]> git.saurik.com Git - bison.git/blame - doc/bison.texi
xml: match DOT output and xml2dot.xsl processing
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
c932d613 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
ea0a7676 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
71caec06 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
83484365 128* Locations:: Overview of location tracking.
f56274a8
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
35430378 134Writing GLR Parsers
fa7e68c3 135
35430378
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
7404cdf3
JD
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
188* Tracking Locations:: Locations and actions.
189* Named References:: Using named references in actions.
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
192
193Outline of a Bison Grammar
194
f56274a8 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
56d60c19 226* Printer Decl:: Declaring how symbol values are displayed.
d6328241 227* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
228* Start Decl:: Specifying the start symbol.
229* Pure Decl:: Requesting a reentrant parser.
9987d1b3 230* Push Decl:: Requesting a push parser.
bfa74976 231* Decl Summary:: Table of all Bison declarations.
2f4518a1 232* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 233* %code Summary:: Inserting code into the parser source.
bfa74976
RS
234
235Parser C-Language Interface
236
f56274a8
DJ
237* Parser Function:: How to call @code{yyparse} and what it returns.
238* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
239* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
240* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
241* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
242* Lexical:: You must supply a function @code{yylex}
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
254* Token Locations:: How @code{yylex} must return the text location
255 (line number, etc.) of the token, if the
256 actions want that.
257* Pure Calling:: How the calling convention differs in a pure parser
258 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 259
13863333 260The Bison Parser Algorithm
bfa74976 261
742e4900 262* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 268* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 269* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 270* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 271* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
272
273Operator Precedence
274
275* Why Precedence:: An example showing why precedence is needed.
276* Using Precedence:: How to specify precedence in Bison grammars.
277* Precedence Examples:: How these features are used in the previous example.
278* How Precedence:: How they work.
279
6f04ee6c
JD
280Tuning LR
281
282* LR Table Construction:: Choose a different construction algorithm.
283* Default Reductions:: Disable default reductions.
284* LAC:: Correct lookahead sets in the parser states.
285* Unreachable States:: Keep unreachable parser states for debugging.
286
bfa74976
RS
287Handling Context Dependencies
288
289* Semantic Tokens:: Token parsing can depend on the semantic context.
290* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
291* Tie-in Recovery:: Lexical tie-ins have implications for how
292 error recovery rules must be written.
293
93dd49ab 294Debugging Your Parser
ec3bc396
AD
295
296* Understanding:: Understanding the structure of your parser.
fc4fdd62 297* Graphviz:: Getting a visual representation of the parser.
9c16d399 298* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
299* Tracing:: Tracing the execution of your parser.
300
56d60c19
AD
301Tracing Your Parser
302
303* Enabling Traces:: Activating run-time trace support
304* Mfcalc Traces:: Extending @code{mfcalc} to support traces
305* The YYPRINT Macro:: Obsolete interface for semantic value reports
306
bfa74976
RS
307Invoking Bison
308
13863333 309* Bison Options:: All the options described in detail,
c827f760 310 in alphabetical order by short options.
bfa74976 311* Option Cross Key:: Alphabetical list of long options.
93dd49ab 312* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 313
8405b70c 314Parsers Written In Other Languages
12545799
AD
315
316* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 317* Java Parsers:: The interface to generate Java parser classes
12545799
AD
318
319C++ Parsers
320
321* C++ Bison Interface:: Asking for C++ parser generation
322* C++ Semantic Values:: %union vs. C++
323* C++ Location Values:: The position and location classes
324* C++ Parser Interface:: Instantiating and running the parser
325* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 326* A Complete C++ Example:: Demonstrating their use
12545799 327
936c88d1
AD
328C++ Location Values
329
330* C++ position:: One point in the source file
331* C++ location:: Two points in the source file
db8ab2be 332* User Defined Location Type:: Required interface for locations
936c88d1 333
12545799
AD
334A Complete C++ Example
335
336* Calc++ --- C++ Calculator:: The specifications
337* Calc++ Parsing Driver:: An active parsing context
338* Calc++ Parser:: A parser class
339* Calc++ Scanner:: A pure C++ Flex scanner
340* Calc++ Top Level:: Conducting the band
341
8405b70c
PB
342Java Parsers
343
f56274a8
DJ
344* Java Bison Interface:: Asking for Java parser generation
345* Java Semantic Values:: %type and %token vs. Java
346* Java Location Values:: The position and location classes
347* Java Parser Interface:: Instantiating and running the parser
348* Java Scanner Interface:: Specifying the scanner for the parser
349* Java Action Features:: Special features for use in actions
350* Java Differences:: Differences between C/C++ and Java Grammars
351* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 352
d1a1114f
AD
353Frequently Asked Questions
354
f56274a8
DJ
355* Memory Exhausted:: Breaking the Stack Limits
356* How Can I Reset the Parser:: @code{yyparse} Keeps some State
357* Strings are Destroyed:: @code{yylval} Loses Track of Strings
358* Implementing Gotos/Loops:: Control Flow in the Calculator
359* Multiple start-symbols:: Factoring closely related grammars
35430378 360* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
361* I can't build Bison:: Troubleshooting
362* Where can I find help?:: Troubleshouting
363* Bug Reports:: Troublereporting
364* More Languages:: Parsers in C++, Java, and so on
365* Beta Testing:: Experimenting development versions
366* Mailing Lists:: Meeting other Bison users
d1a1114f 367
f2b5126e
PB
368Copying This Manual
369
f56274a8 370* Copying This Manual:: License for copying this manual.
f2b5126e 371
342b8b6e 372@end detailmenu
bfa74976
RS
373@end menu
374
342b8b6e 375@node Introduction
bfa74976
RS
376@unnumbered Introduction
377@cindex introduction
378
6077da58 379@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
380annotated context-free grammar into a deterministic LR or generalized
381LR (GLR) parser employing LALR(1) parser tables. As an experimental
382feature, Bison can also generate IELR(1) or canonical LR(1) parser
383tables. Once you are proficient with Bison, you can use it to develop
384a wide range of language parsers, from those used in simple desk
385calculators to complex programming languages.
386
387Bison is upward compatible with Yacc: all properly-written Yacc
388grammars ought to work with Bison with no change. Anyone familiar
389with Yacc should be able to use Bison with little trouble. You need
390to be fluent in C or C++ programming in order to use Bison or to
391understand this manual. Java is also supported as an experimental
392feature.
393
394We begin with tutorial chapters that explain the basic concepts of
395using Bison and show three explained examples, each building on the
396last. If you don't know Bison or Yacc, start by reading these
397chapters. Reference chapters follow, which describe specific aspects
398of Bison in detail.
bfa74976 399
840341d6
JD
400Bison was written originally by Robert Corbett. Richard Stallman made
401it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
402added multi-character string literals and other features. Since then,
403Bison has grown more robust and evolved many other new features thanks
404to the hard work of a long list of volunteers. For details, see the
405@file{THANKS} and @file{ChangeLog} files included in the Bison
406distribution.
931c7513 407
df1af54c 408This edition corresponds to version @value{VERSION} of Bison.
bfa74976 409
342b8b6e 410@node Conditions
bfa74976
RS
411@unnumbered Conditions for Using Bison
412
193d7c70
PE
413The distribution terms for Bison-generated parsers permit using the
414parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 415permissions applied only when Bison was generating LALR(1)
193d7c70 416parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 417parsers could be used only in programs that were free software.
a31239f1 418
35430378 419The other GNU programming tools, such as the GNU C
c827f760 420compiler, have never
9ecbd125 421had such a requirement. They could always be used for nonfree
a31239f1
RS
422software. The reason Bison was different was not due to a special
423policy decision; it resulted from applying the usual General Public
424License to all of the Bison source code.
425
9913d6e4
JD
426The main output of the Bison utility---the Bison parser implementation
427file---contains a verbatim copy of a sizable piece of Bison, which is
428the code for the parser's implementation. (The actions from your
429grammar are inserted into this implementation at one point, but most
430of the rest of the implementation is not changed.) When we applied
431the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
432the effect was to restrict the use of Bison output to free software.
433
434We didn't change the terms because of sympathy for people who want to
435make software proprietary. @strong{Software should be free.} But we
436concluded that limiting Bison's use to free software was doing little to
437encourage people to make other software free. So we decided to make the
438practical conditions for using Bison match the practical conditions for
35430378 439using the other GNU tools.
bfa74976 440
193d7c70
PE
441This exception applies when Bison is generating code for a parser.
442You can tell whether the exception applies to a Bison output file by
443inspecting the file for text beginning with ``As a special
444exception@dots{}''. The text spells out the exact terms of the
445exception.
262aa8dd 446
f16b0819
PE
447@node Copying
448@unnumbered GNU GENERAL PUBLIC LICENSE
449@include gpl-3.0.texi
bfa74976 450
342b8b6e 451@node Concepts
bfa74976
RS
452@chapter The Concepts of Bison
453
454This chapter introduces many of the basic concepts without which the
455details of Bison will not make sense. If you do not already know how to
456use Bison or Yacc, we suggest you start by reading this chapter carefully.
457
458@menu
f56274a8
DJ
459* Language and Grammar:: Languages and context-free grammars,
460 as mathematical ideas.
461* Grammar in Bison:: How we represent grammars for Bison's sake.
462* Semantic Values:: Each token or syntactic grouping can have
463 a semantic value (the value of an integer,
464 the name of an identifier, etc.).
465* Semantic Actions:: Each rule can have an action containing C code.
466* GLR Parsers:: Writing parsers for general context-free languages.
83484365 467* Locations:: Overview of location tracking.
f56274a8
DJ
468* Bison Parser:: What are Bison's input and output,
469 how is the output used?
470* Stages:: Stages in writing and running Bison grammars.
471* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
472@end menu
473
342b8b6e 474@node Language and Grammar
bfa74976
RS
475@section Languages and Context-Free Grammars
476
bfa74976
RS
477@cindex context-free grammar
478@cindex grammar, context-free
479In order for Bison to parse a language, it must be described by a
480@dfn{context-free grammar}. This means that you specify one or more
481@dfn{syntactic groupings} and give rules for constructing them from their
482parts. For example, in the C language, one kind of grouping is called an
483`expression'. One rule for making an expression might be, ``An expression
484can be made of a minus sign and another expression''. Another would be,
485``An expression can be an integer''. As you can see, rules are often
486recursive, but there must be at least one rule which leads out of the
487recursion.
488
35430378 489@cindex BNF
bfa74976
RS
490@cindex Backus-Naur form
491The most common formal system for presenting such rules for humans to read
35430378 492is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 493order to specify the language Algol 60. Any grammar expressed in
35430378
JD
494BNF is a context-free grammar. The input to Bison is
495essentially machine-readable BNF.
bfa74976 496
6f04ee6c
JD
497@cindex LALR grammars
498@cindex IELR grammars
499@cindex LR grammars
500There are various important subclasses of context-free grammars. Although
501it can handle almost all context-free grammars, Bison is optimized for what
502are called LR(1) grammars. In brief, in these grammars, it must be possible
503to tell how to parse any portion of an input string with just a single token
504of lookahead. For historical reasons, Bison by default is limited by the
505additional restrictions of LALR(1), which is hard to explain simply.
5da0355a
JD
506@xref{Mysterious Conflicts}, for more information on this. As an
507experimental feature, you can escape these additional restrictions by
508requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
509Construction}, to learn how.
bfa74976 510
35430378
JD
511@cindex GLR parsing
512@cindex generalized LR (GLR) parsing
676385e2 513@cindex ambiguous grammars
9d9b8b70 514@cindex nondeterministic parsing
9501dc6e 515
35430378 516Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
517roughly that the next grammar rule to apply at any point in the input is
518uniquely determined by the preceding input and a fixed, finite portion
742e4900 519(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 520grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 521apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 522grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 523lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 524With the proper declarations, Bison is also able to parse these more
35430378
JD
525general context-free grammars, using a technique known as GLR
526parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
527are able to handle any context-free grammar for which the number of
528possible parses of any given string is finite.
676385e2 529
bfa74976
RS
530@cindex symbols (abstract)
531@cindex token
532@cindex syntactic grouping
533@cindex grouping, syntactic
9501dc6e
AD
534In the formal grammatical rules for a language, each kind of syntactic
535unit or grouping is named by a @dfn{symbol}. Those which are built by
536grouping smaller constructs according to grammatical rules are called
bfa74976
RS
537@dfn{nonterminal symbols}; those which can't be subdivided are called
538@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
539corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 540corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
541
542We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
543nonterminal, mean. The tokens of C are identifiers, constants (numeric
544and string), and the various keywords, arithmetic operators and
545punctuation marks. So the terminal symbols of a grammar for C include
546`identifier', `number', `string', plus one symbol for each keyword,
547operator or punctuation mark: `if', `return', `const', `static', `int',
548`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
549(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
550lexicography, not grammar.)
551
552Here is a simple C function subdivided into tokens:
553
9edcd895
AD
554@example
555int /* @r{keyword `int'} */
14d4662b 556square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
557 @r{identifier, close-paren} */
558@{ /* @r{open-brace} */
aa08666d
AD
559 return x * x; /* @r{keyword `return', identifier, asterisk,}
560 @r{identifier, semicolon} */
9edcd895
AD
561@} /* @r{close-brace} */
562@end example
bfa74976
RS
563
564The syntactic groupings of C include the expression, the statement, the
565declaration, and the function definition. These are represented in the
566grammar of C by nonterminal symbols `expression', `statement',
567`declaration' and `function definition'. The full grammar uses dozens of
568additional language constructs, each with its own nonterminal symbol, in
569order to express the meanings of these four. The example above is a
570function definition; it contains one declaration, and one statement. In
571the statement, each @samp{x} is an expression and so is @samp{x * x}.
572
573Each nonterminal symbol must have grammatical rules showing how it is made
574out of simpler constructs. For example, one kind of C statement is the
575@code{return} statement; this would be described with a grammar rule which
576reads informally as follows:
577
578@quotation
579A `statement' can be made of a `return' keyword, an `expression' and a
580`semicolon'.
581@end quotation
582
583@noindent
584There would be many other rules for `statement', one for each kind of
585statement in C.
586
587@cindex start symbol
588One nonterminal symbol must be distinguished as the special one which
589defines a complete utterance in the language. It is called the @dfn{start
590symbol}. In a compiler, this means a complete input program. In the C
591language, the nonterminal symbol `sequence of definitions and declarations'
592plays this role.
593
594For example, @samp{1 + 2} is a valid C expression---a valid part of a C
595program---but it is not valid as an @emph{entire} C program. In the
596context-free grammar of C, this follows from the fact that `expression' is
597not the start symbol.
598
599The Bison parser reads a sequence of tokens as its input, and groups the
600tokens using the grammar rules. If the input is valid, the end result is
601that the entire token sequence reduces to a single grouping whose symbol is
602the grammar's start symbol. If we use a grammar for C, the entire input
603must be a `sequence of definitions and declarations'. If not, the parser
604reports a syntax error.
605
342b8b6e 606@node Grammar in Bison
bfa74976
RS
607@section From Formal Rules to Bison Input
608@cindex Bison grammar
609@cindex grammar, Bison
610@cindex formal grammar
611
612A formal grammar is a mathematical construct. To define the language
613for Bison, you must write a file expressing the grammar in Bison syntax:
614a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
615
616A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 617as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
618in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
619
620The Bison representation for a terminal symbol is also called a @dfn{token
621type}. Token types as well can be represented as C-like identifiers. By
622convention, these identifiers should be upper case to distinguish them from
623nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
624@code{RETURN}. A terminal symbol that stands for a particular keyword in
625the language should be named after that keyword converted to upper case.
626The terminal symbol @code{error} is reserved for error recovery.
931c7513 627@xref{Symbols}.
bfa74976
RS
628
629A terminal symbol can also be represented as a character literal, just like
630a C character constant. You should do this whenever a token is just a
631single character (parenthesis, plus-sign, etc.): use that same character in
632a literal as the terminal symbol for that token.
633
931c7513
RS
634A third way to represent a terminal symbol is with a C string constant
635containing several characters. @xref{Symbols}, for more information.
636
bfa74976
RS
637The grammar rules also have an expression in Bison syntax. For example,
638here is the Bison rule for a C @code{return} statement. The semicolon in
639quotes is a literal character token, representing part of the C syntax for
640the statement; the naked semicolon, and the colon, are Bison punctuation
641used in every rule.
642
643@example
de6be119 644stmt: RETURN expr ';' ;
bfa74976
RS
645@end example
646
647@noindent
648@xref{Rules, ,Syntax of Grammar Rules}.
649
342b8b6e 650@node Semantic Values
bfa74976
RS
651@section Semantic Values
652@cindex semantic value
653@cindex value, semantic
654
655A formal grammar selects tokens only by their classifications: for example,
656if a rule mentions the terminal symbol `integer constant', it means that
657@emph{any} integer constant is grammatically valid in that position. The
658precise value of the constant is irrelevant to how to parse the input: if
659@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 660grammatical.
bfa74976
RS
661
662But the precise value is very important for what the input means once it is
663parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6643989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
665has both a token type and a @dfn{semantic value}. @xref{Semantics,
666,Defining Language Semantics},
bfa74976
RS
667for details.
668
669The token type is a terminal symbol defined in the grammar, such as
670@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
671you need to know to decide where the token may validly appear and how to
672group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 673except their types.
bfa74976
RS
674
675The semantic value has all the rest of the information about the
676meaning of the token, such as the value of an integer, or the name of an
677identifier. (A token such as @code{','} which is just punctuation doesn't
678need to have any semantic value.)
679
680For example, an input token might be classified as token type
681@code{INTEGER} and have the semantic value 4. Another input token might
682have the same token type @code{INTEGER} but value 3989. When a grammar
683rule says that @code{INTEGER} is allowed, either of these tokens is
684acceptable because each is an @code{INTEGER}. When the parser accepts the
685token, it keeps track of the token's semantic value.
686
687Each grouping can also have a semantic value as well as its nonterminal
688symbol. For example, in a calculator, an expression typically has a
689semantic value that is a number. In a compiler for a programming
690language, an expression typically has a semantic value that is a tree
691structure describing the meaning of the expression.
692
342b8b6e 693@node Semantic Actions
bfa74976
RS
694@section Semantic Actions
695@cindex semantic actions
696@cindex actions, semantic
697
698In order to be useful, a program must do more than parse input; it must
699also produce some output based on the input. In a Bison grammar, a grammar
700rule can have an @dfn{action} made up of C statements. Each time the
701parser recognizes a match for that rule, the action is executed.
702@xref{Actions}.
13863333 703
bfa74976
RS
704Most of the time, the purpose of an action is to compute the semantic value
705of the whole construct from the semantic values of its parts. For example,
706suppose we have a rule which says an expression can be the sum of two
707expressions. When the parser recognizes such a sum, each of the
708subexpressions has a semantic value which describes how it was built up.
709The action for this rule should create a similar sort of value for the
710newly recognized larger expression.
711
712For example, here is a rule that says an expression can be the sum of
713two subexpressions:
714
715@example
de6be119 716expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
717@end example
718
719@noindent
720The action says how to produce the semantic value of the sum expression
721from the values of the two subexpressions.
722
676385e2 723@node GLR Parsers
35430378
JD
724@section Writing GLR Parsers
725@cindex GLR parsing
726@cindex generalized LR (GLR) parsing
676385e2
PH
727@findex %glr-parser
728@cindex conflicts
729@cindex shift/reduce conflicts
fa7e68c3 730@cindex reduce/reduce conflicts
676385e2 731
34a6c2d1 732In some grammars, Bison's deterministic
35430378 733LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
734certain grammar rule at a given point. That is, it may not be able to
735decide (on the basis of the input read so far) which of two possible
736reductions (applications of a grammar rule) applies, or whether to apply
737a reduction or read more of the input and apply a reduction later in the
738input. These are known respectively as @dfn{reduce/reduce} conflicts
739(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
740(@pxref{Shift/Reduce}).
741
35430378 742To use a grammar that is not easily modified to be LR(1), a
9501dc6e 743more general parsing algorithm is sometimes necessary. If you include
676385e2 744@code{%glr-parser} among the Bison declarations in your file
35430378
JD
745(@pxref{Grammar Outline}), the result is a Generalized LR
746(GLR) parser. These parsers handle Bison grammars that
9501dc6e 747contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 748declarations) identically to deterministic parsers. However, when
9501dc6e 749faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 750GLR parsers use the simple expedient of doing both,
9501dc6e
AD
751effectively cloning the parser to follow both possibilities. Each of
752the resulting parsers can again split, so that at any given time, there
753can be any number of possible parses being explored. The parsers
676385e2
PH
754proceed in lockstep; that is, all of them consume (shift) a given input
755symbol before any of them proceed to the next. Each of the cloned
756parsers eventually meets one of two possible fates: either it runs into
757a parsing error, in which case it simply vanishes, or it merges with
758another parser, because the two of them have reduced the input to an
759identical set of symbols.
760
761During the time that there are multiple parsers, semantic actions are
762recorded, but not performed. When a parser disappears, its recorded
763semantic actions disappear as well, and are never performed. When a
764reduction makes two parsers identical, causing them to merge, Bison
765records both sets of semantic actions. Whenever the last two parsers
766merge, reverting to the single-parser case, Bison resolves all the
767outstanding actions either by precedences given to the grammar rules
768involved, or by performing both actions, and then calling a designated
769user-defined function on the resulting values to produce an arbitrary
770merged result.
771
fa7e68c3 772@menu
35430378
JD
773* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
774* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 775* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 776* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
777@end menu
778
779@node Simple GLR Parsers
35430378
JD
780@subsection Using GLR on Unambiguous Grammars
781@cindex GLR parsing, unambiguous grammars
782@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
783@findex %glr-parser
784@findex %expect-rr
785@cindex conflicts
786@cindex reduce/reduce conflicts
787@cindex shift/reduce conflicts
788
35430378
JD
789In the simplest cases, you can use the GLR algorithm
790to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 791Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
792
793Consider a problem that
794arises in the declaration of enumerated and subrange types in the
795programming language Pascal. Here are some examples:
796
797@example
798type subrange = lo .. hi;
799type enum = (a, b, c);
800@end example
801
802@noindent
803The original language standard allows only numeric
804literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 805and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80610206) and many other
807Pascal implementations allow arbitrary expressions there. This gives
808rise to the following situation, containing a superfluous pair of
809parentheses:
810
811@example
812type subrange = (a) .. b;
813@end example
814
815@noindent
816Compare this to the following declaration of an enumerated
817type with only one value:
818
819@example
820type enum = (a);
821@end example
822
823@noindent
824(These declarations are contrived, but they are syntactically
825valid, and more-complicated cases can come up in practical programs.)
826
827These two declarations look identical until the @samp{..} token.
35430378 828With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
829possible to decide between the two forms when the identifier
830@samp{a} is parsed. It is, however, desirable
831for a parser to decide this, since in the latter case
832@samp{a} must become a new identifier to represent the enumeration
833value, while in the former case @samp{a} must be evaluated with its
834current meaning, which may be a constant or even a function call.
835
836You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
837to be resolved later, but this typically requires substantial
838contortions in both semantic actions and large parts of the
839grammar, where the parentheses are nested in the recursive rules for
840expressions.
841
842You might think of using the lexer to distinguish between the two
843forms by returning different tokens for currently defined and
844undefined identifiers. But if these declarations occur in a local
845scope, and @samp{a} is defined in an outer scope, then both forms
846are possible---either locally redefining @samp{a}, or using the
847value of @samp{a} from the outer scope. So this approach cannot
848work.
849
e757bb10 850A simple solution to this problem is to declare the parser to
35430378
JD
851use the GLR algorithm.
852When the GLR parser reaches the critical state, it
fa7e68c3
PE
853merely splits into two branches and pursues both syntax rules
854simultaneously. Sooner or later, one of them runs into a parsing
855error. If there is a @samp{..} token before the next
856@samp{;}, the rule for enumerated types fails since it cannot
857accept @samp{..} anywhere; otherwise, the subrange type rule
858fails since it requires a @samp{..} token. So one of the branches
859fails silently, and the other one continues normally, performing
860all the intermediate actions that were postponed during the split.
861
862If the input is syntactically incorrect, both branches fail and the parser
863reports a syntax error as usual.
864
865The effect of all this is that the parser seems to ``guess'' the
866correct branch to take, or in other words, it seems to use more
35430378
JD
867lookahead than the underlying LR(1) algorithm actually allows
868for. In this example, LR(2) would suffice, but also some cases
869that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 870
35430378 871In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
872and the current Bison parser even takes exponential time and space
873for some grammars. In practice, this rarely happens, and for many
874grammars it is possible to prove that it cannot happen.
875The present example contains only one conflict between two
876rules, and the type-declaration context containing the conflict
877cannot be nested. So the number of
878branches that can exist at any time is limited by the constant 2,
879and the parsing time is still linear.
880
881Here is a Bison grammar corresponding to the example above. It
882parses a vastly simplified form of Pascal type declarations.
883
884@example
885%token TYPE DOTDOT ID
886
887@group
888%left '+' '-'
889%left '*' '/'
890@end group
891
892%%
893
894@group
de6be119 895type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
896@end group
897
898@group
de6be119
AD
899type:
900 '(' id_list ')'
901| expr DOTDOT expr
902;
fa7e68c3
PE
903@end group
904
905@group
de6be119
AD
906id_list:
907 ID
908| id_list ',' ID
909;
fa7e68c3
PE
910@end group
911
912@group
de6be119
AD
913expr:
914 '(' expr ')'
915| expr '+' expr
916| expr '-' expr
917| expr '*' expr
918| expr '/' expr
919| ID
920;
fa7e68c3
PE
921@end group
922@end example
923
35430378 924When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
925about one reduce/reduce conflict. In the conflicting situation the
926parser chooses one of the alternatives, arbitrarily the one
927declared first. Therefore the following correct input is not
928recognized:
929
930@example
931type t = (a) .. b;
932@end example
933
35430378 934The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
935to be silent about the one known reduce/reduce conflict, by adding
936these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
937@samp{%%}):
938
939@example
940%glr-parser
941%expect-rr 1
942@end example
943
944@noindent
945No change in the grammar itself is required. Now the
946parser recognizes all valid declarations, according to the
947limited syntax above, transparently. In fact, the user does not even
948notice when the parser splits.
949
35430378 950So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
951almost without disadvantages. Even in simple cases like this, however,
952there are at least two potential problems to beware. First, always
35430378
JD
953analyze the conflicts reported by Bison to make sure that GLR
954splitting is only done where it is intended. A GLR parser
f8e1c9e5 955splitting inadvertently may cause problems less obvious than an
35430378 956LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
957conflict. Second, consider interactions with the lexer (@pxref{Semantic
958Tokens}) with great care. Since a split parser consumes tokens without
959performing any actions during the split, the lexer cannot obtain
960information via parser actions. Some cases of lexer interactions can be
35430378 961eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
962lexer to the parser. You must check the remaining cases for
963correctness.
964
965In our example, it would be safe for the lexer to return tokens based on
966their current meanings in some symbol table, because no new symbols are
967defined in the middle of a type declaration. Though it is possible for
968a parser to define the enumeration constants as they are parsed, before
969the type declaration is completed, it actually makes no difference since
970they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
971
972@node Merging GLR Parses
35430378
JD
973@subsection Using GLR to Resolve Ambiguities
974@cindex GLR parsing, ambiguous grammars
975@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
976@findex %dprec
977@findex %merge
978@cindex conflicts
979@cindex reduce/reduce conflicts
980
2a8d363a 981Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
982
983@example
984%@{
38a92d50
PE
985 #include <stdio.h>
986 #define YYSTYPE char const *
987 int yylex (void);
988 void yyerror (char const *);
676385e2
PH
989%@}
990
991%token TYPENAME ID
992
993%right '='
994%left '+'
995
996%glr-parser
997
998%%
999
de6be119
AD
1000prog:
1001 /* Nothing. */
1002| prog stmt @{ printf ("\n"); @}
1003;
676385e2 1004
de6be119
AD
1005stmt:
1006 expr ';' %dprec 1
1007| decl %dprec 2
1008;
676385e2 1009
de6be119
AD
1010expr:
1011 ID @{ printf ("%s ", $$); @}
1012| TYPENAME '(' expr ')'
1013 @{ printf ("%s <cast> ", $1); @}
1014| expr '+' expr @{ printf ("+ "); @}
1015| expr '=' expr @{ printf ("= "); @}
1016;
676385e2 1017
de6be119
AD
1018decl:
1019 TYPENAME declarator ';'
1020 @{ printf ("%s <declare> ", $1); @}
1021| TYPENAME declarator '=' expr ';'
1022 @{ printf ("%s <init-declare> ", $1); @}
1023;
676385e2 1024
de6be119
AD
1025declarator:
1026 ID @{ printf ("\"%s\" ", $1); @}
1027| '(' declarator ')'
1028;
676385e2
PH
1029@end example
1030
1031@noindent
1032This models a problematic part of the C++ grammar---the ambiguity between
1033certain declarations and statements. For example,
1034
1035@example
1036T (x) = y+z;
1037@end example
1038
1039@noindent
1040parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1041(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1042@samp{x} as an @code{ID}).
676385e2 1043Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1044@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1045time it encounters @code{x} in the example above. Since this is a
35430378 1046GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1047each choice of resolving the reduce/reduce conflict.
1048Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1049however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1050ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1051the other reduces @code{stmt : decl}, after which both parsers are in an
1052identical state: they've seen @samp{prog stmt} and have the same unprocessed
1053input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1054
35430378 1055At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1056grammar of how to choose between the competing parses.
1057In the example above, the two @code{%dprec}
e757bb10 1058declarations specify that Bison is to give precedence
fa7e68c3 1059to the parse that interprets the example as a
676385e2
PH
1060@code{decl}, which implies that @code{x} is a declarator.
1061The parser therefore prints
1062
1063@example
fae437e8 1064"x" y z + T <init-declare>
676385e2
PH
1065@end example
1066
fa7e68c3
PE
1067The @code{%dprec} declarations only come into play when more than one
1068parse survives. Consider a different input string for this parser:
676385e2
PH
1069
1070@example
1071T (x) + y;
1072@end example
1073
1074@noindent
35430378 1075This is another example of using GLR to parse an unambiguous
fa7e68c3 1076construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1077Here, there is no ambiguity (this cannot be parsed as a declaration).
1078However, at the time the Bison parser encounters @code{x}, it does not
1079have enough information to resolve the reduce/reduce conflict (again,
1080between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1081case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1082into two, one assuming that @code{x} is an @code{expr}, and the other
1083assuming @code{x} is a @code{declarator}. The second of these parsers
1084then vanishes when it sees @code{+}, and the parser prints
1085
1086@example
fae437e8 1087x T <cast> y +
676385e2
PH
1088@end example
1089
1090Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1091the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1092actions of the two possible parsers, rather than choosing one over the
1093other. To do so, you could change the declaration of @code{stmt} as
1094follows:
1095
1096@example
de6be119
AD
1097stmt:
1098 expr ';' %merge <stmtMerge>
1099| decl %merge <stmtMerge>
1100;
676385e2
PH
1101@end example
1102
1103@noindent
676385e2
PH
1104and define the @code{stmtMerge} function as:
1105
1106@example
38a92d50
PE
1107static YYSTYPE
1108stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1109@{
1110 printf ("<OR> ");
1111 return "";
1112@}
1113@end example
1114
1115@noindent
1116with an accompanying forward declaration
1117in the C declarations at the beginning of the file:
1118
1119@example
1120%@{
38a92d50 1121 #define YYSTYPE char const *
676385e2
PH
1122 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1123%@}
1124@end example
1125
1126@noindent
fa7e68c3
PE
1127With these declarations, the resulting parser parses the first example
1128as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1129
1130@example
fae437e8 1131"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1132@end example
1133
fa7e68c3 1134Bison requires that all of the
e757bb10 1135productions that participate in any particular merge have identical
fa7e68c3
PE
1136@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1137and the parser will report an error during any parse that results in
1138the offending merge.
9501dc6e 1139
32c29292
JD
1140@node GLR Semantic Actions
1141@subsection GLR Semantic Actions
1142
1143@cindex deferred semantic actions
1144By definition, a deferred semantic action is not performed at the same time as
1145the associated reduction.
1146This raises caveats for several Bison features you might use in a semantic
35430378 1147action in a GLR parser.
32c29292
JD
1148
1149@vindex yychar
35430378 1150@cindex GLR parsers and @code{yychar}
32c29292 1151@vindex yylval
35430378 1152@cindex GLR parsers and @code{yylval}
32c29292 1153@vindex yylloc
35430378 1154@cindex GLR parsers and @code{yylloc}
32c29292 1155In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1156the lookahead token present at the time of the associated reduction.
32c29292
JD
1157After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1158you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1159lookahead token's semantic value and location, if any.
32c29292
JD
1160In a nondeferred semantic action, you can also modify any of these variables to
1161influence syntax analysis.
742e4900 1162@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1163
1164@findex yyclearin
35430378 1165@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1166In a deferred semantic action, it's too late to influence syntax analysis.
1167In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1168shallow copies of the values they had at the time of the associated reduction.
1169For this reason alone, modifying them is dangerous.
1170Moreover, the result of modifying them is undefined and subject to change with
1171future versions of Bison.
1172For example, if a semantic action might be deferred, you should never write it
1173to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1174memory referenced by @code{yylval}.
1175
1176@findex YYERROR
35430378 1177@cindex GLR parsers and @code{YYERROR}
32c29292 1178Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1179(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1180initiate error recovery.
35430378 1181During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1182the same as its effect in a deterministic parser.
32c29292
JD
1183In a deferred semantic action, its effect is undefined.
1184@c The effect is probably a syntax error at the split point.
1185
8710fc41 1186Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1187describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1188
fa7e68c3 1189@node Compiler Requirements
35430378 1190@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1191@cindex @code{inline}
35430378 1192@cindex GLR parsers and @code{inline}
fa7e68c3 1193
35430378 1194The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1195later. In addition, they use the @code{inline} keyword, which is not
1196C89, but is C99 and is a common extension in pre-C99 compilers. It is
1197up to the user of these parsers to handle
9501dc6e
AD
1198portability issues. For instance, if using Autoconf and the Autoconf
1199macro @code{AC_C_INLINE}, a mere
1200
1201@example
1202%@{
38a92d50 1203 #include <config.h>
9501dc6e
AD
1204%@}
1205@end example
1206
1207@noindent
1208will suffice. Otherwise, we suggest
1209
1210@example
1211%@{
2c0f9706
AD
1212 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1213 && ! defined inline)
1214 # define inline
38a92d50 1215 #endif
9501dc6e
AD
1216%@}
1217@end example
676385e2 1218
83484365 1219@node Locations
847bf1f5
AD
1220@section Locations
1221@cindex location
95923bd6
AD
1222@cindex textual location
1223@cindex location, textual
847bf1f5
AD
1224
1225Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1226and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1227the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1228Bison provides a mechanism for handling these locations.
1229
72d2299c 1230Each token has a semantic value. In a similar fashion, each token has an
7404cdf3
JD
1231associated location, but the type of locations is the same for all tokens
1232and groupings. Moreover, the output parser is equipped with a default data
1233structure for storing locations (@pxref{Tracking Locations}, for more
1234details).
847bf1f5
AD
1235
1236Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1237set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1238is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1239@code{@@3}.
1240
1241When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1242of its left hand side (@pxref{Actions}). In the same way, another default
1243action is used for locations. However, the action for locations is general
847bf1f5 1244enough for most cases, meaning there is usually no need to describe for each
72d2299c 1245rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1246grouping, the default behavior of the output parser is to take the beginning
1247of the first symbol, and the end of the last symbol.
1248
342b8b6e 1249@node Bison Parser
9913d6e4 1250@section Bison Output: the Parser Implementation File
bfa74976
RS
1251@cindex Bison parser
1252@cindex Bison utility
1253@cindex lexical analyzer, purpose
1254@cindex parser
1255
9913d6e4
JD
1256When you run Bison, you give it a Bison grammar file as input. The
1257most important output is a C source file that implements a parser for
1258the language described by the grammar. This parser is called a
1259@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1260implementation file}. Keep in mind that the Bison utility and the
1261Bison parser are two distinct programs: the Bison utility is a program
1262whose output is the Bison parser implementation file that becomes part
1263of your program.
bfa74976
RS
1264
1265The job of the Bison parser is to group tokens into groupings according to
1266the grammar rules---for example, to build identifiers and operators into
1267expressions. As it does this, it runs the actions for the grammar rules it
1268uses.
1269
704a47c4
AD
1270The tokens come from a function called the @dfn{lexical analyzer} that
1271you must supply in some fashion (such as by writing it in C). The Bison
1272parser calls the lexical analyzer each time it wants a new token. It
1273doesn't know what is ``inside'' the tokens (though their semantic values
1274may reflect this). Typically the lexical analyzer makes the tokens by
1275parsing characters of text, but Bison does not depend on this.
1276@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1277
9913d6e4
JD
1278The Bison parser implementation file is C code which defines a
1279function named @code{yyparse} which implements that grammar. This
1280function does not make a complete C program: you must supply some
1281additional functions. One is the lexical analyzer. Another is an
1282error-reporting function which the parser calls to report an error.
1283In addition, a complete C program must start with a function called
1284@code{main}; you have to provide this, and arrange for it to call
1285@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1286C-Language Interface}.
bfa74976 1287
f7ab6a50 1288Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1289write, all symbols defined in the Bison parser implementation file
1290itself begin with @samp{yy} or @samp{YY}. This includes interface
1291functions such as the lexical analyzer function @code{yylex}, the
1292error reporting function @code{yyerror} and the parser function
1293@code{yyparse} itself. This also includes numerous identifiers used
1294for internal purposes. Therefore, you should avoid using C
1295identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1296file except for the ones defined in this manual. Also, you should
1297avoid using the C identifiers @samp{malloc} and @samp{free} for
1298anything other than their usual meanings.
1299
1300In some cases the Bison parser implementation file includes system
1301headers, and in those cases your code should respect the identifiers
1302reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1303@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1304included as needed to declare memory allocators and related types.
1305@code{<libintl.h>} is included if message translation is in use
1306(@pxref{Internationalization}). Other system headers may be included
1307if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1308,Tracing Your Parser}).
7093d0f5 1309
342b8b6e 1310@node Stages
bfa74976
RS
1311@section Stages in Using Bison
1312@cindex stages in using Bison
1313@cindex using Bison
1314
1315The actual language-design process using Bison, from grammar specification
1316to a working compiler or interpreter, has these parts:
1317
1318@enumerate
1319@item
1320Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1321(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1322in the language, describe the action that is to be taken when an
1323instance of that rule is recognized. The action is described by a
1324sequence of C statements.
bfa74976
RS
1325
1326@item
704a47c4
AD
1327Write a lexical analyzer to process input and pass tokens to the parser.
1328The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1329Lexical Analyzer Function @code{yylex}}). It could also be produced
1330using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1331
1332@item
1333Write a controlling function that calls the Bison-produced parser.
1334
1335@item
1336Write error-reporting routines.
1337@end enumerate
1338
1339To turn this source code as written into a runnable program, you
1340must follow these steps:
1341
1342@enumerate
1343@item
1344Run Bison on the grammar to produce the parser.
1345
1346@item
1347Compile the code output by Bison, as well as any other source files.
1348
1349@item
1350Link the object files to produce the finished product.
1351@end enumerate
1352
342b8b6e 1353@node Grammar Layout
bfa74976
RS
1354@section The Overall Layout of a Bison Grammar
1355@cindex grammar file
1356@cindex file format
1357@cindex format of grammar file
1358@cindex layout of Bison grammar
1359
1360The input file for the Bison utility is a @dfn{Bison grammar file}. The
1361general form of a Bison grammar file is as follows:
1362
1363@example
1364%@{
08e49d20 1365@var{Prologue}
bfa74976
RS
1366%@}
1367
1368@var{Bison declarations}
1369
1370%%
1371@var{Grammar rules}
1372%%
08e49d20 1373@var{Epilogue}
bfa74976
RS
1374@end example
1375
1376@noindent
1377The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1378in every Bison grammar file to separate the sections.
1379
72d2299c 1380The prologue may define types and variables used in the actions. You can
342b8b6e 1381also use preprocessor commands to define macros used there, and use
bfa74976 1382@code{#include} to include header files that do any of these things.
38a92d50
PE
1383You need to declare the lexical analyzer @code{yylex} and the error
1384printer @code{yyerror} here, along with any other global identifiers
1385used by the actions in the grammar rules.
bfa74976
RS
1386
1387The Bison declarations declare the names of the terminal and nonterminal
1388symbols, and may also describe operator precedence and the data types of
1389semantic values of various symbols.
1390
1391The grammar rules define how to construct each nonterminal symbol from its
1392parts.
1393
38a92d50
PE
1394The epilogue can contain any code you want to use. Often the
1395definitions of functions declared in the prologue go here. In a
1396simple program, all the rest of the program can go here.
bfa74976 1397
342b8b6e 1398@node Examples
bfa74976
RS
1399@chapter Examples
1400@cindex simple examples
1401@cindex examples, simple
1402
2c0f9706 1403Now we show and explain several sample programs written using Bison: a
bfa74976 1404reverse polish notation calculator, an algebraic (infix) notation
2c0f9706
AD
1405calculator --- later extended to track ``locations'' ---
1406and a multi-function calculator. All
1407produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1408
1409These examples are simple, but Bison grammars for real programming
aa08666d
AD
1410languages are written the same way. You can copy these examples into a
1411source file to try them.
bfa74976
RS
1412
1413@menu
f56274a8
DJ
1414* RPN Calc:: Reverse polish notation calculator;
1415 a first example with no operator precedence.
1416* Infix Calc:: Infix (algebraic) notation calculator.
1417 Operator precedence is introduced.
bfa74976 1418* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1419* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1420* Multi-function Calc:: Calculator with memory and trig functions.
1421 It uses multiple data-types for semantic values.
1422* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1423@end menu
1424
342b8b6e 1425@node RPN Calc
bfa74976
RS
1426@section Reverse Polish Notation Calculator
1427@cindex reverse polish notation
1428@cindex polish notation calculator
1429@cindex @code{rpcalc}
1430@cindex calculator, simple
1431
1432The first example is that of a simple double-precision @dfn{reverse polish
1433notation} calculator (a calculator using postfix operators). This example
1434provides a good starting point, since operator precedence is not an issue.
1435The second example will illustrate how operator precedence is handled.
1436
1437The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1438@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1439
1440@menu
f56274a8
DJ
1441* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1442* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1443* Rpcalc Lexer:: The lexical analyzer.
1444* Rpcalc Main:: The controlling function.
1445* Rpcalc Error:: The error reporting function.
1446* Rpcalc Generate:: Running Bison on the grammar file.
1447* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1448@end menu
1449
f56274a8 1450@node Rpcalc Declarations
bfa74976
RS
1451@subsection Declarations for @code{rpcalc}
1452
1453Here are the C and Bison declarations for the reverse polish notation
1454calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1455
1456@example
72d2299c 1457/* Reverse polish notation calculator. */
bfa74976
RS
1458
1459%@{
38a92d50
PE
1460 #define YYSTYPE double
1461 #include <math.h>
1462 int yylex (void);
1463 void yyerror (char const *);
bfa74976
RS
1464%@}
1465
1466%token NUM
1467
72d2299c 1468%% /* Grammar rules and actions follow. */
bfa74976
RS
1469@end example
1470
75f5aaea 1471The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1472preprocessor directives and two forward declarations.
bfa74976
RS
1473
1474The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1475specifying the C data type for semantic values of both tokens and
1476groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1477Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1478don't define it, @code{int} is the default. Because we specify
1479@code{double}, each token and each expression has an associated value,
1480which is a floating point number.
bfa74976
RS
1481
1482The @code{#include} directive is used to declare the exponentiation
1483function @code{pow}.
1484
38a92d50
PE
1485The forward declarations for @code{yylex} and @code{yyerror} are
1486needed because the C language requires that functions be declared
1487before they are used. These functions will be defined in the
1488epilogue, but the parser calls them so they must be declared in the
1489prologue.
1490
704a47c4
AD
1491The second section, Bison declarations, provides information to Bison
1492about the token types (@pxref{Bison Declarations, ,The Bison
1493Declarations Section}). Each terminal symbol that is not a
1494single-character literal must be declared here. (Single-character
bfa74976
RS
1495literals normally don't need to be declared.) In this example, all the
1496arithmetic operators are designated by single-character literals, so the
1497only terminal symbol that needs to be declared is @code{NUM}, the token
1498type for numeric constants.
1499
342b8b6e 1500@node Rpcalc Rules
bfa74976
RS
1501@subsection Grammar Rules for @code{rpcalc}
1502
1503Here are the grammar rules for the reverse polish notation calculator.
1504
1505@example
2c0f9706 1506@group
de6be119
AD
1507input:
1508 /* empty */
1509| input line
bfa74976 1510;
2c0f9706 1511@end group
bfa74976 1512
2c0f9706 1513@group
de6be119
AD
1514line:
1515 '\n'
1516| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1517;
2c0f9706 1518@end group
bfa74976 1519
2c0f9706 1520@group
de6be119
AD
1521exp:
1522 NUM @{ $$ = $1; @}
1523| exp exp '+' @{ $$ = $1 + $2; @}
1524| exp exp '-' @{ $$ = $1 - $2; @}
1525| exp exp '*' @{ $$ = $1 * $2; @}
1526| exp exp '/' @{ $$ = $1 / $2; @}
1527| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1528| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1529;
2c0f9706 1530@end group
bfa74976
RS
1531%%
1532@end example
1533
1534The groupings of the rpcalc ``language'' defined here are the expression
1535(given the name @code{exp}), the line of input (@code{line}), and the
1536complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1537symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1538which is read as ``or''. The following sections explain what these rules
1539mean.
1540
1541The semantics of the language is determined by the actions taken when a
1542grouping is recognized. The actions are the C code that appears inside
1543braces. @xref{Actions}.
1544
1545You must specify these actions in C, but Bison provides the means for
1546passing semantic values between the rules. In each action, the
1547pseudo-variable @code{$$} stands for the semantic value for the grouping
1548that the rule is going to construct. Assigning a value to @code{$$} is the
1549main job of most actions. The semantic values of the components of the
1550rule are referred to as @code{$1}, @code{$2}, and so on.
1551
1552@menu
13863333
AD
1553* Rpcalc Input::
1554* Rpcalc Line::
1555* Rpcalc Expr::
bfa74976
RS
1556@end menu
1557
342b8b6e 1558@node Rpcalc Input
bfa74976
RS
1559@subsubsection Explanation of @code{input}
1560
1561Consider the definition of @code{input}:
1562
1563@example
de6be119
AD
1564input:
1565 /* empty */
1566| input line
bfa74976
RS
1567;
1568@end example
1569
1570This definition reads as follows: ``A complete input is either an empty
1571string, or a complete input followed by an input line''. Notice that
1572``complete input'' is defined in terms of itself. This definition is said
1573to be @dfn{left recursive} since @code{input} appears always as the
1574leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1575
1576The first alternative is empty because there are no symbols between the
1577colon and the first @samp{|}; this means that @code{input} can match an
1578empty string of input (no tokens). We write the rules this way because it
1579is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1580It's conventional to put an empty alternative first and write the comment
1581@samp{/* empty */} in it.
1582
1583The second alternate rule (@code{input line}) handles all nontrivial input.
1584It means, ``After reading any number of lines, read one more line if
1585possible.'' The left recursion makes this rule into a loop. Since the
1586first alternative matches empty input, the loop can be executed zero or
1587more times.
1588
1589The parser function @code{yyparse} continues to process input until a
1590grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1591input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1592
342b8b6e 1593@node Rpcalc Line
bfa74976
RS
1594@subsubsection Explanation of @code{line}
1595
1596Now consider the definition of @code{line}:
1597
1598@example
de6be119
AD
1599line:
1600 '\n'
1601| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1602;
1603@end example
1604
1605The first alternative is a token which is a newline character; this means
1606that rpcalc accepts a blank line (and ignores it, since there is no
1607action). The second alternative is an expression followed by a newline.
1608This is the alternative that makes rpcalc useful. The semantic value of
1609the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1610question is the first symbol in the alternative. The action prints this
1611value, which is the result of the computation the user asked for.
1612
1613This action is unusual because it does not assign a value to @code{$$}. As
1614a consequence, the semantic value associated with the @code{line} is
1615uninitialized (its value will be unpredictable). This would be a bug if
1616that value were ever used, but we don't use it: once rpcalc has printed the
1617value of the user's input line, that value is no longer needed.
1618
342b8b6e 1619@node Rpcalc Expr
bfa74976
RS
1620@subsubsection Explanation of @code{expr}
1621
1622The @code{exp} grouping has several rules, one for each kind of expression.
1623The first rule handles the simplest expressions: those that are just numbers.
1624The second handles an addition-expression, which looks like two expressions
1625followed by a plus-sign. The third handles subtraction, and so on.
1626
1627@example
de6be119
AD
1628exp:
1629 NUM
1630| exp exp '+' @{ $$ = $1 + $2; @}
1631| exp exp '-' @{ $$ = $1 - $2; @}
1632@dots{}
1633;
bfa74976
RS
1634@end example
1635
1636We have used @samp{|} to join all the rules for @code{exp}, but we could
1637equally well have written them separately:
1638
1639@example
de6be119
AD
1640exp: NUM ;
1641exp: exp exp '+' @{ $$ = $1 + $2; @};
1642exp: exp exp '-' @{ $$ = $1 - $2; @};
1643@dots{}
bfa74976
RS
1644@end example
1645
1646Most of the rules have actions that compute the value of the expression in
1647terms of the value of its parts. For example, in the rule for addition,
1648@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1649the second one. The third component, @code{'+'}, has no meaningful
1650associated semantic value, but if it had one you could refer to it as
1651@code{$3}. When @code{yyparse} recognizes a sum expression using this
1652rule, the sum of the two subexpressions' values is produced as the value of
1653the entire expression. @xref{Actions}.
1654
1655You don't have to give an action for every rule. When a rule has no
1656action, Bison by default copies the value of @code{$1} into @code{$$}.
1657This is what happens in the first rule (the one that uses @code{NUM}).
1658
1659The formatting shown here is the recommended convention, but Bison does
72d2299c 1660not require it. You can add or change white space as much as you wish.
bfa74976
RS
1661For example, this:
1662
1663@example
de6be119 1664exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1665@end example
1666
1667@noindent
1668means the same thing as this:
1669
1670@example
de6be119
AD
1671exp:
1672 NUM
1673| exp exp '+' @{ $$ = $1 + $2; @}
1674| @dots{}
99a9344e 1675;
bfa74976
RS
1676@end example
1677
1678@noindent
1679The latter, however, is much more readable.
1680
342b8b6e 1681@node Rpcalc Lexer
bfa74976
RS
1682@subsection The @code{rpcalc} Lexical Analyzer
1683@cindex writing a lexical analyzer
1684@cindex lexical analyzer, writing
1685
704a47c4
AD
1686The lexical analyzer's job is low-level parsing: converting characters
1687or sequences of characters into tokens. The Bison parser gets its
1688tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1689Analyzer Function @code{yylex}}.
bfa74976 1690
35430378 1691Only a simple lexical analyzer is needed for the RPN
c827f760 1692calculator. This
bfa74976
RS
1693lexical analyzer skips blanks and tabs, then reads in numbers as
1694@code{double} and returns them as @code{NUM} tokens. Any other character
1695that isn't part of a number is a separate token. Note that the token-code
1696for such a single-character token is the character itself.
1697
1698The return value of the lexical analyzer function is a numeric code which
1699represents a token type. The same text used in Bison rules to stand for
1700this token type is also a C expression for the numeric code for the type.
1701This works in two ways. If the token type is a character literal, then its
e966383b 1702numeric code is that of the character; you can use the same
bfa74976
RS
1703character literal in the lexical analyzer to express the number. If the
1704token type is an identifier, that identifier is defined by Bison as a C
1705macro whose definition is the appropriate number. In this example,
1706therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1707
1964ad8c
AD
1708The semantic value of the token (if it has one) is stored into the
1709global variable @code{yylval}, which is where the Bison parser will look
1710for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1711defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1712,Declarations for @code{rpcalc}}.)
bfa74976 1713
72d2299c
PE
1714A token type code of zero is returned if the end-of-input is encountered.
1715(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1716
1717Here is the code for the lexical analyzer:
1718
1719@example
1720@group
72d2299c 1721/* The lexical analyzer returns a double floating point
e966383b 1722 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1723 of the character read if not a number. It skips all blanks
1724 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1725
1726#include <ctype.h>
1727@end group
1728
1729@group
13863333
AD
1730int
1731yylex (void)
bfa74976
RS
1732@{
1733 int c;
1734
72d2299c 1735 /* Skip white space. */
13863333 1736 while ((c = getchar ()) == ' ' || c == '\t')
98842516 1737 continue;
bfa74976
RS
1738@end group
1739@group
72d2299c 1740 /* Process numbers. */
13863333 1741 if (c == '.' || isdigit (c))
bfa74976
RS
1742 @{
1743 ungetc (c, stdin);
1744 scanf ("%lf", &yylval);
1745 return NUM;
1746 @}
1747@end group
1748@group
72d2299c 1749 /* Return end-of-input. */
13863333 1750 if (c == EOF)
bfa74976 1751 return 0;
72d2299c 1752 /* Return a single char. */
13863333 1753 return c;
bfa74976
RS
1754@}
1755@end group
1756@end example
1757
342b8b6e 1758@node Rpcalc Main
bfa74976
RS
1759@subsection The Controlling Function
1760@cindex controlling function
1761@cindex main function in simple example
1762
1763In keeping with the spirit of this example, the controlling function is
1764kept to the bare minimum. The only requirement is that it call
1765@code{yyparse} to start the process of parsing.
1766
1767@example
1768@group
13863333
AD
1769int
1770main (void)
bfa74976 1771@{
13863333 1772 return yyparse ();
bfa74976
RS
1773@}
1774@end group
1775@end example
1776
342b8b6e 1777@node Rpcalc Error
bfa74976
RS
1778@subsection The Error Reporting Routine
1779@cindex error reporting routine
1780
1781When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1782function @code{yyerror} to print an error message (usually but not
6e649e65 1783always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1784@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1785here is the definition we will use:
bfa74976
RS
1786
1787@example
1788@group
1789#include <stdio.h>
2c0f9706 1790@end group
bfa74976 1791
2c0f9706 1792@group
38a92d50 1793/* Called by yyparse on error. */
13863333 1794void
38a92d50 1795yyerror (char const *s)
bfa74976 1796@{
4e03e201 1797 fprintf (stderr, "%s\n", s);
bfa74976
RS
1798@}
1799@end group
1800@end example
1801
1802After @code{yyerror} returns, the Bison parser may recover from the error
1803and continue parsing if the grammar contains a suitable error rule
1804(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1805have not written any error rules in this example, so any invalid input will
1806cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1807real calculator, but it is adequate for the first example.
bfa74976 1808
f56274a8 1809@node Rpcalc Generate
bfa74976
RS
1810@subsection Running Bison to Make the Parser
1811@cindex running Bison (introduction)
1812
ceed8467
AD
1813Before running Bison to produce a parser, we need to decide how to
1814arrange all the source code in one or more source files. For such a
9913d6e4
JD
1815simple example, the easiest thing is to put everything in one file,
1816the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1817@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1818(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1819
1820For a large project, you would probably have several source files, and use
1821@code{make} to arrange to recompile them.
1822
9913d6e4
JD
1823With all the source in the grammar file, you use the following command
1824to convert it into a parser implementation file:
bfa74976
RS
1825
1826@example
fa4d969f 1827bison @var{file}.y
bfa74976
RS
1828@end example
1829
1830@noindent
9913d6e4
JD
1831In this example, the grammar file is called @file{rpcalc.y} (for
1832``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1833implementation file named @file{@var{file}.tab.c}, removing the
1834@samp{.y} from the grammar file name. The parser implementation file
1835contains the source code for @code{yyparse}. The additional functions
1836in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1837copied verbatim to the parser implementation file.
bfa74976 1838
342b8b6e 1839@node Rpcalc Compile
9913d6e4 1840@subsection Compiling the Parser Implementation File
bfa74976
RS
1841@cindex compiling the parser
1842
9913d6e4 1843Here is how to compile and run the parser implementation file:
bfa74976
RS
1844
1845@example
1846@group
1847# @r{List files in current directory.}
9edcd895 1848$ @kbd{ls}
bfa74976
RS
1849rpcalc.tab.c rpcalc.y
1850@end group
1851
1852@group
1853# @r{Compile the Bison parser.}
1854# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1855$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1856@end group
1857
1858@group
1859# @r{List files again.}
9edcd895 1860$ @kbd{ls}
bfa74976
RS
1861rpcalc rpcalc.tab.c rpcalc.y
1862@end group
1863@end example
1864
1865The file @file{rpcalc} now contains the executable code. Here is an
1866example session using @code{rpcalc}.
1867
1868@example
9edcd895
AD
1869$ @kbd{rpcalc}
1870@kbd{4 9 +}
bfa74976 187113
9edcd895 1872@kbd{3 7 + 3 4 5 *+-}
bfa74976 1873-13
9edcd895 1874@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 187513
9edcd895 1876@kbd{5 6 / 4 n +}
bfa74976 1877-3.166666667
9edcd895 1878@kbd{3 4 ^} @r{Exponentiation}
bfa74976 187981
9edcd895
AD
1880@kbd{^D} @r{End-of-file indicator}
1881$
bfa74976
RS
1882@end example
1883
342b8b6e 1884@node Infix Calc
bfa74976
RS
1885@section Infix Notation Calculator: @code{calc}
1886@cindex infix notation calculator
1887@cindex @code{calc}
1888@cindex calculator, infix notation
1889
1890We now modify rpcalc to handle infix operators instead of postfix. Infix
1891notation involves the concept of operator precedence and the need for
1892parentheses nested to arbitrary depth. Here is the Bison code for
1893@file{calc.y}, an infix desk-top calculator.
1894
1895@example
38a92d50 1896/* Infix notation calculator. */
bfa74976 1897
2c0f9706 1898@group
bfa74976 1899%@{
38a92d50
PE
1900 #define YYSTYPE double
1901 #include <math.h>
1902 #include <stdio.h>
1903 int yylex (void);
1904 void yyerror (char const *);
bfa74976 1905%@}
2c0f9706 1906@end group
bfa74976 1907
2c0f9706 1908@group
38a92d50 1909/* Bison declarations. */
bfa74976
RS
1910%token NUM
1911%left '-' '+'
1912%left '*' '/'
1913%left NEG /* negation--unary minus */
38a92d50 1914%right '^' /* exponentiation */
2c0f9706 1915@end group
bfa74976 1916
38a92d50 1917%% /* The grammar follows. */
2c0f9706 1918@group
de6be119
AD
1919input:
1920 /* empty */
1921| input line
bfa74976 1922;
2c0f9706 1923@end group
bfa74976 1924
2c0f9706 1925@group
de6be119
AD
1926line:
1927 '\n'
1928| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 1929;
2c0f9706 1930@end group
bfa74976 1931
2c0f9706 1932@group
de6be119
AD
1933exp:
1934 NUM @{ $$ = $1; @}
1935| exp '+' exp @{ $$ = $1 + $3; @}
1936| exp '-' exp @{ $$ = $1 - $3; @}
1937| exp '*' exp @{ $$ = $1 * $3; @}
1938| exp '/' exp @{ $$ = $1 / $3; @}
1939| '-' exp %prec NEG @{ $$ = -$2; @}
1940| exp '^' exp @{ $$ = pow ($1, $3); @}
1941| '(' exp ')' @{ $$ = $2; @}
bfa74976 1942;
2c0f9706 1943@end group
bfa74976
RS
1944%%
1945@end example
1946
1947@noindent
ceed8467
AD
1948The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1949same as before.
bfa74976
RS
1950
1951There are two important new features shown in this code.
1952
1953In the second section (Bison declarations), @code{%left} declares token
1954types and says they are left-associative operators. The declarations
1955@code{%left} and @code{%right} (right associativity) take the place of
1956@code{%token} which is used to declare a token type name without
1957associativity. (These tokens are single-character literals, which
1958ordinarily don't need to be declared. We declare them here to specify
1959the associativity.)
1960
1961Operator precedence is determined by the line ordering of the
1962declarations; the higher the line number of the declaration (lower on
1963the page or screen), the higher the precedence. Hence, exponentiation
1964has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1965by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1966Precedence}.
bfa74976 1967
704a47c4
AD
1968The other important new feature is the @code{%prec} in the grammar
1969section for the unary minus operator. The @code{%prec} simply instructs
1970Bison that the rule @samp{| '-' exp} has the same precedence as
1971@code{NEG}---in this case the next-to-highest. @xref{Contextual
1972Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1973
1974Here is a sample run of @file{calc.y}:
1975
1976@need 500
1977@example
9edcd895
AD
1978$ @kbd{calc}
1979@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19806.880952381
9edcd895 1981@kbd{-56 + 2}
bfa74976 1982-54
9edcd895 1983@kbd{3 ^ 2}
bfa74976
RS
19849
1985@end example
1986
342b8b6e 1987@node Simple Error Recovery
bfa74976
RS
1988@section Simple Error Recovery
1989@cindex error recovery, simple
1990
1991Up to this point, this manual has not addressed the issue of @dfn{error
1992recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1993error. All we have handled is error reporting with @code{yyerror}.
1994Recall that by default @code{yyparse} returns after calling
1995@code{yyerror}. This means that an erroneous input line causes the
1996calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1997
1998The Bison language itself includes the reserved word @code{error}, which
1999may be included in the grammar rules. In the example below it has
2000been added to one of the alternatives for @code{line}:
2001
2002@example
2003@group
de6be119
AD
2004line:
2005 '\n'
2006| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2007| error '\n' @{ yyerrok; @}
bfa74976
RS
2008;
2009@end group
2010@end example
2011
ceed8467 2012This addition to the grammar allows for simple error recovery in the
6e649e65 2013event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2014read, the error will be recognized by the third rule for @code{line},
2015and parsing will continue. (The @code{yyerror} function is still called
2016upon to print its message as well.) The action executes the statement
2017@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2018that error recovery is complete (@pxref{Error Recovery}). Note the
2019difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2020misprint.
bfa74976
RS
2021
2022This form of error recovery deals with syntax errors. There are other
2023kinds of errors; for example, division by zero, which raises an exception
2024signal that is normally fatal. A real calculator program must handle this
2025signal and use @code{longjmp} to return to @code{main} and resume parsing
2026input lines; it would also have to discard the rest of the current line of
2027input. We won't discuss this issue further because it is not specific to
2028Bison programs.
2029
342b8b6e
AD
2030@node Location Tracking Calc
2031@section Location Tracking Calculator: @code{ltcalc}
2032@cindex location tracking calculator
2033@cindex @code{ltcalc}
2034@cindex calculator, location tracking
2035
9edcd895
AD
2036This example extends the infix notation calculator with location
2037tracking. This feature will be used to improve the error messages. For
2038the sake of clarity, this example is a simple integer calculator, since
2039most of the work needed to use locations will be done in the lexical
72d2299c 2040analyzer.
342b8b6e
AD
2041
2042@menu
f56274a8
DJ
2043* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2044* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2045* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2046@end menu
2047
f56274a8 2048@node Ltcalc Declarations
342b8b6e
AD
2049@subsection Declarations for @code{ltcalc}
2050
9edcd895
AD
2051The C and Bison declarations for the location tracking calculator are
2052the same as the declarations for the infix notation calculator.
342b8b6e
AD
2053
2054@example
2055/* Location tracking calculator. */
2056
2057%@{
38a92d50
PE
2058 #define YYSTYPE int
2059 #include <math.h>
2060 int yylex (void);
2061 void yyerror (char const *);
342b8b6e
AD
2062%@}
2063
2064/* Bison declarations. */
2065%token NUM
2066
2067%left '-' '+'
2068%left '*' '/'
2069%left NEG
2070%right '^'
2071
38a92d50 2072%% /* The grammar follows. */
342b8b6e
AD
2073@end example
2074
9edcd895
AD
2075@noindent
2076Note there are no declarations specific to locations. Defining a data
2077type for storing locations is not needed: we will use the type provided
2078by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2079four member structure with the following integer fields:
2080@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2081@code{last_column}. By conventions, and in accordance with the GNU
2082Coding Standards and common practice, the line and column count both
2083start at 1.
342b8b6e
AD
2084
2085@node Ltcalc Rules
2086@subsection Grammar Rules for @code{ltcalc}
2087
9edcd895
AD
2088Whether handling locations or not has no effect on the syntax of your
2089language. Therefore, grammar rules for this example will be very close
2090to those of the previous example: we will only modify them to benefit
2091from the new information.
342b8b6e 2092
9edcd895
AD
2093Here, we will use locations to report divisions by zero, and locate the
2094wrong expressions or subexpressions.
342b8b6e
AD
2095
2096@example
2097@group
de6be119
AD
2098input:
2099 /* empty */
2100| input line
342b8b6e
AD
2101;
2102@end group
2103
2104@group
de6be119
AD
2105line:
2106 '\n'
2107| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2108;
2109@end group
2110
2111@group
de6be119
AD
2112exp:
2113 NUM @{ $$ = $1; @}
2114| exp '+' exp @{ $$ = $1 + $3; @}
2115| exp '-' exp @{ $$ = $1 - $3; @}
2116| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2117@end group
342b8b6e 2118@group
de6be119
AD
2119| exp '/' exp
2120 @{
2121 if ($3)
2122 $$ = $1 / $3;
2123 else
2124 @{
2125 $$ = 1;
2126 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2127 @@3.first_line, @@3.first_column,
2128 @@3.last_line, @@3.last_column);
2129 @}
2130 @}
342b8b6e
AD
2131@end group
2132@group
de6be119
AD
2133| '-' exp %prec NEG @{ $$ = -$2; @}
2134| exp '^' exp @{ $$ = pow ($1, $3); @}
2135| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2136@end group
2137@end example
2138
2139This code shows how to reach locations inside of semantic actions, by
2140using the pseudo-variables @code{@@@var{n}} for rule components, and the
2141pseudo-variable @code{@@$} for groupings.
2142
9edcd895
AD
2143We don't need to assign a value to @code{@@$}: the output parser does it
2144automatically. By default, before executing the C code of each action,
2145@code{@@$} is set to range from the beginning of @code{@@1} to the end
2146of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2147can be redefined (@pxref{Location Default Action, , Default Action for
2148Locations}), and for very specific rules, @code{@@$} can be computed by
2149hand.
342b8b6e
AD
2150
2151@node Ltcalc Lexer
2152@subsection The @code{ltcalc} Lexical Analyzer.
2153
9edcd895 2154Until now, we relied on Bison's defaults to enable location
72d2299c 2155tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2156able to feed the parser with the token locations, as it already does for
2157semantic values.
342b8b6e 2158
9edcd895
AD
2159To this end, we must take into account every single character of the
2160input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2161
2162@example
2163@group
2164int
2165yylex (void)
2166@{
2167 int c;
18b519c0 2168@end group
342b8b6e 2169
18b519c0 2170@group
72d2299c 2171 /* Skip white space. */
342b8b6e
AD
2172 while ((c = getchar ()) == ' ' || c == '\t')
2173 ++yylloc.last_column;
18b519c0 2174@end group
342b8b6e 2175
18b519c0 2176@group
72d2299c 2177 /* Step. */
342b8b6e
AD
2178 yylloc.first_line = yylloc.last_line;
2179 yylloc.first_column = yylloc.last_column;
2180@end group
2181
2182@group
72d2299c 2183 /* Process numbers. */
342b8b6e
AD
2184 if (isdigit (c))
2185 @{
2186 yylval = c - '0';
2187 ++yylloc.last_column;
2188 while (isdigit (c = getchar ()))
2189 @{
2190 ++yylloc.last_column;
2191 yylval = yylval * 10 + c - '0';
2192 @}
2193 ungetc (c, stdin);
2194 return NUM;
2195 @}
2196@end group
2197
72d2299c 2198 /* Return end-of-input. */
342b8b6e
AD
2199 if (c == EOF)
2200 return 0;
2201
98842516 2202@group
72d2299c 2203 /* Return a single char, and update location. */
342b8b6e
AD
2204 if (c == '\n')
2205 @{
2206 ++yylloc.last_line;
2207 yylloc.last_column = 0;
2208 @}
2209 else
2210 ++yylloc.last_column;
2211 return c;
2212@}
98842516 2213@end group
342b8b6e
AD
2214@end example
2215
9edcd895
AD
2216Basically, the lexical analyzer performs the same processing as before:
2217it skips blanks and tabs, and reads numbers or single-character tokens.
2218In addition, it updates @code{yylloc}, the global variable (of type
2219@code{YYLTYPE}) containing the token's location.
342b8b6e 2220
9edcd895 2221Now, each time this function returns a token, the parser has its number
72d2299c 2222as well as its semantic value, and its location in the text. The last
9edcd895
AD
2223needed change is to initialize @code{yylloc}, for example in the
2224controlling function:
342b8b6e
AD
2225
2226@example
9edcd895 2227@group
342b8b6e
AD
2228int
2229main (void)
2230@{
2231 yylloc.first_line = yylloc.last_line = 1;
2232 yylloc.first_column = yylloc.last_column = 0;
2233 return yyparse ();
2234@}
9edcd895 2235@end group
342b8b6e
AD
2236@end example
2237
9edcd895
AD
2238Remember that computing locations is not a matter of syntax. Every
2239character must be associated to a location update, whether it is in
2240valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2241
2242@node Multi-function Calc
bfa74976
RS
2243@section Multi-Function Calculator: @code{mfcalc}
2244@cindex multi-function calculator
2245@cindex @code{mfcalc}
2246@cindex calculator, multi-function
2247
2248Now that the basics of Bison have been discussed, it is time to move on to
2249a more advanced problem. The above calculators provided only five
2250functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2251be nice to have a calculator that provides other mathematical functions such
2252as @code{sin}, @code{cos}, etc.
2253
2254It is easy to add new operators to the infix calculator as long as they are
2255only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2256back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2257adding a new operator. But we want something more flexible: built-in
2258functions whose syntax has this form:
2259
2260@example
2261@var{function_name} (@var{argument})
2262@end example
2263
2264@noindent
2265At the same time, we will add memory to the calculator, by allowing you
2266to create named variables, store values in them, and use them later.
2267Here is a sample session with the multi-function calculator:
2268
2269@example
9edcd895
AD
2270$ @kbd{mfcalc}
2271@kbd{pi = 3.141592653589}
bfa74976 22723.1415926536
9edcd895 2273@kbd{sin(pi)}
bfa74976 22740.0000000000
9edcd895 2275@kbd{alpha = beta1 = 2.3}
bfa74976 22762.3000000000
9edcd895 2277@kbd{alpha}
bfa74976 22782.3000000000
9edcd895 2279@kbd{ln(alpha)}
bfa74976 22800.8329091229
9edcd895 2281@kbd{exp(ln(beta1))}
bfa74976 22822.3000000000
9edcd895 2283$
bfa74976
RS
2284@end example
2285
2286Note that multiple assignment and nested function calls are permitted.
2287
2288@menu
f56274a8
DJ
2289* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2290* Mfcalc Rules:: Grammar rules for the calculator.
2291* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2292@end menu
2293
f56274a8 2294@node Mfcalc Declarations
bfa74976
RS
2295@subsection Declarations for @code{mfcalc}
2296
2297Here are the C and Bison declarations for the multi-function calculator.
2298
56d60c19 2299@comment file: mfcalc.y: 1
ea118b72 2300@example
18b519c0 2301@group
bfa74976 2302%@{
38a92d50
PE
2303 #include <math.h> /* For math functions, cos(), sin(), etc. */
2304 #include "calc.h" /* Contains definition of `symrec'. */
2305 int yylex (void);
2306 void yyerror (char const *);
bfa74976 2307%@}
18b519c0 2308@end group
56d60c19 2309
18b519c0 2310@group
bfa74976 2311%union @{
38a92d50
PE
2312 double val; /* For returning numbers. */
2313 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2314@}
18b519c0 2315@end group
38a92d50 2316%token <val> NUM /* Simple double precision number. */
56d60c19 2317%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2318%type <val> exp
2319
18b519c0 2320@group
bfa74976
RS
2321%right '='
2322%left '-' '+'
2323%left '*' '/'
38a92d50
PE
2324%left NEG /* negation--unary minus */
2325%right '^' /* exponentiation */
18b519c0 2326@end group
ea118b72 2327@end example
bfa74976
RS
2328
2329The above grammar introduces only two new features of the Bison language.
2330These features allow semantic values to have various data types
2331(@pxref{Multiple Types, ,More Than One Value Type}).
2332
2333The @code{%union} declaration specifies the entire list of possible types;
2334this is instead of defining @code{YYSTYPE}. The allowable types are now
2335double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2336the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2337
2338Since values can now have various types, it is necessary to associate a
2339type with each grammar symbol whose semantic value is used. These symbols
2340are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2341declarations are augmented with information about their data type (placed
2342between angle brackets).
2343
704a47c4
AD
2344The Bison construct @code{%type} is used for declaring nonterminal
2345symbols, just as @code{%token} is used for declaring token types. We
2346have not used @code{%type} before because nonterminal symbols are
2347normally declared implicitly by the rules that define them. But
2348@code{exp} must be declared explicitly so we can specify its value type.
2349@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2350
342b8b6e 2351@node Mfcalc Rules
bfa74976
RS
2352@subsection Grammar Rules for @code{mfcalc}
2353
2354Here are the grammar rules for the multi-function calculator.
2355Most of them are copied directly from @code{calc}; three rules,
2356those which mention @code{VAR} or @code{FNCT}, are new.
2357
56d60c19 2358@comment file: mfcalc.y: 3
ea118b72 2359@example
56d60c19 2360%% /* The grammar follows. */
18b519c0 2361@group
de6be119
AD
2362input:
2363 /* empty */
2364| input line
bfa74976 2365;
18b519c0 2366@end group
bfa74976 2367
18b519c0 2368@group
bfa74976 2369line:
de6be119
AD
2370 '\n'
2371| exp '\n' @{ printf ("%.10g\n", $1); @}
2372| error '\n' @{ yyerrok; @}
bfa74976 2373;
18b519c0 2374@end group
bfa74976 2375
18b519c0 2376@group
de6be119
AD
2377exp:
2378 NUM @{ $$ = $1; @}
2379| VAR @{ $$ = $1->value.var; @}
2380| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2381| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2382| exp '+' exp @{ $$ = $1 + $3; @}
2383| exp '-' exp @{ $$ = $1 - $3; @}
2384| exp '*' exp @{ $$ = $1 * $3; @}
2385| exp '/' exp @{ $$ = $1 / $3; @}
2386| '-' exp %prec NEG @{ $$ = -$2; @}
2387| exp '^' exp @{ $$ = pow ($1, $3); @}
2388| '(' exp ')' @{ $$ = $2; @}
bfa74976 2389;
18b519c0 2390@end group
38a92d50 2391/* End of grammar. */
bfa74976 2392%%
ea118b72 2393@end example
bfa74976 2394
f56274a8 2395@node Mfcalc Symbol Table
bfa74976
RS
2396@subsection The @code{mfcalc} Symbol Table
2397@cindex symbol table example
2398
2399The multi-function calculator requires a symbol table to keep track of the
2400names and meanings of variables and functions. This doesn't affect the
2401grammar rules (except for the actions) or the Bison declarations, but it
2402requires some additional C functions for support.
2403
2404The symbol table itself consists of a linked list of records. Its
2405definition, which is kept in the header @file{calc.h}, is as follows. It
2406provides for either functions or variables to be placed in the table.
2407
ea118b72
AD
2408@comment file: calc.h
2409@example
bfa74976 2410@group
38a92d50 2411/* Function type. */
32dfccf8 2412typedef double (*func_t) (double);
72f889cc 2413@end group
32dfccf8 2414
72f889cc 2415@group
38a92d50 2416/* Data type for links in the chain of symbols. */
bfa74976
RS
2417struct symrec
2418@{
38a92d50 2419 char *name; /* name of symbol */
bfa74976 2420 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2421 union
2422 @{
38a92d50
PE
2423 double var; /* value of a VAR */
2424 func_t fnctptr; /* value of a FNCT */
bfa74976 2425 @} value;
38a92d50 2426 struct symrec *next; /* link field */
bfa74976
RS
2427@};
2428@end group
2429
2430@group
2431typedef struct symrec symrec;
2432
38a92d50 2433/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2434extern symrec *sym_table;
2435
a730d142 2436symrec *putsym (char const *, int);
38a92d50 2437symrec *getsym (char const *);
bfa74976 2438@end group
ea118b72 2439@end example
bfa74976
RS
2440
2441The new version of @code{main} includes a call to @code{init_table}, a
2442function that initializes the symbol table. Here it is, and
2443@code{init_table} as well:
2444
56d60c19 2445@comment file: mfcalc.y: 3
ea118b72 2446@example
bfa74976
RS
2447#include <stdio.h>
2448
18b519c0 2449@group
38a92d50 2450/* Called by yyparse on error. */
13863333 2451void
38a92d50 2452yyerror (char const *s)
bfa74976
RS
2453@{
2454 printf ("%s\n", s);
2455@}
18b519c0 2456@end group
bfa74976 2457
18b519c0 2458@group
bfa74976
RS
2459struct init
2460@{
38a92d50
PE
2461 char const *fname;
2462 double (*fnct) (double);
bfa74976
RS
2463@};
2464@end group
2465
2466@group
38a92d50 2467struct init const arith_fncts[] =
13863333 2468@{
32dfccf8
AD
2469 "sin", sin,
2470 "cos", cos,
13863333 2471 "atan", atan,
32dfccf8
AD
2472 "ln", log,
2473 "exp", exp,
13863333
AD
2474 "sqrt", sqrt,
2475 0, 0
2476@};
18b519c0 2477@end group
bfa74976 2478
18b519c0 2479@group
bfa74976 2480/* The symbol table: a chain of `struct symrec'. */
38a92d50 2481symrec *sym_table;
bfa74976
RS
2482@end group
2483
2484@group
72d2299c 2485/* Put arithmetic functions in table. */
13863333
AD
2486void
2487init_table (void)
bfa74976
RS
2488@{
2489 int i;
bfa74976
RS
2490 for (i = 0; arith_fncts[i].fname != 0; i++)
2491 @{
2c0f9706 2492 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2493 ptr->value.fnctptr = arith_fncts[i].fnct;
2494 @}
2495@}
2496@end group
38a92d50
PE
2497
2498@group
2499int
2500main (void)
2501@{
2502 init_table ();
2503 return yyparse ();
2504@}
2505@end group
ea118b72 2506@end example
bfa74976
RS
2507
2508By simply editing the initialization list and adding the necessary include
2509files, you can add additional functions to the calculator.
2510
2511Two important functions allow look-up and installation of symbols in the
2512symbol table. The function @code{putsym} is passed a name and the type
2513(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2514linked to the front of the list, and a pointer to the object is returned.
2515The function @code{getsym} is passed the name of the symbol to look up. If
2516found, a pointer to that symbol is returned; otherwise zero is returned.
2517
56d60c19 2518@comment file: mfcalc.y: 3
ea118b72 2519@example
98842516
AD
2520#include <stdlib.h> /* malloc. */
2521#include <string.h> /* strlen. */
2522
2523@group
bfa74976 2524symrec *
38a92d50 2525putsym (char const *sym_name, int sym_type)
bfa74976 2526@{
2c0f9706 2527 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2528 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2529 strcpy (ptr->name,sym_name);
2530 ptr->type = sym_type;
72d2299c 2531 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2532 ptr->next = (struct symrec *)sym_table;
2533 sym_table = ptr;
2534 return ptr;
2535@}
98842516 2536@end group
bfa74976 2537
98842516 2538@group
bfa74976 2539symrec *
38a92d50 2540getsym (char const *sym_name)
bfa74976
RS
2541@{
2542 symrec *ptr;
2543 for (ptr = sym_table; ptr != (symrec *) 0;
2544 ptr = (symrec *)ptr->next)
2545 if (strcmp (ptr->name,sym_name) == 0)
2546 return ptr;
2547 return 0;
2548@}
98842516 2549@end group
ea118b72 2550@end example
bfa74976
RS
2551
2552The function @code{yylex} must now recognize variables, numeric values, and
2553the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2554characters with a leading letter are recognized as either variables or
bfa74976
RS
2555functions depending on what the symbol table says about them.
2556
2557The string is passed to @code{getsym} for look up in the symbol table. If
2558the name appears in the table, a pointer to its location and its type
2559(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2560already in the table, then it is installed as a @code{VAR} using
2561@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2562returned to @code{yyparse}.
bfa74976
RS
2563
2564No change is needed in the handling of numeric values and arithmetic
2565operators in @code{yylex}.
2566
56d60c19 2567@comment file: mfcalc.y: 3
ea118b72 2568@example
bfa74976
RS
2569@group
2570#include <ctype.h>
18b519c0 2571@end group
13863333 2572
18b519c0 2573@group
13863333
AD
2574int
2575yylex (void)
bfa74976
RS
2576@{
2577 int c;
2578
72d2299c 2579 /* Ignore white space, get first nonwhite character. */
98842516
AD
2580 while ((c = getchar ()) == ' ' || c == '\t')
2581 continue;
bfa74976
RS
2582
2583 if (c == EOF)
2584 return 0;
2585@end group
2586
2587@group
2588 /* Char starts a number => parse the number. */
2589 if (c == '.' || isdigit (c))
2590 @{
2591 ungetc (c, stdin);
2592 scanf ("%lf", &yylval.val);
2593 return NUM;
2594 @}
2595@end group
2596
2597@group
2598 /* Char starts an identifier => read the name. */
2599 if (isalpha (c))
2600 @{
2c0f9706
AD
2601 /* Initially make the buffer long enough
2602 for a 40-character symbol name. */
2603 static size_t length = 40;
bfa74976 2604 static char *symbuf = 0;
2c0f9706 2605 symrec *s;
bfa74976
RS
2606 int i;
2607@end group
2608
2c0f9706
AD
2609 if (!symbuf)
2610 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2611
2612 i = 0;
2613 do
bfa74976
RS
2614@group
2615 @{
2616 /* If buffer is full, make it bigger. */
2617 if (i == length)
2618 @{
2619 length *= 2;
18b519c0 2620 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2621 @}
2622 /* Add this character to the buffer. */
2623 symbuf[i++] = c;
2624 /* Get another character. */
2625 c = getchar ();
2626 @}
2627@end group
2628@group
72d2299c 2629 while (isalnum (c));
bfa74976
RS
2630
2631 ungetc (c, stdin);
2632 symbuf[i] = '\0';
2633@end group
2634
2635@group
2636 s = getsym (symbuf);
2637 if (s == 0)
2638 s = putsym (symbuf, VAR);
2639 yylval.tptr = s;
2640 return s->type;
2641 @}
2642
2643 /* Any other character is a token by itself. */
2644 return c;
2645@}
2646@end group
ea118b72 2647@end example
bfa74976 2648
56d60c19
AD
2649The error reporting function is unchanged, and the new version of
2650@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2651on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
2652
2653@comment file: mfcalc.y: 3
2654@example
2655@group
2656/* Called by yyparse on error. */
2657void
2658yyerror (char const *s)
2659@{
2660 fprintf (stderr, "%s\n", s);
2661@}
2662@end group
2663
2664@group
2665int
2666main (int argc, char const* argv[])
2667@{
2668 int i;
2669 /* Enable parse traces on option -p. */
2670 for (i = 1; i < argc; ++i)
2671 if (!strcmp(argv[i], "-p"))
2672 yydebug = 1;
2673 init_table ();
2674 return yyparse ();
2675@}
2676@end group
2677@end example
2678
72d2299c 2679This program is both powerful and flexible. You may easily add new
704a47c4
AD
2680functions, and it is a simple job to modify this code to install
2681predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2682
342b8b6e 2683@node Exercises
bfa74976
RS
2684@section Exercises
2685@cindex exercises
2686
2687@enumerate
2688@item
2689Add some new functions from @file{math.h} to the initialization list.
2690
2691@item
2692Add another array that contains constants and their values. Then
2693modify @code{init_table} to add these constants to the symbol table.
2694It will be easiest to give the constants type @code{VAR}.
2695
2696@item
2697Make the program report an error if the user refers to an
2698uninitialized variable in any way except to store a value in it.
2699@end enumerate
2700
342b8b6e 2701@node Grammar File
bfa74976
RS
2702@chapter Bison Grammar Files
2703
2704Bison takes as input a context-free grammar specification and produces a
2705C-language function that recognizes correct instances of the grammar.
2706
9913d6e4 2707The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2708@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2709
2710@menu
7404cdf3
JD
2711* Grammar Outline:: Overall layout of the grammar file.
2712* Symbols:: Terminal and nonterminal symbols.
2713* Rules:: How to write grammar rules.
2714* Recursion:: Writing recursive rules.
2715* Semantics:: Semantic values and actions.
2716* Tracking Locations:: Locations and actions.
2717* Named References:: Using named references in actions.
2718* Declarations:: All kinds of Bison declarations are described here.
2719* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2720@end menu
2721
342b8b6e 2722@node Grammar Outline
bfa74976
RS
2723@section Outline of a Bison Grammar
2724
2725A Bison grammar file has four main sections, shown here with the
2726appropriate delimiters:
2727
2728@example
2729%@{
38a92d50 2730 @var{Prologue}
bfa74976
RS
2731%@}
2732
2733@var{Bison declarations}
2734
2735%%
2736@var{Grammar rules}
2737%%
2738
75f5aaea 2739@var{Epilogue}
bfa74976
RS
2740@end example
2741
2742Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2743As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2744continues until end of line.
bfa74976
RS
2745
2746@menu
f56274a8 2747* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2748* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2749* Bison Declarations:: Syntax and usage of the Bison declarations section.
2750* Grammar Rules:: Syntax and usage of the grammar rules section.
2751* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2752@end menu
2753
38a92d50 2754@node Prologue
75f5aaea
MA
2755@subsection The prologue
2756@cindex declarations section
2757@cindex Prologue
2758@cindex declarations
bfa74976 2759
f8e1c9e5
AD
2760The @var{Prologue} section contains macro definitions and declarations
2761of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2762rules. These are copied to the beginning of the parser implementation
2763file so that they precede the definition of @code{yyparse}. You can
2764use @samp{#include} to get the declarations from a header file. If
2765you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2766@samp{%@}} delimiters that bracket this section.
bfa74976 2767
9c437126 2768The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2769of @samp{%@}} that is outside a comment, a string literal, or a
2770character constant.
2771
c732d2c6
AD
2772You may have more than one @var{Prologue} section, intermixed with the
2773@var{Bison declarations}. This allows you to have C and Bison
2774declarations that refer to each other. For example, the @code{%union}
2775declaration may use types defined in a header file, and you may wish to
2776prototype functions that take arguments of type @code{YYSTYPE}. This
2777can be done with two @var{Prologue} blocks, one before and one after the
2778@code{%union} declaration.
2779
ea118b72 2780@example
c732d2c6 2781%@{
aef3da86 2782 #define _GNU_SOURCE
38a92d50
PE
2783 #include <stdio.h>
2784 #include "ptypes.h"
c732d2c6
AD
2785%@}
2786
2787%union @{
779e7ceb 2788 long int n;
c732d2c6
AD
2789 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2790@}
2791
2792%@{
38a92d50
PE
2793 static void print_token_value (FILE *, int, YYSTYPE);
2794 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2795%@}
2796
2797@dots{}
ea118b72 2798@end example
c732d2c6 2799
aef3da86
PE
2800When in doubt, it is usually safer to put prologue code before all
2801Bison declarations, rather than after. For example, any definitions
2802of feature test macros like @code{_GNU_SOURCE} or
2803@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2804feature test macros can affect the behavior of Bison-generated
2805@code{#include} directives.
2806
2cbe6b7f
JD
2807@node Prologue Alternatives
2808@subsection Prologue Alternatives
2809@cindex Prologue Alternatives
2810
136a0f76 2811@findex %code
16dc6a9e
JD
2812@findex %code requires
2813@findex %code provides
2814@findex %code top
85894313 2815
2cbe6b7f 2816The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2817inflexible. As an alternative, Bison provides a @code{%code}
2818directive with an explicit qualifier field, which identifies the
2819purpose of the code and thus the location(s) where Bison should
2820generate it. For C/C++, the qualifier can be omitted for the default
2821location, or it can be one of @code{requires}, @code{provides},
8e6f2266 2822@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2823
2824Look again at the example of the previous section:
2825
ea118b72 2826@example
2cbe6b7f
JD
2827%@{
2828 #define _GNU_SOURCE
2829 #include <stdio.h>
2830 #include "ptypes.h"
2831%@}
2832
2833%union @{
2834 long int n;
2835 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2836@}
2837
2838%@{
2839 static void print_token_value (FILE *, int, YYSTYPE);
2840 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2841%@}
2842
2843@dots{}
ea118b72 2844@end example
2cbe6b7f
JD
2845
2846@noindent
9913d6e4
JD
2847Notice that there are two @var{Prologue} sections here, but there's a
2848subtle distinction between their functionality. For example, if you
2849decide to override Bison's default definition for @code{YYLTYPE}, in
2850which @var{Prologue} section should you write your new definition?
2851You should write it in the first since Bison will insert that code
2852into the parser implementation file @emph{before} the default
2853@code{YYLTYPE} definition. In which @var{Prologue} section should you
2854prototype an internal function, @code{trace_token}, that accepts
2855@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2856prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2857@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2858
2859This distinction in functionality between the two @var{Prologue} sections is
2860established by the appearance of the @code{%union} between them.
a501eca9 2861This behavior raises a few questions.
2cbe6b7f
JD
2862First, why should the position of a @code{%union} affect definitions related to
2863@code{YYLTYPE} and @code{yytokentype}?
2864Second, what if there is no @code{%union}?
2865In that case, the second kind of @var{Prologue} section is not available.
2866This behavior is not intuitive.
2867
8e0a5e9e 2868To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2869@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2870Let's go ahead and add the new @code{YYLTYPE} definition and the
2871@code{trace_token} prototype at the same time:
2872
ea118b72 2873@example
16dc6a9e 2874%code top @{
2cbe6b7f
JD
2875 #define _GNU_SOURCE
2876 #include <stdio.h>
8e0a5e9e
JD
2877
2878 /* WARNING: The following code really belongs
16dc6a9e 2879 * in a `%code requires'; see below. */
8e0a5e9e 2880
2cbe6b7f
JD
2881 #include "ptypes.h"
2882 #define YYLTYPE YYLTYPE
2883 typedef struct YYLTYPE
2884 @{
2885 int first_line;
2886 int first_column;
2887 int last_line;
2888 int last_column;
2889 char *filename;
2890 @} YYLTYPE;
2891@}
2892
2893%union @{
2894 long int n;
2895 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2896@}
2897
2898%code @{
2899 static void print_token_value (FILE *, int, YYSTYPE);
2900 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2901 static void trace_token (enum yytokentype token, YYLTYPE loc);
2902@}
2903
2904@dots{}
ea118b72 2905@end example
2cbe6b7f
JD
2906
2907@noindent
16dc6a9e
JD
2908In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2909functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2910explicit which kind you intend.
2cbe6b7f
JD
2911Moreover, both kinds are always available even in the absence of @code{%union}.
2912
9913d6e4
JD
2913The @code{%code top} block above logically contains two parts. The
2914first two lines before the warning need to appear near the top of the
2915parser implementation file. The first line after the warning is
2916required by @code{YYSTYPE} and thus also needs to appear in the parser
2917implementation file. However, if you've instructed Bison to generate
2918a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2919want that line to appear before the @code{YYSTYPE} definition in that
2920header file as well. The @code{YYLTYPE} definition should also appear
2921in the parser header file to override the default @code{YYLTYPE}
2922definition there.
2cbe6b7f 2923
16dc6a9e 2924In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2925lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2926definitions.
16dc6a9e 2927Thus, they belong in one or more @code{%code requires}:
9bc0dd67 2928
ea118b72 2929@example
98842516 2930@group
16dc6a9e 2931%code top @{
2cbe6b7f
JD
2932 #define _GNU_SOURCE
2933 #include <stdio.h>
2934@}
98842516 2935@end group
2cbe6b7f 2936
98842516 2937@group
16dc6a9e 2938%code requires @{
9bc0dd67
JD
2939 #include "ptypes.h"
2940@}
98842516
AD
2941@end group
2942@group
9bc0dd67
JD
2943%union @{
2944 long int n;
2945 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2946@}
98842516 2947@end group
9bc0dd67 2948
98842516 2949@group
16dc6a9e 2950%code requires @{
2cbe6b7f
JD
2951 #define YYLTYPE YYLTYPE
2952 typedef struct YYLTYPE
2953 @{
2954 int first_line;
2955 int first_column;
2956 int last_line;
2957 int last_column;
2958 char *filename;
2959 @} YYLTYPE;
2960@}
98842516 2961@end group
2cbe6b7f 2962
98842516 2963@group
136a0f76 2964%code @{
2cbe6b7f
JD
2965 static void print_token_value (FILE *, int, YYSTYPE);
2966 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2967 static void trace_token (enum yytokentype token, YYLTYPE loc);
2968@}
98842516 2969@end group
2cbe6b7f
JD
2970
2971@dots{}
ea118b72 2972@end example
2cbe6b7f
JD
2973
2974@noindent
9913d6e4
JD
2975Now Bison will insert @code{#include "ptypes.h"} and the new
2976@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2977and @code{YYLTYPE} definitions in both the parser implementation file
2978and the parser header file. (By the same reasoning, @code{%code
2979requires} would also be the appropriate place to write your own
2980definition for @code{YYSTYPE}.)
2981
2982When you are writing dependency code for @code{YYSTYPE} and
2983@code{YYLTYPE}, you should prefer @code{%code requires} over
2984@code{%code top} regardless of whether you instruct Bison to generate
2985a parser header file. When you are writing code that you need Bison
2986to insert only into the parser implementation file and that has no
2987special need to appear at the top of that file, you should prefer the
2988unqualified @code{%code} over @code{%code top}. These practices will
2989make the purpose of each block of your code explicit to Bison and to
2990other developers reading your grammar file. Following these
2991practices, we expect the unqualified @code{%code} and @code{%code
2992requires} to be the most important of the four @var{Prologue}
16dc6a9e 2993alternatives.
a501eca9 2994
9913d6e4
JD
2995At some point while developing your parser, you might decide to
2996provide @code{trace_token} to modules that are external to your
2997parser. Thus, you might wish for Bison to insert the prototype into
2998both the parser header file and the parser implementation file. Since
2999this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3000@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
3001@code{%code requires}. More importantly, since it depends upon
3002@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3003sufficient. Instead, move its prototype from the unqualified
3004@code{%code} to a @code{%code provides}:
2cbe6b7f 3005
ea118b72 3006@example
98842516 3007@group
16dc6a9e 3008%code top @{
2cbe6b7f 3009 #define _GNU_SOURCE
136a0f76 3010 #include <stdio.h>
2cbe6b7f 3011@}
98842516 3012@end group
136a0f76 3013
98842516 3014@group
16dc6a9e 3015%code requires @{
2cbe6b7f
JD
3016 #include "ptypes.h"
3017@}
98842516
AD
3018@end group
3019@group
2cbe6b7f
JD
3020%union @{
3021 long int n;
3022 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3023@}
98842516 3024@end group
2cbe6b7f 3025
98842516 3026@group
16dc6a9e 3027%code requires @{
2cbe6b7f
JD
3028 #define YYLTYPE YYLTYPE
3029 typedef struct YYLTYPE
3030 @{
3031 int first_line;
3032 int first_column;
3033 int last_line;
3034 int last_column;
3035 char *filename;
3036 @} YYLTYPE;
3037@}
98842516 3038@end group
2cbe6b7f 3039
98842516 3040@group
16dc6a9e 3041%code provides @{
2cbe6b7f
JD
3042 void trace_token (enum yytokentype token, YYLTYPE loc);
3043@}
98842516 3044@end group
2cbe6b7f 3045
98842516 3046@group
2cbe6b7f 3047%code @{
9bc0dd67
JD
3048 static void print_token_value (FILE *, int, YYSTYPE);
3049 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3050@}
98842516 3051@end group
9bc0dd67
JD
3052
3053@dots{}
ea118b72 3054@end example
9bc0dd67 3055
2cbe6b7f 3056@noindent
9913d6e4
JD
3057Bison will insert the @code{trace_token} prototype into both the
3058parser header file and the parser implementation file after the
3059definitions for @code{yytokentype}, @code{YYLTYPE}, and
3060@code{YYSTYPE}.
3061
3062The above examples are careful to write directives in an order that
3063reflects the layout of the generated parser implementation and header
3064files: @code{%code top}, @code{%code requires}, @code{%code provides},
3065and then @code{%code}. While your grammar files may generally be
3066easier to read if you also follow this order, Bison does not require
3067it. Instead, Bison lets you choose an organization that makes sense
3068to you.
2cbe6b7f 3069
a501eca9 3070You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3071In that case, Bison concatenates the contained code in declaration order.
3072This is the only way in which the position of one of these directives within
3073the grammar file affects its functionality.
3074
3075The result of the previous two properties is greater flexibility in how you may
3076organize your grammar file.
3077For example, you may organize semantic-type-related directives by semantic
3078type:
3079
ea118b72 3080@example
98842516 3081@group
16dc6a9e 3082%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3083%union @{ type1 field1; @}
3084%destructor @{ type1_free ($$); @} <field1>
68fff38a 3085%printer @{ type1_print (yyoutput, $$); @} <field1>
98842516 3086@end group
2cbe6b7f 3087
98842516 3088@group
16dc6a9e 3089%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3090%union @{ type2 field2; @}
3091%destructor @{ type2_free ($$); @} <field2>
68fff38a 3092%printer @{ type2_print (yyoutput, $$); @} <field2>
98842516 3093@end group
ea118b72 3094@end example
2cbe6b7f
JD
3095
3096@noindent
3097You could even place each of the above directive groups in the rules section of
3098the grammar file next to the set of rules that uses the associated semantic
3099type.
61fee93e
JD
3100(In the rules section, you must terminate each of those directives with a
3101semicolon.)
2cbe6b7f
JD
3102And you don't have to worry that some directive (like a @code{%union}) in the
3103definitions section is going to adversely affect their functionality in some
3104counter-intuitive manner just because it comes first.
3105Such an organization is not possible using @var{Prologue} sections.
3106
a501eca9 3107This section has been concerned with explaining the advantages of the four
8e0a5e9e 3108@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3109However, in most cases when using these directives, you shouldn't need to
3110think about all the low-level ordering issues discussed here.
3111Instead, you should simply use these directives to label each block of your
3112code according to its purpose and let Bison handle the ordering.
3113@code{%code} is the most generic label.
16dc6a9e
JD
3114Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3115as needed.
a501eca9 3116
342b8b6e 3117@node Bison Declarations
bfa74976
RS
3118@subsection The Bison Declarations Section
3119@cindex Bison declarations (introduction)
3120@cindex declarations, Bison (introduction)
3121
3122The @var{Bison declarations} section contains declarations that define
3123terminal and nonterminal symbols, specify precedence, and so on.
3124In some simple grammars you may not need any declarations.
3125@xref{Declarations, ,Bison Declarations}.
3126
342b8b6e 3127@node Grammar Rules
bfa74976
RS
3128@subsection The Grammar Rules Section
3129@cindex grammar rules section
3130@cindex rules section for grammar
3131
3132The @dfn{grammar rules} section contains one or more Bison grammar
3133rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3134
3135There must always be at least one grammar rule, and the first
3136@samp{%%} (which precedes the grammar rules) may never be omitted even
3137if it is the first thing in the file.
3138
38a92d50 3139@node Epilogue
75f5aaea 3140@subsection The epilogue
bfa74976 3141@cindex additional C code section
75f5aaea 3142@cindex epilogue
bfa74976
RS
3143@cindex C code, section for additional
3144
9913d6e4
JD
3145The @var{Epilogue} is copied verbatim to the end of the parser
3146implementation file, just as the @var{Prologue} is copied to the
3147beginning. This is the most convenient place to put anything that you
3148want to have in the parser implementation file but which need not come
3149before the definition of @code{yyparse}. For example, the definitions
3150of @code{yylex} and @code{yyerror} often go here. Because C requires
3151functions to be declared before being used, you often need to declare
3152functions like @code{yylex} and @code{yyerror} in the Prologue, even
3153if you define them in the Epilogue. @xref{Interface, ,Parser
3154C-Language Interface}.
bfa74976
RS
3155
3156If the last section is empty, you may omit the @samp{%%} that separates it
3157from the grammar rules.
3158
f8e1c9e5
AD
3159The Bison parser itself contains many macros and identifiers whose names
3160start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3161any such names (except those documented in this manual) in the epilogue
3162of the grammar file.
bfa74976 3163
342b8b6e 3164@node Symbols
bfa74976
RS
3165@section Symbols, Terminal and Nonterminal
3166@cindex nonterminal symbol
3167@cindex terminal symbol
3168@cindex token type
3169@cindex symbol
3170
3171@dfn{Symbols} in Bison grammars represent the grammatical classifications
3172of the language.
3173
3174A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3175class of syntactically equivalent tokens. You use the symbol in grammar
3176rules to mean that a token in that class is allowed. The symbol is
3177represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3178function returns a token type code to indicate what kind of token has
3179been read. You don't need to know what the code value is; you can use
3180the symbol to stand for it.
bfa74976 3181
f8e1c9e5
AD
3182A @dfn{nonterminal symbol} stands for a class of syntactically
3183equivalent groupings. The symbol name is used in writing grammar rules.
3184By convention, it should be all lower case.
bfa74976 3185
eb8c66bb
JD
3186Symbol names can contain letters, underscores, periods, and non-initial
3187digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3188with POSIX Yacc. Periods and dashes make symbol names less convenient to
3189use with named references, which require brackets around such names
3190(@pxref{Named References}). Terminal symbols that contain periods or dashes
3191make little sense: since they are not valid symbols (in most programming
3192languages) they are not exported as token names.
bfa74976 3193
931c7513 3194There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3195
3196@itemize @bullet
3197@item
3198A @dfn{named token type} is written with an identifier, like an
c827f760 3199identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3200such name must be defined with a Bison declaration such as
3201@code{%token}. @xref{Token Decl, ,Token Type Names}.
3202
3203@item
3204@cindex character token
3205@cindex literal token
3206@cindex single-character literal
931c7513
RS
3207A @dfn{character token type} (or @dfn{literal character token}) is
3208written in the grammar using the same syntax used in C for character
3209constants; for example, @code{'+'} is a character token type. A
3210character token type doesn't need to be declared unless you need to
3211specify its semantic value data type (@pxref{Value Type, ,Data Types of
3212Semantic Values}), associativity, or precedence (@pxref{Precedence,
3213,Operator Precedence}).
bfa74976
RS
3214
3215By convention, a character token type is used only to represent a
3216token that consists of that particular character. Thus, the token
3217type @code{'+'} is used to represent the character @samp{+} as a
3218token. Nothing enforces this convention, but if you depart from it,
3219your program will confuse other readers.
3220
3221All the usual escape sequences used in character literals in C can be
3222used in Bison as well, but you must not use the null character as a
72d2299c
PE
3223character literal because its numeric code, zero, signifies
3224end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3225for @code{yylex}}). Also, unlike standard C, trigraphs have no
3226special meaning in Bison character literals, nor is backslash-newline
3227allowed.
931c7513
RS
3228
3229@item
3230@cindex string token
3231@cindex literal string token
9ecbd125 3232@cindex multicharacter literal
931c7513
RS
3233A @dfn{literal string token} is written like a C string constant; for
3234example, @code{"<="} is a literal string token. A literal string token
3235doesn't need to be declared unless you need to specify its semantic
14ded682 3236value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3237(@pxref{Precedence}).
3238
3239You can associate the literal string token with a symbolic name as an
3240alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3241Declarations}). If you don't do that, the lexical analyzer has to
3242retrieve the token number for the literal string token from the
3243@code{yytname} table (@pxref{Calling Convention}).
3244
c827f760 3245@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3246
3247By convention, a literal string token is used only to represent a token
3248that consists of that particular string. Thus, you should use the token
3249type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3250does not enforce this convention, but if you depart from it, people who
931c7513
RS
3251read your program will be confused.
3252
3253All the escape sequences used in string literals in C can be used in
92ac3705
PE
3254Bison as well, except that you must not use a null character within a
3255string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3256meaning in Bison string literals, nor is backslash-newline allowed. A
3257literal string token must contain two or more characters; for a token
3258containing just one character, use a character token (see above).
bfa74976
RS
3259@end itemize
3260
3261How you choose to write a terminal symbol has no effect on its
3262grammatical meaning. That depends only on where it appears in rules and
3263on when the parser function returns that symbol.
3264
72d2299c
PE
3265The value returned by @code{yylex} is always one of the terminal
3266symbols, except that a zero or negative value signifies end-of-input.
3267Whichever way you write the token type in the grammar rules, you write
3268it the same way in the definition of @code{yylex}. The numeric code
3269for a character token type is simply the positive numeric code of the
3270character, so @code{yylex} can use the identical value to generate the
3271requisite code, though you may need to convert it to @code{unsigned
3272char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3273Each named token type becomes a C macro in the parser implementation
3274file, so @code{yylex} can use the name to stand for the code. (This
3275is why periods don't make sense in terminal symbols.) @xref{Calling
3276Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3277
3278If @code{yylex} is defined in a separate file, you need to arrange for the
3279token-type macro definitions to be available there. Use the @samp{-d}
3280option when you run Bison, so that it will write these macro definitions
3281into a separate header file @file{@var{name}.tab.h} which you can include
3282in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3283
72d2299c 3284If you want to write a grammar that is portable to any Standard C
9d9b8b70 3285host, you must use only nonnull character tokens taken from the basic
c827f760 3286execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3287digits, the 52 lower- and upper-case English letters, and the
3288characters in the following C-language string:
3289
3290@example
3291"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3292@end example
3293
f8e1c9e5
AD
3294The @code{yylex} function and Bison must use a consistent character set
3295and encoding for character tokens. For example, if you run Bison in an
35430378 3296ASCII environment, but then compile and run the resulting
f8e1c9e5 3297program in an environment that uses an incompatible character set like
35430378
JD
3298EBCDIC, the resulting program may not work because the tables
3299generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3300character tokens. It is standard practice for software distributions to
3301contain C source files that were generated by Bison in an
35430378
JD
3302ASCII environment, so installers on platforms that are
3303incompatible with ASCII must rebuild those files before
f8e1c9e5 3304compiling them.
e966383b 3305
bfa74976
RS
3306The symbol @code{error} is a terminal symbol reserved for error recovery
3307(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3308In particular, @code{yylex} should never return this value. The default
3309value of the error token is 256, unless you explicitly assigned 256 to
3310one of your tokens with a @code{%token} declaration.
bfa74976 3311
342b8b6e 3312@node Rules
bfa74976
RS
3313@section Syntax of Grammar Rules
3314@cindex rule syntax
3315@cindex grammar rule syntax
3316@cindex syntax of grammar rules
3317
3318A Bison grammar rule has the following general form:
3319
3320@example
e425e872 3321@group
de6be119 3322@var{result}: @var{components}@dots{};
e425e872 3323@end group
bfa74976
RS
3324@end example
3325
3326@noindent
9ecbd125 3327where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3328and @var{components} are various terminal and nonterminal symbols that
13863333 3329are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3330
3331For example,
3332
3333@example
3334@group
de6be119 3335exp: exp '+' exp;
bfa74976
RS
3336@end group
3337@end example
3338
3339@noindent
3340says that two groupings of type @code{exp}, with a @samp{+} token in between,
3341can be combined into a larger grouping of type @code{exp}.
3342
72d2299c
PE
3343White space in rules is significant only to separate symbols. You can add
3344extra white space as you wish.
bfa74976
RS
3345
3346Scattered among the components can be @var{actions} that determine
3347the semantics of the rule. An action looks like this:
3348
3349@example
3350@{@var{C statements}@}
3351@end example
3352
3353@noindent
287c78f6
PE
3354@cindex braced code
3355This is an example of @dfn{braced code}, that is, C code surrounded by
3356braces, much like a compound statement in C@. Braced code can contain
3357any sequence of C tokens, so long as its braces are balanced. Bison
3358does not check the braced code for correctness directly; it merely
9913d6e4
JD
3359copies the code to the parser implementation file, where the C
3360compiler can check it.
287c78f6
PE
3361
3362Within braced code, the balanced-brace count is not affected by braces
3363within comments, string literals, or character constants, but it is
3364affected by the C digraphs @samp{<%} and @samp{%>} that represent
3365braces. At the top level braced code must be terminated by @samp{@}}
3366and not by a digraph. Bison does not look for trigraphs, so if braced
3367code uses trigraphs you should ensure that they do not affect the
3368nesting of braces or the boundaries of comments, string literals, or
3369character constants.
3370
bfa74976
RS
3371Usually there is only one action and it follows the components.
3372@xref{Actions}.
3373
3374@findex |
3375Multiple rules for the same @var{result} can be written separately or can
3376be joined with the vertical-bar character @samp{|} as follows:
3377
bfa74976
RS
3378@example
3379@group
de6be119
AD
3380@var{result}:
3381 @var{rule1-components}@dots{}
3382| @var{rule2-components}@dots{}
3383@dots{}
3384;
bfa74976
RS
3385@end group
3386@end example
bfa74976
RS
3387
3388@noindent
3389They are still considered distinct rules even when joined in this way.
3390
3391If @var{components} in a rule is empty, it means that @var{result} can
3392match the empty string. For example, here is how to define a
3393comma-separated sequence of zero or more @code{exp} groupings:
3394
3395@example
3396@group
de6be119
AD
3397expseq:
3398 /* empty */
3399| expseq1
3400;
bfa74976
RS
3401@end group
3402
3403@group
de6be119
AD
3404expseq1:
3405 exp
3406| expseq1 ',' exp
3407;
bfa74976
RS
3408@end group
3409@end example
3410
3411@noindent
3412It is customary to write a comment @samp{/* empty */} in each rule
3413with no components.
3414
342b8b6e 3415@node Recursion
bfa74976
RS
3416@section Recursive Rules
3417@cindex recursive rule
3418
f8e1c9e5
AD
3419A rule is called @dfn{recursive} when its @var{result} nonterminal
3420appears also on its right hand side. Nearly all Bison grammars need to
3421use recursion, because that is the only way to define a sequence of any
3422number of a particular thing. Consider this recursive definition of a
9ecbd125 3423comma-separated sequence of one or more expressions:
bfa74976
RS
3424
3425@example
3426@group
de6be119
AD
3427expseq1:
3428 exp
3429| expseq1 ',' exp
3430;
bfa74976
RS
3431@end group
3432@end example
3433
3434@cindex left recursion
3435@cindex right recursion
3436@noindent
3437Since the recursive use of @code{expseq1} is the leftmost symbol in the
3438right hand side, we call this @dfn{left recursion}. By contrast, here
3439the same construct is defined using @dfn{right recursion}:
3440
3441@example
3442@group
de6be119
AD
3443expseq1:
3444 exp
3445| exp ',' expseq1
3446;
bfa74976
RS
3447@end group
3448@end example
3449
3450@noindent
ec3bc396
AD
3451Any kind of sequence can be defined using either left recursion or right
3452recursion, but you should always use left recursion, because it can
3453parse a sequence of any number of elements with bounded stack space.
3454Right recursion uses up space on the Bison stack in proportion to the
3455number of elements in the sequence, because all the elements must be
3456shifted onto the stack before the rule can be applied even once.
3457@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3458of this.
bfa74976
RS
3459
3460@cindex mutual recursion
3461@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3462rule does not appear directly on its right hand side, but does appear
3463in rules for other nonterminals which do appear on its right hand
13863333 3464side.
bfa74976
RS
3465
3466For example:
3467
3468@example
3469@group
de6be119
AD
3470expr:
3471 primary
3472| primary '+' primary
3473;
bfa74976
RS
3474@end group
3475
3476@group
de6be119
AD
3477primary:
3478 constant
3479| '(' expr ')'
3480;
bfa74976
RS
3481@end group
3482@end example
3483
3484@noindent
3485defines two mutually-recursive nonterminals, since each refers to the
3486other.
3487
342b8b6e 3488@node Semantics
bfa74976
RS
3489@section Defining Language Semantics
3490@cindex defining language semantics
13863333 3491@cindex language semantics, defining
bfa74976
RS
3492
3493The grammar rules for a language determine only the syntax. The semantics
3494are determined by the semantic values associated with various tokens and
3495groupings, and by the actions taken when various groupings are recognized.
3496
3497For example, the calculator calculates properly because the value
3498associated with each expression is the proper number; it adds properly
3499because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3500the numbers associated with @var{x} and @var{y}.
3501
3502@menu
3503* Value Type:: Specifying one data type for all semantic values.
3504* Multiple Types:: Specifying several alternative data types.
3505* Actions:: An action is the semantic definition of a grammar rule.
3506* Action Types:: Specifying data types for actions to operate on.
3507* Mid-Rule Actions:: Most actions go at the end of a rule.
3508 This says when, why and how to use the exceptional
3509 action in the middle of a rule.
3510@end menu
3511
342b8b6e 3512@node Value Type
bfa74976
RS
3513@subsection Data Types of Semantic Values
3514@cindex semantic value type
3515@cindex value type, semantic
3516@cindex data types of semantic values
3517@cindex default data type
3518
3519In a simple program it may be sufficient to use the same data type for
3520the semantic values of all language constructs. This was true in the
35430378 3521RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3522Notation Calculator}).
bfa74976 3523
ddc8ede1
PE
3524Bison normally uses the type @code{int} for semantic values if your
3525program uses the same data type for all language constructs. To
bfa74976
RS
3526specify some other type, define @code{YYSTYPE} as a macro, like this:
3527
3528@example
3529#define YYSTYPE double
3530@end example
3531
3532@noindent
50cce58e
PE
3533@code{YYSTYPE}'s replacement list should be a type name
3534that does not contain parentheses or square brackets.
342b8b6e 3535This macro definition must go in the prologue of the grammar file
75f5aaea 3536(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3537
342b8b6e 3538@node Multiple Types
bfa74976
RS
3539@subsection More Than One Value Type
3540
3541In most programs, you will need different data types for different kinds
3542of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3543@code{int} or @code{long int}, while a string constant needs type
3544@code{char *}, and an identifier might need a pointer to an entry in the
3545symbol table.
bfa74976
RS
3546
3547To use more than one data type for semantic values in one parser, Bison
3548requires you to do two things:
3549
3550@itemize @bullet
3551@item
ddc8ede1 3552Specify the entire collection of possible data types, either by using the
704a47c4 3553@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3554Value Types}), or by using a @code{typedef} or a @code{#define} to
3555define @code{YYSTYPE} to be a union type whose member names are
3556the type tags.
bfa74976
RS
3557
3558@item
14ded682
AD
3559Choose one of those types for each symbol (terminal or nonterminal) for
3560which semantic values are used. This is done for tokens with the
3561@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3562and for groupings with the @code{%type} Bison declaration (@pxref{Type
3563Decl, ,Nonterminal Symbols}).
bfa74976
RS
3564@end itemize
3565
342b8b6e 3566@node Actions
bfa74976
RS
3567@subsection Actions
3568@cindex action
3569@vindex $$
3570@vindex $@var{n}
1f68dca5
AR
3571@vindex $@var{name}
3572@vindex $[@var{name}]
bfa74976
RS
3573
3574An action accompanies a syntactic rule and contains C code to be executed
3575each time an instance of that rule is recognized. The task of most actions
3576is to compute a semantic value for the grouping built by the rule from the
3577semantic values associated with tokens or smaller groupings.
3578
287c78f6
PE
3579An action consists of braced code containing C statements, and can be
3580placed at any position in the rule;
704a47c4
AD
3581it is executed at that position. Most rules have just one action at the
3582end of the rule, following all the components. Actions in the middle of
3583a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3584Actions, ,Actions in Mid-Rule}).
bfa74976 3585
9913d6e4
JD
3586The C code in an action can refer to the semantic values of the
3587components matched by the rule with the construct @code{$@var{n}},
3588which stands for the value of the @var{n}th component. The semantic
3589value for the grouping being constructed is @code{$$}. In addition,
3590the semantic values of symbols can be accessed with the named
3591references construct @code{$@var{name}} or @code{$[@var{name}]}.
3592Bison translates both of these constructs into expressions of the
3593appropriate type when it copies the actions into the parser
3594implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3595for the current grouping) is translated to a modifiable lvalue, so it
3596can be assigned to.
bfa74976
RS
3597
3598Here is a typical example:
3599
3600@example
3601@group
de6be119
AD
3602exp:
3603@dots{}
3604| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3605@end group
3606@end example
3607
1f68dca5
AR
3608Or, in terms of named references:
3609
3610@example
3611@group
de6be119
AD
3612exp[result]:
3613@dots{}
3614| exp[left] '+' exp[right] @{ $result = $left + $right; @}
1f68dca5
AR
3615@end group
3616@end example
3617
bfa74976
RS
3618@noindent
3619This rule constructs an @code{exp} from two smaller @code{exp} groupings
3620connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3621(@code{$left} and @code{$right})
bfa74976
RS
3622refer to the semantic values of the two component @code{exp} groupings,
3623which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3624The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3625semantic value of
bfa74976
RS
3626the addition-expression just recognized by the rule. If there were a
3627useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3628referred to as @code{$2}.
bfa74976 3629
ce24f7f5
JD
3630@xref{Named References}, for more information about using the named
3631references construct.
1f68dca5 3632
3ded9a63
AD
3633Note that the vertical-bar character @samp{|} is really a rule
3634separator, and actions are attached to a single rule. This is a
3635difference with tools like Flex, for which @samp{|} stands for either
3636``or'', or ``the same action as that of the next rule''. In the
3637following example, the action is triggered only when @samp{b} is found:
3638
3639@example
3640@group
3641a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3642@end group
3643@end example
3644
bfa74976
RS
3645@cindex default action
3646If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3647@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3648becomes the value of the whole rule. Of course, the default action is
3649valid only if the two data types match. There is no meaningful default
3650action for an empty rule; every empty rule must have an explicit action
3651unless the rule's value does not matter.
bfa74976
RS
3652
3653@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3654to tokens and groupings on the stack @emph{before} those that match the
3655current rule. This is a very risky practice, and to use it reliably
3656you must be certain of the context in which the rule is applied. Here
3657is a case in which you can use this reliably:
3658
3659@example
3660@group
de6be119
AD
3661foo:
3662 expr bar '+' expr @{ @dots{} @}
3663| expr bar '-' expr @{ @dots{} @}
3664;
bfa74976
RS
3665@end group
3666
3667@group
de6be119
AD
3668bar:
3669 /* empty */ @{ previous_expr = $0; @}
3670;
bfa74976
RS
3671@end group
3672@end example
3673
3674As long as @code{bar} is used only in the fashion shown here, @code{$0}
3675always refers to the @code{expr} which precedes @code{bar} in the
3676definition of @code{foo}.
3677
32c29292 3678@vindex yylval
742e4900 3679It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3680any, from a semantic action.
3681This semantic value is stored in @code{yylval}.
3682@xref{Action Features, ,Special Features for Use in Actions}.
3683
342b8b6e 3684@node Action Types
bfa74976
RS
3685@subsection Data Types of Values in Actions
3686@cindex action data types
3687@cindex data types in actions
3688
3689If you have chosen a single data type for semantic values, the @code{$$}
3690and @code{$@var{n}} constructs always have that data type.
3691
3692If you have used @code{%union} to specify a variety of data types, then you
3693must declare a choice among these types for each terminal or nonterminal
3694symbol that can have a semantic value. Then each time you use @code{$$} or
3695@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3696in the rule. In this example,
bfa74976
RS
3697
3698@example
3699@group
de6be119
AD
3700exp:
3701 @dots{}
3702| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3703@end group
3704@end example
3705
3706@noindent
3707@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3708have the data type declared for the nonterminal symbol @code{exp}. If
3709@code{$2} were used, it would have the data type declared for the
e0c471a9 3710terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3711
3712Alternatively, you can specify the data type when you refer to the value,
3713by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3714reference. For example, if you have defined types as shown here:
3715
3716@example
3717@group
3718%union @{
3719 int itype;
3720 double dtype;
3721@}
3722@end group
3723@end example
3724
3725@noindent
3726then you can write @code{$<itype>1} to refer to the first subunit of the
3727rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3728
342b8b6e 3729@node Mid-Rule Actions
bfa74976
RS
3730@subsection Actions in Mid-Rule
3731@cindex actions in mid-rule
3732@cindex mid-rule actions
3733
3734Occasionally it is useful to put an action in the middle of a rule.
3735These actions are written just like usual end-of-rule actions, but they
3736are executed before the parser even recognizes the following components.
3737
3738A mid-rule action may refer to the components preceding it using
3739@code{$@var{n}}, but it may not refer to subsequent components because
3740it is run before they are parsed.
3741
3742The mid-rule action itself counts as one of the components of the rule.
3743This makes a difference when there is another action later in the same rule
3744(and usually there is another at the end): you have to count the actions
3745along with the symbols when working out which number @var{n} to use in
3746@code{$@var{n}}.
3747
3748The mid-rule action can also have a semantic value. The action can set
3749its value with an assignment to @code{$$}, and actions later in the rule
3750can refer to the value using @code{$@var{n}}. Since there is no symbol
3751to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3752in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3753specify a data type each time you refer to this value.
bfa74976
RS
3754
3755There is no way to set the value of the entire rule with a mid-rule
3756action, because assignments to @code{$$} do not have that effect. The
3757only way to set the value for the entire rule is with an ordinary action
3758at the end of the rule.
3759
3760Here is an example from a hypothetical compiler, handling a @code{let}
3761statement that looks like @samp{let (@var{variable}) @var{statement}} and
3762serves to create a variable named @var{variable} temporarily for the
3763duration of @var{statement}. To parse this construct, we must put
3764@var{variable} into the symbol table while @var{statement} is parsed, then
3765remove it afterward. Here is how it is done:
3766
3767@example
3768@group
de6be119
AD
3769stmt:
3770 LET '(' var ')'
3771 @{ $<context>$ = push_context (); declare_variable ($3); @}
3772 stmt
3773 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3774@end group
3775@end example
3776
3777@noindent
3778As soon as @samp{let (@var{variable})} has been recognized, the first
3779action is run. It saves a copy of the current semantic context (the
3780list of accessible variables) as its semantic value, using alternative
3781@code{context} in the data-type union. Then it calls
3782@code{declare_variable} to add the new variable to that list. Once the
3783first action is finished, the embedded statement @code{stmt} can be
3784parsed. Note that the mid-rule action is component number 5, so the
3785@samp{stmt} is component number 6.
3786
3787After the embedded statement is parsed, its semantic value becomes the
3788value of the entire @code{let}-statement. Then the semantic value from the
3789earlier action is used to restore the prior list of variables. This
3790removes the temporary @code{let}-variable from the list so that it won't
3791appear to exist while the rest of the program is parsed.
3792
841a7737
JD
3793@findex %destructor
3794@cindex discarded symbols, mid-rule actions
3795@cindex error recovery, mid-rule actions
3796In the above example, if the parser initiates error recovery (@pxref{Error
3797Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3798it might discard the previous semantic context @code{$<context>5} without
3799restoring it.
3800Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3801Discarded Symbols}).
ec5479ce
JD
3802However, Bison currently provides no means to declare a destructor specific to
3803a particular mid-rule action's semantic value.
841a7737
JD
3804
3805One solution is to bury the mid-rule action inside a nonterminal symbol and to
3806declare a destructor for that symbol:
3807
3808@example
3809@group
3810%type <context> let
3811%destructor @{ pop_context ($$); @} let
3812
3813%%
3814
de6be119
AD
3815stmt:
3816 let stmt
3817 @{
3818 $$ = $2;
3819 pop_context ($1);
3820 @};
841a7737 3821
de6be119
AD
3822let:
3823 LET '(' var ')'
3824 @{
3825 $$ = push_context ();
3826 declare_variable ($3);
3827 @};
841a7737
JD
3828
3829@end group
3830@end example
3831
3832@noindent
3833Note that the action is now at the end of its rule.
3834Any mid-rule action can be converted to an end-of-rule action in this way, and
3835this is what Bison actually does to implement mid-rule actions.
3836
bfa74976
RS
3837Taking action before a rule is completely recognized often leads to
3838conflicts since the parser must commit to a parse in order to execute the
3839action. For example, the following two rules, without mid-rule actions,
3840can coexist in a working parser because the parser can shift the open-brace
3841token and look at what follows before deciding whether there is a
3842declaration or not:
3843
3844@example
3845@group
de6be119
AD
3846compound:
3847 '@{' declarations statements '@}'
3848| '@{' statements '@}'
3849;
bfa74976
RS
3850@end group
3851@end example
3852
3853@noindent
3854But when we add a mid-rule action as follows, the rules become nonfunctional:
3855
3856@example
3857@group
de6be119
AD
3858compound:
3859 @{ prepare_for_local_variables (); @}
3860 '@{' declarations statements '@}'
bfa74976
RS
3861@end group
3862@group
de6be119
AD
3863| '@{' statements '@}'
3864;
bfa74976
RS
3865@end group
3866@end example
3867
3868@noindent
3869Now the parser is forced to decide whether to run the mid-rule action
3870when it has read no farther than the open-brace. In other words, it
3871must commit to using one rule or the other, without sufficient
3872information to do it correctly. (The open-brace token is what is called
742e4900
JD
3873the @dfn{lookahead} token at this time, since the parser is still
3874deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3875
3876You might think that you could correct the problem by putting identical
3877actions into the two rules, like this:
3878
3879@example
3880@group
de6be119
AD
3881compound:
3882 @{ prepare_for_local_variables (); @}
3883 '@{' declarations statements '@}'
3884| @{ prepare_for_local_variables (); @}
3885 '@{' statements '@}'
3886;
bfa74976
RS
3887@end group
3888@end example
3889
3890@noindent
3891But this does not help, because Bison does not realize that the two actions
3892are identical. (Bison never tries to understand the C code in an action.)
3893
3894If the grammar is such that a declaration can be distinguished from a
3895statement by the first token (which is true in C), then one solution which
3896does work is to put the action after the open-brace, like this:
3897
3898@example
3899@group
de6be119
AD
3900compound:
3901 '@{' @{ prepare_for_local_variables (); @}
3902 declarations statements '@}'
3903| '@{' statements '@}'
3904;
bfa74976
RS
3905@end group
3906@end example
3907
3908@noindent
3909Now the first token of the following declaration or statement,
3910which would in any case tell Bison which rule to use, can still do so.
3911
3912Another solution is to bury the action inside a nonterminal symbol which
3913serves as a subroutine:
3914
3915@example
3916@group
de6be119
AD
3917subroutine:
3918 /* empty */ @{ prepare_for_local_variables (); @}
3919;
bfa74976
RS
3920@end group
3921
3922@group
de6be119
AD
3923compound:
3924 subroutine '@{' declarations statements '@}'
3925| subroutine '@{' statements '@}'
3926;
bfa74976
RS
3927@end group
3928@end example
3929
3930@noindent
3931Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3932deciding which rule for @code{compound} it will eventually use.
bfa74976 3933
7404cdf3 3934@node Tracking Locations
847bf1f5
AD
3935@section Tracking Locations
3936@cindex location
95923bd6
AD
3937@cindex textual location
3938@cindex location, textual
847bf1f5
AD
3939
3940Though grammar rules and semantic actions are enough to write a fully
72d2299c 3941functional parser, it can be useful to process some additional information,
3e259915
MA
3942especially symbol locations.
3943
704a47c4
AD
3944The way locations are handled is defined by providing a data type, and
3945actions to take when rules are matched.
847bf1f5
AD
3946
3947@menu
3948* Location Type:: Specifying a data type for locations.
3949* Actions and Locations:: Using locations in actions.
3950* Location Default Action:: Defining a general way to compute locations.
3951@end menu
3952
342b8b6e 3953@node Location Type
847bf1f5
AD
3954@subsection Data Type of Locations
3955@cindex data type of locations
3956@cindex default location type
3957
3958Defining a data type for locations is much simpler than for semantic values,
3959since all tokens and groupings always use the same type.
3960
50cce58e
PE
3961You can specify the type of locations by defining a macro called
3962@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3963defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3964When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3965four members:
3966
3967@example
6273355b 3968typedef struct YYLTYPE
847bf1f5
AD
3969@{
3970 int first_line;
3971 int first_column;
3972 int last_line;
3973 int last_column;
6273355b 3974@} YYLTYPE;
847bf1f5
AD
3975@end example
3976
8fbbeba2
AD
3977When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3978initializes all these fields to 1 for @code{yylloc}. To initialize
3979@code{yylloc} with a custom location type (or to chose a different
3980initialization), use the @code{%initial-action} directive. @xref{Initial
3981Action Decl, , Performing Actions before Parsing}.
cd48d21d 3982
342b8b6e 3983@node Actions and Locations
847bf1f5
AD
3984@subsection Actions and Locations
3985@cindex location actions
3986@cindex actions, location
3987@vindex @@$
3988@vindex @@@var{n}
1f68dca5
AR
3989@vindex @@@var{name}
3990@vindex @@[@var{name}]
847bf1f5
AD
3991
3992Actions are not only useful for defining language semantics, but also for
3993describing the behavior of the output parser with locations.
3994
3995The most obvious way for building locations of syntactic groupings is very
72d2299c 3996similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3997constructs can be used to access the locations of the elements being matched.
3998The location of the @var{n}th component of the right hand side is
3999@code{@@@var{n}}, while the location of the left hand side grouping is
4000@code{@@$}.
4001
1f68dca5
AR
4002In addition, the named references construct @code{@@@var{name}} and
4003@code{@@[@var{name}]} may also be used to address the symbol locations.
ce24f7f5
JD
4004@xref{Named References}, for more information about using the named
4005references construct.
1f68dca5 4006
3e259915 4007Here is a basic example using the default data type for locations:
847bf1f5
AD
4008
4009@example
4010@group
de6be119
AD
4011exp:
4012 @dots{}
4013| exp '/' exp
4014 @{
4015 @@$.first_column = @@1.first_column;
4016 @@$.first_line = @@1.first_line;
4017 @@$.last_column = @@3.last_column;
4018 @@$.last_line = @@3.last_line;
4019 if ($3)
4020 $$ = $1 / $3;
4021 else
4022 @{
4023 $$ = 1;
4024 fprintf (stderr,
4025 "Division by zero, l%d,c%d-l%d,c%d",
4026 @@3.first_line, @@3.first_column,
4027 @@3.last_line, @@3.last_column);
4028 @}
4029 @}
847bf1f5
AD
4030@end group
4031@end example
4032
3e259915 4033As for semantic values, there is a default action for locations that is
72d2299c 4034run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4035beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4036last symbol.
3e259915 4037
72d2299c 4038With this default action, the location tracking can be fully automatic. The
3e259915
MA
4039example above simply rewrites this way:
4040
4041@example
4042@group
de6be119
AD
4043exp:
4044 @dots{}
4045| exp '/' exp
4046 @{
4047 if ($3)
4048 $$ = $1 / $3;
4049 else
4050 @{
4051 $$ = 1;
4052 fprintf (stderr,
4053 "Division by zero, l%d,c%d-l%d,c%d",
4054 @@3.first_line, @@3.first_column,
4055 @@3.last_line, @@3.last_column);
4056 @}
4057 @}
3e259915
MA
4058@end group
4059@end example
847bf1f5 4060
32c29292 4061@vindex yylloc
742e4900 4062It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4063from a semantic action.
4064This location is stored in @code{yylloc}.
4065@xref{Action Features, ,Special Features for Use in Actions}.
4066
342b8b6e 4067@node Location Default Action
847bf1f5
AD
4068@subsection Default Action for Locations
4069@vindex YYLLOC_DEFAULT
35430378 4070@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4071
72d2299c 4072Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4073locations are much more general than semantic values, there is room in
4074the output parser to redefine the default action to take for each
72d2299c 4075rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4076matched, before the associated action is run. It is also invoked
4077while processing a syntax error, to compute the error's location.
35430378 4078Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4079parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4080of that ambiguity.
847bf1f5 4081
3e259915 4082Most of the time, this macro is general enough to suppress location
79282c6c 4083dedicated code from semantic actions.
847bf1f5 4084
72d2299c 4085The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4086the location of the grouping (the result of the computation). When a
766de5eb 4087rule is matched, the second parameter identifies locations of
96b93a3d 4088all right hand side elements of the rule being matched, and the third
8710fc41 4089parameter is the size of the rule's right hand side.
35430378 4090When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4091right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4092When processing a syntax error, the second parameter identifies locations
4093of the symbols that were discarded during error processing, and the third
96b93a3d 4094parameter is the number of discarded symbols.
847bf1f5 4095
766de5eb 4096By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4097
ea118b72 4098@example
847bf1f5 4099@group
ea118b72
AD
4100# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4101do \
4102 if (N) \
4103 @{ \
4104 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4105 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4106 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4107 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4108 @} \
4109 else \
4110 @{ \
4111 (Cur).first_line = (Cur).last_line = \
4112 YYRHSLOC(Rhs, 0).last_line; \
4113 (Cur).first_column = (Cur).last_column = \
4114 YYRHSLOC(Rhs, 0).last_column; \
4115 @} \
4116while (0)
847bf1f5 4117@end group
ea118b72 4118@end example
676385e2 4119
2c0f9706 4120@noindent
766de5eb
PE
4121where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4122in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4123just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4124
3e259915 4125When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4126
3e259915 4127@itemize @bullet
79282c6c 4128@item
72d2299c 4129All arguments are free of side-effects. However, only the first one (the
3e259915 4130result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4131
3e259915 4132@item
766de5eb
PE
4133For consistency with semantic actions, valid indexes within the
4134right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4135valid index, and it refers to the symbol just before the reduction.
4136During error processing @var{n} is always positive.
0ae99356
PE
4137
4138@item
4139Your macro should parenthesize its arguments, if need be, since the
4140actual arguments may not be surrounded by parentheses. Also, your
4141macro should expand to something that can be used as a single
4142statement when it is followed by a semicolon.
3e259915 4143@end itemize
847bf1f5 4144
908c8647 4145@node Named References
ce24f7f5 4146@section Named References
908c8647
JD
4147@cindex named references
4148
7d31f092
JD
4149As described in the preceding sections, the traditional way to refer to any
4150semantic value or location is a @dfn{positional reference}, which takes the
4151form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4152such a reference is not very descriptive. Moreover, if you later decide to
4153insert or remove symbols in the right-hand side of a grammar rule, the need
4154to renumber such references can be tedious and error-prone.
4155
4156To avoid these issues, you can also refer to a semantic value or location
4157using a @dfn{named reference}. First of all, original symbol names may be
4158used as named references. For example:
908c8647
JD
4159
4160@example
4161@group
4162invocation: op '(' args ')'
4163 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4164@end group
4165@end example
4166
4167@noindent
7d31f092 4168Positional and named references can be mixed arbitrarily. For example:
908c8647
JD
4169
4170@example
4171@group
4172invocation: op '(' args ')'
4173 @{ $$ = new_invocation ($op, $args, @@$); @}
4174@end group
4175@end example
4176
4177@noindent
4178However, sometimes regular symbol names are not sufficient due to
4179ambiguities:
4180
4181@example
4182@group
4183exp: exp '/' exp
4184 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4185
4186exp: exp '/' exp
4187 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4188
4189exp: exp '/' exp
4190 @{ $$ = $1 / $3; @} // No error.
4191@end group
4192@end example
4193
4194@noindent
4195When ambiguity occurs, explicitly declared names may be used for values and
4196locations. Explicit names are declared as a bracketed name after a symbol
4197appearance in rule definitions. For example:
4198@example
4199@group
4200exp[result]: exp[left] '/' exp[right]
4201 @{ $result = $left / $right; @}
4202@end group
4203@end example
4204
4205@noindent
ce24f7f5
JD
4206In order to access a semantic value generated by a mid-rule action, an
4207explicit name may also be declared by putting a bracketed name after the
4208closing brace of the mid-rule action code:
908c8647
JD
4209@example
4210@group
4211exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4212 @{ $res = $left + $right; @}
4213@end group
4214@end example
4215
4216@noindent
4217
4218In references, in order to specify names containing dots and dashes, an explicit
4219bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4220@example
4221@group
14f4455e 4222if-stmt: "if" '(' expr ')' "then" then.stmt ';'
908c8647
JD
4223 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4224@end group
4225@end example
4226
4227It often happens that named references are followed by a dot, dash or other
4228C punctuation marks and operators. By default, Bison will read
ce24f7f5
JD
4229@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4230@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4231value. In order to force Bison to recognize @samp{name.suffix} in its
4232entirety as the name of a semantic value, the bracketed syntax
4233@samp{$[name.suffix]} must be used.
4234
4235The named references feature is experimental. More user feedback will help
4236to stabilize it.
908c8647 4237
342b8b6e 4238@node Declarations
bfa74976
RS
4239@section Bison Declarations
4240@cindex declarations, Bison
4241@cindex Bison declarations
4242
4243The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4244used in formulating the grammar and the data types of semantic values.
4245@xref{Symbols}.
4246
4247All token type names (but not single-character literal tokens such as
4248@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4249declared if you need to specify which data type to use for the semantic
4250value (@pxref{Multiple Types, ,More Than One Value Type}).
4251
9913d6e4
JD
4252The first rule in the grammar file also specifies the start symbol, by
4253default. If you want some other symbol to be the start symbol, you
4254must declare it explicitly (@pxref{Language and Grammar, ,Languages
4255and Context-Free Grammars}).
bfa74976
RS
4256
4257@menu
b50d2359 4258* Require Decl:: Requiring a Bison version.
bfa74976
RS
4259* Token Decl:: Declaring terminal symbols.
4260* Precedence Decl:: Declaring terminals with precedence and associativity.
4261* Union Decl:: Declaring the set of all semantic value types.
4262* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4263* Initial Action Decl:: Code run before parsing starts.
72f889cc 4264* Destructor Decl:: Declaring how symbols are freed.
56d60c19 4265* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4266* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4267* Start Decl:: Specifying the start symbol.
4268* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4269* Push Decl:: Requesting a push parser.
bfa74976 4270* Decl Summary:: Table of all Bison declarations.
2f4518a1 4271* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 4272* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4273@end menu
4274
b50d2359
AD
4275@node Require Decl
4276@subsection Require a Version of Bison
4277@cindex version requirement
4278@cindex requiring a version of Bison
4279@findex %require
4280
4281You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4282the requirement is not met, @command{bison} exits with an error (exit
4283status 63).
b50d2359
AD
4284
4285@example
4286%require "@var{version}"
4287@end example
4288
342b8b6e 4289@node Token Decl
bfa74976
RS
4290@subsection Token Type Names
4291@cindex declaring token type names
4292@cindex token type names, declaring
931c7513 4293@cindex declaring literal string tokens
bfa74976
RS
4294@findex %token
4295
4296The basic way to declare a token type name (terminal symbol) is as follows:
4297
4298@example
4299%token @var{name}
4300@end example
4301
4302Bison will convert this into a @code{#define} directive in
4303the parser, so that the function @code{yylex} (if it is in this file)
4304can use the name @var{name} to stand for this token type's code.
4305
14ded682
AD
4306Alternatively, you can use @code{%left}, @code{%right}, or
4307@code{%nonassoc} instead of @code{%token}, if you wish to specify
4308associativity and precedence. @xref{Precedence Decl, ,Operator
4309Precedence}.
bfa74976
RS
4310
4311You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4312a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4313following the token name:
bfa74976
RS
4314
4315@example
4316%token NUM 300
1452af69 4317%token XNUM 0x12d // a GNU extension
bfa74976
RS
4318@end example
4319
4320@noindent
4321It is generally best, however, to let Bison choose the numeric codes for
4322all token types. Bison will automatically select codes that don't conflict
e966383b 4323with each other or with normal characters.
bfa74976
RS
4324
4325In the event that the stack type is a union, you must augment the
4326@code{%token} or other token declaration to include the data type
704a47c4
AD
4327alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4328Than One Value Type}).
bfa74976
RS
4329
4330For example:
4331
4332@example
4333@group
4334%union @{ /* define stack type */
4335 double val;
4336 symrec *tptr;
4337@}
4338%token <val> NUM /* define token NUM and its type */
4339@end group
4340@end example
4341
931c7513
RS
4342You can associate a literal string token with a token type name by
4343writing the literal string at the end of a @code{%token}
4344declaration which declares the name. For example:
4345
4346@example
4347%token arrow "=>"
4348@end example
4349
4350@noindent
4351For example, a grammar for the C language might specify these names with
4352equivalent literal string tokens:
4353
4354@example
4355%token <operator> OR "||"
4356%token <operator> LE 134 "<="
4357%left OR "<="
4358@end example
4359
4360@noindent
4361Once you equate the literal string and the token name, you can use them
4362interchangeably in further declarations or the grammar rules. The
4363@code{yylex} function can use the token name or the literal string to
4364obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4365Syntax error messages passed to @code{yyerror} from the parser will reference
4366the literal string instead of the token name.
4367
4368The token numbered as 0 corresponds to end of file; the following line
4369allows for nicer error messages referring to ``end of file'' instead
4370of ``$end'':
4371
4372@example
4373%token END 0 "end of file"
4374@end example
931c7513 4375
342b8b6e 4376@node Precedence Decl
bfa74976
RS
4377@subsection Operator Precedence
4378@cindex precedence declarations
4379@cindex declaring operator precedence
4380@cindex operator precedence, declaring
4381
4382Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4383declare a token and specify its precedence and associativity, all at
4384once. These are called @dfn{precedence declarations}.
704a47c4
AD
4385@xref{Precedence, ,Operator Precedence}, for general information on
4386operator precedence.
bfa74976 4387
ab7f29f8 4388The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4389@code{%token}: either
4390
4391@example
4392%left @var{symbols}@dots{}
4393@end example
4394
4395@noindent
4396or
4397
4398@example
4399%left <@var{type}> @var{symbols}@dots{}
4400@end example
4401
4402And indeed any of these declarations serves the purposes of @code{%token}.
4403But in addition, they specify the associativity and relative precedence for
4404all the @var{symbols}:
4405
4406@itemize @bullet
4407@item
4408The associativity of an operator @var{op} determines how repeated uses
4409of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4410@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4411grouping @var{y} with @var{z} first. @code{%left} specifies
4412left-associativity (grouping @var{x} with @var{y} first) and
4413@code{%right} specifies right-associativity (grouping @var{y} with
4414@var{z} first). @code{%nonassoc} specifies no associativity, which
4415means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4416considered a syntax error.
4417
4418@item
4419The precedence of an operator determines how it nests with other operators.
4420All the tokens declared in a single precedence declaration have equal
4421precedence and nest together according to their associativity.
4422When two tokens declared in different precedence declarations associate,
4423the one declared later has the higher precedence and is grouped first.
4424@end itemize
4425
ab7f29f8
JD
4426For backward compatibility, there is a confusing difference between the
4427argument lists of @code{%token} and precedence declarations.
4428Only a @code{%token} can associate a literal string with a token type name.
4429A precedence declaration always interprets a literal string as a reference to a
4430separate token.
4431For example:
4432
4433@example
4434%left OR "<=" // Does not declare an alias.
4435%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4436@end example
4437
342b8b6e 4438@node Union Decl
bfa74976
RS
4439@subsection The Collection of Value Types
4440@cindex declaring value types
4441@cindex value types, declaring
4442@findex %union
4443
287c78f6
PE
4444The @code{%union} declaration specifies the entire collection of
4445possible data types for semantic values. The keyword @code{%union} is
4446followed by braced code containing the same thing that goes inside a
4447@code{union} in C@.
bfa74976
RS
4448
4449For example:
4450
4451@example
4452@group
4453%union @{
4454 double val;
4455 symrec *tptr;
4456@}
4457@end group
4458@end example
4459
4460@noindent
4461This says that the two alternative types are @code{double} and @code{symrec
4462*}. They are given names @code{val} and @code{tptr}; these names are used
4463in the @code{%token} and @code{%type} declarations to pick one of the types
4464for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4465
35430378 4466As an extension to POSIX, a tag is allowed after the
6273355b
PE
4467@code{union}. For example:
4468
4469@example
4470@group
4471%union value @{
4472 double val;
4473 symrec *tptr;
4474@}
4475@end group
4476@end example
4477
d6ca7905 4478@noindent
6273355b
PE
4479specifies the union tag @code{value}, so the corresponding C type is
4480@code{union value}. If you do not specify a tag, it defaults to
4481@code{YYSTYPE}.
4482
35430378 4483As another extension to POSIX, you may specify multiple
d6ca7905
PE
4484@code{%union} declarations; their contents are concatenated. However,
4485only the first @code{%union} declaration can specify a tag.
4486
6273355b 4487Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4488a semicolon after the closing brace.
4489
ddc8ede1
PE
4490Instead of @code{%union}, you can define and use your own union type
4491@code{YYSTYPE} if your grammar contains at least one
4492@samp{<@var{type}>} tag. For example, you can put the following into
4493a header file @file{parser.h}:
4494
4495@example
4496@group
4497union YYSTYPE @{
4498 double val;
4499 symrec *tptr;
4500@};
4501typedef union YYSTYPE YYSTYPE;
4502@end group
4503@end example
4504
4505@noindent
4506and then your grammar can use the following
4507instead of @code{%union}:
4508
4509@example
4510@group
4511%@{
4512#include "parser.h"
4513%@}
4514%type <val> expr
4515%token <tptr> ID
4516@end group
4517@end example
4518
342b8b6e 4519@node Type Decl
bfa74976
RS
4520@subsection Nonterminal Symbols
4521@cindex declaring value types, nonterminals
4522@cindex value types, nonterminals, declaring
4523@findex %type
4524
4525@noindent
4526When you use @code{%union} to specify multiple value types, you must
4527declare the value type of each nonterminal symbol for which values are
4528used. This is done with a @code{%type} declaration, like this:
4529
4530@example
4531%type <@var{type}> @var{nonterminal}@dots{}
4532@end example
4533
4534@noindent
704a47c4
AD
4535Here @var{nonterminal} is the name of a nonterminal symbol, and
4536@var{type} is the name given in the @code{%union} to the alternative
4537that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4538can give any number of nonterminal symbols in the same @code{%type}
4539declaration, if they have the same value type. Use spaces to separate
4540the symbol names.
bfa74976 4541
931c7513
RS
4542You can also declare the value type of a terminal symbol. To do this,
4543use the same @code{<@var{type}>} construction in a declaration for the
4544terminal symbol. All kinds of token declarations allow
4545@code{<@var{type}>}.
4546
18d192f0
AD
4547@node Initial Action Decl
4548@subsection Performing Actions before Parsing
4549@findex %initial-action
4550
4551Sometimes your parser needs to perform some initializations before
4552parsing. The @code{%initial-action} directive allows for such arbitrary
4553code.
4554
4555@deffn {Directive} %initial-action @{ @var{code} @}
4556@findex %initial-action
287c78f6 4557Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4558@code{yyparse} is called. The @var{code} may use @code{$$} (or
4559@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4560lookahead --- and the @code{%parse-param}.
18d192f0
AD
4561@end deffn
4562
451364ed
AD
4563For instance, if your locations use a file name, you may use
4564
4565@example
48b16bbc 4566%parse-param @{ char const *file_name @};
451364ed
AD
4567%initial-action
4568@{
4626a15d 4569 @@$.initialize (file_name);
451364ed
AD
4570@};
4571@end example
4572
18d192f0 4573
72f889cc
AD
4574@node Destructor Decl
4575@subsection Freeing Discarded Symbols
4576@cindex freeing discarded symbols
4577@findex %destructor
12e35840 4578@findex <*>
3ebecc24 4579@findex <>
a85284cf
AD
4580During error recovery (@pxref{Error Recovery}), symbols already pushed
4581on the stack and tokens coming from the rest of the file are discarded
4582until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4583or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4584symbols on the stack must be discarded. Even if the parser succeeds, it
4585must discard the start symbol.
258b75ca
PE
4586
4587When discarded symbols convey heap based information, this memory is
4588lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4589in traditional compilers, it is unacceptable for programs like shells or
4590protocol implementations that may parse and execute indefinitely.
258b75ca 4591
a85284cf
AD
4592The @code{%destructor} directive defines code that is called when a
4593symbol is automatically discarded.
72f889cc
AD
4594
4595@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4596@findex %destructor
287c78f6 4597Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4598@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4599designates the semantic value associated with the discarded symbol, and
4600@code{@@$} designates its location. The additional parser parameters are
4601also available (@pxref{Parser Function, , The Parser Function
4602@code{yyparse}}).
ec5479ce 4603
b2a0b7ca
JD
4604When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4605per-symbol @code{%destructor}.
4606You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4607tag among @var{symbols}.
b2a0b7ca 4608In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4609grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4610per-symbol @code{%destructor}.
4611
12e35840 4612Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4613(These default forms are experimental.
4614More user feedback will help to determine whether they should become permanent
4615features.)
3ebecc24 4616You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4617exactly one @code{%destructor} declaration in your grammar file.
4618The parser will invoke the @var{code} associated with one of these whenever it
4619discards any user-defined grammar symbol that has no per-symbol and no per-type
4620@code{%destructor}.
4621The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4622symbol for which you have formally declared a semantic type tag (@code{%type}
4623counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4624The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4625symbol that has no declared semantic type tag.
72f889cc
AD
4626@end deffn
4627
b2a0b7ca 4628@noindent
12e35840 4629For example:
72f889cc 4630
ea118b72 4631@example
ec5479ce
JD
4632%union @{ char *string; @}
4633%token <string> STRING1
4634%token <string> STRING2
4635%type <string> string1
4636%type <string> string2
b2a0b7ca
JD
4637%union @{ char character; @}
4638%token <character> CHR
4639%type <character> chr
12e35840
JD
4640%token TAGLESS
4641
b2a0b7ca 4642%destructor @{ @} <character>
12e35840
JD
4643%destructor @{ free ($$); @} <*>
4644%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4645%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
ea118b72 4646@end example
72f889cc
AD
4647
4648@noindent
b2a0b7ca
JD
4649guarantees that, when the parser discards any user-defined symbol that has a
4650semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4651to @code{free} by default.
ec5479ce
JD
4652However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4653prints its line number to @code{stdout}.
4654It performs only the second @code{%destructor} in this case, so it invokes
4655@code{free} only once.
12e35840
JD
4656Finally, the parser merely prints a message whenever it discards any symbol,
4657such as @code{TAGLESS}, that has no semantic type tag.
4658
4659A Bison-generated parser invokes the default @code{%destructor}s only for
4660user-defined as opposed to Bison-defined symbols.
4661For example, the parser will not invoke either kind of default
4662@code{%destructor} for the special Bison-defined symbols @code{$accept},
4663@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4664none of which you can reference in your grammar.
4665It also will not invoke either for the @code{error} token (@pxref{Table of
4666Symbols, ,error}), which is always defined by Bison regardless of whether you
4667reference it in your grammar.
4668However, it may invoke one of them for the end token (token 0) if you
4669redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4670
ea118b72 4671@example
3508ce36 4672%token END 0
ea118b72 4673@end example
3508ce36 4674
12e35840
JD
4675@cindex actions in mid-rule
4676@cindex mid-rule actions
4677Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4678mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
ce24f7f5
JD
4679That is, Bison does not consider a mid-rule to have a semantic value if you
4680do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4681(where @var{n} is the right-hand side symbol position of the mid-rule) in
4682any later action in that rule. However, if you do reference either, the
4683Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4684it discards the mid-rule symbol.
12e35840 4685
3508ce36
JD
4686@ignore
4687@noindent
4688In the future, it may be possible to redefine the @code{error} token as a
4689nonterminal that captures the discarded symbols.
4690In that case, the parser will invoke the default destructor for it as well.
4691@end ignore
4692
e757bb10
AD
4693@sp 1
4694
4695@cindex discarded symbols
4696@dfn{Discarded symbols} are the following:
4697
4698@itemize
4699@item
4700stacked symbols popped during the first phase of error recovery,
4701@item
4702incoming terminals during the second phase of error recovery,
4703@item
742e4900 4704the current lookahead and the entire stack (except the current
9d9b8b70 4705right-hand side symbols) when the parser returns immediately, and
258b75ca 4706@item
d3e4409a
AD
4707the current lookahead and the entire stack (including the current right-hand
4708side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4709@code{parse},
4710@item
258b75ca 4711the start symbol, when the parser succeeds.
e757bb10
AD
4712@end itemize
4713
9d9b8b70
PE
4714The parser can @dfn{return immediately} because of an explicit call to
4715@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4716exhaustion.
4717
29553547 4718Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4719error via @code{YYERROR} are not discarded automatically. As a rule
4720of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4721the memory.
e757bb10 4722
56d60c19
AD
4723@node Printer Decl
4724@subsection Printing Semantic Values
4725@cindex printing semantic values
4726@findex %printer
4727@findex <*>
4728@findex <>
4729When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4730the parser reports its actions, such as reductions. When a symbol involved
4731in an action is reported, only its kind is displayed, as the parser cannot
4732know how semantic values should be formatted.
4733
4734The @code{%printer} directive defines code that is called when a symbol is
4735reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4736Decl, , Freeing Discarded Symbols}).
4737
4738@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4739@findex %printer
4740@vindex yyoutput
4741@c This is the same text as for %destructor.
4742Invoke the braced @var{code} whenever the parser displays one of the
4743@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4744(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4745@code{$<@var{tag}>$}) designates the semantic value associated with the
4746symbol, and @code{@@$} its location. The additional parser parameters are
4747also available (@pxref{Parser Function, , The Parser Function
4748@code{yyparse}}).
56d60c19
AD
4749
4750The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4751Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4752@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4753typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4754@samp{<>}).
4755@end deffn
4756
4757@noindent
4758For example:
4759
4760@example
4761%union @{ char *string; @}
4762%token <string> STRING1
4763%token <string> STRING2
4764%type <string> string1
4765%type <string> string2
4766%union @{ char character; @}
4767%token <character> CHR
4768%type <character> chr
4769%token TAGLESS
4770
4771%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4772%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4773%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4774%printer @{ fprintf (yyoutput, "<>"); @} <>
4775@end example
4776
4777@noindent
4778guarantees that, when the parser print any symbol that has a semantic type
4779tag other than @code{<character>}, it display the address of the semantic
4780value by default. However, when the parser displays a @code{STRING1} or a
4781@code{string1}, it formats it as a string in double quotes. It performs
4782only the second @code{%printer} in this case, so it prints only once.
4783Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4784that has no semantic type tag. See also
4785
4786
342b8b6e 4787@node Expect Decl
bfa74976
RS
4788@subsection Suppressing Conflict Warnings
4789@cindex suppressing conflict warnings
4790@cindex preventing warnings about conflicts
4791@cindex warnings, preventing
4792@cindex conflicts, suppressing warnings of
4793@findex %expect
d6328241 4794@findex %expect-rr
bfa74976
RS
4795
4796Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4797(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4798have harmless shift/reduce conflicts which are resolved in a predictable
4799way and would be difficult to eliminate. It is desirable to suppress
4800the warning about these conflicts unless the number of conflicts
4801changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4802
4803The declaration looks like this:
4804
4805@example
4806%expect @var{n}
4807@end example
4808
035aa4a0
PE
4809Here @var{n} is a decimal integer. The declaration says there should
4810be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4811Bison reports an error if the number of shift/reduce conflicts differs
4812from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4813
34a6c2d1 4814For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4815serious, and should be eliminated entirely. Bison will always report
35430378 4816reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4817parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4818there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4819also possible to specify an expected number of reduce/reduce conflicts
35430378 4820in GLR parsers, using the declaration:
d6328241
PH
4821
4822@example
4823%expect-rr @var{n}
4824@end example
4825
bfa74976
RS
4826In general, using @code{%expect} involves these steps:
4827
4828@itemize @bullet
4829@item
4830Compile your grammar without @code{%expect}. Use the @samp{-v} option
4831to get a verbose list of where the conflicts occur. Bison will also
4832print the number of conflicts.
4833
4834@item
4835Check each of the conflicts to make sure that Bison's default
4836resolution is what you really want. If not, rewrite the grammar and
4837go back to the beginning.
4838
4839@item
4840Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4841number which Bison printed. With GLR parsers, add an
035aa4a0 4842@code{%expect-rr} declaration as well.
bfa74976
RS
4843@end itemize
4844
cf22447c
JD
4845Now Bison will report an error if you introduce an unexpected conflict,
4846but will keep silent otherwise.
bfa74976 4847
342b8b6e 4848@node Start Decl
bfa74976
RS
4849@subsection The Start-Symbol
4850@cindex declaring the start symbol
4851@cindex start symbol, declaring
4852@cindex default start symbol
4853@findex %start
4854
4855Bison assumes by default that the start symbol for the grammar is the first
4856nonterminal specified in the grammar specification section. The programmer
4857may override this restriction with the @code{%start} declaration as follows:
4858
4859@example
4860%start @var{symbol}
4861@end example
4862
342b8b6e 4863@node Pure Decl
bfa74976
RS
4864@subsection A Pure (Reentrant) Parser
4865@cindex reentrant parser
4866@cindex pure parser
d9df47b6 4867@findex %define api.pure
bfa74976
RS
4868
4869A @dfn{reentrant} program is one which does not alter in the course of
4870execution; in other words, it consists entirely of @dfn{pure} (read-only)
4871code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4872for example, a nonreentrant program may not be safe to call from a signal
4873handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4874program must be called only within interlocks.
4875
70811b85 4876Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4877suitable for most uses, and it permits compatibility with Yacc. (The
4878standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4879statically allocated variables for communication with @code{yylex},
4880including @code{yylval} and @code{yylloc}.)
bfa74976 4881
70811b85 4882Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4883declaration @code{%define api.pure} says that you want the parser to be
70811b85 4884reentrant. It looks like this:
bfa74976
RS
4885
4886@example
d9df47b6 4887%define api.pure
bfa74976
RS
4888@end example
4889
70811b85
RS
4890The result is that the communication variables @code{yylval} and
4891@code{yylloc} become local variables in @code{yyparse}, and a different
4892calling convention is used for the lexical analyzer function
4893@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4894Parsers}, for the details of this. The variable @code{yynerrs}
4895becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4896of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4897Reporting Function @code{yyerror}}). The convention for calling
4898@code{yyparse} itself is unchanged.
4899
4900Whether the parser is pure has nothing to do with the grammar rules.
4901You can generate either a pure parser or a nonreentrant parser from any
4902valid grammar.
bfa74976 4903
9987d1b3
JD
4904@node Push Decl
4905@subsection A Push Parser
4906@cindex push parser
4907@cindex push parser
812775a0 4908@findex %define api.push-pull
9987d1b3 4909
59da312b
JD
4910(The current push parsing interface is experimental and may evolve.
4911More user feedback will help to stabilize it.)
4912
f4101aa6
AD
4913A pull parser is called once and it takes control until all its input
4914is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4915each time a new token is made available.
4916
f4101aa6 4917A push parser is typically useful when the parser is part of a
9987d1b3 4918main event loop in the client's application. This is typically
f4101aa6
AD
4919a requirement of a GUI, when the main event loop needs to be triggered
4920within a certain time period.
9987d1b3 4921
d782395d
JD
4922Normally, Bison generates a pull parser.
4923The following Bison declaration says that you want the parser to be a push
2f4518a1 4924parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4925
4926@example
f37495f6 4927%define api.push-pull push
9987d1b3
JD
4928@end example
4929
4930In almost all cases, you want to ensure that your push parser is also
4931a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4932time you should create an impure push parser is to have backwards
9987d1b3
JD
4933compatibility with the impure Yacc pull mode interface. Unless you know
4934what you are doing, your declarations should look like this:
4935
4936@example
d9df47b6 4937%define api.pure
f37495f6 4938%define api.push-pull push
9987d1b3
JD
4939@end example
4940
f4101aa6
AD
4941There is a major notable functional difference between the pure push parser
4942and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4943many parser instances, of the same type of parser, in memory at the same time.
4944An impure push parser should only use one parser at a time.
4945
4946When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4947the generated parser. @code{yypstate} is a structure that the generated
4948parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4949function that will create a new parser instance. @code{yypstate_delete}
4950will free the resources associated with the corresponding parser instance.
f4101aa6 4951Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4952token is available to provide the parser. A trivial example
4953of using a pure push parser would look like this:
4954
4955@example
4956int status;
4957yypstate *ps = yypstate_new ();
4958do @{
4959 status = yypush_parse (ps, yylex (), NULL);
4960@} while (status == YYPUSH_MORE);
4961yypstate_delete (ps);
4962@end example
4963
4964If the user decided to use an impure push parser, a few things about
f4101aa6 4965the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4966a global variable instead of a variable in the @code{yypush_parse} function.
4967For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4968changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4969example would thus look like this:
4970
4971@example
4972extern int yychar;
4973int status;
4974yypstate *ps = yypstate_new ();
4975do @{
4976 yychar = yylex ();
4977 status = yypush_parse (ps);
4978@} while (status == YYPUSH_MORE);
4979yypstate_delete (ps);
4980@end example
4981
f4101aa6 4982That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4983for use by the next invocation of the @code{yypush_parse} function.
4984
f4101aa6 4985Bison also supports both the push parser interface along with the pull parser
9987d1b3 4986interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4987you should replace the @code{%define api.push-pull push} declaration with the
4988@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4989the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4990and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4991would be used. However, the user should note that it is implemented in the
d782395d
JD
4992generated parser by calling @code{yypull_parse}.
4993This makes the @code{yyparse} function that is generated with the
f37495f6 4994@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4995@code{yyparse} function. If the user
4996calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4997stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4998and then @code{yypull_parse} the rest of the input stream. If you would like
4999to switch back and forth between between parsing styles, you would have to
5000write your own @code{yypull_parse} function that knows when to quit looking
5001for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5002like this:
5003
5004@example
5005yypstate *ps = yypstate_new ();
5006yypull_parse (ps); /* Will call the lexer */
5007yypstate_delete (ps);
5008@end example
5009
d9df47b6 5010Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
5011the generated parser with @code{%define api.push-pull both} as it did for
5012@code{%define api.push-pull push}.
9987d1b3 5013
342b8b6e 5014@node Decl Summary
bfa74976
RS
5015@subsection Bison Declaration Summary
5016@cindex Bison declaration summary
5017@cindex declaration summary
5018@cindex summary, Bison declaration
5019
d8988b2f 5020Here is a summary of the declarations used to define a grammar:
bfa74976 5021
18b519c0 5022@deffn {Directive} %union
bfa74976
RS
5023Declare the collection of data types that semantic values may have
5024(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5025@end deffn
bfa74976 5026
18b519c0 5027@deffn {Directive} %token
bfa74976
RS
5028Declare a terminal symbol (token type name) with no precedence
5029or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5030@end deffn
bfa74976 5031
18b519c0 5032@deffn {Directive} %right
bfa74976
RS
5033Declare a terminal symbol (token type name) that is right-associative
5034(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5035@end deffn
bfa74976 5036
18b519c0 5037@deffn {Directive} %left
bfa74976
RS
5038Declare a terminal symbol (token type name) that is left-associative
5039(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5040@end deffn
bfa74976 5041
18b519c0 5042@deffn {Directive} %nonassoc
bfa74976 5043Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5044(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5045Using it in a way that would be associative is a syntax error.
5046@end deffn
5047
91d2c560 5048@ifset defaultprec
39a06c25 5049@deffn {Directive} %default-prec
22fccf95 5050Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5051(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5052@end deffn
91d2c560 5053@end ifset
bfa74976 5054
18b519c0 5055@deffn {Directive} %type
bfa74976
RS
5056Declare the type of semantic values for a nonterminal symbol
5057(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5058@end deffn
bfa74976 5059
18b519c0 5060@deffn {Directive} %start
89cab50d
AD
5061Specify the grammar's start symbol (@pxref{Start Decl, ,The
5062Start-Symbol}).
18b519c0 5063@end deffn
bfa74976 5064
18b519c0 5065@deffn {Directive} %expect
bfa74976
RS
5066Declare the expected number of shift-reduce conflicts
5067(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5068@end deffn
5069
bfa74976 5070
d8988b2f
AD
5071@sp 1
5072@noindent
5073In order to change the behavior of @command{bison}, use the following
5074directives:
5075
148d66d8 5076@deffn {Directive} %code @{@var{code}@}
8e6f2266 5077@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5078@findex %code
8e6f2266
JD
5079Insert @var{code} verbatim into the output parser source at the
5080default location or at the location specified by @var{qualifier}.
5081@xref{%code Summary}.
148d66d8
JD
5082@end deffn
5083
18b519c0 5084@deffn {Directive} %debug
e358222b 5085In the parser implementation file, define the macro @code{YYDEBUG} (or
5a05f42e 5086@code{@var{prefix}DEBUG} with @samp{%define api.prefix @var{prefix}}, see
e358222b
AD
5087@ref{Multiple Parsers, ,Multiple Parsers in the Same Program}) to 1 if it is
5088not already defined, so that the debugging facilities are compiled.
5089@xref{Tracing, ,Tracing Your Parser}.
bd5df716 5090@end deffn
d8988b2f 5091
2f4518a1
JD
5092@deffn {Directive} %define @var{variable}
5093@deffnx {Directive} %define @var{variable} @var{value}
5094@deffnx {Directive} %define @var{variable} "@var{value}"
5095Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5096@end deffn
5097
5098@deffn {Directive} %defines
5099Write a parser header file containing macro definitions for the token
5100type names defined in the grammar as well as a few other declarations.
5101If the parser implementation file is named @file{@var{name}.c} then
5102the parser header file is named @file{@var{name}.h}.
5103
5104For C parsers, the parser header file declares @code{YYSTYPE} unless
5105@code{YYSTYPE} is already defined as a macro or you have used a
5106@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5107you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5108Value Type}) with components that require other definitions, or if you
5109have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5110Type, ,Data Types of Semantic Values}), you need to arrange for these
5111definitions to be propagated to all modules, e.g., by putting them in
5112a prerequisite header that is included both by your parser and by any
5113other module that needs @code{YYSTYPE}.
5114
5115Unless your parser is pure, the parser header file declares
5116@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5117(Reentrant) Parser}.
5118
5119If you have also used locations, the parser header file declares
7404cdf3
JD
5120@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5121@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
2f4518a1
JD
5122
5123This parser header file is normally essential if you wish to put the
5124definition of @code{yylex} in a separate source file, because
5125@code{yylex} typically needs to be able to refer to the
5126above-mentioned declarations and to the token type codes. @xref{Token
5127Values, ,Semantic Values of Tokens}.
5128
5129@findex %code requires
5130@findex %code provides
5131If you have declared @code{%code requires} or @code{%code provides}, the output
5132header also contains their code.
5133@xref{%code Summary}.
c9d5bcc9
AD
5134
5135@cindex Header guard
5136The generated header is protected against multiple inclusions with a C
5137preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5138@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5139,Multiple Parsers in the Same Program}) and generated file name turned
5140uppercase, with each series of non alphanumerical characters converted to a
5141single underscore.
5142
5143For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5144"lib/parse.h"}, the header will be guarded as follows.
5145@example
5146#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5147# define YY_CALC_LIB_PARSE_H_INCLUDED
5148...
5149#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5150@end example
2f4518a1
JD
5151@end deffn
5152
5153@deffn {Directive} %defines @var{defines-file}
5154Same as above, but save in the file @var{defines-file}.
5155@end deffn
5156
5157@deffn {Directive} %destructor
5158Specify how the parser should reclaim the memory associated to
5159discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5160@end deffn
5161
5162@deffn {Directive} %file-prefix "@var{prefix}"
5163Specify a prefix to use for all Bison output file names. The names
5164are chosen as if the grammar file were named @file{@var{prefix}.y}.
5165@end deffn
5166
5167@deffn {Directive} %language "@var{language}"
5168Specify the programming language for the generated parser. Currently
5169supported languages include C, C++, and Java.
5170@var{language} is case-insensitive.
5171
5172This directive is experimental and its effect may be modified in future
5173releases.
5174@end deffn
5175
5176@deffn {Directive} %locations
5177Generate the code processing the locations (@pxref{Action Features,
5178,Special Features for Use in Actions}). This mode is enabled as soon as
5179the grammar uses the special @samp{@@@var{n}} tokens, but if your
5180grammar does not use it, using @samp{%locations} allows for more
5181accurate syntax error messages.
5182@end deffn
5183
2f4518a1
JD
5184@ifset defaultprec
5185@deffn {Directive} %no-default-prec
5186Do not assign a precedence to rules lacking an explicit @code{%prec}
5187modifier (@pxref{Contextual Precedence, ,Context-Dependent
5188Precedence}).
5189@end deffn
5190@end ifset
5191
5192@deffn {Directive} %no-lines
5193Don't generate any @code{#line} preprocessor commands in the parser
5194implementation file. Ordinarily Bison writes these commands in the
5195parser implementation file so that the C compiler and debuggers will
5196associate errors and object code with your source file (the grammar
5197file). This directive causes them to associate errors with the parser
5198implementation file, treating it as an independent source file in its
5199own right.
5200@end deffn
5201
5202@deffn {Directive} %output "@var{file}"
5203Specify @var{file} for the parser implementation file.
5204@end deffn
5205
5206@deffn {Directive} %pure-parser
5207Deprecated version of @code{%define api.pure} (@pxref{%define
5208Summary,,api.pure}), for which Bison is more careful to warn about
5209unreasonable usage.
5210@end deffn
5211
5212@deffn {Directive} %require "@var{version}"
5213Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5214Require a Version of Bison}.
5215@end deffn
5216
5217@deffn {Directive} %skeleton "@var{file}"
5218Specify the skeleton to use.
5219
5220@c You probably don't need this option unless you are developing Bison.
5221@c You should use @code{%language} if you want to specify the skeleton for a
5222@c different language, because it is clearer and because it will always choose the
5223@c correct skeleton for non-deterministic or push parsers.
5224
5225If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5226file in the Bison installation directory.
5227If it does, @var{file} is an absolute file name or a file name relative to the
5228directory of the grammar file.
5229This is similar to how most shells resolve commands.
5230@end deffn
5231
5232@deffn {Directive} %token-table
5233Generate an array of token names in the parser implementation file.
5234The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5235the name of the token whose internal Bison token code number is
5236@var{i}. The first three elements of @code{yytname} correspond to the
5237predefined tokens @code{"$end"}, @code{"error"}, and
5238@code{"$undefined"}; after these come the symbols defined in the
5239grammar file.
5240
5241The name in the table includes all the characters needed to represent
5242the token in Bison. For single-character literals and literal
5243strings, this includes the surrounding quoting characters and any
5244escape sequences. For example, the Bison single-character literal
5245@code{'+'} corresponds to a three-character name, represented in C as
5246@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5247corresponds to a five-character name, represented in C as
5248@code{"\"\\\\/\""}.
5249
5250When you specify @code{%token-table}, Bison also generates macro
5251definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5252@code{YYNRULES}, and @code{YYNSTATES}:
5253
5254@table @code
5255@item YYNTOKENS
5256The highest token number, plus one.
5257@item YYNNTS
5258The number of nonterminal symbols.
5259@item YYNRULES
5260The number of grammar rules,
5261@item YYNSTATES
5262The number of parser states (@pxref{Parser States}).
5263@end table
5264@end deffn
5265
5266@deffn {Directive} %verbose
5267Write an extra output file containing verbose descriptions of the
5268parser states and what is done for each type of lookahead token in
5269that state. @xref{Understanding, , Understanding Your Parser}, for more
5270information.
5271@end deffn
5272
5273@deffn {Directive} %yacc
5274Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5275including its naming conventions. @xref{Bison Options}, for more.
5276@end deffn
5277
5278
5279@node %define Summary
5280@subsection %define Summary
406dec82
JD
5281
5282There are many features of Bison's behavior that can be controlled by
5283assigning the feature a single value. For historical reasons, some
5284such features are assigned values by dedicated directives, such as
5285@code{%start}, which assigns the start symbol. However, newer such
5286features are associated with variables, which are assigned by the
5287@code{%define} directive:
5288
c1d19e10 5289@deffn {Directive} %define @var{variable}
f37495f6 5290@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5291@deffnx {Directive} %define @var{variable} "@var{value}"
406dec82 5292Define @var{variable} to @var{value}.
9611cfa2 5293
406dec82
JD
5294@var{value} must be placed in quotation marks if it contains any
5295character other than a letter, underscore, period, or non-initial dash
5296or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5297to specifying @code{""}.
9611cfa2 5298
406dec82
JD
5299It is an error if a @var{variable} is defined by @code{%define}
5300multiple times, but see @ref{Bison Options,,-D
5301@var{name}[=@var{value}]}.
5302@end deffn
f37495f6 5303
406dec82
JD
5304The rest of this section summarizes variables and values that
5305@code{%define} accepts.
9611cfa2 5306
406dec82
JD
5307Some @var{variable}s take Boolean values. In this case, Bison will
5308complain if the variable definition does not meet one of the following
5309four conditions:
9611cfa2
JD
5310
5311@enumerate
f37495f6 5312@item @code{@var{value}} is @code{true}
9611cfa2 5313
f37495f6
JD
5314@item @code{@var{value}} is omitted (or @code{""} is specified).
5315This is equivalent to @code{true}.
9611cfa2 5316
f37495f6 5317@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5318
5319@item @var{variable} is never defined.
628be6c9 5320In this case, Bison selects a default value.
9611cfa2 5321@end enumerate
148d66d8 5322
628be6c9
JD
5323What @var{variable}s are accepted, as well as their meanings and default
5324values, depend on the selected target language and/or the parser
5325skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5326Summary,,%skeleton}).
5327Unaccepted @var{variable}s produce an error.
793fbca5
JD
5328Some of the accepted @var{variable}s are:
5329
5330@itemize @bullet
db8ab2be
AD
5331@c ================================================== api.location.type
5332@item @code{api.location.type}
5333@findex %define api.location.type
5334
5335@itemize @bullet
7287be84 5336@item Language(s): C++, Java
db8ab2be
AD
5337
5338@item Purpose: Define the location type.
5339@xref{User Defined Location Type}.
5340
5341@item Accepted Values: String
5342
5343@item Default Value: none
5344
5345@item History: introduced in Bison 2.7
5346@end itemize
5347
4b3847c3
AD
5348@c ================================================== api.prefix
5349@item @code{api.prefix}
5350@findex %define api.prefix
5351
5352@itemize @bullet
5353@item Language(s): All
5354
db8ab2be 5355@item Purpose: Rename exported symbols.
4b3847c3
AD
5356@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5357
5358@item Accepted Values: String
5359
5360@item Default Value: @code{yy}
e358222b
AD
5361
5362@item History: introduced in Bison 2.6
4b3847c3
AD
5363@end itemize
5364
ea118b72 5365@c ================================================== api.pure
4b3847c3 5366@item @code{api.pure}
d9df47b6
JD
5367@findex %define api.pure
5368
5369@itemize @bullet
5370@item Language(s): C
5371
5372@item Purpose: Request a pure (reentrant) parser program.
5373@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5374
5375@item Accepted Values: Boolean
5376
f37495f6 5377@item Default Value: @code{false}
d9df47b6
JD
5378@end itemize
5379
4b3847c3
AD
5380@c ================================================== api.push-pull
5381
5382@item @code{api.push-pull}
812775a0 5383@findex %define api.push-pull
793fbca5
JD
5384
5385@itemize @bullet
34a6c2d1 5386@item Language(s): C (deterministic parsers only)
793fbca5 5387
3b1977ea 5388@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5389@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5390(The current push parsing interface is experimental and may evolve.
5391More user feedback will help to stabilize it.)
793fbca5 5392
f37495f6 5393@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5394
f37495f6 5395@item Default Value: @code{pull}
793fbca5
JD
5396@end itemize
5397
232be91a
AD
5398@c ================================================== lr.default-reductions
5399
4b3847c3 5400@item @code{lr.default-reductions}
1d0f55cc 5401@findex %define lr.default-reductions
34a6c2d1
JD
5402
5403@itemize @bullet
5404@item Language(s): all
5405
4c38b19e 5406@item Purpose: Specify the kind of states that are permitted to
6f04ee6c
JD
5407contain default reductions. @xref{Default Reductions}. (The ability to
5408specify where default reductions should be used is experimental. More user
5409feedback will help to stabilize it.)
34a6c2d1 5410
a6e5a280 5411@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
34a6c2d1
JD
5412@item Default Value:
5413@itemize
f37495f6 5414@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
a6e5a280 5415@item @code{most} otherwise.
34a6c2d1
JD
5416@end itemize
5417@end itemize
5418
232be91a
AD
5419@c ============================================ lr.keep-unreachable-states
5420
4b3847c3 5421@item @code{lr.keep-unreachable-states}
812775a0 5422@findex %define lr.keep-unreachable-states
31984206
JD
5423
5424@itemize @bullet
5425@item Language(s): all
3b1977ea 5426@item Purpose: Request that Bison allow unreachable parser states to
6f04ee6c 5427remain in the parser tables. @xref{Unreachable States}.
31984206 5428@item Accepted Values: Boolean
f37495f6 5429@item Default Value: @code{false}
31984206
JD
5430@end itemize
5431
232be91a
AD
5432@c ================================================== lr.type
5433
4b3847c3 5434@item @code{lr.type}
34a6c2d1 5435@findex %define lr.type
34a6c2d1
JD
5436
5437@itemize @bullet
5438@item Language(s): all
5439
3b1977ea 5440@item Purpose: Specify the type of parser tables within the
6f04ee6c 5441LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
34a6c2d1
JD
5442More user feedback will help to stabilize it.)
5443
6f04ee6c 5444@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
34a6c2d1 5445
f37495f6 5446@item Default Value: @code{lalr}
34a6c2d1
JD
5447@end itemize
5448
4b3847c3
AD
5449@c ================================================== namespace
5450
5451@item @code{namespace}
793fbca5
JD
5452@findex %define namespace
5453
5454@itemize
5455@item Languages(s): C++
5456
3b1977ea 5457@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5458For example, if you specify:
5459
5460@smallexample
5461%define namespace "foo::bar"
5462@end smallexample
5463
5464Bison uses @code{foo::bar} verbatim in references such as:
5465
5466@smallexample
5467foo::bar::parser::semantic_type
5468@end smallexample
5469
5470However, to open a namespace, Bison removes any leading @code{::} and then
5471splits on any remaining occurrences:
5472
5473@smallexample
5474namespace foo @{ namespace bar @{
5475 class position;
5476 class location;
5477@} @}
5478@end smallexample
5479
5480@item Accepted Values: Any absolute or relative C++ namespace reference without
5481a trailing @code{"::"}.
5482For example, @code{"foo"} or @code{"::foo::bar"}.
5483
5484@item Default Value: The value specified by @code{%name-prefix}, which defaults
5485to @code{yy}.
5486This usage of @code{%name-prefix} is for backward compatibility and can be
5487confusing since @code{%name-prefix} also specifies the textual prefix for the
5488lexical analyzer function.
5489Thus, if you specify @code{%name-prefix}, it is best to also specify
5490@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5491lexical analyzer function.
5492For example, if you specify:
5493
5494@smallexample
5495%define namespace "foo"
5496%name-prefix "bar::"
5497@end smallexample
5498
5499The parser namespace is @code{foo} and @code{yylex} is referenced as
5500@code{bar::lex}.
5501@end itemize
4c38b19e
JD
5502
5503@c ================================================== parse.lac
4b3847c3 5504@item @code{parse.lac}
4c38b19e 5505@findex %define parse.lac
4c38b19e
JD
5506
5507@itemize
6f04ee6c 5508@item Languages(s): C (deterministic parsers only)
4c38b19e 5509
35430378 5510@item Purpose: Enable LAC (lookahead correction) to improve
6f04ee6c 5511syntax error handling. @xref{LAC}.
4c38b19e 5512@item Accepted Values: @code{none}, @code{full}
4c38b19e
JD
5513@item Default Value: @code{none}
5514@end itemize
793fbca5
JD
5515@end itemize
5516
d8988b2f 5517
8e6f2266
JD
5518@node %code Summary
5519@subsection %code Summary
8e6f2266 5520@findex %code
8e6f2266 5521@cindex Prologue
406dec82
JD
5522
5523The @code{%code} directive inserts code verbatim into the output
5524parser source at any of a predefined set of locations. It thus serves
5525as a flexible and user-friendly alternative to the traditional Yacc
5526prologue, @code{%@{@var{code}%@}}. This section summarizes the
5527functionality of @code{%code} for the various target languages
5528supported by Bison. For a detailed discussion of how to use
5529@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5530is advantageous to do so, @pxref{Prologue Alternatives}.
5531
5532@deffn {Directive} %code @{@var{code}@}
5533This is the unqualified form of the @code{%code} directive. It
5534inserts @var{code} verbatim at a language-dependent default location
5535in the parser implementation.
5536
8e6f2266 5537For C/C++, the default location is the parser implementation file
406dec82
JD
5538after the usual contents of the parser header file. Thus, the
5539unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
8e6f2266
JD
5540
5541For Java, the default location is inside the parser class.
5542@end deffn
5543
5544@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5545This is the qualified form of the @code{%code} directive.
406dec82
JD
5546@var{qualifier} identifies the purpose of @var{code} and thus the
5547location(s) where Bison should insert it. That is, if you need to
5548specify location-sensitive @var{code} that does not belong at the
5549default location selected by the unqualified @code{%code} form, use
5550this form instead.
5551@end deffn
5552
5553For any particular qualifier or for the unqualified form, if there are
5554multiple occurrences of the @code{%code} directive, Bison concatenates
5555the specified code in the order in which it appears in the grammar
5556file.
8e6f2266 5557
406dec82
JD
5558Not all qualifiers are accepted for all target languages. Unaccepted
5559qualifiers produce an error. Some of the accepted qualifiers are:
8e6f2266
JD
5560
5561@itemize @bullet
5562@item requires
5563@findex %code requires
5564
5565@itemize @bullet
5566@item Language(s): C, C++
5567
5568@item Purpose: This is the best place to write dependency code required for
5569@code{YYSTYPE} and @code{YYLTYPE}.
5570In other words, it's the best place to define types referenced in @code{%union}
5571directives, and it's the best place to override Bison's default @code{YYSTYPE}
5572and @code{YYLTYPE} definitions.
5573
5574@item Location(s): The parser header file and the parser implementation file
5575before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5576definitions.
5577@end itemize
5578
5579@item provides
5580@findex %code provides
5581
5582@itemize @bullet
5583@item Language(s): C, C++
5584
5585@item Purpose: This is the best place to write additional definitions and
5586declarations that should be provided to other modules.
5587
5588@item Location(s): The parser header file and the parser implementation
5589file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5590token definitions.
5591@end itemize
5592
5593@item top
5594@findex %code top
5595
5596@itemize @bullet
5597@item Language(s): C, C++
5598
5599@item Purpose: The unqualified @code{%code} or @code{%code requires}
5600should usually be more appropriate than @code{%code top}. However,
5601occasionally it is necessary to insert code much nearer the top of the
5602parser implementation file. For example:
5603
ea118b72 5604@example
8e6f2266
JD
5605%code top @{
5606 #define _GNU_SOURCE
5607 #include <stdio.h>
5608@}
ea118b72 5609@end example
8e6f2266
JD
5610
5611@item Location(s): Near the top of the parser implementation file.
5612@end itemize
5613
5614@item imports
5615@findex %code imports
5616
5617@itemize @bullet
5618@item Language(s): Java
5619
5620@item Purpose: This is the best place to write Java import directives.
5621
5622@item Location(s): The parser Java file after any Java package directive and
5623before any class definitions.
5624@end itemize
5625@end itemize
5626
406dec82
JD
5627Though we say the insertion locations are language-dependent, they are
5628technically skeleton-dependent. Writers of non-standard skeletons
5629however should choose their locations consistently with the behavior
5630of the standard Bison skeletons.
8e6f2266 5631
d8988b2f 5632
342b8b6e 5633@node Multiple Parsers
bfa74976
RS
5634@section Multiple Parsers in the Same Program
5635
5636Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
5637only one Bison parser. But what if you want to parse more than one language
5638with the same program? Then you need to avoid name conflicts between
5639different definitions of functions and variables such as @code{yyparse},
5640@code{yylval}. To use different parsers from the same compilation unit, you
5641also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
5642exported in the generated header.
5643
5644The easy way to do this is to define the @code{%define} variable
e358222b
AD
5645@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
5646headers do not conflict when included together, and that compiled objects
5647can be linked together too. Specifying @samp{%define api.prefix
5648@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
5649@ref{Invocation, ,Invoking Bison}) renames the interface functions and
5650variables of the Bison parser to start with @var{prefix} instead of
5651@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
5652upper-cased) instead of @samp{YY}.
4b3847c3
AD
5653
5654The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
5655@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
5656@code{yydebug}. If you use a push parser, @code{yypush_parse},
5657@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
5658@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
5659@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
5660specifically --- more about this below.
4b3847c3
AD
5661
5662For example, if you use @samp{%define api.prefix c}, the names become
5663@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
5664on.
5665
5666The @code{%define} variable @code{api.prefix} works in two different ways.
5667In the implementation file, it works by adding macro definitions to the
5668beginning of the parser implementation file, defining @code{yyparse} as
5669@code{@var{prefix}parse}, and so on:
5670
5671@example
5672#define YYSTYPE CTYPE
5673#define yyparse cparse
5674#define yylval clval
5675...
5676YYSTYPE yylval;
5677int yyparse (void);
5678@end example
5679
5680This effectively substitutes one name for the other in the entire parser
5681implementation file, thus the ``original'' names (@code{yylex},
5682@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
5683
5684However, in the parser header file, the symbols are defined renamed, for
5685instance:
5686
5687@example
5688extern CSTYPE clval;
5689int cparse (void);
5690@end example
5691
e358222b
AD
5692The macro @code{YYDEBUG} is commonly used to enable the tracing support in
5693parsers. To comply with this tradition, when @code{api.prefix} is used,
5694@code{YYDEBUG} (not renamed) is used as a default value:
5695
5696@example
5697/* Enabling traces. */
5698#ifndef CDEBUG
5699# if defined YYDEBUG
5700# if YYDEBUG
5701# define CDEBUG 1
5702# else
5703# define CDEBUG 0
5704# endif
5705# else
5706# define CDEBUG 0
5707# endif
5708#endif
5709#if CDEBUG
5710extern int cdebug;
5711#endif
5712@end example
5713
5714@sp 2
5715
5716Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
5717the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
5718Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 5719
342b8b6e 5720@node Interface
bfa74976
RS
5721@chapter Parser C-Language Interface
5722@cindex C-language interface
5723@cindex interface
5724
5725The Bison parser is actually a C function named @code{yyparse}. Here we
5726describe the interface conventions of @code{yyparse} and the other
5727functions that it needs to use.
5728
5729Keep in mind that the parser uses many C identifiers starting with
5730@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5731identifier (aside from those in this manual) in an action or in epilogue
5732in the grammar file, you are likely to run into trouble.
bfa74976
RS
5733
5734@menu
f56274a8
DJ
5735* Parser Function:: How to call @code{yyparse} and what it returns.
5736* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5737* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5738* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5739* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5740* Lexical:: You must supply a function @code{yylex}
5741 which reads tokens.
5742* Error Reporting:: You must supply a function @code{yyerror}.
5743* Action Features:: Special features for use in actions.
5744* Internationalization:: How to let the parser speak in the user's
5745 native language.
bfa74976
RS
5746@end menu
5747
342b8b6e 5748@node Parser Function
bfa74976
RS
5749@section The Parser Function @code{yyparse}
5750@findex yyparse
5751
5752You call the function @code{yyparse} to cause parsing to occur. This
5753function reads tokens, executes actions, and ultimately returns when it
5754encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5755write an action which directs @code{yyparse} to return immediately
5756without reading further.
bfa74976 5757
2a8d363a
AD
5758
5759@deftypefun int yyparse (void)
bfa74976
RS
5760The value returned by @code{yyparse} is 0 if parsing was successful (return
5761is due to end-of-input).
5762
b47dbebe
PE
5763The value is 1 if parsing failed because of invalid input, i.e., input
5764that contains a syntax error or that causes @code{YYABORT} to be
5765invoked.
5766
5767The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5768@end deftypefun
bfa74976
RS
5769
5770In an action, you can cause immediate return from @code{yyparse} by using
5771these macros:
5772
2a8d363a 5773@defmac YYACCEPT
bfa74976
RS
5774@findex YYACCEPT
5775Return immediately with value 0 (to report success).
2a8d363a 5776@end defmac
bfa74976 5777
2a8d363a 5778@defmac YYABORT
bfa74976
RS
5779@findex YYABORT
5780Return immediately with value 1 (to report failure).
2a8d363a
AD
5781@end defmac
5782
5783If you use a reentrant parser, you can optionally pass additional
5784parameter information to it in a reentrant way. To do so, use the
5785declaration @code{%parse-param}:
5786
feeb0eda 5787@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5788@findex %parse-param
287c78f6
PE
5789Declare that an argument declared by the braced-code
5790@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5791The @var{argument-declaration} is used when declaring
feeb0eda
PE
5792functions or prototypes. The last identifier in
5793@var{argument-declaration} must be the argument name.
2a8d363a
AD
5794@end deffn
5795
5796Here's an example. Write this in the parser:
5797
5798@example
feeb0eda
PE
5799%parse-param @{int *nastiness@}
5800%parse-param @{int *randomness@}
2a8d363a
AD
5801@end example
5802
5803@noindent
5804Then call the parser like this:
5805
5806@example
5807@{
5808 int nastiness, randomness;
5809 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5810 value = yyparse (&nastiness, &randomness);
5811 @dots{}
5812@}
5813@end example
5814
5815@noindent
5816In the grammar actions, use expressions like this to refer to the data:
5817
5818@example
5819exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5820@end example
5821
9987d1b3
JD
5822@node Push Parser Function
5823@section The Push Parser Function @code{yypush_parse}
5824@findex yypush_parse
5825
59da312b
JD
5826(The current push parsing interface is experimental and may evolve.
5827More user feedback will help to stabilize it.)
5828
f4101aa6 5829You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5830function is available if either the @code{%define api.push-pull push} or
5831@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5832@xref{Push Decl, ,A Push Parser}.
5833
5834@deftypefun int yypush_parse (yypstate *yyps)
ad60e80f
AD
5835The value returned by @code{yypush_parse} is the same as for yyparse with
5836the following exception: it returns @code{YYPUSH_MORE} if more input is
5837required to finish parsing the grammar.
9987d1b3
JD
5838@end deftypefun
5839
5840@node Pull Parser Function
5841@section The Pull Parser Function @code{yypull_parse}
5842@findex yypull_parse
5843
59da312b
JD
5844(The current push parsing interface is experimental and may evolve.
5845More user feedback will help to stabilize it.)
5846
f4101aa6 5847You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5848stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5849declaration is used.
9987d1b3
JD
5850@xref{Push Decl, ,A Push Parser}.
5851
5852@deftypefun int yypull_parse (yypstate *yyps)
5853The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5854@end deftypefun
5855
5856@node Parser Create Function
5857@section The Parser Create Function @code{yystate_new}
5858@findex yypstate_new
5859
59da312b
JD
5860(The current push parsing interface is experimental and may evolve.
5861More user feedback will help to stabilize it.)
5862
f4101aa6 5863You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5864This function is available if either the @code{%define api.push-pull push} or
5865@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5866@xref{Push Decl, ,A Push Parser}.
5867
34a41a93 5868@deftypefun {yypstate*} yypstate_new (void)
c781580d 5869The function will return a valid parser instance if there was memory available
333e670c
JD
5870or 0 if no memory was available.
5871In impure mode, it will also return 0 if a parser instance is currently
5872allocated.
9987d1b3
JD
5873@end deftypefun
5874
5875@node Parser Delete Function
5876@section The Parser Delete Function @code{yystate_delete}
5877@findex yypstate_delete
5878
59da312b
JD
5879(The current push parsing interface is experimental and may evolve.
5880More user feedback will help to stabilize it.)
5881
9987d1b3 5882You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5883function is available if either the @code{%define api.push-pull push} or
5884@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5885@xref{Push Decl, ,A Push Parser}.
5886
5887@deftypefun void yypstate_delete (yypstate *yyps)
5888This function will reclaim the memory associated with a parser instance.
5889After this call, you should no longer attempt to use the parser instance.
5890@end deftypefun
bfa74976 5891
342b8b6e 5892@node Lexical
bfa74976
RS
5893@section The Lexical Analyzer Function @code{yylex}
5894@findex yylex
5895@cindex lexical analyzer
5896
5897The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5898the input stream and returns them to the parser. Bison does not create
5899this function automatically; you must write it so that @code{yyparse} can
5900call it. The function is sometimes referred to as a lexical scanner.
5901
9913d6e4
JD
5902In simple programs, @code{yylex} is often defined at the end of the
5903Bison grammar file. If @code{yylex} is defined in a separate source
5904file, you need to arrange for the token-type macro definitions to be
5905available there. To do this, use the @samp{-d} option when you run
5906Bison, so that it will write these macro definitions into the separate
5907parser header file, @file{@var{name}.tab.h}, which you can include in
5908the other source files that need it. @xref{Invocation, ,Invoking
5909Bison}.
bfa74976
RS
5910
5911@menu
5912* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5913* Token Values:: How @code{yylex} must return the semantic value
5914 of the token it has read.
5915* Token Locations:: How @code{yylex} must return the text location
5916 (line number, etc.) of the token, if the
5917 actions want that.
5918* Pure Calling:: How the calling convention differs in a pure parser
5919 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5920@end menu
5921
342b8b6e 5922@node Calling Convention
bfa74976
RS
5923@subsection Calling Convention for @code{yylex}
5924
72d2299c
PE
5925The value that @code{yylex} returns must be the positive numeric code
5926for the type of token it has just found; a zero or negative value
5927signifies end-of-input.
bfa74976
RS
5928
5929When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5930in the parser implementation file becomes a C macro whose definition
5931is the proper numeric code for that token type. So @code{yylex} can
5932use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5933
5934When a token is referred to in the grammar rules by a character literal,
5935the numeric code for that character is also the code for the token type.
72d2299c
PE
5936So @code{yylex} can simply return that character code, possibly converted
5937to @code{unsigned char} to avoid sign-extension. The null character
5938must not be used this way, because its code is zero and that
bfa74976
RS
5939signifies end-of-input.
5940
5941Here is an example showing these things:
5942
5943@example
13863333
AD
5944int
5945yylex (void)
bfa74976
RS
5946@{
5947 @dots{}
72d2299c 5948 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5949 return 0;
5950 @dots{}
5951 if (c == '+' || c == '-')
72d2299c 5952 return c; /* Assume token type for `+' is '+'. */
bfa74976 5953 @dots{}
72d2299c 5954 return INT; /* Return the type of the token. */
bfa74976
RS
5955 @dots{}
5956@}
5957@end example
5958
5959@noindent
5960This interface has been designed so that the output from the @code{lex}
5961utility can be used without change as the definition of @code{yylex}.
5962
931c7513
RS
5963If the grammar uses literal string tokens, there are two ways that
5964@code{yylex} can determine the token type codes for them:
5965
5966@itemize @bullet
5967@item
5968If the grammar defines symbolic token names as aliases for the
5969literal string tokens, @code{yylex} can use these symbolic names like
5970all others. In this case, the use of the literal string tokens in
5971the grammar file has no effect on @code{yylex}.
5972
5973@item
9ecbd125 5974@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5975table. The index of the token in the table is the token type's code.
9ecbd125 5976The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5977double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5978token's characters are escaped as necessary to be suitable as input
5979to Bison.
931c7513 5980
9e0876fb
PE
5981Here's code for looking up a multicharacter token in @code{yytname},
5982assuming that the characters of the token are stored in
5983@code{token_buffer}, and assuming that the token does not contain any
5984characters like @samp{"} that require escaping.
931c7513 5985
ea118b72 5986@example
931c7513
RS
5987for (i = 0; i < YYNTOKENS; i++)
5988 @{
5989 if (yytname[i] != 0
5990 && yytname[i][0] == '"'
68449b3a
PE
5991 && ! strncmp (yytname[i] + 1, token_buffer,
5992 strlen (token_buffer))
931c7513
RS
5993 && yytname[i][strlen (token_buffer) + 1] == '"'
5994 && yytname[i][strlen (token_buffer) + 2] == 0)
5995 break;
5996 @}
ea118b72 5997@end example
931c7513
RS
5998
5999The @code{yytname} table is generated only if you use the
8c9a50be 6000@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6001@end itemize
6002
342b8b6e 6003@node Token Values
bfa74976
RS
6004@subsection Semantic Values of Tokens
6005
6006@vindex yylval
9d9b8b70 6007In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6008be stored into the global variable @code{yylval}. When you are using
6009just one data type for semantic values, @code{yylval} has that type.
6010Thus, if the type is @code{int} (the default), you might write this in
6011@code{yylex}:
6012
6013@example
6014@group
6015 @dots{}
72d2299c
PE
6016 yylval = value; /* Put value onto Bison stack. */
6017 return INT; /* Return the type of the token. */
bfa74976
RS
6018 @dots{}
6019@end group
6020@end example
6021
6022When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6023made from the @code{%union} declaration (@pxref{Union Decl, ,The
6024Collection of Value Types}). So when you store a token's value, you
6025must use the proper member of the union. If the @code{%union}
6026declaration looks like this:
bfa74976
RS
6027
6028@example
6029@group
6030%union @{
6031 int intval;
6032 double val;
6033 symrec *tptr;
6034@}
6035@end group
6036@end example
6037
6038@noindent
6039then the code in @code{yylex} might look like this:
6040
6041@example
6042@group
6043 @dots{}
72d2299c
PE
6044 yylval.intval = value; /* Put value onto Bison stack. */
6045 return INT; /* Return the type of the token. */
bfa74976
RS
6046 @dots{}
6047@end group
6048@end example
6049
95923bd6
AD
6050@node Token Locations
6051@subsection Textual Locations of Tokens
bfa74976
RS
6052
6053@vindex yylloc
7404cdf3
JD
6054If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6055in actions to keep track of the textual locations of tokens and groupings,
6056then you must provide this information in @code{yylex}. The function
6057@code{yyparse} expects to find the textual location of a token just parsed
6058in the global variable @code{yylloc}. So @code{yylex} must store the proper
6059data in that variable.
847bf1f5
AD
6060
6061By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6062initialize the members that are going to be used by the actions. The
6063four members are called @code{first_line}, @code{first_column},
6064@code{last_line} and @code{last_column}. Note that the use of this
6065feature makes the parser noticeably slower.
bfa74976
RS
6066
6067@tindex YYLTYPE
6068The data type of @code{yylloc} has the name @code{YYLTYPE}.
6069
342b8b6e 6070@node Pure Calling
c656404a 6071@subsection Calling Conventions for Pure Parsers
bfa74976 6072
d9df47b6 6073When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
6074pure, reentrant parser, the global communication variables @code{yylval}
6075and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6076Parser}.) In such parsers the two global variables are replaced by
6077pointers passed as arguments to @code{yylex}. You must declare them as
6078shown here, and pass the information back by storing it through those
6079pointers.
bfa74976
RS
6080
6081@example
13863333
AD
6082int
6083yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6084@{
6085 @dots{}
6086 *lvalp = value; /* Put value onto Bison stack. */
6087 return INT; /* Return the type of the token. */
6088 @dots{}
6089@}
6090@end example
6091
6092If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6093textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6094this case, omit the second argument; @code{yylex} will be called with
6095only one argument.
6096
e425e872 6097
2a8d363a
AD
6098If you wish to pass the additional parameter data to @code{yylex}, use
6099@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
6100Function}).
e425e872 6101
feeb0eda 6102@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 6103@findex %lex-param
287c78f6
PE
6104Declare that the braced-code @var{argument-declaration} is an
6105additional @code{yylex} argument declaration.
2a8d363a 6106@end deffn
e425e872 6107
2a8d363a 6108For instance:
e425e872
RS
6109
6110@example
feeb0eda
PE
6111%parse-param @{int *nastiness@}
6112%lex-param @{int *nastiness@}
6113%parse-param @{int *randomness@}
e425e872
RS
6114@end example
6115
6116@noindent
18ad57b3 6117results in the following signatures:
e425e872
RS
6118
6119@example
2a8d363a
AD
6120int yylex (int *nastiness);
6121int yyparse (int *nastiness, int *randomness);
e425e872
RS
6122@end example
6123
d9df47b6 6124If @code{%define api.pure} is added:
c656404a
RS
6125
6126@example
2a8d363a
AD
6127int yylex (YYSTYPE *lvalp, int *nastiness);
6128int yyparse (int *nastiness, int *randomness);
c656404a
RS
6129@end example
6130
2a8d363a 6131@noindent
d9df47b6 6132and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 6133
2a8d363a
AD
6134@example
6135int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6136int yyparse (int *nastiness, int *randomness);
6137@end example
931c7513 6138
342b8b6e 6139@node Error Reporting
bfa74976
RS
6140@section The Error Reporting Function @code{yyerror}
6141@cindex error reporting function
6142@findex yyerror
6143@cindex parse error
6144@cindex syntax error
6145
6e649e65 6146The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 6147whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6148action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6149macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6150in Actions}).
bfa74976
RS
6151
6152The Bison parser expects to report the error by calling an error
6153reporting function named @code{yyerror}, which you must supply. It is
6154called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6155receives one argument. For a syntax error, the string is normally
6156@w{@code{"syntax error"}}.
bfa74976 6157
2a8d363a 6158@findex %error-verbose
6f04ee6c
JD
6159If you invoke the directive @code{%error-verbose} in the Bison declarations
6160section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6161Bison provides a more verbose and specific error message string instead of
6162just plain @w{@code{"syntax error"}}. However, that message sometimes
6163contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6164
1a059451
PE
6165The parser can detect one other kind of error: memory exhaustion. This
6166can happen when the input contains constructions that are very deeply
bfa74976 6167nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6168parser normally extends its stack automatically up to a very large limit. But
6169if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6170fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6171
6172In some cases diagnostics like @w{@code{"syntax error"}} are
6173translated automatically from English to some other language before
6174they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6175
6176The following definition suffices in simple programs:
6177
6178@example
6179@group
13863333 6180void
38a92d50 6181yyerror (char const *s)
bfa74976
RS
6182@{
6183@end group
6184@group
6185 fprintf (stderr, "%s\n", s);
6186@}
6187@end group
6188@end example
6189
6190After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6191error recovery if you have written suitable error recovery grammar rules
6192(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6193immediately return 1.
6194
93724f13 6195Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6196an access to the current location.
35430378 6197This is indeed the case for the GLR
2a8d363a 6198parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6199@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6200@code{yyerror} are:
6201
6202@example
38a92d50
PE
6203void yyerror (char const *msg); /* Yacc parsers. */
6204void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6205@end example
6206
feeb0eda 6207If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6208
6209@example
b317297e
PE
6210void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6211void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6212@end example
6213
35430378 6214Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6215convention for absolutely pure parsers, i.e., when the calling
6216convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
6217@code{%define api.pure} are pure.
6218I.e.:
2a8d363a
AD
6219
6220@example
6221/* Location tracking. */
6222%locations
6223/* Pure yylex. */
d9df47b6 6224%define api.pure
feeb0eda 6225%lex-param @{int *nastiness@}
2a8d363a 6226/* Pure yyparse. */
feeb0eda
PE
6227%parse-param @{int *nastiness@}
6228%parse-param @{int *randomness@}
2a8d363a
AD
6229@end example
6230
6231@noindent
6232results in the following signatures for all the parser kinds:
6233
6234@example
6235int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6236int yyparse (int *nastiness, int *randomness);
93724f13
AD
6237void yyerror (YYLTYPE *locp,
6238 int *nastiness, int *randomness,
38a92d50 6239 char const *msg);
2a8d363a
AD
6240@end example
6241
1c0c3e95 6242@noindent
38a92d50
PE
6243The prototypes are only indications of how the code produced by Bison
6244uses @code{yyerror}. Bison-generated code always ignores the returned
6245value, so @code{yyerror} can return any type, including @code{void}.
6246Also, @code{yyerror} can be a variadic function; that is why the
6247message is always passed last.
6248
6249Traditionally @code{yyerror} returns an @code{int} that is always
6250ignored, but this is purely for historical reasons, and @code{void} is
6251preferable since it more accurately describes the return type for
6252@code{yyerror}.
93724f13 6253
bfa74976
RS
6254@vindex yynerrs
6255The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6256reported so far. Normally this variable is global; but if you
704a47c4
AD
6257request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6258then it is a local variable which only the actions can access.
bfa74976 6259
342b8b6e 6260@node Action Features
bfa74976
RS
6261@section Special Features for Use in Actions
6262@cindex summary, action features
6263@cindex action features summary
6264
6265Here is a table of Bison constructs, variables and macros that
6266are useful in actions.
6267
18b519c0 6268@deffn {Variable} $$
bfa74976
RS
6269Acts like a variable that contains the semantic value for the
6270grouping made by the current rule. @xref{Actions}.
18b519c0 6271@end deffn
bfa74976 6272
18b519c0 6273@deffn {Variable} $@var{n}
bfa74976
RS
6274Acts like a variable that contains the semantic value for the
6275@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6276@end deffn
bfa74976 6277
18b519c0 6278@deffn {Variable} $<@var{typealt}>$
bfa74976 6279Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6280specified by the @code{%union} declaration. @xref{Action Types, ,Data
6281Types of Values in Actions}.
18b519c0 6282@end deffn
bfa74976 6283
18b519c0 6284@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6285Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6286union specified by the @code{%union} declaration.
e0c471a9 6287@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6288@end deffn
bfa74976 6289
34a41a93 6290@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6291Return immediately from @code{yyparse}, indicating failure.
6292@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6293@end deffn
bfa74976 6294
34a41a93 6295@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6296Return immediately from @code{yyparse}, indicating success.
6297@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6298@end deffn
bfa74976 6299
34a41a93 6300@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6301@findex YYBACKUP
6302Unshift a token. This macro is allowed only for rules that reduce
742e4900 6303a single value, and only when there is no lookahead token.
35430378 6304It is also disallowed in GLR parsers.
742e4900 6305It installs a lookahead token with token type @var{token} and
bfa74976
RS
6306semantic value @var{value}; then it discards the value that was
6307going to be reduced by this rule.
6308
6309If the macro is used when it is not valid, such as when there is
742e4900 6310a lookahead token already, then it reports a syntax error with
bfa74976
RS
6311a message @samp{cannot back up} and performs ordinary error
6312recovery.
6313
6314In either case, the rest of the action is not executed.
18b519c0 6315@end deffn
bfa74976 6316
18b519c0 6317@deffn {Macro} YYEMPTY
742e4900 6318Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6319@end deffn
bfa74976 6320
32c29292 6321@deffn {Macro} YYEOF
742e4900 6322Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6323stream.
6324@end deffn
6325
34a41a93 6326@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6327Cause an immediate syntax error. This statement initiates error
6328recovery just as if the parser itself had detected an error; however, it
6329does not call @code{yyerror}, and does not print any message. If you
6330want to print an error message, call @code{yyerror} explicitly before
6331the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6332@end deffn
bfa74976 6333
18b519c0 6334@deffn {Macro} YYRECOVERING
02103984
PE
6335@findex YYRECOVERING
6336The expression @code{YYRECOVERING ()} yields 1 when the parser
6337is recovering from a syntax error, and 0 otherwise.
bfa74976 6338@xref{Error Recovery}.
18b519c0 6339@end deffn
bfa74976 6340
18b519c0 6341@deffn {Variable} yychar
742e4900
JD
6342Variable containing either the lookahead token, or @code{YYEOF} when the
6343lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6344has been performed so the next token is not yet known.
6345Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6346Actions}).
742e4900 6347@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6348@end deffn
bfa74976 6349
34a41a93 6350@deffn {Macro} yyclearin @code{;}
742e4900 6351Discard the current lookahead token. This is useful primarily in
32c29292
JD
6352error rules.
6353Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6354Semantic Actions}).
6355@xref{Error Recovery}.
18b519c0 6356@end deffn
bfa74976 6357
34a41a93 6358@deffn {Macro} yyerrok @code{;}
bfa74976 6359Resume generating error messages immediately for subsequent syntax
13863333 6360errors. This is useful primarily in error rules.
bfa74976 6361@xref{Error Recovery}.
18b519c0 6362@end deffn
bfa74976 6363
32c29292 6364@deffn {Variable} yylloc
742e4900 6365Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6366to @code{YYEMPTY} or @code{YYEOF}.
6367Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6368Actions}).
6369@xref{Actions and Locations, ,Actions and Locations}.
6370@end deffn
6371
6372@deffn {Variable} yylval
742e4900 6373Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6374not set to @code{YYEMPTY} or @code{YYEOF}.
6375Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6376Actions}).
6377@xref{Actions, ,Actions}.
6378@end deffn
6379
18b519c0 6380@deffn {Value} @@$
847bf1f5 6381@findex @@$
7404cdf3
JD
6382Acts like a structure variable containing information on the textual
6383location of the grouping made by the current rule. @xref{Tracking
6384Locations}.
bfa74976 6385
847bf1f5
AD
6386@c Check if those paragraphs are still useful or not.
6387
6388@c @example
6389@c struct @{
6390@c int first_line, last_line;
6391@c int first_column, last_column;
6392@c @};
6393@c @end example
6394
6395@c Thus, to get the starting line number of the third component, you would
6396@c use @samp{@@3.first_line}.
bfa74976 6397
847bf1f5
AD
6398@c In order for the members of this structure to contain valid information,
6399@c you must make @code{yylex} supply this information about each token.
6400@c If you need only certain members, then @code{yylex} need only fill in
6401@c those members.
bfa74976 6402
847bf1f5 6403@c The use of this feature makes the parser noticeably slower.
18b519c0 6404@end deffn
847bf1f5 6405
18b519c0 6406@deffn {Value} @@@var{n}
847bf1f5 6407@findex @@@var{n}
7404cdf3
JD
6408Acts like a structure variable containing information on the textual
6409location of the @var{n}th component of the current rule. @xref{Tracking
6410Locations}.
18b519c0 6411@end deffn
bfa74976 6412
f7ab6a50
PE
6413@node Internationalization
6414@section Parser Internationalization
6415@cindex internationalization
6416@cindex i18n
6417@cindex NLS
6418@cindex gettext
6419@cindex bison-po
6420
6421A Bison-generated parser can print diagnostics, including error and
6422tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6423also supports outputting diagnostics in the user's native language. To
6424make this work, the user should set the usual environment variables.
6425@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6426For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6427set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6428encoding. The exact set of available locales depends on the user's
6429installation.
6430
6431The maintainer of a package that uses a Bison-generated parser enables
6432the internationalization of the parser's output through the following
35430378
JD
6433steps. Here we assume a package that uses GNU Autoconf and
6434GNU Automake.
f7ab6a50
PE
6435
6436@enumerate
6437@item
30757c8c 6438@cindex bison-i18n.m4
35430378 6439Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6440by the package---often called @file{m4}---copy the
6441@file{bison-i18n.m4} file installed by Bison under
6442@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6443For example:
6444
6445@example
6446cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6447@end example
6448
6449@item
30757c8c
PE
6450@findex BISON_I18N
6451@vindex BISON_LOCALEDIR
6452@vindex YYENABLE_NLS
f7ab6a50
PE
6453In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6454invocation, add an invocation of @code{BISON_I18N}. This macro is
6455defined in the file @file{bison-i18n.m4} that you copied earlier. It
6456causes @samp{configure} to find the value of the
30757c8c
PE
6457@code{BISON_LOCALEDIR} variable, and it defines the source-language
6458symbol @code{YYENABLE_NLS} to enable translations in the
6459Bison-generated parser.
f7ab6a50
PE
6460
6461@item
6462In the @code{main} function of your program, designate the directory
6463containing Bison's runtime message catalog, through a call to
6464@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6465For example:
6466
6467@example
6468bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6469@end example
6470
6471Typically this appears after any other call @code{bindtextdomain
6472(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6473@samp{BISON_LOCALEDIR} to be defined as a string through the
6474@file{Makefile}.
6475
6476@item
6477In the @file{Makefile.am} that controls the compilation of the @code{main}
6478function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6479either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6480
6481@example
6482DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6483@end example
6484
6485or:
6486
6487@example
6488AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6489@end example
6490
6491@item
6492Finally, invoke the command @command{autoreconf} to generate the build
6493infrastructure.
6494@end enumerate
6495
bfa74976 6496
342b8b6e 6497@node Algorithm
13863333
AD
6498@chapter The Bison Parser Algorithm
6499@cindex Bison parser algorithm
bfa74976
RS
6500@cindex algorithm of parser
6501@cindex shifting
6502@cindex reduction
6503@cindex parser stack
6504@cindex stack, parser
6505
6506As Bison reads tokens, it pushes them onto a stack along with their
6507semantic values. The stack is called the @dfn{parser stack}. Pushing a
6508token is traditionally called @dfn{shifting}.
6509
6510For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6511@samp{3} to come. The stack will have four elements, one for each token
6512that was shifted.
6513
6514But the stack does not always have an element for each token read. When
6515the last @var{n} tokens and groupings shifted match the components of a
6516grammar rule, they can be combined according to that rule. This is called
6517@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6518single grouping whose symbol is the result (left hand side) of that rule.
6519Running the rule's action is part of the process of reduction, because this
6520is what computes the semantic value of the resulting grouping.
6521
6522For example, if the infix calculator's parser stack contains this:
6523
6524@example
65251 + 5 * 3
6526@end example
6527
6528@noindent
6529and the next input token is a newline character, then the last three
6530elements can be reduced to 15 via the rule:
6531
6532@example
6533expr: expr '*' expr;
6534@end example
6535
6536@noindent
6537Then the stack contains just these three elements:
6538
6539@example
65401 + 15
6541@end example
6542
6543@noindent
6544At this point, another reduction can be made, resulting in the single value
654516. Then the newline token can be shifted.
6546
6547The parser tries, by shifts and reductions, to reduce the entire input down
6548to a single grouping whose symbol is the grammar's start-symbol
6549(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6550
6551This kind of parser is known in the literature as a bottom-up parser.
6552
6553@menu
742e4900 6554* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6555* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6556* Precedence:: Operator precedence works by resolving conflicts.
6557* Contextual Precedence:: When an operator's precedence depends on context.
6558* Parser States:: The parser is a finite-state-machine with stack.
6559* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 6560* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 6561* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6562* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6563* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6564@end menu
6565
742e4900
JD
6566@node Lookahead
6567@section Lookahead Tokens
6568@cindex lookahead token
bfa74976
RS
6569
6570The Bison parser does @emph{not} always reduce immediately as soon as the
6571last @var{n} tokens and groupings match a rule. This is because such a
6572simple strategy is inadequate to handle most languages. Instead, when a
6573reduction is possible, the parser sometimes ``looks ahead'' at the next
6574token in order to decide what to do.
6575
6576When a token is read, it is not immediately shifted; first it becomes the
742e4900 6577@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6578perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6579the lookahead token remains off to the side. When no more reductions
6580should take place, the lookahead token is shifted onto the stack. This
bfa74976 6581does not mean that all possible reductions have been done; depending on the
742e4900 6582token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6583application.
6584
742e4900 6585Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6586expressions which contain binary addition operators and postfix unary
6587factorial operators (@samp{!}), and allow parentheses for grouping.
6588
6589@example
6590@group
de6be119
AD
6591expr:
6592 term '+' expr
6593| term
6594;
bfa74976
RS
6595@end group
6596
6597@group
de6be119
AD
6598term:
6599 '(' expr ')'
6600| term '!'
6601| NUMBER
6602;
bfa74976
RS
6603@end group
6604@end example
6605
6606Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6607should be done? If the following token is @samp{)}, then the first three
6608tokens must be reduced to form an @code{expr}. This is the only valid
6609course, because shifting the @samp{)} would produce a sequence of symbols
6610@w{@code{term ')'}}, and no rule allows this.
6611
6612If the following token is @samp{!}, then it must be shifted immediately so
6613that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6614parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6615@code{expr}. It would then be impossible to shift the @samp{!} because
6616doing so would produce on the stack the sequence of symbols @code{expr
6617'!'}. No rule allows that sequence.
6618
6619@vindex yychar
32c29292
JD
6620@vindex yylval
6621@vindex yylloc
742e4900 6622The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6623Its semantic value and location, if any, are stored in the variables
6624@code{yylval} and @code{yylloc}.
bfa74976
RS
6625@xref{Action Features, ,Special Features for Use in Actions}.
6626
342b8b6e 6627@node Shift/Reduce
bfa74976
RS
6628@section Shift/Reduce Conflicts
6629@cindex conflicts
6630@cindex shift/reduce conflicts
6631@cindex dangling @code{else}
6632@cindex @code{else}, dangling
6633
6634Suppose we are parsing a language which has if-then and if-then-else
6635statements, with a pair of rules like this:
6636
6637@example
6638@group
6639if_stmt:
de6be119
AD
6640 IF expr THEN stmt
6641| IF expr THEN stmt ELSE stmt
6642;
bfa74976
RS
6643@end group
6644@end example
6645
6646@noindent
6647Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6648terminal symbols for specific keyword tokens.
6649
742e4900 6650When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6651contents of the stack (assuming the input is valid) are just right for
6652reduction by the first rule. But it is also legitimate to shift the
6653@code{ELSE}, because that would lead to eventual reduction by the second
6654rule.
6655
6656This situation, where either a shift or a reduction would be valid, is
6657called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6658these conflicts by choosing to shift, unless otherwise directed by
6659operator precedence declarations. To see the reason for this, let's
6660contrast it with the other alternative.
6661
6662Since the parser prefers to shift the @code{ELSE}, the result is to attach
6663the else-clause to the innermost if-statement, making these two inputs
6664equivalent:
6665
6666@example
6667if x then if y then win (); else lose;
6668
6669if x then do; if y then win (); else lose; end;
6670@end example
6671
6672But if the parser chose to reduce when possible rather than shift, the
6673result would be to attach the else-clause to the outermost if-statement,
6674making these two inputs equivalent:
6675
6676@example
6677if x then if y then win (); else lose;
6678
6679if x then do; if y then win (); end; else lose;
6680@end example
6681
6682The conflict exists because the grammar as written is ambiguous: either
6683parsing of the simple nested if-statement is legitimate. The established
6684convention is that these ambiguities are resolved by attaching the
6685else-clause to the innermost if-statement; this is what Bison accomplishes
6686by choosing to shift rather than reduce. (It would ideally be cleaner to
6687write an unambiguous grammar, but that is very hard to do in this case.)
6688This particular ambiguity was first encountered in the specifications of
6689Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6690
6691To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6692conflicts, use the @code{%expect @var{n}} declaration.
6693There will be no warning as long as the number of shift/reduce conflicts
6694is exactly @var{n}, and Bison will report an error if there is a
6695different number.
bfa74976
RS
6696@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6697
6698The definition of @code{if_stmt} above is solely to blame for the
6699conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6700rules. Here is a complete Bison grammar file that actually manifests
6701the conflict:
bfa74976
RS
6702
6703@example
6704@group
6705%token IF THEN ELSE variable
6706%%
6707@end group
6708@group
de6be119
AD
6709stmt:
6710 expr
6711| if_stmt
6712;
bfa74976
RS
6713@end group
6714
6715@group
6716if_stmt:
de6be119
AD
6717 IF expr THEN stmt
6718| IF expr THEN stmt ELSE stmt
6719;
bfa74976
RS
6720@end group
6721
de6be119
AD
6722expr:
6723 variable
6724;
bfa74976
RS
6725@end example
6726
342b8b6e 6727@node Precedence
bfa74976
RS
6728@section Operator Precedence
6729@cindex operator precedence
6730@cindex precedence of operators
6731
6732Another situation where shift/reduce conflicts appear is in arithmetic
6733expressions. Here shifting is not always the preferred resolution; the
6734Bison declarations for operator precedence allow you to specify when to
6735shift and when to reduce.
6736
6737@menu
6738* Why Precedence:: An example showing why precedence is needed.
6739* Using Precedence:: How to specify precedence in Bison grammars.
6740* Precedence Examples:: How these features are used in the previous example.
6741* How Precedence:: How they work.
6742@end menu
6743
342b8b6e 6744@node Why Precedence
bfa74976
RS
6745@subsection When Precedence is Needed
6746
6747Consider the following ambiguous grammar fragment (ambiguous because the
6748input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6749
6750@example
6751@group
de6be119
AD
6752expr:
6753 expr '-' expr
6754| expr '*' expr
6755| expr '<' expr
6756| '(' expr ')'
6757@dots{}
6758;
bfa74976
RS
6759@end group
6760@end example
6761
6762@noindent
6763Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6764should it reduce them via the rule for the subtraction operator? It
6765depends on the next token. Of course, if the next token is @samp{)}, we
6766must reduce; shifting is invalid because no single rule can reduce the
6767token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6768the next token is @samp{*} or @samp{<}, we have a choice: either
6769shifting or reduction would allow the parse to complete, but with
6770different results.
6771
6772To decide which one Bison should do, we must consider the results. If
6773the next operator token @var{op} is shifted, then it must be reduced
6774first in order to permit another opportunity to reduce the difference.
6775The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6776hand, if the subtraction is reduced before shifting @var{op}, the result
6777is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6778reduce should depend on the relative precedence of the operators
6779@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6780@samp{<}.
bfa74976
RS
6781
6782@cindex associativity
6783What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6784@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6785operators we prefer the former, which is called @dfn{left association}.
6786The latter alternative, @dfn{right association}, is desirable for
6787assignment operators. The choice of left or right association is a
6788matter of whether the parser chooses to shift or reduce when the stack
742e4900 6789contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6790makes right-associativity.
bfa74976 6791
342b8b6e 6792@node Using Precedence
bfa74976
RS
6793@subsection Specifying Operator Precedence
6794@findex %left
6795@findex %right
6796@findex %nonassoc
6797
6798Bison allows you to specify these choices with the operator precedence
6799declarations @code{%left} and @code{%right}. Each such declaration
6800contains a list of tokens, which are operators whose precedence and
6801associativity is being declared. The @code{%left} declaration makes all
6802those operators left-associative and the @code{%right} declaration makes
6803them right-associative. A third alternative is @code{%nonassoc}, which
6804declares that it is a syntax error to find the same operator twice ``in a
6805row''.
6806
6807The relative precedence of different operators is controlled by the
6808order in which they are declared. The first @code{%left} or
6809@code{%right} declaration in the file declares the operators whose
6810precedence is lowest, the next such declaration declares the operators
6811whose precedence is a little higher, and so on.
6812
342b8b6e 6813@node Precedence Examples
bfa74976
RS
6814@subsection Precedence Examples
6815
6816In our example, we would want the following declarations:
6817
6818@example
6819%left '<'
6820%left '-'
6821%left '*'
6822@end example
6823
6824In a more complete example, which supports other operators as well, we
6825would declare them in groups of equal precedence. For example, @code{'+'} is
6826declared with @code{'-'}:
6827
6828@example
6829%left '<' '>' '=' NE LE GE
6830%left '+' '-'
6831%left '*' '/'
6832@end example
6833
6834@noindent
6835(Here @code{NE} and so on stand for the operators for ``not equal''
6836and so on. We assume that these tokens are more than one character long
6837and therefore are represented by names, not character literals.)
6838
342b8b6e 6839@node How Precedence
bfa74976
RS
6840@subsection How Precedence Works
6841
6842The first effect of the precedence declarations is to assign precedence
6843levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6844precedence levels to certain rules: each rule gets its precedence from
6845the last terminal symbol mentioned in the components. (You can also
6846specify explicitly the precedence of a rule. @xref{Contextual
6847Precedence, ,Context-Dependent Precedence}.)
6848
6849Finally, the resolution of conflicts works by comparing the precedence
742e4900 6850of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6851token's precedence is higher, the choice is to shift. If the rule's
6852precedence is higher, the choice is to reduce. If they have equal
6853precedence, the choice is made based on the associativity of that
6854precedence level. The verbose output file made by @samp{-v}
6855(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6856resolved.
bfa74976
RS
6857
6858Not all rules and not all tokens have precedence. If either the rule or
742e4900 6859the lookahead token has no precedence, then the default is to shift.
bfa74976 6860
342b8b6e 6861@node Contextual Precedence
bfa74976
RS
6862@section Context-Dependent Precedence
6863@cindex context-dependent precedence
6864@cindex unary operator precedence
6865@cindex precedence, context-dependent
6866@cindex precedence, unary operator
6867@findex %prec
6868
6869Often the precedence of an operator depends on the context. This sounds
6870outlandish at first, but it is really very common. For example, a minus
6871sign typically has a very high precedence as a unary operator, and a
6872somewhat lower precedence (lower than multiplication) as a binary operator.
6873
6874The Bison precedence declarations, @code{%left}, @code{%right} and
6875@code{%nonassoc}, can only be used once for a given token; so a token has
6876only one precedence declared in this way. For context-dependent
6877precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6878modifier for rules.
bfa74976
RS
6879
6880The @code{%prec} modifier declares the precedence of a particular rule by
6881specifying a terminal symbol whose precedence should be used for that rule.
6882It's not necessary for that symbol to appear otherwise in the rule. The
6883modifier's syntax is:
6884
6885@example
6886%prec @var{terminal-symbol}
6887@end example
6888
6889@noindent
6890and it is written after the components of the rule. Its effect is to
6891assign the rule the precedence of @var{terminal-symbol}, overriding
6892the precedence that would be deduced for it in the ordinary way. The
6893altered rule precedence then affects how conflicts involving that rule
6894are resolved (@pxref{Precedence, ,Operator Precedence}).
6895
6896Here is how @code{%prec} solves the problem of unary minus. First, declare
6897a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6898are no tokens of this type, but the symbol serves to stand for its
6899precedence:
6900
6901@example
6902@dots{}
6903%left '+' '-'
6904%left '*'
6905%left UMINUS
6906@end example
6907
6908Now the precedence of @code{UMINUS} can be used in specific rules:
6909
6910@example
6911@group
de6be119
AD
6912exp:
6913 @dots{}
6914| exp '-' exp
6915 @dots{}
6916| '-' exp %prec UMINUS
bfa74976
RS
6917@end group
6918@end example
6919
91d2c560 6920@ifset defaultprec
39a06c25
PE
6921If you forget to append @code{%prec UMINUS} to the rule for unary
6922minus, Bison silently assumes that minus has its usual precedence.
6923This kind of problem can be tricky to debug, since one typically
6924discovers the mistake only by testing the code.
6925
22fccf95 6926The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6927this kind of problem systematically. It causes rules that lack a
6928@code{%prec} modifier to have no precedence, even if the last terminal
6929symbol mentioned in their components has a declared precedence.
6930
22fccf95 6931If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6932for all rules that participate in precedence conflict resolution.
6933Then you will see any shift/reduce conflict until you tell Bison how
6934to resolve it, either by changing your grammar or by adding an
6935explicit precedence. This will probably add declarations to the
6936grammar, but it helps to protect against incorrect rule precedences.
6937
22fccf95
PE
6938The effect of @code{%no-default-prec;} can be reversed by giving
6939@code{%default-prec;}, which is the default.
91d2c560 6940@end ifset
39a06c25 6941
342b8b6e 6942@node Parser States
bfa74976
RS
6943@section Parser States
6944@cindex finite-state machine
6945@cindex parser state
6946@cindex state (of parser)
6947
6948The function @code{yyparse} is implemented using a finite-state machine.
6949The values pushed on the parser stack are not simply token type codes; they
6950represent the entire sequence of terminal and nonterminal symbols at or
6951near the top of the stack. The current state collects all the information
6952about previous input which is relevant to deciding what to do next.
6953
742e4900
JD
6954Each time a lookahead token is read, the current parser state together
6955with the type of lookahead token are looked up in a table. This table
6956entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6957specifies the new parser state, which is pushed onto the top of the
6958parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6959This means that a certain number of tokens or groupings are taken off
6960the top of the stack, and replaced by one grouping. In other words,
6961that number of states are popped from the stack, and one new state is
6962pushed.
6963
742e4900 6964There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6965is erroneous in the current state. This causes error processing to begin
6966(@pxref{Error Recovery}).
6967
342b8b6e 6968@node Reduce/Reduce
bfa74976
RS
6969@section Reduce/Reduce Conflicts
6970@cindex reduce/reduce conflict
6971@cindex conflicts, reduce/reduce
6972
6973A reduce/reduce conflict occurs if there are two or more rules that apply
6974to the same sequence of input. This usually indicates a serious error
6975in the grammar.
6976
6977For example, here is an erroneous attempt to define a sequence
6978of zero or more @code{word} groupings.
6979
6980@example
98842516 6981@group
de6be119
AD
6982sequence:
6983 /* empty */ @{ printf ("empty sequence\n"); @}
6984| maybeword
6985| sequence word @{ printf ("added word %s\n", $2); @}
6986;
98842516 6987@end group
bfa74976 6988
98842516 6989@group
de6be119
AD
6990maybeword:
6991 /* empty */ @{ printf ("empty maybeword\n"); @}
6992| word @{ printf ("single word %s\n", $1); @}
6993;
98842516 6994@end group
bfa74976
RS
6995@end example
6996
6997@noindent
6998The error is an ambiguity: there is more than one way to parse a single
6999@code{word} into a @code{sequence}. It could be reduced to a
7000@code{maybeword} and then into a @code{sequence} via the second rule.
7001Alternatively, nothing-at-all could be reduced into a @code{sequence}
7002via the first rule, and this could be combined with the @code{word}
7003using the third rule for @code{sequence}.
7004
7005There is also more than one way to reduce nothing-at-all into a
7006@code{sequence}. This can be done directly via the first rule,
7007or indirectly via @code{maybeword} and then the second rule.
7008
7009You might think that this is a distinction without a difference, because it
7010does not change whether any particular input is valid or not. But it does
7011affect which actions are run. One parsing order runs the second rule's
7012action; the other runs the first rule's action and the third rule's action.
7013In this example, the output of the program changes.
7014
7015Bison resolves a reduce/reduce conflict by choosing to use the rule that
7016appears first in the grammar, but it is very risky to rely on this. Every
7017reduce/reduce conflict must be studied and usually eliminated. Here is the
7018proper way to define @code{sequence}:
7019
7020@example
de6be119
AD
7021sequence:
7022 /* empty */ @{ printf ("empty sequence\n"); @}
7023| sequence word @{ printf ("added word %s\n", $2); @}
7024;
bfa74976
RS
7025@end example
7026
7027Here is another common error that yields a reduce/reduce conflict:
7028
7029@example
de6be119
AD
7030sequence:
7031 /* empty */
7032| sequence words
7033| sequence redirects
7034;
bfa74976 7035
de6be119
AD
7036words:
7037 /* empty */
7038| words word
7039;
bfa74976 7040
de6be119
AD
7041redirects:
7042 /* empty */
7043| redirects redirect
7044;
bfa74976
RS
7045@end example
7046
7047@noindent
7048The intention here is to define a sequence which can contain either
7049@code{word} or @code{redirect} groupings. The individual definitions of
7050@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7051three together make a subtle ambiguity: even an empty input can be parsed
7052in infinitely many ways!
7053
7054Consider: nothing-at-all could be a @code{words}. Or it could be two
7055@code{words} in a row, or three, or any number. It could equally well be a
7056@code{redirects}, or two, or any number. Or it could be a @code{words}
7057followed by three @code{redirects} and another @code{words}. And so on.
7058
7059Here are two ways to correct these rules. First, to make it a single level
7060of sequence:
7061
7062@example
de6be119
AD
7063sequence:
7064 /* empty */
7065| sequence word
7066| sequence redirect
7067;
bfa74976
RS
7068@end example
7069
7070Second, to prevent either a @code{words} or a @code{redirects}
7071from being empty:
7072
7073@example
98842516 7074@group
de6be119
AD
7075sequence:
7076 /* empty */
7077| sequence words
7078| sequence redirects
7079;
98842516 7080@end group
bfa74976 7081
98842516 7082@group
de6be119
AD
7083words:
7084 word
7085| words word
7086;
98842516 7087@end group
bfa74976 7088
98842516 7089@group
de6be119
AD
7090redirects:
7091 redirect
7092| redirects redirect
7093;
98842516 7094@end group
bfa74976
RS
7095@end example
7096
5da0355a
JD
7097@node Mysterious Conflicts
7098@section Mysterious Conflicts
6f04ee6c 7099@cindex Mysterious Conflicts
bfa74976
RS
7100
7101Sometimes reduce/reduce conflicts can occur that don't look warranted.
7102Here is an example:
7103
7104@example
7105@group
7106%token ID
7107
7108%%
de6be119 7109def: param_spec return_spec ',';
bfa74976 7110param_spec:
de6be119
AD
7111 type
7112| name_list ':' type
7113;
bfa74976
RS
7114@end group
7115@group
7116return_spec:
de6be119
AD
7117 type
7118| name ':' type
7119;
bfa74976
RS
7120@end group
7121@group
de6be119 7122type: ID;
bfa74976
RS
7123@end group
7124@group
de6be119 7125name: ID;
bfa74976 7126name_list:
de6be119
AD
7127 name
7128| name ',' name_list
7129;
bfa74976
RS
7130@end group
7131@end example
7132
7133It would seem that this grammar can be parsed with only a single token
742e4900 7134of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7135a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 7136@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7137
6f04ee6c
JD
7138@cindex LR
7139@cindex LALR
34a6c2d1 7140However, for historical reasons, Bison cannot by default handle all
35430378 7141LR(1) grammars.
34a6c2d1
JD
7142In this grammar, two contexts, that after an @code{ID} at the beginning
7143of a @code{param_spec} and likewise at the beginning of a
7144@code{return_spec}, are similar enough that Bison assumes they are the
7145same.
7146They appear similar because the same set of rules would be
bfa74976
RS
7147active---the rule for reducing to a @code{name} and that for reducing to
7148a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7149that the rules would require different lookahead tokens in the two
bfa74976
RS
7150contexts, so it makes a single parser state for them both. Combining
7151the two contexts causes a conflict later. In parser terminology, this
35430378 7152occurrence means that the grammar is not LALR(1).
bfa74976 7153
6f04ee6c
JD
7154@cindex IELR
7155@cindex canonical LR
7156For many practical grammars (specifically those that fall into the non-LR(1)
7157class), the limitations of LALR(1) result in difficulties beyond just
7158mysterious reduce/reduce conflicts. The best way to fix all these problems
7159is to select a different parser table construction algorithm. Either
7160IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7161and easier to debug during development. @xref{LR Table Construction}, for
7162details. (Bison's IELR(1) and canonical LR(1) implementations are
7163experimental. More user feedback will help to stabilize them.)
34a6c2d1 7164
35430378 7165If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
7166can often fix a mysterious conflict by identifying the two parser states
7167that are being confused, and adding something to make them look
7168distinct. In the above example, adding one rule to
bfa74976
RS
7169@code{return_spec} as follows makes the problem go away:
7170
7171@example
7172@group
7173%token BOGUS
7174@dots{}
7175%%
7176@dots{}
7177return_spec:
de6be119
AD
7178 type
7179| name ':' type
7180| ID BOGUS /* This rule is never used. */
7181;
bfa74976
RS
7182@end group
7183@end example
7184
7185This corrects the problem because it introduces the possibility of an
7186additional active rule in the context after the @code{ID} at the beginning of
7187@code{return_spec}. This rule is not active in the corresponding context
7188in a @code{param_spec}, so the two contexts receive distinct parser states.
7189As long as the token @code{BOGUS} is never generated by @code{yylex},
7190the added rule cannot alter the way actual input is parsed.
7191
7192In this particular example, there is another way to solve the problem:
7193rewrite the rule for @code{return_spec} to use @code{ID} directly
7194instead of via @code{name}. This also causes the two confusing
7195contexts to have different sets of active rules, because the one for
7196@code{return_spec} activates the altered rule for @code{return_spec}
7197rather than the one for @code{name}.
7198
7199@example
7200param_spec:
de6be119
AD
7201 type
7202| name_list ':' type
7203;
bfa74976 7204return_spec:
de6be119
AD
7205 type
7206| ID ':' type
7207;
bfa74976
RS
7208@end example
7209
35430378 7210For a more detailed exposition of LALR(1) parsers and parser
71caec06 7211generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7212
6f04ee6c
JD
7213@node Tuning LR
7214@section Tuning LR
7215
7216The default behavior of Bison's LR-based parsers is chosen mostly for
7217historical reasons, but that behavior is often not robust. For example, in
7218the previous section, we discussed the mysterious conflicts that can be
7219produced by LALR(1), Bison's default parser table construction algorithm.
7220Another example is Bison's @code{%error-verbose} directive, which instructs
7221the generated parser to produce verbose syntax error messages, which can
7222sometimes contain incorrect information.
7223
7224In this section, we explore several modern features of Bison that allow you
7225to tune fundamental aspects of the generated LR-based parsers. Some of
7226these features easily eliminate shortcomings like those mentioned above.
7227Others can be helpful purely for understanding your parser.
7228
7229Most of the features discussed in this section are still experimental. More
7230user feedback will help to stabilize them.
7231
7232@menu
7233* LR Table Construction:: Choose a different construction algorithm.
7234* Default Reductions:: Disable default reductions.
7235* LAC:: Correct lookahead sets in the parser states.
7236* Unreachable States:: Keep unreachable parser states for debugging.
7237@end menu
7238
7239@node LR Table Construction
7240@subsection LR Table Construction
7241@cindex Mysterious Conflict
7242@cindex LALR
7243@cindex IELR
7244@cindex canonical LR
7245@findex %define lr.type
7246
7247For historical reasons, Bison constructs LALR(1) parser tables by default.
7248However, LALR does not possess the full language-recognition power of LR.
7249As a result, the behavior of parsers employing LALR parser tables is often
5da0355a 7250mysterious. We presented a simple example of this effect in @ref{Mysterious
6f04ee6c
JD
7251Conflicts}.
7252
7253As we also demonstrated in that example, the traditional approach to
7254eliminating such mysterious behavior is to restructure the grammar.
7255Unfortunately, doing so correctly is often difficult. Moreover, merely
7256discovering that LALR causes mysterious behavior in your parser can be
7257difficult as well.
7258
7259Fortunately, Bison provides an easy way to eliminate the possibility of such
7260mysterious behavior altogether. You simply need to activate a more powerful
7261parser table construction algorithm by using the @code{%define lr.type}
7262directive.
7263
7264@deffn {Directive} {%define lr.type @var{TYPE}}
7265Specify the type of parser tables within the LR(1) family. The accepted
7266values for @var{TYPE} are:
7267
7268@itemize
7269@item @code{lalr} (default)
7270@item @code{ielr}
7271@item @code{canonical-lr}
7272@end itemize
7273
7274(This feature is experimental. More user feedback will help to stabilize
7275it.)
7276@end deffn
7277
7278For example, to activate IELR, you might add the following directive to you
7279grammar file:
7280
7281@example
7282%define lr.type ielr
7283@end example
7284
5da0355a 7285@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
6f04ee6c
JD
7286conflict is then eliminated, so there is no need to invest time in
7287comprehending the conflict or restructuring the grammar to fix it. If,
7288during future development, the grammar evolves such that all mysterious
7289behavior would have disappeared using just LALR, you need not fear that
7290continuing to use IELR will result in unnecessarily large parser tables.
7291That is, IELR generates LALR tables when LALR (using a deterministic parsing
7292algorithm) is sufficient to support the full language-recognition power of
7293LR. Thus, by enabling IELR at the start of grammar development, you can
7294safely and completely eliminate the need to consider LALR's shortcomings.
7295
7296While IELR is almost always preferable, there are circumstances where LALR
7297or the canonical LR parser tables described by Knuth
7298(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7299relative advantages of each parser table construction algorithm within
7300Bison:
7301
7302@itemize
7303@item LALR
7304
7305There are at least two scenarios where LALR can be worthwhile:
7306
7307@itemize
7308@item GLR without static conflict resolution.
7309
7310@cindex GLR with LALR
7311When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7312conflicts statically (for example, with @code{%left} or @code{%prec}), then
7313the parser explores all potential parses of any given input. In this case,
7314the choice of parser table construction algorithm is guaranteed not to alter
7315the language accepted by the parser. LALR parser tables are the smallest
7316parser tables Bison can currently construct, so they may then be preferable.
7317Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7318more like a deterministic parser in the syntactic contexts where those
7319conflicts appear, and so either IELR or canonical LR can then be helpful to
7320avoid LALR's mysterious behavior.
7321
7322@item Malformed grammars.
7323
7324Occasionally during development, an especially malformed grammar with a
7325major recurring flaw may severely impede the IELR or canonical LR parser
7326table construction algorithm. LALR can be a quick way to construct parser
7327tables in order to investigate such problems while ignoring the more subtle
7328differences from IELR and canonical LR.
7329@end itemize
7330
7331@item IELR
7332
7333IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7334any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7335always accept exactly the same set of sentences. However, like LALR, IELR
7336merges parser states during parser table construction so that the number of
7337parser states is often an order of magnitude less than for canonical LR.
7338More importantly, because canonical LR's extra parser states may contain
7339duplicate conflicts in the case of non-LR grammars, the number of conflicts
7340for IELR is often an order of magnitude less as well. This effect can
7341significantly reduce the complexity of developing a grammar.
7342
7343@item Canonical LR
7344
7345@cindex delayed syntax error detection
7346@cindex LAC
7347@findex %nonassoc
7348While inefficient, canonical LR parser tables can be an interesting means to
7349explore a grammar because they possess a property that IELR and LALR tables
7350do not. That is, if @code{%nonassoc} is not used and default reductions are
7351left disabled (@pxref{Default Reductions}), then, for every left context of
7352every canonical LR state, the set of tokens accepted by that state is
7353guaranteed to be the exact set of tokens that is syntactically acceptable in
7354that left context. It might then seem that an advantage of canonical LR
7355parsers in production is that, under the above constraints, they are
7356guaranteed to detect a syntax error as soon as possible without performing
7357any unnecessary reductions. However, IELR parsers that use LAC are also
7358able to achieve this behavior without sacrificing @code{%nonassoc} or
7359default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7360@end itemize
7361
7362For a more detailed exposition of the mysterious behavior in LALR parsers
7363and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7364@ref{Bibliography,,Denny 2010 November}.
7365
7366@node Default Reductions
7367@subsection Default Reductions
7368@cindex default reductions
7369@findex %define lr.default-reductions
7370@findex %nonassoc
7371
7372After parser table construction, Bison identifies the reduction with the
7373largest lookahead set in each parser state. To reduce the size of the
7374parser state, traditional Bison behavior is to remove that lookahead set and
7375to assign that reduction to be the default parser action. Such a reduction
7376is known as a @dfn{default reduction}.
7377
7378Default reductions affect more than the size of the parser tables. They
7379also affect the behavior of the parser:
7380
7381@itemize
7382@item Delayed @code{yylex} invocations.
7383
7384@cindex delayed yylex invocations
7385@cindex consistent states
7386@cindex defaulted states
7387A @dfn{consistent state} is a state that has only one possible parser
7388action. If that action is a reduction and is encoded as a default
7389reduction, then that consistent state is called a @dfn{defaulted state}.
7390Upon reaching a defaulted state, a Bison-generated parser does not bother to
7391invoke @code{yylex} to fetch the next token before performing the reduction.
7392In other words, whether default reductions are enabled in consistent states
7393determines how soon a Bison-generated parser invokes @code{yylex} for a
7394token: immediately when it @emph{reaches} that token in the input or when it
7395eventually @emph{needs} that token as a lookahead to determine the next
7396parser action. Traditionally, default reductions are enabled, and so the
7397parser exhibits the latter behavior.
7398
7399The presence of defaulted states is an important consideration when
7400designing @code{yylex} and the grammar file. That is, if the behavior of
7401@code{yylex} can influence or be influenced by the semantic actions
7402associated with the reductions in defaulted states, then the delay of the
7403next @code{yylex} invocation until after those reductions is significant.
7404For example, the semantic actions might pop a scope stack that @code{yylex}
7405uses to determine what token to return. Thus, the delay might be necessary
7406to ensure that @code{yylex} does not look up the next token in a scope that
7407should already be considered closed.
7408
7409@item Delayed syntax error detection.
7410
7411@cindex delayed syntax error detection
7412When the parser fetches a new token by invoking @code{yylex}, it checks
7413whether there is an action for that token in the current parser state. The
7414parser detects a syntax error if and only if either (1) there is no action
7415for that token or (2) the action for that token is the error action (due to
7416the use of @code{%nonassoc}). However, if there is a default reduction in
7417that state (which might or might not be a defaulted state), then it is
7418impossible for condition 1 to exist. That is, all tokens have an action.
7419Thus, the parser sometimes fails to detect the syntax error until it reaches
7420a later state.
7421
7422@cindex LAC
7423@c If there's an infinite loop, default reductions can prevent an incorrect
7424@c sentence from being rejected.
7425While default reductions never cause the parser to accept syntactically
7426incorrect sentences, the delay of syntax error detection can have unexpected
7427effects on the behavior of the parser. However, the delay can be caused
7428anyway by parser state merging and the use of @code{%nonassoc}, and it can
7429be fixed by another Bison feature, LAC. We discuss the effects of delayed
7430syntax error detection and LAC more in the next section (@pxref{LAC}).
7431@end itemize
7432
7433For canonical LR, the only default reduction that Bison enables by default
7434is the accept action, which appears only in the accepting state, which has
7435no other action and is thus a defaulted state. However, the default accept
7436action does not delay any @code{yylex} invocation or syntax error detection
7437because the accept action ends the parse.
7438
7439For LALR and IELR, Bison enables default reductions in nearly all states by
7440default. There are only two exceptions. First, states that have a shift
7441action on the @code{error} token do not have default reductions because
7442delayed syntax error detection could then prevent the @code{error} token
7443from ever being shifted in that state. However, parser state merging can
7444cause the same effect anyway, and LAC fixes it in both cases, so future
7445versions of Bison might drop this exception when LAC is activated. Second,
7446GLR parsers do not record the default reduction as the action on a lookahead
7447token for which there is a conflict. The correct action in this case is to
7448split the parse instead.
7449
7450To adjust which states have default reductions enabled, use the
7451@code{%define lr.default-reductions} directive.
7452
7453@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7454Specify the kind of states that are permitted to contain default reductions.
7455The accepted values of @var{WHERE} are:
7456@itemize
a6e5a280 7457@item @code{most} (default for LALR and IELR)
6f04ee6c
JD
7458@item @code{consistent}
7459@item @code{accepting} (default for canonical LR)
7460@end itemize
7461
7462(The ability to specify where default reductions are permitted is
7463experimental. More user feedback will help to stabilize it.)
7464@end deffn
7465
6f04ee6c
JD
7466@node LAC
7467@subsection LAC
7468@findex %define parse.lac
7469@cindex LAC
7470@cindex lookahead correction
7471
7472Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7473encountering a syntax error. First, the parser might perform additional
7474parser stack reductions before discovering the syntax error. Such
7475reductions can perform user semantic actions that are unexpected because
7476they are based on an invalid token, and they cause error recovery to begin
7477in a different syntactic context than the one in which the invalid token was
7478encountered. Second, when verbose error messages are enabled (@pxref{Error
7479Reporting}), the expected token list in the syntax error message can both
7480contain invalid tokens and omit valid tokens.
7481
7482The culprits for the above problems are @code{%nonassoc}, default reductions
7483in inconsistent states (@pxref{Default Reductions}), and parser state
7484merging. Because IELR and LALR merge parser states, they suffer the most.
7485Canonical LR can suffer only if @code{%nonassoc} is used or if default
7486reductions are enabled for inconsistent states.
7487
7488LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7489that solves these problems for canonical LR, IELR, and LALR without
7490sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7491enable LAC with the @code{%define parse.lac} directive.
7492
7493@deffn {Directive} {%define parse.lac @var{VALUE}}
7494Enable LAC to improve syntax error handling.
7495@itemize
7496@item @code{none} (default)
7497@item @code{full}
7498@end itemize
7499(This feature is experimental. More user feedback will help to stabilize
7500it. Moreover, it is currently only available for deterministic parsers in
7501C.)
7502@end deffn
7503
7504Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7505fetches a new token from the scanner so that it can determine the next
7506parser action, it immediately suspends normal parsing and performs an
7507exploratory parse using a temporary copy of the normal parser state stack.
7508During this exploratory parse, the parser does not perform user semantic
7509actions. If the exploratory parse reaches a shift action, normal parsing
7510then resumes on the normal parser stacks. If the exploratory parse reaches
7511an error instead, the parser reports a syntax error. If verbose syntax
7512error messages are enabled, the parser must then discover the list of
7513expected tokens, so it performs a separate exploratory parse for each token
7514in the grammar.
7515
7516There is one subtlety about the use of LAC. That is, when in a consistent
7517parser state with a default reduction, the parser will not attempt to fetch
7518a token from the scanner because no lookahead is needed to determine the
7519next parser action. Thus, whether default reductions are enabled in
7520consistent states (@pxref{Default Reductions}) affects how soon the parser
7521detects a syntax error: immediately when it @emph{reaches} an erroneous
7522token or when it eventually @emph{needs} that token as a lookahead to
7523determine the next parser action. The latter behavior is probably more
7524intuitive, so Bison currently provides no way to achieve the former behavior
7525while default reductions are enabled in consistent states.
7526
7527Thus, when LAC is in use, for some fixed decision of whether to enable
7528default reductions in consistent states, canonical LR and IELR behave almost
7529exactly the same for both syntactically acceptable and syntactically
7530unacceptable input. While LALR still does not support the full
7531language-recognition power of canonical LR and IELR, LAC at least enables
7532LALR's syntax error handling to correctly reflect LALR's
7533language-recognition power.
7534
7535There are a few caveats to consider when using LAC:
7536
7537@itemize
7538@item Infinite parsing loops.
7539
7540IELR plus LAC does have one shortcoming relative to canonical LR. Some
7541parsers generated by Bison can loop infinitely. LAC does not fix infinite
7542parsing loops that occur between encountering a syntax error and detecting
7543it, but enabling canonical LR or disabling default reductions sometimes
7544does.
7545
7546@item Verbose error message limitations.
7547
7548Because of internationalization considerations, Bison-generated parsers
7549limit the size of the expected token list they are willing to report in a
7550verbose syntax error message. If the number of expected tokens exceeds that
7551limit, the list is simply dropped from the message. Enabling LAC can
7552increase the size of the list and thus cause the parser to drop it. Of
7553course, dropping the list is better than reporting an incorrect list.
7554
7555@item Performance.
7556
7557Because LAC requires many parse actions to be performed twice, it can have a
7558performance penalty. However, not all parse actions must be performed
7559twice. Specifically, during a series of default reductions in consistent
7560states and shift actions, the parser never has to initiate an exploratory
7561parse. Moreover, the most time-consuming tasks in a parse are often the
7562file I/O, the lexical analysis performed by the scanner, and the user's
7563semantic actions, but none of these are performed during the exploratory
7564parse. Finally, the base of the temporary stack used during an exploratory
7565parse is a pointer into the normal parser state stack so that the stack is
7566never physically copied. In our experience, the performance penalty of LAC
56da1e52 7567has proved insignificant for practical grammars.
6f04ee6c
JD
7568@end itemize
7569
56706c61
JD
7570While the LAC algorithm shares techniques that have been recognized in the
7571parser community for years, for the publication that introduces LAC,
7572@pxref{Bibliography,,Denny 2010 May}.
121c4982 7573
6f04ee6c
JD
7574@node Unreachable States
7575@subsection Unreachable States
7576@findex %define lr.keep-unreachable-states
7577@cindex unreachable states
7578
7579If there exists no sequence of transitions from the parser's start state to
7580some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7581state}. A state can become unreachable during conflict resolution if Bison
7582disables a shift action leading to it from a predecessor state.
7583
7584By default, Bison removes unreachable states from the parser after conflict
7585resolution because they are useless in the generated parser. However,
7586keeping unreachable states is sometimes useful when trying to understand the
7587relationship between the parser and the grammar.
7588
7589@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7590Request that Bison allow unreachable states to remain in the parser tables.
7591@var{VALUE} must be a Boolean. The default is @code{false}.
7592@end deffn
7593
7594There are a few caveats to consider:
7595
7596@itemize @bullet
7597@item Missing or extraneous warnings.
7598
7599Unreachable states may contain conflicts and may use rules not used in any
7600other state. Thus, keeping unreachable states may induce warnings that are
7601irrelevant to your parser's behavior, and it may eliminate warnings that are
7602relevant. Of course, the change in warnings may actually be relevant to a
7603parser table analysis that wants to keep unreachable states, so this
7604behavior will likely remain in future Bison releases.
7605
7606@item Other useless states.
7607
7608While Bison is able to remove unreachable states, it is not guaranteed to
7609remove other kinds of useless states. Specifically, when Bison disables
7610reduce actions during conflict resolution, some goto actions may become
7611useless, and thus some additional states may become useless. If Bison were
7612to compute which goto actions were useless and then disable those actions,
7613it could identify such states as unreachable and then remove those states.
7614However, Bison does not compute which goto actions are useless.
7615@end itemize
7616
fae437e8 7617@node Generalized LR Parsing
35430378
JD
7618@section Generalized LR (GLR) Parsing
7619@cindex GLR parsing
7620@cindex generalized LR (GLR) parsing
676385e2 7621@cindex ambiguous grammars
9d9b8b70 7622@cindex nondeterministic parsing
676385e2 7623
fae437e8
AD
7624Bison produces @emph{deterministic} parsers that choose uniquely
7625when to reduce and which reduction to apply
742e4900 7626based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7627As a result, normal Bison handles a proper subset of the family of
7628context-free languages.
fae437e8 7629Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7630sequence of reductions cannot have deterministic parsers in this sense.
7631The same is true of languages that require more than one symbol of
742e4900 7632lookahead, since the parser lacks the information necessary to make a
676385e2 7633decision at the point it must be made in a shift-reduce parser.
5da0355a 7634Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
34a6c2d1 7635there are languages where Bison's default choice of how to
676385e2
PH
7636summarize the input seen so far loses necessary information.
7637
7638When you use the @samp{%glr-parser} declaration in your grammar file,
7639Bison generates a parser that uses a different algorithm, called
35430378 7640Generalized LR (or GLR). A Bison GLR
c827f760 7641parser uses the same basic
676385e2
PH
7642algorithm for parsing as an ordinary Bison parser, but behaves
7643differently in cases where there is a shift-reduce conflict that has not
fae437e8 7644been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7645reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7646situation, it
fae437e8 7647effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7648shift or reduction. These parsers then proceed as usual, consuming
7649tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7650and split further, with the result that instead of a sequence of states,
35430378 7651a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7652
7653In effect, each stack represents a guess as to what the proper parse
7654is. Additional input may indicate that a guess was wrong, in which case
7655the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7656actions generated in each stack are saved, rather than being executed
676385e2 7657immediately. When a stack disappears, its saved semantic actions never
fae437e8 7658get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7659their sets of semantic actions are both saved with the state that
7660results from the reduction. We say that two stacks are equivalent
fae437e8 7661when they both represent the same sequence of states,
676385e2
PH
7662and each pair of corresponding states represents a
7663grammar symbol that produces the same segment of the input token
7664stream.
7665
7666Whenever the parser makes a transition from having multiple
34a6c2d1 7667states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7668algorithm, after resolving and executing the saved-up actions.
7669At this transition, some of the states on the stack will have semantic
7670values that are sets (actually multisets) of possible actions. The
7671parser tries to pick one of the actions by first finding one whose rule
7672has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7673declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7674precedence, but there the same merging function is declared for both
fae437e8 7675rules by the @samp{%merge} declaration,
676385e2
PH
7676Bison resolves and evaluates both and then calls the merge function on
7677the result. Otherwise, it reports an ambiguity.
7678
35430378
JD
7679It is possible to use a data structure for the GLR parsing tree that
7680permits the processing of any LR(1) grammar in linear time (in the
c827f760 7681size of the input), any unambiguous (not necessarily
35430378 7682LR(1)) grammar in
fae437e8 7683quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7684context-free grammar in cubic worst-case time. However, Bison currently
7685uses a simpler data structure that requires time proportional to the
7686length of the input times the maximum number of stacks required for any
9d9b8b70 7687prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7688grammars can require exponential time and space to process. Such badly
7689behaving examples, however, are not generally of practical interest.
9d9b8b70 7690Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7691doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7692structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7693grammar, in particular, it is only slightly slower than with the
35430378 7694deterministic LR(1) Bison parser.
676385e2 7695
71caec06
JD
7696For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
76972000}.
f6481e2f 7698
1a059451
PE
7699@node Memory Management
7700@section Memory Management, and How to Avoid Memory Exhaustion
7701@cindex memory exhaustion
7702@cindex memory management
bfa74976
RS
7703@cindex stack overflow
7704@cindex parser stack overflow
7705@cindex overflow of parser stack
7706
1a059451 7707The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7708not reduced. When this happens, the parser function @code{yyparse}
1a059451 7709calls @code{yyerror} and then returns 2.
bfa74976 7710
c827f760 7711Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 7712usually results from using a right recursion instead of a left
188867ac 7713recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 7714
bfa74976
RS
7715@vindex YYMAXDEPTH
7716By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7717parser stack can become before memory is exhausted. Define the
bfa74976
RS
7718macro with a value that is an integer. This value is the maximum number
7719of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7720
7721The stack space allowed is not necessarily allocated. If you specify a
1a059451 7722large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7723stack at first, and then makes it bigger by stages as needed. This
7724increasing allocation happens automatically and silently. Therefore,
7725you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7726space for ordinary inputs that do not need much stack.
7727
d7e14fc0
PE
7728However, do not allow @code{YYMAXDEPTH} to be a value so large that
7729arithmetic overflow could occur when calculating the size of the stack
7730space. Also, do not allow @code{YYMAXDEPTH} to be less than
7731@code{YYINITDEPTH}.
7732
bfa74976
RS
7733@cindex default stack limit
7734The default value of @code{YYMAXDEPTH}, if you do not define it, is
773510000.
7736
7737@vindex YYINITDEPTH
7738You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7739macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7740parser in C, this value must be a compile-time constant
d7e14fc0
PE
7741unless you are assuming C99 or some other target language or compiler
7742that allows variable-length arrays. The default is 200.
7743
1a059451 7744Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7745
d1a1114f 7746@c FIXME: C++ output.
c781580d 7747Because of semantic differences between C and C++, the deterministic
34a6c2d1 7748parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7749by C++ compilers. In this precise case (compiling a C parser as C++) you are
7750suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7751this deficiency in a future release.
d1a1114f 7752
342b8b6e 7753@node Error Recovery
bfa74976
RS
7754@chapter Error Recovery
7755@cindex error recovery
7756@cindex recovery from errors
7757
6e649e65 7758It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7759error. For example, a compiler should recover sufficiently to parse the
7760rest of the input file and check it for errors; a calculator should accept
7761another expression.
7762
7763In a simple interactive command parser where each input is one line, it may
7764be sufficient to allow @code{yyparse} to return 1 on error and have the
7765caller ignore the rest of the input line when that happens (and then call
7766@code{yyparse} again). But this is inadequate for a compiler, because it
7767forgets all the syntactic context leading up to the error. A syntax error
7768deep within a function in the compiler input should not cause the compiler
7769to treat the following line like the beginning of a source file.
7770
7771@findex error
7772You can define how to recover from a syntax error by writing rules to
7773recognize the special token @code{error}. This is a terminal symbol that
7774is always defined (you need not declare it) and reserved for error
7775handling. The Bison parser generates an @code{error} token whenever a
7776syntax error happens; if you have provided a rule to recognize this token
13863333 7777in the current context, the parse can continue.
bfa74976
RS
7778
7779For example:
7780
7781@example
0765d393 7782stmts:
de6be119 7783 /* empty string */
0765d393
AD
7784| stmts '\n'
7785| stmts exp '\n'
7786| stmts error '\n'
bfa74976
RS
7787@end example
7788
7789The fourth rule in this example says that an error followed by a newline
0765d393 7790makes a valid addition to any @code{stmts}.
bfa74976
RS
7791
7792What happens if a syntax error occurs in the middle of an @code{exp}? The
7793error recovery rule, interpreted strictly, applies to the precise sequence
0765d393 7794of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 7795the middle of an @code{exp}, there will probably be some additional tokens
0765d393 7796and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
7797will be tokens to read before the next newline. So the rule is not
7798applicable in the ordinary way.
7799
7800But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7801the semantic context and part of the input. First it discards states
7802and objects from the stack until it gets back to a state in which the
bfa74976 7803@code{error} token is acceptable. (This means that the subexpressions
0765d393 7804already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 7805At this point the @code{error} token can be shifted. Then, if the old
742e4900 7806lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7807tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7808this example, Bison reads and discards input until the next newline so
7809that the fourth rule can apply. Note that discarded symbols are
7810possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7811Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7812
7813The choice of error rules in the grammar is a choice of strategies for
7814error recovery. A simple and useful strategy is simply to skip the rest of
7815the current input line or current statement if an error is detected:
7816
7817@example
0765d393 7818stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7819@end example
7820
7821It is also useful to recover to the matching close-delimiter of an
7822opening-delimiter that has already been parsed. Otherwise the
7823close-delimiter will probably appear to be unmatched, and generate another,
7824spurious error message:
7825
7826@example
de6be119
AD
7827primary:
7828 '(' expr ')'
7829| '(' error ')'
7830@dots{}
7831;
bfa74976
RS
7832@end example
7833
7834Error recovery strategies are necessarily guesses. When they guess wrong,
7835one syntax error often leads to another. In the above example, the error
7836recovery rule guesses that an error is due to bad input within one
0765d393
AD
7837@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
7838middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
7839from the first error, another syntax error will be found straightaway,
7840since the text following the spurious semicolon is also an invalid
0765d393 7841@code{stmt}.
bfa74976
RS
7842
7843To prevent an outpouring of error messages, the parser will output no error
7844message for another syntax error that happens shortly after the first; only
7845after three consecutive input tokens have been successfully shifted will
7846error messages resume.
7847
7848Note that rules which accept the @code{error} token may have actions, just
7849as any other rules can.
7850
7851@findex yyerrok
7852You can make error messages resume immediately by using the macro
7853@code{yyerrok} in an action. If you do this in the error rule's action, no
7854error messages will be suppressed. This macro requires no arguments;
7855@samp{yyerrok;} is a valid C statement.
7856
7857@findex yyclearin
742e4900 7858The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7859this is unacceptable, then the macro @code{yyclearin} may be used to clear
7860this token. Write the statement @samp{yyclearin;} in the error rule's
7861action.
32c29292 7862@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7863
6e649e65 7864For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7865called that advances the input stream to some point where parsing should
7866once again commence. The next symbol returned by the lexical scanner is
742e4900 7867probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7868with @samp{yyclearin;}.
7869
7870@vindex YYRECOVERING
02103984
PE
7871The expression @code{YYRECOVERING ()} yields 1 when the parser
7872is recovering from a syntax error, and 0 otherwise.
7873Syntax error diagnostics are suppressed while recovering from a syntax
7874error.
bfa74976 7875
342b8b6e 7876@node Context Dependency
bfa74976
RS
7877@chapter Handling Context Dependencies
7878
7879The Bison paradigm is to parse tokens first, then group them into larger
7880syntactic units. In many languages, the meaning of a token is affected by
7881its context. Although this violates the Bison paradigm, certain techniques
7882(known as @dfn{kludges}) may enable you to write Bison parsers for such
7883languages.
7884
7885@menu
7886* Semantic Tokens:: Token parsing can depend on the semantic context.
7887* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7888* Tie-in Recovery:: Lexical tie-ins have implications for how
7889 error recovery rules must be written.
7890@end menu
7891
7892(Actually, ``kludge'' means any technique that gets its job done but is
7893neither clean nor robust.)
7894
342b8b6e 7895@node Semantic Tokens
bfa74976
RS
7896@section Semantic Info in Token Types
7897
7898The C language has a context dependency: the way an identifier is used
7899depends on what its current meaning is. For example, consider this:
7900
7901@example
7902foo (x);
7903@end example
7904
7905This looks like a function call statement, but if @code{foo} is a typedef
7906name, then this is actually a declaration of @code{x}. How can a Bison
7907parser for C decide how to parse this input?
7908
35430378 7909The method used in GNU C is to have two different token types,
bfa74976
RS
7910@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7911identifier, it looks up the current declaration of the identifier in order
7912to decide which token type to return: @code{TYPENAME} if the identifier is
7913declared as a typedef, @code{IDENTIFIER} otherwise.
7914
7915The grammar rules can then express the context dependency by the choice of
7916token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7917but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7918@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7919is @emph{not} significant, such as in declarations that can shadow a
7920typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7921accepted---there is one rule for each of the two token types.
7922
7923This technique is simple to use if the decision of which kinds of
7924identifiers to allow is made at a place close to where the identifier is
7925parsed. But in C this is not always so: C allows a declaration to
7926redeclare a typedef name provided an explicit type has been specified
7927earlier:
7928
7929@example
3a4f411f
PE
7930typedef int foo, bar;
7931int baz (void)
98842516 7932@group
3a4f411f
PE
7933@{
7934 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7935 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7936 return foo (bar);
7937@}
98842516 7938@end group
bfa74976
RS
7939@end example
7940
7941Unfortunately, the name being declared is separated from the declaration
7942construct itself by a complicated syntactic structure---the ``declarator''.
7943
9ecbd125 7944As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7945all the nonterminal names changed: once for parsing a declaration in
7946which a typedef name can be redefined, and once for parsing a
7947declaration in which that can't be done. Here is a part of the
7948duplication, with actions omitted for brevity:
bfa74976
RS
7949
7950@example
98842516 7951@group
bfa74976 7952initdcl:
de6be119
AD
7953 declarator maybeasm '=' init
7954| declarator maybeasm
7955;
98842516 7956@end group
bfa74976 7957
98842516 7958@group
bfa74976 7959notype_initdcl:
de6be119
AD
7960 notype_declarator maybeasm '=' init
7961| notype_declarator maybeasm
7962;
98842516 7963@end group
bfa74976
RS
7964@end example
7965
7966@noindent
7967Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7968cannot. The distinction between @code{declarator} and
7969@code{notype_declarator} is the same sort of thing.
7970
7971There is some similarity between this technique and a lexical tie-in
7972(described next), in that information which alters the lexical analysis is
7973changed during parsing by other parts of the program. The difference is
7974here the information is global, and is used for other purposes in the
7975program. A true lexical tie-in has a special-purpose flag controlled by
7976the syntactic context.
7977
342b8b6e 7978@node Lexical Tie-ins
bfa74976
RS
7979@section Lexical Tie-ins
7980@cindex lexical tie-in
7981
7982One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7983which is set by Bison actions, whose purpose is to alter the way tokens are
7984parsed.
7985
7986For example, suppose we have a language vaguely like C, but with a special
7987construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7988an expression in parentheses in which all integers are hexadecimal. In
7989particular, the token @samp{a1b} must be treated as an integer rather than
7990as an identifier if it appears in that context. Here is how you can do it:
7991
7992@example
7993@group
7994%@{
38a92d50
PE
7995 int hexflag;
7996 int yylex (void);
7997 void yyerror (char const *);
bfa74976
RS
7998%@}
7999%%
8000@dots{}
8001@end group
8002@group
de6be119
AD
8003expr:
8004 IDENTIFIER
8005| constant
8006| HEX '(' @{ hexflag = 1; @}
8007 expr ')' @{ hexflag = 0; $$ = $4; @}
8008| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8009@dots{}
8010;
bfa74976
RS
8011@end group
8012
8013@group
8014constant:
de6be119
AD
8015 INTEGER
8016| STRING
8017;
bfa74976
RS
8018@end group
8019@end example
8020
8021@noindent
8022Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8023it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8024with letters are parsed as integers if possible.
8025
9913d6e4
JD
8026The declaration of @code{hexflag} shown in the prologue of the grammar
8027file is needed to make it accessible to the actions (@pxref{Prologue,
8028,The Prologue}). You must also write the code in @code{yylex} to obey
8029the flag.
bfa74976 8030
342b8b6e 8031@node Tie-in Recovery
bfa74976
RS
8032@section Lexical Tie-ins and Error Recovery
8033
8034Lexical tie-ins make strict demands on any error recovery rules you have.
8035@xref{Error Recovery}.
8036
8037The reason for this is that the purpose of an error recovery rule is to
8038abort the parsing of one construct and resume in some larger construct.
8039For example, in C-like languages, a typical error recovery rule is to skip
8040tokens until the next semicolon, and then start a new statement, like this:
8041
8042@example
de6be119
AD
8043stmt:
8044 expr ';'
8045| IF '(' expr ')' stmt @{ @dots{} @}
8046@dots{}
8047| error ';' @{ hexflag = 0; @}
8048;
bfa74976
RS
8049@end example
8050
8051If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8052construct, this error rule will apply, and then the action for the
8053completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8054remain set for the entire rest of the input, or until the next @code{hex}
8055keyword, causing identifiers to be misinterpreted as integers.
8056
8057To avoid this problem the error recovery rule itself clears @code{hexflag}.
8058
8059There may also be an error recovery rule that works within expressions.
8060For example, there could be a rule which applies within parentheses
8061and skips to the close-parenthesis:
8062
8063@example
8064@group
de6be119
AD
8065expr:
8066 @dots{}
8067| '(' expr ')' @{ $$ = $2; @}
8068| '(' error ')'
8069@dots{}
bfa74976
RS
8070@end group
8071@end example
8072
8073If this rule acts within the @code{hex} construct, it is not going to abort
8074that construct (since it applies to an inner level of parentheses within
8075the construct). Therefore, it should not clear the flag: the rest of
8076the @code{hex} construct should be parsed with the flag still in effect.
8077
8078What if there is an error recovery rule which might abort out of the
8079@code{hex} construct or might not, depending on circumstances? There is no
8080way you can write the action to determine whether a @code{hex} construct is
8081being aborted or not. So if you are using a lexical tie-in, you had better
8082make sure your error recovery rules are not of this kind. Each rule must
8083be such that you can be sure that it always will, or always won't, have to
8084clear the flag.
8085
ec3bc396
AD
8086@c ================================================== Debugging Your Parser
8087
342b8b6e 8088@node Debugging
bfa74976 8089@chapter Debugging Your Parser
ec3bc396 8090
56d60c19
AD
8091Developing a parser can be a challenge, especially if you don't understand
8092the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8093chapter explains how to generate and read the detailed description of the
8094automaton, and how to enable and understand the parser run-time traces.
ec3bc396
AD
8095
8096@menu
8097* Understanding:: Understanding the structure of your parser.
fc4fdd62 8098* Graphviz:: Getting a visual representation of the parser.
9c16d399 8099* Xml:: Getting a markup representation of the parser.
ec3bc396
AD
8100* Tracing:: Tracing the execution of your parser.
8101@end menu
8102
8103@node Understanding
8104@section Understanding Your Parser
8105
8106As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8107Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8108frequent than one would hope), looking at this automaton is required to
8109tune or simply fix a parser. Bison provides two different
35fe0834 8110representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8111
8112The textual file is generated when the options @option{--report} or
2ba03112 8113@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8114Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
8115the parser implementation file name, and adding @samp{.output}
8116instead. Therefore, if the grammar file is @file{foo.y}, then the
8117parser implementation file is called @file{foo.tab.c} by default. As
8118a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8119
8120The following grammar file, @file{calc.y}, will be used in the sequel:
8121
8122@example
8123%token NUM STR
8124%left '+' '-'
8125%left '*'
8126%%
de6be119
AD
8127exp:
8128 exp '+' exp
8129| exp '-' exp
8130| exp '*' exp
8131| exp '/' exp
8132| NUM
8133;
ec3bc396
AD
8134useless: STR;
8135%%
8136@end example
8137
88bce5a2
AD
8138@command{bison} reports:
8139
8140@example
379261b3
JD
8141calc.y: warning: 1 nonterminal useless in grammar
8142calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8143calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8144calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8145calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8146@end example
8147
8148When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8149creates a file @file{calc.output} with contents detailed below. The
8150order of the output and the exact presentation might vary, but the
8151interpretation is the same.
ec3bc396 8152
ec3bc396
AD
8153@noindent
8154@cindex token, useless
8155@cindex useless token
8156@cindex nonterminal, useless
8157@cindex useless nonterminal
8158@cindex rule, useless
8159@cindex useless rule
84c1cdc7
AD
8160The first section reports useless tokens, nonterminals and rules. Useless
8161nonterminals and rules are removed in order to produce a smaller parser, but
8162useless tokens are preserved, since they might be used by the scanner (note
8163the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8164
8165@example
84c1cdc7 8166Nonterminals useless in grammar
ec3bc396
AD
8167 useless
8168
84c1cdc7 8169Terminals unused in grammar
ec3bc396
AD
8170 STR
8171
84c1cdc7
AD
8172Rules useless in grammar
8173 6 useless: STR
ec3bc396
AD
8174@end example
8175
8176@noindent
84c1cdc7
AD
8177The next section lists states that still have conflicts.
8178
8179@example
8180State 8 conflicts: 1 shift/reduce
8181State 9 conflicts: 1 shift/reduce
8182State 10 conflicts: 1 shift/reduce
8183State 11 conflicts: 4 shift/reduce
8184@end example
8185
8186@noindent
8187Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8188
8189@example
8190Grammar
8191
84c1cdc7
AD
8192 0 $accept: exp $end
8193
8194 1 exp: exp '+' exp
8195 2 | exp '-' exp
8196 3 | exp '*' exp
8197 4 | exp '/' exp
8198 5 | NUM
ec3bc396
AD
8199@end example
8200
8201@noindent
8202and reports the uses of the symbols:
8203
8204@example
98842516 8205@group
ec3bc396
AD
8206Terminals, with rules where they appear
8207
88bce5a2 8208$end (0) 0
ec3bc396
AD
8209'*' (42) 3
8210'+' (43) 1
8211'-' (45) 2
8212'/' (47) 4
8213error (256)
8214NUM (258) 5
84c1cdc7 8215STR (259)
98842516 8216@end group
ec3bc396 8217
98842516 8218@group
ec3bc396
AD
8219Nonterminals, with rules where they appear
8220
84c1cdc7 8221$accept (9)
ec3bc396 8222 on left: 0
84c1cdc7 8223exp (10)
ec3bc396 8224 on left: 1 2 3 4 5, on right: 0 1 2 3 4
98842516 8225@end group
ec3bc396
AD
8226@end example
8227
8228@noindent
8229@cindex item
8230@cindex pointed rule
8231@cindex rule, pointed
8232Bison then proceeds onto the automaton itself, describing each state
d13d14cc
PE
8233with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8234item is a production rule together with a point (@samp{.}) marking
8235the location of the input cursor.
ec3bc396
AD
8236
8237@example
8238state 0
8239
84c1cdc7 8240 0 $accept: . exp $end
ec3bc396 8241
84c1cdc7 8242 NUM shift, and go to state 1
ec3bc396 8243
84c1cdc7 8244 exp go to state 2
ec3bc396
AD
8245@end example
8246
8247This reads as follows: ``state 0 corresponds to being at the very
8248beginning of the parsing, in the initial rule, right before the start
8249symbol (here, @code{exp}). When the parser returns to this state right
8250after having reduced a rule that produced an @code{exp}, the control
8251flow jumps to state 2. If there is no such transition on a nonterminal
d13d14cc 8252symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8253the parse stack, and the control flow jumps to state 1. Any other
742e4900 8254lookahead triggers a syntax error.''
ec3bc396
AD
8255
8256@cindex core, item set
8257@cindex item set core
8258@cindex kernel, item set
8259@cindex item set core
8260Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8261report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8262at the beginning of any rule deriving an @code{exp}. By default Bison
8263reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8264you want to see more detail you can invoke @command{bison} with
d13d14cc 8265@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8266
8267@example
8268state 0
8269
84c1cdc7
AD
8270 0 $accept: . exp $end
8271 1 exp: . exp '+' exp
8272 2 | . exp '-' exp
8273 3 | . exp '*' exp
8274 4 | . exp '/' exp
8275 5 | . NUM
ec3bc396 8276
84c1cdc7 8277 NUM shift, and go to state 1
ec3bc396 8278
84c1cdc7 8279 exp go to state 2
ec3bc396
AD
8280@end example
8281
8282@noindent
84c1cdc7 8283In the state 1@dots{}
ec3bc396
AD
8284
8285@example
8286state 1
8287
84c1cdc7 8288 5 exp: NUM .
ec3bc396 8289
84c1cdc7 8290 $default reduce using rule 5 (exp)
ec3bc396
AD
8291@end example
8292
8293@noindent
742e4900 8294the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8295(@samp{$default}), the parser will reduce it. If it was coming from
8296state 0, then, after this reduction it will return to state 0, and will
8297jump to state 2 (@samp{exp: go to state 2}).
8298
8299@example
8300state 2
8301
84c1cdc7
AD
8302 0 $accept: exp . $end
8303 1 exp: exp . '+' exp
8304 2 | exp . '-' exp
8305 3 | exp . '*' exp
8306 4 | exp . '/' exp
ec3bc396 8307
84c1cdc7
AD
8308 $end shift, and go to state 3
8309 '+' shift, and go to state 4
8310 '-' shift, and go to state 5
8311 '*' shift, and go to state 6
8312 '/' shift, and go to state 7
ec3bc396
AD
8313@end example
8314
8315@noindent
8316In state 2, the automaton can only shift a symbol. For instance,
84c1cdc7 8317because of the item @samp{exp: exp . '+' exp}, if the lookahead is
d13d14cc 8318@samp{+} it is shifted onto the parse stack, and the automaton
84c1cdc7 8319jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
d13d14cc
PE
8320Since there is no default action, any lookahead not listed triggers a syntax
8321error.
ec3bc396 8322
34a6c2d1 8323@cindex accepting state
ec3bc396
AD
8324The state 3 is named the @dfn{final state}, or the @dfn{accepting
8325state}:
8326
8327@example
8328state 3
8329
84c1cdc7 8330 0 $accept: exp $end .
ec3bc396 8331
84c1cdc7 8332 $default accept
ec3bc396
AD
8333@end example
8334
8335@noindent
84c1cdc7
AD
8336the initial rule is completed (the start symbol and the end-of-input were
8337read), the parsing exits successfully.
ec3bc396
AD
8338
8339The interpretation of states 4 to 7 is straightforward, and is left to
8340the reader.
8341
8342@example
8343state 4
8344
84c1cdc7 8345 1 exp: exp '+' . exp
ec3bc396 8346
84c1cdc7
AD
8347 NUM shift, and go to state 1
8348
8349 exp go to state 8
ec3bc396 8350
ec3bc396
AD
8351
8352state 5
8353
84c1cdc7
AD
8354 2 exp: exp '-' . exp
8355
8356 NUM shift, and go to state 1
ec3bc396 8357
84c1cdc7 8358 exp go to state 9
ec3bc396 8359
ec3bc396
AD
8360
8361state 6
8362
84c1cdc7 8363 3 exp: exp '*' . exp
ec3bc396 8364
84c1cdc7
AD
8365 NUM shift, and go to state 1
8366
8367 exp go to state 10
ec3bc396 8368
ec3bc396
AD
8369
8370state 7
8371
84c1cdc7 8372 4 exp: exp '/' . exp
ec3bc396 8373
84c1cdc7 8374 NUM shift, and go to state 1
ec3bc396 8375
84c1cdc7 8376 exp go to state 11
ec3bc396
AD
8377@end example
8378
5a99098d
PE
8379As was announced in beginning of the report, @samp{State 8 conflicts:
83801 shift/reduce}:
ec3bc396
AD
8381
8382@example
8383state 8
8384
84c1cdc7
AD
8385 1 exp: exp . '+' exp
8386 1 | exp '+' exp .
8387 2 | exp . '-' exp
8388 3 | exp . '*' exp
8389 4 | exp . '/' exp
ec3bc396 8390
84c1cdc7
AD
8391 '*' shift, and go to state 6
8392 '/' shift, and go to state 7
ec3bc396 8393
84c1cdc7
AD
8394 '/' [reduce using rule 1 (exp)]
8395 $default reduce using rule 1 (exp)
ec3bc396
AD
8396@end example
8397
742e4900 8398Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8399either shifting (and going to state 7), or reducing rule 1. The
8400conflict means that either the grammar is ambiguous, or the parser lacks
8401information to make the right decision. Indeed the grammar is
8402ambiguous, as, since we did not specify the precedence of @samp{/}, the
8403sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8404NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8405NUM}, which corresponds to reducing rule 1.
8406
34a6c2d1 8407Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8408arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
84c1cdc7 8409Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8410square brackets.
8411
8412Note that all the previous states had a single possible action: either
8413shifting the next token and going to the corresponding state, or
8414reducing a single rule. In the other cases, i.e., when shifting
8415@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8416possible, the lookahead is required to select the action. State 8 is
8417one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8418is shifting, otherwise the action is reducing rule 1. In other words,
8419the first two items, corresponding to rule 1, are not eligible when the
742e4900 8420lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8421precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8422with some set of possible lookahead tokens. When run with
8423@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8424
8425@example
8426state 8
8427
84c1cdc7
AD
8428 1 exp: exp . '+' exp
8429 1 | exp '+' exp . [$end, '+', '-', '/']
8430 2 | exp . '-' exp
8431 3 | exp . '*' exp
8432 4 | exp . '/' exp
8433
8434 '*' shift, and go to state 6
8435 '/' shift, and go to state 7
ec3bc396 8436
84c1cdc7
AD
8437 '/' [reduce using rule 1 (exp)]
8438 $default reduce using rule 1 (exp)
8439@end example
8440
8441Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8442the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8443solved thanks to associativity and precedence directives. If invoked with
8444@option{--report=solved}, Bison includes information about the solved
8445conflicts in the report:
ec3bc396 8446
84c1cdc7
AD
8447@example
8448Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8449Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8450Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8451@end example
8452
84c1cdc7 8453
ec3bc396
AD
8454The remaining states are similar:
8455
8456@example
98842516 8457@group
ec3bc396
AD
8458state 9
8459
84c1cdc7
AD
8460 1 exp: exp . '+' exp
8461 2 | exp . '-' exp
8462 2 | exp '-' exp .
8463 3 | exp . '*' exp
8464 4 | exp . '/' exp
ec3bc396 8465
84c1cdc7
AD
8466 '*' shift, and go to state 6
8467 '/' shift, and go to state 7
ec3bc396 8468
84c1cdc7
AD
8469 '/' [reduce using rule 2 (exp)]
8470 $default reduce using rule 2 (exp)
98842516 8471@end group
ec3bc396 8472
98842516 8473@group
ec3bc396
AD
8474state 10
8475
84c1cdc7
AD
8476 1 exp: exp . '+' exp
8477 2 | exp . '-' exp
8478 3 | exp . '*' exp
8479 3 | exp '*' exp .
8480 4 | exp . '/' exp
ec3bc396 8481
84c1cdc7 8482 '/' shift, and go to state 7
ec3bc396 8483
84c1cdc7
AD
8484 '/' [reduce using rule 3 (exp)]
8485 $default reduce using rule 3 (exp)
98842516 8486@end group
ec3bc396 8487
98842516 8488@group
ec3bc396
AD
8489state 11
8490
84c1cdc7
AD
8491 1 exp: exp . '+' exp
8492 2 | exp . '-' exp
8493 3 | exp . '*' exp
8494 4 | exp . '/' exp
8495 4 | exp '/' exp .
8496
8497 '+' shift, and go to state 4
8498 '-' shift, and go to state 5
8499 '*' shift, and go to state 6
8500 '/' shift, and go to state 7
8501
8502 '+' [reduce using rule 4 (exp)]
8503 '-' [reduce using rule 4 (exp)]
8504 '*' [reduce using rule 4 (exp)]
8505 '/' [reduce using rule 4 (exp)]
8506 $default reduce using rule 4 (exp)
98842516 8507@end group
ec3bc396
AD
8508@end example
8509
8510@noindent
fa7e68c3
PE
8511Observe that state 11 contains conflicts not only due to the lack of
8512precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8513@samp{*}, but also because the
ec3bc396
AD
8514associativity of @samp{/} is not specified.
8515
9c16d399
TR
8516Note that Bison may also produce an HTML version of this output, via an XML
8517file and XSLT processing (@pxref{Xml}).
8518
fc4fdd62
TR
8519@c ================================================= Graphical Representation
8520
8521@node Graphviz
8522@section Visualizing Your Parser
8523@cindex dot
8524
8525As another means to gain better understanding of the shift/reduce
8526automaton corresponding to the Bison parser, a DOT file can be generated. Note
8527that debugging a real grammar with this is tedious at best, and impractical
8528most of the times, because the generated files are huge (the generation of
8529a PDF or PNG file from it will take very long, and more often than not it will
8530fail due to memory exhaustion). This option was rather designed for beginners,
8531to help them understand LR parsers.
8532
bfdcc3a0
AD
8533This file is generated when the @option{--graph} option is specified
8534(@pxref{Invocation, , Invoking Bison}). Its name is made by removing
fc4fdd62
TR
8535@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
8536adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
8537Graphviz output file is called @file{foo.dot}.
8538
8539The following grammar file, @file{rr.y}, will be used in the sequel:
8540
8541@example
8542%%
8543@group
8544exp: a ";" | b ".";
8545a: "0";
8546b: "0";
8547@end group
8548@end example
8549
8550The graphical output is very similar to the textual one, and as such it is
8551easier understood by making direct comparisons between them. See
8552@ref{Debugging, , Debugging Your Parser} for a detailled analysis of the
8553textual report.
8554
8555@subheading Graphical Representation of States
8556
8557The items (pointed rules) for each state are grouped together in graph nodes.
8558Their numbering is the same as in the verbose file. See the following points,
8559about transitions, for examples
8560
8561When invoked with @option{--report=lookaheads}, the lookahead tokens, when
8562needed, are shown next to the relevant rule between square brackets as a
8563comma separated list. This is the case in the figure for the representation of
8564reductions, below.
8565
8566@sp 1
8567
8568The transitions are represented as directed edges between the current and
8569the target states.
8570
8571@subheading Graphical Representation of Shifts
8572
8573Shifts are shown as solid arrows, labelled with the lookahead token for that
8574shift. The following describes a reduction in the @file{rr.output} file:
8575
8576@example
8577@group
8578state 3
8579
8580 1 exp: a . ";"
8581
8582 ";" shift, and go to state 6
8583@end group
8584@end example
8585
8586A Graphviz rendering of this portion of the graph could be:
8587
8588@center @image{figs/example-shift, 100pt}
8589
8590@subheading Graphical Representation of Reductions
8591
8592Reductions are shown as solid arrows, leading to a diamond-shaped node
8593bearing the number of the reduction rule. The arrow is labelled with the
8594appropriate comma separated lookahead tokens. If the reduction is the default
8595action for the given state, there is no such label.
8596
8597This is how reductions are represented in the verbose file @file{rr.output}:
8598@example
8599state 1
8600
8601 3 a: "0" . [";"]
8602 4 b: "0" . ["."]
8603
8604 "." reduce using rule 4 (b)
8605 $default reduce using rule 3 (a)
8606@end example
8607
8608A Graphviz rendering of this portion of the graph could be:
8609
8610@center @image{figs/example-reduce, 120pt}
8611
8612When unresolved conflicts are present, because in deterministic parsing
8613a single decision can be made, Bison can arbitrarily choose to disable a
8614reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
8615are distinguished by a red filling color on these nodes, just like how they are
8616reported between square brackets in the verbose file.
8617
8618The reduction corresponding to the rule number 0 is the acceptation state. It
8619is shown as a blue diamond, labelled "Acc".
8620
8621@subheading Graphical representation of go tos
8622
8623The @samp{go to} jump transitions are represented as dotted lines bearing
8624the name of the rule being jumped to.
8625
9c16d399
TR
8626Note that a DOT file may also be produced via an XML file and XSLT
8627processing (@pxref{Xml}).
8628
8629@c ================================================= XML
8630
8631@node Xml
8632@section Visualizing your parser in multiple formats
8633@cindex xml
8634
8635Bison supports two major report formats: textual output
8636(@pxref{Understanding}) when invoked with option @option{--verbose}, and DOT
8637(@pxref{Graphviz}) when invoked with option @option{--graph}. However,
8638another alternative is to output an XML file that may then be, with
8639@command{xsltproc}, rendered as either a raw text format equivalent to the
8640verbose file, or as an HTML version of the same file, with clickable
8641transitions, or even as a DOT. The @file{.output} and DOT files obtained via
be3517b0
TR
8642XSLT have no difference whatsoever with those obtained by invoking
8643@command{bison} with options @option{--verbose} or @option{--graph}.
9c16d399
TR
8644
8645The textual file is generated when the options @option{-x} or
8646@option{--xml[=FILE]} are specified, see @ref{Invocation,,Invoking Bison}.
8647If not specified, its name is made by removing @samp{.tab.c} or @samp{.c}
8648from the parser implementation file name, and adding @samp{.xml} instead.
8649For instance, if the grammar file is @file{foo.y}, the default XML output
8650file is @file{foo.xml}.
8651
8652Bison ships with a @file{data/xslt} directory, containing XSL Transformation
8653files to apply to the XML file. Their names are non-ambiguous:
8654
8655@table @file
8656@item xml2dot.xsl
be3517b0 8657Used to output a copy of the DOT visualization of the automaton.
9c16d399
TR
8658@item xml2text.xsl
8659Used to output a copy of the .output file.
8660@item xml2xhtml.xsl
8661Used to output an xhtml enhancement of the .output file.
8662@end table
8663
8664Sample usage (requires @code{xsltproc}):
8665@example
8666$ bison -x input.y
8667@group
8668$ bison --print-datadir
8669/usr/local/share/bison
8670@end group
8671$ xsltproc /usr/local/share/bison/xslt/xml2xhtml.xsl input.xml > input.html
8672@end example
8673
fc4fdd62 8674@c ================================================= Tracing
ec3bc396
AD
8675
8676@node Tracing
8677@section Tracing Your Parser
bfa74976
RS
8678@findex yydebug
8679@cindex debugging
8680@cindex tracing the parser
8681
56d60c19
AD
8682When a Bison grammar compiles properly but parses ``incorrectly'', the
8683@code{yydebug} parser-trace feature helps figuring out why.
8684
8685@menu
8686* Enabling Traces:: Activating run-time trace support
8687* Mfcalc Traces:: Extending @code{mfcalc} to support traces
8688* The YYPRINT Macro:: Obsolete interface for semantic value reports
8689@end menu
bfa74976 8690
56d60c19
AD
8691@node Enabling Traces
8692@subsection Enabling Traces
3ded9a63
AD
8693There are several means to enable compilation of trace facilities:
8694
8695@table @asis
8696@item the macro @code{YYDEBUG}
8697@findex YYDEBUG
8698Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 8699parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8700@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8701YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8702Prologue}).
8703
e6ae99fe 8704If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
8705Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
8706api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
8707tracing feature (enabled if and only if nonzero); otherwise tracing is
8708enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
8709
8710@item the option @option{-t} (POSIX Yacc compliant)
8711@itemx the option @option{--debug} (Bison extension)
8712Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
8713Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
8714otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
8715
8716@item the directive @samp{%debug}
8717@findex %debug
e358222b
AD
8718Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8719Summary}). This is a Bison extension, especially useful for languages that
8720don't use a preprocessor. Unless POSIX and Yacc portability matter to you,
8721this is the preferred solution.
3ded9a63
AD
8722@end table
8723
8724We suggest that you always enable the debug option so that debugging is
8725always possible.
bfa74976 8726
56d60c19 8727@findex YYFPRINTF
02a81e05 8728The trace facility outputs messages with macro calls of the form
e2742e46 8729@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8730@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8731arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8732define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8733and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8734
8735Once you have compiled the program with trace facilities, the way to
8736request a trace is to store a nonzero value in the variable @code{yydebug}.
8737You can do this by making the C code do it (in @code{main}, perhaps), or
8738you can alter the value with a C debugger.
8739
8740Each step taken by the parser when @code{yydebug} is nonzero produces a
8741line or two of trace information, written on @code{stderr}. The trace
8742messages tell you these things:
8743
8744@itemize @bullet
8745@item
8746Each time the parser calls @code{yylex}, what kind of token was read.
8747
8748@item
8749Each time a token is shifted, the depth and complete contents of the
8750state stack (@pxref{Parser States}).
8751
8752@item
8753Each time a rule is reduced, which rule it is, and the complete contents
8754of the state stack afterward.
8755@end itemize
8756
56d60c19
AD
8757To make sense of this information, it helps to refer to the automaton
8758description file (@pxref{Understanding, ,Understanding Your Parser}).
8759This file shows the meaning of each state in terms of
704a47c4
AD
8760positions in various rules, and also what each state will do with each
8761possible input token. As you read the successive trace messages, you
8762can see that the parser is functioning according to its specification in
8763the listing file. Eventually you will arrive at the place where
8764something undesirable happens, and you will see which parts of the
8765grammar are to blame.
bfa74976 8766
56d60c19 8767The parser implementation file is a C/C++/Java program and you can use
9913d6e4
JD
8768debuggers on it, but it's not easy to interpret what it is doing. The
8769parser function is a finite-state machine interpreter, and aside from
8770the actions it executes the same code over and over. Only the values
8771of variables show where in the grammar it is working.
bfa74976 8772
56d60c19
AD
8773@node Mfcalc Traces
8774@subsection Enabling Debug Traces for @code{mfcalc}
8775
8776The debugging information normally gives the token type of each token read,
8777but not its semantic value. The @code{%printer} directive allows specify
8778how semantic values are reported, see @ref{Printer Decl, , Printing
8779Semantic Values}. For backward compatibility, Yacc like C parsers may also
8780use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
8781Macro}), but its use is discouraged.
8782
8783As a demonstration of @code{%printer}, consider the multi-function
8784calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
8785traces, and semantic value reports, insert the following directives in its
8786prologue:
8787
8788@comment file: mfcalc.y: 2
8789@example
8790/* Generate the parser description file. */
8791%verbose
8792/* Enable run-time traces (yydebug). */
8793%define parse.trace
8794
8795/* Formatting semantic values. */
8796%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
8797%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
8798%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
8799@end example
8800
8801The @code{%define} directive instructs Bison to generate run-time trace
8802support. Then, activation of these traces is controlled at run-time by the
8803@code{yydebug} variable, which is disabled by default. Because these traces
8804will refer to the ``states'' of the parser, it is helpful to ask for the
8805creation of a description of that parser; this is the purpose of (admittedly
8806ill-named) @code{%verbose} directive.
8807
8808The set of @code{%printer} directives demonstrates how to format the
8809semantic value in the traces. Note that the specification can be done
8810either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
8811tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
8812printer will be used for them.
8813
8814Here is a sample of the information provided by run-time traces. The traces
8815are sent onto standard error.
8816
8817@example
8818$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
8819Starting parse
8820Entering state 0
8821Reducing stack by rule 1 (line 34):
8822-> $$ = nterm input ()
8823Stack now 0
8824Entering state 1
8825@end example
8826
8827@noindent
8828This first batch shows a specific feature of this grammar: the first rule
8829(which is in line 34 of @file{mfcalc.y} can be reduced without even having
8830to look for the first token. The resulting left-hand symbol (@code{$$}) is
8831a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
8832
8833Then the parser calls the scanner.
8834@example
8835Reading a token: Next token is token FNCT (sin())
8836Shifting token FNCT (sin())
8837Entering state 6
8838@end example
8839
8840@noindent
8841That token (@code{token}) is a function (@code{FNCT}) whose value is
8842@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
8843The parser stores (@code{Shifting}) that token, and others, until it can do
8844something about it.
8845
8846@example
8847Reading a token: Next token is token '(' ()
8848Shifting token '(' ()
8849Entering state 14
8850Reading a token: Next token is token NUM (1.000000)
8851Shifting token NUM (1.000000)
8852Entering state 4
8853Reducing stack by rule 6 (line 44):
8854 $1 = token NUM (1.000000)
8855-> $$ = nterm exp (1.000000)
8856Stack now 0 1 6 14
8857Entering state 24
8858@end example
8859
8860@noindent
8861The previous reduction demonstrates the @code{%printer} directive for
8862@code{<val>}: both the token @code{NUM} and the resulting non-terminal
8863@code{exp} have @samp{1} as value.
8864
8865@example
8866Reading a token: Next token is token '-' ()
8867Shifting token '-' ()
8868Entering state 17
8869Reading a token: Next token is token NUM (1.000000)
8870Shifting token NUM (1.000000)
8871Entering state 4
8872Reducing stack by rule 6 (line 44):
8873 $1 = token NUM (1.000000)
8874-> $$ = nterm exp (1.000000)
8875Stack now 0 1 6 14 24 17
8876Entering state 26
8877Reading a token: Next token is token ')' ()
8878Reducing stack by rule 11 (line 49):
8879 $1 = nterm exp (1.000000)
8880 $2 = token '-' ()
8881 $3 = nterm exp (1.000000)
8882-> $$ = nterm exp (0.000000)
8883Stack now 0 1 6 14
8884Entering state 24
8885@end example
8886
8887@noindent
8888The rule for the subtraction was just reduced. The parser is about to
8889discover the end of the call to @code{sin}.
8890
8891@example
8892Next token is token ')' ()
8893Shifting token ')' ()
8894Entering state 31
8895Reducing stack by rule 9 (line 47):
8896 $1 = token FNCT (sin())
8897 $2 = token '(' ()
8898 $3 = nterm exp (0.000000)
8899 $4 = token ')' ()
8900-> $$ = nterm exp (0.000000)
8901Stack now 0 1
8902Entering state 11
8903@end example
8904
8905@noindent
8906Finally, the end-of-line allow the parser to complete the computation, and
8907display its result.
8908
8909@example
8910Reading a token: Next token is token '\n' ()
8911Shifting token '\n' ()
8912Entering state 22
8913Reducing stack by rule 4 (line 40):
8914 $1 = nterm exp (0.000000)
8915 $2 = token '\n' ()
8916@result{} 0
8917-> $$ = nterm line ()
8918Stack now 0 1
8919Entering state 10
8920Reducing stack by rule 2 (line 35):
8921 $1 = nterm input ()
8922 $2 = nterm line ()
8923-> $$ = nterm input ()
8924Stack now 0
8925Entering state 1
8926@end example
8927
8928The parser has returned into state 1, in which it is waiting for the next
8929expression to evaluate, or for the end-of-file token, which causes the
8930completion of the parsing.
8931
8932@example
8933Reading a token: Now at end of input.
8934Shifting token $end ()
8935Entering state 2
8936Stack now 0 1 2
8937Cleanup: popping token $end ()
8938Cleanup: popping nterm input ()
8939@end example
8940
8941
8942@node The YYPRINT Macro
8943@subsection The @code{YYPRINT} Macro
8944
8945@findex YYPRINT
8946Before @code{%printer} support, semantic values could be displayed using the
8947@code{YYPRINT} macro, which works only for terminal symbols and only with
8948the @file{yacc.c} skeleton.
8949
8950@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
bfa74976 8951@findex YYPRINT
56d60c19
AD
8952If you define @code{YYPRINT}, it should take three arguments. The parser
8953will pass a standard I/O stream, the numeric code for the token type, and
8954the token value (from @code{yylval}).
8955
8956For @file{yacc.c} only. Obsoleted by @code{%printer}.
8957@end deffn
bfa74976
RS
8958
8959Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8960calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 8961
ea118b72 8962@example
38a92d50
PE
8963%@{
8964 static void print_token_value (FILE *, int, YYSTYPE);
56d60c19
AD
8965 #define YYPRINT(File, Type, Value) \
8966 print_token_value (File, Type, Value)
38a92d50
PE
8967%@}
8968
8969@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8970
8971static void
831d3c99 8972print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8973@{
8974 if (type == VAR)
d3c4e709 8975 fprintf (file, "%s", value.tptr->name);
bfa74976 8976 else if (type == NUM)
d3c4e709 8977 fprintf (file, "%d", value.val);
bfa74976 8978@}
ea118b72 8979@end example
bfa74976 8980
ec3bc396
AD
8981@c ================================================= Invoking Bison
8982
342b8b6e 8983@node Invocation
bfa74976
RS
8984@chapter Invoking Bison
8985@cindex invoking Bison
8986@cindex Bison invocation
8987@cindex options for invoking Bison
8988
8989The usual way to invoke Bison is as follows:
8990
8991@example
8992bison @var{infile}
8993@end example
8994
8995Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
8996@samp{.y}. The parser implementation file's name is made by replacing
8997the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8998Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8999the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9000also possible, in case you are writing C++ code instead of C in your
9001grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9002output files will take an extension like the given one as input
9003(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9004feature takes effect with all options that manipulate file names like
234a3be3
AD
9005@samp{-o} or @samp{-d}.
9006
9007For example :
9008
9009@example
9010bison -d @var{infile.yxx}
9011@end example
84163231 9012@noindent
72d2299c 9013will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9014
9015@example
b56471a6 9016bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9017@end example
84163231 9018@noindent
234a3be3
AD
9019will produce @file{output.c++} and @file{outfile.h++}.
9020
35430378 9021For compatibility with POSIX, the standard Bison
397ec073
PE
9022distribution also contains a shell script called @command{yacc} that
9023invokes Bison with the @option{-y} option.
9024
bfa74976 9025@menu
13863333 9026* Bison Options:: All the options described in detail,
c827f760 9027 in alphabetical order by short options.
bfa74976 9028* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9029* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9030@end menu
9031
342b8b6e 9032@node Bison Options
bfa74976
RS
9033@section Bison Options
9034
9035Bison supports both traditional single-letter options and mnemonic long
9036option names. Long option names are indicated with @samp{--} instead of
9037@samp{-}. Abbreviations for option names are allowed as long as they
9038are unique. When a long option takes an argument, like
9039@samp{--file-prefix}, connect the option name and the argument with
9040@samp{=}.
9041
9042Here is a list of options that can be used with Bison, alphabetized by
9043short option. It is followed by a cross key alphabetized by long
9044option.
9045
89cab50d
AD
9046@c Please, keep this ordered as in `bison --help'.
9047@noindent
9048Operations modes:
9049@table @option
9050@item -h
9051@itemx --help
9052Print a summary of the command-line options to Bison and exit.
bfa74976 9053
89cab50d
AD
9054@item -V
9055@itemx --version
9056Print the version number of Bison and exit.
bfa74976 9057
f7ab6a50
PE
9058@item --print-localedir
9059Print the name of the directory containing locale-dependent data.
9060
a0de5091
JD
9061@item --print-datadir
9062Print the name of the directory containing skeletons and XSLT.
9063
89cab50d
AD
9064@item -y
9065@itemx --yacc
9913d6e4
JD
9066Act more like the traditional Yacc command. This can cause different
9067diagnostics to be generated, and may change behavior in other minor
9068ways. Most importantly, imitate Yacc's output file name conventions,
9069so that the parser implementation file is called @file{y.tab.c}, and
9070the other outputs are called @file{y.output} and @file{y.tab.h}.
9071Also, if generating a deterministic parser in C, generate
9072@code{#define} statements in addition to an @code{enum} to associate
9073token numbers with token names. Thus, the following shell script can
9074substitute for Yacc, and the Bison distribution contains such a script
9075for compatibility with POSIX:
bfa74976 9076
89cab50d 9077@example
397ec073 9078#! /bin/sh
26e06a21 9079bison -y "$@@"
89cab50d 9080@end example
54662697
PE
9081
9082The @option{-y}/@option{--yacc} option is intended for use with
9083traditional Yacc grammars. If your grammar uses a Bison extension
9084like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9085this option is specified.
9086
ecd1b61c
JD
9087@item -W [@var{category}]
9088@itemx --warnings[=@var{category}]
118d4978
AD
9089Output warnings falling in @var{category}. @var{category} can be one
9090of:
9091@table @code
9092@item midrule-values
8e55b3aa
JD
9093Warn about mid-rule values that are set but not used within any of the actions
9094of the parent rule.
9095For example, warn about unused @code{$2} in:
118d4978
AD
9096
9097@example
9098exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9099@end example
9100
8e55b3aa
JD
9101Also warn about mid-rule values that are used but not set.
9102For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9103
9104@example
de6be119 9105exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9106@end example
9107
9108These warnings are not enabled by default since they sometimes prove to
9109be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9110@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9111
118d4978 9112@item yacc
35430378 9113Incompatibilities with POSIX Yacc.
118d4978 9114
6f8bdce2
JD
9115@item conflicts-sr
9116@itemx conflicts-rr
9117S/R and R/R conflicts. These warnings are enabled by default. However, if
9118the @code{%expect} or @code{%expect-rr} directive is specified, an
9119unexpected number of conflicts is an error, and an expected number of
9120conflicts is not reported, so @option{-W} and @option{--warning} then have
9121no effect on the conflict report.
9122
8ffd7912
JD
9123@item other
9124All warnings not categorized above. These warnings are enabled by default.
9125
9126This category is provided merely for the sake of completeness. Future
9127releases of Bison may move warnings from this category to new, more specific
9128categories.
9129
118d4978 9130@item all
8e55b3aa 9131All the warnings.
118d4978 9132@item none
8e55b3aa 9133Turn off all the warnings.
118d4978 9134@item error
8e55b3aa 9135Treat warnings as errors.
118d4978
AD
9136@end table
9137
9138A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 9139instance, @option{-Wno-yacc} will hide the warnings about
35430378 9140POSIX Yacc incompatibilities.
89cab50d
AD
9141@end table
9142
9143@noindent
9144Tuning the parser:
9145
9146@table @option
9147@item -t
9148@itemx --debug
9913d6e4
JD
9149In the parser implementation file, define the macro @code{YYDEBUG} to
91501 if it is not already defined, so that the debugging facilities are
9151compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9152
e14c6831
AD
9153@item -D @var{name}[=@var{value}]
9154@itemx --define=@var{name}[=@var{value}]
c33bc800 9155@itemx -F @var{name}[=@var{value}]
34d41938
JD
9156@itemx --force-define=@var{name}[=@var{value}]
9157Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
2f4518a1 9158(@pxref{%define Summary}) except that Bison processes multiple
34d41938
JD
9159definitions for the same @var{name} as follows:
9160
9161@itemize
9162@item
e3a33f7c
JD
9163Bison quietly ignores all command-line definitions for @var{name} except
9164the last.
34d41938 9165@item
e3a33f7c
JD
9166If that command-line definition is specified by a @code{-D} or
9167@code{--define}, Bison reports an error for any @code{%define}
9168definition for @var{name}.
34d41938 9169@item
e3a33f7c
JD
9170If that command-line definition is specified by a @code{-F} or
9171@code{--force-define} instead, Bison quietly ignores all @code{%define}
9172definitions for @var{name}.
9173@item
9174Otherwise, Bison reports an error if there are multiple @code{%define}
9175definitions for @var{name}.
34d41938
JD
9176@end itemize
9177
9178You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
9179make files unless you are confident that it is safe to quietly ignore
9180any conflicting @code{%define} that may be added to the grammar file.
e14c6831 9181
0e021770
PE
9182@item -L @var{language}
9183@itemx --language=@var{language}
9184Specify the programming language for the generated parser, as if
9185@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9186Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9187@var{language} is case-insensitive.
0e021770 9188
ed4d67dc
JD
9189This option is experimental and its effect may be modified in future
9190releases.
9191
89cab50d 9192@item --locations
d8988b2f 9193Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9194
9195@item -p @var{prefix}
9196@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9197Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9198Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9199Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9200
9201@item -l
9202@itemx --no-lines
9913d6e4
JD
9203Don't put any @code{#line} preprocessor commands in the parser
9204implementation file. Ordinarily Bison puts them in the parser
9205implementation file so that the C compiler and debuggers will
9206associate errors with your source file, the grammar file. This option
9207causes them to associate errors with the parser implementation file,
9208treating it as an independent source file in its own right.
bfa74976 9209
e6e704dc
JD
9210@item -S @var{file}
9211@itemx --skeleton=@var{file}
a7867f53 9212Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9213(@pxref{Decl Summary, , Bison Declaration Summary}).
9214
ed4d67dc
JD
9215@c You probably don't need this option unless you are developing Bison.
9216@c You should use @option{--language} if you want to specify the skeleton for a
9217@c different language, because it is clearer and because it will always
9218@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9219
a7867f53
JD
9220If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9221file in the Bison installation directory.
9222If it does, @var{file} is an absolute file name or a file name relative to the
9223current working directory.
9224This is similar to how most shells resolve commands.
9225
89cab50d
AD
9226@item -k
9227@itemx --token-table
d8988b2f 9228Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9229@end table
bfa74976 9230
89cab50d
AD
9231@noindent
9232Adjust the output:
bfa74976 9233
89cab50d 9234@table @option
8e55b3aa 9235@item --defines[=@var{file}]
d8988b2f 9236Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9237file containing macro definitions for the token type names defined in
4bfd5e4e 9238the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9239
8e55b3aa
JD
9240@item -d
9241This is the same as @code{--defines} except @code{-d} does not accept a
9242@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9243with other short options.
342b8b6e 9244
89cab50d
AD
9245@item -b @var{file-prefix}
9246@itemx --file-prefix=@var{prefix}
9c437126 9247Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9248for all Bison output file names. @xref{Decl Summary}.
bfa74976 9249
ec3bc396
AD
9250@item -r @var{things}
9251@itemx --report=@var{things}
9252Write an extra output file containing verbose description of the comma
9253separated list of @var{things} among:
9254
9255@table @code
9256@item state
9257Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 9258parser's automaton.
ec3bc396 9259
57f8bd8d
AD
9260@item itemset
9261Implies @code{state} and augments the description of the automaton with
9262the full set of items for each state, instead of its core only.
9263
742e4900 9264@item lookahead
ec3bc396 9265Implies @code{state} and augments the description of the automaton with
742e4900 9266each rule's lookahead set.
ec3bc396 9267
57f8bd8d
AD
9268@item solved
9269Implies @code{state}. Explain how conflicts were solved thanks to
9270precedence and associativity directives.
9271
9272@item all
9273Enable all the items.
9274
9275@item none
9276Do not generate the report.
ec3bc396
AD
9277@end table
9278
1bb2bd75
JD
9279@item --report-file=@var{file}
9280Specify the @var{file} for the verbose description.
9281
bfa74976
RS
9282@item -v
9283@itemx --verbose
9c437126 9284Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9285file containing verbose descriptions of the grammar and
72d2299c 9286parser. @xref{Decl Summary}.
bfa74976 9287
fa4d969f
PE
9288@item -o @var{file}
9289@itemx --output=@var{file}
9913d6e4 9290Specify the @var{file} for the parser implementation file.
bfa74976 9291
fa4d969f 9292The other output files' names are constructed from @var{file} as
d8988b2f 9293described under the @samp{-v} and @samp{-d} options.
342b8b6e 9294
72183df4 9295@item -g [@var{file}]
8e55b3aa 9296@itemx --graph[=@var{file}]
34a6c2d1 9297Output a graphical representation of the parser's
35fe0834 9298automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 9299@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9300@code{@var{file}} is optional.
9301If omitted and the grammar file is @file{foo.y}, the output file will be
9302@file{foo.dot}.
59da312b 9303
72183df4 9304@item -x [@var{file}]
8e55b3aa 9305@itemx --xml[=@var{file}]
34a6c2d1 9306Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9307@code{@var{file}} is optional.
59da312b
JD
9308If omitted and the grammar file is @file{foo.y}, the output file will be
9309@file{foo.xml}.
9310(The current XML schema is experimental and may evolve.
9311More user feedback will help to stabilize it.)
bfa74976
RS
9312@end table
9313
342b8b6e 9314@node Option Cross Key
bfa74976
RS
9315@section Option Cross Key
9316
9317Here is a list of options, alphabetized by long option, to help you find
34d41938 9318the corresponding short option and directive.
bfa74976 9319
34d41938 9320@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 9321@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9322@include cross-options.texi
aa08666d 9323@end multitable
bfa74976 9324
93dd49ab
PE
9325@node Yacc Library
9326@section Yacc Library
9327
9328The Yacc library contains default implementations of the
9329@code{yyerror} and @code{main} functions. These default
35430378 9330implementations are normally not useful, but POSIX requires
93dd49ab
PE
9331them. To use the Yacc library, link your program with the
9332@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 9333library is distributed under the terms of the GNU General
93dd49ab
PE
9334Public License (@pxref{Copying}).
9335
9336If you use the Yacc library's @code{yyerror} function, you should
9337declare @code{yyerror} as follows:
9338
9339@example
9340int yyerror (char const *);
9341@end example
9342
9343Bison ignores the @code{int} value returned by this @code{yyerror}.
9344If you use the Yacc library's @code{main} function, your
9345@code{yyparse} function should have the following type signature:
9346
9347@example
9348int yyparse (void);
9349@end example
9350
12545799
AD
9351@c ================================================= C++ Bison
9352
8405b70c
PB
9353@node Other Languages
9354@chapter Parsers Written In Other Languages
12545799
AD
9355
9356@menu
9357* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9358* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9359@end menu
9360
9361@node C++ Parsers
9362@section C++ Parsers
9363
9364@menu
9365* C++ Bison Interface:: Asking for C++ parser generation
9366* C++ Semantic Values:: %union vs. C++
9367* C++ Location Values:: The position and location classes
9368* C++ Parser Interface:: Instantiating and running the parser
9369* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9370* A Complete C++ Example:: Demonstrating their use
12545799
AD
9371@end menu
9372
9373@node C++ Bison Interface
9374@subsection C++ Bison Interface
ed4d67dc 9375@c - %skeleton "lalr1.cc"
12545799
AD
9376@c - Always pure
9377@c - initial action
9378
34a6c2d1 9379The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
9380@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9381@option{--skeleton=lalr1.cc}.
e6e704dc 9382@xref{Decl Summary}.
0e021770 9383
793fbca5
JD
9384When run, @command{bison} will create several entities in the @samp{yy}
9385namespace.
9386@findex %define namespace
2f4518a1
JD
9387Use the @samp{%define namespace} directive to change the namespace
9388name, see @ref{%define Summary,,namespace}. The various classes are
9389generated in the following files:
aa08666d 9390
12545799
AD
9391@table @file
9392@item position.hh
9393@itemx location.hh
db8ab2be
AD
9394The definition of the classes @code{position} and @code{location}, used for
9395location tracking. These files are not generated if the @code{%define}
9396variable @code{api.location.type} is defined. @xref{C++ Location Values}.
12545799
AD
9397
9398@item stack.hh
9399An auxiliary class @code{stack} used by the parser.
9400
fa4d969f
PE
9401@item @var{file}.hh
9402@itemx @var{file}.cc
9913d6e4 9403(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9404declaration and implementation of the C++ parser class. The basename
9405and extension of these two files follow the same rules as with regular C
9406parsers (@pxref{Invocation}).
12545799 9407
cd8b5791
AD
9408The header is @emph{mandatory}; you must either pass
9409@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9410@samp{%defines} directive.
9411@end table
9412
9413All these files are documented using Doxygen; run @command{doxygen}
9414for a complete and accurate documentation.
9415
9416@node C++ Semantic Values
9417@subsection C++ Semantic Values
9418@c - No objects in unions
178e123e 9419@c - YYSTYPE
12545799
AD
9420@c - Printer and destructor
9421
9422The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9423Collection of Value Types}. In particular it produces a genuine
9424@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
9425within pseudo-unions (similar to Boost variants) might be implemented to
9426alleviate these issues.}, which have a few specific features in C++.
12545799
AD
9427@itemize @minus
9428@item
fb9712a9
AD
9429The type @code{YYSTYPE} is defined but its use is discouraged: rather
9430you should refer to the parser's encapsulated type
9431@code{yy::parser::semantic_type}.
12545799
AD
9432@item
9433Non POD (Plain Old Data) types cannot be used. C++ forbids any
9434instance of classes with constructors in unions: only @emph{pointers}
9435to such objects are allowed.
9436@end itemize
9437
9438Because objects have to be stored via pointers, memory is not
9439reclaimed automatically: using the @code{%destructor} directive is the
9440only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9441Symbols}.
9442
9443
9444@node C++ Location Values
9445@subsection C++ Location Values
9446@c - %locations
9447@c - class Position
9448@c - class Location
16dc6a9e 9449@c - %define filename_type "const symbol::Symbol"
12545799
AD
9450
9451When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
9452location tracking, see @ref{Tracking Locations}.
9453
9454By default, two auxiliary classes define a @code{position}, a single point
9455in a file, and a @code{location}, a range composed of a pair of
9456@code{position}s (possibly spanning several files). But if the
9457@code{%define} variable @code{api.location.type} is defined, then these
9458classes will not be generated, and the user defined type will be used.
12545799 9459
936c88d1
AD
9460@tindex uint
9461In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9462genuine code only the latter is used.
9463
9464@menu
db8ab2be
AD
9465* C++ position:: One point in the source file
9466* C++ location:: Two points in the source file
9467* User Defined Location Type:: Required interface for locations
936c88d1
AD
9468@end menu
9469
9470@node C++ position
9471@subsubsection C++ @code{position}
9472
9473@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9474Create a @code{position} denoting a given point. Note that @code{file} is
9475not reclaimed when the @code{position} is destroyed: memory managed must be
9476handled elsewhere.
9477@end deftypeop
9478
9479@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9480Reset the position to the given values.
9481@end deftypemethod
9482
9483@deftypeivar {position} {std::string*} file
12545799
AD
9484The name of the file. It will always be handled as a pointer, the
9485parser will never duplicate nor deallocate it. As an experimental
9486feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9487filename_type "@var{type}"}.
936c88d1 9488@end deftypeivar
12545799 9489
936c88d1 9490@deftypeivar {position} {uint} line
12545799 9491The line, starting at 1.
936c88d1 9492@end deftypeivar
12545799 9493
936c88d1 9494@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
9495Advance by @var{height} lines, resetting the column number.
9496@end deftypemethod
9497
936c88d1
AD
9498@deftypeivar {position} {uint} column
9499The column, starting at 1.
9500@end deftypeivar
12545799 9501
936c88d1 9502@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
9503Advance by @var{width} columns, without changing the line number.
9504@end deftypemethod
9505
936c88d1
AD
9506@deftypemethod {position} {position&} operator+= (int @var{width})
9507@deftypemethodx {position} {position} operator+ (int @var{width})
9508@deftypemethodx {position} {position&} operator-= (int @var{width})
9509@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
9510Various forms of syntactic sugar for @code{columns}.
9511@end deftypemethod
9512
936c88d1
AD
9513@deftypemethod {position} {bool} operator== (const position& @var{that})
9514@deftypemethodx {position} {bool} operator!= (const position& @var{that})
9515Whether @code{*this} and @code{that} denote equal/different positions.
9516@end deftypemethod
9517
9518@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 9519Report @var{p} on @var{o} like this:
fa4d969f
PE
9520@samp{@var{file}:@var{line}.@var{column}}, or
9521@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
9522@end deftypefun
9523
9524@node C++ location
9525@subsubsection C++ @code{location}
9526
9527@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9528Create a @code{Location} from the endpoints of the range.
9529@end deftypeop
9530
9531@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9532@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9533Create a @code{Location} denoting an empty range located at a given point.
9534@end deftypeop
9535
9536@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9537Reset the location to an empty range at the given values.
12545799
AD
9538@end deftypemethod
9539
936c88d1
AD
9540@deftypeivar {location} {position} begin
9541@deftypeivarx {location} {position} end
12545799 9542The first, inclusive, position of the range, and the first beyond.
936c88d1 9543@end deftypeivar
12545799 9544
936c88d1
AD
9545@deftypemethod {location} {uint} columns (int @var{width} = 1)
9546@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
9547Advance the @code{end} position.
9548@end deftypemethod
9549
936c88d1
AD
9550@deftypemethod {location} {location} operator+ (const location& @var{end})
9551@deftypemethodx {location} {location} operator+ (int @var{width})
9552@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
9553Various forms of syntactic sugar.
9554@end deftypemethod
9555
9556@deftypemethod {location} {void} step ()
9557Move @code{begin} onto @code{end}.
9558@end deftypemethod
9559
936c88d1
AD
9560@deftypemethod {location} {bool} operator== (const location& @var{that})
9561@deftypemethodx {location} {bool} operator!= (const location& @var{that})
9562Whether @code{*this} and @code{that} denote equal/different ranges of
9563positions.
9564@end deftypemethod
9565
9566@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9567Report @var{p} on @var{o}, taking care of special cases such as: no
9568@code{filename} defined, or equal filename/line or column.
9569@end deftypefun
12545799 9570
db8ab2be
AD
9571@node User Defined Location Type
9572@subsubsection User Defined Location Type
9573@findex %define api.location.type
9574
9575Instead of using the built-in types you may use the @code{%define} variable
9576@code{api.location.type} to specify your own type:
9577
9578@example
9579%define api.location.type @var{LocationType}
9580@end example
9581
9582The requirements over your @var{LocationType} are:
9583@itemize
9584@item
9585it must be copyable;
9586
9587@item
9588in order to compute the (default) value of @code{@@$} in a reduction, the
9589parser basically runs
9590@example
9591@@$.begin = @@$1.begin;
9592@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
9593@end example
9594@noindent
9595so there must be copyable @code{begin} and @code{end} members;
9596
9597@item
9598alternatively you may redefine the computation of the default location, in
9599which case these members are not required (@pxref{Location Default Action});
9600
9601@item
9602if traces are enabled, then there must exist an @samp{std::ostream&
9603 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
9604@end itemize
9605
9606@sp 1
9607
9608In programs with several C++ parsers, you may also use the @code{%define}
9609variable @code{api.location.type} to share a common set of built-in
9610definitions for @code{position} and @code{location}. For instance, one
9611parser @file{master/parser.yy} might use:
9612
9613@example
9614%defines
9615%locations
9616%define namespace "master::"
9617@end example
9618
9619@noindent
9620to generate the @file{master/position.hh} and @file{master/location.hh}
9621files, reused by other parsers as follows:
9622
9623@example
7287be84 9624%define api.location.type "master::location"
db8ab2be
AD
9625%code requires @{ #include <master/location.hh> @}
9626@end example
9627
12545799
AD
9628@node C++ Parser Interface
9629@subsection C++ Parser Interface
9630@c - define parser_class_name
9631@c - Ctor
9632@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9633@c debug_stream.
9634@c - Reporting errors
9635
9636The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9637declare and define the parser class in the namespace @code{yy}. The
9638class name defaults to @code{parser}, but may be changed using
16dc6a9e 9639@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9640this class is detailed below. It can be extended using the
12545799
AD
9641@code{%parse-param} feature: its semantics is slightly changed since
9642it describes an additional member of the parser class, and an
9643additional argument for its constructor.
9644
baacae49
AD
9645@defcv {Type} {parser} {semantic_type}
9646@defcvx {Type} {parser} {location_type}
12545799 9647The types for semantics value and locations.
8a0adb01 9648@end defcv
12545799 9649
baacae49 9650@defcv {Type} {parser} {token}
2c0f9706
AD
9651A structure that contains (only) the @code{yytokentype} enumeration, which
9652defines the tokens. To refer to the token @code{FOO},
9653use @code{yy::parser::token::FOO}. The scanner can use
baacae49
AD
9654@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9655(@pxref{Calc++ Scanner}).
9656@end defcv
9657
12545799
AD
9658@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9659Build a new parser object. There are no arguments by default, unless
9660@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9661@end deftypemethod
9662
9663@deftypemethod {parser} {int} parse ()
9664Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
9665
9666@cindex exceptions
9667The whole function is wrapped in a @code{try}/@code{catch} block, so that
9668when an exception is thrown, the @code{%destructor}s are called to release
9669the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
9670@end deftypemethod
9671
9672@deftypemethod {parser} {std::ostream&} debug_stream ()
9673@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9674Get or set the stream used for tracing the parsing. It defaults to
9675@code{std::cerr}.
9676@end deftypemethod
9677
9678@deftypemethod {parser} {debug_level_type} debug_level ()
9679@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9680Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9681or nonzero, full tracing.
12545799
AD
9682@end deftypemethod
9683
9684@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
9685The definition for this member function must be supplied by the user:
9686the parser uses it to report a parser error occurring at @var{l},
9687described by @var{m}.
9688@end deftypemethod
9689
9690
9691@node C++ Scanner Interface
9692@subsection C++ Scanner Interface
9693@c - prefix for yylex.
9694@c - Pure interface to yylex
9695@c - %lex-param
9696
9697The parser invokes the scanner by calling @code{yylex}. Contrary to C
9698parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 9699@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 9700
baacae49 9701@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
9702Return the next token. Its type is the return value, its semantic
9703value and location being @var{yylval} and @var{yylloc}. Invocations of
9704@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9705@end deftypemethod
9706
9707
9708@node A Complete C++ Example
8405b70c 9709@subsection A Complete C++ Example
12545799
AD
9710
9711This section demonstrates the use of a C++ parser with a simple but
9712complete example. This example should be available on your system,
9713ready to compile, in the directory @dfn{../bison/examples/calc++}. It
9714focuses on the use of Bison, therefore the design of the various C++
9715classes is very naive: no accessors, no encapsulation of members etc.
9716We will use a Lex scanner, and more precisely, a Flex scanner, to
9717demonstrate the various interaction. A hand written scanner is
9718actually easier to interface with.
9719
9720@menu
9721* Calc++ --- C++ Calculator:: The specifications
9722* Calc++ Parsing Driver:: An active parsing context
9723* Calc++ Parser:: A parser class
9724* Calc++ Scanner:: A pure C++ Flex scanner
9725* Calc++ Top Level:: Conducting the band
9726@end menu
9727
9728@node Calc++ --- C++ Calculator
8405b70c 9729@subsubsection Calc++ --- C++ Calculator
12545799
AD
9730
9731Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9732expression, possibly preceded by variable assignments. An
12545799
AD
9733environment containing possibly predefined variables such as
9734@code{one} and @code{two}, is exchanged with the parser. An example
9735of valid input follows.
9736
9737@example
9738three := 3
9739seven := one + two * three
9740seven * seven
9741@end example
9742
9743@node Calc++ Parsing Driver
8405b70c 9744@subsubsection Calc++ Parsing Driver
12545799
AD
9745@c - An env
9746@c - A place to store error messages
9747@c - A place for the result
9748
9749To support a pure interface with the parser (and the scanner) the
9750technique of the ``parsing context'' is convenient: a structure
9751containing all the data to exchange. Since, in addition to simply
9752launch the parsing, there are several auxiliary tasks to execute (open
9753the file for parsing, instantiate the parser etc.), we recommend
9754transforming the simple parsing context structure into a fully blown
9755@dfn{parsing driver} class.
9756
9757The declaration of this driver class, @file{calc++-driver.hh}, is as
9758follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9759required standard library components, and the declaration of the parser
9760class.
12545799 9761
1c59e0a1 9762@comment file: calc++-driver.hh
12545799
AD
9763@example
9764#ifndef CALCXX_DRIVER_HH
9765# define CALCXX_DRIVER_HH
9766# include <string>
9767# include <map>
fb9712a9 9768# include "calc++-parser.hh"
12545799
AD
9769@end example
9770
12545799
AD
9771
9772@noindent
9773Then comes the declaration of the scanning function. Flex expects
9774the signature of @code{yylex} to be defined in the macro
9775@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9776factor both as follows.
1c59e0a1
AD
9777
9778@comment file: calc++-driver.hh
12545799 9779@example
3dc5e96b
PE
9780// Tell Flex the lexer's prototype ...
9781# define YY_DECL \
c095d689
AD
9782 yy::calcxx_parser::token_type \
9783 yylex (yy::calcxx_parser::semantic_type* yylval, \
9784 yy::calcxx_parser::location_type* yylloc, \
9785 calcxx_driver& driver)
12545799
AD
9786// ... and declare it for the parser's sake.
9787YY_DECL;
9788@end example
9789
9790@noindent
9791The @code{calcxx_driver} class is then declared with its most obvious
9792members.
9793
1c59e0a1 9794@comment file: calc++-driver.hh
12545799
AD
9795@example
9796// Conducting the whole scanning and parsing of Calc++.
9797class calcxx_driver
9798@{
9799public:
9800 calcxx_driver ();
9801 virtual ~calcxx_driver ();
9802
9803 std::map<std::string, int> variables;
9804
9805 int result;
9806@end example
9807
9808@noindent
9809To encapsulate the coordination with the Flex scanner, it is useful to
9810have two members function to open and close the scanning phase.
12545799 9811
1c59e0a1 9812@comment file: calc++-driver.hh
12545799
AD
9813@example
9814 // Handling the scanner.
9815 void scan_begin ();
9816 void scan_end ();
9817 bool trace_scanning;
9818@end example
9819
9820@noindent
9821Similarly for the parser itself.
9822
1c59e0a1 9823@comment file: calc++-driver.hh
12545799 9824@example
bb32f4f2
AD
9825 // Run the parser. Return 0 on success.
9826 int parse (const std::string& f);
12545799
AD
9827 std::string file;
9828 bool trace_parsing;
9829@end example
9830
9831@noindent
9832To demonstrate pure handling of parse errors, instead of simply
9833dumping them on the standard error output, we will pass them to the
9834compiler driver using the following two member functions. Finally, we
9835close the class declaration and CPP guard.
9836
1c59e0a1 9837@comment file: calc++-driver.hh
12545799
AD
9838@example
9839 // Error handling.
9840 void error (const yy::location& l, const std::string& m);
9841 void error (const std::string& m);
9842@};
9843#endif // ! CALCXX_DRIVER_HH
9844@end example
9845
9846The implementation of the driver is straightforward. The @code{parse}
9847member function deserves some attention. The @code{error} functions
9848are simple stubs, they should actually register the located error
9849messages and set error state.
9850
1c59e0a1 9851@comment file: calc++-driver.cc
12545799
AD
9852@example
9853#include "calc++-driver.hh"
9854#include "calc++-parser.hh"
9855
9856calcxx_driver::calcxx_driver ()
9857 : trace_scanning (false), trace_parsing (false)
9858@{
9859 variables["one"] = 1;
9860 variables["two"] = 2;
9861@}
9862
9863calcxx_driver::~calcxx_driver ()
9864@{
9865@}
9866
bb32f4f2 9867int
12545799
AD
9868calcxx_driver::parse (const std::string &f)
9869@{
9870 file = f;
9871 scan_begin ();
9872 yy::calcxx_parser parser (*this);
9873 parser.set_debug_level (trace_parsing);
bb32f4f2 9874 int res = parser.parse ();
12545799 9875 scan_end ();
bb32f4f2 9876 return res;
12545799
AD
9877@}
9878
9879void
9880calcxx_driver::error (const yy::location& l, const std::string& m)
9881@{
9882 std::cerr << l << ": " << m << std::endl;
9883@}
9884
9885void
9886calcxx_driver::error (const std::string& m)
9887@{
9888 std::cerr << m << std::endl;
9889@}
9890@end example
9891
9892@node Calc++ Parser
8405b70c 9893@subsubsection Calc++ Parser
12545799 9894
9913d6e4
JD
9895The grammar file @file{calc++-parser.yy} starts by asking for the C++
9896deterministic parser skeleton, the creation of the parser header file,
9897and specifies the name of the parser class. Because the C++ skeleton
9898changed several times, it is safer to require the version you designed
9899the grammar for.
1c59e0a1
AD
9900
9901@comment file: calc++-parser.yy
12545799 9902@example
ea118b72 9903%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9904%require "@value{VERSION}"
12545799 9905%defines
16dc6a9e 9906%define parser_class_name "calcxx_parser"
fb9712a9
AD
9907@end example
9908
9909@noindent
16dc6a9e 9910@findex %code requires
fb9712a9
AD
9911Then come the declarations/inclusions needed to define the
9912@code{%union}. Because the parser uses the parsing driver and
9913reciprocally, both cannot include the header of the other. Because the
9914driver's header needs detailed knowledge about the parser class (in
9915particular its inner types), it is the parser's header which will simply
9916use a forward declaration of the driver.
8e6f2266 9917@xref{%code Summary}.
fb9712a9
AD
9918
9919@comment file: calc++-parser.yy
9920@example
16dc6a9e 9921%code requires @{
12545799 9922# include <string>
fb9712a9 9923class calcxx_driver;
9bc0dd67 9924@}
12545799
AD
9925@end example
9926
9927@noindent
9928The driver is passed by reference to the parser and to the scanner.
9929This provides a simple but effective pure interface, not relying on
9930global variables.
9931
1c59e0a1 9932@comment file: calc++-parser.yy
12545799
AD
9933@example
9934// The parsing context.
9935%parse-param @{ calcxx_driver& driver @}
9936%lex-param @{ calcxx_driver& driver @}
9937@end example
9938
9939@noindent
9940Then we request the location tracking feature, and initialize the
c781580d 9941first location's file name. Afterward new locations are computed
12545799
AD
9942relatively to the previous locations: the file name will be
9943automatically propagated.
9944
1c59e0a1 9945@comment file: calc++-parser.yy
12545799
AD
9946@example
9947%locations
9948%initial-action
9949@{
9950 // Initialize the initial location.
b47dbebe 9951 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9952@};
9953@end example
9954
9955@noindent
6f04ee6c
JD
9956Use the two following directives to enable parser tracing and verbose error
9957messages. However, verbose error messages can contain incorrect information
9958(@pxref{LAC}).
12545799 9959
1c59e0a1 9960@comment file: calc++-parser.yy
12545799
AD
9961@example
9962%debug
9963%error-verbose
9964@end example
9965
9966@noindent
9967Semantic values cannot use ``real'' objects, but only pointers to
9968them.
9969
1c59e0a1 9970@comment file: calc++-parser.yy
12545799
AD
9971@example
9972// Symbols.
9973%union
9974@{
9975 int ival;
9976 std::string *sval;
9977@};
9978@end example
9979
fb9712a9 9980@noindent
136a0f76
PB
9981@findex %code
9982The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9983@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9984
9985@comment file: calc++-parser.yy
9986@example
136a0f76 9987%code @{
fb9712a9 9988# include "calc++-driver.hh"
34f98f46 9989@}
fb9712a9
AD
9990@end example
9991
9992
12545799
AD
9993@noindent
9994The token numbered as 0 corresponds to end of file; the following line
9995allows for nicer error messages referring to ``end of file'' instead
9996of ``$end''. Similarly user friendly named are provided for each
9997symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
9998avoid name clashes.
9999
1c59e0a1 10000@comment file: calc++-parser.yy
12545799 10001@example
fb9712a9
AD
10002%token END 0 "end of file"
10003%token ASSIGN ":="
10004%token <sval> IDENTIFIER "identifier"
10005%token <ival> NUMBER "number"
a8c2e813 10006%type <ival> exp
12545799
AD
10007@end example
10008
10009@noindent
10010To enable memory deallocation during error recovery, use
10011@code{%destructor}.
10012
287c78f6 10013@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 10014@comment file: calc++-parser.yy
12545799 10015@example
68fff38a 10016%printer @{ yyoutput << *$$; @} "identifier"
12545799
AD
10017%destructor @{ delete $$; @} "identifier"
10018
68fff38a 10019%printer @{ yyoutput << $$; @} <ival>
12545799
AD
10020@end example
10021
10022@noindent
10023The grammar itself is straightforward.
10024
1c59e0a1 10025@comment file: calc++-parser.yy
12545799
AD
10026@example
10027%%
10028%start unit;
10029unit: assignments exp @{ driver.result = $2; @};
10030
de6be119
AD
10031assignments:
10032 /* Nothing. */ @{@}
10033| assignments assignment @{@};
12545799 10034
3dc5e96b
PE
10035assignment:
10036 "identifier" ":=" exp
10037 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
10038
10039%left '+' '-';
10040%left '*' '/';
10041exp: exp '+' exp @{ $$ = $1 + $3; @}
10042 | exp '-' exp @{ $$ = $1 - $3; @}
10043 | exp '*' exp @{ $$ = $1 * $3; @}
10044 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 10045 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 10046 | "number" @{ $$ = $1; @};
12545799
AD
10047%%
10048@end example
10049
10050@noindent
10051Finally the @code{error} member function registers the errors to the
10052driver.
10053
1c59e0a1 10054@comment file: calc++-parser.yy
12545799
AD
10055@example
10056void
1c59e0a1
AD
10057yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
10058 const std::string& m)
12545799
AD
10059@{
10060 driver.error (l, m);
10061@}
10062@end example
10063
10064@node Calc++ Scanner
8405b70c 10065@subsubsection Calc++ Scanner
12545799
AD
10066
10067The Flex scanner first includes the driver declaration, then the
10068parser's to get the set of defined tokens.
10069
1c59e0a1 10070@comment file: calc++-scanner.ll
12545799 10071@example
ea118b72 10072%@{ /* -*- C++ -*- */
04098407 10073# include <cstdlib>
b10dd689
AD
10074# include <cerrno>
10075# include <climits>
12545799
AD
10076# include <string>
10077# include "calc++-driver.hh"
10078# include "calc++-parser.hh"
eaea13f5
PE
10079
10080/* Work around an incompatibility in flex (at least versions
10081 2.5.31 through 2.5.33): it generates code that does
10082 not conform to C89. See Debian bug 333231
10083 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
10084# undef yywrap
10085# define yywrap() 1
eaea13f5 10086
c095d689
AD
10087/* By default yylex returns int, we use token_type.
10088 Unfortunately yyterminate by default returns 0, which is
10089 not of token_type. */
8c5b881d 10090#define yyterminate() return token::END
12545799
AD
10091%@}
10092@end example
10093
10094@noindent
10095Because there is no @code{#include}-like feature we don't need
10096@code{yywrap}, we don't need @code{unput} either, and we parse an
10097actual file, this is not an interactive session with the user.
10098Finally we enable the scanner tracing features.
10099
1c59e0a1 10100@comment file: calc++-scanner.ll
12545799
AD
10101@example
10102%option noyywrap nounput batch debug
10103@end example
10104
10105@noindent
10106Abbreviations allow for more readable rules.
10107
1c59e0a1 10108@comment file: calc++-scanner.ll
12545799
AD
10109@example
10110id [a-zA-Z][a-zA-Z_0-9]*
10111int [0-9]+
10112blank [ \t]
10113@end example
10114
10115@noindent
9d9b8b70 10116The following paragraph suffices to track locations accurately. Each
12545799
AD
10117time @code{yylex} is invoked, the begin position is moved onto the end
10118position. Then when a pattern is matched, the end position is
10119advanced of its width. In case it matched ends of lines, the end
10120cursor is adjusted, and each time blanks are matched, the begin cursor
10121is moved onto the end cursor to effectively ignore the blanks
10122preceding tokens. Comments would be treated equally.
10123
1c59e0a1 10124@comment file: calc++-scanner.ll
12545799 10125@example
98842516 10126@group
828c373b
AD
10127%@{
10128# define YY_USER_ACTION yylloc->columns (yyleng);
10129%@}
98842516 10130@end group
12545799
AD
10131%%
10132%@{
10133 yylloc->step ();
12545799
AD
10134%@}
10135@{blank@}+ yylloc->step ();
10136[\n]+ yylloc->lines (yyleng); yylloc->step ();
10137@end example
10138
10139@noindent
fb9712a9
AD
10140The rules are simple, just note the use of the driver to report errors.
10141It is convenient to use a typedef to shorten
10142@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 10143@code{token::identifier} for instance.
12545799 10144
1c59e0a1 10145@comment file: calc++-scanner.ll
12545799 10146@example
fb9712a9
AD
10147%@{
10148 typedef yy::calcxx_parser::token token;
10149%@}
8c5b881d 10150 /* Convert ints to the actual type of tokens. */
c095d689 10151[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 10152":=" return token::ASSIGN;
04098407
PE
10153@{int@} @{
10154 errno = 0;
10155 long n = strtol (yytext, NULL, 10);
10156 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
10157 driver.error (*yylloc, "integer is out of range");
10158 yylval->ival = n;
fb9712a9 10159 return token::NUMBER;
04098407 10160@}
fb9712a9 10161@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
10162. driver.error (*yylloc, "invalid character");
10163%%
10164@end example
10165
10166@noindent
10167Finally, because the scanner related driver's member function depend
10168on the scanner's data, it is simpler to implement them in this file.
10169
1c59e0a1 10170@comment file: calc++-scanner.ll
12545799 10171@example
98842516 10172@group
12545799
AD
10173void
10174calcxx_driver::scan_begin ()
10175@{
10176 yy_flex_debug = trace_scanning;
56d60c19 10177 if (file.empty () || file == "-")
bb32f4f2
AD
10178 yyin = stdin;
10179 else if (!(yyin = fopen (file.c_str (), "r")))
10180 @{
2c0f9706 10181 error ("cannot open " + file + ": " + strerror(errno));
dd561157 10182 exit (EXIT_FAILURE);
bb32f4f2 10183 @}
12545799 10184@}
98842516 10185@end group
12545799 10186
98842516 10187@group
12545799
AD
10188void
10189calcxx_driver::scan_end ()
10190@{
10191 fclose (yyin);
10192@}
98842516 10193@end group
12545799
AD
10194@end example
10195
10196@node Calc++ Top Level
8405b70c 10197@subsubsection Calc++ Top Level
12545799
AD
10198
10199The top level file, @file{calc++.cc}, poses no problem.
10200
1c59e0a1 10201@comment file: calc++.cc
12545799
AD
10202@example
10203#include <iostream>
10204#include "calc++-driver.hh"
10205
98842516 10206@group
12545799 10207int
fa4d969f 10208main (int argc, char *argv[])
12545799
AD
10209@{
10210 calcxx_driver driver;
56d60c19
AD
10211 for (int i = 1; i < argc; ++i)
10212 if (argv[i] == std::string ("-p"))
12545799 10213 driver.trace_parsing = true;
56d60c19 10214 else if (argv[i] == std::string ("-s"))
12545799 10215 driver.trace_scanning = true;
56d60c19 10216 else if (!driver.parse (argv[i]))
bb32f4f2 10217 std::cout << driver.result << std::endl;
12545799 10218@}
98842516 10219@end group
12545799
AD
10220@end example
10221
8405b70c
PB
10222@node Java Parsers
10223@section Java Parsers
10224
10225@menu
f56274a8
DJ
10226* Java Bison Interface:: Asking for Java parser generation
10227* Java Semantic Values:: %type and %token vs. Java
10228* Java Location Values:: The position and location classes
10229* Java Parser Interface:: Instantiating and running the parser
10230* Java Scanner Interface:: Specifying the scanner for the parser
10231* Java Action Features:: Special features for use in actions
10232* Java Differences:: Differences between C/C++ and Java Grammars
10233* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10234@end menu
10235
10236@node Java Bison Interface
10237@subsection Java Bison Interface
10238@c - %language "Java"
8405b70c 10239
59da312b
JD
10240(The current Java interface is experimental and may evolve.
10241More user feedback will help to stabilize it.)
10242
e254a580
DJ
10243The Java parser skeletons are selected using the @code{%language "Java"}
10244directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10245
e254a580 10246@c FIXME: Documented bug.
9913d6e4
JD
10247When generating a Java parser, @code{bison @var{basename}.y} will
10248create a single Java source file named @file{@var{basename}.java}
10249containing the parser implementation. Using a grammar file without a
10250@file{.y} suffix is currently broken. The basename of the parser
10251implementation file can be changed by the @code{%file-prefix}
10252directive or the @option{-p}/@option{--name-prefix} option. The
10253entire parser implementation file name can be changed by the
10254@code{%output} directive or the @option{-o}/@option{--output} option.
10255The parser implementation file contains a single class for the parser.
8405b70c 10256
e254a580 10257You can create documentation for generated parsers using Javadoc.
8405b70c 10258
e254a580
DJ
10259Contrary to C parsers, Java parsers do not use global variables; the
10260state of the parser is always local to an instance of the parser class.
10261Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
10262and @code{%define api.pure} directives does not do anything when used in
10263Java.
8405b70c 10264
e254a580 10265Push parsers are currently unsupported in Java and @code{%define
812775a0 10266api.push-pull} have no effect.
01b477c6 10267
35430378 10268GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10269@code{glr-parser} directive.
10270
10271No header file can be generated for Java parsers. Do not use the
10272@code{%defines} directive or the @option{-d}/@option{--defines} options.
10273
10274@c FIXME: Possible code change.
10275Currently, support for debugging and verbose errors are always compiled
10276in. Thus the @code{%debug} and @code{%token-table} directives and the
10277@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10278options have no effect. This may change in the future to eliminate
10279unused code in the generated parser, so use @code{%debug} and
10280@code{%verbose-error} explicitly if needed. Also, in the future the
10281@code{%token-table} directive might enable a public interface to
10282access the token names and codes.
8405b70c
PB
10283
10284@node Java Semantic Values
10285@subsection Java Semantic Values
10286@c - No %union, specify type in %type/%token.
10287@c - YYSTYPE
10288@c - Printer and destructor
10289
10290There is no @code{%union} directive in Java parsers. Instead, the
10291semantic values' types (class names) should be specified in the
10292@code{%type} or @code{%token} directive:
10293
10294@example
10295%type <Expression> expr assignment_expr term factor
10296%type <Integer> number
10297@end example
10298
10299By default, the semantic stack is declared to have @code{Object} members,
10300which means that the class types you specify can be of any class.
10301To improve the type safety of the parser, you can declare the common
e254a580
DJ
10302superclass of all the semantic values using the @code{%define stype}
10303directive. For example, after the following declaration:
8405b70c
PB
10304
10305@example
e254a580 10306%define stype "ASTNode"
8405b70c
PB
10307@end example
10308
10309@noindent
10310any @code{%type} or @code{%token} specifying a semantic type which
10311is not a subclass of ASTNode, will cause a compile-time error.
10312
e254a580 10313@c FIXME: Documented bug.
8405b70c
PB
10314Types used in the directives may be qualified with a package name.
10315Primitive data types are accepted for Java version 1.5 or later. Note
10316that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10317Generic types may not be used; this is due to a limitation in the
10318implementation of Bison, and may change in future releases.
8405b70c
PB
10319
10320Java parsers do not support @code{%destructor}, since the language
10321adopts garbage collection. The parser will try to hold references
10322to semantic values for as little time as needed.
10323
10324Java parsers do not support @code{%printer}, as @code{toString()}
10325can be used to print the semantic values. This however may change
10326(in a backwards-compatible way) in future versions of Bison.
10327
10328
10329@node Java Location Values
10330@subsection Java Location Values
10331@c - %locations
10332@c - class Position
10333@c - class Location
10334
7404cdf3
JD
10335When the directive @code{%locations} is used, the Java parser supports
10336location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10337class defines a @dfn{position}, a single point in a file; Bison itself
10338defines a class representing a @dfn{location}, a range composed of a pair of
10339positions (possibly spanning several files). The location class is an inner
10340class of the parser; the name is @code{Location} by default, and may also be
7287be84 10341renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
10342
10343The location class treats the position as a completely opaque value.
10344By default, the class name is @code{Position}, but this can be changed
7287be84 10345with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 10346be supplied by the user.
8405b70c
PB
10347
10348
e254a580
DJ
10349@deftypeivar {Location} {Position} begin
10350@deftypeivarx {Location} {Position} end
8405b70c 10351The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10352@end deftypeivar
10353
10354@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 10355Create a @code{Location} denoting an empty range located at a given point.
e254a580 10356@end deftypeop
8405b70c 10357
e254a580
DJ
10358@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10359Create a @code{Location} from the endpoints of the range.
10360@end deftypeop
10361
10362@deftypemethod {Location} {String} toString ()
8405b70c
PB
10363Prints the range represented by the location. For this to work
10364properly, the position class should override the @code{equals} and
10365@code{toString} methods appropriately.
10366@end deftypemethod
10367
10368
10369@node Java Parser Interface
10370@subsection Java Parser Interface
10371@c - define parser_class_name
10372@c - Ctor
10373@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10374@c debug_stream.
10375@c - Reporting errors
10376
e254a580
DJ
10377The name of the generated parser class defaults to @code{YYParser}. The
10378@code{YY} prefix may be changed using the @code{%name-prefix} directive
10379or the @option{-p}/@option{--name-prefix} option. Alternatively, use
10380@code{%define parser_class_name "@var{name}"} to give a custom name to
10381the class. The interface of this class is detailed below.
8405b70c 10382
e254a580
DJ
10383By default, the parser class has package visibility. A declaration
10384@code{%define public} will change to public visibility. Remember that,
10385according to the Java language specification, the name of the @file{.java}
10386file should match the name of the class in this case. Similarly, you can
10387use @code{abstract}, @code{final} and @code{strictfp} with the
10388@code{%define} declaration to add other modifiers to the parser class.
10389
10390The Java package name of the parser class can be specified using the
10391@code{%define package} directive. The superclass and the implemented
10392interfaces of the parser class can be specified with the @code{%define
10393extends} and @code{%define implements} directives.
10394
10395The parser class defines an inner class, @code{Location}, that is used
10396for location tracking (see @ref{Java Location Values}), and a inner
10397interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10398these inner class/interface, and the members described in the interface
10399below, all the other members and fields are preceded with a @code{yy} or
10400@code{YY} prefix to avoid clashes with user code.
10401
10402@c FIXME: The following constants and variables are still undocumented:
10403@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
10404
10405The parser class can be extended using the @code{%parse-param}
10406directive. Each occurrence of the directive will add a @code{protected
10407final} field to the parser class, and an argument to its constructor,
10408which initialize them automatically.
10409
10410Token names defined by @code{%token} and the predefined @code{EOF} token
10411name are added as constant fields to the parser class.
10412
10413@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10414Build a new parser object with embedded @code{%code lexer}. There are
10415no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
10416used.
10417@end deftypeop
10418
10419@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10420Build a new parser object using the specified scanner. There are no
10421additional parameters unless @code{%parse-param}s are used.
10422
10423If the scanner is defined by @code{%code lexer}, this constructor is
10424declared @code{protected} and is called automatically with a scanner
10425created with the correct @code{%lex-param}s.
10426@end deftypeop
8405b70c
PB
10427
10428@deftypemethod {YYParser} {boolean} parse ()
10429Run the syntactic analysis, and return @code{true} on success,
10430@code{false} otherwise.
10431@end deftypemethod
10432
01b477c6 10433@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10434During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10435from a syntax error.
10436@xref{Error Recovery}.
8405b70c
PB
10437@end deftypemethod
10438
10439@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10440@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10441Get or set the stream used for tracing the parsing. It defaults to
10442@code{System.err}.
10443@end deftypemethod
10444
10445@deftypemethod {YYParser} {int} getDebugLevel ()
10446@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10447Get or set the tracing level. Currently its value is either 0, no trace,
10448or nonzero, full tracing.
10449@end deftypemethod
10450
8405b70c
PB
10451
10452@node Java Scanner Interface
10453@subsection Java Scanner Interface
01b477c6 10454@c - %code lexer
8405b70c 10455@c - %lex-param
01b477c6 10456@c - Lexer interface
8405b70c 10457
e254a580
DJ
10458There are two possible ways to interface a Bison-generated Java parser
10459with a scanner: the scanner may be defined by @code{%code lexer}, or
10460defined elsewhere. In either case, the scanner has to implement the
10461@code{Lexer} inner interface of the parser class.
10462
10463In the first case, the body of the scanner class is placed in
10464@code{%code lexer} blocks. If you want to pass parameters from the
10465parser constructor to the scanner constructor, specify them with
10466@code{%lex-param}; they are passed before @code{%parse-param}s to the
10467constructor.
01b477c6 10468
59c5ac72 10469In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10470which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10471The constructor of the parser object will then accept an object
10472implementing the interface; @code{%lex-param} is not used in this
10473case.
10474
10475In both cases, the scanner has to implement the following methods.
10476
e254a580
DJ
10477@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10478This method is defined by the user to emit an error message. The first
10479parameter is omitted if location tracking is not active. Its type can be
7287be84 10480changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
10481@end deftypemethod
10482
e254a580 10483@deftypemethod {Lexer} {int} yylex ()
8405b70c 10484Return the next token. Its type is the return value, its semantic
c781580d 10485value and location are saved and returned by the their methods in the
e254a580
DJ
10486interface.
10487
10488Use @code{%define lex_throws} to specify any uncaught exceptions.
10489Default is @code{java.io.IOException}.
8405b70c
PB
10490@end deftypemethod
10491
10492@deftypemethod {Lexer} {Position} getStartPos ()
10493@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10494Return respectively the first position of the last token that
10495@code{yylex} returned, and the first position beyond it. These
10496methods are not needed unless location tracking is active.
8405b70c 10497
7287be84 10498The return type can be changed using @code{%define api.position.type
8405b70c
PB
10499"@var{class-name}".}
10500@end deftypemethod
10501
10502@deftypemethod {Lexer} {Object} getLVal ()
c781580d 10503Return the semantic value of the last token that yylex returned.
8405b70c 10504
e254a580 10505The return type can be changed using @code{%define stype
8405b70c
PB
10506"@var{class-name}".}
10507@end deftypemethod
10508
10509
e254a580
DJ
10510@node Java Action Features
10511@subsection Special Features for Use in Java Actions
10512
10513The following special constructs can be uses in Java actions.
10514Other analogous C action features are currently unavailable for Java.
10515
10516Use @code{%define throws} to specify any uncaught exceptions from parser
10517actions, and initial actions specified by @code{%initial-action}.
10518
10519@defvar $@var{n}
10520The semantic value for the @var{n}th component of the current rule.
10521This may not be assigned to.
10522@xref{Java Semantic Values}.
10523@end defvar
10524
10525@defvar $<@var{typealt}>@var{n}
10526Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10527@xref{Java Semantic Values}.
10528@end defvar
10529
10530@defvar $$
10531The semantic value for the grouping made by the current rule. As a
10532value, this is in the base type (@code{Object} or as specified by
10533@code{%define stype}) as in not cast to the declared subtype because
10534casts are not allowed on the left-hand side of Java assignments.
10535Use an explicit Java cast if the correct subtype is needed.
10536@xref{Java Semantic Values}.
10537@end defvar
10538
10539@defvar $<@var{typealt}>$
10540Same as @code{$$} since Java always allow assigning to the base type.
10541Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10542for setting the value but there is currently no easy way to distinguish
10543these constructs.
10544@xref{Java Semantic Values}.
10545@end defvar
10546
10547@defvar @@@var{n}
10548The location information of the @var{n}th component of the current rule.
10549This may not be assigned to.
10550@xref{Java Location Values}.
10551@end defvar
10552
10553@defvar @@$
10554The location information of the grouping made by the current rule.
10555@xref{Java Location Values}.
10556@end defvar
10557
34a41a93 10558@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
10559Return immediately from the parser, indicating failure.
10560@xref{Java Parser Interface}.
34a41a93 10561@end deftypefn
8405b70c 10562
34a41a93 10563@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
10564Return immediately from the parser, indicating success.
10565@xref{Java Parser Interface}.
34a41a93 10566@end deftypefn
8405b70c 10567
34a41a93 10568@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 10569Start error recovery (without printing an error message).
e254a580 10570@xref{Error Recovery}.
34a41a93 10571@end deftypefn
8405b70c 10572
e254a580
DJ
10573@deftypefn {Function} {boolean} recovering ()
10574Return whether error recovery is being done. In this state, the parser
10575reads token until it reaches a known state, and then restarts normal
10576operation.
10577@xref{Error Recovery}.
10578@end deftypefn
8405b70c 10579
e254a580
DJ
10580@deftypefn {Function} {protected void} yyerror (String msg)
10581@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
10582@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
10583Print an error message using the @code{yyerror} method of the scanner
10584instance in use.
10585@end deftypefn
8405b70c 10586
8405b70c 10587
8405b70c
PB
10588@node Java Differences
10589@subsection Differences between C/C++ and Java Grammars
10590
10591The different structure of the Java language forces several differences
10592between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10593section summarizes these differences.
8405b70c
PB
10594
10595@itemize
10596@item
01b477c6 10597Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10598@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10599macros. Instead, they should be preceded by @code{return} when they
10600appear in an action. The actual definition of these symbols is
8405b70c
PB
10601opaque to the Bison grammar, and it might change in the future. The
10602only meaningful operation that you can do, is to return them.
2ba03112 10603@xref{Java Action Features}.
8405b70c
PB
10604
10605Note that of these three symbols, only @code{YYACCEPT} and
10606@code{YYABORT} will cause a return from the @code{yyparse}
10607method@footnote{Java parsers include the actions in a separate
10608method than @code{yyparse} in order to have an intuitive syntax that
10609corresponds to these C macros.}.
10610
e254a580
DJ
10611@item
10612Java lacks unions, so @code{%union} has no effect. Instead, semantic
10613values have a common base type: @code{Object} or as specified by
c781580d 10614@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10615@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10616an union. The type of @code{$$}, even with angle brackets, is the base
10617type since Java casts are not allow on the left-hand side of assignments.
10618Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 10619left-hand side of assignments. @xref{Java Semantic Values}, and
2ba03112 10620@ref{Java Action Features}.
e254a580 10621
8405b70c 10622@item
c781580d 10623The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10624@table @asis
10625@item @code{%code imports}
10626blocks are placed at the beginning of the Java source code. They may
10627include copyright notices. For a @code{package} declarations, it is
10628suggested to use @code{%define package} instead.
8405b70c 10629
01b477c6
PB
10630@item unqualified @code{%code}
10631blocks are placed inside the parser class.
10632
10633@item @code{%code lexer}
10634blocks, if specified, should include the implementation of the
10635scanner. If there is no such block, the scanner can be any class
2ba03112 10636that implements the appropriate interface (@pxref{Java Scanner
01b477c6 10637Interface}).
29553547 10638@end table
8405b70c
PB
10639
10640Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10641In particular, @code{%@{ @dots{} %@}} blocks should not be used
10642and may give an error in future versions of Bison.
10643
01b477c6 10644The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10645be used to define other classes used by the parser @emph{outside}
10646the parser class.
8405b70c
PB
10647@end itemize
10648
e254a580
DJ
10649
10650@node Java Declarations Summary
10651@subsection Java Declarations Summary
10652
10653This summary only include declarations specific to Java or have special
10654meaning when used in a Java parser.
10655
10656@deffn {Directive} {%language "Java"}
10657Generate a Java class for the parser.
10658@end deffn
10659
10660@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10661A parameter for the lexer class defined by @code{%code lexer}
10662@emph{only}, added as parameters to the lexer constructor and the parser
10663constructor that @emph{creates} a lexer. Default is none.
10664@xref{Java Scanner Interface}.
10665@end deffn
10666
10667@deffn {Directive} %name-prefix "@var{prefix}"
10668The prefix of the parser class name @code{@var{prefix}Parser} if
10669@code{%define parser_class_name} is not used. Default is @code{YY}.
10670@xref{Java Bison Interface}.
10671@end deffn
10672
10673@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10674A parameter for the parser class added as parameters to constructor(s)
10675and as fields initialized by the constructor(s). Default is none.
10676@xref{Java Parser Interface}.
10677@end deffn
10678
10679@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10680Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10681@xref{Java Semantic Values}.
10682@end deffn
10683
10684@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10685Declare the type of nonterminals. Note that the angle brackets enclose
10686a Java @emph{type}.
10687@xref{Java Semantic Values}.
10688@end deffn
10689
10690@deffn {Directive} %code @{ @var{code} @dots{} @}
10691Code appended to the inside of the parser class.
10692@xref{Java Differences}.
10693@end deffn
10694
10695@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10696Code inserted just after the @code{package} declaration.
10697@xref{Java Differences}.
10698@end deffn
10699
10700@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10701Code added to the body of a inner lexer class within the parser class.
10702@xref{Java Scanner Interface}.
10703@end deffn
10704
10705@deffn {Directive} %% @var{code} @dots{}
10706Code (after the second @code{%%}) appended to the end of the file,
10707@emph{outside} the parser class.
10708@xref{Java Differences}.
10709@end deffn
10710
10711@deffn {Directive} %@{ @var{code} @dots{} %@}
10712Not supported. Use @code{%code import} instead.
10713@xref{Java Differences}.
10714@end deffn
10715
10716@deffn {Directive} {%define abstract}
10717Whether the parser class is declared @code{abstract}. Default is false.
10718@xref{Java Bison Interface}.
10719@end deffn
10720
10721@deffn {Directive} {%define extends} "@var{superclass}"
10722The superclass of the parser class. Default is none.
10723@xref{Java Bison Interface}.
10724@end deffn
10725
10726@deffn {Directive} {%define final}
10727Whether the parser class is declared @code{final}. Default is false.
10728@xref{Java Bison Interface}.
10729@end deffn
10730
10731@deffn {Directive} {%define implements} "@var{interfaces}"
10732The implemented interfaces of the parser class, a comma-separated list.
10733Default is none.
10734@xref{Java Bison Interface}.
10735@end deffn
10736
10737@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10738The exceptions thrown by the @code{yylex} method of the lexer, a
10739comma-separated list. Default is @code{java.io.IOException}.
10740@xref{Java Scanner Interface}.
10741@end deffn
10742
7287be84 10743@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
10744The name of the class used for locations (a range between two
10745positions). This class is generated as an inner class of the parser
10746class by @command{bison}. Default is @code{Location}.
7287be84 10747Formerly named @code{location_type}.
e254a580
DJ
10748@xref{Java Location Values}.
10749@end deffn
10750
10751@deffn {Directive} {%define package} "@var{package}"
10752The package to put the parser class in. Default is none.
10753@xref{Java Bison Interface}.
10754@end deffn
10755
10756@deffn {Directive} {%define parser_class_name} "@var{name}"
10757The name of the parser class. Default is @code{YYParser} or
10758@code{@var{name-prefix}Parser}.
10759@xref{Java Bison Interface}.
10760@end deffn
10761
7287be84 10762@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
10763The name of the class used for positions. This class must be supplied by
10764the user. Default is @code{Position}.
7287be84 10765Formerly named @code{position_type}.
e254a580
DJ
10766@xref{Java Location Values}.
10767@end deffn
10768
10769@deffn {Directive} {%define public}
10770Whether the parser class is declared @code{public}. Default is false.
10771@xref{Java Bison Interface}.
10772@end deffn
10773
10774@deffn {Directive} {%define stype} "@var{class}"
10775The base type of semantic values. Default is @code{Object}.
10776@xref{Java Semantic Values}.
10777@end deffn
10778
10779@deffn {Directive} {%define strictfp}
10780Whether the parser class is declared @code{strictfp}. Default is false.
10781@xref{Java Bison Interface}.
10782@end deffn
10783
10784@deffn {Directive} {%define throws} "@var{exceptions}"
10785The exceptions thrown by user-supplied parser actions and
10786@code{%initial-action}, a comma-separated list. Default is none.
10787@xref{Java Parser Interface}.
10788@end deffn
10789
10790
12545799 10791@c ================================================= FAQ
d1a1114f
AD
10792
10793@node FAQ
10794@chapter Frequently Asked Questions
10795@cindex frequently asked questions
10796@cindex questions
10797
10798Several questions about Bison come up occasionally. Here some of them
10799are addressed.
10800
10801@menu
55ba27be
AD
10802* Memory Exhausted:: Breaking the Stack Limits
10803* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10804* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10805* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10806* Multiple start-symbols:: Factoring closely related grammars
35430378 10807* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10808* I can't build Bison:: Troubleshooting
10809* Where can I find help?:: Troubleshouting
10810* Bug Reports:: Troublereporting
8405b70c 10811* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10812* Beta Testing:: Experimenting development versions
10813* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10814@end menu
10815
1a059451
PE
10816@node Memory Exhausted
10817@section Memory Exhausted
d1a1114f 10818
ab8932bf 10819@quotation
1a059451 10820My parser returns with error with a @samp{memory exhausted}
d1a1114f 10821message. What can I do?
ab8932bf 10822@end quotation
d1a1114f 10823
188867ac
AD
10824This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
10825Rules}.
d1a1114f 10826
e64fec0a
PE
10827@node How Can I Reset the Parser
10828@section How Can I Reset the Parser
5b066063 10829
0e14ad77
PE
10830The following phenomenon has several symptoms, resulting in the
10831following typical questions:
5b066063 10832
ab8932bf 10833@quotation
5b066063
AD
10834I invoke @code{yyparse} several times, and on correct input it works
10835properly; but when a parse error is found, all the other calls fail
0e14ad77 10836too. How can I reset the error flag of @code{yyparse}?
ab8932bf 10837@end quotation
5b066063
AD
10838
10839@noindent
10840or
10841
ab8932bf 10842@quotation
0e14ad77 10843My parser includes support for an @samp{#include}-like feature, in
5b066063 10844which case I run @code{yyparse} from @code{yyparse}. This fails
ab8932bf
AD
10845although I did specify @samp{%define api.pure}.
10846@end quotation
5b066063 10847
0e14ad77
PE
10848These problems typically come not from Bison itself, but from
10849Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10850speed, they might not notice a change of input file. As a
10851demonstration, consider the following source file,
10852@file{first-line.l}:
10853
98842516
AD
10854@example
10855@group
10856%@{
5b066063
AD
10857#include <stdio.h>
10858#include <stdlib.h>
98842516
AD
10859%@}
10860@end group
5b066063
AD
10861%%
10862.*\n ECHO; return 1;
10863%%
98842516 10864@group
5b066063 10865int
0e14ad77 10866yyparse (char const *file)
98842516 10867@{
5b066063
AD
10868 yyin = fopen (file, "r");
10869 if (!yyin)
98842516
AD
10870 @{
10871 perror ("fopen");
10872 exit (EXIT_FAILURE);
10873 @}
10874@end group
10875@group
fa7e68c3 10876 /* One token only. */
5b066063 10877 yylex ();
0e14ad77 10878 if (fclose (yyin) != 0)
98842516
AD
10879 @{
10880 perror ("fclose");
10881 exit (EXIT_FAILURE);
10882 @}
5b066063 10883 return 0;
98842516
AD
10884@}
10885@end group
5b066063 10886
98842516 10887@group
5b066063 10888int
0e14ad77 10889main (void)
98842516 10890@{
5b066063
AD
10891 yyparse ("input");
10892 yyparse ("input");
10893 return 0;
98842516
AD
10894@}
10895@end group
10896@end example
5b066063
AD
10897
10898@noindent
10899If the file @file{input} contains
10900
ab8932bf 10901@example
5b066063
AD
10902input:1: Hello,
10903input:2: World!
ab8932bf 10904@end example
5b066063
AD
10905
10906@noindent
0e14ad77 10907then instead of getting the first line twice, you get:
5b066063
AD
10908
10909@example
10910$ @kbd{flex -ofirst-line.c first-line.l}
10911$ @kbd{gcc -ofirst-line first-line.c -ll}
10912$ @kbd{./first-line}
10913input:1: Hello,
10914input:2: World!
10915@end example
10916
0e14ad77
PE
10917Therefore, whenever you change @code{yyin}, you must tell the
10918Lex-generated scanner to discard its current buffer and switch to the
10919new one. This depends upon your implementation of Lex; see its
10920documentation for more. For Flex, it suffices to call
10921@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10922Flex-generated scanner needs to read from several input streams to
10923handle features like include files, you might consider using Flex
10924functions like @samp{yy_switch_to_buffer} that manipulate multiple
10925input buffers.
5b066063 10926
b165c324
AD
10927If your Flex-generated scanner uses start conditions (@pxref{Start
10928conditions, , Start conditions, flex, The Flex Manual}), you might
10929also want to reset the scanner's state, i.e., go back to the initial
10930start condition, through a call to @samp{BEGIN (0)}.
10931
fef4cb51
AD
10932@node Strings are Destroyed
10933@section Strings are Destroyed
10934
ab8932bf 10935@quotation
c7e441b4 10936My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10937them. Instead of reporting @samp{"foo", "bar"}, it reports
10938@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
ab8932bf 10939@end quotation
fef4cb51
AD
10940
10941This error is probably the single most frequent ``bug report'' sent to
10942Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10943of the scanner. Consider the following Lex code:
fef4cb51 10944
ab8932bf 10945@example
98842516 10946@group
ab8932bf 10947%@{
fef4cb51
AD
10948#include <stdio.h>
10949char *yylval = NULL;
ab8932bf 10950%@}
98842516
AD
10951@end group
10952@group
fef4cb51
AD
10953%%
10954.* yylval = yytext; return 1;
10955\n /* IGNORE */
10956%%
98842516
AD
10957@end group
10958@group
fef4cb51
AD
10959int
10960main ()
ab8932bf 10961@{
fa7e68c3 10962 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10963 char *fst = (yylex (), yylval);
10964 char *snd = (yylex (), yylval);
10965 printf ("\"%s\", \"%s\"\n", fst, snd);
10966 return 0;
ab8932bf 10967@}
98842516 10968@end group
ab8932bf 10969@end example
fef4cb51
AD
10970
10971If you compile and run this code, you get:
10972
10973@example
10974$ @kbd{flex -osplit-lines.c split-lines.l}
10975$ @kbd{gcc -osplit-lines split-lines.c -ll}
10976$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10977"one
10978two", "two"
10979@end example
10980
10981@noindent
10982this is because @code{yytext} is a buffer provided for @emph{reading}
10983in the action, but if you want to keep it, you have to duplicate it
10984(e.g., using @code{strdup}). Note that the output may depend on how
10985your implementation of Lex handles @code{yytext}. For instance, when
10986given the Lex compatibility option @option{-l} (which triggers the
10987option @samp{%array}) Flex generates a different behavior:
10988
10989@example
10990$ @kbd{flex -l -osplit-lines.c split-lines.l}
10991$ @kbd{gcc -osplit-lines split-lines.c -ll}
10992$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10993"two", "two"
10994@end example
10995
10996
2fa09258
AD
10997@node Implementing Gotos/Loops
10998@section Implementing Gotos/Loops
a06ea4aa 10999
ab8932bf 11000@quotation
a06ea4aa 11001My simple calculator supports variables, assignments, and functions,
2fa09258 11002but how can I implement gotos, or loops?
ab8932bf 11003@end quotation
a06ea4aa
AD
11004
11005Although very pedagogical, the examples included in the document blur
a1c84f45 11006the distinction to make between the parser---whose job is to recover
a06ea4aa 11007the structure of a text and to transmit it to subsequent modules of
a1c84f45 11008the program---and the processing (such as the execution) of this
a06ea4aa
AD
11009structure. This works well with so called straight line programs,
11010i.e., precisely those that have a straightforward execution model:
11011execute simple instructions one after the others.
11012
11013@cindex abstract syntax tree
35430378 11014@cindex AST
a06ea4aa
AD
11015If you want a richer model, you will probably need to use the parser
11016to construct a tree that does represent the structure it has
11017recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 11018or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11019traversing it in various ways, will enable treatments such as its
11020execution or its translation, which will result in an interpreter or a
11021compiler.
11022
11023This topic is way beyond the scope of this manual, and the reader is
11024invited to consult the dedicated literature.
11025
11026
ed2e6384
AD
11027@node Multiple start-symbols
11028@section Multiple start-symbols
11029
ab8932bf 11030@quotation
ed2e6384
AD
11031I have several closely related grammars, and I would like to share their
11032implementations. In fact, I could use a single grammar but with
11033multiple entry points.
ab8932bf 11034@end quotation
ed2e6384
AD
11035
11036Bison does not support multiple start-symbols, but there is a very
11037simple means to simulate them. If @code{foo} and @code{bar} are the two
11038pseudo start-symbols, then introduce two new tokens, say
11039@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11040real start-symbol:
11041
11042@example
11043%token START_FOO START_BAR;
11044%start start;
de6be119
AD
11045start:
11046 START_FOO foo
11047| START_BAR bar;
ed2e6384
AD
11048@end example
11049
11050These tokens prevents the introduction of new conflicts. As far as the
11051parser goes, that is all that is needed.
11052
11053Now the difficult part is ensuring that the scanner will send these
11054tokens first. If your scanner is hand-written, that should be
11055straightforward. If your scanner is generated by Lex, them there is
11056simple means to do it: recall that anything between @samp{%@{ ... %@}}
11057after the first @code{%%} is copied verbatim in the top of the generated
11058@code{yylex} function. Make sure a variable @code{start_token} is
11059available in the scanner (e.g., a global variable or using
11060@code{%lex-param} etc.), and use the following:
11061
11062@example
11063 /* @r{Prologue.} */
11064%%
11065%@{
11066 if (start_token)
11067 @{
11068 int t = start_token;
11069 start_token = 0;
11070 return t;
11071 @}
11072%@}
11073 /* @r{The rules.} */
11074@end example
11075
11076
55ba27be
AD
11077@node Secure? Conform?
11078@section Secure? Conform?
11079
ab8932bf 11080@quotation
55ba27be 11081Is Bison secure? Does it conform to POSIX?
ab8932bf 11082@end quotation
55ba27be
AD
11083
11084If you're looking for a guarantee or certification, we don't provide it.
11085However, Bison is intended to be a reliable program that conforms to the
35430378 11086POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11087please send us a bug report.
11088
11089@node I can't build Bison
11090@section I can't build Bison
11091
ab8932bf 11092@quotation
8c5b881d
PE
11093I can't build Bison because @command{make} complains that
11094@code{msgfmt} is not found.
55ba27be 11095What should I do?
ab8932bf 11096@end quotation
55ba27be
AD
11097
11098Like most GNU packages with internationalization support, that feature
11099is turned on by default. If you have problems building in the @file{po}
11100subdirectory, it indicates that your system's internationalization
11101support is lacking. You can re-configure Bison with
11102@option{--disable-nls} to turn off this support, or you can install GNU
11103gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11104Bison. See the file @file{ABOUT-NLS} for more information.
11105
11106
11107@node Where can I find help?
11108@section Where can I find help?
11109
ab8932bf 11110@quotation
55ba27be 11111I'm having trouble using Bison. Where can I find help?
ab8932bf 11112@end quotation
55ba27be
AD
11113
11114First, read this fine manual. Beyond that, you can send mail to
11115@email{help-bison@@gnu.org}. This mailing list is intended to be
11116populated with people who are willing to answer questions about using
11117and installing Bison. Please keep in mind that (most of) the people on
11118the list have aspects of their lives which are not related to Bison (!),
11119so you may not receive an answer to your question right away. This can
11120be frustrating, but please try not to honk them off; remember that any
11121help they provide is purely voluntary and out of the kindness of their
11122hearts.
11123
11124@node Bug Reports
11125@section Bug Reports
11126
ab8932bf 11127@quotation
55ba27be 11128I found a bug. What should I include in the bug report?
ab8932bf 11129@end quotation
55ba27be
AD
11130
11131Before you send a bug report, make sure you are using the latest
11132version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11133mirrors. Be sure to include the version number in your bug report. If
11134the bug is present in the latest version but not in a previous version,
11135try to determine the most recent version which did not contain the bug.
11136
11137If the bug is parser-related, you should include the smallest grammar
11138you can which demonstrates the bug. The grammar file should also be
11139complete (i.e., I should be able to run it through Bison without having
11140to edit or add anything). The smaller and simpler the grammar, the
11141easier it will be to fix the bug.
11142
11143Include information about your compilation environment, including your
11144operating system's name and version and your compiler's name and
11145version. If you have trouble compiling, you should also include a
11146transcript of the build session, starting with the invocation of
11147`configure'. Depending on the nature of the bug, you may be asked to
11148send additional files as well (such as `config.h' or `config.cache').
11149
11150Patches are most welcome, but not required. That is, do not hesitate to
d6864e19 11151send a bug report just because you cannot provide a fix.
55ba27be
AD
11152
11153Send bug reports to @email{bug-bison@@gnu.org}.
11154
8405b70c
PB
11155@node More Languages
11156@section More Languages
55ba27be 11157
ab8932bf 11158@quotation
8405b70c 11159Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11160favorite language here}?
ab8932bf 11161@end quotation
55ba27be 11162
8405b70c 11163C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11164languages; contributions are welcome.
11165
11166@node Beta Testing
11167@section Beta Testing
11168
ab8932bf 11169@quotation
55ba27be 11170What is involved in being a beta tester?
ab8932bf 11171@end quotation
55ba27be
AD
11172
11173It's not terribly involved. Basically, you would download a test
11174release, compile it, and use it to build and run a parser or two. After
11175that, you would submit either a bug report or a message saying that
11176everything is okay. It is important to report successes as well as
11177failures because test releases eventually become mainstream releases,
11178but only if they are adequately tested. If no one tests, development is
11179essentially halted.
11180
11181Beta testers are particularly needed for operating systems to which the
11182developers do not have easy access. They currently have easy access to
11183recent GNU/Linux and Solaris versions. Reports about other operating
11184systems are especially welcome.
11185
11186@node Mailing Lists
11187@section Mailing Lists
11188
ab8932bf 11189@quotation
55ba27be 11190How do I join the help-bison and bug-bison mailing lists?
ab8932bf 11191@end quotation
55ba27be
AD
11192
11193See @url{http://lists.gnu.org/}.
a06ea4aa 11194
d1a1114f
AD
11195@c ================================================= Table of Symbols
11196
342b8b6e 11197@node Table of Symbols
bfa74976
RS
11198@appendix Bison Symbols
11199@cindex Bison symbols, table of
11200@cindex symbols in Bison, table of
11201
18b519c0 11202@deffn {Variable} @@$
3ded9a63 11203In an action, the location of the left-hand side of the rule.
7404cdf3 11204@xref{Tracking Locations}.
18b519c0 11205@end deffn
3ded9a63 11206
18b519c0 11207@deffn {Variable} @@@var{n}
7404cdf3
JD
11208In an action, the location of the @var{n}-th symbol of the right-hand side
11209of the rule. @xref{Tracking Locations}.
18b519c0 11210@end deffn
3ded9a63 11211
1f68dca5 11212@deffn {Variable} @@@var{name}
7404cdf3
JD
11213In an action, the location of a symbol addressed by name. @xref{Tracking
11214Locations}.
1f68dca5
AR
11215@end deffn
11216
11217@deffn {Variable} @@[@var{name}]
7404cdf3
JD
11218In an action, the location of a symbol addressed by name. @xref{Tracking
11219Locations}.
1f68dca5
AR
11220@end deffn
11221
18b519c0 11222@deffn {Variable} $$
3ded9a63
AD
11223In an action, the semantic value of the left-hand side of the rule.
11224@xref{Actions}.
18b519c0 11225@end deffn
3ded9a63 11226
18b519c0 11227@deffn {Variable} $@var{n}
3ded9a63
AD
11228In an action, the semantic value of the @var{n}-th symbol of the
11229right-hand side of the rule. @xref{Actions}.
18b519c0 11230@end deffn
3ded9a63 11231
1f68dca5
AR
11232@deffn {Variable} $@var{name}
11233In an action, the semantic value of a symbol addressed by name.
11234@xref{Actions}.
11235@end deffn
11236
11237@deffn {Variable} $[@var{name}]
11238In an action, the semantic value of a symbol addressed by name.
11239@xref{Actions}.
11240@end deffn
11241
dd8d9022
AD
11242@deffn {Delimiter} %%
11243Delimiter used to separate the grammar rule section from the
11244Bison declarations section or the epilogue.
11245@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11246@end deffn
bfa74976 11247
dd8d9022
AD
11248@c Don't insert spaces, or check the DVI output.
11249@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
11250All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11251to the parser implementation file. Such code forms the prologue of
11252the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11253Grammar}.
18b519c0 11254@end deffn
bfa74976 11255
dd8d9022
AD
11256@deffn {Construct} /*@dots{}*/
11257Comment delimiters, as in C.
18b519c0 11258@end deffn
bfa74976 11259
dd8d9022
AD
11260@deffn {Delimiter} :
11261Separates a rule's result from its components. @xref{Rules, ,Syntax of
11262Grammar Rules}.
18b519c0 11263@end deffn
bfa74976 11264
dd8d9022
AD
11265@deffn {Delimiter} ;
11266Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11267@end deffn
bfa74976 11268
dd8d9022
AD
11269@deffn {Delimiter} |
11270Separates alternate rules for the same result nonterminal.
11271@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11272@end deffn
bfa74976 11273
12e35840
JD
11274@deffn {Directive} <*>
11275Used to define a default tagged @code{%destructor} or default tagged
11276@code{%printer}.
85894313
JD
11277
11278This feature is experimental.
11279More user feedback will help to determine whether it should become a permanent
11280feature.
11281
12e35840
JD
11282@xref{Destructor Decl, , Freeing Discarded Symbols}.
11283@end deffn
11284
3ebecc24 11285@deffn {Directive} <>
12e35840
JD
11286Used to define a default tagless @code{%destructor} or default tagless
11287@code{%printer}.
85894313
JD
11288
11289This feature is experimental.
11290More user feedback will help to determine whether it should become a permanent
11291feature.
11292
12e35840
JD
11293@xref{Destructor Decl, , Freeing Discarded Symbols}.
11294@end deffn
11295
dd8d9022
AD
11296@deffn {Symbol} $accept
11297The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11298$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11299Start-Symbol}. It cannot be used in the grammar.
18b519c0 11300@end deffn
bfa74976 11301
136a0f76 11302@deffn {Directive} %code @{@var{code}@}
148d66d8 11303@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
406dec82
JD
11304Insert @var{code} verbatim into the output parser source at the
11305default location or at the location specified by @var{qualifier}.
8e6f2266 11306@xref{%code Summary}.
9bc0dd67 11307@end deffn
9bc0dd67 11308
18b519c0 11309@deffn {Directive} %debug
6deb4447 11310Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 11311@end deffn
6deb4447 11312
91d2c560 11313@ifset defaultprec
22fccf95
PE
11314@deffn {Directive} %default-prec
11315Assign a precedence to rules that lack an explicit @samp{%prec}
11316modifier. @xref{Contextual Precedence, ,Context-Dependent
11317Precedence}.
39a06c25 11318@end deffn
91d2c560 11319@end ifset
39a06c25 11320
6f04ee6c
JD
11321@deffn {Directive} %define @var{variable}
11322@deffnx {Directive} %define @var{variable} @var{value}
11323@deffnx {Directive} %define @var{variable} "@var{value}"
2f4518a1 11324Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11325@end deffn
11326
18b519c0 11327@deffn {Directive} %defines
9913d6e4
JD
11328Bison declaration to create a parser header file, which is usually
11329meant for the scanner. @xref{Decl Summary}.
18b519c0 11330@end deffn
6deb4447 11331
02975b9a
JD
11332@deffn {Directive} %defines @var{defines-file}
11333Same as above, but save in the file @var{defines-file}.
11334@xref{Decl Summary}.
11335@end deffn
11336
18b519c0 11337@deffn {Directive} %destructor
258b75ca 11338Specify how the parser should reclaim the memory associated to
fa7e68c3 11339discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11340@end deffn
72f889cc 11341
18b519c0 11342@deffn {Directive} %dprec
676385e2 11343Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11344time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 11345GLR Parsers}.
18b519c0 11346@end deffn
676385e2 11347
dd8d9022
AD
11348@deffn {Symbol} $end
11349The predefined token marking the end of the token stream. It cannot be
11350used in the grammar.
11351@end deffn
11352
11353@deffn {Symbol} error
11354A token name reserved for error recovery. This token may be used in
11355grammar rules so as to allow the Bison parser to recognize an error in
11356the grammar without halting the process. In effect, a sentence
11357containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11358token @code{error} becomes the current lookahead token. Actions
11359corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11360token is reset to the token that originally caused the violation.
11361@xref{Error Recovery}.
18d192f0
AD
11362@end deffn
11363
18b519c0 11364@deffn {Directive} %error-verbose
2a8d363a 11365Bison declaration to request verbose, specific error message strings
6f04ee6c 11366when @code{yyerror} is called. @xref{Error Reporting}.
18b519c0 11367@end deffn
2a8d363a 11368
02975b9a 11369@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11370Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11371Summary}.
18b519c0 11372@end deffn
d8988b2f 11373
18b519c0 11374@deffn {Directive} %glr-parser
35430378
JD
11375Bison declaration to produce a GLR parser. @xref{GLR
11376Parsers, ,Writing GLR Parsers}.
18b519c0 11377@end deffn
676385e2 11378
dd8d9022
AD
11379@deffn {Directive} %initial-action
11380Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11381@end deffn
11382
e6e704dc
JD
11383@deffn {Directive} %language
11384Specify the programming language for the generated parser.
11385@xref{Decl Summary}.
11386@end deffn
11387
18b519c0 11388@deffn {Directive} %left
bfa74976
RS
11389Bison declaration to assign left associativity to token(s).
11390@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11391@end deffn
bfa74976 11392
feeb0eda 11393@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
11394Bison declaration to specifying an additional parameter that
11395@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11396for Pure Parsers}.
18b519c0 11397@end deffn
2a8d363a 11398
18b519c0 11399@deffn {Directive} %merge
676385e2 11400Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11401reduce/reduce conflict with a rule having the same merging function, the
676385e2 11402function is applied to the two semantic values to get a single result.
35430378 11403@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11404@end deffn
676385e2 11405
02975b9a 11406@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
11407Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
11408Parsers, ,Multiple Parsers in the Same Program}).
11409
11410Rename the external symbols (variables and functions) used in the parser so
11411that they start with @var{prefix} instead of @samp{yy}. Contrary to
11412@code{api.prefix}, do no rename types and macros.
11413
11414The precise list of symbols renamed in C parsers is @code{yyparse},
11415@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
11416@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
11417push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
11418@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
11419example, if you use @samp{%name-prefix "c_"}, the names become
11420@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
11421@code{%define namespace} documentation in this section.
18b519c0 11422@end deffn
d8988b2f 11423
4b3847c3 11424
91d2c560 11425@ifset defaultprec
22fccf95
PE
11426@deffn {Directive} %no-default-prec
11427Do not assign a precedence to rules that lack an explicit @samp{%prec}
11428modifier. @xref{Contextual Precedence, ,Context-Dependent
11429Precedence}.
11430@end deffn
91d2c560 11431@end ifset
22fccf95 11432
18b519c0 11433@deffn {Directive} %no-lines
931c7513 11434Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 11435parser implementation file. @xref{Decl Summary}.
18b519c0 11436@end deffn
931c7513 11437
18b519c0 11438@deffn {Directive} %nonassoc
9d9b8b70 11439Bison declaration to assign nonassociativity to token(s).
bfa74976 11440@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11441@end deffn
bfa74976 11442
02975b9a 11443@deffn {Directive} %output "@var{file}"
9913d6e4
JD
11444Bison declaration to set the name of the parser implementation file.
11445@xref{Decl Summary}.
18b519c0 11446@end deffn
d8988b2f 11447
feeb0eda 11448@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
11449Bison declaration to specifying an additional parameter that
11450@code{yyparse} should accept. @xref{Parser Function,, The Parser
11451Function @code{yyparse}}.
18b519c0 11452@end deffn
2a8d363a 11453
18b519c0 11454@deffn {Directive} %prec
bfa74976
RS
11455Bison declaration to assign a precedence to a specific rule.
11456@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11457@end deffn
bfa74976 11458
18b519c0 11459@deffn {Directive} %pure-parser
2f4518a1
JD
11460Deprecated version of @code{%define api.pure} (@pxref{%define
11461Summary,,api.pure}), for which Bison is more careful to warn about
11462unreasonable usage.
18b519c0 11463@end deffn
bfa74976 11464
b50d2359 11465@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11466Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11467Require a Version of Bison}.
b50d2359
AD
11468@end deffn
11469
18b519c0 11470@deffn {Directive} %right
bfa74976
RS
11471Bison declaration to assign right associativity to token(s).
11472@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11473@end deffn
bfa74976 11474
e6e704dc
JD
11475@deffn {Directive} %skeleton
11476Specify the skeleton to use; usually for development.
11477@xref{Decl Summary}.
11478@end deffn
11479
18b519c0 11480@deffn {Directive} %start
704a47c4
AD
11481Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11482Start-Symbol}.
18b519c0 11483@end deffn
bfa74976 11484
18b519c0 11485@deffn {Directive} %token
bfa74976
RS
11486Bison declaration to declare token(s) without specifying precedence.
11487@xref{Token Decl, ,Token Type Names}.
18b519c0 11488@end deffn
bfa74976 11489
18b519c0 11490@deffn {Directive} %token-table
9913d6e4
JD
11491Bison declaration to include a token name table in the parser
11492implementation file. @xref{Decl Summary}.
18b519c0 11493@end deffn
931c7513 11494
18b519c0 11495@deffn {Directive} %type
704a47c4
AD
11496Bison declaration to declare nonterminals. @xref{Type Decl,
11497,Nonterminal Symbols}.
18b519c0 11498@end deffn
bfa74976 11499
dd8d9022
AD
11500@deffn {Symbol} $undefined
11501The predefined token onto which all undefined values returned by
11502@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11503@code{error}.
11504@end deffn
11505
18b519c0 11506@deffn {Directive} %union
bfa74976
RS
11507Bison declaration to specify several possible data types for semantic
11508values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11509@end deffn
bfa74976 11510
dd8d9022
AD
11511@deffn {Macro} YYABORT
11512Macro to pretend that an unrecoverable syntax error has occurred, by
11513making @code{yyparse} return 1 immediately. The error reporting
11514function @code{yyerror} is not called. @xref{Parser Function, ,The
11515Parser Function @code{yyparse}}.
8405b70c
PB
11516
11517For Java parsers, this functionality is invoked using @code{return YYABORT;}
11518instead.
dd8d9022 11519@end deffn
3ded9a63 11520
dd8d9022
AD
11521@deffn {Macro} YYACCEPT
11522Macro to pretend that a complete utterance of the language has been
11523read, by making @code{yyparse} return 0 immediately.
11524@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11525
11526For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11527instead.
dd8d9022 11528@end deffn
bfa74976 11529
dd8d9022 11530@deffn {Macro} YYBACKUP
742e4900 11531Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11532token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11533@end deffn
bfa74976 11534
dd8d9022 11535@deffn {Variable} yychar
32c29292 11536External integer variable that contains the integer value of the
742e4900 11537lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11538@code{yyparse}.) Error-recovery rule actions may examine this variable.
11539@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11540@end deffn
bfa74976 11541
dd8d9022
AD
11542@deffn {Variable} yyclearin
11543Macro used in error-recovery rule actions. It clears the previous
742e4900 11544lookahead token. @xref{Error Recovery}.
18b519c0 11545@end deffn
bfa74976 11546
dd8d9022
AD
11547@deffn {Macro} YYDEBUG
11548Macro to define to equip the parser with tracing code. @xref{Tracing,
11549,Tracing Your Parser}.
18b519c0 11550@end deffn
bfa74976 11551
dd8d9022
AD
11552@deffn {Variable} yydebug
11553External integer variable set to zero by default. If @code{yydebug}
11554is given a nonzero value, the parser will output information on input
11555symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11556@end deffn
bfa74976 11557
dd8d9022
AD
11558@deffn {Macro} yyerrok
11559Macro to cause parser to recover immediately to its normal mode
11560after a syntax error. @xref{Error Recovery}.
11561@end deffn
11562
11563@deffn {Macro} YYERROR
4a11b852
AD
11564Cause an immediate syntax error. This statement initiates error
11565recovery just as if the parser itself had detected an error; however, it
11566does not call @code{yyerror}, and does not print any message. If you
11567want to print an error message, call @code{yyerror} explicitly before
11568the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
11569
11570For Java parsers, this functionality is invoked using @code{return YYERROR;}
11571instead.
dd8d9022
AD
11572@end deffn
11573
11574@deffn {Function} yyerror
11575User-supplied function to be called by @code{yyparse} on error.
11576@xref{Error Reporting, ,The Error
11577Reporting Function @code{yyerror}}.
11578@end deffn
11579
11580@deffn {Macro} YYERROR_VERBOSE
11581An obsolete macro that you define with @code{#define} in the prologue
11582to request verbose, specific error message strings
11583when @code{yyerror} is called. It doesn't matter what definition you
258cddbc
AD
11584use for @code{YYERROR_VERBOSE}, just whether you define it.
11585Supported by the C skeletons only; using
6f04ee6c 11586@code{%error-verbose} is preferred. @xref{Error Reporting}.
dd8d9022
AD
11587@end deffn
11588
56d60c19
AD
11589@deffn {Macro} YYFPRINTF
11590Macro used to output run-time traces.
11591@xref{Enabling Traces}.
11592@end deffn
11593
dd8d9022
AD
11594@deffn {Macro} YYINITDEPTH
11595Macro for specifying the initial size of the parser stack.
1a059451 11596@xref{Memory Management}.
dd8d9022
AD
11597@end deffn
11598
11599@deffn {Function} yylex
11600User-supplied lexical analyzer function, called with no arguments to get
11601the next token. @xref{Lexical, ,The Lexical Analyzer Function
11602@code{yylex}}.
11603@end deffn
11604
11605@deffn {Macro} YYLEX_PARAM
11606An obsolete macro for specifying an extra argument (or list of extra
32c29292 11607arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11608macro is deprecated, and is supported only for Yacc like parsers.
11609@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11610@end deffn
11611
11612@deffn {Variable} yylloc
11613External variable in which @code{yylex} should place the line and column
11614numbers associated with a token. (In a pure parser, it is a local
11615variable within @code{yyparse}, and its address is passed to
32c29292
JD
11616@code{yylex}.)
11617You can ignore this variable if you don't use the @samp{@@} feature in the
11618grammar actions.
11619@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11620In semantic actions, it stores the location of the lookahead token.
32c29292 11621@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11622@end deffn
11623
11624@deffn {Type} YYLTYPE
11625Data type of @code{yylloc}; by default, a structure with four
11626members. @xref{Location Type, , Data Types of Locations}.
11627@end deffn
11628
11629@deffn {Variable} yylval
11630External variable in which @code{yylex} should place the semantic
11631value associated with a token. (In a pure parser, it is a local
11632variable within @code{yyparse}, and its address is passed to
32c29292
JD
11633@code{yylex}.)
11634@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11635In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11636@xref{Actions, ,Actions}.
dd8d9022
AD
11637@end deffn
11638
11639@deffn {Macro} YYMAXDEPTH
1a059451
PE
11640Macro for specifying the maximum size of the parser stack. @xref{Memory
11641Management}.
dd8d9022
AD
11642@end deffn
11643
11644@deffn {Variable} yynerrs
8a2800e7 11645Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11646(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11647pure push parser, it is a member of yypstate.)
dd8d9022
AD
11648@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11649@end deffn
11650
11651@deffn {Function} yyparse
11652The parser function produced by Bison; call this function to start
11653parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11654@end deffn
11655
56d60c19
AD
11656@deffn {Macro} YYPRINT
11657Macro used to output token semantic values. For @file{yacc.c} only.
11658Obsoleted by @code{%printer}.
11659@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
11660@end deffn
11661
9987d1b3 11662@deffn {Function} yypstate_delete
f4101aa6 11663The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11664call this function to delete the memory associated with a parser.
f4101aa6 11665@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11666@code{yypstate_delete}}.
59da312b
JD
11667(The current push parsing interface is experimental and may evolve.
11668More user feedback will help to stabilize it.)
9987d1b3
JD
11669@end deffn
11670
11671@deffn {Function} yypstate_new
f4101aa6 11672The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11673call this function to create a new parser.
f4101aa6 11674@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11675@code{yypstate_new}}.
59da312b
JD
11676(The current push parsing interface is experimental and may evolve.
11677More user feedback will help to stabilize it.)
9987d1b3
JD
11678@end deffn
11679
11680@deffn {Function} yypull_parse
f4101aa6
AD
11681The parser function produced by Bison in push mode; call this function to
11682parse the rest of the input stream.
11683@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11684@code{yypull_parse}}.
59da312b
JD
11685(The current push parsing interface is experimental and may evolve.
11686More user feedback will help to stabilize it.)
9987d1b3
JD
11687@end deffn
11688
11689@deffn {Function} yypush_parse
f4101aa6
AD
11690The parser function produced by Bison in push mode; call this function to
11691parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11692@code{yypush_parse}}.
59da312b
JD
11693(The current push parsing interface is experimental and may evolve.
11694More user feedback will help to stabilize it.)
9987d1b3
JD
11695@end deffn
11696
dd8d9022
AD
11697@deffn {Macro} YYPARSE_PARAM
11698An obsolete macro for specifying the name of a parameter that
11699@code{yyparse} should accept. The use of this macro is deprecated, and
11700is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11701Conventions for Pure Parsers}.
11702@end deffn
11703
11704@deffn {Macro} YYRECOVERING
02103984
PE
11705The expression @code{YYRECOVERING ()} yields 1 when the parser
11706is recovering from a syntax error, and 0 otherwise.
11707@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11708@end deffn
11709
11710@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
11711Macro used to control the use of @code{alloca} when the
11712deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11713the parser will use @code{malloc} to extend its stacks. If defined to
117141, the parser will use @code{alloca}. Values other than 0 and 1 are
11715reserved for future Bison extensions. If not defined,
11716@code{YYSTACK_USE_ALLOCA} defaults to 0.
11717
55289366 11718In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11719limited stack and with unreliable stack-overflow checking, you should
11720set @code{YYMAXDEPTH} to a value that cannot possibly result in
11721unchecked stack overflow on any of your target hosts when
11722@code{alloca} is called. You can inspect the code that Bison
11723generates in order to determine the proper numeric values. This will
11724require some expertise in low-level implementation details.
dd8d9022
AD
11725@end deffn
11726
11727@deffn {Type} YYSTYPE
11728Data type of semantic values; @code{int} by default.
11729@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11730@end deffn
bfa74976 11731
342b8b6e 11732@node Glossary
bfa74976
RS
11733@appendix Glossary
11734@cindex glossary
11735
11736@table @asis
6f04ee6c 11737@item Accepting state
34a6c2d1
JD
11738A state whose only action is the accept action.
11739The accepting state is thus a consistent state.
11740@xref{Understanding,,}.
11741
35430378 11742@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11743Formal method of specifying context-free grammars originally proposed
11744by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11745committee document contributing to what became the Algol 60 report.
11746@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11747
6f04ee6c
JD
11748@item Consistent state
11749A state containing only one possible action. @xref{Default Reductions}.
34a6c2d1 11750
bfa74976
RS
11751@item Context-free grammars
11752Grammars specified as rules that can be applied regardless of context.
11753Thus, if there is a rule which says that an integer can be used as an
11754expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11755permitted. @xref{Language and Grammar, ,Languages and Context-Free
11756Grammars}.
bfa74976 11757
6f04ee6c 11758@item Default reduction
620b5727 11759The reduction that a parser should perform if the current parser state
2f4518a1 11760contains no other action for the lookahead token. In permitted parser
6f04ee6c
JD
11761states, Bison declares the reduction with the largest lookahead set to be
11762the default reduction and removes that lookahead set. @xref{Default
11763Reductions}.
11764
11765@item Defaulted state
11766A consistent state with a default reduction. @xref{Default Reductions}.
34a6c2d1 11767
bfa74976
RS
11768@item Dynamic allocation
11769Allocation of memory that occurs during execution, rather than at
11770compile time or on entry to a function.
11771
11772@item Empty string
11773Analogous to the empty set in set theory, the empty string is a
11774character string of length zero.
11775
11776@item Finite-state stack machine
11777A ``machine'' that has discrete states in which it is said to exist at
11778each instant in time. As input to the machine is processed, the
11779machine moves from state to state as specified by the logic of the
11780machine. In the case of the parser, the input is the language being
11781parsed, and the states correspond to various stages in the grammar
c827f760 11782rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11783
35430378 11784@item Generalized LR (GLR)
676385e2 11785A parsing algorithm that can handle all context-free grammars, including those
35430378 11786that are not LR(1). It resolves situations that Bison's
34a6c2d1 11787deterministic parsing
676385e2
PH
11788algorithm cannot by effectively splitting off multiple parsers, trying all
11789possible parsers, and discarding those that fail in the light of additional
c827f760 11790right context. @xref{Generalized LR Parsing, ,Generalized
35430378 11791LR Parsing}.
676385e2 11792
bfa74976
RS
11793@item Grouping
11794A language construct that is (in general) grammatically divisible;
c827f760 11795for example, `expression' or `declaration' in C@.
bfa74976
RS
11796@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11797
6f04ee6c
JD
11798@item IELR(1) (Inadequacy Elimination LR(1))
11799A minimal LR(1) parser table construction algorithm. That is, given any
2f4518a1 11800context-free grammar, IELR(1) generates parser tables with the full
6f04ee6c
JD
11801language-recognition power of canonical LR(1) but with nearly the same
11802number of parser states as LALR(1). This reduction in parser states is
11803often an order of magnitude. More importantly, because canonical LR(1)'s
11804extra parser states may contain duplicate conflicts in the case of non-LR(1)
11805grammars, the number of conflicts for IELR(1) is often an order of magnitude
11806less as well. This can significantly reduce the complexity of developing a
11807grammar. @xref{LR Table Construction}.
34a6c2d1 11808
bfa74976
RS
11809@item Infix operator
11810An arithmetic operator that is placed between the operands on which it
11811performs some operation.
11812
11813@item Input stream
11814A continuous flow of data between devices or programs.
11815
35430378 11816@item LAC (Lookahead Correction)
4c38b19e 11817A parsing mechanism that fixes the problem of delayed syntax error
6f04ee6c
JD
11818detection, which is caused by LR state merging, default reductions, and the
11819use of @code{%nonassoc}. Delayed syntax error detection results in
11820unexpected semantic actions, initiation of error recovery in the wrong
11821syntactic context, and an incorrect list of expected tokens in a verbose
11822syntax error message. @xref{LAC}.
4c38b19e 11823
bfa74976
RS
11824@item Language construct
11825One of the typical usage schemas of the language. For example, one of
11826the constructs of the C language is the @code{if} statement.
11827@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11828
11829@item Left associativity
11830Operators having left associativity are analyzed from left to right:
11831@samp{a+b+c} first computes @samp{a+b} and then combines with
11832@samp{c}. @xref{Precedence, ,Operator Precedence}.
11833
11834@item Left recursion
89cab50d
AD
11835A rule whose result symbol is also its first component symbol; for
11836example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11837Rules}.
bfa74976
RS
11838
11839@item Left-to-right parsing
11840Parsing a sentence of a language by analyzing it token by token from
c827f760 11841left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11842
11843@item Lexical analyzer (scanner)
11844A function that reads an input stream and returns tokens one by one.
11845@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11846
11847@item Lexical tie-in
11848A flag, set by actions in the grammar rules, which alters the way
11849tokens are parsed. @xref{Lexical Tie-ins}.
11850
931c7513 11851@item Literal string token
14ded682 11852A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11853
742e4900
JD
11854@item Lookahead token
11855A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11856Tokens}.
bfa74976 11857
35430378 11858@item LALR(1)
bfa74976 11859The class of context-free grammars that Bison (like most other parser
35430378 11860generators) can handle by default; a subset of LR(1).
5da0355a 11861@xref{Mysterious Conflicts}.
bfa74976 11862
35430378 11863@item LR(1)
bfa74976 11864The class of context-free grammars in which at most one token of
742e4900 11865lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11866
11867@item Nonterminal symbol
11868A grammar symbol standing for a grammatical construct that can
11869be expressed through rules in terms of smaller constructs; in other
11870words, a construct that is not a token. @xref{Symbols}.
11871
bfa74976
RS
11872@item Parser
11873A function that recognizes valid sentences of a language by analyzing
11874the syntax structure of a set of tokens passed to it from a lexical
11875analyzer.
11876
11877@item Postfix operator
11878An arithmetic operator that is placed after the operands upon which it
11879performs some operation.
11880
11881@item Reduction
11882Replacing a string of nonterminals and/or terminals with a single
89cab50d 11883nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11884Parser Algorithm}.
bfa74976
RS
11885
11886@item Reentrant
11887A reentrant subprogram is a subprogram which can be in invoked any
11888number of times in parallel, without interference between the various
11889invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11890
11891@item Reverse polish notation
11892A language in which all operators are postfix operators.
11893
11894@item Right recursion
89cab50d
AD
11895A rule whose result symbol is also its last component symbol; for
11896example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11897Rules}.
bfa74976
RS
11898
11899@item Semantics
11900In computer languages, the semantics are specified by the actions
11901taken for each instance of the language, i.e., the meaning of
11902each statement. @xref{Semantics, ,Defining Language Semantics}.
11903
11904@item Shift
11905A parser is said to shift when it makes the choice of analyzing
11906further input from the stream rather than reducing immediately some
c827f760 11907already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11908
11909@item Single-character literal
11910A single character that is recognized and interpreted as is.
11911@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11912
11913@item Start symbol
11914The nonterminal symbol that stands for a complete valid utterance in
11915the language being parsed. The start symbol is usually listed as the
13863333 11916first nonterminal symbol in a language specification.
bfa74976
RS
11917@xref{Start Decl, ,The Start-Symbol}.
11918
11919@item Symbol table
11920A data structure where symbol names and associated data are stored
11921during parsing to allow for recognition and use of existing
11922information in repeated uses of a symbol. @xref{Multi-function Calc}.
11923
6e649e65
PE
11924@item Syntax error
11925An error encountered during parsing of an input stream due to invalid
11926syntax. @xref{Error Recovery}.
11927
bfa74976
RS
11928@item Token
11929A basic, grammatically indivisible unit of a language. The symbol
11930that describes a token in the grammar is a terminal symbol.
11931The input of the Bison parser is a stream of tokens which comes from
11932the lexical analyzer. @xref{Symbols}.
11933
11934@item Terminal symbol
89cab50d
AD
11935A grammar symbol that has no rules in the grammar and therefore is
11936grammatically indivisible. The piece of text it represents is a token.
11937@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
6f04ee6c
JD
11938
11939@item Unreachable state
11940A parser state to which there does not exist a sequence of transitions from
11941the parser's start state. A state can become unreachable during conflict
11942resolution. @xref{Unreachable States}.
bfa74976
RS
11943@end table
11944
342b8b6e 11945@node Copying This Manual
f2b5126e 11946@appendix Copying This Manual
f2b5126e
PB
11947@include fdl.texi
11948
71caec06
JD
11949@node Bibliography
11950@unnumbered Bibliography
11951
11952@table @asis
11953@item [Denny 2008]
11954Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11955for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
119562008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11957pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11958
11959@item [Denny 2010 May]
11960Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11961Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11962University, Clemson, SC, USA (May 2010).
11963@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11964
11965@item [Denny 2010 November]
11966Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11967Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11968in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
119692010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11970
11971@item [DeRemer 1982]
11972Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11973Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11974Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11975615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11976
11977@item [Knuth 1965]
11978Donald E. Knuth, On the Translation of Languages from Left to Right, in
11979@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11980607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11981
11982@item [Scott 2000]
11983Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11984@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11985London, Department of Computer Science, TR-00-12 (December 2000).
11986@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11987@end table
11988
f9b86351
AD
11989@node Index of Terms
11990@unnumbered Index of Terms
bfa74976
RS
11991
11992@printindex cp
11993
bfa74976 11994@bye
a06ea4aa 11995
232be91a
AD
11996@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11997@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11998@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11999@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12000@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12001@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12002@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12003@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12004@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12005@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12006@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12007@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12008@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
56da1e52 12009@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
232be91a
AD
12010@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12011@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
12012@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
12013@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
12014@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
12015@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
12016@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
12017@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
12018@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
56da1e52 12019@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
232be91a
AD
12020@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
12021@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
12022@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
12023@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
12024@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 12025@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
56da1e52
AD
12026@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
12027@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
232be91a 12028@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
56da1e52 12029@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
232be91a
AD
12030@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
12031@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
12032@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
56da1e52 12033@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
232be91a 12034@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
56da1e52 12035@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
232be91a
AD
12036@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12037@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12038@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12039@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
56da1e52 12040@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
232be91a
AD
12041@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12042@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12043@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12044@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 12045@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
56da1e52 12046@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
12047@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
12048@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 12049@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
b7226022 12050@c LocalWords: errorVerbose
f3103c5b
AD
12051
12052@c Local Variables:
12053@c ispell-dictionary: "american"
12054@c fill-column: 76
12055@c End: