]> git.saurik.com Git - bison.git/blame - doc/bison.texi
graphs: documentation
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
c932d613 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
ea0a7676 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
71caec06 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
83484365 128* Locations:: Overview of location tracking.
f56274a8
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
35430378 134Writing GLR Parsers
fa7e68c3 135
35430378
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
7404cdf3
JD
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
188* Tracking Locations:: Locations and actions.
189* Named References:: Using named references in actions.
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
192
193Outline of a Bison Grammar
194
f56274a8 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
56d60c19 226* Printer Decl:: Declaring how symbol values are displayed.
d6328241 227* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
228* Start Decl:: Specifying the start symbol.
229* Pure Decl:: Requesting a reentrant parser.
9987d1b3 230* Push Decl:: Requesting a push parser.
bfa74976 231* Decl Summary:: Table of all Bison declarations.
2f4518a1 232* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 233* %code Summary:: Inserting code into the parser source.
bfa74976
RS
234
235Parser C-Language Interface
236
f56274a8
DJ
237* Parser Function:: How to call @code{yyparse} and what it returns.
238* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
239* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
240* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
241* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
242* Lexical:: You must supply a function @code{yylex}
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
254* Token Locations:: How @code{yylex} must return the text location
255 (line number, etc.) of the token, if the
256 actions want that.
257* Pure Calling:: How the calling convention differs in a pure parser
258 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 259
13863333 260The Bison Parser Algorithm
bfa74976 261
742e4900 262* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 268* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 269* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 270* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 271* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
272
273Operator Precedence
274
275* Why Precedence:: An example showing why precedence is needed.
276* Using Precedence:: How to specify precedence in Bison grammars.
277* Precedence Examples:: How these features are used in the previous example.
278* How Precedence:: How they work.
279
6f04ee6c
JD
280Tuning LR
281
282* LR Table Construction:: Choose a different construction algorithm.
283* Default Reductions:: Disable default reductions.
284* LAC:: Correct lookahead sets in the parser states.
285* Unreachable States:: Keep unreachable parser states for debugging.
286
bfa74976
RS
287Handling Context Dependencies
288
289* Semantic Tokens:: Token parsing can depend on the semantic context.
290* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
291* Tie-in Recovery:: Lexical tie-ins have implications for how
292 error recovery rules must be written.
293
93dd49ab 294Debugging Your Parser
ec3bc396
AD
295
296* Understanding:: Understanding the structure of your parser.
fc4fdd62 297* Graphviz:: Getting a visual representation of the parser.
ec3bc396
AD
298* Tracing:: Tracing the execution of your parser.
299
56d60c19
AD
300Tracing Your Parser
301
302* Enabling Traces:: Activating run-time trace support
303* Mfcalc Traces:: Extending @code{mfcalc} to support traces
304* The YYPRINT Macro:: Obsolete interface for semantic value reports
305
bfa74976
RS
306Invoking Bison
307
13863333 308* Bison Options:: All the options described in detail,
c827f760 309 in alphabetical order by short options.
bfa74976 310* Option Cross Key:: Alphabetical list of long options.
93dd49ab 311* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 312
8405b70c 313Parsers Written In Other Languages
12545799
AD
314
315* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 316* Java Parsers:: The interface to generate Java parser classes
12545799
AD
317
318C++ Parsers
319
320* C++ Bison Interface:: Asking for C++ parser generation
321* C++ Semantic Values:: %union vs. C++
322* C++ Location Values:: The position and location classes
323* C++ Parser Interface:: Instantiating and running the parser
324* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 325* A Complete C++ Example:: Demonstrating their use
12545799 326
936c88d1
AD
327C++ Location Values
328
329* C++ position:: One point in the source file
330* C++ location:: Two points in the source file
db8ab2be 331* User Defined Location Type:: Required interface for locations
936c88d1 332
12545799
AD
333A Complete C++ Example
334
335* Calc++ --- C++ Calculator:: The specifications
336* Calc++ Parsing Driver:: An active parsing context
337* Calc++ Parser:: A parser class
338* Calc++ Scanner:: A pure C++ Flex scanner
339* Calc++ Top Level:: Conducting the band
340
8405b70c
PB
341Java Parsers
342
f56274a8
DJ
343* Java Bison Interface:: Asking for Java parser generation
344* Java Semantic Values:: %type and %token vs. Java
345* Java Location Values:: The position and location classes
346* Java Parser Interface:: Instantiating and running the parser
347* Java Scanner Interface:: Specifying the scanner for the parser
348* Java Action Features:: Special features for use in actions
349* Java Differences:: Differences between C/C++ and Java Grammars
350* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 351
d1a1114f
AD
352Frequently Asked Questions
353
f56274a8
DJ
354* Memory Exhausted:: Breaking the Stack Limits
355* How Can I Reset the Parser:: @code{yyparse} Keeps some State
356* Strings are Destroyed:: @code{yylval} Loses Track of Strings
357* Implementing Gotos/Loops:: Control Flow in the Calculator
358* Multiple start-symbols:: Factoring closely related grammars
35430378 359* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
360* I can't build Bison:: Troubleshooting
361* Where can I find help?:: Troubleshouting
362* Bug Reports:: Troublereporting
363* More Languages:: Parsers in C++, Java, and so on
364* Beta Testing:: Experimenting development versions
365* Mailing Lists:: Meeting other Bison users
d1a1114f 366
f2b5126e
PB
367Copying This Manual
368
f56274a8 369* Copying This Manual:: License for copying this manual.
f2b5126e 370
342b8b6e 371@end detailmenu
bfa74976
RS
372@end menu
373
342b8b6e 374@node Introduction
bfa74976
RS
375@unnumbered Introduction
376@cindex introduction
377
6077da58 378@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
379annotated context-free grammar into a deterministic LR or generalized
380LR (GLR) parser employing LALR(1) parser tables. As an experimental
381feature, Bison can also generate IELR(1) or canonical LR(1) parser
382tables. Once you are proficient with Bison, you can use it to develop
383a wide range of language parsers, from those used in simple desk
384calculators to complex programming languages.
385
386Bison is upward compatible with Yacc: all properly-written Yacc
387grammars ought to work with Bison with no change. Anyone familiar
388with Yacc should be able to use Bison with little trouble. You need
389to be fluent in C or C++ programming in order to use Bison or to
390understand this manual. Java is also supported as an experimental
391feature.
392
393We begin with tutorial chapters that explain the basic concepts of
394using Bison and show three explained examples, each building on the
395last. If you don't know Bison or Yacc, start by reading these
396chapters. Reference chapters follow, which describe specific aspects
397of Bison in detail.
bfa74976 398
840341d6
JD
399Bison was written originally by Robert Corbett. Richard Stallman made
400it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
401added multi-character string literals and other features. Since then,
402Bison has grown more robust and evolved many other new features thanks
403to the hard work of a long list of volunteers. For details, see the
404@file{THANKS} and @file{ChangeLog} files included in the Bison
405distribution.
931c7513 406
df1af54c 407This edition corresponds to version @value{VERSION} of Bison.
bfa74976 408
342b8b6e 409@node Conditions
bfa74976
RS
410@unnumbered Conditions for Using Bison
411
193d7c70
PE
412The distribution terms for Bison-generated parsers permit using the
413parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 414permissions applied only when Bison was generating LALR(1)
193d7c70 415parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 416parsers could be used only in programs that were free software.
a31239f1 417
35430378 418The other GNU programming tools, such as the GNU C
c827f760 419compiler, have never
9ecbd125 420had such a requirement. They could always be used for nonfree
a31239f1
RS
421software. The reason Bison was different was not due to a special
422policy decision; it resulted from applying the usual General Public
423License to all of the Bison source code.
424
9913d6e4
JD
425The main output of the Bison utility---the Bison parser implementation
426file---contains a verbatim copy of a sizable piece of Bison, which is
427the code for the parser's implementation. (The actions from your
428grammar are inserted into this implementation at one point, but most
429of the rest of the implementation is not changed.) When we applied
430the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
431the effect was to restrict the use of Bison output to free software.
432
433We didn't change the terms because of sympathy for people who want to
434make software proprietary. @strong{Software should be free.} But we
435concluded that limiting Bison's use to free software was doing little to
436encourage people to make other software free. So we decided to make the
437practical conditions for using Bison match the practical conditions for
35430378 438using the other GNU tools.
bfa74976 439
193d7c70
PE
440This exception applies when Bison is generating code for a parser.
441You can tell whether the exception applies to a Bison output file by
442inspecting the file for text beginning with ``As a special
443exception@dots{}''. The text spells out the exact terms of the
444exception.
262aa8dd 445
f16b0819
PE
446@node Copying
447@unnumbered GNU GENERAL PUBLIC LICENSE
448@include gpl-3.0.texi
bfa74976 449
342b8b6e 450@node Concepts
bfa74976
RS
451@chapter The Concepts of Bison
452
453This chapter introduces many of the basic concepts without which the
454details of Bison will not make sense. If you do not already know how to
455use Bison or Yacc, we suggest you start by reading this chapter carefully.
456
457@menu
f56274a8
DJ
458* Language and Grammar:: Languages and context-free grammars,
459 as mathematical ideas.
460* Grammar in Bison:: How we represent grammars for Bison's sake.
461* Semantic Values:: Each token or syntactic grouping can have
462 a semantic value (the value of an integer,
463 the name of an identifier, etc.).
464* Semantic Actions:: Each rule can have an action containing C code.
465* GLR Parsers:: Writing parsers for general context-free languages.
83484365 466* Locations:: Overview of location tracking.
f56274a8
DJ
467* Bison Parser:: What are Bison's input and output,
468 how is the output used?
469* Stages:: Stages in writing and running Bison grammars.
470* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
471@end menu
472
342b8b6e 473@node Language and Grammar
bfa74976
RS
474@section Languages and Context-Free Grammars
475
bfa74976
RS
476@cindex context-free grammar
477@cindex grammar, context-free
478In order for Bison to parse a language, it must be described by a
479@dfn{context-free grammar}. This means that you specify one or more
480@dfn{syntactic groupings} and give rules for constructing them from their
481parts. For example, in the C language, one kind of grouping is called an
482`expression'. One rule for making an expression might be, ``An expression
483can be made of a minus sign and another expression''. Another would be,
484``An expression can be an integer''. As you can see, rules are often
485recursive, but there must be at least one rule which leads out of the
486recursion.
487
35430378 488@cindex BNF
bfa74976
RS
489@cindex Backus-Naur form
490The most common formal system for presenting such rules for humans to read
35430378 491is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 492order to specify the language Algol 60. Any grammar expressed in
35430378
JD
493BNF is a context-free grammar. The input to Bison is
494essentially machine-readable BNF.
bfa74976 495
6f04ee6c
JD
496@cindex LALR grammars
497@cindex IELR grammars
498@cindex LR grammars
499There are various important subclasses of context-free grammars. Although
500it can handle almost all context-free grammars, Bison is optimized for what
501are called LR(1) grammars. In brief, in these grammars, it must be possible
502to tell how to parse any portion of an input string with just a single token
503of lookahead. For historical reasons, Bison by default is limited by the
504additional restrictions of LALR(1), which is hard to explain simply.
5da0355a
JD
505@xref{Mysterious Conflicts}, for more information on this. As an
506experimental feature, you can escape these additional restrictions by
507requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
508Construction}, to learn how.
bfa74976 509
35430378
JD
510@cindex GLR parsing
511@cindex generalized LR (GLR) parsing
676385e2 512@cindex ambiguous grammars
9d9b8b70 513@cindex nondeterministic parsing
9501dc6e 514
35430378 515Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
516roughly that the next grammar rule to apply at any point in the input is
517uniquely determined by the preceding input and a fixed, finite portion
742e4900 518(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 519grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 520apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 521grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 522lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 523With the proper declarations, Bison is also able to parse these more
35430378
JD
524general context-free grammars, using a technique known as GLR
525parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
526are able to handle any context-free grammar for which the number of
527possible parses of any given string is finite.
676385e2 528
bfa74976
RS
529@cindex symbols (abstract)
530@cindex token
531@cindex syntactic grouping
532@cindex grouping, syntactic
9501dc6e
AD
533In the formal grammatical rules for a language, each kind of syntactic
534unit or grouping is named by a @dfn{symbol}. Those which are built by
535grouping smaller constructs according to grammatical rules are called
bfa74976
RS
536@dfn{nonterminal symbols}; those which can't be subdivided are called
537@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
538corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 539corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
540
541We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
542nonterminal, mean. The tokens of C are identifiers, constants (numeric
543and string), and the various keywords, arithmetic operators and
544punctuation marks. So the terminal symbols of a grammar for C include
545`identifier', `number', `string', plus one symbol for each keyword,
546operator or punctuation mark: `if', `return', `const', `static', `int',
547`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
548(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
549lexicography, not grammar.)
550
551Here is a simple C function subdivided into tokens:
552
9edcd895
AD
553@example
554int /* @r{keyword `int'} */
14d4662b 555square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
556 @r{identifier, close-paren} */
557@{ /* @r{open-brace} */
aa08666d
AD
558 return x * x; /* @r{keyword `return', identifier, asterisk,}
559 @r{identifier, semicolon} */
9edcd895
AD
560@} /* @r{close-brace} */
561@end example
bfa74976
RS
562
563The syntactic groupings of C include the expression, the statement, the
564declaration, and the function definition. These are represented in the
565grammar of C by nonterminal symbols `expression', `statement',
566`declaration' and `function definition'. The full grammar uses dozens of
567additional language constructs, each with its own nonterminal symbol, in
568order to express the meanings of these four. The example above is a
569function definition; it contains one declaration, and one statement. In
570the statement, each @samp{x} is an expression and so is @samp{x * x}.
571
572Each nonterminal symbol must have grammatical rules showing how it is made
573out of simpler constructs. For example, one kind of C statement is the
574@code{return} statement; this would be described with a grammar rule which
575reads informally as follows:
576
577@quotation
578A `statement' can be made of a `return' keyword, an `expression' and a
579`semicolon'.
580@end quotation
581
582@noindent
583There would be many other rules for `statement', one for each kind of
584statement in C.
585
586@cindex start symbol
587One nonterminal symbol must be distinguished as the special one which
588defines a complete utterance in the language. It is called the @dfn{start
589symbol}. In a compiler, this means a complete input program. In the C
590language, the nonterminal symbol `sequence of definitions and declarations'
591plays this role.
592
593For example, @samp{1 + 2} is a valid C expression---a valid part of a C
594program---but it is not valid as an @emph{entire} C program. In the
595context-free grammar of C, this follows from the fact that `expression' is
596not the start symbol.
597
598The Bison parser reads a sequence of tokens as its input, and groups the
599tokens using the grammar rules. If the input is valid, the end result is
600that the entire token sequence reduces to a single grouping whose symbol is
601the grammar's start symbol. If we use a grammar for C, the entire input
602must be a `sequence of definitions and declarations'. If not, the parser
603reports a syntax error.
604
342b8b6e 605@node Grammar in Bison
bfa74976
RS
606@section From Formal Rules to Bison Input
607@cindex Bison grammar
608@cindex grammar, Bison
609@cindex formal grammar
610
611A formal grammar is a mathematical construct. To define the language
612for Bison, you must write a file expressing the grammar in Bison syntax:
613a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
614
615A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 616as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
617in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
618
619The Bison representation for a terminal symbol is also called a @dfn{token
620type}. Token types as well can be represented as C-like identifiers. By
621convention, these identifiers should be upper case to distinguish them from
622nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
623@code{RETURN}. A terminal symbol that stands for a particular keyword in
624the language should be named after that keyword converted to upper case.
625The terminal symbol @code{error} is reserved for error recovery.
931c7513 626@xref{Symbols}.
bfa74976
RS
627
628A terminal symbol can also be represented as a character literal, just like
629a C character constant. You should do this whenever a token is just a
630single character (parenthesis, plus-sign, etc.): use that same character in
631a literal as the terminal symbol for that token.
632
931c7513
RS
633A third way to represent a terminal symbol is with a C string constant
634containing several characters. @xref{Symbols}, for more information.
635
bfa74976
RS
636The grammar rules also have an expression in Bison syntax. For example,
637here is the Bison rule for a C @code{return} statement. The semicolon in
638quotes is a literal character token, representing part of the C syntax for
639the statement; the naked semicolon, and the colon, are Bison punctuation
640used in every rule.
641
642@example
de6be119 643stmt: RETURN expr ';' ;
bfa74976
RS
644@end example
645
646@noindent
647@xref{Rules, ,Syntax of Grammar Rules}.
648
342b8b6e 649@node Semantic Values
bfa74976
RS
650@section Semantic Values
651@cindex semantic value
652@cindex value, semantic
653
654A formal grammar selects tokens only by their classifications: for example,
655if a rule mentions the terminal symbol `integer constant', it means that
656@emph{any} integer constant is grammatically valid in that position. The
657precise value of the constant is irrelevant to how to parse the input: if
658@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 659grammatical.
bfa74976
RS
660
661But the precise value is very important for what the input means once it is
662parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6633989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
664has both a token type and a @dfn{semantic value}. @xref{Semantics,
665,Defining Language Semantics},
bfa74976
RS
666for details.
667
668The token type is a terminal symbol defined in the grammar, such as
669@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
670you need to know to decide where the token may validly appear and how to
671group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 672except their types.
bfa74976
RS
673
674The semantic value has all the rest of the information about the
675meaning of the token, such as the value of an integer, or the name of an
676identifier. (A token such as @code{','} which is just punctuation doesn't
677need to have any semantic value.)
678
679For example, an input token might be classified as token type
680@code{INTEGER} and have the semantic value 4. Another input token might
681have the same token type @code{INTEGER} but value 3989. When a grammar
682rule says that @code{INTEGER} is allowed, either of these tokens is
683acceptable because each is an @code{INTEGER}. When the parser accepts the
684token, it keeps track of the token's semantic value.
685
686Each grouping can also have a semantic value as well as its nonterminal
687symbol. For example, in a calculator, an expression typically has a
688semantic value that is a number. In a compiler for a programming
689language, an expression typically has a semantic value that is a tree
690structure describing the meaning of the expression.
691
342b8b6e 692@node Semantic Actions
bfa74976
RS
693@section Semantic Actions
694@cindex semantic actions
695@cindex actions, semantic
696
697In order to be useful, a program must do more than parse input; it must
698also produce some output based on the input. In a Bison grammar, a grammar
699rule can have an @dfn{action} made up of C statements. Each time the
700parser recognizes a match for that rule, the action is executed.
701@xref{Actions}.
13863333 702
bfa74976
RS
703Most of the time, the purpose of an action is to compute the semantic value
704of the whole construct from the semantic values of its parts. For example,
705suppose we have a rule which says an expression can be the sum of two
706expressions. When the parser recognizes such a sum, each of the
707subexpressions has a semantic value which describes how it was built up.
708The action for this rule should create a similar sort of value for the
709newly recognized larger expression.
710
711For example, here is a rule that says an expression can be the sum of
712two subexpressions:
713
714@example
de6be119 715expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
716@end example
717
718@noindent
719The action says how to produce the semantic value of the sum expression
720from the values of the two subexpressions.
721
676385e2 722@node GLR Parsers
35430378
JD
723@section Writing GLR Parsers
724@cindex GLR parsing
725@cindex generalized LR (GLR) parsing
676385e2
PH
726@findex %glr-parser
727@cindex conflicts
728@cindex shift/reduce conflicts
fa7e68c3 729@cindex reduce/reduce conflicts
676385e2 730
34a6c2d1 731In some grammars, Bison's deterministic
35430378 732LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
733certain grammar rule at a given point. That is, it may not be able to
734decide (on the basis of the input read so far) which of two possible
735reductions (applications of a grammar rule) applies, or whether to apply
736a reduction or read more of the input and apply a reduction later in the
737input. These are known respectively as @dfn{reduce/reduce} conflicts
738(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
739(@pxref{Shift/Reduce}).
740
35430378 741To use a grammar that is not easily modified to be LR(1), a
9501dc6e 742more general parsing algorithm is sometimes necessary. If you include
676385e2 743@code{%glr-parser} among the Bison declarations in your file
35430378
JD
744(@pxref{Grammar Outline}), the result is a Generalized LR
745(GLR) parser. These parsers handle Bison grammars that
9501dc6e 746contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 747declarations) identically to deterministic parsers. However, when
9501dc6e 748faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 749GLR parsers use the simple expedient of doing both,
9501dc6e
AD
750effectively cloning the parser to follow both possibilities. Each of
751the resulting parsers can again split, so that at any given time, there
752can be any number of possible parses being explored. The parsers
676385e2
PH
753proceed in lockstep; that is, all of them consume (shift) a given input
754symbol before any of them proceed to the next. Each of the cloned
755parsers eventually meets one of two possible fates: either it runs into
756a parsing error, in which case it simply vanishes, or it merges with
757another parser, because the two of them have reduced the input to an
758identical set of symbols.
759
760During the time that there are multiple parsers, semantic actions are
761recorded, but not performed. When a parser disappears, its recorded
762semantic actions disappear as well, and are never performed. When a
763reduction makes two parsers identical, causing them to merge, Bison
764records both sets of semantic actions. Whenever the last two parsers
765merge, reverting to the single-parser case, Bison resolves all the
766outstanding actions either by precedences given to the grammar rules
767involved, or by performing both actions, and then calling a designated
768user-defined function on the resulting values to produce an arbitrary
769merged result.
770
fa7e68c3 771@menu
35430378
JD
772* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
773* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 774* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 775* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
776@end menu
777
778@node Simple GLR Parsers
35430378
JD
779@subsection Using GLR on Unambiguous Grammars
780@cindex GLR parsing, unambiguous grammars
781@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
782@findex %glr-parser
783@findex %expect-rr
784@cindex conflicts
785@cindex reduce/reduce conflicts
786@cindex shift/reduce conflicts
787
35430378
JD
788In the simplest cases, you can use the GLR algorithm
789to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 790Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
791
792Consider a problem that
793arises in the declaration of enumerated and subrange types in the
794programming language Pascal. Here are some examples:
795
796@example
797type subrange = lo .. hi;
798type enum = (a, b, c);
799@end example
800
801@noindent
802The original language standard allows only numeric
803literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 804and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80510206) and many other
806Pascal implementations allow arbitrary expressions there. This gives
807rise to the following situation, containing a superfluous pair of
808parentheses:
809
810@example
811type subrange = (a) .. b;
812@end example
813
814@noindent
815Compare this to the following declaration of an enumerated
816type with only one value:
817
818@example
819type enum = (a);
820@end example
821
822@noindent
823(These declarations are contrived, but they are syntactically
824valid, and more-complicated cases can come up in practical programs.)
825
826These two declarations look identical until the @samp{..} token.
35430378 827With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
828possible to decide between the two forms when the identifier
829@samp{a} is parsed. It is, however, desirable
830for a parser to decide this, since in the latter case
831@samp{a} must become a new identifier to represent the enumeration
832value, while in the former case @samp{a} must be evaluated with its
833current meaning, which may be a constant or even a function call.
834
835You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
836to be resolved later, but this typically requires substantial
837contortions in both semantic actions and large parts of the
838grammar, where the parentheses are nested in the recursive rules for
839expressions.
840
841You might think of using the lexer to distinguish between the two
842forms by returning different tokens for currently defined and
843undefined identifiers. But if these declarations occur in a local
844scope, and @samp{a} is defined in an outer scope, then both forms
845are possible---either locally redefining @samp{a}, or using the
846value of @samp{a} from the outer scope. So this approach cannot
847work.
848
e757bb10 849A simple solution to this problem is to declare the parser to
35430378
JD
850use the GLR algorithm.
851When the GLR parser reaches the critical state, it
fa7e68c3
PE
852merely splits into two branches and pursues both syntax rules
853simultaneously. Sooner or later, one of them runs into a parsing
854error. If there is a @samp{..} token before the next
855@samp{;}, the rule for enumerated types fails since it cannot
856accept @samp{..} anywhere; otherwise, the subrange type rule
857fails since it requires a @samp{..} token. So one of the branches
858fails silently, and the other one continues normally, performing
859all the intermediate actions that were postponed during the split.
860
861If the input is syntactically incorrect, both branches fail and the parser
862reports a syntax error as usual.
863
864The effect of all this is that the parser seems to ``guess'' the
865correct branch to take, or in other words, it seems to use more
35430378
JD
866lookahead than the underlying LR(1) algorithm actually allows
867for. In this example, LR(2) would suffice, but also some cases
868that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 869
35430378 870In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
871and the current Bison parser even takes exponential time and space
872for some grammars. In practice, this rarely happens, and for many
873grammars it is possible to prove that it cannot happen.
874The present example contains only one conflict between two
875rules, and the type-declaration context containing the conflict
876cannot be nested. So the number of
877branches that can exist at any time is limited by the constant 2,
878and the parsing time is still linear.
879
880Here is a Bison grammar corresponding to the example above. It
881parses a vastly simplified form of Pascal type declarations.
882
883@example
884%token TYPE DOTDOT ID
885
886@group
887%left '+' '-'
888%left '*' '/'
889@end group
890
891%%
892
893@group
de6be119 894type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
895@end group
896
897@group
de6be119
AD
898type:
899 '(' id_list ')'
900| expr DOTDOT expr
901;
fa7e68c3
PE
902@end group
903
904@group
de6be119
AD
905id_list:
906 ID
907| id_list ',' ID
908;
fa7e68c3
PE
909@end group
910
911@group
de6be119
AD
912expr:
913 '(' expr ')'
914| expr '+' expr
915| expr '-' expr
916| expr '*' expr
917| expr '/' expr
918| ID
919;
fa7e68c3
PE
920@end group
921@end example
922
35430378 923When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
924about one reduce/reduce conflict. In the conflicting situation the
925parser chooses one of the alternatives, arbitrarily the one
926declared first. Therefore the following correct input is not
927recognized:
928
929@example
930type t = (a) .. b;
931@end example
932
35430378 933The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
934to be silent about the one known reduce/reduce conflict, by adding
935these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
936@samp{%%}):
937
938@example
939%glr-parser
940%expect-rr 1
941@end example
942
943@noindent
944No change in the grammar itself is required. Now the
945parser recognizes all valid declarations, according to the
946limited syntax above, transparently. In fact, the user does not even
947notice when the parser splits.
948
35430378 949So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
950almost without disadvantages. Even in simple cases like this, however,
951there are at least two potential problems to beware. First, always
35430378
JD
952analyze the conflicts reported by Bison to make sure that GLR
953splitting is only done where it is intended. A GLR parser
f8e1c9e5 954splitting inadvertently may cause problems less obvious than an
35430378 955LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
956conflict. Second, consider interactions with the lexer (@pxref{Semantic
957Tokens}) with great care. Since a split parser consumes tokens without
958performing any actions during the split, the lexer cannot obtain
959information via parser actions. Some cases of lexer interactions can be
35430378 960eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
961lexer to the parser. You must check the remaining cases for
962correctness.
963
964In our example, it would be safe for the lexer to return tokens based on
965their current meanings in some symbol table, because no new symbols are
966defined in the middle of a type declaration. Though it is possible for
967a parser to define the enumeration constants as they are parsed, before
968the type declaration is completed, it actually makes no difference since
969they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
970
971@node Merging GLR Parses
35430378
JD
972@subsection Using GLR to Resolve Ambiguities
973@cindex GLR parsing, ambiguous grammars
974@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
975@findex %dprec
976@findex %merge
977@cindex conflicts
978@cindex reduce/reduce conflicts
979
2a8d363a 980Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
981
982@example
983%@{
38a92d50
PE
984 #include <stdio.h>
985 #define YYSTYPE char const *
986 int yylex (void);
987 void yyerror (char const *);
676385e2
PH
988%@}
989
990%token TYPENAME ID
991
992%right '='
993%left '+'
994
995%glr-parser
996
997%%
998
de6be119
AD
999prog:
1000 /* Nothing. */
1001| prog stmt @{ printf ("\n"); @}
1002;
676385e2 1003
de6be119
AD
1004stmt:
1005 expr ';' %dprec 1
1006| decl %dprec 2
1007;
676385e2 1008
de6be119
AD
1009expr:
1010 ID @{ printf ("%s ", $$); @}
1011| TYPENAME '(' expr ')'
1012 @{ printf ("%s <cast> ", $1); @}
1013| expr '+' expr @{ printf ("+ "); @}
1014| expr '=' expr @{ printf ("= "); @}
1015;
676385e2 1016
de6be119
AD
1017decl:
1018 TYPENAME declarator ';'
1019 @{ printf ("%s <declare> ", $1); @}
1020| TYPENAME declarator '=' expr ';'
1021 @{ printf ("%s <init-declare> ", $1); @}
1022;
676385e2 1023
de6be119
AD
1024declarator:
1025 ID @{ printf ("\"%s\" ", $1); @}
1026| '(' declarator ')'
1027;
676385e2
PH
1028@end example
1029
1030@noindent
1031This models a problematic part of the C++ grammar---the ambiguity between
1032certain declarations and statements. For example,
1033
1034@example
1035T (x) = y+z;
1036@end example
1037
1038@noindent
1039parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1040(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1041@samp{x} as an @code{ID}).
676385e2 1042Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1043@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1044time it encounters @code{x} in the example above. Since this is a
35430378 1045GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1046each choice of resolving the reduce/reduce conflict.
1047Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1048however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1049ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1050the other reduces @code{stmt : decl}, after which both parsers are in an
1051identical state: they've seen @samp{prog stmt} and have the same unprocessed
1052input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1053
35430378 1054At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1055grammar of how to choose between the competing parses.
1056In the example above, the two @code{%dprec}
e757bb10 1057declarations specify that Bison is to give precedence
fa7e68c3 1058to the parse that interprets the example as a
676385e2
PH
1059@code{decl}, which implies that @code{x} is a declarator.
1060The parser therefore prints
1061
1062@example
fae437e8 1063"x" y z + T <init-declare>
676385e2
PH
1064@end example
1065
fa7e68c3
PE
1066The @code{%dprec} declarations only come into play when more than one
1067parse survives. Consider a different input string for this parser:
676385e2
PH
1068
1069@example
1070T (x) + y;
1071@end example
1072
1073@noindent
35430378 1074This is another example of using GLR to parse an unambiguous
fa7e68c3 1075construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1076Here, there is no ambiguity (this cannot be parsed as a declaration).
1077However, at the time the Bison parser encounters @code{x}, it does not
1078have enough information to resolve the reduce/reduce conflict (again,
1079between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1080case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1081into two, one assuming that @code{x} is an @code{expr}, and the other
1082assuming @code{x} is a @code{declarator}. The second of these parsers
1083then vanishes when it sees @code{+}, and the parser prints
1084
1085@example
fae437e8 1086x T <cast> y +
676385e2
PH
1087@end example
1088
1089Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1090the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1091actions of the two possible parsers, rather than choosing one over the
1092other. To do so, you could change the declaration of @code{stmt} as
1093follows:
1094
1095@example
de6be119
AD
1096stmt:
1097 expr ';' %merge <stmtMerge>
1098| decl %merge <stmtMerge>
1099;
676385e2
PH
1100@end example
1101
1102@noindent
676385e2
PH
1103and define the @code{stmtMerge} function as:
1104
1105@example
38a92d50
PE
1106static YYSTYPE
1107stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1108@{
1109 printf ("<OR> ");
1110 return "";
1111@}
1112@end example
1113
1114@noindent
1115with an accompanying forward declaration
1116in the C declarations at the beginning of the file:
1117
1118@example
1119%@{
38a92d50 1120 #define YYSTYPE char const *
676385e2
PH
1121 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1122%@}
1123@end example
1124
1125@noindent
fa7e68c3
PE
1126With these declarations, the resulting parser parses the first example
1127as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1128
1129@example
fae437e8 1130"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1131@end example
1132
fa7e68c3 1133Bison requires that all of the
e757bb10 1134productions that participate in any particular merge have identical
fa7e68c3
PE
1135@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1136and the parser will report an error during any parse that results in
1137the offending merge.
9501dc6e 1138
32c29292
JD
1139@node GLR Semantic Actions
1140@subsection GLR Semantic Actions
1141
1142@cindex deferred semantic actions
1143By definition, a deferred semantic action is not performed at the same time as
1144the associated reduction.
1145This raises caveats for several Bison features you might use in a semantic
35430378 1146action in a GLR parser.
32c29292
JD
1147
1148@vindex yychar
35430378 1149@cindex GLR parsers and @code{yychar}
32c29292 1150@vindex yylval
35430378 1151@cindex GLR parsers and @code{yylval}
32c29292 1152@vindex yylloc
35430378 1153@cindex GLR parsers and @code{yylloc}
32c29292 1154In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1155the lookahead token present at the time of the associated reduction.
32c29292
JD
1156After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1157you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1158lookahead token's semantic value and location, if any.
32c29292
JD
1159In a nondeferred semantic action, you can also modify any of these variables to
1160influence syntax analysis.
742e4900 1161@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1162
1163@findex yyclearin
35430378 1164@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1165In a deferred semantic action, it's too late to influence syntax analysis.
1166In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1167shallow copies of the values they had at the time of the associated reduction.
1168For this reason alone, modifying them is dangerous.
1169Moreover, the result of modifying them is undefined and subject to change with
1170future versions of Bison.
1171For example, if a semantic action might be deferred, you should never write it
1172to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1173memory referenced by @code{yylval}.
1174
1175@findex YYERROR
35430378 1176@cindex GLR parsers and @code{YYERROR}
32c29292 1177Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1178(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1179initiate error recovery.
35430378 1180During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1181the same as its effect in a deterministic parser.
32c29292
JD
1182In a deferred semantic action, its effect is undefined.
1183@c The effect is probably a syntax error at the split point.
1184
8710fc41 1185Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1186describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1187
fa7e68c3 1188@node Compiler Requirements
35430378 1189@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1190@cindex @code{inline}
35430378 1191@cindex GLR parsers and @code{inline}
fa7e68c3 1192
35430378 1193The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1194later. In addition, they use the @code{inline} keyword, which is not
1195C89, but is C99 and is a common extension in pre-C99 compilers. It is
1196up to the user of these parsers to handle
9501dc6e
AD
1197portability issues. For instance, if using Autoconf and the Autoconf
1198macro @code{AC_C_INLINE}, a mere
1199
1200@example
1201%@{
38a92d50 1202 #include <config.h>
9501dc6e
AD
1203%@}
1204@end example
1205
1206@noindent
1207will suffice. Otherwise, we suggest
1208
1209@example
1210%@{
2c0f9706
AD
1211 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1212 && ! defined inline)
1213 # define inline
38a92d50 1214 #endif
9501dc6e
AD
1215%@}
1216@end example
676385e2 1217
83484365 1218@node Locations
847bf1f5
AD
1219@section Locations
1220@cindex location
95923bd6
AD
1221@cindex textual location
1222@cindex location, textual
847bf1f5
AD
1223
1224Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1225and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1226the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1227Bison provides a mechanism for handling these locations.
1228
72d2299c 1229Each token has a semantic value. In a similar fashion, each token has an
7404cdf3
JD
1230associated location, but the type of locations is the same for all tokens
1231and groupings. Moreover, the output parser is equipped with a default data
1232structure for storing locations (@pxref{Tracking Locations}, for more
1233details).
847bf1f5
AD
1234
1235Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1236set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1237is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1238@code{@@3}.
1239
1240When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1241of its left hand side (@pxref{Actions}). In the same way, another default
1242action is used for locations. However, the action for locations is general
847bf1f5 1243enough for most cases, meaning there is usually no need to describe for each
72d2299c 1244rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1245grouping, the default behavior of the output parser is to take the beginning
1246of the first symbol, and the end of the last symbol.
1247
342b8b6e 1248@node Bison Parser
9913d6e4 1249@section Bison Output: the Parser Implementation File
bfa74976
RS
1250@cindex Bison parser
1251@cindex Bison utility
1252@cindex lexical analyzer, purpose
1253@cindex parser
1254
9913d6e4
JD
1255When you run Bison, you give it a Bison grammar file as input. The
1256most important output is a C source file that implements a parser for
1257the language described by the grammar. This parser is called a
1258@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1259implementation file}. Keep in mind that the Bison utility and the
1260Bison parser are two distinct programs: the Bison utility is a program
1261whose output is the Bison parser implementation file that becomes part
1262of your program.
bfa74976
RS
1263
1264The job of the Bison parser is to group tokens into groupings according to
1265the grammar rules---for example, to build identifiers and operators into
1266expressions. As it does this, it runs the actions for the grammar rules it
1267uses.
1268
704a47c4
AD
1269The tokens come from a function called the @dfn{lexical analyzer} that
1270you must supply in some fashion (such as by writing it in C). The Bison
1271parser calls the lexical analyzer each time it wants a new token. It
1272doesn't know what is ``inside'' the tokens (though their semantic values
1273may reflect this). Typically the lexical analyzer makes the tokens by
1274parsing characters of text, but Bison does not depend on this.
1275@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1276
9913d6e4
JD
1277The Bison parser implementation file is C code which defines a
1278function named @code{yyparse} which implements that grammar. This
1279function does not make a complete C program: you must supply some
1280additional functions. One is the lexical analyzer. Another is an
1281error-reporting function which the parser calls to report an error.
1282In addition, a complete C program must start with a function called
1283@code{main}; you have to provide this, and arrange for it to call
1284@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1285C-Language Interface}.
bfa74976 1286
f7ab6a50 1287Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1288write, all symbols defined in the Bison parser implementation file
1289itself begin with @samp{yy} or @samp{YY}. This includes interface
1290functions such as the lexical analyzer function @code{yylex}, the
1291error reporting function @code{yyerror} and the parser function
1292@code{yyparse} itself. This also includes numerous identifiers used
1293for internal purposes. Therefore, you should avoid using C
1294identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1295file except for the ones defined in this manual. Also, you should
1296avoid using the C identifiers @samp{malloc} and @samp{free} for
1297anything other than their usual meanings.
1298
1299In some cases the Bison parser implementation file includes system
1300headers, and in those cases your code should respect the identifiers
1301reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1302@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1303included as needed to declare memory allocators and related types.
1304@code{<libintl.h>} is included if message translation is in use
1305(@pxref{Internationalization}). Other system headers may be included
1306if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1307,Tracing Your Parser}).
7093d0f5 1308
342b8b6e 1309@node Stages
bfa74976
RS
1310@section Stages in Using Bison
1311@cindex stages in using Bison
1312@cindex using Bison
1313
1314The actual language-design process using Bison, from grammar specification
1315to a working compiler or interpreter, has these parts:
1316
1317@enumerate
1318@item
1319Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1320(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1321in the language, describe the action that is to be taken when an
1322instance of that rule is recognized. The action is described by a
1323sequence of C statements.
bfa74976
RS
1324
1325@item
704a47c4
AD
1326Write a lexical analyzer to process input and pass tokens to the parser.
1327The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1328Lexical Analyzer Function @code{yylex}}). It could also be produced
1329using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1330
1331@item
1332Write a controlling function that calls the Bison-produced parser.
1333
1334@item
1335Write error-reporting routines.
1336@end enumerate
1337
1338To turn this source code as written into a runnable program, you
1339must follow these steps:
1340
1341@enumerate
1342@item
1343Run Bison on the grammar to produce the parser.
1344
1345@item
1346Compile the code output by Bison, as well as any other source files.
1347
1348@item
1349Link the object files to produce the finished product.
1350@end enumerate
1351
342b8b6e 1352@node Grammar Layout
bfa74976
RS
1353@section The Overall Layout of a Bison Grammar
1354@cindex grammar file
1355@cindex file format
1356@cindex format of grammar file
1357@cindex layout of Bison grammar
1358
1359The input file for the Bison utility is a @dfn{Bison grammar file}. The
1360general form of a Bison grammar file is as follows:
1361
1362@example
1363%@{
08e49d20 1364@var{Prologue}
bfa74976
RS
1365%@}
1366
1367@var{Bison declarations}
1368
1369%%
1370@var{Grammar rules}
1371%%
08e49d20 1372@var{Epilogue}
bfa74976
RS
1373@end example
1374
1375@noindent
1376The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1377in every Bison grammar file to separate the sections.
1378
72d2299c 1379The prologue may define types and variables used in the actions. You can
342b8b6e 1380also use preprocessor commands to define macros used there, and use
bfa74976 1381@code{#include} to include header files that do any of these things.
38a92d50
PE
1382You need to declare the lexical analyzer @code{yylex} and the error
1383printer @code{yyerror} here, along with any other global identifiers
1384used by the actions in the grammar rules.
bfa74976
RS
1385
1386The Bison declarations declare the names of the terminal and nonterminal
1387symbols, and may also describe operator precedence and the data types of
1388semantic values of various symbols.
1389
1390The grammar rules define how to construct each nonterminal symbol from its
1391parts.
1392
38a92d50
PE
1393The epilogue can contain any code you want to use. Often the
1394definitions of functions declared in the prologue go here. In a
1395simple program, all the rest of the program can go here.
bfa74976 1396
342b8b6e 1397@node Examples
bfa74976
RS
1398@chapter Examples
1399@cindex simple examples
1400@cindex examples, simple
1401
2c0f9706 1402Now we show and explain several sample programs written using Bison: a
bfa74976 1403reverse polish notation calculator, an algebraic (infix) notation
2c0f9706
AD
1404calculator --- later extended to track ``locations'' ---
1405and a multi-function calculator. All
1406produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1407
1408These examples are simple, but Bison grammars for real programming
aa08666d
AD
1409languages are written the same way. You can copy these examples into a
1410source file to try them.
bfa74976
RS
1411
1412@menu
f56274a8
DJ
1413* RPN Calc:: Reverse polish notation calculator;
1414 a first example with no operator precedence.
1415* Infix Calc:: Infix (algebraic) notation calculator.
1416 Operator precedence is introduced.
bfa74976 1417* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1418* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1419* Multi-function Calc:: Calculator with memory and trig functions.
1420 It uses multiple data-types for semantic values.
1421* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1422@end menu
1423
342b8b6e 1424@node RPN Calc
bfa74976
RS
1425@section Reverse Polish Notation Calculator
1426@cindex reverse polish notation
1427@cindex polish notation calculator
1428@cindex @code{rpcalc}
1429@cindex calculator, simple
1430
1431The first example is that of a simple double-precision @dfn{reverse polish
1432notation} calculator (a calculator using postfix operators). This example
1433provides a good starting point, since operator precedence is not an issue.
1434The second example will illustrate how operator precedence is handled.
1435
1436The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1437@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1438
1439@menu
f56274a8
DJ
1440* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1441* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1442* Rpcalc Lexer:: The lexical analyzer.
1443* Rpcalc Main:: The controlling function.
1444* Rpcalc Error:: The error reporting function.
1445* Rpcalc Generate:: Running Bison on the grammar file.
1446* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1447@end menu
1448
f56274a8 1449@node Rpcalc Declarations
bfa74976
RS
1450@subsection Declarations for @code{rpcalc}
1451
1452Here are the C and Bison declarations for the reverse polish notation
1453calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1454
1455@example
72d2299c 1456/* Reverse polish notation calculator. */
bfa74976
RS
1457
1458%@{
38a92d50
PE
1459 #define YYSTYPE double
1460 #include <math.h>
1461 int yylex (void);
1462 void yyerror (char const *);
bfa74976
RS
1463%@}
1464
1465%token NUM
1466
72d2299c 1467%% /* Grammar rules and actions follow. */
bfa74976
RS
1468@end example
1469
75f5aaea 1470The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1471preprocessor directives and two forward declarations.
bfa74976
RS
1472
1473The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1474specifying the C data type for semantic values of both tokens and
1475groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1476Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1477don't define it, @code{int} is the default. Because we specify
1478@code{double}, each token and each expression has an associated value,
1479which is a floating point number.
bfa74976
RS
1480
1481The @code{#include} directive is used to declare the exponentiation
1482function @code{pow}.
1483
38a92d50
PE
1484The forward declarations for @code{yylex} and @code{yyerror} are
1485needed because the C language requires that functions be declared
1486before they are used. These functions will be defined in the
1487epilogue, but the parser calls them so they must be declared in the
1488prologue.
1489
704a47c4
AD
1490The second section, Bison declarations, provides information to Bison
1491about the token types (@pxref{Bison Declarations, ,The Bison
1492Declarations Section}). Each terminal symbol that is not a
1493single-character literal must be declared here. (Single-character
bfa74976
RS
1494literals normally don't need to be declared.) In this example, all the
1495arithmetic operators are designated by single-character literals, so the
1496only terminal symbol that needs to be declared is @code{NUM}, the token
1497type for numeric constants.
1498
342b8b6e 1499@node Rpcalc Rules
bfa74976
RS
1500@subsection Grammar Rules for @code{rpcalc}
1501
1502Here are the grammar rules for the reverse polish notation calculator.
1503
1504@example
2c0f9706 1505@group
de6be119
AD
1506input:
1507 /* empty */
1508| input line
bfa74976 1509;
2c0f9706 1510@end group
bfa74976 1511
2c0f9706 1512@group
de6be119
AD
1513line:
1514 '\n'
1515| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1516;
2c0f9706 1517@end group
bfa74976 1518
2c0f9706 1519@group
de6be119
AD
1520exp:
1521 NUM @{ $$ = $1; @}
1522| exp exp '+' @{ $$ = $1 + $2; @}
1523| exp exp '-' @{ $$ = $1 - $2; @}
1524| exp exp '*' @{ $$ = $1 * $2; @}
1525| exp exp '/' @{ $$ = $1 / $2; @}
1526| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1527| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1528;
2c0f9706 1529@end group
bfa74976
RS
1530%%
1531@end example
1532
1533The groupings of the rpcalc ``language'' defined here are the expression
1534(given the name @code{exp}), the line of input (@code{line}), and the
1535complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1536symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1537which is read as ``or''. The following sections explain what these rules
1538mean.
1539
1540The semantics of the language is determined by the actions taken when a
1541grouping is recognized. The actions are the C code that appears inside
1542braces. @xref{Actions}.
1543
1544You must specify these actions in C, but Bison provides the means for
1545passing semantic values between the rules. In each action, the
1546pseudo-variable @code{$$} stands for the semantic value for the grouping
1547that the rule is going to construct. Assigning a value to @code{$$} is the
1548main job of most actions. The semantic values of the components of the
1549rule are referred to as @code{$1}, @code{$2}, and so on.
1550
1551@menu
13863333
AD
1552* Rpcalc Input::
1553* Rpcalc Line::
1554* Rpcalc Expr::
bfa74976
RS
1555@end menu
1556
342b8b6e 1557@node Rpcalc Input
bfa74976
RS
1558@subsubsection Explanation of @code{input}
1559
1560Consider the definition of @code{input}:
1561
1562@example
de6be119
AD
1563input:
1564 /* empty */
1565| input line
bfa74976
RS
1566;
1567@end example
1568
1569This definition reads as follows: ``A complete input is either an empty
1570string, or a complete input followed by an input line''. Notice that
1571``complete input'' is defined in terms of itself. This definition is said
1572to be @dfn{left recursive} since @code{input} appears always as the
1573leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1574
1575The first alternative is empty because there are no symbols between the
1576colon and the first @samp{|}; this means that @code{input} can match an
1577empty string of input (no tokens). We write the rules this way because it
1578is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1579It's conventional to put an empty alternative first and write the comment
1580@samp{/* empty */} in it.
1581
1582The second alternate rule (@code{input line}) handles all nontrivial input.
1583It means, ``After reading any number of lines, read one more line if
1584possible.'' The left recursion makes this rule into a loop. Since the
1585first alternative matches empty input, the loop can be executed zero or
1586more times.
1587
1588The parser function @code{yyparse} continues to process input until a
1589grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1590input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1591
342b8b6e 1592@node Rpcalc Line
bfa74976
RS
1593@subsubsection Explanation of @code{line}
1594
1595Now consider the definition of @code{line}:
1596
1597@example
de6be119
AD
1598line:
1599 '\n'
1600| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1601;
1602@end example
1603
1604The first alternative is a token which is a newline character; this means
1605that rpcalc accepts a blank line (and ignores it, since there is no
1606action). The second alternative is an expression followed by a newline.
1607This is the alternative that makes rpcalc useful. The semantic value of
1608the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1609question is the first symbol in the alternative. The action prints this
1610value, which is the result of the computation the user asked for.
1611
1612This action is unusual because it does not assign a value to @code{$$}. As
1613a consequence, the semantic value associated with the @code{line} is
1614uninitialized (its value will be unpredictable). This would be a bug if
1615that value were ever used, but we don't use it: once rpcalc has printed the
1616value of the user's input line, that value is no longer needed.
1617
342b8b6e 1618@node Rpcalc Expr
bfa74976
RS
1619@subsubsection Explanation of @code{expr}
1620
1621The @code{exp} grouping has several rules, one for each kind of expression.
1622The first rule handles the simplest expressions: those that are just numbers.
1623The second handles an addition-expression, which looks like two expressions
1624followed by a plus-sign. The third handles subtraction, and so on.
1625
1626@example
de6be119
AD
1627exp:
1628 NUM
1629| exp exp '+' @{ $$ = $1 + $2; @}
1630| exp exp '-' @{ $$ = $1 - $2; @}
1631@dots{}
1632;
bfa74976
RS
1633@end example
1634
1635We have used @samp{|} to join all the rules for @code{exp}, but we could
1636equally well have written them separately:
1637
1638@example
de6be119
AD
1639exp: NUM ;
1640exp: exp exp '+' @{ $$ = $1 + $2; @};
1641exp: exp exp '-' @{ $$ = $1 - $2; @};
1642@dots{}
bfa74976
RS
1643@end example
1644
1645Most of the rules have actions that compute the value of the expression in
1646terms of the value of its parts. For example, in the rule for addition,
1647@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1648the second one. The third component, @code{'+'}, has no meaningful
1649associated semantic value, but if it had one you could refer to it as
1650@code{$3}. When @code{yyparse} recognizes a sum expression using this
1651rule, the sum of the two subexpressions' values is produced as the value of
1652the entire expression. @xref{Actions}.
1653
1654You don't have to give an action for every rule. When a rule has no
1655action, Bison by default copies the value of @code{$1} into @code{$$}.
1656This is what happens in the first rule (the one that uses @code{NUM}).
1657
1658The formatting shown here is the recommended convention, but Bison does
72d2299c 1659not require it. You can add or change white space as much as you wish.
bfa74976
RS
1660For example, this:
1661
1662@example
de6be119 1663exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1664@end example
1665
1666@noindent
1667means the same thing as this:
1668
1669@example
de6be119
AD
1670exp:
1671 NUM
1672| exp exp '+' @{ $$ = $1 + $2; @}
1673| @dots{}
99a9344e 1674;
bfa74976
RS
1675@end example
1676
1677@noindent
1678The latter, however, is much more readable.
1679
342b8b6e 1680@node Rpcalc Lexer
bfa74976
RS
1681@subsection The @code{rpcalc} Lexical Analyzer
1682@cindex writing a lexical analyzer
1683@cindex lexical analyzer, writing
1684
704a47c4
AD
1685The lexical analyzer's job is low-level parsing: converting characters
1686or sequences of characters into tokens. The Bison parser gets its
1687tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1688Analyzer Function @code{yylex}}.
bfa74976 1689
35430378 1690Only a simple lexical analyzer is needed for the RPN
c827f760 1691calculator. This
bfa74976
RS
1692lexical analyzer skips blanks and tabs, then reads in numbers as
1693@code{double} and returns them as @code{NUM} tokens. Any other character
1694that isn't part of a number is a separate token. Note that the token-code
1695for such a single-character token is the character itself.
1696
1697The return value of the lexical analyzer function is a numeric code which
1698represents a token type. The same text used in Bison rules to stand for
1699this token type is also a C expression for the numeric code for the type.
1700This works in two ways. If the token type is a character literal, then its
e966383b 1701numeric code is that of the character; you can use the same
bfa74976
RS
1702character literal in the lexical analyzer to express the number. If the
1703token type is an identifier, that identifier is defined by Bison as a C
1704macro whose definition is the appropriate number. In this example,
1705therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1706
1964ad8c
AD
1707The semantic value of the token (if it has one) is stored into the
1708global variable @code{yylval}, which is where the Bison parser will look
1709for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1710defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1711,Declarations for @code{rpcalc}}.)
bfa74976 1712
72d2299c
PE
1713A token type code of zero is returned if the end-of-input is encountered.
1714(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1715
1716Here is the code for the lexical analyzer:
1717
1718@example
1719@group
72d2299c 1720/* The lexical analyzer returns a double floating point
e966383b 1721 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1722 of the character read if not a number. It skips all blanks
1723 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1724
1725#include <ctype.h>
1726@end group
1727
1728@group
13863333
AD
1729int
1730yylex (void)
bfa74976
RS
1731@{
1732 int c;
1733
72d2299c 1734 /* Skip white space. */
13863333 1735 while ((c = getchar ()) == ' ' || c == '\t')
98842516 1736 continue;
bfa74976
RS
1737@end group
1738@group
72d2299c 1739 /* Process numbers. */
13863333 1740 if (c == '.' || isdigit (c))
bfa74976
RS
1741 @{
1742 ungetc (c, stdin);
1743 scanf ("%lf", &yylval);
1744 return NUM;
1745 @}
1746@end group
1747@group
72d2299c 1748 /* Return end-of-input. */
13863333 1749 if (c == EOF)
bfa74976 1750 return 0;
72d2299c 1751 /* Return a single char. */
13863333 1752 return c;
bfa74976
RS
1753@}
1754@end group
1755@end example
1756
342b8b6e 1757@node Rpcalc Main
bfa74976
RS
1758@subsection The Controlling Function
1759@cindex controlling function
1760@cindex main function in simple example
1761
1762In keeping with the spirit of this example, the controlling function is
1763kept to the bare minimum. The only requirement is that it call
1764@code{yyparse} to start the process of parsing.
1765
1766@example
1767@group
13863333
AD
1768int
1769main (void)
bfa74976 1770@{
13863333 1771 return yyparse ();
bfa74976
RS
1772@}
1773@end group
1774@end example
1775
342b8b6e 1776@node Rpcalc Error
bfa74976
RS
1777@subsection The Error Reporting Routine
1778@cindex error reporting routine
1779
1780When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1781function @code{yyerror} to print an error message (usually but not
6e649e65 1782always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1783@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1784here is the definition we will use:
bfa74976
RS
1785
1786@example
1787@group
1788#include <stdio.h>
2c0f9706 1789@end group
bfa74976 1790
2c0f9706 1791@group
38a92d50 1792/* Called by yyparse on error. */
13863333 1793void
38a92d50 1794yyerror (char const *s)
bfa74976 1795@{
4e03e201 1796 fprintf (stderr, "%s\n", s);
bfa74976
RS
1797@}
1798@end group
1799@end example
1800
1801After @code{yyerror} returns, the Bison parser may recover from the error
1802and continue parsing if the grammar contains a suitable error rule
1803(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1804have not written any error rules in this example, so any invalid input will
1805cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1806real calculator, but it is adequate for the first example.
bfa74976 1807
f56274a8 1808@node Rpcalc Generate
bfa74976
RS
1809@subsection Running Bison to Make the Parser
1810@cindex running Bison (introduction)
1811
ceed8467
AD
1812Before running Bison to produce a parser, we need to decide how to
1813arrange all the source code in one or more source files. For such a
9913d6e4
JD
1814simple example, the easiest thing is to put everything in one file,
1815the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1816@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1817(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1818
1819For a large project, you would probably have several source files, and use
1820@code{make} to arrange to recompile them.
1821
9913d6e4
JD
1822With all the source in the grammar file, you use the following command
1823to convert it into a parser implementation file:
bfa74976
RS
1824
1825@example
fa4d969f 1826bison @var{file}.y
bfa74976
RS
1827@end example
1828
1829@noindent
9913d6e4
JD
1830In this example, the grammar file is called @file{rpcalc.y} (for
1831``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1832implementation file named @file{@var{file}.tab.c}, removing the
1833@samp{.y} from the grammar file name. The parser implementation file
1834contains the source code for @code{yyparse}. The additional functions
1835in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1836copied verbatim to the parser implementation file.
bfa74976 1837
342b8b6e 1838@node Rpcalc Compile
9913d6e4 1839@subsection Compiling the Parser Implementation File
bfa74976
RS
1840@cindex compiling the parser
1841
9913d6e4 1842Here is how to compile and run the parser implementation file:
bfa74976
RS
1843
1844@example
1845@group
1846# @r{List files in current directory.}
9edcd895 1847$ @kbd{ls}
bfa74976
RS
1848rpcalc.tab.c rpcalc.y
1849@end group
1850
1851@group
1852# @r{Compile the Bison parser.}
1853# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1854$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1855@end group
1856
1857@group
1858# @r{List files again.}
9edcd895 1859$ @kbd{ls}
bfa74976
RS
1860rpcalc rpcalc.tab.c rpcalc.y
1861@end group
1862@end example
1863
1864The file @file{rpcalc} now contains the executable code. Here is an
1865example session using @code{rpcalc}.
1866
1867@example
9edcd895
AD
1868$ @kbd{rpcalc}
1869@kbd{4 9 +}
bfa74976 187013
9edcd895 1871@kbd{3 7 + 3 4 5 *+-}
bfa74976 1872-13
9edcd895 1873@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 187413
9edcd895 1875@kbd{5 6 / 4 n +}
bfa74976 1876-3.166666667
9edcd895 1877@kbd{3 4 ^} @r{Exponentiation}
bfa74976 187881
9edcd895
AD
1879@kbd{^D} @r{End-of-file indicator}
1880$
bfa74976
RS
1881@end example
1882
342b8b6e 1883@node Infix Calc
bfa74976
RS
1884@section Infix Notation Calculator: @code{calc}
1885@cindex infix notation calculator
1886@cindex @code{calc}
1887@cindex calculator, infix notation
1888
1889We now modify rpcalc to handle infix operators instead of postfix. Infix
1890notation involves the concept of operator precedence and the need for
1891parentheses nested to arbitrary depth. Here is the Bison code for
1892@file{calc.y}, an infix desk-top calculator.
1893
1894@example
38a92d50 1895/* Infix notation calculator. */
bfa74976 1896
2c0f9706 1897@group
bfa74976 1898%@{
38a92d50
PE
1899 #define YYSTYPE double
1900 #include <math.h>
1901 #include <stdio.h>
1902 int yylex (void);
1903 void yyerror (char const *);
bfa74976 1904%@}
2c0f9706 1905@end group
bfa74976 1906
2c0f9706 1907@group
38a92d50 1908/* Bison declarations. */
bfa74976
RS
1909%token NUM
1910%left '-' '+'
1911%left '*' '/'
1912%left NEG /* negation--unary minus */
38a92d50 1913%right '^' /* exponentiation */
2c0f9706 1914@end group
bfa74976 1915
38a92d50 1916%% /* The grammar follows. */
2c0f9706 1917@group
de6be119
AD
1918input:
1919 /* empty */
1920| input line
bfa74976 1921;
2c0f9706 1922@end group
bfa74976 1923
2c0f9706 1924@group
de6be119
AD
1925line:
1926 '\n'
1927| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 1928;
2c0f9706 1929@end group
bfa74976 1930
2c0f9706 1931@group
de6be119
AD
1932exp:
1933 NUM @{ $$ = $1; @}
1934| exp '+' exp @{ $$ = $1 + $3; @}
1935| exp '-' exp @{ $$ = $1 - $3; @}
1936| exp '*' exp @{ $$ = $1 * $3; @}
1937| exp '/' exp @{ $$ = $1 / $3; @}
1938| '-' exp %prec NEG @{ $$ = -$2; @}
1939| exp '^' exp @{ $$ = pow ($1, $3); @}
1940| '(' exp ')' @{ $$ = $2; @}
bfa74976 1941;
2c0f9706 1942@end group
bfa74976
RS
1943%%
1944@end example
1945
1946@noindent
ceed8467
AD
1947The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1948same as before.
bfa74976
RS
1949
1950There are two important new features shown in this code.
1951
1952In the second section (Bison declarations), @code{%left} declares token
1953types and says they are left-associative operators. The declarations
1954@code{%left} and @code{%right} (right associativity) take the place of
1955@code{%token} which is used to declare a token type name without
1956associativity. (These tokens are single-character literals, which
1957ordinarily don't need to be declared. We declare them here to specify
1958the associativity.)
1959
1960Operator precedence is determined by the line ordering of the
1961declarations; the higher the line number of the declaration (lower on
1962the page or screen), the higher the precedence. Hence, exponentiation
1963has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1964by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1965Precedence}.
bfa74976 1966
704a47c4
AD
1967The other important new feature is the @code{%prec} in the grammar
1968section for the unary minus operator. The @code{%prec} simply instructs
1969Bison that the rule @samp{| '-' exp} has the same precedence as
1970@code{NEG}---in this case the next-to-highest. @xref{Contextual
1971Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1972
1973Here is a sample run of @file{calc.y}:
1974
1975@need 500
1976@example
9edcd895
AD
1977$ @kbd{calc}
1978@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19796.880952381
9edcd895 1980@kbd{-56 + 2}
bfa74976 1981-54
9edcd895 1982@kbd{3 ^ 2}
bfa74976
RS
19839
1984@end example
1985
342b8b6e 1986@node Simple Error Recovery
bfa74976
RS
1987@section Simple Error Recovery
1988@cindex error recovery, simple
1989
1990Up to this point, this manual has not addressed the issue of @dfn{error
1991recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1992error. All we have handled is error reporting with @code{yyerror}.
1993Recall that by default @code{yyparse} returns after calling
1994@code{yyerror}. This means that an erroneous input line causes the
1995calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1996
1997The Bison language itself includes the reserved word @code{error}, which
1998may be included in the grammar rules. In the example below it has
1999been added to one of the alternatives for @code{line}:
2000
2001@example
2002@group
de6be119
AD
2003line:
2004 '\n'
2005| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2006| error '\n' @{ yyerrok; @}
bfa74976
RS
2007;
2008@end group
2009@end example
2010
ceed8467 2011This addition to the grammar allows for simple error recovery in the
6e649e65 2012event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2013read, the error will be recognized by the third rule for @code{line},
2014and parsing will continue. (The @code{yyerror} function is still called
2015upon to print its message as well.) The action executes the statement
2016@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2017that error recovery is complete (@pxref{Error Recovery}). Note the
2018difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2019misprint.
bfa74976
RS
2020
2021This form of error recovery deals with syntax errors. There are other
2022kinds of errors; for example, division by zero, which raises an exception
2023signal that is normally fatal. A real calculator program must handle this
2024signal and use @code{longjmp} to return to @code{main} and resume parsing
2025input lines; it would also have to discard the rest of the current line of
2026input. We won't discuss this issue further because it is not specific to
2027Bison programs.
2028
342b8b6e
AD
2029@node Location Tracking Calc
2030@section Location Tracking Calculator: @code{ltcalc}
2031@cindex location tracking calculator
2032@cindex @code{ltcalc}
2033@cindex calculator, location tracking
2034
9edcd895
AD
2035This example extends the infix notation calculator with location
2036tracking. This feature will be used to improve the error messages. For
2037the sake of clarity, this example is a simple integer calculator, since
2038most of the work needed to use locations will be done in the lexical
72d2299c 2039analyzer.
342b8b6e
AD
2040
2041@menu
f56274a8
DJ
2042* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2043* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2044* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2045@end menu
2046
f56274a8 2047@node Ltcalc Declarations
342b8b6e
AD
2048@subsection Declarations for @code{ltcalc}
2049
9edcd895
AD
2050The C and Bison declarations for the location tracking calculator are
2051the same as the declarations for the infix notation calculator.
342b8b6e
AD
2052
2053@example
2054/* Location tracking calculator. */
2055
2056%@{
38a92d50
PE
2057 #define YYSTYPE int
2058 #include <math.h>
2059 int yylex (void);
2060 void yyerror (char const *);
342b8b6e
AD
2061%@}
2062
2063/* Bison declarations. */
2064%token NUM
2065
2066%left '-' '+'
2067%left '*' '/'
2068%left NEG
2069%right '^'
2070
38a92d50 2071%% /* The grammar follows. */
342b8b6e
AD
2072@end example
2073
9edcd895
AD
2074@noindent
2075Note there are no declarations specific to locations. Defining a data
2076type for storing locations is not needed: we will use the type provided
2077by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2078four member structure with the following integer fields:
2079@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2080@code{last_column}. By conventions, and in accordance with the GNU
2081Coding Standards and common practice, the line and column count both
2082start at 1.
342b8b6e
AD
2083
2084@node Ltcalc Rules
2085@subsection Grammar Rules for @code{ltcalc}
2086
9edcd895
AD
2087Whether handling locations or not has no effect on the syntax of your
2088language. Therefore, grammar rules for this example will be very close
2089to those of the previous example: we will only modify them to benefit
2090from the new information.
342b8b6e 2091
9edcd895
AD
2092Here, we will use locations to report divisions by zero, and locate the
2093wrong expressions or subexpressions.
342b8b6e
AD
2094
2095@example
2096@group
de6be119
AD
2097input:
2098 /* empty */
2099| input line
342b8b6e
AD
2100;
2101@end group
2102
2103@group
de6be119
AD
2104line:
2105 '\n'
2106| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2107;
2108@end group
2109
2110@group
de6be119
AD
2111exp:
2112 NUM @{ $$ = $1; @}
2113| exp '+' exp @{ $$ = $1 + $3; @}
2114| exp '-' exp @{ $$ = $1 - $3; @}
2115| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2116@end group
342b8b6e 2117@group
de6be119
AD
2118| exp '/' exp
2119 @{
2120 if ($3)
2121 $$ = $1 / $3;
2122 else
2123 @{
2124 $$ = 1;
2125 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2126 @@3.first_line, @@3.first_column,
2127 @@3.last_line, @@3.last_column);
2128 @}
2129 @}
342b8b6e
AD
2130@end group
2131@group
de6be119
AD
2132| '-' exp %prec NEG @{ $$ = -$2; @}
2133| exp '^' exp @{ $$ = pow ($1, $3); @}
2134| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2135@end group
2136@end example
2137
2138This code shows how to reach locations inside of semantic actions, by
2139using the pseudo-variables @code{@@@var{n}} for rule components, and the
2140pseudo-variable @code{@@$} for groupings.
2141
9edcd895
AD
2142We don't need to assign a value to @code{@@$}: the output parser does it
2143automatically. By default, before executing the C code of each action,
2144@code{@@$} is set to range from the beginning of @code{@@1} to the end
2145of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2146can be redefined (@pxref{Location Default Action, , Default Action for
2147Locations}), and for very specific rules, @code{@@$} can be computed by
2148hand.
342b8b6e
AD
2149
2150@node Ltcalc Lexer
2151@subsection The @code{ltcalc} Lexical Analyzer.
2152
9edcd895 2153Until now, we relied on Bison's defaults to enable location
72d2299c 2154tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2155able to feed the parser with the token locations, as it already does for
2156semantic values.
342b8b6e 2157
9edcd895
AD
2158To this end, we must take into account every single character of the
2159input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2160
2161@example
2162@group
2163int
2164yylex (void)
2165@{
2166 int c;
18b519c0 2167@end group
342b8b6e 2168
18b519c0 2169@group
72d2299c 2170 /* Skip white space. */
342b8b6e
AD
2171 while ((c = getchar ()) == ' ' || c == '\t')
2172 ++yylloc.last_column;
18b519c0 2173@end group
342b8b6e 2174
18b519c0 2175@group
72d2299c 2176 /* Step. */
342b8b6e
AD
2177 yylloc.first_line = yylloc.last_line;
2178 yylloc.first_column = yylloc.last_column;
2179@end group
2180
2181@group
72d2299c 2182 /* Process numbers. */
342b8b6e
AD
2183 if (isdigit (c))
2184 @{
2185 yylval = c - '0';
2186 ++yylloc.last_column;
2187 while (isdigit (c = getchar ()))
2188 @{
2189 ++yylloc.last_column;
2190 yylval = yylval * 10 + c - '0';
2191 @}
2192 ungetc (c, stdin);
2193 return NUM;
2194 @}
2195@end group
2196
72d2299c 2197 /* Return end-of-input. */
342b8b6e
AD
2198 if (c == EOF)
2199 return 0;
2200
98842516 2201@group
72d2299c 2202 /* Return a single char, and update location. */
342b8b6e
AD
2203 if (c == '\n')
2204 @{
2205 ++yylloc.last_line;
2206 yylloc.last_column = 0;
2207 @}
2208 else
2209 ++yylloc.last_column;
2210 return c;
2211@}
98842516 2212@end group
342b8b6e
AD
2213@end example
2214
9edcd895
AD
2215Basically, the lexical analyzer performs the same processing as before:
2216it skips blanks and tabs, and reads numbers or single-character tokens.
2217In addition, it updates @code{yylloc}, the global variable (of type
2218@code{YYLTYPE}) containing the token's location.
342b8b6e 2219
9edcd895 2220Now, each time this function returns a token, the parser has its number
72d2299c 2221as well as its semantic value, and its location in the text. The last
9edcd895
AD
2222needed change is to initialize @code{yylloc}, for example in the
2223controlling function:
342b8b6e
AD
2224
2225@example
9edcd895 2226@group
342b8b6e
AD
2227int
2228main (void)
2229@{
2230 yylloc.first_line = yylloc.last_line = 1;
2231 yylloc.first_column = yylloc.last_column = 0;
2232 return yyparse ();
2233@}
9edcd895 2234@end group
342b8b6e
AD
2235@end example
2236
9edcd895
AD
2237Remember that computing locations is not a matter of syntax. Every
2238character must be associated to a location update, whether it is in
2239valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2240
2241@node Multi-function Calc
bfa74976
RS
2242@section Multi-Function Calculator: @code{mfcalc}
2243@cindex multi-function calculator
2244@cindex @code{mfcalc}
2245@cindex calculator, multi-function
2246
2247Now that the basics of Bison have been discussed, it is time to move on to
2248a more advanced problem. The above calculators provided only five
2249functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2250be nice to have a calculator that provides other mathematical functions such
2251as @code{sin}, @code{cos}, etc.
2252
2253It is easy to add new operators to the infix calculator as long as they are
2254only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2255back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2256adding a new operator. But we want something more flexible: built-in
2257functions whose syntax has this form:
2258
2259@example
2260@var{function_name} (@var{argument})
2261@end example
2262
2263@noindent
2264At the same time, we will add memory to the calculator, by allowing you
2265to create named variables, store values in them, and use them later.
2266Here is a sample session with the multi-function calculator:
2267
2268@example
9edcd895
AD
2269$ @kbd{mfcalc}
2270@kbd{pi = 3.141592653589}
bfa74976 22713.1415926536
9edcd895 2272@kbd{sin(pi)}
bfa74976 22730.0000000000
9edcd895 2274@kbd{alpha = beta1 = 2.3}
bfa74976 22752.3000000000
9edcd895 2276@kbd{alpha}
bfa74976 22772.3000000000
9edcd895 2278@kbd{ln(alpha)}
bfa74976 22790.8329091229
9edcd895 2280@kbd{exp(ln(beta1))}
bfa74976 22812.3000000000
9edcd895 2282$
bfa74976
RS
2283@end example
2284
2285Note that multiple assignment and nested function calls are permitted.
2286
2287@menu
f56274a8
DJ
2288* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2289* Mfcalc Rules:: Grammar rules for the calculator.
2290* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2291@end menu
2292
f56274a8 2293@node Mfcalc Declarations
bfa74976
RS
2294@subsection Declarations for @code{mfcalc}
2295
2296Here are the C and Bison declarations for the multi-function calculator.
2297
56d60c19 2298@comment file: mfcalc.y: 1
ea118b72 2299@example
18b519c0 2300@group
bfa74976 2301%@{
38a92d50
PE
2302 #include <math.h> /* For math functions, cos(), sin(), etc. */
2303 #include "calc.h" /* Contains definition of `symrec'. */
2304 int yylex (void);
2305 void yyerror (char const *);
bfa74976 2306%@}
18b519c0 2307@end group
56d60c19 2308
18b519c0 2309@group
bfa74976 2310%union @{
38a92d50
PE
2311 double val; /* For returning numbers. */
2312 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2313@}
18b519c0 2314@end group
38a92d50 2315%token <val> NUM /* Simple double precision number. */
56d60c19 2316%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2317%type <val> exp
2318
18b519c0 2319@group
bfa74976
RS
2320%right '='
2321%left '-' '+'
2322%left '*' '/'
38a92d50
PE
2323%left NEG /* negation--unary minus */
2324%right '^' /* exponentiation */
18b519c0 2325@end group
ea118b72 2326@end example
bfa74976
RS
2327
2328The above grammar introduces only two new features of the Bison language.
2329These features allow semantic values to have various data types
2330(@pxref{Multiple Types, ,More Than One Value Type}).
2331
2332The @code{%union} declaration specifies the entire list of possible types;
2333this is instead of defining @code{YYSTYPE}. The allowable types are now
2334double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2335the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2336
2337Since values can now have various types, it is necessary to associate a
2338type with each grammar symbol whose semantic value is used. These symbols
2339are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2340declarations are augmented with information about their data type (placed
2341between angle brackets).
2342
704a47c4
AD
2343The Bison construct @code{%type} is used for declaring nonterminal
2344symbols, just as @code{%token} is used for declaring token types. We
2345have not used @code{%type} before because nonterminal symbols are
2346normally declared implicitly by the rules that define them. But
2347@code{exp} must be declared explicitly so we can specify its value type.
2348@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2349
342b8b6e 2350@node Mfcalc Rules
bfa74976
RS
2351@subsection Grammar Rules for @code{mfcalc}
2352
2353Here are the grammar rules for the multi-function calculator.
2354Most of them are copied directly from @code{calc}; three rules,
2355those which mention @code{VAR} or @code{FNCT}, are new.
2356
56d60c19 2357@comment file: mfcalc.y: 3
ea118b72 2358@example
56d60c19 2359%% /* The grammar follows. */
18b519c0 2360@group
de6be119
AD
2361input:
2362 /* empty */
2363| input line
bfa74976 2364;
18b519c0 2365@end group
bfa74976 2366
18b519c0 2367@group
bfa74976 2368line:
de6be119
AD
2369 '\n'
2370| exp '\n' @{ printf ("%.10g\n", $1); @}
2371| error '\n' @{ yyerrok; @}
bfa74976 2372;
18b519c0 2373@end group
bfa74976 2374
18b519c0 2375@group
de6be119
AD
2376exp:
2377 NUM @{ $$ = $1; @}
2378| VAR @{ $$ = $1->value.var; @}
2379| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2380| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2381| exp '+' exp @{ $$ = $1 + $3; @}
2382| exp '-' exp @{ $$ = $1 - $3; @}
2383| exp '*' exp @{ $$ = $1 * $3; @}
2384| exp '/' exp @{ $$ = $1 / $3; @}
2385| '-' exp %prec NEG @{ $$ = -$2; @}
2386| exp '^' exp @{ $$ = pow ($1, $3); @}
2387| '(' exp ')' @{ $$ = $2; @}
bfa74976 2388;
18b519c0 2389@end group
38a92d50 2390/* End of grammar. */
bfa74976 2391%%
ea118b72 2392@end example
bfa74976 2393
f56274a8 2394@node Mfcalc Symbol Table
bfa74976
RS
2395@subsection The @code{mfcalc} Symbol Table
2396@cindex symbol table example
2397
2398The multi-function calculator requires a symbol table to keep track of the
2399names and meanings of variables and functions. This doesn't affect the
2400grammar rules (except for the actions) or the Bison declarations, but it
2401requires some additional C functions for support.
2402
2403The symbol table itself consists of a linked list of records. Its
2404definition, which is kept in the header @file{calc.h}, is as follows. It
2405provides for either functions or variables to be placed in the table.
2406
ea118b72
AD
2407@comment file: calc.h
2408@example
bfa74976 2409@group
38a92d50 2410/* Function type. */
32dfccf8 2411typedef double (*func_t) (double);
72f889cc 2412@end group
32dfccf8 2413
72f889cc 2414@group
38a92d50 2415/* Data type for links in the chain of symbols. */
bfa74976
RS
2416struct symrec
2417@{
38a92d50 2418 char *name; /* name of symbol */
bfa74976 2419 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2420 union
2421 @{
38a92d50
PE
2422 double var; /* value of a VAR */
2423 func_t fnctptr; /* value of a FNCT */
bfa74976 2424 @} value;
38a92d50 2425 struct symrec *next; /* link field */
bfa74976
RS
2426@};
2427@end group
2428
2429@group
2430typedef struct symrec symrec;
2431
38a92d50 2432/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2433extern symrec *sym_table;
2434
a730d142 2435symrec *putsym (char const *, int);
38a92d50 2436symrec *getsym (char const *);
bfa74976 2437@end group
ea118b72 2438@end example
bfa74976
RS
2439
2440The new version of @code{main} includes a call to @code{init_table}, a
2441function that initializes the symbol table. Here it is, and
2442@code{init_table} as well:
2443
56d60c19 2444@comment file: mfcalc.y: 3
ea118b72 2445@example
bfa74976
RS
2446#include <stdio.h>
2447
18b519c0 2448@group
38a92d50 2449/* Called by yyparse on error. */
13863333 2450void
38a92d50 2451yyerror (char const *s)
bfa74976
RS
2452@{
2453 printf ("%s\n", s);
2454@}
18b519c0 2455@end group
bfa74976 2456
18b519c0 2457@group
bfa74976
RS
2458struct init
2459@{
38a92d50
PE
2460 char const *fname;
2461 double (*fnct) (double);
bfa74976
RS
2462@};
2463@end group
2464
2465@group
38a92d50 2466struct init const arith_fncts[] =
13863333 2467@{
32dfccf8
AD
2468 "sin", sin,
2469 "cos", cos,
13863333 2470 "atan", atan,
32dfccf8
AD
2471 "ln", log,
2472 "exp", exp,
13863333
AD
2473 "sqrt", sqrt,
2474 0, 0
2475@};
18b519c0 2476@end group
bfa74976 2477
18b519c0 2478@group
bfa74976 2479/* The symbol table: a chain of `struct symrec'. */
38a92d50 2480symrec *sym_table;
bfa74976
RS
2481@end group
2482
2483@group
72d2299c 2484/* Put arithmetic functions in table. */
13863333
AD
2485void
2486init_table (void)
bfa74976
RS
2487@{
2488 int i;
bfa74976
RS
2489 for (i = 0; arith_fncts[i].fname != 0; i++)
2490 @{
2c0f9706 2491 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2492 ptr->value.fnctptr = arith_fncts[i].fnct;
2493 @}
2494@}
2495@end group
38a92d50
PE
2496
2497@group
2498int
2499main (void)
2500@{
2501 init_table ();
2502 return yyparse ();
2503@}
2504@end group
ea118b72 2505@end example
bfa74976
RS
2506
2507By simply editing the initialization list and adding the necessary include
2508files, you can add additional functions to the calculator.
2509
2510Two important functions allow look-up and installation of symbols in the
2511symbol table. The function @code{putsym} is passed a name and the type
2512(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2513linked to the front of the list, and a pointer to the object is returned.
2514The function @code{getsym} is passed the name of the symbol to look up. If
2515found, a pointer to that symbol is returned; otherwise zero is returned.
2516
56d60c19 2517@comment file: mfcalc.y: 3
ea118b72 2518@example
98842516
AD
2519#include <stdlib.h> /* malloc. */
2520#include <string.h> /* strlen. */
2521
2522@group
bfa74976 2523symrec *
38a92d50 2524putsym (char const *sym_name, int sym_type)
bfa74976 2525@{
2c0f9706 2526 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2527 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2528 strcpy (ptr->name,sym_name);
2529 ptr->type = sym_type;
72d2299c 2530 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2531 ptr->next = (struct symrec *)sym_table;
2532 sym_table = ptr;
2533 return ptr;
2534@}
98842516 2535@end group
bfa74976 2536
98842516 2537@group
bfa74976 2538symrec *
38a92d50 2539getsym (char const *sym_name)
bfa74976
RS
2540@{
2541 symrec *ptr;
2542 for (ptr = sym_table; ptr != (symrec *) 0;
2543 ptr = (symrec *)ptr->next)
2544 if (strcmp (ptr->name,sym_name) == 0)
2545 return ptr;
2546 return 0;
2547@}
98842516 2548@end group
ea118b72 2549@end example
bfa74976
RS
2550
2551The function @code{yylex} must now recognize variables, numeric values, and
2552the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2553characters with a leading letter are recognized as either variables or
bfa74976
RS
2554functions depending on what the symbol table says about them.
2555
2556The string is passed to @code{getsym} for look up in the symbol table. If
2557the name appears in the table, a pointer to its location and its type
2558(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2559already in the table, then it is installed as a @code{VAR} using
2560@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2561returned to @code{yyparse}.
bfa74976
RS
2562
2563No change is needed in the handling of numeric values and arithmetic
2564operators in @code{yylex}.
2565
56d60c19 2566@comment file: mfcalc.y: 3
ea118b72 2567@example
bfa74976
RS
2568@group
2569#include <ctype.h>
18b519c0 2570@end group
13863333 2571
18b519c0 2572@group
13863333
AD
2573int
2574yylex (void)
bfa74976
RS
2575@{
2576 int c;
2577
72d2299c 2578 /* Ignore white space, get first nonwhite character. */
98842516
AD
2579 while ((c = getchar ()) == ' ' || c == '\t')
2580 continue;
bfa74976
RS
2581
2582 if (c == EOF)
2583 return 0;
2584@end group
2585
2586@group
2587 /* Char starts a number => parse the number. */
2588 if (c == '.' || isdigit (c))
2589 @{
2590 ungetc (c, stdin);
2591 scanf ("%lf", &yylval.val);
2592 return NUM;
2593 @}
2594@end group
2595
2596@group
2597 /* Char starts an identifier => read the name. */
2598 if (isalpha (c))
2599 @{
2c0f9706
AD
2600 /* Initially make the buffer long enough
2601 for a 40-character symbol name. */
2602 static size_t length = 40;
bfa74976 2603 static char *symbuf = 0;
2c0f9706 2604 symrec *s;
bfa74976
RS
2605 int i;
2606@end group
2607
2c0f9706
AD
2608 if (!symbuf)
2609 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2610
2611 i = 0;
2612 do
bfa74976
RS
2613@group
2614 @{
2615 /* If buffer is full, make it bigger. */
2616 if (i == length)
2617 @{
2618 length *= 2;
18b519c0 2619 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2620 @}
2621 /* Add this character to the buffer. */
2622 symbuf[i++] = c;
2623 /* Get another character. */
2624 c = getchar ();
2625 @}
2626@end group
2627@group
72d2299c 2628 while (isalnum (c));
bfa74976
RS
2629
2630 ungetc (c, stdin);
2631 symbuf[i] = '\0';
2632@end group
2633
2634@group
2635 s = getsym (symbuf);
2636 if (s == 0)
2637 s = putsym (symbuf, VAR);
2638 yylval.tptr = s;
2639 return s->type;
2640 @}
2641
2642 /* Any other character is a token by itself. */
2643 return c;
2644@}
2645@end group
ea118b72 2646@end example
bfa74976 2647
56d60c19
AD
2648The error reporting function is unchanged, and the new version of
2649@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2650on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
2651
2652@comment file: mfcalc.y: 3
2653@example
2654@group
2655/* Called by yyparse on error. */
2656void
2657yyerror (char const *s)
2658@{
2659 fprintf (stderr, "%s\n", s);
2660@}
2661@end group
2662
2663@group
2664int
2665main (int argc, char const* argv[])
2666@{
2667 int i;
2668 /* Enable parse traces on option -p. */
2669 for (i = 1; i < argc; ++i)
2670 if (!strcmp(argv[i], "-p"))
2671 yydebug = 1;
2672 init_table ();
2673 return yyparse ();
2674@}
2675@end group
2676@end example
2677
72d2299c 2678This program is both powerful and flexible. You may easily add new
704a47c4
AD
2679functions, and it is a simple job to modify this code to install
2680predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2681
342b8b6e 2682@node Exercises
bfa74976
RS
2683@section Exercises
2684@cindex exercises
2685
2686@enumerate
2687@item
2688Add some new functions from @file{math.h} to the initialization list.
2689
2690@item
2691Add another array that contains constants and their values. Then
2692modify @code{init_table} to add these constants to the symbol table.
2693It will be easiest to give the constants type @code{VAR}.
2694
2695@item
2696Make the program report an error if the user refers to an
2697uninitialized variable in any way except to store a value in it.
2698@end enumerate
2699
342b8b6e 2700@node Grammar File
bfa74976
RS
2701@chapter Bison Grammar Files
2702
2703Bison takes as input a context-free grammar specification and produces a
2704C-language function that recognizes correct instances of the grammar.
2705
9913d6e4 2706The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2707@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2708
2709@menu
7404cdf3
JD
2710* Grammar Outline:: Overall layout of the grammar file.
2711* Symbols:: Terminal and nonterminal symbols.
2712* Rules:: How to write grammar rules.
2713* Recursion:: Writing recursive rules.
2714* Semantics:: Semantic values and actions.
2715* Tracking Locations:: Locations and actions.
2716* Named References:: Using named references in actions.
2717* Declarations:: All kinds of Bison declarations are described here.
2718* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2719@end menu
2720
342b8b6e 2721@node Grammar Outline
bfa74976
RS
2722@section Outline of a Bison Grammar
2723
2724A Bison grammar file has four main sections, shown here with the
2725appropriate delimiters:
2726
2727@example
2728%@{
38a92d50 2729 @var{Prologue}
bfa74976
RS
2730%@}
2731
2732@var{Bison declarations}
2733
2734%%
2735@var{Grammar rules}
2736%%
2737
75f5aaea 2738@var{Epilogue}
bfa74976
RS
2739@end example
2740
2741Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2742As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2743continues until end of line.
bfa74976
RS
2744
2745@menu
f56274a8 2746* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2747* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2748* Bison Declarations:: Syntax and usage of the Bison declarations section.
2749* Grammar Rules:: Syntax and usage of the grammar rules section.
2750* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2751@end menu
2752
38a92d50 2753@node Prologue
75f5aaea
MA
2754@subsection The prologue
2755@cindex declarations section
2756@cindex Prologue
2757@cindex declarations
bfa74976 2758
f8e1c9e5
AD
2759The @var{Prologue} section contains macro definitions and declarations
2760of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2761rules. These are copied to the beginning of the parser implementation
2762file so that they precede the definition of @code{yyparse}. You can
2763use @samp{#include} to get the declarations from a header file. If
2764you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2765@samp{%@}} delimiters that bracket this section.
bfa74976 2766
9c437126 2767The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2768of @samp{%@}} that is outside a comment, a string literal, or a
2769character constant.
2770
c732d2c6
AD
2771You may have more than one @var{Prologue} section, intermixed with the
2772@var{Bison declarations}. This allows you to have C and Bison
2773declarations that refer to each other. For example, the @code{%union}
2774declaration may use types defined in a header file, and you may wish to
2775prototype functions that take arguments of type @code{YYSTYPE}. This
2776can be done with two @var{Prologue} blocks, one before and one after the
2777@code{%union} declaration.
2778
ea118b72 2779@example
c732d2c6 2780%@{
aef3da86 2781 #define _GNU_SOURCE
38a92d50
PE
2782 #include <stdio.h>
2783 #include "ptypes.h"
c732d2c6
AD
2784%@}
2785
2786%union @{
779e7ceb 2787 long int n;
c732d2c6
AD
2788 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2789@}
2790
2791%@{
38a92d50
PE
2792 static void print_token_value (FILE *, int, YYSTYPE);
2793 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2794%@}
2795
2796@dots{}
ea118b72 2797@end example
c732d2c6 2798
aef3da86
PE
2799When in doubt, it is usually safer to put prologue code before all
2800Bison declarations, rather than after. For example, any definitions
2801of feature test macros like @code{_GNU_SOURCE} or
2802@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2803feature test macros can affect the behavior of Bison-generated
2804@code{#include} directives.
2805
2cbe6b7f
JD
2806@node Prologue Alternatives
2807@subsection Prologue Alternatives
2808@cindex Prologue Alternatives
2809
136a0f76 2810@findex %code
16dc6a9e
JD
2811@findex %code requires
2812@findex %code provides
2813@findex %code top
85894313 2814
2cbe6b7f 2815The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2816inflexible. As an alternative, Bison provides a @code{%code}
2817directive with an explicit qualifier field, which identifies the
2818purpose of the code and thus the location(s) where Bison should
2819generate it. For C/C++, the qualifier can be omitted for the default
2820location, or it can be one of @code{requires}, @code{provides},
8e6f2266 2821@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2822
2823Look again at the example of the previous section:
2824
ea118b72 2825@example
2cbe6b7f
JD
2826%@{
2827 #define _GNU_SOURCE
2828 #include <stdio.h>
2829 #include "ptypes.h"
2830%@}
2831
2832%union @{
2833 long int n;
2834 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2835@}
2836
2837%@{
2838 static void print_token_value (FILE *, int, YYSTYPE);
2839 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2840%@}
2841
2842@dots{}
ea118b72 2843@end example
2cbe6b7f
JD
2844
2845@noindent
9913d6e4
JD
2846Notice that there are two @var{Prologue} sections here, but there's a
2847subtle distinction between their functionality. For example, if you
2848decide to override Bison's default definition for @code{YYLTYPE}, in
2849which @var{Prologue} section should you write your new definition?
2850You should write it in the first since Bison will insert that code
2851into the parser implementation file @emph{before} the default
2852@code{YYLTYPE} definition. In which @var{Prologue} section should you
2853prototype an internal function, @code{trace_token}, that accepts
2854@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2855prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2856@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2857
2858This distinction in functionality between the two @var{Prologue} sections is
2859established by the appearance of the @code{%union} between them.
a501eca9 2860This behavior raises a few questions.
2cbe6b7f
JD
2861First, why should the position of a @code{%union} affect definitions related to
2862@code{YYLTYPE} and @code{yytokentype}?
2863Second, what if there is no @code{%union}?
2864In that case, the second kind of @var{Prologue} section is not available.
2865This behavior is not intuitive.
2866
8e0a5e9e 2867To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2868@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2869Let's go ahead and add the new @code{YYLTYPE} definition and the
2870@code{trace_token} prototype at the same time:
2871
ea118b72 2872@example
16dc6a9e 2873%code top @{
2cbe6b7f
JD
2874 #define _GNU_SOURCE
2875 #include <stdio.h>
8e0a5e9e
JD
2876
2877 /* WARNING: The following code really belongs
16dc6a9e 2878 * in a `%code requires'; see below. */
8e0a5e9e 2879
2cbe6b7f
JD
2880 #include "ptypes.h"
2881 #define YYLTYPE YYLTYPE
2882 typedef struct YYLTYPE
2883 @{
2884 int first_line;
2885 int first_column;
2886 int last_line;
2887 int last_column;
2888 char *filename;
2889 @} YYLTYPE;
2890@}
2891
2892%union @{
2893 long int n;
2894 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2895@}
2896
2897%code @{
2898 static void print_token_value (FILE *, int, YYSTYPE);
2899 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2900 static void trace_token (enum yytokentype token, YYLTYPE loc);
2901@}
2902
2903@dots{}
ea118b72 2904@end example
2cbe6b7f
JD
2905
2906@noindent
16dc6a9e
JD
2907In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2908functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2909explicit which kind you intend.
2cbe6b7f
JD
2910Moreover, both kinds are always available even in the absence of @code{%union}.
2911
9913d6e4
JD
2912The @code{%code top} block above logically contains two parts. The
2913first two lines before the warning need to appear near the top of the
2914parser implementation file. The first line after the warning is
2915required by @code{YYSTYPE} and thus also needs to appear in the parser
2916implementation file. However, if you've instructed Bison to generate
2917a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2918want that line to appear before the @code{YYSTYPE} definition in that
2919header file as well. The @code{YYLTYPE} definition should also appear
2920in the parser header file to override the default @code{YYLTYPE}
2921definition there.
2cbe6b7f 2922
16dc6a9e 2923In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2924lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2925definitions.
16dc6a9e 2926Thus, they belong in one or more @code{%code requires}:
9bc0dd67 2927
ea118b72 2928@example
98842516 2929@group
16dc6a9e 2930%code top @{
2cbe6b7f
JD
2931 #define _GNU_SOURCE
2932 #include <stdio.h>
2933@}
98842516 2934@end group
2cbe6b7f 2935
98842516 2936@group
16dc6a9e 2937%code requires @{
9bc0dd67
JD
2938 #include "ptypes.h"
2939@}
98842516
AD
2940@end group
2941@group
9bc0dd67
JD
2942%union @{
2943 long int n;
2944 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2945@}
98842516 2946@end group
9bc0dd67 2947
98842516 2948@group
16dc6a9e 2949%code requires @{
2cbe6b7f
JD
2950 #define YYLTYPE YYLTYPE
2951 typedef struct YYLTYPE
2952 @{
2953 int first_line;
2954 int first_column;
2955 int last_line;
2956 int last_column;
2957 char *filename;
2958 @} YYLTYPE;
2959@}
98842516 2960@end group
2cbe6b7f 2961
98842516 2962@group
136a0f76 2963%code @{
2cbe6b7f
JD
2964 static void print_token_value (FILE *, int, YYSTYPE);
2965 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2966 static void trace_token (enum yytokentype token, YYLTYPE loc);
2967@}
98842516 2968@end group
2cbe6b7f
JD
2969
2970@dots{}
ea118b72 2971@end example
2cbe6b7f
JD
2972
2973@noindent
9913d6e4
JD
2974Now Bison will insert @code{#include "ptypes.h"} and the new
2975@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2976and @code{YYLTYPE} definitions in both the parser implementation file
2977and the parser header file. (By the same reasoning, @code{%code
2978requires} would also be the appropriate place to write your own
2979definition for @code{YYSTYPE}.)
2980
2981When you are writing dependency code for @code{YYSTYPE} and
2982@code{YYLTYPE}, you should prefer @code{%code requires} over
2983@code{%code top} regardless of whether you instruct Bison to generate
2984a parser header file. When you are writing code that you need Bison
2985to insert only into the parser implementation file and that has no
2986special need to appear at the top of that file, you should prefer the
2987unqualified @code{%code} over @code{%code top}. These practices will
2988make the purpose of each block of your code explicit to Bison and to
2989other developers reading your grammar file. Following these
2990practices, we expect the unqualified @code{%code} and @code{%code
2991requires} to be the most important of the four @var{Prologue}
16dc6a9e 2992alternatives.
a501eca9 2993
9913d6e4
JD
2994At some point while developing your parser, you might decide to
2995provide @code{trace_token} to modules that are external to your
2996parser. Thus, you might wish for Bison to insert the prototype into
2997both the parser header file and the parser implementation file. Since
2998this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2999@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
3000@code{%code requires}. More importantly, since it depends upon
3001@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3002sufficient. Instead, move its prototype from the unqualified
3003@code{%code} to a @code{%code provides}:
2cbe6b7f 3004
ea118b72 3005@example
98842516 3006@group
16dc6a9e 3007%code top @{
2cbe6b7f 3008 #define _GNU_SOURCE
136a0f76 3009 #include <stdio.h>
2cbe6b7f 3010@}
98842516 3011@end group
136a0f76 3012
98842516 3013@group
16dc6a9e 3014%code requires @{
2cbe6b7f
JD
3015 #include "ptypes.h"
3016@}
98842516
AD
3017@end group
3018@group
2cbe6b7f
JD
3019%union @{
3020 long int n;
3021 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3022@}
98842516 3023@end group
2cbe6b7f 3024
98842516 3025@group
16dc6a9e 3026%code requires @{
2cbe6b7f
JD
3027 #define YYLTYPE YYLTYPE
3028 typedef struct YYLTYPE
3029 @{
3030 int first_line;
3031 int first_column;
3032 int last_line;
3033 int last_column;
3034 char *filename;
3035 @} YYLTYPE;
3036@}
98842516 3037@end group
2cbe6b7f 3038
98842516 3039@group
16dc6a9e 3040%code provides @{
2cbe6b7f
JD
3041 void trace_token (enum yytokentype token, YYLTYPE loc);
3042@}
98842516 3043@end group
2cbe6b7f 3044
98842516 3045@group
2cbe6b7f 3046%code @{
9bc0dd67
JD
3047 static void print_token_value (FILE *, int, YYSTYPE);
3048 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3049@}
98842516 3050@end group
9bc0dd67
JD
3051
3052@dots{}
ea118b72 3053@end example
9bc0dd67 3054
2cbe6b7f 3055@noindent
9913d6e4
JD
3056Bison will insert the @code{trace_token} prototype into both the
3057parser header file and the parser implementation file after the
3058definitions for @code{yytokentype}, @code{YYLTYPE}, and
3059@code{YYSTYPE}.
3060
3061The above examples are careful to write directives in an order that
3062reflects the layout of the generated parser implementation and header
3063files: @code{%code top}, @code{%code requires}, @code{%code provides},
3064and then @code{%code}. While your grammar files may generally be
3065easier to read if you also follow this order, Bison does not require
3066it. Instead, Bison lets you choose an organization that makes sense
3067to you.
2cbe6b7f 3068
a501eca9 3069You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3070In that case, Bison concatenates the contained code in declaration order.
3071This is the only way in which the position of one of these directives within
3072the grammar file affects its functionality.
3073
3074The result of the previous two properties is greater flexibility in how you may
3075organize your grammar file.
3076For example, you may organize semantic-type-related directives by semantic
3077type:
3078
ea118b72 3079@example
98842516 3080@group
16dc6a9e 3081%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3082%union @{ type1 field1; @}
3083%destructor @{ type1_free ($$); @} <field1>
68fff38a 3084%printer @{ type1_print (yyoutput, $$); @} <field1>
98842516 3085@end group
2cbe6b7f 3086
98842516 3087@group
16dc6a9e 3088%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3089%union @{ type2 field2; @}
3090%destructor @{ type2_free ($$); @} <field2>
68fff38a 3091%printer @{ type2_print (yyoutput, $$); @} <field2>
98842516 3092@end group
ea118b72 3093@end example
2cbe6b7f
JD
3094
3095@noindent
3096You could even place each of the above directive groups in the rules section of
3097the grammar file next to the set of rules that uses the associated semantic
3098type.
61fee93e
JD
3099(In the rules section, you must terminate each of those directives with a
3100semicolon.)
2cbe6b7f
JD
3101And you don't have to worry that some directive (like a @code{%union}) in the
3102definitions section is going to adversely affect their functionality in some
3103counter-intuitive manner just because it comes first.
3104Such an organization is not possible using @var{Prologue} sections.
3105
a501eca9 3106This section has been concerned with explaining the advantages of the four
8e0a5e9e 3107@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3108However, in most cases when using these directives, you shouldn't need to
3109think about all the low-level ordering issues discussed here.
3110Instead, you should simply use these directives to label each block of your
3111code according to its purpose and let Bison handle the ordering.
3112@code{%code} is the most generic label.
16dc6a9e
JD
3113Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3114as needed.
a501eca9 3115
342b8b6e 3116@node Bison Declarations
bfa74976
RS
3117@subsection The Bison Declarations Section
3118@cindex Bison declarations (introduction)
3119@cindex declarations, Bison (introduction)
3120
3121The @var{Bison declarations} section contains declarations that define
3122terminal and nonterminal symbols, specify precedence, and so on.
3123In some simple grammars you may not need any declarations.
3124@xref{Declarations, ,Bison Declarations}.
3125
342b8b6e 3126@node Grammar Rules
bfa74976
RS
3127@subsection The Grammar Rules Section
3128@cindex grammar rules section
3129@cindex rules section for grammar
3130
3131The @dfn{grammar rules} section contains one or more Bison grammar
3132rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3133
3134There must always be at least one grammar rule, and the first
3135@samp{%%} (which precedes the grammar rules) may never be omitted even
3136if it is the first thing in the file.
3137
38a92d50 3138@node Epilogue
75f5aaea 3139@subsection The epilogue
bfa74976 3140@cindex additional C code section
75f5aaea 3141@cindex epilogue
bfa74976
RS
3142@cindex C code, section for additional
3143
9913d6e4
JD
3144The @var{Epilogue} is copied verbatim to the end of the parser
3145implementation file, just as the @var{Prologue} is copied to the
3146beginning. This is the most convenient place to put anything that you
3147want to have in the parser implementation file but which need not come
3148before the definition of @code{yyparse}. For example, the definitions
3149of @code{yylex} and @code{yyerror} often go here. Because C requires
3150functions to be declared before being used, you often need to declare
3151functions like @code{yylex} and @code{yyerror} in the Prologue, even
3152if you define them in the Epilogue. @xref{Interface, ,Parser
3153C-Language Interface}.
bfa74976
RS
3154
3155If the last section is empty, you may omit the @samp{%%} that separates it
3156from the grammar rules.
3157
f8e1c9e5
AD
3158The Bison parser itself contains many macros and identifiers whose names
3159start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3160any such names (except those documented in this manual) in the epilogue
3161of the grammar file.
bfa74976 3162
342b8b6e 3163@node Symbols
bfa74976
RS
3164@section Symbols, Terminal and Nonterminal
3165@cindex nonterminal symbol
3166@cindex terminal symbol
3167@cindex token type
3168@cindex symbol
3169
3170@dfn{Symbols} in Bison grammars represent the grammatical classifications
3171of the language.
3172
3173A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3174class of syntactically equivalent tokens. You use the symbol in grammar
3175rules to mean that a token in that class is allowed. The symbol is
3176represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3177function returns a token type code to indicate what kind of token has
3178been read. You don't need to know what the code value is; you can use
3179the symbol to stand for it.
bfa74976 3180
f8e1c9e5
AD
3181A @dfn{nonterminal symbol} stands for a class of syntactically
3182equivalent groupings. The symbol name is used in writing grammar rules.
3183By convention, it should be all lower case.
bfa74976 3184
eb8c66bb
JD
3185Symbol names can contain letters, underscores, periods, and non-initial
3186digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3187with POSIX Yacc. Periods and dashes make symbol names less convenient to
3188use with named references, which require brackets around such names
3189(@pxref{Named References}). Terminal symbols that contain periods or dashes
3190make little sense: since they are not valid symbols (in most programming
3191languages) they are not exported as token names.
bfa74976 3192
931c7513 3193There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3194
3195@itemize @bullet
3196@item
3197A @dfn{named token type} is written with an identifier, like an
c827f760 3198identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3199such name must be defined with a Bison declaration such as
3200@code{%token}. @xref{Token Decl, ,Token Type Names}.
3201
3202@item
3203@cindex character token
3204@cindex literal token
3205@cindex single-character literal
931c7513
RS
3206A @dfn{character token type} (or @dfn{literal character token}) is
3207written in the grammar using the same syntax used in C for character
3208constants; for example, @code{'+'} is a character token type. A
3209character token type doesn't need to be declared unless you need to
3210specify its semantic value data type (@pxref{Value Type, ,Data Types of
3211Semantic Values}), associativity, or precedence (@pxref{Precedence,
3212,Operator Precedence}).
bfa74976
RS
3213
3214By convention, a character token type is used only to represent a
3215token that consists of that particular character. Thus, the token
3216type @code{'+'} is used to represent the character @samp{+} as a
3217token. Nothing enforces this convention, but if you depart from it,
3218your program will confuse other readers.
3219
3220All the usual escape sequences used in character literals in C can be
3221used in Bison as well, but you must not use the null character as a
72d2299c
PE
3222character literal because its numeric code, zero, signifies
3223end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3224for @code{yylex}}). Also, unlike standard C, trigraphs have no
3225special meaning in Bison character literals, nor is backslash-newline
3226allowed.
931c7513
RS
3227
3228@item
3229@cindex string token
3230@cindex literal string token
9ecbd125 3231@cindex multicharacter literal
931c7513
RS
3232A @dfn{literal string token} is written like a C string constant; for
3233example, @code{"<="} is a literal string token. A literal string token
3234doesn't need to be declared unless you need to specify its semantic
14ded682 3235value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3236(@pxref{Precedence}).
3237
3238You can associate the literal string token with a symbolic name as an
3239alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3240Declarations}). If you don't do that, the lexical analyzer has to
3241retrieve the token number for the literal string token from the
3242@code{yytname} table (@pxref{Calling Convention}).
3243
c827f760 3244@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3245
3246By convention, a literal string token is used only to represent a token
3247that consists of that particular string. Thus, you should use the token
3248type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3249does not enforce this convention, but if you depart from it, people who
931c7513
RS
3250read your program will be confused.
3251
3252All the escape sequences used in string literals in C can be used in
92ac3705
PE
3253Bison as well, except that you must not use a null character within a
3254string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3255meaning in Bison string literals, nor is backslash-newline allowed. A
3256literal string token must contain two or more characters; for a token
3257containing just one character, use a character token (see above).
bfa74976
RS
3258@end itemize
3259
3260How you choose to write a terminal symbol has no effect on its
3261grammatical meaning. That depends only on where it appears in rules and
3262on when the parser function returns that symbol.
3263
72d2299c
PE
3264The value returned by @code{yylex} is always one of the terminal
3265symbols, except that a zero or negative value signifies end-of-input.
3266Whichever way you write the token type in the grammar rules, you write
3267it the same way in the definition of @code{yylex}. The numeric code
3268for a character token type is simply the positive numeric code of the
3269character, so @code{yylex} can use the identical value to generate the
3270requisite code, though you may need to convert it to @code{unsigned
3271char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3272Each named token type becomes a C macro in the parser implementation
3273file, so @code{yylex} can use the name to stand for the code. (This
3274is why periods don't make sense in terminal symbols.) @xref{Calling
3275Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3276
3277If @code{yylex} is defined in a separate file, you need to arrange for the
3278token-type macro definitions to be available there. Use the @samp{-d}
3279option when you run Bison, so that it will write these macro definitions
3280into a separate header file @file{@var{name}.tab.h} which you can include
3281in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3282
72d2299c 3283If you want to write a grammar that is portable to any Standard C
9d9b8b70 3284host, you must use only nonnull character tokens taken from the basic
c827f760 3285execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3286digits, the 52 lower- and upper-case English letters, and the
3287characters in the following C-language string:
3288
3289@example
3290"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3291@end example
3292
f8e1c9e5
AD
3293The @code{yylex} function and Bison must use a consistent character set
3294and encoding for character tokens. For example, if you run Bison in an
35430378 3295ASCII environment, but then compile and run the resulting
f8e1c9e5 3296program in an environment that uses an incompatible character set like
35430378
JD
3297EBCDIC, the resulting program may not work because the tables
3298generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3299character tokens. It is standard practice for software distributions to
3300contain C source files that were generated by Bison in an
35430378
JD
3301ASCII environment, so installers on platforms that are
3302incompatible with ASCII must rebuild those files before
f8e1c9e5 3303compiling them.
e966383b 3304
bfa74976
RS
3305The symbol @code{error} is a terminal symbol reserved for error recovery
3306(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3307In particular, @code{yylex} should never return this value. The default
3308value of the error token is 256, unless you explicitly assigned 256 to
3309one of your tokens with a @code{%token} declaration.
bfa74976 3310
342b8b6e 3311@node Rules
bfa74976
RS
3312@section Syntax of Grammar Rules
3313@cindex rule syntax
3314@cindex grammar rule syntax
3315@cindex syntax of grammar rules
3316
3317A Bison grammar rule has the following general form:
3318
3319@example
e425e872 3320@group
de6be119 3321@var{result}: @var{components}@dots{};
e425e872 3322@end group
bfa74976
RS
3323@end example
3324
3325@noindent
9ecbd125 3326where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3327and @var{components} are various terminal and nonterminal symbols that
13863333 3328are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3329
3330For example,
3331
3332@example
3333@group
de6be119 3334exp: exp '+' exp;
bfa74976
RS
3335@end group
3336@end example
3337
3338@noindent
3339says that two groupings of type @code{exp}, with a @samp{+} token in between,
3340can be combined into a larger grouping of type @code{exp}.
3341
72d2299c
PE
3342White space in rules is significant only to separate symbols. You can add
3343extra white space as you wish.
bfa74976
RS
3344
3345Scattered among the components can be @var{actions} that determine
3346the semantics of the rule. An action looks like this:
3347
3348@example
3349@{@var{C statements}@}
3350@end example
3351
3352@noindent
287c78f6
PE
3353@cindex braced code
3354This is an example of @dfn{braced code}, that is, C code surrounded by
3355braces, much like a compound statement in C@. Braced code can contain
3356any sequence of C tokens, so long as its braces are balanced. Bison
3357does not check the braced code for correctness directly; it merely
9913d6e4
JD
3358copies the code to the parser implementation file, where the C
3359compiler can check it.
287c78f6
PE
3360
3361Within braced code, the balanced-brace count is not affected by braces
3362within comments, string literals, or character constants, but it is
3363affected by the C digraphs @samp{<%} and @samp{%>} that represent
3364braces. At the top level braced code must be terminated by @samp{@}}
3365and not by a digraph. Bison does not look for trigraphs, so if braced
3366code uses trigraphs you should ensure that they do not affect the
3367nesting of braces or the boundaries of comments, string literals, or
3368character constants.
3369
bfa74976
RS
3370Usually there is only one action and it follows the components.
3371@xref{Actions}.
3372
3373@findex |
3374Multiple rules for the same @var{result} can be written separately or can
3375be joined with the vertical-bar character @samp{|} as follows:
3376
bfa74976
RS
3377@example
3378@group
de6be119
AD
3379@var{result}:
3380 @var{rule1-components}@dots{}
3381| @var{rule2-components}@dots{}
3382@dots{}
3383;
bfa74976
RS
3384@end group
3385@end example
bfa74976
RS
3386
3387@noindent
3388They are still considered distinct rules even when joined in this way.
3389
3390If @var{components} in a rule is empty, it means that @var{result} can
3391match the empty string. For example, here is how to define a
3392comma-separated sequence of zero or more @code{exp} groupings:
3393
3394@example
3395@group
de6be119
AD
3396expseq:
3397 /* empty */
3398| expseq1
3399;
bfa74976
RS
3400@end group
3401
3402@group
de6be119
AD
3403expseq1:
3404 exp
3405| expseq1 ',' exp
3406;
bfa74976
RS
3407@end group
3408@end example
3409
3410@noindent
3411It is customary to write a comment @samp{/* empty */} in each rule
3412with no components.
3413
342b8b6e 3414@node Recursion
bfa74976
RS
3415@section Recursive Rules
3416@cindex recursive rule
3417
f8e1c9e5
AD
3418A rule is called @dfn{recursive} when its @var{result} nonterminal
3419appears also on its right hand side. Nearly all Bison grammars need to
3420use recursion, because that is the only way to define a sequence of any
3421number of a particular thing. Consider this recursive definition of a
9ecbd125 3422comma-separated sequence of one or more expressions:
bfa74976
RS
3423
3424@example
3425@group
de6be119
AD
3426expseq1:
3427 exp
3428| expseq1 ',' exp
3429;
bfa74976
RS
3430@end group
3431@end example
3432
3433@cindex left recursion
3434@cindex right recursion
3435@noindent
3436Since the recursive use of @code{expseq1} is the leftmost symbol in the
3437right hand side, we call this @dfn{left recursion}. By contrast, here
3438the same construct is defined using @dfn{right recursion}:
3439
3440@example
3441@group
de6be119
AD
3442expseq1:
3443 exp
3444| exp ',' expseq1
3445;
bfa74976
RS
3446@end group
3447@end example
3448
3449@noindent
ec3bc396
AD
3450Any kind of sequence can be defined using either left recursion or right
3451recursion, but you should always use left recursion, because it can
3452parse a sequence of any number of elements with bounded stack space.
3453Right recursion uses up space on the Bison stack in proportion to the
3454number of elements in the sequence, because all the elements must be
3455shifted onto the stack before the rule can be applied even once.
3456@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3457of this.
bfa74976
RS
3458
3459@cindex mutual recursion
3460@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3461rule does not appear directly on its right hand side, but does appear
3462in rules for other nonterminals which do appear on its right hand
13863333 3463side.
bfa74976
RS
3464
3465For example:
3466
3467@example
3468@group
de6be119
AD
3469expr:
3470 primary
3471| primary '+' primary
3472;
bfa74976
RS
3473@end group
3474
3475@group
de6be119
AD
3476primary:
3477 constant
3478| '(' expr ')'
3479;
bfa74976
RS
3480@end group
3481@end example
3482
3483@noindent
3484defines two mutually-recursive nonterminals, since each refers to the
3485other.
3486
342b8b6e 3487@node Semantics
bfa74976
RS
3488@section Defining Language Semantics
3489@cindex defining language semantics
13863333 3490@cindex language semantics, defining
bfa74976
RS
3491
3492The grammar rules for a language determine only the syntax. The semantics
3493are determined by the semantic values associated with various tokens and
3494groupings, and by the actions taken when various groupings are recognized.
3495
3496For example, the calculator calculates properly because the value
3497associated with each expression is the proper number; it adds properly
3498because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3499the numbers associated with @var{x} and @var{y}.
3500
3501@menu
3502* Value Type:: Specifying one data type for all semantic values.
3503* Multiple Types:: Specifying several alternative data types.
3504* Actions:: An action is the semantic definition of a grammar rule.
3505* Action Types:: Specifying data types for actions to operate on.
3506* Mid-Rule Actions:: Most actions go at the end of a rule.
3507 This says when, why and how to use the exceptional
3508 action in the middle of a rule.
3509@end menu
3510
342b8b6e 3511@node Value Type
bfa74976
RS
3512@subsection Data Types of Semantic Values
3513@cindex semantic value type
3514@cindex value type, semantic
3515@cindex data types of semantic values
3516@cindex default data type
3517
3518In a simple program it may be sufficient to use the same data type for
3519the semantic values of all language constructs. This was true in the
35430378 3520RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3521Notation Calculator}).
bfa74976 3522
ddc8ede1
PE
3523Bison normally uses the type @code{int} for semantic values if your
3524program uses the same data type for all language constructs. To
bfa74976
RS
3525specify some other type, define @code{YYSTYPE} as a macro, like this:
3526
3527@example
3528#define YYSTYPE double
3529@end example
3530
3531@noindent
50cce58e
PE
3532@code{YYSTYPE}'s replacement list should be a type name
3533that does not contain parentheses or square brackets.
342b8b6e 3534This macro definition must go in the prologue of the grammar file
75f5aaea 3535(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3536
342b8b6e 3537@node Multiple Types
bfa74976
RS
3538@subsection More Than One Value Type
3539
3540In most programs, you will need different data types for different kinds
3541of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3542@code{int} or @code{long int}, while a string constant needs type
3543@code{char *}, and an identifier might need a pointer to an entry in the
3544symbol table.
bfa74976
RS
3545
3546To use more than one data type for semantic values in one parser, Bison
3547requires you to do two things:
3548
3549@itemize @bullet
3550@item
ddc8ede1 3551Specify the entire collection of possible data types, either by using the
704a47c4 3552@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3553Value Types}), or by using a @code{typedef} or a @code{#define} to
3554define @code{YYSTYPE} to be a union type whose member names are
3555the type tags.
bfa74976
RS
3556
3557@item
14ded682
AD
3558Choose one of those types for each symbol (terminal or nonterminal) for
3559which semantic values are used. This is done for tokens with the
3560@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3561and for groupings with the @code{%type} Bison declaration (@pxref{Type
3562Decl, ,Nonterminal Symbols}).
bfa74976
RS
3563@end itemize
3564
342b8b6e 3565@node Actions
bfa74976
RS
3566@subsection Actions
3567@cindex action
3568@vindex $$
3569@vindex $@var{n}
1f68dca5
AR
3570@vindex $@var{name}
3571@vindex $[@var{name}]
bfa74976
RS
3572
3573An action accompanies a syntactic rule and contains C code to be executed
3574each time an instance of that rule is recognized. The task of most actions
3575is to compute a semantic value for the grouping built by the rule from the
3576semantic values associated with tokens or smaller groupings.
3577
287c78f6
PE
3578An action consists of braced code containing C statements, and can be
3579placed at any position in the rule;
704a47c4
AD
3580it is executed at that position. Most rules have just one action at the
3581end of the rule, following all the components. Actions in the middle of
3582a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3583Actions, ,Actions in Mid-Rule}).
bfa74976 3584
9913d6e4
JD
3585The C code in an action can refer to the semantic values of the
3586components matched by the rule with the construct @code{$@var{n}},
3587which stands for the value of the @var{n}th component. The semantic
3588value for the grouping being constructed is @code{$$}. In addition,
3589the semantic values of symbols can be accessed with the named
3590references construct @code{$@var{name}} or @code{$[@var{name}]}.
3591Bison translates both of these constructs into expressions of the
3592appropriate type when it copies the actions into the parser
3593implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3594for the current grouping) is translated to a modifiable lvalue, so it
3595can be assigned to.
bfa74976
RS
3596
3597Here is a typical example:
3598
3599@example
3600@group
de6be119
AD
3601exp:
3602@dots{}
3603| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3604@end group
3605@end example
3606
1f68dca5
AR
3607Or, in terms of named references:
3608
3609@example
3610@group
de6be119
AD
3611exp[result]:
3612@dots{}
3613| exp[left] '+' exp[right] @{ $result = $left + $right; @}
1f68dca5
AR
3614@end group
3615@end example
3616
bfa74976
RS
3617@noindent
3618This rule constructs an @code{exp} from two smaller @code{exp} groupings
3619connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3620(@code{$left} and @code{$right})
bfa74976
RS
3621refer to the semantic values of the two component @code{exp} groupings,
3622which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3623The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3624semantic value of
bfa74976
RS
3625the addition-expression just recognized by the rule. If there were a
3626useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3627referred to as @code{$2}.
bfa74976 3628
ce24f7f5
JD
3629@xref{Named References}, for more information about using the named
3630references construct.
1f68dca5 3631
3ded9a63
AD
3632Note that the vertical-bar character @samp{|} is really a rule
3633separator, and actions are attached to a single rule. This is a
3634difference with tools like Flex, for which @samp{|} stands for either
3635``or'', or ``the same action as that of the next rule''. In the
3636following example, the action is triggered only when @samp{b} is found:
3637
3638@example
3639@group
3640a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3641@end group
3642@end example
3643
bfa74976
RS
3644@cindex default action
3645If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3646@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3647becomes the value of the whole rule. Of course, the default action is
3648valid only if the two data types match. There is no meaningful default
3649action for an empty rule; every empty rule must have an explicit action
3650unless the rule's value does not matter.
bfa74976
RS
3651
3652@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3653to tokens and groupings on the stack @emph{before} those that match the
3654current rule. This is a very risky practice, and to use it reliably
3655you must be certain of the context in which the rule is applied. Here
3656is a case in which you can use this reliably:
3657
3658@example
3659@group
de6be119
AD
3660foo:
3661 expr bar '+' expr @{ @dots{} @}
3662| expr bar '-' expr @{ @dots{} @}
3663;
bfa74976
RS
3664@end group
3665
3666@group
de6be119
AD
3667bar:
3668 /* empty */ @{ previous_expr = $0; @}
3669;
bfa74976
RS
3670@end group
3671@end example
3672
3673As long as @code{bar} is used only in the fashion shown here, @code{$0}
3674always refers to the @code{expr} which precedes @code{bar} in the
3675definition of @code{foo}.
3676
32c29292 3677@vindex yylval
742e4900 3678It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3679any, from a semantic action.
3680This semantic value is stored in @code{yylval}.
3681@xref{Action Features, ,Special Features for Use in Actions}.
3682
342b8b6e 3683@node Action Types
bfa74976
RS
3684@subsection Data Types of Values in Actions
3685@cindex action data types
3686@cindex data types in actions
3687
3688If you have chosen a single data type for semantic values, the @code{$$}
3689and @code{$@var{n}} constructs always have that data type.
3690
3691If you have used @code{%union} to specify a variety of data types, then you
3692must declare a choice among these types for each terminal or nonterminal
3693symbol that can have a semantic value. Then each time you use @code{$$} or
3694@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3695in the rule. In this example,
bfa74976
RS
3696
3697@example
3698@group
de6be119
AD
3699exp:
3700 @dots{}
3701| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3702@end group
3703@end example
3704
3705@noindent
3706@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3707have the data type declared for the nonterminal symbol @code{exp}. If
3708@code{$2} were used, it would have the data type declared for the
e0c471a9 3709terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3710
3711Alternatively, you can specify the data type when you refer to the value,
3712by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3713reference. For example, if you have defined types as shown here:
3714
3715@example
3716@group
3717%union @{
3718 int itype;
3719 double dtype;
3720@}
3721@end group
3722@end example
3723
3724@noindent
3725then you can write @code{$<itype>1} to refer to the first subunit of the
3726rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3727
342b8b6e 3728@node Mid-Rule Actions
bfa74976
RS
3729@subsection Actions in Mid-Rule
3730@cindex actions in mid-rule
3731@cindex mid-rule actions
3732
3733Occasionally it is useful to put an action in the middle of a rule.
3734These actions are written just like usual end-of-rule actions, but they
3735are executed before the parser even recognizes the following components.
3736
3737A mid-rule action may refer to the components preceding it using
3738@code{$@var{n}}, but it may not refer to subsequent components because
3739it is run before they are parsed.
3740
3741The mid-rule action itself counts as one of the components of the rule.
3742This makes a difference when there is another action later in the same rule
3743(and usually there is another at the end): you have to count the actions
3744along with the symbols when working out which number @var{n} to use in
3745@code{$@var{n}}.
3746
3747The mid-rule action can also have a semantic value. The action can set
3748its value with an assignment to @code{$$}, and actions later in the rule
3749can refer to the value using @code{$@var{n}}. Since there is no symbol
3750to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3751in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3752specify a data type each time you refer to this value.
bfa74976
RS
3753
3754There is no way to set the value of the entire rule with a mid-rule
3755action, because assignments to @code{$$} do not have that effect. The
3756only way to set the value for the entire rule is with an ordinary action
3757at the end of the rule.
3758
3759Here is an example from a hypothetical compiler, handling a @code{let}
3760statement that looks like @samp{let (@var{variable}) @var{statement}} and
3761serves to create a variable named @var{variable} temporarily for the
3762duration of @var{statement}. To parse this construct, we must put
3763@var{variable} into the symbol table while @var{statement} is parsed, then
3764remove it afterward. Here is how it is done:
3765
3766@example
3767@group
de6be119
AD
3768stmt:
3769 LET '(' var ')'
3770 @{ $<context>$ = push_context (); declare_variable ($3); @}
3771 stmt
3772 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3773@end group
3774@end example
3775
3776@noindent
3777As soon as @samp{let (@var{variable})} has been recognized, the first
3778action is run. It saves a copy of the current semantic context (the
3779list of accessible variables) as its semantic value, using alternative
3780@code{context} in the data-type union. Then it calls
3781@code{declare_variable} to add the new variable to that list. Once the
3782first action is finished, the embedded statement @code{stmt} can be
3783parsed. Note that the mid-rule action is component number 5, so the
3784@samp{stmt} is component number 6.
3785
3786After the embedded statement is parsed, its semantic value becomes the
3787value of the entire @code{let}-statement. Then the semantic value from the
3788earlier action is used to restore the prior list of variables. This
3789removes the temporary @code{let}-variable from the list so that it won't
3790appear to exist while the rest of the program is parsed.
3791
841a7737
JD
3792@findex %destructor
3793@cindex discarded symbols, mid-rule actions
3794@cindex error recovery, mid-rule actions
3795In the above example, if the parser initiates error recovery (@pxref{Error
3796Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3797it might discard the previous semantic context @code{$<context>5} without
3798restoring it.
3799Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3800Discarded Symbols}).
ec5479ce
JD
3801However, Bison currently provides no means to declare a destructor specific to
3802a particular mid-rule action's semantic value.
841a7737
JD
3803
3804One solution is to bury the mid-rule action inside a nonterminal symbol and to
3805declare a destructor for that symbol:
3806
3807@example
3808@group
3809%type <context> let
3810%destructor @{ pop_context ($$); @} let
3811
3812%%
3813
de6be119
AD
3814stmt:
3815 let stmt
3816 @{
3817 $$ = $2;
3818 pop_context ($1);
3819 @};
841a7737 3820
de6be119
AD
3821let:
3822 LET '(' var ')'
3823 @{
3824 $$ = push_context ();
3825 declare_variable ($3);
3826 @};
841a7737
JD
3827
3828@end group
3829@end example
3830
3831@noindent
3832Note that the action is now at the end of its rule.
3833Any mid-rule action can be converted to an end-of-rule action in this way, and
3834this is what Bison actually does to implement mid-rule actions.
3835
bfa74976
RS
3836Taking action before a rule is completely recognized often leads to
3837conflicts since the parser must commit to a parse in order to execute the
3838action. For example, the following two rules, without mid-rule actions,
3839can coexist in a working parser because the parser can shift the open-brace
3840token and look at what follows before deciding whether there is a
3841declaration or not:
3842
3843@example
3844@group
de6be119
AD
3845compound:
3846 '@{' declarations statements '@}'
3847| '@{' statements '@}'
3848;
bfa74976
RS
3849@end group
3850@end example
3851
3852@noindent
3853But when we add a mid-rule action as follows, the rules become nonfunctional:
3854
3855@example
3856@group
de6be119
AD
3857compound:
3858 @{ prepare_for_local_variables (); @}
3859 '@{' declarations statements '@}'
bfa74976
RS
3860@end group
3861@group
de6be119
AD
3862| '@{' statements '@}'
3863;
bfa74976
RS
3864@end group
3865@end example
3866
3867@noindent
3868Now the parser is forced to decide whether to run the mid-rule action
3869when it has read no farther than the open-brace. In other words, it
3870must commit to using one rule or the other, without sufficient
3871information to do it correctly. (The open-brace token is what is called
742e4900
JD
3872the @dfn{lookahead} token at this time, since the parser is still
3873deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3874
3875You might think that you could correct the problem by putting identical
3876actions into the two rules, like this:
3877
3878@example
3879@group
de6be119
AD
3880compound:
3881 @{ prepare_for_local_variables (); @}
3882 '@{' declarations statements '@}'
3883| @{ prepare_for_local_variables (); @}
3884 '@{' statements '@}'
3885;
bfa74976
RS
3886@end group
3887@end example
3888
3889@noindent
3890But this does not help, because Bison does not realize that the two actions
3891are identical. (Bison never tries to understand the C code in an action.)
3892
3893If the grammar is such that a declaration can be distinguished from a
3894statement by the first token (which is true in C), then one solution which
3895does work is to put the action after the open-brace, like this:
3896
3897@example
3898@group
de6be119
AD
3899compound:
3900 '@{' @{ prepare_for_local_variables (); @}
3901 declarations statements '@}'
3902| '@{' statements '@}'
3903;
bfa74976
RS
3904@end group
3905@end example
3906
3907@noindent
3908Now the first token of the following declaration or statement,
3909which would in any case tell Bison which rule to use, can still do so.
3910
3911Another solution is to bury the action inside a nonterminal symbol which
3912serves as a subroutine:
3913
3914@example
3915@group
de6be119
AD
3916subroutine:
3917 /* empty */ @{ prepare_for_local_variables (); @}
3918;
bfa74976
RS
3919@end group
3920
3921@group
de6be119
AD
3922compound:
3923 subroutine '@{' declarations statements '@}'
3924| subroutine '@{' statements '@}'
3925;
bfa74976
RS
3926@end group
3927@end example
3928
3929@noindent
3930Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3931deciding which rule for @code{compound} it will eventually use.
bfa74976 3932
7404cdf3 3933@node Tracking Locations
847bf1f5
AD
3934@section Tracking Locations
3935@cindex location
95923bd6
AD
3936@cindex textual location
3937@cindex location, textual
847bf1f5
AD
3938
3939Though grammar rules and semantic actions are enough to write a fully
72d2299c 3940functional parser, it can be useful to process some additional information,
3e259915
MA
3941especially symbol locations.
3942
704a47c4
AD
3943The way locations are handled is defined by providing a data type, and
3944actions to take when rules are matched.
847bf1f5
AD
3945
3946@menu
3947* Location Type:: Specifying a data type for locations.
3948* Actions and Locations:: Using locations in actions.
3949* Location Default Action:: Defining a general way to compute locations.
3950@end menu
3951
342b8b6e 3952@node Location Type
847bf1f5
AD
3953@subsection Data Type of Locations
3954@cindex data type of locations
3955@cindex default location type
3956
3957Defining a data type for locations is much simpler than for semantic values,
3958since all tokens and groupings always use the same type.
3959
50cce58e
PE
3960You can specify the type of locations by defining a macro called
3961@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3962defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3963When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3964four members:
3965
3966@example
6273355b 3967typedef struct YYLTYPE
847bf1f5
AD
3968@{
3969 int first_line;
3970 int first_column;
3971 int last_line;
3972 int last_column;
6273355b 3973@} YYLTYPE;
847bf1f5
AD
3974@end example
3975
8fbbeba2
AD
3976When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3977initializes all these fields to 1 for @code{yylloc}. To initialize
3978@code{yylloc} with a custom location type (or to chose a different
3979initialization), use the @code{%initial-action} directive. @xref{Initial
3980Action Decl, , Performing Actions before Parsing}.
cd48d21d 3981
342b8b6e 3982@node Actions and Locations
847bf1f5
AD
3983@subsection Actions and Locations
3984@cindex location actions
3985@cindex actions, location
3986@vindex @@$
3987@vindex @@@var{n}
1f68dca5
AR
3988@vindex @@@var{name}
3989@vindex @@[@var{name}]
847bf1f5
AD
3990
3991Actions are not only useful for defining language semantics, but also for
3992describing the behavior of the output parser with locations.
3993
3994The most obvious way for building locations of syntactic groupings is very
72d2299c 3995similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3996constructs can be used to access the locations of the elements being matched.
3997The location of the @var{n}th component of the right hand side is
3998@code{@@@var{n}}, while the location of the left hand side grouping is
3999@code{@@$}.
4000
1f68dca5
AR
4001In addition, the named references construct @code{@@@var{name}} and
4002@code{@@[@var{name}]} may also be used to address the symbol locations.
ce24f7f5
JD
4003@xref{Named References}, for more information about using the named
4004references construct.
1f68dca5 4005
3e259915 4006Here is a basic example using the default data type for locations:
847bf1f5
AD
4007
4008@example
4009@group
de6be119
AD
4010exp:
4011 @dots{}
4012| exp '/' exp
4013 @{
4014 @@$.first_column = @@1.first_column;
4015 @@$.first_line = @@1.first_line;
4016 @@$.last_column = @@3.last_column;
4017 @@$.last_line = @@3.last_line;
4018 if ($3)
4019 $$ = $1 / $3;
4020 else
4021 @{
4022 $$ = 1;
4023 fprintf (stderr,
4024 "Division by zero, l%d,c%d-l%d,c%d",
4025 @@3.first_line, @@3.first_column,
4026 @@3.last_line, @@3.last_column);
4027 @}
4028 @}
847bf1f5
AD
4029@end group
4030@end example
4031
3e259915 4032As for semantic values, there is a default action for locations that is
72d2299c 4033run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4034beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4035last symbol.
3e259915 4036
72d2299c 4037With this default action, the location tracking can be fully automatic. The
3e259915
MA
4038example above simply rewrites this way:
4039
4040@example
4041@group
de6be119
AD
4042exp:
4043 @dots{}
4044| exp '/' exp
4045 @{
4046 if ($3)
4047 $$ = $1 / $3;
4048 else
4049 @{
4050 $$ = 1;
4051 fprintf (stderr,
4052 "Division by zero, l%d,c%d-l%d,c%d",
4053 @@3.first_line, @@3.first_column,
4054 @@3.last_line, @@3.last_column);
4055 @}
4056 @}
3e259915
MA
4057@end group
4058@end example
847bf1f5 4059
32c29292 4060@vindex yylloc
742e4900 4061It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4062from a semantic action.
4063This location is stored in @code{yylloc}.
4064@xref{Action Features, ,Special Features for Use in Actions}.
4065
342b8b6e 4066@node Location Default Action
847bf1f5
AD
4067@subsection Default Action for Locations
4068@vindex YYLLOC_DEFAULT
35430378 4069@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4070
72d2299c 4071Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4072locations are much more general than semantic values, there is room in
4073the output parser to redefine the default action to take for each
72d2299c 4074rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4075matched, before the associated action is run. It is also invoked
4076while processing a syntax error, to compute the error's location.
35430378 4077Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4078parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4079of that ambiguity.
847bf1f5 4080
3e259915 4081Most of the time, this macro is general enough to suppress location
79282c6c 4082dedicated code from semantic actions.
847bf1f5 4083
72d2299c 4084The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4085the location of the grouping (the result of the computation). When a
766de5eb 4086rule is matched, the second parameter identifies locations of
96b93a3d 4087all right hand side elements of the rule being matched, and the third
8710fc41 4088parameter is the size of the rule's right hand side.
35430378 4089When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4090right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4091When processing a syntax error, the second parameter identifies locations
4092of the symbols that were discarded during error processing, and the third
96b93a3d 4093parameter is the number of discarded symbols.
847bf1f5 4094
766de5eb 4095By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4096
ea118b72 4097@example
847bf1f5 4098@group
ea118b72
AD
4099# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4100do \
4101 if (N) \
4102 @{ \
4103 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4104 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4105 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4106 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4107 @} \
4108 else \
4109 @{ \
4110 (Cur).first_line = (Cur).last_line = \
4111 YYRHSLOC(Rhs, 0).last_line; \
4112 (Cur).first_column = (Cur).last_column = \
4113 YYRHSLOC(Rhs, 0).last_column; \
4114 @} \
4115while (0)
847bf1f5 4116@end group
ea118b72 4117@end example
676385e2 4118
2c0f9706 4119@noindent
766de5eb
PE
4120where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4121in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4122just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4123
3e259915 4124When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4125
3e259915 4126@itemize @bullet
79282c6c 4127@item
72d2299c 4128All arguments are free of side-effects. However, only the first one (the
3e259915 4129result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4130
3e259915 4131@item
766de5eb
PE
4132For consistency with semantic actions, valid indexes within the
4133right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4134valid index, and it refers to the symbol just before the reduction.
4135During error processing @var{n} is always positive.
0ae99356
PE
4136
4137@item
4138Your macro should parenthesize its arguments, if need be, since the
4139actual arguments may not be surrounded by parentheses. Also, your
4140macro should expand to something that can be used as a single
4141statement when it is followed by a semicolon.
3e259915 4142@end itemize
847bf1f5 4143
908c8647 4144@node Named References
ce24f7f5 4145@section Named References
908c8647
JD
4146@cindex named references
4147
7d31f092
JD
4148As described in the preceding sections, the traditional way to refer to any
4149semantic value or location is a @dfn{positional reference}, which takes the
4150form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4151such a reference is not very descriptive. Moreover, if you later decide to
4152insert or remove symbols in the right-hand side of a grammar rule, the need
4153to renumber such references can be tedious and error-prone.
4154
4155To avoid these issues, you can also refer to a semantic value or location
4156using a @dfn{named reference}. First of all, original symbol names may be
4157used as named references. For example:
908c8647
JD
4158
4159@example
4160@group
4161invocation: op '(' args ')'
4162 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4163@end group
4164@end example
4165
4166@noindent
7d31f092 4167Positional and named references can be mixed arbitrarily. For example:
908c8647
JD
4168
4169@example
4170@group
4171invocation: op '(' args ')'
4172 @{ $$ = new_invocation ($op, $args, @@$); @}
4173@end group
4174@end example
4175
4176@noindent
4177However, sometimes regular symbol names are not sufficient due to
4178ambiguities:
4179
4180@example
4181@group
4182exp: exp '/' exp
4183 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4184
4185exp: exp '/' exp
4186 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4187
4188exp: exp '/' exp
4189 @{ $$ = $1 / $3; @} // No error.
4190@end group
4191@end example
4192
4193@noindent
4194When ambiguity occurs, explicitly declared names may be used for values and
4195locations. Explicit names are declared as a bracketed name after a symbol
4196appearance in rule definitions. For example:
4197@example
4198@group
4199exp[result]: exp[left] '/' exp[right]
4200 @{ $result = $left / $right; @}
4201@end group
4202@end example
4203
4204@noindent
ce24f7f5
JD
4205In order to access a semantic value generated by a mid-rule action, an
4206explicit name may also be declared by putting a bracketed name after the
4207closing brace of the mid-rule action code:
908c8647
JD
4208@example
4209@group
4210exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4211 @{ $res = $left + $right; @}
4212@end group
4213@end example
4214
4215@noindent
4216
4217In references, in order to specify names containing dots and dashes, an explicit
4218bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4219@example
4220@group
14f4455e 4221if-stmt: "if" '(' expr ')' "then" then.stmt ';'
908c8647
JD
4222 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4223@end group
4224@end example
4225
4226It often happens that named references are followed by a dot, dash or other
4227C punctuation marks and operators. By default, Bison will read
ce24f7f5
JD
4228@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4229@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4230value. In order to force Bison to recognize @samp{name.suffix} in its
4231entirety as the name of a semantic value, the bracketed syntax
4232@samp{$[name.suffix]} must be used.
4233
4234The named references feature is experimental. More user feedback will help
4235to stabilize it.
908c8647 4236
342b8b6e 4237@node Declarations
bfa74976
RS
4238@section Bison Declarations
4239@cindex declarations, Bison
4240@cindex Bison declarations
4241
4242The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4243used in formulating the grammar and the data types of semantic values.
4244@xref{Symbols}.
4245
4246All token type names (but not single-character literal tokens such as
4247@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4248declared if you need to specify which data type to use for the semantic
4249value (@pxref{Multiple Types, ,More Than One Value Type}).
4250
9913d6e4
JD
4251The first rule in the grammar file also specifies the start symbol, by
4252default. If you want some other symbol to be the start symbol, you
4253must declare it explicitly (@pxref{Language and Grammar, ,Languages
4254and Context-Free Grammars}).
bfa74976
RS
4255
4256@menu
b50d2359 4257* Require Decl:: Requiring a Bison version.
bfa74976
RS
4258* Token Decl:: Declaring terminal symbols.
4259* Precedence Decl:: Declaring terminals with precedence and associativity.
4260* Union Decl:: Declaring the set of all semantic value types.
4261* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4262* Initial Action Decl:: Code run before parsing starts.
72f889cc 4263* Destructor Decl:: Declaring how symbols are freed.
56d60c19 4264* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4265* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4266* Start Decl:: Specifying the start symbol.
4267* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4268* Push Decl:: Requesting a push parser.
bfa74976 4269* Decl Summary:: Table of all Bison declarations.
2f4518a1 4270* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 4271* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4272@end menu
4273
b50d2359
AD
4274@node Require Decl
4275@subsection Require a Version of Bison
4276@cindex version requirement
4277@cindex requiring a version of Bison
4278@findex %require
4279
4280You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4281the requirement is not met, @command{bison} exits with an error (exit
4282status 63).
b50d2359
AD
4283
4284@example
4285%require "@var{version}"
4286@end example
4287
342b8b6e 4288@node Token Decl
bfa74976
RS
4289@subsection Token Type Names
4290@cindex declaring token type names
4291@cindex token type names, declaring
931c7513 4292@cindex declaring literal string tokens
bfa74976
RS
4293@findex %token
4294
4295The basic way to declare a token type name (terminal symbol) is as follows:
4296
4297@example
4298%token @var{name}
4299@end example
4300
4301Bison will convert this into a @code{#define} directive in
4302the parser, so that the function @code{yylex} (if it is in this file)
4303can use the name @var{name} to stand for this token type's code.
4304
14ded682
AD
4305Alternatively, you can use @code{%left}, @code{%right}, or
4306@code{%nonassoc} instead of @code{%token}, if you wish to specify
4307associativity and precedence. @xref{Precedence Decl, ,Operator
4308Precedence}.
bfa74976
RS
4309
4310You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4311a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4312following the token name:
bfa74976
RS
4313
4314@example
4315%token NUM 300
1452af69 4316%token XNUM 0x12d // a GNU extension
bfa74976
RS
4317@end example
4318
4319@noindent
4320It is generally best, however, to let Bison choose the numeric codes for
4321all token types. Bison will automatically select codes that don't conflict
e966383b 4322with each other or with normal characters.
bfa74976
RS
4323
4324In the event that the stack type is a union, you must augment the
4325@code{%token} or other token declaration to include the data type
704a47c4
AD
4326alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4327Than One Value Type}).
bfa74976
RS
4328
4329For example:
4330
4331@example
4332@group
4333%union @{ /* define stack type */
4334 double val;
4335 symrec *tptr;
4336@}
4337%token <val> NUM /* define token NUM and its type */
4338@end group
4339@end example
4340
931c7513
RS
4341You can associate a literal string token with a token type name by
4342writing the literal string at the end of a @code{%token}
4343declaration which declares the name. For example:
4344
4345@example
4346%token arrow "=>"
4347@end example
4348
4349@noindent
4350For example, a grammar for the C language might specify these names with
4351equivalent literal string tokens:
4352
4353@example
4354%token <operator> OR "||"
4355%token <operator> LE 134 "<="
4356%left OR "<="
4357@end example
4358
4359@noindent
4360Once you equate the literal string and the token name, you can use them
4361interchangeably in further declarations or the grammar rules. The
4362@code{yylex} function can use the token name or the literal string to
4363obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4364Syntax error messages passed to @code{yyerror} from the parser will reference
4365the literal string instead of the token name.
4366
4367The token numbered as 0 corresponds to end of file; the following line
4368allows for nicer error messages referring to ``end of file'' instead
4369of ``$end'':
4370
4371@example
4372%token END 0 "end of file"
4373@end example
931c7513 4374
342b8b6e 4375@node Precedence Decl
bfa74976
RS
4376@subsection Operator Precedence
4377@cindex precedence declarations
4378@cindex declaring operator precedence
4379@cindex operator precedence, declaring
4380
4381Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4382declare a token and specify its precedence and associativity, all at
4383once. These are called @dfn{precedence declarations}.
704a47c4
AD
4384@xref{Precedence, ,Operator Precedence}, for general information on
4385operator precedence.
bfa74976 4386
ab7f29f8 4387The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4388@code{%token}: either
4389
4390@example
4391%left @var{symbols}@dots{}
4392@end example
4393
4394@noindent
4395or
4396
4397@example
4398%left <@var{type}> @var{symbols}@dots{}
4399@end example
4400
4401And indeed any of these declarations serves the purposes of @code{%token}.
4402But in addition, they specify the associativity and relative precedence for
4403all the @var{symbols}:
4404
4405@itemize @bullet
4406@item
4407The associativity of an operator @var{op} determines how repeated uses
4408of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4409@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4410grouping @var{y} with @var{z} first. @code{%left} specifies
4411left-associativity (grouping @var{x} with @var{y} first) and
4412@code{%right} specifies right-associativity (grouping @var{y} with
4413@var{z} first). @code{%nonassoc} specifies no associativity, which
4414means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4415considered a syntax error.
4416
4417@item
4418The precedence of an operator determines how it nests with other operators.
4419All the tokens declared in a single precedence declaration have equal
4420precedence and nest together according to their associativity.
4421When two tokens declared in different precedence declarations associate,
4422the one declared later has the higher precedence and is grouped first.
4423@end itemize
4424
ab7f29f8
JD
4425For backward compatibility, there is a confusing difference between the
4426argument lists of @code{%token} and precedence declarations.
4427Only a @code{%token} can associate a literal string with a token type name.
4428A precedence declaration always interprets a literal string as a reference to a
4429separate token.
4430For example:
4431
4432@example
4433%left OR "<=" // Does not declare an alias.
4434%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4435@end example
4436
342b8b6e 4437@node Union Decl
bfa74976
RS
4438@subsection The Collection of Value Types
4439@cindex declaring value types
4440@cindex value types, declaring
4441@findex %union
4442
287c78f6
PE
4443The @code{%union} declaration specifies the entire collection of
4444possible data types for semantic values. The keyword @code{%union} is
4445followed by braced code containing the same thing that goes inside a
4446@code{union} in C@.
bfa74976
RS
4447
4448For example:
4449
4450@example
4451@group
4452%union @{
4453 double val;
4454 symrec *tptr;
4455@}
4456@end group
4457@end example
4458
4459@noindent
4460This says that the two alternative types are @code{double} and @code{symrec
4461*}. They are given names @code{val} and @code{tptr}; these names are used
4462in the @code{%token} and @code{%type} declarations to pick one of the types
4463for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4464
35430378 4465As an extension to POSIX, a tag is allowed after the
6273355b
PE
4466@code{union}. For example:
4467
4468@example
4469@group
4470%union value @{
4471 double val;
4472 symrec *tptr;
4473@}
4474@end group
4475@end example
4476
d6ca7905 4477@noindent
6273355b
PE
4478specifies the union tag @code{value}, so the corresponding C type is
4479@code{union value}. If you do not specify a tag, it defaults to
4480@code{YYSTYPE}.
4481
35430378 4482As another extension to POSIX, you may specify multiple
d6ca7905
PE
4483@code{%union} declarations; their contents are concatenated. However,
4484only the first @code{%union} declaration can specify a tag.
4485
6273355b 4486Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4487a semicolon after the closing brace.
4488
ddc8ede1
PE
4489Instead of @code{%union}, you can define and use your own union type
4490@code{YYSTYPE} if your grammar contains at least one
4491@samp{<@var{type}>} tag. For example, you can put the following into
4492a header file @file{parser.h}:
4493
4494@example
4495@group
4496union YYSTYPE @{
4497 double val;
4498 symrec *tptr;
4499@};
4500typedef union YYSTYPE YYSTYPE;
4501@end group
4502@end example
4503
4504@noindent
4505and then your grammar can use the following
4506instead of @code{%union}:
4507
4508@example
4509@group
4510%@{
4511#include "parser.h"
4512%@}
4513%type <val> expr
4514%token <tptr> ID
4515@end group
4516@end example
4517
342b8b6e 4518@node Type Decl
bfa74976
RS
4519@subsection Nonterminal Symbols
4520@cindex declaring value types, nonterminals
4521@cindex value types, nonterminals, declaring
4522@findex %type
4523
4524@noindent
4525When you use @code{%union} to specify multiple value types, you must
4526declare the value type of each nonterminal symbol for which values are
4527used. This is done with a @code{%type} declaration, like this:
4528
4529@example
4530%type <@var{type}> @var{nonterminal}@dots{}
4531@end example
4532
4533@noindent
704a47c4
AD
4534Here @var{nonterminal} is the name of a nonterminal symbol, and
4535@var{type} is the name given in the @code{%union} to the alternative
4536that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4537can give any number of nonterminal symbols in the same @code{%type}
4538declaration, if they have the same value type. Use spaces to separate
4539the symbol names.
bfa74976 4540
931c7513
RS
4541You can also declare the value type of a terminal symbol. To do this,
4542use the same @code{<@var{type}>} construction in a declaration for the
4543terminal symbol. All kinds of token declarations allow
4544@code{<@var{type}>}.
4545
18d192f0
AD
4546@node Initial Action Decl
4547@subsection Performing Actions before Parsing
4548@findex %initial-action
4549
4550Sometimes your parser needs to perform some initializations before
4551parsing. The @code{%initial-action} directive allows for such arbitrary
4552code.
4553
4554@deffn {Directive} %initial-action @{ @var{code} @}
4555@findex %initial-action
287c78f6 4556Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4557@code{yyparse} is called. The @var{code} may use @code{$$} (or
4558@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4559lookahead --- and the @code{%parse-param}.
18d192f0
AD
4560@end deffn
4561
451364ed
AD
4562For instance, if your locations use a file name, you may use
4563
4564@example
48b16bbc 4565%parse-param @{ char const *file_name @};
451364ed
AD
4566%initial-action
4567@{
4626a15d 4568 @@$.initialize (file_name);
451364ed
AD
4569@};
4570@end example
4571
18d192f0 4572
72f889cc
AD
4573@node Destructor Decl
4574@subsection Freeing Discarded Symbols
4575@cindex freeing discarded symbols
4576@findex %destructor
12e35840 4577@findex <*>
3ebecc24 4578@findex <>
a85284cf
AD
4579During error recovery (@pxref{Error Recovery}), symbols already pushed
4580on the stack and tokens coming from the rest of the file are discarded
4581until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4582or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4583symbols on the stack must be discarded. Even if the parser succeeds, it
4584must discard the start symbol.
258b75ca
PE
4585
4586When discarded symbols convey heap based information, this memory is
4587lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4588in traditional compilers, it is unacceptable for programs like shells or
4589protocol implementations that may parse and execute indefinitely.
258b75ca 4590
a85284cf
AD
4591The @code{%destructor} directive defines code that is called when a
4592symbol is automatically discarded.
72f889cc
AD
4593
4594@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4595@findex %destructor
287c78f6 4596Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4597@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4598designates the semantic value associated with the discarded symbol, and
4599@code{@@$} designates its location. The additional parser parameters are
4600also available (@pxref{Parser Function, , The Parser Function
4601@code{yyparse}}).
ec5479ce 4602
b2a0b7ca
JD
4603When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4604per-symbol @code{%destructor}.
4605You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4606tag among @var{symbols}.
b2a0b7ca 4607In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4608grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4609per-symbol @code{%destructor}.
4610
12e35840 4611Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4612(These default forms are experimental.
4613More user feedback will help to determine whether they should become permanent
4614features.)
3ebecc24 4615You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4616exactly one @code{%destructor} declaration in your grammar file.
4617The parser will invoke the @var{code} associated with one of these whenever it
4618discards any user-defined grammar symbol that has no per-symbol and no per-type
4619@code{%destructor}.
4620The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4621symbol for which you have formally declared a semantic type tag (@code{%type}
4622counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4623The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4624symbol that has no declared semantic type tag.
72f889cc
AD
4625@end deffn
4626
b2a0b7ca 4627@noindent
12e35840 4628For example:
72f889cc 4629
ea118b72 4630@example
ec5479ce
JD
4631%union @{ char *string; @}
4632%token <string> STRING1
4633%token <string> STRING2
4634%type <string> string1
4635%type <string> string2
b2a0b7ca
JD
4636%union @{ char character; @}
4637%token <character> CHR
4638%type <character> chr
12e35840
JD
4639%token TAGLESS
4640
b2a0b7ca 4641%destructor @{ @} <character>
12e35840
JD
4642%destructor @{ free ($$); @} <*>
4643%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4644%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
ea118b72 4645@end example
72f889cc
AD
4646
4647@noindent
b2a0b7ca
JD
4648guarantees that, when the parser discards any user-defined symbol that has a
4649semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4650to @code{free} by default.
ec5479ce
JD
4651However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4652prints its line number to @code{stdout}.
4653It performs only the second @code{%destructor} in this case, so it invokes
4654@code{free} only once.
12e35840
JD
4655Finally, the parser merely prints a message whenever it discards any symbol,
4656such as @code{TAGLESS}, that has no semantic type tag.
4657
4658A Bison-generated parser invokes the default @code{%destructor}s only for
4659user-defined as opposed to Bison-defined symbols.
4660For example, the parser will not invoke either kind of default
4661@code{%destructor} for the special Bison-defined symbols @code{$accept},
4662@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4663none of which you can reference in your grammar.
4664It also will not invoke either for the @code{error} token (@pxref{Table of
4665Symbols, ,error}), which is always defined by Bison regardless of whether you
4666reference it in your grammar.
4667However, it may invoke one of them for the end token (token 0) if you
4668redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4669
ea118b72 4670@example
3508ce36 4671%token END 0
ea118b72 4672@end example
3508ce36 4673
12e35840
JD
4674@cindex actions in mid-rule
4675@cindex mid-rule actions
4676Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4677mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
ce24f7f5
JD
4678That is, Bison does not consider a mid-rule to have a semantic value if you
4679do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4680(where @var{n} is the right-hand side symbol position of the mid-rule) in
4681any later action in that rule. However, if you do reference either, the
4682Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4683it discards the mid-rule symbol.
12e35840 4684
3508ce36
JD
4685@ignore
4686@noindent
4687In the future, it may be possible to redefine the @code{error} token as a
4688nonterminal that captures the discarded symbols.
4689In that case, the parser will invoke the default destructor for it as well.
4690@end ignore
4691
e757bb10
AD
4692@sp 1
4693
4694@cindex discarded symbols
4695@dfn{Discarded symbols} are the following:
4696
4697@itemize
4698@item
4699stacked symbols popped during the first phase of error recovery,
4700@item
4701incoming terminals during the second phase of error recovery,
4702@item
742e4900 4703the current lookahead and the entire stack (except the current
9d9b8b70 4704right-hand side symbols) when the parser returns immediately, and
258b75ca 4705@item
d3e4409a
AD
4706the current lookahead and the entire stack (including the current right-hand
4707side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4708@code{parse},
4709@item
258b75ca 4710the start symbol, when the parser succeeds.
e757bb10
AD
4711@end itemize
4712
9d9b8b70
PE
4713The parser can @dfn{return immediately} because of an explicit call to
4714@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4715exhaustion.
4716
29553547 4717Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4718error via @code{YYERROR} are not discarded automatically. As a rule
4719of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4720the memory.
e757bb10 4721
56d60c19
AD
4722@node Printer Decl
4723@subsection Printing Semantic Values
4724@cindex printing semantic values
4725@findex %printer
4726@findex <*>
4727@findex <>
4728When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4729the parser reports its actions, such as reductions. When a symbol involved
4730in an action is reported, only its kind is displayed, as the parser cannot
4731know how semantic values should be formatted.
4732
4733The @code{%printer} directive defines code that is called when a symbol is
4734reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4735Decl, , Freeing Discarded Symbols}).
4736
4737@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4738@findex %printer
4739@vindex yyoutput
4740@c This is the same text as for %destructor.
4741Invoke the braced @var{code} whenever the parser displays one of the
4742@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4743(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4744@code{$<@var{tag}>$}) designates the semantic value associated with the
4745symbol, and @code{@@$} its location. The additional parser parameters are
4746also available (@pxref{Parser Function, , The Parser Function
4747@code{yyparse}}).
56d60c19
AD
4748
4749The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4750Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4751@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4752typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4753@samp{<>}).
4754@end deffn
4755
4756@noindent
4757For example:
4758
4759@example
4760%union @{ char *string; @}
4761%token <string> STRING1
4762%token <string> STRING2
4763%type <string> string1
4764%type <string> string2
4765%union @{ char character; @}
4766%token <character> CHR
4767%type <character> chr
4768%token TAGLESS
4769
4770%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4771%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4772%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4773%printer @{ fprintf (yyoutput, "<>"); @} <>
4774@end example
4775
4776@noindent
4777guarantees that, when the parser print any symbol that has a semantic type
4778tag other than @code{<character>}, it display the address of the semantic
4779value by default. However, when the parser displays a @code{STRING1} or a
4780@code{string1}, it formats it as a string in double quotes. It performs
4781only the second @code{%printer} in this case, so it prints only once.
4782Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4783that has no semantic type tag. See also
4784
4785
342b8b6e 4786@node Expect Decl
bfa74976
RS
4787@subsection Suppressing Conflict Warnings
4788@cindex suppressing conflict warnings
4789@cindex preventing warnings about conflicts
4790@cindex warnings, preventing
4791@cindex conflicts, suppressing warnings of
4792@findex %expect
d6328241 4793@findex %expect-rr
bfa74976
RS
4794
4795Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4796(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4797have harmless shift/reduce conflicts which are resolved in a predictable
4798way and would be difficult to eliminate. It is desirable to suppress
4799the warning about these conflicts unless the number of conflicts
4800changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4801
4802The declaration looks like this:
4803
4804@example
4805%expect @var{n}
4806@end example
4807
035aa4a0
PE
4808Here @var{n} is a decimal integer. The declaration says there should
4809be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4810Bison reports an error if the number of shift/reduce conflicts differs
4811from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4812
34a6c2d1 4813For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4814serious, and should be eliminated entirely. Bison will always report
35430378 4815reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4816parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4817there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4818also possible to specify an expected number of reduce/reduce conflicts
35430378 4819in GLR parsers, using the declaration:
d6328241
PH
4820
4821@example
4822%expect-rr @var{n}
4823@end example
4824
bfa74976
RS
4825In general, using @code{%expect} involves these steps:
4826
4827@itemize @bullet
4828@item
4829Compile your grammar without @code{%expect}. Use the @samp{-v} option
4830to get a verbose list of where the conflicts occur. Bison will also
4831print the number of conflicts.
4832
4833@item
4834Check each of the conflicts to make sure that Bison's default
4835resolution is what you really want. If not, rewrite the grammar and
4836go back to the beginning.
4837
4838@item
4839Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4840number which Bison printed. With GLR parsers, add an
035aa4a0 4841@code{%expect-rr} declaration as well.
bfa74976
RS
4842@end itemize
4843
cf22447c
JD
4844Now Bison will report an error if you introduce an unexpected conflict,
4845but will keep silent otherwise.
bfa74976 4846
342b8b6e 4847@node Start Decl
bfa74976
RS
4848@subsection The Start-Symbol
4849@cindex declaring the start symbol
4850@cindex start symbol, declaring
4851@cindex default start symbol
4852@findex %start
4853
4854Bison assumes by default that the start symbol for the grammar is the first
4855nonterminal specified in the grammar specification section. The programmer
4856may override this restriction with the @code{%start} declaration as follows:
4857
4858@example
4859%start @var{symbol}
4860@end example
4861
342b8b6e 4862@node Pure Decl
bfa74976
RS
4863@subsection A Pure (Reentrant) Parser
4864@cindex reentrant parser
4865@cindex pure parser
d9df47b6 4866@findex %define api.pure
bfa74976
RS
4867
4868A @dfn{reentrant} program is one which does not alter in the course of
4869execution; in other words, it consists entirely of @dfn{pure} (read-only)
4870code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4871for example, a nonreentrant program may not be safe to call from a signal
4872handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4873program must be called only within interlocks.
4874
70811b85 4875Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4876suitable for most uses, and it permits compatibility with Yacc. (The
4877standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4878statically allocated variables for communication with @code{yylex},
4879including @code{yylval} and @code{yylloc}.)
bfa74976 4880
70811b85 4881Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4882declaration @code{%define api.pure} says that you want the parser to be
70811b85 4883reentrant. It looks like this:
bfa74976
RS
4884
4885@example
d9df47b6 4886%define api.pure
bfa74976
RS
4887@end example
4888
70811b85
RS
4889The result is that the communication variables @code{yylval} and
4890@code{yylloc} become local variables in @code{yyparse}, and a different
4891calling convention is used for the lexical analyzer function
4892@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4893Parsers}, for the details of this. The variable @code{yynerrs}
4894becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4895of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4896Reporting Function @code{yyerror}}). The convention for calling
4897@code{yyparse} itself is unchanged.
4898
4899Whether the parser is pure has nothing to do with the grammar rules.
4900You can generate either a pure parser or a nonreentrant parser from any
4901valid grammar.
bfa74976 4902
9987d1b3
JD
4903@node Push Decl
4904@subsection A Push Parser
4905@cindex push parser
4906@cindex push parser
812775a0 4907@findex %define api.push-pull
9987d1b3 4908
59da312b
JD
4909(The current push parsing interface is experimental and may evolve.
4910More user feedback will help to stabilize it.)
4911
f4101aa6
AD
4912A pull parser is called once and it takes control until all its input
4913is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4914each time a new token is made available.
4915
f4101aa6 4916A push parser is typically useful when the parser is part of a
9987d1b3 4917main event loop in the client's application. This is typically
f4101aa6
AD
4918a requirement of a GUI, when the main event loop needs to be triggered
4919within a certain time period.
9987d1b3 4920
d782395d
JD
4921Normally, Bison generates a pull parser.
4922The following Bison declaration says that you want the parser to be a push
2f4518a1 4923parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4924
4925@example
f37495f6 4926%define api.push-pull push
9987d1b3
JD
4927@end example
4928
4929In almost all cases, you want to ensure that your push parser is also
4930a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4931time you should create an impure push parser is to have backwards
9987d1b3
JD
4932compatibility with the impure Yacc pull mode interface. Unless you know
4933what you are doing, your declarations should look like this:
4934
4935@example
d9df47b6 4936%define api.pure
f37495f6 4937%define api.push-pull push
9987d1b3
JD
4938@end example
4939
f4101aa6
AD
4940There is a major notable functional difference between the pure push parser
4941and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4942many parser instances, of the same type of parser, in memory at the same time.
4943An impure push parser should only use one parser at a time.
4944
4945When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4946the generated parser. @code{yypstate} is a structure that the generated
4947parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4948function that will create a new parser instance. @code{yypstate_delete}
4949will free the resources associated with the corresponding parser instance.
f4101aa6 4950Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4951token is available to provide the parser. A trivial example
4952of using a pure push parser would look like this:
4953
4954@example
4955int status;
4956yypstate *ps = yypstate_new ();
4957do @{
4958 status = yypush_parse (ps, yylex (), NULL);
4959@} while (status == YYPUSH_MORE);
4960yypstate_delete (ps);
4961@end example
4962
4963If the user decided to use an impure push parser, a few things about
f4101aa6 4964the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4965a global variable instead of a variable in the @code{yypush_parse} function.
4966For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4967changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4968example would thus look like this:
4969
4970@example
4971extern int yychar;
4972int status;
4973yypstate *ps = yypstate_new ();
4974do @{
4975 yychar = yylex ();
4976 status = yypush_parse (ps);
4977@} while (status == YYPUSH_MORE);
4978yypstate_delete (ps);
4979@end example
4980
f4101aa6 4981That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4982for use by the next invocation of the @code{yypush_parse} function.
4983
f4101aa6 4984Bison also supports both the push parser interface along with the pull parser
9987d1b3 4985interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4986you should replace the @code{%define api.push-pull push} declaration with the
4987@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4988the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4989and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4990would be used. However, the user should note that it is implemented in the
d782395d
JD
4991generated parser by calling @code{yypull_parse}.
4992This makes the @code{yyparse} function that is generated with the
f37495f6 4993@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4994@code{yyparse} function. If the user
4995calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4996stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4997and then @code{yypull_parse} the rest of the input stream. If you would like
4998to switch back and forth between between parsing styles, you would have to
4999write your own @code{yypull_parse} function that knows when to quit looking
5000for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5001like this:
5002
5003@example
5004yypstate *ps = yypstate_new ();
5005yypull_parse (ps); /* Will call the lexer */
5006yypstate_delete (ps);
5007@end example
5008
d9df47b6 5009Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
5010the generated parser with @code{%define api.push-pull both} as it did for
5011@code{%define api.push-pull push}.
9987d1b3 5012
342b8b6e 5013@node Decl Summary
bfa74976
RS
5014@subsection Bison Declaration Summary
5015@cindex Bison declaration summary
5016@cindex declaration summary
5017@cindex summary, Bison declaration
5018
d8988b2f 5019Here is a summary of the declarations used to define a grammar:
bfa74976 5020
18b519c0 5021@deffn {Directive} %union
bfa74976
RS
5022Declare the collection of data types that semantic values may have
5023(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5024@end deffn
bfa74976 5025
18b519c0 5026@deffn {Directive} %token
bfa74976
RS
5027Declare a terminal symbol (token type name) with no precedence
5028or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5029@end deffn
bfa74976 5030
18b519c0 5031@deffn {Directive} %right
bfa74976
RS
5032Declare a terminal symbol (token type name) that is right-associative
5033(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5034@end deffn
bfa74976 5035
18b519c0 5036@deffn {Directive} %left
bfa74976
RS
5037Declare a terminal symbol (token type name) that is left-associative
5038(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5039@end deffn
bfa74976 5040
18b519c0 5041@deffn {Directive} %nonassoc
bfa74976 5042Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5043(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5044Using it in a way that would be associative is a syntax error.
5045@end deffn
5046
91d2c560 5047@ifset defaultprec
39a06c25 5048@deffn {Directive} %default-prec
22fccf95 5049Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5050(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5051@end deffn
91d2c560 5052@end ifset
bfa74976 5053
18b519c0 5054@deffn {Directive} %type
bfa74976
RS
5055Declare the type of semantic values for a nonterminal symbol
5056(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5057@end deffn
bfa74976 5058
18b519c0 5059@deffn {Directive} %start
89cab50d
AD
5060Specify the grammar's start symbol (@pxref{Start Decl, ,The
5061Start-Symbol}).
18b519c0 5062@end deffn
bfa74976 5063
18b519c0 5064@deffn {Directive} %expect
bfa74976
RS
5065Declare the expected number of shift-reduce conflicts
5066(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5067@end deffn
5068
bfa74976 5069
d8988b2f
AD
5070@sp 1
5071@noindent
5072In order to change the behavior of @command{bison}, use the following
5073directives:
5074
148d66d8 5075@deffn {Directive} %code @{@var{code}@}
8e6f2266 5076@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5077@findex %code
8e6f2266
JD
5078Insert @var{code} verbatim into the output parser source at the
5079default location or at the location specified by @var{qualifier}.
5080@xref{%code Summary}.
148d66d8
JD
5081@end deffn
5082
18b519c0 5083@deffn {Directive} %debug
e358222b 5084In the parser implementation file, define the macro @code{YYDEBUG} (or
5a05f42e 5085@code{@var{prefix}DEBUG} with @samp{%define api.prefix @var{prefix}}, see
e358222b
AD
5086@ref{Multiple Parsers, ,Multiple Parsers in the Same Program}) to 1 if it is
5087not already defined, so that the debugging facilities are compiled.
5088@xref{Tracing, ,Tracing Your Parser}.
bd5df716 5089@end deffn
d8988b2f 5090
2f4518a1
JD
5091@deffn {Directive} %define @var{variable}
5092@deffnx {Directive} %define @var{variable} @var{value}
5093@deffnx {Directive} %define @var{variable} "@var{value}"
5094Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5095@end deffn
5096
5097@deffn {Directive} %defines
5098Write a parser header file containing macro definitions for the token
5099type names defined in the grammar as well as a few other declarations.
5100If the parser implementation file is named @file{@var{name}.c} then
5101the parser header file is named @file{@var{name}.h}.
5102
5103For C parsers, the parser header file declares @code{YYSTYPE} unless
5104@code{YYSTYPE} is already defined as a macro or you have used a
5105@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5106you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5107Value Type}) with components that require other definitions, or if you
5108have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5109Type, ,Data Types of Semantic Values}), you need to arrange for these
5110definitions to be propagated to all modules, e.g., by putting them in
5111a prerequisite header that is included both by your parser and by any
5112other module that needs @code{YYSTYPE}.
5113
5114Unless your parser is pure, the parser header file declares
5115@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5116(Reentrant) Parser}.
5117
5118If you have also used locations, the parser header file declares
7404cdf3
JD
5119@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5120@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
2f4518a1
JD
5121
5122This parser header file is normally essential if you wish to put the
5123definition of @code{yylex} in a separate source file, because
5124@code{yylex} typically needs to be able to refer to the
5125above-mentioned declarations and to the token type codes. @xref{Token
5126Values, ,Semantic Values of Tokens}.
5127
5128@findex %code requires
5129@findex %code provides
5130If you have declared @code{%code requires} or @code{%code provides}, the output
5131header also contains their code.
5132@xref{%code Summary}.
c9d5bcc9
AD
5133
5134@cindex Header guard
5135The generated header is protected against multiple inclusions with a C
5136preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5137@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5138,Multiple Parsers in the Same Program}) and generated file name turned
5139uppercase, with each series of non alphanumerical characters converted to a
5140single underscore.
5141
5142For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5143"lib/parse.h"}, the header will be guarded as follows.
5144@example
5145#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5146# define YY_CALC_LIB_PARSE_H_INCLUDED
5147...
5148#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5149@end example
2f4518a1
JD
5150@end deffn
5151
5152@deffn {Directive} %defines @var{defines-file}
5153Same as above, but save in the file @var{defines-file}.
5154@end deffn
5155
5156@deffn {Directive} %destructor
5157Specify how the parser should reclaim the memory associated to
5158discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5159@end deffn
5160
5161@deffn {Directive} %file-prefix "@var{prefix}"
5162Specify a prefix to use for all Bison output file names. The names
5163are chosen as if the grammar file were named @file{@var{prefix}.y}.
5164@end deffn
5165
5166@deffn {Directive} %language "@var{language}"
5167Specify the programming language for the generated parser. Currently
5168supported languages include C, C++, and Java.
5169@var{language} is case-insensitive.
5170
5171This directive is experimental and its effect may be modified in future
5172releases.
5173@end deffn
5174
5175@deffn {Directive} %locations
5176Generate the code processing the locations (@pxref{Action Features,
5177,Special Features for Use in Actions}). This mode is enabled as soon as
5178the grammar uses the special @samp{@@@var{n}} tokens, but if your
5179grammar does not use it, using @samp{%locations} allows for more
5180accurate syntax error messages.
5181@end deffn
5182
2f4518a1
JD
5183@ifset defaultprec
5184@deffn {Directive} %no-default-prec
5185Do not assign a precedence to rules lacking an explicit @code{%prec}
5186modifier (@pxref{Contextual Precedence, ,Context-Dependent
5187Precedence}).
5188@end deffn
5189@end ifset
5190
5191@deffn {Directive} %no-lines
5192Don't generate any @code{#line} preprocessor commands in the parser
5193implementation file. Ordinarily Bison writes these commands in the
5194parser implementation file so that the C compiler and debuggers will
5195associate errors and object code with your source file (the grammar
5196file). This directive causes them to associate errors with the parser
5197implementation file, treating it as an independent source file in its
5198own right.
5199@end deffn
5200
5201@deffn {Directive} %output "@var{file}"
5202Specify @var{file} for the parser implementation file.
5203@end deffn
5204
5205@deffn {Directive} %pure-parser
5206Deprecated version of @code{%define api.pure} (@pxref{%define
5207Summary,,api.pure}), for which Bison is more careful to warn about
5208unreasonable usage.
5209@end deffn
5210
5211@deffn {Directive} %require "@var{version}"
5212Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5213Require a Version of Bison}.
5214@end deffn
5215
5216@deffn {Directive} %skeleton "@var{file}"
5217Specify the skeleton to use.
5218
5219@c You probably don't need this option unless you are developing Bison.
5220@c You should use @code{%language} if you want to specify the skeleton for a
5221@c different language, because it is clearer and because it will always choose the
5222@c correct skeleton for non-deterministic or push parsers.
5223
5224If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5225file in the Bison installation directory.
5226If it does, @var{file} is an absolute file name or a file name relative to the
5227directory of the grammar file.
5228This is similar to how most shells resolve commands.
5229@end deffn
5230
5231@deffn {Directive} %token-table
5232Generate an array of token names in the parser implementation file.
5233The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5234the name of the token whose internal Bison token code number is
5235@var{i}. The first three elements of @code{yytname} correspond to the
5236predefined tokens @code{"$end"}, @code{"error"}, and
5237@code{"$undefined"}; after these come the symbols defined in the
5238grammar file.
5239
5240The name in the table includes all the characters needed to represent
5241the token in Bison. For single-character literals and literal
5242strings, this includes the surrounding quoting characters and any
5243escape sequences. For example, the Bison single-character literal
5244@code{'+'} corresponds to a three-character name, represented in C as
5245@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5246corresponds to a five-character name, represented in C as
5247@code{"\"\\\\/\""}.
5248
5249When you specify @code{%token-table}, Bison also generates macro
5250definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5251@code{YYNRULES}, and @code{YYNSTATES}:
5252
5253@table @code
5254@item YYNTOKENS
5255The highest token number, plus one.
5256@item YYNNTS
5257The number of nonterminal symbols.
5258@item YYNRULES
5259The number of grammar rules,
5260@item YYNSTATES
5261The number of parser states (@pxref{Parser States}).
5262@end table
5263@end deffn
5264
5265@deffn {Directive} %verbose
5266Write an extra output file containing verbose descriptions of the
5267parser states and what is done for each type of lookahead token in
5268that state. @xref{Understanding, , Understanding Your Parser}, for more
5269information.
5270@end deffn
5271
5272@deffn {Directive} %yacc
5273Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5274including its naming conventions. @xref{Bison Options}, for more.
5275@end deffn
5276
5277
5278@node %define Summary
5279@subsection %define Summary
406dec82
JD
5280
5281There are many features of Bison's behavior that can be controlled by
5282assigning the feature a single value. For historical reasons, some
5283such features are assigned values by dedicated directives, such as
5284@code{%start}, which assigns the start symbol. However, newer such
5285features are associated with variables, which are assigned by the
5286@code{%define} directive:
5287
c1d19e10 5288@deffn {Directive} %define @var{variable}
f37495f6 5289@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5290@deffnx {Directive} %define @var{variable} "@var{value}"
406dec82 5291Define @var{variable} to @var{value}.
9611cfa2 5292
406dec82
JD
5293@var{value} must be placed in quotation marks if it contains any
5294character other than a letter, underscore, period, or non-initial dash
5295or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5296to specifying @code{""}.
9611cfa2 5297
406dec82
JD
5298It is an error if a @var{variable} is defined by @code{%define}
5299multiple times, but see @ref{Bison Options,,-D
5300@var{name}[=@var{value}]}.
5301@end deffn
f37495f6 5302
406dec82
JD
5303The rest of this section summarizes variables and values that
5304@code{%define} accepts.
9611cfa2 5305
406dec82
JD
5306Some @var{variable}s take Boolean values. In this case, Bison will
5307complain if the variable definition does not meet one of the following
5308four conditions:
9611cfa2
JD
5309
5310@enumerate
f37495f6 5311@item @code{@var{value}} is @code{true}
9611cfa2 5312
f37495f6
JD
5313@item @code{@var{value}} is omitted (or @code{""} is specified).
5314This is equivalent to @code{true}.
9611cfa2 5315
f37495f6 5316@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5317
5318@item @var{variable} is never defined.
628be6c9 5319In this case, Bison selects a default value.
9611cfa2 5320@end enumerate
148d66d8 5321
628be6c9
JD
5322What @var{variable}s are accepted, as well as their meanings and default
5323values, depend on the selected target language and/or the parser
5324skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5325Summary,,%skeleton}).
5326Unaccepted @var{variable}s produce an error.
793fbca5
JD
5327Some of the accepted @var{variable}s are:
5328
5329@itemize @bullet
db8ab2be
AD
5330@c ================================================== api.location.type
5331@item @code{api.location.type}
5332@findex %define api.location.type
5333
5334@itemize @bullet
7287be84 5335@item Language(s): C++, Java
db8ab2be
AD
5336
5337@item Purpose: Define the location type.
5338@xref{User Defined Location Type}.
5339
5340@item Accepted Values: String
5341
5342@item Default Value: none
5343
5344@item History: introduced in Bison 2.7
5345@end itemize
5346
4b3847c3
AD
5347@c ================================================== api.prefix
5348@item @code{api.prefix}
5349@findex %define api.prefix
5350
5351@itemize @bullet
5352@item Language(s): All
5353
db8ab2be 5354@item Purpose: Rename exported symbols.
4b3847c3
AD
5355@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5356
5357@item Accepted Values: String
5358
5359@item Default Value: @code{yy}
e358222b
AD
5360
5361@item History: introduced in Bison 2.6
4b3847c3
AD
5362@end itemize
5363
ea118b72 5364@c ================================================== api.pure
4b3847c3 5365@item @code{api.pure}
d9df47b6
JD
5366@findex %define api.pure
5367
5368@itemize @bullet
5369@item Language(s): C
5370
5371@item Purpose: Request a pure (reentrant) parser program.
5372@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5373
5374@item Accepted Values: Boolean
5375
f37495f6 5376@item Default Value: @code{false}
d9df47b6
JD
5377@end itemize
5378
4b3847c3
AD
5379@c ================================================== api.push-pull
5380
5381@item @code{api.push-pull}
812775a0 5382@findex %define api.push-pull
793fbca5
JD
5383
5384@itemize @bullet
34a6c2d1 5385@item Language(s): C (deterministic parsers only)
793fbca5 5386
3b1977ea 5387@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5388@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5389(The current push parsing interface is experimental and may evolve.
5390More user feedback will help to stabilize it.)
793fbca5 5391
f37495f6 5392@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5393
f37495f6 5394@item Default Value: @code{pull}
793fbca5
JD
5395@end itemize
5396
232be91a
AD
5397@c ================================================== lr.default-reductions
5398
4b3847c3 5399@item @code{lr.default-reductions}
1d0f55cc 5400@findex %define lr.default-reductions
34a6c2d1
JD
5401
5402@itemize @bullet
5403@item Language(s): all
5404
4c38b19e 5405@item Purpose: Specify the kind of states that are permitted to
6f04ee6c
JD
5406contain default reductions. @xref{Default Reductions}. (The ability to
5407specify where default reductions should be used is experimental. More user
5408feedback will help to stabilize it.)
34a6c2d1 5409
a6e5a280 5410@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
34a6c2d1
JD
5411@item Default Value:
5412@itemize
f37495f6 5413@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
a6e5a280 5414@item @code{most} otherwise.
34a6c2d1
JD
5415@end itemize
5416@end itemize
5417
232be91a
AD
5418@c ============================================ lr.keep-unreachable-states
5419
4b3847c3 5420@item @code{lr.keep-unreachable-states}
812775a0 5421@findex %define lr.keep-unreachable-states
31984206
JD
5422
5423@itemize @bullet
5424@item Language(s): all
3b1977ea 5425@item Purpose: Request that Bison allow unreachable parser states to
6f04ee6c 5426remain in the parser tables. @xref{Unreachable States}.
31984206 5427@item Accepted Values: Boolean
f37495f6 5428@item Default Value: @code{false}
31984206
JD
5429@end itemize
5430
232be91a
AD
5431@c ================================================== lr.type
5432
4b3847c3 5433@item @code{lr.type}
34a6c2d1 5434@findex %define lr.type
34a6c2d1
JD
5435
5436@itemize @bullet
5437@item Language(s): all
5438
3b1977ea 5439@item Purpose: Specify the type of parser tables within the
6f04ee6c 5440LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
34a6c2d1
JD
5441More user feedback will help to stabilize it.)
5442
6f04ee6c 5443@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
34a6c2d1 5444
f37495f6 5445@item Default Value: @code{lalr}
34a6c2d1
JD
5446@end itemize
5447
4b3847c3
AD
5448@c ================================================== namespace
5449
5450@item @code{namespace}
793fbca5
JD
5451@findex %define namespace
5452
5453@itemize
5454@item Languages(s): C++
5455
3b1977ea 5456@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5457For example, if you specify:
5458
5459@smallexample
5460%define namespace "foo::bar"
5461@end smallexample
5462
5463Bison uses @code{foo::bar} verbatim in references such as:
5464
5465@smallexample
5466foo::bar::parser::semantic_type
5467@end smallexample
5468
5469However, to open a namespace, Bison removes any leading @code{::} and then
5470splits on any remaining occurrences:
5471
5472@smallexample
5473namespace foo @{ namespace bar @{
5474 class position;
5475 class location;
5476@} @}
5477@end smallexample
5478
5479@item Accepted Values: Any absolute or relative C++ namespace reference without
5480a trailing @code{"::"}.
5481For example, @code{"foo"} or @code{"::foo::bar"}.
5482
5483@item Default Value: The value specified by @code{%name-prefix}, which defaults
5484to @code{yy}.
5485This usage of @code{%name-prefix} is for backward compatibility and can be
5486confusing since @code{%name-prefix} also specifies the textual prefix for the
5487lexical analyzer function.
5488Thus, if you specify @code{%name-prefix}, it is best to also specify
5489@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5490lexical analyzer function.
5491For example, if you specify:
5492
5493@smallexample
5494%define namespace "foo"
5495%name-prefix "bar::"
5496@end smallexample
5497
5498The parser namespace is @code{foo} and @code{yylex} is referenced as
5499@code{bar::lex}.
5500@end itemize
4c38b19e
JD
5501
5502@c ================================================== parse.lac
4b3847c3 5503@item @code{parse.lac}
4c38b19e 5504@findex %define parse.lac
4c38b19e
JD
5505
5506@itemize
6f04ee6c 5507@item Languages(s): C (deterministic parsers only)
4c38b19e 5508
35430378 5509@item Purpose: Enable LAC (lookahead correction) to improve
6f04ee6c 5510syntax error handling. @xref{LAC}.
4c38b19e 5511@item Accepted Values: @code{none}, @code{full}
4c38b19e
JD
5512@item Default Value: @code{none}
5513@end itemize
793fbca5
JD
5514@end itemize
5515
d8988b2f 5516
8e6f2266
JD
5517@node %code Summary
5518@subsection %code Summary
8e6f2266 5519@findex %code
8e6f2266 5520@cindex Prologue
406dec82
JD
5521
5522The @code{%code} directive inserts code verbatim into the output
5523parser source at any of a predefined set of locations. It thus serves
5524as a flexible and user-friendly alternative to the traditional Yacc
5525prologue, @code{%@{@var{code}%@}}. This section summarizes the
5526functionality of @code{%code} for the various target languages
5527supported by Bison. For a detailed discussion of how to use
5528@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5529is advantageous to do so, @pxref{Prologue Alternatives}.
5530
5531@deffn {Directive} %code @{@var{code}@}
5532This is the unqualified form of the @code{%code} directive. It
5533inserts @var{code} verbatim at a language-dependent default location
5534in the parser implementation.
5535
8e6f2266 5536For C/C++, the default location is the parser implementation file
406dec82
JD
5537after the usual contents of the parser header file. Thus, the
5538unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
8e6f2266
JD
5539
5540For Java, the default location is inside the parser class.
5541@end deffn
5542
5543@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5544This is the qualified form of the @code{%code} directive.
406dec82
JD
5545@var{qualifier} identifies the purpose of @var{code} and thus the
5546location(s) where Bison should insert it. That is, if you need to
5547specify location-sensitive @var{code} that does not belong at the
5548default location selected by the unqualified @code{%code} form, use
5549this form instead.
5550@end deffn
5551
5552For any particular qualifier or for the unqualified form, if there are
5553multiple occurrences of the @code{%code} directive, Bison concatenates
5554the specified code in the order in which it appears in the grammar
5555file.
8e6f2266 5556
406dec82
JD
5557Not all qualifiers are accepted for all target languages. Unaccepted
5558qualifiers produce an error. Some of the accepted qualifiers are:
8e6f2266
JD
5559
5560@itemize @bullet
5561@item requires
5562@findex %code requires
5563
5564@itemize @bullet
5565@item Language(s): C, C++
5566
5567@item Purpose: This is the best place to write dependency code required for
5568@code{YYSTYPE} and @code{YYLTYPE}.
5569In other words, it's the best place to define types referenced in @code{%union}
5570directives, and it's the best place to override Bison's default @code{YYSTYPE}
5571and @code{YYLTYPE} definitions.
5572
5573@item Location(s): The parser header file and the parser implementation file
5574before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5575definitions.
5576@end itemize
5577
5578@item provides
5579@findex %code provides
5580
5581@itemize @bullet
5582@item Language(s): C, C++
5583
5584@item Purpose: This is the best place to write additional definitions and
5585declarations that should be provided to other modules.
5586
5587@item Location(s): The parser header file and the parser implementation
5588file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5589token definitions.
5590@end itemize
5591
5592@item top
5593@findex %code top
5594
5595@itemize @bullet
5596@item Language(s): C, C++
5597
5598@item Purpose: The unqualified @code{%code} or @code{%code requires}
5599should usually be more appropriate than @code{%code top}. However,
5600occasionally it is necessary to insert code much nearer the top of the
5601parser implementation file. For example:
5602
ea118b72 5603@example
8e6f2266
JD
5604%code top @{
5605 #define _GNU_SOURCE
5606 #include <stdio.h>
5607@}
ea118b72 5608@end example
8e6f2266
JD
5609
5610@item Location(s): Near the top of the parser implementation file.
5611@end itemize
5612
5613@item imports
5614@findex %code imports
5615
5616@itemize @bullet
5617@item Language(s): Java
5618
5619@item Purpose: This is the best place to write Java import directives.
5620
5621@item Location(s): The parser Java file after any Java package directive and
5622before any class definitions.
5623@end itemize
5624@end itemize
5625
406dec82
JD
5626Though we say the insertion locations are language-dependent, they are
5627technically skeleton-dependent. Writers of non-standard skeletons
5628however should choose their locations consistently with the behavior
5629of the standard Bison skeletons.
8e6f2266 5630
d8988b2f 5631
342b8b6e 5632@node Multiple Parsers
bfa74976
RS
5633@section Multiple Parsers in the Same Program
5634
5635Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
5636only one Bison parser. But what if you want to parse more than one language
5637with the same program? Then you need to avoid name conflicts between
5638different definitions of functions and variables such as @code{yyparse},
5639@code{yylval}. To use different parsers from the same compilation unit, you
5640also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
5641exported in the generated header.
5642
5643The easy way to do this is to define the @code{%define} variable
e358222b
AD
5644@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
5645headers do not conflict when included together, and that compiled objects
5646can be linked together too. Specifying @samp{%define api.prefix
5647@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
5648@ref{Invocation, ,Invoking Bison}) renames the interface functions and
5649variables of the Bison parser to start with @var{prefix} instead of
5650@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
5651upper-cased) instead of @samp{YY}.
4b3847c3
AD
5652
5653The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
5654@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
5655@code{yydebug}. If you use a push parser, @code{yypush_parse},
5656@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
5657@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
5658@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
5659specifically --- more about this below.
4b3847c3
AD
5660
5661For example, if you use @samp{%define api.prefix c}, the names become
5662@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
5663on.
5664
5665The @code{%define} variable @code{api.prefix} works in two different ways.
5666In the implementation file, it works by adding macro definitions to the
5667beginning of the parser implementation file, defining @code{yyparse} as
5668@code{@var{prefix}parse}, and so on:
5669
5670@example
5671#define YYSTYPE CTYPE
5672#define yyparse cparse
5673#define yylval clval
5674...
5675YYSTYPE yylval;
5676int yyparse (void);
5677@end example
5678
5679This effectively substitutes one name for the other in the entire parser
5680implementation file, thus the ``original'' names (@code{yylex},
5681@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
5682
5683However, in the parser header file, the symbols are defined renamed, for
5684instance:
5685
5686@example
5687extern CSTYPE clval;
5688int cparse (void);
5689@end example
5690
e358222b
AD
5691The macro @code{YYDEBUG} is commonly used to enable the tracing support in
5692parsers. To comply with this tradition, when @code{api.prefix} is used,
5693@code{YYDEBUG} (not renamed) is used as a default value:
5694
5695@example
5696/* Enabling traces. */
5697#ifndef CDEBUG
5698# if defined YYDEBUG
5699# if YYDEBUG
5700# define CDEBUG 1
5701# else
5702# define CDEBUG 0
5703# endif
5704# else
5705# define CDEBUG 0
5706# endif
5707#endif
5708#if CDEBUG
5709extern int cdebug;
5710#endif
5711@end example
5712
5713@sp 2
5714
5715Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
5716the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
5717Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 5718
342b8b6e 5719@node Interface
bfa74976
RS
5720@chapter Parser C-Language Interface
5721@cindex C-language interface
5722@cindex interface
5723
5724The Bison parser is actually a C function named @code{yyparse}. Here we
5725describe the interface conventions of @code{yyparse} and the other
5726functions that it needs to use.
5727
5728Keep in mind that the parser uses many C identifiers starting with
5729@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5730identifier (aside from those in this manual) in an action or in epilogue
5731in the grammar file, you are likely to run into trouble.
bfa74976
RS
5732
5733@menu
f56274a8
DJ
5734* Parser Function:: How to call @code{yyparse} and what it returns.
5735* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5736* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5737* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5738* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5739* Lexical:: You must supply a function @code{yylex}
5740 which reads tokens.
5741* Error Reporting:: You must supply a function @code{yyerror}.
5742* Action Features:: Special features for use in actions.
5743* Internationalization:: How to let the parser speak in the user's
5744 native language.
bfa74976
RS
5745@end menu
5746
342b8b6e 5747@node Parser Function
bfa74976
RS
5748@section The Parser Function @code{yyparse}
5749@findex yyparse
5750
5751You call the function @code{yyparse} to cause parsing to occur. This
5752function reads tokens, executes actions, and ultimately returns when it
5753encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5754write an action which directs @code{yyparse} to return immediately
5755without reading further.
bfa74976 5756
2a8d363a
AD
5757
5758@deftypefun int yyparse (void)
bfa74976
RS
5759The value returned by @code{yyparse} is 0 if parsing was successful (return
5760is due to end-of-input).
5761
b47dbebe
PE
5762The value is 1 if parsing failed because of invalid input, i.e., input
5763that contains a syntax error or that causes @code{YYABORT} to be
5764invoked.
5765
5766The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5767@end deftypefun
bfa74976
RS
5768
5769In an action, you can cause immediate return from @code{yyparse} by using
5770these macros:
5771
2a8d363a 5772@defmac YYACCEPT
bfa74976
RS
5773@findex YYACCEPT
5774Return immediately with value 0 (to report success).
2a8d363a 5775@end defmac
bfa74976 5776
2a8d363a 5777@defmac YYABORT
bfa74976
RS
5778@findex YYABORT
5779Return immediately with value 1 (to report failure).
2a8d363a
AD
5780@end defmac
5781
5782If you use a reentrant parser, you can optionally pass additional
5783parameter information to it in a reentrant way. To do so, use the
5784declaration @code{%parse-param}:
5785
feeb0eda 5786@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5787@findex %parse-param
287c78f6
PE
5788Declare that an argument declared by the braced-code
5789@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5790The @var{argument-declaration} is used when declaring
feeb0eda
PE
5791functions or prototypes. The last identifier in
5792@var{argument-declaration} must be the argument name.
2a8d363a
AD
5793@end deffn
5794
5795Here's an example. Write this in the parser:
5796
5797@example
feeb0eda
PE
5798%parse-param @{int *nastiness@}
5799%parse-param @{int *randomness@}
2a8d363a
AD
5800@end example
5801
5802@noindent
5803Then call the parser like this:
5804
5805@example
5806@{
5807 int nastiness, randomness;
5808 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5809 value = yyparse (&nastiness, &randomness);
5810 @dots{}
5811@}
5812@end example
5813
5814@noindent
5815In the grammar actions, use expressions like this to refer to the data:
5816
5817@example
5818exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5819@end example
5820
9987d1b3
JD
5821@node Push Parser Function
5822@section The Push Parser Function @code{yypush_parse}
5823@findex yypush_parse
5824
59da312b
JD
5825(The current push parsing interface is experimental and may evolve.
5826More user feedback will help to stabilize it.)
5827
f4101aa6 5828You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5829function is available if either the @code{%define api.push-pull push} or
5830@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5831@xref{Push Decl, ,A Push Parser}.
5832
5833@deftypefun int yypush_parse (yypstate *yyps)
ad60e80f
AD
5834The value returned by @code{yypush_parse} is the same as for yyparse with
5835the following exception: it returns @code{YYPUSH_MORE} if more input is
5836required to finish parsing the grammar.
9987d1b3
JD
5837@end deftypefun
5838
5839@node Pull Parser Function
5840@section The Pull Parser Function @code{yypull_parse}
5841@findex yypull_parse
5842
59da312b
JD
5843(The current push parsing interface is experimental and may evolve.
5844More user feedback will help to stabilize it.)
5845
f4101aa6 5846You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5847stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5848declaration is used.
9987d1b3
JD
5849@xref{Push Decl, ,A Push Parser}.
5850
5851@deftypefun int yypull_parse (yypstate *yyps)
5852The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5853@end deftypefun
5854
5855@node Parser Create Function
5856@section The Parser Create Function @code{yystate_new}
5857@findex yypstate_new
5858
59da312b
JD
5859(The current push parsing interface is experimental and may evolve.
5860More user feedback will help to stabilize it.)
5861
f4101aa6 5862You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5863This function is available if either the @code{%define api.push-pull push} or
5864@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5865@xref{Push Decl, ,A Push Parser}.
5866
34a41a93 5867@deftypefun {yypstate*} yypstate_new (void)
c781580d 5868The function will return a valid parser instance if there was memory available
333e670c
JD
5869or 0 if no memory was available.
5870In impure mode, it will also return 0 if a parser instance is currently
5871allocated.
9987d1b3
JD
5872@end deftypefun
5873
5874@node Parser Delete Function
5875@section The Parser Delete Function @code{yystate_delete}
5876@findex yypstate_delete
5877
59da312b
JD
5878(The current push parsing interface is experimental and may evolve.
5879More user feedback will help to stabilize it.)
5880
9987d1b3 5881You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5882function is available if either the @code{%define api.push-pull push} or
5883@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5884@xref{Push Decl, ,A Push Parser}.
5885
5886@deftypefun void yypstate_delete (yypstate *yyps)
5887This function will reclaim the memory associated with a parser instance.
5888After this call, you should no longer attempt to use the parser instance.
5889@end deftypefun
bfa74976 5890
342b8b6e 5891@node Lexical
bfa74976
RS
5892@section The Lexical Analyzer Function @code{yylex}
5893@findex yylex
5894@cindex lexical analyzer
5895
5896The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5897the input stream and returns them to the parser. Bison does not create
5898this function automatically; you must write it so that @code{yyparse} can
5899call it. The function is sometimes referred to as a lexical scanner.
5900
9913d6e4
JD
5901In simple programs, @code{yylex} is often defined at the end of the
5902Bison grammar file. If @code{yylex} is defined in a separate source
5903file, you need to arrange for the token-type macro definitions to be
5904available there. To do this, use the @samp{-d} option when you run
5905Bison, so that it will write these macro definitions into the separate
5906parser header file, @file{@var{name}.tab.h}, which you can include in
5907the other source files that need it. @xref{Invocation, ,Invoking
5908Bison}.
bfa74976
RS
5909
5910@menu
5911* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5912* Token Values:: How @code{yylex} must return the semantic value
5913 of the token it has read.
5914* Token Locations:: How @code{yylex} must return the text location
5915 (line number, etc.) of the token, if the
5916 actions want that.
5917* Pure Calling:: How the calling convention differs in a pure parser
5918 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5919@end menu
5920
342b8b6e 5921@node Calling Convention
bfa74976
RS
5922@subsection Calling Convention for @code{yylex}
5923
72d2299c
PE
5924The value that @code{yylex} returns must be the positive numeric code
5925for the type of token it has just found; a zero or negative value
5926signifies end-of-input.
bfa74976
RS
5927
5928When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5929in the parser implementation file becomes a C macro whose definition
5930is the proper numeric code for that token type. So @code{yylex} can
5931use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5932
5933When a token is referred to in the grammar rules by a character literal,
5934the numeric code for that character is also the code for the token type.
72d2299c
PE
5935So @code{yylex} can simply return that character code, possibly converted
5936to @code{unsigned char} to avoid sign-extension. The null character
5937must not be used this way, because its code is zero and that
bfa74976
RS
5938signifies end-of-input.
5939
5940Here is an example showing these things:
5941
5942@example
13863333
AD
5943int
5944yylex (void)
bfa74976
RS
5945@{
5946 @dots{}
72d2299c 5947 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5948 return 0;
5949 @dots{}
5950 if (c == '+' || c == '-')
72d2299c 5951 return c; /* Assume token type for `+' is '+'. */
bfa74976 5952 @dots{}
72d2299c 5953 return INT; /* Return the type of the token. */
bfa74976
RS
5954 @dots{}
5955@}
5956@end example
5957
5958@noindent
5959This interface has been designed so that the output from the @code{lex}
5960utility can be used without change as the definition of @code{yylex}.
5961
931c7513
RS
5962If the grammar uses literal string tokens, there are two ways that
5963@code{yylex} can determine the token type codes for them:
5964
5965@itemize @bullet
5966@item
5967If the grammar defines symbolic token names as aliases for the
5968literal string tokens, @code{yylex} can use these symbolic names like
5969all others. In this case, the use of the literal string tokens in
5970the grammar file has no effect on @code{yylex}.
5971
5972@item
9ecbd125 5973@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5974table. The index of the token in the table is the token type's code.
9ecbd125 5975The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5976double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5977token's characters are escaped as necessary to be suitable as input
5978to Bison.
931c7513 5979
9e0876fb
PE
5980Here's code for looking up a multicharacter token in @code{yytname},
5981assuming that the characters of the token are stored in
5982@code{token_buffer}, and assuming that the token does not contain any
5983characters like @samp{"} that require escaping.
931c7513 5984
ea118b72 5985@example
931c7513
RS
5986for (i = 0; i < YYNTOKENS; i++)
5987 @{
5988 if (yytname[i] != 0
5989 && yytname[i][0] == '"'
68449b3a
PE
5990 && ! strncmp (yytname[i] + 1, token_buffer,
5991 strlen (token_buffer))
931c7513
RS
5992 && yytname[i][strlen (token_buffer) + 1] == '"'
5993 && yytname[i][strlen (token_buffer) + 2] == 0)
5994 break;
5995 @}
ea118b72 5996@end example
931c7513
RS
5997
5998The @code{yytname} table is generated only if you use the
8c9a50be 5999@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6000@end itemize
6001
342b8b6e 6002@node Token Values
bfa74976
RS
6003@subsection Semantic Values of Tokens
6004
6005@vindex yylval
9d9b8b70 6006In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6007be stored into the global variable @code{yylval}. When you are using
6008just one data type for semantic values, @code{yylval} has that type.
6009Thus, if the type is @code{int} (the default), you might write this in
6010@code{yylex}:
6011
6012@example
6013@group
6014 @dots{}
72d2299c
PE
6015 yylval = value; /* Put value onto Bison stack. */
6016 return INT; /* Return the type of the token. */
bfa74976
RS
6017 @dots{}
6018@end group
6019@end example
6020
6021When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6022made from the @code{%union} declaration (@pxref{Union Decl, ,The
6023Collection of Value Types}). So when you store a token's value, you
6024must use the proper member of the union. If the @code{%union}
6025declaration looks like this:
bfa74976
RS
6026
6027@example
6028@group
6029%union @{
6030 int intval;
6031 double val;
6032 symrec *tptr;
6033@}
6034@end group
6035@end example
6036
6037@noindent
6038then the code in @code{yylex} might look like this:
6039
6040@example
6041@group
6042 @dots{}
72d2299c
PE
6043 yylval.intval = value; /* Put value onto Bison stack. */
6044 return INT; /* Return the type of the token. */
bfa74976
RS
6045 @dots{}
6046@end group
6047@end example
6048
95923bd6
AD
6049@node Token Locations
6050@subsection Textual Locations of Tokens
bfa74976
RS
6051
6052@vindex yylloc
7404cdf3
JD
6053If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6054in actions to keep track of the textual locations of tokens and groupings,
6055then you must provide this information in @code{yylex}. The function
6056@code{yyparse} expects to find the textual location of a token just parsed
6057in the global variable @code{yylloc}. So @code{yylex} must store the proper
6058data in that variable.
847bf1f5
AD
6059
6060By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6061initialize the members that are going to be used by the actions. The
6062four members are called @code{first_line}, @code{first_column},
6063@code{last_line} and @code{last_column}. Note that the use of this
6064feature makes the parser noticeably slower.
bfa74976
RS
6065
6066@tindex YYLTYPE
6067The data type of @code{yylloc} has the name @code{YYLTYPE}.
6068
342b8b6e 6069@node Pure Calling
c656404a 6070@subsection Calling Conventions for Pure Parsers
bfa74976 6071
d9df47b6 6072When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
6073pure, reentrant parser, the global communication variables @code{yylval}
6074and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6075Parser}.) In such parsers the two global variables are replaced by
6076pointers passed as arguments to @code{yylex}. You must declare them as
6077shown here, and pass the information back by storing it through those
6078pointers.
bfa74976
RS
6079
6080@example
13863333
AD
6081int
6082yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6083@{
6084 @dots{}
6085 *lvalp = value; /* Put value onto Bison stack. */
6086 return INT; /* Return the type of the token. */
6087 @dots{}
6088@}
6089@end example
6090
6091If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6092textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6093this case, omit the second argument; @code{yylex} will be called with
6094only one argument.
6095
e425e872 6096
2a8d363a
AD
6097If you wish to pass the additional parameter data to @code{yylex}, use
6098@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
6099Function}).
e425e872 6100
feeb0eda 6101@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 6102@findex %lex-param
287c78f6
PE
6103Declare that the braced-code @var{argument-declaration} is an
6104additional @code{yylex} argument declaration.
2a8d363a 6105@end deffn
e425e872 6106
2a8d363a 6107For instance:
e425e872
RS
6108
6109@example
feeb0eda
PE
6110%parse-param @{int *nastiness@}
6111%lex-param @{int *nastiness@}
6112%parse-param @{int *randomness@}
e425e872
RS
6113@end example
6114
6115@noindent
18ad57b3 6116results in the following signatures:
e425e872
RS
6117
6118@example
2a8d363a
AD
6119int yylex (int *nastiness);
6120int yyparse (int *nastiness, int *randomness);
e425e872
RS
6121@end example
6122
d9df47b6 6123If @code{%define api.pure} is added:
c656404a
RS
6124
6125@example
2a8d363a
AD
6126int yylex (YYSTYPE *lvalp, int *nastiness);
6127int yyparse (int *nastiness, int *randomness);
c656404a
RS
6128@end example
6129
2a8d363a 6130@noindent
d9df47b6 6131and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 6132
2a8d363a
AD
6133@example
6134int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6135int yyparse (int *nastiness, int *randomness);
6136@end example
931c7513 6137
342b8b6e 6138@node Error Reporting
bfa74976
RS
6139@section The Error Reporting Function @code{yyerror}
6140@cindex error reporting function
6141@findex yyerror
6142@cindex parse error
6143@cindex syntax error
6144
6e649e65 6145The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 6146whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6147action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6148macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6149in Actions}).
bfa74976
RS
6150
6151The Bison parser expects to report the error by calling an error
6152reporting function named @code{yyerror}, which you must supply. It is
6153called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6154receives one argument. For a syntax error, the string is normally
6155@w{@code{"syntax error"}}.
bfa74976 6156
2a8d363a 6157@findex %error-verbose
6f04ee6c
JD
6158If you invoke the directive @code{%error-verbose} in the Bison declarations
6159section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6160Bison provides a more verbose and specific error message string instead of
6161just plain @w{@code{"syntax error"}}. However, that message sometimes
6162contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6163
1a059451
PE
6164The parser can detect one other kind of error: memory exhaustion. This
6165can happen when the input contains constructions that are very deeply
bfa74976 6166nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6167parser normally extends its stack automatically up to a very large limit. But
6168if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6169fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6170
6171In some cases diagnostics like @w{@code{"syntax error"}} are
6172translated automatically from English to some other language before
6173they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6174
6175The following definition suffices in simple programs:
6176
6177@example
6178@group
13863333 6179void
38a92d50 6180yyerror (char const *s)
bfa74976
RS
6181@{
6182@end group
6183@group
6184 fprintf (stderr, "%s\n", s);
6185@}
6186@end group
6187@end example
6188
6189After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6190error recovery if you have written suitable error recovery grammar rules
6191(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6192immediately return 1.
6193
93724f13 6194Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6195an access to the current location.
35430378 6196This is indeed the case for the GLR
2a8d363a 6197parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6198@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6199@code{yyerror} are:
6200
6201@example
38a92d50
PE
6202void yyerror (char const *msg); /* Yacc parsers. */
6203void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6204@end example
6205
feeb0eda 6206If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6207
6208@example
b317297e
PE
6209void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6210void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6211@end example
6212
35430378 6213Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6214convention for absolutely pure parsers, i.e., when the calling
6215convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
6216@code{%define api.pure} are pure.
6217I.e.:
2a8d363a
AD
6218
6219@example
6220/* Location tracking. */
6221%locations
6222/* Pure yylex. */
d9df47b6 6223%define api.pure
feeb0eda 6224%lex-param @{int *nastiness@}
2a8d363a 6225/* Pure yyparse. */
feeb0eda
PE
6226%parse-param @{int *nastiness@}
6227%parse-param @{int *randomness@}
2a8d363a
AD
6228@end example
6229
6230@noindent
6231results in the following signatures for all the parser kinds:
6232
6233@example
6234int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6235int yyparse (int *nastiness, int *randomness);
93724f13
AD
6236void yyerror (YYLTYPE *locp,
6237 int *nastiness, int *randomness,
38a92d50 6238 char const *msg);
2a8d363a
AD
6239@end example
6240
1c0c3e95 6241@noindent
38a92d50
PE
6242The prototypes are only indications of how the code produced by Bison
6243uses @code{yyerror}. Bison-generated code always ignores the returned
6244value, so @code{yyerror} can return any type, including @code{void}.
6245Also, @code{yyerror} can be a variadic function; that is why the
6246message is always passed last.
6247
6248Traditionally @code{yyerror} returns an @code{int} that is always
6249ignored, but this is purely for historical reasons, and @code{void} is
6250preferable since it more accurately describes the return type for
6251@code{yyerror}.
93724f13 6252
bfa74976
RS
6253@vindex yynerrs
6254The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6255reported so far. Normally this variable is global; but if you
704a47c4
AD
6256request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6257then it is a local variable which only the actions can access.
bfa74976 6258
342b8b6e 6259@node Action Features
bfa74976
RS
6260@section Special Features for Use in Actions
6261@cindex summary, action features
6262@cindex action features summary
6263
6264Here is a table of Bison constructs, variables and macros that
6265are useful in actions.
6266
18b519c0 6267@deffn {Variable} $$
bfa74976
RS
6268Acts like a variable that contains the semantic value for the
6269grouping made by the current rule. @xref{Actions}.
18b519c0 6270@end deffn
bfa74976 6271
18b519c0 6272@deffn {Variable} $@var{n}
bfa74976
RS
6273Acts like a variable that contains the semantic value for the
6274@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6275@end deffn
bfa74976 6276
18b519c0 6277@deffn {Variable} $<@var{typealt}>$
bfa74976 6278Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6279specified by the @code{%union} declaration. @xref{Action Types, ,Data
6280Types of Values in Actions}.
18b519c0 6281@end deffn
bfa74976 6282
18b519c0 6283@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6284Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6285union specified by the @code{%union} declaration.
e0c471a9 6286@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6287@end deffn
bfa74976 6288
34a41a93 6289@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6290Return immediately from @code{yyparse}, indicating failure.
6291@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6292@end deffn
bfa74976 6293
34a41a93 6294@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6295Return immediately from @code{yyparse}, indicating success.
6296@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6297@end deffn
bfa74976 6298
34a41a93 6299@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6300@findex YYBACKUP
6301Unshift a token. This macro is allowed only for rules that reduce
742e4900 6302a single value, and only when there is no lookahead token.
35430378 6303It is also disallowed in GLR parsers.
742e4900 6304It installs a lookahead token with token type @var{token} and
bfa74976
RS
6305semantic value @var{value}; then it discards the value that was
6306going to be reduced by this rule.
6307
6308If the macro is used when it is not valid, such as when there is
742e4900 6309a lookahead token already, then it reports a syntax error with
bfa74976
RS
6310a message @samp{cannot back up} and performs ordinary error
6311recovery.
6312
6313In either case, the rest of the action is not executed.
18b519c0 6314@end deffn
bfa74976 6315
18b519c0 6316@deffn {Macro} YYEMPTY
742e4900 6317Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6318@end deffn
bfa74976 6319
32c29292 6320@deffn {Macro} YYEOF
742e4900 6321Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6322stream.
6323@end deffn
6324
34a41a93 6325@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6326Cause an immediate syntax error. This statement initiates error
6327recovery just as if the parser itself had detected an error; however, it
6328does not call @code{yyerror}, and does not print any message. If you
6329want to print an error message, call @code{yyerror} explicitly before
6330the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6331@end deffn
bfa74976 6332
18b519c0 6333@deffn {Macro} YYRECOVERING
02103984
PE
6334@findex YYRECOVERING
6335The expression @code{YYRECOVERING ()} yields 1 when the parser
6336is recovering from a syntax error, and 0 otherwise.
bfa74976 6337@xref{Error Recovery}.
18b519c0 6338@end deffn
bfa74976 6339
18b519c0 6340@deffn {Variable} yychar
742e4900
JD
6341Variable containing either the lookahead token, or @code{YYEOF} when the
6342lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6343has been performed so the next token is not yet known.
6344Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6345Actions}).
742e4900 6346@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6347@end deffn
bfa74976 6348
34a41a93 6349@deffn {Macro} yyclearin @code{;}
742e4900 6350Discard the current lookahead token. This is useful primarily in
32c29292
JD
6351error rules.
6352Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6353Semantic Actions}).
6354@xref{Error Recovery}.
18b519c0 6355@end deffn
bfa74976 6356
34a41a93 6357@deffn {Macro} yyerrok @code{;}
bfa74976 6358Resume generating error messages immediately for subsequent syntax
13863333 6359errors. This is useful primarily in error rules.
bfa74976 6360@xref{Error Recovery}.
18b519c0 6361@end deffn
bfa74976 6362
32c29292 6363@deffn {Variable} yylloc
742e4900 6364Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6365to @code{YYEMPTY} or @code{YYEOF}.
6366Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6367Actions}).
6368@xref{Actions and Locations, ,Actions and Locations}.
6369@end deffn
6370
6371@deffn {Variable} yylval
742e4900 6372Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6373not set to @code{YYEMPTY} or @code{YYEOF}.
6374Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6375Actions}).
6376@xref{Actions, ,Actions}.
6377@end deffn
6378
18b519c0 6379@deffn {Value} @@$
847bf1f5 6380@findex @@$
7404cdf3
JD
6381Acts like a structure variable containing information on the textual
6382location of the grouping made by the current rule. @xref{Tracking
6383Locations}.
bfa74976 6384
847bf1f5
AD
6385@c Check if those paragraphs are still useful or not.
6386
6387@c @example
6388@c struct @{
6389@c int first_line, last_line;
6390@c int first_column, last_column;
6391@c @};
6392@c @end example
6393
6394@c Thus, to get the starting line number of the third component, you would
6395@c use @samp{@@3.first_line}.
bfa74976 6396
847bf1f5
AD
6397@c In order for the members of this structure to contain valid information,
6398@c you must make @code{yylex} supply this information about each token.
6399@c If you need only certain members, then @code{yylex} need only fill in
6400@c those members.
bfa74976 6401
847bf1f5 6402@c The use of this feature makes the parser noticeably slower.
18b519c0 6403@end deffn
847bf1f5 6404
18b519c0 6405@deffn {Value} @@@var{n}
847bf1f5 6406@findex @@@var{n}
7404cdf3
JD
6407Acts like a structure variable containing information on the textual
6408location of the @var{n}th component of the current rule. @xref{Tracking
6409Locations}.
18b519c0 6410@end deffn
bfa74976 6411
f7ab6a50
PE
6412@node Internationalization
6413@section Parser Internationalization
6414@cindex internationalization
6415@cindex i18n
6416@cindex NLS
6417@cindex gettext
6418@cindex bison-po
6419
6420A Bison-generated parser can print diagnostics, including error and
6421tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6422also supports outputting diagnostics in the user's native language. To
6423make this work, the user should set the usual environment variables.
6424@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6425For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6426set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6427encoding. The exact set of available locales depends on the user's
6428installation.
6429
6430The maintainer of a package that uses a Bison-generated parser enables
6431the internationalization of the parser's output through the following
35430378
JD
6432steps. Here we assume a package that uses GNU Autoconf and
6433GNU Automake.
f7ab6a50
PE
6434
6435@enumerate
6436@item
30757c8c 6437@cindex bison-i18n.m4
35430378 6438Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6439by the package---often called @file{m4}---copy the
6440@file{bison-i18n.m4} file installed by Bison under
6441@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6442For example:
6443
6444@example
6445cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6446@end example
6447
6448@item
30757c8c
PE
6449@findex BISON_I18N
6450@vindex BISON_LOCALEDIR
6451@vindex YYENABLE_NLS
f7ab6a50
PE
6452In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6453invocation, add an invocation of @code{BISON_I18N}. This macro is
6454defined in the file @file{bison-i18n.m4} that you copied earlier. It
6455causes @samp{configure} to find the value of the
30757c8c
PE
6456@code{BISON_LOCALEDIR} variable, and it defines the source-language
6457symbol @code{YYENABLE_NLS} to enable translations in the
6458Bison-generated parser.
f7ab6a50
PE
6459
6460@item
6461In the @code{main} function of your program, designate the directory
6462containing Bison's runtime message catalog, through a call to
6463@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6464For example:
6465
6466@example
6467bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6468@end example
6469
6470Typically this appears after any other call @code{bindtextdomain
6471(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6472@samp{BISON_LOCALEDIR} to be defined as a string through the
6473@file{Makefile}.
6474
6475@item
6476In the @file{Makefile.am} that controls the compilation of the @code{main}
6477function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6478either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6479
6480@example
6481DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6482@end example
6483
6484or:
6485
6486@example
6487AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6488@end example
6489
6490@item
6491Finally, invoke the command @command{autoreconf} to generate the build
6492infrastructure.
6493@end enumerate
6494
bfa74976 6495
342b8b6e 6496@node Algorithm
13863333
AD
6497@chapter The Bison Parser Algorithm
6498@cindex Bison parser algorithm
bfa74976
RS
6499@cindex algorithm of parser
6500@cindex shifting
6501@cindex reduction
6502@cindex parser stack
6503@cindex stack, parser
6504
6505As Bison reads tokens, it pushes them onto a stack along with their
6506semantic values. The stack is called the @dfn{parser stack}. Pushing a
6507token is traditionally called @dfn{shifting}.
6508
6509For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6510@samp{3} to come. The stack will have four elements, one for each token
6511that was shifted.
6512
6513But the stack does not always have an element for each token read. When
6514the last @var{n} tokens and groupings shifted match the components of a
6515grammar rule, they can be combined according to that rule. This is called
6516@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6517single grouping whose symbol is the result (left hand side) of that rule.
6518Running the rule's action is part of the process of reduction, because this
6519is what computes the semantic value of the resulting grouping.
6520
6521For example, if the infix calculator's parser stack contains this:
6522
6523@example
65241 + 5 * 3
6525@end example
6526
6527@noindent
6528and the next input token is a newline character, then the last three
6529elements can be reduced to 15 via the rule:
6530
6531@example
6532expr: expr '*' expr;
6533@end example
6534
6535@noindent
6536Then the stack contains just these three elements:
6537
6538@example
65391 + 15
6540@end example
6541
6542@noindent
6543At this point, another reduction can be made, resulting in the single value
654416. Then the newline token can be shifted.
6545
6546The parser tries, by shifts and reductions, to reduce the entire input down
6547to a single grouping whose symbol is the grammar's start-symbol
6548(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6549
6550This kind of parser is known in the literature as a bottom-up parser.
6551
6552@menu
742e4900 6553* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6554* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6555* Precedence:: Operator precedence works by resolving conflicts.
6556* Contextual Precedence:: When an operator's precedence depends on context.
6557* Parser States:: The parser is a finite-state-machine with stack.
6558* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 6559* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 6560* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6561* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6562* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6563@end menu
6564
742e4900
JD
6565@node Lookahead
6566@section Lookahead Tokens
6567@cindex lookahead token
bfa74976
RS
6568
6569The Bison parser does @emph{not} always reduce immediately as soon as the
6570last @var{n} tokens and groupings match a rule. This is because such a
6571simple strategy is inadequate to handle most languages. Instead, when a
6572reduction is possible, the parser sometimes ``looks ahead'' at the next
6573token in order to decide what to do.
6574
6575When a token is read, it is not immediately shifted; first it becomes the
742e4900 6576@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6577perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6578the lookahead token remains off to the side. When no more reductions
6579should take place, the lookahead token is shifted onto the stack. This
bfa74976 6580does not mean that all possible reductions have been done; depending on the
742e4900 6581token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6582application.
6583
742e4900 6584Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6585expressions which contain binary addition operators and postfix unary
6586factorial operators (@samp{!}), and allow parentheses for grouping.
6587
6588@example
6589@group
de6be119
AD
6590expr:
6591 term '+' expr
6592| term
6593;
bfa74976
RS
6594@end group
6595
6596@group
de6be119
AD
6597term:
6598 '(' expr ')'
6599| term '!'
6600| NUMBER
6601;
bfa74976
RS
6602@end group
6603@end example
6604
6605Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6606should be done? If the following token is @samp{)}, then the first three
6607tokens must be reduced to form an @code{expr}. This is the only valid
6608course, because shifting the @samp{)} would produce a sequence of symbols
6609@w{@code{term ')'}}, and no rule allows this.
6610
6611If the following token is @samp{!}, then it must be shifted immediately so
6612that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6613parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6614@code{expr}. It would then be impossible to shift the @samp{!} because
6615doing so would produce on the stack the sequence of symbols @code{expr
6616'!'}. No rule allows that sequence.
6617
6618@vindex yychar
32c29292
JD
6619@vindex yylval
6620@vindex yylloc
742e4900 6621The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6622Its semantic value and location, if any, are stored in the variables
6623@code{yylval} and @code{yylloc}.
bfa74976
RS
6624@xref{Action Features, ,Special Features for Use in Actions}.
6625
342b8b6e 6626@node Shift/Reduce
bfa74976
RS
6627@section Shift/Reduce Conflicts
6628@cindex conflicts
6629@cindex shift/reduce conflicts
6630@cindex dangling @code{else}
6631@cindex @code{else}, dangling
6632
6633Suppose we are parsing a language which has if-then and if-then-else
6634statements, with a pair of rules like this:
6635
6636@example
6637@group
6638if_stmt:
de6be119
AD
6639 IF expr THEN stmt
6640| IF expr THEN stmt ELSE stmt
6641;
bfa74976
RS
6642@end group
6643@end example
6644
6645@noindent
6646Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6647terminal symbols for specific keyword tokens.
6648
742e4900 6649When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6650contents of the stack (assuming the input is valid) are just right for
6651reduction by the first rule. But it is also legitimate to shift the
6652@code{ELSE}, because that would lead to eventual reduction by the second
6653rule.
6654
6655This situation, where either a shift or a reduction would be valid, is
6656called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6657these conflicts by choosing to shift, unless otherwise directed by
6658operator precedence declarations. To see the reason for this, let's
6659contrast it with the other alternative.
6660
6661Since the parser prefers to shift the @code{ELSE}, the result is to attach
6662the else-clause to the innermost if-statement, making these two inputs
6663equivalent:
6664
6665@example
6666if x then if y then win (); else lose;
6667
6668if x then do; if y then win (); else lose; end;
6669@end example
6670
6671But if the parser chose to reduce when possible rather than shift, the
6672result would be to attach the else-clause to the outermost if-statement,
6673making these two inputs equivalent:
6674
6675@example
6676if x then if y then win (); else lose;
6677
6678if x then do; if y then win (); end; else lose;
6679@end example
6680
6681The conflict exists because the grammar as written is ambiguous: either
6682parsing of the simple nested if-statement is legitimate. The established
6683convention is that these ambiguities are resolved by attaching the
6684else-clause to the innermost if-statement; this is what Bison accomplishes
6685by choosing to shift rather than reduce. (It would ideally be cleaner to
6686write an unambiguous grammar, but that is very hard to do in this case.)
6687This particular ambiguity was first encountered in the specifications of
6688Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6689
6690To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6691conflicts, use the @code{%expect @var{n}} declaration.
6692There will be no warning as long as the number of shift/reduce conflicts
6693is exactly @var{n}, and Bison will report an error if there is a
6694different number.
bfa74976
RS
6695@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6696
6697The definition of @code{if_stmt} above is solely to blame for the
6698conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6699rules. Here is a complete Bison grammar file that actually manifests
6700the conflict:
bfa74976
RS
6701
6702@example
6703@group
6704%token IF THEN ELSE variable
6705%%
6706@end group
6707@group
de6be119
AD
6708stmt:
6709 expr
6710| if_stmt
6711;
bfa74976
RS
6712@end group
6713
6714@group
6715if_stmt:
de6be119
AD
6716 IF expr THEN stmt
6717| IF expr THEN stmt ELSE stmt
6718;
bfa74976
RS
6719@end group
6720
de6be119
AD
6721expr:
6722 variable
6723;
bfa74976
RS
6724@end example
6725
342b8b6e 6726@node Precedence
bfa74976
RS
6727@section Operator Precedence
6728@cindex operator precedence
6729@cindex precedence of operators
6730
6731Another situation where shift/reduce conflicts appear is in arithmetic
6732expressions. Here shifting is not always the preferred resolution; the
6733Bison declarations for operator precedence allow you to specify when to
6734shift and when to reduce.
6735
6736@menu
6737* Why Precedence:: An example showing why precedence is needed.
6738* Using Precedence:: How to specify precedence in Bison grammars.
6739* Precedence Examples:: How these features are used in the previous example.
6740* How Precedence:: How they work.
6741@end menu
6742
342b8b6e 6743@node Why Precedence
bfa74976
RS
6744@subsection When Precedence is Needed
6745
6746Consider the following ambiguous grammar fragment (ambiguous because the
6747input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6748
6749@example
6750@group
de6be119
AD
6751expr:
6752 expr '-' expr
6753| expr '*' expr
6754| expr '<' expr
6755| '(' expr ')'
6756@dots{}
6757;
bfa74976
RS
6758@end group
6759@end example
6760
6761@noindent
6762Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6763should it reduce them via the rule for the subtraction operator? It
6764depends on the next token. Of course, if the next token is @samp{)}, we
6765must reduce; shifting is invalid because no single rule can reduce the
6766token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6767the next token is @samp{*} or @samp{<}, we have a choice: either
6768shifting or reduction would allow the parse to complete, but with
6769different results.
6770
6771To decide which one Bison should do, we must consider the results. If
6772the next operator token @var{op} is shifted, then it must be reduced
6773first in order to permit another opportunity to reduce the difference.
6774The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6775hand, if the subtraction is reduced before shifting @var{op}, the result
6776is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6777reduce should depend on the relative precedence of the operators
6778@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6779@samp{<}.
bfa74976
RS
6780
6781@cindex associativity
6782What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6783@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6784operators we prefer the former, which is called @dfn{left association}.
6785The latter alternative, @dfn{right association}, is desirable for
6786assignment operators. The choice of left or right association is a
6787matter of whether the parser chooses to shift or reduce when the stack
742e4900 6788contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6789makes right-associativity.
bfa74976 6790
342b8b6e 6791@node Using Precedence
bfa74976
RS
6792@subsection Specifying Operator Precedence
6793@findex %left
6794@findex %right
6795@findex %nonassoc
6796
6797Bison allows you to specify these choices with the operator precedence
6798declarations @code{%left} and @code{%right}. Each such declaration
6799contains a list of tokens, which are operators whose precedence and
6800associativity is being declared. The @code{%left} declaration makes all
6801those operators left-associative and the @code{%right} declaration makes
6802them right-associative. A third alternative is @code{%nonassoc}, which
6803declares that it is a syntax error to find the same operator twice ``in a
6804row''.
6805
6806The relative precedence of different operators is controlled by the
6807order in which they are declared. The first @code{%left} or
6808@code{%right} declaration in the file declares the operators whose
6809precedence is lowest, the next such declaration declares the operators
6810whose precedence is a little higher, and so on.
6811
342b8b6e 6812@node Precedence Examples
bfa74976
RS
6813@subsection Precedence Examples
6814
6815In our example, we would want the following declarations:
6816
6817@example
6818%left '<'
6819%left '-'
6820%left '*'
6821@end example
6822
6823In a more complete example, which supports other operators as well, we
6824would declare them in groups of equal precedence. For example, @code{'+'} is
6825declared with @code{'-'}:
6826
6827@example
6828%left '<' '>' '=' NE LE GE
6829%left '+' '-'
6830%left '*' '/'
6831@end example
6832
6833@noindent
6834(Here @code{NE} and so on stand for the operators for ``not equal''
6835and so on. We assume that these tokens are more than one character long
6836and therefore are represented by names, not character literals.)
6837
342b8b6e 6838@node How Precedence
bfa74976
RS
6839@subsection How Precedence Works
6840
6841The first effect of the precedence declarations is to assign precedence
6842levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6843precedence levels to certain rules: each rule gets its precedence from
6844the last terminal symbol mentioned in the components. (You can also
6845specify explicitly the precedence of a rule. @xref{Contextual
6846Precedence, ,Context-Dependent Precedence}.)
6847
6848Finally, the resolution of conflicts works by comparing the precedence
742e4900 6849of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6850token's precedence is higher, the choice is to shift. If the rule's
6851precedence is higher, the choice is to reduce. If they have equal
6852precedence, the choice is made based on the associativity of that
6853precedence level. The verbose output file made by @samp{-v}
6854(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6855resolved.
bfa74976
RS
6856
6857Not all rules and not all tokens have precedence. If either the rule or
742e4900 6858the lookahead token has no precedence, then the default is to shift.
bfa74976 6859
342b8b6e 6860@node Contextual Precedence
bfa74976
RS
6861@section Context-Dependent Precedence
6862@cindex context-dependent precedence
6863@cindex unary operator precedence
6864@cindex precedence, context-dependent
6865@cindex precedence, unary operator
6866@findex %prec
6867
6868Often the precedence of an operator depends on the context. This sounds
6869outlandish at first, but it is really very common. For example, a minus
6870sign typically has a very high precedence as a unary operator, and a
6871somewhat lower precedence (lower than multiplication) as a binary operator.
6872
6873The Bison precedence declarations, @code{%left}, @code{%right} and
6874@code{%nonassoc}, can only be used once for a given token; so a token has
6875only one precedence declared in this way. For context-dependent
6876precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6877modifier for rules.
bfa74976
RS
6878
6879The @code{%prec} modifier declares the precedence of a particular rule by
6880specifying a terminal symbol whose precedence should be used for that rule.
6881It's not necessary for that symbol to appear otherwise in the rule. The
6882modifier's syntax is:
6883
6884@example
6885%prec @var{terminal-symbol}
6886@end example
6887
6888@noindent
6889and it is written after the components of the rule. Its effect is to
6890assign the rule the precedence of @var{terminal-symbol}, overriding
6891the precedence that would be deduced for it in the ordinary way. The
6892altered rule precedence then affects how conflicts involving that rule
6893are resolved (@pxref{Precedence, ,Operator Precedence}).
6894
6895Here is how @code{%prec} solves the problem of unary minus. First, declare
6896a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6897are no tokens of this type, but the symbol serves to stand for its
6898precedence:
6899
6900@example
6901@dots{}
6902%left '+' '-'
6903%left '*'
6904%left UMINUS
6905@end example
6906
6907Now the precedence of @code{UMINUS} can be used in specific rules:
6908
6909@example
6910@group
de6be119
AD
6911exp:
6912 @dots{}
6913| exp '-' exp
6914 @dots{}
6915| '-' exp %prec UMINUS
bfa74976
RS
6916@end group
6917@end example
6918
91d2c560 6919@ifset defaultprec
39a06c25
PE
6920If you forget to append @code{%prec UMINUS} to the rule for unary
6921minus, Bison silently assumes that minus has its usual precedence.
6922This kind of problem can be tricky to debug, since one typically
6923discovers the mistake only by testing the code.
6924
22fccf95 6925The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6926this kind of problem systematically. It causes rules that lack a
6927@code{%prec} modifier to have no precedence, even if the last terminal
6928symbol mentioned in their components has a declared precedence.
6929
22fccf95 6930If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6931for all rules that participate in precedence conflict resolution.
6932Then you will see any shift/reduce conflict until you tell Bison how
6933to resolve it, either by changing your grammar or by adding an
6934explicit precedence. This will probably add declarations to the
6935grammar, but it helps to protect against incorrect rule precedences.
6936
22fccf95
PE
6937The effect of @code{%no-default-prec;} can be reversed by giving
6938@code{%default-prec;}, which is the default.
91d2c560 6939@end ifset
39a06c25 6940
342b8b6e 6941@node Parser States
bfa74976
RS
6942@section Parser States
6943@cindex finite-state machine
6944@cindex parser state
6945@cindex state (of parser)
6946
6947The function @code{yyparse} is implemented using a finite-state machine.
6948The values pushed on the parser stack are not simply token type codes; they
6949represent the entire sequence of terminal and nonterminal symbols at or
6950near the top of the stack. The current state collects all the information
6951about previous input which is relevant to deciding what to do next.
6952
742e4900
JD
6953Each time a lookahead token is read, the current parser state together
6954with the type of lookahead token are looked up in a table. This table
6955entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6956specifies the new parser state, which is pushed onto the top of the
6957parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6958This means that a certain number of tokens or groupings are taken off
6959the top of the stack, and replaced by one grouping. In other words,
6960that number of states are popped from the stack, and one new state is
6961pushed.
6962
742e4900 6963There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6964is erroneous in the current state. This causes error processing to begin
6965(@pxref{Error Recovery}).
6966
342b8b6e 6967@node Reduce/Reduce
bfa74976
RS
6968@section Reduce/Reduce Conflicts
6969@cindex reduce/reduce conflict
6970@cindex conflicts, reduce/reduce
6971
6972A reduce/reduce conflict occurs if there are two or more rules that apply
6973to the same sequence of input. This usually indicates a serious error
6974in the grammar.
6975
6976For example, here is an erroneous attempt to define a sequence
6977of zero or more @code{word} groupings.
6978
6979@example
98842516 6980@group
de6be119
AD
6981sequence:
6982 /* empty */ @{ printf ("empty sequence\n"); @}
6983| maybeword
6984| sequence word @{ printf ("added word %s\n", $2); @}
6985;
98842516 6986@end group
bfa74976 6987
98842516 6988@group
de6be119
AD
6989maybeword:
6990 /* empty */ @{ printf ("empty maybeword\n"); @}
6991| word @{ printf ("single word %s\n", $1); @}
6992;
98842516 6993@end group
bfa74976
RS
6994@end example
6995
6996@noindent
6997The error is an ambiguity: there is more than one way to parse a single
6998@code{word} into a @code{sequence}. It could be reduced to a
6999@code{maybeword} and then into a @code{sequence} via the second rule.
7000Alternatively, nothing-at-all could be reduced into a @code{sequence}
7001via the first rule, and this could be combined with the @code{word}
7002using the third rule for @code{sequence}.
7003
7004There is also more than one way to reduce nothing-at-all into a
7005@code{sequence}. This can be done directly via the first rule,
7006or indirectly via @code{maybeword} and then the second rule.
7007
7008You might think that this is a distinction without a difference, because it
7009does not change whether any particular input is valid or not. But it does
7010affect which actions are run. One parsing order runs the second rule's
7011action; the other runs the first rule's action and the third rule's action.
7012In this example, the output of the program changes.
7013
7014Bison resolves a reduce/reduce conflict by choosing to use the rule that
7015appears first in the grammar, but it is very risky to rely on this. Every
7016reduce/reduce conflict must be studied and usually eliminated. Here is the
7017proper way to define @code{sequence}:
7018
7019@example
de6be119
AD
7020sequence:
7021 /* empty */ @{ printf ("empty sequence\n"); @}
7022| sequence word @{ printf ("added word %s\n", $2); @}
7023;
bfa74976
RS
7024@end example
7025
7026Here is another common error that yields a reduce/reduce conflict:
7027
7028@example
de6be119
AD
7029sequence:
7030 /* empty */
7031| sequence words
7032| sequence redirects
7033;
bfa74976 7034
de6be119
AD
7035words:
7036 /* empty */
7037| words word
7038;
bfa74976 7039
de6be119
AD
7040redirects:
7041 /* empty */
7042| redirects redirect
7043;
bfa74976
RS
7044@end example
7045
7046@noindent
7047The intention here is to define a sequence which can contain either
7048@code{word} or @code{redirect} groupings. The individual definitions of
7049@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7050three together make a subtle ambiguity: even an empty input can be parsed
7051in infinitely many ways!
7052
7053Consider: nothing-at-all could be a @code{words}. Or it could be two
7054@code{words} in a row, or three, or any number. It could equally well be a
7055@code{redirects}, or two, or any number. Or it could be a @code{words}
7056followed by three @code{redirects} and another @code{words}. And so on.
7057
7058Here are two ways to correct these rules. First, to make it a single level
7059of sequence:
7060
7061@example
de6be119
AD
7062sequence:
7063 /* empty */
7064| sequence word
7065| sequence redirect
7066;
bfa74976
RS
7067@end example
7068
7069Second, to prevent either a @code{words} or a @code{redirects}
7070from being empty:
7071
7072@example
98842516 7073@group
de6be119
AD
7074sequence:
7075 /* empty */
7076| sequence words
7077| sequence redirects
7078;
98842516 7079@end group
bfa74976 7080
98842516 7081@group
de6be119
AD
7082words:
7083 word
7084| words word
7085;
98842516 7086@end group
bfa74976 7087
98842516 7088@group
de6be119
AD
7089redirects:
7090 redirect
7091| redirects redirect
7092;
98842516 7093@end group
bfa74976
RS
7094@end example
7095
5da0355a
JD
7096@node Mysterious Conflicts
7097@section Mysterious Conflicts
6f04ee6c 7098@cindex Mysterious Conflicts
bfa74976
RS
7099
7100Sometimes reduce/reduce conflicts can occur that don't look warranted.
7101Here is an example:
7102
7103@example
7104@group
7105%token ID
7106
7107%%
de6be119 7108def: param_spec return_spec ',';
bfa74976 7109param_spec:
de6be119
AD
7110 type
7111| name_list ':' type
7112;
bfa74976
RS
7113@end group
7114@group
7115return_spec:
de6be119
AD
7116 type
7117| name ':' type
7118;
bfa74976
RS
7119@end group
7120@group
de6be119 7121type: ID;
bfa74976
RS
7122@end group
7123@group
de6be119 7124name: ID;
bfa74976 7125name_list:
de6be119
AD
7126 name
7127| name ',' name_list
7128;
bfa74976
RS
7129@end group
7130@end example
7131
7132It would seem that this grammar can be parsed with only a single token
742e4900 7133of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7134a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 7135@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7136
6f04ee6c
JD
7137@cindex LR
7138@cindex LALR
34a6c2d1 7139However, for historical reasons, Bison cannot by default handle all
35430378 7140LR(1) grammars.
34a6c2d1
JD
7141In this grammar, two contexts, that after an @code{ID} at the beginning
7142of a @code{param_spec} and likewise at the beginning of a
7143@code{return_spec}, are similar enough that Bison assumes they are the
7144same.
7145They appear similar because the same set of rules would be
bfa74976
RS
7146active---the rule for reducing to a @code{name} and that for reducing to
7147a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7148that the rules would require different lookahead tokens in the two
bfa74976
RS
7149contexts, so it makes a single parser state for them both. Combining
7150the two contexts causes a conflict later. In parser terminology, this
35430378 7151occurrence means that the grammar is not LALR(1).
bfa74976 7152
6f04ee6c
JD
7153@cindex IELR
7154@cindex canonical LR
7155For many practical grammars (specifically those that fall into the non-LR(1)
7156class), the limitations of LALR(1) result in difficulties beyond just
7157mysterious reduce/reduce conflicts. The best way to fix all these problems
7158is to select a different parser table construction algorithm. Either
7159IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7160and easier to debug during development. @xref{LR Table Construction}, for
7161details. (Bison's IELR(1) and canonical LR(1) implementations are
7162experimental. More user feedback will help to stabilize them.)
34a6c2d1 7163
35430378 7164If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
7165can often fix a mysterious conflict by identifying the two parser states
7166that are being confused, and adding something to make them look
7167distinct. In the above example, adding one rule to
bfa74976
RS
7168@code{return_spec} as follows makes the problem go away:
7169
7170@example
7171@group
7172%token BOGUS
7173@dots{}
7174%%
7175@dots{}
7176return_spec:
de6be119
AD
7177 type
7178| name ':' type
7179| ID BOGUS /* This rule is never used. */
7180;
bfa74976
RS
7181@end group
7182@end example
7183
7184This corrects the problem because it introduces the possibility of an
7185additional active rule in the context after the @code{ID} at the beginning of
7186@code{return_spec}. This rule is not active in the corresponding context
7187in a @code{param_spec}, so the two contexts receive distinct parser states.
7188As long as the token @code{BOGUS} is never generated by @code{yylex},
7189the added rule cannot alter the way actual input is parsed.
7190
7191In this particular example, there is another way to solve the problem:
7192rewrite the rule for @code{return_spec} to use @code{ID} directly
7193instead of via @code{name}. This also causes the two confusing
7194contexts to have different sets of active rules, because the one for
7195@code{return_spec} activates the altered rule for @code{return_spec}
7196rather than the one for @code{name}.
7197
7198@example
7199param_spec:
de6be119
AD
7200 type
7201| name_list ':' type
7202;
bfa74976 7203return_spec:
de6be119
AD
7204 type
7205| ID ':' type
7206;
bfa74976
RS
7207@end example
7208
35430378 7209For a more detailed exposition of LALR(1) parsers and parser
71caec06 7210generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7211
6f04ee6c
JD
7212@node Tuning LR
7213@section Tuning LR
7214
7215The default behavior of Bison's LR-based parsers is chosen mostly for
7216historical reasons, but that behavior is often not robust. For example, in
7217the previous section, we discussed the mysterious conflicts that can be
7218produced by LALR(1), Bison's default parser table construction algorithm.
7219Another example is Bison's @code{%error-verbose} directive, which instructs
7220the generated parser to produce verbose syntax error messages, which can
7221sometimes contain incorrect information.
7222
7223In this section, we explore several modern features of Bison that allow you
7224to tune fundamental aspects of the generated LR-based parsers. Some of
7225these features easily eliminate shortcomings like those mentioned above.
7226Others can be helpful purely for understanding your parser.
7227
7228Most of the features discussed in this section are still experimental. More
7229user feedback will help to stabilize them.
7230
7231@menu
7232* LR Table Construction:: Choose a different construction algorithm.
7233* Default Reductions:: Disable default reductions.
7234* LAC:: Correct lookahead sets in the parser states.
7235* Unreachable States:: Keep unreachable parser states for debugging.
7236@end menu
7237
7238@node LR Table Construction
7239@subsection LR Table Construction
7240@cindex Mysterious Conflict
7241@cindex LALR
7242@cindex IELR
7243@cindex canonical LR
7244@findex %define lr.type
7245
7246For historical reasons, Bison constructs LALR(1) parser tables by default.
7247However, LALR does not possess the full language-recognition power of LR.
7248As a result, the behavior of parsers employing LALR parser tables is often
5da0355a 7249mysterious. We presented a simple example of this effect in @ref{Mysterious
6f04ee6c
JD
7250Conflicts}.
7251
7252As we also demonstrated in that example, the traditional approach to
7253eliminating such mysterious behavior is to restructure the grammar.
7254Unfortunately, doing so correctly is often difficult. Moreover, merely
7255discovering that LALR causes mysterious behavior in your parser can be
7256difficult as well.
7257
7258Fortunately, Bison provides an easy way to eliminate the possibility of such
7259mysterious behavior altogether. You simply need to activate a more powerful
7260parser table construction algorithm by using the @code{%define lr.type}
7261directive.
7262
7263@deffn {Directive} {%define lr.type @var{TYPE}}
7264Specify the type of parser tables within the LR(1) family. The accepted
7265values for @var{TYPE} are:
7266
7267@itemize
7268@item @code{lalr} (default)
7269@item @code{ielr}
7270@item @code{canonical-lr}
7271@end itemize
7272
7273(This feature is experimental. More user feedback will help to stabilize
7274it.)
7275@end deffn
7276
7277For example, to activate IELR, you might add the following directive to you
7278grammar file:
7279
7280@example
7281%define lr.type ielr
7282@end example
7283
5da0355a 7284@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
6f04ee6c
JD
7285conflict is then eliminated, so there is no need to invest time in
7286comprehending the conflict or restructuring the grammar to fix it. If,
7287during future development, the grammar evolves such that all mysterious
7288behavior would have disappeared using just LALR, you need not fear that
7289continuing to use IELR will result in unnecessarily large parser tables.
7290That is, IELR generates LALR tables when LALR (using a deterministic parsing
7291algorithm) is sufficient to support the full language-recognition power of
7292LR. Thus, by enabling IELR at the start of grammar development, you can
7293safely and completely eliminate the need to consider LALR's shortcomings.
7294
7295While IELR is almost always preferable, there are circumstances where LALR
7296or the canonical LR parser tables described by Knuth
7297(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7298relative advantages of each parser table construction algorithm within
7299Bison:
7300
7301@itemize
7302@item LALR
7303
7304There are at least two scenarios where LALR can be worthwhile:
7305
7306@itemize
7307@item GLR without static conflict resolution.
7308
7309@cindex GLR with LALR
7310When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7311conflicts statically (for example, with @code{%left} or @code{%prec}), then
7312the parser explores all potential parses of any given input. In this case,
7313the choice of parser table construction algorithm is guaranteed not to alter
7314the language accepted by the parser. LALR parser tables are the smallest
7315parser tables Bison can currently construct, so they may then be preferable.
7316Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7317more like a deterministic parser in the syntactic contexts where those
7318conflicts appear, and so either IELR or canonical LR can then be helpful to
7319avoid LALR's mysterious behavior.
7320
7321@item Malformed grammars.
7322
7323Occasionally during development, an especially malformed grammar with a
7324major recurring flaw may severely impede the IELR or canonical LR parser
7325table construction algorithm. LALR can be a quick way to construct parser
7326tables in order to investigate such problems while ignoring the more subtle
7327differences from IELR and canonical LR.
7328@end itemize
7329
7330@item IELR
7331
7332IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7333any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7334always accept exactly the same set of sentences. However, like LALR, IELR
7335merges parser states during parser table construction so that the number of
7336parser states is often an order of magnitude less than for canonical LR.
7337More importantly, because canonical LR's extra parser states may contain
7338duplicate conflicts in the case of non-LR grammars, the number of conflicts
7339for IELR is often an order of magnitude less as well. This effect can
7340significantly reduce the complexity of developing a grammar.
7341
7342@item Canonical LR
7343
7344@cindex delayed syntax error detection
7345@cindex LAC
7346@findex %nonassoc
7347While inefficient, canonical LR parser tables can be an interesting means to
7348explore a grammar because they possess a property that IELR and LALR tables
7349do not. That is, if @code{%nonassoc} is not used and default reductions are
7350left disabled (@pxref{Default Reductions}), then, for every left context of
7351every canonical LR state, the set of tokens accepted by that state is
7352guaranteed to be the exact set of tokens that is syntactically acceptable in
7353that left context. It might then seem that an advantage of canonical LR
7354parsers in production is that, under the above constraints, they are
7355guaranteed to detect a syntax error as soon as possible without performing
7356any unnecessary reductions. However, IELR parsers that use LAC are also
7357able to achieve this behavior without sacrificing @code{%nonassoc} or
7358default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7359@end itemize
7360
7361For a more detailed exposition of the mysterious behavior in LALR parsers
7362and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7363@ref{Bibliography,,Denny 2010 November}.
7364
7365@node Default Reductions
7366@subsection Default Reductions
7367@cindex default reductions
7368@findex %define lr.default-reductions
7369@findex %nonassoc
7370
7371After parser table construction, Bison identifies the reduction with the
7372largest lookahead set in each parser state. To reduce the size of the
7373parser state, traditional Bison behavior is to remove that lookahead set and
7374to assign that reduction to be the default parser action. Such a reduction
7375is known as a @dfn{default reduction}.
7376
7377Default reductions affect more than the size of the parser tables. They
7378also affect the behavior of the parser:
7379
7380@itemize
7381@item Delayed @code{yylex} invocations.
7382
7383@cindex delayed yylex invocations
7384@cindex consistent states
7385@cindex defaulted states
7386A @dfn{consistent state} is a state that has only one possible parser
7387action. If that action is a reduction and is encoded as a default
7388reduction, then that consistent state is called a @dfn{defaulted state}.
7389Upon reaching a defaulted state, a Bison-generated parser does not bother to
7390invoke @code{yylex} to fetch the next token before performing the reduction.
7391In other words, whether default reductions are enabled in consistent states
7392determines how soon a Bison-generated parser invokes @code{yylex} for a
7393token: immediately when it @emph{reaches} that token in the input or when it
7394eventually @emph{needs} that token as a lookahead to determine the next
7395parser action. Traditionally, default reductions are enabled, and so the
7396parser exhibits the latter behavior.
7397
7398The presence of defaulted states is an important consideration when
7399designing @code{yylex} and the grammar file. That is, if the behavior of
7400@code{yylex} can influence or be influenced by the semantic actions
7401associated with the reductions in defaulted states, then the delay of the
7402next @code{yylex} invocation until after those reductions is significant.
7403For example, the semantic actions might pop a scope stack that @code{yylex}
7404uses to determine what token to return. Thus, the delay might be necessary
7405to ensure that @code{yylex} does not look up the next token in a scope that
7406should already be considered closed.
7407
7408@item Delayed syntax error detection.
7409
7410@cindex delayed syntax error detection
7411When the parser fetches a new token by invoking @code{yylex}, it checks
7412whether there is an action for that token in the current parser state. The
7413parser detects a syntax error if and only if either (1) there is no action
7414for that token or (2) the action for that token is the error action (due to
7415the use of @code{%nonassoc}). However, if there is a default reduction in
7416that state (which might or might not be a defaulted state), then it is
7417impossible for condition 1 to exist. That is, all tokens have an action.
7418Thus, the parser sometimes fails to detect the syntax error until it reaches
7419a later state.
7420
7421@cindex LAC
7422@c If there's an infinite loop, default reductions can prevent an incorrect
7423@c sentence from being rejected.
7424While default reductions never cause the parser to accept syntactically
7425incorrect sentences, the delay of syntax error detection can have unexpected
7426effects on the behavior of the parser. However, the delay can be caused
7427anyway by parser state merging and the use of @code{%nonassoc}, and it can
7428be fixed by another Bison feature, LAC. We discuss the effects of delayed
7429syntax error detection and LAC more in the next section (@pxref{LAC}).
7430@end itemize
7431
7432For canonical LR, the only default reduction that Bison enables by default
7433is the accept action, which appears only in the accepting state, which has
7434no other action and is thus a defaulted state. However, the default accept
7435action does not delay any @code{yylex} invocation or syntax error detection
7436because the accept action ends the parse.
7437
7438For LALR and IELR, Bison enables default reductions in nearly all states by
7439default. There are only two exceptions. First, states that have a shift
7440action on the @code{error} token do not have default reductions because
7441delayed syntax error detection could then prevent the @code{error} token
7442from ever being shifted in that state. However, parser state merging can
7443cause the same effect anyway, and LAC fixes it in both cases, so future
7444versions of Bison might drop this exception when LAC is activated. Second,
7445GLR parsers do not record the default reduction as the action on a lookahead
7446token for which there is a conflict. The correct action in this case is to
7447split the parse instead.
7448
7449To adjust which states have default reductions enabled, use the
7450@code{%define lr.default-reductions} directive.
7451
7452@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7453Specify the kind of states that are permitted to contain default reductions.
7454The accepted values of @var{WHERE} are:
7455@itemize
a6e5a280 7456@item @code{most} (default for LALR and IELR)
6f04ee6c
JD
7457@item @code{consistent}
7458@item @code{accepting} (default for canonical LR)
7459@end itemize
7460
7461(The ability to specify where default reductions are permitted is
7462experimental. More user feedback will help to stabilize it.)
7463@end deffn
7464
6f04ee6c
JD
7465@node LAC
7466@subsection LAC
7467@findex %define parse.lac
7468@cindex LAC
7469@cindex lookahead correction
7470
7471Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7472encountering a syntax error. First, the parser might perform additional
7473parser stack reductions before discovering the syntax error. Such
7474reductions can perform user semantic actions that are unexpected because
7475they are based on an invalid token, and they cause error recovery to begin
7476in a different syntactic context than the one in which the invalid token was
7477encountered. Second, when verbose error messages are enabled (@pxref{Error
7478Reporting}), the expected token list in the syntax error message can both
7479contain invalid tokens and omit valid tokens.
7480
7481The culprits for the above problems are @code{%nonassoc}, default reductions
7482in inconsistent states (@pxref{Default Reductions}), and parser state
7483merging. Because IELR and LALR merge parser states, they suffer the most.
7484Canonical LR can suffer only if @code{%nonassoc} is used or if default
7485reductions are enabled for inconsistent states.
7486
7487LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7488that solves these problems for canonical LR, IELR, and LALR without
7489sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7490enable LAC with the @code{%define parse.lac} directive.
7491
7492@deffn {Directive} {%define parse.lac @var{VALUE}}
7493Enable LAC to improve syntax error handling.
7494@itemize
7495@item @code{none} (default)
7496@item @code{full}
7497@end itemize
7498(This feature is experimental. More user feedback will help to stabilize
7499it. Moreover, it is currently only available for deterministic parsers in
7500C.)
7501@end deffn
7502
7503Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7504fetches a new token from the scanner so that it can determine the next
7505parser action, it immediately suspends normal parsing and performs an
7506exploratory parse using a temporary copy of the normal parser state stack.
7507During this exploratory parse, the parser does not perform user semantic
7508actions. If the exploratory parse reaches a shift action, normal parsing
7509then resumes on the normal parser stacks. If the exploratory parse reaches
7510an error instead, the parser reports a syntax error. If verbose syntax
7511error messages are enabled, the parser must then discover the list of
7512expected tokens, so it performs a separate exploratory parse for each token
7513in the grammar.
7514
7515There is one subtlety about the use of LAC. That is, when in a consistent
7516parser state with a default reduction, the parser will not attempt to fetch
7517a token from the scanner because no lookahead is needed to determine the
7518next parser action. Thus, whether default reductions are enabled in
7519consistent states (@pxref{Default Reductions}) affects how soon the parser
7520detects a syntax error: immediately when it @emph{reaches} an erroneous
7521token or when it eventually @emph{needs} that token as a lookahead to
7522determine the next parser action. The latter behavior is probably more
7523intuitive, so Bison currently provides no way to achieve the former behavior
7524while default reductions are enabled in consistent states.
7525
7526Thus, when LAC is in use, for some fixed decision of whether to enable
7527default reductions in consistent states, canonical LR and IELR behave almost
7528exactly the same for both syntactically acceptable and syntactically
7529unacceptable input. While LALR still does not support the full
7530language-recognition power of canonical LR and IELR, LAC at least enables
7531LALR's syntax error handling to correctly reflect LALR's
7532language-recognition power.
7533
7534There are a few caveats to consider when using LAC:
7535
7536@itemize
7537@item Infinite parsing loops.
7538
7539IELR plus LAC does have one shortcoming relative to canonical LR. Some
7540parsers generated by Bison can loop infinitely. LAC does not fix infinite
7541parsing loops that occur between encountering a syntax error and detecting
7542it, but enabling canonical LR or disabling default reductions sometimes
7543does.
7544
7545@item Verbose error message limitations.
7546
7547Because of internationalization considerations, Bison-generated parsers
7548limit the size of the expected token list they are willing to report in a
7549verbose syntax error message. If the number of expected tokens exceeds that
7550limit, the list is simply dropped from the message. Enabling LAC can
7551increase the size of the list and thus cause the parser to drop it. Of
7552course, dropping the list is better than reporting an incorrect list.
7553
7554@item Performance.
7555
7556Because LAC requires many parse actions to be performed twice, it can have a
7557performance penalty. However, not all parse actions must be performed
7558twice. Specifically, during a series of default reductions in consistent
7559states and shift actions, the parser never has to initiate an exploratory
7560parse. Moreover, the most time-consuming tasks in a parse are often the
7561file I/O, the lexical analysis performed by the scanner, and the user's
7562semantic actions, but none of these are performed during the exploratory
7563parse. Finally, the base of the temporary stack used during an exploratory
7564parse is a pointer into the normal parser state stack so that the stack is
7565never physically copied. In our experience, the performance penalty of LAC
56da1e52 7566has proved insignificant for practical grammars.
6f04ee6c
JD
7567@end itemize
7568
56706c61
JD
7569While the LAC algorithm shares techniques that have been recognized in the
7570parser community for years, for the publication that introduces LAC,
7571@pxref{Bibliography,,Denny 2010 May}.
121c4982 7572
6f04ee6c
JD
7573@node Unreachable States
7574@subsection Unreachable States
7575@findex %define lr.keep-unreachable-states
7576@cindex unreachable states
7577
7578If there exists no sequence of transitions from the parser's start state to
7579some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7580state}. A state can become unreachable during conflict resolution if Bison
7581disables a shift action leading to it from a predecessor state.
7582
7583By default, Bison removes unreachable states from the parser after conflict
7584resolution because they are useless in the generated parser. However,
7585keeping unreachable states is sometimes useful when trying to understand the
7586relationship between the parser and the grammar.
7587
7588@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7589Request that Bison allow unreachable states to remain in the parser tables.
7590@var{VALUE} must be a Boolean. The default is @code{false}.
7591@end deffn
7592
7593There are a few caveats to consider:
7594
7595@itemize @bullet
7596@item Missing or extraneous warnings.
7597
7598Unreachable states may contain conflicts and may use rules not used in any
7599other state. Thus, keeping unreachable states may induce warnings that are
7600irrelevant to your parser's behavior, and it may eliminate warnings that are
7601relevant. Of course, the change in warnings may actually be relevant to a
7602parser table analysis that wants to keep unreachable states, so this
7603behavior will likely remain in future Bison releases.
7604
7605@item Other useless states.
7606
7607While Bison is able to remove unreachable states, it is not guaranteed to
7608remove other kinds of useless states. Specifically, when Bison disables
7609reduce actions during conflict resolution, some goto actions may become
7610useless, and thus some additional states may become useless. If Bison were
7611to compute which goto actions were useless and then disable those actions,
7612it could identify such states as unreachable and then remove those states.
7613However, Bison does not compute which goto actions are useless.
7614@end itemize
7615
fae437e8 7616@node Generalized LR Parsing
35430378
JD
7617@section Generalized LR (GLR) Parsing
7618@cindex GLR parsing
7619@cindex generalized LR (GLR) parsing
676385e2 7620@cindex ambiguous grammars
9d9b8b70 7621@cindex nondeterministic parsing
676385e2 7622
fae437e8
AD
7623Bison produces @emph{deterministic} parsers that choose uniquely
7624when to reduce and which reduction to apply
742e4900 7625based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7626As a result, normal Bison handles a proper subset of the family of
7627context-free languages.
fae437e8 7628Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7629sequence of reductions cannot have deterministic parsers in this sense.
7630The same is true of languages that require more than one symbol of
742e4900 7631lookahead, since the parser lacks the information necessary to make a
676385e2 7632decision at the point it must be made in a shift-reduce parser.
5da0355a 7633Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
34a6c2d1 7634there are languages where Bison's default choice of how to
676385e2
PH
7635summarize the input seen so far loses necessary information.
7636
7637When you use the @samp{%glr-parser} declaration in your grammar file,
7638Bison generates a parser that uses a different algorithm, called
35430378 7639Generalized LR (or GLR). A Bison GLR
c827f760 7640parser uses the same basic
676385e2
PH
7641algorithm for parsing as an ordinary Bison parser, but behaves
7642differently in cases where there is a shift-reduce conflict that has not
fae437e8 7643been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7644reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7645situation, it
fae437e8 7646effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7647shift or reduction. These parsers then proceed as usual, consuming
7648tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7649and split further, with the result that instead of a sequence of states,
35430378 7650a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7651
7652In effect, each stack represents a guess as to what the proper parse
7653is. Additional input may indicate that a guess was wrong, in which case
7654the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7655actions generated in each stack are saved, rather than being executed
676385e2 7656immediately. When a stack disappears, its saved semantic actions never
fae437e8 7657get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7658their sets of semantic actions are both saved with the state that
7659results from the reduction. We say that two stacks are equivalent
fae437e8 7660when they both represent the same sequence of states,
676385e2
PH
7661and each pair of corresponding states represents a
7662grammar symbol that produces the same segment of the input token
7663stream.
7664
7665Whenever the parser makes a transition from having multiple
34a6c2d1 7666states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7667algorithm, after resolving and executing the saved-up actions.
7668At this transition, some of the states on the stack will have semantic
7669values that are sets (actually multisets) of possible actions. The
7670parser tries to pick one of the actions by first finding one whose rule
7671has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7672declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7673precedence, but there the same merging function is declared for both
fae437e8 7674rules by the @samp{%merge} declaration,
676385e2
PH
7675Bison resolves and evaluates both and then calls the merge function on
7676the result. Otherwise, it reports an ambiguity.
7677
35430378
JD
7678It is possible to use a data structure for the GLR parsing tree that
7679permits the processing of any LR(1) grammar in linear time (in the
c827f760 7680size of the input), any unambiguous (not necessarily
35430378 7681LR(1)) grammar in
fae437e8 7682quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7683context-free grammar in cubic worst-case time. However, Bison currently
7684uses a simpler data structure that requires time proportional to the
7685length of the input times the maximum number of stacks required for any
9d9b8b70 7686prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7687grammars can require exponential time and space to process. Such badly
7688behaving examples, however, are not generally of practical interest.
9d9b8b70 7689Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7690doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7691structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7692grammar, in particular, it is only slightly slower than with the
35430378 7693deterministic LR(1) Bison parser.
676385e2 7694
71caec06
JD
7695For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
76962000}.
f6481e2f 7697
1a059451
PE
7698@node Memory Management
7699@section Memory Management, and How to Avoid Memory Exhaustion
7700@cindex memory exhaustion
7701@cindex memory management
bfa74976
RS
7702@cindex stack overflow
7703@cindex parser stack overflow
7704@cindex overflow of parser stack
7705
1a059451 7706The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7707not reduced. When this happens, the parser function @code{yyparse}
1a059451 7708calls @code{yyerror} and then returns 2.
bfa74976 7709
c827f760 7710Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 7711usually results from using a right recursion instead of a left
188867ac 7712recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 7713
bfa74976
RS
7714@vindex YYMAXDEPTH
7715By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7716parser stack can become before memory is exhausted. Define the
bfa74976
RS
7717macro with a value that is an integer. This value is the maximum number
7718of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7719
7720The stack space allowed is not necessarily allocated. If you specify a
1a059451 7721large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7722stack at first, and then makes it bigger by stages as needed. This
7723increasing allocation happens automatically and silently. Therefore,
7724you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7725space for ordinary inputs that do not need much stack.
7726
d7e14fc0
PE
7727However, do not allow @code{YYMAXDEPTH} to be a value so large that
7728arithmetic overflow could occur when calculating the size of the stack
7729space. Also, do not allow @code{YYMAXDEPTH} to be less than
7730@code{YYINITDEPTH}.
7731
bfa74976
RS
7732@cindex default stack limit
7733The default value of @code{YYMAXDEPTH}, if you do not define it, is
773410000.
7735
7736@vindex YYINITDEPTH
7737You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7738macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7739parser in C, this value must be a compile-time constant
d7e14fc0
PE
7740unless you are assuming C99 or some other target language or compiler
7741that allows variable-length arrays. The default is 200.
7742
1a059451 7743Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7744
d1a1114f 7745@c FIXME: C++ output.
c781580d 7746Because of semantic differences between C and C++, the deterministic
34a6c2d1 7747parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7748by C++ compilers. In this precise case (compiling a C parser as C++) you are
7749suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7750this deficiency in a future release.
d1a1114f 7751
342b8b6e 7752@node Error Recovery
bfa74976
RS
7753@chapter Error Recovery
7754@cindex error recovery
7755@cindex recovery from errors
7756
6e649e65 7757It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7758error. For example, a compiler should recover sufficiently to parse the
7759rest of the input file and check it for errors; a calculator should accept
7760another expression.
7761
7762In a simple interactive command parser where each input is one line, it may
7763be sufficient to allow @code{yyparse} to return 1 on error and have the
7764caller ignore the rest of the input line when that happens (and then call
7765@code{yyparse} again). But this is inadequate for a compiler, because it
7766forgets all the syntactic context leading up to the error. A syntax error
7767deep within a function in the compiler input should not cause the compiler
7768to treat the following line like the beginning of a source file.
7769
7770@findex error
7771You can define how to recover from a syntax error by writing rules to
7772recognize the special token @code{error}. This is a terminal symbol that
7773is always defined (you need not declare it) and reserved for error
7774handling. The Bison parser generates an @code{error} token whenever a
7775syntax error happens; if you have provided a rule to recognize this token
13863333 7776in the current context, the parse can continue.
bfa74976
RS
7777
7778For example:
7779
7780@example
0765d393 7781stmts:
de6be119 7782 /* empty string */
0765d393
AD
7783| stmts '\n'
7784| stmts exp '\n'
7785| stmts error '\n'
bfa74976
RS
7786@end example
7787
7788The fourth rule in this example says that an error followed by a newline
0765d393 7789makes a valid addition to any @code{stmts}.
bfa74976
RS
7790
7791What happens if a syntax error occurs in the middle of an @code{exp}? The
7792error recovery rule, interpreted strictly, applies to the precise sequence
0765d393 7793of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 7794the middle of an @code{exp}, there will probably be some additional tokens
0765d393 7795and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
7796will be tokens to read before the next newline. So the rule is not
7797applicable in the ordinary way.
7798
7799But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7800the semantic context and part of the input. First it discards states
7801and objects from the stack until it gets back to a state in which the
bfa74976 7802@code{error} token is acceptable. (This means that the subexpressions
0765d393 7803already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 7804At this point the @code{error} token can be shifted. Then, if the old
742e4900 7805lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7806tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7807this example, Bison reads and discards input until the next newline so
7808that the fourth rule can apply. Note that discarded symbols are
7809possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7810Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7811
7812The choice of error rules in the grammar is a choice of strategies for
7813error recovery. A simple and useful strategy is simply to skip the rest of
7814the current input line or current statement if an error is detected:
7815
7816@example
0765d393 7817stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7818@end example
7819
7820It is also useful to recover to the matching close-delimiter of an
7821opening-delimiter that has already been parsed. Otherwise the
7822close-delimiter will probably appear to be unmatched, and generate another,
7823spurious error message:
7824
7825@example
de6be119
AD
7826primary:
7827 '(' expr ')'
7828| '(' error ')'
7829@dots{}
7830;
bfa74976
RS
7831@end example
7832
7833Error recovery strategies are necessarily guesses. When they guess wrong,
7834one syntax error often leads to another. In the above example, the error
7835recovery rule guesses that an error is due to bad input within one
0765d393
AD
7836@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
7837middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
7838from the first error, another syntax error will be found straightaway,
7839since the text following the spurious semicolon is also an invalid
0765d393 7840@code{stmt}.
bfa74976
RS
7841
7842To prevent an outpouring of error messages, the parser will output no error
7843message for another syntax error that happens shortly after the first; only
7844after three consecutive input tokens have been successfully shifted will
7845error messages resume.
7846
7847Note that rules which accept the @code{error} token may have actions, just
7848as any other rules can.
7849
7850@findex yyerrok
7851You can make error messages resume immediately by using the macro
7852@code{yyerrok} in an action. If you do this in the error rule's action, no
7853error messages will be suppressed. This macro requires no arguments;
7854@samp{yyerrok;} is a valid C statement.
7855
7856@findex yyclearin
742e4900 7857The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7858this is unacceptable, then the macro @code{yyclearin} may be used to clear
7859this token. Write the statement @samp{yyclearin;} in the error rule's
7860action.
32c29292 7861@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7862
6e649e65 7863For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7864called that advances the input stream to some point where parsing should
7865once again commence. The next symbol returned by the lexical scanner is
742e4900 7866probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7867with @samp{yyclearin;}.
7868
7869@vindex YYRECOVERING
02103984
PE
7870The expression @code{YYRECOVERING ()} yields 1 when the parser
7871is recovering from a syntax error, and 0 otherwise.
7872Syntax error diagnostics are suppressed while recovering from a syntax
7873error.
bfa74976 7874
342b8b6e 7875@node Context Dependency
bfa74976
RS
7876@chapter Handling Context Dependencies
7877
7878The Bison paradigm is to parse tokens first, then group them into larger
7879syntactic units. In many languages, the meaning of a token is affected by
7880its context. Although this violates the Bison paradigm, certain techniques
7881(known as @dfn{kludges}) may enable you to write Bison parsers for such
7882languages.
7883
7884@menu
7885* Semantic Tokens:: Token parsing can depend on the semantic context.
7886* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7887* Tie-in Recovery:: Lexical tie-ins have implications for how
7888 error recovery rules must be written.
7889@end menu
7890
7891(Actually, ``kludge'' means any technique that gets its job done but is
7892neither clean nor robust.)
7893
342b8b6e 7894@node Semantic Tokens
bfa74976
RS
7895@section Semantic Info in Token Types
7896
7897The C language has a context dependency: the way an identifier is used
7898depends on what its current meaning is. For example, consider this:
7899
7900@example
7901foo (x);
7902@end example
7903
7904This looks like a function call statement, but if @code{foo} is a typedef
7905name, then this is actually a declaration of @code{x}. How can a Bison
7906parser for C decide how to parse this input?
7907
35430378 7908The method used in GNU C is to have two different token types,
bfa74976
RS
7909@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7910identifier, it looks up the current declaration of the identifier in order
7911to decide which token type to return: @code{TYPENAME} if the identifier is
7912declared as a typedef, @code{IDENTIFIER} otherwise.
7913
7914The grammar rules can then express the context dependency by the choice of
7915token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7916but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7917@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7918is @emph{not} significant, such as in declarations that can shadow a
7919typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7920accepted---there is one rule for each of the two token types.
7921
7922This technique is simple to use if the decision of which kinds of
7923identifiers to allow is made at a place close to where the identifier is
7924parsed. But in C this is not always so: C allows a declaration to
7925redeclare a typedef name provided an explicit type has been specified
7926earlier:
7927
7928@example
3a4f411f
PE
7929typedef int foo, bar;
7930int baz (void)
98842516 7931@group
3a4f411f
PE
7932@{
7933 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7934 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7935 return foo (bar);
7936@}
98842516 7937@end group
bfa74976
RS
7938@end example
7939
7940Unfortunately, the name being declared is separated from the declaration
7941construct itself by a complicated syntactic structure---the ``declarator''.
7942
9ecbd125 7943As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7944all the nonterminal names changed: once for parsing a declaration in
7945which a typedef name can be redefined, and once for parsing a
7946declaration in which that can't be done. Here is a part of the
7947duplication, with actions omitted for brevity:
bfa74976
RS
7948
7949@example
98842516 7950@group
bfa74976 7951initdcl:
de6be119
AD
7952 declarator maybeasm '=' init
7953| declarator maybeasm
7954;
98842516 7955@end group
bfa74976 7956
98842516 7957@group
bfa74976 7958notype_initdcl:
de6be119
AD
7959 notype_declarator maybeasm '=' init
7960| notype_declarator maybeasm
7961;
98842516 7962@end group
bfa74976
RS
7963@end example
7964
7965@noindent
7966Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7967cannot. The distinction between @code{declarator} and
7968@code{notype_declarator} is the same sort of thing.
7969
7970There is some similarity between this technique and a lexical tie-in
7971(described next), in that information which alters the lexical analysis is
7972changed during parsing by other parts of the program. The difference is
7973here the information is global, and is used for other purposes in the
7974program. A true lexical tie-in has a special-purpose flag controlled by
7975the syntactic context.
7976
342b8b6e 7977@node Lexical Tie-ins
bfa74976
RS
7978@section Lexical Tie-ins
7979@cindex lexical tie-in
7980
7981One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7982which is set by Bison actions, whose purpose is to alter the way tokens are
7983parsed.
7984
7985For example, suppose we have a language vaguely like C, but with a special
7986construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7987an expression in parentheses in which all integers are hexadecimal. In
7988particular, the token @samp{a1b} must be treated as an integer rather than
7989as an identifier if it appears in that context. Here is how you can do it:
7990
7991@example
7992@group
7993%@{
38a92d50
PE
7994 int hexflag;
7995 int yylex (void);
7996 void yyerror (char const *);
bfa74976
RS
7997%@}
7998%%
7999@dots{}
8000@end group
8001@group
de6be119
AD
8002expr:
8003 IDENTIFIER
8004| constant
8005| HEX '(' @{ hexflag = 1; @}
8006 expr ')' @{ hexflag = 0; $$ = $4; @}
8007| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8008@dots{}
8009;
bfa74976
RS
8010@end group
8011
8012@group
8013constant:
de6be119
AD
8014 INTEGER
8015| STRING
8016;
bfa74976
RS
8017@end group
8018@end example
8019
8020@noindent
8021Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8022it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8023with letters are parsed as integers if possible.
8024
9913d6e4
JD
8025The declaration of @code{hexflag} shown in the prologue of the grammar
8026file is needed to make it accessible to the actions (@pxref{Prologue,
8027,The Prologue}). You must also write the code in @code{yylex} to obey
8028the flag.
bfa74976 8029
342b8b6e 8030@node Tie-in Recovery
bfa74976
RS
8031@section Lexical Tie-ins and Error Recovery
8032
8033Lexical tie-ins make strict demands on any error recovery rules you have.
8034@xref{Error Recovery}.
8035
8036The reason for this is that the purpose of an error recovery rule is to
8037abort the parsing of one construct and resume in some larger construct.
8038For example, in C-like languages, a typical error recovery rule is to skip
8039tokens until the next semicolon, and then start a new statement, like this:
8040
8041@example
de6be119
AD
8042stmt:
8043 expr ';'
8044| IF '(' expr ')' stmt @{ @dots{} @}
8045@dots{}
8046| error ';' @{ hexflag = 0; @}
8047;
bfa74976
RS
8048@end example
8049
8050If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8051construct, this error rule will apply, and then the action for the
8052completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8053remain set for the entire rest of the input, or until the next @code{hex}
8054keyword, causing identifiers to be misinterpreted as integers.
8055
8056To avoid this problem the error recovery rule itself clears @code{hexflag}.
8057
8058There may also be an error recovery rule that works within expressions.
8059For example, there could be a rule which applies within parentheses
8060and skips to the close-parenthesis:
8061
8062@example
8063@group
de6be119
AD
8064expr:
8065 @dots{}
8066| '(' expr ')' @{ $$ = $2; @}
8067| '(' error ')'
8068@dots{}
bfa74976
RS
8069@end group
8070@end example
8071
8072If this rule acts within the @code{hex} construct, it is not going to abort
8073that construct (since it applies to an inner level of parentheses within
8074the construct). Therefore, it should not clear the flag: the rest of
8075the @code{hex} construct should be parsed with the flag still in effect.
8076
8077What if there is an error recovery rule which might abort out of the
8078@code{hex} construct or might not, depending on circumstances? There is no
8079way you can write the action to determine whether a @code{hex} construct is
8080being aborted or not. So if you are using a lexical tie-in, you had better
8081make sure your error recovery rules are not of this kind. Each rule must
8082be such that you can be sure that it always will, or always won't, have to
8083clear the flag.
8084
ec3bc396
AD
8085@c ================================================== Debugging Your Parser
8086
342b8b6e 8087@node Debugging
bfa74976 8088@chapter Debugging Your Parser
ec3bc396 8089
56d60c19
AD
8090Developing a parser can be a challenge, especially if you don't understand
8091the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8092chapter explains how to generate and read the detailed description of the
8093automaton, and how to enable and understand the parser run-time traces.
ec3bc396
AD
8094
8095@menu
8096* Understanding:: Understanding the structure of your parser.
fc4fdd62 8097* Graphviz:: Getting a visual representation of the parser.
ec3bc396
AD
8098* Tracing:: Tracing the execution of your parser.
8099@end menu
8100
8101@node Understanding
8102@section Understanding Your Parser
8103
8104As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8105Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8106frequent than one would hope), looking at this automaton is required to
8107tune or simply fix a parser. Bison provides two different
35fe0834 8108representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8109
8110The textual file is generated when the options @option{--report} or
2ba03112 8111@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8112Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
8113the parser implementation file name, and adding @samp{.output}
8114instead. Therefore, if the grammar file is @file{foo.y}, then the
8115parser implementation file is called @file{foo.tab.c} by default. As
8116a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8117
8118The following grammar file, @file{calc.y}, will be used in the sequel:
8119
8120@example
8121%token NUM STR
8122%left '+' '-'
8123%left '*'
8124%%
de6be119
AD
8125exp:
8126 exp '+' exp
8127| exp '-' exp
8128| exp '*' exp
8129| exp '/' exp
8130| NUM
8131;
ec3bc396
AD
8132useless: STR;
8133%%
8134@end example
8135
88bce5a2
AD
8136@command{bison} reports:
8137
8138@example
379261b3
JD
8139calc.y: warning: 1 nonterminal useless in grammar
8140calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8141calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8142calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8143calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8144@end example
8145
8146When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8147creates a file @file{calc.output} with contents detailed below. The
8148order of the output and the exact presentation might vary, but the
8149interpretation is the same.
ec3bc396 8150
ec3bc396
AD
8151@noindent
8152@cindex token, useless
8153@cindex useless token
8154@cindex nonterminal, useless
8155@cindex useless nonterminal
8156@cindex rule, useless
8157@cindex useless rule
84c1cdc7
AD
8158The first section reports useless tokens, nonterminals and rules. Useless
8159nonterminals and rules are removed in order to produce a smaller parser, but
8160useless tokens are preserved, since they might be used by the scanner (note
8161the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8162
8163@example
84c1cdc7 8164Nonterminals useless in grammar
ec3bc396
AD
8165 useless
8166
84c1cdc7 8167Terminals unused in grammar
ec3bc396
AD
8168 STR
8169
84c1cdc7
AD
8170Rules useless in grammar
8171 6 useless: STR
ec3bc396
AD
8172@end example
8173
8174@noindent
84c1cdc7
AD
8175The next section lists states that still have conflicts.
8176
8177@example
8178State 8 conflicts: 1 shift/reduce
8179State 9 conflicts: 1 shift/reduce
8180State 10 conflicts: 1 shift/reduce
8181State 11 conflicts: 4 shift/reduce
8182@end example
8183
8184@noindent
8185Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8186
8187@example
8188Grammar
8189
84c1cdc7
AD
8190 0 $accept: exp $end
8191
8192 1 exp: exp '+' exp
8193 2 | exp '-' exp
8194 3 | exp '*' exp
8195 4 | exp '/' exp
8196 5 | NUM
ec3bc396
AD
8197@end example
8198
8199@noindent
8200and reports the uses of the symbols:
8201
8202@example
98842516 8203@group
ec3bc396
AD
8204Terminals, with rules where they appear
8205
88bce5a2 8206$end (0) 0
ec3bc396
AD
8207'*' (42) 3
8208'+' (43) 1
8209'-' (45) 2
8210'/' (47) 4
8211error (256)
8212NUM (258) 5
84c1cdc7 8213STR (259)
98842516 8214@end group
ec3bc396 8215
98842516 8216@group
ec3bc396
AD
8217Nonterminals, with rules where they appear
8218
84c1cdc7 8219$accept (9)
ec3bc396 8220 on left: 0
84c1cdc7 8221exp (10)
ec3bc396 8222 on left: 1 2 3 4 5, on right: 0 1 2 3 4
98842516 8223@end group
ec3bc396
AD
8224@end example
8225
8226@noindent
8227@cindex item
8228@cindex pointed rule
8229@cindex rule, pointed
8230Bison then proceeds onto the automaton itself, describing each state
d13d14cc
PE
8231with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8232item is a production rule together with a point (@samp{.}) marking
8233the location of the input cursor.
ec3bc396
AD
8234
8235@example
8236state 0
8237
84c1cdc7 8238 0 $accept: . exp $end
ec3bc396 8239
84c1cdc7 8240 NUM shift, and go to state 1
ec3bc396 8241
84c1cdc7 8242 exp go to state 2
ec3bc396
AD
8243@end example
8244
8245This reads as follows: ``state 0 corresponds to being at the very
8246beginning of the parsing, in the initial rule, right before the start
8247symbol (here, @code{exp}). When the parser returns to this state right
8248after having reduced a rule that produced an @code{exp}, the control
8249flow jumps to state 2. If there is no such transition on a nonterminal
d13d14cc 8250symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8251the parse stack, and the control flow jumps to state 1. Any other
742e4900 8252lookahead triggers a syntax error.''
ec3bc396
AD
8253
8254@cindex core, item set
8255@cindex item set core
8256@cindex kernel, item set
8257@cindex item set core
8258Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8259report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8260at the beginning of any rule deriving an @code{exp}. By default Bison
8261reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8262you want to see more detail you can invoke @command{bison} with
d13d14cc 8263@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8264
8265@example
8266state 0
8267
84c1cdc7
AD
8268 0 $accept: . exp $end
8269 1 exp: . exp '+' exp
8270 2 | . exp '-' exp
8271 3 | . exp '*' exp
8272 4 | . exp '/' exp
8273 5 | . NUM
ec3bc396 8274
84c1cdc7 8275 NUM shift, and go to state 1
ec3bc396 8276
84c1cdc7 8277 exp go to state 2
ec3bc396
AD
8278@end example
8279
8280@noindent
84c1cdc7 8281In the state 1@dots{}
ec3bc396
AD
8282
8283@example
8284state 1
8285
84c1cdc7 8286 5 exp: NUM .
ec3bc396 8287
84c1cdc7 8288 $default reduce using rule 5 (exp)
ec3bc396
AD
8289@end example
8290
8291@noindent
742e4900 8292the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8293(@samp{$default}), the parser will reduce it. If it was coming from
8294state 0, then, after this reduction it will return to state 0, and will
8295jump to state 2 (@samp{exp: go to state 2}).
8296
8297@example
8298state 2
8299
84c1cdc7
AD
8300 0 $accept: exp . $end
8301 1 exp: exp . '+' exp
8302 2 | exp . '-' exp
8303 3 | exp . '*' exp
8304 4 | exp . '/' exp
ec3bc396 8305
84c1cdc7
AD
8306 $end shift, and go to state 3
8307 '+' shift, and go to state 4
8308 '-' shift, and go to state 5
8309 '*' shift, and go to state 6
8310 '/' shift, and go to state 7
ec3bc396
AD
8311@end example
8312
8313@noindent
8314In state 2, the automaton can only shift a symbol. For instance,
84c1cdc7 8315because of the item @samp{exp: exp . '+' exp}, if the lookahead is
d13d14cc 8316@samp{+} it is shifted onto the parse stack, and the automaton
84c1cdc7 8317jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
d13d14cc
PE
8318Since there is no default action, any lookahead not listed triggers a syntax
8319error.
ec3bc396 8320
34a6c2d1 8321@cindex accepting state
ec3bc396
AD
8322The state 3 is named the @dfn{final state}, or the @dfn{accepting
8323state}:
8324
8325@example
8326state 3
8327
84c1cdc7 8328 0 $accept: exp $end .
ec3bc396 8329
84c1cdc7 8330 $default accept
ec3bc396
AD
8331@end example
8332
8333@noindent
84c1cdc7
AD
8334the initial rule is completed (the start symbol and the end-of-input were
8335read), the parsing exits successfully.
ec3bc396
AD
8336
8337The interpretation of states 4 to 7 is straightforward, and is left to
8338the reader.
8339
8340@example
8341state 4
8342
84c1cdc7 8343 1 exp: exp '+' . exp
ec3bc396 8344
84c1cdc7
AD
8345 NUM shift, and go to state 1
8346
8347 exp go to state 8
ec3bc396 8348
ec3bc396
AD
8349
8350state 5
8351
84c1cdc7
AD
8352 2 exp: exp '-' . exp
8353
8354 NUM shift, and go to state 1
ec3bc396 8355
84c1cdc7 8356 exp go to state 9
ec3bc396 8357
ec3bc396
AD
8358
8359state 6
8360
84c1cdc7 8361 3 exp: exp '*' . exp
ec3bc396 8362
84c1cdc7
AD
8363 NUM shift, and go to state 1
8364
8365 exp go to state 10
ec3bc396 8366
ec3bc396
AD
8367
8368state 7
8369
84c1cdc7 8370 4 exp: exp '/' . exp
ec3bc396 8371
84c1cdc7 8372 NUM shift, and go to state 1
ec3bc396 8373
84c1cdc7 8374 exp go to state 11
ec3bc396
AD
8375@end example
8376
5a99098d
PE
8377As was announced in beginning of the report, @samp{State 8 conflicts:
83781 shift/reduce}:
ec3bc396
AD
8379
8380@example
8381state 8
8382
84c1cdc7
AD
8383 1 exp: exp . '+' exp
8384 1 | exp '+' exp .
8385 2 | exp . '-' exp
8386 3 | exp . '*' exp
8387 4 | exp . '/' exp
ec3bc396 8388
84c1cdc7
AD
8389 '*' shift, and go to state 6
8390 '/' shift, and go to state 7
ec3bc396 8391
84c1cdc7
AD
8392 '/' [reduce using rule 1 (exp)]
8393 $default reduce using rule 1 (exp)
ec3bc396
AD
8394@end example
8395
742e4900 8396Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8397either shifting (and going to state 7), or reducing rule 1. The
8398conflict means that either the grammar is ambiguous, or the parser lacks
8399information to make the right decision. Indeed the grammar is
8400ambiguous, as, since we did not specify the precedence of @samp{/}, the
8401sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8402NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8403NUM}, which corresponds to reducing rule 1.
8404
34a6c2d1 8405Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8406arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
84c1cdc7 8407Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8408square brackets.
8409
8410Note that all the previous states had a single possible action: either
8411shifting the next token and going to the corresponding state, or
8412reducing a single rule. In the other cases, i.e., when shifting
8413@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8414possible, the lookahead is required to select the action. State 8 is
8415one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8416is shifting, otherwise the action is reducing rule 1. In other words,
8417the first two items, corresponding to rule 1, are not eligible when the
742e4900 8418lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8419precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8420with some set of possible lookahead tokens. When run with
8421@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8422
8423@example
8424state 8
8425
84c1cdc7
AD
8426 1 exp: exp . '+' exp
8427 1 | exp '+' exp . [$end, '+', '-', '/']
8428 2 | exp . '-' exp
8429 3 | exp . '*' exp
8430 4 | exp . '/' exp
8431
8432 '*' shift, and go to state 6
8433 '/' shift, and go to state 7
ec3bc396 8434
84c1cdc7
AD
8435 '/' [reduce using rule 1 (exp)]
8436 $default reduce using rule 1 (exp)
8437@end example
8438
8439Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8440the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8441solved thanks to associativity and precedence directives. If invoked with
8442@option{--report=solved}, Bison includes information about the solved
8443conflicts in the report:
ec3bc396 8444
84c1cdc7
AD
8445@example
8446Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8447Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8448Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8449@end example
8450
84c1cdc7 8451
ec3bc396
AD
8452The remaining states are similar:
8453
8454@example
98842516 8455@group
ec3bc396
AD
8456state 9
8457
84c1cdc7
AD
8458 1 exp: exp . '+' exp
8459 2 | exp . '-' exp
8460 2 | exp '-' exp .
8461 3 | exp . '*' exp
8462 4 | exp . '/' exp
ec3bc396 8463
84c1cdc7
AD
8464 '*' shift, and go to state 6
8465 '/' shift, and go to state 7
ec3bc396 8466
84c1cdc7
AD
8467 '/' [reduce using rule 2 (exp)]
8468 $default reduce using rule 2 (exp)
98842516 8469@end group
ec3bc396 8470
98842516 8471@group
ec3bc396
AD
8472state 10
8473
84c1cdc7
AD
8474 1 exp: exp . '+' exp
8475 2 | exp . '-' exp
8476 3 | exp . '*' exp
8477 3 | exp '*' exp .
8478 4 | exp . '/' exp
ec3bc396 8479
84c1cdc7 8480 '/' shift, and go to state 7
ec3bc396 8481
84c1cdc7
AD
8482 '/' [reduce using rule 3 (exp)]
8483 $default reduce using rule 3 (exp)
98842516 8484@end group
ec3bc396 8485
98842516 8486@group
ec3bc396
AD
8487state 11
8488
84c1cdc7
AD
8489 1 exp: exp . '+' exp
8490 2 | exp . '-' exp
8491 3 | exp . '*' exp
8492 4 | exp . '/' exp
8493 4 | exp '/' exp .
8494
8495 '+' shift, and go to state 4
8496 '-' shift, and go to state 5
8497 '*' shift, and go to state 6
8498 '/' shift, and go to state 7
8499
8500 '+' [reduce using rule 4 (exp)]
8501 '-' [reduce using rule 4 (exp)]
8502 '*' [reduce using rule 4 (exp)]
8503 '/' [reduce using rule 4 (exp)]
8504 $default reduce using rule 4 (exp)
98842516 8505@end group
ec3bc396
AD
8506@end example
8507
8508@noindent
fa7e68c3
PE
8509Observe that state 11 contains conflicts not only due to the lack of
8510precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8511@samp{*}, but also because the
ec3bc396
AD
8512associativity of @samp{/} is not specified.
8513
fc4fdd62
TR
8514@c ================================================= Graphical Representation
8515
8516@node Graphviz
8517@section Visualizing Your Parser
8518@cindex dot
8519
8520As another means to gain better understanding of the shift/reduce
8521automaton corresponding to the Bison parser, a DOT file can be generated. Note
8522that debugging a real grammar with this is tedious at best, and impractical
8523most of the times, because the generated files are huge (the generation of
8524a PDF or PNG file from it will take very long, and more often than not it will
8525fail due to memory exhaustion). This option was rather designed for beginners,
8526to help them understand LR parsers.
8527
8528This file is generated when the @option{--graph} option is specified (see
8529@pxref{Invocation, , Invoking Bison}). Its name is made by removing
8530@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
8531adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
8532Graphviz output file is called @file{foo.dot}.
8533
8534The following grammar file, @file{rr.y}, will be used in the sequel:
8535
8536@example
8537%%
8538@group
8539exp: a ";" | b ".";
8540a: "0";
8541b: "0";
8542@end group
8543@end example
8544
8545The graphical output is very similar to the textual one, and as such it is
8546easier understood by making direct comparisons between them. See
8547@ref{Debugging, , Debugging Your Parser} for a detailled analysis of the
8548textual report.
8549
8550@subheading Graphical Representation of States
8551
8552The items (pointed rules) for each state are grouped together in graph nodes.
8553Their numbering is the same as in the verbose file. See the following points,
8554about transitions, for examples
8555
8556When invoked with @option{--report=lookaheads}, the lookahead tokens, when
8557needed, are shown next to the relevant rule between square brackets as a
8558comma separated list. This is the case in the figure for the representation of
8559reductions, below.
8560
8561@sp 1
8562
8563The transitions are represented as directed edges between the current and
8564the target states.
8565
8566@subheading Graphical Representation of Shifts
8567
8568Shifts are shown as solid arrows, labelled with the lookahead token for that
8569shift. The following describes a reduction in the @file{rr.output} file:
8570
8571@example
8572@group
8573state 3
8574
8575 1 exp: a . ";"
8576
8577 ";" shift, and go to state 6
8578@end group
8579@end example
8580
8581A Graphviz rendering of this portion of the graph could be:
8582
8583@center @image{figs/example-shift, 100pt}
8584
8585@subheading Graphical Representation of Reductions
8586
8587Reductions are shown as solid arrows, leading to a diamond-shaped node
8588bearing the number of the reduction rule. The arrow is labelled with the
8589appropriate comma separated lookahead tokens. If the reduction is the default
8590action for the given state, there is no such label.
8591
8592This is how reductions are represented in the verbose file @file{rr.output}:
8593@example
8594state 1
8595
8596 3 a: "0" . [";"]
8597 4 b: "0" . ["."]
8598
8599 "." reduce using rule 4 (b)
8600 $default reduce using rule 3 (a)
8601@end example
8602
8603A Graphviz rendering of this portion of the graph could be:
8604
8605@center @image{figs/example-reduce, 120pt}
8606
8607When unresolved conflicts are present, because in deterministic parsing
8608a single decision can be made, Bison can arbitrarily choose to disable a
8609reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
8610are distinguished by a red filling color on these nodes, just like how they are
8611reported between square brackets in the verbose file.
8612
8613The reduction corresponding to the rule number 0 is the acceptation state. It
8614is shown as a blue diamond, labelled "Acc".
8615
8616@subheading Graphical representation of go tos
8617
8618The @samp{go to} jump transitions are represented as dotted lines bearing
8619the name of the rule being jumped to.
8620
8621@c ================================================= Tracing
ec3bc396
AD
8622
8623@node Tracing
8624@section Tracing Your Parser
bfa74976
RS
8625@findex yydebug
8626@cindex debugging
8627@cindex tracing the parser
8628
56d60c19
AD
8629When a Bison grammar compiles properly but parses ``incorrectly'', the
8630@code{yydebug} parser-trace feature helps figuring out why.
8631
8632@menu
8633* Enabling Traces:: Activating run-time trace support
8634* Mfcalc Traces:: Extending @code{mfcalc} to support traces
8635* The YYPRINT Macro:: Obsolete interface for semantic value reports
8636@end menu
bfa74976 8637
56d60c19
AD
8638@node Enabling Traces
8639@subsection Enabling Traces
3ded9a63
AD
8640There are several means to enable compilation of trace facilities:
8641
8642@table @asis
8643@item the macro @code{YYDEBUG}
8644@findex YYDEBUG
8645Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 8646parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8647@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8648YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8649Prologue}).
8650
e6ae99fe 8651If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
8652Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
8653api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
8654tracing feature (enabled if and only if nonzero); otherwise tracing is
8655enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
8656
8657@item the option @option{-t} (POSIX Yacc compliant)
8658@itemx the option @option{--debug} (Bison extension)
8659Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
8660Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
8661otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
8662
8663@item the directive @samp{%debug}
8664@findex %debug
e358222b
AD
8665Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8666Summary}). This is a Bison extension, especially useful for languages that
8667don't use a preprocessor. Unless POSIX and Yacc portability matter to you,
8668this is the preferred solution.
3ded9a63
AD
8669@end table
8670
8671We suggest that you always enable the debug option so that debugging is
8672always possible.
bfa74976 8673
56d60c19 8674@findex YYFPRINTF
02a81e05 8675The trace facility outputs messages with macro calls of the form
e2742e46 8676@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8677@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8678arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8679define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8680and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8681
8682Once you have compiled the program with trace facilities, the way to
8683request a trace is to store a nonzero value in the variable @code{yydebug}.
8684You can do this by making the C code do it (in @code{main}, perhaps), or
8685you can alter the value with a C debugger.
8686
8687Each step taken by the parser when @code{yydebug} is nonzero produces a
8688line or two of trace information, written on @code{stderr}. The trace
8689messages tell you these things:
8690
8691@itemize @bullet
8692@item
8693Each time the parser calls @code{yylex}, what kind of token was read.
8694
8695@item
8696Each time a token is shifted, the depth and complete contents of the
8697state stack (@pxref{Parser States}).
8698
8699@item
8700Each time a rule is reduced, which rule it is, and the complete contents
8701of the state stack afterward.
8702@end itemize
8703
56d60c19
AD
8704To make sense of this information, it helps to refer to the automaton
8705description file (@pxref{Understanding, ,Understanding Your Parser}).
8706This file shows the meaning of each state in terms of
704a47c4
AD
8707positions in various rules, and also what each state will do with each
8708possible input token. As you read the successive trace messages, you
8709can see that the parser is functioning according to its specification in
8710the listing file. Eventually you will arrive at the place where
8711something undesirable happens, and you will see which parts of the
8712grammar are to blame.
bfa74976 8713
56d60c19 8714The parser implementation file is a C/C++/Java program and you can use
9913d6e4
JD
8715debuggers on it, but it's not easy to interpret what it is doing. The
8716parser function is a finite-state machine interpreter, and aside from
8717the actions it executes the same code over and over. Only the values
8718of variables show where in the grammar it is working.
bfa74976 8719
56d60c19
AD
8720@node Mfcalc Traces
8721@subsection Enabling Debug Traces for @code{mfcalc}
8722
8723The debugging information normally gives the token type of each token read,
8724but not its semantic value. The @code{%printer} directive allows specify
8725how semantic values are reported, see @ref{Printer Decl, , Printing
8726Semantic Values}. For backward compatibility, Yacc like C parsers may also
8727use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
8728Macro}), but its use is discouraged.
8729
8730As a demonstration of @code{%printer}, consider the multi-function
8731calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
8732traces, and semantic value reports, insert the following directives in its
8733prologue:
8734
8735@comment file: mfcalc.y: 2
8736@example
8737/* Generate the parser description file. */
8738%verbose
8739/* Enable run-time traces (yydebug). */
8740%define parse.trace
8741
8742/* Formatting semantic values. */
8743%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
8744%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
8745%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
8746@end example
8747
8748The @code{%define} directive instructs Bison to generate run-time trace
8749support. Then, activation of these traces is controlled at run-time by the
8750@code{yydebug} variable, which is disabled by default. Because these traces
8751will refer to the ``states'' of the parser, it is helpful to ask for the
8752creation of a description of that parser; this is the purpose of (admittedly
8753ill-named) @code{%verbose} directive.
8754
8755The set of @code{%printer} directives demonstrates how to format the
8756semantic value in the traces. Note that the specification can be done
8757either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
8758tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
8759printer will be used for them.
8760
8761Here is a sample of the information provided by run-time traces. The traces
8762are sent onto standard error.
8763
8764@example
8765$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
8766Starting parse
8767Entering state 0
8768Reducing stack by rule 1 (line 34):
8769-> $$ = nterm input ()
8770Stack now 0
8771Entering state 1
8772@end example
8773
8774@noindent
8775This first batch shows a specific feature of this grammar: the first rule
8776(which is in line 34 of @file{mfcalc.y} can be reduced without even having
8777to look for the first token. The resulting left-hand symbol (@code{$$}) is
8778a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
8779
8780Then the parser calls the scanner.
8781@example
8782Reading a token: Next token is token FNCT (sin())
8783Shifting token FNCT (sin())
8784Entering state 6
8785@end example
8786
8787@noindent
8788That token (@code{token}) is a function (@code{FNCT}) whose value is
8789@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
8790The parser stores (@code{Shifting}) that token, and others, until it can do
8791something about it.
8792
8793@example
8794Reading a token: Next token is token '(' ()
8795Shifting token '(' ()
8796Entering state 14
8797Reading a token: Next token is token NUM (1.000000)
8798Shifting token NUM (1.000000)
8799Entering state 4
8800Reducing stack by rule 6 (line 44):
8801 $1 = token NUM (1.000000)
8802-> $$ = nterm exp (1.000000)
8803Stack now 0 1 6 14
8804Entering state 24
8805@end example
8806
8807@noindent
8808The previous reduction demonstrates the @code{%printer} directive for
8809@code{<val>}: both the token @code{NUM} and the resulting non-terminal
8810@code{exp} have @samp{1} as value.
8811
8812@example
8813Reading a token: Next token is token '-' ()
8814Shifting token '-' ()
8815Entering state 17
8816Reading a token: Next token is token NUM (1.000000)
8817Shifting token NUM (1.000000)
8818Entering state 4
8819Reducing stack by rule 6 (line 44):
8820 $1 = token NUM (1.000000)
8821-> $$ = nterm exp (1.000000)
8822Stack now 0 1 6 14 24 17
8823Entering state 26
8824Reading a token: Next token is token ')' ()
8825Reducing stack by rule 11 (line 49):
8826 $1 = nterm exp (1.000000)
8827 $2 = token '-' ()
8828 $3 = nterm exp (1.000000)
8829-> $$ = nterm exp (0.000000)
8830Stack now 0 1 6 14
8831Entering state 24
8832@end example
8833
8834@noindent
8835The rule for the subtraction was just reduced. The parser is about to
8836discover the end of the call to @code{sin}.
8837
8838@example
8839Next token is token ')' ()
8840Shifting token ')' ()
8841Entering state 31
8842Reducing stack by rule 9 (line 47):
8843 $1 = token FNCT (sin())
8844 $2 = token '(' ()
8845 $3 = nterm exp (0.000000)
8846 $4 = token ')' ()
8847-> $$ = nterm exp (0.000000)
8848Stack now 0 1
8849Entering state 11
8850@end example
8851
8852@noindent
8853Finally, the end-of-line allow the parser to complete the computation, and
8854display its result.
8855
8856@example
8857Reading a token: Next token is token '\n' ()
8858Shifting token '\n' ()
8859Entering state 22
8860Reducing stack by rule 4 (line 40):
8861 $1 = nterm exp (0.000000)
8862 $2 = token '\n' ()
8863@result{} 0
8864-> $$ = nterm line ()
8865Stack now 0 1
8866Entering state 10
8867Reducing stack by rule 2 (line 35):
8868 $1 = nterm input ()
8869 $2 = nterm line ()
8870-> $$ = nterm input ()
8871Stack now 0
8872Entering state 1
8873@end example
8874
8875The parser has returned into state 1, in which it is waiting for the next
8876expression to evaluate, or for the end-of-file token, which causes the
8877completion of the parsing.
8878
8879@example
8880Reading a token: Now at end of input.
8881Shifting token $end ()
8882Entering state 2
8883Stack now 0 1 2
8884Cleanup: popping token $end ()
8885Cleanup: popping nterm input ()
8886@end example
8887
8888
8889@node The YYPRINT Macro
8890@subsection The @code{YYPRINT} Macro
8891
8892@findex YYPRINT
8893Before @code{%printer} support, semantic values could be displayed using the
8894@code{YYPRINT} macro, which works only for terminal symbols and only with
8895the @file{yacc.c} skeleton.
8896
8897@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
bfa74976 8898@findex YYPRINT
56d60c19
AD
8899If you define @code{YYPRINT}, it should take three arguments. The parser
8900will pass a standard I/O stream, the numeric code for the token type, and
8901the token value (from @code{yylval}).
8902
8903For @file{yacc.c} only. Obsoleted by @code{%printer}.
8904@end deffn
bfa74976
RS
8905
8906Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8907calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 8908
ea118b72 8909@example
38a92d50
PE
8910%@{
8911 static void print_token_value (FILE *, int, YYSTYPE);
56d60c19
AD
8912 #define YYPRINT(File, Type, Value) \
8913 print_token_value (File, Type, Value)
38a92d50
PE
8914%@}
8915
8916@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8917
8918static void
831d3c99 8919print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8920@{
8921 if (type == VAR)
d3c4e709 8922 fprintf (file, "%s", value.tptr->name);
bfa74976 8923 else if (type == NUM)
d3c4e709 8924 fprintf (file, "%d", value.val);
bfa74976 8925@}
ea118b72 8926@end example
bfa74976 8927
ec3bc396
AD
8928@c ================================================= Invoking Bison
8929
342b8b6e 8930@node Invocation
bfa74976
RS
8931@chapter Invoking Bison
8932@cindex invoking Bison
8933@cindex Bison invocation
8934@cindex options for invoking Bison
8935
8936The usual way to invoke Bison is as follows:
8937
8938@example
8939bison @var{infile}
8940@end example
8941
8942Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
8943@samp{.y}. The parser implementation file's name is made by replacing
8944the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8945Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8946the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8947also possible, in case you are writing C++ code instead of C in your
8948grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8949output files will take an extension like the given one as input
8950(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8951feature takes effect with all options that manipulate file names like
234a3be3
AD
8952@samp{-o} or @samp{-d}.
8953
8954For example :
8955
8956@example
8957bison -d @var{infile.yxx}
8958@end example
84163231 8959@noindent
72d2299c 8960will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8961
8962@example
b56471a6 8963bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8964@end example
84163231 8965@noindent
234a3be3
AD
8966will produce @file{output.c++} and @file{outfile.h++}.
8967
35430378 8968For compatibility with POSIX, the standard Bison
397ec073
PE
8969distribution also contains a shell script called @command{yacc} that
8970invokes Bison with the @option{-y} option.
8971
bfa74976 8972@menu
13863333 8973* Bison Options:: All the options described in detail,
c827f760 8974 in alphabetical order by short options.
bfa74976 8975* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8976* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8977@end menu
8978
342b8b6e 8979@node Bison Options
bfa74976
RS
8980@section Bison Options
8981
8982Bison supports both traditional single-letter options and mnemonic long
8983option names. Long option names are indicated with @samp{--} instead of
8984@samp{-}. Abbreviations for option names are allowed as long as they
8985are unique. When a long option takes an argument, like
8986@samp{--file-prefix}, connect the option name and the argument with
8987@samp{=}.
8988
8989Here is a list of options that can be used with Bison, alphabetized by
8990short option. It is followed by a cross key alphabetized by long
8991option.
8992
89cab50d
AD
8993@c Please, keep this ordered as in `bison --help'.
8994@noindent
8995Operations modes:
8996@table @option
8997@item -h
8998@itemx --help
8999Print a summary of the command-line options to Bison and exit.
bfa74976 9000
89cab50d
AD
9001@item -V
9002@itemx --version
9003Print the version number of Bison and exit.
bfa74976 9004
f7ab6a50
PE
9005@item --print-localedir
9006Print the name of the directory containing locale-dependent data.
9007
a0de5091
JD
9008@item --print-datadir
9009Print the name of the directory containing skeletons and XSLT.
9010
89cab50d
AD
9011@item -y
9012@itemx --yacc
9913d6e4
JD
9013Act more like the traditional Yacc command. This can cause different
9014diagnostics to be generated, and may change behavior in other minor
9015ways. Most importantly, imitate Yacc's output file name conventions,
9016so that the parser implementation file is called @file{y.tab.c}, and
9017the other outputs are called @file{y.output} and @file{y.tab.h}.
9018Also, if generating a deterministic parser in C, generate
9019@code{#define} statements in addition to an @code{enum} to associate
9020token numbers with token names. Thus, the following shell script can
9021substitute for Yacc, and the Bison distribution contains such a script
9022for compatibility with POSIX:
bfa74976 9023
89cab50d 9024@example
397ec073 9025#! /bin/sh
26e06a21 9026bison -y "$@@"
89cab50d 9027@end example
54662697
PE
9028
9029The @option{-y}/@option{--yacc} option is intended for use with
9030traditional Yacc grammars. If your grammar uses a Bison extension
9031like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9032this option is specified.
9033
ecd1b61c
JD
9034@item -W [@var{category}]
9035@itemx --warnings[=@var{category}]
118d4978
AD
9036Output warnings falling in @var{category}. @var{category} can be one
9037of:
9038@table @code
9039@item midrule-values
8e55b3aa
JD
9040Warn about mid-rule values that are set but not used within any of the actions
9041of the parent rule.
9042For example, warn about unused @code{$2} in:
118d4978
AD
9043
9044@example
9045exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9046@end example
9047
8e55b3aa
JD
9048Also warn about mid-rule values that are used but not set.
9049For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9050
9051@example
de6be119 9052exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9053@end example
9054
9055These warnings are not enabled by default since they sometimes prove to
9056be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9057@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9058
118d4978 9059@item yacc
35430378 9060Incompatibilities with POSIX Yacc.
118d4978 9061
6f8bdce2
JD
9062@item conflicts-sr
9063@itemx conflicts-rr
9064S/R and R/R conflicts. These warnings are enabled by default. However, if
9065the @code{%expect} or @code{%expect-rr} directive is specified, an
9066unexpected number of conflicts is an error, and an expected number of
9067conflicts is not reported, so @option{-W} and @option{--warning} then have
9068no effect on the conflict report.
9069
8ffd7912
JD
9070@item other
9071All warnings not categorized above. These warnings are enabled by default.
9072
9073This category is provided merely for the sake of completeness. Future
9074releases of Bison may move warnings from this category to new, more specific
9075categories.
9076
118d4978 9077@item all
8e55b3aa 9078All the warnings.
118d4978 9079@item none
8e55b3aa 9080Turn off all the warnings.
118d4978 9081@item error
8e55b3aa 9082Treat warnings as errors.
118d4978
AD
9083@end table
9084
9085A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 9086instance, @option{-Wno-yacc} will hide the warnings about
35430378 9087POSIX Yacc incompatibilities.
89cab50d
AD
9088@end table
9089
9090@noindent
9091Tuning the parser:
9092
9093@table @option
9094@item -t
9095@itemx --debug
9913d6e4
JD
9096In the parser implementation file, define the macro @code{YYDEBUG} to
90971 if it is not already defined, so that the debugging facilities are
9098compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9099
e14c6831
AD
9100@item -D @var{name}[=@var{value}]
9101@itemx --define=@var{name}[=@var{value}]
c33bc800 9102@itemx -F @var{name}[=@var{value}]
34d41938
JD
9103@itemx --force-define=@var{name}[=@var{value}]
9104Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
2f4518a1 9105(@pxref{%define Summary}) except that Bison processes multiple
34d41938
JD
9106definitions for the same @var{name} as follows:
9107
9108@itemize
9109@item
e3a33f7c
JD
9110Bison quietly ignores all command-line definitions for @var{name} except
9111the last.
34d41938 9112@item
e3a33f7c
JD
9113If that command-line definition is specified by a @code{-D} or
9114@code{--define}, Bison reports an error for any @code{%define}
9115definition for @var{name}.
34d41938 9116@item
e3a33f7c
JD
9117If that command-line definition is specified by a @code{-F} or
9118@code{--force-define} instead, Bison quietly ignores all @code{%define}
9119definitions for @var{name}.
9120@item
9121Otherwise, Bison reports an error if there are multiple @code{%define}
9122definitions for @var{name}.
34d41938
JD
9123@end itemize
9124
9125You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
9126make files unless you are confident that it is safe to quietly ignore
9127any conflicting @code{%define} that may be added to the grammar file.
e14c6831 9128
0e021770
PE
9129@item -L @var{language}
9130@itemx --language=@var{language}
9131Specify the programming language for the generated parser, as if
9132@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9133Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9134@var{language} is case-insensitive.
0e021770 9135
ed4d67dc
JD
9136This option is experimental and its effect may be modified in future
9137releases.
9138
89cab50d 9139@item --locations
d8988b2f 9140Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9141
9142@item -p @var{prefix}
9143@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9144Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9145Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9146Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9147
9148@item -l
9149@itemx --no-lines
9913d6e4
JD
9150Don't put any @code{#line} preprocessor commands in the parser
9151implementation file. Ordinarily Bison puts them in the parser
9152implementation file so that the C compiler and debuggers will
9153associate errors with your source file, the grammar file. This option
9154causes them to associate errors with the parser implementation file,
9155treating it as an independent source file in its own right.
bfa74976 9156
e6e704dc
JD
9157@item -S @var{file}
9158@itemx --skeleton=@var{file}
a7867f53 9159Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9160(@pxref{Decl Summary, , Bison Declaration Summary}).
9161
ed4d67dc
JD
9162@c You probably don't need this option unless you are developing Bison.
9163@c You should use @option{--language} if you want to specify the skeleton for a
9164@c different language, because it is clearer and because it will always
9165@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9166
a7867f53
JD
9167If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9168file in the Bison installation directory.
9169If it does, @var{file} is an absolute file name or a file name relative to the
9170current working directory.
9171This is similar to how most shells resolve commands.
9172
89cab50d
AD
9173@item -k
9174@itemx --token-table
d8988b2f 9175Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9176@end table
bfa74976 9177
89cab50d
AD
9178@noindent
9179Adjust the output:
bfa74976 9180
89cab50d 9181@table @option
8e55b3aa 9182@item --defines[=@var{file}]
d8988b2f 9183Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9184file containing macro definitions for the token type names defined in
4bfd5e4e 9185the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9186
8e55b3aa
JD
9187@item -d
9188This is the same as @code{--defines} except @code{-d} does not accept a
9189@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9190with other short options.
342b8b6e 9191
89cab50d
AD
9192@item -b @var{file-prefix}
9193@itemx --file-prefix=@var{prefix}
9c437126 9194Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9195for all Bison output file names. @xref{Decl Summary}.
bfa74976 9196
ec3bc396
AD
9197@item -r @var{things}
9198@itemx --report=@var{things}
9199Write an extra output file containing verbose description of the comma
9200separated list of @var{things} among:
9201
9202@table @code
9203@item state
9204Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 9205parser's automaton.
ec3bc396 9206
57f8bd8d
AD
9207@item itemset
9208Implies @code{state} and augments the description of the automaton with
9209the full set of items for each state, instead of its core only.
9210
742e4900 9211@item lookahead
ec3bc396 9212Implies @code{state} and augments the description of the automaton with
742e4900 9213each rule's lookahead set.
ec3bc396 9214
57f8bd8d
AD
9215@item solved
9216Implies @code{state}. Explain how conflicts were solved thanks to
9217precedence and associativity directives.
9218
9219@item all
9220Enable all the items.
9221
9222@item none
9223Do not generate the report.
ec3bc396
AD
9224@end table
9225
1bb2bd75
JD
9226@item --report-file=@var{file}
9227Specify the @var{file} for the verbose description.
9228
bfa74976
RS
9229@item -v
9230@itemx --verbose
9c437126 9231Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9232file containing verbose descriptions of the grammar and
72d2299c 9233parser. @xref{Decl Summary}.
bfa74976 9234
fa4d969f
PE
9235@item -o @var{file}
9236@itemx --output=@var{file}
9913d6e4 9237Specify the @var{file} for the parser implementation file.
bfa74976 9238
fa4d969f 9239The other output files' names are constructed from @var{file} as
d8988b2f 9240described under the @samp{-v} and @samp{-d} options.
342b8b6e 9241
72183df4 9242@item -g [@var{file}]
8e55b3aa 9243@itemx --graph[=@var{file}]
34a6c2d1 9244Output a graphical representation of the parser's
35fe0834 9245automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 9246@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9247@code{@var{file}} is optional.
9248If omitted and the grammar file is @file{foo.y}, the output file will be
9249@file{foo.dot}.
59da312b 9250
72183df4 9251@item -x [@var{file}]
8e55b3aa 9252@itemx --xml[=@var{file}]
34a6c2d1 9253Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9254@code{@var{file}} is optional.
59da312b
JD
9255If omitted and the grammar file is @file{foo.y}, the output file will be
9256@file{foo.xml}.
9257(The current XML schema is experimental and may evolve.
9258More user feedback will help to stabilize it.)
bfa74976
RS
9259@end table
9260
342b8b6e 9261@node Option Cross Key
bfa74976
RS
9262@section Option Cross Key
9263
9264Here is a list of options, alphabetized by long option, to help you find
34d41938 9265the corresponding short option and directive.
bfa74976 9266
34d41938 9267@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 9268@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9269@include cross-options.texi
aa08666d 9270@end multitable
bfa74976 9271
93dd49ab
PE
9272@node Yacc Library
9273@section Yacc Library
9274
9275The Yacc library contains default implementations of the
9276@code{yyerror} and @code{main} functions. These default
35430378 9277implementations are normally not useful, but POSIX requires
93dd49ab
PE
9278them. To use the Yacc library, link your program with the
9279@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 9280library is distributed under the terms of the GNU General
93dd49ab
PE
9281Public License (@pxref{Copying}).
9282
9283If you use the Yacc library's @code{yyerror} function, you should
9284declare @code{yyerror} as follows:
9285
9286@example
9287int yyerror (char const *);
9288@end example
9289
9290Bison ignores the @code{int} value returned by this @code{yyerror}.
9291If you use the Yacc library's @code{main} function, your
9292@code{yyparse} function should have the following type signature:
9293
9294@example
9295int yyparse (void);
9296@end example
9297
12545799
AD
9298@c ================================================= C++ Bison
9299
8405b70c
PB
9300@node Other Languages
9301@chapter Parsers Written In Other Languages
12545799
AD
9302
9303@menu
9304* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9305* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9306@end menu
9307
9308@node C++ Parsers
9309@section C++ Parsers
9310
9311@menu
9312* C++ Bison Interface:: Asking for C++ parser generation
9313* C++ Semantic Values:: %union vs. C++
9314* C++ Location Values:: The position and location classes
9315* C++ Parser Interface:: Instantiating and running the parser
9316* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9317* A Complete C++ Example:: Demonstrating their use
12545799
AD
9318@end menu
9319
9320@node C++ Bison Interface
9321@subsection C++ Bison Interface
ed4d67dc 9322@c - %skeleton "lalr1.cc"
12545799
AD
9323@c - Always pure
9324@c - initial action
9325
34a6c2d1 9326The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
9327@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9328@option{--skeleton=lalr1.cc}.
e6e704dc 9329@xref{Decl Summary}.
0e021770 9330
793fbca5
JD
9331When run, @command{bison} will create several entities in the @samp{yy}
9332namespace.
9333@findex %define namespace
2f4518a1
JD
9334Use the @samp{%define namespace} directive to change the namespace
9335name, see @ref{%define Summary,,namespace}. The various classes are
9336generated in the following files:
aa08666d 9337
12545799
AD
9338@table @file
9339@item position.hh
9340@itemx location.hh
db8ab2be
AD
9341The definition of the classes @code{position} and @code{location}, used for
9342location tracking. These files are not generated if the @code{%define}
9343variable @code{api.location.type} is defined. @xref{C++ Location Values}.
12545799
AD
9344
9345@item stack.hh
9346An auxiliary class @code{stack} used by the parser.
9347
fa4d969f
PE
9348@item @var{file}.hh
9349@itemx @var{file}.cc
9913d6e4 9350(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9351declaration and implementation of the C++ parser class. The basename
9352and extension of these two files follow the same rules as with regular C
9353parsers (@pxref{Invocation}).
12545799 9354
cd8b5791
AD
9355The header is @emph{mandatory}; you must either pass
9356@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9357@samp{%defines} directive.
9358@end table
9359
9360All these files are documented using Doxygen; run @command{doxygen}
9361for a complete and accurate documentation.
9362
9363@node C++ Semantic Values
9364@subsection C++ Semantic Values
9365@c - No objects in unions
178e123e 9366@c - YYSTYPE
12545799
AD
9367@c - Printer and destructor
9368
9369The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9370Collection of Value Types}. In particular it produces a genuine
9371@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
9372within pseudo-unions (similar to Boost variants) might be implemented to
9373alleviate these issues.}, which have a few specific features in C++.
12545799
AD
9374@itemize @minus
9375@item
fb9712a9
AD
9376The type @code{YYSTYPE} is defined but its use is discouraged: rather
9377you should refer to the parser's encapsulated type
9378@code{yy::parser::semantic_type}.
12545799
AD
9379@item
9380Non POD (Plain Old Data) types cannot be used. C++ forbids any
9381instance of classes with constructors in unions: only @emph{pointers}
9382to such objects are allowed.
9383@end itemize
9384
9385Because objects have to be stored via pointers, memory is not
9386reclaimed automatically: using the @code{%destructor} directive is the
9387only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9388Symbols}.
9389
9390
9391@node C++ Location Values
9392@subsection C++ Location Values
9393@c - %locations
9394@c - class Position
9395@c - class Location
16dc6a9e 9396@c - %define filename_type "const symbol::Symbol"
12545799
AD
9397
9398When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
9399location tracking, see @ref{Tracking Locations}.
9400
9401By default, two auxiliary classes define a @code{position}, a single point
9402in a file, and a @code{location}, a range composed of a pair of
9403@code{position}s (possibly spanning several files). But if the
9404@code{%define} variable @code{api.location.type} is defined, then these
9405classes will not be generated, and the user defined type will be used.
12545799 9406
936c88d1
AD
9407@tindex uint
9408In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9409genuine code only the latter is used.
9410
9411@menu
db8ab2be
AD
9412* C++ position:: One point in the source file
9413* C++ location:: Two points in the source file
9414* User Defined Location Type:: Required interface for locations
936c88d1
AD
9415@end menu
9416
9417@node C++ position
9418@subsubsection C++ @code{position}
9419
9420@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9421Create a @code{position} denoting a given point. Note that @code{file} is
9422not reclaimed when the @code{position} is destroyed: memory managed must be
9423handled elsewhere.
9424@end deftypeop
9425
9426@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9427Reset the position to the given values.
9428@end deftypemethod
9429
9430@deftypeivar {position} {std::string*} file
12545799
AD
9431The name of the file. It will always be handled as a pointer, the
9432parser will never duplicate nor deallocate it. As an experimental
9433feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9434filename_type "@var{type}"}.
936c88d1 9435@end deftypeivar
12545799 9436
936c88d1 9437@deftypeivar {position} {uint} line
12545799 9438The line, starting at 1.
936c88d1 9439@end deftypeivar
12545799 9440
936c88d1 9441@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
9442Advance by @var{height} lines, resetting the column number.
9443@end deftypemethod
9444
936c88d1
AD
9445@deftypeivar {position} {uint} column
9446The column, starting at 1.
9447@end deftypeivar
12545799 9448
936c88d1 9449@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
9450Advance by @var{width} columns, without changing the line number.
9451@end deftypemethod
9452
936c88d1
AD
9453@deftypemethod {position} {position&} operator+= (int @var{width})
9454@deftypemethodx {position} {position} operator+ (int @var{width})
9455@deftypemethodx {position} {position&} operator-= (int @var{width})
9456@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
9457Various forms of syntactic sugar for @code{columns}.
9458@end deftypemethod
9459
936c88d1
AD
9460@deftypemethod {position} {bool} operator== (const position& @var{that})
9461@deftypemethodx {position} {bool} operator!= (const position& @var{that})
9462Whether @code{*this} and @code{that} denote equal/different positions.
9463@end deftypemethod
9464
9465@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 9466Report @var{p} on @var{o} like this:
fa4d969f
PE
9467@samp{@var{file}:@var{line}.@var{column}}, or
9468@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
9469@end deftypefun
9470
9471@node C++ location
9472@subsubsection C++ @code{location}
9473
9474@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9475Create a @code{Location} from the endpoints of the range.
9476@end deftypeop
9477
9478@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9479@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9480Create a @code{Location} denoting an empty range located at a given point.
9481@end deftypeop
9482
9483@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9484Reset the location to an empty range at the given values.
12545799
AD
9485@end deftypemethod
9486
936c88d1
AD
9487@deftypeivar {location} {position} begin
9488@deftypeivarx {location} {position} end
12545799 9489The first, inclusive, position of the range, and the first beyond.
936c88d1 9490@end deftypeivar
12545799 9491
936c88d1
AD
9492@deftypemethod {location} {uint} columns (int @var{width} = 1)
9493@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
9494Advance the @code{end} position.
9495@end deftypemethod
9496
936c88d1
AD
9497@deftypemethod {location} {location} operator+ (const location& @var{end})
9498@deftypemethodx {location} {location} operator+ (int @var{width})
9499@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
9500Various forms of syntactic sugar.
9501@end deftypemethod
9502
9503@deftypemethod {location} {void} step ()
9504Move @code{begin} onto @code{end}.
9505@end deftypemethod
9506
936c88d1
AD
9507@deftypemethod {location} {bool} operator== (const location& @var{that})
9508@deftypemethodx {location} {bool} operator!= (const location& @var{that})
9509Whether @code{*this} and @code{that} denote equal/different ranges of
9510positions.
9511@end deftypemethod
9512
9513@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9514Report @var{p} on @var{o}, taking care of special cases such as: no
9515@code{filename} defined, or equal filename/line or column.
9516@end deftypefun
12545799 9517
db8ab2be
AD
9518@node User Defined Location Type
9519@subsubsection User Defined Location Type
9520@findex %define api.location.type
9521
9522Instead of using the built-in types you may use the @code{%define} variable
9523@code{api.location.type} to specify your own type:
9524
9525@example
9526%define api.location.type @var{LocationType}
9527@end example
9528
9529The requirements over your @var{LocationType} are:
9530@itemize
9531@item
9532it must be copyable;
9533
9534@item
9535in order to compute the (default) value of @code{@@$} in a reduction, the
9536parser basically runs
9537@example
9538@@$.begin = @@$1.begin;
9539@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
9540@end example
9541@noindent
9542so there must be copyable @code{begin} and @code{end} members;
9543
9544@item
9545alternatively you may redefine the computation of the default location, in
9546which case these members are not required (@pxref{Location Default Action});
9547
9548@item
9549if traces are enabled, then there must exist an @samp{std::ostream&
9550 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
9551@end itemize
9552
9553@sp 1
9554
9555In programs with several C++ parsers, you may also use the @code{%define}
9556variable @code{api.location.type} to share a common set of built-in
9557definitions for @code{position} and @code{location}. For instance, one
9558parser @file{master/parser.yy} might use:
9559
9560@example
9561%defines
9562%locations
9563%define namespace "master::"
9564@end example
9565
9566@noindent
9567to generate the @file{master/position.hh} and @file{master/location.hh}
9568files, reused by other parsers as follows:
9569
9570@example
7287be84 9571%define api.location.type "master::location"
db8ab2be
AD
9572%code requires @{ #include <master/location.hh> @}
9573@end example
9574
12545799
AD
9575@node C++ Parser Interface
9576@subsection C++ Parser Interface
9577@c - define parser_class_name
9578@c - Ctor
9579@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9580@c debug_stream.
9581@c - Reporting errors
9582
9583The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9584declare and define the parser class in the namespace @code{yy}. The
9585class name defaults to @code{parser}, but may be changed using
16dc6a9e 9586@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9587this class is detailed below. It can be extended using the
12545799
AD
9588@code{%parse-param} feature: its semantics is slightly changed since
9589it describes an additional member of the parser class, and an
9590additional argument for its constructor.
9591
baacae49
AD
9592@defcv {Type} {parser} {semantic_type}
9593@defcvx {Type} {parser} {location_type}
12545799 9594The types for semantics value and locations.
8a0adb01 9595@end defcv
12545799 9596
baacae49 9597@defcv {Type} {parser} {token}
2c0f9706
AD
9598A structure that contains (only) the @code{yytokentype} enumeration, which
9599defines the tokens. To refer to the token @code{FOO},
9600use @code{yy::parser::token::FOO}. The scanner can use
baacae49
AD
9601@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9602(@pxref{Calc++ Scanner}).
9603@end defcv
9604
12545799
AD
9605@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9606Build a new parser object. There are no arguments by default, unless
9607@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9608@end deftypemethod
9609
9610@deftypemethod {parser} {int} parse ()
9611Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
9612
9613@cindex exceptions
9614The whole function is wrapped in a @code{try}/@code{catch} block, so that
9615when an exception is thrown, the @code{%destructor}s are called to release
9616the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
9617@end deftypemethod
9618
9619@deftypemethod {parser} {std::ostream&} debug_stream ()
9620@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9621Get or set the stream used for tracing the parsing. It defaults to
9622@code{std::cerr}.
9623@end deftypemethod
9624
9625@deftypemethod {parser} {debug_level_type} debug_level ()
9626@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9627Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9628or nonzero, full tracing.
12545799
AD
9629@end deftypemethod
9630
9631@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
9632The definition for this member function must be supplied by the user:
9633the parser uses it to report a parser error occurring at @var{l},
9634described by @var{m}.
9635@end deftypemethod
9636
9637
9638@node C++ Scanner Interface
9639@subsection C++ Scanner Interface
9640@c - prefix for yylex.
9641@c - Pure interface to yylex
9642@c - %lex-param
9643
9644The parser invokes the scanner by calling @code{yylex}. Contrary to C
9645parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 9646@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 9647
baacae49 9648@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
9649Return the next token. Its type is the return value, its semantic
9650value and location being @var{yylval} and @var{yylloc}. Invocations of
9651@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9652@end deftypemethod
9653
9654
9655@node A Complete C++ Example
8405b70c 9656@subsection A Complete C++ Example
12545799
AD
9657
9658This section demonstrates the use of a C++ parser with a simple but
9659complete example. This example should be available on your system,
9660ready to compile, in the directory @dfn{../bison/examples/calc++}. It
9661focuses on the use of Bison, therefore the design of the various C++
9662classes is very naive: no accessors, no encapsulation of members etc.
9663We will use a Lex scanner, and more precisely, a Flex scanner, to
9664demonstrate the various interaction. A hand written scanner is
9665actually easier to interface with.
9666
9667@menu
9668* Calc++ --- C++ Calculator:: The specifications
9669* Calc++ Parsing Driver:: An active parsing context
9670* Calc++ Parser:: A parser class
9671* Calc++ Scanner:: A pure C++ Flex scanner
9672* Calc++ Top Level:: Conducting the band
9673@end menu
9674
9675@node Calc++ --- C++ Calculator
8405b70c 9676@subsubsection Calc++ --- C++ Calculator
12545799
AD
9677
9678Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9679expression, possibly preceded by variable assignments. An
12545799
AD
9680environment containing possibly predefined variables such as
9681@code{one} and @code{two}, is exchanged with the parser. An example
9682of valid input follows.
9683
9684@example
9685three := 3
9686seven := one + two * three
9687seven * seven
9688@end example
9689
9690@node Calc++ Parsing Driver
8405b70c 9691@subsubsection Calc++ Parsing Driver
12545799
AD
9692@c - An env
9693@c - A place to store error messages
9694@c - A place for the result
9695
9696To support a pure interface with the parser (and the scanner) the
9697technique of the ``parsing context'' is convenient: a structure
9698containing all the data to exchange. Since, in addition to simply
9699launch the parsing, there are several auxiliary tasks to execute (open
9700the file for parsing, instantiate the parser etc.), we recommend
9701transforming the simple parsing context structure into a fully blown
9702@dfn{parsing driver} class.
9703
9704The declaration of this driver class, @file{calc++-driver.hh}, is as
9705follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9706required standard library components, and the declaration of the parser
9707class.
12545799 9708
1c59e0a1 9709@comment file: calc++-driver.hh
12545799
AD
9710@example
9711#ifndef CALCXX_DRIVER_HH
9712# define CALCXX_DRIVER_HH
9713# include <string>
9714# include <map>
fb9712a9 9715# include "calc++-parser.hh"
12545799
AD
9716@end example
9717
12545799
AD
9718
9719@noindent
9720Then comes the declaration of the scanning function. Flex expects
9721the signature of @code{yylex} to be defined in the macro
9722@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9723factor both as follows.
1c59e0a1
AD
9724
9725@comment file: calc++-driver.hh
12545799 9726@example
3dc5e96b
PE
9727// Tell Flex the lexer's prototype ...
9728# define YY_DECL \
c095d689
AD
9729 yy::calcxx_parser::token_type \
9730 yylex (yy::calcxx_parser::semantic_type* yylval, \
9731 yy::calcxx_parser::location_type* yylloc, \
9732 calcxx_driver& driver)
12545799
AD
9733// ... and declare it for the parser's sake.
9734YY_DECL;
9735@end example
9736
9737@noindent
9738The @code{calcxx_driver} class is then declared with its most obvious
9739members.
9740
1c59e0a1 9741@comment file: calc++-driver.hh
12545799
AD
9742@example
9743// Conducting the whole scanning and parsing of Calc++.
9744class calcxx_driver
9745@{
9746public:
9747 calcxx_driver ();
9748 virtual ~calcxx_driver ();
9749
9750 std::map<std::string, int> variables;
9751
9752 int result;
9753@end example
9754
9755@noindent
9756To encapsulate the coordination with the Flex scanner, it is useful to
9757have two members function to open and close the scanning phase.
12545799 9758
1c59e0a1 9759@comment file: calc++-driver.hh
12545799
AD
9760@example
9761 // Handling the scanner.
9762 void scan_begin ();
9763 void scan_end ();
9764 bool trace_scanning;
9765@end example
9766
9767@noindent
9768Similarly for the parser itself.
9769
1c59e0a1 9770@comment file: calc++-driver.hh
12545799 9771@example
bb32f4f2
AD
9772 // Run the parser. Return 0 on success.
9773 int parse (const std::string& f);
12545799
AD
9774 std::string file;
9775 bool trace_parsing;
9776@end example
9777
9778@noindent
9779To demonstrate pure handling of parse errors, instead of simply
9780dumping them on the standard error output, we will pass them to the
9781compiler driver using the following two member functions. Finally, we
9782close the class declaration and CPP guard.
9783
1c59e0a1 9784@comment file: calc++-driver.hh
12545799
AD
9785@example
9786 // Error handling.
9787 void error (const yy::location& l, const std::string& m);
9788 void error (const std::string& m);
9789@};
9790#endif // ! CALCXX_DRIVER_HH
9791@end example
9792
9793The implementation of the driver is straightforward. The @code{parse}
9794member function deserves some attention. The @code{error} functions
9795are simple stubs, they should actually register the located error
9796messages and set error state.
9797
1c59e0a1 9798@comment file: calc++-driver.cc
12545799
AD
9799@example
9800#include "calc++-driver.hh"
9801#include "calc++-parser.hh"
9802
9803calcxx_driver::calcxx_driver ()
9804 : trace_scanning (false), trace_parsing (false)
9805@{
9806 variables["one"] = 1;
9807 variables["two"] = 2;
9808@}
9809
9810calcxx_driver::~calcxx_driver ()
9811@{
9812@}
9813
bb32f4f2 9814int
12545799
AD
9815calcxx_driver::parse (const std::string &f)
9816@{
9817 file = f;
9818 scan_begin ();
9819 yy::calcxx_parser parser (*this);
9820 parser.set_debug_level (trace_parsing);
bb32f4f2 9821 int res = parser.parse ();
12545799 9822 scan_end ();
bb32f4f2 9823 return res;
12545799
AD
9824@}
9825
9826void
9827calcxx_driver::error (const yy::location& l, const std::string& m)
9828@{
9829 std::cerr << l << ": " << m << std::endl;
9830@}
9831
9832void
9833calcxx_driver::error (const std::string& m)
9834@{
9835 std::cerr << m << std::endl;
9836@}
9837@end example
9838
9839@node Calc++ Parser
8405b70c 9840@subsubsection Calc++ Parser
12545799 9841
9913d6e4
JD
9842The grammar file @file{calc++-parser.yy} starts by asking for the C++
9843deterministic parser skeleton, the creation of the parser header file,
9844and specifies the name of the parser class. Because the C++ skeleton
9845changed several times, it is safer to require the version you designed
9846the grammar for.
1c59e0a1
AD
9847
9848@comment file: calc++-parser.yy
12545799 9849@example
ea118b72 9850%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9851%require "@value{VERSION}"
12545799 9852%defines
16dc6a9e 9853%define parser_class_name "calcxx_parser"
fb9712a9
AD
9854@end example
9855
9856@noindent
16dc6a9e 9857@findex %code requires
fb9712a9
AD
9858Then come the declarations/inclusions needed to define the
9859@code{%union}. Because the parser uses the parsing driver and
9860reciprocally, both cannot include the header of the other. Because the
9861driver's header needs detailed knowledge about the parser class (in
9862particular its inner types), it is the parser's header which will simply
9863use a forward declaration of the driver.
8e6f2266 9864@xref{%code Summary}.
fb9712a9
AD
9865
9866@comment file: calc++-parser.yy
9867@example
16dc6a9e 9868%code requires @{
12545799 9869# include <string>
fb9712a9 9870class calcxx_driver;
9bc0dd67 9871@}
12545799
AD
9872@end example
9873
9874@noindent
9875The driver is passed by reference to the parser and to the scanner.
9876This provides a simple but effective pure interface, not relying on
9877global variables.
9878
1c59e0a1 9879@comment file: calc++-parser.yy
12545799
AD
9880@example
9881// The parsing context.
9882%parse-param @{ calcxx_driver& driver @}
9883%lex-param @{ calcxx_driver& driver @}
9884@end example
9885
9886@noindent
9887Then we request the location tracking feature, and initialize the
c781580d 9888first location's file name. Afterward new locations are computed
12545799
AD
9889relatively to the previous locations: the file name will be
9890automatically propagated.
9891
1c59e0a1 9892@comment file: calc++-parser.yy
12545799
AD
9893@example
9894%locations
9895%initial-action
9896@{
9897 // Initialize the initial location.
b47dbebe 9898 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9899@};
9900@end example
9901
9902@noindent
6f04ee6c
JD
9903Use the two following directives to enable parser tracing and verbose error
9904messages. However, verbose error messages can contain incorrect information
9905(@pxref{LAC}).
12545799 9906
1c59e0a1 9907@comment file: calc++-parser.yy
12545799
AD
9908@example
9909%debug
9910%error-verbose
9911@end example
9912
9913@noindent
9914Semantic values cannot use ``real'' objects, but only pointers to
9915them.
9916
1c59e0a1 9917@comment file: calc++-parser.yy
12545799
AD
9918@example
9919// Symbols.
9920%union
9921@{
9922 int ival;
9923 std::string *sval;
9924@};
9925@end example
9926
fb9712a9 9927@noindent
136a0f76
PB
9928@findex %code
9929The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9930@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9931
9932@comment file: calc++-parser.yy
9933@example
136a0f76 9934%code @{
fb9712a9 9935# include "calc++-driver.hh"
34f98f46 9936@}
fb9712a9
AD
9937@end example
9938
9939
12545799
AD
9940@noindent
9941The token numbered as 0 corresponds to end of file; the following line
9942allows for nicer error messages referring to ``end of file'' instead
9943of ``$end''. Similarly user friendly named are provided for each
9944symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
9945avoid name clashes.
9946
1c59e0a1 9947@comment file: calc++-parser.yy
12545799 9948@example
fb9712a9
AD
9949%token END 0 "end of file"
9950%token ASSIGN ":="
9951%token <sval> IDENTIFIER "identifier"
9952%token <ival> NUMBER "number"
a8c2e813 9953%type <ival> exp
12545799
AD
9954@end example
9955
9956@noindent
9957To enable memory deallocation during error recovery, use
9958@code{%destructor}.
9959
287c78f6 9960@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 9961@comment file: calc++-parser.yy
12545799 9962@example
68fff38a 9963%printer @{ yyoutput << *$$; @} "identifier"
12545799
AD
9964%destructor @{ delete $$; @} "identifier"
9965
68fff38a 9966%printer @{ yyoutput << $$; @} <ival>
12545799
AD
9967@end example
9968
9969@noindent
9970The grammar itself is straightforward.
9971
1c59e0a1 9972@comment file: calc++-parser.yy
12545799
AD
9973@example
9974%%
9975%start unit;
9976unit: assignments exp @{ driver.result = $2; @};
9977
de6be119
AD
9978assignments:
9979 /* Nothing. */ @{@}
9980| assignments assignment @{@};
12545799 9981
3dc5e96b
PE
9982assignment:
9983 "identifier" ":=" exp
9984 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
9985
9986%left '+' '-';
9987%left '*' '/';
9988exp: exp '+' exp @{ $$ = $1 + $3; @}
9989 | exp '-' exp @{ $$ = $1 - $3; @}
9990 | exp '*' exp @{ $$ = $1 * $3; @}
9991 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 9992 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 9993 | "number" @{ $$ = $1; @};
12545799
AD
9994%%
9995@end example
9996
9997@noindent
9998Finally the @code{error} member function registers the errors to the
9999driver.
10000
1c59e0a1 10001@comment file: calc++-parser.yy
12545799
AD
10002@example
10003void
1c59e0a1
AD
10004yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
10005 const std::string& m)
12545799
AD
10006@{
10007 driver.error (l, m);
10008@}
10009@end example
10010
10011@node Calc++ Scanner
8405b70c 10012@subsubsection Calc++ Scanner
12545799
AD
10013
10014The Flex scanner first includes the driver declaration, then the
10015parser's to get the set of defined tokens.
10016
1c59e0a1 10017@comment file: calc++-scanner.ll
12545799 10018@example
ea118b72 10019%@{ /* -*- C++ -*- */
04098407 10020# include <cstdlib>
b10dd689
AD
10021# include <cerrno>
10022# include <climits>
12545799
AD
10023# include <string>
10024# include "calc++-driver.hh"
10025# include "calc++-parser.hh"
eaea13f5
PE
10026
10027/* Work around an incompatibility in flex (at least versions
10028 2.5.31 through 2.5.33): it generates code that does
10029 not conform to C89. See Debian bug 333231
10030 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
10031# undef yywrap
10032# define yywrap() 1
eaea13f5 10033
c095d689
AD
10034/* By default yylex returns int, we use token_type.
10035 Unfortunately yyterminate by default returns 0, which is
10036 not of token_type. */
8c5b881d 10037#define yyterminate() return token::END
12545799
AD
10038%@}
10039@end example
10040
10041@noindent
10042Because there is no @code{#include}-like feature we don't need
10043@code{yywrap}, we don't need @code{unput} either, and we parse an
10044actual file, this is not an interactive session with the user.
10045Finally we enable the scanner tracing features.
10046
1c59e0a1 10047@comment file: calc++-scanner.ll
12545799
AD
10048@example
10049%option noyywrap nounput batch debug
10050@end example
10051
10052@noindent
10053Abbreviations allow for more readable rules.
10054
1c59e0a1 10055@comment file: calc++-scanner.ll
12545799
AD
10056@example
10057id [a-zA-Z][a-zA-Z_0-9]*
10058int [0-9]+
10059blank [ \t]
10060@end example
10061
10062@noindent
9d9b8b70 10063The following paragraph suffices to track locations accurately. Each
12545799
AD
10064time @code{yylex} is invoked, the begin position is moved onto the end
10065position. Then when a pattern is matched, the end position is
10066advanced of its width. In case it matched ends of lines, the end
10067cursor is adjusted, and each time blanks are matched, the begin cursor
10068is moved onto the end cursor to effectively ignore the blanks
10069preceding tokens. Comments would be treated equally.
10070
1c59e0a1 10071@comment file: calc++-scanner.ll
12545799 10072@example
98842516 10073@group
828c373b
AD
10074%@{
10075# define YY_USER_ACTION yylloc->columns (yyleng);
10076%@}
98842516 10077@end group
12545799
AD
10078%%
10079%@{
10080 yylloc->step ();
12545799
AD
10081%@}
10082@{blank@}+ yylloc->step ();
10083[\n]+ yylloc->lines (yyleng); yylloc->step ();
10084@end example
10085
10086@noindent
fb9712a9
AD
10087The rules are simple, just note the use of the driver to report errors.
10088It is convenient to use a typedef to shorten
10089@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 10090@code{token::identifier} for instance.
12545799 10091
1c59e0a1 10092@comment file: calc++-scanner.ll
12545799 10093@example
fb9712a9
AD
10094%@{
10095 typedef yy::calcxx_parser::token token;
10096%@}
8c5b881d 10097 /* Convert ints to the actual type of tokens. */
c095d689 10098[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 10099":=" return token::ASSIGN;
04098407
PE
10100@{int@} @{
10101 errno = 0;
10102 long n = strtol (yytext, NULL, 10);
10103 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
10104 driver.error (*yylloc, "integer is out of range");
10105 yylval->ival = n;
fb9712a9 10106 return token::NUMBER;
04098407 10107@}
fb9712a9 10108@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
10109. driver.error (*yylloc, "invalid character");
10110%%
10111@end example
10112
10113@noindent
10114Finally, because the scanner related driver's member function depend
10115on the scanner's data, it is simpler to implement them in this file.
10116
1c59e0a1 10117@comment file: calc++-scanner.ll
12545799 10118@example
98842516 10119@group
12545799
AD
10120void
10121calcxx_driver::scan_begin ()
10122@{
10123 yy_flex_debug = trace_scanning;
56d60c19 10124 if (file.empty () || file == "-")
bb32f4f2
AD
10125 yyin = stdin;
10126 else if (!(yyin = fopen (file.c_str (), "r")))
10127 @{
2c0f9706 10128 error ("cannot open " + file + ": " + strerror(errno));
dd561157 10129 exit (EXIT_FAILURE);
bb32f4f2 10130 @}
12545799 10131@}
98842516 10132@end group
12545799 10133
98842516 10134@group
12545799
AD
10135void
10136calcxx_driver::scan_end ()
10137@{
10138 fclose (yyin);
10139@}
98842516 10140@end group
12545799
AD
10141@end example
10142
10143@node Calc++ Top Level
8405b70c 10144@subsubsection Calc++ Top Level
12545799
AD
10145
10146The top level file, @file{calc++.cc}, poses no problem.
10147
1c59e0a1 10148@comment file: calc++.cc
12545799
AD
10149@example
10150#include <iostream>
10151#include "calc++-driver.hh"
10152
98842516 10153@group
12545799 10154int
fa4d969f 10155main (int argc, char *argv[])
12545799
AD
10156@{
10157 calcxx_driver driver;
56d60c19
AD
10158 for (int i = 1; i < argc; ++i)
10159 if (argv[i] == std::string ("-p"))
12545799 10160 driver.trace_parsing = true;
56d60c19 10161 else if (argv[i] == std::string ("-s"))
12545799 10162 driver.trace_scanning = true;
56d60c19 10163 else if (!driver.parse (argv[i]))
bb32f4f2 10164 std::cout << driver.result << std::endl;
12545799 10165@}
98842516 10166@end group
12545799
AD
10167@end example
10168
8405b70c
PB
10169@node Java Parsers
10170@section Java Parsers
10171
10172@menu
f56274a8
DJ
10173* Java Bison Interface:: Asking for Java parser generation
10174* Java Semantic Values:: %type and %token vs. Java
10175* Java Location Values:: The position and location classes
10176* Java Parser Interface:: Instantiating and running the parser
10177* Java Scanner Interface:: Specifying the scanner for the parser
10178* Java Action Features:: Special features for use in actions
10179* Java Differences:: Differences between C/C++ and Java Grammars
10180* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10181@end menu
10182
10183@node Java Bison Interface
10184@subsection Java Bison Interface
10185@c - %language "Java"
8405b70c 10186
59da312b
JD
10187(The current Java interface is experimental and may evolve.
10188More user feedback will help to stabilize it.)
10189
e254a580
DJ
10190The Java parser skeletons are selected using the @code{%language "Java"}
10191directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10192
e254a580 10193@c FIXME: Documented bug.
9913d6e4
JD
10194When generating a Java parser, @code{bison @var{basename}.y} will
10195create a single Java source file named @file{@var{basename}.java}
10196containing the parser implementation. Using a grammar file without a
10197@file{.y} suffix is currently broken. The basename of the parser
10198implementation file can be changed by the @code{%file-prefix}
10199directive or the @option{-p}/@option{--name-prefix} option. The
10200entire parser implementation file name can be changed by the
10201@code{%output} directive or the @option{-o}/@option{--output} option.
10202The parser implementation file contains a single class for the parser.
8405b70c 10203
e254a580 10204You can create documentation for generated parsers using Javadoc.
8405b70c 10205
e254a580
DJ
10206Contrary to C parsers, Java parsers do not use global variables; the
10207state of the parser is always local to an instance of the parser class.
10208Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
10209and @code{%define api.pure} directives does not do anything when used in
10210Java.
8405b70c 10211
e254a580 10212Push parsers are currently unsupported in Java and @code{%define
812775a0 10213api.push-pull} have no effect.
01b477c6 10214
35430378 10215GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10216@code{glr-parser} directive.
10217
10218No header file can be generated for Java parsers. Do not use the
10219@code{%defines} directive or the @option{-d}/@option{--defines} options.
10220
10221@c FIXME: Possible code change.
10222Currently, support for debugging and verbose errors are always compiled
10223in. Thus the @code{%debug} and @code{%token-table} directives and the
10224@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10225options have no effect. This may change in the future to eliminate
10226unused code in the generated parser, so use @code{%debug} and
10227@code{%verbose-error} explicitly if needed. Also, in the future the
10228@code{%token-table} directive might enable a public interface to
10229access the token names and codes.
8405b70c
PB
10230
10231@node Java Semantic Values
10232@subsection Java Semantic Values
10233@c - No %union, specify type in %type/%token.
10234@c - YYSTYPE
10235@c - Printer and destructor
10236
10237There is no @code{%union} directive in Java parsers. Instead, the
10238semantic values' types (class names) should be specified in the
10239@code{%type} or @code{%token} directive:
10240
10241@example
10242%type <Expression> expr assignment_expr term factor
10243%type <Integer> number
10244@end example
10245
10246By default, the semantic stack is declared to have @code{Object} members,
10247which means that the class types you specify can be of any class.
10248To improve the type safety of the parser, you can declare the common
e254a580
DJ
10249superclass of all the semantic values using the @code{%define stype}
10250directive. For example, after the following declaration:
8405b70c
PB
10251
10252@example
e254a580 10253%define stype "ASTNode"
8405b70c
PB
10254@end example
10255
10256@noindent
10257any @code{%type} or @code{%token} specifying a semantic type which
10258is not a subclass of ASTNode, will cause a compile-time error.
10259
e254a580 10260@c FIXME: Documented bug.
8405b70c
PB
10261Types used in the directives may be qualified with a package name.
10262Primitive data types are accepted for Java version 1.5 or later. Note
10263that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10264Generic types may not be used; this is due to a limitation in the
10265implementation of Bison, and may change in future releases.
8405b70c
PB
10266
10267Java parsers do not support @code{%destructor}, since the language
10268adopts garbage collection. The parser will try to hold references
10269to semantic values for as little time as needed.
10270
10271Java parsers do not support @code{%printer}, as @code{toString()}
10272can be used to print the semantic values. This however may change
10273(in a backwards-compatible way) in future versions of Bison.
10274
10275
10276@node Java Location Values
10277@subsection Java Location Values
10278@c - %locations
10279@c - class Position
10280@c - class Location
10281
7404cdf3
JD
10282When the directive @code{%locations} is used, the Java parser supports
10283location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10284class defines a @dfn{position}, a single point in a file; Bison itself
10285defines a class representing a @dfn{location}, a range composed of a pair of
10286positions (possibly spanning several files). The location class is an inner
10287class of the parser; the name is @code{Location} by default, and may also be
7287be84 10288renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
10289
10290The location class treats the position as a completely opaque value.
10291By default, the class name is @code{Position}, but this can be changed
7287be84 10292with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 10293be supplied by the user.
8405b70c
PB
10294
10295
e254a580
DJ
10296@deftypeivar {Location} {Position} begin
10297@deftypeivarx {Location} {Position} end
8405b70c 10298The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10299@end deftypeivar
10300
10301@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 10302Create a @code{Location} denoting an empty range located at a given point.
e254a580 10303@end deftypeop
8405b70c 10304
e254a580
DJ
10305@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10306Create a @code{Location} from the endpoints of the range.
10307@end deftypeop
10308
10309@deftypemethod {Location} {String} toString ()
8405b70c
PB
10310Prints the range represented by the location. For this to work
10311properly, the position class should override the @code{equals} and
10312@code{toString} methods appropriately.
10313@end deftypemethod
10314
10315
10316@node Java Parser Interface
10317@subsection Java Parser Interface
10318@c - define parser_class_name
10319@c - Ctor
10320@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10321@c debug_stream.
10322@c - Reporting errors
10323
e254a580
DJ
10324The name of the generated parser class defaults to @code{YYParser}. The
10325@code{YY} prefix may be changed using the @code{%name-prefix} directive
10326or the @option{-p}/@option{--name-prefix} option. Alternatively, use
10327@code{%define parser_class_name "@var{name}"} to give a custom name to
10328the class. The interface of this class is detailed below.
8405b70c 10329
e254a580
DJ
10330By default, the parser class has package visibility. A declaration
10331@code{%define public} will change to public visibility. Remember that,
10332according to the Java language specification, the name of the @file{.java}
10333file should match the name of the class in this case. Similarly, you can
10334use @code{abstract}, @code{final} and @code{strictfp} with the
10335@code{%define} declaration to add other modifiers to the parser class.
10336
10337The Java package name of the parser class can be specified using the
10338@code{%define package} directive. The superclass and the implemented
10339interfaces of the parser class can be specified with the @code{%define
10340extends} and @code{%define implements} directives.
10341
10342The parser class defines an inner class, @code{Location}, that is used
10343for location tracking (see @ref{Java Location Values}), and a inner
10344interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10345these inner class/interface, and the members described in the interface
10346below, all the other members and fields are preceded with a @code{yy} or
10347@code{YY} prefix to avoid clashes with user code.
10348
10349@c FIXME: The following constants and variables are still undocumented:
10350@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
10351
10352The parser class can be extended using the @code{%parse-param}
10353directive. Each occurrence of the directive will add a @code{protected
10354final} field to the parser class, and an argument to its constructor,
10355which initialize them automatically.
10356
10357Token names defined by @code{%token} and the predefined @code{EOF} token
10358name are added as constant fields to the parser class.
10359
10360@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10361Build a new parser object with embedded @code{%code lexer}. There are
10362no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
10363used.
10364@end deftypeop
10365
10366@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10367Build a new parser object using the specified scanner. There are no
10368additional parameters unless @code{%parse-param}s are used.
10369
10370If the scanner is defined by @code{%code lexer}, this constructor is
10371declared @code{protected} and is called automatically with a scanner
10372created with the correct @code{%lex-param}s.
10373@end deftypeop
8405b70c
PB
10374
10375@deftypemethod {YYParser} {boolean} parse ()
10376Run the syntactic analysis, and return @code{true} on success,
10377@code{false} otherwise.
10378@end deftypemethod
10379
01b477c6 10380@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10381During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10382from a syntax error.
10383@xref{Error Recovery}.
8405b70c
PB
10384@end deftypemethod
10385
10386@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10387@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10388Get or set the stream used for tracing the parsing. It defaults to
10389@code{System.err}.
10390@end deftypemethod
10391
10392@deftypemethod {YYParser} {int} getDebugLevel ()
10393@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10394Get or set the tracing level. Currently its value is either 0, no trace,
10395or nonzero, full tracing.
10396@end deftypemethod
10397
8405b70c
PB
10398
10399@node Java Scanner Interface
10400@subsection Java Scanner Interface
01b477c6 10401@c - %code lexer
8405b70c 10402@c - %lex-param
01b477c6 10403@c - Lexer interface
8405b70c 10404
e254a580
DJ
10405There are two possible ways to interface a Bison-generated Java parser
10406with a scanner: the scanner may be defined by @code{%code lexer}, or
10407defined elsewhere. In either case, the scanner has to implement the
10408@code{Lexer} inner interface of the parser class.
10409
10410In the first case, the body of the scanner class is placed in
10411@code{%code lexer} blocks. If you want to pass parameters from the
10412parser constructor to the scanner constructor, specify them with
10413@code{%lex-param}; they are passed before @code{%parse-param}s to the
10414constructor.
01b477c6 10415
59c5ac72 10416In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10417which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10418The constructor of the parser object will then accept an object
10419implementing the interface; @code{%lex-param} is not used in this
10420case.
10421
10422In both cases, the scanner has to implement the following methods.
10423
e254a580
DJ
10424@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10425This method is defined by the user to emit an error message. The first
10426parameter is omitted if location tracking is not active. Its type can be
7287be84 10427changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
10428@end deftypemethod
10429
e254a580 10430@deftypemethod {Lexer} {int} yylex ()
8405b70c 10431Return the next token. Its type is the return value, its semantic
c781580d 10432value and location are saved and returned by the their methods in the
e254a580
DJ
10433interface.
10434
10435Use @code{%define lex_throws} to specify any uncaught exceptions.
10436Default is @code{java.io.IOException}.
8405b70c
PB
10437@end deftypemethod
10438
10439@deftypemethod {Lexer} {Position} getStartPos ()
10440@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10441Return respectively the first position of the last token that
10442@code{yylex} returned, and the first position beyond it. These
10443methods are not needed unless location tracking is active.
8405b70c 10444
7287be84 10445The return type can be changed using @code{%define api.position.type
8405b70c
PB
10446"@var{class-name}".}
10447@end deftypemethod
10448
10449@deftypemethod {Lexer} {Object} getLVal ()
c781580d 10450Return the semantic value of the last token that yylex returned.
8405b70c 10451
e254a580 10452The return type can be changed using @code{%define stype
8405b70c
PB
10453"@var{class-name}".}
10454@end deftypemethod
10455
10456
e254a580
DJ
10457@node Java Action Features
10458@subsection Special Features for Use in Java Actions
10459
10460The following special constructs can be uses in Java actions.
10461Other analogous C action features are currently unavailable for Java.
10462
10463Use @code{%define throws} to specify any uncaught exceptions from parser
10464actions, and initial actions specified by @code{%initial-action}.
10465
10466@defvar $@var{n}
10467The semantic value for the @var{n}th component of the current rule.
10468This may not be assigned to.
10469@xref{Java Semantic Values}.
10470@end defvar
10471
10472@defvar $<@var{typealt}>@var{n}
10473Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10474@xref{Java Semantic Values}.
10475@end defvar
10476
10477@defvar $$
10478The semantic value for the grouping made by the current rule. As a
10479value, this is in the base type (@code{Object} or as specified by
10480@code{%define stype}) as in not cast to the declared subtype because
10481casts are not allowed on the left-hand side of Java assignments.
10482Use an explicit Java cast if the correct subtype is needed.
10483@xref{Java Semantic Values}.
10484@end defvar
10485
10486@defvar $<@var{typealt}>$
10487Same as @code{$$} since Java always allow assigning to the base type.
10488Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10489for setting the value but there is currently no easy way to distinguish
10490these constructs.
10491@xref{Java Semantic Values}.
10492@end defvar
10493
10494@defvar @@@var{n}
10495The location information of the @var{n}th component of the current rule.
10496This may not be assigned to.
10497@xref{Java Location Values}.
10498@end defvar
10499
10500@defvar @@$
10501The location information of the grouping made by the current rule.
10502@xref{Java Location Values}.
10503@end defvar
10504
34a41a93 10505@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
10506Return immediately from the parser, indicating failure.
10507@xref{Java Parser Interface}.
34a41a93 10508@end deftypefn
8405b70c 10509
34a41a93 10510@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
10511Return immediately from the parser, indicating success.
10512@xref{Java Parser Interface}.
34a41a93 10513@end deftypefn
8405b70c 10514
34a41a93 10515@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 10516Start error recovery (without printing an error message).
e254a580 10517@xref{Error Recovery}.
34a41a93 10518@end deftypefn
8405b70c 10519
e254a580
DJ
10520@deftypefn {Function} {boolean} recovering ()
10521Return whether error recovery is being done. In this state, the parser
10522reads token until it reaches a known state, and then restarts normal
10523operation.
10524@xref{Error Recovery}.
10525@end deftypefn
8405b70c 10526
e254a580
DJ
10527@deftypefn {Function} {protected void} yyerror (String msg)
10528@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
10529@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
10530Print an error message using the @code{yyerror} method of the scanner
10531instance in use.
10532@end deftypefn
8405b70c 10533
8405b70c 10534
8405b70c
PB
10535@node Java Differences
10536@subsection Differences between C/C++ and Java Grammars
10537
10538The different structure of the Java language forces several differences
10539between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10540section summarizes these differences.
8405b70c
PB
10541
10542@itemize
10543@item
01b477c6 10544Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10545@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10546macros. Instead, they should be preceded by @code{return} when they
10547appear in an action. The actual definition of these symbols is
8405b70c
PB
10548opaque to the Bison grammar, and it might change in the future. The
10549only meaningful operation that you can do, is to return them.
2ba03112 10550@xref{Java Action Features}.
8405b70c
PB
10551
10552Note that of these three symbols, only @code{YYACCEPT} and
10553@code{YYABORT} will cause a return from the @code{yyparse}
10554method@footnote{Java parsers include the actions in a separate
10555method than @code{yyparse} in order to have an intuitive syntax that
10556corresponds to these C macros.}.
10557
e254a580
DJ
10558@item
10559Java lacks unions, so @code{%union} has no effect. Instead, semantic
10560values have a common base type: @code{Object} or as specified by
c781580d 10561@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10562@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10563an union. The type of @code{$$}, even with angle brackets, is the base
10564type since Java casts are not allow on the left-hand side of assignments.
10565Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 10566left-hand side of assignments. @xref{Java Semantic Values}, and
2ba03112 10567@ref{Java Action Features}.
e254a580 10568
8405b70c 10569@item
c781580d 10570The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10571@table @asis
10572@item @code{%code imports}
10573blocks are placed at the beginning of the Java source code. They may
10574include copyright notices. For a @code{package} declarations, it is
10575suggested to use @code{%define package} instead.
8405b70c 10576
01b477c6
PB
10577@item unqualified @code{%code}
10578blocks are placed inside the parser class.
10579
10580@item @code{%code lexer}
10581blocks, if specified, should include the implementation of the
10582scanner. If there is no such block, the scanner can be any class
2ba03112 10583that implements the appropriate interface (@pxref{Java Scanner
01b477c6 10584Interface}).
29553547 10585@end table
8405b70c
PB
10586
10587Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10588In particular, @code{%@{ @dots{} %@}} blocks should not be used
10589and may give an error in future versions of Bison.
10590
01b477c6 10591The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10592be used to define other classes used by the parser @emph{outside}
10593the parser class.
8405b70c
PB
10594@end itemize
10595
e254a580
DJ
10596
10597@node Java Declarations Summary
10598@subsection Java Declarations Summary
10599
10600This summary only include declarations specific to Java or have special
10601meaning when used in a Java parser.
10602
10603@deffn {Directive} {%language "Java"}
10604Generate a Java class for the parser.
10605@end deffn
10606
10607@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10608A parameter for the lexer class defined by @code{%code lexer}
10609@emph{only}, added as parameters to the lexer constructor and the parser
10610constructor that @emph{creates} a lexer. Default is none.
10611@xref{Java Scanner Interface}.
10612@end deffn
10613
10614@deffn {Directive} %name-prefix "@var{prefix}"
10615The prefix of the parser class name @code{@var{prefix}Parser} if
10616@code{%define parser_class_name} is not used. Default is @code{YY}.
10617@xref{Java Bison Interface}.
10618@end deffn
10619
10620@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10621A parameter for the parser class added as parameters to constructor(s)
10622and as fields initialized by the constructor(s). Default is none.
10623@xref{Java Parser Interface}.
10624@end deffn
10625
10626@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10627Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10628@xref{Java Semantic Values}.
10629@end deffn
10630
10631@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10632Declare the type of nonterminals. Note that the angle brackets enclose
10633a Java @emph{type}.
10634@xref{Java Semantic Values}.
10635@end deffn
10636
10637@deffn {Directive} %code @{ @var{code} @dots{} @}
10638Code appended to the inside of the parser class.
10639@xref{Java Differences}.
10640@end deffn
10641
10642@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10643Code inserted just after the @code{package} declaration.
10644@xref{Java Differences}.
10645@end deffn
10646
10647@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10648Code added to the body of a inner lexer class within the parser class.
10649@xref{Java Scanner Interface}.
10650@end deffn
10651
10652@deffn {Directive} %% @var{code} @dots{}
10653Code (after the second @code{%%}) appended to the end of the file,
10654@emph{outside} the parser class.
10655@xref{Java Differences}.
10656@end deffn
10657
10658@deffn {Directive} %@{ @var{code} @dots{} %@}
10659Not supported. Use @code{%code import} instead.
10660@xref{Java Differences}.
10661@end deffn
10662
10663@deffn {Directive} {%define abstract}
10664Whether the parser class is declared @code{abstract}. Default is false.
10665@xref{Java Bison Interface}.
10666@end deffn
10667
10668@deffn {Directive} {%define extends} "@var{superclass}"
10669The superclass of the parser class. Default is none.
10670@xref{Java Bison Interface}.
10671@end deffn
10672
10673@deffn {Directive} {%define final}
10674Whether the parser class is declared @code{final}. Default is false.
10675@xref{Java Bison Interface}.
10676@end deffn
10677
10678@deffn {Directive} {%define implements} "@var{interfaces}"
10679The implemented interfaces of the parser class, a comma-separated list.
10680Default is none.
10681@xref{Java Bison Interface}.
10682@end deffn
10683
10684@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10685The exceptions thrown by the @code{yylex} method of the lexer, a
10686comma-separated list. Default is @code{java.io.IOException}.
10687@xref{Java Scanner Interface}.
10688@end deffn
10689
7287be84 10690@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
10691The name of the class used for locations (a range between two
10692positions). This class is generated as an inner class of the parser
10693class by @command{bison}. Default is @code{Location}.
7287be84 10694Formerly named @code{location_type}.
e254a580
DJ
10695@xref{Java Location Values}.
10696@end deffn
10697
10698@deffn {Directive} {%define package} "@var{package}"
10699The package to put the parser class in. Default is none.
10700@xref{Java Bison Interface}.
10701@end deffn
10702
10703@deffn {Directive} {%define parser_class_name} "@var{name}"
10704The name of the parser class. Default is @code{YYParser} or
10705@code{@var{name-prefix}Parser}.
10706@xref{Java Bison Interface}.
10707@end deffn
10708
7287be84 10709@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
10710The name of the class used for positions. This class must be supplied by
10711the user. Default is @code{Position}.
7287be84 10712Formerly named @code{position_type}.
e254a580
DJ
10713@xref{Java Location Values}.
10714@end deffn
10715
10716@deffn {Directive} {%define public}
10717Whether the parser class is declared @code{public}. Default is false.
10718@xref{Java Bison Interface}.
10719@end deffn
10720
10721@deffn {Directive} {%define stype} "@var{class}"
10722The base type of semantic values. Default is @code{Object}.
10723@xref{Java Semantic Values}.
10724@end deffn
10725
10726@deffn {Directive} {%define strictfp}
10727Whether the parser class is declared @code{strictfp}. Default is false.
10728@xref{Java Bison Interface}.
10729@end deffn
10730
10731@deffn {Directive} {%define throws} "@var{exceptions}"
10732The exceptions thrown by user-supplied parser actions and
10733@code{%initial-action}, a comma-separated list. Default is none.
10734@xref{Java Parser Interface}.
10735@end deffn
10736
10737
12545799 10738@c ================================================= FAQ
d1a1114f
AD
10739
10740@node FAQ
10741@chapter Frequently Asked Questions
10742@cindex frequently asked questions
10743@cindex questions
10744
10745Several questions about Bison come up occasionally. Here some of them
10746are addressed.
10747
10748@menu
55ba27be
AD
10749* Memory Exhausted:: Breaking the Stack Limits
10750* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10751* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10752* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10753* Multiple start-symbols:: Factoring closely related grammars
35430378 10754* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10755* I can't build Bison:: Troubleshooting
10756* Where can I find help?:: Troubleshouting
10757* Bug Reports:: Troublereporting
8405b70c 10758* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10759* Beta Testing:: Experimenting development versions
10760* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10761@end menu
10762
1a059451
PE
10763@node Memory Exhausted
10764@section Memory Exhausted
d1a1114f 10765
ab8932bf 10766@quotation
1a059451 10767My parser returns with error with a @samp{memory exhausted}
d1a1114f 10768message. What can I do?
ab8932bf 10769@end quotation
d1a1114f 10770
188867ac
AD
10771This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
10772Rules}.
d1a1114f 10773
e64fec0a
PE
10774@node How Can I Reset the Parser
10775@section How Can I Reset the Parser
5b066063 10776
0e14ad77
PE
10777The following phenomenon has several symptoms, resulting in the
10778following typical questions:
5b066063 10779
ab8932bf 10780@quotation
5b066063
AD
10781I invoke @code{yyparse} several times, and on correct input it works
10782properly; but when a parse error is found, all the other calls fail
0e14ad77 10783too. How can I reset the error flag of @code{yyparse}?
ab8932bf 10784@end quotation
5b066063
AD
10785
10786@noindent
10787or
10788
ab8932bf 10789@quotation
0e14ad77 10790My parser includes support for an @samp{#include}-like feature, in
5b066063 10791which case I run @code{yyparse} from @code{yyparse}. This fails
ab8932bf
AD
10792although I did specify @samp{%define api.pure}.
10793@end quotation
5b066063 10794
0e14ad77
PE
10795These problems typically come not from Bison itself, but from
10796Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10797speed, they might not notice a change of input file. As a
10798demonstration, consider the following source file,
10799@file{first-line.l}:
10800
98842516
AD
10801@example
10802@group
10803%@{
5b066063
AD
10804#include <stdio.h>
10805#include <stdlib.h>
98842516
AD
10806%@}
10807@end group
5b066063
AD
10808%%
10809.*\n ECHO; return 1;
10810%%
98842516 10811@group
5b066063 10812int
0e14ad77 10813yyparse (char const *file)
98842516 10814@{
5b066063
AD
10815 yyin = fopen (file, "r");
10816 if (!yyin)
98842516
AD
10817 @{
10818 perror ("fopen");
10819 exit (EXIT_FAILURE);
10820 @}
10821@end group
10822@group
fa7e68c3 10823 /* One token only. */
5b066063 10824 yylex ();
0e14ad77 10825 if (fclose (yyin) != 0)
98842516
AD
10826 @{
10827 perror ("fclose");
10828 exit (EXIT_FAILURE);
10829 @}
5b066063 10830 return 0;
98842516
AD
10831@}
10832@end group
5b066063 10833
98842516 10834@group
5b066063 10835int
0e14ad77 10836main (void)
98842516 10837@{
5b066063
AD
10838 yyparse ("input");
10839 yyparse ("input");
10840 return 0;
98842516
AD
10841@}
10842@end group
10843@end example
5b066063
AD
10844
10845@noindent
10846If the file @file{input} contains
10847
ab8932bf 10848@example
5b066063
AD
10849input:1: Hello,
10850input:2: World!
ab8932bf 10851@end example
5b066063
AD
10852
10853@noindent
0e14ad77 10854then instead of getting the first line twice, you get:
5b066063
AD
10855
10856@example
10857$ @kbd{flex -ofirst-line.c first-line.l}
10858$ @kbd{gcc -ofirst-line first-line.c -ll}
10859$ @kbd{./first-line}
10860input:1: Hello,
10861input:2: World!
10862@end example
10863
0e14ad77
PE
10864Therefore, whenever you change @code{yyin}, you must tell the
10865Lex-generated scanner to discard its current buffer and switch to the
10866new one. This depends upon your implementation of Lex; see its
10867documentation for more. For Flex, it suffices to call
10868@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10869Flex-generated scanner needs to read from several input streams to
10870handle features like include files, you might consider using Flex
10871functions like @samp{yy_switch_to_buffer} that manipulate multiple
10872input buffers.
5b066063 10873
b165c324
AD
10874If your Flex-generated scanner uses start conditions (@pxref{Start
10875conditions, , Start conditions, flex, The Flex Manual}), you might
10876also want to reset the scanner's state, i.e., go back to the initial
10877start condition, through a call to @samp{BEGIN (0)}.
10878
fef4cb51
AD
10879@node Strings are Destroyed
10880@section Strings are Destroyed
10881
ab8932bf 10882@quotation
c7e441b4 10883My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10884them. Instead of reporting @samp{"foo", "bar"}, it reports
10885@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
ab8932bf 10886@end quotation
fef4cb51
AD
10887
10888This error is probably the single most frequent ``bug report'' sent to
10889Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10890of the scanner. Consider the following Lex code:
fef4cb51 10891
ab8932bf 10892@example
98842516 10893@group
ab8932bf 10894%@{
fef4cb51
AD
10895#include <stdio.h>
10896char *yylval = NULL;
ab8932bf 10897%@}
98842516
AD
10898@end group
10899@group
fef4cb51
AD
10900%%
10901.* yylval = yytext; return 1;
10902\n /* IGNORE */
10903%%
98842516
AD
10904@end group
10905@group
fef4cb51
AD
10906int
10907main ()
ab8932bf 10908@{
fa7e68c3 10909 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10910 char *fst = (yylex (), yylval);
10911 char *snd = (yylex (), yylval);
10912 printf ("\"%s\", \"%s\"\n", fst, snd);
10913 return 0;
ab8932bf 10914@}
98842516 10915@end group
ab8932bf 10916@end example
fef4cb51
AD
10917
10918If you compile and run this code, you get:
10919
10920@example
10921$ @kbd{flex -osplit-lines.c split-lines.l}
10922$ @kbd{gcc -osplit-lines split-lines.c -ll}
10923$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10924"one
10925two", "two"
10926@end example
10927
10928@noindent
10929this is because @code{yytext} is a buffer provided for @emph{reading}
10930in the action, but if you want to keep it, you have to duplicate it
10931(e.g., using @code{strdup}). Note that the output may depend on how
10932your implementation of Lex handles @code{yytext}. For instance, when
10933given the Lex compatibility option @option{-l} (which triggers the
10934option @samp{%array}) Flex generates a different behavior:
10935
10936@example
10937$ @kbd{flex -l -osplit-lines.c split-lines.l}
10938$ @kbd{gcc -osplit-lines split-lines.c -ll}
10939$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10940"two", "two"
10941@end example
10942
10943
2fa09258
AD
10944@node Implementing Gotos/Loops
10945@section Implementing Gotos/Loops
a06ea4aa 10946
ab8932bf 10947@quotation
a06ea4aa 10948My simple calculator supports variables, assignments, and functions,
2fa09258 10949but how can I implement gotos, or loops?
ab8932bf 10950@end quotation
a06ea4aa
AD
10951
10952Although very pedagogical, the examples included in the document blur
a1c84f45 10953the distinction to make between the parser---whose job is to recover
a06ea4aa 10954the structure of a text and to transmit it to subsequent modules of
a1c84f45 10955the program---and the processing (such as the execution) of this
a06ea4aa
AD
10956structure. This works well with so called straight line programs,
10957i.e., precisely those that have a straightforward execution model:
10958execute simple instructions one after the others.
10959
10960@cindex abstract syntax tree
35430378 10961@cindex AST
a06ea4aa
AD
10962If you want a richer model, you will probably need to use the parser
10963to construct a tree that does represent the structure it has
10964recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 10965or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10966traversing it in various ways, will enable treatments such as its
10967execution or its translation, which will result in an interpreter or a
10968compiler.
10969
10970This topic is way beyond the scope of this manual, and the reader is
10971invited to consult the dedicated literature.
10972
10973
ed2e6384
AD
10974@node Multiple start-symbols
10975@section Multiple start-symbols
10976
ab8932bf 10977@quotation
ed2e6384
AD
10978I have several closely related grammars, and I would like to share their
10979implementations. In fact, I could use a single grammar but with
10980multiple entry points.
ab8932bf 10981@end quotation
ed2e6384
AD
10982
10983Bison does not support multiple start-symbols, but there is a very
10984simple means to simulate them. If @code{foo} and @code{bar} are the two
10985pseudo start-symbols, then introduce two new tokens, say
10986@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10987real start-symbol:
10988
10989@example
10990%token START_FOO START_BAR;
10991%start start;
de6be119
AD
10992start:
10993 START_FOO foo
10994| START_BAR bar;
ed2e6384
AD
10995@end example
10996
10997These tokens prevents the introduction of new conflicts. As far as the
10998parser goes, that is all that is needed.
10999
11000Now the difficult part is ensuring that the scanner will send these
11001tokens first. If your scanner is hand-written, that should be
11002straightforward. If your scanner is generated by Lex, them there is
11003simple means to do it: recall that anything between @samp{%@{ ... %@}}
11004after the first @code{%%} is copied verbatim in the top of the generated
11005@code{yylex} function. Make sure a variable @code{start_token} is
11006available in the scanner (e.g., a global variable or using
11007@code{%lex-param} etc.), and use the following:
11008
11009@example
11010 /* @r{Prologue.} */
11011%%
11012%@{
11013 if (start_token)
11014 @{
11015 int t = start_token;
11016 start_token = 0;
11017 return t;
11018 @}
11019%@}
11020 /* @r{The rules.} */
11021@end example
11022
11023
55ba27be
AD
11024@node Secure? Conform?
11025@section Secure? Conform?
11026
ab8932bf 11027@quotation
55ba27be 11028Is Bison secure? Does it conform to POSIX?
ab8932bf 11029@end quotation
55ba27be
AD
11030
11031If you're looking for a guarantee or certification, we don't provide it.
11032However, Bison is intended to be a reliable program that conforms to the
35430378 11033POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11034please send us a bug report.
11035
11036@node I can't build Bison
11037@section I can't build Bison
11038
ab8932bf 11039@quotation
8c5b881d
PE
11040I can't build Bison because @command{make} complains that
11041@code{msgfmt} is not found.
55ba27be 11042What should I do?
ab8932bf 11043@end quotation
55ba27be
AD
11044
11045Like most GNU packages with internationalization support, that feature
11046is turned on by default. If you have problems building in the @file{po}
11047subdirectory, it indicates that your system's internationalization
11048support is lacking. You can re-configure Bison with
11049@option{--disable-nls} to turn off this support, or you can install GNU
11050gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11051Bison. See the file @file{ABOUT-NLS} for more information.
11052
11053
11054@node Where can I find help?
11055@section Where can I find help?
11056
ab8932bf 11057@quotation
55ba27be 11058I'm having trouble using Bison. Where can I find help?
ab8932bf 11059@end quotation
55ba27be
AD
11060
11061First, read this fine manual. Beyond that, you can send mail to
11062@email{help-bison@@gnu.org}. This mailing list is intended to be
11063populated with people who are willing to answer questions about using
11064and installing Bison. Please keep in mind that (most of) the people on
11065the list have aspects of their lives which are not related to Bison (!),
11066so you may not receive an answer to your question right away. This can
11067be frustrating, but please try not to honk them off; remember that any
11068help they provide is purely voluntary and out of the kindness of their
11069hearts.
11070
11071@node Bug Reports
11072@section Bug Reports
11073
ab8932bf 11074@quotation
55ba27be 11075I found a bug. What should I include in the bug report?
ab8932bf 11076@end quotation
55ba27be
AD
11077
11078Before you send a bug report, make sure you are using the latest
11079version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11080mirrors. Be sure to include the version number in your bug report. If
11081the bug is present in the latest version but not in a previous version,
11082try to determine the most recent version which did not contain the bug.
11083
11084If the bug is parser-related, you should include the smallest grammar
11085you can which demonstrates the bug. The grammar file should also be
11086complete (i.e., I should be able to run it through Bison without having
11087to edit or add anything). The smaller and simpler the grammar, the
11088easier it will be to fix the bug.
11089
11090Include information about your compilation environment, including your
11091operating system's name and version and your compiler's name and
11092version. If you have trouble compiling, you should also include a
11093transcript of the build session, starting with the invocation of
11094`configure'. Depending on the nature of the bug, you may be asked to
11095send additional files as well (such as `config.h' or `config.cache').
11096
11097Patches are most welcome, but not required. That is, do not hesitate to
d6864e19 11098send a bug report just because you cannot provide a fix.
55ba27be
AD
11099
11100Send bug reports to @email{bug-bison@@gnu.org}.
11101
8405b70c
PB
11102@node More Languages
11103@section More Languages
55ba27be 11104
ab8932bf 11105@quotation
8405b70c 11106Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11107favorite language here}?
ab8932bf 11108@end quotation
55ba27be 11109
8405b70c 11110C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11111languages; contributions are welcome.
11112
11113@node Beta Testing
11114@section Beta Testing
11115
ab8932bf 11116@quotation
55ba27be 11117What is involved in being a beta tester?
ab8932bf 11118@end quotation
55ba27be
AD
11119
11120It's not terribly involved. Basically, you would download a test
11121release, compile it, and use it to build and run a parser or two. After
11122that, you would submit either a bug report or a message saying that
11123everything is okay. It is important to report successes as well as
11124failures because test releases eventually become mainstream releases,
11125but only if they are adequately tested. If no one tests, development is
11126essentially halted.
11127
11128Beta testers are particularly needed for operating systems to which the
11129developers do not have easy access. They currently have easy access to
11130recent GNU/Linux and Solaris versions. Reports about other operating
11131systems are especially welcome.
11132
11133@node Mailing Lists
11134@section Mailing Lists
11135
ab8932bf 11136@quotation
55ba27be 11137How do I join the help-bison and bug-bison mailing lists?
ab8932bf 11138@end quotation
55ba27be
AD
11139
11140See @url{http://lists.gnu.org/}.
a06ea4aa 11141
d1a1114f
AD
11142@c ================================================= Table of Symbols
11143
342b8b6e 11144@node Table of Symbols
bfa74976
RS
11145@appendix Bison Symbols
11146@cindex Bison symbols, table of
11147@cindex symbols in Bison, table of
11148
18b519c0 11149@deffn {Variable} @@$
3ded9a63 11150In an action, the location of the left-hand side of the rule.
7404cdf3 11151@xref{Tracking Locations}.
18b519c0 11152@end deffn
3ded9a63 11153
18b519c0 11154@deffn {Variable} @@@var{n}
7404cdf3
JD
11155In an action, the location of the @var{n}-th symbol of the right-hand side
11156of the rule. @xref{Tracking Locations}.
18b519c0 11157@end deffn
3ded9a63 11158
1f68dca5 11159@deffn {Variable} @@@var{name}
7404cdf3
JD
11160In an action, the location of a symbol addressed by name. @xref{Tracking
11161Locations}.
1f68dca5
AR
11162@end deffn
11163
11164@deffn {Variable} @@[@var{name}]
7404cdf3
JD
11165In an action, the location of a symbol addressed by name. @xref{Tracking
11166Locations}.
1f68dca5
AR
11167@end deffn
11168
18b519c0 11169@deffn {Variable} $$
3ded9a63
AD
11170In an action, the semantic value of the left-hand side of the rule.
11171@xref{Actions}.
18b519c0 11172@end deffn
3ded9a63 11173
18b519c0 11174@deffn {Variable} $@var{n}
3ded9a63
AD
11175In an action, the semantic value of the @var{n}-th symbol of the
11176right-hand side of the rule. @xref{Actions}.
18b519c0 11177@end deffn
3ded9a63 11178
1f68dca5
AR
11179@deffn {Variable} $@var{name}
11180In an action, the semantic value of a symbol addressed by name.
11181@xref{Actions}.
11182@end deffn
11183
11184@deffn {Variable} $[@var{name}]
11185In an action, the semantic value of a symbol addressed by name.
11186@xref{Actions}.
11187@end deffn
11188
dd8d9022
AD
11189@deffn {Delimiter} %%
11190Delimiter used to separate the grammar rule section from the
11191Bison declarations section or the epilogue.
11192@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11193@end deffn
bfa74976 11194
dd8d9022
AD
11195@c Don't insert spaces, or check the DVI output.
11196@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
11197All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11198to the parser implementation file. Such code forms the prologue of
11199the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11200Grammar}.
18b519c0 11201@end deffn
bfa74976 11202
dd8d9022
AD
11203@deffn {Construct} /*@dots{}*/
11204Comment delimiters, as in C.
18b519c0 11205@end deffn
bfa74976 11206
dd8d9022
AD
11207@deffn {Delimiter} :
11208Separates a rule's result from its components. @xref{Rules, ,Syntax of
11209Grammar Rules}.
18b519c0 11210@end deffn
bfa74976 11211
dd8d9022
AD
11212@deffn {Delimiter} ;
11213Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11214@end deffn
bfa74976 11215
dd8d9022
AD
11216@deffn {Delimiter} |
11217Separates alternate rules for the same result nonterminal.
11218@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11219@end deffn
bfa74976 11220
12e35840
JD
11221@deffn {Directive} <*>
11222Used to define a default tagged @code{%destructor} or default tagged
11223@code{%printer}.
85894313
JD
11224
11225This feature is experimental.
11226More user feedback will help to determine whether it should become a permanent
11227feature.
11228
12e35840
JD
11229@xref{Destructor Decl, , Freeing Discarded Symbols}.
11230@end deffn
11231
3ebecc24 11232@deffn {Directive} <>
12e35840
JD
11233Used to define a default tagless @code{%destructor} or default tagless
11234@code{%printer}.
85894313
JD
11235
11236This feature is experimental.
11237More user feedback will help to determine whether it should become a permanent
11238feature.
11239
12e35840
JD
11240@xref{Destructor Decl, , Freeing Discarded Symbols}.
11241@end deffn
11242
dd8d9022
AD
11243@deffn {Symbol} $accept
11244The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11245$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11246Start-Symbol}. It cannot be used in the grammar.
18b519c0 11247@end deffn
bfa74976 11248
136a0f76 11249@deffn {Directive} %code @{@var{code}@}
148d66d8 11250@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
406dec82
JD
11251Insert @var{code} verbatim into the output parser source at the
11252default location or at the location specified by @var{qualifier}.
8e6f2266 11253@xref{%code Summary}.
9bc0dd67 11254@end deffn
9bc0dd67 11255
18b519c0 11256@deffn {Directive} %debug
6deb4447 11257Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 11258@end deffn
6deb4447 11259
91d2c560 11260@ifset defaultprec
22fccf95
PE
11261@deffn {Directive} %default-prec
11262Assign a precedence to rules that lack an explicit @samp{%prec}
11263modifier. @xref{Contextual Precedence, ,Context-Dependent
11264Precedence}.
39a06c25 11265@end deffn
91d2c560 11266@end ifset
39a06c25 11267
6f04ee6c
JD
11268@deffn {Directive} %define @var{variable}
11269@deffnx {Directive} %define @var{variable} @var{value}
11270@deffnx {Directive} %define @var{variable} "@var{value}"
2f4518a1 11271Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11272@end deffn
11273
18b519c0 11274@deffn {Directive} %defines
9913d6e4
JD
11275Bison declaration to create a parser header file, which is usually
11276meant for the scanner. @xref{Decl Summary}.
18b519c0 11277@end deffn
6deb4447 11278
02975b9a
JD
11279@deffn {Directive} %defines @var{defines-file}
11280Same as above, but save in the file @var{defines-file}.
11281@xref{Decl Summary}.
11282@end deffn
11283
18b519c0 11284@deffn {Directive} %destructor
258b75ca 11285Specify how the parser should reclaim the memory associated to
fa7e68c3 11286discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11287@end deffn
72f889cc 11288
18b519c0 11289@deffn {Directive} %dprec
676385e2 11290Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11291time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 11292GLR Parsers}.
18b519c0 11293@end deffn
676385e2 11294
dd8d9022
AD
11295@deffn {Symbol} $end
11296The predefined token marking the end of the token stream. It cannot be
11297used in the grammar.
11298@end deffn
11299
11300@deffn {Symbol} error
11301A token name reserved for error recovery. This token may be used in
11302grammar rules so as to allow the Bison parser to recognize an error in
11303the grammar without halting the process. In effect, a sentence
11304containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11305token @code{error} becomes the current lookahead token. Actions
11306corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11307token is reset to the token that originally caused the violation.
11308@xref{Error Recovery}.
18d192f0
AD
11309@end deffn
11310
18b519c0 11311@deffn {Directive} %error-verbose
2a8d363a 11312Bison declaration to request verbose, specific error message strings
6f04ee6c 11313when @code{yyerror} is called. @xref{Error Reporting}.
18b519c0 11314@end deffn
2a8d363a 11315
02975b9a 11316@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11317Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11318Summary}.
18b519c0 11319@end deffn
d8988b2f 11320
18b519c0 11321@deffn {Directive} %glr-parser
35430378
JD
11322Bison declaration to produce a GLR parser. @xref{GLR
11323Parsers, ,Writing GLR Parsers}.
18b519c0 11324@end deffn
676385e2 11325
dd8d9022
AD
11326@deffn {Directive} %initial-action
11327Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11328@end deffn
11329
e6e704dc
JD
11330@deffn {Directive} %language
11331Specify the programming language for the generated parser.
11332@xref{Decl Summary}.
11333@end deffn
11334
18b519c0 11335@deffn {Directive} %left
bfa74976
RS
11336Bison declaration to assign left associativity to token(s).
11337@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11338@end deffn
bfa74976 11339
feeb0eda 11340@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
11341Bison declaration to specifying an additional parameter that
11342@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11343for Pure Parsers}.
18b519c0 11344@end deffn
2a8d363a 11345
18b519c0 11346@deffn {Directive} %merge
676385e2 11347Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11348reduce/reduce conflict with a rule having the same merging function, the
676385e2 11349function is applied to the two semantic values to get a single result.
35430378 11350@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11351@end deffn
676385e2 11352
02975b9a 11353@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
11354Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
11355Parsers, ,Multiple Parsers in the Same Program}).
11356
11357Rename the external symbols (variables and functions) used in the parser so
11358that they start with @var{prefix} instead of @samp{yy}. Contrary to
11359@code{api.prefix}, do no rename types and macros.
11360
11361The precise list of symbols renamed in C parsers is @code{yyparse},
11362@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
11363@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
11364push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
11365@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
11366example, if you use @samp{%name-prefix "c_"}, the names become
11367@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
11368@code{%define namespace} documentation in this section.
18b519c0 11369@end deffn
d8988b2f 11370
4b3847c3 11371
91d2c560 11372@ifset defaultprec
22fccf95
PE
11373@deffn {Directive} %no-default-prec
11374Do not assign a precedence to rules that lack an explicit @samp{%prec}
11375modifier. @xref{Contextual Precedence, ,Context-Dependent
11376Precedence}.
11377@end deffn
91d2c560 11378@end ifset
22fccf95 11379
18b519c0 11380@deffn {Directive} %no-lines
931c7513 11381Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 11382parser implementation file. @xref{Decl Summary}.
18b519c0 11383@end deffn
931c7513 11384
18b519c0 11385@deffn {Directive} %nonassoc
9d9b8b70 11386Bison declaration to assign nonassociativity to token(s).
bfa74976 11387@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11388@end deffn
bfa74976 11389
02975b9a 11390@deffn {Directive} %output "@var{file}"
9913d6e4
JD
11391Bison declaration to set the name of the parser implementation file.
11392@xref{Decl Summary}.
18b519c0 11393@end deffn
d8988b2f 11394
feeb0eda 11395@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
11396Bison declaration to specifying an additional parameter that
11397@code{yyparse} should accept. @xref{Parser Function,, The Parser
11398Function @code{yyparse}}.
18b519c0 11399@end deffn
2a8d363a 11400
18b519c0 11401@deffn {Directive} %prec
bfa74976
RS
11402Bison declaration to assign a precedence to a specific rule.
11403@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11404@end deffn
bfa74976 11405
18b519c0 11406@deffn {Directive} %pure-parser
2f4518a1
JD
11407Deprecated version of @code{%define api.pure} (@pxref{%define
11408Summary,,api.pure}), for which Bison is more careful to warn about
11409unreasonable usage.
18b519c0 11410@end deffn
bfa74976 11411
b50d2359 11412@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11413Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11414Require a Version of Bison}.
b50d2359
AD
11415@end deffn
11416
18b519c0 11417@deffn {Directive} %right
bfa74976
RS
11418Bison declaration to assign right associativity to token(s).
11419@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11420@end deffn
bfa74976 11421
e6e704dc
JD
11422@deffn {Directive} %skeleton
11423Specify the skeleton to use; usually for development.
11424@xref{Decl Summary}.
11425@end deffn
11426
18b519c0 11427@deffn {Directive} %start
704a47c4
AD
11428Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11429Start-Symbol}.
18b519c0 11430@end deffn
bfa74976 11431
18b519c0 11432@deffn {Directive} %token
bfa74976
RS
11433Bison declaration to declare token(s) without specifying precedence.
11434@xref{Token Decl, ,Token Type Names}.
18b519c0 11435@end deffn
bfa74976 11436
18b519c0 11437@deffn {Directive} %token-table
9913d6e4
JD
11438Bison declaration to include a token name table in the parser
11439implementation file. @xref{Decl Summary}.
18b519c0 11440@end deffn
931c7513 11441
18b519c0 11442@deffn {Directive} %type
704a47c4
AD
11443Bison declaration to declare nonterminals. @xref{Type Decl,
11444,Nonterminal Symbols}.
18b519c0 11445@end deffn
bfa74976 11446
dd8d9022
AD
11447@deffn {Symbol} $undefined
11448The predefined token onto which all undefined values returned by
11449@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11450@code{error}.
11451@end deffn
11452
18b519c0 11453@deffn {Directive} %union
bfa74976
RS
11454Bison declaration to specify several possible data types for semantic
11455values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11456@end deffn
bfa74976 11457
dd8d9022
AD
11458@deffn {Macro} YYABORT
11459Macro to pretend that an unrecoverable syntax error has occurred, by
11460making @code{yyparse} return 1 immediately. The error reporting
11461function @code{yyerror} is not called. @xref{Parser Function, ,The
11462Parser Function @code{yyparse}}.
8405b70c
PB
11463
11464For Java parsers, this functionality is invoked using @code{return YYABORT;}
11465instead.
dd8d9022 11466@end deffn
3ded9a63 11467
dd8d9022
AD
11468@deffn {Macro} YYACCEPT
11469Macro to pretend that a complete utterance of the language has been
11470read, by making @code{yyparse} return 0 immediately.
11471@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11472
11473For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11474instead.
dd8d9022 11475@end deffn
bfa74976 11476
dd8d9022 11477@deffn {Macro} YYBACKUP
742e4900 11478Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11479token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11480@end deffn
bfa74976 11481
dd8d9022 11482@deffn {Variable} yychar
32c29292 11483External integer variable that contains the integer value of the
742e4900 11484lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11485@code{yyparse}.) Error-recovery rule actions may examine this variable.
11486@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11487@end deffn
bfa74976 11488
dd8d9022
AD
11489@deffn {Variable} yyclearin
11490Macro used in error-recovery rule actions. It clears the previous
742e4900 11491lookahead token. @xref{Error Recovery}.
18b519c0 11492@end deffn
bfa74976 11493
dd8d9022
AD
11494@deffn {Macro} YYDEBUG
11495Macro to define to equip the parser with tracing code. @xref{Tracing,
11496,Tracing Your Parser}.
18b519c0 11497@end deffn
bfa74976 11498
dd8d9022
AD
11499@deffn {Variable} yydebug
11500External integer variable set to zero by default. If @code{yydebug}
11501is given a nonzero value, the parser will output information on input
11502symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11503@end deffn
bfa74976 11504
dd8d9022
AD
11505@deffn {Macro} yyerrok
11506Macro to cause parser to recover immediately to its normal mode
11507after a syntax error. @xref{Error Recovery}.
11508@end deffn
11509
11510@deffn {Macro} YYERROR
4a11b852
AD
11511Cause an immediate syntax error. This statement initiates error
11512recovery just as if the parser itself had detected an error; however, it
11513does not call @code{yyerror}, and does not print any message. If you
11514want to print an error message, call @code{yyerror} explicitly before
11515the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
11516
11517For Java parsers, this functionality is invoked using @code{return YYERROR;}
11518instead.
dd8d9022
AD
11519@end deffn
11520
11521@deffn {Function} yyerror
11522User-supplied function to be called by @code{yyparse} on error.
11523@xref{Error Reporting, ,The Error
11524Reporting Function @code{yyerror}}.
11525@end deffn
11526
11527@deffn {Macro} YYERROR_VERBOSE
11528An obsolete macro that you define with @code{#define} in the prologue
11529to request verbose, specific error message strings
11530when @code{yyerror} is called. It doesn't matter what definition you
258cddbc
AD
11531use for @code{YYERROR_VERBOSE}, just whether you define it.
11532Supported by the C skeletons only; using
6f04ee6c 11533@code{%error-verbose} is preferred. @xref{Error Reporting}.
dd8d9022
AD
11534@end deffn
11535
56d60c19
AD
11536@deffn {Macro} YYFPRINTF
11537Macro used to output run-time traces.
11538@xref{Enabling Traces}.
11539@end deffn
11540
dd8d9022
AD
11541@deffn {Macro} YYINITDEPTH
11542Macro for specifying the initial size of the parser stack.
1a059451 11543@xref{Memory Management}.
dd8d9022
AD
11544@end deffn
11545
11546@deffn {Function} yylex
11547User-supplied lexical analyzer function, called with no arguments to get
11548the next token. @xref{Lexical, ,The Lexical Analyzer Function
11549@code{yylex}}.
11550@end deffn
11551
11552@deffn {Macro} YYLEX_PARAM
11553An obsolete macro for specifying an extra argument (or list of extra
32c29292 11554arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11555macro is deprecated, and is supported only for Yacc like parsers.
11556@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11557@end deffn
11558
11559@deffn {Variable} yylloc
11560External variable in which @code{yylex} should place the line and column
11561numbers associated with a token. (In a pure parser, it is a local
11562variable within @code{yyparse}, and its address is passed to
32c29292
JD
11563@code{yylex}.)
11564You can ignore this variable if you don't use the @samp{@@} feature in the
11565grammar actions.
11566@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11567In semantic actions, it stores the location of the lookahead token.
32c29292 11568@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11569@end deffn
11570
11571@deffn {Type} YYLTYPE
11572Data type of @code{yylloc}; by default, a structure with four
11573members. @xref{Location Type, , Data Types of Locations}.
11574@end deffn
11575
11576@deffn {Variable} yylval
11577External variable in which @code{yylex} should place the semantic
11578value associated with a token. (In a pure parser, it is a local
11579variable within @code{yyparse}, and its address is passed to
32c29292
JD
11580@code{yylex}.)
11581@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11582In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11583@xref{Actions, ,Actions}.
dd8d9022
AD
11584@end deffn
11585
11586@deffn {Macro} YYMAXDEPTH
1a059451
PE
11587Macro for specifying the maximum size of the parser stack. @xref{Memory
11588Management}.
dd8d9022
AD
11589@end deffn
11590
11591@deffn {Variable} yynerrs
8a2800e7 11592Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11593(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11594pure push parser, it is a member of yypstate.)
dd8d9022
AD
11595@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11596@end deffn
11597
11598@deffn {Function} yyparse
11599The parser function produced by Bison; call this function to start
11600parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11601@end deffn
11602
56d60c19
AD
11603@deffn {Macro} YYPRINT
11604Macro used to output token semantic values. For @file{yacc.c} only.
11605Obsoleted by @code{%printer}.
11606@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
11607@end deffn
11608
9987d1b3 11609@deffn {Function} yypstate_delete
f4101aa6 11610The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11611call this function to delete the memory associated with a parser.
f4101aa6 11612@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11613@code{yypstate_delete}}.
59da312b
JD
11614(The current push parsing interface is experimental and may evolve.
11615More user feedback will help to stabilize it.)
9987d1b3
JD
11616@end deffn
11617
11618@deffn {Function} yypstate_new
f4101aa6 11619The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11620call this function to create a new parser.
f4101aa6 11621@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11622@code{yypstate_new}}.
59da312b
JD
11623(The current push parsing interface is experimental and may evolve.
11624More user feedback will help to stabilize it.)
9987d1b3
JD
11625@end deffn
11626
11627@deffn {Function} yypull_parse
f4101aa6
AD
11628The parser function produced by Bison in push mode; call this function to
11629parse the rest of the input stream.
11630@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11631@code{yypull_parse}}.
59da312b
JD
11632(The current push parsing interface is experimental and may evolve.
11633More user feedback will help to stabilize it.)
9987d1b3
JD
11634@end deffn
11635
11636@deffn {Function} yypush_parse
f4101aa6
AD
11637The parser function produced by Bison in push mode; call this function to
11638parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11639@code{yypush_parse}}.
59da312b
JD
11640(The current push parsing interface is experimental and may evolve.
11641More user feedback will help to stabilize it.)
9987d1b3
JD
11642@end deffn
11643
dd8d9022
AD
11644@deffn {Macro} YYPARSE_PARAM
11645An obsolete macro for specifying the name of a parameter that
11646@code{yyparse} should accept. The use of this macro is deprecated, and
11647is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11648Conventions for Pure Parsers}.
11649@end deffn
11650
11651@deffn {Macro} YYRECOVERING
02103984
PE
11652The expression @code{YYRECOVERING ()} yields 1 when the parser
11653is recovering from a syntax error, and 0 otherwise.
11654@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11655@end deffn
11656
11657@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
11658Macro used to control the use of @code{alloca} when the
11659deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11660the parser will use @code{malloc} to extend its stacks. If defined to
116611, the parser will use @code{alloca}. Values other than 0 and 1 are
11662reserved for future Bison extensions. If not defined,
11663@code{YYSTACK_USE_ALLOCA} defaults to 0.
11664
55289366 11665In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11666limited stack and with unreliable stack-overflow checking, you should
11667set @code{YYMAXDEPTH} to a value that cannot possibly result in
11668unchecked stack overflow on any of your target hosts when
11669@code{alloca} is called. You can inspect the code that Bison
11670generates in order to determine the proper numeric values. This will
11671require some expertise in low-level implementation details.
dd8d9022
AD
11672@end deffn
11673
11674@deffn {Type} YYSTYPE
11675Data type of semantic values; @code{int} by default.
11676@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11677@end deffn
bfa74976 11678
342b8b6e 11679@node Glossary
bfa74976
RS
11680@appendix Glossary
11681@cindex glossary
11682
11683@table @asis
6f04ee6c 11684@item Accepting state
34a6c2d1
JD
11685A state whose only action is the accept action.
11686The accepting state is thus a consistent state.
11687@xref{Understanding,,}.
11688
35430378 11689@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11690Formal method of specifying context-free grammars originally proposed
11691by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11692committee document contributing to what became the Algol 60 report.
11693@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11694
6f04ee6c
JD
11695@item Consistent state
11696A state containing only one possible action. @xref{Default Reductions}.
34a6c2d1 11697
bfa74976
RS
11698@item Context-free grammars
11699Grammars specified as rules that can be applied regardless of context.
11700Thus, if there is a rule which says that an integer can be used as an
11701expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11702permitted. @xref{Language and Grammar, ,Languages and Context-Free
11703Grammars}.
bfa74976 11704
6f04ee6c 11705@item Default reduction
620b5727 11706The reduction that a parser should perform if the current parser state
2f4518a1 11707contains no other action for the lookahead token. In permitted parser
6f04ee6c
JD
11708states, Bison declares the reduction with the largest lookahead set to be
11709the default reduction and removes that lookahead set. @xref{Default
11710Reductions}.
11711
11712@item Defaulted state
11713A consistent state with a default reduction. @xref{Default Reductions}.
34a6c2d1 11714
bfa74976
RS
11715@item Dynamic allocation
11716Allocation of memory that occurs during execution, rather than at
11717compile time or on entry to a function.
11718
11719@item Empty string
11720Analogous to the empty set in set theory, the empty string is a
11721character string of length zero.
11722
11723@item Finite-state stack machine
11724A ``machine'' that has discrete states in which it is said to exist at
11725each instant in time. As input to the machine is processed, the
11726machine moves from state to state as specified by the logic of the
11727machine. In the case of the parser, the input is the language being
11728parsed, and the states correspond to various stages in the grammar
c827f760 11729rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11730
35430378 11731@item Generalized LR (GLR)
676385e2 11732A parsing algorithm that can handle all context-free grammars, including those
35430378 11733that are not LR(1). It resolves situations that Bison's
34a6c2d1 11734deterministic parsing
676385e2
PH
11735algorithm cannot by effectively splitting off multiple parsers, trying all
11736possible parsers, and discarding those that fail in the light of additional
c827f760 11737right context. @xref{Generalized LR Parsing, ,Generalized
35430378 11738LR Parsing}.
676385e2 11739
bfa74976
RS
11740@item Grouping
11741A language construct that is (in general) grammatically divisible;
c827f760 11742for example, `expression' or `declaration' in C@.
bfa74976
RS
11743@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11744
6f04ee6c
JD
11745@item IELR(1) (Inadequacy Elimination LR(1))
11746A minimal LR(1) parser table construction algorithm. That is, given any
2f4518a1 11747context-free grammar, IELR(1) generates parser tables with the full
6f04ee6c
JD
11748language-recognition power of canonical LR(1) but with nearly the same
11749number of parser states as LALR(1). This reduction in parser states is
11750often an order of magnitude. More importantly, because canonical LR(1)'s
11751extra parser states may contain duplicate conflicts in the case of non-LR(1)
11752grammars, the number of conflicts for IELR(1) is often an order of magnitude
11753less as well. This can significantly reduce the complexity of developing a
11754grammar. @xref{LR Table Construction}.
34a6c2d1 11755
bfa74976
RS
11756@item Infix operator
11757An arithmetic operator that is placed between the operands on which it
11758performs some operation.
11759
11760@item Input stream
11761A continuous flow of data between devices or programs.
11762
35430378 11763@item LAC (Lookahead Correction)
4c38b19e 11764A parsing mechanism that fixes the problem of delayed syntax error
6f04ee6c
JD
11765detection, which is caused by LR state merging, default reductions, and the
11766use of @code{%nonassoc}. Delayed syntax error detection results in
11767unexpected semantic actions, initiation of error recovery in the wrong
11768syntactic context, and an incorrect list of expected tokens in a verbose
11769syntax error message. @xref{LAC}.
4c38b19e 11770
bfa74976
RS
11771@item Language construct
11772One of the typical usage schemas of the language. For example, one of
11773the constructs of the C language is the @code{if} statement.
11774@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11775
11776@item Left associativity
11777Operators having left associativity are analyzed from left to right:
11778@samp{a+b+c} first computes @samp{a+b} and then combines with
11779@samp{c}. @xref{Precedence, ,Operator Precedence}.
11780
11781@item Left recursion
89cab50d
AD
11782A rule whose result symbol is also its first component symbol; for
11783example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11784Rules}.
bfa74976
RS
11785
11786@item Left-to-right parsing
11787Parsing a sentence of a language by analyzing it token by token from
c827f760 11788left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11789
11790@item Lexical analyzer (scanner)
11791A function that reads an input stream and returns tokens one by one.
11792@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11793
11794@item Lexical tie-in
11795A flag, set by actions in the grammar rules, which alters the way
11796tokens are parsed. @xref{Lexical Tie-ins}.
11797
931c7513 11798@item Literal string token
14ded682 11799A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11800
742e4900
JD
11801@item Lookahead token
11802A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11803Tokens}.
bfa74976 11804
35430378 11805@item LALR(1)
bfa74976 11806The class of context-free grammars that Bison (like most other parser
35430378 11807generators) can handle by default; a subset of LR(1).
5da0355a 11808@xref{Mysterious Conflicts}.
bfa74976 11809
35430378 11810@item LR(1)
bfa74976 11811The class of context-free grammars in which at most one token of
742e4900 11812lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11813
11814@item Nonterminal symbol
11815A grammar symbol standing for a grammatical construct that can
11816be expressed through rules in terms of smaller constructs; in other
11817words, a construct that is not a token. @xref{Symbols}.
11818
bfa74976
RS
11819@item Parser
11820A function that recognizes valid sentences of a language by analyzing
11821the syntax structure of a set of tokens passed to it from a lexical
11822analyzer.
11823
11824@item Postfix operator
11825An arithmetic operator that is placed after the operands upon which it
11826performs some operation.
11827
11828@item Reduction
11829Replacing a string of nonterminals and/or terminals with a single
89cab50d 11830nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11831Parser Algorithm}.
bfa74976
RS
11832
11833@item Reentrant
11834A reentrant subprogram is a subprogram which can be in invoked any
11835number of times in parallel, without interference between the various
11836invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11837
11838@item Reverse polish notation
11839A language in which all operators are postfix operators.
11840
11841@item Right recursion
89cab50d
AD
11842A rule whose result symbol is also its last component symbol; for
11843example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11844Rules}.
bfa74976
RS
11845
11846@item Semantics
11847In computer languages, the semantics are specified by the actions
11848taken for each instance of the language, i.e., the meaning of
11849each statement. @xref{Semantics, ,Defining Language Semantics}.
11850
11851@item Shift
11852A parser is said to shift when it makes the choice of analyzing
11853further input from the stream rather than reducing immediately some
c827f760 11854already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11855
11856@item Single-character literal
11857A single character that is recognized and interpreted as is.
11858@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11859
11860@item Start symbol
11861The nonterminal symbol that stands for a complete valid utterance in
11862the language being parsed. The start symbol is usually listed as the
13863333 11863first nonterminal symbol in a language specification.
bfa74976
RS
11864@xref{Start Decl, ,The Start-Symbol}.
11865
11866@item Symbol table
11867A data structure where symbol names and associated data are stored
11868during parsing to allow for recognition and use of existing
11869information in repeated uses of a symbol. @xref{Multi-function Calc}.
11870
6e649e65
PE
11871@item Syntax error
11872An error encountered during parsing of an input stream due to invalid
11873syntax. @xref{Error Recovery}.
11874
bfa74976
RS
11875@item Token
11876A basic, grammatically indivisible unit of a language. The symbol
11877that describes a token in the grammar is a terminal symbol.
11878The input of the Bison parser is a stream of tokens which comes from
11879the lexical analyzer. @xref{Symbols}.
11880
11881@item Terminal symbol
89cab50d
AD
11882A grammar symbol that has no rules in the grammar and therefore is
11883grammatically indivisible. The piece of text it represents is a token.
11884@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
6f04ee6c
JD
11885
11886@item Unreachable state
11887A parser state to which there does not exist a sequence of transitions from
11888the parser's start state. A state can become unreachable during conflict
11889resolution. @xref{Unreachable States}.
bfa74976
RS
11890@end table
11891
342b8b6e 11892@node Copying This Manual
f2b5126e 11893@appendix Copying This Manual
f2b5126e
PB
11894@include fdl.texi
11895
71caec06
JD
11896@node Bibliography
11897@unnumbered Bibliography
11898
11899@table @asis
11900@item [Denny 2008]
11901Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11902for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
119032008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11904pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11905
11906@item [Denny 2010 May]
11907Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11908Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11909University, Clemson, SC, USA (May 2010).
11910@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11911
11912@item [Denny 2010 November]
11913Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11914Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11915in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
119162010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11917
11918@item [DeRemer 1982]
11919Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11920Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11921Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11922615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11923
11924@item [Knuth 1965]
11925Donald E. Knuth, On the Translation of Languages from Left to Right, in
11926@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11927607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11928
11929@item [Scott 2000]
11930Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11931@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11932London, Department of Computer Science, TR-00-12 (December 2000).
11933@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11934@end table
11935
f9b86351
AD
11936@node Index of Terms
11937@unnumbered Index of Terms
bfa74976
RS
11938
11939@printindex cp
11940
bfa74976 11941@bye
a06ea4aa 11942
232be91a
AD
11943@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11944@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11945@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11946@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11947@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11948@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11949@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11950@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11951@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11952@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11953@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11954@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11955@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
56da1e52 11956@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
232be91a
AD
11957@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11958@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11959@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11960@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11961@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11962@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11963@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11964@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11965@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
56da1e52 11966@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
232be91a
AD
11967@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11968@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11969@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11970@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11971@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 11972@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
56da1e52
AD
11973@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
11974@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
232be91a 11975@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
56da1e52 11976@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
232be91a
AD
11977@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11978@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11979@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
56da1e52 11980@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
232be91a 11981@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
56da1e52 11982@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
232be91a
AD
11983@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11984@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11985@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11986@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
56da1e52 11987@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
232be91a
AD
11988@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11989@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11990@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11991@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 11992@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
56da1e52 11993@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
11994@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
11995@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 11996@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
f3103c5b
AD
11997
11998@c Local Variables:
11999@c ispell-dictionary: "american"
12000@c fill-column: 76
12001@c End:
7287be84 12002@c LocalWords: errorVerbose