]> git.saurik.com Git - bison.git/blame - doc/bison.texi
getargs: don't label --language/-l as experimental
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
c932d613 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
ea0a7676 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
71caec06 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
83484365 128* Locations:: Overview of location tracking.
f56274a8
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
35430378 134Writing GLR Parsers
fa7e68c3 135
35430378
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
7404cdf3
JD
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
188* Tracking Locations:: Locations and actions.
189* Named References:: Using named references in actions.
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
192
193Outline of a Bison Grammar
194
f56274a8 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
56d60c19 226* Printer Decl:: Declaring how symbol values are displayed.
d6328241 227* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
228* Start Decl:: Specifying the start symbol.
229* Pure Decl:: Requesting a reentrant parser.
9987d1b3 230* Push Decl:: Requesting a push parser.
bfa74976 231* Decl Summary:: Table of all Bison declarations.
2f4518a1 232* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 233* %code Summary:: Inserting code into the parser source.
bfa74976
RS
234
235Parser C-Language Interface
236
f56274a8
DJ
237* Parser Function:: How to call @code{yyparse} and what it returns.
238* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
239* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
240* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
241* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
242* Lexical:: You must supply a function @code{yylex}
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
254* Token Locations:: How @code{yylex} must return the text location
255 (line number, etc.) of the token, if the
256 actions want that.
257* Pure Calling:: How the calling convention differs in a pure parser
258 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 259
13863333 260The Bison Parser Algorithm
bfa74976 261
742e4900 262* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 268* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 269* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 270* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 271* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
272
273Operator Precedence
274
275* Why Precedence:: An example showing why precedence is needed.
276* Using Precedence:: How to specify precedence in Bison grammars.
277* Precedence Examples:: How these features are used in the previous example.
278* How Precedence:: How they work.
c28cd5dc 279* Non Operators:: Using precedence for general conflicts.
bfa74976 280
6f04ee6c
JD
281Tuning LR
282
283* LR Table Construction:: Choose a different construction algorithm.
284* Default Reductions:: Disable default reductions.
285* LAC:: Correct lookahead sets in the parser states.
286* Unreachable States:: Keep unreachable parser states for debugging.
287
bfa74976
RS
288Handling Context Dependencies
289
290* Semantic Tokens:: Token parsing can depend on the semantic context.
291* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
292* Tie-in Recovery:: Lexical tie-ins have implications for how
293 error recovery rules must be written.
294
93dd49ab 295Debugging Your Parser
ec3bc396
AD
296
297* Understanding:: Understanding the structure of your parser.
fc4fdd62 298* Graphviz:: Getting a visual representation of the parser.
9c16d399 299* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
300* Tracing:: Tracing the execution of your parser.
301
56d60c19
AD
302Tracing Your Parser
303
304* Enabling Traces:: Activating run-time trace support
305* Mfcalc Traces:: Extending @code{mfcalc} to support traces
306* The YYPRINT Macro:: Obsolete interface for semantic value reports
307
bfa74976
RS
308Invoking Bison
309
13863333 310* Bison Options:: All the options described in detail,
c827f760 311 in alphabetical order by short options.
bfa74976 312* Option Cross Key:: Alphabetical list of long options.
93dd49ab 313* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 314
8405b70c 315Parsers Written In Other Languages
12545799
AD
316
317* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 318* Java Parsers:: The interface to generate Java parser classes
12545799
AD
319
320C++ Parsers
321
322* C++ Bison Interface:: Asking for C++ parser generation
323* C++ Semantic Values:: %union vs. C++
324* C++ Location Values:: The position and location classes
325* C++ Parser Interface:: Instantiating and running the parser
326* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 327* A Complete C++ Example:: Demonstrating their use
12545799 328
936c88d1
AD
329C++ Location Values
330
331* C++ position:: One point in the source file
332* C++ location:: Two points in the source file
db8ab2be 333* User Defined Location Type:: Required interface for locations
936c88d1 334
12545799
AD
335A Complete C++ Example
336
337* Calc++ --- C++ Calculator:: The specifications
338* Calc++ Parsing Driver:: An active parsing context
339* Calc++ Parser:: A parser class
340* Calc++ Scanner:: A pure C++ Flex scanner
341* Calc++ Top Level:: Conducting the band
342
8405b70c
PB
343Java Parsers
344
f56274a8
DJ
345* Java Bison Interface:: Asking for Java parser generation
346* Java Semantic Values:: %type and %token vs. Java
347* Java Location Values:: The position and location classes
348* Java Parser Interface:: Instantiating and running the parser
349* Java Scanner Interface:: Specifying the scanner for the parser
350* Java Action Features:: Special features for use in actions
351* Java Differences:: Differences between C/C++ and Java Grammars
352* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 353
d1a1114f
AD
354Frequently Asked Questions
355
f56274a8
DJ
356* Memory Exhausted:: Breaking the Stack Limits
357* How Can I Reset the Parser:: @code{yyparse} Keeps some State
358* Strings are Destroyed:: @code{yylval} Loses Track of Strings
359* Implementing Gotos/Loops:: Control Flow in the Calculator
360* Multiple start-symbols:: Factoring closely related grammars
35430378 361* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
362* I can't build Bison:: Troubleshooting
363* Where can I find help?:: Troubleshouting
364* Bug Reports:: Troublereporting
365* More Languages:: Parsers in C++, Java, and so on
366* Beta Testing:: Experimenting development versions
367* Mailing Lists:: Meeting other Bison users
d1a1114f 368
f2b5126e
PB
369Copying This Manual
370
f56274a8 371* Copying This Manual:: License for copying this manual.
f2b5126e 372
342b8b6e 373@end detailmenu
bfa74976
RS
374@end menu
375
342b8b6e 376@node Introduction
bfa74976
RS
377@unnumbered Introduction
378@cindex introduction
379
6077da58 380@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
381annotated context-free grammar into a deterministic LR or generalized
382LR (GLR) parser employing LALR(1) parser tables. As an experimental
383feature, Bison can also generate IELR(1) or canonical LR(1) parser
384tables. Once you are proficient with Bison, you can use it to develop
385a wide range of language parsers, from those used in simple desk
386calculators to complex programming languages.
387
388Bison is upward compatible with Yacc: all properly-written Yacc
389grammars ought to work with Bison with no change. Anyone familiar
390with Yacc should be able to use Bison with little trouble. You need
391to be fluent in C or C++ programming in order to use Bison or to
392understand this manual. Java is also supported as an experimental
393feature.
394
395We begin with tutorial chapters that explain the basic concepts of
396using Bison and show three explained examples, each building on the
397last. If you don't know Bison or Yacc, start by reading these
398chapters. Reference chapters follow, which describe specific aspects
399of Bison in detail.
bfa74976 400
840341d6
JD
401Bison was written originally by Robert Corbett. Richard Stallman made
402it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
403added multi-character string literals and other features. Since then,
404Bison has grown more robust and evolved many other new features thanks
405to the hard work of a long list of volunteers. For details, see the
406@file{THANKS} and @file{ChangeLog} files included in the Bison
407distribution.
931c7513 408
df1af54c 409This edition corresponds to version @value{VERSION} of Bison.
bfa74976 410
342b8b6e 411@node Conditions
bfa74976
RS
412@unnumbered Conditions for Using Bison
413
193d7c70
PE
414The distribution terms for Bison-generated parsers permit using the
415parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 416permissions applied only when Bison was generating LALR(1)
193d7c70 417parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 418parsers could be used only in programs that were free software.
a31239f1 419
35430378 420The other GNU programming tools, such as the GNU C
c827f760 421compiler, have never
9ecbd125 422had such a requirement. They could always be used for nonfree
a31239f1
RS
423software. The reason Bison was different was not due to a special
424policy decision; it resulted from applying the usual General Public
425License to all of the Bison source code.
426
9913d6e4
JD
427The main output of the Bison utility---the Bison parser implementation
428file---contains a verbatim copy of a sizable piece of Bison, which is
429the code for the parser's implementation. (The actions from your
430grammar are inserted into this implementation at one point, but most
431of the rest of the implementation is not changed.) When we applied
432the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
433the effect was to restrict the use of Bison output to free software.
434
435We didn't change the terms because of sympathy for people who want to
436make software proprietary. @strong{Software should be free.} But we
437concluded that limiting Bison's use to free software was doing little to
438encourage people to make other software free. So we decided to make the
439practical conditions for using Bison match the practical conditions for
35430378 440using the other GNU tools.
bfa74976 441
193d7c70
PE
442This exception applies when Bison is generating code for a parser.
443You can tell whether the exception applies to a Bison output file by
444inspecting the file for text beginning with ``As a special
445exception@dots{}''. The text spells out the exact terms of the
446exception.
262aa8dd 447
f16b0819
PE
448@node Copying
449@unnumbered GNU GENERAL PUBLIC LICENSE
450@include gpl-3.0.texi
bfa74976 451
342b8b6e 452@node Concepts
bfa74976
RS
453@chapter The Concepts of Bison
454
455This chapter introduces many of the basic concepts without which the
456details of Bison will not make sense. If you do not already know how to
457use Bison or Yacc, we suggest you start by reading this chapter carefully.
458
459@menu
f56274a8
DJ
460* Language and Grammar:: Languages and context-free grammars,
461 as mathematical ideas.
462* Grammar in Bison:: How we represent grammars for Bison's sake.
463* Semantic Values:: Each token or syntactic grouping can have
464 a semantic value (the value of an integer,
465 the name of an identifier, etc.).
466* Semantic Actions:: Each rule can have an action containing C code.
467* GLR Parsers:: Writing parsers for general context-free languages.
83484365 468* Locations:: Overview of location tracking.
f56274a8
DJ
469* Bison Parser:: What are Bison's input and output,
470 how is the output used?
471* Stages:: Stages in writing and running Bison grammars.
472* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
473@end menu
474
342b8b6e 475@node Language and Grammar
bfa74976
RS
476@section Languages and Context-Free Grammars
477
bfa74976
RS
478@cindex context-free grammar
479@cindex grammar, context-free
480In order for Bison to parse a language, it must be described by a
481@dfn{context-free grammar}. This means that you specify one or more
482@dfn{syntactic groupings} and give rules for constructing them from their
483parts. For example, in the C language, one kind of grouping is called an
484`expression'. One rule for making an expression might be, ``An expression
485can be made of a minus sign and another expression''. Another would be,
486``An expression can be an integer''. As you can see, rules are often
487recursive, but there must be at least one rule which leads out of the
488recursion.
489
35430378 490@cindex BNF
bfa74976
RS
491@cindex Backus-Naur form
492The most common formal system for presenting such rules for humans to read
35430378 493is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 494order to specify the language Algol 60. Any grammar expressed in
35430378
JD
495BNF is a context-free grammar. The input to Bison is
496essentially machine-readable BNF.
bfa74976 497
6f04ee6c
JD
498@cindex LALR grammars
499@cindex IELR grammars
500@cindex LR grammars
501There are various important subclasses of context-free grammars. Although
502it can handle almost all context-free grammars, Bison is optimized for what
503are called LR(1) grammars. In brief, in these grammars, it must be possible
504to tell how to parse any portion of an input string with just a single token
505of lookahead. For historical reasons, Bison by default is limited by the
506additional restrictions of LALR(1), which is hard to explain simply.
5da0355a
JD
507@xref{Mysterious Conflicts}, for more information on this. As an
508experimental feature, you can escape these additional restrictions by
509requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
510Construction}, to learn how.
bfa74976 511
35430378
JD
512@cindex GLR parsing
513@cindex generalized LR (GLR) parsing
676385e2 514@cindex ambiguous grammars
9d9b8b70 515@cindex nondeterministic parsing
9501dc6e 516
35430378 517Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
518roughly that the next grammar rule to apply at any point in the input is
519uniquely determined by the preceding input and a fixed, finite portion
742e4900 520(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 521grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 522apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 523grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 524lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 525With the proper declarations, Bison is also able to parse these more
35430378
JD
526general context-free grammars, using a technique known as GLR
527parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
528are able to handle any context-free grammar for which the number of
529possible parses of any given string is finite.
676385e2 530
bfa74976
RS
531@cindex symbols (abstract)
532@cindex token
533@cindex syntactic grouping
534@cindex grouping, syntactic
9501dc6e
AD
535In the formal grammatical rules for a language, each kind of syntactic
536unit or grouping is named by a @dfn{symbol}. Those which are built by
537grouping smaller constructs according to grammatical rules are called
bfa74976
RS
538@dfn{nonterminal symbols}; those which can't be subdivided are called
539@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
540corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 541corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
542
543We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
544nonterminal, mean. The tokens of C are identifiers, constants (numeric
545and string), and the various keywords, arithmetic operators and
546punctuation marks. So the terminal symbols of a grammar for C include
547`identifier', `number', `string', plus one symbol for each keyword,
548operator or punctuation mark: `if', `return', `const', `static', `int',
549`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
550(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
551lexicography, not grammar.)
552
553Here is a simple C function subdivided into tokens:
554
9edcd895
AD
555@example
556int /* @r{keyword `int'} */
14d4662b 557square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
558 @r{identifier, close-paren} */
559@{ /* @r{open-brace} */
aa08666d
AD
560 return x * x; /* @r{keyword `return', identifier, asterisk,}
561 @r{identifier, semicolon} */
9edcd895
AD
562@} /* @r{close-brace} */
563@end example
bfa74976
RS
564
565The syntactic groupings of C include the expression, the statement, the
566declaration, and the function definition. These are represented in the
567grammar of C by nonterminal symbols `expression', `statement',
568`declaration' and `function definition'. The full grammar uses dozens of
569additional language constructs, each with its own nonterminal symbol, in
570order to express the meanings of these four. The example above is a
571function definition; it contains one declaration, and one statement. In
572the statement, each @samp{x} is an expression and so is @samp{x * x}.
573
574Each nonterminal symbol must have grammatical rules showing how it is made
575out of simpler constructs. For example, one kind of C statement is the
576@code{return} statement; this would be described with a grammar rule which
577reads informally as follows:
578
579@quotation
580A `statement' can be made of a `return' keyword, an `expression' and a
581`semicolon'.
582@end quotation
583
584@noindent
585There would be many other rules for `statement', one for each kind of
586statement in C.
587
588@cindex start symbol
589One nonterminal symbol must be distinguished as the special one which
590defines a complete utterance in the language. It is called the @dfn{start
591symbol}. In a compiler, this means a complete input program. In the C
592language, the nonterminal symbol `sequence of definitions and declarations'
593plays this role.
594
595For example, @samp{1 + 2} is a valid C expression---a valid part of a C
596program---but it is not valid as an @emph{entire} C program. In the
597context-free grammar of C, this follows from the fact that `expression' is
598not the start symbol.
599
600The Bison parser reads a sequence of tokens as its input, and groups the
601tokens using the grammar rules. If the input is valid, the end result is
602that the entire token sequence reduces to a single grouping whose symbol is
603the grammar's start symbol. If we use a grammar for C, the entire input
604must be a `sequence of definitions and declarations'. If not, the parser
605reports a syntax error.
606
342b8b6e 607@node Grammar in Bison
bfa74976
RS
608@section From Formal Rules to Bison Input
609@cindex Bison grammar
610@cindex grammar, Bison
611@cindex formal grammar
612
613A formal grammar is a mathematical construct. To define the language
614for Bison, you must write a file expressing the grammar in Bison syntax:
615a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
616
617A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 618as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
619in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
620
621The Bison representation for a terminal symbol is also called a @dfn{token
622type}. Token types as well can be represented as C-like identifiers. By
623convention, these identifiers should be upper case to distinguish them from
624nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
625@code{RETURN}. A terminal symbol that stands for a particular keyword in
626the language should be named after that keyword converted to upper case.
627The terminal symbol @code{error} is reserved for error recovery.
931c7513 628@xref{Symbols}.
bfa74976
RS
629
630A terminal symbol can also be represented as a character literal, just like
631a C character constant. You should do this whenever a token is just a
632single character (parenthesis, plus-sign, etc.): use that same character in
633a literal as the terminal symbol for that token.
634
931c7513
RS
635A third way to represent a terminal symbol is with a C string constant
636containing several characters. @xref{Symbols}, for more information.
637
bfa74976
RS
638The grammar rules also have an expression in Bison syntax. For example,
639here is the Bison rule for a C @code{return} statement. The semicolon in
640quotes is a literal character token, representing part of the C syntax for
641the statement; the naked semicolon, and the colon, are Bison punctuation
642used in every rule.
643
644@example
de6be119 645stmt: RETURN expr ';' ;
bfa74976
RS
646@end example
647
648@noindent
649@xref{Rules, ,Syntax of Grammar Rules}.
650
342b8b6e 651@node Semantic Values
bfa74976
RS
652@section Semantic Values
653@cindex semantic value
654@cindex value, semantic
655
656A formal grammar selects tokens only by their classifications: for example,
657if a rule mentions the terminal symbol `integer constant', it means that
658@emph{any} integer constant is grammatically valid in that position. The
659precise value of the constant is irrelevant to how to parse the input: if
660@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 661grammatical.
bfa74976
RS
662
663But the precise value is very important for what the input means once it is
664parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6653989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
666has both a token type and a @dfn{semantic value}. @xref{Semantics,
667,Defining Language Semantics},
bfa74976
RS
668for details.
669
670The token type is a terminal symbol defined in the grammar, such as
671@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
672you need to know to decide where the token may validly appear and how to
673group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 674except their types.
bfa74976
RS
675
676The semantic value has all the rest of the information about the
677meaning of the token, such as the value of an integer, or the name of an
678identifier. (A token such as @code{','} which is just punctuation doesn't
679need to have any semantic value.)
680
681For example, an input token might be classified as token type
682@code{INTEGER} and have the semantic value 4. Another input token might
683have the same token type @code{INTEGER} but value 3989. When a grammar
684rule says that @code{INTEGER} is allowed, either of these tokens is
685acceptable because each is an @code{INTEGER}. When the parser accepts the
686token, it keeps track of the token's semantic value.
687
688Each grouping can also have a semantic value as well as its nonterminal
689symbol. For example, in a calculator, an expression typically has a
690semantic value that is a number. In a compiler for a programming
691language, an expression typically has a semantic value that is a tree
692structure describing the meaning of the expression.
693
342b8b6e 694@node Semantic Actions
bfa74976
RS
695@section Semantic Actions
696@cindex semantic actions
697@cindex actions, semantic
698
699In order to be useful, a program must do more than parse input; it must
700also produce some output based on the input. In a Bison grammar, a grammar
701rule can have an @dfn{action} made up of C statements. Each time the
702parser recognizes a match for that rule, the action is executed.
703@xref{Actions}.
13863333 704
bfa74976
RS
705Most of the time, the purpose of an action is to compute the semantic value
706of the whole construct from the semantic values of its parts. For example,
707suppose we have a rule which says an expression can be the sum of two
708expressions. When the parser recognizes such a sum, each of the
709subexpressions has a semantic value which describes how it was built up.
710The action for this rule should create a similar sort of value for the
711newly recognized larger expression.
712
713For example, here is a rule that says an expression can be the sum of
714two subexpressions:
715
716@example
de6be119 717expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
718@end example
719
720@noindent
721The action says how to produce the semantic value of the sum expression
722from the values of the two subexpressions.
723
676385e2 724@node GLR Parsers
35430378
JD
725@section Writing GLR Parsers
726@cindex GLR parsing
727@cindex generalized LR (GLR) parsing
676385e2
PH
728@findex %glr-parser
729@cindex conflicts
730@cindex shift/reduce conflicts
fa7e68c3 731@cindex reduce/reduce conflicts
676385e2 732
34a6c2d1 733In some grammars, Bison's deterministic
35430378 734LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
735certain grammar rule at a given point. That is, it may not be able to
736decide (on the basis of the input read so far) which of two possible
737reductions (applications of a grammar rule) applies, or whether to apply
738a reduction or read more of the input and apply a reduction later in the
739input. These are known respectively as @dfn{reduce/reduce} conflicts
740(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
741(@pxref{Shift/Reduce}).
742
35430378 743To use a grammar that is not easily modified to be LR(1), a
9501dc6e 744more general parsing algorithm is sometimes necessary. If you include
676385e2 745@code{%glr-parser} among the Bison declarations in your file
35430378
JD
746(@pxref{Grammar Outline}), the result is a Generalized LR
747(GLR) parser. These parsers handle Bison grammars that
9501dc6e 748contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 749declarations) identically to deterministic parsers. However, when
9501dc6e 750faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 751GLR parsers use the simple expedient of doing both,
9501dc6e
AD
752effectively cloning the parser to follow both possibilities. Each of
753the resulting parsers can again split, so that at any given time, there
754can be any number of possible parses being explored. The parsers
676385e2
PH
755proceed in lockstep; that is, all of them consume (shift) a given input
756symbol before any of them proceed to the next. Each of the cloned
757parsers eventually meets one of two possible fates: either it runs into
758a parsing error, in which case it simply vanishes, or it merges with
759another parser, because the two of them have reduced the input to an
760identical set of symbols.
761
762During the time that there are multiple parsers, semantic actions are
763recorded, but not performed. When a parser disappears, its recorded
764semantic actions disappear as well, and are never performed. When a
765reduction makes two parsers identical, causing them to merge, Bison
766records both sets of semantic actions. Whenever the last two parsers
767merge, reverting to the single-parser case, Bison resolves all the
768outstanding actions either by precedences given to the grammar rules
769involved, or by performing both actions, and then calling a designated
770user-defined function on the resulting values to produce an arbitrary
771merged result.
772
fa7e68c3 773@menu
35430378
JD
774* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
775* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 776* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 777* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
778@end menu
779
780@node Simple GLR Parsers
35430378
JD
781@subsection Using GLR on Unambiguous Grammars
782@cindex GLR parsing, unambiguous grammars
783@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
784@findex %glr-parser
785@findex %expect-rr
786@cindex conflicts
787@cindex reduce/reduce conflicts
788@cindex shift/reduce conflicts
789
35430378
JD
790In the simplest cases, you can use the GLR algorithm
791to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 792Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
793
794Consider a problem that
795arises in the declaration of enumerated and subrange types in the
796programming language Pascal. Here are some examples:
797
798@example
799type subrange = lo .. hi;
800type enum = (a, b, c);
801@end example
802
803@noindent
804The original language standard allows only numeric
805literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 806and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80710206) and many other
808Pascal implementations allow arbitrary expressions there. This gives
809rise to the following situation, containing a superfluous pair of
810parentheses:
811
812@example
813type subrange = (a) .. b;
814@end example
815
816@noindent
817Compare this to the following declaration of an enumerated
818type with only one value:
819
820@example
821type enum = (a);
822@end example
823
824@noindent
825(These declarations are contrived, but they are syntactically
826valid, and more-complicated cases can come up in practical programs.)
827
828These two declarations look identical until the @samp{..} token.
35430378 829With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
830possible to decide between the two forms when the identifier
831@samp{a} is parsed. It is, however, desirable
832for a parser to decide this, since in the latter case
833@samp{a} must become a new identifier to represent the enumeration
834value, while in the former case @samp{a} must be evaluated with its
835current meaning, which may be a constant or even a function call.
836
837You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
838to be resolved later, but this typically requires substantial
839contortions in both semantic actions and large parts of the
840grammar, where the parentheses are nested in the recursive rules for
841expressions.
842
843You might think of using the lexer to distinguish between the two
844forms by returning different tokens for currently defined and
845undefined identifiers. But if these declarations occur in a local
846scope, and @samp{a} is defined in an outer scope, then both forms
847are possible---either locally redefining @samp{a}, or using the
848value of @samp{a} from the outer scope. So this approach cannot
849work.
850
e757bb10 851A simple solution to this problem is to declare the parser to
35430378
JD
852use the GLR algorithm.
853When the GLR parser reaches the critical state, it
fa7e68c3
PE
854merely splits into two branches and pursues both syntax rules
855simultaneously. Sooner or later, one of them runs into a parsing
856error. If there is a @samp{..} token before the next
857@samp{;}, the rule for enumerated types fails since it cannot
858accept @samp{..} anywhere; otherwise, the subrange type rule
859fails since it requires a @samp{..} token. So one of the branches
860fails silently, and the other one continues normally, performing
861all the intermediate actions that were postponed during the split.
862
863If the input is syntactically incorrect, both branches fail and the parser
864reports a syntax error as usual.
865
866The effect of all this is that the parser seems to ``guess'' the
867correct branch to take, or in other words, it seems to use more
35430378
JD
868lookahead than the underlying LR(1) algorithm actually allows
869for. In this example, LR(2) would suffice, but also some cases
870that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 871
35430378 872In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
873and the current Bison parser even takes exponential time and space
874for some grammars. In practice, this rarely happens, and for many
875grammars it is possible to prove that it cannot happen.
876The present example contains only one conflict between two
877rules, and the type-declaration context containing the conflict
878cannot be nested. So the number of
879branches that can exist at any time is limited by the constant 2,
880and the parsing time is still linear.
881
882Here is a Bison grammar corresponding to the example above. It
883parses a vastly simplified form of Pascal type declarations.
884
885@example
886%token TYPE DOTDOT ID
887
888@group
889%left '+' '-'
890%left '*' '/'
891@end group
892
893%%
894
895@group
de6be119 896type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
897@end group
898
899@group
de6be119
AD
900type:
901 '(' id_list ')'
902| expr DOTDOT expr
903;
fa7e68c3
PE
904@end group
905
906@group
de6be119
AD
907id_list:
908 ID
909| id_list ',' ID
910;
fa7e68c3
PE
911@end group
912
913@group
de6be119
AD
914expr:
915 '(' expr ')'
916| expr '+' expr
917| expr '-' expr
918| expr '*' expr
919| expr '/' expr
920| ID
921;
fa7e68c3
PE
922@end group
923@end example
924
35430378 925When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
926about one reduce/reduce conflict. In the conflicting situation the
927parser chooses one of the alternatives, arbitrarily the one
928declared first. Therefore the following correct input is not
929recognized:
930
931@example
932type t = (a) .. b;
933@end example
934
35430378 935The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
936to be silent about the one known reduce/reduce conflict, by adding
937these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
938@samp{%%}):
939
940@example
941%glr-parser
942%expect-rr 1
943@end example
944
945@noindent
946No change in the grammar itself is required. Now the
947parser recognizes all valid declarations, according to the
948limited syntax above, transparently. In fact, the user does not even
949notice when the parser splits.
950
35430378 951So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
952almost without disadvantages. Even in simple cases like this, however,
953there are at least two potential problems to beware. First, always
35430378
JD
954analyze the conflicts reported by Bison to make sure that GLR
955splitting is only done where it is intended. A GLR parser
f8e1c9e5 956splitting inadvertently may cause problems less obvious than an
35430378 957LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
958conflict. Second, consider interactions with the lexer (@pxref{Semantic
959Tokens}) with great care. Since a split parser consumes tokens without
960performing any actions during the split, the lexer cannot obtain
961information via parser actions. Some cases of lexer interactions can be
35430378 962eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
963lexer to the parser. You must check the remaining cases for
964correctness.
965
966In our example, it would be safe for the lexer to return tokens based on
967their current meanings in some symbol table, because no new symbols are
968defined in the middle of a type declaration. Though it is possible for
969a parser to define the enumeration constants as they are parsed, before
970the type declaration is completed, it actually makes no difference since
971they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
972
973@node Merging GLR Parses
35430378
JD
974@subsection Using GLR to Resolve Ambiguities
975@cindex GLR parsing, ambiguous grammars
976@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
977@findex %dprec
978@findex %merge
979@cindex conflicts
980@cindex reduce/reduce conflicts
981
2a8d363a 982Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
983
984@example
985%@{
38a92d50
PE
986 #include <stdio.h>
987 #define YYSTYPE char const *
988 int yylex (void);
989 void yyerror (char const *);
676385e2
PH
990%@}
991
992%token TYPENAME ID
993
994%right '='
995%left '+'
996
997%glr-parser
998
999%%
1000
de6be119
AD
1001prog:
1002 /* Nothing. */
1003| prog stmt @{ printf ("\n"); @}
1004;
676385e2 1005
de6be119
AD
1006stmt:
1007 expr ';' %dprec 1
1008| decl %dprec 2
1009;
676385e2 1010
de6be119
AD
1011expr:
1012 ID @{ printf ("%s ", $$); @}
1013| TYPENAME '(' expr ')'
1014 @{ printf ("%s <cast> ", $1); @}
1015| expr '+' expr @{ printf ("+ "); @}
1016| expr '=' expr @{ printf ("= "); @}
1017;
676385e2 1018
de6be119
AD
1019decl:
1020 TYPENAME declarator ';'
1021 @{ printf ("%s <declare> ", $1); @}
1022| TYPENAME declarator '=' expr ';'
1023 @{ printf ("%s <init-declare> ", $1); @}
1024;
676385e2 1025
de6be119
AD
1026declarator:
1027 ID @{ printf ("\"%s\" ", $1); @}
1028| '(' declarator ')'
1029;
676385e2
PH
1030@end example
1031
1032@noindent
1033This models a problematic part of the C++ grammar---the ambiguity between
1034certain declarations and statements. For example,
1035
1036@example
1037T (x) = y+z;
1038@end example
1039
1040@noindent
1041parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1042(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1043@samp{x} as an @code{ID}).
676385e2 1044Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1045@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1046time it encounters @code{x} in the example above. Since this is a
35430378 1047GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1048each choice of resolving the reduce/reduce conflict.
1049Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1050however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1051ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1052the other reduces @code{stmt : decl}, after which both parsers are in an
1053identical state: they've seen @samp{prog stmt} and have the same unprocessed
1054input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1055
35430378 1056At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1057grammar of how to choose between the competing parses.
1058In the example above, the two @code{%dprec}
e757bb10 1059declarations specify that Bison is to give precedence
fa7e68c3 1060to the parse that interprets the example as a
676385e2
PH
1061@code{decl}, which implies that @code{x} is a declarator.
1062The parser therefore prints
1063
1064@example
fae437e8 1065"x" y z + T <init-declare>
676385e2
PH
1066@end example
1067
fa7e68c3
PE
1068The @code{%dprec} declarations only come into play when more than one
1069parse survives. Consider a different input string for this parser:
676385e2
PH
1070
1071@example
1072T (x) + y;
1073@end example
1074
1075@noindent
35430378 1076This is another example of using GLR to parse an unambiguous
fa7e68c3 1077construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1078Here, there is no ambiguity (this cannot be parsed as a declaration).
1079However, at the time the Bison parser encounters @code{x}, it does not
1080have enough information to resolve the reduce/reduce conflict (again,
1081between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1082case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1083into two, one assuming that @code{x} is an @code{expr}, and the other
1084assuming @code{x} is a @code{declarator}. The second of these parsers
1085then vanishes when it sees @code{+}, and the parser prints
1086
1087@example
fae437e8 1088x T <cast> y +
676385e2
PH
1089@end example
1090
1091Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1092the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1093actions of the two possible parsers, rather than choosing one over the
1094other. To do so, you could change the declaration of @code{stmt} as
1095follows:
1096
1097@example
de6be119
AD
1098stmt:
1099 expr ';' %merge <stmtMerge>
1100| decl %merge <stmtMerge>
1101;
676385e2
PH
1102@end example
1103
1104@noindent
676385e2
PH
1105and define the @code{stmtMerge} function as:
1106
1107@example
38a92d50
PE
1108static YYSTYPE
1109stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1110@{
1111 printf ("<OR> ");
1112 return "";
1113@}
1114@end example
1115
1116@noindent
1117with an accompanying forward declaration
1118in the C declarations at the beginning of the file:
1119
1120@example
1121%@{
38a92d50 1122 #define YYSTYPE char const *
676385e2
PH
1123 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1124%@}
1125@end example
1126
1127@noindent
fa7e68c3
PE
1128With these declarations, the resulting parser parses the first example
1129as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1130
1131@example
fae437e8 1132"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1133@end example
1134
fa7e68c3 1135Bison requires that all of the
e757bb10 1136productions that participate in any particular merge have identical
fa7e68c3
PE
1137@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1138and the parser will report an error during any parse that results in
1139the offending merge.
9501dc6e 1140
32c29292
JD
1141@node GLR Semantic Actions
1142@subsection GLR Semantic Actions
1143
1144@cindex deferred semantic actions
1145By definition, a deferred semantic action is not performed at the same time as
1146the associated reduction.
1147This raises caveats for several Bison features you might use in a semantic
35430378 1148action in a GLR parser.
32c29292
JD
1149
1150@vindex yychar
35430378 1151@cindex GLR parsers and @code{yychar}
32c29292 1152@vindex yylval
35430378 1153@cindex GLR parsers and @code{yylval}
32c29292 1154@vindex yylloc
35430378 1155@cindex GLR parsers and @code{yylloc}
32c29292 1156In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1157the lookahead token present at the time of the associated reduction.
32c29292
JD
1158After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1159you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1160lookahead token's semantic value and location, if any.
32c29292
JD
1161In a nondeferred semantic action, you can also modify any of these variables to
1162influence syntax analysis.
742e4900 1163@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1164
1165@findex yyclearin
35430378 1166@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1167In a deferred semantic action, it's too late to influence syntax analysis.
1168In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1169shallow copies of the values they had at the time of the associated reduction.
1170For this reason alone, modifying them is dangerous.
1171Moreover, the result of modifying them is undefined and subject to change with
1172future versions of Bison.
1173For example, if a semantic action might be deferred, you should never write it
1174to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1175memory referenced by @code{yylval}.
1176
1177@findex YYERROR
35430378 1178@cindex GLR parsers and @code{YYERROR}
32c29292 1179Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1180(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1181initiate error recovery.
35430378 1182During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1183the same as its effect in a deterministic parser.
32c29292
JD
1184In a deferred semantic action, its effect is undefined.
1185@c The effect is probably a syntax error at the split point.
1186
8710fc41 1187Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1188describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1189
fa7e68c3 1190@node Compiler Requirements
35430378 1191@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1192@cindex @code{inline}
35430378 1193@cindex GLR parsers and @code{inline}
fa7e68c3 1194
35430378 1195The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1196later. In addition, they use the @code{inline} keyword, which is not
1197C89, but is C99 and is a common extension in pre-C99 compilers. It is
1198up to the user of these parsers to handle
9501dc6e
AD
1199portability issues. For instance, if using Autoconf and the Autoconf
1200macro @code{AC_C_INLINE}, a mere
1201
1202@example
1203%@{
38a92d50 1204 #include <config.h>
9501dc6e
AD
1205%@}
1206@end example
1207
1208@noindent
1209will suffice. Otherwise, we suggest
1210
1211@example
1212%@{
2c0f9706
AD
1213 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1214 && ! defined inline)
1215 # define inline
38a92d50 1216 #endif
9501dc6e
AD
1217%@}
1218@end example
676385e2 1219
83484365 1220@node Locations
847bf1f5
AD
1221@section Locations
1222@cindex location
95923bd6
AD
1223@cindex textual location
1224@cindex location, textual
847bf1f5
AD
1225
1226Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1227and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1228the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1229Bison provides a mechanism for handling these locations.
1230
72d2299c 1231Each token has a semantic value. In a similar fashion, each token has an
7404cdf3
JD
1232associated location, but the type of locations is the same for all tokens
1233and groupings. Moreover, the output parser is equipped with a default data
1234structure for storing locations (@pxref{Tracking Locations}, for more
1235details).
847bf1f5
AD
1236
1237Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1238set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1239is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1240@code{@@3}.
1241
1242When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1243of its left hand side (@pxref{Actions}). In the same way, another default
1244action is used for locations. However, the action for locations is general
847bf1f5 1245enough for most cases, meaning there is usually no need to describe for each
72d2299c 1246rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1247grouping, the default behavior of the output parser is to take the beginning
1248of the first symbol, and the end of the last symbol.
1249
342b8b6e 1250@node Bison Parser
9913d6e4 1251@section Bison Output: the Parser Implementation File
bfa74976
RS
1252@cindex Bison parser
1253@cindex Bison utility
1254@cindex lexical analyzer, purpose
1255@cindex parser
1256
9913d6e4
JD
1257When you run Bison, you give it a Bison grammar file as input. The
1258most important output is a C source file that implements a parser for
1259the language described by the grammar. This parser is called a
1260@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1261implementation file}. Keep in mind that the Bison utility and the
1262Bison parser are two distinct programs: the Bison utility is a program
1263whose output is the Bison parser implementation file that becomes part
1264of your program.
bfa74976
RS
1265
1266The job of the Bison parser is to group tokens into groupings according to
1267the grammar rules---for example, to build identifiers and operators into
1268expressions. As it does this, it runs the actions for the grammar rules it
1269uses.
1270
704a47c4
AD
1271The tokens come from a function called the @dfn{lexical analyzer} that
1272you must supply in some fashion (such as by writing it in C). The Bison
1273parser calls the lexical analyzer each time it wants a new token. It
1274doesn't know what is ``inside'' the tokens (though their semantic values
1275may reflect this). Typically the lexical analyzer makes the tokens by
1276parsing characters of text, but Bison does not depend on this.
1277@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1278
9913d6e4
JD
1279The Bison parser implementation file is C code which defines a
1280function named @code{yyparse} which implements that grammar. This
1281function does not make a complete C program: you must supply some
1282additional functions. One is the lexical analyzer. Another is an
1283error-reporting function which the parser calls to report an error.
1284In addition, a complete C program must start with a function called
1285@code{main}; you have to provide this, and arrange for it to call
1286@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1287C-Language Interface}.
bfa74976 1288
f7ab6a50 1289Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1290write, all symbols defined in the Bison parser implementation file
1291itself begin with @samp{yy} or @samp{YY}. This includes interface
1292functions such as the lexical analyzer function @code{yylex}, the
1293error reporting function @code{yyerror} and the parser function
1294@code{yyparse} itself. This also includes numerous identifiers used
1295for internal purposes. Therefore, you should avoid using C
1296identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1297file except for the ones defined in this manual. Also, you should
1298avoid using the C identifiers @samp{malloc} and @samp{free} for
1299anything other than their usual meanings.
1300
1301In some cases the Bison parser implementation file includes system
1302headers, and in those cases your code should respect the identifiers
1303reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1304@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1305included as needed to declare memory allocators and related types.
1306@code{<libintl.h>} is included if message translation is in use
1307(@pxref{Internationalization}). Other system headers may be included
1308if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1309,Tracing Your Parser}).
7093d0f5 1310
342b8b6e 1311@node Stages
bfa74976
RS
1312@section Stages in Using Bison
1313@cindex stages in using Bison
1314@cindex using Bison
1315
1316The actual language-design process using Bison, from grammar specification
1317to a working compiler or interpreter, has these parts:
1318
1319@enumerate
1320@item
1321Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1322(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1323in the language, describe the action that is to be taken when an
1324instance of that rule is recognized. The action is described by a
1325sequence of C statements.
bfa74976
RS
1326
1327@item
704a47c4
AD
1328Write a lexical analyzer to process input and pass tokens to the parser.
1329The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1330Lexical Analyzer Function @code{yylex}}). It could also be produced
1331using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1332
1333@item
1334Write a controlling function that calls the Bison-produced parser.
1335
1336@item
1337Write error-reporting routines.
1338@end enumerate
1339
1340To turn this source code as written into a runnable program, you
1341must follow these steps:
1342
1343@enumerate
1344@item
1345Run Bison on the grammar to produce the parser.
1346
1347@item
1348Compile the code output by Bison, as well as any other source files.
1349
1350@item
1351Link the object files to produce the finished product.
1352@end enumerate
1353
342b8b6e 1354@node Grammar Layout
bfa74976
RS
1355@section The Overall Layout of a Bison Grammar
1356@cindex grammar file
1357@cindex file format
1358@cindex format of grammar file
1359@cindex layout of Bison grammar
1360
1361The input file for the Bison utility is a @dfn{Bison grammar file}. The
1362general form of a Bison grammar file is as follows:
1363
1364@example
1365%@{
08e49d20 1366@var{Prologue}
bfa74976
RS
1367%@}
1368
1369@var{Bison declarations}
1370
1371%%
1372@var{Grammar rules}
1373%%
08e49d20 1374@var{Epilogue}
bfa74976
RS
1375@end example
1376
1377@noindent
1378The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1379in every Bison grammar file to separate the sections.
1380
72d2299c 1381The prologue may define types and variables used in the actions. You can
342b8b6e 1382also use preprocessor commands to define macros used there, and use
bfa74976 1383@code{#include} to include header files that do any of these things.
38a92d50
PE
1384You need to declare the lexical analyzer @code{yylex} and the error
1385printer @code{yyerror} here, along with any other global identifiers
1386used by the actions in the grammar rules.
bfa74976
RS
1387
1388The Bison declarations declare the names of the terminal and nonterminal
1389symbols, and may also describe operator precedence and the data types of
1390semantic values of various symbols.
1391
1392The grammar rules define how to construct each nonterminal symbol from its
1393parts.
1394
38a92d50
PE
1395The epilogue can contain any code you want to use. Often the
1396definitions of functions declared in the prologue go here. In a
1397simple program, all the rest of the program can go here.
bfa74976 1398
342b8b6e 1399@node Examples
bfa74976
RS
1400@chapter Examples
1401@cindex simple examples
1402@cindex examples, simple
1403
2c0f9706 1404Now we show and explain several sample programs written using Bison: a
bfa74976 1405reverse polish notation calculator, an algebraic (infix) notation
2c0f9706
AD
1406calculator --- later extended to track ``locations'' ---
1407and a multi-function calculator. All
1408produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1409
1410These examples are simple, but Bison grammars for real programming
aa08666d
AD
1411languages are written the same way. You can copy these examples into a
1412source file to try them.
bfa74976
RS
1413
1414@menu
f56274a8
DJ
1415* RPN Calc:: Reverse polish notation calculator;
1416 a first example with no operator precedence.
1417* Infix Calc:: Infix (algebraic) notation calculator.
1418 Operator precedence is introduced.
bfa74976 1419* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1420* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1421* Multi-function Calc:: Calculator with memory and trig functions.
1422 It uses multiple data-types for semantic values.
1423* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1424@end menu
1425
342b8b6e 1426@node RPN Calc
bfa74976
RS
1427@section Reverse Polish Notation Calculator
1428@cindex reverse polish notation
1429@cindex polish notation calculator
1430@cindex @code{rpcalc}
1431@cindex calculator, simple
1432
1433The first example is that of a simple double-precision @dfn{reverse polish
1434notation} calculator (a calculator using postfix operators). This example
1435provides a good starting point, since operator precedence is not an issue.
1436The second example will illustrate how operator precedence is handled.
1437
1438The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1439@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1440
1441@menu
f56274a8
DJ
1442* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1443* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1444* Rpcalc Lexer:: The lexical analyzer.
1445* Rpcalc Main:: The controlling function.
1446* Rpcalc Error:: The error reporting function.
1447* Rpcalc Generate:: Running Bison on the grammar file.
1448* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1449@end menu
1450
f56274a8 1451@node Rpcalc Declarations
bfa74976
RS
1452@subsection Declarations for @code{rpcalc}
1453
1454Here are the C and Bison declarations for the reverse polish notation
1455calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1456
1457@example
72d2299c 1458/* Reverse polish notation calculator. */
bfa74976
RS
1459
1460%@{
38a92d50
PE
1461 #define YYSTYPE double
1462 #include <math.h>
1463 int yylex (void);
1464 void yyerror (char const *);
bfa74976
RS
1465%@}
1466
1467%token NUM
1468
72d2299c 1469%% /* Grammar rules and actions follow. */
bfa74976
RS
1470@end example
1471
75f5aaea 1472The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1473preprocessor directives and two forward declarations.
bfa74976
RS
1474
1475The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1476specifying the C data type for semantic values of both tokens and
1477groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1478Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1479don't define it, @code{int} is the default. Because we specify
1480@code{double}, each token and each expression has an associated value,
1481which is a floating point number.
bfa74976
RS
1482
1483The @code{#include} directive is used to declare the exponentiation
1484function @code{pow}.
1485
38a92d50
PE
1486The forward declarations for @code{yylex} and @code{yyerror} are
1487needed because the C language requires that functions be declared
1488before they are used. These functions will be defined in the
1489epilogue, but the parser calls them so they must be declared in the
1490prologue.
1491
704a47c4
AD
1492The second section, Bison declarations, provides information to Bison
1493about the token types (@pxref{Bison Declarations, ,The Bison
1494Declarations Section}). Each terminal symbol that is not a
1495single-character literal must be declared here. (Single-character
bfa74976
RS
1496literals normally don't need to be declared.) In this example, all the
1497arithmetic operators are designated by single-character literals, so the
1498only terminal symbol that needs to be declared is @code{NUM}, the token
1499type for numeric constants.
1500
342b8b6e 1501@node Rpcalc Rules
bfa74976
RS
1502@subsection Grammar Rules for @code{rpcalc}
1503
1504Here are the grammar rules for the reverse polish notation calculator.
1505
1506@example
2c0f9706 1507@group
de6be119
AD
1508input:
1509 /* empty */
1510| input line
bfa74976 1511;
2c0f9706 1512@end group
bfa74976 1513
2c0f9706 1514@group
de6be119
AD
1515line:
1516 '\n'
1517| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1518;
2c0f9706 1519@end group
bfa74976 1520
2c0f9706 1521@group
de6be119
AD
1522exp:
1523 NUM @{ $$ = $1; @}
1524| exp exp '+' @{ $$ = $1 + $2; @}
1525| exp exp '-' @{ $$ = $1 - $2; @}
1526| exp exp '*' @{ $$ = $1 * $2; @}
1527| exp exp '/' @{ $$ = $1 / $2; @}
1528| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1529| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1530;
2c0f9706 1531@end group
bfa74976
RS
1532%%
1533@end example
1534
1535The groupings of the rpcalc ``language'' defined here are the expression
1536(given the name @code{exp}), the line of input (@code{line}), and the
1537complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1538symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1539which is read as ``or''. The following sections explain what these rules
1540mean.
1541
1542The semantics of the language is determined by the actions taken when a
1543grouping is recognized. The actions are the C code that appears inside
1544braces. @xref{Actions}.
1545
1546You must specify these actions in C, but Bison provides the means for
1547passing semantic values between the rules. In each action, the
1548pseudo-variable @code{$$} stands for the semantic value for the grouping
1549that the rule is going to construct. Assigning a value to @code{$$} is the
1550main job of most actions. The semantic values of the components of the
1551rule are referred to as @code{$1}, @code{$2}, and so on.
1552
1553@menu
13863333
AD
1554* Rpcalc Input::
1555* Rpcalc Line::
1556* Rpcalc Expr::
bfa74976
RS
1557@end menu
1558
342b8b6e 1559@node Rpcalc Input
bfa74976
RS
1560@subsubsection Explanation of @code{input}
1561
1562Consider the definition of @code{input}:
1563
1564@example
de6be119
AD
1565input:
1566 /* empty */
1567| input line
bfa74976
RS
1568;
1569@end example
1570
1571This definition reads as follows: ``A complete input is either an empty
1572string, or a complete input followed by an input line''. Notice that
1573``complete input'' is defined in terms of itself. This definition is said
1574to be @dfn{left recursive} since @code{input} appears always as the
1575leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1576
1577The first alternative is empty because there are no symbols between the
1578colon and the first @samp{|}; this means that @code{input} can match an
1579empty string of input (no tokens). We write the rules this way because it
1580is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1581It's conventional to put an empty alternative first and write the comment
1582@samp{/* empty */} in it.
1583
1584The second alternate rule (@code{input line}) handles all nontrivial input.
1585It means, ``After reading any number of lines, read one more line if
1586possible.'' The left recursion makes this rule into a loop. Since the
1587first alternative matches empty input, the loop can be executed zero or
1588more times.
1589
1590The parser function @code{yyparse} continues to process input until a
1591grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1592input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1593
342b8b6e 1594@node Rpcalc Line
bfa74976
RS
1595@subsubsection Explanation of @code{line}
1596
1597Now consider the definition of @code{line}:
1598
1599@example
de6be119
AD
1600line:
1601 '\n'
1602| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1603;
1604@end example
1605
1606The first alternative is a token which is a newline character; this means
1607that rpcalc accepts a blank line (and ignores it, since there is no
1608action). The second alternative is an expression followed by a newline.
1609This is the alternative that makes rpcalc useful. The semantic value of
1610the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1611question is the first symbol in the alternative. The action prints this
1612value, which is the result of the computation the user asked for.
1613
1614This action is unusual because it does not assign a value to @code{$$}. As
1615a consequence, the semantic value associated with the @code{line} is
1616uninitialized (its value will be unpredictable). This would be a bug if
1617that value were ever used, but we don't use it: once rpcalc has printed the
1618value of the user's input line, that value is no longer needed.
1619
342b8b6e 1620@node Rpcalc Expr
bfa74976
RS
1621@subsubsection Explanation of @code{expr}
1622
1623The @code{exp} grouping has several rules, one for each kind of expression.
1624The first rule handles the simplest expressions: those that are just numbers.
1625The second handles an addition-expression, which looks like two expressions
1626followed by a plus-sign. The third handles subtraction, and so on.
1627
1628@example
de6be119
AD
1629exp:
1630 NUM
1631| exp exp '+' @{ $$ = $1 + $2; @}
1632| exp exp '-' @{ $$ = $1 - $2; @}
1633@dots{}
1634;
bfa74976
RS
1635@end example
1636
1637We have used @samp{|} to join all the rules for @code{exp}, but we could
1638equally well have written them separately:
1639
1640@example
de6be119
AD
1641exp: NUM ;
1642exp: exp exp '+' @{ $$ = $1 + $2; @};
1643exp: exp exp '-' @{ $$ = $1 - $2; @};
1644@dots{}
bfa74976
RS
1645@end example
1646
1647Most of the rules have actions that compute the value of the expression in
1648terms of the value of its parts. For example, in the rule for addition,
1649@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1650the second one. The third component, @code{'+'}, has no meaningful
1651associated semantic value, but if it had one you could refer to it as
1652@code{$3}. When @code{yyparse} recognizes a sum expression using this
1653rule, the sum of the two subexpressions' values is produced as the value of
1654the entire expression. @xref{Actions}.
1655
1656You don't have to give an action for every rule. When a rule has no
1657action, Bison by default copies the value of @code{$1} into @code{$$}.
1658This is what happens in the first rule (the one that uses @code{NUM}).
1659
1660The formatting shown here is the recommended convention, but Bison does
72d2299c 1661not require it. You can add or change white space as much as you wish.
bfa74976
RS
1662For example, this:
1663
1664@example
de6be119 1665exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1666@end example
1667
1668@noindent
1669means the same thing as this:
1670
1671@example
de6be119
AD
1672exp:
1673 NUM
1674| exp exp '+' @{ $$ = $1 + $2; @}
1675| @dots{}
99a9344e 1676;
bfa74976
RS
1677@end example
1678
1679@noindent
1680The latter, however, is much more readable.
1681
342b8b6e 1682@node Rpcalc Lexer
bfa74976
RS
1683@subsection The @code{rpcalc} Lexical Analyzer
1684@cindex writing a lexical analyzer
1685@cindex lexical analyzer, writing
1686
704a47c4
AD
1687The lexical analyzer's job is low-level parsing: converting characters
1688or sequences of characters into tokens. The Bison parser gets its
1689tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1690Analyzer Function @code{yylex}}.
bfa74976 1691
35430378 1692Only a simple lexical analyzer is needed for the RPN
c827f760 1693calculator. This
bfa74976
RS
1694lexical analyzer skips blanks and tabs, then reads in numbers as
1695@code{double} and returns them as @code{NUM} tokens. Any other character
1696that isn't part of a number is a separate token. Note that the token-code
1697for such a single-character token is the character itself.
1698
1699The return value of the lexical analyzer function is a numeric code which
1700represents a token type. The same text used in Bison rules to stand for
1701this token type is also a C expression for the numeric code for the type.
1702This works in two ways. If the token type is a character literal, then its
e966383b 1703numeric code is that of the character; you can use the same
bfa74976
RS
1704character literal in the lexical analyzer to express the number. If the
1705token type is an identifier, that identifier is defined by Bison as a C
1706macro whose definition is the appropriate number. In this example,
1707therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1708
1964ad8c
AD
1709The semantic value of the token (if it has one) is stored into the
1710global variable @code{yylval}, which is where the Bison parser will look
1711for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1712defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1713,Declarations for @code{rpcalc}}.)
bfa74976 1714
72d2299c
PE
1715A token type code of zero is returned if the end-of-input is encountered.
1716(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1717
1718Here is the code for the lexical analyzer:
1719
1720@example
1721@group
72d2299c 1722/* The lexical analyzer returns a double floating point
e966383b 1723 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1724 of the character read if not a number. It skips all blanks
1725 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1726
1727#include <ctype.h>
1728@end group
1729
1730@group
13863333
AD
1731int
1732yylex (void)
bfa74976
RS
1733@{
1734 int c;
1735
72d2299c 1736 /* Skip white space. */
13863333 1737 while ((c = getchar ()) == ' ' || c == '\t')
98842516 1738 continue;
bfa74976
RS
1739@end group
1740@group
72d2299c 1741 /* Process numbers. */
13863333 1742 if (c == '.' || isdigit (c))
bfa74976
RS
1743 @{
1744 ungetc (c, stdin);
1745 scanf ("%lf", &yylval);
1746 return NUM;
1747 @}
1748@end group
1749@group
72d2299c 1750 /* Return end-of-input. */
13863333 1751 if (c == EOF)
bfa74976 1752 return 0;
72d2299c 1753 /* Return a single char. */
13863333 1754 return c;
bfa74976
RS
1755@}
1756@end group
1757@end example
1758
342b8b6e 1759@node Rpcalc Main
bfa74976
RS
1760@subsection The Controlling Function
1761@cindex controlling function
1762@cindex main function in simple example
1763
1764In keeping with the spirit of this example, the controlling function is
1765kept to the bare minimum. The only requirement is that it call
1766@code{yyparse} to start the process of parsing.
1767
1768@example
1769@group
13863333
AD
1770int
1771main (void)
bfa74976 1772@{
13863333 1773 return yyparse ();
bfa74976
RS
1774@}
1775@end group
1776@end example
1777
342b8b6e 1778@node Rpcalc Error
bfa74976
RS
1779@subsection The Error Reporting Routine
1780@cindex error reporting routine
1781
1782When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1783function @code{yyerror} to print an error message (usually but not
6e649e65 1784always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1785@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1786here is the definition we will use:
bfa74976
RS
1787
1788@example
1789@group
1790#include <stdio.h>
2c0f9706 1791@end group
bfa74976 1792
2c0f9706 1793@group
38a92d50 1794/* Called by yyparse on error. */
13863333 1795void
38a92d50 1796yyerror (char const *s)
bfa74976 1797@{
4e03e201 1798 fprintf (stderr, "%s\n", s);
bfa74976
RS
1799@}
1800@end group
1801@end example
1802
1803After @code{yyerror} returns, the Bison parser may recover from the error
1804and continue parsing if the grammar contains a suitable error rule
1805(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1806have not written any error rules in this example, so any invalid input will
1807cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1808real calculator, but it is adequate for the first example.
bfa74976 1809
f56274a8 1810@node Rpcalc Generate
bfa74976
RS
1811@subsection Running Bison to Make the Parser
1812@cindex running Bison (introduction)
1813
ceed8467
AD
1814Before running Bison to produce a parser, we need to decide how to
1815arrange all the source code in one or more source files. For such a
9913d6e4
JD
1816simple example, the easiest thing is to put everything in one file,
1817the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1818@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1819(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1820
1821For a large project, you would probably have several source files, and use
1822@code{make} to arrange to recompile them.
1823
9913d6e4
JD
1824With all the source in the grammar file, you use the following command
1825to convert it into a parser implementation file:
bfa74976
RS
1826
1827@example
fa4d969f 1828bison @var{file}.y
bfa74976
RS
1829@end example
1830
1831@noindent
9913d6e4
JD
1832In this example, the grammar file is called @file{rpcalc.y} (for
1833``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1834implementation file named @file{@var{file}.tab.c}, removing the
1835@samp{.y} from the grammar file name. The parser implementation file
1836contains the source code for @code{yyparse}. The additional functions
1837in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1838copied verbatim to the parser implementation file.
bfa74976 1839
342b8b6e 1840@node Rpcalc Compile
9913d6e4 1841@subsection Compiling the Parser Implementation File
bfa74976
RS
1842@cindex compiling the parser
1843
9913d6e4 1844Here is how to compile and run the parser implementation file:
bfa74976
RS
1845
1846@example
1847@group
1848# @r{List files in current directory.}
9edcd895 1849$ @kbd{ls}
bfa74976
RS
1850rpcalc.tab.c rpcalc.y
1851@end group
1852
1853@group
1854# @r{Compile the Bison parser.}
1855# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1856$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1857@end group
1858
1859@group
1860# @r{List files again.}
9edcd895 1861$ @kbd{ls}
bfa74976
RS
1862rpcalc rpcalc.tab.c rpcalc.y
1863@end group
1864@end example
1865
1866The file @file{rpcalc} now contains the executable code. Here is an
1867example session using @code{rpcalc}.
1868
1869@example
9edcd895
AD
1870$ @kbd{rpcalc}
1871@kbd{4 9 +}
bfa74976 187213
9edcd895 1873@kbd{3 7 + 3 4 5 *+-}
bfa74976 1874-13
9edcd895 1875@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 187613
9edcd895 1877@kbd{5 6 / 4 n +}
bfa74976 1878-3.166666667
9edcd895 1879@kbd{3 4 ^} @r{Exponentiation}
bfa74976 188081
9edcd895
AD
1881@kbd{^D} @r{End-of-file indicator}
1882$
bfa74976
RS
1883@end example
1884
342b8b6e 1885@node Infix Calc
bfa74976
RS
1886@section Infix Notation Calculator: @code{calc}
1887@cindex infix notation calculator
1888@cindex @code{calc}
1889@cindex calculator, infix notation
1890
1891We now modify rpcalc to handle infix operators instead of postfix. Infix
1892notation involves the concept of operator precedence and the need for
1893parentheses nested to arbitrary depth. Here is the Bison code for
1894@file{calc.y}, an infix desk-top calculator.
1895
1896@example
38a92d50 1897/* Infix notation calculator. */
bfa74976 1898
2c0f9706 1899@group
bfa74976 1900%@{
38a92d50
PE
1901 #define YYSTYPE double
1902 #include <math.h>
1903 #include <stdio.h>
1904 int yylex (void);
1905 void yyerror (char const *);
bfa74976 1906%@}
2c0f9706 1907@end group
bfa74976 1908
2c0f9706 1909@group
38a92d50 1910/* Bison declarations. */
bfa74976
RS
1911%token NUM
1912%left '-' '+'
1913%left '*' '/'
1914%left NEG /* negation--unary minus */
38a92d50 1915%right '^' /* exponentiation */
2c0f9706 1916@end group
bfa74976 1917
38a92d50 1918%% /* The grammar follows. */
2c0f9706 1919@group
de6be119
AD
1920input:
1921 /* empty */
1922| input line
bfa74976 1923;
2c0f9706 1924@end group
bfa74976 1925
2c0f9706 1926@group
de6be119
AD
1927line:
1928 '\n'
1929| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 1930;
2c0f9706 1931@end group
bfa74976 1932
2c0f9706 1933@group
de6be119
AD
1934exp:
1935 NUM @{ $$ = $1; @}
1936| exp '+' exp @{ $$ = $1 + $3; @}
1937| exp '-' exp @{ $$ = $1 - $3; @}
1938| exp '*' exp @{ $$ = $1 * $3; @}
1939| exp '/' exp @{ $$ = $1 / $3; @}
1940| '-' exp %prec NEG @{ $$ = -$2; @}
1941| exp '^' exp @{ $$ = pow ($1, $3); @}
1942| '(' exp ')' @{ $$ = $2; @}
bfa74976 1943;
2c0f9706 1944@end group
bfa74976
RS
1945%%
1946@end example
1947
1948@noindent
ceed8467
AD
1949The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1950same as before.
bfa74976
RS
1951
1952There are two important new features shown in this code.
1953
1954In the second section (Bison declarations), @code{%left} declares token
1955types and says they are left-associative operators. The declarations
1956@code{%left} and @code{%right} (right associativity) take the place of
1957@code{%token} which is used to declare a token type name without
1958associativity. (These tokens are single-character literals, which
1959ordinarily don't need to be declared. We declare them here to specify
1960the associativity.)
1961
1962Operator precedence is determined by the line ordering of the
1963declarations; the higher the line number of the declaration (lower on
1964the page or screen), the higher the precedence. Hence, exponentiation
1965has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1966by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1967Precedence}.
bfa74976 1968
704a47c4
AD
1969The other important new feature is the @code{%prec} in the grammar
1970section for the unary minus operator. The @code{%prec} simply instructs
1971Bison that the rule @samp{| '-' exp} has the same precedence as
1972@code{NEG}---in this case the next-to-highest. @xref{Contextual
1973Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1974
1975Here is a sample run of @file{calc.y}:
1976
1977@need 500
1978@example
9edcd895
AD
1979$ @kbd{calc}
1980@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19816.880952381
9edcd895 1982@kbd{-56 + 2}
bfa74976 1983-54
9edcd895 1984@kbd{3 ^ 2}
bfa74976
RS
19859
1986@end example
1987
342b8b6e 1988@node Simple Error Recovery
bfa74976
RS
1989@section Simple Error Recovery
1990@cindex error recovery, simple
1991
1992Up to this point, this manual has not addressed the issue of @dfn{error
1993recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1994error. All we have handled is error reporting with @code{yyerror}.
1995Recall that by default @code{yyparse} returns after calling
1996@code{yyerror}. This means that an erroneous input line causes the
1997calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1998
1999The Bison language itself includes the reserved word @code{error}, which
2000may be included in the grammar rules. In the example below it has
2001been added to one of the alternatives for @code{line}:
2002
2003@example
2004@group
de6be119
AD
2005line:
2006 '\n'
2007| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2008| error '\n' @{ yyerrok; @}
bfa74976
RS
2009;
2010@end group
2011@end example
2012
ceed8467 2013This addition to the grammar allows for simple error recovery in the
6e649e65 2014event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2015read, the error will be recognized by the third rule for @code{line},
2016and parsing will continue. (The @code{yyerror} function is still called
2017upon to print its message as well.) The action executes the statement
2018@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2019that error recovery is complete (@pxref{Error Recovery}). Note the
2020difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2021misprint.
bfa74976
RS
2022
2023This form of error recovery deals with syntax errors. There are other
2024kinds of errors; for example, division by zero, which raises an exception
2025signal that is normally fatal. A real calculator program must handle this
2026signal and use @code{longjmp} to return to @code{main} and resume parsing
2027input lines; it would also have to discard the rest of the current line of
2028input. We won't discuss this issue further because it is not specific to
2029Bison programs.
2030
342b8b6e
AD
2031@node Location Tracking Calc
2032@section Location Tracking Calculator: @code{ltcalc}
2033@cindex location tracking calculator
2034@cindex @code{ltcalc}
2035@cindex calculator, location tracking
2036
9edcd895
AD
2037This example extends the infix notation calculator with location
2038tracking. This feature will be used to improve the error messages. For
2039the sake of clarity, this example is a simple integer calculator, since
2040most of the work needed to use locations will be done in the lexical
72d2299c 2041analyzer.
342b8b6e
AD
2042
2043@menu
f56274a8
DJ
2044* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2045* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2046* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2047@end menu
2048
f56274a8 2049@node Ltcalc Declarations
342b8b6e
AD
2050@subsection Declarations for @code{ltcalc}
2051
9edcd895
AD
2052The C and Bison declarations for the location tracking calculator are
2053the same as the declarations for the infix notation calculator.
342b8b6e
AD
2054
2055@example
2056/* Location tracking calculator. */
2057
2058%@{
38a92d50
PE
2059 #define YYSTYPE int
2060 #include <math.h>
2061 int yylex (void);
2062 void yyerror (char const *);
342b8b6e
AD
2063%@}
2064
2065/* Bison declarations. */
2066%token NUM
2067
2068%left '-' '+'
2069%left '*' '/'
2070%left NEG
2071%right '^'
2072
38a92d50 2073%% /* The grammar follows. */
342b8b6e
AD
2074@end example
2075
9edcd895
AD
2076@noindent
2077Note there are no declarations specific to locations. Defining a data
2078type for storing locations is not needed: we will use the type provided
2079by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2080four member structure with the following integer fields:
2081@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2082@code{last_column}. By conventions, and in accordance with the GNU
2083Coding Standards and common practice, the line and column count both
2084start at 1.
342b8b6e
AD
2085
2086@node Ltcalc Rules
2087@subsection Grammar Rules for @code{ltcalc}
2088
9edcd895
AD
2089Whether handling locations or not has no effect on the syntax of your
2090language. Therefore, grammar rules for this example will be very close
2091to those of the previous example: we will only modify them to benefit
2092from the new information.
342b8b6e 2093
9edcd895
AD
2094Here, we will use locations to report divisions by zero, and locate the
2095wrong expressions or subexpressions.
342b8b6e
AD
2096
2097@example
2098@group
de6be119
AD
2099input:
2100 /* empty */
2101| input line
342b8b6e
AD
2102;
2103@end group
2104
2105@group
de6be119
AD
2106line:
2107 '\n'
2108| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2109;
2110@end group
2111
2112@group
de6be119
AD
2113exp:
2114 NUM @{ $$ = $1; @}
2115| exp '+' exp @{ $$ = $1 + $3; @}
2116| exp '-' exp @{ $$ = $1 - $3; @}
2117| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2118@end group
342b8b6e 2119@group
de6be119
AD
2120| exp '/' exp
2121 @{
2122 if ($3)
2123 $$ = $1 / $3;
2124 else
2125 @{
2126 $$ = 1;
2127 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2128 @@3.first_line, @@3.first_column,
2129 @@3.last_line, @@3.last_column);
2130 @}
2131 @}
342b8b6e
AD
2132@end group
2133@group
de6be119
AD
2134| '-' exp %prec NEG @{ $$ = -$2; @}
2135| exp '^' exp @{ $$ = pow ($1, $3); @}
2136| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2137@end group
2138@end example
2139
2140This code shows how to reach locations inside of semantic actions, by
2141using the pseudo-variables @code{@@@var{n}} for rule components, and the
2142pseudo-variable @code{@@$} for groupings.
2143
9edcd895
AD
2144We don't need to assign a value to @code{@@$}: the output parser does it
2145automatically. By default, before executing the C code of each action,
2146@code{@@$} is set to range from the beginning of @code{@@1} to the end
2147of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2148can be redefined (@pxref{Location Default Action, , Default Action for
2149Locations}), and for very specific rules, @code{@@$} can be computed by
2150hand.
342b8b6e
AD
2151
2152@node Ltcalc Lexer
2153@subsection The @code{ltcalc} Lexical Analyzer.
2154
9edcd895 2155Until now, we relied on Bison's defaults to enable location
72d2299c 2156tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2157able to feed the parser with the token locations, as it already does for
2158semantic values.
342b8b6e 2159
9edcd895
AD
2160To this end, we must take into account every single character of the
2161input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2162
2163@example
2164@group
2165int
2166yylex (void)
2167@{
2168 int c;
18b519c0 2169@end group
342b8b6e 2170
18b519c0 2171@group
72d2299c 2172 /* Skip white space. */
342b8b6e
AD
2173 while ((c = getchar ()) == ' ' || c == '\t')
2174 ++yylloc.last_column;
18b519c0 2175@end group
342b8b6e 2176
18b519c0 2177@group
72d2299c 2178 /* Step. */
342b8b6e
AD
2179 yylloc.first_line = yylloc.last_line;
2180 yylloc.first_column = yylloc.last_column;
2181@end group
2182
2183@group
72d2299c 2184 /* Process numbers. */
342b8b6e
AD
2185 if (isdigit (c))
2186 @{
2187 yylval = c - '0';
2188 ++yylloc.last_column;
2189 while (isdigit (c = getchar ()))
2190 @{
2191 ++yylloc.last_column;
2192 yylval = yylval * 10 + c - '0';
2193 @}
2194 ungetc (c, stdin);
2195 return NUM;
2196 @}
2197@end group
2198
72d2299c 2199 /* Return end-of-input. */
342b8b6e
AD
2200 if (c == EOF)
2201 return 0;
2202
98842516 2203@group
72d2299c 2204 /* Return a single char, and update location. */
342b8b6e
AD
2205 if (c == '\n')
2206 @{
2207 ++yylloc.last_line;
2208 yylloc.last_column = 0;
2209 @}
2210 else
2211 ++yylloc.last_column;
2212 return c;
2213@}
98842516 2214@end group
342b8b6e
AD
2215@end example
2216
9edcd895
AD
2217Basically, the lexical analyzer performs the same processing as before:
2218it skips blanks and tabs, and reads numbers or single-character tokens.
2219In addition, it updates @code{yylloc}, the global variable (of type
2220@code{YYLTYPE}) containing the token's location.
342b8b6e 2221
9edcd895 2222Now, each time this function returns a token, the parser has its number
72d2299c 2223as well as its semantic value, and its location in the text. The last
9edcd895
AD
2224needed change is to initialize @code{yylloc}, for example in the
2225controlling function:
342b8b6e
AD
2226
2227@example
9edcd895 2228@group
342b8b6e
AD
2229int
2230main (void)
2231@{
2232 yylloc.first_line = yylloc.last_line = 1;
2233 yylloc.first_column = yylloc.last_column = 0;
2234 return yyparse ();
2235@}
9edcd895 2236@end group
342b8b6e
AD
2237@end example
2238
9edcd895
AD
2239Remember that computing locations is not a matter of syntax. Every
2240character must be associated to a location update, whether it is in
2241valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2242
2243@node Multi-function Calc
bfa74976
RS
2244@section Multi-Function Calculator: @code{mfcalc}
2245@cindex multi-function calculator
2246@cindex @code{mfcalc}
2247@cindex calculator, multi-function
2248
2249Now that the basics of Bison have been discussed, it is time to move on to
2250a more advanced problem. The above calculators provided only five
2251functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2252be nice to have a calculator that provides other mathematical functions such
2253as @code{sin}, @code{cos}, etc.
2254
2255It is easy to add new operators to the infix calculator as long as they are
2256only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2257back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2258adding a new operator. But we want something more flexible: built-in
2259functions whose syntax has this form:
2260
2261@example
2262@var{function_name} (@var{argument})
2263@end example
2264
2265@noindent
2266At the same time, we will add memory to the calculator, by allowing you
2267to create named variables, store values in them, and use them later.
2268Here is a sample session with the multi-function calculator:
2269
2270@example
9edcd895
AD
2271$ @kbd{mfcalc}
2272@kbd{pi = 3.141592653589}
bfa74976 22733.1415926536
9edcd895 2274@kbd{sin(pi)}
bfa74976 22750.0000000000
9edcd895 2276@kbd{alpha = beta1 = 2.3}
bfa74976 22772.3000000000
9edcd895 2278@kbd{alpha}
bfa74976 22792.3000000000
9edcd895 2280@kbd{ln(alpha)}
bfa74976 22810.8329091229
9edcd895 2282@kbd{exp(ln(beta1))}
bfa74976 22832.3000000000
9edcd895 2284$
bfa74976
RS
2285@end example
2286
2287Note that multiple assignment and nested function calls are permitted.
2288
2289@menu
f56274a8
DJ
2290* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2291* Mfcalc Rules:: Grammar rules for the calculator.
2292* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2293@end menu
2294
f56274a8 2295@node Mfcalc Declarations
bfa74976
RS
2296@subsection Declarations for @code{mfcalc}
2297
2298Here are the C and Bison declarations for the multi-function calculator.
2299
56d60c19 2300@comment file: mfcalc.y: 1
ea118b72 2301@example
18b519c0 2302@group
bfa74976 2303%@{
38a92d50
PE
2304 #include <math.h> /* For math functions, cos(), sin(), etc. */
2305 #include "calc.h" /* Contains definition of `symrec'. */
2306 int yylex (void);
2307 void yyerror (char const *);
bfa74976 2308%@}
18b519c0 2309@end group
56d60c19 2310
18b519c0 2311@group
bfa74976 2312%union @{
38a92d50
PE
2313 double val; /* For returning numbers. */
2314 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2315@}
18b519c0 2316@end group
38a92d50 2317%token <val> NUM /* Simple double precision number. */
56d60c19 2318%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2319%type <val> exp
2320
18b519c0 2321@group
bfa74976
RS
2322%right '='
2323%left '-' '+'
2324%left '*' '/'
38a92d50
PE
2325%left NEG /* negation--unary minus */
2326%right '^' /* exponentiation */
18b519c0 2327@end group
ea118b72 2328@end example
bfa74976
RS
2329
2330The above grammar introduces only two new features of the Bison language.
2331These features allow semantic values to have various data types
2332(@pxref{Multiple Types, ,More Than One Value Type}).
2333
2334The @code{%union} declaration specifies the entire list of possible types;
2335this is instead of defining @code{YYSTYPE}. The allowable types are now
2336double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2337the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2338
2339Since values can now have various types, it is necessary to associate a
2340type with each grammar symbol whose semantic value is used. These symbols
2341are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2342declarations are augmented with information about their data type (placed
2343between angle brackets).
2344
704a47c4
AD
2345The Bison construct @code{%type} is used for declaring nonterminal
2346symbols, just as @code{%token} is used for declaring token types. We
2347have not used @code{%type} before because nonterminal symbols are
2348normally declared implicitly by the rules that define them. But
2349@code{exp} must be declared explicitly so we can specify its value type.
2350@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2351
342b8b6e 2352@node Mfcalc Rules
bfa74976
RS
2353@subsection Grammar Rules for @code{mfcalc}
2354
2355Here are the grammar rules for the multi-function calculator.
2356Most of them are copied directly from @code{calc}; three rules,
2357those which mention @code{VAR} or @code{FNCT}, are new.
2358
56d60c19 2359@comment file: mfcalc.y: 3
ea118b72 2360@example
56d60c19 2361%% /* The grammar follows. */
18b519c0 2362@group
de6be119
AD
2363input:
2364 /* empty */
2365| input line
bfa74976 2366;
18b519c0 2367@end group
bfa74976 2368
18b519c0 2369@group
bfa74976 2370line:
de6be119
AD
2371 '\n'
2372| exp '\n' @{ printf ("%.10g\n", $1); @}
2373| error '\n' @{ yyerrok; @}
bfa74976 2374;
18b519c0 2375@end group
bfa74976 2376
18b519c0 2377@group
de6be119
AD
2378exp:
2379 NUM @{ $$ = $1; @}
2380| VAR @{ $$ = $1->value.var; @}
2381| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2382| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2383| exp '+' exp @{ $$ = $1 + $3; @}
2384| exp '-' exp @{ $$ = $1 - $3; @}
2385| exp '*' exp @{ $$ = $1 * $3; @}
2386| exp '/' exp @{ $$ = $1 / $3; @}
2387| '-' exp %prec NEG @{ $$ = -$2; @}
2388| exp '^' exp @{ $$ = pow ($1, $3); @}
2389| '(' exp ')' @{ $$ = $2; @}
bfa74976 2390;
18b519c0 2391@end group
38a92d50 2392/* End of grammar. */
bfa74976 2393%%
ea118b72 2394@end example
bfa74976 2395
f56274a8 2396@node Mfcalc Symbol Table
bfa74976
RS
2397@subsection The @code{mfcalc} Symbol Table
2398@cindex symbol table example
2399
2400The multi-function calculator requires a symbol table to keep track of the
2401names and meanings of variables and functions. This doesn't affect the
2402grammar rules (except for the actions) or the Bison declarations, but it
2403requires some additional C functions for support.
2404
2405The symbol table itself consists of a linked list of records. Its
2406definition, which is kept in the header @file{calc.h}, is as follows. It
2407provides for either functions or variables to be placed in the table.
2408
ea118b72
AD
2409@comment file: calc.h
2410@example
bfa74976 2411@group
38a92d50 2412/* Function type. */
32dfccf8 2413typedef double (*func_t) (double);
72f889cc 2414@end group
32dfccf8 2415
72f889cc 2416@group
38a92d50 2417/* Data type for links in the chain of symbols. */
bfa74976
RS
2418struct symrec
2419@{
38a92d50 2420 char *name; /* name of symbol */
bfa74976 2421 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2422 union
2423 @{
38a92d50
PE
2424 double var; /* value of a VAR */
2425 func_t fnctptr; /* value of a FNCT */
bfa74976 2426 @} value;
38a92d50 2427 struct symrec *next; /* link field */
bfa74976
RS
2428@};
2429@end group
2430
2431@group
2432typedef struct symrec symrec;
2433
38a92d50 2434/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2435extern symrec *sym_table;
2436
a730d142 2437symrec *putsym (char const *, int);
38a92d50 2438symrec *getsym (char const *);
bfa74976 2439@end group
ea118b72 2440@end example
bfa74976
RS
2441
2442The new version of @code{main} includes a call to @code{init_table}, a
2443function that initializes the symbol table. Here it is, and
2444@code{init_table} as well:
2445
56d60c19 2446@comment file: mfcalc.y: 3
ea118b72 2447@example
bfa74976
RS
2448#include <stdio.h>
2449
18b519c0 2450@group
38a92d50 2451/* Called by yyparse on error. */
13863333 2452void
38a92d50 2453yyerror (char const *s)
bfa74976 2454@{
511dd971 2455 fprintf (stderr, "%s\n", s);
bfa74976 2456@}
18b519c0 2457@end group
bfa74976 2458
18b519c0 2459@group
bfa74976
RS
2460struct init
2461@{
38a92d50
PE
2462 char const *fname;
2463 double (*fnct) (double);
bfa74976
RS
2464@};
2465@end group
2466
2467@group
38a92d50 2468struct init const arith_fncts[] =
13863333 2469@{
32dfccf8
AD
2470 "sin", sin,
2471 "cos", cos,
13863333 2472 "atan", atan,
32dfccf8
AD
2473 "ln", log,
2474 "exp", exp,
13863333
AD
2475 "sqrt", sqrt,
2476 0, 0
2477@};
18b519c0 2478@end group
bfa74976 2479
18b519c0 2480@group
bfa74976 2481/* The symbol table: a chain of `struct symrec'. */
38a92d50 2482symrec *sym_table;
bfa74976
RS
2483@end group
2484
2485@group
72d2299c 2486/* Put arithmetic functions in table. */
13863333
AD
2487void
2488init_table (void)
bfa74976
RS
2489@{
2490 int i;
bfa74976
RS
2491 for (i = 0; arith_fncts[i].fname != 0; i++)
2492 @{
2c0f9706 2493 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2494 ptr->value.fnctptr = arith_fncts[i].fnct;
2495 @}
2496@}
2497@end group
38a92d50
PE
2498
2499@group
2500int
2501main (void)
2502@{
2503 init_table ();
2504 return yyparse ();
2505@}
2506@end group
ea118b72 2507@end example
bfa74976
RS
2508
2509By simply editing the initialization list and adding the necessary include
2510files, you can add additional functions to the calculator.
2511
2512Two important functions allow look-up and installation of symbols in the
2513symbol table. The function @code{putsym} is passed a name and the type
2514(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2515linked to the front of the list, and a pointer to the object is returned.
2516The function @code{getsym} is passed the name of the symbol to look up. If
2517found, a pointer to that symbol is returned; otherwise zero is returned.
2518
56d60c19 2519@comment file: mfcalc.y: 3
ea118b72 2520@example
98842516
AD
2521#include <stdlib.h> /* malloc. */
2522#include <string.h> /* strlen. */
2523
2524@group
bfa74976 2525symrec *
38a92d50 2526putsym (char const *sym_name, int sym_type)
bfa74976 2527@{
2c0f9706 2528 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2529 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2530 strcpy (ptr->name,sym_name);
2531 ptr->type = sym_type;
72d2299c 2532 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2533 ptr->next = (struct symrec *)sym_table;
2534 sym_table = ptr;
2535 return ptr;
2536@}
98842516 2537@end group
bfa74976 2538
98842516 2539@group
bfa74976 2540symrec *
38a92d50 2541getsym (char const *sym_name)
bfa74976
RS
2542@{
2543 symrec *ptr;
2544 for (ptr = sym_table; ptr != (symrec *) 0;
2545 ptr = (symrec *)ptr->next)
2546 if (strcmp (ptr->name,sym_name) == 0)
2547 return ptr;
2548 return 0;
2549@}
98842516 2550@end group
ea118b72 2551@end example
bfa74976
RS
2552
2553The function @code{yylex} must now recognize variables, numeric values, and
2554the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2555characters with a leading letter are recognized as either variables or
bfa74976
RS
2556functions depending on what the symbol table says about them.
2557
2558The string is passed to @code{getsym} for look up in the symbol table. If
2559the name appears in the table, a pointer to its location and its type
2560(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2561already in the table, then it is installed as a @code{VAR} using
2562@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2563returned to @code{yyparse}.
bfa74976
RS
2564
2565No change is needed in the handling of numeric values and arithmetic
2566operators in @code{yylex}.
2567
56d60c19 2568@comment file: mfcalc.y: 3
ea118b72 2569@example
bfa74976
RS
2570@group
2571#include <ctype.h>
18b519c0 2572@end group
13863333 2573
18b519c0 2574@group
13863333
AD
2575int
2576yylex (void)
bfa74976
RS
2577@{
2578 int c;
2579
72d2299c 2580 /* Ignore white space, get first nonwhite character. */
98842516
AD
2581 while ((c = getchar ()) == ' ' || c == '\t')
2582 continue;
bfa74976
RS
2583
2584 if (c == EOF)
2585 return 0;
2586@end group
2587
2588@group
2589 /* Char starts a number => parse the number. */
2590 if (c == '.' || isdigit (c))
2591 @{
2592 ungetc (c, stdin);
2593 scanf ("%lf", &yylval.val);
2594 return NUM;
2595 @}
2596@end group
2597
2598@group
2599 /* Char starts an identifier => read the name. */
2600 if (isalpha (c))
2601 @{
2c0f9706
AD
2602 /* Initially make the buffer long enough
2603 for a 40-character symbol name. */
2604 static size_t length = 40;
bfa74976 2605 static char *symbuf = 0;
2c0f9706 2606 symrec *s;
bfa74976
RS
2607 int i;
2608@end group
2609
2c0f9706
AD
2610 if (!symbuf)
2611 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2612
2613 i = 0;
2614 do
bfa74976
RS
2615@group
2616 @{
2617 /* If buffer is full, make it bigger. */
2618 if (i == length)
2619 @{
2620 length *= 2;
18b519c0 2621 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2622 @}
2623 /* Add this character to the buffer. */
2624 symbuf[i++] = c;
2625 /* Get another character. */
2626 c = getchar ();
2627 @}
2628@end group
2629@group
72d2299c 2630 while (isalnum (c));
bfa74976
RS
2631
2632 ungetc (c, stdin);
2633 symbuf[i] = '\0';
2634@end group
2635
2636@group
2637 s = getsym (symbuf);
2638 if (s == 0)
2639 s = putsym (symbuf, VAR);
2640 yylval.tptr = s;
2641 return s->type;
2642 @}
2643
2644 /* Any other character is a token by itself. */
2645 return c;
2646@}
2647@end group
ea118b72 2648@end example
bfa74976 2649
56d60c19
AD
2650The error reporting function is unchanged, and the new version of
2651@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2652on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
2653
2654@comment file: mfcalc.y: 3
2655@example
2656@group
2657/* Called by yyparse on error. */
2658void
2659yyerror (char const *s)
2660@{
2661 fprintf (stderr, "%s\n", s);
2662@}
2663@end group
2664
2665@group
2666int
2667main (int argc, char const* argv[])
2668@{
2669 int i;
2670 /* Enable parse traces on option -p. */
2671 for (i = 1; i < argc; ++i)
2672 if (!strcmp(argv[i], "-p"))
2673 yydebug = 1;
2674 init_table ();
2675 return yyparse ();
2676@}
2677@end group
2678@end example
2679
72d2299c 2680This program is both powerful and flexible. You may easily add new
704a47c4
AD
2681functions, and it is a simple job to modify this code to install
2682predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2683
342b8b6e 2684@node Exercises
bfa74976
RS
2685@section Exercises
2686@cindex exercises
2687
2688@enumerate
2689@item
2690Add some new functions from @file{math.h} to the initialization list.
2691
2692@item
2693Add another array that contains constants and their values. Then
2694modify @code{init_table} to add these constants to the symbol table.
2695It will be easiest to give the constants type @code{VAR}.
2696
2697@item
2698Make the program report an error if the user refers to an
2699uninitialized variable in any way except to store a value in it.
2700@end enumerate
2701
342b8b6e 2702@node Grammar File
bfa74976
RS
2703@chapter Bison Grammar Files
2704
2705Bison takes as input a context-free grammar specification and produces a
2706C-language function that recognizes correct instances of the grammar.
2707
9913d6e4 2708The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2709@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2710
2711@menu
7404cdf3
JD
2712* Grammar Outline:: Overall layout of the grammar file.
2713* Symbols:: Terminal and nonterminal symbols.
2714* Rules:: How to write grammar rules.
2715* Recursion:: Writing recursive rules.
2716* Semantics:: Semantic values and actions.
2717* Tracking Locations:: Locations and actions.
2718* Named References:: Using named references in actions.
2719* Declarations:: All kinds of Bison declarations are described here.
2720* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2721@end menu
2722
342b8b6e 2723@node Grammar Outline
bfa74976
RS
2724@section Outline of a Bison Grammar
2725
2726A Bison grammar file has four main sections, shown here with the
2727appropriate delimiters:
2728
2729@example
2730%@{
38a92d50 2731 @var{Prologue}
bfa74976
RS
2732%@}
2733
2734@var{Bison declarations}
2735
2736%%
2737@var{Grammar rules}
2738%%
2739
75f5aaea 2740@var{Epilogue}
bfa74976
RS
2741@end example
2742
2743Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2744As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2745continues until end of line.
bfa74976
RS
2746
2747@menu
f56274a8 2748* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2749* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2750* Bison Declarations:: Syntax and usage of the Bison declarations section.
2751* Grammar Rules:: Syntax and usage of the grammar rules section.
2752* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2753@end menu
2754
38a92d50 2755@node Prologue
75f5aaea
MA
2756@subsection The prologue
2757@cindex declarations section
2758@cindex Prologue
2759@cindex declarations
bfa74976 2760
f8e1c9e5
AD
2761The @var{Prologue} section contains macro definitions and declarations
2762of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2763rules. These are copied to the beginning of the parser implementation
2764file so that they precede the definition of @code{yyparse}. You can
2765use @samp{#include} to get the declarations from a header file. If
2766you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2767@samp{%@}} delimiters that bracket this section.
bfa74976 2768
9c437126 2769The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2770of @samp{%@}} that is outside a comment, a string literal, or a
2771character constant.
2772
c732d2c6
AD
2773You may have more than one @var{Prologue} section, intermixed with the
2774@var{Bison declarations}. This allows you to have C and Bison
2775declarations that refer to each other. For example, the @code{%union}
2776declaration may use types defined in a header file, and you may wish to
2777prototype functions that take arguments of type @code{YYSTYPE}. This
2778can be done with two @var{Prologue} blocks, one before and one after the
2779@code{%union} declaration.
2780
ea118b72 2781@example
c732d2c6 2782%@{
aef3da86 2783 #define _GNU_SOURCE
38a92d50
PE
2784 #include <stdio.h>
2785 #include "ptypes.h"
c732d2c6
AD
2786%@}
2787
2788%union @{
779e7ceb 2789 long int n;
c732d2c6
AD
2790 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2791@}
2792
2793%@{
38a92d50
PE
2794 static void print_token_value (FILE *, int, YYSTYPE);
2795 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2796%@}
2797
2798@dots{}
ea118b72 2799@end example
c732d2c6 2800
aef3da86
PE
2801When in doubt, it is usually safer to put prologue code before all
2802Bison declarations, rather than after. For example, any definitions
2803of feature test macros like @code{_GNU_SOURCE} or
2804@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2805feature test macros can affect the behavior of Bison-generated
2806@code{#include} directives.
2807
2cbe6b7f
JD
2808@node Prologue Alternatives
2809@subsection Prologue Alternatives
2810@cindex Prologue Alternatives
2811
136a0f76 2812@findex %code
16dc6a9e
JD
2813@findex %code requires
2814@findex %code provides
2815@findex %code top
85894313 2816
2cbe6b7f 2817The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2818inflexible. As an alternative, Bison provides a @code{%code}
2819directive with an explicit qualifier field, which identifies the
2820purpose of the code and thus the location(s) where Bison should
2821generate it. For C/C++, the qualifier can be omitted for the default
2822location, or it can be one of @code{requires}, @code{provides},
8e6f2266 2823@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2824
2825Look again at the example of the previous section:
2826
ea118b72 2827@example
2cbe6b7f
JD
2828%@{
2829 #define _GNU_SOURCE
2830 #include <stdio.h>
2831 #include "ptypes.h"
2832%@}
2833
2834%union @{
2835 long int n;
2836 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2837@}
2838
2839%@{
2840 static void print_token_value (FILE *, int, YYSTYPE);
2841 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2842%@}
2843
2844@dots{}
ea118b72 2845@end example
2cbe6b7f
JD
2846
2847@noindent
9913d6e4
JD
2848Notice that there are two @var{Prologue} sections here, but there's a
2849subtle distinction between their functionality. For example, if you
2850decide to override Bison's default definition for @code{YYLTYPE}, in
2851which @var{Prologue} section should you write your new definition?
2852You should write it in the first since Bison will insert that code
2853into the parser implementation file @emph{before} the default
2854@code{YYLTYPE} definition. In which @var{Prologue} section should you
2855prototype an internal function, @code{trace_token}, that accepts
2856@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2857prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2858@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2859
2860This distinction in functionality between the two @var{Prologue} sections is
2861established by the appearance of the @code{%union} between them.
a501eca9 2862This behavior raises a few questions.
2cbe6b7f
JD
2863First, why should the position of a @code{%union} affect definitions related to
2864@code{YYLTYPE} and @code{yytokentype}?
2865Second, what if there is no @code{%union}?
2866In that case, the second kind of @var{Prologue} section is not available.
2867This behavior is not intuitive.
2868
8e0a5e9e 2869To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2870@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2871Let's go ahead and add the new @code{YYLTYPE} definition and the
2872@code{trace_token} prototype at the same time:
2873
ea118b72 2874@example
16dc6a9e 2875%code top @{
2cbe6b7f
JD
2876 #define _GNU_SOURCE
2877 #include <stdio.h>
8e0a5e9e
JD
2878
2879 /* WARNING: The following code really belongs
16dc6a9e 2880 * in a `%code requires'; see below. */
8e0a5e9e 2881
2cbe6b7f
JD
2882 #include "ptypes.h"
2883 #define YYLTYPE YYLTYPE
2884 typedef struct YYLTYPE
2885 @{
2886 int first_line;
2887 int first_column;
2888 int last_line;
2889 int last_column;
2890 char *filename;
2891 @} YYLTYPE;
2892@}
2893
2894%union @{
2895 long int n;
2896 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2897@}
2898
2899%code @{
2900 static void print_token_value (FILE *, int, YYSTYPE);
2901 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2902 static void trace_token (enum yytokentype token, YYLTYPE loc);
2903@}
2904
2905@dots{}
ea118b72 2906@end example
2cbe6b7f
JD
2907
2908@noindent
16dc6a9e
JD
2909In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2910functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2911explicit which kind you intend.
2cbe6b7f
JD
2912Moreover, both kinds are always available even in the absence of @code{%union}.
2913
9913d6e4
JD
2914The @code{%code top} block above logically contains two parts. The
2915first two lines before the warning need to appear near the top of the
2916parser implementation file. The first line after the warning is
2917required by @code{YYSTYPE} and thus also needs to appear in the parser
2918implementation file. However, if you've instructed Bison to generate
2919a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2920want that line to appear before the @code{YYSTYPE} definition in that
2921header file as well. The @code{YYLTYPE} definition should also appear
2922in the parser header file to override the default @code{YYLTYPE}
2923definition there.
2cbe6b7f 2924
16dc6a9e 2925In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2926lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2927definitions.
16dc6a9e 2928Thus, they belong in one or more @code{%code requires}:
9bc0dd67 2929
ea118b72 2930@example
98842516 2931@group
16dc6a9e 2932%code top @{
2cbe6b7f
JD
2933 #define _GNU_SOURCE
2934 #include <stdio.h>
2935@}
98842516 2936@end group
2cbe6b7f 2937
98842516 2938@group
16dc6a9e 2939%code requires @{
9bc0dd67
JD
2940 #include "ptypes.h"
2941@}
98842516
AD
2942@end group
2943@group
9bc0dd67
JD
2944%union @{
2945 long int n;
2946 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2947@}
98842516 2948@end group
9bc0dd67 2949
98842516 2950@group
16dc6a9e 2951%code requires @{
2cbe6b7f
JD
2952 #define YYLTYPE YYLTYPE
2953 typedef struct YYLTYPE
2954 @{
2955 int first_line;
2956 int first_column;
2957 int last_line;
2958 int last_column;
2959 char *filename;
2960 @} YYLTYPE;
2961@}
98842516 2962@end group
2cbe6b7f 2963
98842516 2964@group
136a0f76 2965%code @{
2cbe6b7f
JD
2966 static void print_token_value (FILE *, int, YYSTYPE);
2967 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2968 static void trace_token (enum yytokentype token, YYLTYPE loc);
2969@}
98842516 2970@end group
2cbe6b7f
JD
2971
2972@dots{}
ea118b72 2973@end example
2cbe6b7f
JD
2974
2975@noindent
9913d6e4
JD
2976Now Bison will insert @code{#include "ptypes.h"} and the new
2977@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2978and @code{YYLTYPE} definitions in both the parser implementation file
2979and the parser header file. (By the same reasoning, @code{%code
2980requires} would also be the appropriate place to write your own
2981definition for @code{YYSTYPE}.)
2982
2983When you are writing dependency code for @code{YYSTYPE} and
2984@code{YYLTYPE}, you should prefer @code{%code requires} over
2985@code{%code top} regardless of whether you instruct Bison to generate
2986a parser header file. When you are writing code that you need Bison
2987to insert only into the parser implementation file and that has no
2988special need to appear at the top of that file, you should prefer the
2989unqualified @code{%code} over @code{%code top}. These practices will
2990make the purpose of each block of your code explicit to Bison and to
2991other developers reading your grammar file. Following these
2992practices, we expect the unqualified @code{%code} and @code{%code
2993requires} to be the most important of the four @var{Prologue}
16dc6a9e 2994alternatives.
a501eca9 2995
9913d6e4
JD
2996At some point while developing your parser, you might decide to
2997provide @code{trace_token} to modules that are external to your
2998parser. Thus, you might wish for Bison to insert the prototype into
2999both the parser header file and the parser implementation file. Since
3000this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3001@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
3002@code{%code requires}. More importantly, since it depends upon
3003@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3004sufficient. Instead, move its prototype from the unqualified
3005@code{%code} to a @code{%code provides}:
2cbe6b7f 3006
ea118b72 3007@example
98842516 3008@group
16dc6a9e 3009%code top @{
2cbe6b7f 3010 #define _GNU_SOURCE
136a0f76 3011 #include <stdio.h>
2cbe6b7f 3012@}
98842516 3013@end group
136a0f76 3014
98842516 3015@group
16dc6a9e 3016%code requires @{
2cbe6b7f
JD
3017 #include "ptypes.h"
3018@}
98842516
AD
3019@end group
3020@group
2cbe6b7f
JD
3021%union @{
3022 long int n;
3023 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3024@}
98842516 3025@end group
2cbe6b7f 3026
98842516 3027@group
16dc6a9e 3028%code requires @{
2cbe6b7f
JD
3029 #define YYLTYPE YYLTYPE
3030 typedef struct YYLTYPE
3031 @{
3032 int first_line;
3033 int first_column;
3034 int last_line;
3035 int last_column;
3036 char *filename;
3037 @} YYLTYPE;
3038@}
98842516 3039@end group
2cbe6b7f 3040
98842516 3041@group
16dc6a9e 3042%code provides @{
2cbe6b7f
JD
3043 void trace_token (enum yytokentype token, YYLTYPE loc);
3044@}
98842516 3045@end group
2cbe6b7f 3046
98842516 3047@group
2cbe6b7f 3048%code @{
9bc0dd67
JD
3049 static void print_token_value (FILE *, int, YYSTYPE);
3050 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3051@}
98842516 3052@end group
9bc0dd67
JD
3053
3054@dots{}
ea118b72 3055@end example
9bc0dd67 3056
2cbe6b7f 3057@noindent
9913d6e4
JD
3058Bison will insert the @code{trace_token} prototype into both the
3059parser header file and the parser implementation file after the
3060definitions for @code{yytokentype}, @code{YYLTYPE}, and
3061@code{YYSTYPE}.
3062
3063The above examples are careful to write directives in an order that
3064reflects the layout of the generated parser implementation and header
3065files: @code{%code top}, @code{%code requires}, @code{%code provides},
3066and then @code{%code}. While your grammar files may generally be
3067easier to read if you also follow this order, Bison does not require
3068it. Instead, Bison lets you choose an organization that makes sense
3069to you.
2cbe6b7f 3070
a501eca9 3071You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3072In that case, Bison concatenates the contained code in declaration order.
3073This is the only way in which the position of one of these directives within
3074the grammar file affects its functionality.
3075
3076The result of the previous two properties is greater flexibility in how you may
3077organize your grammar file.
3078For example, you may organize semantic-type-related directives by semantic
3079type:
3080
ea118b72 3081@example
98842516 3082@group
16dc6a9e 3083%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3084%union @{ type1 field1; @}
3085%destructor @{ type1_free ($$); @} <field1>
68fff38a 3086%printer @{ type1_print (yyoutput, $$); @} <field1>
98842516 3087@end group
2cbe6b7f 3088
98842516 3089@group
16dc6a9e 3090%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3091%union @{ type2 field2; @}
3092%destructor @{ type2_free ($$); @} <field2>
68fff38a 3093%printer @{ type2_print (yyoutput, $$); @} <field2>
98842516 3094@end group
ea118b72 3095@end example
2cbe6b7f
JD
3096
3097@noindent
3098You could even place each of the above directive groups in the rules section of
3099the grammar file next to the set of rules that uses the associated semantic
3100type.
61fee93e
JD
3101(In the rules section, you must terminate each of those directives with a
3102semicolon.)
2cbe6b7f
JD
3103And you don't have to worry that some directive (like a @code{%union}) in the
3104definitions section is going to adversely affect their functionality in some
3105counter-intuitive manner just because it comes first.
3106Such an organization is not possible using @var{Prologue} sections.
3107
a501eca9 3108This section has been concerned with explaining the advantages of the four
8e0a5e9e 3109@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3110However, in most cases when using these directives, you shouldn't need to
3111think about all the low-level ordering issues discussed here.
3112Instead, you should simply use these directives to label each block of your
3113code according to its purpose and let Bison handle the ordering.
3114@code{%code} is the most generic label.
16dc6a9e
JD
3115Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3116as needed.
a501eca9 3117
342b8b6e 3118@node Bison Declarations
bfa74976
RS
3119@subsection The Bison Declarations Section
3120@cindex Bison declarations (introduction)
3121@cindex declarations, Bison (introduction)
3122
3123The @var{Bison declarations} section contains declarations that define
3124terminal and nonterminal symbols, specify precedence, and so on.
3125In some simple grammars you may not need any declarations.
3126@xref{Declarations, ,Bison Declarations}.
3127
342b8b6e 3128@node Grammar Rules
bfa74976
RS
3129@subsection The Grammar Rules Section
3130@cindex grammar rules section
3131@cindex rules section for grammar
3132
3133The @dfn{grammar rules} section contains one or more Bison grammar
3134rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3135
3136There must always be at least one grammar rule, and the first
3137@samp{%%} (which precedes the grammar rules) may never be omitted even
3138if it is the first thing in the file.
3139
38a92d50 3140@node Epilogue
75f5aaea 3141@subsection The epilogue
bfa74976 3142@cindex additional C code section
75f5aaea 3143@cindex epilogue
bfa74976
RS
3144@cindex C code, section for additional
3145
9913d6e4
JD
3146The @var{Epilogue} is copied verbatim to the end of the parser
3147implementation file, just as the @var{Prologue} is copied to the
3148beginning. This is the most convenient place to put anything that you
3149want to have in the parser implementation file but which need not come
3150before the definition of @code{yyparse}. For example, the definitions
3151of @code{yylex} and @code{yyerror} often go here. Because C requires
3152functions to be declared before being used, you often need to declare
3153functions like @code{yylex} and @code{yyerror} in the Prologue, even
3154if you define them in the Epilogue. @xref{Interface, ,Parser
3155C-Language Interface}.
bfa74976
RS
3156
3157If the last section is empty, you may omit the @samp{%%} that separates it
3158from the grammar rules.
3159
f8e1c9e5
AD
3160The Bison parser itself contains many macros and identifiers whose names
3161start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3162any such names (except those documented in this manual) in the epilogue
3163of the grammar file.
bfa74976 3164
342b8b6e 3165@node Symbols
bfa74976
RS
3166@section Symbols, Terminal and Nonterminal
3167@cindex nonterminal symbol
3168@cindex terminal symbol
3169@cindex token type
3170@cindex symbol
3171
3172@dfn{Symbols} in Bison grammars represent the grammatical classifications
3173of the language.
3174
3175A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3176class of syntactically equivalent tokens. You use the symbol in grammar
3177rules to mean that a token in that class is allowed. The symbol is
3178represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3179function returns a token type code to indicate what kind of token has
3180been read. You don't need to know what the code value is; you can use
3181the symbol to stand for it.
bfa74976 3182
f8e1c9e5
AD
3183A @dfn{nonterminal symbol} stands for a class of syntactically
3184equivalent groupings. The symbol name is used in writing grammar rules.
3185By convention, it should be all lower case.
bfa74976 3186
eb8c66bb
JD
3187Symbol names can contain letters, underscores, periods, and non-initial
3188digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3189with POSIX Yacc. Periods and dashes make symbol names less convenient to
3190use with named references, which require brackets around such names
3191(@pxref{Named References}). Terminal symbols that contain periods or dashes
3192make little sense: since they are not valid symbols (in most programming
3193languages) they are not exported as token names.
bfa74976 3194
931c7513 3195There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3196
3197@itemize @bullet
3198@item
3199A @dfn{named token type} is written with an identifier, like an
c827f760 3200identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3201such name must be defined with a Bison declaration such as
3202@code{%token}. @xref{Token Decl, ,Token Type Names}.
3203
3204@item
3205@cindex character token
3206@cindex literal token
3207@cindex single-character literal
931c7513
RS
3208A @dfn{character token type} (or @dfn{literal character token}) is
3209written in the grammar using the same syntax used in C for character
3210constants; for example, @code{'+'} is a character token type. A
3211character token type doesn't need to be declared unless you need to
3212specify its semantic value data type (@pxref{Value Type, ,Data Types of
3213Semantic Values}), associativity, or precedence (@pxref{Precedence,
3214,Operator Precedence}).
bfa74976
RS
3215
3216By convention, a character token type is used only to represent a
3217token that consists of that particular character. Thus, the token
3218type @code{'+'} is used to represent the character @samp{+} as a
3219token. Nothing enforces this convention, but if you depart from it,
3220your program will confuse other readers.
3221
3222All the usual escape sequences used in character literals in C can be
3223used in Bison as well, but you must not use the null character as a
72d2299c
PE
3224character literal because its numeric code, zero, signifies
3225end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3226for @code{yylex}}). Also, unlike standard C, trigraphs have no
3227special meaning in Bison character literals, nor is backslash-newline
3228allowed.
931c7513
RS
3229
3230@item
3231@cindex string token
3232@cindex literal string token
9ecbd125 3233@cindex multicharacter literal
931c7513
RS
3234A @dfn{literal string token} is written like a C string constant; for
3235example, @code{"<="} is a literal string token. A literal string token
3236doesn't need to be declared unless you need to specify its semantic
14ded682 3237value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3238(@pxref{Precedence}).
3239
3240You can associate the literal string token with a symbolic name as an
3241alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3242Declarations}). If you don't do that, the lexical analyzer has to
3243retrieve the token number for the literal string token from the
3244@code{yytname} table (@pxref{Calling Convention}).
3245
c827f760 3246@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3247
3248By convention, a literal string token is used only to represent a token
3249that consists of that particular string. Thus, you should use the token
3250type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3251does not enforce this convention, but if you depart from it, people who
931c7513
RS
3252read your program will be confused.
3253
3254All the escape sequences used in string literals in C can be used in
92ac3705
PE
3255Bison as well, except that you must not use a null character within a
3256string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3257meaning in Bison string literals, nor is backslash-newline allowed. A
3258literal string token must contain two or more characters; for a token
3259containing just one character, use a character token (see above).
bfa74976
RS
3260@end itemize
3261
3262How you choose to write a terminal symbol has no effect on its
3263grammatical meaning. That depends only on where it appears in rules and
3264on when the parser function returns that symbol.
3265
72d2299c
PE
3266The value returned by @code{yylex} is always one of the terminal
3267symbols, except that a zero or negative value signifies end-of-input.
3268Whichever way you write the token type in the grammar rules, you write
3269it the same way in the definition of @code{yylex}. The numeric code
3270for a character token type is simply the positive numeric code of the
3271character, so @code{yylex} can use the identical value to generate the
3272requisite code, though you may need to convert it to @code{unsigned
3273char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3274Each named token type becomes a C macro in the parser implementation
3275file, so @code{yylex} can use the name to stand for the code. (This
3276is why periods don't make sense in terminal symbols.) @xref{Calling
3277Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3278
3279If @code{yylex} is defined in a separate file, you need to arrange for the
3280token-type macro definitions to be available there. Use the @samp{-d}
3281option when you run Bison, so that it will write these macro definitions
3282into a separate header file @file{@var{name}.tab.h} which you can include
3283in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3284
72d2299c 3285If you want to write a grammar that is portable to any Standard C
9d9b8b70 3286host, you must use only nonnull character tokens taken from the basic
c827f760 3287execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3288digits, the 52 lower- and upper-case English letters, and the
3289characters in the following C-language string:
3290
3291@example
3292"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3293@end example
3294
f8e1c9e5
AD
3295The @code{yylex} function and Bison must use a consistent character set
3296and encoding for character tokens. For example, if you run Bison in an
35430378 3297ASCII environment, but then compile and run the resulting
f8e1c9e5 3298program in an environment that uses an incompatible character set like
35430378
JD
3299EBCDIC, the resulting program may not work because the tables
3300generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3301character tokens. It is standard practice for software distributions to
3302contain C source files that were generated by Bison in an
35430378
JD
3303ASCII environment, so installers on platforms that are
3304incompatible with ASCII must rebuild those files before
f8e1c9e5 3305compiling them.
e966383b 3306
bfa74976
RS
3307The symbol @code{error} is a terminal symbol reserved for error recovery
3308(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3309In particular, @code{yylex} should never return this value. The default
3310value of the error token is 256, unless you explicitly assigned 256 to
3311one of your tokens with a @code{%token} declaration.
bfa74976 3312
342b8b6e 3313@node Rules
bfa74976
RS
3314@section Syntax of Grammar Rules
3315@cindex rule syntax
3316@cindex grammar rule syntax
3317@cindex syntax of grammar rules
3318
3319A Bison grammar rule has the following general form:
3320
3321@example
e425e872 3322@group
de6be119 3323@var{result}: @var{components}@dots{};
e425e872 3324@end group
bfa74976
RS
3325@end example
3326
3327@noindent
9ecbd125 3328where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3329and @var{components} are various terminal and nonterminal symbols that
13863333 3330are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3331
3332For example,
3333
3334@example
3335@group
de6be119 3336exp: exp '+' exp;
bfa74976
RS
3337@end group
3338@end example
3339
3340@noindent
3341says that two groupings of type @code{exp}, with a @samp{+} token in between,
3342can be combined into a larger grouping of type @code{exp}.
3343
72d2299c
PE
3344White space in rules is significant only to separate symbols. You can add
3345extra white space as you wish.
bfa74976
RS
3346
3347Scattered among the components can be @var{actions} that determine
3348the semantics of the rule. An action looks like this:
3349
3350@example
3351@{@var{C statements}@}
3352@end example
3353
3354@noindent
287c78f6
PE
3355@cindex braced code
3356This is an example of @dfn{braced code}, that is, C code surrounded by
3357braces, much like a compound statement in C@. Braced code can contain
3358any sequence of C tokens, so long as its braces are balanced. Bison
3359does not check the braced code for correctness directly; it merely
9913d6e4
JD
3360copies the code to the parser implementation file, where the C
3361compiler can check it.
287c78f6
PE
3362
3363Within braced code, the balanced-brace count is not affected by braces
3364within comments, string literals, or character constants, but it is
3365affected by the C digraphs @samp{<%} and @samp{%>} that represent
3366braces. At the top level braced code must be terminated by @samp{@}}
3367and not by a digraph. Bison does not look for trigraphs, so if braced
3368code uses trigraphs you should ensure that they do not affect the
3369nesting of braces or the boundaries of comments, string literals, or
3370character constants.
3371
bfa74976
RS
3372Usually there is only one action and it follows the components.
3373@xref{Actions}.
3374
3375@findex |
3376Multiple rules for the same @var{result} can be written separately or can
3377be joined with the vertical-bar character @samp{|} as follows:
3378
bfa74976
RS
3379@example
3380@group
de6be119
AD
3381@var{result}:
3382 @var{rule1-components}@dots{}
3383| @var{rule2-components}@dots{}
3384@dots{}
3385;
bfa74976
RS
3386@end group
3387@end example
bfa74976
RS
3388
3389@noindent
3390They are still considered distinct rules even when joined in this way.
3391
3392If @var{components} in a rule is empty, it means that @var{result} can
3393match the empty string. For example, here is how to define a
3394comma-separated sequence of zero or more @code{exp} groupings:
3395
3396@example
3397@group
de6be119
AD
3398expseq:
3399 /* empty */
3400| expseq1
3401;
bfa74976
RS
3402@end group
3403
3404@group
de6be119
AD
3405expseq1:
3406 exp
3407| expseq1 ',' exp
3408;
bfa74976
RS
3409@end group
3410@end example
3411
3412@noindent
3413It is customary to write a comment @samp{/* empty */} in each rule
3414with no components.
3415
342b8b6e 3416@node Recursion
bfa74976
RS
3417@section Recursive Rules
3418@cindex recursive rule
3419
f8e1c9e5
AD
3420A rule is called @dfn{recursive} when its @var{result} nonterminal
3421appears also on its right hand side. Nearly all Bison grammars need to
3422use recursion, because that is the only way to define a sequence of any
3423number of a particular thing. Consider this recursive definition of a
9ecbd125 3424comma-separated sequence of one or more expressions:
bfa74976
RS
3425
3426@example
3427@group
de6be119
AD
3428expseq1:
3429 exp
3430| expseq1 ',' exp
3431;
bfa74976
RS
3432@end group
3433@end example
3434
3435@cindex left recursion
3436@cindex right recursion
3437@noindent
3438Since the recursive use of @code{expseq1} is the leftmost symbol in the
3439right hand side, we call this @dfn{left recursion}. By contrast, here
3440the same construct is defined using @dfn{right recursion}:
3441
3442@example
3443@group
de6be119
AD
3444expseq1:
3445 exp
3446| exp ',' expseq1
3447;
bfa74976
RS
3448@end group
3449@end example
3450
3451@noindent
ec3bc396
AD
3452Any kind of sequence can be defined using either left recursion or right
3453recursion, but you should always use left recursion, because it can
3454parse a sequence of any number of elements with bounded stack space.
3455Right recursion uses up space on the Bison stack in proportion to the
3456number of elements in the sequence, because all the elements must be
3457shifted onto the stack before the rule can be applied even once.
3458@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3459of this.
bfa74976
RS
3460
3461@cindex mutual recursion
3462@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3463rule does not appear directly on its right hand side, but does appear
3464in rules for other nonterminals which do appear on its right hand
13863333 3465side.
bfa74976
RS
3466
3467For example:
3468
3469@example
3470@group
de6be119
AD
3471expr:
3472 primary
3473| primary '+' primary
3474;
bfa74976
RS
3475@end group
3476
3477@group
de6be119
AD
3478primary:
3479 constant
3480| '(' expr ')'
3481;
bfa74976
RS
3482@end group
3483@end example
3484
3485@noindent
3486defines two mutually-recursive nonterminals, since each refers to the
3487other.
3488
342b8b6e 3489@node Semantics
bfa74976
RS
3490@section Defining Language Semantics
3491@cindex defining language semantics
13863333 3492@cindex language semantics, defining
bfa74976
RS
3493
3494The grammar rules for a language determine only the syntax. The semantics
3495are determined by the semantic values associated with various tokens and
3496groupings, and by the actions taken when various groupings are recognized.
3497
3498For example, the calculator calculates properly because the value
3499associated with each expression is the proper number; it adds properly
3500because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3501the numbers associated with @var{x} and @var{y}.
3502
3503@menu
3504* Value Type:: Specifying one data type for all semantic values.
3505* Multiple Types:: Specifying several alternative data types.
3506* Actions:: An action is the semantic definition of a grammar rule.
3507* Action Types:: Specifying data types for actions to operate on.
3508* Mid-Rule Actions:: Most actions go at the end of a rule.
3509 This says when, why and how to use the exceptional
3510 action in the middle of a rule.
3511@end menu
3512
342b8b6e 3513@node Value Type
bfa74976
RS
3514@subsection Data Types of Semantic Values
3515@cindex semantic value type
3516@cindex value type, semantic
3517@cindex data types of semantic values
3518@cindex default data type
3519
3520In a simple program it may be sufficient to use the same data type for
3521the semantic values of all language constructs. This was true in the
35430378 3522RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3523Notation Calculator}).
bfa74976 3524
ddc8ede1
PE
3525Bison normally uses the type @code{int} for semantic values if your
3526program uses the same data type for all language constructs. To
bfa74976
RS
3527specify some other type, define @code{YYSTYPE} as a macro, like this:
3528
3529@example
3530#define YYSTYPE double
3531@end example
3532
3533@noindent
50cce58e
PE
3534@code{YYSTYPE}'s replacement list should be a type name
3535that does not contain parentheses or square brackets.
342b8b6e 3536This macro definition must go in the prologue of the grammar file
75f5aaea 3537(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3538
342b8b6e 3539@node Multiple Types
bfa74976
RS
3540@subsection More Than One Value Type
3541
3542In most programs, you will need different data types for different kinds
3543of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3544@code{int} or @code{long int}, while a string constant needs type
3545@code{char *}, and an identifier might need a pointer to an entry in the
3546symbol table.
bfa74976
RS
3547
3548To use more than one data type for semantic values in one parser, Bison
3549requires you to do two things:
3550
3551@itemize @bullet
3552@item
ddc8ede1 3553Specify the entire collection of possible data types, either by using the
704a47c4 3554@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3555Value Types}), or by using a @code{typedef} or a @code{#define} to
3556define @code{YYSTYPE} to be a union type whose member names are
3557the type tags.
bfa74976
RS
3558
3559@item
14ded682
AD
3560Choose one of those types for each symbol (terminal or nonterminal) for
3561which semantic values are used. This is done for tokens with the
3562@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3563and for groupings with the @code{%type} Bison declaration (@pxref{Type
3564Decl, ,Nonterminal Symbols}).
bfa74976
RS
3565@end itemize
3566
342b8b6e 3567@node Actions
bfa74976
RS
3568@subsection Actions
3569@cindex action
3570@vindex $$
3571@vindex $@var{n}
1f68dca5
AR
3572@vindex $@var{name}
3573@vindex $[@var{name}]
bfa74976
RS
3574
3575An action accompanies a syntactic rule and contains C code to be executed
3576each time an instance of that rule is recognized. The task of most actions
3577is to compute a semantic value for the grouping built by the rule from the
3578semantic values associated with tokens or smaller groupings.
3579
287c78f6
PE
3580An action consists of braced code containing C statements, and can be
3581placed at any position in the rule;
704a47c4
AD
3582it is executed at that position. Most rules have just one action at the
3583end of the rule, following all the components. Actions in the middle of
3584a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3585Actions, ,Actions in Mid-Rule}).
bfa74976 3586
9913d6e4
JD
3587The C code in an action can refer to the semantic values of the
3588components matched by the rule with the construct @code{$@var{n}},
3589which stands for the value of the @var{n}th component. The semantic
3590value for the grouping being constructed is @code{$$}. In addition,
3591the semantic values of symbols can be accessed with the named
3592references construct @code{$@var{name}} or @code{$[@var{name}]}.
3593Bison translates both of these constructs into expressions of the
3594appropriate type when it copies the actions into the parser
3595implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3596for the current grouping) is translated to a modifiable lvalue, so it
3597can be assigned to.
bfa74976
RS
3598
3599Here is a typical example:
3600
3601@example
3602@group
de6be119
AD
3603exp:
3604@dots{}
3605| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3606@end group
3607@end example
3608
1f68dca5
AR
3609Or, in terms of named references:
3610
3611@example
3612@group
de6be119
AD
3613exp[result]:
3614@dots{}
3615| exp[left] '+' exp[right] @{ $result = $left + $right; @}
1f68dca5
AR
3616@end group
3617@end example
3618
bfa74976
RS
3619@noindent
3620This rule constructs an @code{exp} from two smaller @code{exp} groupings
3621connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3622(@code{$left} and @code{$right})
bfa74976
RS
3623refer to the semantic values of the two component @code{exp} groupings,
3624which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3625The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3626semantic value of
bfa74976
RS
3627the addition-expression just recognized by the rule. If there were a
3628useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3629referred to as @code{$2}.
bfa74976 3630
ce24f7f5
JD
3631@xref{Named References}, for more information about using the named
3632references construct.
1f68dca5 3633
3ded9a63
AD
3634Note that the vertical-bar character @samp{|} is really a rule
3635separator, and actions are attached to a single rule. This is a
3636difference with tools like Flex, for which @samp{|} stands for either
3637``or'', or ``the same action as that of the next rule''. In the
3638following example, the action is triggered only when @samp{b} is found:
3639
3640@example
3641@group
3642a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3643@end group
3644@end example
3645
bfa74976
RS
3646@cindex default action
3647If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3648@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3649becomes the value of the whole rule. Of course, the default action is
3650valid only if the two data types match. There is no meaningful default
3651action for an empty rule; every empty rule must have an explicit action
3652unless the rule's value does not matter.
bfa74976
RS
3653
3654@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3655to tokens and groupings on the stack @emph{before} those that match the
3656current rule. This is a very risky practice, and to use it reliably
3657you must be certain of the context in which the rule is applied. Here
3658is a case in which you can use this reliably:
3659
3660@example
3661@group
de6be119
AD
3662foo:
3663 expr bar '+' expr @{ @dots{} @}
3664| expr bar '-' expr @{ @dots{} @}
3665;
bfa74976
RS
3666@end group
3667
3668@group
de6be119
AD
3669bar:
3670 /* empty */ @{ previous_expr = $0; @}
3671;
bfa74976
RS
3672@end group
3673@end example
3674
3675As long as @code{bar} is used only in the fashion shown here, @code{$0}
3676always refers to the @code{expr} which precedes @code{bar} in the
3677definition of @code{foo}.
3678
32c29292 3679@vindex yylval
742e4900 3680It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3681any, from a semantic action.
3682This semantic value is stored in @code{yylval}.
3683@xref{Action Features, ,Special Features for Use in Actions}.
3684
342b8b6e 3685@node Action Types
bfa74976
RS
3686@subsection Data Types of Values in Actions
3687@cindex action data types
3688@cindex data types in actions
3689
3690If you have chosen a single data type for semantic values, the @code{$$}
3691and @code{$@var{n}} constructs always have that data type.
3692
3693If you have used @code{%union} to specify a variety of data types, then you
3694must declare a choice among these types for each terminal or nonterminal
3695symbol that can have a semantic value. Then each time you use @code{$$} or
3696@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3697in the rule. In this example,
bfa74976
RS
3698
3699@example
3700@group
de6be119
AD
3701exp:
3702 @dots{}
3703| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3704@end group
3705@end example
3706
3707@noindent
3708@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3709have the data type declared for the nonterminal symbol @code{exp}. If
3710@code{$2} were used, it would have the data type declared for the
e0c471a9 3711terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3712
3713Alternatively, you can specify the data type when you refer to the value,
3714by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3715reference. For example, if you have defined types as shown here:
3716
3717@example
3718@group
3719%union @{
3720 int itype;
3721 double dtype;
3722@}
3723@end group
3724@end example
3725
3726@noindent
3727then you can write @code{$<itype>1} to refer to the first subunit of the
3728rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3729
342b8b6e 3730@node Mid-Rule Actions
bfa74976
RS
3731@subsection Actions in Mid-Rule
3732@cindex actions in mid-rule
3733@cindex mid-rule actions
3734
3735Occasionally it is useful to put an action in the middle of a rule.
3736These actions are written just like usual end-of-rule actions, but they
3737are executed before the parser even recognizes the following components.
3738
3739A mid-rule action may refer to the components preceding it using
3740@code{$@var{n}}, but it may not refer to subsequent components because
3741it is run before they are parsed.
3742
3743The mid-rule action itself counts as one of the components of the rule.
3744This makes a difference when there is another action later in the same rule
3745(and usually there is another at the end): you have to count the actions
3746along with the symbols when working out which number @var{n} to use in
3747@code{$@var{n}}.
3748
3749The mid-rule action can also have a semantic value. The action can set
3750its value with an assignment to @code{$$}, and actions later in the rule
3751can refer to the value using @code{$@var{n}}. Since there is no symbol
3752to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3753in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3754specify a data type each time you refer to this value.
bfa74976
RS
3755
3756There is no way to set the value of the entire rule with a mid-rule
3757action, because assignments to @code{$$} do not have that effect. The
3758only way to set the value for the entire rule is with an ordinary action
3759at the end of the rule.
3760
3761Here is an example from a hypothetical compiler, handling a @code{let}
3762statement that looks like @samp{let (@var{variable}) @var{statement}} and
3763serves to create a variable named @var{variable} temporarily for the
3764duration of @var{statement}. To parse this construct, we must put
3765@var{variable} into the symbol table while @var{statement} is parsed, then
3766remove it afterward. Here is how it is done:
3767
3768@example
3769@group
de6be119
AD
3770stmt:
3771 LET '(' var ')'
3772 @{ $<context>$ = push_context (); declare_variable ($3); @}
3773 stmt
3774 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3775@end group
3776@end example
3777
3778@noindent
3779As soon as @samp{let (@var{variable})} has been recognized, the first
3780action is run. It saves a copy of the current semantic context (the
3781list of accessible variables) as its semantic value, using alternative
3782@code{context} in the data-type union. Then it calls
3783@code{declare_variable} to add the new variable to that list. Once the
3784first action is finished, the embedded statement @code{stmt} can be
3785parsed. Note that the mid-rule action is component number 5, so the
3786@samp{stmt} is component number 6.
3787
3788After the embedded statement is parsed, its semantic value becomes the
3789value of the entire @code{let}-statement. Then the semantic value from the
3790earlier action is used to restore the prior list of variables. This
3791removes the temporary @code{let}-variable from the list so that it won't
3792appear to exist while the rest of the program is parsed.
3793
841a7737
JD
3794@findex %destructor
3795@cindex discarded symbols, mid-rule actions
3796@cindex error recovery, mid-rule actions
3797In the above example, if the parser initiates error recovery (@pxref{Error
3798Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3799it might discard the previous semantic context @code{$<context>5} without
3800restoring it.
3801Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3802Discarded Symbols}).
ec5479ce
JD
3803However, Bison currently provides no means to declare a destructor specific to
3804a particular mid-rule action's semantic value.
841a7737
JD
3805
3806One solution is to bury the mid-rule action inside a nonterminal symbol and to
3807declare a destructor for that symbol:
3808
3809@example
3810@group
3811%type <context> let
3812%destructor @{ pop_context ($$); @} let
3813
3814%%
3815
de6be119
AD
3816stmt:
3817 let stmt
3818 @{
3819 $$ = $2;
3820 pop_context ($1);
3821 @};
841a7737 3822
de6be119
AD
3823let:
3824 LET '(' var ')'
3825 @{
3826 $$ = push_context ();
3827 declare_variable ($3);
3828 @};
841a7737
JD
3829
3830@end group
3831@end example
3832
3833@noindent
3834Note that the action is now at the end of its rule.
3835Any mid-rule action can be converted to an end-of-rule action in this way, and
3836this is what Bison actually does to implement mid-rule actions.
3837
bfa74976
RS
3838Taking action before a rule is completely recognized often leads to
3839conflicts since the parser must commit to a parse in order to execute the
3840action. For example, the following two rules, without mid-rule actions,
3841can coexist in a working parser because the parser can shift the open-brace
3842token and look at what follows before deciding whether there is a
3843declaration or not:
3844
3845@example
3846@group
de6be119
AD
3847compound:
3848 '@{' declarations statements '@}'
3849| '@{' statements '@}'
3850;
bfa74976
RS
3851@end group
3852@end example
3853
3854@noindent
3855But when we add a mid-rule action as follows, the rules become nonfunctional:
3856
3857@example
3858@group
de6be119
AD
3859compound:
3860 @{ prepare_for_local_variables (); @}
3861 '@{' declarations statements '@}'
bfa74976
RS
3862@end group
3863@group
de6be119
AD
3864| '@{' statements '@}'
3865;
bfa74976
RS
3866@end group
3867@end example
3868
3869@noindent
3870Now the parser is forced to decide whether to run the mid-rule action
3871when it has read no farther than the open-brace. In other words, it
3872must commit to using one rule or the other, without sufficient
3873information to do it correctly. (The open-brace token is what is called
742e4900
JD
3874the @dfn{lookahead} token at this time, since the parser is still
3875deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3876
3877You might think that you could correct the problem by putting identical
3878actions into the two rules, like this:
3879
3880@example
3881@group
de6be119
AD
3882compound:
3883 @{ prepare_for_local_variables (); @}
3884 '@{' declarations statements '@}'
3885| @{ prepare_for_local_variables (); @}
3886 '@{' statements '@}'
3887;
bfa74976
RS
3888@end group
3889@end example
3890
3891@noindent
3892But this does not help, because Bison does not realize that the two actions
3893are identical. (Bison never tries to understand the C code in an action.)
3894
3895If the grammar is such that a declaration can be distinguished from a
3896statement by the first token (which is true in C), then one solution which
3897does work is to put the action after the open-brace, like this:
3898
3899@example
3900@group
de6be119
AD
3901compound:
3902 '@{' @{ prepare_for_local_variables (); @}
3903 declarations statements '@}'
3904| '@{' statements '@}'
3905;
bfa74976
RS
3906@end group
3907@end example
3908
3909@noindent
3910Now the first token of the following declaration or statement,
3911which would in any case tell Bison which rule to use, can still do so.
3912
3913Another solution is to bury the action inside a nonterminal symbol which
3914serves as a subroutine:
3915
3916@example
3917@group
de6be119
AD
3918subroutine:
3919 /* empty */ @{ prepare_for_local_variables (); @}
3920;
bfa74976
RS
3921@end group
3922
3923@group
de6be119
AD
3924compound:
3925 subroutine '@{' declarations statements '@}'
3926| subroutine '@{' statements '@}'
3927;
bfa74976
RS
3928@end group
3929@end example
3930
3931@noindent
3932Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3933deciding which rule for @code{compound} it will eventually use.
bfa74976 3934
7404cdf3 3935@node Tracking Locations
847bf1f5
AD
3936@section Tracking Locations
3937@cindex location
95923bd6
AD
3938@cindex textual location
3939@cindex location, textual
847bf1f5
AD
3940
3941Though grammar rules and semantic actions are enough to write a fully
72d2299c 3942functional parser, it can be useful to process some additional information,
3e259915
MA
3943especially symbol locations.
3944
704a47c4
AD
3945The way locations are handled is defined by providing a data type, and
3946actions to take when rules are matched.
847bf1f5
AD
3947
3948@menu
3949* Location Type:: Specifying a data type for locations.
3950* Actions and Locations:: Using locations in actions.
3951* Location Default Action:: Defining a general way to compute locations.
3952@end menu
3953
342b8b6e 3954@node Location Type
847bf1f5
AD
3955@subsection Data Type of Locations
3956@cindex data type of locations
3957@cindex default location type
3958
3959Defining a data type for locations is much simpler than for semantic values,
3960since all tokens and groupings always use the same type.
3961
50cce58e
PE
3962You can specify the type of locations by defining a macro called
3963@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3964defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3965When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3966four members:
3967
3968@example
6273355b 3969typedef struct YYLTYPE
847bf1f5
AD
3970@{
3971 int first_line;
3972 int first_column;
3973 int last_line;
3974 int last_column;
6273355b 3975@} YYLTYPE;
847bf1f5
AD
3976@end example
3977
8fbbeba2
AD
3978When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3979initializes all these fields to 1 for @code{yylloc}. To initialize
3980@code{yylloc} with a custom location type (or to chose a different
3981initialization), use the @code{%initial-action} directive. @xref{Initial
3982Action Decl, , Performing Actions before Parsing}.
cd48d21d 3983
342b8b6e 3984@node Actions and Locations
847bf1f5
AD
3985@subsection Actions and Locations
3986@cindex location actions
3987@cindex actions, location
3988@vindex @@$
3989@vindex @@@var{n}
1f68dca5
AR
3990@vindex @@@var{name}
3991@vindex @@[@var{name}]
847bf1f5
AD
3992
3993Actions are not only useful for defining language semantics, but also for
3994describing the behavior of the output parser with locations.
3995
3996The most obvious way for building locations of syntactic groupings is very
72d2299c 3997similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3998constructs can be used to access the locations of the elements being matched.
3999The location of the @var{n}th component of the right hand side is
4000@code{@@@var{n}}, while the location of the left hand side grouping is
4001@code{@@$}.
4002
1f68dca5
AR
4003In addition, the named references construct @code{@@@var{name}} and
4004@code{@@[@var{name}]} may also be used to address the symbol locations.
ce24f7f5
JD
4005@xref{Named References}, for more information about using the named
4006references construct.
1f68dca5 4007
3e259915 4008Here is a basic example using the default data type for locations:
847bf1f5
AD
4009
4010@example
4011@group
de6be119
AD
4012exp:
4013 @dots{}
4014| exp '/' exp
4015 @{
4016 @@$.first_column = @@1.first_column;
4017 @@$.first_line = @@1.first_line;
4018 @@$.last_column = @@3.last_column;
4019 @@$.last_line = @@3.last_line;
4020 if ($3)
4021 $$ = $1 / $3;
4022 else
4023 @{
4024 $$ = 1;
4025 fprintf (stderr,
4026 "Division by zero, l%d,c%d-l%d,c%d",
4027 @@3.first_line, @@3.first_column,
4028 @@3.last_line, @@3.last_column);
4029 @}
4030 @}
847bf1f5
AD
4031@end group
4032@end example
4033
3e259915 4034As for semantic values, there is a default action for locations that is
72d2299c 4035run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4036beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4037last symbol.
3e259915 4038
72d2299c 4039With this default action, the location tracking can be fully automatic. The
3e259915
MA
4040example above simply rewrites this way:
4041
4042@example
4043@group
de6be119
AD
4044exp:
4045 @dots{}
4046| exp '/' exp
4047 @{
4048 if ($3)
4049 $$ = $1 / $3;
4050 else
4051 @{
4052 $$ = 1;
4053 fprintf (stderr,
4054 "Division by zero, l%d,c%d-l%d,c%d",
4055 @@3.first_line, @@3.first_column,
4056 @@3.last_line, @@3.last_column);
4057 @}
4058 @}
3e259915
MA
4059@end group
4060@end example
847bf1f5 4061
32c29292 4062@vindex yylloc
742e4900 4063It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4064from a semantic action.
4065This location is stored in @code{yylloc}.
4066@xref{Action Features, ,Special Features for Use in Actions}.
4067
342b8b6e 4068@node Location Default Action
847bf1f5
AD
4069@subsection Default Action for Locations
4070@vindex YYLLOC_DEFAULT
35430378 4071@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4072
72d2299c 4073Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4074locations are much more general than semantic values, there is room in
4075the output parser to redefine the default action to take for each
72d2299c 4076rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4077matched, before the associated action is run. It is also invoked
4078while processing a syntax error, to compute the error's location.
35430378 4079Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4080parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4081of that ambiguity.
847bf1f5 4082
3e259915 4083Most of the time, this macro is general enough to suppress location
79282c6c 4084dedicated code from semantic actions.
847bf1f5 4085
72d2299c 4086The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4087the location of the grouping (the result of the computation). When a
766de5eb 4088rule is matched, the second parameter identifies locations of
96b93a3d 4089all right hand side elements of the rule being matched, and the third
8710fc41 4090parameter is the size of the rule's right hand side.
35430378 4091When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4092right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4093When processing a syntax error, the second parameter identifies locations
4094of the symbols that were discarded during error processing, and the third
96b93a3d 4095parameter is the number of discarded symbols.
847bf1f5 4096
766de5eb 4097By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4098
ea118b72 4099@example
847bf1f5 4100@group
ea118b72
AD
4101# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4102do \
4103 if (N) \
4104 @{ \
4105 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4106 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4107 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4108 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4109 @} \
4110 else \
4111 @{ \
4112 (Cur).first_line = (Cur).last_line = \
4113 YYRHSLOC(Rhs, 0).last_line; \
4114 (Cur).first_column = (Cur).last_column = \
4115 YYRHSLOC(Rhs, 0).last_column; \
4116 @} \
4117while (0)
847bf1f5 4118@end group
ea118b72 4119@end example
676385e2 4120
2c0f9706 4121@noindent
766de5eb
PE
4122where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4123in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4124just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4125
3e259915 4126When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4127
3e259915 4128@itemize @bullet
79282c6c 4129@item
72d2299c 4130All arguments are free of side-effects. However, only the first one (the
3e259915 4131result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4132
3e259915 4133@item
766de5eb
PE
4134For consistency with semantic actions, valid indexes within the
4135right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4136valid index, and it refers to the symbol just before the reduction.
4137During error processing @var{n} is always positive.
0ae99356
PE
4138
4139@item
4140Your macro should parenthesize its arguments, if need be, since the
4141actual arguments may not be surrounded by parentheses. Also, your
4142macro should expand to something that can be used as a single
4143statement when it is followed by a semicolon.
3e259915 4144@end itemize
847bf1f5 4145
908c8647 4146@node Named References
ce24f7f5 4147@section Named References
908c8647
JD
4148@cindex named references
4149
7d31f092
JD
4150As described in the preceding sections, the traditional way to refer to any
4151semantic value or location is a @dfn{positional reference}, which takes the
4152form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4153such a reference is not very descriptive. Moreover, if you later decide to
4154insert or remove symbols in the right-hand side of a grammar rule, the need
4155to renumber such references can be tedious and error-prone.
4156
4157To avoid these issues, you can also refer to a semantic value or location
4158using a @dfn{named reference}. First of all, original symbol names may be
4159used as named references. For example:
908c8647
JD
4160
4161@example
4162@group
4163invocation: op '(' args ')'
4164 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4165@end group
4166@end example
4167
4168@noindent
7d31f092 4169Positional and named references can be mixed arbitrarily. For example:
908c8647
JD
4170
4171@example
4172@group
4173invocation: op '(' args ')'
4174 @{ $$ = new_invocation ($op, $args, @@$); @}
4175@end group
4176@end example
4177
4178@noindent
4179However, sometimes regular symbol names are not sufficient due to
4180ambiguities:
4181
4182@example
4183@group
4184exp: exp '/' exp
4185 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4186
4187exp: exp '/' exp
4188 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4189
4190exp: exp '/' exp
4191 @{ $$ = $1 / $3; @} // No error.
4192@end group
4193@end example
4194
4195@noindent
4196When ambiguity occurs, explicitly declared names may be used for values and
4197locations. Explicit names are declared as a bracketed name after a symbol
4198appearance in rule definitions. For example:
4199@example
4200@group
4201exp[result]: exp[left] '/' exp[right]
4202 @{ $result = $left / $right; @}
4203@end group
4204@end example
4205
4206@noindent
ce24f7f5
JD
4207In order to access a semantic value generated by a mid-rule action, an
4208explicit name may also be declared by putting a bracketed name after the
4209closing brace of the mid-rule action code:
908c8647
JD
4210@example
4211@group
4212exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4213 @{ $res = $left + $right; @}
4214@end group
4215@end example
4216
4217@noindent
4218
4219In references, in order to specify names containing dots and dashes, an explicit
4220bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4221@example
4222@group
14f4455e 4223if-stmt: "if" '(' expr ')' "then" then.stmt ';'
908c8647
JD
4224 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4225@end group
4226@end example
4227
4228It often happens that named references are followed by a dot, dash or other
4229C punctuation marks and operators. By default, Bison will read
ce24f7f5
JD
4230@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4231@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4232value. In order to force Bison to recognize @samp{name.suffix} in its
4233entirety as the name of a semantic value, the bracketed syntax
4234@samp{$[name.suffix]} must be used.
4235
4236The named references feature is experimental. More user feedback will help
4237to stabilize it.
908c8647 4238
342b8b6e 4239@node Declarations
bfa74976
RS
4240@section Bison Declarations
4241@cindex declarations, Bison
4242@cindex Bison declarations
4243
4244The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4245used in formulating the grammar and the data types of semantic values.
4246@xref{Symbols}.
4247
4248All token type names (but not single-character literal tokens such as
4249@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4250declared if you need to specify which data type to use for the semantic
4251value (@pxref{Multiple Types, ,More Than One Value Type}).
4252
9913d6e4
JD
4253The first rule in the grammar file also specifies the start symbol, by
4254default. If you want some other symbol to be the start symbol, you
4255must declare it explicitly (@pxref{Language and Grammar, ,Languages
4256and Context-Free Grammars}).
bfa74976
RS
4257
4258@menu
b50d2359 4259* Require Decl:: Requiring a Bison version.
bfa74976
RS
4260* Token Decl:: Declaring terminal symbols.
4261* Precedence Decl:: Declaring terminals with precedence and associativity.
4262* Union Decl:: Declaring the set of all semantic value types.
4263* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4264* Initial Action Decl:: Code run before parsing starts.
72f889cc 4265* Destructor Decl:: Declaring how symbols are freed.
56d60c19 4266* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4267* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4268* Start Decl:: Specifying the start symbol.
4269* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4270* Push Decl:: Requesting a push parser.
bfa74976 4271* Decl Summary:: Table of all Bison declarations.
2f4518a1 4272* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 4273* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4274@end menu
4275
b50d2359
AD
4276@node Require Decl
4277@subsection Require a Version of Bison
4278@cindex version requirement
4279@cindex requiring a version of Bison
4280@findex %require
4281
4282You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4283the requirement is not met, @command{bison} exits with an error (exit
4284status 63).
b50d2359
AD
4285
4286@example
4287%require "@var{version}"
4288@end example
4289
342b8b6e 4290@node Token Decl
bfa74976
RS
4291@subsection Token Type Names
4292@cindex declaring token type names
4293@cindex token type names, declaring
931c7513 4294@cindex declaring literal string tokens
bfa74976
RS
4295@findex %token
4296
4297The basic way to declare a token type name (terminal symbol) is as follows:
4298
4299@example
4300%token @var{name}
4301@end example
4302
4303Bison will convert this into a @code{#define} directive in
4304the parser, so that the function @code{yylex} (if it is in this file)
4305can use the name @var{name} to stand for this token type's code.
4306
14ded682
AD
4307Alternatively, you can use @code{%left}, @code{%right}, or
4308@code{%nonassoc} instead of @code{%token}, if you wish to specify
4309associativity and precedence. @xref{Precedence Decl, ,Operator
4310Precedence}.
bfa74976
RS
4311
4312You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4313a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4314following the token name:
bfa74976
RS
4315
4316@example
4317%token NUM 300
1452af69 4318%token XNUM 0x12d // a GNU extension
bfa74976
RS
4319@end example
4320
4321@noindent
4322It is generally best, however, to let Bison choose the numeric codes for
4323all token types. Bison will automatically select codes that don't conflict
e966383b 4324with each other or with normal characters.
bfa74976
RS
4325
4326In the event that the stack type is a union, you must augment the
4327@code{%token} or other token declaration to include the data type
704a47c4
AD
4328alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4329Than One Value Type}).
bfa74976
RS
4330
4331For example:
4332
4333@example
4334@group
4335%union @{ /* define stack type */
4336 double val;
4337 symrec *tptr;
4338@}
4339%token <val> NUM /* define token NUM and its type */
4340@end group
4341@end example
4342
931c7513
RS
4343You can associate a literal string token with a token type name by
4344writing the literal string at the end of a @code{%token}
4345declaration which declares the name. For example:
4346
4347@example
4348%token arrow "=>"
4349@end example
4350
4351@noindent
4352For example, a grammar for the C language might specify these names with
4353equivalent literal string tokens:
4354
4355@example
4356%token <operator> OR "||"
4357%token <operator> LE 134 "<="
4358%left OR "<="
4359@end example
4360
4361@noindent
4362Once you equate the literal string and the token name, you can use them
4363interchangeably in further declarations or the grammar rules. The
4364@code{yylex} function can use the token name or the literal string to
4365obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4366Syntax error messages passed to @code{yyerror} from the parser will reference
4367the literal string instead of the token name.
4368
4369The token numbered as 0 corresponds to end of file; the following line
4370allows for nicer error messages referring to ``end of file'' instead
4371of ``$end'':
4372
4373@example
4374%token END 0 "end of file"
4375@end example
931c7513 4376
342b8b6e 4377@node Precedence Decl
bfa74976
RS
4378@subsection Operator Precedence
4379@cindex precedence declarations
4380@cindex declaring operator precedence
4381@cindex operator precedence, declaring
4382
4383Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4384declare a token and specify its precedence and associativity, all at
4385once. These are called @dfn{precedence declarations}.
704a47c4
AD
4386@xref{Precedence, ,Operator Precedence}, for general information on
4387operator precedence.
bfa74976 4388
ab7f29f8 4389The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4390@code{%token}: either
4391
4392@example
4393%left @var{symbols}@dots{}
4394@end example
4395
4396@noindent
4397or
4398
4399@example
4400%left <@var{type}> @var{symbols}@dots{}
4401@end example
4402
4403And indeed any of these declarations serves the purposes of @code{%token}.
4404But in addition, they specify the associativity and relative precedence for
4405all the @var{symbols}:
4406
4407@itemize @bullet
4408@item
4409The associativity of an operator @var{op} determines how repeated uses
4410of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4411@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4412grouping @var{y} with @var{z} first. @code{%left} specifies
4413left-associativity (grouping @var{x} with @var{y} first) and
4414@code{%right} specifies right-associativity (grouping @var{y} with
4415@var{z} first). @code{%nonassoc} specifies no associativity, which
4416means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4417considered a syntax error.
4418
4419@item
4420The precedence of an operator determines how it nests with other operators.
4421All the tokens declared in a single precedence declaration have equal
4422precedence and nest together according to their associativity.
4423When two tokens declared in different precedence declarations associate,
4424the one declared later has the higher precedence and is grouped first.
4425@end itemize
4426
ab7f29f8
JD
4427For backward compatibility, there is a confusing difference between the
4428argument lists of @code{%token} and precedence declarations.
4429Only a @code{%token} can associate a literal string with a token type name.
4430A precedence declaration always interprets a literal string as a reference to a
4431separate token.
4432For example:
4433
4434@example
4435%left OR "<=" // Does not declare an alias.
4436%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4437@end example
4438
342b8b6e 4439@node Union Decl
bfa74976
RS
4440@subsection The Collection of Value Types
4441@cindex declaring value types
4442@cindex value types, declaring
4443@findex %union
4444
287c78f6
PE
4445The @code{%union} declaration specifies the entire collection of
4446possible data types for semantic values. The keyword @code{%union} is
4447followed by braced code containing the same thing that goes inside a
4448@code{union} in C@.
bfa74976
RS
4449
4450For example:
4451
4452@example
4453@group
4454%union @{
4455 double val;
4456 symrec *tptr;
4457@}
4458@end group
4459@end example
4460
4461@noindent
4462This says that the two alternative types are @code{double} and @code{symrec
4463*}. They are given names @code{val} and @code{tptr}; these names are used
4464in the @code{%token} and @code{%type} declarations to pick one of the types
4465for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4466
35430378 4467As an extension to POSIX, a tag is allowed after the
6273355b
PE
4468@code{union}. For example:
4469
4470@example
4471@group
4472%union value @{
4473 double val;
4474 symrec *tptr;
4475@}
4476@end group
4477@end example
4478
d6ca7905 4479@noindent
6273355b
PE
4480specifies the union tag @code{value}, so the corresponding C type is
4481@code{union value}. If you do not specify a tag, it defaults to
4482@code{YYSTYPE}.
4483
35430378 4484As another extension to POSIX, you may specify multiple
d6ca7905
PE
4485@code{%union} declarations; their contents are concatenated. However,
4486only the first @code{%union} declaration can specify a tag.
4487
6273355b 4488Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4489a semicolon after the closing brace.
4490
ddc8ede1
PE
4491Instead of @code{%union}, you can define and use your own union type
4492@code{YYSTYPE} if your grammar contains at least one
4493@samp{<@var{type}>} tag. For example, you can put the following into
4494a header file @file{parser.h}:
4495
4496@example
4497@group
4498union YYSTYPE @{
4499 double val;
4500 symrec *tptr;
4501@};
4502typedef union YYSTYPE YYSTYPE;
4503@end group
4504@end example
4505
4506@noindent
4507and then your grammar can use the following
4508instead of @code{%union}:
4509
4510@example
4511@group
4512%@{
4513#include "parser.h"
4514%@}
4515%type <val> expr
4516%token <tptr> ID
4517@end group
4518@end example
4519
342b8b6e 4520@node Type Decl
bfa74976
RS
4521@subsection Nonterminal Symbols
4522@cindex declaring value types, nonterminals
4523@cindex value types, nonterminals, declaring
4524@findex %type
4525
4526@noindent
4527When you use @code{%union} to specify multiple value types, you must
4528declare the value type of each nonterminal symbol for which values are
4529used. This is done with a @code{%type} declaration, like this:
4530
4531@example
4532%type <@var{type}> @var{nonterminal}@dots{}
4533@end example
4534
4535@noindent
704a47c4
AD
4536Here @var{nonterminal} is the name of a nonterminal symbol, and
4537@var{type} is the name given in the @code{%union} to the alternative
4538that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4539can give any number of nonterminal symbols in the same @code{%type}
4540declaration, if they have the same value type. Use spaces to separate
4541the symbol names.
bfa74976 4542
931c7513
RS
4543You can also declare the value type of a terminal symbol. To do this,
4544use the same @code{<@var{type}>} construction in a declaration for the
4545terminal symbol. All kinds of token declarations allow
4546@code{<@var{type}>}.
4547
18d192f0
AD
4548@node Initial Action Decl
4549@subsection Performing Actions before Parsing
4550@findex %initial-action
4551
4552Sometimes your parser needs to perform some initializations before
4553parsing. The @code{%initial-action} directive allows for such arbitrary
4554code.
4555
4556@deffn {Directive} %initial-action @{ @var{code} @}
4557@findex %initial-action
287c78f6 4558Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4559@code{yyparse} is called. The @var{code} may use @code{$$} (or
4560@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4561lookahead --- and the @code{%parse-param}.
18d192f0
AD
4562@end deffn
4563
451364ed
AD
4564For instance, if your locations use a file name, you may use
4565
4566@example
48b16bbc 4567%parse-param @{ char const *file_name @};
451364ed
AD
4568%initial-action
4569@{
4626a15d 4570 @@$.initialize (file_name);
451364ed
AD
4571@};
4572@end example
4573
18d192f0 4574
72f889cc
AD
4575@node Destructor Decl
4576@subsection Freeing Discarded Symbols
4577@cindex freeing discarded symbols
4578@findex %destructor
12e35840 4579@findex <*>
3ebecc24 4580@findex <>
a85284cf
AD
4581During error recovery (@pxref{Error Recovery}), symbols already pushed
4582on the stack and tokens coming from the rest of the file are discarded
4583until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4584or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4585symbols on the stack must be discarded. Even if the parser succeeds, it
4586must discard the start symbol.
258b75ca
PE
4587
4588When discarded symbols convey heap based information, this memory is
4589lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4590in traditional compilers, it is unacceptable for programs like shells or
4591protocol implementations that may parse and execute indefinitely.
258b75ca 4592
a85284cf
AD
4593The @code{%destructor} directive defines code that is called when a
4594symbol is automatically discarded.
72f889cc
AD
4595
4596@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4597@findex %destructor
287c78f6 4598Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4599@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4600designates the semantic value associated with the discarded symbol, and
4601@code{@@$} designates its location. The additional parser parameters are
4602also available (@pxref{Parser Function, , The Parser Function
4603@code{yyparse}}).
ec5479ce 4604
b2a0b7ca
JD
4605When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4606per-symbol @code{%destructor}.
4607You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4608tag among @var{symbols}.
b2a0b7ca 4609In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4610grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4611per-symbol @code{%destructor}.
4612
12e35840 4613Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4614(These default forms are experimental.
4615More user feedback will help to determine whether they should become permanent
4616features.)
3ebecc24 4617You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4618exactly one @code{%destructor} declaration in your grammar file.
4619The parser will invoke the @var{code} associated with one of these whenever it
4620discards any user-defined grammar symbol that has no per-symbol and no per-type
4621@code{%destructor}.
4622The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4623symbol for which you have formally declared a semantic type tag (@code{%type}
4624counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4625The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4626symbol that has no declared semantic type tag.
72f889cc
AD
4627@end deffn
4628
b2a0b7ca 4629@noindent
12e35840 4630For example:
72f889cc 4631
ea118b72 4632@example
ec5479ce
JD
4633%union @{ char *string; @}
4634%token <string> STRING1
4635%token <string> STRING2
4636%type <string> string1
4637%type <string> string2
b2a0b7ca
JD
4638%union @{ char character; @}
4639%token <character> CHR
4640%type <character> chr
12e35840
JD
4641%token TAGLESS
4642
b2a0b7ca 4643%destructor @{ @} <character>
12e35840
JD
4644%destructor @{ free ($$); @} <*>
4645%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4646%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
ea118b72 4647@end example
72f889cc
AD
4648
4649@noindent
b2a0b7ca
JD
4650guarantees that, when the parser discards any user-defined symbol that has a
4651semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4652to @code{free} by default.
ec5479ce
JD
4653However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4654prints its line number to @code{stdout}.
4655It performs only the second @code{%destructor} in this case, so it invokes
4656@code{free} only once.
12e35840
JD
4657Finally, the parser merely prints a message whenever it discards any symbol,
4658such as @code{TAGLESS}, that has no semantic type tag.
4659
4660A Bison-generated parser invokes the default @code{%destructor}s only for
4661user-defined as opposed to Bison-defined symbols.
4662For example, the parser will not invoke either kind of default
4663@code{%destructor} for the special Bison-defined symbols @code{$accept},
4664@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4665none of which you can reference in your grammar.
4666It also will not invoke either for the @code{error} token (@pxref{Table of
4667Symbols, ,error}), which is always defined by Bison regardless of whether you
4668reference it in your grammar.
4669However, it may invoke one of them for the end token (token 0) if you
4670redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4671
ea118b72 4672@example
3508ce36 4673%token END 0
ea118b72 4674@end example
3508ce36 4675
12e35840
JD
4676@cindex actions in mid-rule
4677@cindex mid-rule actions
4678Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4679mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
ce24f7f5
JD
4680That is, Bison does not consider a mid-rule to have a semantic value if you
4681do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4682(where @var{n} is the right-hand side symbol position of the mid-rule) in
4683any later action in that rule. However, if you do reference either, the
4684Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4685it discards the mid-rule symbol.
12e35840 4686
3508ce36
JD
4687@ignore
4688@noindent
4689In the future, it may be possible to redefine the @code{error} token as a
4690nonterminal that captures the discarded symbols.
4691In that case, the parser will invoke the default destructor for it as well.
4692@end ignore
4693
e757bb10
AD
4694@sp 1
4695
4696@cindex discarded symbols
4697@dfn{Discarded symbols} are the following:
4698
4699@itemize
4700@item
4701stacked symbols popped during the first phase of error recovery,
4702@item
4703incoming terminals during the second phase of error recovery,
4704@item
742e4900 4705the current lookahead and the entire stack (except the current
9d9b8b70 4706right-hand side symbols) when the parser returns immediately, and
258b75ca 4707@item
d3e4409a
AD
4708the current lookahead and the entire stack (including the current right-hand
4709side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4710@code{parse},
4711@item
258b75ca 4712the start symbol, when the parser succeeds.
e757bb10
AD
4713@end itemize
4714
9d9b8b70
PE
4715The parser can @dfn{return immediately} because of an explicit call to
4716@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4717exhaustion.
4718
29553547 4719Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4720error via @code{YYERROR} are not discarded automatically. As a rule
4721of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4722the memory.
e757bb10 4723
56d60c19
AD
4724@node Printer Decl
4725@subsection Printing Semantic Values
4726@cindex printing semantic values
4727@findex %printer
4728@findex <*>
4729@findex <>
4730When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4731the parser reports its actions, such as reductions. When a symbol involved
4732in an action is reported, only its kind is displayed, as the parser cannot
4733know how semantic values should be formatted.
4734
4735The @code{%printer} directive defines code that is called when a symbol is
4736reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4737Decl, , Freeing Discarded Symbols}).
4738
4739@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4740@findex %printer
4741@vindex yyoutput
4742@c This is the same text as for %destructor.
4743Invoke the braced @var{code} whenever the parser displays one of the
4744@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4745(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4746@code{$<@var{tag}>$}) designates the semantic value associated with the
4747symbol, and @code{@@$} its location. The additional parser parameters are
4748also available (@pxref{Parser Function, , The Parser Function
4749@code{yyparse}}).
56d60c19
AD
4750
4751The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4752Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4753@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4754typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4755@samp{<>}).
4756@end deffn
4757
4758@noindent
4759For example:
4760
4761@example
4762%union @{ char *string; @}
4763%token <string> STRING1
4764%token <string> STRING2
4765%type <string> string1
4766%type <string> string2
4767%union @{ char character; @}
4768%token <character> CHR
4769%type <character> chr
4770%token TAGLESS
4771
4772%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4773%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4774%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4775%printer @{ fprintf (yyoutput, "<>"); @} <>
4776@end example
4777
4778@noindent
4779guarantees that, when the parser print any symbol that has a semantic type
4780tag other than @code{<character>}, it display the address of the semantic
4781value by default. However, when the parser displays a @code{STRING1} or a
4782@code{string1}, it formats it as a string in double quotes. It performs
4783only the second @code{%printer} in this case, so it prints only once.
4784Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4785that has no semantic type tag. See also
4786
4787
342b8b6e 4788@node Expect Decl
bfa74976
RS
4789@subsection Suppressing Conflict Warnings
4790@cindex suppressing conflict warnings
4791@cindex preventing warnings about conflicts
4792@cindex warnings, preventing
4793@cindex conflicts, suppressing warnings of
4794@findex %expect
d6328241 4795@findex %expect-rr
bfa74976
RS
4796
4797Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4798(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4799have harmless shift/reduce conflicts which are resolved in a predictable
4800way and would be difficult to eliminate. It is desirable to suppress
4801the warning about these conflicts unless the number of conflicts
4802changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4803
4804The declaration looks like this:
4805
4806@example
4807%expect @var{n}
4808@end example
4809
035aa4a0
PE
4810Here @var{n} is a decimal integer. The declaration says there should
4811be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4812Bison reports an error if the number of shift/reduce conflicts differs
4813from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4814
34a6c2d1 4815For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4816serious, and should be eliminated entirely. Bison will always report
35430378 4817reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4818parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4819there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4820also possible to specify an expected number of reduce/reduce conflicts
35430378 4821in GLR parsers, using the declaration:
d6328241
PH
4822
4823@example
4824%expect-rr @var{n}
4825@end example
4826
bfa74976
RS
4827In general, using @code{%expect} involves these steps:
4828
4829@itemize @bullet
4830@item
4831Compile your grammar without @code{%expect}. Use the @samp{-v} option
4832to get a verbose list of where the conflicts occur. Bison will also
4833print the number of conflicts.
4834
4835@item
4836Check each of the conflicts to make sure that Bison's default
4837resolution is what you really want. If not, rewrite the grammar and
4838go back to the beginning.
4839
4840@item
4841Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4842number which Bison printed. With GLR parsers, add an
035aa4a0 4843@code{%expect-rr} declaration as well.
bfa74976
RS
4844@end itemize
4845
cf22447c
JD
4846Now Bison will report an error if you introduce an unexpected conflict,
4847but will keep silent otherwise.
bfa74976 4848
342b8b6e 4849@node Start Decl
bfa74976
RS
4850@subsection The Start-Symbol
4851@cindex declaring the start symbol
4852@cindex start symbol, declaring
4853@cindex default start symbol
4854@findex %start
4855
4856Bison assumes by default that the start symbol for the grammar is the first
4857nonterminal specified in the grammar specification section. The programmer
4858may override this restriction with the @code{%start} declaration as follows:
4859
4860@example
4861%start @var{symbol}
4862@end example
4863
342b8b6e 4864@node Pure Decl
bfa74976
RS
4865@subsection A Pure (Reentrant) Parser
4866@cindex reentrant parser
4867@cindex pure parser
d9df47b6 4868@findex %define api.pure
bfa74976
RS
4869
4870A @dfn{reentrant} program is one which does not alter in the course of
4871execution; in other words, it consists entirely of @dfn{pure} (read-only)
4872code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4873for example, a nonreentrant program may not be safe to call from a signal
4874handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4875program must be called only within interlocks.
4876
70811b85 4877Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4878suitable for most uses, and it permits compatibility with Yacc. (The
4879standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4880statically allocated variables for communication with @code{yylex},
4881including @code{yylval} and @code{yylloc}.)
bfa74976 4882
70811b85 4883Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4884declaration @code{%define api.pure} says that you want the parser to be
70811b85 4885reentrant. It looks like this:
bfa74976
RS
4886
4887@example
1f1bd572 4888%define api.pure full
bfa74976
RS
4889@end example
4890
70811b85
RS
4891The result is that the communication variables @code{yylval} and
4892@code{yylloc} become local variables in @code{yyparse}, and a different
4893calling convention is used for the lexical analyzer function
4894@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4895Parsers}, for the details of this. The variable @code{yynerrs}
4896becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4897of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4898Reporting Function @code{yyerror}}). The convention for calling
4899@code{yyparse} itself is unchanged.
4900
4901Whether the parser is pure has nothing to do with the grammar rules.
4902You can generate either a pure parser or a nonreentrant parser from any
4903valid grammar.
bfa74976 4904
9987d1b3
JD
4905@node Push Decl
4906@subsection A Push Parser
4907@cindex push parser
4908@cindex push parser
812775a0 4909@findex %define api.push-pull
9987d1b3 4910
59da312b
JD
4911(The current push parsing interface is experimental and may evolve.
4912More user feedback will help to stabilize it.)
4913
f4101aa6
AD
4914A pull parser is called once and it takes control until all its input
4915is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4916each time a new token is made available.
4917
f4101aa6 4918A push parser is typically useful when the parser is part of a
9987d1b3 4919main event loop in the client's application. This is typically
f4101aa6
AD
4920a requirement of a GUI, when the main event loop needs to be triggered
4921within a certain time period.
9987d1b3 4922
d782395d
JD
4923Normally, Bison generates a pull parser.
4924The following Bison declaration says that you want the parser to be a push
2f4518a1 4925parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4926
4927@example
f37495f6 4928%define api.push-pull push
9987d1b3
JD
4929@end example
4930
4931In almost all cases, you want to ensure that your push parser is also
4932a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4933time you should create an impure push parser is to have backwards
9987d1b3
JD
4934compatibility with the impure Yacc pull mode interface. Unless you know
4935what you are doing, your declarations should look like this:
4936
4937@example
1f1bd572 4938%define api.pure full
f37495f6 4939%define api.push-pull push
9987d1b3
JD
4940@end example
4941
f4101aa6
AD
4942There is a major notable functional difference between the pure push parser
4943and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4944many parser instances, of the same type of parser, in memory at the same time.
4945An impure push parser should only use one parser at a time.
4946
4947When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4948the generated parser. @code{yypstate} is a structure that the generated
4949parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4950function that will create a new parser instance. @code{yypstate_delete}
4951will free the resources associated with the corresponding parser instance.
f4101aa6 4952Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4953token is available to provide the parser. A trivial example
4954of using a pure push parser would look like this:
4955
4956@example
4957int status;
4958yypstate *ps = yypstate_new ();
4959do @{
4960 status = yypush_parse (ps, yylex (), NULL);
4961@} while (status == YYPUSH_MORE);
4962yypstate_delete (ps);
4963@end example
4964
4965If the user decided to use an impure push parser, a few things about
f4101aa6 4966the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4967a global variable instead of a variable in the @code{yypush_parse} function.
4968For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4969changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4970example would thus look like this:
4971
4972@example
4973extern int yychar;
4974int status;
4975yypstate *ps = yypstate_new ();
4976do @{
4977 yychar = yylex ();
4978 status = yypush_parse (ps);
4979@} while (status == YYPUSH_MORE);
4980yypstate_delete (ps);
4981@end example
4982
f4101aa6 4983That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4984for use by the next invocation of the @code{yypush_parse} function.
4985
f4101aa6 4986Bison also supports both the push parser interface along with the pull parser
9987d1b3 4987interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4988you should replace the @code{%define api.push-pull push} declaration with the
4989@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4990the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4991and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4992would be used. However, the user should note that it is implemented in the
d782395d
JD
4993generated parser by calling @code{yypull_parse}.
4994This makes the @code{yyparse} function that is generated with the
f37495f6 4995@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4996@code{yyparse} function. If the user
4997calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4998stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4999and then @code{yypull_parse} the rest of the input stream. If you would like
5000to switch back and forth between between parsing styles, you would have to
5001write your own @code{yypull_parse} function that knows when to quit looking
5002for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5003like this:
5004
5005@example
5006yypstate *ps = yypstate_new ();
5007yypull_parse (ps); /* Will call the lexer */
5008yypstate_delete (ps);
5009@end example
5010
1f1bd572
TR
5011Adding the @code{%define api.pure full} declaration does exactly the same thing
5012to the generated parser with @code{%define api.push-pull both} as it did for
f37495f6 5013@code{%define api.push-pull push}.
9987d1b3 5014
342b8b6e 5015@node Decl Summary
bfa74976
RS
5016@subsection Bison Declaration Summary
5017@cindex Bison declaration summary
5018@cindex declaration summary
5019@cindex summary, Bison declaration
5020
d8988b2f 5021Here is a summary of the declarations used to define a grammar:
bfa74976 5022
18b519c0 5023@deffn {Directive} %union
bfa74976
RS
5024Declare the collection of data types that semantic values may have
5025(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5026@end deffn
bfa74976 5027
18b519c0 5028@deffn {Directive} %token
bfa74976
RS
5029Declare a terminal symbol (token type name) with no precedence
5030or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5031@end deffn
bfa74976 5032
18b519c0 5033@deffn {Directive} %right
bfa74976
RS
5034Declare a terminal symbol (token type name) that is right-associative
5035(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5036@end deffn
bfa74976 5037
18b519c0 5038@deffn {Directive} %left
bfa74976
RS
5039Declare a terminal symbol (token type name) that is left-associative
5040(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5041@end deffn
bfa74976 5042
18b519c0 5043@deffn {Directive} %nonassoc
bfa74976 5044Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5045(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5046Using it in a way that would be associative is a syntax error.
5047@end deffn
5048
91d2c560 5049@ifset defaultprec
39a06c25 5050@deffn {Directive} %default-prec
22fccf95 5051Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5052(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5053@end deffn
91d2c560 5054@end ifset
bfa74976 5055
18b519c0 5056@deffn {Directive} %type
bfa74976
RS
5057Declare the type of semantic values for a nonterminal symbol
5058(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5059@end deffn
bfa74976 5060
18b519c0 5061@deffn {Directive} %start
89cab50d
AD
5062Specify the grammar's start symbol (@pxref{Start Decl, ,The
5063Start-Symbol}).
18b519c0 5064@end deffn
bfa74976 5065
18b519c0 5066@deffn {Directive} %expect
bfa74976
RS
5067Declare the expected number of shift-reduce conflicts
5068(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5069@end deffn
5070
bfa74976 5071
d8988b2f
AD
5072@sp 1
5073@noindent
5074In order to change the behavior of @command{bison}, use the following
5075directives:
5076
148d66d8 5077@deffn {Directive} %code @{@var{code}@}
8e6f2266 5078@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5079@findex %code
8e6f2266
JD
5080Insert @var{code} verbatim into the output parser source at the
5081default location or at the location specified by @var{qualifier}.
5082@xref{%code Summary}.
148d66d8
JD
5083@end deffn
5084
18b519c0 5085@deffn {Directive} %debug
e358222b 5086In the parser implementation file, define the macro @code{YYDEBUG} (or
5a05f42e 5087@code{@var{prefix}DEBUG} with @samp{%define api.prefix @var{prefix}}, see
e358222b
AD
5088@ref{Multiple Parsers, ,Multiple Parsers in the Same Program}) to 1 if it is
5089not already defined, so that the debugging facilities are compiled.
5090@xref{Tracing, ,Tracing Your Parser}.
bd5df716 5091@end deffn
d8988b2f 5092
2f4518a1
JD
5093@deffn {Directive} %define @var{variable}
5094@deffnx {Directive} %define @var{variable} @var{value}
5095@deffnx {Directive} %define @var{variable} "@var{value}"
5096Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5097@end deffn
5098
5099@deffn {Directive} %defines
5100Write a parser header file containing macro definitions for the token
5101type names defined in the grammar as well as a few other declarations.
5102If the parser implementation file is named @file{@var{name}.c} then
5103the parser header file is named @file{@var{name}.h}.
5104
5105For C parsers, the parser header file declares @code{YYSTYPE} unless
5106@code{YYSTYPE} is already defined as a macro or you have used a
5107@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5108you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5109Value Type}) with components that require other definitions, or if you
5110have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5111Type, ,Data Types of Semantic Values}), you need to arrange for these
5112definitions to be propagated to all modules, e.g., by putting them in
5113a prerequisite header that is included both by your parser and by any
5114other module that needs @code{YYSTYPE}.
5115
5116Unless your parser is pure, the parser header file declares
5117@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5118(Reentrant) Parser}.
5119
5120If you have also used locations, the parser header file declares
7404cdf3
JD
5121@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5122@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
2f4518a1
JD
5123
5124This parser header file is normally essential if you wish to put the
5125definition of @code{yylex} in a separate source file, because
5126@code{yylex} typically needs to be able to refer to the
5127above-mentioned declarations and to the token type codes. @xref{Token
5128Values, ,Semantic Values of Tokens}.
5129
5130@findex %code requires
5131@findex %code provides
5132If you have declared @code{%code requires} or @code{%code provides}, the output
5133header also contains their code.
5134@xref{%code Summary}.
c9d5bcc9
AD
5135
5136@cindex Header guard
5137The generated header is protected against multiple inclusions with a C
5138preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5139@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5140,Multiple Parsers in the Same Program}) and generated file name turned
5141uppercase, with each series of non alphanumerical characters converted to a
5142single underscore.
5143
5144For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5145"lib/parse.h"}, the header will be guarded as follows.
5146@example
5147#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5148# define YY_CALC_LIB_PARSE_H_INCLUDED
5149...
5150#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5151@end example
2f4518a1
JD
5152@end deffn
5153
5154@deffn {Directive} %defines @var{defines-file}
5155Same as above, but save in the file @var{defines-file}.
5156@end deffn
5157
5158@deffn {Directive} %destructor
5159Specify how the parser should reclaim the memory associated to
5160discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5161@end deffn
5162
5163@deffn {Directive} %file-prefix "@var{prefix}"
5164Specify a prefix to use for all Bison output file names. The names
5165are chosen as if the grammar file were named @file{@var{prefix}.y}.
5166@end deffn
5167
5168@deffn {Directive} %language "@var{language}"
5169Specify the programming language for the generated parser. Currently
5170supported languages include C, C++, and Java.
5171@var{language} is case-insensitive.
5172
2f4518a1
JD
5173@end deffn
5174
5175@deffn {Directive} %locations
5176Generate the code processing the locations (@pxref{Action Features,
5177,Special Features for Use in Actions}). This mode is enabled as soon as
5178the grammar uses the special @samp{@@@var{n}} tokens, but if your
5179grammar does not use it, using @samp{%locations} allows for more
5180accurate syntax error messages.
5181@end deffn
5182
2f4518a1
JD
5183@ifset defaultprec
5184@deffn {Directive} %no-default-prec
5185Do not assign a precedence to rules lacking an explicit @code{%prec}
5186modifier (@pxref{Contextual Precedence, ,Context-Dependent
5187Precedence}).
5188@end deffn
5189@end ifset
5190
5191@deffn {Directive} %no-lines
5192Don't generate any @code{#line} preprocessor commands in the parser
5193implementation file. Ordinarily Bison writes these commands in the
5194parser implementation file so that the C compiler and debuggers will
5195associate errors and object code with your source file (the grammar
5196file). This directive causes them to associate errors with the parser
5197implementation file, treating it as an independent source file in its
5198own right.
5199@end deffn
5200
5201@deffn {Directive} %output "@var{file}"
5202Specify @var{file} for the parser implementation file.
5203@end deffn
5204
5205@deffn {Directive} %pure-parser
5206Deprecated version of @code{%define api.pure} (@pxref{%define
5207Summary,,api.pure}), for which Bison is more careful to warn about
5208unreasonable usage.
5209@end deffn
5210
5211@deffn {Directive} %require "@var{version}"
5212Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5213Require a Version of Bison}.
5214@end deffn
5215
5216@deffn {Directive} %skeleton "@var{file}"
5217Specify the skeleton to use.
5218
5219@c You probably don't need this option unless you are developing Bison.
5220@c You should use @code{%language} if you want to specify the skeleton for a
5221@c different language, because it is clearer and because it will always choose the
5222@c correct skeleton for non-deterministic or push parsers.
5223
5224If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5225file in the Bison installation directory.
5226If it does, @var{file} is an absolute file name or a file name relative to the
5227directory of the grammar file.
5228This is similar to how most shells resolve commands.
5229@end deffn
5230
5231@deffn {Directive} %token-table
5232Generate an array of token names in the parser implementation file.
5233The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5234the name of the token whose internal Bison token code number is
5235@var{i}. The first three elements of @code{yytname} correspond to the
5236predefined tokens @code{"$end"}, @code{"error"}, and
5237@code{"$undefined"}; after these come the symbols defined in the
5238grammar file.
5239
5240The name in the table includes all the characters needed to represent
5241the token in Bison. For single-character literals and literal
5242strings, this includes the surrounding quoting characters and any
5243escape sequences. For example, the Bison single-character literal
5244@code{'+'} corresponds to a three-character name, represented in C as
5245@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5246corresponds to a five-character name, represented in C as
5247@code{"\"\\\\/\""}.
5248
5249When you specify @code{%token-table}, Bison also generates macro
5250definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5251@code{YYNRULES}, and @code{YYNSTATES}:
5252
5253@table @code
5254@item YYNTOKENS
5255The highest token number, plus one.
5256@item YYNNTS
5257The number of nonterminal symbols.
5258@item YYNRULES
5259The number of grammar rules,
5260@item YYNSTATES
5261The number of parser states (@pxref{Parser States}).
5262@end table
5263@end deffn
5264
5265@deffn {Directive} %verbose
5266Write an extra output file containing verbose descriptions of the
5267parser states and what is done for each type of lookahead token in
5268that state. @xref{Understanding, , Understanding Your Parser}, for more
5269information.
5270@end deffn
5271
5272@deffn {Directive} %yacc
5273Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5274including its naming conventions. @xref{Bison Options}, for more.
5275@end deffn
5276
5277
5278@node %define Summary
5279@subsection %define Summary
406dec82
JD
5280
5281There are many features of Bison's behavior that can be controlled by
5282assigning the feature a single value. For historical reasons, some
5283such features are assigned values by dedicated directives, such as
5284@code{%start}, which assigns the start symbol. However, newer such
5285features are associated with variables, which are assigned by the
5286@code{%define} directive:
5287
c1d19e10 5288@deffn {Directive} %define @var{variable}
f37495f6 5289@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5290@deffnx {Directive} %define @var{variable} "@var{value}"
406dec82 5291Define @var{variable} to @var{value}.
9611cfa2 5292
406dec82
JD
5293@var{value} must be placed in quotation marks if it contains any
5294character other than a letter, underscore, period, or non-initial dash
5295or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5296to specifying @code{""}.
9611cfa2 5297
406dec82
JD
5298It is an error if a @var{variable} is defined by @code{%define}
5299multiple times, but see @ref{Bison Options,,-D
5300@var{name}[=@var{value}]}.
5301@end deffn
f37495f6 5302
406dec82
JD
5303The rest of this section summarizes variables and values that
5304@code{%define} accepts.
9611cfa2 5305
406dec82
JD
5306Some @var{variable}s take Boolean values. In this case, Bison will
5307complain if the variable definition does not meet one of the following
5308four conditions:
9611cfa2
JD
5309
5310@enumerate
f37495f6 5311@item @code{@var{value}} is @code{true}
9611cfa2 5312
f37495f6
JD
5313@item @code{@var{value}} is omitted (or @code{""} is specified).
5314This is equivalent to @code{true}.
9611cfa2 5315
f37495f6 5316@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5317
5318@item @var{variable} is never defined.
628be6c9 5319In this case, Bison selects a default value.
9611cfa2 5320@end enumerate
148d66d8 5321
628be6c9
JD
5322What @var{variable}s are accepted, as well as their meanings and default
5323values, depend on the selected target language and/or the parser
5324skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5325Summary,,%skeleton}).
5326Unaccepted @var{variable}s produce an error.
793fbca5
JD
5327Some of the accepted @var{variable}s are:
5328
5329@itemize @bullet
db8ab2be
AD
5330@c ================================================== api.location.type
5331@item @code{api.location.type}
5332@findex %define api.location.type
5333
5334@itemize @bullet
7287be84 5335@item Language(s): C++, Java
db8ab2be
AD
5336
5337@item Purpose: Define the location type.
5338@xref{User Defined Location Type}.
5339
5340@item Accepted Values: String
5341
5342@item Default Value: none
5343
5344@item History: introduced in Bison 2.7
5345@end itemize
5346
4b3847c3
AD
5347@c ================================================== api.prefix
5348@item @code{api.prefix}
5349@findex %define api.prefix
5350
5351@itemize @bullet
5352@item Language(s): All
5353
db8ab2be 5354@item Purpose: Rename exported symbols.
4b3847c3
AD
5355@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5356
5357@item Accepted Values: String
5358
5359@item Default Value: @code{yy}
e358222b
AD
5360
5361@item History: introduced in Bison 2.6
4b3847c3
AD
5362@end itemize
5363
ea118b72 5364@c ================================================== api.pure
4b3847c3 5365@item @code{api.pure}
d9df47b6
JD
5366@findex %define api.pure
5367
5368@itemize @bullet
5369@item Language(s): C
5370
5371@item Purpose: Request a pure (reentrant) parser program.
5372@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5373
1f1bd572
TR
5374@item Accepted Values: @code{true}, @code{false}, @code{full}
5375
5376The value may be omitted: this is equivalent to specifying @code{true}, as is
5377the case for Boolean values.
5378
5379When @code{%define api.pure full} is used, the parser is made reentrant. This
511dd971
AD
5380changes the signature for @code{yylex} (@pxref{Pure Calling}), and also that of
5381@code{yyerror} when the tracking of locations has been activated, as shown
5382below.
1f1bd572
TR
5383
5384The @code{true} value is very similar to the @code{full} value, the only
5385difference is in the signature of @code{yyerror} on Yacc parsers without
5386@code{%parse-param}, for historical reasons.
5387
5388I.e., if @samp{%locations %define api.pure} is passed then the prototypes for
5389@code{yyerror} are:
5390
5391@example
5392void yyerror (char const *msg); /* Yacc parsers. */
5393void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
5394@end example
5395
5396But if @samp{%locations %define api.pure %parse-param @{int *nastiness@}} is
5397used, then both parsers have the same signature:
5398
5399@example
5400void yyerror (YYLTYPE *llocp, int *nastiness, char const *msg);
5401@end example
5402
5403(@pxref{Error Reporting, ,The Error
5404Reporting Function @code{yyerror}})
d9df47b6 5405
f37495f6 5406@item Default Value: @code{false}
1f1bd572
TR
5407
5408@item History: the @code{full} value was introduced in Bison 2.7
d9df47b6
JD
5409@end itemize
5410
4b3847c3
AD
5411@c ================================================== api.push-pull
5412
5413@item @code{api.push-pull}
812775a0 5414@findex %define api.push-pull
793fbca5
JD
5415
5416@itemize @bullet
34a6c2d1 5417@item Language(s): C (deterministic parsers only)
793fbca5 5418
3b1977ea 5419@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5420@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5421(The current push parsing interface is experimental and may evolve.
5422More user feedback will help to stabilize it.)
793fbca5 5423
f37495f6 5424@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5425
f37495f6 5426@item Default Value: @code{pull}
793fbca5
JD
5427@end itemize
5428
232be91a
AD
5429@c ================================================== lr.default-reductions
5430
4b3847c3 5431@item @code{lr.default-reductions}
1d0f55cc 5432@findex %define lr.default-reductions
34a6c2d1
JD
5433
5434@itemize @bullet
5435@item Language(s): all
5436
4c38b19e 5437@item Purpose: Specify the kind of states that are permitted to
6f04ee6c
JD
5438contain default reductions. @xref{Default Reductions}. (The ability to
5439specify where default reductions should be used is experimental. More user
5440feedback will help to stabilize it.)
34a6c2d1 5441
a6e5a280 5442@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
34a6c2d1
JD
5443@item Default Value:
5444@itemize
f37495f6 5445@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
a6e5a280 5446@item @code{most} otherwise.
34a6c2d1
JD
5447@end itemize
5448@end itemize
5449
232be91a
AD
5450@c ============================================ lr.keep-unreachable-states
5451
4b3847c3 5452@item @code{lr.keep-unreachable-states}
812775a0 5453@findex %define lr.keep-unreachable-states
31984206
JD
5454
5455@itemize @bullet
5456@item Language(s): all
3b1977ea 5457@item Purpose: Request that Bison allow unreachable parser states to
6f04ee6c 5458remain in the parser tables. @xref{Unreachable States}.
31984206 5459@item Accepted Values: Boolean
f37495f6 5460@item Default Value: @code{false}
31984206
JD
5461@end itemize
5462
232be91a
AD
5463@c ================================================== lr.type
5464
4b3847c3 5465@item @code{lr.type}
34a6c2d1 5466@findex %define lr.type
34a6c2d1
JD
5467
5468@itemize @bullet
5469@item Language(s): all
5470
3b1977ea 5471@item Purpose: Specify the type of parser tables within the
6f04ee6c 5472LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
34a6c2d1
JD
5473More user feedback will help to stabilize it.)
5474
6f04ee6c 5475@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
34a6c2d1 5476
f37495f6 5477@item Default Value: @code{lalr}
34a6c2d1
JD
5478@end itemize
5479
4b3847c3
AD
5480@c ================================================== namespace
5481
5482@item @code{namespace}
793fbca5
JD
5483@findex %define namespace
5484
5485@itemize
5486@item Languages(s): C++
5487
3b1977ea 5488@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5489For example, if you specify:
5490
5491@smallexample
5492%define namespace "foo::bar"
5493@end smallexample
5494
5495Bison uses @code{foo::bar} verbatim in references such as:
5496
5497@smallexample
5498foo::bar::parser::semantic_type
5499@end smallexample
5500
5501However, to open a namespace, Bison removes any leading @code{::} and then
5502splits on any remaining occurrences:
5503
5504@smallexample
5505namespace foo @{ namespace bar @{
5506 class position;
5507 class location;
5508@} @}
5509@end smallexample
5510
5511@item Accepted Values: Any absolute or relative C++ namespace reference without
5512a trailing @code{"::"}.
5513For example, @code{"foo"} or @code{"::foo::bar"}.
5514
5515@item Default Value: The value specified by @code{%name-prefix}, which defaults
5516to @code{yy}.
5517This usage of @code{%name-prefix} is for backward compatibility and can be
5518confusing since @code{%name-prefix} also specifies the textual prefix for the
5519lexical analyzer function.
5520Thus, if you specify @code{%name-prefix}, it is best to also specify
5521@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5522lexical analyzer function.
5523For example, if you specify:
5524
5525@smallexample
5526%define namespace "foo"
5527%name-prefix "bar::"
5528@end smallexample
5529
5530The parser namespace is @code{foo} and @code{yylex} is referenced as
5531@code{bar::lex}.
5532@end itemize
4c38b19e
JD
5533
5534@c ================================================== parse.lac
4b3847c3 5535@item @code{parse.lac}
4c38b19e 5536@findex %define parse.lac
4c38b19e
JD
5537
5538@itemize
6f04ee6c 5539@item Languages(s): C (deterministic parsers only)
4c38b19e 5540
35430378 5541@item Purpose: Enable LAC (lookahead correction) to improve
6f04ee6c 5542syntax error handling. @xref{LAC}.
4c38b19e 5543@item Accepted Values: @code{none}, @code{full}
4c38b19e
JD
5544@item Default Value: @code{none}
5545@end itemize
793fbca5
JD
5546@end itemize
5547
d8988b2f 5548
8e6f2266
JD
5549@node %code Summary
5550@subsection %code Summary
8e6f2266 5551@findex %code
8e6f2266 5552@cindex Prologue
406dec82
JD
5553
5554The @code{%code} directive inserts code verbatim into the output
5555parser source at any of a predefined set of locations. It thus serves
5556as a flexible and user-friendly alternative to the traditional Yacc
5557prologue, @code{%@{@var{code}%@}}. This section summarizes the
5558functionality of @code{%code} for the various target languages
5559supported by Bison. For a detailed discussion of how to use
5560@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5561is advantageous to do so, @pxref{Prologue Alternatives}.
5562
5563@deffn {Directive} %code @{@var{code}@}
5564This is the unqualified form of the @code{%code} directive. It
5565inserts @var{code} verbatim at a language-dependent default location
5566in the parser implementation.
5567
8e6f2266 5568For C/C++, the default location is the parser implementation file
406dec82
JD
5569after the usual contents of the parser header file. Thus, the
5570unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
8e6f2266
JD
5571
5572For Java, the default location is inside the parser class.
5573@end deffn
5574
5575@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5576This is the qualified form of the @code{%code} directive.
406dec82
JD
5577@var{qualifier} identifies the purpose of @var{code} and thus the
5578location(s) where Bison should insert it. That is, if you need to
5579specify location-sensitive @var{code} that does not belong at the
5580default location selected by the unqualified @code{%code} form, use
5581this form instead.
5582@end deffn
5583
5584For any particular qualifier or for the unqualified form, if there are
5585multiple occurrences of the @code{%code} directive, Bison concatenates
5586the specified code in the order in which it appears in the grammar
5587file.
8e6f2266 5588
406dec82
JD
5589Not all qualifiers are accepted for all target languages. Unaccepted
5590qualifiers produce an error. Some of the accepted qualifiers are:
8e6f2266
JD
5591
5592@itemize @bullet
5593@item requires
5594@findex %code requires
5595
5596@itemize @bullet
5597@item Language(s): C, C++
5598
5599@item Purpose: This is the best place to write dependency code required for
5600@code{YYSTYPE} and @code{YYLTYPE}.
5601In other words, it's the best place to define types referenced in @code{%union}
5602directives, and it's the best place to override Bison's default @code{YYSTYPE}
5603and @code{YYLTYPE} definitions.
5604
5605@item Location(s): The parser header file and the parser implementation file
5606before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5607definitions.
5608@end itemize
5609
5610@item provides
5611@findex %code provides
5612
5613@itemize @bullet
5614@item Language(s): C, C++
5615
5616@item Purpose: This is the best place to write additional definitions and
5617declarations that should be provided to other modules.
5618
5619@item Location(s): The parser header file and the parser implementation
5620file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5621token definitions.
5622@end itemize
5623
5624@item top
5625@findex %code top
5626
5627@itemize @bullet
5628@item Language(s): C, C++
5629
5630@item Purpose: The unqualified @code{%code} or @code{%code requires}
5631should usually be more appropriate than @code{%code top}. However,
5632occasionally it is necessary to insert code much nearer the top of the
5633parser implementation file. For example:
5634
ea118b72 5635@example
8e6f2266
JD
5636%code top @{
5637 #define _GNU_SOURCE
5638 #include <stdio.h>
5639@}
ea118b72 5640@end example
8e6f2266
JD
5641
5642@item Location(s): Near the top of the parser implementation file.
5643@end itemize
5644
5645@item imports
5646@findex %code imports
5647
5648@itemize @bullet
5649@item Language(s): Java
5650
5651@item Purpose: This is the best place to write Java import directives.
5652
5653@item Location(s): The parser Java file after any Java package directive and
5654before any class definitions.
5655@end itemize
5656@end itemize
5657
406dec82
JD
5658Though we say the insertion locations are language-dependent, they are
5659technically skeleton-dependent. Writers of non-standard skeletons
5660however should choose their locations consistently with the behavior
5661of the standard Bison skeletons.
8e6f2266 5662
d8988b2f 5663
342b8b6e 5664@node Multiple Parsers
bfa74976
RS
5665@section Multiple Parsers in the Same Program
5666
5667Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
5668only one Bison parser. But what if you want to parse more than one language
5669with the same program? Then you need to avoid name conflicts between
5670different definitions of functions and variables such as @code{yyparse},
5671@code{yylval}. To use different parsers from the same compilation unit, you
5672also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
5673exported in the generated header.
5674
5675The easy way to do this is to define the @code{%define} variable
e358222b
AD
5676@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
5677headers do not conflict when included together, and that compiled objects
5678can be linked together too. Specifying @samp{%define api.prefix
5679@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
5680@ref{Invocation, ,Invoking Bison}) renames the interface functions and
5681variables of the Bison parser to start with @var{prefix} instead of
5682@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
5683upper-cased) instead of @samp{YY}.
4b3847c3
AD
5684
5685The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
5686@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
5687@code{yydebug}. If you use a push parser, @code{yypush_parse},
5688@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
5689@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
5690@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
5691specifically --- more about this below.
4b3847c3
AD
5692
5693For example, if you use @samp{%define api.prefix c}, the names become
5694@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
5695on.
5696
5697The @code{%define} variable @code{api.prefix} works in two different ways.
5698In the implementation file, it works by adding macro definitions to the
5699beginning of the parser implementation file, defining @code{yyparse} as
5700@code{@var{prefix}parse}, and so on:
5701
5702@example
5703#define YYSTYPE CTYPE
5704#define yyparse cparse
5705#define yylval clval
5706...
5707YYSTYPE yylval;
5708int yyparse (void);
5709@end example
5710
5711This effectively substitutes one name for the other in the entire parser
5712implementation file, thus the ``original'' names (@code{yylex},
5713@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
5714
5715However, in the parser header file, the symbols are defined renamed, for
5716instance:
5717
5718@example
5719extern CSTYPE clval;
5720int cparse (void);
5721@end example
5722
e358222b
AD
5723The macro @code{YYDEBUG} is commonly used to enable the tracing support in
5724parsers. To comply with this tradition, when @code{api.prefix} is used,
5725@code{YYDEBUG} (not renamed) is used as a default value:
5726
5727@example
5728/* Enabling traces. */
5729#ifndef CDEBUG
5730# if defined YYDEBUG
5731# if YYDEBUG
5732# define CDEBUG 1
5733# else
5734# define CDEBUG 0
5735# endif
5736# else
5737# define CDEBUG 0
5738# endif
5739#endif
5740#if CDEBUG
5741extern int cdebug;
5742#endif
5743@end example
5744
5745@sp 2
5746
5747Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
5748the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
5749Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 5750
342b8b6e 5751@node Interface
bfa74976
RS
5752@chapter Parser C-Language Interface
5753@cindex C-language interface
5754@cindex interface
5755
5756The Bison parser is actually a C function named @code{yyparse}. Here we
5757describe the interface conventions of @code{yyparse} and the other
5758functions that it needs to use.
5759
5760Keep in mind that the parser uses many C identifiers starting with
5761@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5762identifier (aside from those in this manual) in an action or in epilogue
5763in the grammar file, you are likely to run into trouble.
bfa74976
RS
5764
5765@menu
f56274a8
DJ
5766* Parser Function:: How to call @code{yyparse} and what it returns.
5767* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5768* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5769* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5770* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5771* Lexical:: You must supply a function @code{yylex}
5772 which reads tokens.
5773* Error Reporting:: You must supply a function @code{yyerror}.
5774* Action Features:: Special features for use in actions.
5775* Internationalization:: How to let the parser speak in the user's
5776 native language.
bfa74976
RS
5777@end menu
5778
342b8b6e 5779@node Parser Function
bfa74976
RS
5780@section The Parser Function @code{yyparse}
5781@findex yyparse
5782
5783You call the function @code{yyparse} to cause parsing to occur. This
5784function reads tokens, executes actions, and ultimately returns when it
5785encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5786write an action which directs @code{yyparse} to return immediately
5787without reading further.
bfa74976 5788
2a8d363a
AD
5789
5790@deftypefun int yyparse (void)
bfa74976
RS
5791The value returned by @code{yyparse} is 0 if parsing was successful (return
5792is due to end-of-input).
5793
b47dbebe
PE
5794The value is 1 if parsing failed because of invalid input, i.e., input
5795that contains a syntax error or that causes @code{YYABORT} to be
5796invoked.
5797
5798The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5799@end deftypefun
bfa74976
RS
5800
5801In an action, you can cause immediate return from @code{yyparse} by using
5802these macros:
5803
2a8d363a 5804@defmac YYACCEPT
bfa74976
RS
5805@findex YYACCEPT
5806Return immediately with value 0 (to report success).
2a8d363a 5807@end defmac
bfa74976 5808
2a8d363a 5809@defmac YYABORT
bfa74976
RS
5810@findex YYABORT
5811Return immediately with value 1 (to report failure).
2a8d363a
AD
5812@end defmac
5813
5814If you use a reentrant parser, you can optionally pass additional
5815parameter information to it in a reentrant way. To do so, use the
5816declaration @code{%parse-param}:
5817
feeb0eda 5818@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5819@findex %parse-param
287c78f6
PE
5820Declare that an argument declared by the braced-code
5821@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5822The @var{argument-declaration} is used when declaring
feeb0eda
PE
5823functions or prototypes. The last identifier in
5824@var{argument-declaration} must be the argument name.
2a8d363a
AD
5825@end deffn
5826
5827Here's an example. Write this in the parser:
5828
5829@example
feeb0eda
PE
5830%parse-param @{int *nastiness@}
5831%parse-param @{int *randomness@}
2a8d363a
AD
5832@end example
5833
5834@noindent
5835Then call the parser like this:
5836
5837@example
5838@{
5839 int nastiness, randomness;
5840 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5841 value = yyparse (&nastiness, &randomness);
5842 @dots{}
5843@}
5844@end example
5845
5846@noindent
5847In the grammar actions, use expressions like this to refer to the data:
5848
5849@example
5850exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5851@end example
5852
1f1bd572
TR
5853@noindent
5854Using the following:
5855@example
5856%parse-param @{int *randomness@}
5857@end example
5858
5859Results in these signatures:
5860@example
5861void yyerror (int *randomness, const char *msg);
5862int yyparse (int *randomness);
5863@end example
5864
5865@noindent
5866Or, if both @code{%define api.pure full} (or just @code{%define api.pure})
5867and @code{%locations} are used:
5868
5869@example
5870void yyerror (YYLTYPE *llocp, int *randomness, const char *msg);
5871int yyparse (int *randomness);
5872@end example
5873
9987d1b3
JD
5874@node Push Parser Function
5875@section The Push Parser Function @code{yypush_parse}
5876@findex yypush_parse
5877
59da312b
JD
5878(The current push parsing interface is experimental and may evolve.
5879More user feedback will help to stabilize it.)
5880
f4101aa6 5881You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5882function is available if either the @code{%define api.push-pull push} or
5883@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5884@xref{Push Decl, ,A Push Parser}.
5885
5886@deftypefun int yypush_parse (yypstate *yyps)
ad60e80f
AD
5887The value returned by @code{yypush_parse} is the same as for yyparse with
5888the following exception: it returns @code{YYPUSH_MORE} if more input is
5889required to finish parsing the grammar.
9987d1b3
JD
5890@end deftypefun
5891
5892@node Pull Parser Function
5893@section The Pull Parser Function @code{yypull_parse}
5894@findex yypull_parse
5895
59da312b
JD
5896(The current push parsing interface is experimental and may evolve.
5897More user feedback will help to stabilize it.)
5898
f4101aa6 5899You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5900stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5901declaration is used.
9987d1b3
JD
5902@xref{Push Decl, ,A Push Parser}.
5903
5904@deftypefun int yypull_parse (yypstate *yyps)
5905The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5906@end deftypefun
5907
5908@node Parser Create Function
5909@section The Parser Create Function @code{yystate_new}
5910@findex yypstate_new
5911
59da312b
JD
5912(The current push parsing interface is experimental and may evolve.
5913More user feedback will help to stabilize it.)
5914
f4101aa6 5915You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5916This function is available if either the @code{%define api.push-pull push} or
5917@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5918@xref{Push Decl, ,A Push Parser}.
5919
34a41a93 5920@deftypefun {yypstate*} yypstate_new (void)
c781580d 5921The function will return a valid parser instance if there was memory available
333e670c
JD
5922or 0 if no memory was available.
5923In impure mode, it will also return 0 if a parser instance is currently
5924allocated.
9987d1b3
JD
5925@end deftypefun
5926
5927@node Parser Delete Function
5928@section The Parser Delete Function @code{yystate_delete}
5929@findex yypstate_delete
5930
59da312b
JD
5931(The current push parsing interface is experimental and may evolve.
5932More user feedback will help to stabilize it.)
5933
9987d1b3 5934You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5935function is available if either the @code{%define api.push-pull push} or
5936@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5937@xref{Push Decl, ,A Push Parser}.
5938
5939@deftypefun void yypstate_delete (yypstate *yyps)
5940This function will reclaim the memory associated with a parser instance.
5941After this call, you should no longer attempt to use the parser instance.
5942@end deftypefun
bfa74976 5943
342b8b6e 5944@node Lexical
bfa74976
RS
5945@section The Lexical Analyzer Function @code{yylex}
5946@findex yylex
5947@cindex lexical analyzer
5948
5949The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5950the input stream and returns them to the parser. Bison does not create
5951this function automatically; you must write it so that @code{yyparse} can
5952call it. The function is sometimes referred to as a lexical scanner.
5953
9913d6e4
JD
5954In simple programs, @code{yylex} is often defined at the end of the
5955Bison grammar file. If @code{yylex} is defined in a separate source
5956file, you need to arrange for the token-type macro definitions to be
5957available there. To do this, use the @samp{-d} option when you run
5958Bison, so that it will write these macro definitions into the separate
5959parser header file, @file{@var{name}.tab.h}, which you can include in
5960the other source files that need it. @xref{Invocation, ,Invoking
5961Bison}.
bfa74976
RS
5962
5963@menu
5964* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5965* Token Values:: How @code{yylex} must return the semantic value
5966 of the token it has read.
5967* Token Locations:: How @code{yylex} must return the text location
5968 (line number, etc.) of the token, if the
5969 actions want that.
5970* Pure Calling:: How the calling convention differs in a pure parser
5971 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5972@end menu
5973
342b8b6e 5974@node Calling Convention
bfa74976
RS
5975@subsection Calling Convention for @code{yylex}
5976
72d2299c
PE
5977The value that @code{yylex} returns must be the positive numeric code
5978for the type of token it has just found; a zero or negative value
5979signifies end-of-input.
bfa74976
RS
5980
5981When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5982in the parser implementation file becomes a C macro whose definition
5983is the proper numeric code for that token type. So @code{yylex} can
5984use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5985
5986When a token is referred to in the grammar rules by a character literal,
5987the numeric code for that character is also the code for the token type.
72d2299c
PE
5988So @code{yylex} can simply return that character code, possibly converted
5989to @code{unsigned char} to avoid sign-extension. The null character
5990must not be used this way, because its code is zero and that
bfa74976
RS
5991signifies end-of-input.
5992
5993Here is an example showing these things:
5994
5995@example
13863333
AD
5996int
5997yylex (void)
bfa74976
RS
5998@{
5999 @dots{}
72d2299c 6000 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6001 return 0;
6002 @dots{}
6003 if (c == '+' || c == '-')
72d2299c 6004 return c; /* Assume token type for `+' is '+'. */
bfa74976 6005 @dots{}
72d2299c 6006 return INT; /* Return the type of the token. */
bfa74976
RS
6007 @dots{}
6008@}
6009@end example
6010
6011@noindent
6012This interface has been designed so that the output from the @code{lex}
6013utility can be used without change as the definition of @code{yylex}.
6014
931c7513
RS
6015If the grammar uses literal string tokens, there are two ways that
6016@code{yylex} can determine the token type codes for them:
6017
6018@itemize @bullet
6019@item
6020If the grammar defines symbolic token names as aliases for the
6021literal string tokens, @code{yylex} can use these symbolic names like
6022all others. In this case, the use of the literal string tokens in
6023the grammar file has no effect on @code{yylex}.
6024
6025@item
9ecbd125 6026@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6027table. The index of the token in the table is the token type's code.
9ecbd125 6028The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6029double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6030token's characters are escaped as necessary to be suitable as input
6031to Bison.
931c7513 6032
9e0876fb
PE
6033Here's code for looking up a multicharacter token in @code{yytname},
6034assuming that the characters of the token are stored in
6035@code{token_buffer}, and assuming that the token does not contain any
6036characters like @samp{"} that require escaping.
931c7513 6037
ea118b72 6038@example
931c7513
RS
6039for (i = 0; i < YYNTOKENS; i++)
6040 @{
6041 if (yytname[i] != 0
6042 && yytname[i][0] == '"'
68449b3a
PE
6043 && ! strncmp (yytname[i] + 1, token_buffer,
6044 strlen (token_buffer))
931c7513
RS
6045 && yytname[i][strlen (token_buffer) + 1] == '"'
6046 && yytname[i][strlen (token_buffer) + 2] == 0)
6047 break;
6048 @}
ea118b72 6049@end example
931c7513
RS
6050
6051The @code{yytname} table is generated only if you use the
8c9a50be 6052@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6053@end itemize
6054
342b8b6e 6055@node Token Values
bfa74976
RS
6056@subsection Semantic Values of Tokens
6057
6058@vindex yylval
9d9b8b70 6059In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6060be stored into the global variable @code{yylval}. When you are using
6061just one data type for semantic values, @code{yylval} has that type.
6062Thus, if the type is @code{int} (the default), you might write this in
6063@code{yylex}:
6064
6065@example
6066@group
6067 @dots{}
72d2299c
PE
6068 yylval = value; /* Put value onto Bison stack. */
6069 return INT; /* Return the type of the token. */
bfa74976
RS
6070 @dots{}
6071@end group
6072@end example
6073
6074When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6075made from the @code{%union} declaration (@pxref{Union Decl, ,The
6076Collection of Value Types}). So when you store a token's value, you
6077must use the proper member of the union. If the @code{%union}
6078declaration looks like this:
bfa74976
RS
6079
6080@example
6081@group
6082%union @{
6083 int intval;
6084 double val;
6085 symrec *tptr;
6086@}
6087@end group
6088@end example
6089
6090@noindent
6091then the code in @code{yylex} might look like this:
6092
6093@example
6094@group
6095 @dots{}
72d2299c
PE
6096 yylval.intval = value; /* Put value onto Bison stack. */
6097 return INT; /* Return the type of the token. */
bfa74976
RS
6098 @dots{}
6099@end group
6100@end example
6101
95923bd6
AD
6102@node Token Locations
6103@subsection Textual Locations of Tokens
bfa74976
RS
6104
6105@vindex yylloc
7404cdf3
JD
6106If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6107in actions to keep track of the textual locations of tokens and groupings,
6108then you must provide this information in @code{yylex}. The function
6109@code{yyparse} expects to find the textual location of a token just parsed
6110in the global variable @code{yylloc}. So @code{yylex} must store the proper
6111data in that variable.
847bf1f5
AD
6112
6113By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6114initialize the members that are going to be used by the actions. The
6115four members are called @code{first_line}, @code{first_column},
6116@code{last_line} and @code{last_column}. Note that the use of this
6117feature makes the parser noticeably slower.
bfa74976
RS
6118
6119@tindex YYLTYPE
6120The data type of @code{yylloc} has the name @code{YYLTYPE}.
6121
342b8b6e 6122@node Pure Calling
c656404a 6123@subsection Calling Conventions for Pure Parsers
bfa74976 6124
1f1bd572 6125When you use the Bison declaration @code{%define api.pure full} to request a
e425e872
RS
6126pure, reentrant parser, the global communication variables @code{yylval}
6127and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6128Parser}.) In such parsers the two global variables are replaced by
6129pointers passed as arguments to @code{yylex}. You must declare them as
6130shown here, and pass the information back by storing it through those
6131pointers.
bfa74976
RS
6132
6133@example
13863333
AD
6134int
6135yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6136@{
6137 @dots{}
6138 *lvalp = value; /* Put value onto Bison stack. */
6139 return INT; /* Return the type of the token. */
6140 @dots{}
6141@}
6142@end example
6143
6144If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6145textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6146this case, omit the second argument; @code{yylex} will be called with
6147only one argument.
6148
e425e872 6149
2a8d363a
AD
6150If you wish to pass the additional parameter data to @code{yylex}, use
6151@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
6152Function}).
e425e872 6153
feeb0eda 6154@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 6155@findex %lex-param
287c78f6
PE
6156Declare that the braced-code @var{argument-declaration} is an
6157additional @code{yylex} argument declaration.
2a8d363a 6158@end deffn
e425e872 6159
1f1bd572 6160@noindent
2a8d363a 6161For instance:
e425e872
RS
6162
6163@example
feeb0eda 6164%lex-param @{int *nastiness@}
e425e872
RS
6165@end example
6166
6167@noindent
1f1bd572 6168results in the following signature:
c656404a
RS
6169
6170@example
1f1bd572 6171int yylex (int *nastiness);
c656404a
RS
6172@end example
6173
2a8d363a 6174@noindent
1f1bd572 6175If @code{%define api.pure full} (or just @code{%define api.pure}) is added:
c656404a 6176
2a8d363a 6177@example
1f1bd572 6178int yylex (YYSTYPE *lvalp, int *nastiness);
2a8d363a 6179@end example
931c7513 6180
342b8b6e 6181@node Error Reporting
bfa74976
RS
6182@section The Error Reporting Function @code{yyerror}
6183@cindex error reporting function
6184@findex yyerror
6185@cindex parse error
6186@cindex syntax error
6187
6e649e65 6188The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 6189whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6190action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6191macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6192in Actions}).
bfa74976
RS
6193
6194The Bison parser expects to report the error by calling an error
6195reporting function named @code{yyerror}, which you must supply. It is
6196called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6197receives one argument. For a syntax error, the string is normally
6198@w{@code{"syntax error"}}.
bfa74976 6199
2a8d363a 6200@findex %error-verbose
6f04ee6c
JD
6201If you invoke the directive @code{%error-verbose} in the Bison declarations
6202section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6203Bison provides a more verbose and specific error message string instead of
6204just plain @w{@code{"syntax error"}}. However, that message sometimes
6205contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6206
1a059451
PE
6207The parser can detect one other kind of error: memory exhaustion. This
6208can happen when the input contains constructions that are very deeply
bfa74976 6209nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6210parser normally extends its stack automatically up to a very large limit. But
6211if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6212fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6213
6214In some cases diagnostics like @w{@code{"syntax error"}} are
6215translated automatically from English to some other language before
6216they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6217
6218The following definition suffices in simple programs:
6219
6220@example
6221@group
13863333 6222void
38a92d50 6223yyerror (char const *s)
bfa74976
RS
6224@{
6225@end group
6226@group
6227 fprintf (stderr, "%s\n", s);
6228@}
6229@end group
6230@end example
6231
6232After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6233error recovery if you have written suitable error recovery grammar rules
6234(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6235immediately return 1.
6236
93724f13 6237Obviously, in location tracking pure parsers, @code{yyerror} should have
1f1bd572
TR
6238an access to the current location. With @code{%define api.pure}, this is
6239indeed the case for the GLR parsers, but not for the Yacc parser, for
6240historical reasons, and this is the why @code{%define api.pure full} should be
6241prefered over @code{%define api.pure}.
2a8d363a 6242
1f1bd572
TR
6243When @code{%locations %define api.pure full} is used, @code{yyerror} has the
6244following signature:
2a8d363a
AD
6245
6246@example
1f1bd572 6247void yyerror (YYLTYPE *locp, char const *msg);
2a8d363a
AD
6248@end example
6249
1c0c3e95 6250@noindent
38a92d50
PE
6251The prototypes are only indications of how the code produced by Bison
6252uses @code{yyerror}. Bison-generated code always ignores the returned
6253value, so @code{yyerror} can return any type, including @code{void}.
6254Also, @code{yyerror} can be a variadic function; that is why the
6255message is always passed last.
6256
6257Traditionally @code{yyerror} returns an @code{int} that is always
6258ignored, but this is purely for historical reasons, and @code{void} is
6259preferable since it more accurately describes the return type for
6260@code{yyerror}.
93724f13 6261
bfa74976
RS
6262@vindex yynerrs
6263The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6264reported so far. Normally this variable is global; but if you
704a47c4
AD
6265request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6266then it is a local variable which only the actions can access.
bfa74976 6267
342b8b6e 6268@node Action Features
bfa74976
RS
6269@section Special Features for Use in Actions
6270@cindex summary, action features
6271@cindex action features summary
6272
6273Here is a table of Bison constructs, variables and macros that
6274are useful in actions.
6275
18b519c0 6276@deffn {Variable} $$
bfa74976
RS
6277Acts like a variable that contains the semantic value for the
6278grouping made by the current rule. @xref{Actions}.
18b519c0 6279@end deffn
bfa74976 6280
18b519c0 6281@deffn {Variable} $@var{n}
bfa74976
RS
6282Acts like a variable that contains the semantic value for the
6283@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6284@end deffn
bfa74976 6285
18b519c0 6286@deffn {Variable} $<@var{typealt}>$
bfa74976 6287Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6288specified by the @code{%union} declaration. @xref{Action Types, ,Data
6289Types of Values in Actions}.
18b519c0 6290@end deffn
bfa74976 6291
18b519c0 6292@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6293Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6294union specified by the @code{%union} declaration.
e0c471a9 6295@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6296@end deffn
bfa74976 6297
34a41a93 6298@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6299Return immediately from @code{yyparse}, indicating failure.
6300@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6301@end deffn
bfa74976 6302
34a41a93 6303@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6304Return immediately from @code{yyparse}, indicating success.
6305@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6306@end deffn
bfa74976 6307
34a41a93 6308@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6309@findex YYBACKUP
6310Unshift a token. This macro is allowed only for rules that reduce
742e4900 6311a single value, and only when there is no lookahead token.
35430378 6312It is also disallowed in GLR parsers.
742e4900 6313It installs a lookahead token with token type @var{token} and
bfa74976
RS
6314semantic value @var{value}; then it discards the value that was
6315going to be reduced by this rule.
6316
6317If the macro is used when it is not valid, such as when there is
742e4900 6318a lookahead token already, then it reports a syntax error with
bfa74976
RS
6319a message @samp{cannot back up} and performs ordinary error
6320recovery.
6321
6322In either case, the rest of the action is not executed.
18b519c0 6323@end deffn
bfa74976 6324
18b519c0 6325@deffn {Macro} YYEMPTY
742e4900 6326Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6327@end deffn
bfa74976 6328
32c29292 6329@deffn {Macro} YYEOF
742e4900 6330Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6331stream.
6332@end deffn
6333
34a41a93 6334@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6335Cause an immediate syntax error. This statement initiates error
6336recovery just as if the parser itself had detected an error; however, it
6337does not call @code{yyerror}, and does not print any message. If you
6338want to print an error message, call @code{yyerror} explicitly before
6339the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6340@end deffn
bfa74976 6341
18b519c0 6342@deffn {Macro} YYRECOVERING
02103984
PE
6343@findex YYRECOVERING
6344The expression @code{YYRECOVERING ()} yields 1 when the parser
6345is recovering from a syntax error, and 0 otherwise.
bfa74976 6346@xref{Error Recovery}.
18b519c0 6347@end deffn
bfa74976 6348
18b519c0 6349@deffn {Variable} yychar
742e4900
JD
6350Variable containing either the lookahead token, or @code{YYEOF} when the
6351lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6352has been performed so the next token is not yet known.
6353Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6354Actions}).
742e4900 6355@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6356@end deffn
bfa74976 6357
34a41a93 6358@deffn {Macro} yyclearin @code{;}
742e4900 6359Discard the current lookahead token. This is useful primarily in
32c29292
JD
6360error rules.
6361Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6362Semantic Actions}).
6363@xref{Error Recovery}.
18b519c0 6364@end deffn
bfa74976 6365
34a41a93 6366@deffn {Macro} yyerrok @code{;}
bfa74976 6367Resume generating error messages immediately for subsequent syntax
13863333 6368errors. This is useful primarily in error rules.
bfa74976 6369@xref{Error Recovery}.
18b519c0 6370@end deffn
bfa74976 6371
32c29292 6372@deffn {Variable} yylloc
742e4900 6373Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6374to @code{YYEMPTY} or @code{YYEOF}.
6375Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6376Actions}).
6377@xref{Actions and Locations, ,Actions and Locations}.
6378@end deffn
6379
6380@deffn {Variable} yylval
742e4900 6381Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6382not set to @code{YYEMPTY} or @code{YYEOF}.
6383Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6384Actions}).
6385@xref{Actions, ,Actions}.
6386@end deffn
6387
18b519c0 6388@deffn {Value} @@$
847bf1f5 6389@findex @@$
7404cdf3
JD
6390Acts like a structure variable containing information on the textual
6391location of the grouping made by the current rule. @xref{Tracking
6392Locations}.
bfa74976 6393
847bf1f5
AD
6394@c Check if those paragraphs are still useful or not.
6395
6396@c @example
6397@c struct @{
6398@c int first_line, last_line;
6399@c int first_column, last_column;
6400@c @};
6401@c @end example
6402
6403@c Thus, to get the starting line number of the third component, you would
6404@c use @samp{@@3.first_line}.
bfa74976 6405
847bf1f5
AD
6406@c In order for the members of this structure to contain valid information,
6407@c you must make @code{yylex} supply this information about each token.
6408@c If you need only certain members, then @code{yylex} need only fill in
6409@c those members.
bfa74976 6410
847bf1f5 6411@c The use of this feature makes the parser noticeably slower.
18b519c0 6412@end deffn
847bf1f5 6413
18b519c0 6414@deffn {Value} @@@var{n}
847bf1f5 6415@findex @@@var{n}
7404cdf3
JD
6416Acts like a structure variable containing information on the textual
6417location of the @var{n}th component of the current rule. @xref{Tracking
6418Locations}.
18b519c0 6419@end deffn
bfa74976 6420
f7ab6a50
PE
6421@node Internationalization
6422@section Parser Internationalization
6423@cindex internationalization
6424@cindex i18n
6425@cindex NLS
6426@cindex gettext
6427@cindex bison-po
6428
6429A Bison-generated parser can print diagnostics, including error and
6430tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6431also supports outputting diagnostics in the user's native language. To
6432make this work, the user should set the usual environment variables.
6433@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6434For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6435set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6436encoding. The exact set of available locales depends on the user's
6437installation.
6438
6439The maintainer of a package that uses a Bison-generated parser enables
6440the internationalization of the parser's output through the following
35430378
JD
6441steps. Here we assume a package that uses GNU Autoconf and
6442GNU Automake.
f7ab6a50
PE
6443
6444@enumerate
6445@item
30757c8c 6446@cindex bison-i18n.m4
35430378 6447Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6448by the package---often called @file{m4}---copy the
6449@file{bison-i18n.m4} file installed by Bison under
6450@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6451For example:
6452
6453@example
6454cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6455@end example
6456
6457@item
30757c8c
PE
6458@findex BISON_I18N
6459@vindex BISON_LOCALEDIR
6460@vindex YYENABLE_NLS
f7ab6a50
PE
6461In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6462invocation, add an invocation of @code{BISON_I18N}. This macro is
6463defined in the file @file{bison-i18n.m4} that you copied earlier. It
6464causes @samp{configure} to find the value of the
30757c8c
PE
6465@code{BISON_LOCALEDIR} variable, and it defines the source-language
6466symbol @code{YYENABLE_NLS} to enable translations in the
6467Bison-generated parser.
f7ab6a50
PE
6468
6469@item
6470In the @code{main} function of your program, designate the directory
6471containing Bison's runtime message catalog, through a call to
6472@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6473For example:
6474
6475@example
6476bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6477@end example
6478
6479Typically this appears after any other call @code{bindtextdomain
6480(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6481@samp{BISON_LOCALEDIR} to be defined as a string through the
6482@file{Makefile}.
6483
6484@item
6485In the @file{Makefile.am} that controls the compilation of the @code{main}
6486function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6487either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6488
6489@example
6490DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6491@end example
6492
6493or:
6494
6495@example
6496AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6497@end example
6498
6499@item
6500Finally, invoke the command @command{autoreconf} to generate the build
6501infrastructure.
6502@end enumerate
6503
bfa74976 6504
342b8b6e 6505@node Algorithm
13863333
AD
6506@chapter The Bison Parser Algorithm
6507@cindex Bison parser algorithm
bfa74976
RS
6508@cindex algorithm of parser
6509@cindex shifting
6510@cindex reduction
6511@cindex parser stack
6512@cindex stack, parser
6513
6514As Bison reads tokens, it pushes them onto a stack along with their
6515semantic values. The stack is called the @dfn{parser stack}. Pushing a
6516token is traditionally called @dfn{shifting}.
6517
6518For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6519@samp{3} to come. The stack will have four elements, one for each token
6520that was shifted.
6521
6522But the stack does not always have an element for each token read. When
6523the last @var{n} tokens and groupings shifted match the components of a
6524grammar rule, they can be combined according to that rule. This is called
6525@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6526single grouping whose symbol is the result (left hand side) of that rule.
6527Running the rule's action is part of the process of reduction, because this
6528is what computes the semantic value of the resulting grouping.
6529
6530For example, if the infix calculator's parser stack contains this:
6531
6532@example
65331 + 5 * 3
6534@end example
6535
6536@noindent
6537and the next input token is a newline character, then the last three
6538elements can be reduced to 15 via the rule:
6539
6540@example
6541expr: expr '*' expr;
6542@end example
6543
6544@noindent
6545Then the stack contains just these three elements:
6546
6547@example
65481 + 15
6549@end example
6550
6551@noindent
6552At this point, another reduction can be made, resulting in the single value
655316. Then the newline token can be shifted.
6554
6555The parser tries, by shifts and reductions, to reduce the entire input down
6556to a single grouping whose symbol is the grammar's start-symbol
6557(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6558
6559This kind of parser is known in the literature as a bottom-up parser.
6560
6561@menu
742e4900 6562* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6563* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6564* Precedence:: Operator precedence works by resolving conflicts.
6565* Contextual Precedence:: When an operator's precedence depends on context.
6566* Parser States:: The parser is a finite-state-machine with stack.
6567* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 6568* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 6569* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6570* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6571* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6572@end menu
6573
742e4900
JD
6574@node Lookahead
6575@section Lookahead Tokens
6576@cindex lookahead token
bfa74976
RS
6577
6578The Bison parser does @emph{not} always reduce immediately as soon as the
6579last @var{n} tokens and groupings match a rule. This is because such a
6580simple strategy is inadequate to handle most languages. Instead, when a
6581reduction is possible, the parser sometimes ``looks ahead'' at the next
6582token in order to decide what to do.
6583
6584When a token is read, it is not immediately shifted; first it becomes the
742e4900 6585@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6586perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6587the lookahead token remains off to the side. When no more reductions
6588should take place, the lookahead token is shifted onto the stack. This
bfa74976 6589does not mean that all possible reductions have been done; depending on the
742e4900 6590token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6591application.
6592
742e4900 6593Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6594expressions which contain binary addition operators and postfix unary
6595factorial operators (@samp{!}), and allow parentheses for grouping.
6596
6597@example
6598@group
de6be119
AD
6599expr:
6600 term '+' expr
6601| term
6602;
bfa74976
RS
6603@end group
6604
6605@group
de6be119
AD
6606term:
6607 '(' expr ')'
6608| term '!'
534cee7a 6609| "number"
de6be119 6610;
bfa74976
RS
6611@end group
6612@end example
6613
6614Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6615should be done? If the following token is @samp{)}, then the first three
6616tokens must be reduced to form an @code{expr}. This is the only valid
6617course, because shifting the @samp{)} would produce a sequence of symbols
6618@w{@code{term ')'}}, and no rule allows this.
6619
6620If the following token is @samp{!}, then it must be shifted immediately so
6621that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6622parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6623@code{expr}. It would then be impossible to shift the @samp{!} because
6624doing so would produce on the stack the sequence of symbols @code{expr
6625'!'}. No rule allows that sequence.
6626
6627@vindex yychar
32c29292
JD
6628@vindex yylval
6629@vindex yylloc
742e4900 6630The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6631Its semantic value and location, if any, are stored in the variables
6632@code{yylval} and @code{yylloc}.
bfa74976
RS
6633@xref{Action Features, ,Special Features for Use in Actions}.
6634
342b8b6e 6635@node Shift/Reduce
bfa74976
RS
6636@section Shift/Reduce Conflicts
6637@cindex conflicts
6638@cindex shift/reduce conflicts
6639@cindex dangling @code{else}
6640@cindex @code{else}, dangling
6641
6642Suppose we are parsing a language which has if-then and if-then-else
6643statements, with a pair of rules like this:
6644
6645@example
6646@group
6647if_stmt:
534cee7a
AD
6648 "if" expr "then" stmt
6649| "if" expr "then" stmt "else" stmt
de6be119 6650;
bfa74976
RS
6651@end group
6652@end example
6653
6654@noindent
534cee7a
AD
6655Here @code{"if"}, @code{"then"} and @code{"else"} are terminal symbols for
6656specific keyword tokens.
bfa74976 6657
534cee7a 6658When the @code{"else"} token is read and becomes the lookahead token, the
bfa74976
RS
6659contents of the stack (assuming the input is valid) are just right for
6660reduction by the first rule. But it is also legitimate to shift the
534cee7a 6661@code{"else"}, because that would lead to eventual reduction by the second
bfa74976
RS
6662rule.
6663
6664This situation, where either a shift or a reduction would be valid, is
6665called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6666these conflicts by choosing to shift, unless otherwise directed by
6667operator precedence declarations. To see the reason for this, let's
6668contrast it with the other alternative.
6669
534cee7a 6670Since the parser prefers to shift the @code{"else"}, the result is to attach
bfa74976
RS
6671the else-clause to the innermost if-statement, making these two inputs
6672equivalent:
6673
6674@example
534cee7a 6675if x then if y then win; else lose;
bfa74976 6676
534cee7a 6677if x then do; if y then win; else lose; end;
bfa74976
RS
6678@end example
6679
6680But if the parser chose to reduce when possible rather than shift, the
6681result would be to attach the else-clause to the outermost if-statement,
6682making these two inputs equivalent:
6683
6684@example
534cee7a 6685if x then if y then win; else lose;
bfa74976 6686
534cee7a 6687if x then do; if y then win; end; else lose;
bfa74976
RS
6688@end example
6689
6690The conflict exists because the grammar as written is ambiguous: either
6691parsing of the simple nested if-statement is legitimate. The established
6692convention is that these ambiguities are resolved by attaching the
6693else-clause to the innermost if-statement; this is what Bison accomplishes
6694by choosing to shift rather than reduce. (It would ideally be cleaner to
6695write an unambiguous grammar, but that is very hard to do in this case.)
6696This particular ambiguity was first encountered in the specifications of
6697Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6698
6699To avoid warnings from Bison about predictable, legitimate shift/reduce
c28cd5dc 6700conflicts, you can use the @code{%expect @var{n}} declaration.
cf22447c
JD
6701There will be no warning as long as the number of shift/reduce conflicts
6702is exactly @var{n}, and Bison will report an error if there is a
6703different number.
c28cd5dc
AD
6704@xref{Expect Decl, ,Suppressing Conflict Warnings}. However, we don't
6705recommend the use of @code{%expect} (except @samp{%expect 0}!), as an equal
6706number of conflicts does not mean that they are the @emph{same}. When
6707possible, you should rather use precedence directives to @emph{fix} the
6708conflicts explicitly (@pxref{Non Operators,, Using Precedence For Non
6709Operators}).
bfa74976
RS
6710
6711The definition of @code{if_stmt} above is solely to blame for the
6712conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6713rules. Here is a complete Bison grammar file that actually manifests
6714the conflict:
bfa74976
RS
6715
6716@example
6717@group
bfa74976
RS
6718%%
6719@end group
6720@group
de6be119
AD
6721stmt:
6722 expr
6723| if_stmt
6724;
bfa74976
RS
6725@end group
6726
6727@group
6728if_stmt:
534cee7a
AD
6729 "if" expr "then" stmt
6730| "if" expr "then" stmt "else" stmt
de6be119 6731;
bfa74976
RS
6732@end group
6733
de6be119 6734expr:
534cee7a 6735 "identifier"
de6be119 6736;
bfa74976
RS
6737@end example
6738
342b8b6e 6739@node Precedence
bfa74976
RS
6740@section Operator Precedence
6741@cindex operator precedence
6742@cindex precedence of operators
6743
6744Another situation where shift/reduce conflicts appear is in arithmetic
6745expressions. Here shifting is not always the preferred resolution; the
6746Bison declarations for operator precedence allow you to specify when to
6747shift and when to reduce.
6748
6749@menu
6750* Why Precedence:: An example showing why precedence is needed.
6751* Using Precedence:: How to specify precedence in Bison grammars.
6752* Precedence Examples:: How these features are used in the previous example.
6753* How Precedence:: How they work.
c28cd5dc 6754* Non Operators:: Using precedence for general conflicts.
bfa74976
RS
6755@end menu
6756
342b8b6e 6757@node Why Precedence
bfa74976
RS
6758@subsection When Precedence is Needed
6759
6760Consider the following ambiguous grammar fragment (ambiguous because the
6761input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6762
6763@example
6764@group
de6be119
AD
6765expr:
6766 expr '-' expr
6767| expr '*' expr
6768| expr '<' expr
6769| '(' expr ')'
6770@dots{}
6771;
bfa74976
RS
6772@end group
6773@end example
6774
6775@noindent
6776Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6777should it reduce them via the rule for the subtraction operator? It
6778depends on the next token. Of course, if the next token is @samp{)}, we
6779must reduce; shifting is invalid because no single rule can reduce the
6780token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6781the next token is @samp{*} or @samp{<}, we have a choice: either
6782shifting or reduction would allow the parse to complete, but with
6783different results.
6784
6785To decide which one Bison should do, we must consider the results. If
6786the next operator token @var{op} is shifted, then it must be reduced
6787first in order to permit another opportunity to reduce the difference.
6788The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6789hand, if the subtraction is reduced before shifting @var{op}, the result
6790is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6791reduce should depend on the relative precedence of the operators
6792@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6793@samp{<}.
bfa74976
RS
6794
6795@cindex associativity
6796What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6797@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6798operators we prefer the former, which is called @dfn{left association}.
6799The latter alternative, @dfn{right association}, is desirable for
6800assignment operators. The choice of left or right association is a
6801matter of whether the parser chooses to shift or reduce when the stack
742e4900 6802contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6803makes right-associativity.
bfa74976 6804
342b8b6e 6805@node Using Precedence
bfa74976
RS
6806@subsection Specifying Operator Precedence
6807@findex %left
6808@findex %right
6809@findex %nonassoc
6810
6811Bison allows you to specify these choices with the operator precedence
6812declarations @code{%left} and @code{%right}. Each such declaration
6813contains a list of tokens, which are operators whose precedence and
6814associativity is being declared. The @code{%left} declaration makes all
6815those operators left-associative and the @code{%right} declaration makes
6816them right-associative. A third alternative is @code{%nonassoc}, which
6817declares that it is a syntax error to find the same operator twice ``in a
6818row''.
6819
6820The relative precedence of different operators is controlled by the
6821order in which they are declared. The first @code{%left} or
6822@code{%right} declaration in the file declares the operators whose
6823precedence is lowest, the next such declaration declares the operators
6824whose precedence is a little higher, and so on.
6825
342b8b6e 6826@node Precedence Examples
bfa74976
RS
6827@subsection Precedence Examples
6828
6829In our example, we would want the following declarations:
6830
6831@example
6832%left '<'
6833%left '-'
6834%left '*'
6835@end example
6836
6837In a more complete example, which supports other operators as well, we
6838would declare them in groups of equal precedence. For example, @code{'+'} is
6839declared with @code{'-'}:
6840
6841@example
534cee7a 6842%left '<' '>' '=' "!=" "<=" ">="
bfa74976
RS
6843%left '+' '-'
6844%left '*' '/'
6845@end example
6846
342b8b6e 6847@node How Precedence
bfa74976
RS
6848@subsection How Precedence Works
6849
6850The first effect of the precedence declarations is to assign precedence
6851levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6852precedence levels to certain rules: each rule gets its precedence from
6853the last terminal symbol mentioned in the components. (You can also
6854specify explicitly the precedence of a rule. @xref{Contextual
6855Precedence, ,Context-Dependent Precedence}.)
6856
6857Finally, the resolution of conflicts works by comparing the precedence
742e4900 6858of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6859token's precedence is higher, the choice is to shift. If the rule's
6860precedence is higher, the choice is to reduce. If they have equal
6861precedence, the choice is made based on the associativity of that
6862precedence level. The verbose output file made by @samp{-v}
6863(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6864resolved.
bfa74976
RS
6865
6866Not all rules and not all tokens have precedence. If either the rule or
742e4900 6867the lookahead token has no precedence, then the default is to shift.
bfa74976 6868
c28cd5dc
AD
6869@node Non Operators
6870@subsection Using Precedence For Non Operators
6871
6872Using properly precedence and associativity directives can help fixing
6873shift/reduce conflicts that do not involve arithmetics-like operators. For
6874instance, the ``dangling @code{else}'' problem (@pxref{Shift/Reduce, ,
6875Shift/Reduce Conflicts}) can be solved elegantly in two different ways.
6876
6877In the present case, the conflict is between the token @code{"else"} willing
6878to be shifted, and the rule @samp{if_stmt: "if" expr "then" stmt}, asking
6879for reduction. By default, the precedence of a rule is that of its last
6880token, here @code{"then"}, so the conflict will be solved appropriately
6881by giving @code{"else"} a precedence higher than that of @code{"then"}, for
6882instance as follows:
6883
6884@example
6885@group
6886%nonassoc "then"
6887%nonassoc "else"
6888@end group
6889@end example
6890
6891Alternatively, you may give both tokens the same precedence, in which case
6892associativity is used to solve the conflict. To preserve the shift action,
6893use right associativity:
6894
6895@example
6896%right "then" "else"
6897@end example
6898
6899Neither solution is perfect however. Since Bison does not provide, so far,
6900support for ``scoped'' precedence, both force you to declare the precedence
6901of these keywords with respect to the other operators your grammar.
6902Therefore, instead of being warned about new conflicts you would be unaware
6903of (e.g., a shift/reduce conflict due to @samp{if test then 1 else 2 + 3}
6904being ambiguous: @samp{if test then 1 else (2 + 3)} or @samp{(if test then 1
6905else 2) + 3}?), the conflict will be already ``fixed''.
6906
342b8b6e 6907@node Contextual Precedence
bfa74976
RS
6908@section Context-Dependent Precedence
6909@cindex context-dependent precedence
6910@cindex unary operator precedence
6911@cindex precedence, context-dependent
6912@cindex precedence, unary operator
6913@findex %prec
6914
6915Often the precedence of an operator depends on the context. This sounds
6916outlandish at first, but it is really very common. For example, a minus
6917sign typically has a very high precedence as a unary operator, and a
6918somewhat lower precedence (lower than multiplication) as a binary operator.
6919
6920The Bison precedence declarations, @code{%left}, @code{%right} and
6921@code{%nonassoc}, can only be used once for a given token; so a token has
6922only one precedence declared in this way. For context-dependent
6923precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6924modifier for rules.
bfa74976
RS
6925
6926The @code{%prec} modifier declares the precedence of a particular rule by
6927specifying a terminal symbol whose precedence should be used for that rule.
6928It's not necessary for that symbol to appear otherwise in the rule. The
6929modifier's syntax is:
6930
6931@example
6932%prec @var{terminal-symbol}
6933@end example
6934
6935@noindent
6936and it is written after the components of the rule. Its effect is to
6937assign the rule the precedence of @var{terminal-symbol}, overriding
6938the precedence that would be deduced for it in the ordinary way. The
6939altered rule precedence then affects how conflicts involving that rule
6940are resolved (@pxref{Precedence, ,Operator Precedence}).
6941
6942Here is how @code{%prec} solves the problem of unary minus. First, declare
6943a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6944are no tokens of this type, but the symbol serves to stand for its
6945precedence:
6946
6947@example
6948@dots{}
6949%left '+' '-'
6950%left '*'
6951%left UMINUS
6952@end example
6953
6954Now the precedence of @code{UMINUS} can be used in specific rules:
6955
6956@example
6957@group
de6be119
AD
6958exp:
6959 @dots{}
6960| exp '-' exp
6961 @dots{}
6962| '-' exp %prec UMINUS
bfa74976
RS
6963@end group
6964@end example
6965
91d2c560 6966@ifset defaultprec
39a06c25
PE
6967If you forget to append @code{%prec UMINUS} to the rule for unary
6968minus, Bison silently assumes that minus has its usual precedence.
6969This kind of problem can be tricky to debug, since one typically
6970discovers the mistake only by testing the code.
6971
22fccf95 6972The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6973this kind of problem systematically. It causes rules that lack a
6974@code{%prec} modifier to have no precedence, even if the last terminal
6975symbol mentioned in their components has a declared precedence.
6976
22fccf95 6977If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6978for all rules that participate in precedence conflict resolution.
6979Then you will see any shift/reduce conflict until you tell Bison how
6980to resolve it, either by changing your grammar or by adding an
6981explicit precedence. This will probably add declarations to the
6982grammar, but it helps to protect against incorrect rule precedences.
6983
22fccf95
PE
6984The effect of @code{%no-default-prec;} can be reversed by giving
6985@code{%default-prec;}, which is the default.
91d2c560 6986@end ifset
39a06c25 6987
342b8b6e 6988@node Parser States
bfa74976
RS
6989@section Parser States
6990@cindex finite-state machine
6991@cindex parser state
6992@cindex state (of parser)
6993
6994The function @code{yyparse} is implemented using a finite-state machine.
6995The values pushed on the parser stack are not simply token type codes; they
6996represent the entire sequence of terminal and nonterminal symbols at or
6997near the top of the stack. The current state collects all the information
6998about previous input which is relevant to deciding what to do next.
6999
742e4900
JD
7000Each time a lookahead token is read, the current parser state together
7001with the type of lookahead token are looked up in a table. This table
7002entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7003specifies the new parser state, which is pushed onto the top of the
7004parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7005This means that a certain number of tokens or groupings are taken off
7006the top of the stack, and replaced by one grouping. In other words,
7007that number of states are popped from the stack, and one new state is
7008pushed.
7009
742e4900 7010There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7011is erroneous in the current state. This causes error processing to begin
7012(@pxref{Error Recovery}).
7013
342b8b6e 7014@node Reduce/Reduce
bfa74976
RS
7015@section Reduce/Reduce Conflicts
7016@cindex reduce/reduce conflict
7017@cindex conflicts, reduce/reduce
7018
7019A reduce/reduce conflict occurs if there are two or more rules that apply
7020to the same sequence of input. This usually indicates a serious error
7021in the grammar.
7022
7023For example, here is an erroneous attempt to define a sequence
7024of zero or more @code{word} groupings.
7025
7026@example
98842516 7027@group
de6be119
AD
7028sequence:
7029 /* empty */ @{ printf ("empty sequence\n"); @}
7030| maybeword
7031| sequence word @{ printf ("added word %s\n", $2); @}
7032;
98842516 7033@end group
bfa74976 7034
98842516 7035@group
de6be119
AD
7036maybeword:
7037 /* empty */ @{ printf ("empty maybeword\n"); @}
7038| word @{ printf ("single word %s\n", $1); @}
7039;
98842516 7040@end group
bfa74976
RS
7041@end example
7042
7043@noindent
7044The error is an ambiguity: there is more than one way to parse a single
7045@code{word} into a @code{sequence}. It could be reduced to a
7046@code{maybeword} and then into a @code{sequence} via the second rule.
7047Alternatively, nothing-at-all could be reduced into a @code{sequence}
7048via the first rule, and this could be combined with the @code{word}
7049using the third rule for @code{sequence}.
7050
7051There is also more than one way to reduce nothing-at-all into a
7052@code{sequence}. This can be done directly via the first rule,
7053or indirectly via @code{maybeword} and then the second rule.
7054
7055You might think that this is a distinction without a difference, because it
7056does not change whether any particular input is valid or not. But it does
7057affect which actions are run. One parsing order runs the second rule's
7058action; the other runs the first rule's action and the third rule's action.
7059In this example, the output of the program changes.
7060
7061Bison resolves a reduce/reduce conflict by choosing to use the rule that
7062appears first in the grammar, but it is very risky to rely on this. Every
7063reduce/reduce conflict must be studied and usually eliminated. Here is the
7064proper way to define @code{sequence}:
7065
7066@example
51356dd2 7067@group
de6be119
AD
7068sequence:
7069 /* empty */ @{ printf ("empty sequence\n"); @}
7070| sequence word @{ printf ("added word %s\n", $2); @}
7071;
51356dd2 7072@end group
bfa74976
RS
7073@end example
7074
7075Here is another common error that yields a reduce/reduce conflict:
7076
7077@example
de6be119 7078sequence:
51356dd2 7079@group
de6be119
AD
7080 /* empty */
7081| sequence words
7082| sequence redirects
7083;
51356dd2 7084@end group
bfa74976 7085
51356dd2 7086@group
de6be119
AD
7087words:
7088 /* empty */
7089| words word
7090;
51356dd2 7091@end group
bfa74976 7092
51356dd2 7093@group
de6be119
AD
7094redirects:
7095 /* empty */
7096| redirects redirect
7097;
51356dd2 7098@end group
bfa74976
RS
7099@end example
7100
7101@noindent
7102The intention here is to define a sequence which can contain either
7103@code{word} or @code{redirect} groupings. The individual definitions of
7104@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7105three together make a subtle ambiguity: even an empty input can be parsed
7106in infinitely many ways!
7107
7108Consider: nothing-at-all could be a @code{words}. Or it could be two
7109@code{words} in a row, or three, or any number. It could equally well be a
7110@code{redirects}, or two, or any number. Or it could be a @code{words}
7111followed by three @code{redirects} and another @code{words}. And so on.
7112
7113Here are two ways to correct these rules. First, to make it a single level
7114of sequence:
7115
7116@example
de6be119
AD
7117sequence:
7118 /* empty */
7119| sequence word
7120| sequence redirect
7121;
bfa74976
RS
7122@end example
7123
7124Second, to prevent either a @code{words} or a @code{redirects}
7125from being empty:
7126
7127@example
98842516 7128@group
de6be119
AD
7129sequence:
7130 /* empty */
7131| sequence words
7132| sequence redirects
7133;
98842516 7134@end group
bfa74976 7135
98842516 7136@group
de6be119
AD
7137words:
7138 word
7139| words word
7140;
98842516 7141@end group
bfa74976 7142
98842516 7143@group
de6be119
AD
7144redirects:
7145 redirect
7146| redirects redirect
7147;
98842516 7148@end group
bfa74976
RS
7149@end example
7150
53e2cd1e
AD
7151Yet this proposal introduces another kind of ambiguity! The input
7152@samp{word word} can be parsed as a single @code{words} composed of two
7153@samp{word}s, or as two one-@code{word} @code{words} (and likewise for
7154@code{redirect}/@code{redirects}). However this ambiguity is now a
7155shift/reduce conflict, and therefore it can now be addressed with precedence
7156directives.
7157
7158To simplify the matter, we will proceed with @code{word} and @code{redirect}
7159being tokens: @code{"word"} and @code{"redirect"}.
7160
7161To prefer the longest @code{words}, the conflict between the token
7162@code{"word"} and the rule @samp{sequence: sequence words} must be resolved
7163as a shift. To this end, we use the same techniques as exposed above, see
7164@ref{Non Operators,, Using Precedence For Non Operators}. One solution
7165relies on precedences: use @code{%prec} to give a lower precedence to the
7166rule:
7167
7168@example
7169%nonassoc "word"
7170%nonassoc "sequence"
7171%%
7172@group
7173sequence:
7174 /* empty */
7175| sequence word %prec "sequence"
7176| sequence redirect %prec "sequence"
7177;
7178@end group
7179
7180@group
7181words:
7182 word
7183| words "word"
7184;
7185@end group
7186@end example
7187
7188Another solution relies on associativity: provide both the token and the
7189rule with the same precedence, but make them right-associative:
7190
7191@example
7192%right "word" "redirect"
7193%%
7194@group
7195sequence:
7196 /* empty */
7197| sequence word %prec "word"
7198| sequence redirect %prec "redirect"
7199;
7200@end group
7201@end example
7202
5da0355a
JD
7203@node Mysterious Conflicts
7204@section Mysterious Conflicts
6f04ee6c 7205@cindex Mysterious Conflicts
bfa74976
RS
7206
7207Sometimes reduce/reduce conflicts can occur that don't look warranted.
7208Here is an example:
7209
7210@example
7211@group
bfa74976 7212%%
de6be119 7213def: param_spec return_spec ',';
bfa74976 7214param_spec:
de6be119
AD
7215 type
7216| name_list ':' type
7217;
bfa74976
RS
7218@end group
7219@group
7220return_spec:
de6be119
AD
7221 type
7222| name ':' type
7223;
bfa74976
RS
7224@end group
7225@group
534cee7a 7226type: "id";
bfa74976
RS
7227@end group
7228@group
534cee7a 7229name: "id";
bfa74976 7230name_list:
de6be119
AD
7231 name
7232| name ',' name_list
7233;
bfa74976
RS
7234@end group
7235@end example
7236
534cee7a
AD
7237It would seem that this grammar can be parsed with only a single token of
7238lookahead: when a @code{param_spec} is being read, an @code{"id"} is a
7239@code{name} if a comma or colon follows, or a @code{type} if another
7240@code{"id"} follows. In other words, this grammar is LR(1).
bfa74976 7241
6f04ee6c
JD
7242@cindex LR
7243@cindex LALR
34a6c2d1 7244However, for historical reasons, Bison cannot by default handle all
35430378 7245LR(1) grammars.
534cee7a 7246In this grammar, two contexts, that after an @code{"id"} at the beginning
34a6c2d1
JD
7247of a @code{param_spec} and likewise at the beginning of a
7248@code{return_spec}, are similar enough that Bison assumes they are the
7249same.
7250They appear similar because the same set of rules would be
bfa74976
RS
7251active---the rule for reducing to a @code{name} and that for reducing to
7252a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7253that the rules would require different lookahead tokens in the two
bfa74976
RS
7254contexts, so it makes a single parser state for them both. Combining
7255the two contexts causes a conflict later. In parser terminology, this
35430378 7256occurrence means that the grammar is not LALR(1).
bfa74976 7257
6f04ee6c
JD
7258@cindex IELR
7259@cindex canonical LR
7260For many practical grammars (specifically those that fall into the non-LR(1)
7261class), the limitations of LALR(1) result in difficulties beyond just
7262mysterious reduce/reduce conflicts. The best way to fix all these problems
7263is to select a different parser table construction algorithm. Either
7264IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7265and easier to debug during development. @xref{LR Table Construction}, for
7266details. (Bison's IELR(1) and canonical LR(1) implementations are
7267experimental. More user feedback will help to stabilize them.)
34a6c2d1 7268
35430378 7269If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
7270can often fix a mysterious conflict by identifying the two parser states
7271that are being confused, and adding something to make them look
7272distinct. In the above example, adding one rule to
bfa74976
RS
7273@code{return_spec} as follows makes the problem go away:
7274
7275@example
7276@group
bfa74976
RS
7277@dots{}
7278return_spec:
de6be119
AD
7279 type
7280| name ':' type
534cee7a 7281| "id" "bogus" /* This rule is never used. */
de6be119 7282;
bfa74976
RS
7283@end group
7284@end example
7285
7286This corrects the problem because it introduces the possibility of an
534cee7a 7287additional active rule in the context after the @code{"id"} at the beginning of
bfa74976
RS
7288@code{return_spec}. This rule is not active in the corresponding context
7289in a @code{param_spec}, so the two contexts receive distinct parser states.
534cee7a 7290As long as the token @code{"bogus"} is never generated by @code{yylex},
bfa74976
RS
7291the added rule cannot alter the way actual input is parsed.
7292
7293In this particular example, there is another way to solve the problem:
534cee7a 7294rewrite the rule for @code{return_spec} to use @code{"id"} directly
bfa74976
RS
7295instead of via @code{name}. This also causes the two confusing
7296contexts to have different sets of active rules, because the one for
7297@code{return_spec} activates the altered rule for @code{return_spec}
7298rather than the one for @code{name}.
7299
7300@example
7301param_spec:
de6be119
AD
7302 type
7303| name_list ':' type
7304;
bfa74976 7305return_spec:
de6be119 7306 type
534cee7a 7307| "id" ':' type
de6be119 7308;
bfa74976
RS
7309@end example
7310
35430378 7311For a more detailed exposition of LALR(1) parsers and parser
71caec06 7312generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7313
6f04ee6c
JD
7314@node Tuning LR
7315@section Tuning LR
7316
7317The default behavior of Bison's LR-based parsers is chosen mostly for
7318historical reasons, but that behavior is often not robust. For example, in
7319the previous section, we discussed the mysterious conflicts that can be
7320produced by LALR(1), Bison's default parser table construction algorithm.
7321Another example is Bison's @code{%error-verbose} directive, which instructs
7322the generated parser to produce verbose syntax error messages, which can
7323sometimes contain incorrect information.
7324
7325In this section, we explore several modern features of Bison that allow you
7326to tune fundamental aspects of the generated LR-based parsers. Some of
7327these features easily eliminate shortcomings like those mentioned above.
7328Others can be helpful purely for understanding your parser.
7329
7330Most of the features discussed in this section are still experimental. More
7331user feedback will help to stabilize them.
7332
7333@menu
7334* LR Table Construction:: Choose a different construction algorithm.
7335* Default Reductions:: Disable default reductions.
7336* LAC:: Correct lookahead sets in the parser states.
7337* Unreachable States:: Keep unreachable parser states for debugging.
7338@end menu
7339
7340@node LR Table Construction
7341@subsection LR Table Construction
7342@cindex Mysterious Conflict
7343@cindex LALR
7344@cindex IELR
7345@cindex canonical LR
7346@findex %define lr.type
7347
7348For historical reasons, Bison constructs LALR(1) parser tables by default.
7349However, LALR does not possess the full language-recognition power of LR.
7350As a result, the behavior of parsers employing LALR parser tables is often
5da0355a 7351mysterious. We presented a simple example of this effect in @ref{Mysterious
6f04ee6c
JD
7352Conflicts}.
7353
7354As we also demonstrated in that example, the traditional approach to
7355eliminating such mysterious behavior is to restructure the grammar.
7356Unfortunately, doing so correctly is often difficult. Moreover, merely
7357discovering that LALR causes mysterious behavior in your parser can be
7358difficult as well.
7359
7360Fortunately, Bison provides an easy way to eliminate the possibility of such
7361mysterious behavior altogether. You simply need to activate a more powerful
7362parser table construction algorithm by using the @code{%define lr.type}
7363directive.
7364
511dd971 7365@deffn {Directive} {%define lr.type} @var{type}
6f04ee6c 7366Specify the type of parser tables within the LR(1) family. The accepted
511dd971 7367values for @var{type} are:
6f04ee6c
JD
7368
7369@itemize
7370@item @code{lalr} (default)
7371@item @code{ielr}
7372@item @code{canonical-lr}
7373@end itemize
7374
7375(This feature is experimental. More user feedback will help to stabilize
7376it.)
7377@end deffn
7378
7379For example, to activate IELR, you might add the following directive to you
7380grammar file:
7381
7382@example
7383%define lr.type ielr
7384@end example
7385
5da0355a 7386@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
6f04ee6c
JD
7387conflict is then eliminated, so there is no need to invest time in
7388comprehending the conflict or restructuring the grammar to fix it. If,
7389during future development, the grammar evolves such that all mysterious
7390behavior would have disappeared using just LALR, you need not fear that
7391continuing to use IELR will result in unnecessarily large parser tables.
7392That is, IELR generates LALR tables when LALR (using a deterministic parsing
7393algorithm) is sufficient to support the full language-recognition power of
7394LR. Thus, by enabling IELR at the start of grammar development, you can
7395safely and completely eliminate the need to consider LALR's shortcomings.
7396
7397While IELR is almost always preferable, there are circumstances where LALR
7398or the canonical LR parser tables described by Knuth
7399(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7400relative advantages of each parser table construction algorithm within
7401Bison:
7402
7403@itemize
7404@item LALR
7405
7406There are at least two scenarios where LALR can be worthwhile:
7407
7408@itemize
7409@item GLR without static conflict resolution.
7410
7411@cindex GLR with LALR
7412When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7413conflicts statically (for example, with @code{%left} or @code{%prec}), then
7414the parser explores all potential parses of any given input. In this case,
7415the choice of parser table construction algorithm is guaranteed not to alter
7416the language accepted by the parser. LALR parser tables are the smallest
7417parser tables Bison can currently construct, so they may then be preferable.
7418Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7419more like a deterministic parser in the syntactic contexts where those
7420conflicts appear, and so either IELR or canonical LR can then be helpful to
7421avoid LALR's mysterious behavior.
7422
7423@item Malformed grammars.
7424
7425Occasionally during development, an especially malformed grammar with a
7426major recurring flaw may severely impede the IELR or canonical LR parser
7427table construction algorithm. LALR can be a quick way to construct parser
7428tables in order to investigate such problems while ignoring the more subtle
7429differences from IELR and canonical LR.
7430@end itemize
7431
7432@item IELR
7433
7434IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7435any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7436always accept exactly the same set of sentences. However, like LALR, IELR
7437merges parser states during parser table construction so that the number of
7438parser states is often an order of magnitude less than for canonical LR.
7439More importantly, because canonical LR's extra parser states may contain
7440duplicate conflicts in the case of non-LR grammars, the number of conflicts
7441for IELR is often an order of magnitude less as well. This effect can
7442significantly reduce the complexity of developing a grammar.
7443
7444@item Canonical LR
7445
7446@cindex delayed syntax error detection
7447@cindex LAC
7448@findex %nonassoc
7449While inefficient, canonical LR parser tables can be an interesting means to
7450explore a grammar because they possess a property that IELR and LALR tables
7451do not. That is, if @code{%nonassoc} is not used and default reductions are
7452left disabled (@pxref{Default Reductions}), then, for every left context of
7453every canonical LR state, the set of tokens accepted by that state is
7454guaranteed to be the exact set of tokens that is syntactically acceptable in
7455that left context. It might then seem that an advantage of canonical LR
7456parsers in production is that, under the above constraints, they are
7457guaranteed to detect a syntax error as soon as possible without performing
7458any unnecessary reductions. However, IELR parsers that use LAC are also
7459able to achieve this behavior without sacrificing @code{%nonassoc} or
7460default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7461@end itemize
7462
7463For a more detailed exposition of the mysterious behavior in LALR parsers
7464and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7465@ref{Bibliography,,Denny 2010 November}.
7466
7467@node Default Reductions
7468@subsection Default Reductions
7469@cindex default reductions
7470@findex %define lr.default-reductions
7471@findex %nonassoc
7472
7473After parser table construction, Bison identifies the reduction with the
7474largest lookahead set in each parser state. To reduce the size of the
7475parser state, traditional Bison behavior is to remove that lookahead set and
7476to assign that reduction to be the default parser action. Such a reduction
7477is known as a @dfn{default reduction}.
7478
7479Default reductions affect more than the size of the parser tables. They
7480also affect the behavior of the parser:
7481
7482@itemize
7483@item Delayed @code{yylex} invocations.
7484
7485@cindex delayed yylex invocations
7486@cindex consistent states
7487@cindex defaulted states
7488A @dfn{consistent state} is a state that has only one possible parser
7489action. If that action is a reduction and is encoded as a default
7490reduction, then that consistent state is called a @dfn{defaulted state}.
7491Upon reaching a defaulted state, a Bison-generated parser does not bother to
7492invoke @code{yylex} to fetch the next token before performing the reduction.
7493In other words, whether default reductions are enabled in consistent states
7494determines how soon a Bison-generated parser invokes @code{yylex} for a
7495token: immediately when it @emph{reaches} that token in the input or when it
7496eventually @emph{needs} that token as a lookahead to determine the next
7497parser action. Traditionally, default reductions are enabled, and so the
7498parser exhibits the latter behavior.
7499
7500The presence of defaulted states is an important consideration when
7501designing @code{yylex} and the grammar file. That is, if the behavior of
7502@code{yylex} can influence or be influenced by the semantic actions
7503associated with the reductions in defaulted states, then the delay of the
7504next @code{yylex} invocation until after those reductions is significant.
7505For example, the semantic actions might pop a scope stack that @code{yylex}
7506uses to determine what token to return. Thus, the delay might be necessary
7507to ensure that @code{yylex} does not look up the next token in a scope that
7508should already be considered closed.
7509
7510@item Delayed syntax error detection.
7511
7512@cindex delayed syntax error detection
7513When the parser fetches a new token by invoking @code{yylex}, it checks
7514whether there is an action for that token in the current parser state. The
7515parser detects a syntax error if and only if either (1) there is no action
7516for that token or (2) the action for that token is the error action (due to
7517the use of @code{%nonassoc}). However, if there is a default reduction in
7518that state (which might or might not be a defaulted state), then it is
7519impossible for condition 1 to exist. That is, all tokens have an action.
7520Thus, the parser sometimes fails to detect the syntax error until it reaches
7521a later state.
7522
7523@cindex LAC
7524@c If there's an infinite loop, default reductions can prevent an incorrect
7525@c sentence from being rejected.
7526While default reductions never cause the parser to accept syntactically
7527incorrect sentences, the delay of syntax error detection can have unexpected
7528effects on the behavior of the parser. However, the delay can be caused
7529anyway by parser state merging and the use of @code{%nonassoc}, and it can
7530be fixed by another Bison feature, LAC. We discuss the effects of delayed
7531syntax error detection and LAC more in the next section (@pxref{LAC}).
7532@end itemize
7533
7534For canonical LR, the only default reduction that Bison enables by default
7535is the accept action, which appears only in the accepting state, which has
7536no other action and is thus a defaulted state. However, the default accept
7537action does not delay any @code{yylex} invocation or syntax error detection
7538because the accept action ends the parse.
7539
7540For LALR and IELR, Bison enables default reductions in nearly all states by
7541default. There are only two exceptions. First, states that have a shift
7542action on the @code{error} token do not have default reductions because
7543delayed syntax error detection could then prevent the @code{error} token
7544from ever being shifted in that state. However, parser state merging can
7545cause the same effect anyway, and LAC fixes it in both cases, so future
7546versions of Bison might drop this exception when LAC is activated. Second,
7547GLR parsers do not record the default reduction as the action on a lookahead
7548token for which there is a conflict. The correct action in this case is to
7549split the parse instead.
7550
7551To adjust which states have default reductions enabled, use the
7552@code{%define lr.default-reductions} directive.
7553
511dd971 7554@deffn {Directive} {%define lr.default-reductions} @var{where}
6f04ee6c 7555Specify the kind of states that are permitted to contain default reductions.
511dd971 7556The accepted values of @var{where} are:
6f04ee6c 7557@itemize
a6e5a280 7558@item @code{most} (default for LALR and IELR)
6f04ee6c
JD
7559@item @code{consistent}
7560@item @code{accepting} (default for canonical LR)
7561@end itemize
7562
7563(The ability to specify where default reductions are permitted is
7564experimental. More user feedback will help to stabilize it.)
7565@end deffn
7566
6f04ee6c
JD
7567@node LAC
7568@subsection LAC
7569@findex %define parse.lac
7570@cindex LAC
7571@cindex lookahead correction
7572
7573Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7574encountering a syntax error. First, the parser might perform additional
7575parser stack reductions before discovering the syntax error. Such
7576reductions can perform user semantic actions that are unexpected because
7577they are based on an invalid token, and they cause error recovery to begin
7578in a different syntactic context than the one in which the invalid token was
7579encountered. Second, when verbose error messages are enabled (@pxref{Error
7580Reporting}), the expected token list in the syntax error message can both
7581contain invalid tokens and omit valid tokens.
7582
7583The culprits for the above problems are @code{%nonassoc}, default reductions
7584in inconsistent states (@pxref{Default Reductions}), and parser state
7585merging. Because IELR and LALR merge parser states, they suffer the most.
7586Canonical LR can suffer only if @code{%nonassoc} is used or if default
7587reductions are enabled for inconsistent states.
7588
7589LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7590that solves these problems for canonical LR, IELR, and LALR without
7591sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7592enable LAC with the @code{%define parse.lac} directive.
7593
511dd971 7594@deffn {Directive} {%define parse.lac} @var{value}
6f04ee6c
JD
7595Enable LAC to improve syntax error handling.
7596@itemize
7597@item @code{none} (default)
7598@item @code{full}
7599@end itemize
7600(This feature is experimental. More user feedback will help to stabilize
7601it. Moreover, it is currently only available for deterministic parsers in
7602C.)
7603@end deffn
7604
7605Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7606fetches a new token from the scanner so that it can determine the next
7607parser action, it immediately suspends normal parsing and performs an
7608exploratory parse using a temporary copy of the normal parser state stack.
7609During this exploratory parse, the parser does not perform user semantic
7610actions. If the exploratory parse reaches a shift action, normal parsing
7611then resumes on the normal parser stacks. If the exploratory parse reaches
7612an error instead, the parser reports a syntax error. If verbose syntax
7613error messages are enabled, the parser must then discover the list of
7614expected tokens, so it performs a separate exploratory parse for each token
7615in the grammar.
7616
7617There is one subtlety about the use of LAC. That is, when in a consistent
7618parser state with a default reduction, the parser will not attempt to fetch
7619a token from the scanner because no lookahead is needed to determine the
7620next parser action. Thus, whether default reductions are enabled in
7621consistent states (@pxref{Default Reductions}) affects how soon the parser
7622detects a syntax error: immediately when it @emph{reaches} an erroneous
7623token or when it eventually @emph{needs} that token as a lookahead to
7624determine the next parser action. The latter behavior is probably more
7625intuitive, so Bison currently provides no way to achieve the former behavior
7626while default reductions are enabled in consistent states.
7627
7628Thus, when LAC is in use, for some fixed decision of whether to enable
7629default reductions in consistent states, canonical LR and IELR behave almost
7630exactly the same for both syntactically acceptable and syntactically
7631unacceptable input. While LALR still does not support the full
7632language-recognition power of canonical LR and IELR, LAC at least enables
7633LALR's syntax error handling to correctly reflect LALR's
7634language-recognition power.
7635
7636There are a few caveats to consider when using LAC:
7637
7638@itemize
7639@item Infinite parsing loops.
7640
7641IELR plus LAC does have one shortcoming relative to canonical LR. Some
7642parsers generated by Bison can loop infinitely. LAC does not fix infinite
7643parsing loops that occur between encountering a syntax error and detecting
7644it, but enabling canonical LR or disabling default reductions sometimes
7645does.
7646
7647@item Verbose error message limitations.
7648
7649Because of internationalization considerations, Bison-generated parsers
7650limit the size of the expected token list they are willing to report in a
7651verbose syntax error message. If the number of expected tokens exceeds that
7652limit, the list is simply dropped from the message. Enabling LAC can
7653increase the size of the list and thus cause the parser to drop it. Of
7654course, dropping the list is better than reporting an incorrect list.
7655
7656@item Performance.
7657
7658Because LAC requires many parse actions to be performed twice, it can have a
7659performance penalty. However, not all parse actions must be performed
7660twice. Specifically, during a series of default reductions in consistent
7661states and shift actions, the parser never has to initiate an exploratory
7662parse. Moreover, the most time-consuming tasks in a parse are often the
7663file I/O, the lexical analysis performed by the scanner, and the user's
7664semantic actions, but none of these are performed during the exploratory
7665parse. Finally, the base of the temporary stack used during an exploratory
7666parse is a pointer into the normal parser state stack so that the stack is
7667never physically copied. In our experience, the performance penalty of LAC
56da1e52 7668has proved insignificant for practical grammars.
6f04ee6c
JD
7669@end itemize
7670
56706c61
JD
7671While the LAC algorithm shares techniques that have been recognized in the
7672parser community for years, for the publication that introduces LAC,
7673@pxref{Bibliography,,Denny 2010 May}.
121c4982 7674
6f04ee6c
JD
7675@node Unreachable States
7676@subsection Unreachable States
7677@findex %define lr.keep-unreachable-states
7678@cindex unreachable states
7679
7680If there exists no sequence of transitions from the parser's start state to
7681some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7682state}. A state can become unreachable during conflict resolution if Bison
7683disables a shift action leading to it from a predecessor state.
7684
7685By default, Bison removes unreachable states from the parser after conflict
7686resolution because they are useless in the generated parser. However,
7687keeping unreachable states is sometimes useful when trying to understand the
7688relationship between the parser and the grammar.
7689
511dd971 7690@deffn {Directive} {%define lr.keep-unreachable-states} @var{value}
6f04ee6c 7691Request that Bison allow unreachable states to remain in the parser tables.
511dd971 7692@var{value} must be a Boolean. The default is @code{false}.
6f04ee6c
JD
7693@end deffn
7694
7695There are a few caveats to consider:
7696
7697@itemize @bullet
7698@item Missing or extraneous warnings.
7699
7700Unreachable states may contain conflicts and may use rules not used in any
7701other state. Thus, keeping unreachable states may induce warnings that are
7702irrelevant to your parser's behavior, and it may eliminate warnings that are
7703relevant. Of course, the change in warnings may actually be relevant to a
7704parser table analysis that wants to keep unreachable states, so this
7705behavior will likely remain in future Bison releases.
7706
7707@item Other useless states.
7708
7709While Bison is able to remove unreachable states, it is not guaranteed to
7710remove other kinds of useless states. Specifically, when Bison disables
7711reduce actions during conflict resolution, some goto actions may become
7712useless, and thus some additional states may become useless. If Bison were
7713to compute which goto actions were useless and then disable those actions,
7714it could identify such states as unreachable and then remove those states.
7715However, Bison does not compute which goto actions are useless.
7716@end itemize
7717
fae437e8 7718@node Generalized LR Parsing
35430378
JD
7719@section Generalized LR (GLR) Parsing
7720@cindex GLR parsing
7721@cindex generalized LR (GLR) parsing
676385e2 7722@cindex ambiguous grammars
9d9b8b70 7723@cindex nondeterministic parsing
676385e2 7724
fae437e8
AD
7725Bison produces @emph{deterministic} parsers that choose uniquely
7726when to reduce and which reduction to apply
742e4900 7727based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7728As a result, normal Bison handles a proper subset of the family of
7729context-free languages.
fae437e8 7730Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7731sequence of reductions cannot have deterministic parsers in this sense.
7732The same is true of languages that require more than one symbol of
742e4900 7733lookahead, since the parser lacks the information necessary to make a
676385e2 7734decision at the point it must be made in a shift-reduce parser.
5da0355a 7735Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
34a6c2d1 7736there are languages where Bison's default choice of how to
676385e2
PH
7737summarize the input seen so far loses necessary information.
7738
7739When you use the @samp{%glr-parser} declaration in your grammar file,
7740Bison generates a parser that uses a different algorithm, called
35430378 7741Generalized LR (or GLR). A Bison GLR
c827f760 7742parser uses the same basic
676385e2
PH
7743algorithm for parsing as an ordinary Bison parser, but behaves
7744differently in cases where there is a shift-reduce conflict that has not
fae437e8 7745been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7746reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7747situation, it
fae437e8 7748effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7749shift or reduction. These parsers then proceed as usual, consuming
7750tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7751and split further, with the result that instead of a sequence of states,
35430378 7752a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7753
7754In effect, each stack represents a guess as to what the proper parse
7755is. Additional input may indicate that a guess was wrong, in which case
7756the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7757actions generated in each stack are saved, rather than being executed
676385e2 7758immediately. When a stack disappears, its saved semantic actions never
fae437e8 7759get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7760their sets of semantic actions are both saved with the state that
7761results from the reduction. We say that two stacks are equivalent
fae437e8 7762when they both represent the same sequence of states,
676385e2
PH
7763and each pair of corresponding states represents a
7764grammar symbol that produces the same segment of the input token
7765stream.
7766
7767Whenever the parser makes a transition from having multiple
34a6c2d1 7768states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7769algorithm, after resolving and executing the saved-up actions.
7770At this transition, some of the states on the stack will have semantic
7771values that are sets (actually multisets) of possible actions. The
7772parser tries to pick one of the actions by first finding one whose rule
7773has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7774declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7775precedence, but there the same merging function is declared for both
fae437e8 7776rules by the @samp{%merge} declaration,
676385e2
PH
7777Bison resolves and evaluates both and then calls the merge function on
7778the result. Otherwise, it reports an ambiguity.
7779
35430378
JD
7780It is possible to use a data structure for the GLR parsing tree that
7781permits the processing of any LR(1) grammar in linear time (in the
c827f760 7782size of the input), any unambiguous (not necessarily
35430378 7783LR(1)) grammar in
fae437e8 7784quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7785context-free grammar in cubic worst-case time. However, Bison currently
7786uses a simpler data structure that requires time proportional to the
7787length of the input times the maximum number of stacks required for any
9d9b8b70 7788prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7789grammars can require exponential time and space to process. Such badly
7790behaving examples, however, are not generally of practical interest.
9d9b8b70 7791Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7792doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7793structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7794grammar, in particular, it is only slightly slower than with the
35430378 7795deterministic LR(1) Bison parser.
676385e2 7796
71caec06
JD
7797For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
77982000}.
f6481e2f 7799
1a059451
PE
7800@node Memory Management
7801@section Memory Management, and How to Avoid Memory Exhaustion
7802@cindex memory exhaustion
7803@cindex memory management
bfa74976
RS
7804@cindex stack overflow
7805@cindex parser stack overflow
7806@cindex overflow of parser stack
7807
1a059451 7808The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7809not reduced. When this happens, the parser function @code{yyparse}
1a059451 7810calls @code{yyerror} and then returns 2.
bfa74976 7811
c827f760 7812Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 7813usually results from using a right recursion instead of a left
188867ac 7814recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 7815
bfa74976
RS
7816@vindex YYMAXDEPTH
7817By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7818parser stack can become before memory is exhausted. Define the
bfa74976
RS
7819macro with a value that is an integer. This value is the maximum number
7820of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7821
7822The stack space allowed is not necessarily allocated. If you specify a
1a059451 7823large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7824stack at first, and then makes it bigger by stages as needed. This
7825increasing allocation happens automatically and silently. Therefore,
7826you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7827space for ordinary inputs that do not need much stack.
7828
d7e14fc0
PE
7829However, do not allow @code{YYMAXDEPTH} to be a value so large that
7830arithmetic overflow could occur when calculating the size of the stack
7831space. Also, do not allow @code{YYMAXDEPTH} to be less than
7832@code{YYINITDEPTH}.
7833
bfa74976
RS
7834@cindex default stack limit
7835The default value of @code{YYMAXDEPTH}, if you do not define it, is
783610000.
7837
7838@vindex YYINITDEPTH
7839You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7840macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7841parser in C, this value must be a compile-time constant
d7e14fc0
PE
7842unless you are assuming C99 or some other target language or compiler
7843that allows variable-length arrays. The default is 200.
7844
1a059451 7845Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7846
d1a1114f 7847@c FIXME: C++ output.
c781580d 7848Because of semantic differences between C and C++, the deterministic
34a6c2d1 7849parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7850by C++ compilers. In this precise case (compiling a C parser as C++) you are
7851suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7852this deficiency in a future release.
d1a1114f 7853
342b8b6e 7854@node Error Recovery
bfa74976
RS
7855@chapter Error Recovery
7856@cindex error recovery
7857@cindex recovery from errors
7858
6e649e65 7859It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7860error. For example, a compiler should recover sufficiently to parse the
7861rest of the input file and check it for errors; a calculator should accept
7862another expression.
7863
7864In a simple interactive command parser where each input is one line, it may
7865be sufficient to allow @code{yyparse} to return 1 on error and have the
7866caller ignore the rest of the input line when that happens (and then call
7867@code{yyparse} again). But this is inadequate for a compiler, because it
7868forgets all the syntactic context leading up to the error. A syntax error
7869deep within a function in the compiler input should not cause the compiler
7870to treat the following line like the beginning of a source file.
7871
7872@findex error
7873You can define how to recover from a syntax error by writing rules to
7874recognize the special token @code{error}. This is a terminal symbol that
7875is always defined (you need not declare it) and reserved for error
7876handling. The Bison parser generates an @code{error} token whenever a
7877syntax error happens; if you have provided a rule to recognize this token
13863333 7878in the current context, the parse can continue.
bfa74976
RS
7879
7880For example:
7881
7882@example
0765d393 7883stmts:
de6be119 7884 /* empty string */
0765d393
AD
7885| stmts '\n'
7886| stmts exp '\n'
7887| stmts error '\n'
bfa74976
RS
7888@end example
7889
7890The fourth rule in this example says that an error followed by a newline
0765d393 7891makes a valid addition to any @code{stmts}.
bfa74976
RS
7892
7893What happens if a syntax error occurs in the middle of an @code{exp}? The
7894error recovery rule, interpreted strictly, applies to the precise sequence
0765d393 7895of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 7896the middle of an @code{exp}, there will probably be some additional tokens
0765d393 7897and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
7898will be tokens to read before the next newline. So the rule is not
7899applicable in the ordinary way.
7900
7901But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7902the semantic context and part of the input. First it discards states
7903and objects from the stack until it gets back to a state in which the
bfa74976 7904@code{error} token is acceptable. (This means that the subexpressions
0765d393 7905already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 7906At this point the @code{error} token can be shifted. Then, if the old
742e4900 7907lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7908tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7909this example, Bison reads and discards input until the next newline so
7910that the fourth rule can apply. Note that discarded symbols are
7911possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7912Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7913
7914The choice of error rules in the grammar is a choice of strategies for
7915error recovery. A simple and useful strategy is simply to skip the rest of
7916the current input line or current statement if an error is detected:
7917
7918@example
0765d393 7919stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7920@end example
7921
7922It is also useful to recover to the matching close-delimiter of an
7923opening-delimiter that has already been parsed. Otherwise the
7924close-delimiter will probably appear to be unmatched, and generate another,
7925spurious error message:
7926
7927@example
de6be119
AD
7928primary:
7929 '(' expr ')'
7930| '(' error ')'
7931@dots{}
7932;
bfa74976
RS
7933@end example
7934
7935Error recovery strategies are necessarily guesses. When they guess wrong,
7936one syntax error often leads to another. In the above example, the error
7937recovery rule guesses that an error is due to bad input within one
0765d393
AD
7938@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
7939middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
7940from the first error, another syntax error will be found straightaway,
7941since the text following the spurious semicolon is also an invalid
0765d393 7942@code{stmt}.
bfa74976
RS
7943
7944To prevent an outpouring of error messages, the parser will output no error
7945message for another syntax error that happens shortly after the first; only
7946after three consecutive input tokens have been successfully shifted will
7947error messages resume.
7948
7949Note that rules which accept the @code{error} token may have actions, just
7950as any other rules can.
7951
7952@findex yyerrok
7953You can make error messages resume immediately by using the macro
7954@code{yyerrok} in an action. If you do this in the error rule's action, no
7955error messages will be suppressed. This macro requires no arguments;
7956@samp{yyerrok;} is a valid C statement.
7957
7958@findex yyclearin
742e4900 7959The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7960this is unacceptable, then the macro @code{yyclearin} may be used to clear
7961this token. Write the statement @samp{yyclearin;} in the error rule's
7962action.
32c29292 7963@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7964
6e649e65 7965For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7966called that advances the input stream to some point where parsing should
7967once again commence. The next symbol returned by the lexical scanner is
742e4900 7968probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7969with @samp{yyclearin;}.
7970
7971@vindex YYRECOVERING
02103984
PE
7972The expression @code{YYRECOVERING ()} yields 1 when the parser
7973is recovering from a syntax error, and 0 otherwise.
7974Syntax error diagnostics are suppressed while recovering from a syntax
7975error.
bfa74976 7976
342b8b6e 7977@node Context Dependency
bfa74976
RS
7978@chapter Handling Context Dependencies
7979
7980The Bison paradigm is to parse tokens first, then group them into larger
7981syntactic units. In many languages, the meaning of a token is affected by
7982its context. Although this violates the Bison paradigm, certain techniques
7983(known as @dfn{kludges}) may enable you to write Bison parsers for such
7984languages.
7985
7986@menu
7987* Semantic Tokens:: Token parsing can depend on the semantic context.
7988* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7989* Tie-in Recovery:: Lexical tie-ins have implications for how
7990 error recovery rules must be written.
7991@end menu
7992
7993(Actually, ``kludge'' means any technique that gets its job done but is
7994neither clean nor robust.)
7995
342b8b6e 7996@node Semantic Tokens
bfa74976
RS
7997@section Semantic Info in Token Types
7998
7999The C language has a context dependency: the way an identifier is used
8000depends on what its current meaning is. For example, consider this:
8001
8002@example
8003foo (x);
8004@end example
8005
8006This looks like a function call statement, but if @code{foo} is a typedef
8007name, then this is actually a declaration of @code{x}. How can a Bison
8008parser for C decide how to parse this input?
8009
35430378 8010The method used in GNU C is to have two different token types,
bfa74976
RS
8011@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8012identifier, it looks up the current declaration of the identifier in order
8013to decide which token type to return: @code{TYPENAME} if the identifier is
8014declared as a typedef, @code{IDENTIFIER} otherwise.
8015
8016The grammar rules can then express the context dependency by the choice of
8017token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8018but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8019@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8020is @emph{not} significant, such as in declarations that can shadow a
8021typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8022accepted---there is one rule for each of the two token types.
8023
8024This technique is simple to use if the decision of which kinds of
8025identifiers to allow is made at a place close to where the identifier is
8026parsed. But in C this is not always so: C allows a declaration to
8027redeclare a typedef name provided an explicit type has been specified
8028earlier:
8029
8030@example
3a4f411f
PE
8031typedef int foo, bar;
8032int baz (void)
98842516 8033@group
3a4f411f
PE
8034@{
8035 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8036 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8037 return foo (bar);
8038@}
98842516 8039@end group
bfa74976
RS
8040@end example
8041
8042Unfortunately, the name being declared is separated from the declaration
8043construct itself by a complicated syntactic structure---the ``declarator''.
8044
9ecbd125 8045As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8046all the nonterminal names changed: once for parsing a declaration in
8047which a typedef name can be redefined, and once for parsing a
8048declaration in which that can't be done. Here is a part of the
8049duplication, with actions omitted for brevity:
bfa74976
RS
8050
8051@example
98842516 8052@group
bfa74976 8053initdcl:
de6be119
AD
8054 declarator maybeasm '=' init
8055| declarator maybeasm
8056;
98842516 8057@end group
bfa74976 8058
98842516 8059@group
bfa74976 8060notype_initdcl:
de6be119
AD
8061 notype_declarator maybeasm '=' init
8062| notype_declarator maybeasm
8063;
98842516 8064@end group
bfa74976
RS
8065@end example
8066
8067@noindent
8068Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8069cannot. The distinction between @code{declarator} and
8070@code{notype_declarator} is the same sort of thing.
8071
8072There is some similarity between this technique and a lexical tie-in
8073(described next), in that information which alters the lexical analysis is
8074changed during parsing by other parts of the program. The difference is
8075here the information is global, and is used for other purposes in the
8076program. A true lexical tie-in has a special-purpose flag controlled by
8077the syntactic context.
8078
342b8b6e 8079@node Lexical Tie-ins
bfa74976
RS
8080@section Lexical Tie-ins
8081@cindex lexical tie-in
8082
8083One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8084which is set by Bison actions, whose purpose is to alter the way tokens are
8085parsed.
8086
8087For example, suppose we have a language vaguely like C, but with a special
8088construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8089an expression in parentheses in which all integers are hexadecimal. In
8090particular, the token @samp{a1b} must be treated as an integer rather than
8091as an identifier if it appears in that context. Here is how you can do it:
8092
8093@example
8094@group
8095%@{
38a92d50
PE
8096 int hexflag;
8097 int yylex (void);
8098 void yyerror (char const *);
bfa74976
RS
8099%@}
8100%%
8101@dots{}
8102@end group
8103@group
de6be119
AD
8104expr:
8105 IDENTIFIER
8106| constant
8107| HEX '(' @{ hexflag = 1; @}
8108 expr ')' @{ hexflag = 0; $$ = $4; @}
8109| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8110@dots{}
8111;
bfa74976
RS
8112@end group
8113
8114@group
8115constant:
de6be119
AD
8116 INTEGER
8117| STRING
8118;
bfa74976
RS
8119@end group
8120@end example
8121
8122@noindent
8123Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8124it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8125with letters are parsed as integers if possible.
8126
9913d6e4
JD
8127The declaration of @code{hexflag} shown in the prologue of the grammar
8128file is needed to make it accessible to the actions (@pxref{Prologue,
8129,The Prologue}). You must also write the code in @code{yylex} to obey
8130the flag.
bfa74976 8131
342b8b6e 8132@node Tie-in Recovery
bfa74976
RS
8133@section Lexical Tie-ins and Error Recovery
8134
8135Lexical tie-ins make strict demands on any error recovery rules you have.
8136@xref{Error Recovery}.
8137
8138The reason for this is that the purpose of an error recovery rule is to
8139abort the parsing of one construct and resume in some larger construct.
8140For example, in C-like languages, a typical error recovery rule is to skip
8141tokens until the next semicolon, and then start a new statement, like this:
8142
8143@example
de6be119
AD
8144stmt:
8145 expr ';'
8146| IF '(' expr ')' stmt @{ @dots{} @}
8147@dots{}
8148| error ';' @{ hexflag = 0; @}
8149;
bfa74976
RS
8150@end example
8151
8152If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8153construct, this error rule will apply, and then the action for the
8154completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8155remain set for the entire rest of the input, or until the next @code{hex}
8156keyword, causing identifiers to be misinterpreted as integers.
8157
8158To avoid this problem the error recovery rule itself clears @code{hexflag}.
8159
8160There may also be an error recovery rule that works within expressions.
8161For example, there could be a rule which applies within parentheses
8162and skips to the close-parenthesis:
8163
8164@example
8165@group
de6be119
AD
8166expr:
8167 @dots{}
8168| '(' expr ')' @{ $$ = $2; @}
8169| '(' error ')'
8170@dots{}
bfa74976
RS
8171@end group
8172@end example
8173
8174If this rule acts within the @code{hex} construct, it is not going to abort
8175that construct (since it applies to an inner level of parentheses within
8176the construct). Therefore, it should not clear the flag: the rest of
8177the @code{hex} construct should be parsed with the flag still in effect.
8178
8179What if there is an error recovery rule which might abort out of the
8180@code{hex} construct or might not, depending on circumstances? There is no
8181way you can write the action to determine whether a @code{hex} construct is
8182being aborted or not. So if you are using a lexical tie-in, you had better
8183make sure your error recovery rules are not of this kind. Each rule must
8184be such that you can be sure that it always will, or always won't, have to
8185clear the flag.
8186
ec3bc396
AD
8187@c ================================================== Debugging Your Parser
8188
342b8b6e 8189@node Debugging
bfa74976 8190@chapter Debugging Your Parser
ec3bc396 8191
56d60c19
AD
8192Developing a parser can be a challenge, especially if you don't understand
8193the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8194chapter explains how to generate and read the detailed description of the
8195automaton, and how to enable and understand the parser run-time traces.
ec3bc396
AD
8196
8197@menu
8198* Understanding:: Understanding the structure of your parser.
fc4fdd62 8199* Graphviz:: Getting a visual representation of the parser.
9c16d399 8200* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8201* Tracing:: Tracing the execution of your parser.
8202@end menu
8203
8204@node Understanding
8205@section Understanding Your Parser
8206
8207As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8208Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8209frequent than one would hope), looking at this automaton is required to
8210tune or simply fix a parser. Bison provides two different
35fe0834 8211representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8212
8213The textual file is generated when the options @option{--report} or
2ba03112 8214@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8215Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
8216the parser implementation file name, and adding @samp{.output}
8217instead. Therefore, if the grammar file is @file{foo.y}, then the
8218parser implementation file is called @file{foo.tab.c} by default. As
8219a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8220
8221The following grammar file, @file{calc.y}, will be used in the sequel:
8222
8223@example
8224%token NUM STR
8225%left '+' '-'
8226%left '*'
8227%%
de6be119
AD
8228exp:
8229 exp '+' exp
8230| exp '-' exp
8231| exp '*' exp
8232| exp '/' exp
8233| NUM
8234;
ec3bc396
AD
8235useless: STR;
8236%%
8237@end example
8238
88bce5a2
AD
8239@command{bison} reports:
8240
8241@example
379261b3
JD
8242calc.y: warning: 1 nonterminal useless in grammar
8243calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8244calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8245calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8246calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8247@end example
8248
8249When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8250creates a file @file{calc.output} with contents detailed below. The
8251order of the output and the exact presentation might vary, but the
8252interpretation is the same.
ec3bc396 8253
ec3bc396
AD
8254@noindent
8255@cindex token, useless
8256@cindex useless token
8257@cindex nonterminal, useless
8258@cindex useless nonterminal
8259@cindex rule, useless
8260@cindex useless rule
84c1cdc7
AD
8261The first section reports useless tokens, nonterminals and rules. Useless
8262nonterminals and rules are removed in order to produce a smaller parser, but
8263useless tokens are preserved, since they might be used by the scanner (note
8264the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8265
8266@example
84c1cdc7 8267Nonterminals useless in grammar
ec3bc396
AD
8268 useless
8269
84c1cdc7 8270Terminals unused in grammar
ec3bc396
AD
8271 STR
8272
84c1cdc7
AD
8273Rules useless in grammar
8274 6 useless: STR
ec3bc396
AD
8275@end example
8276
8277@noindent
84c1cdc7
AD
8278The next section lists states that still have conflicts.
8279
8280@example
8281State 8 conflicts: 1 shift/reduce
8282State 9 conflicts: 1 shift/reduce
8283State 10 conflicts: 1 shift/reduce
8284State 11 conflicts: 4 shift/reduce
8285@end example
8286
8287@noindent
8288Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8289
8290@example
8291Grammar
8292
84c1cdc7
AD
8293 0 $accept: exp $end
8294
8295 1 exp: exp '+' exp
8296 2 | exp '-' exp
8297 3 | exp '*' exp
8298 4 | exp '/' exp
8299 5 | NUM
ec3bc396
AD
8300@end example
8301
8302@noindent
8303and reports the uses of the symbols:
8304
8305@example
98842516 8306@group
ec3bc396
AD
8307Terminals, with rules where they appear
8308
88bce5a2 8309$end (0) 0
ec3bc396
AD
8310'*' (42) 3
8311'+' (43) 1
8312'-' (45) 2
8313'/' (47) 4
8314error (256)
8315NUM (258) 5
84c1cdc7 8316STR (259)
98842516 8317@end group
ec3bc396 8318
98842516 8319@group
ec3bc396
AD
8320Nonterminals, with rules where they appear
8321
84c1cdc7 8322$accept (9)
ec3bc396 8323 on left: 0
84c1cdc7 8324exp (10)
ec3bc396 8325 on left: 1 2 3 4 5, on right: 0 1 2 3 4
98842516 8326@end group
ec3bc396
AD
8327@end example
8328
8329@noindent
8330@cindex item
8331@cindex pointed rule
8332@cindex rule, pointed
8333Bison then proceeds onto the automaton itself, describing each state
d13d14cc
PE
8334with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8335item is a production rule together with a point (@samp{.}) marking
8336the location of the input cursor.
ec3bc396
AD
8337
8338@example
8339state 0
8340
84c1cdc7 8341 0 $accept: . exp $end
ec3bc396 8342
84c1cdc7 8343 NUM shift, and go to state 1
ec3bc396 8344
84c1cdc7 8345 exp go to state 2
ec3bc396
AD
8346@end example
8347
8348This reads as follows: ``state 0 corresponds to being at the very
8349beginning of the parsing, in the initial rule, right before the start
8350symbol (here, @code{exp}). When the parser returns to this state right
8351after having reduced a rule that produced an @code{exp}, the control
8352flow jumps to state 2. If there is no such transition on a nonterminal
d13d14cc 8353symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8354the parse stack, and the control flow jumps to state 1. Any other
742e4900 8355lookahead triggers a syntax error.''
ec3bc396
AD
8356
8357@cindex core, item set
8358@cindex item set core
8359@cindex kernel, item set
8360@cindex item set core
8361Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8362report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8363at the beginning of any rule deriving an @code{exp}. By default Bison
8364reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8365you want to see more detail you can invoke @command{bison} with
d13d14cc 8366@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8367
8368@example
8369state 0
8370
84c1cdc7
AD
8371 0 $accept: . exp $end
8372 1 exp: . exp '+' exp
8373 2 | . exp '-' exp
8374 3 | . exp '*' exp
8375 4 | . exp '/' exp
8376 5 | . NUM
ec3bc396 8377
84c1cdc7 8378 NUM shift, and go to state 1
ec3bc396 8379
84c1cdc7 8380 exp go to state 2
ec3bc396
AD
8381@end example
8382
8383@noindent
84c1cdc7 8384In the state 1@dots{}
ec3bc396
AD
8385
8386@example
8387state 1
8388
84c1cdc7 8389 5 exp: NUM .
ec3bc396 8390
84c1cdc7 8391 $default reduce using rule 5 (exp)
ec3bc396
AD
8392@end example
8393
8394@noindent
742e4900 8395the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8396(@samp{$default}), the parser will reduce it. If it was coming from
8397state 0, then, after this reduction it will return to state 0, and will
8398jump to state 2 (@samp{exp: go to state 2}).
8399
8400@example
8401state 2
8402
84c1cdc7
AD
8403 0 $accept: exp . $end
8404 1 exp: exp . '+' exp
8405 2 | exp . '-' exp
8406 3 | exp . '*' exp
8407 4 | exp . '/' exp
ec3bc396 8408
84c1cdc7
AD
8409 $end shift, and go to state 3
8410 '+' shift, and go to state 4
8411 '-' shift, and go to state 5
8412 '*' shift, and go to state 6
8413 '/' shift, and go to state 7
ec3bc396
AD
8414@end example
8415
8416@noindent
8417In state 2, the automaton can only shift a symbol. For instance,
84c1cdc7 8418because of the item @samp{exp: exp . '+' exp}, if the lookahead is
d13d14cc 8419@samp{+} it is shifted onto the parse stack, and the automaton
84c1cdc7 8420jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
d13d14cc
PE
8421Since there is no default action, any lookahead not listed triggers a syntax
8422error.
ec3bc396 8423
34a6c2d1 8424@cindex accepting state
ec3bc396
AD
8425The state 3 is named the @dfn{final state}, or the @dfn{accepting
8426state}:
8427
8428@example
8429state 3
8430
84c1cdc7 8431 0 $accept: exp $end .
ec3bc396 8432
84c1cdc7 8433 $default accept
ec3bc396
AD
8434@end example
8435
8436@noindent
84c1cdc7
AD
8437the initial rule is completed (the start symbol and the end-of-input were
8438read), the parsing exits successfully.
ec3bc396
AD
8439
8440The interpretation of states 4 to 7 is straightforward, and is left to
8441the reader.
8442
8443@example
8444state 4
8445
84c1cdc7 8446 1 exp: exp '+' . exp
ec3bc396 8447
84c1cdc7
AD
8448 NUM shift, and go to state 1
8449
8450 exp go to state 8
ec3bc396 8451
ec3bc396
AD
8452
8453state 5
8454
84c1cdc7
AD
8455 2 exp: exp '-' . exp
8456
8457 NUM shift, and go to state 1
ec3bc396 8458
84c1cdc7 8459 exp go to state 9
ec3bc396 8460
ec3bc396
AD
8461
8462state 6
8463
84c1cdc7 8464 3 exp: exp '*' . exp
ec3bc396 8465
84c1cdc7
AD
8466 NUM shift, and go to state 1
8467
8468 exp go to state 10
ec3bc396 8469
ec3bc396
AD
8470
8471state 7
8472
84c1cdc7 8473 4 exp: exp '/' . exp
ec3bc396 8474
84c1cdc7 8475 NUM shift, and go to state 1
ec3bc396 8476
84c1cdc7 8477 exp go to state 11
ec3bc396
AD
8478@end example
8479
5a99098d
PE
8480As was announced in beginning of the report, @samp{State 8 conflicts:
84811 shift/reduce}:
ec3bc396
AD
8482
8483@example
8484state 8
8485
84c1cdc7
AD
8486 1 exp: exp . '+' exp
8487 1 | exp '+' exp .
8488 2 | exp . '-' exp
8489 3 | exp . '*' exp
8490 4 | exp . '/' exp
ec3bc396 8491
84c1cdc7
AD
8492 '*' shift, and go to state 6
8493 '/' shift, and go to state 7
ec3bc396 8494
84c1cdc7
AD
8495 '/' [reduce using rule 1 (exp)]
8496 $default reduce using rule 1 (exp)
ec3bc396
AD
8497@end example
8498
742e4900 8499Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8500either shifting (and going to state 7), or reducing rule 1. The
8501conflict means that either the grammar is ambiguous, or the parser lacks
8502information to make the right decision. Indeed the grammar is
8503ambiguous, as, since we did not specify the precedence of @samp{/}, the
8504sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8505NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8506NUM}, which corresponds to reducing rule 1.
8507
34a6c2d1 8508Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8509arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
84c1cdc7 8510Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8511square brackets.
8512
8513Note that all the previous states had a single possible action: either
8514shifting the next token and going to the corresponding state, or
8515reducing a single rule. In the other cases, i.e., when shifting
8516@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8517possible, the lookahead is required to select the action. State 8 is
8518one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8519is shifting, otherwise the action is reducing rule 1. In other words,
8520the first two items, corresponding to rule 1, are not eligible when the
742e4900 8521lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8522precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8523with some set of possible lookahead tokens. When run with
8524@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8525
8526@example
8527state 8
8528
84c1cdc7
AD
8529 1 exp: exp . '+' exp
8530 1 | exp '+' exp . [$end, '+', '-', '/']
8531 2 | exp . '-' exp
8532 3 | exp . '*' exp
8533 4 | exp . '/' exp
8534
8535 '*' shift, and go to state 6
8536 '/' shift, and go to state 7
ec3bc396 8537
84c1cdc7
AD
8538 '/' [reduce using rule 1 (exp)]
8539 $default reduce using rule 1 (exp)
8540@end example
8541
8542Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8543the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8544solved thanks to associativity and precedence directives. If invoked with
8545@option{--report=solved}, Bison includes information about the solved
8546conflicts in the report:
ec3bc396 8547
84c1cdc7
AD
8548@example
8549Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8550Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8551Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8552@end example
8553
84c1cdc7 8554
ec3bc396
AD
8555The remaining states are similar:
8556
8557@example
98842516 8558@group
ec3bc396
AD
8559state 9
8560
84c1cdc7
AD
8561 1 exp: exp . '+' exp
8562 2 | exp . '-' exp
8563 2 | exp '-' exp .
8564 3 | exp . '*' exp
8565 4 | exp . '/' exp
ec3bc396 8566
84c1cdc7
AD
8567 '*' shift, and go to state 6
8568 '/' shift, and go to state 7
ec3bc396 8569
84c1cdc7
AD
8570 '/' [reduce using rule 2 (exp)]
8571 $default reduce using rule 2 (exp)
98842516 8572@end group
ec3bc396 8573
98842516 8574@group
ec3bc396
AD
8575state 10
8576
84c1cdc7
AD
8577 1 exp: exp . '+' exp
8578 2 | exp . '-' exp
8579 3 | exp . '*' exp
8580 3 | exp '*' exp .
8581 4 | exp . '/' exp
ec3bc396 8582
84c1cdc7 8583 '/' shift, and go to state 7
ec3bc396 8584
84c1cdc7
AD
8585 '/' [reduce using rule 3 (exp)]
8586 $default reduce using rule 3 (exp)
98842516 8587@end group
ec3bc396 8588
98842516 8589@group
ec3bc396
AD
8590state 11
8591
84c1cdc7
AD
8592 1 exp: exp . '+' exp
8593 2 | exp . '-' exp
8594 3 | exp . '*' exp
8595 4 | exp . '/' exp
8596 4 | exp '/' exp .
8597
8598 '+' shift, and go to state 4
8599 '-' shift, and go to state 5
8600 '*' shift, and go to state 6
8601 '/' shift, and go to state 7
8602
8603 '+' [reduce using rule 4 (exp)]
8604 '-' [reduce using rule 4 (exp)]
8605 '*' [reduce using rule 4 (exp)]
8606 '/' [reduce using rule 4 (exp)]
8607 $default reduce using rule 4 (exp)
98842516 8608@end group
ec3bc396
AD
8609@end example
8610
8611@noindent
fa7e68c3
PE
8612Observe that state 11 contains conflicts not only due to the lack of
8613precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8614@samp{*}, but also because the
ec3bc396
AD
8615associativity of @samp{/} is not specified.
8616
9c16d399
TR
8617Note that Bison may also produce an HTML version of this output, via an XML
8618file and XSLT processing (@pxref{Xml}).
8619
fc4fdd62
TR
8620@c ================================================= Graphical Representation
8621
8622@node Graphviz
8623@section Visualizing Your Parser
8624@cindex dot
8625
8626As another means to gain better understanding of the shift/reduce
8627automaton corresponding to the Bison parser, a DOT file can be generated. Note
8628that debugging a real grammar with this is tedious at best, and impractical
8629most of the times, because the generated files are huge (the generation of
8630a PDF or PNG file from it will take very long, and more often than not it will
8631fail due to memory exhaustion). This option was rather designed for beginners,
8632to help them understand LR parsers.
8633
bfdcc3a0
AD
8634This file is generated when the @option{--graph} option is specified
8635(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
8636@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
8637adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
8638Graphviz output file is called @file{foo.dot}.
8639
8640The following grammar file, @file{rr.y}, will be used in the sequel:
8641
8642@example
8643%%
8644@group
8645exp: a ";" | b ".";
8646a: "0";
8647b: "0";
8648@end group
8649@end example
8650
8651The graphical output is very similar to the textual one, and as such it is
8652easier understood by making direct comparisons between them. See
8653@ref{Debugging, , Debugging Your Parser} for a detailled analysis of the
8654textual report.
8655
8656@subheading Graphical Representation of States
8657
8658The items (pointed rules) for each state are grouped together in graph nodes.
8659Their numbering is the same as in the verbose file. See the following points,
8660about transitions, for examples
8661
8662When invoked with @option{--report=lookaheads}, the lookahead tokens, when
8663needed, are shown next to the relevant rule between square brackets as a
8664comma separated list. This is the case in the figure for the representation of
8665reductions, below.
8666
8667@sp 1
8668
8669The transitions are represented as directed edges between the current and
8670the target states.
8671
8672@subheading Graphical Representation of Shifts
8673
8674Shifts are shown as solid arrows, labelled with the lookahead token for that
8675shift. The following describes a reduction in the @file{rr.output} file:
8676
8677@example
8678@group
8679state 3
8680
8681 1 exp: a . ";"
8682
8683 ";" shift, and go to state 6
8684@end group
8685@end example
8686
8687A Graphviz rendering of this portion of the graph could be:
8688
8689@center @image{figs/example-shift, 100pt}
8690
8691@subheading Graphical Representation of Reductions
8692
8693Reductions are shown as solid arrows, leading to a diamond-shaped node
8694bearing the number of the reduction rule. The arrow is labelled with the
8695appropriate comma separated lookahead tokens. If the reduction is the default
8696action for the given state, there is no such label.
8697
8698This is how reductions are represented in the verbose file @file{rr.output}:
8699@example
8700state 1
8701
8702 3 a: "0" . [";"]
8703 4 b: "0" . ["."]
8704
8705 "." reduce using rule 4 (b)
8706 $default reduce using rule 3 (a)
8707@end example
8708
8709A Graphviz rendering of this portion of the graph could be:
8710
8711@center @image{figs/example-reduce, 120pt}
8712
8713When unresolved conflicts are present, because in deterministic parsing
8714a single decision can be made, Bison can arbitrarily choose to disable a
8715reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
8716are distinguished by a red filling color on these nodes, just like how they are
8717reported between square brackets in the verbose file.
8718
8719The reduction corresponding to the rule number 0 is the acceptation state. It
8720is shown as a blue diamond, labelled "Acc".
8721
8722@subheading Graphical representation of go tos
8723
8724The @samp{go to} jump transitions are represented as dotted lines bearing
8725the name of the rule being jumped to.
8726
9c16d399
TR
8727Note that a DOT file may also be produced via an XML file and XSLT
8728processing (@pxref{Xml}).
8729
8730@c ================================================= XML
8731
8732@node Xml
8733@section Visualizing your parser in multiple formats
8734@cindex xml
8735
8736Bison supports two major report formats: textual output
8737(@pxref{Understanding}) when invoked with option @option{--verbose}, and DOT
8738(@pxref{Graphviz}) when invoked with option @option{--graph}. However,
8739another alternative is to output an XML file that may then be, with
8740@command{xsltproc}, rendered as either a raw text format equivalent to the
8741verbose file, or as an HTML version of the same file, with clickable
8742transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
8743XSLT have no difference whatsoever with those obtained by invoking
8744@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399
TR
8745
8746The textual file is generated when the options @option{-x} or
8747@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
8748If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
8749from the parser implementation file name, and adding @samp{.xml} instead.
8750For instance, if the grammar file is @file{foo.y}, the default XML output
8751file is @file{foo.xml}.
8752
8753Bison ships with a @file{data/xslt} directory, containing XSL Transformation
8754files to apply to the XML file. Their names are non-ambiguous:
8755
8756@table @file
8757@item xml2dot.xsl
be3517b0 8758Used to output a copy of the DOT visualization of the automaton.
9c16d399
TR
8759@item xml2text.xsl
8760Used to output a copy of the .output file.
8761@item xml2xhtml.xsl
8762Used to output an xhtml enhancement of the .output file.
8763@end table
8764
8765Sample usage (requires @code{xsltproc}):
8766@example
8767$ bison -x input.y
8768@group
8769$ bison --print-datadir
8770/usr/local/share/bison
8771@end group
8772$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl input.xml > input.html
8773@end example
8774
fc4fdd62 8775@c ================================================= Tracing
ec3bc396
AD
8776
8777@node Tracing
8778@section Tracing Your Parser
bfa74976
RS
8779@findex yydebug
8780@cindex debugging
8781@cindex tracing the parser
8782
56d60c19
AD
8783When a Bison grammar compiles properly but parses ``incorrectly'', the
8784@code{yydebug} parser-trace feature helps figuring out why.
8785
8786@menu
8787* Enabling Traces:: Activating run-time trace support
8788* Mfcalc Traces:: Extending @code{mfcalc} to support traces
8789* The YYPRINT Macro:: Obsolete interface for semantic value reports
8790@end menu
bfa74976 8791
56d60c19
AD
8792@node Enabling Traces
8793@subsection Enabling Traces
3ded9a63
AD
8794There are several means to enable compilation of trace facilities:
8795
8796@table @asis
8797@item the macro @code{YYDEBUG}
8798@findex YYDEBUG
8799Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 8800parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8801@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8802YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8803Prologue}).
8804
e6ae99fe 8805If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
8806Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
8807api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
8808tracing feature (enabled if and only if nonzero); otherwise tracing is
8809enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
8810
8811@item the option @option{-t} (POSIX Yacc compliant)
8812@itemx the option @option{--debug} (Bison extension)
8813Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
8814Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
8815otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
8816
8817@item the directive @samp{%debug}
8818@findex %debug
e358222b
AD
8819Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8820Summary}). This is a Bison extension, especially useful for languages that
8821don't use a preprocessor. Unless POSIX and Yacc portability matter to you,
8822this is the preferred solution.
3ded9a63
AD
8823@end table
8824
8825We suggest that you always enable the debug option so that debugging is
8826always possible.
bfa74976 8827
56d60c19 8828@findex YYFPRINTF
02a81e05 8829The trace facility outputs messages with macro calls of the form
e2742e46 8830@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8831@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8832arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8833define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8834and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8835
8836Once you have compiled the program with trace facilities, the way to
8837request a trace is to store a nonzero value in the variable @code{yydebug}.
8838You can do this by making the C code do it (in @code{main}, perhaps), or
8839you can alter the value with a C debugger.
8840
8841Each step taken by the parser when @code{yydebug} is nonzero produces a
8842line or two of trace information, written on @code{stderr}. The trace
8843messages tell you these things:
8844
8845@itemize @bullet
8846@item
8847Each time the parser calls @code{yylex}, what kind of token was read.
8848
8849@item
8850Each time a token is shifted, the depth and complete contents of the
8851state stack (@pxref{Parser States}).
8852
8853@item
8854Each time a rule is reduced, which rule it is, and the complete contents
8855of the state stack afterward.
8856@end itemize
8857
56d60c19
AD
8858To make sense of this information, it helps to refer to the automaton
8859description file (@pxref{Understanding, ,Understanding Your Parser}).
8860This file shows the meaning of each state in terms of
704a47c4
AD
8861positions in various rules, and also what each state will do with each
8862possible input token. As you read the successive trace messages, you
8863can see that the parser is functioning according to its specification in
8864the listing file. Eventually you will arrive at the place where
8865something undesirable happens, and you will see which parts of the
8866grammar are to blame.
bfa74976 8867
56d60c19 8868The parser implementation file is a C/C++/Java program and you can use
9913d6e4
JD
8869debuggers on it, but it's not easy to interpret what it is doing. The
8870parser function is a finite-state machine interpreter, and aside from
8871the actions it executes the same code over and over. Only the values
8872of variables show where in the grammar it is working.
bfa74976 8873
56d60c19
AD
8874@node Mfcalc Traces
8875@subsection Enabling Debug Traces for @code{mfcalc}
8876
8877The debugging information normally gives the token type of each token read,
8878but not its semantic value. The @code{%printer} directive allows specify
8879how semantic values are reported, see @ref{Printer Decl, , Printing
8880Semantic Values}. For backward compatibility, Yacc like C parsers may also
8881use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
8882Macro}), but its use is discouraged.
8883
8884As a demonstration of @code{%printer}, consider the multi-function
8885calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
8886traces, and semantic value reports, insert the following directives in its
8887prologue:
8888
8889@comment file: mfcalc.y: 2
8890@example
8891/* Generate the parser description file. */
8892%verbose
8893/* Enable run-time traces (yydebug). */
8894%define parse.trace
8895
8896/* Formatting semantic values. */
8897%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
8898%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
8899%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
8900@end example
8901
8902The @code{%define} directive instructs Bison to generate run-time trace
8903support. Then, activation of these traces is controlled at run-time by the
8904@code{yydebug} variable, which is disabled by default. Because these traces
8905will refer to the ``states'' of the parser, it is helpful to ask for the
8906creation of a description of that parser; this is the purpose of (admittedly
8907ill-named) @code{%verbose} directive.
8908
8909The set of @code{%printer} directives demonstrates how to format the
8910semantic value in the traces. Note that the specification can be done
8911either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
8912tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
8913printer will be used for them.
8914
8915Here is a sample of the information provided by run-time traces. The traces
8916are sent onto standard error.
8917
8918@example
8919$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
8920Starting parse
8921Entering state 0
8922Reducing stack by rule 1 (line 34):
8923-> $$ = nterm input ()
8924Stack now 0
8925Entering state 1
8926@end example
8927
8928@noindent
8929This first batch shows a specific feature of this grammar: the first rule
8930(which is in line 34 of @file{mfcalc.y} can be reduced without even having
8931to look for the first token. The resulting left-hand symbol (@code{$$}) is
8932a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
8933
8934Then the parser calls the scanner.
8935@example
8936Reading a token: Next token is token FNCT (sin())
8937Shifting token FNCT (sin())
8938Entering state 6
8939@end example
8940
8941@noindent
8942That token (@code{token}) is a function (@code{FNCT}) whose value is
8943@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
8944The parser stores (@code{Shifting}) that token, and others, until it can do
8945something about it.
8946
8947@example
8948Reading a token: Next token is token '(' ()
8949Shifting token '(' ()
8950Entering state 14
8951Reading a token: Next token is token NUM (1.000000)
8952Shifting token NUM (1.000000)
8953Entering state 4
8954Reducing stack by rule 6 (line 44):
8955 $1 = token NUM (1.000000)
8956-> $$ = nterm exp (1.000000)
8957Stack now 0 1 6 14
8958Entering state 24
8959@end example
8960
8961@noindent
8962The previous reduction demonstrates the @code{%printer} directive for
8963@code{<val>}: both the token @code{NUM} and the resulting non-terminal
8964@code{exp} have @samp{1} as value.
8965
8966@example
8967Reading a token: Next token is token '-' ()
8968Shifting token '-' ()
8969Entering state 17
8970Reading a token: Next token is token NUM (1.000000)
8971Shifting token NUM (1.000000)
8972Entering state 4
8973Reducing stack by rule 6 (line 44):
8974 $1 = token NUM (1.000000)
8975-> $$ = nterm exp (1.000000)
8976Stack now 0 1 6 14 24 17
8977Entering state 26
8978Reading a token: Next token is token ')' ()
8979Reducing stack by rule 11 (line 49):
8980 $1 = nterm exp (1.000000)
8981 $2 = token '-' ()
8982 $3 = nterm exp (1.000000)
8983-> $$ = nterm exp (0.000000)
8984Stack now 0 1 6 14
8985Entering state 24
8986@end example
8987
8988@noindent
8989The rule for the subtraction was just reduced. The parser is about to
8990discover the end of the call to @code{sin}.
8991
8992@example
8993Next token is token ')' ()
8994Shifting token ')' ()
8995Entering state 31
8996Reducing stack by rule 9 (line 47):
8997 $1 = token FNCT (sin())
8998 $2 = token '(' ()
8999 $3 = nterm exp (0.000000)
9000 $4 = token ')' ()
9001-> $$ = nterm exp (0.000000)
9002Stack now 0 1
9003Entering state 11
9004@end example
9005
9006@noindent
9007Finally, the end-of-line allow the parser to complete the computation, and
9008display its result.
9009
9010@example
9011Reading a token: Next token is token '\n' ()
9012Shifting token '\n' ()
9013Entering state 22
9014Reducing stack by rule 4 (line 40):
9015 $1 = nterm exp (0.000000)
9016 $2 = token '\n' ()
9017@result{} 0
9018-> $$ = nterm line ()
9019Stack now 0 1
9020Entering state 10
9021Reducing stack by rule 2 (line 35):
9022 $1 = nterm input ()
9023 $2 = nterm line ()
9024-> $$ = nterm input ()
9025Stack now 0
9026Entering state 1
9027@end example
9028
9029The parser has returned into state 1, in which it is waiting for the next
9030expression to evaluate, or for the end-of-file token, which causes the
9031completion of the parsing.
9032
9033@example
9034Reading a token: Now at end of input.
9035Shifting token $end ()
9036Entering state 2
9037Stack now 0 1 2
9038Cleanup: popping token $end ()
9039Cleanup: popping nterm input ()
9040@end example
9041
9042
9043@node The YYPRINT Macro
9044@subsection The @code{YYPRINT} Macro
9045
9046@findex YYPRINT
9047Before @code{%printer} support, semantic values could be displayed using the
9048@code{YYPRINT} macro, which works only for terminal symbols and only with
9049the @file{yacc.c} skeleton.
9050
9051@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
bfa74976 9052@findex YYPRINT
56d60c19
AD
9053If you define @code{YYPRINT}, it should take three arguments. The parser
9054will pass a standard I/O stream, the numeric code for the token type, and
9055the token value (from @code{yylval}).
9056
9057For @file{yacc.c} only. Obsoleted by @code{%printer}.
9058@end deffn
bfa74976
RS
9059
9060Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 9061calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9062
ea118b72 9063@example
38a92d50
PE
9064%@{
9065 static void print_token_value (FILE *, int, YYSTYPE);
56d60c19
AD
9066 #define YYPRINT(File, Type, Value) \
9067 print_token_value (File, Type, Value)
38a92d50
PE
9068%@}
9069
9070@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9071
9072static void
831d3c99 9073print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9074@{
9075 if (type == VAR)
d3c4e709 9076 fprintf (file, "%s", value.tptr->name);
bfa74976 9077 else if (type == NUM)
d3c4e709 9078 fprintf (file, "%d", value.val);
bfa74976 9079@}
ea118b72 9080@end example
bfa74976 9081
ec3bc396
AD
9082@c ================================================= Invoking Bison
9083
342b8b6e 9084@node Invocation
bfa74976
RS
9085@chapter Invoking Bison
9086@cindex invoking Bison
9087@cindex Bison invocation
9088@cindex options for invoking Bison
9089
9090The usual way to invoke Bison is as follows:
9091
9092@example
9093bison @var{infile}
9094@end example
9095
9096Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
9097@samp{.y}. The parser implementation file's name is made by replacing
9098the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9099Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9100the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9101also possible, in case you are writing C++ code instead of C in your
9102grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9103output files will take an extension like the given one as input
9104(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9105feature takes effect with all options that manipulate file names like
234a3be3
AD
9106@samp{-o} or @samp{-d}.
9107
9108For example :
9109
9110@example
9111bison -d @var{infile.yxx}
9112@end example
84163231 9113@noindent
72d2299c 9114will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9115
9116@example
b56471a6 9117bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9118@end example
84163231 9119@noindent
234a3be3
AD
9120will produce @file{output.c++} and @file{outfile.h++}.
9121
35430378 9122For compatibility with POSIX, the standard Bison
397ec073
PE
9123distribution also contains a shell script called @command{yacc} that
9124invokes Bison with the @option{-y} option.
9125
bfa74976 9126@menu
13863333 9127* Bison Options:: All the options described in detail,
c827f760 9128 in alphabetical order by short options.
bfa74976 9129* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9130* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9131@end menu
9132
342b8b6e 9133@node Bison Options
bfa74976
RS
9134@section Bison Options
9135
9136Bison supports both traditional single-letter options and mnemonic long
9137option names. Long option names are indicated with @samp{--} instead of
9138@samp{-}. Abbreviations for option names are allowed as long as they
9139are unique. When a long option takes an argument, like
9140@samp{--file-prefix}, connect the option name and the argument with
9141@samp{=}.
9142
9143Here is a list of options that can be used with Bison, alphabetized by
9144short option. It is followed by a cross key alphabetized by long
9145option.
9146
89cab50d
AD
9147@c Please, keep this ordered as in `bison --help'.
9148@noindent
9149Operations modes:
9150@table @option
9151@item -h
9152@itemx --help
9153Print a summary of the command-line options to Bison and exit.
bfa74976 9154
89cab50d
AD
9155@item -V
9156@itemx --version
9157Print the version number of Bison and exit.
bfa74976 9158
f7ab6a50
PE
9159@item --print-localedir
9160Print the name of the directory containing locale-dependent data.
9161
a0de5091
JD
9162@item --print-datadir
9163Print the name of the directory containing skeletons and XSLT.
9164
89cab50d
AD
9165@item -y
9166@itemx --yacc
9913d6e4
JD
9167Act more like the traditional Yacc command. This can cause different
9168diagnostics to be generated, and may change behavior in other minor
9169ways. Most importantly, imitate Yacc's output file name conventions,
9170so that the parser implementation file is called @file{y.tab.c}, and
9171the other outputs are called @file{y.output} and @file{y.tab.h}.
9172Also, if generating a deterministic parser in C, generate
9173@code{#define} statements in addition to an @code{enum} to associate
9174token numbers with token names. Thus, the following shell script can
9175substitute for Yacc, and the Bison distribution contains such a script
9176for compatibility with POSIX:
bfa74976 9177
89cab50d 9178@example
397ec073 9179#! /bin/sh
26e06a21 9180bison -y "$@@"
89cab50d 9181@end example
54662697
PE
9182
9183The @option{-y}/@option{--yacc} option is intended for use with
9184traditional Yacc grammars. If your grammar uses a Bison extension
9185like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9186this option is specified.
9187
ecd1b61c
JD
9188@item -W [@var{category}]
9189@itemx --warnings[=@var{category}]
118d4978
AD
9190Output warnings falling in @var{category}. @var{category} can be one
9191of:
9192@table @code
9193@item midrule-values
8e55b3aa
JD
9194Warn about mid-rule values that are set but not used within any of the actions
9195of the parent rule.
9196For example, warn about unused @code{$2} in:
118d4978
AD
9197
9198@example
9199exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9200@end example
9201
8e55b3aa
JD
9202Also warn about mid-rule values that are used but not set.
9203For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9204
9205@example
de6be119 9206exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9207@end example
9208
9209These warnings are not enabled by default since they sometimes prove to
9210be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9211@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9212
118d4978 9213@item yacc
35430378 9214Incompatibilities with POSIX Yacc.
118d4978 9215
6f8bdce2
JD
9216@item conflicts-sr
9217@itemx conflicts-rr
9218S/R and R/R conflicts. These warnings are enabled by default. However, if
9219the @code{%expect} or @code{%expect-rr} directive is specified, an
9220unexpected number of conflicts is an error, and an expected number of
9221conflicts is not reported, so @option{-W} and @option{--warning} then have
9222no effect on the conflict report.
9223
8ffd7912
JD
9224@item other
9225All warnings not categorized above. These warnings are enabled by default.
9226
9227This category is provided merely for the sake of completeness. Future
9228releases of Bison may move warnings from this category to new, more specific
9229categories.
9230
118d4978 9231@item all
8e55b3aa 9232All the warnings.
118d4978 9233@item none
8e55b3aa 9234Turn off all the warnings.
118d4978 9235@item error
8e55b3aa 9236Treat warnings as errors.
118d4978
AD
9237@end table
9238
9239A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 9240instance, @option{-Wno-yacc} will hide the warnings about
35430378 9241POSIX Yacc incompatibilities.
89cab50d
AD
9242@end table
9243
9244@noindent
9245Tuning the parser:
9246
9247@table @option
9248@item -t
9249@itemx --debug
9913d6e4
JD
9250In the parser implementation file, define the macro @code{YYDEBUG} to
92511 if it is not already defined, so that the debugging facilities are
9252compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9253
e14c6831
AD
9254@item -D @var{name}[=@var{value}]
9255@itemx --define=@var{name}[=@var{value}]
c33bc800 9256@itemx -F @var{name}[=@var{value}]
34d41938
JD
9257@itemx --force-define=@var{name}[=@var{value}]
9258Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
2f4518a1 9259(@pxref{%define Summary}) except that Bison processes multiple
34d41938
JD
9260definitions for the same @var{name} as follows:
9261
9262@itemize
9263@item
e3a33f7c
JD
9264Bison quietly ignores all command-line definitions for @var{name} except
9265the last.
34d41938 9266@item
e3a33f7c
JD
9267If that command-line definition is specified by a @code{-D} or
9268@code{--define}, Bison reports an error for any @code{%define}
9269definition for @var{name}.
34d41938 9270@item
e3a33f7c
JD
9271If that command-line definition is specified by a @code{-F} or
9272@code{--force-define} instead, Bison quietly ignores all @code{%define}
9273definitions for @var{name}.
9274@item
9275Otherwise, Bison reports an error if there are multiple @code{%define}
9276definitions for @var{name}.
34d41938
JD
9277@end itemize
9278
9279You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
9280make files unless you are confident that it is safe to quietly ignore
9281any conflicting @code{%define} that may be added to the grammar file.
e14c6831 9282
0e021770
PE
9283@item -L @var{language}
9284@itemx --language=@var{language}
9285Specify the programming language for the generated parser, as if
9286@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9287Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9288@var{language} is case-insensitive.
0e021770 9289
89cab50d 9290@item --locations
d8988b2f 9291Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9292
9293@item -p @var{prefix}
9294@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9295Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9296Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9297Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9298
9299@item -l
9300@itemx --no-lines
9913d6e4
JD
9301Don't put any @code{#line} preprocessor commands in the parser
9302implementation file. Ordinarily Bison puts them in the parser
9303implementation file so that the C compiler and debuggers will
9304associate errors with your source file, the grammar file. This option
9305causes them to associate errors with the parser implementation file,
9306treating it as an independent source file in its own right.
bfa74976 9307
e6e704dc
JD
9308@item -S @var{file}
9309@itemx --skeleton=@var{file}
a7867f53 9310Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9311(@pxref{Decl Summary, , Bison Declaration Summary}).
9312
ed4d67dc
JD
9313@c You probably don't need this option unless you are developing Bison.
9314@c You should use @option{--language} if you want to specify the skeleton for a
9315@c different language, because it is clearer and because it will always
9316@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9317
a7867f53
JD
9318If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9319file in the Bison installation directory.
9320If it does, @var{file} is an absolute file name or a file name relative to the
9321current working directory.
9322This is similar to how most shells resolve commands.
9323
89cab50d
AD
9324@item -k
9325@itemx --token-table
d8988b2f 9326Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9327@end table
bfa74976 9328
89cab50d
AD
9329@noindent
9330Adjust the output:
bfa74976 9331
89cab50d 9332@table @option
8e55b3aa 9333@item --defines[=@var{file}]
d8988b2f 9334Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9335file containing macro definitions for the token type names defined in
4bfd5e4e 9336the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9337
8e55b3aa
JD
9338@item -d
9339This is the same as @code{--defines} except @code{-d} does not accept a
9340@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9341with other short options.
342b8b6e 9342
89cab50d
AD
9343@item -b @var{file-prefix}
9344@itemx --file-prefix=@var{prefix}
9c437126 9345Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9346for all Bison output file names. @xref{Decl Summary}.
bfa74976 9347
ec3bc396
AD
9348@item -r @var{things}
9349@itemx --report=@var{things}
9350Write an extra output file containing verbose description of the comma
9351separated list of @var{things} among:
9352
9353@table @code
9354@item state
9355Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 9356parser's automaton.
ec3bc396 9357
57f8bd8d
AD
9358@item itemset
9359Implies @code{state} and augments the description of the automaton with
9360the full set of items for each state, instead of its core only.
9361
742e4900 9362@item lookahead
ec3bc396 9363Implies @code{state} and augments the description of the automaton with
742e4900 9364each rule's lookahead set.
ec3bc396 9365
57f8bd8d
AD
9366@item solved
9367Implies @code{state}. Explain how conflicts were solved thanks to
9368precedence and associativity directives.
9369
9370@item all
9371Enable all the items.
9372
9373@item none
9374Do not generate the report.
ec3bc396
AD
9375@end table
9376
1bb2bd75
JD
9377@item --report-file=@var{file}
9378Specify the @var{file} for the verbose description.
9379
bfa74976
RS
9380@item -v
9381@itemx --verbose
9c437126 9382Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9383file containing verbose descriptions of the grammar and
72d2299c 9384parser. @xref{Decl Summary}.
bfa74976 9385
fa4d969f
PE
9386@item -o @var{file}
9387@itemx --output=@var{file}
9913d6e4 9388Specify the @var{file} for the parser implementation file.
bfa74976 9389
fa4d969f 9390The other output files' names are constructed from @var{file} as
d8988b2f 9391described under the @samp{-v} and @samp{-d} options.
342b8b6e 9392
72183df4 9393@item -g [@var{file}]
8e55b3aa 9394@itemx --graph[=@var{file}]
34a6c2d1 9395Output a graphical representation of the parser's
35fe0834 9396automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 9397@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9398@code{@var{file}} is optional.
9399If omitted and the grammar file is @file{foo.y}, the output file will be
9400@file{foo.dot}.
59da312b 9401
72183df4 9402@item -x [@var{file}]
8e55b3aa 9403@itemx --xml[=@var{file}]
34a6c2d1 9404Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9405@code{@var{file}} is optional.
59da312b
JD
9406If omitted and the grammar file is @file{foo.y}, the output file will be
9407@file{foo.xml}.
9408(The current XML schema is experimental and may evolve.
9409More user feedback will help to stabilize it.)
bfa74976
RS
9410@end table
9411
342b8b6e 9412@node Option Cross Key
bfa74976
RS
9413@section Option Cross Key
9414
9415Here is a list of options, alphabetized by long option, to help you find
34d41938 9416the corresponding short option and directive.
bfa74976 9417
34d41938 9418@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 9419@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9420@include cross-options.texi
aa08666d 9421@end multitable
bfa74976 9422
93dd49ab
PE
9423@node Yacc Library
9424@section Yacc Library
9425
9426The Yacc library contains default implementations of the
9427@code{yyerror} and @code{main} functions. These default
35430378 9428implementations are normally not useful, but POSIX requires
93dd49ab
PE
9429them. To use the Yacc library, link your program with the
9430@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 9431library is distributed under the terms of the GNU General
93dd49ab
PE
9432Public License (@pxref{Copying}).
9433
9434If you use the Yacc library's @code{yyerror} function, you should
9435declare @code{yyerror} as follows:
9436
9437@example
9438int yyerror (char const *);
9439@end example
9440
9441Bison ignores the @code{int} value returned by this @code{yyerror}.
9442If you use the Yacc library's @code{main} function, your
9443@code{yyparse} function should have the following type signature:
9444
9445@example
9446int yyparse (void);
9447@end example
9448
12545799
AD
9449@c ================================================= C++ Bison
9450
8405b70c
PB
9451@node Other Languages
9452@chapter Parsers Written In Other Languages
12545799
AD
9453
9454@menu
9455* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9456* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9457@end menu
9458
9459@node C++ Parsers
9460@section C++ Parsers
9461
9462@menu
9463* C++ Bison Interface:: Asking for C++ parser generation
9464* C++ Semantic Values:: %union vs. C++
9465* C++ Location Values:: The position and location classes
9466* C++ Parser Interface:: Instantiating and running the parser
9467* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9468* A Complete C++ Example:: Demonstrating their use
12545799
AD
9469@end menu
9470
9471@node C++ Bison Interface
9472@subsection C++ Bison Interface
ed4d67dc 9473@c - %skeleton "lalr1.cc"
12545799
AD
9474@c - Always pure
9475@c - initial action
9476
34a6c2d1 9477The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
9478@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9479@option{--skeleton=lalr1.cc}.
e6e704dc 9480@xref{Decl Summary}.
0e021770 9481
793fbca5
JD
9482When run, @command{bison} will create several entities in the @samp{yy}
9483namespace.
9484@findex %define namespace
2f4518a1
JD
9485Use the @samp{%define namespace} directive to change the namespace
9486name, see @ref{%define Summary,,namespace}. The various classes are
9487generated in the following files:
aa08666d 9488
12545799
AD
9489@table @file
9490@item position.hh
9491@itemx location.hh
db8ab2be
AD
9492The definition of the classes @code{position} and @code{location}, used for
9493location tracking. These files are not generated if the @code{%define}
9494variable @code{api.location.type} is defined. @xref{C++ Location Values}.
12545799
AD
9495
9496@item stack.hh
9497An auxiliary class @code{stack} used by the parser.
9498
fa4d969f
PE
9499@item @var{file}.hh
9500@itemx @var{file}.cc
9913d6e4 9501(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9502declaration and implementation of the C++ parser class. The basename
9503and extension of these two files follow the same rules as with regular C
9504parsers (@pxref{Invocation}).
12545799 9505
cd8b5791
AD
9506The header is @emph{mandatory}; you must either pass
9507@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9508@samp{%defines} directive.
9509@end table
9510
9511All these files are documented using Doxygen; run @command{doxygen}
9512for a complete and accurate documentation.
9513
9514@node C++ Semantic Values
9515@subsection C++ Semantic Values
9516@c - No objects in unions
178e123e 9517@c - YYSTYPE
12545799
AD
9518@c - Printer and destructor
9519
9520The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9521Collection of Value Types}. In particular it produces a genuine
9522@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
9523within pseudo-unions (similar to Boost variants) might be implemented to
9524alleviate these issues.}, which have a few specific features in C++.
12545799
AD
9525@itemize @minus
9526@item
fb9712a9
AD
9527The type @code{YYSTYPE} is defined but its use is discouraged: rather
9528you should refer to the parser's encapsulated type
9529@code{yy::parser::semantic_type}.
12545799
AD
9530@item
9531Non POD (Plain Old Data) types cannot be used. C++ forbids any
9532instance of classes with constructors in unions: only @emph{pointers}
9533to such objects are allowed.
9534@end itemize
9535
9536Because objects have to be stored via pointers, memory is not
9537reclaimed automatically: using the @code{%destructor} directive is the
9538only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9539Symbols}.
9540
9541
9542@node C++ Location Values
9543@subsection C++ Location Values
9544@c - %locations
9545@c - class Position
9546@c - class Location
16dc6a9e 9547@c - %define filename_type "const symbol::Symbol"
12545799
AD
9548
9549When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
9550location tracking, see @ref{Tracking Locations}.
9551
9552By default, two auxiliary classes define a @code{position}, a single point
9553in a file, and a @code{location}, a range composed of a pair of
9554@code{position}s (possibly spanning several files). But if the
9555@code{%define} variable @code{api.location.type} is defined, then these
9556classes will not be generated, and the user defined type will be used.
12545799 9557
936c88d1
AD
9558@tindex uint
9559In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9560genuine code only the latter is used.
9561
9562@menu
db8ab2be
AD
9563* C++ position:: One point in the source file
9564* C++ location:: Two points in the source file
9565* User Defined Location Type:: Required interface for locations
936c88d1
AD
9566@end menu
9567
9568@node C++ position
9569@subsubsection C++ @code{position}
9570
9571@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9572Create a @code{position} denoting a given point. Note that @code{file} is
9573not reclaimed when the @code{position} is destroyed: memory managed must be
9574handled elsewhere.
9575@end deftypeop
9576
9577@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9578Reset the position to the given values.
9579@end deftypemethod
9580
9581@deftypeivar {position} {std::string*} file
12545799
AD
9582The name of the file. It will always be handled as a pointer, the
9583parser will never duplicate nor deallocate it. As an experimental
9584feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9585filename_type "@var{type}"}.
936c88d1 9586@end deftypeivar
12545799 9587
936c88d1 9588@deftypeivar {position} {uint} line
12545799 9589The line, starting at 1.
936c88d1 9590@end deftypeivar
12545799 9591
936c88d1 9592@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
9593Advance by @var{height} lines, resetting the column number.
9594@end deftypemethod
9595
936c88d1
AD
9596@deftypeivar {position} {uint} column
9597The column, starting at 1.
9598@end deftypeivar
12545799 9599
936c88d1 9600@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
9601Advance by @var{width} columns, without changing the line number.
9602@end deftypemethod
9603
936c88d1
AD
9604@deftypemethod {position} {position&} operator+= (int @var{width})
9605@deftypemethodx {position} {position} operator+ (int @var{width})
9606@deftypemethodx {position} {position&} operator-= (int @var{width})
9607@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
9608Various forms of syntactic sugar for @code{columns}.
9609@end deftypemethod
9610
936c88d1
AD
9611@deftypemethod {position} {bool} operator== (const position& @var{that})
9612@deftypemethodx {position} {bool} operator!= (const position& @var{that})
9613Whether @code{*this} and @code{that} denote equal/different positions.
9614@end deftypemethod
9615
9616@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 9617Report @var{p} on @var{o} like this:
fa4d969f
PE
9618@samp{@var{file}:@var{line}.@var{column}}, or
9619@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
9620@end deftypefun
9621
9622@node C++ location
9623@subsubsection C++ @code{location}
9624
9625@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9626Create a @code{Location} from the endpoints of the range.
9627@end deftypeop
9628
9629@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9630@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9631Create a @code{Location} denoting an empty range located at a given point.
9632@end deftypeop
9633
9634@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9635Reset the location to an empty range at the given values.
12545799
AD
9636@end deftypemethod
9637
936c88d1
AD
9638@deftypeivar {location} {position} begin
9639@deftypeivarx {location} {position} end
12545799 9640The first, inclusive, position of the range, and the first beyond.
936c88d1 9641@end deftypeivar
12545799 9642
936c88d1
AD
9643@deftypemethod {location} {uint} columns (int @var{width} = 1)
9644@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
9645Advance the @code{end} position.
9646@end deftypemethod
9647
936c88d1
AD
9648@deftypemethod {location} {location} operator+ (const location& @var{end})
9649@deftypemethodx {location} {location} operator+ (int @var{width})
9650@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
9651Various forms of syntactic sugar.
9652@end deftypemethod
9653
9654@deftypemethod {location} {void} step ()
9655Move @code{begin} onto @code{end}.
9656@end deftypemethod
9657
936c88d1
AD
9658@deftypemethod {location} {bool} operator== (const location& @var{that})
9659@deftypemethodx {location} {bool} operator!= (const location& @var{that})
9660Whether @code{*this} and @code{that} denote equal/different ranges of
9661positions.
9662@end deftypemethod
9663
9664@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9665Report @var{p} on @var{o}, taking care of special cases such as: no
9666@code{filename} defined, or equal filename/line or column.
9667@end deftypefun
12545799 9668
db8ab2be
AD
9669@node User Defined Location Type
9670@subsubsection User Defined Location Type
9671@findex %define api.location.type
9672
9673Instead of using the built-in types you may use the @code{%define} variable
9674@code{api.location.type} to specify your own type:
9675
9676@example
9677%define api.location.type @var{LocationType}
9678@end example
9679
9680The requirements over your @var{LocationType} are:
9681@itemize
9682@item
9683it must be copyable;
9684
9685@item
9686in order to compute the (default) value of @code{@@$} in a reduction, the
9687parser basically runs
9688@example
9689@@$.begin = @@$1.begin;
9690@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
9691@end example
9692@noindent
9693so there must be copyable @code{begin} and @code{end} members;
9694
9695@item
9696alternatively you may redefine the computation of the default location, in
9697which case these members are not required (@pxref{Location Default Action});
9698
9699@item
9700if traces are enabled, then there must exist an @samp{std::ostream&
9701 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
9702@end itemize
9703
9704@sp 1
9705
9706In programs with several C++ parsers, you may also use the @code{%define}
9707variable @code{api.location.type} to share a common set of built-in
9708definitions for @code{position} and @code{location}. For instance, one
9709parser @file{master/parser.yy} might use:
9710
9711@example
9712%defines
9713%locations
9714%define namespace "master::"
9715@end example
9716
9717@noindent
9718to generate the @file{master/position.hh} and @file{master/location.hh}
9719files, reused by other parsers as follows:
9720
9721@example
7287be84 9722%define api.location.type "master::location"
db8ab2be
AD
9723%code requires @{ #include <master/location.hh> @}
9724@end example
9725
12545799
AD
9726@node C++ Parser Interface
9727@subsection C++ Parser Interface
9728@c - define parser_class_name
9729@c - Ctor
9730@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9731@c debug_stream.
9732@c - Reporting errors
9733
9734The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9735declare and define the parser class in the namespace @code{yy}. The
9736class name defaults to @code{parser}, but may be changed using
16dc6a9e 9737@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9738this class is detailed below. It can be extended using the
12545799
AD
9739@code{%parse-param} feature: its semantics is slightly changed since
9740it describes an additional member of the parser class, and an
9741additional argument for its constructor.
9742
baacae49
AD
9743@defcv {Type} {parser} {semantic_type}
9744@defcvx {Type} {parser} {location_type}
12545799 9745The types for semantics value and locations.
8a0adb01 9746@end defcv
12545799 9747
baacae49 9748@defcv {Type} {parser} {token}
2c0f9706
AD
9749A structure that contains (only) the @code{yytokentype} enumeration, which
9750defines the tokens. To refer to the token @code{FOO},
9751use @code{yy::parser::token::FOO}. The scanner can use
baacae49
AD
9752@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9753(@pxref{Calc++ Scanner}).
9754@end defcv
9755
12545799
AD
9756@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9757Build a new parser object. There are no arguments by default, unless
9758@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9759@end deftypemethod
9760
9761@deftypemethod {parser} {int} parse ()
9762Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
9763
9764@cindex exceptions
9765The whole function is wrapped in a @code{try}/@code{catch} block, so that
9766when an exception is thrown, the @code{%destructor}s are called to release
9767the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
9768@end deftypemethod
9769
9770@deftypemethod {parser} {std::ostream&} debug_stream ()
9771@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9772Get or set the stream used for tracing the parsing. It defaults to
9773@code{std::cerr}.
9774@end deftypemethod
9775
9776@deftypemethod {parser} {debug_level_type} debug_level ()
9777@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9778Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9779or nonzero, full tracing.
12545799
AD
9780@end deftypemethod
9781
9782@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
9783The definition for this member function must be supplied by the user:
9784the parser uses it to report a parser error occurring at @var{l},
9785described by @var{m}.
9786@end deftypemethod
9787
9788
9789@node C++ Scanner Interface
9790@subsection C++ Scanner Interface
9791@c - prefix for yylex.
9792@c - Pure interface to yylex
9793@c - %lex-param
9794
9795The parser invokes the scanner by calling @code{yylex}. Contrary to C
9796parsers, C++ parsers are always pure: there is no point in using the
1f1bd572 9797@code{%define api.pure full} directive. Therefore the interface is as follows.
12545799 9798
baacae49 9799@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
9800Return the next token. Its type is the return value, its semantic
9801value and location being @var{yylval} and @var{yylloc}. Invocations of
9802@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9803@end deftypemethod
9804
9805
9806@node A Complete C++ Example
8405b70c 9807@subsection A Complete C++ Example
12545799
AD
9808
9809This section demonstrates the use of a C++ parser with a simple but
9810complete example. This example should be available on your system,
9811ready to compile, in the directory @dfn{../bison/examples/calc++}. It
9812focuses on the use of Bison, therefore the design of the various C++
9813classes is very naive: no accessors, no encapsulation of members etc.
9814We will use a Lex scanner, and more precisely, a Flex scanner, to
9815demonstrate the various interaction. A hand written scanner is
9816actually easier to interface with.
9817
9818@menu
9819* Calc++ --- C++ Calculator:: The specifications
9820* Calc++ Parsing Driver:: An active parsing context
9821* Calc++ Parser:: A parser class
9822* Calc++ Scanner:: A pure C++ Flex scanner
9823* Calc++ Top Level:: Conducting the band
9824@end menu
9825
9826@node Calc++ --- C++ Calculator
8405b70c 9827@subsubsection Calc++ --- C++ Calculator
12545799
AD
9828
9829Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9830expression, possibly preceded by variable assignments. An
12545799
AD
9831environment containing possibly predefined variables such as
9832@code{one} and @code{two}, is exchanged with the parser. An example
9833of valid input follows.
9834
9835@example
9836three := 3
9837seven := one + two * three
9838seven * seven
9839@end example
9840
9841@node Calc++ Parsing Driver
8405b70c 9842@subsubsection Calc++ Parsing Driver
12545799
AD
9843@c - An env
9844@c - A place to store error messages
9845@c - A place for the result
9846
9847To support a pure interface with the parser (and the scanner) the
9848technique of the ``parsing context'' is convenient: a structure
9849containing all the data to exchange. Since, in addition to simply
9850launch the parsing, there are several auxiliary tasks to execute (open
9851the file for parsing, instantiate the parser etc.), we recommend
9852transforming the simple parsing context structure into a fully blown
9853@dfn{parsing driver} class.
9854
9855The declaration of this driver class, @file{calc++-driver.hh}, is as
9856follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9857required standard library components, and the declaration of the parser
9858class.
12545799 9859
1c59e0a1 9860@comment file: calc++-driver.hh
12545799
AD
9861@example
9862#ifndef CALCXX_DRIVER_HH
9863# define CALCXX_DRIVER_HH
9864# include <string>
9865# include <map>
fb9712a9 9866# include "calc++-parser.hh"
12545799
AD
9867@end example
9868
12545799
AD
9869
9870@noindent
9871Then comes the declaration of the scanning function. Flex expects
9872the signature of @code{yylex} to be defined in the macro
9873@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9874factor both as follows.
1c59e0a1
AD
9875
9876@comment file: calc++-driver.hh
12545799 9877@example
3dc5e96b
PE
9878// Tell Flex the lexer's prototype ...
9879# define YY_DECL \
c095d689
AD
9880 yy::calcxx_parser::token_type \
9881 yylex (yy::calcxx_parser::semantic_type* yylval, \
9882 yy::calcxx_parser::location_type* yylloc, \
9883 calcxx_driver& driver)
12545799
AD
9884// ... and declare it for the parser's sake.
9885YY_DECL;
9886@end example
9887
9888@noindent
9889The @code{calcxx_driver} class is then declared with its most obvious
9890members.
9891
1c59e0a1 9892@comment file: calc++-driver.hh
12545799
AD
9893@example
9894// Conducting the whole scanning and parsing of Calc++.
9895class calcxx_driver
9896@{
9897public:
9898 calcxx_driver ();
9899 virtual ~calcxx_driver ();
9900
9901 std::map<std::string, int> variables;
9902
9903 int result;
9904@end example
9905
9906@noindent
9907To encapsulate the coordination with the Flex scanner, it is useful to
9908have two members function to open and close the scanning phase.
12545799 9909
1c59e0a1 9910@comment file: calc++-driver.hh
12545799
AD
9911@example
9912 // Handling the scanner.
9913 void scan_begin ();
9914 void scan_end ();
9915 bool trace_scanning;
9916@end example
9917
9918@noindent
9919Similarly for the parser itself.
9920
1c59e0a1 9921@comment file: calc++-driver.hh
12545799 9922@example
bb32f4f2
AD
9923 // Run the parser. Return 0 on success.
9924 int parse (const std::string& f);
12545799
AD
9925 std::string file;
9926 bool trace_parsing;
9927@end example
9928
9929@noindent
9930To demonstrate pure handling of parse errors, instead of simply
9931dumping them on the standard error output, we will pass them to the
9932compiler driver using the following two member functions. Finally, we
9933close the class declaration and CPP guard.
9934
1c59e0a1 9935@comment file: calc++-driver.hh
12545799
AD
9936@example
9937 // Error handling.
9938 void error (const yy::location& l, const std::string& m);
9939 void error (const std::string& m);
9940@};
9941#endif // ! CALCXX_DRIVER_HH
9942@end example
9943
9944The implementation of the driver is straightforward. The @code{parse}
9945member function deserves some attention. The @code{error} functions
9946are simple stubs, they should actually register the located error
9947messages and set error state.
9948
1c59e0a1 9949@comment file: calc++-driver.cc
12545799
AD
9950@example
9951#include "calc++-driver.hh"
9952#include "calc++-parser.hh"
9953
9954calcxx_driver::calcxx_driver ()
9955 : trace_scanning (false), trace_parsing (false)
9956@{
9957 variables["one"] = 1;
9958 variables["two"] = 2;
9959@}
9960
9961calcxx_driver::~calcxx_driver ()
9962@{
9963@}
9964
bb32f4f2 9965int
12545799
AD
9966calcxx_driver::parse (const std::string &f)
9967@{
9968 file = f;
9969 scan_begin ();
9970 yy::calcxx_parser parser (*this);
9971 parser.set_debug_level (trace_parsing);
bb32f4f2 9972 int res = parser.parse ();
12545799 9973 scan_end ();
bb32f4f2 9974 return res;
12545799
AD
9975@}
9976
9977void
9978calcxx_driver::error (const yy::location& l, const std::string& m)
9979@{
9980 std::cerr << l << ": " << m << std::endl;
9981@}
9982
9983void
9984calcxx_driver::error (const std::string& m)
9985@{
9986 std::cerr << m << std::endl;
9987@}
9988@end example
9989
9990@node Calc++ Parser
8405b70c 9991@subsubsection Calc++ Parser
12545799 9992
9913d6e4
JD
9993The grammar file @file{calc++-parser.yy} starts by asking for the C++
9994deterministic parser skeleton, the creation of the parser header file,
9995and specifies the name of the parser class. Because the C++ skeleton
9996changed several times, it is safer to require the version you designed
9997the grammar for.
1c59e0a1
AD
9998
9999@comment file: calc++-parser.yy
12545799 10000@example
ea118b72 10001%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10002%require "@value{VERSION}"
12545799 10003%defines
16dc6a9e 10004%define parser_class_name "calcxx_parser"
fb9712a9
AD
10005@end example
10006
10007@noindent
16dc6a9e 10008@findex %code requires
fb9712a9
AD
10009Then come the declarations/inclusions needed to define the
10010@code{%union}. Because the parser uses the parsing driver and
10011reciprocally, both cannot include the header of the other. Because the
10012driver's header needs detailed knowledge about the parser class (in
10013particular its inner types), it is the parser's header which will simply
10014use a forward declaration of the driver.
8e6f2266 10015@xref{%code Summary}.
fb9712a9
AD
10016
10017@comment file: calc++-parser.yy
10018@example
16dc6a9e 10019%code requires @{
12545799 10020# include <string>
fb9712a9 10021class calcxx_driver;
9bc0dd67 10022@}
12545799
AD
10023@end example
10024
10025@noindent
10026The driver is passed by reference to the parser and to the scanner.
10027This provides a simple but effective pure interface, not relying on
10028global variables.
10029
1c59e0a1 10030@comment file: calc++-parser.yy
12545799
AD
10031@example
10032// The parsing context.
10033%parse-param @{ calcxx_driver& driver @}
10034%lex-param @{ calcxx_driver& driver @}
10035@end example
10036
10037@noindent
10038Then we request the location tracking feature, and initialize the
c781580d 10039first location's file name. Afterward new locations are computed
12545799
AD
10040relatively to the previous locations: the file name will be
10041automatically propagated.
10042
1c59e0a1 10043@comment file: calc++-parser.yy
12545799
AD
10044@example
10045%locations
10046%initial-action
10047@{
10048 // Initialize the initial location.
b47dbebe 10049 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
10050@};
10051@end example
10052
10053@noindent
6f04ee6c
JD
10054Use the two following directives to enable parser tracing and verbose error
10055messages. However, verbose error messages can contain incorrect information
10056(@pxref{LAC}).
12545799 10057
1c59e0a1 10058@comment file: calc++-parser.yy
12545799
AD
10059@example
10060%debug
10061%error-verbose
10062@end example
10063
10064@noindent
10065Semantic values cannot use ``real'' objects, but only pointers to
10066them.
10067
1c59e0a1 10068@comment file: calc++-parser.yy
12545799
AD
10069@example
10070// Symbols.
10071%union
10072@{
10073 int ival;
10074 std::string *sval;
10075@};
10076@end example
10077
fb9712a9 10078@noindent
136a0f76
PB
10079@findex %code
10080The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 10081@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
10082
10083@comment file: calc++-parser.yy
10084@example
136a0f76 10085%code @{
fb9712a9 10086# include "calc++-driver.hh"
34f98f46 10087@}
fb9712a9
AD
10088@end example
10089
10090
12545799
AD
10091@noindent
10092The token numbered as 0 corresponds to end of file; the following line
10093allows for nicer error messages referring to ``end of file'' instead
10094of ``$end''. Similarly user friendly named are provided for each
10095symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
10096avoid name clashes.
10097
1c59e0a1 10098@comment file: calc++-parser.yy
12545799 10099@example
fb9712a9
AD
10100%token END 0 "end of file"
10101%token ASSIGN ":="
10102%token <sval> IDENTIFIER "identifier"
10103%token <ival> NUMBER "number"
a8c2e813 10104%type <ival> exp
12545799
AD
10105@end example
10106
10107@noindent
10108To enable memory deallocation during error recovery, use
10109@code{%destructor}.
10110
287c78f6 10111@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 10112@comment file: calc++-parser.yy
12545799 10113@example
68fff38a 10114%printer @{ yyoutput << *$$; @} "identifier"
12545799
AD
10115%destructor @{ delete $$; @} "identifier"
10116
68fff38a 10117%printer @{ yyoutput << $$; @} <ival>
12545799
AD
10118@end example
10119
10120@noindent
10121The grammar itself is straightforward.
10122
1c59e0a1 10123@comment file: calc++-parser.yy
12545799
AD
10124@example
10125%%
10126%start unit;
10127unit: assignments exp @{ driver.result = $2; @};
10128
de6be119
AD
10129assignments:
10130 /* Nothing. */ @{@}
10131| assignments assignment @{@};
12545799 10132
3dc5e96b
PE
10133assignment:
10134 "identifier" ":=" exp
10135 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
10136
10137%left '+' '-';
10138%left '*' '/';
10139exp: exp '+' exp @{ $$ = $1 + $3; @}
10140 | exp '-' exp @{ $$ = $1 - $3; @}
10141 | exp '*' exp @{ $$ = $1 * $3; @}
10142 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 10143 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 10144 | "number" @{ $$ = $1; @};
12545799
AD
10145%%
10146@end example
10147
10148@noindent
10149Finally the @code{error} member function registers the errors to the
10150driver.
10151
1c59e0a1 10152@comment file: calc++-parser.yy
12545799
AD
10153@example
10154void
1c59e0a1
AD
10155yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
10156 const std::string& m)
12545799
AD
10157@{
10158 driver.error (l, m);
10159@}
10160@end example
10161
10162@node Calc++ Scanner
8405b70c 10163@subsubsection Calc++ Scanner
12545799
AD
10164
10165The Flex scanner first includes the driver declaration, then the
10166parser's to get the set of defined tokens.
10167
1c59e0a1 10168@comment file: calc++-scanner.ll
12545799 10169@example
ea118b72 10170%@{ /* -*- C++ -*- */
04098407 10171# include <cstdlib>
b10dd689
AD
10172# include <cerrno>
10173# include <climits>
12545799
AD
10174# include <string>
10175# include "calc++-driver.hh"
10176# include "calc++-parser.hh"
eaea13f5
PE
10177
10178/* Work around an incompatibility in flex (at least versions
10179 2.5.31 through 2.5.33): it generates code that does
10180 not conform to C89. See Debian bug 333231
10181 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
10182# undef yywrap
10183# define yywrap() 1
eaea13f5 10184
c095d689
AD
10185/* By default yylex returns int, we use token_type.
10186 Unfortunately yyterminate by default returns 0, which is
10187 not of token_type. */
8c5b881d 10188#define yyterminate() return token::END
12545799
AD
10189%@}
10190@end example
10191
10192@noindent
10193Because there is no @code{#include}-like feature we don't need
10194@code{yywrap}, we don't need @code{unput} either, and we parse an
10195actual file, this is not an interactive session with the user.
10196Finally we enable the scanner tracing features.
10197
1c59e0a1 10198@comment file: calc++-scanner.ll
12545799
AD
10199@example
10200%option noyywrap nounput batch debug
10201@end example
10202
10203@noindent
10204Abbreviations allow for more readable rules.
10205
1c59e0a1 10206@comment file: calc++-scanner.ll
12545799
AD
10207@example
10208id [a-zA-Z][a-zA-Z_0-9]*
10209int [0-9]+
10210blank [ \t]
10211@end example
10212
10213@noindent
9d9b8b70 10214The following paragraph suffices to track locations accurately. Each
12545799
AD
10215time @code{yylex} is invoked, the begin position is moved onto the end
10216position. Then when a pattern is matched, the end position is
10217advanced of its width. In case it matched ends of lines, the end
10218cursor is adjusted, and each time blanks are matched, the begin cursor
10219is moved onto the end cursor to effectively ignore the blanks
10220preceding tokens. Comments would be treated equally.
10221
1c59e0a1 10222@comment file: calc++-scanner.ll
12545799 10223@example
98842516 10224@group
828c373b
AD
10225%@{
10226# define YY_USER_ACTION yylloc->columns (yyleng);
10227%@}
98842516 10228@end group
12545799
AD
10229%%
10230%@{
10231 yylloc->step ();
12545799
AD
10232%@}
10233@{blank@}+ yylloc->step ();
10234[\n]+ yylloc->lines (yyleng); yylloc->step ();
10235@end example
10236
10237@noindent
fb9712a9
AD
10238The rules are simple, just note the use of the driver to report errors.
10239It is convenient to use a typedef to shorten
10240@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 10241@code{token::identifier} for instance.
12545799 10242
1c59e0a1 10243@comment file: calc++-scanner.ll
12545799 10244@example
fb9712a9
AD
10245%@{
10246 typedef yy::calcxx_parser::token token;
10247%@}
8c5b881d 10248 /* Convert ints to the actual type of tokens. */
c095d689 10249[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 10250":=" return token::ASSIGN;
04098407
PE
10251@{int@} @{
10252 errno = 0;
10253 long n = strtol (yytext, NULL, 10);
10254 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
10255 driver.error (*yylloc, "integer is out of range");
10256 yylval->ival = n;
fb9712a9 10257 return token::NUMBER;
04098407 10258@}
fb9712a9 10259@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
10260. driver.error (*yylloc, "invalid character");
10261%%
10262@end example
10263
10264@noindent
10265Finally, because the scanner related driver's member function depend
10266on the scanner's data, it is simpler to implement them in this file.
10267
1c59e0a1 10268@comment file: calc++-scanner.ll
12545799 10269@example
98842516 10270@group
12545799
AD
10271void
10272calcxx_driver::scan_begin ()
10273@{
10274 yy_flex_debug = trace_scanning;
56d60c19 10275 if (file.empty () || file == "-")
bb32f4f2
AD
10276 yyin = stdin;
10277 else if (!(yyin = fopen (file.c_str (), "r")))
10278 @{
2c0f9706 10279 error ("cannot open " + file + ": " + strerror(errno));
dd561157 10280 exit (EXIT_FAILURE);
bb32f4f2 10281 @}
12545799 10282@}
98842516 10283@end group
12545799 10284
98842516 10285@group
12545799
AD
10286void
10287calcxx_driver::scan_end ()
10288@{
10289 fclose (yyin);
10290@}
98842516 10291@end group
12545799
AD
10292@end example
10293
10294@node Calc++ Top Level
8405b70c 10295@subsubsection Calc++ Top Level
12545799
AD
10296
10297The top level file, @file{calc++.cc}, poses no problem.
10298
1c59e0a1 10299@comment file: calc++.cc
12545799
AD
10300@example
10301#include <iostream>
10302#include "calc++-driver.hh"
10303
98842516 10304@group
12545799 10305int
fa4d969f 10306main (int argc, char *argv[])
12545799
AD
10307@{
10308 calcxx_driver driver;
56d60c19
AD
10309 for (int i = 1; i < argc; ++i)
10310 if (argv[i] == std::string ("-p"))
12545799 10311 driver.trace_parsing = true;
56d60c19 10312 else if (argv[i] == std::string ("-s"))
12545799 10313 driver.trace_scanning = true;
56d60c19 10314 else if (!driver.parse (argv[i]))
bb32f4f2 10315 std::cout << driver.result << std::endl;
12545799 10316@}
98842516 10317@end group
12545799
AD
10318@end example
10319
8405b70c
PB
10320@node Java Parsers
10321@section Java Parsers
10322
10323@menu
f56274a8
DJ
10324* Java Bison Interface:: Asking for Java parser generation
10325* Java Semantic Values:: %type and %token vs. Java
10326* Java Location Values:: The position and location classes
10327* Java Parser Interface:: Instantiating and running the parser
10328* Java Scanner Interface:: Specifying the scanner for the parser
10329* Java Action Features:: Special features for use in actions
10330* Java Differences:: Differences between C/C++ and Java Grammars
10331* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10332@end menu
10333
10334@node Java Bison Interface
10335@subsection Java Bison Interface
10336@c - %language "Java"
8405b70c 10337
59da312b
JD
10338(The current Java interface is experimental and may evolve.
10339More user feedback will help to stabilize it.)
10340
e254a580
DJ
10341The Java parser skeletons are selected using the @code{%language "Java"}
10342directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10343
e254a580 10344@c FIXME: Documented bug.
9913d6e4
JD
10345When generating a Java parser, @code{bison @var{basename}.y} will
10346create a single Java source file named @file{@var{basename}.java}
10347containing the parser implementation. Using a grammar file without a
10348@file{.y} suffix is currently broken. The basename of the parser
10349implementation file can be changed by the @code{%file-prefix}
10350directive or the @option{-p}/@option{--name-prefix} option. The
10351entire parser implementation file name can be changed by the
10352@code{%output} directive or the @option{-o}/@option{--output} option.
10353The parser implementation file contains a single class for the parser.
8405b70c 10354
e254a580 10355You can create documentation for generated parsers using Javadoc.
8405b70c 10356
e254a580
DJ
10357Contrary to C parsers, Java parsers do not use global variables; the
10358state of the parser is always local to an instance of the parser class.
10359Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
1f1bd572 10360and @code{%define api.pure full} directives does not do anything when used in
e254a580 10361Java.
8405b70c 10362
e254a580 10363Push parsers are currently unsupported in Java and @code{%define
812775a0 10364api.push-pull} have no effect.
01b477c6 10365
35430378 10366GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10367@code{glr-parser} directive.
10368
10369No header file can be generated for Java parsers. Do not use the
10370@code{%defines} directive or the @option{-d}/@option{--defines} options.
10371
10372@c FIXME: Possible code change.
10373Currently, support for debugging and verbose errors are always compiled
10374in. Thus the @code{%debug} and @code{%token-table} directives and the
10375@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10376options have no effect. This may change in the future to eliminate
10377unused code in the generated parser, so use @code{%debug} and
10378@code{%verbose-error} explicitly if needed. Also, in the future the
10379@code{%token-table} directive might enable a public interface to
10380access the token names and codes.
8405b70c
PB
10381
10382@node Java Semantic Values
10383@subsection Java Semantic Values
10384@c - No %union, specify type in %type/%token.
10385@c - YYSTYPE
10386@c - Printer and destructor
10387
10388There is no @code{%union} directive in Java parsers. Instead, the
10389semantic values' types (class names) should be specified in the
10390@code{%type} or @code{%token} directive:
10391
10392@example
10393%type <Expression> expr assignment_expr term factor
10394%type <Integer> number
10395@end example
10396
10397By default, the semantic stack is declared to have @code{Object} members,
10398which means that the class types you specify can be of any class.
10399To improve the type safety of the parser, you can declare the common
e254a580
DJ
10400superclass of all the semantic values using the @code{%define stype}
10401directive. For example, after the following declaration:
8405b70c
PB
10402
10403@example
e254a580 10404%define stype "ASTNode"
8405b70c
PB
10405@end example
10406
10407@noindent
10408any @code{%type} or @code{%token} specifying a semantic type which
10409is not a subclass of ASTNode, will cause a compile-time error.
10410
e254a580 10411@c FIXME: Documented bug.
8405b70c
PB
10412Types used in the directives may be qualified with a package name.
10413Primitive data types are accepted for Java version 1.5 or later. Note
10414that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10415Generic types may not be used; this is due to a limitation in the
10416implementation of Bison, and may change in future releases.
8405b70c
PB
10417
10418Java parsers do not support @code{%destructor}, since the language
10419adopts garbage collection. The parser will try to hold references
10420to semantic values for as little time as needed.
10421
10422Java parsers do not support @code{%printer}, as @code{toString()}
10423can be used to print the semantic values. This however may change
10424(in a backwards-compatible way) in future versions of Bison.
10425
10426
10427@node Java Location Values
10428@subsection Java Location Values
10429@c - %locations
10430@c - class Position
10431@c - class Location
10432
7404cdf3
JD
10433When the directive @code{%locations} is used, the Java parser supports
10434location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10435class defines a @dfn{position}, a single point in a file; Bison itself
10436defines a class representing a @dfn{location}, a range composed of a pair of
10437positions (possibly spanning several files). The location class is an inner
10438class of the parser; the name is @code{Location} by default, and may also be
7287be84 10439renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
10440
10441The location class treats the position as a completely opaque value.
10442By default, the class name is @code{Position}, but this can be changed
7287be84 10443with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 10444be supplied by the user.
8405b70c
PB
10445
10446
e254a580
DJ
10447@deftypeivar {Location} {Position} begin
10448@deftypeivarx {Location} {Position} end
8405b70c 10449The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10450@end deftypeivar
10451
10452@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 10453Create a @code{Location} denoting an empty range located at a given point.
e254a580 10454@end deftypeop
8405b70c 10455
e254a580
DJ
10456@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10457Create a @code{Location} from the endpoints of the range.
10458@end deftypeop
10459
10460@deftypemethod {Location} {String} toString ()
8405b70c
PB
10461Prints the range represented by the location. For this to work
10462properly, the position class should override the @code{equals} and
10463@code{toString} methods appropriately.
10464@end deftypemethod
10465
10466
10467@node Java Parser Interface
10468@subsection Java Parser Interface
10469@c - define parser_class_name
10470@c - Ctor
10471@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10472@c debug_stream.
10473@c - Reporting errors
10474
e254a580
DJ
10475The name of the generated parser class defaults to @code{YYParser}. The
10476@code{YY} prefix may be changed using the @code{%name-prefix} directive
10477or the @option{-p}/@option{--name-prefix} option. Alternatively, use
10478@code{%define parser_class_name "@var{name}"} to give a custom name to
10479the class. The interface of this class is detailed below.
8405b70c 10480
e254a580
DJ
10481By default, the parser class has package visibility. A declaration
10482@code{%define public} will change to public visibility. Remember that,
10483according to the Java language specification, the name of the @file{.java}
10484file should match the name of the class in this case. Similarly, you can
10485use @code{abstract}, @code{final} and @code{strictfp} with the
10486@code{%define} declaration to add other modifiers to the parser class.
10487
10488The Java package name of the parser class can be specified using the
10489@code{%define package} directive. The superclass and the implemented
10490interfaces of the parser class can be specified with the @code{%define
10491extends} and @code{%define implements} directives.
10492
10493The parser class defines an inner class, @code{Location}, that is used
10494for location tracking (see @ref{Java Location Values}), and a inner
10495interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10496these inner class/interface, and the members described in the interface
10497below, all the other members and fields are preceded with a @code{yy} or
10498@code{YY} prefix to avoid clashes with user code.
10499
10500@c FIXME: The following constants and variables are still undocumented:
10501@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
10502
10503The parser class can be extended using the @code{%parse-param}
10504directive. Each occurrence of the directive will add a @code{protected
10505final} field to the parser class, and an argument to its constructor,
10506which initialize them automatically.
10507
10508Token names defined by @code{%token} and the predefined @code{EOF} token
10509name are added as constant fields to the parser class.
10510
10511@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10512Build a new parser object with embedded @code{%code lexer}. There are
10513no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
10514used.
10515@end deftypeop
10516
10517@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10518Build a new parser object using the specified scanner. There are no
10519additional parameters unless @code{%parse-param}s are used.
10520
10521If the scanner is defined by @code{%code lexer}, this constructor is
10522declared @code{protected} and is called automatically with a scanner
10523created with the correct @code{%lex-param}s.
10524@end deftypeop
8405b70c
PB
10525
10526@deftypemethod {YYParser} {boolean} parse ()
10527Run the syntactic analysis, and return @code{true} on success,
10528@code{false} otherwise.
10529@end deftypemethod
10530
01b477c6 10531@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10532During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10533from a syntax error.
10534@xref{Error Recovery}.
8405b70c
PB
10535@end deftypemethod
10536
10537@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10538@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10539Get or set the stream used for tracing the parsing. It defaults to
10540@code{System.err}.
10541@end deftypemethod
10542
10543@deftypemethod {YYParser} {int} getDebugLevel ()
10544@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10545Get or set the tracing level. Currently its value is either 0, no trace,
10546or nonzero, full tracing.
10547@end deftypemethod
10548
8405b70c
PB
10549
10550@node Java Scanner Interface
10551@subsection Java Scanner Interface
01b477c6 10552@c - %code lexer
8405b70c 10553@c - %lex-param
01b477c6 10554@c - Lexer interface
8405b70c 10555
e254a580
DJ
10556There are two possible ways to interface a Bison-generated Java parser
10557with a scanner: the scanner may be defined by @code{%code lexer}, or
10558defined elsewhere. In either case, the scanner has to implement the
10559@code{Lexer} inner interface of the parser class.
10560
10561In the first case, the body of the scanner class is placed in
10562@code{%code lexer} blocks. If you want to pass parameters from the
10563parser constructor to the scanner constructor, specify them with
10564@code{%lex-param}; they are passed before @code{%parse-param}s to the
10565constructor.
01b477c6 10566
59c5ac72 10567In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10568which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10569The constructor of the parser object will then accept an object
10570implementing the interface; @code{%lex-param} is not used in this
10571case.
10572
10573In both cases, the scanner has to implement the following methods.
10574
e254a580
DJ
10575@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10576This method is defined by the user to emit an error message. The first
10577parameter is omitted if location tracking is not active. Its type can be
7287be84 10578changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
10579@end deftypemethod
10580
e254a580 10581@deftypemethod {Lexer} {int} yylex ()
8405b70c 10582Return the next token. Its type is the return value, its semantic
c781580d 10583value and location are saved and returned by the their methods in the
e254a580
DJ
10584interface.
10585
10586Use @code{%define lex_throws} to specify any uncaught exceptions.
10587Default is @code{java.io.IOException}.
8405b70c
PB
10588@end deftypemethod
10589
10590@deftypemethod {Lexer} {Position} getStartPos ()
10591@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10592Return respectively the first position of the last token that
10593@code{yylex} returned, and the first position beyond it. These
10594methods are not needed unless location tracking is active.
8405b70c 10595
7287be84 10596The return type can be changed using @code{%define api.position.type
8405b70c
PB
10597"@var{class-name}".}
10598@end deftypemethod
10599
10600@deftypemethod {Lexer} {Object} getLVal ()
c781580d 10601Return the semantic value of the last token that yylex returned.
8405b70c 10602
e254a580 10603The return type can be changed using @code{%define stype
8405b70c
PB
10604"@var{class-name}".}
10605@end deftypemethod
10606
10607
e254a580
DJ
10608@node Java Action Features
10609@subsection Special Features for Use in Java Actions
10610
10611The following special constructs can be uses in Java actions.
10612Other analogous C action features are currently unavailable for Java.
10613
10614Use @code{%define throws} to specify any uncaught exceptions from parser
10615actions, and initial actions specified by @code{%initial-action}.
10616
10617@defvar $@var{n}
10618The semantic value for the @var{n}th component of the current rule.
10619This may not be assigned to.
10620@xref{Java Semantic Values}.
10621@end defvar
10622
10623@defvar $<@var{typealt}>@var{n}
10624Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10625@xref{Java Semantic Values}.
10626@end defvar
10627
10628@defvar $$
10629The semantic value for the grouping made by the current rule. As a
10630value, this is in the base type (@code{Object} or as specified by
10631@code{%define stype}) as in not cast to the declared subtype because
10632casts are not allowed on the left-hand side of Java assignments.
10633Use an explicit Java cast if the correct subtype is needed.
10634@xref{Java Semantic Values}.
10635@end defvar
10636
10637@defvar $<@var{typealt}>$
10638Same as @code{$$} since Java always allow assigning to the base type.
10639Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10640for setting the value but there is currently no easy way to distinguish
10641these constructs.
10642@xref{Java Semantic Values}.
10643@end defvar
10644
10645@defvar @@@var{n}
10646The location information of the @var{n}th component of the current rule.
10647This may not be assigned to.
10648@xref{Java Location Values}.
10649@end defvar
10650
10651@defvar @@$
10652The location information of the grouping made by the current rule.
10653@xref{Java Location Values}.
10654@end defvar
10655
34a41a93 10656@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
10657Return immediately from the parser, indicating failure.
10658@xref{Java Parser Interface}.
34a41a93 10659@end deftypefn
8405b70c 10660
34a41a93 10661@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
10662Return immediately from the parser, indicating success.
10663@xref{Java Parser Interface}.
34a41a93 10664@end deftypefn
8405b70c 10665
34a41a93 10666@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 10667Start error recovery (without printing an error message).
e254a580 10668@xref{Error Recovery}.
34a41a93 10669@end deftypefn
8405b70c 10670
e254a580
DJ
10671@deftypefn {Function} {boolean} recovering ()
10672Return whether error recovery is being done. In this state, the parser
10673reads token until it reaches a known state, and then restarts normal
10674operation.
10675@xref{Error Recovery}.
10676@end deftypefn
8405b70c 10677
e254a580
DJ
10678@deftypefn {Function} {protected void} yyerror (String msg)
10679@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
10680@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
10681Print an error message using the @code{yyerror} method of the scanner
10682instance in use.
10683@end deftypefn
8405b70c 10684
8405b70c 10685
8405b70c
PB
10686@node Java Differences
10687@subsection Differences between C/C++ and Java Grammars
10688
10689The different structure of the Java language forces several differences
10690between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10691section summarizes these differences.
8405b70c
PB
10692
10693@itemize
10694@item
01b477c6 10695Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10696@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10697macros. Instead, they should be preceded by @code{return} when they
10698appear in an action. The actual definition of these symbols is
8405b70c
PB
10699opaque to the Bison grammar, and it might change in the future. The
10700only meaningful operation that you can do, is to return them.
2ba03112 10701@xref{Java Action Features}.
8405b70c
PB
10702
10703Note that of these three symbols, only @code{YYACCEPT} and
10704@code{YYABORT} will cause a return from the @code{yyparse}
10705method@footnote{Java parsers include the actions in a separate
10706method than @code{yyparse} in order to have an intuitive syntax that
10707corresponds to these C macros.}.
10708
e254a580
DJ
10709@item
10710Java lacks unions, so @code{%union} has no effect. Instead, semantic
10711values have a common base type: @code{Object} or as specified by
c781580d 10712@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10713@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10714an union. The type of @code{$$}, even with angle brackets, is the base
10715type since Java casts are not allow on the left-hand side of assignments.
10716Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 10717left-hand side of assignments. @xref{Java Semantic Values}, and
2ba03112 10718@ref{Java Action Features}.
e254a580 10719
8405b70c 10720@item
c781580d 10721The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10722@table @asis
10723@item @code{%code imports}
10724blocks are placed at the beginning of the Java source code. They may
10725include copyright notices. For a @code{package} declarations, it is
10726suggested to use @code{%define package} instead.
8405b70c 10727
01b477c6
PB
10728@item unqualified @code{%code}
10729blocks are placed inside the parser class.
10730
10731@item @code{%code lexer}
10732blocks, if specified, should include the implementation of the
10733scanner. If there is no such block, the scanner can be any class
2ba03112 10734that implements the appropriate interface (@pxref{Java Scanner
01b477c6 10735Interface}).
29553547 10736@end table
8405b70c
PB
10737
10738Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10739In particular, @code{%@{ @dots{} %@}} blocks should not be used
10740and may give an error in future versions of Bison.
10741
01b477c6 10742The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10743be used to define other classes used by the parser @emph{outside}
10744the parser class.
8405b70c
PB
10745@end itemize
10746
e254a580
DJ
10747
10748@node Java Declarations Summary
10749@subsection Java Declarations Summary
10750
10751This summary only include declarations specific to Java or have special
10752meaning when used in a Java parser.
10753
10754@deffn {Directive} {%language "Java"}
10755Generate a Java class for the parser.
10756@end deffn
10757
10758@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10759A parameter for the lexer class defined by @code{%code lexer}
10760@emph{only}, added as parameters to the lexer constructor and the parser
10761constructor that @emph{creates} a lexer. Default is none.
10762@xref{Java Scanner Interface}.
10763@end deffn
10764
10765@deffn {Directive} %name-prefix "@var{prefix}"
10766The prefix of the parser class name @code{@var{prefix}Parser} if
10767@code{%define parser_class_name} is not used. Default is @code{YY}.
10768@xref{Java Bison Interface}.
10769@end deffn
10770
10771@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10772A parameter for the parser class added as parameters to constructor(s)
10773and as fields initialized by the constructor(s). Default is none.
10774@xref{Java Parser Interface}.
10775@end deffn
10776
10777@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10778Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10779@xref{Java Semantic Values}.
10780@end deffn
10781
10782@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10783Declare the type of nonterminals. Note that the angle brackets enclose
10784a Java @emph{type}.
10785@xref{Java Semantic Values}.
10786@end deffn
10787
10788@deffn {Directive} %code @{ @var{code} @dots{} @}
10789Code appended to the inside of the parser class.
10790@xref{Java Differences}.
10791@end deffn
10792
10793@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10794Code inserted just after the @code{package} declaration.
10795@xref{Java Differences}.
10796@end deffn
10797
10798@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10799Code added to the body of a inner lexer class within the parser class.
10800@xref{Java Scanner Interface}.
10801@end deffn
10802
10803@deffn {Directive} %% @var{code} @dots{}
10804Code (after the second @code{%%}) appended to the end of the file,
10805@emph{outside} the parser class.
10806@xref{Java Differences}.
10807@end deffn
10808
10809@deffn {Directive} %@{ @var{code} @dots{} %@}
10810Not supported. Use @code{%code import} instead.
10811@xref{Java Differences}.
10812@end deffn
10813
10814@deffn {Directive} {%define abstract}
10815Whether the parser class is declared @code{abstract}. Default is false.
10816@xref{Java Bison Interface}.
10817@end deffn
10818
10819@deffn {Directive} {%define extends} "@var{superclass}"
10820The superclass of the parser class. Default is none.
10821@xref{Java Bison Interface}.
10822@end deffn
10823
10824@deffn {Directive} {%define final}
10825Whether the parser class is declared @code{final}. Default is false.
10826@xref{Java Bison Interface}.
10827@end deffn
10828
10829@deffn {Directive} {%define implements} "@var{interfaces}"
10830The implemented interfaces of the parser class, a comma-separated list.
10831Default is none.
10832@xref{Java Bison Interface}.
10833@end deffn
10834
10835@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10836The exceptions thrown by the @code{yylex} method of the lexer, a
10837comma-separated list. Default is @code{java.io.IOException}.
10838@xref{Java Scanner Interface}.
10839@end deffn
10840
7287be84 10841@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
10842The name of the class used for locations (a range between two
10843positions). This class is generated as an inner class of the parser
10844class by @command{bison}. Default is @code{Location}.
7287be84 10845Formerly named @code{location_type}.
e254a580
DJ
10846@xref{Java Location Values}.
10847@end deffn
10848
10849@deffn {Directive} {%define package} "@var{package}"
10850The package to put the parser class in. Default is none.
10851@xref{Java Bison Interface}.
10852@end deffn
10853
10854@deffn {Directive} {%define parser_class_name} "@var{name}"
10855The name of the parser class. Default is @code{YYParser} or
10856@code{@var{name-prefix}Parser}.
10857@xref{Java Bison Interface}.
10858@end deffn
10859
7287be84 10860@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
10861The name of the class used for positions. This class must be supplied by
10862the user. Default is @code{Position}.
7287be84 10863Formerly named @code{position_type}.
e254a580
DJ
10864@xref{Java Location Values}.
10865@end deffn
10866
10867@deffn {Directive} {%define public}
10868Whether the parser class is declared @code{public}. Default is false.
10869@xref{Java Bison Interface}.
10870@end deffn
10871
10872@deffn {Directive} {%define stype} "@var{class}"
10873The base type of semantic values. Default is @code{Object}.
10874@xref{Java Semantic Values}.
10875@end deffn
10876
10877@deffn {Directive} {%define strictfp}
10878Whether the parser class is declared @code{strictfp}. Default is false.
10879@xref{Java Bison Interface}.
10880@end deffn
10881
10882@deffn {Directive} {%define throws} "@var{exceptions}"
10883The exceptions thrown by user-supplied parser actions and
10884@code{%initial-action}, a comma-separated list. Default is none.
10885@xref{Java Parser Interface}.
10886@end deffn
10887
10888
12545799 10889@c ================================================= FAQ
d1a1114f
AD
10890
10891@node FAQ
10892@chapter Frequently Asked Questions
10893@cindex frequently asked questions
10894@cindex questions
10895
10896Several questions about Bison come up occasionally. Here some of them
10897are addressed.
10898
10899@menu
55ba27be
AD
10900* Memory Exhausted:: Breaking the Stack Limits
10901* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10902* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10903* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10904* Multiple start-symbols:: Factoring closely related grammars
35430378 10905* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10906* I can't build Bison:: Troubleshooting
10907* Where can I find help?:: Troubleshouting
10908* Bug Reports:: Troublereporting
8405b70c 10909* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10910* Beta Testing:: Experimenting development versions
10911* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10912@end menu
10913
1a059451
PE
10914@node Memory Exhausted
10915@section Memory Exhausted
d1a1114f 10916
ab8932bf 10917@quotation
1a059451 10918My parser returns with error with a @samp{memory exhausted}
d1a1114f 10919message. What can I do?
ab8932bf 10920@end quotation
d1a1114f 10921
188867ac
AD
10922This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
10923Rules}.
d1a1114f 10924
e64fec0a
PE
10925@node How Can I Reset the Parser
10926@section How Can I Reset the Parser
5b066063 10927
0e14ad77
PE
10928The following phenomenon has several symptoms, resulting in the
10929following typical questions:
5b066063 10930
ab8932bf 10931@quotation
5b066063
AD
10932I invoke @code{yyparse} several times, and on correct input it works
10933properly; but when a parse error is found, all the other calls fail
0e14ad77 10934too. How can I reset the error flag of @code{yyparse}?
ab8932bf 10935@end quotation
5b066063
AD
10936
10937@noindent
10938or
10939
ab8932bf 10940@quotation
0e14ad77 10941My parser includes support for an @samp{#include}-like feature, in
5b066063 10942which case I run @code{yyparse} from @code{yyparse}. This fails
1f1bd572 10943although I did specify @samp{%define api.pure full}.
ab8932bf 10944@end quotation
5b066063 10945
0e14ad77
PE
10946These problems typically come not from Bison itself, but from
10947Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10948speed, they might not notice a change of input file. As a
10949demonstration, consider the following source file,
10950@file{first-line.l}:
10951
98842516
AD
10952@example
10953@group
10954%@{
5b066063
AD
10955#include <stdio.h>
10956#include <stdlib.h>
98842516
AD
10957%@}
10958@end group
5b066063
AD
10959%%
10960.*\n ECHO; return 1;
10961%%
98842516 10962@group
5b066063 10963int
0e14ad77 10964yyparse (char const *file)
98842516 10965@{
5b066063
AD
10966 yyin = fopen (file, "r");
10967 if (!yyin)
98842516
AD
10968 @{
10969 perror ("fopen");
10970 exit (EXIT_FAILURE);
10971 @}
10972@end group
10973@group
fa7e68c3 10974 /* One token only. */
5b066063 10975 yylex ();
0e14ad77 10976 if (fclose (yyin) != 0)
98842516
AD
10977 @{
10978 perror ("fclose");
10979 exit (EXIT_FAILURE);
10980 @}
5b066063 10981 return 0;
98842516
AD
10982@}
10983@end group
5b066063 10984
98842516 10985@group
5b066063 10986int
0e14ad77 10987main (void)
98842516 10988@{
5b066063
AD
10989 yyparse ("input");
10990 yyparse ("input");
10991 return 0;
98842516
AD
10992@}
10993@end group
10994@end example
5b066063
AD
10995
10996@noindent
10997If the file @file{input} contains
10998
ab8932bf 10999@example
5b066063
AD
11000input:1: Hello,
11001input:2: World!
ab8932bf 11002@end example
5b066063
AD
11003
11004@noindent
0e14ad77 11005then instead of getting the first line twice, you get:
5b066063
AD
11006
11007@example
11008$ @kbd{flex -ofirst-line.c first-line.l}
11009$ @kbd{gcc -ofirst-line first-line.c -ll}
11010$ @kbd{./first-line}
11011input:1: Hello,
11012input:2: World!
11013@end example
11014
0e14ad77
PE
11015Therefore, whenever you change @code{yyin}, you must tell the
11016Lex-generated scanner to discard its current buffer and switch to the
11017new one. This depends upon your implementation of Lex; see its
11018documentation for more. For Flex, it suffices to call
11019@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
11020Flex-generated scanner needs to read from several input streams to
11021handle features like include files, you might consider using Flex
11022functions like @samp{yy_switch_to_buffer} that manipulate multiple
11023input buffers.
5b066063 11024
b165c324
AD
11025If your Flex-generated scanner uses start conditions (@pxref{Start
11026conditions, , Start conditions, flex, The Flex Manual}), you might
11027also want to reset the scanner's state, i.e., go back to the initial
11028start condition, through a call to @samp{BEGIN (0)}.
11029
fef4cb51
AD
11030@node Strings are Destroyed
11031@section Strings are Destroyed
11032
ab8932bf 11033@quotation
c7e441b4 11034My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
11035them. Instead of reporting @samp{"foo", "bar"}, it reports
11036@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
ab8932bf 11037@end quotation
fef4cb51
AD
11038
11039This error is probably the single most frequent ``bug report'' sent to
11040Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 11041of the scanner. Consider the following Lex code:
fef4cb51 11042
ab8932bf 11043@example
98842516 11044@group
ab8932bf 11045%@{
fef4cb51
AD
11046#include <stdio.h>
11047char *yylval = NULL;
ab8932bf 11048%@}
98842516
AD
11049@end group
11050@group
fef4cb51
AD
11051%%
11052.* yylval = yytext; return 1;
11053\n /* IGNORE */
11054%%
98842516
AD
11055@end group
11056@group
fef4cb51
AD
11057int
11058main ()
ab8932bf 11059@{
fa7e68c3 11060 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
11061 char *fst = (yylex (), yylval);
11062 char *snd = (yylex (), yylval);
11063 printf ("\"%s\", \"%s\"\n", fst, snd);
11064 return 0;
ab8932bf 11065@}
98842516 11066@end group
ab8932bf 11067@end example
fef4cb51
AD
11068
11069If you compile and run this code, you get:
11070
11071@example
11072$ @kbd{flex -osplit-lines.c split-lines.l}
11073$ @kbd{gcc -osplit-lines split-lines.c -ll}
11074$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11075"one
11076two", "two"
11077@end example
11078
11079@noindent
11080this is because @code{yytext} is a buffer provided for @emph{reading}
11081in the action, but if you want to keep it, you have to duplicate it
11082(e.g., using @code{strdup}). Note that the output may depend on how
11083your implementation of Lex handles @code{yytext}. For instance, when
11084given the Lex compatibility option @option{-l} (which triggers the
11085option @samp{%array}) Flex generates a different behavior:
11086
11087@example
11088$ @kbd{flex -l -osplit-lines.c split-lines.l}
11089$ @kbd{gcc -osplit-lines split-lines.c -ll}
11090$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11091"two", "two"
11092@end example
11093
11094
2fa09258
AD
11095@node Implementing Gotos/Loops
11096@section Implementing Gotos/Loops
a06ea4aa 11097
ab8932bf 11098@quotation
a06ea4aa 11099My simple calculator supports variables, assignments, and functions,
2fa09258 11100but how can I implement gotos, or loops?
ab8932bf 11101@end quotation
a06ea4aa
AD
11102
11103Although very pedagogical, the examples included in the document blur
a1c84f45 11104the distinction to make between the parser---whose job is to recover
a06ea4aa 11105the structure of a text and to transmit it to subsequent modules of
a1c84f45 11106the program---and the processing (such as the execution) of this
a06ea4aa
AD
11107structure. This works well with so called straight line programs,
11108i.e., precisely those that have a straightforward execution model:
11109execute simple instructions one after the others.
11110
11111@cindex abstract syntax tree
35430378 11112@cindex AST
a06ea4aa
AD
11113If you want a richer model, you will probably need to use the parser
11114to construct a tree that does represent the structure it has
11115recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 11116or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11117traversing it in various ways, will enable treatments such as its
11118execution or its translation, which will result in an interpreter or a
11119compiler.
11120
11121This topic is way beyond the scope of this manual, and the reader is
11122invited to consult the dedicated literature.
11123
11124
ed2e6384
AD
11125@node Multiple start-symbols
11126@section Multiple start-symbols
11127
ab8932bf 11128@quotation
ed2e6384
AD
11129I have several closely related grammars, and I would like to share their
11130implementations. In fact, I could use a single grammar but with
11131multiple entry points.
ab8932bf 11132@end quotation
ed2e6384
AD
11133
11134Bison does not support multiple start-symbols, but there is a very
11135simple means to simulate them. If @code{foo} and @code{bar} are the two
11136pseudo start-symbols, then introduce two new tokens, say
11137@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11138real start-symbol:
11139
11140@example
11141%token START_FOO START_BAR;
11142%start start;
de6be119
AD
11143start:
11144 START_FOO foo
11145| START_BAR bar;
ed2e6384
AD
11146@end example
11147
11148These tokens prevents the introduction of new conflicts. As far as the
11149parser goes, that is all that is needed.
11150
11151Now the difficult part is ensuring that the scanner will send these
11152tokens first. If your scanner is hand-written, that should be
11153straightforward. If your scanner is generated by Lex, them there is
11154simple means to do it: recall that anything between @samp{%@{ ... %@}}
11155after the first @code{%%} is copied verbatim in the top of the generated
11156@code{yylex} function. Make sure a variable @code{start_token} is
11157available in the scanner (e.g., a global variable or using
11158@code{%lex-param} etc.), and use the following:
11159
11160@example
11161 /* @r{Prologue.} */
11162%%
11163%@{
11164 if (start_token)
11165 @{
11166 int t = start_token;
11167 start_token = 0;
11168 return t;
11169 @}
11170%@}
11171 /* @r{The rules.} */
11172@end example
11173
11174
55ba27be
AD
11175@node Secure? Conform?
11176@section Secure? Conform?
11177
ab8932bf 11178@quotation
55ba27be 11179Is Bison secure? Does it conform to POSIX?
ab8932bf 11180@end quotation
55ba27be
AD
11181
11182If you're looking for a guarantee or certification, we don't provide it.
11183However, Bison is intended to be a reliable program that conforms to the
35430378 11184POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11185please send us a bug report.
11186
11187@node I can't build Bison
11188@section I can't build Bison
11189
ab8932bf 11190@quotation
8c5b881d
PE
11191I can't build Bison because @command{make} complains that
11192@code{msgfmt} is not found.
55ba27be 11193What should I do?
ab8932bf 11194@end quotation
55ba27be
AD
11195
11196Like most GNU packages with internationalization support, that feature
11197is turned on by default. If you have problems building in the @file{po}
11198subdirectory, it indicates that your system's internationalization
11199support is lacking. You can re-configure Bison with
11200@option{--disable-nls} to turn off this support, or you can install GNU
11201gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11202Bison. See the file @file{ABOUT-NLS} for more information.
11203
11204
11205@node Where can I find help?
11206@section Where can I find help?
11207
ab8932bf 11208@quotation
55ba27be 11209I'm having trouble using Bison. Where can I find help?
ab8932bf 11210@end quotation
55ba27be
AD
11211
11212First, read this fine manual. Beyond that, you can send mail to
11213@email{help-bison@@gnu.org}. This mailing list is intended to be
11214populated with people who are willing to answer questions about using
11215and installing Bison. Please keep in mind that (most of) the people on
11216the list have aspects of their lives which are not related to Bison (!),
11217so you may not receive an answer to your question right away. This can
11218be frustrating, but please try not to honk them off; remember that any
11219help they provide is purely voluntary and out of the kindness of their
11220hearts.
11221
11222@node Bug Reports
11223@section Bug Reports
11224
ab8932bf 11225@quotation
55ba27be 11226I found a bug. What should I include in the bug report?
ab8932bf 11227@end quotation
55ba27be
AD
11228
11229Before you send a bug report, make sure you are using the latest
11230version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11231mirrors. Be sure to include the version number in your bug report. If
11232the bug is present in the latest version but not in a previous version,
11233try to determine the most recent version which did not contain the bug.
11234
11235If the bug is parser-related, you should include the smallest grammar
11236you can which demonstrates the bug. The grammar file should also be
11237complete (i.e., I should be able to run it through Bison without having
11238to edit or add anything). The smaller and simpler the grammar, the
11239easier it will be to fix the bug.
11240
11241Include information about your compilation environment, including your
11242operating system's name and version and your compiler's name and
11243version. If you have trouble compiling, you should also include a
11244transcript of the build session, starting with the invocation of
11245`configure'. Depending on the nature of the bug, you may be asked to
11246send additional files as well (such as `config.h' or `config.cache').
11247
11248Patches are most welcome, but not required. That is, do not hesitate to
d6864e19 11249send a bug report just because you cannot provide a fix.
55ba27be
AD
11250
11251Send bug reports to @email{bug-bison@@gnu.org}.
11252
8405b70c
PB
11253@node More Languages
11254@section More Languages
55ba27be 11255
ab8932bf 11256@quotation
8405b70c 11257Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11258favorite language here}?
ab8932bf 11259@end quotation
55ba27be 11260
8405b70c 11261C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11262languages; contributions are welcome.
11263
11264@node Beta Testing
11265@section Beta Testing
11266
ab8932bf 11267@quotation
55ba27be 11268What is involved in being a beta tester?
ab8932bf 11269@end quotation
55ba27be
AD
11270
11271It's not terribly involved. Basically, you would download a test
11272release, compile it, and use it to build and run a parser or two. After
11273that, you would submit either a bug report or a message saying that
11274everything is okay. It is important to report successes as well as
11275failures because test releases eventually become mainstream releases,
11276but only if they are adequately tested. If no one tests, development is
11277essentially halted.
11278
11279Beta testers are particularly needed for operating systems to which the
11280developers do not have easy access. They currently have easy access to
11281recent GNU/Linux and Solaris versions. Reports about other operating
11282systems are especially welcome.
11283
11284@node Mailing Lists
11285@section Mailing Lists
11286
ab8932bf 11287@quotation
55ba27be 11288How do I join the help-bison and bug-bison mailing lists?
ab8932bf 11289@end quotation
55ba27be
AD
11290
11291See @url{http://lists.gnu.org/}.
a06ea4aa 11292
d1a1114f
AD
11293@c ================================================= Table of Symbols
11294
342b8b6e 11295@node Table of Symbols
bfa74976
RS
11296@appendix Bison Symbols
11297@cindex Bison symbols, table of
11298@cindex symbols in Bison, table of
11299
18b519c0 11300@deffn {Variable} @@$
3ded9a63 11301In an action, the location of the left-hand side of the rule.
7404cdf3 11302@xref{Tracking Locations}.
18b519c0 11303@end deffn
3ded9a63 11304
18b519c0 11305@deffn {Variable} @@@var{n}
7404cdf3
JD
11306In an action, the location of the @var{n}-th symbol of the right-hand side
11307of the rule. @xref{Tracking Locations}.
18b519c0 11308@end deffn
3ded9a63 11309
1f68dca5 11310@deffn {Variable} @@@var{name}
7404cdf3
JD
11311In an action, the location of a symbol addressed by name. @xref{Tracking
11312Locations}.
1f68dca5
AR
11313@end deffn
11314
11315@deffn {Variable} @@[@var{name}]
7404cdf3
JD
11316In an action, the location of a symbol addressed by name. @xref{Tracking
11317Locations}.
1f68dca5
AR
11318@end deffn
11319
18b519c0 11320@deffn {Variable} $$
3ded9a63
AD
11321In an action, the semantic value of the left-hand side of the rule.
11322@xref{Actions}.
18b519c0 11323@end deffn
3ded9a63 11324
18b519c0 11325@deffn {Variable} $@var{n}
3ded9a63
AD
11326In an action, the semantic value of the @var{n}-th symbol of the
11327right-hand side of the rule. @xref{Actions}.
18b519c0 11328@end deffn
3ded9a63 11329
1f68dca5
AR
11330@deffn {Variable} $@var{name}
11331In an action, the semantic value of a symbol addressed by name.
11332@xref{Actions}.
11333@end deffn
11334
11335@deffn {Variable} $[@var{name}]
11336In an action, the semantic value of a symbol addressed by name.
11337@xref{Actions}.
11338@end deffn
11339
dd8d9022
AD
11340@deffn {Delimiter} %%
11341Delimiter used to separate the grammar rule section from the
11342Bison declarations section or the epilogue.
11343@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11344@end deffn
bfa74976 11345
dd8d9022
AD
11346@c Don't insert spaces, or check the DVI output.
11347@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
11348All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11349to the parser implementation file. Such code forms the prologue of
11350the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11351Grammar}.
18b519c0 11352@end deffn
bfa74976 11353
dd8d9022
AD
11354@deffn {Construct} /*@dots{}*/
11355Comment delimiters, as in C.
18b519c0 11356@end deffn
bfa74976 11357
dd8d9022
AD
11358@deffn {Delimiter} :
11359Separates a rule's result from its components. @xref{Rules, ,Syntax of
11360Grammar Rules}.
18b519c0 11361@end deffn
bfa74976 11362
dd8d9022
AD
11363@deffn {Delimiter} ;
11364Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11365@end deffn
bfa74976 11366
dd8d9022
AD
11367@deffn {Delimiter} |
11368Separates alternate rules for the same result nonterminal.
11369@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11370@end deffn
bfa74976 11371
12e35840
JD
11372@deffn {Directive} <*>
11373Used to define a default tagged @code{%destructor} or default tagged
11374@code{%printer}.
85894313
JD
11375
11376This feature is experimental.
11377More user feedback will help to determine whether it should become a permanent
11378feature.
11379
12e35840
JD
11380@xref{Destructor Decl, , Freeing Discarded Symbols}.
11381@end deffn
11382
3ebecc24 11383@deffn {Directive} <>
12e35840
JD
11384Used to define a default tagless @code{%destructor} or default tagless
11385@code{%printer}.
85894313
JD
11386
11387This feature is experimental.
11388More user feedback will help to determine whether it should become a permanent
11389feature.
11390
12e35840
JD
11391@xref{Destructor Decl, , Freeing Discarded Symbols}.
11392@end deffn
11393
dd8d9022
AD
11394@deffn {Symbol} $accept
11395The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11396$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11397Start-Symbol}. It cannot be used in the grammar.
18b519c0 11398@end deffn
bfa74976 11399
136a0f76 11400@deffn {Directive} %code @{@var{code}@}
148d66d8 11401@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
406dec82
JD
11402Insert @var{code} verbatim into the output parser source at the
11403default location or at the location specified by @var{qualifier}.
8e6f2266 11404@xref{%code Summary}.
9bc0dd67 11405@end deffn
9bc0dd67 11406
18b519c0 11407@deffn {Directive} %debug
6deb4447 11408Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 11409@end deffn
6deb4447 11410
91d2c560 11411@ifset defaultprec
22fccf95
PE
11412@deffn {Directive} %default-prec
11413Assign a precedence to rules that lack an explicit @samp{%prec}
11414modifier. @xref{Contextual Precedence, ,Context-Dependent
11415Precedence}.
39a06c25 11416@end deffn
91d2c560 11417@end ifset
39a06c25 11418
6f04ee6c
JD
11419@deffn {Directive} %define @var{variable}
11420@deffnx {Directive} %define @var{variable} @var{value}
11421@deffnx {Directive} %define @var{variable} "@var{value}"
2f4518a1 11422Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11423@end deffn
11424
18b519c0 11425@deffn {Directive} %defines
9913d6e4
JD
11426Bison declaration to create a parser header file, which is usually
11427meant for the scanner. @xref{Decl Summary}.
18b519c0 11428@end deffn
6deb4447 11429
02975b9a
JD
11430@deffn {Directive} %defines @var{defines-file}
11431Same as above, but save in the file @var{defines-file}.
11432@xref{Decl Summary}.
11433@end deffn
11434
18b519c0 11435@deffn {Directive} %destructor
258b75ca 11436Specify how the parser should reclaim the memory associated to
fa7e68c3 11437discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11438@end deffn
72f889cc 11439
18b519c0 11440@deffn {Directive} %dprec
676385e2 11441Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11442time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 11443GLR Parsers}.
18b519c0 11444@end deffn
676385e2 11445
dd8d9022
AD
11446@deffn {Symbol} $end
11447The predefined token marking the end of the token stream. It cannot be
11448used in the grammar.
11449@end deffn
11450
11451@deffn {Symbol} error
11452A token name reserved for error recovery. This token may be used in
11453grammar rules so as to allow the Bison parser to recognize an error in
11454the grammar without halting the process. In effect, a sentence
11455containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11456token @code{error} becomes the current lookahead token. Actions
11457corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11458token is reset to the token that originally caused the violation.
11459@xref{Error Recovery}.
18d192f0
AD
11460@end deffn
11461
18b519c0 11462@deffn {Directive} %error-verbose
2a8d363a 11463Bison declaration to request verbose, specific error message strings
6f04ee6c 11464when @code{yyerror} is called. @xref{Error Reporting}.
18b519c0 11465@end deffn
2a8d363a 11466
02975b9a 11467@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11468Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11469Summary}.
18b519c0 11470@end deffn
d8988b2f 11471
18b519c0 11472@deffn {Directive} %glr-parser
35430378
JD
11473Bison declaration to produce a GLR parser. @xref{GLR
11474Parsers, ,Writing GLR Parsers}.
18b519c0 11475@end deffn
676385e2 11476
dd8d9022
AD
11477@deffn {Directive} %initial-action
11478Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11479@end deffn
11480
e6e704dc
JD
11481@deffn {Directive} %language
11482Specify the programming language for the generated parser.
11483@xref{Decl Summary}.
11484@end deffn
11485
18b519c0 11486@deffn {Directive} %left
bfa74976
RS
11487Bison declaration to assign left associativity to token(s).
11488@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11489@end deffn
bfa74976 11490
feeb0eda 11491@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
11492Bison declaration to specifying an additional parameter that
11493@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11494for Pure Parsers}.
18b519c0 11495@end deffn
2a8d363a 11496
18b519c0 11497@deffn {Directive} %merge
676385e2 11498Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11499reduce/reduce conflict with a rule having the same merging function, the
676385e2 11500function is applied to the two semantic values to get a single result.
35430378 11501@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11502@end deffn
676385e2 11503
02975b9a 11504@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
11505Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
11506Parsers, ,Multiple Parsers in the Same Program}).
11507
11508Rename the external symbols (variables and functions) used in the parser so
11509that they start with @var{prefix} instead of @samp{yy}. Contrary to
11510@code{api.prefix}, do no rename types and macros.
11511
11512The precise list of symbols renamed in C parsers is @code{yyparse},
11513@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
11514@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
11515push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
11516@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
11517example, if you use @samp{%name-prefix "c_"}, the names become
11518@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
11519@code{%define namespace} documentation in this section.
18b519c0 11520@end deffn
d8988b2f 11521
4b3847c3 11522
91d2c560 11523@ifset defaultprec
22fccf95
PE
11524@deffn {Directive} %no-default-prec
11525Do not assign a precedence to rules that lack an explicit @samp{%prec}
11526modifier. @xref{Contextual Precedence, ,Context-Dependent
11527Precedence}.
11528@end deffn
91d2c560 11529@end ifset
22fccf95 11530
18b519c0 11531@deffn {Directive} %no-lines
931c7513 11532Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 11533parser implementation file. @xref{Decl Summary}.
18b519c0 11534@end deffn
931c7513 11535
18b519c0 11536@deffn {Directive} %nonassoc
9d9b8b70 11537Bison declaration to assign nonassociativity to token(s).
bfa74976 11538@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11539@end deffn
bfa74976 11540
02975b9a 11541@deffn {Directive} %output "@var{file}"
9913d6e4
JD
11542Bison declaration to set the name of the parser implementation file.
11543@xref{Decl Summary}.
18b519c0 11544@end deffn
d8988b2f 11545
feeb0eda 11546@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
11547Bison declaration to specifying an additional parameter that
11548@code{yyparse} should accept. @xref{Parser Function,, The Parser
11549Function @code{yyparse}}.
18b519c0 11550@end deffn
2a8d363a 11551
18b519c0 11552@deffn {Directive} %prec
bfa74976
RS
11553Bison declaration to assign a precedence to a specific rule.
11554@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11555@end deffn
bfa74976 11556
18b519c0 11557@deffn {Directive} %pure-parser
2f4518a1
JD
11558Deprecated version of @code{%define api.pure} (@pxref{%define
11559Summary,,api.pure}), for which Bison is more careful to warn about
11560unreasonable usage.
18b519c0 11561@end deffn
bfa74976 11562
b50d2359 11563@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11564Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11565Require a Version of Bison}.
b50d2359
AD
11566@end deffn
11567
18b519c0 11568@deffn {Directive} %right
bfa74976
RS
11569Bison declaration to assign right associativity to token(s).
11570@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11571@end deffn
bfa74976 11572
e6e704dc
JD
11573@deffn {Directive} %skeleton
11574Specify the skeleton to use; usually for development.
11575@xref{Decl Summary}.
11576@end deffn
11577
18b519c0 11578@deffn {Directive} %start
704a47c4
AD
11579Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11580Start-Symbol}.
18b519c0 11581@end deffn
bfa74976 11582
18b519c0 11583@deffn {Directive} %token
bfa74976
RS
11584Bison declaration to declare token(s) without specifying precedence.
11585@xref{Token Decl, ,Token Type Names}.
18b519c0 11586@end deffn
bfa74976 11587
18b519c0 11588@deffn {Directive} %token-table
9913d6e4
JD
11589Bison declaration to include a token name table in the parser
11590implementation file. @xref{Decl Summary}.
18b519c0 11591@end deffn
931c7513 11592
18b519c0 11593@deffn {Directive} %type
704a47c4
AD
11594Bison declaration to declare nonterminals. @xref{Type Decl,
11595,Nonterminal Symbols}.
18b519c0 11596@end deffn
bfa74976 11597
dd8d9022
AD
11598@deffn {Symbol} $undefined
11599The predefined token onto which all undefined values returned by
11600@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11601@code{error}.
11602@end deffn
11603
18b519c0 11604@deffn {Directive} %union
bfa74976
RS
11605Bison declaration to specify several possible data types for semantic
11606values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11607@end deffn
bfa74976 11608
dd8d9022
AD
11609@deffn {Macro} YYABORT
11610Macro to pretend that an unrecoverable syntax error has occurred, by
11611making @code{yyparse} return 1 immediately. The error reporting
11612function @code{yyerror} is not called. @xref{Parser Function, ,The
11613Parser Function @code{yyparse}}.
8405b70c
PB
11614
11615For Java parsers, this functionality is invoked using @code{return YYABORT;}
11616instead.
dd8d9022 11617@end deffn
3ded9a63 11618
dd8d9022
AD
11619@deffn {Macro} YYACCEPT
11620Macro to pretend that a complete utterance of the language has been
11621read, by making @code{yyparse} return 0 immediately.
11622@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11623
11624For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11625instead.
dd8d9022 11626@end deffn
bfa74976 11627
dd8d9022 11628@deffn {Macro} YYBACKUP
742e4900 11629Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11630token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11631@end deffn
bfa74976 11632
dd8d9022 11633@deffn {Variable} yychar
32c29292 11634External integer variable that contains the integer value of the
742e4900 11635lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11636@code{yyparse}.) Error-recovery rule actions may examine this variable.
11637@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11638@end deffn
bfa74976 11639
dd8d9022
AD
11640@deffn {Variable} yyclearin
11641Macro used in error-recovery rule actions. It clears the previous
742e4900 11642lookahead token. @xref{Error Recovery}.
18b519c0 11643@end deffn
bfa74976 11644
dd8d9022
AD
11645@deffn {Macro} YYDEBUG
11646Macro to define to equip the parser with tracing code. @xref{Tracing,
11647,Tracing Your Parser}.
18b519c0 11648@end deffn
bfa74976 11649
dd8d9022
AD
11650@deffn {Variable} yydebug
11651External integer variable set to zero by default. If @code{yydebug}
11652is given a nonzero value, the parser will output information on input
11653symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11654@end deffn
bfa74976 11655
dd8d9022
AD
11656@deffn {Macro} yyerrok
11657Macro to cause parser to recover immediately to its normal mode
11658after a syntax error. @xref{Error Recovery}.
11659@end deffn
11660
11661@deffn {Macro} YYERROR
4a11b852
AD
11662Cause an immediate syntax error. This statement initiates error
11663recovery just as if the parser itself had detected an error; however, it
11664does not call @code{yyerror}, and does not print any message. If you
11665want to print an error message, call @code{yyerror} explicitly before
11666the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
11667
11668For Java parsers, this functionality is invoked using @code{return YYERROR;}
11669instead.
dd8d9022
AD
11670@end deffn
11671
11672@deffn {Function} yyerror
11673User-supplied function to be called by @code{yyparse} on error.
11674@xref{Error Reporting, ,The Error
11675Reporting Function @code{yyerror}}.
11676@end deffn
11677
11678@deffn {Macro} YYERROR_VERBOSE
11679An obsolete macro that you define with @code{#define} in the prologue
11680to request verbose, specific error message strings
11681when @code{yyerror} is called. It doesn't matter what definition you
258cddbc
AD
11682use for @code{YYERROR_VERBOSE}, just whether you define it.
11683Supported by the C skeletons only; using
6f04ee6c 11684@code{%error-verbose} is preferred. @xref{Error Reporting}.
dd8d9022
AD
11685@end deffn
11686
56d60c19
AD
11687@deffn {Macro} YYFPRINTF
11688Macro used to output run-time traces.
11689@xref{Enabling Traces}.
11690@end deffn
11691
dd8d9022
AD
11692@deffn {Macro} YYINITDEPTH
11693Macro for specifying the initial size of the parser stack.
1a059451 11694@xref{Memory Management}.
dd8d9022
AD
11695@end deffn
11696
11697@deffn {Function} yylex
11698User-supplied lexical analyzer function, called with no arguments to get
11699the next token. @xref{Lexical, ,The Lexical Analyzer Function
11700@code{yylex}}.
11701@end deffn
11702
11703@deffn {Macro} YYLEX_PARAM
11704An obsolete macro for specifying an extra argument (or list of extra
32c29292 11705arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11706macro is deprecated, and is supported only for Yacc like parsers.
11707@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11708@end deffn
11709
11710@deffn {Variable} yylloc
11711External variable in which @code{yylex} should place the line and column
11712numbers associated with a token. (In a pure parser, it is a local
11713variable within @code{yyparse}, and its address is passed to
32c29292
JD
11714@code{yylex}.)
11715You can ignore this variable if you don't use the @samp{@@} feature in the
11716grammar actions.
11717@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11718In semantic actions, it stores the location of the lookahead token.
32c29292 11719@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11720@end deffn
11721
11722@deffn {Type} YYLTYPE
11723Data type of @code{yylloc}; by default, a structure with four
11724members. @xref{Location Type, , Data Types of Locations}.
11725@end deffn
11726
11727@deffn {Variable} yylval
11728External variable in which @code{yylex} should place the semantic
11729value associated with a token. (In a pure parser, it is a local
11730variable within @code{yyparse}, and its address is passed to
32c29292
JD
11731@code{yylex}.)
11732@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11733In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11734@xref{Actions, ,Actions}.
dd8d9022
AD
11735@end deffn
11736
11737@deffn {Macro} YYMAXDEPTH
1a059451
PE
11738Macro for specifying the maximum size of the parser stack. @xref{Memory
11739Management}.
dd8d9022
AD
11740@end deffn
11741
11742@deffn {Variable} yynerrs
8a2800e7 11743Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11744(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11745pure push parser, it is a member of yypstate.)
dd8d9022
AD
11746@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11747@end deffn
11748
11749@deffn {Function} yyparse
11750The parser function produced by Bison; call this function to start
11751parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11752@end deffn
11753
56d60c19
AD
11754@deffn {Macro} YYPRINT
11755Macro used to output token semantic values. For @file{yacc.c} only.
11756Obsoleted by @code{%printer}.
11757@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
11758@end deffn
11759
9987d1b3 11760@deffn {Function} yypstate_delete
f4101aa6 11761The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11762call this function to delete the memory associated with a parser.
f4101aa6 11763@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11764@code{yypstate_delete}}.
59da312b
JD
11765(The current push parsing interface is experimental and may evolve.
11766More user feedback will help to stabilize it.)
9987d1b3
JD
11767@end deffn
11768
11769@deffn {Function} yypstate_new
f4101aa6 11770The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11771call this function to create a new parser.
f4101aa6 11772@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11773@code{yypstate_new}}.
59da312b
JD
11774(The current push parsing interface is experimental and may evolve.
11775More user feedback will help to stabilize it.)
9987d1b3
JD
11776@end deffn
11777
11778@deffn {Function} yypull_parse
f4101aa6
AD
11779The parser function produced by Bison in push mode; call this function to
11780parse the rest of the input stream.
11781@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11782@code{yypull_parse}}.
59da312b
JD
11783(The current push parsing interface is experimental and may evolve.
11784More user feedback will help to stabilize it.)
9987d1b3
JD
11785@end deffn
11786
11787@deffn {Function} yypush_parse
f4101aa6
AD
11788The parser function produced by Bison in push mode; call this function to
11789parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11790@code{yypush_parse}}.
59da312b
JD
11791(The current push parsing interface is experimental and may evolve.
11792More user feedback will help to stabilize it.)
9987d1b3
JD
11793@end deffn
11794
dd8d9022
AD
11795@deffn {Macro} YYPARSE_PARAM
11796An obsolete macro for specifying the name of a parameter that
11797@code{yyparse} should accept. The use of this macro is deprecated, and
11798is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11799Conventions for Pure Parsers}.
11800@end deffn
11801
11802@deffn {Macro} YYRECOVERING
02103984
PE
11803The expression @code{YYRECOVERING ()} yields 1 when the parser
11804is recovering from a syntax error, and 0 otherwise.
11805@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11806@end deffn
11807
11808@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
11809Macro used to control the use of @code{alloca} when the
11810deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11811the parser will use @code{malloc} to extend its stacks. If defined to
118121, the parser will use @code{alloca}. Values other than 0 and 1 are
11813reserved for future Bison extensions. If not defined,
11814@code{YYSTACK_USE_ALLOCA} defaults to 0.
11815
55289366 11816In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11817limited stack and with unreliable stack-overflow checking, you should
11818set @code{YYMAXDEPTH} to a value that cannot possibly result in
11819unchecked stack overflow on any of your target hosts when
11820@code{alloca} is called. You can inspect the code that Bison
11821generates in order to determine the proper numeric values. This will
11822require some expertise in low-level implementation details.
dd8d9022
AD
11823@end deffn
11824
11825@deffn {Type} YYSTYPE
11826Data type of semantic values; @code{int} by default.
11827@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11828@end deffn
bfa74976 11829
342b8b6e 11830@node Glossary
bfa74976
RS
11831@appendix Glossary
11832@cindex glossary
11833
11834@table @asis
6f04ee6c 11835@item Accepting state
34a6c2d1
JD
11836A state whose only action is the accept action.
11837The accepting state is thus a consistent state.
11838@xref{Understanding,,}.
11839
35430378 11840@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11841Formal method of specifying context-free grammars originally proposed
11842by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11843committee document contributing to what became the Algol 60 report.
11844@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11845
6f04ee6c
JD
11846@item Consistent state
11847A state containing only one possible action. @xref{Default Reductions}.
34a6c2d1 11848
bfa74976
RS
11849@item Context-free grammars
11850Grammars specified as rules that can be applied regardless of context.
11851Thus, if there is a rule which says that an integer can be used as an
11852expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11853permitted. @xref{Language and Grammar, ,Languages and Context-Free
11854Grammars}.
bfa74976 11855
6f04ee6c 11856@item Default reduction
620b5727 11857The reduction that a parser should perform if the current parser state
2f4518a1 11858contains no other action for the lookahead token. In permitted parser
6f04ee6c
JD
11859states, Bison declares the reduction with the largest lookahead set to be
11860the default reduction and removes that lookahead set. @xref{Default
11861Reductions}.
11862
11863@item Defaulted state
11864A consistent state with a default reduction. @xref{Default Reductions}.
34a6c2d1 11865
bfa74976
RS
11866@item Dynamic allocation
11867Allocation of memory that occurs during execution, rather than at
11868compile time or on entry to a function.
11869
11870@item Empty string
11871Analogous to the empty set in set theory, the empty string is a
11872character string of length zero.
11873
11874@item Finite-state stack machine
11875A ``machine'' that has discrete states in which it is said to exist at
11876each instant in time. As input to the machine is processed, the
11877machine moves from state to state as specified by the logic of the
11878machine. In the case of the parser, the input is the language being
11879parsed, and the states correspond to various stages in the grammar
c827f760 11880rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11881
35430378 11882@item Generalized LR (GLR)
676385e2 11883A parsing algorithm that can handle all context-free grammars, including those
35430378 11884that are not LR(1). It resolves situations that Bison's
34a6c2d1 11885deterministic parsing
676385e2
PH
11886algorithm cannot by effectively splitting off multiple parsers, trying all
11887possible parsers, and discarding those that fail in the light of additional
c827f760 11888right context. @xref{Generalized LR Parsing, ,Generalized
35430378 11889LR Parsing}.
676385e2 11890
bfa74976
RS
11891@item Grouping
11892A language construct that is (in general) grammatically divisible;
c827f760 11893for example, `expression' or `declaration' in C@.
bfa74976
RS
11894@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11895
6f04ee6c
JD
11896@item IELR(1) (Inadequacy Elimination LR(1))
11897A minimal LR(1) parser table construction algorithm. That is, given any
2f4518a1 11898context-free grammar, IELR(1) generates parser tables with the full
6f04ee6c
JD
11899language-recognition power of canonical LR(1) but with nearly the same
11900number of parser states as LALR(1). This reduction in parser states is
11901often an order of magnitude. More importantly, because canonical LR(1)'s
11902extra parser states may contain duplicate conflicts in the case of non-LR(1)
11903grammars, the number of conflicts for IELR(1) is often an order of magnitude
11904less as well. This can significantly reduce the complexity of developing a
11905grammar. @xref{LR Table Construction}.
34a6c2d1 11906
bfa74976
RS
11907@item Infix operator
11908An arithmetic operator that is placed between the operands on which it
11909performs some operation.
11910
11911@item Input stream
11912A continuous flow of data between devices or programs.
11913
35430378 11914@item LAC (Lookahead Correction)
4c38b19e 11915A parsing mechanism that fixes the problem of delayed syntax error
6f04ee6c
JD
11916detection, which is caused by LR state merging, default reductions, and the
11917use of @code{%nonassoc}. Delayed syntax error detection results in
11918unexpected semantic actions, initiation of error recovery in the wrong
11919syntactic context, and an incorrect list of expected tokens in a verbose
11920syntax error message. @xref{LAC}.
4c38b19e 11921
bfa74976
RS
11922@item Language construct
11923One of the typical usage schemas of the language. For example, one of
11924the constructs of the C language is the @code{if} statement.
11925@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11926
11927@item Left associativity
11928Operators having left associativity are analyzed from left to right:
11929@samp{a+b+c} first computes @samp{a+b} and then combines with
11930@samp{c}. @xref{Precedence, ,Operator Precedence}.
11931
11932@item Left recursion
89cab50d
AD
11933A rule whose result symbol is also its first component symbol; for
11934example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11935Rules}.
bfa74976
RS
11936
11937@item Left-to-right parsing
11938Parsing a sentence of a language by analyzing it token by token from
c827f760 11939left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11940
11941@item Lexical analyzer (scanner)
11942A function that reads an input stream and returns tokens one by one.
11943@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11944
11945@item Lexical tie-in
11946A flag, set by actions in the grammar rules, which alters the way
11947tokens are parsed. @xref{Lexical Tie-ins}.
11948
931c7513 11949@item Literal string token
14ded682 11950A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11951
742e4900
JD
11952@item Lookahead token
11953A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11954Tokens}.
bfa74976 11955
35430378 11956@item LALR(1)
bfa74976 11957The class of context-free grammars that Bison (like most other parser
35430378 11958generators) can handle by default; a subset of LR(1).
5da0355a 11959@xref{Mysterious Conflicts}.
bfa74976 11960
35430378 11961@item LR(1)
bfa74976 11962The class of context-free grammars in which at most one token of
742e4900 11963lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11964
11965@item Nonterminal symbol
11966A grammar symbol standing for a grammatical construct that can
11967be expressed through rules in terms of smaller constructs; in other
11968words, a construct that is not a token. @xref{Symbols}.
11969
bfa74976
RS
11970@item Parser
11971A function that recognizes valid sentences of a language by analyzing
11972the syntax structure of a set of tokens passed to it from a lexical
11973analyzer.
11974
11975@item Postfix operator
11976An arithmetic operator that is placed after the operands upon which it
11977performs some operation.
11978
11979@item Reduction
11980Replacing a string of nonterminals and/or terminals with a single
89cab50d 11981nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11982Parser Algorithm}.
bfa74976
RS
11983
11984@item Reentrant
11985A reentrant subprogram is a subprogram which can be in invoked any
11986number of times in parallel, without interference between the various
11987invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11988
11989@item Reverse polish notation
11990A language in which all operators are postfix operators.
11991
11992@item Right recursion
89cab50d
AD
11993A rule whose result symbol is also its last component symbol; for
11994example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11995Rules}.
bfa74976
RS
11996
11997@item Semantics
11998In computer languages, the semantics are specified by the actions
11999taken for each instance of the language, i.e., the meaning of
12000each statement. @xref{Semantics, ,Defining Language Semantics}.
12001
12002@item Shift
12003A parser is said to shift when it makes the choice of analyzing
12004further input from the stream rather than reducing immediately some
c827f760 12005already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12006
12007@item Single-character literal
12008A single character that is recognized and interpreted as is.
12009@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
12010
12011@item Start symbol
12012The nonterminal symbol that stands for a complete valid utterance in
12013the language being parsed. The start symbol is usually listed as the
13863333 12014first nonterminal symbol in a language specification.
bfa74976
RS
12015@xref{Start Decl, ,The Start-Symbol}.
12016
12017@item Symbol table
12018A data structure where symbol names and associated data are stored
12019during parsing to allow for recognition and use of existing
12020information in repeated uses of a symbol. @xref{Multi-function Calc}.
12021
6e649e65
PE
12022@item Syntax error
12023An error encountered during parsing of an input stream due to invalid
12024syntax. @xref{Error Recovery}.
12025
bfa74976
RS
12026@item Token
12027A basic, grammatically indivisible unit of a language. The symbol
12028that describes a token in the grammar is a terminal symbol.
12029The input of the Bison parser is a stream of tokens which comes from
12030the lexical analyzer. @xref{Symbols}.
12031
12032@item Terminal symbol
89cab50d
AD
12033A grammar symbol that has no rules in the grammar and therefore is
12034grammatically indivisible. The piece of text it represents is a token.
12035@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
6f04ee6c
JD
12036
12037@item Unreachable state
12038A parser state to which there does not exist a sequence of transitions from
12039the parser's start state. A state can become unreachable during conflict
12040resolution. @xref{Unreachable States}.
bfa74976
RS
12041@end table
12042
342b8b6e 12043@node Copying This Manual
f2b5126e 12044@appendix Copying This Manual
f2b5126e
PB
12045@include fdl.texi
12046
71caec06
JD
12047@node Bibliography
12048@unnumbered Bibliography
12049
12050@table @asis
12051@item [Denny 2008]
12052Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
12053for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
120542008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
12055pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
12056
12057@item [Denny 2010 May]
12058Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
12059Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
12060University, Clemson, SC, USA (May 2010).
12061@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
12062
12063@item [Denny 2010 November]
12064Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
12065Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
12066in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
120672010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
12068
12069@item [DeRemer 1982]
12070Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
12071Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
12072Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
12073615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
12074
12075@item [Knuth 1965]
12076Donald E. Knuth, On the Translation of Languages from Left to Right, in
12077@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
12078607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
12079
12080@item [Scott 2000]
12081Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
12082@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
12083London, Department of Computer Science, TR-00-12 (December 2000).
12084@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
12085@end table
12086
f9b86351
AD
12087@node Index of Terms
12088@unnumbered Index of Terms
bfa74976
RS
12089
12090@printindex cp
12091
bfa74976 12092@bye
a06ea4aa 12093
232be91a
AD
12094@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
12095@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
12096@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
12097@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12098@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12099@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12100@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12101@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12102@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12103@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12104@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12105@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12106@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
56da1e52 12107@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
232be91a
AD
12108@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12109@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
12110@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
12111@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
12112@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
12113@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
12114@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
12115@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
12116@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
56da1e52 12117@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
232be91a
AD
12118@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
12119@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
12120@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
12121@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
12122@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 12123@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
56da1e52
AD
12124@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
12125@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
232be91a 12126@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
56da1e52 12127@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
232be91a
AD
12128@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
12129@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
12130@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
56da1e52 12131@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
232be91a 12132@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
56da1e52 12133@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
232be91a
AD
12134@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12135@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12136@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12137@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
56da1e52 12138@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
232be91a
AD
12139@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12140@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12141@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12142@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 12143@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
56da1e52 12144@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
12145@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
12146@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 12147@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
53e2cd1e
AD
12148@c LocalWords: parsers parser's
12149@c LocalWords: associativity subclasses precedences unresolvable runnable
12150@c LocalWords: allocators subunit initializations unreferenced untyped
12151@c LocalWords: errorVerbose subtype subtypes
f3103c5b
AD
12152
12153@c Local Variables:
12154@c ispell-dictionary: "american"
12155@c fill-column: 76
12156@c End: