotos/Loops
a06ea4aa 11977
71b52b13 11978@quotation
a06ea4aa 11979My simple calculator supports variables, assignments, and functions,
2fa09258 11980but how can I implement gotos, or loops?
71b52b13 11981@end quotation
a06ea4aa
AD
11982
11983Although very pedagogical, the examples included in the document blur
a1c84f45 11984the distinction to make between the parser---whose job is to recover
a06ea4aa 11985the structure of a text and to transmit it to subsequent modules of
a1c84f45 11986the program---and the processing (such as the execution) of this
a06ea4aa
AD
11987structure. This works well with so called straight line programs,
11988i.e., precisely those that have a straightforward execution model:
11989execute simple instructions one after the others.
11990
11991@cindex abstract syntax tree
8a4281b9 11992@cindex AST
a06ea4aa
AD
11993If you want a richer model, you will probably need to use the parser
11994to construct a tree that does represent the structure it has
11995recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 11996or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11997traversing it in various ways, will enable treatments such as its
11998execution or its translation, which will result in an interpreter or a
11999compiler.
12000
12001This topic is way beyond the scope of this manual, and the reader is
12002invited to consult the dedicated literature.
12003
12004
ed2e6384
AD
12005@node Multiple start-symbols
12006@section Multiple start-symbols
12007
71b52b13 12008@quotation
ed2e6384
AD
12009I have several closely related grammars, and I would like to share their
12010implementations. In fact, I could use a single grammar but with
12011multiple entry points.
71b52b13 12012@end quotation
ed2e6384
AD
12013
12014Bison does not support multiple start-symbols, but there is a very
12015simple means to simulate them. If @code{foo} and @code{bar} are the two
12016pseudo start-symbols, then introduce two new tokens, say
12017@code{START_FOO} and @code{START_BAR}, and use them as switches from the
12018real start-symbol:
12019
12020@example
12021%token START_FOO START_BAR;
12022%start start;
5e9b6624
AD
12023start:
12024 START_FOO foo
12025| START_BAR bar;
ed2e6384
AD
12026@end example
12027
12028These tokens prevents the introduction of new conflicts. As far as the
12029parser goes, that is all that is needed.
12030
12031Now the difficult part is ensuring that the scanner will send these
12032tokens first. If your scanner is hand-written, that should be
12033straightforward. If your scanner is generated by Lex, them there is
12034simple means to do it: recall that anything between @samp{%@{ ... %@}}
12035after the first @code{%%} is copied verbatim in the top of the generated
12036@code{yylex} function. Make sure a variable @code{start_token} is
12037available in the scanner (e.g., a global variable or using
12038@code{%lex-param} etc.), and use the following:
12039
12040@example
12041 /* @r{Prologue.} */
12042%%
12043%@{
12044 if (start_token)
12045 @{
12046 int t = start_token;
12047 start_token = 0;
12048 return t;
12049 @}
12050%@}
12051 /* @r{The rules.} */
12052@end example
12053
12054
55ba27be
AD
12055@node Secure? Conform?
12056@section Secure? Conform?
12057
71b52b13 12058@quotation
55ba27be 12059Is Bison secure? Does it conform to POSIX?
71b52b13 12060@end quotation
55ba27be
AD
12061
12062If you're looking for a guarantee or certification, we don't provide it.
12063However, Bison is intended to be a reliable program that conforms to the
8a4281b9 12064POSIX specification for Yacc. If you run into problems,
55ba27be
AD
12065please send us a bug report.
12066
12067@node I can't build Bison
12068@section I can't build Bison
12069
71b52b13 12070@quotation
8c5b881d
PE
12071I can't build Bison because @command{make} complains that
12072@code{msgfmt} is not found.
55ba27be 12073What should I do?
71b52b13 12074@end quotation
55ba27be
AD
12075
12076Like most GNU packages with internationalization support, that feature
12077is turned on by default. If you have problems building in the @file{po}
12078subdirectory, it indicates that your system's internationalization
12079support is lacking. You can re-configure Bison with
12080@option{--disable-nls} to turn off this support, or you can install GNU
12081gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
12082Bison. See the file @file{ABOUT-NLS} for more information.
12083
12084
12085@node Where can I find help?
12086@section Where can I find help?
12087
71b52b13 12088@quotation
55ba27be 12089I'm having trouble using Bison. Where can I find help?
71b52b13 12090@end quotation
55ba27be
AD
12091
12092First, read this fine manual. Beyond that, you can send mail to
12093@email{help-bison@@gnu.org}. This mailing list is intended to be
12094populated with people who are willing to answer questions about using
12095and installing Bison. Please keep in mind that (most of) the people on
12096the list have aspects of their lives which are not related to Bison (!),
12097so you may not receive an answer to your question right away. This can
12098be frustrating, but please try not to honk them off; remember that any
12099help they provide is purely voluntary and out of the kindness of their
12100hearts.
12101
12102@node Bug Reports
12103@section Bug Reports
12104
71b52b13 12105@quotation
55ba27be 12106I found a bug. What should I include in the bug report?
71b52b13 12107@end quotation
55ba27be
AD
12108
12109Before you send a bug report, make sure you are using the latest
12110version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
12111mirrors. Be sure to include the version number in your bug report. If
12112the bug is present in the latest version but not in a previous version,
12113try to determine the most recent version which did not contain the bug.
12114
12115If the bug is parser-related, you should include the smallest grammar
12116you can which demonstrates the bug. The grammar file should also be
12117complete (i.e., I should be able to run it through Bison without having
12118to edit or add anything). The smaller and simpler the grammar, the
12119easier it will be to fix the bug.
12120
12121Include information about your compilation environment, including your
12122operating system's name and version and your compiler's name and
12123version. If you have trouble compiling, you should also include a
12124transcript of the build session, starting with the invocation of
12125`configure'. Depending on the nature of the bug, you may be asked to
12126send additional files as well (such as `config.h' or `config.cache').
12127
12128Patches are most welcome, but not required. That is, do not hesitate to
411614fa 12129send a bug report just because you cannot provide a fix.
55ba27be
AD
12130
12131Send bug reports to @email{bug-bison@@gnu.org}.
12132
8405b70c
PB
12133@node More Languages
12134@section More Languages
55ba27be 12135
71b52b13 12136@quotation
8405b70c 12137Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 12138favorite language here}?
71b52b13 12139@end quotation
55ba27be 12140
8405b70c 12141C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
12142languages; contributions are welcome.
12143
12144@node Beta Testing
12145@section Beta Testing
12146
71b52b13 12147@quotation
55ba27be 12148What is involved in being a beta tester?
71b52b13 12149@end quotation
55ba27be
AD
12150
12151It's not terribly involved. Basically, you would download a test
12152release, compile it, and use it to build and run a parser or two. After
12153that, you would submit either a bug report or a message saying that
12154everything is okay. It is important to report successes as well as
12155failures because test releases eventually become mainstream releases,
12156but only if they are adequately tested. If no one tests, development is
12157essentially halted.
12158
12159Beta testers are particularly needed for operating systems to which the
12160developers do not have easy access. They currently have easy access to
12161recent GNU/Linux and Solaris versions. Reports about other operating
12162systems are especially welcome.
12163
12164@node Mailing Lists
12165@section Mailing Lists
12166
71b52b13 12167@quotation
55ba27be 12168How do I join the help-bison and bug-bison mailing lists?
71b52b13 12169@end quotation
55ba27be
AD
12170
12171See @url{http://lists.gnu.org/}.
a06ea4aa 12172
d1a1114f
AD
12173@c ================================================= Table of Symbols
12174
342b8b6e 12175@node Table of Symbols
bfa74976
RS
12176@appendix Bison Symbols
12177@cindex Bison symbols, table of
12178@cindex symbols in Bison, table of
12179
18b519c0 12180@deffn {Variable} @@$
3ded9a63 12181In an action, the location of the left-hand side of the rule.
303834cc 12182@xref{Tracking Locations}.
18b519c0 12183@end deffn
3ded9a63 12184
18b519c0 12185@deffn {Variable} @@@var{n}
be22823e 12186@deffnx {Symbol} @@@var{n}
303834cc
JD
12187In an action, the location of the @var{n}-th symbol of the right-hand side
12188of the rule. @xref{Tracking Locations}.
be22823e
AD
12189
12190In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12191with a semantical value. @xref{Mid-Rule Action Translation}.
18b519c0 12192@end deffn
3ded9a63 12193
d013372c 12194@deffn {Variable} @@@var{name}
c949ada3
AD
12195@deffnx {Variable} @@[@var{name}]
12196In an action, the location of a symbol addressed by @var{name}.
12197@xref{Tracking Locations}.
d013372c
AR
12198@end deffn
12199
be22823e
AD
12200@deffn {Symbol} $@@@var{n}
12201In a grammar, the Bison-generated nonterminal symbol for a mid-rule action
12202with no semantical value. @xref{Mid-Rule Action Translation}.
d013372c
AR
12203@end deffn
12204
18b519c0 12205@deffn {Variable} $$
3ded9a63
AD
12206In an action, the semantic value of the left-hand side of the rule.
12207@xref{Actions}.
18b519c0 12208@end deffn
3ded9a63 12209
18b519c0 12210@deffn {Variable} $@var{n}
3ded9a63
AD
12211In an action, the semantic value of the @var{n}-th symbol of the
12212right-hand side of the rule. @xref{Actions}.
18b519c0 12213@end deffn
3ded9a63 12214
d013372c 12215@deffn {Variable} $@var{name}
c949ada3
AD
12216@deffnx {Variable} $[@var{name}]
12217In an action, the semantic value of a symbol addressed by @var{name}.
d013372c
AR
12218@xref{Actions}.
12219@end deffn
12220
dd8d9022
AD
12221@deffn {Delimiter} %%
12222Delimiter used to separate the grammar rule section from the
12223Bison declarations section or the epilogue.
12224@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 12225@end deffn
bfa74976 12226
dd8d9022
AD
12227@c Don't insert spaces, or check the DVI output.
12228@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
12229All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
12230to the parser implementation file. Such code forms the prologue of
12231the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 12232Grammar}.
18b519c0 12233@end deffn
bfa74976 12234
ca2a6d15
PH
12235@deffn {Directive} %?@{@var{expression}@}
12236Predicate actions. This is a type of action clause that may appear in
12237rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 12238GLR parsers during nondeterministic operation,
ca2a6d15
PH
12239this silently causes an alternative parse to die. During deterministic
12240operation, it is the same as the effect of YYERROR.
12241@xref{Semantic Predicates}.
12242
12243This feature is experimental.
12244More user feedback will help to determine whether it should become a permanent
12245feature.
12246@end deffn
12247
c949ada3
AD
12248@deffn {Construct} /* @dots{} */
12249@deffnx {Construct} // @dots{}
12250Comments, as in C/C++.
18b519c0 12251@end deffn
bfa74976 12252
dd8d9022
AD
12253@deffn {Delimiter} :
12254Separates a rule's result from its components. @xref{Rules, ,Syntax of
12255Grammar Rules}.
18b519c0 12256@end deffn
bfa74976 12257
dd8d9022
AD
12258@deffn {Delimiter} ;
12259Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12260@end deffn
bfa74976 12261
dd8d9022
AD
12262@deffn {Delimiter} |
12263Separates alternate rules for the same result nonterminal.
12264@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 12265@end deffn
bfa74976 12266
12e35840
JD
12267@deffn {Directive} <*>
12268Used to define a default tagged @code{%destructor} or default tagged
12269@code{%printer}.
85894313
JD
12270
12271This feature is experimental.
12272More user feedback will help to determine whether it should become a permanent
12273feature.
12274
12e35840
JD
12275@xref{Destructor Decl, , Freeing Discarded Symbols}.
12276@end deffn
12277
3ebecc24 12278@deffn {Directive} <>
12e35840
JD
12279Used to define a default tagless @code{%destructor} or default tagless
12280@code{%printer}.
85894313
JD
12281
12282This feature is experimental.
12283More user feedback will help to determine whether it should become a permanent
12284feature.
12285
12e35840
JD
12286@xref{Destructor Decl, , Freeing Discarded Symbols}.
12287@end deffn
12288
dd8d9022
AD
12289@deffn {Symbol} $accept
12290The predefined nonterminal whose only rule is @samp{$accept: @var{start}
12291$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
12292Start-Symbol}. It cannot be used in the grammar.
18b519c0 12293@end deffn
bfa74976 12294
136a0f76 12295@deffn {Directive} %code @{@var{code}@}
148d66d8 12296@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
12297Insert @var{code} verbatim into the output parser source at the
12298default location or at the location specified by @var{qualifier}.
e0c07222 12299@xref{%code Summary}.
9bc0dd67
JD
12300@end deffn
12301
12302@deffn {Directive} %debug
12303Equip the parser for debugging. @xref{Decl Summary}.
12304@end deffn
12305
91d2c560 12306@ifset defaultprec
22fccf95
PE
12307@deffn {Directive} %default-prec
12308Assign a precedence to rules that lack an explicit @samp{%prec}
12309modifier. @xref{Contextual Precedence, ,Context-Dependent
12310Precedence}.
39a06c25 12311@end deffn
91d2c560 12312@end ifset
39a06c25 12313
7fceb615
JD
12314@deffn {Directive} %define @var{variable}
12315@deffnx {Directive} %define @var{variable} @var{value}
12316@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 12317Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
12318@end deffn
12319
18b519c0 12320@deffn {Directive} %defines
ff7571c0
JD
12321Bison declaration to create a parser header file, which is usually
12322meant for the scanner. @xref{Decl Summary}.
18b519c0 12323@end deffn
6deb4447 12324
02975b9a
JD
12325@deffn {Directive} %defines @var{defines-file}
12326Same as above, but save in the file @var{defines-file}.
12327@xref{Decl Summary}.
12328@end deffn
12329
18b519c0 12330@deffn {Directive} %destructor
258b75ca 12331Specify how the parser should reclaim the memory associated to
fa7e68c3 12332discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 12333@end deffn
72f889cc 12334
18b519c0 12335@deffn {Directive} %dprec
676385e2 12336Bison declaration to assign a precedence to a rule that is used at parse
c827f760 12337time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 12338GLR Parsers}.
18b519c0 12339@end deffn
676385e2 12340
dd8d9022
AD
12341@deffn {Symbol} $end
12342The predefined token marking the end of the token stream. It cannot be
12343used in the grammar.
12344@end deffn
12345
12346@deffn {Symbol} error
12347A token name reserved for error recovery. This token may be used in
12348grammar rules so as to allow the Bison parser to recognize an error in
12349the grammar without halting the process. In effect, a sentence
12350containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
12351token @code{error} becomes the current lookahead token. Actions
12352corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12353token is reset to the token that originally caused the violation.
12354@xref{Error Recovery}.
18d192f0
AD
12355@end deffn
12356
18b519c0 12357@deffn {Directive} %error-verbose
7fceb615
JD
12358An obsolete directive standing for @samp{%define parse.error verbose}
12359(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12360@end deffn
2a8d363a 12361
02975b9a 12362@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12363Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12364Summary}.
18b519c0 12365@end deffn
d8988b2f 12366
18b519c0 12367@deffn {Directive} %glr-parser
8a4281b9
JD
12368Bison declaration to produce a GLR parser. @xref{GLR
12369Parsers, ,Writing GLR Parsers}.
18b519c0 12370@end deffn
676385e2 12371
dd8d9022
AD
12372@deffn {Directive} %initial-action
12373Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12374@end deffn
12375
e6e704dc
JD
12376@deffn {Directive} %language
12377Specify the programming language for the generated parser.
12378@xref{Decl Summary}.
12379@end deffn
12380
18b519c0 12381@deffn {Directive} %left
d78f0ac9 12382Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12383@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12384@end deffn
bfa74976 12385
2055a44e
AD
12386@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12387Bison declaration to specifying additional arguments that
2a8d363a
AD
12388@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12389for Pure Parsers}.
18b519c0 12390@end deffn
2a8d363a 12391
18b519c0 12392@deffn {Directive} %merge
676385e2 12393Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12394reduce/reduce conflict with a rule having the same merging function, the
676385e2 12395function is applied to the two semantic values to get a single result.
8a4281b9 12396@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12397@end deffn
676385e2 12398
02975b9a 12399@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12400Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12401Parsers, ,Multiple Parsers in the Same Program}).
12402
12403Rename the external symbols (variables and functions) used in the parser so
12404that they start with @var{prefix} instead of @samp{yy}. Contrary to
12405@code{api.prefix}, do no rename types and macros.
12406
12407The precise list of symbols renamed in C parsers is @code{yyparse},
12408@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12409@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12410push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12411@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12412example, if you use @samp{%name-prefix "c_"}, the names become
12413@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
12414@code{%define namespace} documentation in this section.
18b519c0 12415@end deffn
d8988b2f 12416
4b3847c3 12417
91d2c560 12418@ifset defaultprec
22fccf95
PE
12419@deffn {Directive} %no-default-prec
12420Do not assign a precedence to rules that lack an explicit @samp{%prec}
12421modifier. @xref{Contextual Precedence, ,Context-Dependent
12422Precedence}.
12423@end deffn
91d2c560 12424@end ifset
22fccf95 12425
18b519c0 12426@deffn {Directive} %no-lines
931c7513 12427Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12428parser implementation file. @xref{Decl Summary}.
18b519c0 12429@end deffn
931c7513 12430
18b519c0 12431@deffn {Directive} %nonassoc
d78f0ac9 12432Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12433@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12434@end deffn
bfa74976 12435
02975b9a 12436@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12437Bison declaration to set the name of the parser implementation file.
12438@xref{Decl Summary}.
18b519c0 12439@end deffn
d8988b2f 12440
2055a44e
AD
12441@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12442Bison declaration to specify additional arguments that both
12443@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12444Parser Function @code{yyparse}}.
12445@end deffn
12446
12447@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12448Bison declaration to specify additional arguments that @code{yyparse}
12449should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12450@end deffn
2a8d363a 12451
18b519c0 12452@deffn {Directive} %prec
bfa74976
RS
12453Bison declaration to assign a precedence to a specific rule.
12454@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12455@end deffn
bfa74976 12456
d78f0ac9
AD
12457@deffn {Directive} %precedence
12458Bison declaration to assign precedence to token(s), but no associativity
12459@xref{Precedence Decl, ,Operator Precedence}.
12460@end deffn
12461
18b519c0 12462@deffn {Directive} %pure-parser
35c1e5f0
JD
12463Deprecated version of @samp{%define api.pure} (@pxref{%define
12464Summary,,api.pure}), for which Bison is more careful to warn about
12465unreasonable usage.
18b519c0 12466@end deffn
bfa74976 12467
b50d2359 12468@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12469Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12470Require a Version of Bison}.
b50d2359
AD
12471@end deffn
12472
18b519c0 12473@deffn {Directive} %right
d78f0ac9 12474Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12475@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12476@end deffn
bfa74976 12477
e6e704dc
JD
12478@deffn {Directive} %skeleton
12479Specify the skeleton to use; usually for development.
12480@xref{Decl Summary}.
12481@end deffn
12482
18b519c0 12483@deffn {Directive} %start
704a47c4
AD
12484Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12485Start-Symbol}.
18b519c0 12486@end deffn
bfa74976 12487
18b519c0 12488@deffn {Directive} %token
bfa74976
RS
12489Bison declaration to declare token(s) without specifying precedence.
12490@xref{Token Decl, ,Token Type Names}.
18b519c0 12491@end deffn
bfa74976 12492
18b519c0 12493@deffn {Directive} %token-table
ff7571c0
JD
12494Bison declaration to include a token name table in the parser
12495implementation file. @xref{Decl Summary}.
18b519c0 12496@end deffn
931c7513 12497
18b519c0 12498@deffn {Directive} %type
704a47c4
AD
12499Bison declaration to declare nonterminals. @xref{Type Decl,
12500,Nonterminal Symbols}.
18b519c0 12501@end deffn
bfa74976 12502
dd8d9022
AD
12503@deffn {Symbol} $undefined
12504The predefined token onto which all undefined values returned by
12505@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12506@code{error}.
12507@end deffn
12508
18b519c0 12509@deffn {Directive} %union
bfa74976
RS
12510Bison declaration to specify several possible data types for semantic
12511values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 12512@end deffn
bfa74976 12513
dd8d9022
AD
12514@deffn {Macro} YYABORT
12515Macro to pretend that an unrecoverable syntax error has occurred, by
12516making @code{yyparse} return 1 immediately. The error reporting
12517function @code{yyerror} is not called. @xref{Parser Function, ,The
12518Parser Function @code{yyparse}}.
8405b70c
PB
12519
12520For Java parsers, this functionality is invoked using @code{return YYABORT;}
12521instead.
dd8d9022 12522@end deffn
3ded9a63 12523
dd8d9022
AD
12524@deffn {Macro} YYACCEPT
12525Macro to pretend that a complete utterance of the language has been
12526read, by making @code{yyparse} return 0 immediately.
12527@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12528
12529For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12530instead.
dd8d9022 12531@end deffn
bfa74976 12532
dd8d9022 12533@deffn {Macro} YYBACKUP
742e4900 12534Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12535token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12536@end deffn
bfa74976 12537
dd8d9022 12538@deffn {Variable} yychar
32c29292 12539External integer variable that contains the integer value of the
742e4900 12540lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12541@code{yyparse}.) Error-recovery rule actions may examine this variable.
12542@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12543@end deffn
bfa74976 12544
dd8d9022
AD
12545@deffn {Variable} yyclearin
12546Macro used in error-recovery rule actions. It clears the previous
742e4900 12547lookahead token. @xref{Error Recovery}.
18b519c0 12548@end deffn
bfa74976 12549
dd8d9022
AD
12550@deffn {Macro} YYDEBUG
12551Macro to define to equip the parser with tracing code. @xref{Tracing,
12552,Tracing Your Parser}.
18b519c0 12553@end deffn
bfa74976 12554
dd8d9022
AD
12555@deffn {Variable} yydebug
12556External integer variable set to zero by default. If @code{yydebug}
12557is given a nonzero value, the parser will output information on input
12558symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12559@end deffn
bfa74976 12560
dd8d9022
AD
12561@deffn {Macro} yyerrok
12562Macro to cause parser to recover immediately to its normal mode
12563after a syntax error. @xref{Error Recovery}.
12564@end deffn
12565
12566@deffn {Macro} YYERROR
4a11b852
AD
12567Cause an immediate syntax error. This statement initiates error
12568recovery just as if the parser itself had detected an error; however, it
12569does not call @code{yyerror}, and does not print any message. If you
12570want to print an error message, call @code{yyerror} explicitly before
12571the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12572
12573For Java parsers, this functionality is invoked using @code{return YYERROR;}
12574instead.
dd8d9022
AD
12575@end deffn
12576
12577@deffn {Function} yyerror
12578User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12579@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12580@end deffn
12581
12582@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12583An obsolete macro used in the @file{yacc.c} skeleton, that you define
12584with @code{#define} in the prologue to request verbose, specific error
12585message strings when @code{yyerror} is called. It doesn't matter what
12586definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12587it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12588(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12589@end deffn
12590
93c150b6
AD
12591@deffn {Macro} YYFPRINTF
12592Macro used to output run-time traces.
12593@xref{Enabling Traces}.
12594@end deffn
12595
dd8d9022
AD
12596@deffn {Macro} YYINITDEPTH
12597Macro for specifying the initial size of the parser stack.
1a059451 12598@xref{Memory Management}.
dd8d9022
AD
12599@end deffn
12600
12601@deffn {Function} yylex
12602User-supplied lexical analyzer function, called with no arguments to get
12603the next token. @xref{Lexical, ,The Lexical Analyzer Function
12604@code{yylex}}.
12605@end deffn
12606
dd8d9022
AD
12607@deffn {Variable} yylloc
12608External variable in which @code{yylex} should place the line and column
12609numbers associated with a token. (In a pure parser, it is a local
12610variable within @code{yyparse}, and its address is passed to
32c29292
JD
12611@code{yylex}.)
12612You can ignore this variable if you don't use the @samp{@@} feature in the
12613grammar actions.
12614@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12615In semantic actions, it stores the location of the lookahead token.
32c29292 12616@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12617@end deffn
12618
12619@deffn {Type} YYLTYPE
12620Data type of @code{yylloc}; by default, a structure with four
12621members. @xref{Location Type, , Data Types of Locations}.
12622@end deffn
12623
12624@deffn {Variable} yylval
12625External variable in which @code{yylex} should place the semantic
12626value associated with a token. (In a pure parser, it is a local
12627variable within @code{yyparse}, and its address is passed to
32c29292
JD
12628@code{yylex}.)
12629@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12630In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12631@xref{Actions, ,Actions}.
dd8d9022
AD
12632@end deffn
12633
12634@deffn {Macro} YYMAXDEPTH
1a059451
PE
12635Macro for specifying the maximum size of the parser stack. @xref{Memory
12636Management}.
dd8d9022
AD
12637@end deffn
12638
12639@deffn {Variable} yynerrs
8a2800e7 12640Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12641(In a pure parser, it is a local variable within @code{yyparse}. In a
a73aa764 12642pure push parser, it is a member of @code{yypstate}.)
dd8d9022
AD
12643@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12644@end deffn
12645
12646@deffn {Function} yyparse
12647The parser function produced by Bison; call this function to start
12648parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12649@end deffn
12650
93c150b6
AD
12651@deffn {Macro} YYPRINT
12652Macro used to output token semantic values. For @file{yacc.c} only.
12653Obsoleted by @code{%printer}.
12654@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12655@end deffn
12656
9987d1b3 12657@deffn {Function} yypstate_delete
f4101aa6 12658The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12659call this function to delete the memory associated with a parser.
f4101aa6 12660@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12661@code{yypstate_delete}}.
59da312b
JD
12662(The current push parsing interface is experimental and may evolve.
12663More user feedback will help to stabilize it.)
9987d1b3
JD
12664@end deffn
12665
12666@deffn {Function} yypstate_new
f4101aa6 12667The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12668call this function to create a new parser.
f4101aa6 12669@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12670@code{yypstate_new}}.
59da312b
JD
12671(The current push parsing interface is experimental and may evolve.
12672More user feedback will help to stabilize it.)
9987d1b3
JD
12673@end deffn
12674
12675@deffn {Function} yypull_parse
f4101aa6
AD
12676The parser function produced by Bison in push mode; call this function to
12677parse the rest of the input stream.
12678@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12679@code{yypull_parse}}.
59da312b
JD
12680(The current push parsing interface is experimental and may evolve.
12681More user feedback will help to stabilize it.)
9987d1b3
JD
12682@end deffn
12683
12684@deffn {Function} yypush_parse
f4101aa6
AD
12685The parser function produced by Bison in push mode; call this function to
12686parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12687@code{yypush_parse}}.
59da312b
JD
12688(The current push parsing interface is experimental and may evolve.
12689More user feedback will help to stabilize it.)
9987d1b3
JD
12690@end deffn
12691
dd8d9022 12692@deffn {Macro} YYRECOVERING
02103984
PE
12693The expression @code{YYRECOVERING ()} yields 1 when the parser
12694is recovering from a syntax error, and 0 otherwise.
12695@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12696@end deffn
12697
12698@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12699Macro used to control the use of @code{alloca} when the
12700deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12701the parser will use @code{malloc} to extend its stacks. If defined to
127021, the parser will use @code{alloca}. Values other than 0 and 1 are
12703reserved for future Bison extensions. If not defined,
12704@code{YYSTACK_USE_ALLOCA} defaults to 0.
12705
55289366 12706In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12707limited stack and with unreliable stack-overflow checking, you should
12708set @code{YYMAXDEPTH} to a value that cannot possibly result in
12709unchecked stack overflow on any of your target hosts when
12710@code{alloca} is called. You can inspect the code that Bison
12711generates in order to determine the proper numeric values. This will
12712require some expertise in low-level implementation details.
dd8d9022
AD
12713@end deffn
12714
12715@deffn {Type} YYSTYPE
12716Data type of semantic values; @code{int} by default.
12717@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12718@end deffn
bfa74976 12719
342b8b6e 12720@node Glossary
bfa74976
RS
12721@appendix Glossary
12722@cindex glossary
12723
12724@table @asis
7fceb615 12725@item Accepting state
eb45ef3b
JD
12726A state whose only action is the accept action.
12727The accepting state is thus a consistent state.
c949ada3 12728@xref{Understanding, ,Understanding Your Parser}.
eb45ef3b 12729
8a4281b9 12730@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12731Formal method of specifying context-free grammars originally proposed
12732by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12733committee document contributing to what became the Algol 60 report.
12734@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12735
7fceb615
JD
12736@item Consistent state
12737A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12738
bfa74976
RS
12739@item Context-free grammars
12740Grammars specified as rules that can be applied regardless of context.
12741Thus, if there is a rule which says that an integer can be used as an
12742expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12743permitted. @xref{Language and Grammar, ,Languages and Context-Free
12744Grammars}.
bfa74976 12745
7fceb615 12746@item Default reduction
110ef36a 12747The reduction that a parser should perform if the current parser state
35c1e5f0 12748contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12749states, Bison declares the reduction with the largest lookahead set to be
12750the default reduction and removes that lookahead set. @xref{Default
12751Reductions}.
12752
12753@item Defaulted state
12754A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12755
bfa74976
RS
12756@item Dynamic allocation
12757Allocation of memory that occurs during execution, rather than at
12758compile time or on entry to a function.
12759
12760@item Empty string
12761Analogous to the empty set in set theory, the empty string is a
12762character string of length zero.
12763
12764@item Finite-state stack machine
12765A ``machine'' that has discrete states in which it is said to exist at
12766each instant in time. As input to the machine is processed, the
12767machine moves from state to state as specified by the logic of the
12768machine. In the case of the parser, the input is the language being
12769parsed, and the states correspond to various stages in the grammar
c827f760 12770rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12771
8a4281b9 12772@item Generalized LR (GLR)
676385e2 12773A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12774that are not LR(1). It resolves situations that Bison's
eb45ef3b 12775deterministic parsing
676385e2
PH
12776algorithm cannot by effectively splitting off multiple parsers, trying all
12777possible parsers, and discarding those that fail in the light of additional
c827f760 12778right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 12779LR Parsing}.
676385e2 12780
bfa74976
RS
12781@item Grouping
12782A language construct that is (in general) grammatically divisible;
c827f760 12783for example, `expression' or `declaration' in C@.
bfa74976
RS
12784@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12785
7fceb615
JD
12786@item IELR(1) (Inadequacy Elimination LR(1))
12787A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 12788context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
12789language-recognition power of canonical LR(1) but with nearly the same
12790number of parser states as LALR(1). This reduction in parser states is
12791often an order of magnitude. More importantly, because canonical LR(1)'s
12792extra parser states may contain duplicate conflicts in the case of non-LR(1)
12793grammars, the number of conflicts for IELR(1) is often an order of magnitude
12794less as well. This can significantly reduce the complexity of developing a
12795grammar. @xref{LR Table Construction}.
eb45ef3b 12796
bfa74976
RS
12797@item Infix operator
12798An arithmetic operator that is placed between the operands on which it
12799performs some operation.
12800
12801@item Input stream
12802A continuous flow of data between devices or programs.
12803
8a4281b9 12804@item LAC (Lookahead Correction)
fcf834f9 12805A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
12806detection, which is caused by LR state merging, default reductions, and the
12807use of @code{%nonassoc}. Delayed syntax error detection results in
12808unexpected semantic actions, initiation of error recovery in the wrong
12809syntactic context, and an incorrect list of expected tokens in a verbose
12810syntax error message. @xref{LAC}.
fcf834f9 12811
bfa74976
RS
12812@item Language construct
12813One of the typical usage schemas of the language. For example, one of
12814the constructs of the C language is the @code{if} statement.
12815@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12816
12817@item Left associativity
12818Operators having left associativity are analyzed from left to right:
12819@samp{a+b+c} first computes @samp{a+b} and then combines with
12820@samp{c}. @xref{Precedence, ,Operator Precedence}.
12821
12822@item Left recursion
89cab50d
AD
12823A rule whose result symbol is also its first component symbol; for
12824example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
12825Rules}.
bfa74976
RS
12826
12827@item Left-to-right parsing
12828Parsing a sentence of a language by analyzing it token by token from
c827f760 12829left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12830
12831@item Lexical analyzer (scanner)
12832A function that reads an input stream and returns tokens one by one.
12833@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
12834
12835@item Lexical tie-in
12836A flag, set by actions in the grammar rules, which alters the way
12837tokens are parsed. @xref{Lexical Tie-ins}.
12838
931c7513 12839@item Literal string token
14ded682 12840A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 12841
742e4900
JD
12842@item Lookahead token
12843A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 12844Tokens}.
bfa74976 12845
8a4281b9 12846@item LALR(1)
bfa74976 12847The class of context-free grammars that Bison (like most other parser
8a4281b9 12848generators) can handle by default; a subset of LR(1).
cc09e5be 12849@xref{Mysterious Conflicts}.
bfa74976 12850
8a4281b9 12851@item LR(1)
bfa74976 12852The class of context-free grammars in which at most one token of
742e4900 12853lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
12854
12855@item Nonterminal symbol
12856A grammar symbol standing for a grammatical construct that can
12857be expressed through rules in terms of smaller constructs; in other
12858words, a construct that is not a token. @xref{Symbols}.
12859
bfa74976
RS
12860@item Parser
12861A function that recognizes valid sentences of a language by analyzing
12862the syntax structure of a set of tokens passed to it from a lexical
12863analyzer.
12864
12865@item Postfix operator
12866An arithmetic operator that is placed after the operands upon which it
12867performs some operation.
12868
12869@item Reduction
12870Replacing a string of nonterminals and/or terminals with a single
89cab50d 12871nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 12872Parser Algorithm}.
bfa74976
RS
12873
12874@item Reentrant
12875A reentrant subprogram is a subprogram which can be in invoked any
12876number of times in parallel, without interference between the various
12877invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
12878
12879@item Reverse polish notation
12880A language in which all operators are postfix operators.
12881
12882@item Right recursion
89cab50d
AD
12883A rule whose result symbol is also its last component symbol; for
12884example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
12885Rules}.
bfa74976
RS
12886
12887@item Semantics
12888In computer languages, the semantics are specified by the actions
12889taken for each instance of the language, i.e., the meaning of
12890each statement. @xref{Semantics, ,Defining Language Semantics}.
12891
12892@item Shift
12893A parser is said to shift when it makes the choice of analyzing
12894further input from the stream rather than reducing immediately some
c827f760 12895already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12896
12897@item Single-character literal
12898A single character that is recognized and interpreted as is.
12899@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
12900
12901@item Start symbol
12902The nonterminal symbol that stands for a complete valid utterance in
12903the language being parsed. The start symbol is usually listed as the
13863333 12904first nonterminal symbol in a language specification.
bfa74976
RS
12905@xref{Start Decl, ,The Start-Symbol}.
12906
12907@item Symbol table
12908A data structure where symbol names and associated data are stored
12909during parsing to allow for recognition and use of existing
12910information in repeated uses of a symbol. @xref{Multi-function Calc}.
12911
6e649e65
PE
12912@item Syntax error
12913An error encountered during parsing of an input stream due to invalid
12914syntax. @xref{Error Recovery}.
12915
bfa74976
RS
12916@item Token
12917A basic, grammatically indivisible unit of a language. The symbol
12918that describes a token in the grammar is a terminal symbol.
12919The input of the Bison parser is a stream of tokens which comes from
12920the lexical analyzer. @xref{Symbols}.
12921
12922@item Terminal symbol
89cab50d
AD
12923A grammar symbol that has no rules in the grammar and therefore is
12924grammatically indivisible. The piece of text it represents is a token.
12925@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
12926
12927@item Unreachable state
12928A parser state to which there does not exist a sequence of transitions from
12929the parser's start state. A state can become unreachable during conflict
12930resolution. @xref{Unreachable States}.
bfa74976
RS
12931@end table
12932
342b8b6e 12933@node Copying This Manual
f2b5126e 12934@appendix Copying This Manual
f2b5126e
PB
12935@include fdl.texi
12936
5e528941
JD
12937@node Bibliography
12938@unnumbered Bibliography
12939
12940@table @asis
12941@item [Denny 2008]
12942Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
12943for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
129442008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
12945pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
12946
12947@item [Denny 2010 May]
12948Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
12949Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
12950University, Clemson, SC, USA (May 2010).
12951@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
12952
12953@item [Denny 2010 November]
12954Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
12955Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
12956in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
129572010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
12958
12959@item [DeRemer 1982]
12960Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
12961Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
12962Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
12963615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
12964
12965@item [Knuth 1965]
12966Donald E. Knuth, On the Translation of Languages from Left to Right, in
12967@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
12968607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
12969
12970@item [Scott 2000]
12971Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
12972@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
12973London, Department of Computer Science, TR-00-12 (December 2000).
12974@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
12975@end table
12976
f9b86351
AD
12977@node Index of Terms
12978@unnumbered Index of Terms
bfa74976
RS
12979
12980@printindex cp
12981
bfa74976 12982@bye
a06ea4aa 12983
6b5a0de9
AD
12984@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
12985@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
12986@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
12987@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12988@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12989@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12990@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12991@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12992@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12993@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12994@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12995@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12996@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 12997@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
12998@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12999@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
13000@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
13001@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
13002@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
13003@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
13004@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
13005@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
13006@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 13007@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
13008@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
13009@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
13010@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
13011@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
13012@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 13013@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
13014@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
13015@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 13016@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 13017@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
13018@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
13019@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
13020@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 13021@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 13022@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 13023@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
13024@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
13025@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
13026@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
13027@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 13028@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
13029@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
13030@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
13031@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
13032@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 13033@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 13034@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
13035@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
13036@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 13037@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
13038@c LocalWords: parsers parser's
13039@c LocalWords: associativity subclasses precedences unresolvable runnable
13040@c LocalWords: allocators subunit initializations unreferenced untyped
13041@c LocalWords: errorVerbose subtype subtypes
e944aaff
AD
13042
13043@c Local Variables:
13044@c ispell-dictionary: "american"
13045@c fill-column: 76
13046@c End: