]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
tests: beware of -pedantic on large #line numbers.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
c932d613 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
ea0a7676 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
71caec06 112* Bibliography:: Publications cited in this manual.
f56274a8 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
83484365 128* Locations:: Overview of location tracking.
f56274a8
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
35430378 134Writing GLR Parsers
fa7e68c3 135
35430378
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
7404cdf3
JD
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
188* Tracking Locations:: Locations and actions.
189* Named References:: Using named references in actions.
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
192
193Outline of a Bison Grammar
194
f56274a8 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
d6328241 226* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
9987d1b3 229* Push Decl:: Requesting a push parser.
bfa74976 230* Decl Summary:: Table of all Bison declarations.
2f4518a1 231* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 232* %code Summary:: Inserting code into the parser source.
bfa74976
RS
233
234Parser C-Language Interface
235
f56274a8
DJ
236* Parser Function:: How to call @code{yyparse} and what it returns.
237* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
238* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
239* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
240* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
241* Lexical:: You must supply a function @code{yylex}
242 which reads tokens.
243* Error Reporting:: You must supply a function @code{yyerror}.
244* Action Features:: Special features for use in actions.
245* Internationalization:: How to let the parser speak in the user's
246 native language.
bfa74976
RS
247
248The Lexical Analyzer Function @code{yylex}
249
250* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
251* Token Values:: How @code{yylex} must return the semantic value
252 of the token it has read.
253* Token Locations:: How @code{yylex} must return the text location
254 (line number, etc.) of the token, if the
255 actions want that.
256* Pure Calling:: How the calling convention differs in a pure parser
257 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 258
13863333 259The Bison Parser Algorithm
bfa74976 260
742e4900 261* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
262* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
263* Precedence:: Operator precedence works by resolving conflicts.
264* Contextual Precedence:: When an operator's precedence depends on context.
265* Parser States:: The parser is a finite-state-machine with stack.
266* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 267* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 268* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 269* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 270* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
271
272Operator Precedence
273
274* Why Precedence:: An example showing why precedence is needed.
275* Using Precedence:: How to specify precedence in Bison grammars.
276* Precedence Examples:: How these features are used in the previous example.
277* How Precedence:: How they work.
278
6f04ee6c
JD
279Tuning LR
280
281* LR Table Construction:: Choose a different construction algorithm.
282* Default Reductions:: Disable default reductions.
283* LAC:: Correct lookahead sets in the parser states.
284* Unreachable States:: Keep unreachable parser states for debugging.
285
bfa74976
RS
286Handling Context Dependencies
287
288* Semantic Tokens:: Token parsing can depend on the semantic context.
289* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
290* Tie-in Recovery:: Lexical tie-ins have implications for how
291 error recovery rules must be written.
292
93dd49ab 293Debugging Your Parser
ec3bc396
AD
294
295* Understanding:: Understanding the structure of your parser.
296* Tracing:: Tracing the execution of your parser.
297
bfa74976
RS
298Invoking Bison
299
13863333 300* Bison Options:: All the options described in detail,
c827f760 301 in alphabetical order by short options.
bfa74976 302* Option Cross Key:: Alphabetical list of long options.
93dd49ab 303* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 304
8405b70c 305Parsers Written In Other Languages
12545799
AD
306
307* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 308* Java Parsers:: The interface to generate Java parser classes
12545799
AD
309
310C++ Parsers
311
312* C++ Bison Interface:: Asking for C++ parser generation
313* C++ Semantic Values:: %union vs. C++
314* C++ Location Values:: The position and location classes
315* C++ Parser Interface:: Instantiating and running the parser
316* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 317* A Complete C++ Example:: Demonstrating their use
12545799
AD
318
319A Complete C++ Example
320
321* Calc++ --- C++ Calculator:: The specifications
322* Calc++ Parsing Driver:: An active parsing context
323* Calc++ Parser:: A parser class
324* Calc++ Scanner:: A pure C++ Flex scanner
325* Calc++ Top Level:: Conducting the band
326
8405b70c
PB
327Java Parsers
328
f56274a8
DJ
329* Java Bison Interface:: Asking for Java parser generation
330* Java Semantic Values:: %type and %token vs. Java
331* Java Location Values:: The position and location classes
332* Java Parser Interface:: Instantiating and running the parser
333* Java Scanner Interface:: Specifying the scanner for the parser
334* Java Action Features:: Special features for use in actions
335* Java Differences:: Differences between C/C++ and Java Grammars
336* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 337
d1a1114f
AD
338Frequently Asked Questions
339
f56274a8
DJ
340* Memory Exhausted:: Breaking the Stack Limits
341* How Can I Reset the Parser:: @code{yyparse} Keeps some State
342* Strings are Destroyed:: @code{yylval} Loses Track of Strings
343* Implementing Gotos/Loops:: Control Flow in the Calculator
344* Multiple start-symbols:: Factoring closely related grammars
35430378 345* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
346* I can't build Bison:: Troubleshooting
347* Where can I find help?:: Troubleshouting
348* Bug Reports:: Troublereporting
349* More Languages:: Parsers in C++, Java, and so on
350* Beta Testing:: Experimenting development versions
351* Mailing Lists:: Meeting other Bison users
d1a1114f 352
f2b5126e
PB
353Copying This Manual
354
f56274a8 355* Copying This Manual:: License for copying this manual.
f2b5126e 356
342b8b6e 357@end detailmenu
bfa74976
RS
358@end menu
359
342b8b6e 360@node Introduction
bfa74976
RS
361@unnumbered Introduction
362@cindex introduction
363
6077da58 364@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
365annotated context-free grammar into a deterministic LR or generalized
366LR (GLR) parser employing LALR(1) parser tables. As an experimental
367feature, Bison can also generate IELR(1) or canonical LR(1) parser
368tables. Once you are proficient with Bison, you can use it to develop
369a wide range of language parsers, from those used in simple desk
370calculators to complex programming languages.
371
372Bison is upward compatible with Yacc: all properly-written Yacc
373grammars ought to work with Bison with no change. Anyone familiar
374with Yacc should be able to use Bison with little trouble. You need
375to be fluent in C or C++ programming in order to use Bison or to
376understand this manual. Java is also supported as an experimental
377feature.
378
379We begin with tutorial chapters that explain the basic concepts of
380using Bison and show three explained examples, each building on the
381last. If you don't know Bison or Yacc, start by reading these
382chapters. Reference chapters follow, which describe specific aspects
383of Bison in detail.
bfa74976 384
840341d6
JD
385Bison was written originally by Robert Corbett. Richard Stallman made
386it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
387added multi-character string literals and other features. Since then,
388Bison has grown more robust and evolved many other new features thanks
389to the hard work of a long list of volunteers. For details, see the
390@file{THANKS} and @file{ChangeLog} files included in the Bison
391distribution.
931c7513 392
df1af54c 393This edition corresponds to version @value{VERSION} of Bison.
bfa74976 394
342b8b6e 395@node Conditions
bfa74976
RS
396@unnumbered Conditions for Using Bison
397
193d7c70
PE
398The distribution terms for Bison-generated parsers permit using the
399parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 400permissions applied only when Bison was generating LALR(1)
193d7c70 401parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 402parsers could be used only in programs that were free software.
a31239f1 403
35430378 404The other GNU programming tools, such as the GNU C
c827f760 405compiler, have never
9ecbd125 406had such a requirement. They could always be used for nonfree
a31239f1
RS
407software. The reason Bison was different was not due to a special
408policy decision; it resulted from applying the usual General Public
409License to all of the Bison source code.
410
9913d6e4
JD
411The main output of the Bison utility---the Bison parser implementation
412file---contains a verbatim copy of a sizable piece of Bison, which is
413the code for the parser's implementation. (The actions from your
414grammar are inserted into this implementation at one point, but most
415of the rest of the implementation is not changed.) When we applied
416the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
417the effect was to restrict the use of Bison output to free software.
418
419We didn't change the terms because of sympathy for people who want to
420make software proprietary. @strong{Software should be free.} But we
421concluded that limiting Bison's use to free software was doing little to
422encourage people to make other software free. So we decided to make the
423practical conditions for using Bison match the practical conditions for
35430378 424using the other GNU tools.
bfa74976 425
193d7c70
PE
426This exception applies when Bison is generating code for a parser.
427You can tell whether the exception applies to a Bison output file by
428inspecting the file for text beginning with ``As a special
429exception@dots{}''. The text spells out the exact terms of the
430exception.
262aa8dd 431
f16b0819
PE
432@node Copying
433@unnumbered GNU GENERAL PUBLIC LICENSE
434@include gpl-3.0.texi
bfa74976 435
342b8b6e 436@node Concepts
bfa74976
RS
437@chapter The Concepts of Bison
438
439This chapter introduces many of the basic concepts without which the
440details of Bison will not make sense. If you do not already know how to
441use Bison or Yacc, we suggest you start by reading this chapter carefully.
442
443@menu
f56274a8
DJ
444* Language and Grammar:: Languages and context-free grammars,
445 as mathematical ideas.
446* Grammar in Bison:: How we represent grammars for Bison's sake.
447* Semantic Values:: Each token or syntactic grouping can have
448 a semantic value (the value of an integer,
449 the name of an identifier, etc.).
450* Semantic Actions:: Each rule can have an action containing C code.
451* GLR Parsers:: Writing parsers for general context-free languages.
83484365 452* Locations:: Overview of location tracking.
f56274a8
DJ
453* Bison Parser:: What are Bison's input and output,
454 how is the output used?
455* Stages:: Stages in writing and running Bison grammars.
456* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
457@end menu
458
342b8b6e 459@node Language and Grammar
bfa74976
RS
460@section Languages and Context-Free Grammars
461
bfa74976
RS
462@cindex context-free grammar
463@cindex grammar, context-free
464In order for Bison to parse a language, it must be described by a
465@dfn{context-free grammar}. This means that you specify one or more
466@dfn{syntactic groupings} and give rules for constructing them from their
467parts. For example, in the C language, one kind of grouping is called an
468`expression'. One rule for making an expression might be, ``An expression
469can be made of a minus sign and another expression''. Another would be,
470``An expression can be an integer''. As you can see, rules are often
471recursive, but there must be at least one rule which leads out of the
472recursion.
473
35430378 474@cindex BNF
bfa74976
RS
475@cindex Backus-Naur form
476The most common formal system for presenting such rules for humans to read
35430378 477is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 478order to specify the language Algol 60. Any grammar expressed in
35430378
JD
479BNF is a context-free grammar. The input to Bison is
480essentially machine-readable BNF.
bfa74976 481
6f04ee6c
JD
482@cindex LALR grammars
483@cindex IELR grammars
484@cindex LR grammars
485There are various important subclasses of context-free grammars. Although
486it can handle almost all context-free grammars, Bison is optimized for what
487are called LR(1) grammars. In brief, in these grammars, it must be possible
488to tell how to parse any portion of an input string with just a single token
489of lookahead. For historical reasons, Bison by default is limited by the
490additional restrictions of LALR(1), which is hard to explain simply.
5da0355a
JD
491@xref{Mysterious Conflicts}, for more information on this. As an
492experimental feature, you can escape these additional restrictions by
493requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
494Construction}, to learn how.
bfa74976 495
35430378
JD
496@cindex GLR parsing
497@cindex generalized LR (GLR) parsing
676385e2 498@cindex ambiguous grammars
9d9b8b70 499@cindex nondeterministic parsing
9501dc6e 500
35430378 501Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
502roughly that the next grammar rule to apply at any point in the input is
503uniquely determined by the preceding input and a fixed, finite portion
742e4900 504(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 505grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 506apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 507grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 508lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 509With the proper declarations, Bison is also able to parse these more
35430378
JD
510general context-free grammars, using a technique known as GLR
511parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
512are able to handle any context-free grammar for which the number of
513possible parses of any given string is finite.
676385e2 514
bfa74976
RS
515@cindex symbols (abstract)
516@cindex token
517@cindex syntactic grouping
518@cindex grouping, syntactic
9501dc6e
AD
519In the formal grammatical rules for a language, each kind of syntactic
520unit or grouping is named by a @dfn{symbol}. Those which are built by
521grouping smaller constructs according to grammatical rules are called
bfa74976
RS
522@dfn{nonterminal symbols}; those which can't be subdivided are called
523@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
524corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 525corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
526
527We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
528nonterminal, mean. The tokens of C are identifiers, constants (numeric
529and string), and the various keywords, arithmetic operators and
530punctuation marks. So the terminal symbols of a grammar for C include
531`identifier', `number', `string', plus one symbol for each keyword,
532operator or punctuation mark: `if', `return', `const', `static', `int',
533`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
534(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
535lexicography, not grammar.)
536
537Here is a simple C function subdivided into tokens:
538
9edcd895
AD
539@example
540int /* @r{keyword `int'} */
14d4662b 541square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
542 @r{identifier, close-paren} */
543@{ /* @r{open-brace} */
aa08666d
AD
544 return x * x; /* @r{keyword `return', identifier, asterisk,}
545 @r{identifier, semicolon} */
9edcd895
AD
546@} /* @r{close-brace} */
547@end example
bfa74976
RS
548
549The syntactic groupings of C include the expression, the statement, the
550declaration, and the function definition. These are represented in the
551grammar of C by nonterminal symbols `expression', `statement',
552`declaration' and `function definition'. The full grammar uses dozens of
553additional language constructs, each with its own nonterminal symbol, in
554order to express the meanings of these four. The example above is a
555function definition; it contains one declaration, and one statement. In
556the statement, each @samp{x} is an expression and so is @samp{x * x}.
557
558Each nonterminal symbol must have grammatical rules showing how it is made
559out of simpler constructs. For example, one kind of C statement is the
560@code{return} statement; this would be described with a grammar rule which
561reads informally as follows:
562
563@quotation
564A `statement' can be made of a `return' keyword, an `expression' and a
565`semicolon'.
566@end quotation
567
568@noindent
569There would be many other rules for `statement', one for each kind of
570statement in C.
571
572@cindex start symbol
573One nonterminal symbol must be distinguished as the special one which
574defines a complete utterance in the language. It is called the @dfn{start
575symbol}. In a compiler, this means a complete input program. In the C
576language, the nonterminal symbol `sequence of definitions and declarations'
577plays this role.
578
579For example, @samp{1 + 2} is a valid C expression---a valid part of a C
580program---but it is not valid as an @emph{entire} C program. In the
581context-free grammar of C, this follows from the fact that `expression' is
582not the start symbol.
583
584The Bison parser reads a sequence of tokens as its input, and groups the
585tokens using the grammar rules. If the input is valid, the end result is
586that the entire token sequence reduces to a single grouping whose symbol is
587the grammar's start symbol. If we use a grammar for C, the entire input
588must be a `sequence of definitions and declarations'. If not, the parser
589reports a syntax error.
590
342b8b6e 591@node Grammar in Bison
bfa74976
RS
592@section From Formal Rules to Bison Input
593@cindex Bison grammar
594@cindex grammar, Bison
595@cindex formal grammar
596
597A formal grammar is a mathematical construct. To define the language
598for Bison, you must write a file expressing the grammar in Bison syntax:
599a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
600
601A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 602as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
603in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
604
605The Bison representation for a terminal symbol is also called a @dfn{token
606type}. Token types as well can be represented as C-like identifiers. By
607convention, these identifiers should be upper case to distinguish them from
608nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
609@code{RETURN}. A terminal symbol that stands for a particular keyword in
610the language should be named after that keyword converted to upper case.
611The terminal symbol @code{error} is reserved for error recovery.
931c7513 612@xref{Symbols}.
bfa74976
RS
613
614A terminal symbol can also be represented as a character literal, just like
615a C character constant. You should do this whenever a token is just a
616single character (parenthesis, plus-sign, etc.): use that same character in
617a literal as the terminal symbol for that token.
618
931c7513
RS
619A third way to represent a terminal symbol is with a C string constant
620containing several characters. @xref{Symbols}, for more information.
621
bfa74976
RS
622The grammar rules also have an expression in Bison syntax. For example,
623here is the Bison rule for a C @code{return} statement. The semicolon in
624quotes is a literal character token, representing part of the C syntax for
625the statement; the naked semicolon, and the colon, are Bison punctuation
626used in every rule.
627
628@example
de6be119 629stmt: RETURN expr ';' ;
bfa74976
RS
630@end example
631
632@noindent
633@xref{Rules, ,Syntax of Grammar Rules}.
634
342b8b6e 635@node Semantic Values
bfa74976
RS
636@section Semantic Values
637@cindex semantic value
638@cindex value, semantic
639
640A formal grammar selects tokens only by their classifications: for example,
641if a rule mentions the terminal symbol `integer constant', it means that
642@emph{any} integer constant is grammatically valid in that position. The
643precise value of the constant is irrelevant to how to parse the input: if
644@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 645grammatical.
bfa74976
RS
646
647But the precise value is very important for what the input means once it is
648parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6493989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
650has both a token type and a @dfn{semantic value}. @xref{Semantics,
651,Defining Language Semantics},
bfa74976
RS
652for details.
653
654The token type is a terminal symbol defined in the grammar, such as
655@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
656you need to know to decide where the token may validly appear and how to
657group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 658except their types.
bfa74976
RS
659
660The semantic value has all the rest of the information about the
661meaning of the token, such as the value of an integer, or the name of an
662identifier. (A token such as @code{','} which is just punctuation doesn't
663need to have any semantic value.)
664
665For example, an input token might be classified as token type
666@code{INTEGER} and have the semantic value 4. Another input token might
667have the same token type @code{INTEGER} but value 3989. When a grammar
668rule says that @code{INTEGER} is allowed, either of these tokens is
669acceptable because each is an @code{INTEGER}. When the parser accepts the
670token, it keeps track of the token's semantic value.
671
672Each grouping can also have a semantic value as well as its nonterminal
673symbol. For example, in a calculator, an expression typically has a
674semantic value that is a number. In a compiler for a programming
675language, an expression typically has a semantic value that is a tree
676structure describing the meaning of the expression.
677
342b8b6e 678@node Semantic Actions
bfa74976
RS
679@section Semantic Actions
680@cindex semantic actions
681@cindex actions, semantic
682
683In order to be useful, a program must do more than parse input; it must
684also produce some output based on the input. In a Bison grammar, a grammar
685rule can have an @dfn{action} made up of C statements. Each time the
686parser recognizes a match for that rule, the action is executed.
687@xref{Actions}.
13863333 688
bfa74976
RS
689Most of the time, the purpose of an action is to compute the semantic value
690of the whole construct from the semantic values of its parts. For example,
691suppose we have a rule which says an expression can be the sum of two
692expressions. When the parser recognizes such a sum, each of the
693subexpressions has a semantic value which describes how it was built up.
694The action for this rule should create a similar sort of value for the
695newly recognized larger expression.
696
697For example, here is a rule that says an expression can be the sum of
698two subexpressions:
699
700@example
de6be119 701expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
702@end example
703
704@noindent
705The action says how to produce the semantic value of the sum expression
706from the values of the two subexpressions.
707
676385e2 708@node GLR Parsers
35430378
JD
709@section Writing GLR Parsers
710@cindex GLR parsing
711@cindex generalized LR (GLR) parsing
676385e2
PH
712@findex %glr-parser
713@cindex conflicts
714@cindex shift/reduce conflicts
fa7e68c3 715@cindex reduce/reduce conflicts
676385e2 716
34a6c2d1 717In some grammars, Bison's deterministic
35430378 718LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
719certain grammar rule at a given point. That is, it may not be able to
720decide (on the basis of the input read so far) which of two possible
721reductions (applications of a grammar rule) applies, or whether to apply
722a reduction or read more of the input and apply a reduction later in the
723input. These are known respectively as @dfn{reduce/reduce} conflicts
724(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
725(@pxref{Shift/Reduce}).
726
35430378 727To use a grammar that is not easily modified to be LR(1), a
9501dc6e 728more general parsing algorithm is sometimes necessary. If you include
676385e2 729@code{%glr-parser} among the Bison declarations in your file
35430378
JD
730(@pxref{Grammar Outline}), the result is a Generalized LR
731(GLR) parser. These parsers handle Bison grammars that
9501dc6e 732contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 733declarations) identically to deterministic parsers. However, when
9501dc6e 734faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 735GLR parsers use the simple expedient of doing both,
9501dc6e
AD
736effectively cloning the parser to follow both possibilities. Each of
737the resulting parsers can again split, so that at any given time, there
738can be any number of possible parses being explored. The parsers
676385e2
PH
739proceed in lockstep; that is, all of them consume (shift) a given input
740symbol before any of them proceed to the next. Each of the cloned
741parsers eventually meets one of two possible fates: either it runs into
742a parsing error, in which case it simply vanishes, or it merges with
743another parser, because the two of them have reduced the input to an
744identical set of symbols.
745
746During the time that there are multiple parsers, semantic actions are
747recorded, but not performed. When a parser disappears, its recorded
748semantic actions disappear as well, and are never performed. When a
749reduction makes two parsers identical, causing them to merge, Bison
750records both sets of semantic actions. Whenever the last two parsers
751merge, reverting to the single-parser case, Bison resolves all the
752outstanding actions either by precedences given to the grammar rules
753involved, or by performing both actions, and then calling a designated
754user-defined function on the resulting values to produce an arbitrary
755merged result.
756
fa7e68c3 757@menu
35430378
JD
758* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
759* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 760* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 761* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
762@end menu
763
764@node Simple GLR Parsers
35430378
JD
765@subsection Using GLR on Unambiguous Grammars
766@cindex GLR parsing, unambiguous grammars
767@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
768@findex %glr-parser
769@findex %expect-rr
770@cindex conflicts
771@cindex reduce/reduce conflicts
772@cindex shift/reduce conflicts
773
35430378
JD
774In the simplest cases, you can use the GLR algorithm
775to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 776Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
777
778Consider a problem that
779arises in the declaration of enumerated and subrange types in the
780programming language Pascal. Here are some examples:
781
782@example
783type subrange = lo .. hi;
784type enum = (a, b, c);
785@end example
786
787@noindent
788The original language standard allows only numeric
789literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 790and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
79110206) and many other
792Pascal implementations allow arbitrary expressions there. This gives
793rise to the following situation, containing a superfluous pair of
794parentheses:
795
796@example
797type subrange = (a) .. b;
798@end example
799
800@noindent
801Compare this to the following declaration of an enumerated
802type with only one value:
803
804@example
805type enum = (a);
806@end example
807
808@noindent
809(These declarations are contrived, but they are syntactically
810valid, and more-complicated cases can come up in practical programs.)
811
812These two declarations look identical until the @samp{..} token.
35430378 813With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
814possible to decide between the two forms when the identifier
815@samp{a} is parsed. It is, however, desirable
816for a parser to decide this, since in the latter case
817@samp{a} must become a new identifier to represent the enumeration
818value, while in the former case @samp{a} must be evaluated with its
819current meaning, which may be a constant or even a function call.
820
821You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
822to be resolved later, but this typically requires substantial
823contortions in both semantic actions and large parts of the
824grammar, where the parentheses are nested in the recursive rules for
825expressions.
826
827You might think of using the lexer to distinguish between the two
828forms by returning different tokens for currently defined and
829undefined identifiers. But if these declarations occur in a local
830scope, and @samp{a} is defined in an outer scope, then both forms
831are possible---either locally redefining @samp{a}, or using the
832value of @samp{a} from the outer scope. So this approach cannot
833work.
834
e757bb10 835A simple solution to this problem is to declare the parser to
35430378
JD
836use the GLR algorithm.
837When the GLR parser reaches the critical state, it
fa7e68c3
PE
838merely splits into two branches and pursues both syntax rules
839simultaneously. Sooner or later, one of them runs into a parsing
840error. If there is a @samp{..} token before the next
841@samp{;}, the rule for enumerated types fails since it cannot
842accept @samp{..} anywhere; otherwise, the subrange type rule
843fails since it requires a @samp{..} token. So one of the branches
844fails silently, and the other one continues normally, performing
845all the intermediate actions that were postponed during the split.
846
847If the input is syntactically incorrect, both branches fail and the parser
848reports a syntax error as usual.
849
850The effect of all this is that the parser seems to ``guess'' the
851correct branch to take, or in other words, it seems to use more
35430378
JD
852lookahead than the underlying LR(1) algorithm actually allows
853for. In this example, LR(2) would suffice, but also some cases
854that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 855
35430378 856In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
857and the current Bison parser even takes exponential time and space
858for some grammars. In practice, this rarely happens, and for many
859grammars it is possible to prove that it cannot happen.
860The present example contains only one conflict between two
861rules, and the type-declaration context containing the conflict
862cannot be nested. So the number of
863branches that can exist at any time is limited by the constant 2,
864and the parsing time is still linear.
865
866Here is a Bison grammar corresponding to the example above. It
867parses a vastly simplified form of Pascal type declarations.
868
869@example
870%token TYPE DOTDOT ID
871
872@group
873%left '+' '-'
874%left '*' '/'
875@end group
876
877%%
878
879@group
de6be119 880type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
881@end group
882
883@group
de6be119
AD
884type:
885 '(' id_list ')'
886| expr DOTDOT expr
887;
fa7e68c3
PE
888@end group
889
890@group
de6be119
AD
891id_list:
892 ID
893| id_list ',' ID
894;
fa7e68c3
PE
895@end group
896
897@group
de6be119
AD
898expr:
899 '(' expr ')'
900| expr '+' expr
901| expr '-' expr
902| expr '*' expr
903| expr '/' expr
904| ID
905;
fa7e68c3
PE
906@end group
907@end example
908
35430378 909When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
910about one reduce/reduce conflict. In the conflicting situation the
911parser chooses one of the alternatives, arbitrarily the one
912declared first. Therefore the following correct input is not
913recognized:
914
915@example
916type t = (a) .. b;
917@end example
918
35430378 919The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
920to be silent about the one known reduce/reduce conflict, by adding
921these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
922@samp{%%}):
923
924@example
925%glr-parser
926%expect-rr 1
927@end example
928
929@noindent
930No change in the grammar itself is required. Now the
931parser recognizes all valid declarations, according to the
932limited syntax above, transparently. In fact, the user does not even
933notice when the parser splits.
934
35430378 935So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
936almost without disadvantages. Even in simple cases like this, however,
937there are at least two potential problems to beware. First, always
35430378
JD
938analyze the conflicts reported by Bison to make sure that GLR
939splitting is only done where it is intended. A GLR parser
f8e1c9e5 940splitting inadvertently may cause problems less obvious than an
35430378 941LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
942conflict. Second, consider interactions with the lexer (@pxref{Semantic
943Tokens}) with great care. Since a split parser consumes tokens without
944performing any actions during the split, the lexer cannot obtain
945information via parser actions. Some cases of lexer interactions can be
35430378 946eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
947lexer to the parser. You must check the remaining cases for
948correctness.
949
950In our example, it would be safe for the lexer to return tokens based on
951their current meanings in some symbol table, because no new symbols are
952defined in the middle of a type declaration. Though it is possible for
953a parser to define the enumeration constants as they are parsed, before
954the type declaration is completed, it actually makes no difference since
955they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
956
957@node Merging GLR Parses
35430378
JD
958@subsection Using GLR to Resolve Ambiguities
959@cindex GLR parsing, ambiguous grammars
960@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
961@findex %dprec
962@findex %merge
963@cindex conflicts
964@cindex reduce/reduce conflicts
965
2a8d363a 966Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
967
968@example
969%@{
38a92d50
PE
970 #include <stdio.h>
971 #define YYSTYPE char const *
972 int yylex (void);
973 void yyerror (char const *);
676385e2
PH
974%@}
975
976%token TYPENAME ID
977
978%right '='
979%left '+'
980
981%glr-parser
982
983%%
984
de6be119
AD
985prog:
986 /* Nothing. */
987| prog stmt @{ printf ("\n"); @}
988;
676385e2 989
de6be119
AD
990stmt:
991 expr ';' %dprec 1
992| decl %dprec 2
993;
676385e2 994
de6be119
AD
995expr:
996 ID @{ printf ("%s ", $$); @}
997| TYPENAME '(' expr ')'
998 @{ printf ("%s <cast> ", $1); @}
999| expr '+' expr @{ printf ("+ "); @}
1000| expr '=' expr @{ printf ("= "); @}
1001;
676385e2 1002
de6be119
AD
1003decl:
1004 TYPENAME declarator ';'
1005 @{ printf ("%s <declare> ", $1); @}
1006| TYPENAME declarator '=' expr ';'
1007 @{ printf ("%s <init-declare> ", $1); @}
1008;
676385e2 1009
de6be119
AD
1010declarator:
1011 ID @{ printf ("\"%s\" ", $1); @}
1012| '(' declarator ')'
1013;
676385e2
PH
1014@end example
1015
1016@noindent
1017This models a problematic part of the C++ grammar---the ambiguity between
1018certain declarations and statements. For example,
1019
1020@example
1021T (x) = y+z;
1022@end example
1023
1024@noindent
1025parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1026(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1027@samp{x} as an @code{ID}).
676385e2 1028Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1029@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1030time it encounters @code{x} in the example above. Since this is a
35430378 1031GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1032each choice of resolving the reduce/reduce conflict.
1033Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1034however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1035ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1036the other reduces @code{stmt : decl}, after which both parsers are in an
1037identical state: they've seen @samp{prog stmt} and have the same unprocessed
1038input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1039
35430378 1040At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1041grammar of how to choose between the competing parses.
1042In the example above, the two @code{%dprec}
e757bb10 1043declarations specify that Bison is to give precedence
fa7e68c3 1044to the parse that interprets the example as a
676385e2
PH
1045@code{decl}, which implies that @code{x} is a declarator.
1046The parser therefore prints
1047
1048@example
fae437e8 1049"x" y z + T <init-declare>
676385e2
PH
1050@end example
1051
fa7e68c3
PE
1052The @code{%dprec} declarations only come into play when more than one
1053parse survives. Consider a different input string for this parser:
676385e2
PH
1054
1055@example
1056T (x) + y;
1057@end example
1058
1059@noindent
35430378 1060This is another example of using GLR to parse an unambiguous
fa7e68c3 1061construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1062Here, there is no ambiguity (this cannot be parsed as a declaration).
1063However, at the time the Bison parser encounters @code{x}, it does not
1064have enough information to resolve the reduce/reduce conflict (again,
1065between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1066case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1067into two, one assuming that @code{x} is an @code{expr}, and the other
1068assuming @code{x} is a @code{declarator}. The second of these parsers
1069then vanishes when it sees @code{+}, and the parser prints
1070
1071@example
fae437e8 1072x T <cast> y +
676385e2
PH
1073@end example
1074
1075Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1076the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1077actions of the two possible parsers, rather than choosing one over the
1078other. To do so, you could change the declaration of @code{stmt} as
1079follows:
1080
1081@example
de6be119
AD
1082stmt:
1083 expr ';' %merge <stmtMerge>
1084| decl %merge <stmtMerge>
1085;
676385e2
PH
1086@end example
1087
1088@noindent
676385e2
PH
1089and define the @code{stmtMerge} function as:
1090
1091@example
38a92d50
PE
1092static YYSTYPE
1093stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1094@{
1095 printf ("<OR> ");
1096 return "";
1097@}
1098@end example
1099
1100@noindent
1101with an accompanying forward declaration
1102in the C declarations at the beginning of the file:
1103
1104@example
1105%@{
38a92d50 1106 #define YYSTYPE char const *
676385e2
PH
1107 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1108%@}
1109@end example
1110
1111@noindent
fa7e68c3
PE
1112With these declarations, the resulting parser parses the first example
1113as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1114
1115@example
fae437e8 1116"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1117@end example
1118
fa7e68c3 1119Bison requires that all of the
e757bb10 1120productions that participate in any particular merge have identical
fa7e68c3
PE
1121@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1122and the parser will report an error during any parse that results in
1123the offending merge.
9501dc6e 1124
32c29292
JD
1125@node GLR Semantic Actions
1126@subsection GLR Semantic Actions
1127
1128@cindex deferred semantic actions
1129By definition, a deferred semantic action is not performed at the same time as
1130the associated reduction.
1131This raises caveats for several Bison features you might use in a semantic
35430378 1132action in a GLR parser.
32c29292
JD
1133
1134@vindex yychar
35430378 1135@cindex GLR parsers and @code{yychar}
32c29292 1136@vindex yylval
35430378 1137@cindex GLR parsers and @code{yylval}
32c29292 1138@vindex yylloc
35430378 1139@cindex GLR parsers and @code{yylloc}
32c29292 1140In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1141the lookahead token present at the time of the associated reduction.
32c29292
JD
1142After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1143you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1144lookahead token's semantic value and location, if any.
32c29292
JD
1145In a nondeferred semantic action, you can also modify any of these variables to
1146influence syntax analysis.
742e4900 1147@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1148
1149@findex yyclearin
35430378 1150@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1151In a deferred semantic action, it's too late to influence syntax analysis.
1152In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1153shallow copies of the values they had at the time of the associated reduction.
1154For this reason alone, modifying them is dangerous.
1155Moreover, the result of modifying them is undefined and subject to change with
1156future versions of Bison.
1157For example, if a semantic action might be deferred, you should never write it
1158to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1159memory referenced by @code{yylval}.
1160
1161@findex YYERROR
35430378 1162@cindex GLR parsers and @code{YYERROR}
32c29292 1163Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1164(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1165initiate error recovery.
35430378 1166During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1167the same as its effect in a deterministic parser.
32c29292
JD
1168In a deferred semantic action, its effect is undefined.
1169@c The effect is probably a syntax error at the split point.
1170
8710fc41 1171Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1172describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1173
fa7e68c3 1174@node Compiler Requirements
35430378 1175@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1176@cindex @code{inline}
35430378 1177@cindex GLR parsers and @code{inline}
fa7e68c3 1178
35430378 1179The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1180later. In addition, they use the @code{inline} keyword, which is not
1181C89, but is C99 and is a common extension in pre-C99 compilers. It is
1182up to the user of these parsers to handle
9501dc6e
AD
1183portability issues. For instance, if using Autoconf and the Autoconf
1184macro @code{AC_C_INLINE}, a mere
1185
1186@example
1187%@{
38a92d50 1188 #include <config.h>
9501dc6e
AD
1189%@}
1190@end example
1191
1192@noindent
1193will suffice. Otherwise, we suggest
1194
1195@example
1196%@{
2c0f9706
AD
1197 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1198 && ! defined inline)
1199 # define inline
38a92d50 1200 #endif
9501dc6e
AD
1201%@}
1202@end example
676385e2 1203
83484365 1204@node Locations
847bf1f5
AD
1205@section Locations
1206@cindex location
95923bd6
AD
1207@cindex textual location
1208@cindex location, textual
847bf1f5
AD
1209
1210Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1211and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1212the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1213Bison provides a mechanism for handling these locations.
1214
72d2299c 1215Each token has a semantic value. In a similar fashion, each token has an
7404cdf3
JD
1216associated location, but the type of locations is the same for all tokens
1217and groupings. Moreover, the output parser is equipped with a default data
1218structure for storing locations (@pxref{Tracking Locations}, for more
1219details).
847bf1f5
AD
1220
1221Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1222set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1223is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1224@code{@@3}.
1225
1226When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1227of its left hand side (@pxref{Actions}). In the same way, another default
1228action is used for locations. However, the action for locations is general
847bf1f5 1229enough for most cases, meaning there is usually no need to describe for each
72d2299c 1230rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1231grouping, the default behavior of the output parser is to take the beginning
1232of the first symbol, and the end of the last symbol.
1233
342b8b6e 1234@node Bison Parser
9913d6e4 1235@section Bison Output: the Parser Implementation File
bfa74976
RS
1236@cindex Bison parser
1237@cindex Bison utility
1238@cindex lexical analyzer, purpose
1239@cindex parser
1240
9913d6e4
JD
1241When you run Bison, you give it a Bison grammar file as input. The
1242most important output is a C source file that implements a parser for
1243the language described by the grammar. This parser is called a
1244@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1245implementation file}. Keep in mind that the Bison utility and the
1246Bison parser are two distinct programs: the Bison utility is a program
1247whose output is the Bison parser implementation file that becomes part
1248of your program.
bfa74976
RS
1249
1250The job of the Bison parser is to group tokens into groupings according to
1251the grammar rules---for example, to build identifiers and operators into
1252expressions. As it does this, it runs the actions for the grammar rules it
1253uses.
1254
704a47c4
AD
1255The tokens come from a function called the @dfn{lexical analyzer} that
1256you must supply in some fashion (such as by writing it in C). The Bison
1257parser calls the lexical analyzer each time it wants a new token. It
1258doesn't know what is ``inside'' the tokens (though their semantic values
1259may reflect this). Typically the lexical analyzer makes the tokens by
1260parsing characters of text, but Bison does not depend on this.
1261@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1262
9913d6e4
JD
1263The Bison parser implementation file is C code which defines a
1264function named @code{yyparse} which implements that grammar. This
1265function does not make a complete C program: you must supply some
1266additional functions. One is the lexical analyzer. Another is an
1267error-reporting function which the parser calls to report an error.
1268In addition, a complete C program must start with a function called
1269@code{main}; you have to provide this, and arrange for it to call
1270@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1271C-Language Interface}.
bfa74976 1272
f7ab6a50 1273Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1274write, all symbols defined in the Bison parser implementation file
1275itself begin with @samp{yy} or @samp{YY}. This includes interface
1276functions such as the lexical analyzer function @code{yylex}, the
1277error reporting function @code{yyerror} and the parser function
1278@code{yyparse} itself. This also includes numerous identifiers used
1279for internal purposes. Therefore, you should avoid using C
1280identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1281file except for the ones defined in this manual. Also, you should
1282avoid using the C identifiers @samp{malloc} and @samp{free} for
1283anything other than their usual meanings.
1284
1285In some cases the Bison parser implementation file includes system
1286headers, and in those cases your code should respect the identifiers
1287reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1288@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1289included as needed to declare memory allocators and related types.
1290@code{<libintl.h>} is included if message translation is in use
1291(@pxref{Internationalization}). Other system headers may be included
1292if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1293,Tracing Your Parser}).
7093d0f5 1294
342b8b6e 1295@node Stages
bfa74976
RS
1296@section Stages in Using Bison
1297@cindex stages in using Bison
1298@cindex using Bison
1299
1300The actual language-design process using Bison, from grammar specification
1301to a working compiler or interpreter, has these parts:
1302
1303@enumerate
1304@item
1305Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1306(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1307in the language, describe the action that is to be taken when an
1308instance of that rule is recognized. The action is described by a
1309sequence of C statements.
bfa74976
RS
1310
1311@item
704a47c4
AD
1312Write a lexical analyzer to process input and pass tokens to the parser.
1313The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1314Lexical Analyzer Function @code{yylex}}). It could also be produced
1315using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1316
1317@item
1318Write a controlling function that calls the Bison-produced parser.
1319
1320@item
1321Write error-reporting routines.
1322@end enumerate
1323
1324To turn this source code as written into a runnable program, you
1325must follow these steps:
1326
1327@enumerate
1328@item
1329Run Bison on the grammar to produce the parser.
1330
1331@item
1332Compile the code output by Bison, as well as any other source files.
1333
1334@item
1335Link the object files to produce the finished product.
1336@end enumerate
1337
342b8b6e 1338@node Grammar Layout
bfa74976
RS
1339@section The Overall Layout of a Bison Grammar
1340@cindex grammar file
1341@cindex file format
1342@cindex format of grammar file
1343@cindex layout of Bison grammar
1344
1345The input file for the Bison utility is a @dfn{Bison grammar file}. The
1346general form of a Bison grammar file is as follows:
1347
1348@example
1349%@{
08e49d20 1350@var{Prologue}
bfa74976
RS
1351%@}
1352
1353@var{Bison declarations}
1354
1355%%
1356@var{Grammar rules}
1357%%
08e49d20 1358@var{Epilogue}
bfa74976
RS
1359@end example
1360
1361@noindent
1362The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1363in every Bison grammar file to separate the sections.
1364
72d2299c 1365The prologue may define types and variables used in the actions. You can
342b8b6e 1366also use preprocessor commands to define macros used there, and use
bfa74976 1367@code{#include} to include header files that do any of these things.
38a92d50
PE
1368You need to declare the lexical analyzer @code{yylex} and the error
1369printer @code{yyerror} here, along with any other global identifiers
1370used by the actions in the grammar rules.
bfa74976
RS
1371
1372The Bison declarations declare the names of the terminal and nonterminal
1373symbols, and may also describe operator precedence and the data types of
1374semantic values of various symbols.
1375
1376The grammar rules define how to construct each nonterminal symbol from its
1377parts.
1378
38a92d50
PE
1379The epilogue can contain any code you want to use. Often the
1380definitions of functions declared in the prologue go here. In a
1381simple program, all the rest of the program can go here.
bfa74976 1382
342b8b6e 1383@node Examples
bfa74976
RS
1384@chapter Examples
1385@cindex simple examples
1386@cindex examples, simple
1387
2c0f9706 1388Now we show and explain several sample programs written using Bison: a
bfa74976 1389reverse polish notation calculator, an algebraic (infix) notation
2c0f9706
AD
1390calculator --- later extended to track ``locations'' ---
1391and a multi-function calculator. All
1392produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1393
1394These examples are simple, but Bison grammars for real programming
aa08666d
AD
1395languages are written the same way. You can copy these examples into a
1396source file to try them.
bfa74976
RS
1397
1398@menu
f56274a8
DJ
1399* RPN Calc:: Reverse polish notation calculator;
1400 a first example with no operator precedence.
1401* Infix Calc:: Infix (algebraic) notation calculator.
1402 Operator precedence is introduced.
bfa74976 1403* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1404* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1405* Multi-function Calc:: Calculator with memory and trig functions.
1406 It uses multiple data-types for semantic values.
1407* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1408@end menu
1409
342b8b6e 1410@node RPN Calc
bfa74976
RS
1411@section Reverse Polish Notation Calculator
1412@cindex reverse polish notation
1413@cindex polish notation calculator
1414@cindex @code{rpcalc}
1415@cindex calculator, simple
1416
1417The first example is that of a simple double-precision @dfn{reverse polish
1418notation} calculator (a calculator using postfix operators). This example
1419provides a good starting point, since operator precedence is not an issue.
1420The second example will illustrate how operator precedence is handled.
1421
1422The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1423@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1424
1425@menu
f56274a8
DJ
1426* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1427* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1428* Rpcalc Lexer:: The lexical analyzer.
1429* Rpcalc Main:: The controlling function.
1430* Rpcalc Error:: The error reporting function.
1431* Rpcalc Generate:: Running Bison on the grammar file.
1432* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1433@end menu
1434
f56274a8 1435@node Rpcalc Declarations
bfa74976
RS
1436@subsection Declarations for @code{rpcalc}
1437
1438Here are the C and Bison declarations for the reverse polish notation
1439calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1440
1441@example
72d2299c 1442/* Reverse polish notation calculator. */
bfa74976
RS
1443
1444%@{
38a92d50
PE
1445 #define YYSTYPE double
1446 #include <math.h>
1447 int yylex (void);
1448 void yyerror (char const *);
bfa74976
RS
1449%@}
1450
1451%token NUM
1452
72d2299c 1453%% /* Grammar rules and actions follow. */
bfa74976
RS
1454@end example
1455
75f5aaea 1456The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1457preprocessor directives and two forward declarations.
bfa74976
RS
1458
1459The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1460specifying the C data type for semantic values of both tokens and
1461groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1462Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1463don't define it, @code{int} is the default. Because we specify
1464@code{double}, each token and each expression has an associated value,
1465which is a floating point number.
bfa74976
RS
1466
1467The @code{#include} directive is used to declare the exponentiation
1468function @code{pow}.
1469
38a92d50
PE
1470The forward declarations for @code{yylex} and @code{yyerror} are
1471needed because the C language requires that functions be declared
1472before they are used. These functions will be defined in the
1473epilogue, but the parser calls them so they must be declared in the
1474prologue.
1475
704a47c4
AD
1476The second section, Bison declarations, provides information to Bison
1477about the token types (@pxref{Bison Declarations, ,The Bison
1478Declarations Section}). Each terminal symbol that is not a
1479single-character literal must be declared here. (Single-character
bfa74976
RS
1480literals normally don't need to be declared.) In this example, all the
1481arithmetic operators are designated by single-character literals, so the
1482only terminal symbol that needs to be declared is @code{NUM}, the token
1483type for numeric constants.
1484
342b8b6e 1485@node Rpcalc Rules
bfa74976
RS
1486@subsection Grammar Rules for @code{rpcalc}
1487
1488Here are the grammar rules for the reverse polish notation calculator.
1489
1490@example
2c0f9706 1491@group
de6be119
AD
1492input:
1493 /* empty */
1494| input line
bfa74976 1495;
2c0f9706 1496@end group
bfa74976 1497
2c0f9706 1498@group
de6be119
AD
1499line:
1500 '\n'
1501| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1502;
2c0f9706 1503@end group
bfa74976 1504
2c0f9706 1505@group
de6be119
AD
1506exp:
1507 NUM @{ $$ = $1; @}
1508| exp exp '+' @{ $$ = $1 + $2; @}
1509| exp exp '-' @{ $$ = $1 - $2; @}
1510| exp exp '*' @{ $$ = $1 * $2; @}
1511| exp exp '/' @{ $$ = $1 / $2; @}
1512| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1513| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1514;
2c0f9706 1515@end group
bfa74976
RS
1516%%
1517@end example
1518
1519The groupings of the rpcalc ``language'' defined here are the expression
1520(given the name @code{exp}), the line of input (@code{line}), and the
1521complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1522symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1523which is read as ``or''. The following sections explain what these rules
1524mean.
1525
1526The semantics of the language is determined by the actions taken when a
1527grouping is recognized. The actions are the C code that appears inside
1528braces. @xref{Actions}.
1529
1530You must specify these actions in C, but Bison provides the means for
1531passing semantic values between the rules. In each action, the
1532pseudo-variable @code{$$} stands for the semantic value for the grouping
1533that the rule is going to construct. Assigning a value to @code{$$} is the
1534main job of most actions. The semantic values of the components of the
1535rule are referred to as @code{$1}, @code{$2}, and so on.
1536
1537@menu
13863333
AD
1538* Rpcalc Input::
1539* Rpcalc Line::
1540* Rpcalc Expr::
bfa74976
RS
1541@end menu
1542
342b8b6e 1543@node Rpcalc Input
bfa74976
RS
1544@subsubsection Explanation of @code{input}
1545
1546Consider the definition of @code{input}:
1547
1548@example
de6be119
AD
1549input:
1550 /* empty */
1551| input line
bfa74976
RS
1552;
1553@end example
1554
1555This definition reads as follows: ``A complete input is either an empty
1556string, or a complete input followed by an input line''. Notice that
1557``complete input'' is defined in terms of itself. This definition is said
1558to be @dfn{left recursive} since @code{input} appears always as the
1559leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1560
1561The first alternative is empty because there are no symbols between the
1562colon and the first @samp{|}; this means that @code{input} can match an
1563empty string of input (no tokens). We write the rules this way because it
1564is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1565It's conventional to put an empty alternative first and write the comment
1566@samp{/* empty */} in it.
1567
1568The second alternate rule (@code{input line}) handles all nontrivial input.
1569It means, ``After reading any number of lines, read one more line if
1570possible.'' The left recursion makes this rule into a loop. Since the
1571first alternative matches empty input, the loop can be executed zero or
1572more times.
1573
1574The parser function @code{yyparse} continues to process input until a
1575grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1576input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1577
342b8b6e 1578@node Rpcalc Line
bfa74976
RS
1579@subsubsection Explanation of @code{line}
1580
1581Now consider the definition of @code{line}:
1582
1583@example
de6be119
AD
1584line:
1585 '\n'
1586| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1587;
1588@end example
1589
1590The first alternative is a token which is a newline character; this means
1591that rpcalc accepts a blank line (and ignores it, since there is no
1592action). The second alternative is an expression followed by a newline.
1593This is the alternative that makes rpcalc useful. The semantic value of
1594the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1595question is the first symbol in the alternative. The action prints this
1596value, which is the result of the computation the user asked for.
1597
1598This action is unusual because it does not assign a value to @code{$$}. As
1599a consequence, the semantic value associated with the @code{line} is
1600uninitialized (its value will be unpredictable). This would be a bug if
1601that value were ever used, but we don't use it: once rpcalc has printed the
1602value of the user's input line, that value is no longer needed.
1603
342b8b6e 1604@node Rpcalc Expr
bfa74976
RS
1605@subsubsection Explanation of @code{expr}
1606
1607The @code{exp} grouping has several rules, one for each kind of expression.
1608The first rule handles the simplest expressions: those that are just numbers.
1609The second handles an addition-expression, which looks like two expressions
1610followed by a plus-sign. The third handles subtraction, and so on.
1611
1612@example
de6be119
AD
1613exp:
1614 NUM
1615| exp exp '+' @{ $$ = $1 + $2; @}
1616| exp exp '-' @{ $$ = $1 - $2; @}
1617@dots{}
1618;
bfa74976
RS
1619@end example
1620
1621We have used @samp{|} to join all the rules for @code{exp}, but we could
1622equally well have written them separately:
1623
1624@example
de6be119
AD
1625exp: NUM ;
1626exp: exp exp '+' @{ $$ = $1 + $2; @};
1627exp: exp exp '-' @{ $$ = $1 - $2; @};
1628@dots{}
bfa74976
RS
1629@end example
1630
1631Most of the rules have actions that compute the value of the expression in
1632terms of the value of its parts. For example, in the rule for addition,
1633@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1634the second one. The third component, @code{'+'}, has no meaningful
1635associated semantic value, but if it had one you could refer to it as
1636@code{$3}. When @code{yyparse} recognizes a sum expression using this
1637rule, the sum of the two subexpressions' values is produced as the value of
1638the entire expression. @xref{Actions}.
1639
1640You don't have to give an action for every rule. When a rule has no
1641action, Bison by default copies the value of @code{$1} into @code{$$}.
1642This is what happens in the first rule (the one that uses @code{NUM}).
1643
1644The formatting shown here is the recommended convention, but Bison does
72d2299c 1645not require it. You can add or change white space as much as you wish.
bfa74976
RS
1646For example, this:
1647
1648@example
de6be119 1649exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1650@end example
1651
1652@noindent
1653means the same thing as this:
1654
1655@example
de6be119
AD
1656exp:
1657 NUM
1658| exp exp '+' @{ $$ = $1 + $2; @}
1659| @dots{}
99a9344e 1660;
bfa74976
RS
1661@end example
1662
1663@noindent
1664The latter, however, is much more readable.
1665
342b8b6e 1666@node Rpcalc Lexer
bfa74976
RS
1667@subsection The @code{rpcalc} Lexical Analyzer
1668@cindex writing a lexical analyzer
1669@cindex lexical analyzer, writing
1670
704a47c4
AD
1671The lexical analyzer's job is low-level parsing: converting characters
1672or sequences of characters into tokens. The Bison parser gets its
1673tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1674Analyzer Function @code{yylex}}.
bfa74976 1675
35430378 1676Only a simple lexical analyzer is needed for the RPN
c827f760 1677calculator. This
bfa74976
RS
1678lexical analyzer skips blanks and tabs, then reads in numbers as
1679@code{double} and returns them as @code{NUM} tokens. Any other character
1680that isn't part of a number is a separate token. Note that the token-code
1681for such a single-character token is the character itself.
1682
1683The return value of the lexical analyzer function is a numeric code which
1684represents a token type. The same text used in Bison rules to stand for
1685this token type is also a C expression for the numeric code for the type.
1686This works in two ways. If the token type is a character literal, then its
e966383b 1687numeric code is that of the character; you can use the same
bfa74976
RS
1688character literal in the lexical analyzer to express the number. If the
1689token type is an identifier, that identifier is defined by Bison as a C
1690macro whose definition is the appropriate number. In this example,
1691therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1692
1964ad8c
AD
1693The semantic value of the token (if it has one) is stored into the
1694global variable @code{yylval}, which is where the Bison parser will look
1695for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1696defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1697,Declarations for @code{rpcalc}}.)
bfa74976 1698
72d2299c
PE
1699A token type code of zero is returned if the end-of-input is encountered.
1700(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1701
1702Here is the code for the lexical analyzer:
1703
1704@example
1705@group
72d2299c 1706/* The lexical analyzer returns a double floating point
e966383b 1707 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1708 of the character read if not a number. It skips all blanks
1709 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1710
1711#include <ctype.h>
1712@end group
1713
1714@group
13863333
AD
1715int
1716yylex (void)
bfa74976
RS
1717@{
1718 int c;
1719
72d2299c 1720 /* Skip white space. */
13863333 1721 while ((c = getchar ()) == ' ' || c == '\t')
98842516 1722 continue;
bfa74976
RS
1723@end group
1724@group
72d2299c 1725 /* Process numbers. */
13863333 1726 if (c == '.' || isdigit (c))
bfa74976
RS
1727 @{
1728 ungetc (c, stdin);
1729 scanf ("%lf", &yylval);
1730 return NUM;
1731 @}
1732@end group
1733@group
72d2299c 1734 /* Return end-of-input. */
13863333 1735 if (c == EOF)
bfa74976 1736 return 0;
72d2299c 1737 /* Return a single char. */
13863333 1738 return c;
bfa74976
RS
1739@}
1740@end group
1741@end example
1742
342b8b6e 1743@node Rpcalc Main
bfa74976
RS
1744@subsection The Controlling Function
1745@cindex controlling function
1746@cindex main function in simple example
1747
1748In keeping with the spirit of this example, the controlling function is
1749kept to the bare minimum. The only requirement is that it call
1750@code{yyparse} to start the process of parsing.
1751
1752@example
1753@group
13863333
AD
1754int
1755main (void)
bfa74976 1756@{
13863333 1757 return yyparse ();
bfa74976
RS
1758@}
1759@end group
1760@end example
1761
342b8b6e 1762@node Rpcalc Error
bfa74976
RS
1763@subsection The Error Reporting Routine
1764@cindex error reporting routine
1765
1766When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1767function @code{yyerror} to print an error message (usually but not
6e649e65 1768always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1769@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1770here is the definition we will use:
bfa74976
RS
1771
1772@example
1773@group
1774#include <stdio.h>
2c0f9706 1775@end group
bfa74976 1776
2c0f9706 1777@group
38a92d50 1778/* Called by yyparse on error. */
13863333 1779void
38a92d50 1780yyerror (char const *s)
bfa74976 1781@{
4e03e201 1782 fprintf (stderr, "%s\n", s);
bfa74976
RS
1783@}
1784@end group
1785@end example
1786
1787After @code{yyerror} returns, the Bison parser may recover from the error
1788and continue parsing if the grammar contains a suitable error rule
1789(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1790have not written any error rules in this example, so any invalid input will
1791cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1792real calculator, but it is adequate for the first example.
bfa74976 1793
f56274a8 1794@node Rpcalc Generate
bfa74976
RS
1795@subsection Running Bison to Make the Parser
1796@cindex running Bison (introduction)
1797
ceed8467
AD
1798Before running Bison to produce a parser, we need to decide how to
1799arrange all the source code in one or more source files. For such a
9913d6e4
JD
1800simple example, the easiest thing is to put everything in one file,
1801the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1802@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1803(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1804
1805For a large project, you would probably have several source files, and use
1806@code{make} to arrange to recompile them.
1807
9913d6e4
JD
1808With all the source in the grammar file, you use the following command
1809to convert it into a parser implementation file:
bfa74976
RS
1810
1811@example
fa4d969f 1812bison @var{file}.y
bfa74976
RS
1813@end example
1814
1815@noindent
9913d6e4
JD
1816In this example, the grammar file is called @file{rpcalc.y} (for
1817``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1818implementation file named @file{@var{file}.tab.c}, removing the
1819@samp{.y} from the grammar file name. The parser implementation file
1820contains the source code for @code{yyparse}. The additional functions
1821in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1822copied verbatim to the parser implementation file.
bfa74976 1823
342b8b6e 1824@node Rpcalc Compile
9913d6e4 1825@subsection Compiling the Parser Implementation File
bfa74976
RS
1826@cindex compiling the parser
1827
9913d6e4 1828Here is how to compile and run the parser implementation file:
bfa74976
RS
1829
1830@example
1831@group
1832# @r{List files in current directory.}
9edcd895 1833$ @kbd{ls}
bfa74976
RS
1834rpcalc.tab.c rpcalc.y
1835@end group
1836
1837@group
1838# @r{Compile the Bison parser.}
1839# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1840$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1841@end group
1842
1843@group
1844# @r{List files again.}
9edcd895 1845$ @kbd{ls}
bfa74976
RS
1846rpcalc rpcalc.tab.c rpcalc.y
1847@end group
1848@end example
1849
1850The file @file{rpcalc} now contains the executable code. Here is an
1851example session using @code{rpcalc}.
1852
1853@example
9edcd895
AD
1854$ @kbd{rpcalc}
1855@kbd{4 9 +}
bfa74976 185613
9edcd895 1857@kbd{3 7 + 3 4 5 *+-}
bfa74976 1858-13
9edcd895 1859@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 186013
9edcd895 1861@kbd{5 6 / 4 n +}
bfa74976 1862-3.166666667
9edcd895 1863@kbd{3 4 ^} @r{Exponentiation}
bfa74976 186481
9edcd895
AD
1865@kbd{^D} @r{End-of-file indicator}
1866$
bfa74976
RS
1867@end example
1868
342b8b6e 1869@node Infix Calc
bfa74976
RS
1870@section Infix Notation Calculator: @code{calc}
1871@cindex infix notation calculator
1872@cindex @code{calc}
1873@cindex calculator, infix notation
1874
1875We now modify rpcalc to handle infix operators instead of postfix. Infix
1876notation involves the concept of operator precedence and the need for
1877parentheses nested to arbitrary depth. Here is the Bison code for
1878@file{calc.y}, an infix desk-top calculator.
1879
1880@example
38a92d50 1881/* Infix notation calculator. */
bfa74976 1882
2c0f9706 1883@group
bfa74976 1884%@{
38a92d50
PE
1885 #define YYSTYPE double
1886 #include <math.h>
1887 #include <stdio.h>
1888 int yylex (void);
1889 void yyerror (char const *);
bfa74976 1890%@}
2c0f9706 1891@end group
bfa74976 1892
2c0f9706 1893@group
38a92d50 1894/* Bison declarations. */
bfa74976
RS
1895%token NUM
1896%left '-' '+'
1897%left '*' '/'
1898%left NEG /* negation--unary minus */
38a92d50 1899%right '^' /* exponentiation */
2c0f9706 1900@end group
bfa74976 1901
38a92d50 1902%% /* The grammar follows. */
2c0f9706 1903@group
de6be119
AD
1904input:
1905 /* empty */
1906| input line
bfa74976 1907;
2c0f9706 1908@end group
bfa74976 1909
2c0f9706 1910@group
de6be119
AD
1911line:
1912 '\n'
1913| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 1914;
2c0f9706 1915@end group
bfa74976 1916
2c0f9706 1917@group
de6be119
AD
1918exp:
1919 NUM @{ $$ = $1; @}
1920| exp '+' exp @{ $$ = $1 + $3; @}
1921| exp '-' exp @{ $$ = $1 - $3; @}
1922| exp '*' exp @{ $$ = $1 * $3; @}
1923| exp '/' exp @{ $$ = $1 / $3; @}
1924| '-' exp %prec NEG @{ $$ = -$2; @}
1925| exp '^' exp @{ $$ = pow ($1, $3); @}
1926| '(' exp ')' @{ $$ = $2; @}
bfa74976 1927;
2c0f9706 1928@end group
bfa74976
RS
1929%%
1930@end example
1931
1932@noindent
ceed8467
AD
1933The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1934same as before.
bfa74976
RS
1935
1936There are two important new features shown in this code.
1937
1938In the second section (Bison declarations), @code{%left} declares token
1939types and says they are left-associative operators. The declarations
1940@code{%left} and @code{%right} (right associativity) take the place of
1941@code{%token} which is used to declare a token type name without
1942associativity. (These tokens are single-character literals, which
1943ordinarily don't need to be declared. We declare them here to specify
1944the associativity.)
1945
1946Operator precedence is determined by the line ordering of the
1947declarations; the higher the line number of the declaration (lower on
1948the page or screen), the higher the precedence. Hence, exponentiation
1949has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1950by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1951Precedence}.
bfa74976 1952
704a47c4
AD
1953The other important new feature is the @code{%prec} in the grammar
1954section for the unary minus operator. The @code{%prec} simply instructs
1955Bison that the rule @samp{| '-' exp} has the same precedence as
1956@code{NEG}---in this case the next-to-highest. @xref{Contextual
1957Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1958
1959Here is a sample run of @file{calc.y}:
1960
1961@need 500
1962@example
9edcd895
AD
1963$ @kbd{calc}
1964@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19656.880952381
9edcd895 1966@kbd{-56 + 2}
bfa74976 1967-54
9edcd895 1968@kbd{3 ^ 2}
bfa74976
RS
19699
1970@end example
1971
342b8b6e 1972@node Simple Error Recovery
bfa74976
RS
1973@section Simple Error Recovery
1974@cindex error recovery, simple
1975
1976Up to this point, this manual has not addressed the issue of @dfn{error
1977recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1978error. All we have handled is error reporting with @code{yyerror}.
1979Recall that by default @code{yyparse} returns after calling
1980@code{yyerror}. This means that an erroneous input line causes the
1981calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1982
1983The Bison language itself includes the reserved word @code{error}, which
1984may be included in the grammar rules. In the example below it has
1985been added to one of the alternatives for @code{line}:
1986
1987@example
1988@group
de6be119
AD
1989line:
1990 '\n'
1991| exp '\n' @{ printf ("\t%.10g\n", $1); @}
1992| error '\n' @{ yyerrok; @}
bfa74976
RS
1993;
1994@end group
1995@end example
1996
ceed8467 1997This addition to the grammar allows for simple error recovery in the
6e649e65 1998event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
1999read, the error will be recognized by the third rule for @code{line},
2000and parsing will continue. (The @code{yyerror} function is still called
2001upon to print its message as well.) The action executes the statement
2002@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2003that error recovery is complete (@pxref{Error Recovery}). Note the
2004difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2005misprint.
bfa74976
RS
2006
2007This form of error recovery deals with syntax errors. There are other
2008kinds of errors; for example, division by zero, which raises an exception
2009signal that is normally fatal. A real calculator program must handle this
2010signal and use @code{longjmp} to return to @code{main} and resume parsing
2011input lines; it would also have to discard the rest of the current line of
2012input. We won't discuss this issue further because it is not specific to
2013Bison programs.
2014
342b8b6e
AD
2015@node Location Tracking Calc
2016@section Location Tracking Calculator: @code{ltcalc}
2017@cindex location tracking calculator
2018@cindex @code{ltcalc}
2019@cindex calculator, location tracking
2020
9edcd895
AD
2021This example extends the infix notation calculator with location
2022tracking. This feature will be used to improve the error messages. For
2023the sake of clarity, this example is a simple integer calculator, since
2024most of the work needed to use locations will be done in the lexical
72d2299c 2025analyzer.
342b8b6e
AD
2026
2027@menu
f56274a8
DJ
2028* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2029* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2030* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2031@end menu
2032
f56274a8 2033@node Ltcalc Declarations
342b8b6e
AD
2034@subsection Declarations for @code{ltcalc}
2035
9edcd895
AD
2036The C and Bison declarations for the location tracking calculator are
2037the same as the declarations for the infix notation calculator.
342b8b6e
AD
2038
2039@example
2040/* Location tracking calculator. */
2041
2042%@{
38a92d50
PE
2043 #define YYSTYPE int
2044 #include <math.h>
2045 int yylex (void);
2046 void yyerror (char const *);
342b8b6e
AD
2047%@}
2048
2049/* Bison declarations. */
2050%token NUM
2051
2052%left '-' '+'
2053%left '*' '/'
2054%left NEG
2055%right '^'
2056
38a92d50 2057%% /* The grammar follows. */
342b8b6e
AD
2058@end example
2059
9edcd895
AD
2060@noindent
2061Note there are no declarations specific to locations. Defining a data
2062type for storing locations is not needed: we will use the type provided
2063by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2064four member structure with the following integer fields:
2065@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2066@code{last_column}. By conventions, and in accordance with the GNU
2067Coding Standards and common practice, the line and column count both
2068start at 1.
342b8b6e
AD
2069
2070@node Ltcalc Rules
2071@subsection Grammar Rules for @code{ltcalc}
2072
9edcd895
AD
2073Whether handling locations or not has no effect on the syntax of your
2074language. Therefore, grammar rules for this example will be very close
2075to those of the previous example: we will only modify them to benefit
2076from the new information.
342b8b6e 2077
9edcd895
AD
2078Here, we will use locations to report divisions by zero, and locate the
2079wrong expressions or subexpressions.
342b8b6e
AD
2080
2081@example
2082@group
de6be119
AD
2083input:
2084 /* empty */
2085| input line
342b8b6e
AD
2086;
2087@end group
2088
2089@group
de6be119
AD
2090line:
2091 '\n'
2092| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2093;
2094@end group
2095
2096@group
de6be119
AD
2097exp:
2098 NUM @{ $$ = $1; @}
2099| exp '+' exp @{ $$ = $1 + $3; @}
2100| exp '-' exp @{ $$ = $1 - $3; @}
2101| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2102@end group
342b8b6e 2103@group
de6be119
AD
2104| exp '/' exp
2105 @{
2106 if ($3)
2107 $$ = $1 / $3;
2108 else
2109 @{
2110 $$ = 1;
2111 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2112 @@3.first_line, @@3.first_column,
2113 @@3.last_line, @@3.last_column);
2114 @}
2115 @}
342b8b6e
AD
2116@end group
2117@group
de6be119
AD
2118| '-' exp %prec NEG @{ $$ = -$2; @}
2119| exp '^' exp @{ $$ = pow ($1, $3); @}
2120| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2121@end group
2122@end example
2123
2124This code shows how to reach locations inside of semantic actions, by
2125using the pseudo-variables @code{@@@var{n}} for rule components, and the
2126pseudo-variable @code{@@$} for groupings.
2127
9edcd895
AD
2128We don't need to assign a value to @code{@@$}: the output parser does it
2129automatically. By default, before executing the C code of each action,
2130@code{@@$} is set to range from the beginning of @code{@@1} to the end
2131of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2132can be redefined (@pxref{Location Default Action, , Default Action for
2133Locations}), and for very specific rules, @code{@@$} can be computed by
2134hand.
342b8b6e
AD
2135
2136@node Ltcalc Lexer
2137@subsection The @code{ltcalc} Lexical Analyzer.
2138
9edcd895 2139Until now, we relied on Bison's defaults to enable location
72d2299c 2140tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2141able to feed the parser with the token locations, as it already does for
2142semantic values.
342b8b6e 2143
9edcd895
AD
2144To this end, we must take into account every single character of the
2145input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2146
2147@example
2148@group
2149int
2150yylex (void)
2151@{
2152 int c;
18b519c0 2153@end group
342b8b6e 2154
18b519c0 2155@group
72d2299c 2156 /* Skip white space. */
342b8b6e
AD
2157 while ((c = getchar ()) == ' ' || c == '\t')
2158 ++yylloc.last_column;
18b519c0 2159@end group
342b8b6e 2160
18b519c0 2161@group
72d2299c 2162 /* Step. */
342b8b6e
AD
2163 yylloc.first_line = yylloc.last_line;
2164 yylloc.first_column = yylloc.last_column;
2165@end group
2166
2167@group
72d2299c 2168 /* Process numbers. */
342b8b6e
AD
2169 if (isdigit (c))
2170 @{
2171 yylval = c - '0';
2172 ++yylloc.last_column;
2173 while (isdigit (c = getchar ()))
2174 @{
2175 ++yylloc.last_column;
2176 yylval = yylval * 10 + c - '0';
2177 @}
2178 ungetc (c, stdin);
2179 return NUM;
2180 @}
2181@end group
2182
72d2299c 2183 /* Return end-of-input. */
342b8b6e
AD
2184 if (c == EOF)
2185 return 0;
2186
98842516 2187@group
72d2299c 2188 /* Return a single char, and update location. */
342b8b6e
AD
2189 if (c == '\n')
2190 @{
2191 ++yylloc.last_line;
2192 yylloc.last_column = 0;
2193 @}
2194 else
2195 ++yylloc.last_column;
2196 return c;
2197@}
98842516 2198@end group
342b8b6e
AD
2199@end example
2200
9edcd895
AD
2201Basically, the lexical analyzer performs the same processing as before:
2202it skips blanks and tabs, and reads numbers or single-character tokens.
2203In addition, it updates @code{yylloc}, the global variable (of type
2204@code{YYLTYPE}) containing the token's location.
342b8b6e 2205
9edcd895 2206Now, each time this function returns a token, the parser has its number
72d2299c 2207as well as its semantic value, and its location in the text. The last
9edcd895
AD
2208needed change is to initialize @code{yylloc}, for example in the
2209controlling function:
342b8b6e
AD
2210
2211@example
9edcd895 2212@group
342b8b6e
AD
2213int
2214main (void)
2215@{
2216 yylloc.first_line = yylloc.last_line = 1;
2217 yylloc.first_column = yylloc.last_column = 0;
2218 return yyparse ();
2219@}
9edcd895 2220@end group
342b8b6e
AD
2221@end example
2222
9edcd895
AD
2223Remember that computing locations is not a matter of syntax. Every
2224character must be associated to a location update, whether it is in
2225valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2226
2227@node Multi-function Calc
bfa74976
RS
2228@section Multi-Function Calculator: @code{mfcalc}
2229@cindex multi-function calculator
2230@cindex @code{mfcalc}
2231@cindex calculator, multi-function
2232
2233Now that the basics of Bison have been discussed, it is time to move on to
2234a more advanced problem. The above calculators provided only five
2235functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2236be nice to have a calculator that provides other mathematical functions such
2237as @code{sin}, @code{cos}, etc.
2238
2239It is easy to add new operators to the infix calculator as long as they are
2240only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2241back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2242adding a new operator. But we want something more flexible: built-in
2243functions whose syntax has this form:
2244
2245@example
2246@var{function_name} (@var{argument})
2247@end example
2248
2249@noindent
2250At the same time, we will add memory to the calculator, by allowing you
2251to create named variables, store values in them, and use them later.
2252Here is a sample session with the multi-function calculator:
2253
2254@example
9edcd895
AD
2255$ @kbd{mfcalc}
2256@kbd{pi = 3.141592653589}
bfa74976 22573.1415926536
9edcd895 2258@kbd{sin(pi)}
bfa74976 22590.0000000000
9edcd895 2260@kbd{alpha = beta1 = 2.3}
bfa74976 22612.3000000000
9edcd895 2262@kbd{alpha}
bfa74976 22632.3000000000
9edcd895 2264@kbd{ln(alpha)}
bfa74976 22650.8329091229
9edcd895 2266@kbd{exp(ln(beta1))}
bfa74976 22672.3000000000
9edcd895 2268$
bfa74976
RS
2269@end example
2270
2271Note that multiple assignment and nested function calls are permitted.
2272
2273@menu
f56274a8
DJ
2274* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2275* Mfcalc Rules:: Grammar rules for the calculator.
2276* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2277@end menu
2278
f56274a8 2279@node Mfcalc Declarations
bfa74976
RS
2280@subsection Declarations for @code{mfcalc}
2281
2282Here are the C and Bison declarations for the multi-function calculator.
2283
ea118b72
AD
2284@comment file: mfcalc.y
2285@example
18b519c0 2286@group
bfa74976 2287%@{
38a92d50
PE
2288 #include <math.h> /* For math functions, cos(), sin(), etc. */
2289 #include "calc.h" /* Contains definition of `symrec'. */
2290 int yylex (void);
2291 void yyerror (char const *);
bfa74976 2292%@}
18b519c0
AD
2293@end group
2294@group
bfa74976 2295%union @{
38a92d50
PE
2296 double val; /* For returning numbers. */
2297 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2298@}
18b519c0 2299@end group
38a92d50
PE
2300%token <val> NUM /* Simple double precision number. */
2301%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2302%type <val> exp
2303
18b519c0 2304@group
bfa74976
RS
2305%right '='
2306%left '-' '+'
2307%left '*' '/'
38a92d50
PE
2308%left NEG /* negation--unary minus */
2309%right '^' /* exponentiation */
18b519c0 2310@end group
38a92d50 2311%% /* The grammar follows. */
ea118b72 2312@end example
bfa74976
RS
2313
2314The above grammar introduces only two new features of the Bison language.
2315These features allow semantic values to have various data types
2316(@pxref{Multiple Types, ,More Than One Value Type}).
2317
2318The @code{%union} declaration specifies the entire list of possible types;
2319this is instead of defining @code{YYSTYPE}. The allowable types are now
2320double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2321the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2322
2323Since values can now have various types, it is necessary to associate a
2324type with each grammar symbol whose semantic value is used. These symbols
2325are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2326declarations are augmented with information about their data type (placed
2327between angle brackets).
2328
704a47c4
AD
2329The Bison construct @code{%type} is used for declaring nonterminal
2330symbols, just as @code{%token} is used for declaring token types. We
2331have not used @code{%type} before because nonterminal symbols are
2332normally declared implicitly by the rules that define them. But
2333@code{exp} must be declared explicitly so we can specify its value type.
2334@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2335
342b8b6e 2336@node Mfcalc Rules
bfa74976
RS
2337@subsection Grammar Rules for @code{mfcalc}
2338
2339Here are the grammar rules for the multi-function calculator.
2340Most of them are copied directly from @code{calc}; three rules,
2341those which mention @code{VAR} or @code{FNCT}, are new.
2342
ea118b72
AD
2343@comment file: mfcalc.y
2344@example
18b519c0 2345@group
de6be119
AD
2346input:
2347 /* empty */
2348| input line
bfa74976 2349;
18b519c0 2350@end group
bfa74976 2351
18b519c0 2352@group
bfa74976 2353line:
de6be119
AD
2354 '\n'
2355| exp '\n' @{ printf ("%.10g\n", $1); @}
2356| error '\n' @{ yyerrok; @}
bfa74976 2357;
18b519c0 2358@end group
bfa74976 2359
18b519c0 2360@group
de6be119
AD
2361exp:
2362 NUM @{ $$ = $1; @}
2363| VAR @{ $$ = $1->value.var; @}
2364| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2365| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2366| exp '+' exp @{ $$ = $1 + $3; @}
2367| exp '-' exp @{ $$ = $1 - $3; @}
2368| exp '*' exp @{ $$ = $1 * $3; @}
2369| exp '/' exp @{ $$ = $1 / $3; @}
2370| '-' exp %prec NEG @{ $$ = -$2; @}
2371| exp '^' exp @{ $$ = pow ($1, $3); @}
2372| '(' exp ')' @{ $$ = $2; @}
bfa74976 2373;
18b519c0 2374@end group
38a92d50 2375/* End of grammar. */
bfa74976 2376%%
ea118b72 2377@end example
bfa74976 2378
f56274a8 2379@node Mfcalc Symbol Table
bfa74976
RS
2380@subsection The @code{mfcalc} Symbol Table
2381@cindex symbol table example
2382
2383The multi-function calculator requires a symbol table to keep track of the
2384names and meanings of variables and functions. This doesn't affect the
2385grammar rules (except for the actions) or the Bison declarations, but it
2386requires some additional C functions for support.
2387
2388The symbol table itself consists of a linked list of records. Its
2389definition, which is kept in the header @file{calc.h}, is as follows. It
2390provides for either functions or variables to be placed in the table.
2391
ea118b72
AD
2392@comment file: calc.h
2393@example
bfa74976 2394@group
38a92d50 2395/* Function type. */
32dfccf8 2396typedef double (*func_t) (double);
72f889cc 2397@end group
32dfccf8 2398
72f889cc 2399@group
38a92d50 2400/* Data type for links in the chain of symbols. */
bfa74976
RS
2401struct symrec
2402@{
38a92d50 2403 char *name; /* name of symbol */
bfa74976 2404 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2405 union
2406 @{
38a92d50
PE
2407 double var; /* value of a VAR */
2408 func_t fnctptr; /* value of a FNCT */
bfa74976 2409 @} value;
38a92d50 2410 struct symrec *next; /* link field */
bfa74976
RS
2411@};
2412@end group
2413
2414@group
2415typedef struct symrec symrec;
2416
38a92d50 2417/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2418extern symrec *sym_table;
2419
a730d142 2420symrec *putsym (char const *, int);
38a92d50 2421symrec *getsym (char const *);
bfa74976 2422@end group
ea118b72 2423@end example
bfa74976
RS
2424
2425The new version of @code{main} includes a call to @code{init_table}, a
2426function that initializes the symbol table. Here it is, and
2427@code{init_table} as well:
2428
ea118b72 2429@example
bfa74976
RS
2430#include <stdio.h>
2431
18b519c0 2432@group
38a92d50 2433/* Called by yyparse on error. */
13863333 2434void
38a92d50 2435yyerror (char const *s)
bfa74976
RS
2436@{
2437 printf ("%s\n", s);
2438@}
18b519c0 2439@end group
bfa74976 2440
18b519c0 2441@group
bfa74976
RS
2442struct init
2443@{
38a92d50
PE
2444 char const *fname;
2445 double (*fnct) (double);
bfa74976
RS
2446@};
2447@end group
2448
2449@group
38a92d50 2450struct init const arith_fncts[] =
13863333 2451@{
32dfccf8
AD
2452 "sin", sin,
2453 "cos", cos,
13863333 2454 "atan", atan,
32dfccf8
AD
2455 "ln", log,
2456 "exp", exp,
13863333
AD
2457 "sqrt", sqrt,
2458 0, 0
2459@};
18b519c0 2460@end group
bfa74976 2461
18b519c0 2462@group
bfa74976 2463/* The symbol table: a chain of `struct symrec'. */
38a92d50 2464symrec *sym_table;
bfa74976
RS
2465@end group
2466
2467@group
72d2299c 2468/* Put arithmetic functions in table. */
13863333
AD
2469void
2470init_table (void)
bfa74976
RS
2471@{
2472 int i;
bfa74976
RS
2473 for (i = 0; arith_fncts[i].fname != 0; i++)
2474 @{
2c0f9706 2475 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2476 ptr->value.fnctptr = arith_fncts[i].fnct;
2477 @}
2478@}
2479@end group
38a92d50
PE
2480
2481@group
2482int
2483main (void)
2484@{
2485 init_table ();
2486 return yyparse ();
2487@}
2488@end group
ea118b72 2489@end example
bfa74976
RS
2490
2491By simply editing the initialization list and adding the necessary include
2492files, you can add additional functions to the calculator.
2493
2494Two important functions allow look-up and installation of symbols in the
2495symbol table. The function @code{putsym} is passed a name and the type
2496(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2497linked to the front of the list, and a pointer to the object is returned.
2498The function @code{getsym} is passed the name of the symbol to look up. If
2499found, a pointer to that symbol is returned; otherwise zero is returned.
2500
ea118b72
AD
2501@comment file: mfcalc.y
2502@example
98842516
AD
2503#include <stdlib.h> /* malloc. */
2504#include <string.h> /* strlen. */
2505
2506@group
bfa74976 2507symrec *
38a92d50 2508putsym (char const *sym_name, int sym_type)
bfa74976 2509@{
2c0f9706 2510 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2511 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2512 strcpy (ptr->name,sym_name);
2513 ptr->type = sym_type;
72d2299c 2514 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2515 ptr->next = (struct symrec *)sym_table;
2516 sym_table = ptr;
2517 return ptr;
2518@}
98842516 2519@end group
bfa74976 2520
98842516 2521@group
bfa74976 2522symrec *
38a92d50 2523getsym (char const *sym_name)
bfa74976
RS
2524@{
2525 symrec *ptr;
2526 for (ptr = sym_table; ptr != (symrec *) 0;
2527 ptr = (symrec *)ptr->next)
2528 if (strcmp (ptr->name,sym_name) == 0)
2529 return ptr;
2530 return 0;
2531@}
98842516 2532@end group
ea118b72 2533@end example
bfa74976
RS
2534
2535The function @code{yylex} must now recognize variables, numeric values, and
2536the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2537characters with a leading letter are recognized as either variables or
bfa74976
RS
2538functions depending on what the symbol table says about them.
2539
2540The string is passed to @code{getsym} for look up in the symbol table. If
2541the name appears in the table, a pointer to its location and its type
2542(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2543already in the table, then it is installed as a @code{VAR} using
2544@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2545returned to @code{yyparse}.
bfa74976
RS
2546
2547No change is needed in the handling of numeric values and arithmetic
2548operators in @code{yylex}.
2549
ea118b72
AD
2550@comment file: mfcalc.y
2551@example
bfa74976
RS
2552@group
2553#include <ctype.h>
18b519c0 2554@end group
13863333 2555
18b519c0 2556@group
13863333
AD
2557int
2558yylex (void)
bfa74976
RS
2559@{
2560 int c;
2561
72d2299c 2562 /* Ignore white space, get first nonwhite character. */
98842516
AD
2563 while ((c = getchar ()) == ' ' || c == '\t')
2564 continue;
bfa74976
RS
2565
2566 if (c == EOF)
2567 return 0;
2568@end group
2569
2570@group
2571 /* Char starts a number => parse the number. */
2572 if (c == '.' || isdigit (c))
2573 @{
2574 ungetc (c, stdin);
2575 scanf ("%lf", &yylval.val);
2576 return NUM;
2577 @}
2578@end group
2579
2580@group
2581 /* Char starts an identifier => read the name. */
2582 if (isalpha (c))
2583 @{
2c0f9706
AD
2584 /* Initially make the buffer long enough
2585 for a 40-character symbol name. */
2586 static size_t length = 40;
bfa74976 2587 static char *symbuf = 0;
2c0f9706 2588 symrec *s;
bfa74976
RS
2589 int i;
2590@end group
2591
2c0f9706
AD
2592 if (!symbuf)
2593 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2594
2595 i = 0;
2596 do
bfa74976
RS
2597@group
2598 @{
2599 /* If buffer is full, make it bigger. */
2600 if (i == length)
2601 @{
2602 length *= 2;
18b519c0 2603 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2604 @}
2605 /* Add this character to the buffer. */
2606 symbuf[i++] = c;
2607 /* Get another character. */
2608 c = getchar ();
2609 @}
2610@end group
2611@group
72d2299c 2612 while (isalnum (c));
bfa74976
RS
2613
2614 ungetc (c, stdin);
2615 symbuf[i] = '\0';
2616@end group
2617
2618@group
2619 s = getsym (symbuf);
2620 if (s == 0)
2621 s = putsym (symbuf, VAR);
2622 yylval.tptr = s;
2623 return s->type;
2624 @}
2625
2626 /* Any other character is a token by itself. */
2627 return c;
2628@}
2629@end group
ea118b72 2630@end example
bfa74976 2631
72d2299c 2632This program is both powerful and flexible. You may easily add new
704a47c4
AD
2633functions, and it is a simple job to modify this code to install
2634predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2635
342b8b6e 2636@node Exercises
bfa74976
RS
2637@section Exercises
2638@cindex exercises
2639
2640@enumerate
2641@item
2642Add some new functions from @file{math.h} to the initialization list.
2643
2644@item
2645Add another array that contains constants and their values. Then
2646modify @code{init_table} to add these constants to the symbol table.
2647It will be easiest to give the constants type @code{VAR}.
2648
2649@item
2650Make the program report an error if the user refers to an
2651uninitialized variable in any way except to store a value in it.
2652@end enumerate
2653
342b8b6e 2654@node Grammar File
bfa74976
RS
2655@chapter Bison Grammar Files
2656
2657Bison takes as input a context-free grammar specification and produces a
2658C-language function that recognizes correct instances of the grammar.
2659
9913d6e4 2660The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2661@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2662
2663@menu
7404cdf3
JD
2664* Grammar Outline:: Overall layout of the grammar file.
2665* Symbols:: Terminal and nonterminal symbols.
2666* Rules:: How to write grammar rules.
2667* Recursion:: Writing recursive rules.
2668* Semantics:: Semantic values and actions.
2669* Tracking Locations:: Locations and actions.
2670* Named References:: Using named references in actions.
2671* Declarations:: All kinds of Bison declarations are described here.
2672* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2673@end menu
2674
342b8b6e 2675@node Grammar Outline
bfa74976
RS
2676@section Outline of a Bison Grammar
2677
2678A Bison grammar file has four main sections, shown here with the
2679appropriate delimiters:
2680
2681@example
2682%@{
38a92d50 2683 @var{Prologue}
bfa74976
RS
2684%@}
2685
2686@var{Bison declarations}
2687
2688%%
2689@var{Grammar rules}
2690%%
2691
75f5aaea 2692@var{Epilogue}
bfa74976
RS
2693@end example
2694
2695Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2696As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2697continues until end of line.
bfa74976
RS
2698
2699@menu
f56274a8 2700* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2701* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2702* Bison Declarations:: Syntax and usage of the Bison declarations section.
2703* Grammar Rules:: Syntax and usage of the grammar rules section.
2704* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2705@end menu
2706
38a92d50 2707@node Prologue
75f5aaea
MA
2708@subsection The prologue
2709@cindex declarations section
2710@cindex Prologue
2711@cindex declarations
bfa74976 2712
f8e1c9e5
AD
2713The @var{Prologue} section contains macro definitions and declarations
2714of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2715rules. These are copied to the beginning of the parser implementation
2716file so that they precede the definition of @code{yyparse}. You can
2717use @samp{#include} to get the declarations from a header file. If
2718you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2719@samp{%@}} delimiters that bracket this section.
bfa74976 2720
9c437126 2721The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2722of @samp{%@}} that is outside a comment, a string literal, or a
2723character constant.
2724
c732d2c6
AD
2725You may have more than one @var{Prologue} section, intermixed with the
2726@var{Bison declarations}. This allows you to have C and Bison
2727declarations that refer to each other. For example, the @code{%union}
2728declaration may use types defined in a header file, and you may wish to
2729prototype functions that take arguments of type @code{YYSTYPE}. This
2730can be done with two @var{Prologue} blocks, one before and one after the
2731@code{%union} declaration.
2732
ea118b72 2733@example
c732d2c6 2734%@{
aef3da86 2735 #define _GNU_SOURCE
38a92d50
PE
2736 #include <stdio.h>
2737 #include "ptypes.h"
c732d2c6
AD
2738%@}
2739
2740%union @{
779e7ceb 2741 long int n;
c732d2c6
AD
2742 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2743@}
2744
2745%@{
38a92d50
PE
2746 static void print_token_value (FILE *, int, YYSTYPE);
2747 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2748%@}
2749
2750@dots{}
ea118b72 2751@end example
c732d2c6 2752
aef3da86
PE
2753When in doubt, it is usually safer to put prologue code before all
2754Bison declarations, rather than after. For example, any definitions
2755of feature test macros like @code{_GNU_SOURCE} or
2756@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2757feature test macros can affect the behavior of Bison-generated
2758@code{#include} directives.
2759
2cbe6b7f
JD
2760@node Prologue Alternatives
2761@subsection Prologue Alternatives
2762@cindex Prologue Alternatives
2763
136a0f76 2764@findex %code
16dc6a9e
JD
2765@findex %code requires
2766@findex %code provides
2767@findex %code top
85894313 2768
2cbe6b7f 2769The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2770inflexible. As an alternative, Bison provides a @code{%code}
2771directive with an explicit qualifier field, which identifies the
2772purpose of the code and thus the location(s) where Bison should
2773generate it. For C/C++, the qualifier can be omitted for the default
2774location, or it can be one of @code{requires}, @code{provides},
8e6f2266 2775@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2776
2777Look again at the example of the previous section:
2778
ea118b72 2779@example
2cbe6b7f
JD
2780%@{
2781 #define _GNU_SOURCE
2782 #include <stdio.h>
2783 #include "ptypes.h"
2784%@}
2785
2786%union @{
2787 long int n;
2788 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2789@}
2790
2791%@{
2792 static void print_token_value (FILE *, int, YYSTYPE);
2793 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2794%@}
2795
2796@dots{}
ea118b72 2797@end example
2cbe6b7f
JD
2798
2799@noindent
9913d6e4
JD
2800Notice that there are two @var{Prologue} sections here, but there's a
2801subtle distinction between their functionality. For example, if you
2802decide to override Bison's default definition for @code{YYLTYPE}, in
2803which @var{Prologue} section should you write your new definition?
2804You should write it in the first since Bison will insert that code
2805into the parser implementation file @emph{before} the default
2806@code{YYLTYPE} definition. In which @var{Prologue} section should you
2807prototype an internal function, @code{trace_token}, that accepts
2808@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2809prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2810@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2811
2812This distinction in functionality between the two @var{Prologue} sections is
2813established by the appearance of the @code{%union} between them.
a501eca9 2814This behavior raises a few questions.
2cbe6b7f
JD
2815First, why should the position of a @code{%union} affect definitions related to
2816@code{YYLTYPE} and @code{yytokentype}?
2817Second, what if there is no @code{%union}?
2818In that case, the second kind of @var{Prologue} section is not available.
2819This behavior is not intuitive.
2820
8e0a5e9e 2821To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2822@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2823Let's go ahead and add the new @code{YYLTYPE} definition and the
2824@code{trace_token} prototype at the same time:
2825
ea118b72 2826@example
16dc6a9e 2827%code top @{
2cbe6b7f
JD
2828 #define _GNU_SOURCE
2829 #include <stdio.h>
8e0a5e9e
JD
2830
2831 /* WARNING: The following code really belongs
16dc6a9e 2832 * in a `%code requires'; see below. */
8e0a5e9e 2833
2cbe6b7f
JD
2834 #include "ptypes.h"
2835 #define YYLTYPE YYLTYPE
2836 typedef struct YYLTYPE
2837 @{
2838 int first_line;
2839 int first_column;
2840 int last_line;
2841 int last_column;
2842 char *filename;
2843 @} YYLTYPE;
2844@}
2845
2846%union @{
2847 long int n;
2848 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2849@}
2850
2851%code @{
2852 static void print_token_value (FILE *, int, YYSTYPE);
2853 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2854 static void trace_token (enum yytokentype token, YYLTYPE loc);
2855@}
2856
2857@dots{}
ea118b72 2858@end example
2cbe6b7f
JD
2859
2860@noindent
16dc6a9e
JD
2861In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2862functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2863explicit which kind you intend.
2cbe6b7f
JD
2864Moreover, both kinds are always available even in the absence of @code{%union}.
2865
9913d6e4
JD
2866The @code{%code top} block above logically contains two parts. The
2867first two lines before the warning need to appear near the top of the
2868parser implementation file. The first line after the warning is
2869required by @code{YYSTYPE} and thus also needs to appear in the parser
2870implementation file. However, if you've instructed Bison to generate
2871a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2872want that line to appear before the @code{YYSTYPE} definition in that
2873header file as well. The @code{YYLTYPE} definition should also appear
2874in the parser header file to override the default @code{YYLTYPE}
2875definition there.
2cbe6b7f 2876
16dc6a9e 2877In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2878lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2879definitions.
16dc6a9e 2880Thus, they belong in one or more @code{%code requires}:
9bc0dd67 2881
ea118b72 2882@example
98842516 2883@group
16dc6a9e 2884%code top @{
2cbe6b7f
JD
2885 #define _GNU_SOURCE
2886 #include <stdio.h>
2887@}
98842516 2888@end group
2cbe6b7f 2889
98842516 2890@group
16dc6a9e 2891%code requires @{
9bc0dd67
JD
2892 #include "ptypes.h"
2893@}
98842516
AD
2894@end group
2895@group
9bc0dd67
JD
2896%union @{
2897 long int n;
2898 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2899@}
98842516 2900@end group
9bc0dd67 2901
98842516 2902@group
16dc6a9e 2903%code requires @{
2cbe6b7f
JD
2904 #define YYLTYPE YYLTYPE
2905 typedef struct YYLTYPE
2906 @{
2907 int first_line;
2908 int first_column;
2909 int last_line;
2910 int last_column;
2911 char *filename;
2912 @} YYLTYPE;
2913@}
98842516 2914@end group
2cbe6b7f 2915
98842516 2916@group
136a0f76 2917%code @{
2cbe6b7f
JD
2918 static void print_token_value (FILE *, int, YYSTYPE);
2919 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2920 static void trace_token (enum yytokentype token, YYLTYPE loc);
2921@}
98842516 2922@end group
2cbe6b7f
JD
2923
2924@dots{}
ea118b72 2925@end example
2cbe6b7f
JD
2926
2927@noindent
9913d6e4
JD
2928Now Bison will insert @code{#include "ptypes.h"} and the new
2929@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2930and @code{YYLTYPE} definitions in both the parser implementation file
2931and the parser header file. (By the same reasoning, @code{%code
2932requires} would also be the appropriate place to write your own
2933definition for @code{YYSTYPE}.)
2934
2935When you are writing dependency code for @code{YYSTYPE} and
2936@code{YYLTYPE}, you should prefer @code{%code requires} over
2937@code{%code top} regardless of whether you instruct Bison to generate
2938a parser header file. When you are writing code that you need Bison
2939to insert only into the parser implementation file and that has no
2940special need to appear at the top of that file, you should prefer the
2941unqualified @code{%code} over @code{%code top}. These practices will
2942make the purpose of each block of your code explicit to Bison and to
2943other developers reading your grammar file. Following these
2944practices, we expect the unqualified @code{%code} and @code{%code
2945requires} to be the most important of the four @var{Prologue}
16dc6a9e 2946alternatives.
a501eca9 2947
9913d6e4
JD
2948At some point while developing your parser, you might decide to
2949provide @code{trace_token} to modules that are external to your
2950parser. Thus, you might wish for Bison to insert the prototype into
2951both the parser header file and the parser implementation file. Since
2952this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2953@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
2954@code{%code requires}. More importantly, since it depends upon
2955@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2956sufficient. Instead, move its prototype from the unqualified
2957@code{%code} to a @code{%code provides}:
2cbe6b7f 2958
ea118b72 2959@example
98842516 2960@group
16dc6a9e 2961%code top @{
2cbe6b7f 2962 #define _GNU_SOURCE
136a0f76 2963 #include <stdio.h>
2cbe6b7f 2964@}
98842516 2965@end group
136a0f76 2966
98842516 2967@group
16dc6a9e 2968%code requires @{
2cbe6b7f
JD
2969 #include "ptypes.h"
2970@}
98842516
AD
2971@end group
2972@group
2cbe6b7f
JD
2973%union @{
2974 long int n;
2975 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2976@}
98842516 2977@end group
2cbe6b7f 2978
98842516 2979@group
16dc6a9e 2980%code requires @{
2cbe6b7f
JD
2981 #define YYLTYPE YYLTYPE
2982 typedef struct YYLTYPE
2983 @{
2984 int first_line;
2985 int first_column;
2986 int last_line;
2987 int last_column;
2988 char *filename;
2989 @} YYLTYPE;
2990@}
98842516 2991@end group
2cbe6b7f 2992
98842516 2993@group
16dc6a9e 2994%code provides @{
2cbe6b7f
JD
2995 void trace_token (enum yytokentype token, YYLTYPE loc);
2996@}
98842516 2997@end group
2cbe6b7f 2998
98842516 2999@group
2cbe6b7f 3000%code @{
9bc0dd67
JD
3001 static void print_token_value (FILE *, int, YYSTYPE);
3002 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3003@}
98842516 3004@end group
9bc0dd67
JD
3005
3006@dots{}
ea118b72 3007@end example
9bc0dd67 3008
2cbe6b7f 3009@noindent
9913d6e4
JD
3010Bison will insert the @code{trace_token} prototype into both the
3011parser header file and the parser implementation file after the
3012definitions for @code{yytokentype}, @code{YYLTYPE}, and
3013@code{YYSTYPE}.
3014
3015The above examples are careful to write directives in an order that
3016reflects the layout of the generated parser implementation and header
3017files: @code{%code top}, @code{%code requires}, @code{%code provides},
3018and then @code{%code}. While your grammar files may generally be
3019easier to read if you also follow this order, Bison does not require
3020it. Instead, Bison lets you choose an organization that makes sense
3021to you.
2cbe6b7f 3022
a501eca9 3023You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3024In that case, Bison concatenates the contained code in declaration order.
3025This is the only way in which the position of one of these directives within
3026the grammar file affects its functionality.
3027
3028The result of the previous two properties is greater flexibility in how you may
3029organize your grammar file.
3030For example, you may organize semantic-type-related directives by semantic
3031type:
3032
ea118b72 3033@example
98842516 3034@group
16dc6a9e 3035%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3036%union @{ type1 field1; @}
3037%destructor @{ type1_free ($$); @} <field1>
3038%printer @{ type1_print ($$); @} <field1>
98842516 3039@end group
2cbe6b7f 3040
98842516 3041@group
16dc6a9e 3042%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3043%union @{ type2 field2; @}
3044%destructor @{ type2_free ($$); @} <field2>
3045%printer @{ type2_print ($$); @} <field2>
98842516 3046@end group
ea118b72 3047@end example
2cbe6b7f
JD
3048
3049@noindent
3050You could even place each of the above directive groups in the rules section of
3051the grammar file next to the set of rules that uses the associated semantic
3052type.
61fee93e
JD
3053(In the rules section, you must terminate each of those directives with a
3054semicolon.)
2cbe6b7f
JD
3055And you don't have to worry that some directive (like a @code{%union}) in the
3056definitions section is going to adversely affect their functionality in some
3057counter-intuitive manner just because it comes first.
3058Such an organization is not possible using @var{Prologue} sections.
3059
a501eca9 3060This section has been concerned with explaining the advantages of the four
8e0a5e9e 3061@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3062However, in most cases when using these directives, you shouldn't need to
3063think about all the low-level ordering issues discussed here.
3064Instead, you should simply use these directives to label each block of your
3065code according to its purpose and let Bison handle the ordering.
3066@code{%code} is the most generic label.
16dc6a9e
JD
3067Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3068as needed.
a501eca9 3069
342b8b6e 3070@node Bison Declarations
bfa74976
RS
3071@subsection The Bison Declarations Section
3072@cindex Bison declarations (introduction)
3073@cindex declarations, Bison (introduction)
3074
3075The @var{Bison declarations} section contains declarations that define
3076terminal and nonterminal symbols, specify precedence, and so on.
3077In some simple grammars you may not need any declarations.
3078@xref{Declarations, ,Bison Declarations}.
3079
342b8b6e 3080@node Grammar Rules
bfa74976
RS
3081@subsection The Grammar Rules Section
3082@cindex grammar rules section
3083@cindex rules section for grammar
3084
3085The @dfn{grammar rules} section contains one or more Bison grammar
3086rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3087
3088There must always be at least one grammar rule, and the first
3089@samp{%%} (which precedes the grammar rules) may never be omitted even
3090if it is the first thing in the file.
3091
38a92d50 3092@node Epilogue
75f5aaea 3093@subsection The epilogue
bfa74976 3094@cindex additional C code section
75f5aaea 3095@cindex epilogue
bfa74976
RS
3096@cindex C code, section for additional
3097
9913d6e4
JD
3098The @var{Epilogue} is copied verbatim to the end of the parser
3099implementation file, just as the @var{Prologue} is copied to the
3100beginning. This is the most convenient place to put anything that you
3101want to have in the parser implementation file but which need not come
3102before the definition of @code{yyparse}. For example, the definitions
3103of @code{yylex} and @code{yyerror} often go here. Because C requires
3104functions to be declared before being used, you often need to declare
3105functions like @code{yylex} and @code{yyerror} in the Prologue, even
3106if you define them in the Epilogue. @xref{Interface, ,Parser
3107C-Language Interface}.
bfa74976
RS
3108
3109If the last section is empty, you may omit the @samp{%%} that separates it
3110from the grammar rules.
3111
f8e1c9e5
AD
3112The Bison parser itself contains many macros and identifiers whose names
3113start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3114any such names (except those documented in this manual) in the epilogue
3115of the grammar file.
bfa74976 3116
342b8b6e 3117@node Symbols
bfa74976
RS
3118@section Symbols, Terminal and Nonterminal
3119@cindex nonterminal symbol
3120@cindex terminal symbol
3121@cindex token type
3122@cindex symbol
3123
3124@dfn{Symbols} in Bison grammars represent the grammatical classifications
3125of the language.
3126
3127A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3128class of syntactically equivalent tokens. You use the symbol in grammar
3129rules to mean that a token in that class is allowed. The symbol is
3130represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3131function returns a token type code to indicate what kind of token has
3132been read. You don't need to know what the code value is; you can use
3133the symbol to stand for it.
bfa74976 3134
f8e1c9e5
AD
3135A @dfn{nonterminal symbol} stands for a class of syntactically
3136equivalent groupings. The symbol name is used in writing grammar rules.
3137By convention, it should be all lower case.
bfa74976 3138
eb8c66bb
JD
3139Symbol names can contain letters, underscores, periods, and non-initial
3140digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3141with POSIX Yacc. Periods and dashes make symbol names less convenient to
3142use with named references, which require brackets around such names
3143(@pxref{Named References}). Terminal symbols that contain periods or dashes
3144make little sense: since they are not valid symbols (in most programming
3145languages) they are not exported as token names.
bfa74976 3146
931c7513 3147There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3148
3149@itemize @bullet
3150@item
3151A @dfn{named token type} is written with an identifier, like an
c827f760 3152identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3153such name must be defined with a Bison declaration such as
3154@code{%token}. @xref{Token Decl, ,Token Type Names}.
3155
3156@item
3157@cindex character token
3158@cindex literal token
3159@cindex single-character literal
931c7513
RS
3160A @dfn{character token type} (or @dfn{literal character token}) is
3161written in the grammar using the same syntax used in C for character
3162constants; for example, @code{'+'} is a character token type. A
3163character token type doesn't need to be declared unless you need to
3164specify its semantic value data type (@pxref{Value Type, ,Data Types of
3165Semantic Values}), associativity, or precedence (@pxref{Precedence,
3166,Operator Precedence}).
bfa74976
RS
3167
3168By convention, a character token type is used only to represent a
3169token that consists of that particular character. Thus, the token
3170type @code{'+'} is used to represent the character @samp{+} as a
3171token. Nothing enforces this convention, but if you depart from it,
3172your program will confuse other readers.
3173
3174All the usual escape sequences used in character literals in C can be
3175used in Bison as well, but you must not use the null character as a
72d2299c
PE
3176character literal because its numeric code, zero, signifies
3177end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3178for @code{yylex}}). Also, unlike standard C, trigraphs have no
3179special meaning in Bison character literals, nor is backslash-newline
3180allowed.
931c7513
RS
3181
3182@item
3183@cindex string token
3184@cindex literal string token
9ecbd125 3185@cindex multicharacter literal
931c7513
RS
3186A @dfn{literal string token} is written like a C string constant; for
3187example, @code{"<="} is a literal string token. A literal string token
3188doesn't need to be declared unless you need to specify its semantic
14ded682 3189value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3190(@pxref{Precedence}).
3191
3192You can associate the literal string token with a symbolic name as an
3193alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3194Declarations}). If you don't do that, the lexical analyzer has to
3195retrieve the token number for the literal string token from the
3196@code{yytname} table (@pxref{Calling Convention}).
3197
c827f760 3198@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3199
3200By convention, a literal string token is used only to represent a token
3201that consists of that particular string. Thus, you should use the token
3202type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3203does not enforce this convention, but if you depart from it, people who
931c7513
RS
3204read your program will be confused.
3205
3206All the escape sequences used in string literals in C can be used in
92ac3705
PE
3207Bison as well, except that you must not use a null character within a
3208string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3209meaning in Bison string literals, nor is backslash-newline allowed. A
3210literal string token must contain two or more characters; for a token
3211containing just one character, use a character token (see above).
bfa74976
RS
3212@end itemize
3213
3214How you choose to write a terminal symbol has no effect on its
3215grammatical meaning. That depends only on where it appears in rules and
3216on when the parser function returns that symbol.
3217
72d2299c
PE
3218The value returned by @code{yylex} is always one of the terminal
3219symbols, except that a zero or negative value signifies end-of-input.
3220Whichever way you write the token type in the grammar rules, you write
3221it the same way in the definition of @code{yylex}. The numeric code
3222for a character token type is simply the positive numeric code of the
3223character, so @code{yylex} can use the identical value to generate the
3224requisite code, though you may need to convert it to @code{unsigned
3225char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3226Each named token type becomes a C macro in the parser implementation
3227file, so @code{yylex} can use the name to stand for the code. (This
3228is why periods don't make sense in terminal symbols.) @xref{Calling
3229Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3230
3231If @code{yylex} is defined in a separate file, you need to arrange for the
3232token-type macro definitions to be available there. Use the @samp{-d}
3233option when you run Bison, so that it will write these macro definitions
3234into a separate header file @file{@var{name}.tab.h} which you can include
3235in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3236
72d2299c 3237If you want to write a grammar that is portable to any Standard C
9d9b8b70 3238host, you must use only nonnull character tokens taken from the basic
c827f760 3239execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3240digits, the 52 lower- and upper-case English letters, and the
3241characters in the following C-language string:
3242
3243@example
3244"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3245@end example
3246
f8e1c9e5
AD
3247The @code{yylex} function and Bison must use a consistent character set
3248and encoding for character tokens. For example, if you run Bison in an
35430378 3249ASCII environment, but then compile and run the resulting
f8e1c9e5 3250program in an environment that uses an incompatible character set like
35430378
JD
3251EBCDIC, the resulting program may not work because the tables
3252generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3253character tokens. It is standard practice for software distributions to
3254contain C source files that were generated by Bison in an
35430378
JD
3255ASCII environment, so installers on platforms that are
3256incompatible with ASCII must rebuild those files before
f8e1c9e5 3257compiling them.
e966383b 3258
bfa74976
RS
3259The symbol @code{error} is a terminal symbol reserved for error recovery
3260(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3261In particular, @code{yylex} should never return this value. The default
3262value of the error token is 256, unless you explicitly assigned 256 to
3263one of your tokens with a @code{%token} declaration.
bfa74976 3264
342b8b6e 3265@node Rules
bfa74976
RS
3266@section Syntax of Grammar Rules
3267@cindex rule syntax
3268@cindex grammar rule syntax
3269@cindex syntax of grammar rules
3270
3271A Bison grammar rule has the following general form:
3272
3273@example
e425e872 3274@group
de6be119 3275@var{result}: @var{components}@dots{};
e425e872 3276@end group
bfa74976
RS
3277@end example
3278
3279@noindent
9ecbd125 3280where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3281and @var{components} are various terminal and nonterminal symbols that
13863333 3282are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3283
3284For example,
3285
3286@example
3287@group
de6be119 3288exp: exp '+' exp;
bfa74976
RS
3289@end group
3290@end example
3291
3292@noindent
3293says that two groupings of type @code{exp}, with a @samp{+} token in between,
3294can be combined into a larger grouping of type @code{exp}.
3295
72d2299c
PE
3296White space in rules is significant only to separate symbols. You can add
3297extra white space as you wish.
bfa74976
RS
3298
3299Scattered among the components can be @var{actions} that determine
3300the semantics of the rule. An action looks like this:
3301
3302@example
3303@{@var{C statements}@}
3304@end example
3305
3306@noindent
287c78f6
PE
3307@cindex braced code
3308This is an example of @dfn{braced code}, that is, C code surrounded by
3309braces, much like a compound statement in C@. Braced code can contain
3310any sequence of C tokens, so long as its braces are balanced. Bison
3311does not check the braced code for correctness directly; it merely
9913d6e4
JD
3312copies the code to the parser implementation file, where the C
3313compiler can check it.
287c78f6
PE
3314
3315Within braced code, the balanced-brace count is not affected by braces
3316within comments, string literals, or character constants, but it is
3317affected by the C digraphs @samp{<%} and @samp{%>} that represent
3318braces. At the top level braced code must be terminated by @samp{@}}
3319and not by a digraph. Bison does not look for trigraphs, so if braced
3320code uses trigraphs you should ensure that they do not affect the
3321nesting of braces or the boundaries of comments, string literals, or
3322character constants.
3323
bfa74976
RS
3324Usually there is only one action and it follows the components.
3325@xref{Actions}.
3326
3327@findex |
3328Multiple rules for the same @var{result} can be written separately or can
3329be joined with the vertical-bar character @samp{|} as follows:
3330
bfa74976
RS
3331@example
3332@group
de6be119
AD
3333@var{result}:
3334 @var{rule1-components}@dots{}
3335| @var{rule2-components}@dots{}
3336@dots{}
3337;
bfa74976
RS
3338@end group
3339@end example
bfa74976
RS
3340
3341@noindent
3342They are still considered distinct rules even when joined in this way.
3343
3344If @var{components} in a rule is empty, it means that @var{result} can
3345match the empty string. For example, here is how to define a
3346comma-separated sequence of zero or more @code{exp} groupings:
3347
3348@example
3349@group
de6be119
AD
3350expseq:
3351 /* empty */
3352| expseq1
3353;
bfa74976
RS
3354@end group
3355
3356@group
de6be119
AD
3357expseq1:
3358 exp
3359| expseq1 ',' exp
3360;
bfa74976
RS
3361@end group
3362@end example
3363
3364@noindent
3365It is customary to write a comment @samp{/* empty */} in each rule
3366with no components.
3367
342b8b6e 3368@node Recursion
bfa74976
RS
3369@section Recursive Rules
3370@cindex recursive rule
3371
f8e1c9e5
AD
3372A rule is called @dfn{recursive} when its @var{result} nonterminal
3373appears also on its right hand side. Nearly all Bison grammars need to
3374use recursion, because that is the only way to define a sequence of any
3375number of a particular thing. Consider this recursive definition of a
9ecbd125 3376comma-separated sequence of one or more expressions:
bfa74976
RS
3377
3378@example
3379@group
de6be119
AD
3380expseq1:
3381 exp
3382| expseq1 ',' exp
3383;
bfa74976
RS
3384@end group
3385@end example
3386
3387@cindex left recursion
3388@cindex right recursion
3389@noindent
3390Since the recursive use of @code{expseq1} is the leftmost symbol in the
3391right hand side, we call this @dfn{left recursion}. By contrast, here
3392the same construct is defined using @dfn{right recursion}:
3393
3394@example
3395@group
de6be119
AD
3396expseq1:
3397 exp
3398| exp ',' expseq1
3399;
bfa74976
RS
3400@end group
3401@end example
3402
3403@noindent
ec3bc396
AD
3404Any kind of sequence can be defined using either left recursion or right
3405recursion, but you should always use left recursion, because it can
3406parse a sequence of any number of elements with bounded stack space.
3407Right recursion uses up space on the Bison stack in proportion to the
3408number of elements in the sequence, because all the elements must be
3409shifted onto the stack before the rule can be applied even once.
3410@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3411of this.
bfa74976
RS
3412
3413@cindex mutual recursion
3414@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3415rule does not appear directly on its right hand side, but does appear
3416in rules for other nonterminals which do appear on its right hand
13863333 3417side.
bfa74976
RS
3418
3419For example:
3420
3421@example
3422@group
de6be119
AD
3423expr:
3424 primary
3425| primary '+' primary
3426;
bfa74976
RS
3427@end group
3428
3429@group
de6be119
AD
3430primary:
3431 constant
3432| '(' expr ')'
3433;
bfa74976
RS
3434@end group
3435@end example
3436
3437@noindent
3438defines two mutually-recursive nonterminals, since each refers to the
3439other.
3440
342b8b6e 3441@node Semantics
bfa74976
RS
3442@section Defining Language Semantics
3443@cindex defining language semantics
13863333 3444@cindex language semantics, defining
bfa74976
RS
3445
3446The grammar rules for a language determine only the syntax. The semantics
3447are determined by the semantic values associated with various tokens and
3448groupings, and by the actions taken when various groupings are recognized.
3449
3450For example, the calculator calculates properly because the value
3451associated with each expression is the proper number; it adds properly
3452because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3453the numbers associated with @var{x} and @var{y}.
3454
3455@menu
3456* Value Type:: Specifying one data type for all semantic values.
3457* Multiple Types:: Specifying several alternative data types.
3458* Actions:: An action is the semantic definition of a grammar rule.
3459* Action Types:: Specifying data types for actions to operate on.
3460* Mid-Rule Actions:: Most actions go at the end of a rule.
3461 This says when, why and how to use the exceptional
3462 action in the middle of a rule.
3463@end menu
3464
342b8b6e 3465@node Value Type
bfa74976
RS
3466@subsection Data Types of Semantic Values
3467@cindex semantic value type
3468@cindex value type, semantic
3469@cindex data types of semantic values
3470@cindex default data type
3471
3472In a simple program it may be sufficient to use the same data type for
3473the semantic values of all language constructs. This was true in the
35430378 3474RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3475Notation Calculator}).
bfa74976 3476
ddc8ede1
PE
3477Bison normally uses the type @code{int} for semantic values if your
3478program uses the same data type for all language constructs. To
bfa74976
RS
3479specify some other type, define @code{YYSTYPE} as a macro, like this:
3480
3481@example
3482#define YYSTYPE double
3483@end example
3484
3485@noindent
50cce58e
PE
3486@code{YYSTYPE}'s replacement list should be a type name
3487that does not contain parentheses or square brackets.
342b8b6e 3488This macro definition must go in the prologue of the grammar file
75f5aaea 3489(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3490
342b8b6e 3491@node Multiple Types
bfa74976
RS
3492@subsection More Than One Value Type
3493
3494In most programs, you will need different data types for different kinds
3495of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3496@code{int} or @code{long int}, while a string constant needs type
3497@code{char *}, and an identifier might need a pointer to an entry in the
3498symbol table.
bfa74976
RS
3499
3500To use more than one data type for semantic values in one parser, Bison
3501requires you to do two things:
3502
3503@itemize @bullet
3504@item
ddc8ede1 3505Specify the entire collection of possible data types, either by using the
704a47c4 3506@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3507Value Types}), or by using a @code{typedef} or a @code{#define} to
3508define @code{YYSTYPE} to be a union type whose member names are
3509the type tags.
bfa74976
RS
3510
3511@item
14ded682
AD
3512Choose one of those types for each symbol (terminal or nonterminal) for
3513which semantic values are used. This is done for tokens with the
3514@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3515and for groupings with the @code{%type} Bison declaration (@pxref{Type
3516Decl, ,Nonterminal Symbols}).
bfa74976
RS
3517@end itemize
3518
342b8b6e 3519@node Actions
bfa74976
RS
3520@subsection Actions
3521@cindex action
3522@vindex $$
3523@vindex $@var{n}
1f68dca5
AR
3524@vindex $@var{name}
3525@vindex $[@var{name}]
bfa74976
RS
3526
3527An action accompanies a syntactic rule and contains C code to be executed
3528each time an instance of that rule is recognized. The task of most actions
3529is to compute a semantic value for the grouping built by the rule from the
3530semantic values associated with tokens or smaller groupings.
3531
287c78f6
PE
3532An action consists of braced code containing C statements, and can be
3533placed at any position in the rule;
704a47c4
AD
3534it is executed at that position. Most rules have just one action at the
3535end of the rule, following all the components. Actions in the middle of
3536a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3537Actions, ,Actions in Mid-Rule}).
bfa74976 3538
9913d6e4
JD
3539The C code in an action can refer to the semantic values of the
3540components matched by the rule with the construct @code{$@var{n}},
3541which stands for the value of the @var{n}th component. The semantic
3542value for the grouping being constructed is @code{$$}. In addition,
3543the semantic values of symbols can be accessed with the named
3544references construct @code{$@var{name}} or @code{$[@var{name}]}.
3545Bison translates both of these constructs into expressions of the
3546appropriate type when it copies the actions into the parser
3547implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3548for the current grouping) is translated to a modifiable lvalue, so it
3549can be assigned to.
bfa74976
RS
3550
3551Here is a typical example:
3552
3553@example
3554@group
de6be119
AD
3555exp:
3556@dots{}
3557| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3558@end group
3559@end example
3560
1f68dca5
AR
3561Or, in terms of named references:
3562
3563@example
3564@group
de6be119
AD
3565exp[result]:
3566@dots{}
3567| exp[left] '+' exp[right] @{ $result = $left + $right; @}
1f68dca5
AR
3568@end group
3569@end example
3570
bfa74976
RS
3571@noindent
3572This rule constructs an @code{exp} from two smaller @code{exp} groupings
3573connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3574(@code{$left} and @code{$right})
bfa74976
RS
3575refer to the semantic values of the two component @code{exp} groupings,
3576which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3577The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3578semantic value of
bfa74976
RS
3579the addition-expression just recognized by the rule. If there were a
3580useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3581referred to as @code{$2}.
bfa74976 3582
ce24f7f5
JD
3583@xref{Named References}, for more information about using the named
3584references construct.
1f68dca5 3585
3ded9a63
AD
3586Note that the vertical-bar character @samp{|} is really a rule
3587separator, and actions are attached to a single rule. This is a
3588difference with tools like Flex, for which @samp{|} stands for either
3589``or'', or ``the same action as that of the next rule''. In the
3590following example, the action is triggered only when @samp{b} is found:
3591
3592@example
3593@group
3594a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3595@end group
3596@end example
3597
bfa74976
RS
3598@cindex default action
3599If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3600@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3601becomes the value of the whole rule. Of course, the default action is
3602valid only if the two data types match. There is no meaningful default
3603action for an empty rule; every empty rule must have an explicit action
3604unless the rule's value does not matter.
bfa74976
RS
3605
3606@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3607to tokens and groupings on the stack @emph{before} those that match the
3608current rule. This is a very risky practice, and to use it reliably
3609you must be certain of the context in which the rule is applied. Here
3610is a case in which you can use this reliably:
3611
3612@example
3613@group
de6be119
AD
3614foo:
3615 expr bar '+' expr @{ @dots{} @}
3616| expr bar '-' expr @{ @dots{} @}
3617;
bfa74976
RS
3618@end group
3619
3620@group
de6be119
AD
3621bar:
3622 /* empty */ @{ previous_expr = $0; @}
3623;
bfa74976
RS
3624@end group
3625@end example
3626
3627As long as @code{bar} is used only in the fashion shown here, @code{$0}
3628always refers to the @code{expr} which precedes @code{bar} in the
3629definition of @code{foo}.
3630
32c29292 3631@vindex yylval
742e4900 3632It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3633any, from a semantic action.
3634This semantic value is stored in @code{yylval}.
3635@xref{Action Features, ,Special Features for Use in Actions}.
3636
342b8b6e 3637@node Action Types
bfa74976
RS
3638@subsection Data Types of Values in Actions
3639@cindex action data types
3640@cindex data types in actions
3641
3642If you have chosen a single data type for semantic values, the @code{$$}
3643and @code{$@var{n}} constructs always have that data type.
3644
3645If you have used @code{%union} to specify a variety of data types, then you
3646must declare a choice among these types for each terminal or nonterminal
3647symbol that can have a semantic value. Then each time you use @code{$$} or
3648@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3649in the rule. In this example,
bfa74976
RS
3650
3651@example
3652@group
de6be119
AD
3653exp:
3654 @dots{}
3655| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3656@end group
3657@end example
3658
3659@noindent
3660@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3661have the data type declared for the nonterminal symbol @code{exp}. If
3662@code{$2} were used, it would have the data type declared for the
e0c471a9 3663terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3664
3665Alternatively, you can specify the data type when you refer to the value,
3666by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3667reference. For example, if you have defined types as shown here:
3668
3669@example
3670@group
3671%union @{
3672 int itype;
3673 double dtype;
3674@}
3675@end group
3676@end example
3677
3678@noindent
3679then you can write @code{$<itype>1} to refer to the first subunit of the
3680rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3681
342b8b6e 3682@node Mid-Rule Actions
bfa74976
RS
3683@subsection Actions in Mid-Rule
3684@cindex actions in mid-rule
3685@cindex mid-rule actions
3686
3687Occasionally it is useful to put an action in the middle of a rule.
3688These actions are written just like usual end-of-rule actions, but they
3689are executed before the parser even recognizes the following components.
3690
3691A mid-rule action may refer to the components preceding it using
3692@code{$@var{n}}, but it may not refer to subsequent components because
3693it is run before they are parsed.
3694
3695The mid-rule action itself counts as one of the components of the rule.
3696This makes a difference when there is another action later in the same rule
3697(and usually there is another at the end): you have to count the actions
3698along with the symbols when working out which number @var{n} to use in
3699@code{$@var{n}}.
3700
3701The mid-rule action can also have a semantic value. The action can set
3702its value with an assignment to @code{$$}, and actions later in the rule
3703can refer to the value using @code{$@var{n}}. Since there is no symbol
3704to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3705in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3706specify a data type each time you refer to this value.
bfa74976
RS
3707
3708There is no way to set the value of the entire rule with a mid-rule
3709action, because assignments to @code{$$} do not have that effect. The
3710only way to set the value for the entire rule is with an ordinary action
3711at the end of the rule.
3712
3713Here is an example from a hypothetical compiler, handling a @code{let}
3714statement that looks like @samp{let (@var{variable}) @var{statement}} and
3715serves to create a variable named @var{variable} temporarily for the
3716duration of @var{statement}. To parse this construct, we must put
3717@var{variable} into the symbol table while @var{statement} is parsed, then
3718remove it afterward. Here is how it is done:
3719
3720@example
3721@group
de6be119
AD
3722stmt:
3723 LET '(' var ')'
3724 @{ $<context>$ = push_context (); declare_variable ($3); @}
3725 stmt
3726 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3727@end group
3728@end example
3729
3730@noindent
3731As soon as @samp{let (@var{variable})} has been recognized, the first
3732action is run. It saves a copy of the current semantic context (the
3733list of accessible variables) as its semantic value, using alternative
3734@code{context} in the data-type union. Then it calls
3735@code{declare_variable} to add the new variable to that list. Once the
3736first action is finished, the embedded statement @code{stmt} can be
3737parsed. Note that the mid-rule action is component number 5, so the
3738@samp{stmt} is component number 6.
3739
3740After the embedded statement is parsed, its semantic value becomes the
3741value of the entire @code{let}-statement. Then the semantic value from the
3742earlier action is used to restore the prior list of variables. This
3743removes the temporary @code{let}-variable from the list so that it won't
3744appear to exist while the rest of the program is parsed.
3745
841a7737
JD
3746@findex %destructor
3747@cindex discarded symbols, mid-rule actions
3748@cindex error recovery, mid-rule actions
3749In the above example, if the parser initiates error recovery (@pxref{Error
3750Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3751it might discard the previous semantic context @code{$<context>5} without
3752restoring it.
3753Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3754Discarded Symbols}).
ec5479ce
JD
3755However, Bison currently provides no means to declare a destructor specific to
3756a particular mid-rule action's semantic value.
841a7737
JD
3757
3758One solution is to bury the mid-rule action inside a nonterminal symbol and to
3759declare a destructor for that symbol:
3760
3761@example
3762@group
3763%type <context> let
3764%destructor @{ pop_context ($$); @} let
3765
3766%%
3767
de6be119
AD
3768stmt:
3769 let stmt
3770 @{
3771 $$ = $2;
3772 pop_context ($1);
3773 @};
841a7737 3774
de6be119
AD
3775let:
3776 LET '(' var ')'
3777 @{
3778 $$ = push_context ();
3779 declare_variable ($3);
3780 @};
841a7737
JD
3781
3782@end group
3783@end example
3784
3785@noindent
3786Note that the action is now at the end of its rule.
3787Any mid-rule action can be converted to an end-of-rule action in this way, and
3788this is what Bison actually does to implement mid-rule actions.
3789
bfa74976
RS
3790Taking action before a rule is completely recognized often leads to
3791conflicts since the parser must commit to a parse in order to execute the
3792action. For example, the following two rules, without mid-rule actions,
3793can coexist in a working parser because the parser can shift the open-brace
3794token and look at what follows before deciding whether there is a
3795declaration or not:
3796
3797@example
3798@group
de6be119
AD
3799compound:
3800 '@{' declarations statements '@}'
3801| '@{' statements '@}'
3802;
bfa74976
RS
3803@end group
3804@end example
3805
3806@noindent
3807But when we add a mid-rule action as follows, the rules become nonfunctional:
3808
3809@example
3810@group
de6be119
AD
3811compound:
3812 @{ prepare_for_local_variables (); @}
3813 '@{' declarations statements '@}'
bfa74976
RS
3814@end group
3815@group
de6be119
AD
3816| '@{' statements '@}'
3817;
bfa74976
RS
3818@end group
3819@end example
3820
3821@noindent
3822Now the parser is forced to decide whether to run the mid-rule action
3823when it has read no farther than the open-brace. In other words, it
3824must commit to using one rule or the other, without sufficient
3825information to do it correctly. (The open-brace token is what is called
742e4900
JD
3826the @dfn{lookahead} token at this time, since the parser is still
3827deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3828
3829You might think that you could correct the problem by putting identical
3830actions into the two rules, like this:
3831
3832@example
3833@group
de6be119
AD
3834compound:
3835 @{ prepare_for_local_variables (); @}
3836 '@{' declarations statements '@}'
3837| @{ prepare_for_local_variables (); @}
3838 '@{' statements '@}'
3839;
bfa74976
RS
3840@end group
3841@end example
3842
3843@noindent
3844But this does not help, because Bison does not realize that the two actions
3845are identical. (Bison never tries to understand the C code in an action.)
3846
3847If the grammar is such that a declaration can be distinguished from a
3848statement by the first token (which is true in C), then one solution which
3849does work is to put the action after the open-brace, like this:
3850
3851@example
3852@group
de6be119
AD
3853compound:
3854 '@{' @{ prepare_for_local_variables (); @}
3855 declarations statements '@}'
3856| '@{' statements '@}'
3857;
bfa74976
RS
3858@end group
3859@end example
3860
3861@noindent
3862Now the first token of the following declaration or statement,
3863which would in any case tell Bison which rule to use, can still do so.
3864
3865Another solution is to bury the action inside a nonterminal symbol which
3866serves as a subroutine:
3867
3868@example
3869@group
de6be119
AD
3870subroutine:
3871 /* empty */ @{ prepare_for_local_variables (); @}
3872;
bfa74976
RS
3873@end group
3874
3875@group
de6be119
AD
3876compound:
3877 subroutine '@{' declarations statements '@}'
3878| subroutine '@{' statements '@}'
3879;
bfa74976
RS
3880@end group
3881@end example
3882
3883@noindent
3884Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3885deciding which rule for @code{compound} it will eventually use.
bfa74976 3886
7404cdf3 3887@node Tracking Locations
847bf1f5
AD
3888@section Tracking Locations
3889@cindex location
95923bd6
AD
3890@cindex textual location
3891@cindex location, textual
847bf1f5
AD
3892
3893Though grammar rules and semantic actions are enough to write a fully
72d2299c 3894functional parser, it can be useful to process some additional information,
3e259915
MA
3895especially symbol locations.
3896
704a47c4
AD
3897The way locations are handled is defined by providing a data type, and
3898actions to take when rules are matched.
847bf1f5
AD
3899
3900@menu
3901* Location Type:: Specifying a data type for locations.
3902* Actions and Locations:: Using locations in actions.
3903* Location Default Action:: Defining a general way to compute locations.
3904@end menu
3905
342b8b6e 3906@node Location Type
847bf1f5
AD
3907@subsection Data Type of Locations
3908@cindex data type of locations
3909@cindex default location type
3910
3911Defining a data type for locations is much simpler than for semantic values,
3912since all tokens and groupings always use the same type.
3913
50cce58e
PE
3914You can specify the type of locations by defining a macro called
3915@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3916defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3917When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3918four members:
3919
3920@example
6273355b 3921typedef struct YYLTYPE
847bf1f5
AD
3922@{
3923 int first_line;
3924 int first_column;
3925 int last_line;
3926 int last_column;
6273355b 3927@} YYLTYPE;
847bf1f5
AD
3928@end example
3929
8fbbeba2
AD
3930When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3931initializes all these fields to 1 for @code{yylloc}. To initialize
3932@code{yylloc} with a custom location type (or to chose a different
3933initialization), use the @code{%initial-action} directive. @xref{Initial
3934Action Decl, , Performing Actions before Parsing}.
cd48d21d 3935
342b8b6e 3936@node Actions and Locations
847bf1f5
AD
3937@subsection Actions and Locations
3938@cindex location actions
3939@cindex actions, location
3940@vindex @@$
3941@vindex @@@var{n}
1f68dca5
AR
3942@vindex @@@var{name}
3943@vindex @@[@var{name}]
847bf1f5
AD
3944
3945Actions are not only useful for defining language semantics, but also for
3946describing the behavior of the output parser with locations.
3947
3948The most obvious way for building locations of syntactic groupings is very
72d2299c 3949similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3950constructs can be used to access the locations of the elements being matched.
3951The location of the @var{n}th component of the right hand side is
3952@code{@@@var{n}}, while the location of the left hand side grouping is
3953@code{@@$}.
3954
1f68dca5
AR
3955In addition, the named references construct @code{@@@var{name}} and
3956@code{@@[@var{name}]} may also be used to address the symbol locations.
ce24f7f5
JD
3957@xref{Named References}, for more information about using the named
3958references construct.
1f68dca5 3959
3e259915 3960Here is a basic example using the default data type for locations:
847bf1f5
AD
3961
3962@example
3963@group
de6be119
AD
3964exp:
3965 @dots{}
3966| exp '/' exp
3967 @{
3968 @@$.first_column = @@1.first_column;
3969 @@$.first_line = @@1.first_line;
3970 @@$.last_column = @@3.last_column;
3971 @@$.last_line = @@3.last_line;
3972 if ($3)
3973 $$ = $1 / $3;
3974 else
3975 @{
3976 $$ = 1;
3977 fprintf (stderr,
3978 "Division by zero, l%d,c%d-l%d,c%d",
3979 @@3.first_line, @@3.first_column,
3980 @@3.last_line, @@3.last_column);
3981 @}
3982 @}
847bf1f5
AD
3983@end group
3984@end example
3985
3e259915 3986As for semantic values, there is a default action for locations that is
72d2299c 3987run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3988beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3989last symbol.
3e259915 3990
72d2299c 3991With this default action, the location tracking can be fully automatic. The
3e259915
MA
3992example above simply rewrites this way:
3993
3994@example
3995@group
de6be119
AD
3996exp:
3997 @dots{}
3998| exp '/' exp
3999 @{
4000 if ($3)
4001 $$ = $1 / $3;
4002 else
4003 @{
4004 $$ = 1;
4005 fprintf (stderr,
4006 "Division by zero, l%d,c%d-l%d,c%d",
4007 @@3.first_line, @@3.first_column,
4008 @@3.last_line, @@3.last_column);
4009 @}
4010 @}
3e259915
MA
4011@end group
4012@end example
847bf1f5 4013
32c29292 4014@vindex yylloc
742e4900 4015It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4016from a semantic action.
4017This location is stored in @code{yylloc}.
4018@xref{Action Features, ,Special Features for Use in Actions}.
4019
342b8b6e 4020@node Location Default Action
847bf1f5
AD
4021@subsection Default Action for Locations
4022@vindex YYLLOC_DEFAULT
35430378 4023@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4024
72d2299c 4025Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4026locations are much more general than semantic values, there is room in
4027the output parser to redefine the default action to take for each
72d2299c 4028rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4029matched, before the associated action is run. It is also invoked
4030while processing a syntax error, to compute the error's location.
35430378 4031Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4032parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4033of that ambiguity.
847bf1f5 4034
3e259915 4035Most of the time, this macro is general enough to suppress location
79282c6c 4036dedicated code from semantic actions.
847bf1f5 4037
72d2299c 4038The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4039the location of the grouping (the result of the computation). When a
766de5eb 4040rule is matched, the second parameter identifies locations of
96b93a3d 4041all right hand side elements of the rule being matched, and the third
8710fc41 4042parameter is the size of the rule's right hand side.
35430378 4043When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4044right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4045When processing a syntax error, the second parameter identifies locations
4046of the symbols that were discarded during error processing, and the third
96b93a3d 4047parameter is the number of discarded symbols.
847bf1f5 4048
766de5eb 4049By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4050
ea118b72 4051@example
847bf1f5 4052@group
ea118b72
AD
4053# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4054do \
4055 if (N) \
4056 @{ \
4057 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4058 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4059 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4060 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4061 @} \
4062 else \
4063 @{ \
4064 (Cur).first_line = (Cur).last_line = \
4065 YYRHSLOC(Rhs, 0).last_line; \
4066 (Cur).first_column = (Cur).last_column = \
4067 YYRHSLOC(Rhs, 0).last_column; \
4068 @} \
4069while (0)
847bf1f5 4070@end group
ea118b72 4071@end example
676385e2 4072
2c0f9706 4073@noindent
766de5eb
PE
4074where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4075in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4076just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4077
3e259915 4078When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4079
3e259915 4080@itemize @bullet
79282c6c 4081@item
72d2299c 4082All arguments are free of side-effects. However, only the first one (the
3e259915 4083result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4084
3e259915 4085@item
766de5eb
PE
4086For consistency with semantic actions, valid indexes within the
4087right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4088valid index, and it refers to the symbol just before the reduction.
4089During error processing @var{n} is always positive.
0ae99356
PE
4090
4091@item
4092Your macro should parenthesize its arguments, if need be, since the
4093actual arguments may not be surrounded by parentheses. Also, your
4094macro should expand to something that can be used as a single
4095statement when it is followed by a semicolon.
3e259915 4096@end itemize
847bf1f5 4097
908c8647 4098@node Named References
ce24f7f5 4099@section Named References
908c8647
JD
4100@cindex named references
4101
7d31f092
JD
4102As described in the preceding sections, the traditional way to refer to any
4103semantic value or location is a @dfn{positional reference}, which takes the
4104form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4105such a reference is not very descriptive. Moreover, if you later decide to
4106insert or remove symbols in the right-hand side of a grammar rule, the need
4107to renumber such references can be tedious and error-prone.
4108
4109To avoid these issues, you can also refer to a semantic value or location
4110using a @dfn{named reference}. First of all, original symbol names may be
4111used as named references. For example:
908c8647
JD
4112
4113@example
4114@group
4115invocation: op '(' args ')'
4116 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4117@end group
4118@end example
4119
4120@noindent
7d31f092 4121Positional and named references can be mixed arbitrarily. For example:
908c8647
JD
4122
4123@example
4124@group
4125invocation: op '(' args ')'
4126 @{ $$ = new_invocation ($op, $args, @@$); @}
4127@end group
4128@end example
4129
4130@noindent
4131However, sometimes regular symbol names are not sufficient due to
4132ambiguities:
4133
4134@example
4135@group
4136exp: exp '/' exp
4137 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4138
4139exp: exp '/' exp
4140 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4141
4142exp: exp '/' exp
4143 @{ $$ = $1 / $3; @} // No error.
4144@end group
4145@end example
4146
4147@noindent
4148When ambiguity occurs, explicitly declared names may be used for values and
4149locations. Explicit names are declared as a bracketed name after a symbol
4150appearance in rule definitions. For example:
4151@example
4152@group
4153exp[result]: exp[left] '/' exp[right]
4154 @{ $result = $left / $right; @}
4155@end group
4156@end example
4157
4158@noindent
ce24f7f5
JD
4159In order to access a semantic value generated by a mid-rule action, an
4160explicit name may also be declared by putting a bracketed name after the
4161closing brace of the mid-rule action code:
908c8647
JD
4162@example
4163@group
4164exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4165 @{ $res = $left + $right; @}
4166@end group
4167@end example
4168
4169@noindent
4170
4171In references, in order to specify names containing dots and dashes, an explicit
4172bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4173@example
4174@group
14f4455e 4175if-stmt: "if" '(' expr ')' "then" then.stmt ';'
908c8647
JD
4176 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4177@end group
4178@end example
4179
4180It often happens that named references are followed by a dot, dash or other
4181C punctuation marks and operators. By default, Bison will read
ce24f7f5
JD
4182@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4183@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4184value. In order to force Bison to recognize @samp{name.suffix} in its
4185entirety as the name of a semantic value, the bracketed syntax
4186@samp{$[name.suffix]} must be used.
4187
4188The named references feature is experimental. More user feedback will help
4189to stabilize it.
908c8647 4190
342b8b6e 4191@node Declarations
bfa74976
RS
4192@section Bison Declarations
4193@cindex declarations, Bison
4194@cindex Bison declarations
4195
4196The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4197used in formulating the grammar and the data types of semantic values.
4198@xref{Symbols}.
4199
4200All token type names (but not single-character literal tokens such as
4201@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4202declared if you need to specify which data type to use for the semantic
4203value (@pxref{Multiple Types, ,More Than One Value Type}).
4204
9913d6e4
JD
4205The first rule in the grammar file also specifies the start symbol, by
4206default. If you want some other symbol to be the start symbol, you
4207must declare it explicitly (@pxref{Language and Grammar, ,Languages
4208and Context-Free Grammars}).
bfa74976
RS
4209
4210@menu
b50d2359 4211* Require Decl:: Requiring a Bison version.
bfa74976
RS
4212* Token Decl:: Declaring terminal symbols.
4213* Precedence Decl:: Declaring terminals with precedence and associativity.
4214* Union Decl:: Declaring the set of all semantic value types.
4215* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4216* Initial Action Decl:: Code run before parsing starts.
72f889cc 4217* Destructor Decl:: Declaring how symbols are freed.
d6328241 4218* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4219* Start Decl:: Specifying the start symbol.
4220* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4221* Push Decl:: Requesting a push parser.
bfa74976 4222* Decl Summary:: Table of all Bison declarations.
2f4518a1 4223* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 4224* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4225@end menu
4226
b50d2359
AD
4227@node Require Decl
4228@subsection Require a Version of Bison
4229@cindex version requirement
4230@cindex requiring a version of Bison
4231@findex %require
4232
4233You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4234the requirement is not met, @command{bison} exits with an error (exit
4235status 63).
b50d2359
AD
4236
4237@example
4238%require "@var{version}"
4239@end example
4240
342b8b6e 4241@node Token Decl
bfa74976
RS
4242@subsection Token Type Names
4243@cindex declaring token type names
4244@cindex token type names, declaring
931c7513 4245@cindex declaring literal string tokens
bfa74976
RS
4246@findex %token
4247
4248The basic way to declare a token type name (terminal symbol) is as follows:
4249
4250@example
4251%token @var{name}
4252@end example
4253
4254Bison will convert this into a @code{#define} directive in
4255the parser, so that the function @code{yylex} (if it is in this file)
4256can use the name @var{name} to stand for this token type's code.
4257
14ded682
AD
4258Alternatively, you can use @code{%left}, @code{%right}, or
4259@code{%nonassoc} instead of @code{%token}, if you wish to specify
4260associativity and precedence. @xref{Precedence Decl, ,Operator
4261Precedence}.
bfa74976
RS
4262
4263You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4264a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4265following the token name:
bfa74976
RS
4266
4267@example
4268%token NUM 300
1452af69 4269%token XNUM 0x12d // a GNU extension
bfa74976
RS
4270@end example
4271
4272@noindent
4273It is generally best, however, to let Bison choose the numeric codes for
4274all token types. Bison will automatically select codes that don't conflict
e966383b 4275with each other or with normal characters.
bfa74976
RS
4276
4277In the event that the stack type is a union, you must augment the
4278@code{%token} or other token declaration to include the data type
704a47c4
AD
4279alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4280Than One Value Type}).
bfa74976
RS
4281
4282For example:
4283
4284@example
4285@group
4286%union @{ /* define stack type */
4287 double val;
4288 symrec *tptr;
4289@}
4290%token <val> NUM /* define token NUM and its type */
4291@end group
4292@end example
4293
931c7513
RS
4294You can associate a literal string token with a token type name by
4295writing the literal string at the end of a @code{%token}
4296declaration which declares the name. For example:
4297
4298@example
4299%token arrow "=>"
4300@end example
4301
4302@noindent
4303For example, a grammar for the C language might specify these names with
4304equivalent literal string tokens:
4305
4306@example
4307%token <operator> OR "||"
4308%token <operator> LE 134 "<="
4309%left OR "<="
4310@end example
4311
4312@noindent
4313Once you equate the literal string and the token name, you can use them
4314interchangeably in further declarations or the grammar rules. The
4315@code{yylex} function can use the token name or the literal string to
4316obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4317Syntax error messages passed to @code{yyerror} from the parser will reference
4318the literal string instead of the token name.
4319
4320The token numbered as 0 corresponds to end of file; the following line
4321allows for nicer error messages referring to ``end of file'' instead
4322of ``$end'':
4323
4324@example
4325%token END 0 "end of file"
4326@end example
931c7513 4327
342b8b6e 4328@node Precedence Decl
bfa74976
RS
4329@subsection Operator Precedence
4330@cindex precedence declarations
4331@cindex declaring operator precedence
4332@cindex operator precedence, declaring
4333
4334Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4335declare a token and specify its precedence and associativity, all at
4336once. These are called @dfn{precedence declarations}.
704a47c4
AD
4337@xref{Precedence, ,Operator Precedence}, for general information on
4338operator precedence.
bfa74976 4339
ab7f29f8 4340The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4341@code{%token}: either
4342
4343@example
4344%left @var{symbols}@dots{}
4345@end example
4346
4347@noindent
4348or
4349
4350@example
4351%left <@var{type}> @var{symbols}@dots{}
4352@end example
4353
4354And indeed any of these declarations serves the purposes of @code{%token}.
4355But in addition, they specify the associativity and relative precedence for
4356all the @var{symbols}:
4357
4358@itemize @bullet
4359@item
4360The associativity of an operator @var{op} determines how repeated uses
4361of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4362@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4363grouping @var{y} with @var{z} first. @code{%left} specifies
4364left-associativity (grouping @var{x} with @var{y} first) and
4365@code{%right} specifies right-associativity (grouping @var{y} with
4366@var{z} first). @code{%nonassoc} specifies no associativity, which
4367means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4368considered a syntax error.
4369
4370@item
4371The precedence of an operator determines how it nests with other operators.
4372All the tokens declared in a single precedence declaration have equal
4373precedence and nest together according to their associativity.
4374When two tokens declared in different precedence declarations associate,
4375the one declared later has the higher precedence and is grouped first.
4376@end itemize
4377
ab7f29f8
JD
4378For backward compatibility, there is a confusing difference between the
4379argument lists of @code{%token} and precedence declarations.
4380Only a @code{%token} can associate a literal string with a token type name.
4381A precedence declaration always interprets a literal string as a reference to a
4382separate token.
4383For example:
4384
4385@example
4386%left OR "<=" // Does not declare an alias.
4387%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4388@end example
4389
342b8b6e 4390@node Union Decl
bfa74976
RS
4391@subsection The Collection of Value Types
4392@cindex declaring value types
4393@cindex value types, declaring
4394@findex %union
4395
287c78f6
PE
4396The @code{%union} declaration specifies the entire collection of
4397possible data types for semantic values. The keyword @code{%union} is
4398followed by braced code containing the same thing that goes inside a
4399@code{union} in C@.
bfa74976
RS
4400
4401For example:
4402
4403@example
4404@group
4405%union @{
4406 double val;
4407 symrec *tptr;
4408@}
4409@end group
4410@end example
4411
4412@noindent
4413This says that the two alternative types are @code{double} and @code{symrec
4414*}. They are given names @code{val} and @code{tptr}; these names are used
4415in the @code{%token} and @code{%type} declarations to pick one of the types
4416for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4417
35430378 4418As an extension to POSIX, a tag is allowed after the
6273355b
PE
4419@code{union}. For example:
4420
4421@example
4422@group
4423%union value @{
4424 double val;
4425 symrec *tptr;
4426@}
4427@end group
4428@end example
4429
d6ca7905 4430@noindent
6273355b
PE
4431specifies the union tag @code{value}, so the corresponding C type is
4432@code{union value}. If you do not specify a tag, it defaults to
4433@code{YYSTYPE}.
4434
35430378 4435As another extension to POSIX, you may specify multiple
d6ca7905
PE
4436@code{%union} declarations; their contents are concatenated. However,
4437only the first @code{%union} declaration can specify a tag.
4438
6273355b 4439Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4440a semicolon after the closing brace.
4441
ddc8ede1
PE
4442Instead of @code{%union}, you can define and use your own union type
4443@code{YYSTYPE} if your grammar contains at least one
4444@samp{<@var{type}>} tag. For example, you can put the following into
4445a header file @file{parser.h}:
4446
4447@example
4448@group
4449union YYSTYPE @{
4450 double val;
4451 symrec *tptr;
4452@};
4453typedef union YYSTYPE YYSTYPE;
4454@end group
4455@end example
4456
4457@noindent
4458and then your grammar can use the following
4459instead of @code{%union}:
4460
4461@example
4462@group
4463%@{
4464#include "parser.h"
4465%@}
4466%type <val> expr
4467%token <tptr> ID
4468@end group
4469@end example
4470
342b8b6e 4471@node Type Decl
bfa74976
RS
4472@subsection Nonterminal Symbols
4473@cindex declaring value types, nonterminals
4474@cindex value types, nonterminals, declaring
4475@findex %type
4476
4477@noindent
4478When you use @code{%union} to specify multiple value types, you must
4479declare the value type of each nonterminal symbol for which values are
4480used. This is done with a @code{%type} declaration, like this:
4481
4482@example
4483%type <@var{type}> @var{nonterminal}@dots{}
4484@end example
4485
4486@noindent
704a47c4
AD
4487Here @var{nonterminal} is the name of a nonterminal symbol, and
4488@var{type} is the name given in the @code{%union} to the alternative
4489that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4490can give any number of nonterminal symbols in the same @code{%type}
4491declaration, if they have the same value type. Use spaces to separate
4492the symbol names.
bfa74976 4493
931c7513
RS
4494You can also declare the value type of a terminal symbol. To do this,
4495use the same @code{<@var{type}>} construction in a declaration for the
4496terminal symbol. All kinds of token declarations allow
4497@code{<@var{type}>}.
4498
18d192f0
AD
4499@node Initial Action Decl
4500@subsection Performing Actions before Parsing
4501@findex %initial-action
4502
4503Sometimes your parser needs to perform some initializations before
4504parsing. The @code{%initial-action} directive allows for such arbitrary
4505code.
4506
4507@deffn {Directive} %initial-action @{ @var{code} @}
4508@findex %initial-action
287c78f6 4509Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4510@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4511@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4512@code{%parse-param}.
18d192f0
AD
4513@end deffn
4514
451364ed
AD
4515For instance, if your locations use a file name, you may use
4516
4517@example
48b16bbc 4518%parse-param @{ char const *file_name @};
451364ed
AD
4519%initial-action
4520@{
4626a15d 4521 @@$.initialize (file_name);
451364ed
AD
4522@};
4523@end example
4524
18d192f0 4525
72f889cc
AD
4526@node Destructor Decl
4527@subsection Freeing Discarded Symbols
4528@cindex freeing discarded symbols
4529@findex %destructor
12e35840 4530@findex <*>
3ebecc24 4531@findex <>
a85284cf
AD
4532During error recovery (@pxref{Error Recovery}), symbols already pushed
4533on the stack and tokens coming from the rest of the file are discarded
4534until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4535or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4536symbols on the stack must be discarded. Even if the parser succeeds, it
4537must discard the start symbol.
258b75ca
PE
4538
4539When discarded symbols convey heap based information, this memory is
4540lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4541in traditional compilers, it is unacceptable for programs like shells or
4542protocol implementations that may parse and execute indefinitely.
258b75ca 4543
a85284cf
AD
4544The @code{%destructor} directive defines code that is called when a
4545symbol is automatically discarded.
72f889cc
AD
4546
4547@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4548@findex %destructor
287c78f6
PE
4549Invoke the braced @var{code} whenever the parser discards one of the
4550@var{symbols}.
4b367315 4551Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4552with the discarded symbol, and @code{@@$} designates its location.
4553The additional parser parameters are also available (@pxref{Parser Function, ,
4554The Parser Function @code{yyparse}}).
ec5479ce 4555
b2a0b7ca
JD
4556When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4557per-symbol @code{%destructor}.
4558You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4559tag among @var{symbols}.
b2a0b7ca 4560In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4561grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4562per-symbol @code{%destructor}.
4563
12e35840 4564Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4565(These default forms are experimental.
4566More user feedback will help to determine whether they should become permanent
4567features.)
3ebecc24 4568You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4569exactly one @code{%destructor} declaration in your grammar file.
4570The parser will invoke the @var{code} associated with one of these whenever it
4571discards any user-defined grammar symbol that has no per-symbol and no per-type
4572@code{%destructor}.
4573The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4574symbol for which you have formally declared a semantic type tag (@code{%type}
4575counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4576The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4577symbol that has no declared semantic type tag.
72f889cc
AD
4578@end deffn
4579
b2a0b7ca 4580@noindent
12e35840 4581For example:
72f889cc 4582
ea118b72 4583@example
ec5479ce
JD
4584%union @{ char *string; @}
4585%token <string> STRING1
4586%token <string> STRING2
4587%type <string> string1
4588%type <string> string2
b2a0b7ca
JD
4589%union @{ char character; @}
4590%token <character> CHR
4591%type <character> chr
12e35840
JD
4592%token TAGLESS
4593
b2a0b7ca 4594%destructor @{ @} <character>
12e35840
JD
4595%destructor @{ free ($$); @} <*>
4596%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4597%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
ea118b72 4598@end example
72f889cc
AD
4599
4600@noindent
b2a0b7ca
JD
4601guarantees that, when the parser discards any user-defined symbol that has a
4602semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4603to @code{free} by default.
ec5479ce
JD
4604However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4605prints its line number to @code{stdout}.
4606It performs only the second @code{%destructor} in this case, so it invokes
4607@code{free} only once.
12e35840
JD
4608Finally, the parser merely prints a message whenever it discards any symbol,
4609such as @code{TAGLESS}, that has no semantic type tag.
4610
4611A Bison-generated parser invokes the default @code{%destructor}s only for
4612user-defined as opposed to Bison-defined symbols.
4613For example, the parser will not invoke either kind of default
4614@code{%destructor} for the special Bison-defined symbols @code{$accept},
4615@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4616none of which you can reference in your grammar.
4617It also will not invoke either for the @code{error} token (@pxref{Table of
4618Symbols, ,error}), which is always defined by Bison regardless of whether you
4619reference it in your grammar.
4620However, it may invoke one of them for the end token (token 0) if you
4621redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4622
ea118b72 4623@example
3508ce36 4624%token END 0
ea118b72 4625@end example
3508ce36 4626
12e35840
JD
4627@cindex actions in mid-rule
4628@cindex mid-rule actions
4629Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4630mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
ce24f7f5
JD
4631That is, Bison does not consider a mid-rule to have a semantic value if you
4632do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4633(where @var{n} is the right-hand side symbol position of the mid-rule) in
4634any later action in that rule. However, if you do reference either, the
4635Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4636it discards the mid-rule symbol.
12e35840 4637
3508ce36
JD
4638@ignore
4639@noindent
4640In the future, it may be possible to redefine the @code{error} token as a
4641nonterminal that captures the discarded symbols.
4642In that case, the parser will invoke the default destructor for it as well.
4643@end ignore
4644
e757bb10
AD
4645@sp 1
4646
4647@cindex discarded symbols
4648@dfn{Discarded symbols} are the following:
4649
4650@itemize
4651@item
4652stacked symbols popped during the first phase of error recovery,
4653@item
4654incoming terminals during the second phase of error recovery,
4655@item
742e4900 4656the current lookahead and the entire stack (except the current
9d9b8b70 4657right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4658@item
4659the start symbol, when the parser succeeds.
e757bb10
AD
4660@end itemize
4661
9d9b8b70
PE
4662The parser can @dfn{return immediately} because of an explicit call to
4663@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4664exhaustion.
4665
29553547 4666Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4667error via @code{YYERROR} are not discarded automatically. As a rule
4668of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4669the memory.
e757bb10 4670
342b8b6e 4671@node Expect Decl
bfa74976
RS
4672@subsection Suppressing Conflict Warnings
4673@cindex suppressing conflict warnings
4674@cindex preventing warnings about conflicts
4675@cindex warnings, preventing
4676@cindex conflicts, suppressing warnings of
4677@findex %expect
d6328241 4678@findex %expect-rr
bfa74976
RS
4679
4680Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4681(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4682have harmless shift/reduce conflicts which are resolved in a predictable
4683way and would be difficult to eliminate. It is desirable to suppress
4684the warning about these conflicts unless the number of conflicts
4685changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4686
4687The declaration looks like this:
4688
4689@example
4690%expect @var{n}
4691@end example
4692
035aa4a0
PE
4693Here @var{n} is a decimal integer. The declaration says there should
4694be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4695Bison reports an error if the number of shift/reduce conflicts differs
4696from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4697
34a6c2d1 4698For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4699serious, and should be eliminated entirely. Bison will always report
35430378 4700reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4701parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4702there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4703also possible to specify an expected number of reduce/reduce conflicts
35430378 4704in GLR parsers, using the declaration:
d6328241
PH
4705
4706@example
4707%expect-rr @var{n}
4708@end example
4709
bfa74976
RS
4710In general, using @code{%expect} involves these steps:
4711
4712@itemize @bullet
4713@item
4714Compile your grammar without @code{%expect}. Use the @samp{-v} option
4715to get a verbose list of where the conflicts occur. Bison will also
4716print the number of conflicts.
4717
4718@item
4719Check each of the conflicts to make sure that Bison's default
4720resolution is what you really want. If not, rewrite the grammar and
4721go back to the beginning.
4722
4723@item
4724Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4725number which Bison printed. With GLR parsers, add an
035aa4a0 4726@code{%expect-rr} declaration as well.
bfa74976
RS
4727@end itemize
4728
cf22447c
JD
4729Now Bison will report an error if you introduce an unexpected conflict,
4730but will keep silent otherwise.
bfa74976 4731
342b8b6e 4732@node Start Decl
bfa74976
RS
4733@subsection The Start-Symbol
4734@cindex declaring the start symbol
4735@cindex start symbol, declaring
4736@cindex default start symbol
4737@findex %start
4738
4739Bison assumes by default that the start symbol for the grammar is the first
4740nonterminal specified in the grammar specification section. The programmer
4741may override this restriction with the @code{%start} declaration as follows:
4742
4743@example
4744%start @var{symbol}
4745@end example
4746
342b8b6e 4747@node Pure Decl
bfa74976
RS
4748@subsection A Pure (Reentrant) Parser
4749@cindex reentrant parser
4750@cindex pure parser
d9df47b6 4751@findex %define api.pure
bfa74976
RS
4752
4753A @dfn{reentrant} program is one which does not alter in the course of
4754execution; in other words, it consists entirely of @dfn{pure} (read-only)
4755code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4756for example, a nonreentrant program may not be safe to call from a signal
4757handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4758program must be called only within interlocks.
4759
70811b85 4760Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4761suitable for most uses, and it permits compatibility with Yacc. (The
4762standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4763statically allocated variables for communication with @code{yylex},
4764including @code{yylval} and @code{yylloc}.)
bfa74976 4765
70811b85 4766Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4767declaration @code{%define api.pure} says that you want the parser to be
70811b85 4768reentrant. It looks like this:
bfa74976
RS
4769
4770@example
d9df47b6 4771%define api.pure
bfa74976
RS
4772@end example
4773
70811b85
RS
4774The result is that the communication variables @code{yylval} and
4775@code{yylloc} become local variables in @code{yyparse}, and a different
4776calling convention is used for the lexical analyzer function
4777@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4778Parsers}, for the details of this. The variable @code{yynerrs}
4779becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4780of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4781Reporting Function @code{yyerror}}). The convention for calling
4782@code{yyparse} itself is unchanged.
4783
4784Whether the parser is pure has nothing to do with the grammar rules.
4785You can generate either a pure parser or a nonreentrant parser from any
4786valid grammar.
bfa74976 4787
9987d1b3
JD
4788@node Push Decl
4789@subsection A Push Parser
4790@cindex push parser
4791@cindex push parser
812775a0 4792@findex %define api.push-pull
9987d1b3 4793
59da312b
JD
4794(The current push parsing interface is experimental and may evolve.
4795More user feedback will help to stabilize it.)
4796
f4101aa6
AD
4797A pull parser is called once and it takes control until all its input
4798is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4799each time a new token is made available.
4800
f4101aa6 4801A push parser is typically useful when the parser is part of a
9987d1b3 4802main event loop in the client's application. This is typically
f4101aa6
AD
4803a requirement of a GUI, when the main event loop needs to be triggered
4804within a certain time period.
9987d1b3 4805
d782395d
JD
4806Normally, Bison generates a pull parser.
4807The following Bison declaration says that you want the parser to be a push
2f4518a1 4808parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4809
4810@example
f37495f6 4811%define api.push-pull push
9987d1b3
JD
4812@end example
4813
4814In almost all cases, you want to ensure that your push parser is also
4815a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4816time you should create an impure push parser is to have backwards
9987d1b3
JD
4817compatibility with the impure Yacc pull mode interface. Unless you know
4818what you are doing, your declarations should look like this:
4819
4820@example
d9df47b6 4821%define api.pure
f37495f6 4822%define api.push-pull push
9987d1b3
JD
4823@end example
4824
f4101aa6
AD
4825There is a major notable functional difference between the pure push parser
4826and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4827many parser instances, of the same type of parser, in memory at the same time.
4828An impure push parser should only use one parser at a time.
4829
4830When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4831the generated parser. @code{yypstate} is a structure that the generated
4832parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4833function that will create a new parser instance. @code{yypstate_delete}
4834will free the resources associated with the corresponding parser instance.
f4101aa6 4835Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4836token is available to provide the parser. A trivial example
4837of using a pure push parser would look like this:
4838
4839@example
4840int status;
4841yypstate *ps = yypstate_new ();
4842do @{
4843 status = yypush_parse (ps, yylex (), NULL);
4844@} while (status == YYPUSH_MORE);
4845yypstate_delete (ps);
4846@end example
4847
4848If the user decided to use an impure push parser, a few things about
f4101aa6 4849the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4850a global variable instead of a variable in the @code{yypush_parse} function.
4851For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4852changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4853example would thus look like this:
4854
4855@example
4856extern int yychar;
4857int status;
4858yypstate *ps = yypstate_new ();
4859do @{
4860 yychar = yylex ();
4861 status = yypush_parse (ps);
4862@} while (status == YYPUSH_MORE);
4863yypstate_delete (ps);
4864@end example
4865
f4101aa6 4866That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4867for use by the next invocation of the @code{yypush_parse} function.
4868
f4101aa6 4869Bison also supports both the push parser interface along with the pull parser
9987d1b3 4870interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4871you should replace the @code{%define api.push-pull push} declaration with the
4872@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4873the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4874and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4875would be used. However, the user should note that it is implemented in the
d782395d
JD
4876generated parser by calling @code{yypull_parse}.
4877This makes the @code{yyparse} function that is generated with the
f37495f6 4878@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4879@code{yyparse} function. If the user
4880calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4881stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4882and then @code{yypull_parse} the rest of the input stream. If you would like
4883to switch back and forth between between parsing styles, you would have to
4884write your own @code{yypull_parse} function that knows when to quit looking
4885for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4886like this:
4887
4888@example
4889yypstate *ps = yypstate_new ();
4890yypull_parse (ps); /* Will call the lexer */
4891yypstate_delete (ps);
4892@end example
4893
d9df47b6 4894Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4895the generated parser with @code{%define api.push-pull both} as it did for
4896@code{%define api.push-pull push}.
9987d1b3 4897
342b8b6e 4898@node Decl Summary
bfa74976
RS
4899@subsection Bison Declaration Summary
4900@cindex Bison declaration summary
4901@cindex declaration summary
4902@cindex summary, Bison declaration
4903
d8988b2f 4904Here is a summary of the declarations used to define a grammar:
bfa74976 4905
18b519c0 4906@deffn {Directive} %union
bfa74976
RS
4907Declare the collection of data types that semantic values may have
4908(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4909@end deffn
bfa74976 4910
18b519c0 4911@deffn {Directive} %token
bfa74976
RS
4912Declare a terminal symbol (token type name) with no precedence
4913or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4914@end deffn
bfa74976 4915
18b519c0 4916@deffn {Directive} %right
bfa74976
RS
4917Declare a terminal symbol (token type name) that is right-associative
4918(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4919@end deffn
bfa74976 4920
18b519c0 4921@deffn {Directive} %left
bfa74976
RS
4922Declare a terminal symbol (token type name) that is left-associative
4923(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4924@end deffn
bfa74976 4925
18b519c0 4926@deffn {Directive} %nonassoc
bfa74976 4927Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4928(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4929Using it in a way that would be associative is a syntax error.
4930@end deffn
4931
91d2c560 4932@ifset defaultprec
39a06c25 4933@deffn {Directive} %default-prec
22fccf95 4934Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4935(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4936@end deffn
91d2c560 4937@end ifset
bfa74976 4938
18b519c0 4939@deffn {Directive} %type
bfa74976
RS
4940Declare the type of semantic values for a nonterminal symbol
4941(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4942@end deffn
bfa74976 4943
18b519c0 4944@deffn {Directive} %start
89cab50d
AD
4945Specify the grammar's start symbol (@pxref{Start Decl, ,The
4946Start-Symbol}).
18b519c0 4947@end deffn
bfa74976 4948
18b519c0 4949@deffn {Directive} %expect
bfa74976
RS
4950Declare the expected number of shift-reduce conflicts
4951(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4952@end deffn
4953
bfa74976 4954
d8988b2f
AD
4955@sp 1
4956@noindent
4957In order to change the behavior of @command{bison}, use the following
4958directives:
4959
148d66d8 4960@deffn {Directive} %code @{@var{code}@}
8e6f2266 4961@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4962@findex %code
8e6f2266
JD
4963Insert @var{code} verbatim into the output parser source at the
4964default location or at the location specified by @var{qualifier}.
4965@xref{%code Summary}.
148d66d8
JD
4966@end deffn
4967
18b519c0 4968@deffn {Directive} %debug
9913d6e4
JD
4969In the parser implementation file, define the macro @code{YYDEBUG} to
49701 if it is not already defined, so that the debugging facilities are
4971compiled. @xref{Tracing, ,Tracing Your Parser}.
bd5df716 4972@end deffn
d8988b2f 4973
2f4518a1
JD
4974@deffn {Directive} %define @var{variable}
4975@deffnx {Directive} %define @var{variable} @var{value}
4976@deffnx {Directive} %define @var{variable} "@var{value}"
4977Define a variable to adjust Bison's behavior. @xref{%define Summary}.
4978@end deffn
4979
4980@deffn {Directive} %defines
4981Write a parser header file containing macro definitions for the token
4982type names defined in the grammar as well as a few other declarations.
4983If the parser implementation file is named @file{@var{name}.c} then
4984the parser header file is named @file{@var{name}.h}.
4985
4986For C parsers, the parser header file declares @code{YYSTYPE} unless
4987@code{YYSTYPE} is already defined as a macro or you have used a
4988@code{<@var{type}>} tag without using @code{%union}. Therefore, if
4989you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
4990Value Type}) with components that require other definitions, or if you
4991have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
4992Type, ,Data Types of Semantic Values}), you need to arrange for these
4993definitions to be propagated to all modules, e.g., by putting them in
4994a prerequisite header that is included both by your parser and by any
4995other module that needs @code{YYSTYPE}.
4996
4997Unless your parser is pure, the parser header file declares
4998@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
4999(Reentrant) Parser}.
5000
5001If you have also used locations, the parser header file declares
7404cdf3
JD
5002@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5003@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
2f4518a1
JD
5004
5005This parser header file is normally essential if you wish to put the
5006definition of @code{yylex} in a separate source file, because
5007@code{yylex} typically needs to be able to refer to the
5008above-mentioned declarations and to the token type codes. @xref{Token
5009Values, ,Semantic Values of Tokens}.
5010
5011@findex %code requires
5012@findex %code provides
5013If you have declared @code{%code requires} or @code{%code provides}, the output
5014header also contains their code.
5015@xref{%code Summary}.
5016@end deffn
5017
5018@deffn {Directive} %defines @var{defines-file}
5019Same as above, but save in the file @var{defines-file}.
5020@end deffn
5021
5022@deffn {Directive} %destructor
5023Specify how the parser should reclaim the memory associated to
5024discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5025@end deffn
5026
5027@deffn {Directive} %file-prefix "@var{prefix}"
5028Specify a prefix to use for all Bison output file names. The names
5029are chosen as if the grammar file were named @file{@var{prefix}.y}.
5030@end deffn
5031
5032@deffn {Directive} %language "@var{language}"
5033Specify the programming language for the generated parser. Currently
5034supported languages include C, C++, and Java.
5035@var{language} is case-insensitive.
5036
5037This directive is experimental and its effect may be modified in future
5038releases.
5039@end deffn
5040
5041@deffn {Directive} %locations
5042Generate the code processing the locations (@pxref{Action Features,
5043,Special Features for Use in Actions}). This mode is enabled as soon as
5044the grammar uses the special @samp{@@@var{n}} tokens, but if your
5045grammar does not use it, using @samp{%locations} allows for more
5046accurate syntax error messages.
5047@end deffn
5048
5049@deffn {Directive} %name-prefix "@var{prefix}"
5050Rename the external symbols used in the parser so that they start with
5051@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5052in C parsers
5053is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5054@code{yylval}, @code{yychar}, @code{yydebug}, and
5055(if locations are used) @code{yylloc}. If you use a push parser,
5056@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5057@code{yypstate_new} and @code{yypstate_delete} will
5058also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5059names become @code{c_parse}, @code{c_lex}, and so on.
5060For C++ parsers, see the @code{%define namespace} documentation in this
5061section.
5062@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5063@end deffn
5064
5065@ifset defaultprec
5066@deffn {Directive} %no-default-prec
5067Do not assign a precedence to rules lacking an explicit @code{%prec}
5068modifier (@pxref{Contextual Precedence, ,Context-Dependent
5069Precedence}).
5070@end deffn
5071@end ifset
5072
5073@deffn {Directive} %no-lines
5074Don't generate any @code{#line} preprocessor commands in the parser
5075implementation file. Ordinarily Bison writes these commands in the
5076parser implementation file so that the C compiler and debuggers will
5077associate errors and object code with your source file (the grammar
5078file). This directive causes them to associate errors with the parser
5079implementation file, treating it as an independent source file in its
5080own right.
5081@end deffn
5082
5083@deffn {Directive} %output "@var{file}"
5084Specify @var{file} for the parser implementation file.
5085@end deffn
5086
5087@deffn {Directive} %pure-parser
5088Deprecated version of @code{%define api.pure} (@pxref{%define
5089Summary,,api.pure}), for which Bison is more careful to warn about
5090unreasonable usage.
5091@end deffn
5092
5093@deffn {Directive} %require "@var{version}"
5094Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5095Require a Version of Bison}.
5096@end deffn
5097
5098@deffn {Directive} %skeleton "@var{file}"
5099Specify the skeleton to use.
5100
5101@c You probably don't need this option unless you are developing Bison.
5102@c You should use @code{%language} if you want to specify the skeleton for a
5103@c different language, because it is clearer and because it will always choose the
5104@c correct skeleton for non-deterministic or push parsers.
5105
5106If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5107file in the Bison installation directory.
5108If it does, @var{file} is an absolute file name or a file name relative to the
5109directory of the grammar file.
5110This is similar to how most shells resolve commands.
5111@end deffn
5112
5113@deffn {Directive} %token-table
5114Generate an array of token names in the parser implementation file.
5115The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5116the name of the token whose internal Bison token code number is
5117@var{i}. The first three elements of @code{yytname} correspond to the
5118predefined tokens @code{"$end"}, @code{"error"}, and
5119@code{"$undefined"}; after these come the symbols defined in the
5120grammar file.
5121
5122The name in the table includes all the characters needed to represent
5123the token in Bison. For single-character literals and literal
5124strings, this includes the surrounding quoting characters and any
5125escape sequences. For example, the Bison single-character literal
5126@code{'+'} corresponds to a three-character name, represented in C as
5127@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5128corresponds to a five-character name, represented in C as
5129@code{"\"\\\\/\""}.
5130
5131When you specify @code{%token-table}, Bison also generates macro
5132definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5133@code{YYNRULES}, and @code{YYNSTATES}:
5134
5135@table @code
5136@item YYNTOKENS
5137The highest token number, plus one.
5138@item YYNNTS
5139The number of nonterminal symbols.
5140@item YYNRULES
5141The number of grammar rules,
5142@item YYNSTATES
5143The number of parser states (@pxref{Parser States}).
5144@end table
5145@end deffn
5146
5147@deffn {Directive} %verbose
5148Write an extra output file containing verbose descriptions of the
5149parser states and what is done for each type of lookahead token in
5150that state. @xref{Understanding, , Understanding Your Parser}, for more
5151information.
5152@end deffn
5153
5154@deffn {Directive} %yacc
5155Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5156including its naming conventions. @xref{Bison Options}, for more.
5157@end deffn
5158
5159
5160@node %define Summary
5161@subsection %define Summary
406dec82
JD
5162
5163There are many features of Bison's behavior that can be controlled by
5164assigning the feature a single value. For historical reasons, some
5165such features are assigned values by dedicated directives, such as
5166@code{%start}, which assigns the start symbol. However, newer such
5167features are associated with variables, which are assigned by the
5168@code{%define} directive:
5169
c1d19e10 5170@deffn {Directive} %define @var{variable}
f37495f6 5171@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5172@deffnx {Directive} %define @var{variable} "@var{value}"
406dec82 5173Define @var{variable} to @var{value}.
9611cfa2 5174
406dec82
JD
5175@var{value} must be placed in quotation marks if it contains any
5176character other than a letter, underscore, period, or non-initial dash
5177or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5178to specifying @code{""}.
9611cfa2 5179
406dec82
JD
5180It is an error if a @var{variable} is defined by @code{%define}
5181multiple times, but see @ref{Bison Options,,-D
5182@var{name}[=@var{value}]}.
5183@end deffn
f37495f6 5184
406dec82
JD
5185The rest of this section summarizes variables and values that
5186@code{%define} accepts.
9611cfa2 5187
406dec82
JD
5188Some @var{variable}s take Boolean values. In this case, Bison will
5189complain if the variable definition does not meet one of the following
5190four conditions:
9611cfa2
JD
5191
5192@enumerate
f37495f6 5193@item @code{@var{value}} is @code{true}
9611cfa2 5194
f37495f6
JD
5195@item @code{@var{value}} is omitted (or @code{""} is specified).
5196This is equivalent to @code{true}.
9611cfa2 5197
f37495f6 5198@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5199
5200@item @var{variable} is never defined.
628be6c9 5201In this case, Bison selects a default value.
9611cfa2 5202@end enumerate
148d66d8 5203
628be6c9
JD
5204What @var{variable}s are accepted, as well as their meanings and default
5205values, depend on the selected target language and/or the parser
5206skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5207Summary,,%skeleton}).
5208Unaccepted @var{variable}s produce an error.
793fbca5
JD
5209Some of the accepted @var{variable}s are:
5210
5211@itemize @bullet
ea118b72 5212@c ================================================== api.pure
d9df47b6
JD
5213@item api.pure
5214@findex %define api.pure
5215
5216@itemize @bullet
5217@item Language(s): C
5218
5219@item Purpose: Request a pure (reentrant) parser program.
5220@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5221
5222@item Accepted Values: Boolean
5223
f37495f6 5224@item Default Value: @code{false}
d9df47b6
JD
5225@end itemize
5226
812775a0
JD
5227@item api.push-pull
5228@findex %define api.push-pull
793fbca5
JD
5229
5230@itemize @bullet
34a6c2d1 5231@item Language(s): C (deterministic parsers only)
793fbca5 5232
3b1977ea 5233@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5234@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5235(The current push parsing interface is experimental and may evolve.
5236More user feedback will help to stabilize it.)
793fbca5 5237
f37495f6 5238@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5239
f37495f6 5240@item Default Value: @code{pull}
793fbca5
JD
5241@end itemize
5242
232be91a
AD
5243@c ================================================== lr.default-reductions
5244
1d0f55cc 5245@item lr.default-reductions
1d0f55cc 5246@findex %define lr.default-reductions
34a6c2d1
JD
5247
5248@itemize @bullet
5249@item Language(s): all
5250
4c38b19e 5251@item Purpose: Specify the kind of states that are permitted to
6f04ee6c
JD
5252contain default reductions. @xref{Default Reductions}. (The ability to
5253specify where default reductions should be used is experimental. More user
5254feedback will help to stabilize it.)
34a6c2d1 5255
a6e5a280 5256@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
34a6c2d1
JD
5257@item Default Value:
5258@itemize
f37495f6 5259@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
a6e5a280 5260@item @code{most} otherwise.
34a6c2d1
JD
5261@end itemize
5262@end itemize
5263
232be91a
AD
5264@c ============================================ lr.keep-unreachable-states
5265
812775a0
JD
5266@item lr.keep-unreachable-states
5267@findex %define lr.keep-unreachable-states
31984206
JD
5268
5269@itemize @bullet
5270@item Language(s): all
3b1977ea 5271@item Purpose: Request that Bison allow unreachable parser states to
6f04ee6c 5272remain in the parser tables. @xref{Unreachable States}.
31984206 5273@item Accepted Values: Boolean
f37495f6 5274@item Default Value: @code{false}
31984206
JD
5275@end itemize
5276
232be91a
AD
5277@c ================================================== lr.type
5278
34a6c2d1
JD
5279@item lr.type
5280@findex %define lr.type
34a6c2d1
JD
5281
5282@itemize @bullet
5283@item Language(s): all
5284
3b1977ea 5285@item Purpose: Specify the type of parser tables within the
6f04ee6c 5286LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
34a6c2d1
JD
5287More user feedback will help to stabilize it.)
5288
6f04ee6c 5289@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
34a6c2d1 5290
f37495f6 5291@item Default Value: @code{lalr}
34a6c2d1
JD
5292@end itemize
5293
793fbca5
JD
5294@item namespace
5295@findex %define namespace
5296
5297@itemize
5298@item Languages(s): C++
5299
3b1977ea 5300@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5301For example, if you specify:
5302
5303@smallexample
5304%define namespace "foo::bar"
5305@end smallexample
5306
5307Bison uses @code{foo::bar} verbatim in references such as:
5308
5309@smallexample
5310foo::bar::parser::semantic_type
5311@end smallexample
5312
5313However, to open a namespace, Bison removes any leading @code{::} and then
5314splits on any remaining occurrences:
5315
5316@smallexample
5317namespace foo @{ namespace bar @{
5318 class position;
5319 class location;
5320@} @}
5321@end smallexample
5322
5323@item Accepted Values: Any absolute or relative C++ namespace reference without
5324a trailing @code{"::"}.
5325For example, @code{"foo"} or @code{"::foo::bar"}.
5326
5327@item Default Value: The value specified by @code{%name-prefix}, which defaults
5328to @code{yy}.
5329This usage of @code{%name-prefix} is for backward compatibility and can be
5330confusing since @code{%name-prefix} also specifies the textual prefix for the
5331lexical analyzer function.
5332Thus, if you specify @code{%name-prefix}, it is best to also specify
5333@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5334lexical analyzer function.
5335For example, if you specify:
5336
5337@smallexample
5338%define namespace "foo"
5339%name-prefix "bar::"
5340@end smallexample
5341
5342The parser namespace is @code{foo} and @code{yylex} is referenced as
5343@code{bar::lex}.
5344@end itemize
4c38b19e
JD
5345
5346@c ================================================== parse.lac
5347@item parse.lac
5348@findex %define parse.lac
4c38b19e
JD
5349
5350@itemize
6f04ee6c 5351@item Languages(s): C (deterministic parsers only)
4c38b19e 5352
35430378 5353@item Purpose: Enable LAC (lookahead correction) to improve
6f04ee6c 5354syntax error handling. @xref{LAC}.
4c38b19e 5355@item Accepted Values: @code{none}, @code{full}
4c38b19e
JD
5356@item Default Value: @code{none}
5357@end itemize
793fbca5
JD
5358@end itemize
5359
d8988b2f 5360
8e6f2266
JD
5361@node %code Summary
5362@subsection %code Summary
8e6f2266 5363@findex %code
8e6f2266 5364@cindex Prologue
406dec82
JD
5365
5366The @code{%code} directive inserts code verbatim into the output
5367parser source at any of a predefined set of locations. It thus serves
5368as a flexible and user-friendly alternative to the traditional Yacc
5369prologue, @code{%@{@var{code}%@}}. This section summarizes the
5370functionality of @code{%code} for the various target languages
5371supported by Bison. For a detailed discussion of how to use
5372@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5373is advantageous to do so, @pxref{Prologue Alternatives}.
5374
5375@deffn {Directive} %code @{@var{code}@}
5376This is the unqualified form of the @code{%code} directive. It
5377inserts @var{code} verbatim at a language-dependent default location
5378in the parser implementation.
5379
8e6f2266 5380For C/C++, the default location is the parser implementation file
406dec82
JD
5381after the usual contents of the parser header file. Thus, the
5382unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
8e6f2266
JD
5383
5384For Java, the default location is inside the parser class.
5385@end deffn
5386
5387@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5388This is the qualified form of the @code{%code} directive.
406dec82
JD
5389@var{qualifier} identifies the purpose of @var{code} and thus the
5390location(s) where Bison should insert it. That is, if you need to
5391specify location-sensitive @var{code} that does not belong at the
5392default location selected by the unqualified @code{%code} form, use
5393this form instead.
5394@end deffn
5395
5396For any particular qualifier or for the unqualified form, if there are
5397multiple occurrences of the @code{%code} directive, Bison concatenates
5398the specified code in the order in which it appears in the grammar
5399file.
8e6f2266 5400
406dec82
JD
5401Not all qualifiers are accepted for all target languages. Unaccepted
5402qualifiers produce an error. Some of the accepted qualifiers are:
8e6f2266
JD
5403
5404@itemize @bullet
5405@item requires
5406@findex %code requires
5407
5408@itemize @bullet
5409@item Language(s): C, C++
5410
5411@item Purpose: This is the best place to write dependency code required for
5412@code{YYSTYPE} and @code{YYLTYPE}.
5413In other words, it's the best place to define types referenced in @code{%union}
5414directives, and it's the best place to override Bison's default @code{YYSTYPE}
5415and @code{YYLTYPE} definitions.
5416
5417@item Location(s): The parser header file and the parser implementation file
5418before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5419definitions.
5420@end itemize
5421
5422@item provides
5423@findex %code provides
5424
5425@itemize @bullet
5426@item Language(s): C, C++
5427
5428@item Purpose: This is the best place to write additional definitions and
5429declarations that should be provided to other modules.
5430
5431@item Location(s): The parser header file and the parser implementation
5432file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5433token definitions.
5434@end itemize
5435
5436@item top
5437@findex %code top
5438
5439@itemize @bullet
5440@item Language(s): C, C++
5441
5442@item Purpose: The unqualified @code{%code} or @code{%code requires}
5443should usually be more appropriate than @code{%code top}. However,
5444occasionally it is necessary to insert code much nearer the top of the
5445parser implementation file. For example:
5446
ea118b72 5447@example
8e6f2266
JD
5448%code top @{
5449 #define _GNU_SOURCE
5450 #include <stdio.h>
5451@}
ea118b72 5452@end example
8e6f2266
JD
5453
5454@item Location(s): Near the top of the parser implementation file.
5455@end itemize
5456
5457@item imports
5458@findex %code imports
5459
5460@itemize @bullet
5461@item Language(s): Java
5462
5463@item Purpose: This is the best place to write Java import directives.
5464
5465@item Location(s): The parser Java file after any Java package directive and
5466before any class definitions.
5467@end itemize
5468@end itemize
5469
406dec82
JD
5470Though we say the insertion locations are language-dependent, they are
5471technically skeleton-dependent. Writers of non-standard skeletons
5472however should choose their locations consistently with the behavior
5473of the standard Bison skeletons.
8e6f2266 5474
d8988b2f 5475
342b8b6e 5476@node Multiple Parsers
bfa74976
RS
5477@section Multiple Parsers in the Same Program
5478
5479Most programs that use Bison parse only one language and therefore contain
5480only one Bison parser. But what if you want to parse more than one
5481language with the same program? Then you need to avoid a name conflict
5482between different definitions of @code{yyparse}, @code{yylval}, and so on.
5483
5484The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5485(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5486functions and variables of the Bison parser to start with @var{prefix}
5487instead of @samp{yy}. You can use this to give each parser distinct
5488names that do not conflict.
bfa74976
RS
5489
5490The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5491@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5492@code{yychar} and @code{yydebug}. If you use a push parser,
5493@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5494@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5495For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5496@code{clex}, and so on.
bfa74976
RS
5497
5498@strong{All the other variables and macros associated with Bison are not
5499renamed.} These others are not global; there is no conflict if the same
5500name is used in different parsers. For example, @code{YYSTYPE} is not
5501renamed, but defining this in different ways in different parsers causes
5502no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5503
9913d6e4
JD
5504The @samp{-p} option works by adding macro definitions to the
5505beginning of the parser implementation file, defining @code{yyparse}
5506as @code{@var{prefix}parse}, and so on. This effectively substitutes
5507one name for the other in the entire parser implementation file.
bfa74976 5508
342b8b6e 5509@node Interface
bfa74976
RS
5510@chapter Parser C-Language Interface
5511@cindex C-language interface
5512@cindex interface
5513
5514The Bison parser is actually a C function named @code{yyparse}. Here we
5515describe the interface conventions of @code{yyparse} and the other
5516functions that it needs to use.
5517
5518Keep in mind that the parser uses many C identifiers starting with
5519@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5520identifier (aside from those in this manual) in an action or in epilogue
5521in the grammar file, you are likely to run into trouble.
bfa74976
RS
5522
5523@menu
f56274a8
DJ
5524* Parser Function:: How to call @code{yyparse} and what it returns.
5525* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5526* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5527* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5528* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5529* Lexical:: You must supply a function @code{yylex}
5530 which reads tokens.
5531* Error Reporting:: You must supply a function @code{yyerror}.
5532* Action Features:: Special features for use in actions.
5533* Internationalization:: How to let the parser speak in the user's
5534 native language.
bfa74976
RS
5535@end menu
5536
342b8b6e 5537@node Parser Function
bfa74976
RS
5538@section The Parser Function @code{yyparse}
5539@findex yyparse
5540
5541You call the function @code{yyparse} to cause parsing to occur. This
5542function reads tokens, executes actions, and ultimately returns when it
5543encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5544write an action which directs @code{yyparse} to return immediately
5545without reading further.
bfa74976 5546
2a8d363a
AD
5547
5548@deftypefun int yyparse (void)
bfa74976
RS
5549The value returned by @code{yyparse} is 0 if parsing was successful (return
5550is due to end-of-input).
5551
b47dbebe
PE
5552The value is 1 if parsing failed because of invalid input, i.e., input
5553that contains a syntax error or that causes @code{YYABORT} to be
5554invoked.
5555
5556The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5557@end deftypefun
bfa74976
RS
5558
5559In an action, you can cause immediate return from @code{yyparse} by using
5560these macros:
5561
2a8d363a 5562@defmac YYACCEPT
bfa74976
RS
5563@findex YYACCEPT
5564Return immediately with value 0 (to report success).
2a8d363a 5565@end defmac
bfa74976 5566
2a8d363a 5567@defmac YYABORT
bfa74976
RS
5568@findex YYABORT
5569Return immediately with value 1 (to report failure).
2a8d363a
AD
5570@end defmac
5571
5572If you use a reentrant parser, you can optionally pass additional
5573parameter information to it in a reentrant way. To do so, use the
5574declaration @code{%parse-param}:
5575
feeb0eda 5576@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5577@findex %parse-param
287c78f6
PE
5578Declare that an argument declared by the braced-code
5579@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5580The @var{argument-declaration} is used when declaring
feeb0eda
PE
5581functions or prototypes. The last identifier in
5582@var{argument-declaration} must be the argument name.
2a8d363a
AD
5583@end deffn
5584
5585Here's an example. Write this in the parser:
5586
5587@example
feeb0eda
PE
5588%parse-param @{int *nastiness@}
5589%parse-param @{int *randomness@}
2a8d363a
AD
5590@end example
5591
5592@noindent
5593Then call the parser like this:
5594
5595@example
5596@{
5597 int nastiness, randomness;
5598 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5599 value = yyparse (&nastiness, &randomness);
5600 @dots{}
5601@}
5602@end example
5603
5604@noindent
5605In the grammar actions, use expressions like this to refer to the data:
5606
5607@example
5608exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5609@end example
5610
9987d1b3
JD
5611@node Push Parser Function
5612@section The Push Parser Function @code{yypush_parse}
5613@findex yypush_parse
5614
59da312b
JD
5615(The current push parsing interface is experimental and may evolve.
5616More user feedback will help to stabilize it.)
5617
f4101aa6 5618You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5619function is available if either the @code{%define api.push-pull push} or
5620@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5621@xref{Push Decl, ,A Push Parser}.
5622
5623@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5624The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5625following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5626is required to finish parsing the grammar.
5627@end deftypefun
5628
5629@node Pull Parser Function
5630@section The Pull Parser Function @code{yypull_parse}
5631@findex yypull_parse
5632
59da312b
JD
5633(The current push parsing interface is experimental and may evolve.
5634More user feedback will help to stabilize it.)
5635
f4101aa6 5636You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5637stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5638declaration is used.
9987d1b3
JD
5639@xref{Push Decl, ,A Push Parser}.
5640
5641@deftypefun int yypull_parse (yypstate *yyps)
5642The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5643@end deftypefun
5644
5645@node Parser Create Function
5646@section The Parser Create Function @code{yystate_new}
5647@findex yypstate_new
5648
59da312b
JD
5649(The current push parsing interface is experimental and may evolve.
5650More user feedback will help to stabilize it.)
5651
f4101aa6 5652You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5653This function is available if either the @code{%define api.push-pull push} or
5654@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5655@xref{Push Decl, ,A Push Parser}.
5656
5657@deftypefun yypstate *yypstate_new (void)
c781580d 5658The function will return a valid parser instance if there was memory available
333e670c
JD
5659or 0 if no memory was available.
5660In impure mode, it will also return 0 if a parser instance is currently
5661allocated.
9987d1b3
JD
5662@end deftypefun
5663
5664@node Parser Delete Function
5665@section The Parser Delete Function @code{yystate_delete}
5666@findex yypstate_delete
5667
59da312b
JD
5668(The current push parsing interface is experimental and may evolve.
5669More user feedback will help to stabilize it.)
5670
9987d1b3 5671You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5672function is available if either the @code{%define api.push-pull push} or
5673@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5674@xref{Push Decl, ,A Push Parser}.
5675
5676@deftypefun void yypstate_delete (yypstate *yyps)
5677This function will reclaim the memory associated with a parser instance.
5678After this call, you should no longer attempt to use the parser instance.
5679@end deftypefun
bfa74976 5680
342b8b6e 5681@node Lexical
bfa74976
RS
5682@section The Lexical Analyzer Function @code{yylex}
5683@findex yylex
5684@cindex lexical analyzer
5685
5686The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5687the input stream and returns them to the parser. Bison does not create
5688this function automatically; you must write it so that @code{yyparse} can
5689call it. The function is sometimes referred to as a lexical scanner.
5690
9913d6e4
JD
5691In simple programs, @code{yylex} is often defined at the end of the
5692Bison grammar file. If @code{yylex} is defined in a separate source
5693file, you need to arrange for the token-type macro definitions to be
5694available there. To do this, use the @samp{-d} option when you run
5695Bison, so that it will write these macro definitions into the separate
5696parser header file, @file{@var{name}.tab.h}, which you can include in
5697the other source files that need it. @xref{Invocation, ,Invoking
5698Bison}.
bfa74976
RS
5699
5700@menu
5701* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5702* Token Values:: How @code{yylex} must return the semantic value
5703 of the token it has read.
5704* Token Locations:: How @code{yylex} must return the text location
5705 (line number, etc.) of the token, if the
5706 actions want that.
5707* Pure Calling:: How the calling convention differs in a pure parser
5708 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5709@end menu
5710
342b8b6e 5711@node Calling Convention
bfa74976
RS
5712@subsection Calling Convention for @code{yylex}
5713
72d2299c
PE
5714The value that @code{yylex} returns must be the positive numeric code
5715for the type of token it has just found; a zero or negative value
5716signifies end-of-input.
bfa74976
RS
5717
5718When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5719in the parser implementation file becomes a C macro whose definition
5720is the proper numeric code for that token type. So @code{yylex} can
5721use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5722
5723When a token is referred to in the grammar rules by a character literal,
5724the numeric code for that character is also the code for the token type.
72d2299c
PE
5725So @code{yylex} can simply return that character code, possibly converted
5726to @code{unsigned char} to avoid sign-extension. The null character
5727must not be used this way, because its code is zero and that
bfa74976
RS
5728signifies end-of-input.
5729
5730Here is an example showing these things:
5731
5732@example
13863333
AD
5733int
5734yylex (void)
bfa74976
RS
5735@{
5736 @dots{}
72d2299c 5737 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5738 return 0;
5739 @dots{}
5740 if (c == '+' || c == '-')
72d2299c 5741 return c; /* Assume token type for `+' is '+'. */
bfa74976 5742 @dots{}
72d2299c 5743 return INT; /* Return the type of the token. */
bfa74976
RS
5744 @dots{}
5745@}
5746@end example
5747
5748@noindent
5749This interface has been designed so that the output from the @code{lex}
5750utility can be used without change as the definition of @code{yylex}.
5751
931c7513
RS
5752If the grammar uses literal string tokens, there are two ways that
5753@code{yylex} can determine the token type codes for them:
5754
5755@itemize @bullet
5756@item
5757If the grammar defines symbolic token names as aliases for the
5758literal string tokens, @code{yylex} can use these symbolic names like
5759all others. In this case, the use of the literal string tokens in
5760the grammar file has no effect on @code{yylex}.
5761
5762@item
9ecbd125 5763@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5764table. The index of the token in the table is the token type's code.
9ecbd125 5765The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5766double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5767token's characters are escaped as necessary to be suitable as input
5768to Bison.
931c7513 5769
9e0876fb
PE
5770Here's code for looking up a multicharacter token in @code{yytname},
5771assuming that the characters of the token are stored in
5772@code{token_buffer}, and assuming that the token does not contain any
5773characters like @samp{"} that require escaping.
931c7513 5774
ea118b72 5775@example
931c7513
RS
5776for (i = 0; i < YYNTOKENS; i++)
5777 @{
5778 if (yytname[i] != 0
5779 && yytname[i][0] == '"'
68449b3a
PE
5780 && ! strncmp (yytname[i] + 1, token_buffer,
5781 strlen (token_buffer))
931c7513
RS
5782 && yytname[i][strlen (token_buffer) + 1] == '"'
5783 && yytname[i][strlen (token_buffer) + 2] == 0)
5784 break;
5785 @}
ea118b72 5786@end example
931c7513
RS
5787
5788The @code{yytname} table is generated only if you use the
8c9a50be 5789@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5790@end itemize
5791
342b8b6e 5792@node Token Values
bfa74976
RS
5793@subsection Semantic Values of Tokens
5794
5795@vindex yylval
9d9b8b70 5796In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5797be stored into the global variable @code{yylval}. When you are using
5798just one data type for semantic values, @code{yylval} has that type.
5799Thus, if the type is @code{int} (the default), you might write this in
5800@code{yylex}:
5801
5802@example
5803@group
5804 @dots{}
72d2299c
PE
5805 yylval = value; /* Put value onto Bison stack. */
5806 return INT; /* Return the type of the token. */
bfa74976
RS
5807 @dots{}
5808@end group
5809@end example
5810
5811When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5812made from the @code{%union} declaration (@pxref{Union Decl, ,The
5813Collection of Value Types}). So when you store a token's value, you
5814must use the proper member of the union. If the @code{%union}
5815declaration looks like this:
bfa74976
RS
5816
5817@example
5818@group
5819%union @{
5820 int intval;
5821 double val;
5822 symrec *tptr;
5823@}
5824@end group
5825@end example
5826
5827@noindent
5828then the code in @code{yylex} might look like this:
5829
5830@example
5831@group
5832 @dots{}
72d2299c
PE
5833 yylval.intval = value; /* Put value onto Bison stack. */
5834 return INT; /* Return the type of the token. */
bfa74976
RS
5835 @dots{}
5836@end group
5837@end example
5838
95923bd6
AD
5839@node Token Locations
5840@subsection Textual Locations of Tokens
bfa74976
RS
5841
5842@vindex yylloc
7404cdf3
JD
5843If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
5844in actions to keep track of the textual locations of tokens and groupings,
5845then you must provide this information in @code{yylex}. The function
5846@code{yyparse} expects to find the textual location of a token just parsed
5847in the global variable @code{yylloc}. So @code{yylex} must store the proper
5848data in that variable.
847bf1f5
AD
5849
5850By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5851initialize the members that are going to be used by the actions. The
5852four members are called @code{first_line}, @code{first_column},
5853@code{last_line} and @code{last_column}. Note that the use of this
5854feature makes the parser noticeably slower.
bfa74976
RS
5855
5856@tindex YYLTYPE
5857The data type of @code{yylloc} has the name @code{YYLTYPE}.
5858
342b8b6e 5859@node Pure Calling
c656404a 5860@subsection Calling Conventions for Pure Parsers
bfa74976 5861
d9df47b6 5862When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5863pure, reentrant parser, the global communication variables @code{yylval}
5864and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5865Parser}.) In such parsers the two global variables are replaced by
5866pointers passed as arguments to @code{yylex}. You must declare them as
5867shown here, and pass the information back by storing it through those
5868pointers.
bfa74976
RS
5869
5870@example
13863333
AD
5871int
5872yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5873@{
5874 @dots{}
5875 *lvalp = value; /* Put value onto Bison stack. */
5876 return INT; /* Return the type of the token. */
5877 @dots{}
5878@}
5879@end example
5880
5881If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5882textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5883this case, omit the second argument; @code{yylex} will be called with
5884only one argument.
5885
e425e872 5886
2a8d363a
AD
5887If you wish to pass the additional parameter data to @code{yylex}, use
5888@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5889Function}).
e425e872 5890
feeb0eda 5891@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5892@findex %lex-param
287c78f6
PE
5893Declare that the braced-code @var{argument-declaration} is an
5894additional @code{yylex} argument declaration.
2a8d363a 5895@end deffn
e425e872 5896
2a8d363a 5897For instance:
e425e872
RS
5898
5899@example
feeb0eda
PE
5900%parse-param @{int *nastiness@}
5901%lex-param @{int *nastiness@}
5902%parse-param @{int *randomness@}
e425e872
RS
5903@end example
5904
5905@noindent
2a8d363a 5906results in the following signature:
e425e872
RS
5907
5908@example
2a8d363a
AD
5909int yylex (int *nastiness);
5910int yyparse (int *nastiness, int *randomness);
e425e872
RS
5911@end example
5912
d9df47b6 5913If @code{%define api.pure} is added:
c656404a
RS
5914
5915@example
2a8d363a
AD
5916int yylex (YYSTYPE *lvalp, int *nastiness);
5917int yyparse (int *nastiness, int *randomness);
c656404a
RS
5918@end example
5919
2a8d363a 5920@noindent
d9df47b6 5921and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5922
2a8d363a
AD
5923@example
5924int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5925int yyparse (int *nastiness, int *randomness);
5926@end example
931c7513 5927
342b8b6e 5928@node Error Reporting
bfa74976
RS
5929@section The Error Reporting Function @code{yyerror}
5930@cindex error reporting function
5931@findex yyerror
5932@cindex parse error
5933@cindex syntax error
5934
6e649e65 5935The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5936whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5937action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5938macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5939in Actions}).
bfa74976
RS
5940
5941The Bison parser expects to report the error by calling an error
5942reporting function named @code{yyerror}, which you must supply. It is
5943called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5944receives one argument. For a syntax error, the string is normally
5945@w{@code{"syntax error"}}.
bfa74976 5946
2a8d363a 5947@findex %error-verbose
6f04ee6c
JD
5948If you invoke the directive @code{%error-verbose} in the Bison declarations
5949section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
5950Bison provides a more verbose and specific error message string instead of
5951just plain @w{@code{"syntax error"}}. However, that message sometimes
5952contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 5953
1a059451
PE
5954The parser can detect one other kind of error: memory exhaustion. This
5955can happen when the input contains constructions that are very deeply
bfa74976 5956nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5957parser normally extends its stack automatically up to a very large limit. But
5958if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5959fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5960
5961In some cases diagnostics like @w{@code{"syntax error"}} are
5962translated automatically from English to some other language before
5963they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5964
5965The following definition suffices in simple programs:
5966
5967@example
5968@group
13863333 5969void
38a92d50 5970yyerror (char const *s)
bfa74976
RS
5971@{
5972@end group
5973@group
5974 fprintf (stderr, "%s\n", s);
5975@}
5976@end group
5977@end example
5978
5979After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5980error recovery if you have written suitable error recovery grammar rules
5981(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5982immediately return 1.
5983
93724f13 5984Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 5985an access to the current location.
35430378 5986This is indeed the case for the GLR
2a8d363a 5987parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5988@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5989@code{yyerror} are:
5990
5991@example
38a92d50
PE
5992void yyerror (char const *msg); /* Yacc parsers. */
5993void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5994@end example
5995
feeb0eda 5996If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
5997
5998@example
b317297e
PE
5999void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6000void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6001@end example
6002
35430378 6003Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6004convention for absolutely pure parsers, i.e., when the calling
6005convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
6006@code{%define api.pure} are pure.
6007I.e.:
2a8d363a
AD
6008
6009@example
6010/* Location tracking. */
6011%locations
6012/* Pure yylex. */
d9df47b6 6013%define api.pure
feeb0eda 6014%lex-param @{int *nastiness@}
2a8d363a 6015/* Pure yyparse. */
feeb0eda
PE
6016%parse-param @{int *nastiness@}
6017%parse-param @{int *randomness@}
2a8d363a
AD
6018@end example
6019
6020@noindent
6021results in the following signatures for all the parser kinds:
6022
6023@example
6024int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6025int yyparse (int *nastiness, int *randomness);
93724f13
AD
6026void yyerror (YYLTYPE *locp,
6027 int *nastiness, int *randomness,
38a92d50 6028 char const *msg);
2a8d363a
AD
6029@end example
6030
1c0c3e95 6031@noindent
38a92d50
PE
6032The prototypes are only indications of how the code produced by Bison
6033uses @code{yyerror}. Bison-generated code always ignores the returned
6034value, so @code{yyerror} can return any type, including @code{void}.
6035Also, @code{yyerror} can be a variadic function; that is why the
6036message is always passed last.
6037
6038Traditionally @code{yyerror} returns an @code{int} that is always
6039ignored, but this is purely for historical reasons, and @code{void} is
6040preferable since it more accurately describes the return type for
6041@code{yyerror}.
93724f13 6042
bfa74976
RS
6043@vindex yynerrs
6044The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6045reported so far. Normally this variable is global; but if you
704a47c4
AD
6046request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6047then it is a local variable which only the actions can access.
bfa74976 6048
342b8b6e 6049@node Action Features
bfa74976
RS
6050@section Special Features for Use in Actions
6051@cindex summary, action features
6052@cindex action features summary
6053
6054Here is a table of Bison constructs, variables and macros that
6055are useful in actions.
6056
18b519c0 6057@deffn {Variable} $$
bfa74976
RS
6058Acts like a variable that contains the semantic value for the
6059grouping made by the current rule. @xref{Actions}.
18b519c0 6060@end deffn
bfa74976 6061
18b519c0 6062@deffn {Variable} $@var{n}
bfa74976
RS
6063Acts like a variable that contains the semantic value for the
6064@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6065@end deffn
bfa74976 6066
18b519c0 6067@deffn {Variable} $<@var{typealt}>$
bfa74976 6068Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6069specified by the @code{%union} declaration. @xref{Action Types, ,Data
6070Types of Values in Actions}.
18b519c0 6071@end deffn
bfa74976 6072
18b519c0 6073@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6074Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6075union specified by the @code{%union} declaration.
e0c471a9 6076@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6077@end deffn
bfa74976 6078
18b519c0 6079@deffn {Macro} YYABORT;
bfa74976
RS
6080Return immediately from @code{yyparse}, indicating failure.
6081@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6082@end deffn
bfa74976 6083
18b519c0 6084@deffn {Macro} YYACCEPT;
bfa74976
RS
6085Return immediately from @code{yyparse}, indicating success.
6086@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6087@end deffn
bfa74976 6088
18b519c0 6089@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6090@findex YYBACKUP
6091Unshift a token. This macro is allowed only for rules that reduce
742e4900 6092a single value, and only when there is no lookahead token.
35430378 6093It is also disallowed in GLR parsers.
742e4900 6094It installs a lookahead token with token type @var{token} and
bfa74976
RS
6095semantic value @var{value}; then it discards the value that was
6096going to be reduced by this rule.
6097
6098If the macro is used when it is not valid, such as when there is
742e4900 6099a lookahead token already, then it reports a syntax error with
bfa74976
RS
6100a message @samp{cannot back up} and performs ordinary error
6101recovery.
6102
6103In either case, the rest of the action is not executed.
18b519c0 6104@end deffn
bfa74976 6105
18b519c0 6106@deffn {Macro} YYEMPTY
bfa74976 6107@vindex YYEMPTY
742e4900 6108Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6109@end deffn
bfa74976 6110
32c29292
JD
6111@deffn {Macro} YYEOF
6112@vindex YYEOF
742e4900 6113Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6114stream.
6115@end deffn
6116
18b519c0 6117@deffn {Macro} YYERROR;
bfa74976
RS
6118@findex YYERROR
6119Cause an immediate syntax error. This statement initiates error
6120recovery just as if the parser itself had detected an error; however, it
6121does not call @code{yyerror}, and does not print any message. If you
6122want to print an error message, call @code{yyerror} explicitly before
6123the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6124@end deffn
bfa74976 6125
18b519c0 6126@deffn {Macro} YYRECOVERING
02103984
PE
6127@findex YYRECOVERING
6128The expression @code{YYRECOVERING ()} yields 1 when the parser
6129is recovering from a syntax error, and 0 otherwise.
bfa74976 6130@xref{Error Recovery}.
18b519c0 6131@end deffn
bfa74976 6132
18b519c0 6133@deffn {Variable} yychar
742e4900
JD
6134Variable containing either the lookahead token, or @code{YYEOF} when the
6135lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6136has been performed so the next token is not yet known.
6137Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6138Actions}).
742e4900 6139@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6140@end deffn
bfa74976 6141
18b519c0 6142@deffn {Macro} yyclearin;
742e4900 6143Discard the current lookahead token. This is useful primarily in
32c29292
JD
6144error rules.
6145Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6146Semantic Actions}).
6147@xref{Error Recovery}.
18b519c0 6148@end deffn
bfa74976 6149
18b519c0 6150@deffn {Macro} yyerrok;
bfa74976 6151Resume generating error messages immediately for subsequent syntax
13863333 6152errors. This is useful primarily in error rules.
bfa74976 6153@xref{Error Recovery}.
18b519c0 6154@end deffn
bfa74976 6155
32c29292 6156@deffn {Variable} yylloc
742e4900 6157Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6158to @code{YYEMPTY} or @code{YYEOF}.
6159Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6160Actions}).
6161@xref{Actions and Locations, ,Actions and Locations}.
6162@end deffn
6163
6164@deffn {Variable} yylval
742e4900 6165Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6166not set to @code{YYEMPTY} or @code{YYEOF}.
6167Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6168Actions}).
6169@xref{Actions, ,Actions}.
6170@end deffn
6171
18b519c0 6172@deffn {Value} @@$
847bf1f5 6173@findex @@$
7404cdf3
JD
6174Acts like a structure variable containing information on the textual
6175location of the grouping made by the current rule. @xref{Tracking
6176Locations}.
bfa74976 6177
847bf1f5
AD
6178@c Check if those paragraphs are still useful or not.
6179
6180@c @example
6181@c struct @{
6182@c int first_line, last_line;
6183@c int first_column, last_column;
6184@c @};
6185@c @end example
6186
6187@c Thus, to get the starting line number of the third component, you would
6188@c use @samp{@@3.first_line}.
bfa74976 6189
847bf1f5
AD
6190@c In order for the members of this structure to contain valid information,
6191@c you must make @code{yylex} supply this information about each token.
6192@c If you need only certain members, then @code{yylex} need only fill in
6193@c those members.
bfa74976 6194
847bf1f5 6195@c The use of this feature makes the parser noticeably slower.
18b519c0 6196@end deffn
847bf1f5 6197
18b519c0 6198@deffn {Value} @@@var{n}
847bf1f5 6199@findex @@@var{n}
7404cdf3
JD
6200Acts like a structure variable containing information on the textual
6201location of the @var{n}th component of the current rule. @xref{Tracking
6202Locations}.
18b519c0 6203@end deffn
bfa74976 6204
f7ab6a50
PE
6205@node Internationalization
6206@section Parser Internationalization
6207@cindex internationalization
6208@cindex i18n
6209@cindex NLS
6210@cindex gettext
6211@cindex bison-po
6212
6213A Bison-generated parser can print diagnostics, including error and
6214tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6215also supports outputting diagnostics in the user's native language. To
6216make this work, the user should set the usual environment variables.
6217@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6218For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6219set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6220encoding. The exact set of available locales depends on the user's
6221installation.
6222
6223The maintainer of a package that uses a Bison-generated parser enables
6224the internationalization of the parser's output through the following
35430378
JD
6225steps. Here we assume a package that uses GNU Autoconf and
6226GNU Automake.
f7ab6a50
PE
6227
6228@enumerate
6229@item
30757c8c 6230@cindex bison-i18n.m4
35430378 6231Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6232by the package---often called @file{m4}---copy the
6233@file{bison-i18n.m4} file installed by Bison under
6234@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6235For example:
6236
6237@example
6238cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6239@end example
6240
6241@item
30757c8c
PE
6242@findex BISON_I18N
6243@vindex BISON_LOCALEDIR
6244@vindex YYENABLE_NLS
f7ab6a50
PE
6245In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6246invocation, add an invocation of @code{BISON_I18N}. This macro is
6247defined in the file @file{bison-i18n.m4} that you copied earlier. It
6248causes @samp{configure} to find the value of the
30757c8c
PE
6249@code{BISON_LOCALEDIR} variable, and it defines the source-language
6250symbol @code{YYENABLE_NLS} to enable translations in the
6251Bison-generated parser.
f7ab6a50
PE
6252
6253@item
6254In the @code{main} function of your program, designate the directory
6255containing Bison's runtime message catalog, through a call to
6256@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6257For example:
6258
6259@example
6260bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6261@end example
6262
6263Typically this appears after any other call @code{bindtextdomain
6264(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6265@samp{BISON_LOCALEDIR} to be defined as a string through the
6266@file{Makefile}.
6267
6268@item
6269In the @file{Makefile.am} that controls the compilation of the @code{main}
6270function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6271either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6272
6273@example
6274DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6275@end example
6276
6277or:
6278
6279@example
6280AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6281@end example
6282
6283@item
6284Finally, invoke the command @command{autoreconf} to generate the build
6285infrastructure.
6286@end enumerate
6287
bfa74976 6288
342b8b6e 6289@node Algorithm
13863333
AD
6290@chapter The Bison Parser Algorithm
6291@cindex Bison parser algorithm
bfa74976
RS
6292@cindex algorithm of parser
6293@cindex shifting
6294@cindex reduction
6295@cindex parser stack
6296@cindex stack, parser
6297
6298As Bison reads tokens, it pushes them onto a stack along with their
6299semantic values. The stack is called the @dfn{parser stack}. Pushing a
6300token is traditionally called @dfn{shifting}.
6301
6302For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6303@samp{3} to come. The stack will have four elements, one for each token
6304that was shifted.
6305
6306But the stack does not always have an element for each token read. When
6307the last @var{n} tokens and groupings shifted match the components of a
6308grammar rule, they can be combined according to that rule. This is called
6309@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6310single grouping whose symbol is the result (left hand side) of that rule.
6311Running the rule's action is part of the process of reduction, because this
6312is what computes the semantic value of the resulting grouping.
6313
6314For example, if the infix calculator's parser stack contains this:
6315
6316@example
63171 + 5 * 3
6318@end example
6319
6320@noindent
6321and the next input token is a newline character, then the last three
6322elements can be reduced to 15 via the rule:
6323
6324@example
6325expr: expr '*' expr;
6326@end example
6327
6328@noindent
6329Then the stack contains just these three elements:
6330
6331@example
63321 + 15
6333@end example
6334
6335@noindent
6336At this point, another reduction can be made, resulting in the single value
633716. Then the newline token can be shifted.
6338
6339The parser tries, by shifts and reductions, to reduce the entire input down
6340to a single grouping whose symbol is the grammar's start-symbol
6341(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6342
6343This kind of parser is known in the literature as a bottom-up parser.
6344
6345@menu
742e4900 6346* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6347* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6348* Precedence:: Operator precedence works by resolving conflicts.
6349* Contextual Precedence:: When an operator's precedence depends on context.
6350* Parser States:: The parser is a finite-state-machine with stack.
6351* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 6352* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 6353* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6354* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6355* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6356@end menu
6357
742e4900
JD
6358@node Lookahead
6359@section Lookahead Tokens
6360@cindex lookahead token
bfa74976
RS
6361
6362The Bison parser does @emph{not} always reduce immediately as soon as the
6363last @var{n} tokens and groupings match a rule. This is because such a
6364simple strategy is inadequate to handle most languages. Instead, when a
6365reduction is possible, the parser sometimes ``looks ahead'' at the next
6366token in order to decide what to do.
6367
6368When a token is read, it is not immediately shifted; first it becomes the
742e4900 6369@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6370perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6371the lookahead token remains off to the side. When no more reductions
6372should take place, the lookahead token is shifted onto the stack. This
bfa74976 6373does not mean that all possible reductions have been done; depending on the
742e4900 6374token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6375application.
6376
742e4900 6377Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6378expressions which contain binary addition operators and postfix unary
6379factorial operators (@samp{!}), and allow parentheses for grouping.
6380
6381@example
6382@group
de6be119
AD
6383expr:
6384 term '+' expr
6385| term
6386;
bfa74976
RS
6387@end group
6388
6389@group
de6be119
AD
6390term:
6391 '(' expr ')'
6392| term '!'
6393| NUMBER
6394;
bfa74976
RS
6395@end group
6396@end example
6397
6398Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6399should be done? If the following token is @samp{)}, then the first three
6400tokens must be reduced to form an @code{expr}. This is the only valid
6401course, because shifting the @samp{)} would produce a sequence of symbols
6402@w{@code{term ')'}}, and no rule allows this.
6403
6404If the following token is @samp{!}, then it must be shifted immediately so
6405that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6406parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6407@code{expr}. It would then be impossible to shift the @samp{!} because
6408doing so would produce on the stack the sequence of symbols @code{expr
6409'!'}. No rule allows that sequence.
6410
6411@vindex yychar
32c29292
JD
6412@vindex yylval
6413@vindex yylloc
742e4900 6414The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6415Its semantic value and location, if any, are stored in the variables
6416@code{yylval} and @code{yylloc}.
bfa74976
RS
6417@xref{Action Features, ,Special Features for Use in Actions}.
6418
342b8b6e 6419@node Shift/Reduce
bfa74976
RS
6420@section Shift/Reduce Conflicts
6421@cindex conflicts
6422@cindex shift/reduce conflicts
6423@cindex dangling @code{else}
6424@cindex @code{else}, dangling
6425
6426Suppose we are parsing a language which has if-then and if-then-else
6427statements, with a pair of rules like this:
6428
6429@example
6430@group
6431if_stmt:
de6be119
AD
6432 IF expr THEN stmt
6433| IF expr THEN stmt ELSE stmt
6434;
bfa74976
RS
6435@end group
6436@end example
6437
6438@noindent
6439Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6440terminal symbols for specific keyword tokens.
6441
742e4900 6442When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6443contents of the stack (assuming the input is valid) are just right for
6444reduction by the first rule. But it is also legitimate to shift the
6445@code{ELSE}, because that would lead to eventual reduction by the second
6446rule.
6447
6448This situation, where either a shift or a reduction would be valid, is
6449called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6450these conflicts by choosing to shift, unless otherwise directed by
6451operator precedence declarations. To see the reason for this, let's
6452contrast it with the other alternative.
6453
6454Since the parser prefers to shift the @code{ELSE}, the result is to attach
6455the else-clause to the innermost if-statement, making these two inputs
6456equivalent:
6457
6458@example
6459if x then if y then win (); else lose;
6460
6461if x then do; if y then win (); else lose; end;
6462@end example
6463
6464But if the parser chose to reduce when possible rather than shift, the
6465result would be to attach the else-clause to the outermost if-statement,
6466making these two inputs equivalent:
6467
6468@example
6469if x then if y then win (); else lose;
6470
6471if x then do; if y then win (); end; else lose;
6472@end example
6473
6474The conflict exists because the grammar as written is ambiguous: either
6475parsing of the simple nested if-statement is legitimate. The established
6476convention is that these ambiguities are resolved by attaching the
6477else-clause to the innermost if-statement; this is what Bison accomplishes
6478by choosing to shift rather than reduce. (It would ideally be cleaner to
6479write an unambiguous grammar, but that is very hard to do in this case.)
6480This particular ambiguity was first encountered in the specifications of
6481Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6482
6483To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6484conflicts, use the @code{%expect @var{n}} declaration.
6485There will be no warning as long as the number of shift/reduce conflicts
6486is exactly @var{n}, and Bison will report an error if there is a
6487different number.
bfa74976
RS
6488@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6489
6490The definition of @code{if_stmt} above is solely to blame for the
6491conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6492rules. Here is a complete Bison grammar file that actually manifests
6493the conflict:
bfa74976
RS
6494
6495@example
6496@group
6497%token IF THEN ELSE variable
6498%%
6499@end group
6500@group
de6be119
AD
6501stmt:
6502 expr
6503| if_stmt
6504;
bfa74976
RS
6505@end group
6506
6507@group
6508if_stmt:
de6be119
AD
6509 IF expr THEN stmt
6510| IF expr THEN stmt ELSE stmt
6511;
bfa74976
RS
6512@end group
6513
de6be119
AD
6514expr:
6515 variable
6516;
bfa74976
RS
6517@end example
6518
342b8b6e 6519@node Precedence
bfa74976
RS
6520@section Operator Precedence
6521@cindex operator precedence
6522@cindex precedence of operators
6523
6524Another situation where shift/reduce conflicts appear is in arithmetic
6525expressions. Here shifting is not always the preferred resolution; the
6526Bison declarations for operator precedence allow you to specify when to
6527shift and when to reduce.
6528
6529@menu
6530* Why Precedence:: An example showing why precedence is needed.
6531* Using Precedence:: How to specify precedence in Bison grammars.
6532* Precedence Examples:: How these features are used in the previous example.
6533* How Precedence:: How they work.
6534@end menu
6535
342b8b6e 6536@node Why Precedence
bfa74976
RS
6537@subsection When Precedence is Needed
6538
6539Consider the following ambiguous grammar fragment (ambiguous because the
6540input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6541
6542@example
6543@group
de6be119
AD
6544expr:
6545 expr '-' expr
6546| expr '*' expr
6547| expr '<' expr
6548| '(' expr ')'
6549@dots{}
6550;
bfa74976
RS
6551@end group
6552@end example
6553
6554@noindent
6555Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6556should it reduce them via the rule for the subtraction operator? It
6557depends on the next token. Of course, if the next token is @samp{)}, we
6558must reduce; shifting is invalid because no single rule can reduce the
6559token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6560the next token is @samp{*} or @samp{<}, we have a choice: either
6561shifting or reduction would allow the parse to complete, but with
6562different results.
6563
6564To decide which one Bison should do, we must consider the results. If
6565the next operator token @var{op} is shifted, then it must be reduced
6566first in order to permit another opportunity to reduce the difference.
6567The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6568hand, if the subtraction is reduced before shifting @var{op}, the result
6569is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6570reduce should depend on the relative precedence of the operators
6571@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6572@samp{<}.
bfa74976
RS
6573
6574@cindex associativity
6575What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6576@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6577operators we prefer the former, which is called @dfn{left association}.
6578The latter alternative, @dfn{right association}, is desirable for
6579assignment operators. The choice of left or right association is a
6580matter of whether the parser chooses to shift or reduce when the stack
742e4900 6581contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6582makes right-associativity.
bfa74976 6583
342b8b6e 6584@node Using Precedence
bfa74976
RS
6585@subsection Specifying Operator Precedence
6586@findex %left
6587@findex %right
6588@findex %nonassoc
6589
6590Bison allows you to specify these choices with the operator precedence
6591declarations @code{%left} and @code{%right}. Each such declaration
6592contains a list of tokens, which are operators whose precedence and
6593associativity is being declared. The @code{%left} declaration makes all
6594those operators left-associative and the @code{%right} declaration makes
6595them right-associative. A third alternative is @code{%nonassoc}, which
6596declares that it is a syntax error to find the same operator twice ``in a
6597row''.
6598
6599The relative precedence of different operators is controlled by the
6600order in which they are declared. The first @code{%left} or
6601@code{%right} declaration in the file declares the operators whose
6602precedence is lowest, the next such declaration declares the operators
6603whose precedence is a little higher, and so on.
6604
342b8b6e 6605@node Precedence Examples
bfa74976
RS
6606@subsection Precedence Examples
6607
6608In our example, we would want the following declarations:
6609
6610@example
6611%left '<'
6612%left '-'
6613%left '*'
6614@end example
6615
6616In a more complete example, which supports other operators as well, we
6617would declare them in groups of equal precedence. For example, @code{'+'} is
6618declared with @code{'-'}:
6619
6620@example
6621%left '<' '>' '=' NE LE GE
6622%left '+' '-'
6623%left '*' '/'
6624@end example
6625
6626@noindent
6627(Here @code{NE} and so on stand for the operators for ``not equal''
6628and so on. We assume that these tokens are more than one character long
6629and therefore are represented by names, not character literals.)
6630
342b8b6e 6631@node How Precedence
bfa74976
RS
6632@subsection How Precedence Works
6633
6634The first effect of the precedence declarations is to assign precedence
6635levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6636precedence levels to certain rules: each rule gets its precedence from
6637the last terminal symbol mentioned in the components. (You can also
6638specify explicitly the precedence of a rule. @xref{Contextual
6639Precedence, ,Context-Dependent Precedence}.)
6640
6641Finally, the resolution of conflicts works by comparing the precedence
742e4900 6642of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6643token's precedence is higher, the choice is to shift. If the rule's
6644precedence is higher, the choice is to reduce. If they have equal
6645precedence, the choice is made based on the associativity of that
6646precedence level. The verbose output file made by @samp{-v}
6647(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6648resolved.
bfa74976
RS
6649
6650Not all rules and not all tokens have precedence. If either the rule or
742e4900 6651the lookahead token has no precedence, then the default is to shift.
bfa74976 6652
342b8b6e 6653@node Contextual Precedence
bfa74976
RS
6654@section Context-Dependent Precedence
6655@cindex context-dependent precedence
6656@cindex unary operator precedence
6657@cindex precedence, context-dependent
6658@cindex precedence, unary operator
6659@findex %prec
6660
6661Often the precedence of an operator depends on the context. This sounds
6662outlandish at first, but it is really very common. For example, a minus
6663sign typically has a very high precedence as a unary operator, and a
6664somewhat lower precedence (lower than multiplication) as a binary operator.
6665
6666The Bison precedence declarations, @code{%left}, @code{%right} and
6667@code{%nonassoc}, can only be used once for a given token; so a token has
6668only one precedence declared in this way. For context-dependent
6669precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6670modifier for rules.
bfa74976
RS
6671
6672The @code{%prec} modifier declares the precedence of a particular rule by
6673specifying a terminal symbol whose precedence should be used for that rule.
6674It's not necessary for that symbol to appear otherwise in the rule. The
6675modifier's syntax is:
6676
6677@example
6678%prec @var{terminal-symbol}
6679@end example
6680
6681@noindent
6682and it is written after the components of the rule. Its effect is to
6683assign the rule the precedence of @var{terminal-symbol}, overriding
6684the precedence that would be deduced for it in the ordinary way. The
6685altered rule precedence then affects how conflicts involving that rule
6686are resolved (@pxref{Precedence, ,Operator Precedence}).
6687
6688Here is how @code{%prec} solves the problem of unary minus. First, declare
6689a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6690are no tokens of this type, but the symbol serves to stand for its
6691precedence:
6692
6693@example
6694@dots{}
6695%left '+' '-'
6696%left '*'
6697%left UMINUS
6698@end example
6699
6700Now the precedence of @code{UMINUS} can be used in specific rules:
6701
6702@example
6703@group
de6be119
AD
6704exp:
6705 @dots{}
6706| exp '-' exp
6707 @dots{}
6708| '-' exp %prec UMINUS
bfa74976
RS
6709@end group
6710@end example
6711
91d2c560 6712@ifset defaultprec
39a06c25
PE
6713If you forget to append @code{%prec UMINUS} to the rule for unary
6714minus, Bison silently assumes that minus has its usual precedence.
6715This kind of problem can be tricky to debug, since one typically
6716discovers the mistake only by testing the code.
6717
22fccf95 6718The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6719this kind of problem systematically. It causes rules that lack a
6720@code{%prec} modifier to have no precedence, even if the last terminal
6721symbol mentioned in their components has a declared precedence.
6722
22fccf95 6723If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6724for all rules that participate in precedence conflict resolution.
6725Then you will see any shift/reduce conflict until you tell Bison how
6726to resolve it, either by changing your grammar or by adding an
6727explicit precedence. This will probably add declarations to the
6728grammar, but it helps to protect against incorrect rule precedences.
6729
22fccf95
PE
6730The effect of @code{%no-default-prec;} can be reversed by giving
6731@code{%default-prec;}, which is the default.
91d2c560 6732@end ifset
39a06c25 6733
342b8b6e 6734@node Parser States
bfa74976
RS
6735@section Parser States
6736@cindex finite-state machine
6737@cindex parser state
6738@cindex state (of parser)
6739
6740The function @code{yyparse} is implemented using a finite-state machine.
6741The values pushed on the parser stack are not simply token type codes; they
6742represent the entire sequence of terminal and nonterminal symbols at or
6743near the top of the stack. The current state collects all the information
6744about previous input which is relevant to deciding what to do next.
6745
742e4900
JD
6746Each time a lookahead token is read, the current parser state together
6747with the type of lookahead token are looked up in a table. This table
6748entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6749specifies the new parser state, which is pushed onto the top of the
6750parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6751This means that a certain number of tokens or groupings are taken off
6752the top of the stack, and replaced by one grouping. In other words,
6753that number of states are popped from the stack, and one new state is
6754pushed.
6755
742e4900 6756There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6757is erroneous in the current state. This causes error processing to begin
6758(@pxref{Error Recovery}).
6759
342b8b6e 6760@node Reduce/Reduce
bfa74976
RS
6761@section Reduce/Reduce Conflicts
6762@cindex reduce/reduce conflict
6763@cindex conflicts, reduce/reduce
6764
6765A reduce/reduce conflict occurs if there are two or more rules that apply
6766to the same sequence of input. This usually indicates a serious error
6767in the grammar.
6768
6769For example, here is an erroneous attempt to define a sequence
6770of zero or more @code{word} groupings.
6771
6772@example
98842516 6773@group
de6be119
AD
6774sequence:
6775 /* empty */ @{ printf ("empty sequence\n"); @}
6776| maybeword
6777| sequence word @{ printf ("added word %s\n", $2); @}
6778;
98842516 6779@end group
bfa74976 6780
98842516 6781@group
de6be119
AD
6782maybeword:
6783 /* empty */ @{ printf ("empty maybeword\n"); @}
6784| word @{ printf ("single word %s\n", $1); @}
6785;
98842516 6786@end group
bfa74976
RS
6787@end example
6788
6789@noindent
6790The error is an ambiguity: there is more than one way to parse a single
6791@code{word} into a @code{sequence}. It could be reduced to a
6792@code{maybeword} and then into a @code{sequence} via the second rule.
6793Alternatively, nothing-at-all could be reduced into a @code{sequence}
6794via the first rule, and this could be combined with the @code{word}
6795using the third rule for @code{sequence}.
6796
6797There is also more than one way to reduce nothing-at-all into a
6798@code{sequence}. This can be done directly via the first rule,
6799or indirectly via @code{maybeword} and then the second rule.
6800
6801You might think that this is a distinction without a difference, because it
6802does not change whether any particular input is valid or not. But it does
6803affect which actions are run. One parsing order runs the second rule's
6804action; the other runs the first rule's action and the third rule's action.
6805In this example, the output of the program changes.
6806
6807Bison resolves a reduce/reduce conflict by choosing to use the rule that
6808appears first in the grammar, but it is very risky to rely on this. Every
6809reduce/reduce conflict must be studied and usually eliminated. Here is the
6810proper way to define @code{sequence}:
6811
6812@example
de6be119
AD
6813sequence:
6814 /* empty */ @{ printf ("empty sequence\n"); @}
6815| sequence word @{ printf ("added word %s\n", $2); @}
6816;
bfa74976
RS
6817@end example
6818
6819Here is another common error that yields a reduce/reduce conflict:
6820
6821@example
de6be119
AD
6822sequence:
6823 /* empty */
6824| sequence words
6825| sequence redirects
6826;
bfa74976 6827
de6be119
AD
6828words:
6829 /* empty */
6830| words word
6831;
bfa74976 6832
de6be119
AD
6833redirects:
6834 /* empty */
6835| redirects redirect
6836;
bfa74976
RS
6837@end example
6838
6839@noindent
6840The intention here is to define a sequence which can contain either
6841@code{word} or @code{redirect} groupings. The individual definitions of
6842@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6843three together make a subtle ambiguity: even an empty input can be parsed
6844in infinitely many ways!
6845
6846Consider: nothing-at-all could be a @code{words}. Or it could be two
6847@code{words} in a row, or three, or any number. It could equally well be a
6848@code{redirects}, or two, or any number. Or it could be a @code{words}
6849followed by three @code{redirects} and another @code{words}. And so on.
6850
6851Here are two ways to correct these rules. First, to make it a single level
6852of sequence:
6853
6854@example
de6be119
AD
6855sequence:
6856 /* empty */
6857| sequence word
6858| sequence redirect
6859;
bfa74976
RS
6860@end example
6861
6862Second, to prevent either a @code{words} or a @code{redirects}
6863from being empty:
6864
6865@example
98842516 6866@group
de6be119
AD
6867sequence:
6868 /* empty */
6869| sequence words
6870| sequence redirects
6871;
98842516 6872@end group
bfa74976 6873
98842516 6874@group
de6be119
AD
6875words:
6876 word
6877| words word
6878;
98842516 6879@end group
bfa74976 6880
98842516 6881@group
de6be119
AD
6882redirects:
6883 redirect
6884| redirects redirect
6885;
98842516 6886@end group
bfa74976
RS
6887@end example
6888
5da0355a
JD
6889@node Mysterious Conflicts
6890@section Mysterious Conflicts
6f04ee6c 6891@cindex Mysterious Conflicts
bfa74976
RS
6892
6893Sometimes reduce/reduce conflicts can occur that don't look warranted.
6894Here is an example:
6895
6896@example
6897@group
6898%token ID
6899
6900%%
de6be119 6901def: param_spec return_spec ',';
bfa74976 6902param_spec:
de6be119
AD
6903 type
6904| name_list ':' type
6905;
bfa74976
RS
6906@end group
6907@group
6908return_spec:
de6be119
AD
6909 type
6910| name ':' type
6911;
bfa74976
RS
6912@end group
6913@group
de6be119 6914type: ID;
bfa74976
RS
6915@end group
6916@group
de6be119 6917name: ID;
bfa74976 6918name_list:
de6be119
AD
6919 name
6920| name ',' name_list
6921;
bfa74976
RS
6922@end group
6923@end example
6924
6925It would seem that this grammar can be parsed with only a single token
742e4900 6926of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6927a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 6928@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 6929
6f04ee6c
JD
6930@cindex LR
6931@cindex LALR
34a6c2d1 6932However, for historical reasons, Bison cannot by default handle all
35430378 6933LR(1) grammars.
34a6c2d1
JD
6934In this grammar, two contexts, that after an @code{ID} at the beginning
6935of a @code{param_spec} and likewise at the beginning of a
6936@code{return_spec}, are similar enough that Bison assumes they are the
6937same.
6938They appear similar because the same set of rules would be
bfa74976
RS
6939active---the rule for reducing to a @code{name} and that for reducing to
6940a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6941that the rules would require different lookahead tokens in the two
bfa74976
RS
6942contexts, so it makes a single parser state for them both. Combining
6943the two contexts causes a conflict later. In parser terminology, this
35430378 6944occurrence means that the grammar is not LALR(1).
bfa74976 6945
6f04ee6c
JD
6946@cindex IELR
6947@cindex canonical LR
6948For many practical grammars (specifically those that fall into the non-LR(1)
6949class), the limitations of LALR(1) result in difficulties beyond just
6950mysterious reduce/reduce conflicts. The best way to fix all these problems
6951is to select a different parser table construction algorithm. Either
6952IELR(1) or canonical LR(1) would suffice, but the former is more efficient
6953and easier to debug during development. @xref{LR Table Construction}, for
6954details. (Bison's IELR(1) and canonical LR(1) implementations are
6955experimental. More user feedback will help to stabilize them.)
34a6c2d1 6956
35430378 6957If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
6958can often fix a mysterious conflict by identifying the two parser states
6959that are being confused, and adding something to make them look
6960distinct. In the above example, adding one rule to
bfa74976
RS
6961@code{return_spec} as follows makes the problem go away:
6962
6963@example
6964@group
6965%token BOGUS
6966@dots{}
6967%%
6968@dots{}
6969return_spec:
de6be119
AD
6970 type
6971| name ':' type
6972| ID BOGUS /* This rule is never used. */
6973;
bfa74976
RS
6974@end group
6975@end example
6976
6977This corrects the problem because it introduces the possibility of an
6978additional active rule in the context after the @code{ID} at the beginning of
6979@code{return_spec}. This rule is not active in the corresponding context
6980in a @code{param_spec}, so the two contexts receive distinct parser states.
6981As long as the token @code{BOGUS} is never generated by @code{yylex},
6982the added rule cannot alter the way actual input is parsed.
6983
6984In this particular example, there is another way to solve the problem:
6985rewrite the rule for @code{return_spec} to use @code{ID} directly
6986instead of via @code{name}. This also causes the two confusing
6987contexts to have different sets of active rules, because the one for
6988@code{return_spec} activates the altered rule for @code{return_spec}
6989rather than the one for @code{name}.
6990
6991@example
6992param_spec:
de6be119
AD
6993 type
6994| name_list ':' type
6995;
bfa74976 6996return_spec:
de6be119
AD
6997 type
6998| ID ':' type
6999;
bfa74976
RS
7000@end example
7001
35430378 7002For a more detailed exposition of LALR(1) parsers and parser
71caec06 7003generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7004
6f04ee6c
JD
7005@node Tuning LR
7006@section Tuning LR
7007
7008The default behavior of Bison's LR-based parsers is chosen mostly for
7009historical reasons, but that behavior is often not robust. For example, in
7010the previous section, we discussed the mysterious conflicts that can be
7011produced by LALR(1), Bison's default parser table construction algorithm.
7012Another example is Bison's @code{%error-verbose} directive, which instructs
7013the generated parser to produce verbose syntax error messages, which can
7014sometimes contain incorrect information.
7015
7016In this section, we explore several modern features of Bison that allow you
7017to tune fundamental aspects of the generated LR-based parsers. Some of
7018these features easily eliminate shortcomings like those mentioned above.
7019Others can be helpful purely for understanding your parser.
7020
7021Most of the features discussed in this section are still experimental. More
7022user feedback will help to stabilize them.
7023
7024@menu
7025* LR Table Construction:: Choose a different construction algorithm.
7026* Default Reductions:: Disable default reductions.
7027* LAC:: Correct lookahead sets in the parser states.
7028* Unreachable States:: Keep unreachable parser states for debugging.
7029@end menu
7030
7031@node LR Table Construction
7032@subsection LR Table Construction
7033@cindex Mysterious Conflict
7034@cindex LALR
7035@cindex IELR
7036@cindex canonical LR
7037@findex %define lr.type
7038
7039For historical reasons, Bison constructs LALR(1) parser tables by default.
7040However, LALR does not possess the full language-recognition power of LR.
7041As a result, the behavior of parsers employing LALR parser tables is often
5da0355a 7042mysterious. We presented a simple example of this effect in @ref{Mysterious
6f04ee6c
JD
7043Conflicts}.
7044
7045As we also demonstrated in that example, the traditional approach to
7046eliminating such mysterious behavior is to restructure the grammar.
7047Unfortunately, doing so correctly is often difficult. Moreover, merely
7048discovering that LALR causes mysterious behavior in your parser can be
7049difficult as well.
7050
7051Fortunately, Bison provides an easy way to eliminate the possibility of such
7052mysterious behavior altogether. You simply need to activate a more powerful
7053parser table construction algorithm by using the @code{%define lr.type}
7054directive.
7055
7056@deffn {Directive} {%define lr.type @var{TYPE}}
7057Specify the type of parser tables within the LR(1) family. The accepted
7058values for @var{TYPE} are:
7059
7060@itemize
7061@item @code{lalr} (default)
7062@item @code{ielr}
7063@item @code{canonical-lr}
7064@end itemize
7065
7066(This feature is experimental. More user feedback will help to stabilize
7067it.)
7068@end deffn
7069
7070For example, to activate IELR, you might add the following directive to you
7071grammar file:
7072
7073@example
7074%define lr.type ielr
7075@end example
7076
5da0355a 7077@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
6f04ee6c
JD
7078conflict is then eliminated, so there is no need to invest time in
7079comprehending the conflict or restructuring the grammar to fix it. If,
7080during future development, the grammar evolves such that all mysterious
7081behavior would have disappeared using just LALR, you need not fear that
7082continuing to use IELR will result in unnecessarily large parser tables.
7083That is, IELR generates LALR tables when LALR (using a deterministic parsing
7084algorithm) is sufficient to support the full language-recognition power of
7085LR. Thus, by enabling IELR at the start of grammar development, you can
7086safely and completely eliminate the need to consider LALR's shortcomings.
7087
7088While IELR is almost always preferable, there are circumstances where LALR
7089or the canonical LR parser tables described by Knuth
7090(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7091relative advantages of each parser table construction algorithm within
7092Bison:
7093
7094@itemize
7095@item LALR
7096
7097There are at least two scenarios where LALR can be worthwhile:
7098
7099@itemize
7100@item GLR without static conflict resolution.
7101
7102@cindex GLR with LALR
7103When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7104conflicts statically (for example, with @code{%left} or @code{%prec}), then
7105the parser explores all potential parses of any given input. In this case,
7106the choice of parser table construction algorithm is guaranteed not to alter
7107the language accepted by the parser. LALR parser tables are the smallest
7108parser tables Bison can currently construct, so they may then be preferable.
7109Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7110more like a deterministic parser in the syntactic contexts where those
7111conflicts appear, and so either IELR or canonical LR can then be helpful to
7112avoid LALR's mysterious behavior.
7113
7114@item Malformed grammars.
7115
7116Occasionally during development, an especially malformed grammar with a
7117major recurring flaw may severely impede the IELR or canonical LR parser
7118table construction algorithm. LALR can be a quick way to construct parser
7119tables in order to investigate such problems while ignoring the more subtle
7120differences from IELR and canonical LR.
7121@end itemize
7122
7123@item IELR
7124
7125IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7126any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7127always accept exactly the same set of sentences. However, like LALR, IELR
7128merges parser states during parser table construction so that the number of
7129parser states is often an order of magnitude less than for canonical LR.
7130More importantly, because canonical LR's extra parser states may contain
7131duplicate conflicts in the case of non-LR grammars, the number of conflicts
7132for IELR is often an order of magnitude less as well. This effect can
7133significantly reduce the complexity of developing a grammar.
7134
7135@item Canonical LR
7136
7137@cindex delayed syntax error detection
7138@cindex LAC
7139@findex %nonassoc
7140While inefficient, canonical LR parser tables can be an interesting means to
7141explore a grammar because they possess a property that IELR and LALR tables
7142do not. That is, if @code{%nonassoc} is not used and default reductions are
7143left disabled (@pxref{Default Reductions}), then, for every left context of
7144every canonical LR state, the set of tokens accepted by that state is
7145guaranteed to be the exact set of tokens that is syntactically acceptable in
7146that left context. It might then seem that an advantage of canonical LR
7147parsers in production is that, under the above constraints, they are
7148guaranteed to detect a syntax error as soon as possible without performing
7149any unnecessary reductions. However, IELR parsers that use LAC are also
7150able to achieve this behavior without sacrificing @code{%nonassoc} or
7151default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7152@end itemize
7153
7154For a more detailed exposition of the mysterious behavior in LALR parsers
7155and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7156@ref{Bibliography,,Denny 2010 November}.
7157
7158@node Default Reductions
7159@subsection Default Reductions
7160@cindex default reductions
7161@findex %define lr.default-reductions
7162@findex %nonassoc
7163
7164After parser table construction, Bison identifies the reduction with the
7165largest lookahead set in each parser state. To reduce the size of the
7166parser state, traditional Bison behavior is to remove that lookahead set and
7167to assign that reduction to be the default parser action. Such a reduction
7168is known as a @dfn{default reduction}.
7169
7170Default reductions affect more than the size of the parser tables. They
7171also affect the behavior of the parser:
7172
7173@itemize
7174@item Delayed @code{yylex} invocations.
7175
7176@cindex delayed yylex invocations
7177@cindex consistent states
7178@cindex defaulted states
7179A @dfn{consistent state} is a state that has only one possible parser
7180action. If that action is a reduction and is encoded as a default
7181reduction, then that consistent state is called a @dfn{defaulted state}.
7182Upon reaching a defaulted state, a Bison-generated parser does not bother to
7183invoke @code{yylex} to fetch the next token before performing the reduction.
7184In other words, whether default reductions are enabled in consistent states
7185determines how soon a Bison-generated parser invokes @code{yylex} for a
7186token: immediately when it @emph{reaches} that token in the input or when it
7187eventually @emph{needs} that token as a lookahead to determine the next
7188parser action. Traditionally, default reductions are enabled, and so the
7189parser exhibits the latter behavior.
7190
7191The presence of defaulted states is an important consideration when
7192designing @code{yylex} and the grammar file. That is, if the behavior of
7193@code{yylex} can influence or be influenced by the semantic actions
7194associated with the reductions in defaulted states, then the delay of the
7195next @code{yylex} invocation until after those reductions is significant.
7196For example, the semantic actions might pop a scope stack that @code{yylex}
7197uses to determine what token to return. Thus, the delay might be necessary
7198to ensure that @code{yylex} does not look up the next token in a scope that
7199should already be considered closed.
7200
7201@item Delayed syntax error detection.
7202
7203@cindex delayed syntax error detection
7204When the parser fetches a new token by invoking @code{yylex}, it checks
7205whether there is an action for that token in the current parser state. The
7206parser detects a syntax error if and only if either (1) there is no action
7207for that token or (2) the action for that token is the error action (due to
7208the use of @code{%nonassoc}). However, if there is a default reduction in
7209that state (which might or might not be a defaulted state), then it is
7210impossible for condition 1 to exist. That is, all tokens have an action.
7211Thus, the parser sometimes fails to detect the syntax error until it reaches
7212a later state.
7213
7214@cindex LAC
7215@c If there's an infinite loop, default reductions can prevent an incorrect
7216@c sentence from being rejected.
7217While default reductions never cause the parser to accept syntactically
7218incorrect sentences, the delay of syntax error detection can have unexpected
7219effects on the behavior of the parser. However, the delay can be caused
7220anyway by parser state merging and the use of @code{%nonassoc}, and it can
7221be fixed by another Bison feature, LAC. We discuss the effects of delayed
7222syntax error detection and LAC more in the next section (@pxref{LAC}).
7223@end itemize
7224
7225For canonical LR, the only default reduction that Bison enables by default
7226is the accept action, which appears only in the accepting state, which has
7227no other action and is thus a defaulted state. However, the default accept
7228action does not delay any @code{yylex} invocation or syntax error detection
7229because the accept action ends the parse.
7230
7231For LALR and IELR, Bison enables default reductions in nearly all states by
7232default. There are only two exceptions. First, states that have a shift
7233action on the @code{error} token do not have default reductions because
7234delayed syntax error detection could then prevent the @code{error} token
7235from ever being shifted in that state. However, parser state merging can
7236cause the same effect anyway, and LAC fixes it in both cases, so future
7237versions of Bison might drop this exception when LAC is activated. Second,
7238GLR parsers do not record the default reduction as the action on a lookahead
7239token for which there is a conflict. The correct action in this case is to
7240split the parse instead.
7241
7242To adjust which states have default reductions enabled, use the
7243@code{%define lr.default-reductions} directive.
7244
7245@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7246Specify the kind of states that are permitted to contain default reductions.
7247The accepted values of @var{WHERE} are:
7248@itemize
a6e5a280 7249@item @code{most} (default for LALR and IELR)
6f04ee6c
JD
7250@item @code{consistent}
7251@item @code{accepting} (default for canonical LR)
7252@end itemize
7253
7254(The ability to specify where default reductions are permitted is
7255experimental. More user feedback will help to stabilize it.)
7256@end deffn
7257
6f04ee6c
JD
7258@node LAC
7259@subsection LAC
7260@findex %define parse.lac
7261@cindex LAC
7262@cindex lookahead correction
7263
7264Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7265encountering a syntax error. First, the parser might perform additional
7266parser stack reductions before discovering the syntax error. Such
7267reductions can perform user semantic actions that are unexpected because
7268they are based on an invalid token, and they cause error recovery to begin
7269in a different syntactic context than the one in which the invalid token was
7270encountered. Second, when verbose error messages are enabled (@pxref{Error
7271Reporting}), the expected token list in the syntax error message can both
7272contain invalid tokens and omit valid tokens.
7273
7274The culprits for the above problems are @code{%nonassoc}, default reductions
7275in inconsistent states (@pxref{Default Reductions}), and parser state
7276merging. Because IELR and LALR merge parser states, they suffer the most.
7277Canonical LR can suffer only if @code{%nonassoc} is used or if default
7278reductions are enabled for inconsistent states.
7279
7280LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7281that solves these problems for canonical LR, IELR, and LALR without
7282sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7283enable LAC with the @code{%define parse.lac} directive.
7284
7285@deffn {Directive} {%define parse.lac @var{VALUE}}
7286Enable LAC to improve syntax error handling.
7287@itemize
7288@item @code{none} (default)
7289@item @code{full}
7290@end itemize
7291(This feature is experimental. More user feedback will help to stabilize
7292it. Moreover, it is currently only available for deterministic parsers in
7293C.)
7294@end deffn
7295
7296Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7297fetches a new token from the scanner so that it can determine the next
7298parser action, it immediately suspends normal parsing and performs an
7299exploratory parse using a temporary copy of the normal parser state stack.
7300During this exploratory parse, the parser does not perform user semantic
7301actions. If the exploratory parse reaches a shift action, normal parsing
7302then resumes on the normal parser stacks. If the exploratory parse reaches
7303an error instead, the parser reports a syntax error. If verbose syntax
7304error messages are enabled, the parser must then discover the list of
7305expected tokens, so it performs a separate exploratory parse for each token
7306in the grammar.
7307
7308There is one subtlety about the use of LAC. That is, when in a consistent
7309parser state with a default reduction, the parser will not attempt to fetch
7310a token from the scanner because no lookahead is needed to determine the
7311next parser action. Thus, whether default reductions are enabled in
7312consistent states (@pxref{Default Reductions}) affects how soon the parser
7313detects a syntax error: immediately when it @emph{reaches} an erroneous
7314token or when it eventually @emph{needs} that token as a lookahead to
7315determine the next parser action. The latter behavior is probably more
7316intuitive, so Bison currently provides no way to achieve the former behavior
7317while default reductions are enabled in consistent states.
7318
7319Thus, when LAC is in use, for some fixed decision of whether to enable
7320default reductions in consistent states, canonical LR and IELR behave almost
7321exactly the same for both syntactically acceptable and syntactically
7322unacceptable input. While LALR still does not support the full
7323language-recognition power of canonical LR and IELR, LAC at least enables
7324LALR's syntax error handling to correctly reflect LALR's
7325language-recognition power.
7326
7327There are a few caveats to consider when using LAC:
7328
7329@itemize
7330@item Infinite parsing loops.
7331
7332IELR plus LAC does have one shortcoming relative to canonical LR. Some
7333parsers generated by Bison can loop infinitely. LAC does not fix infinite
7334parsing loops that occur between encountering a syntax error and detecting
7335it, but enabling canonical LR or disabling default reductions sometimes
7336does.
7337
7338@item Verbose error message limitations.
7339
7340Because of internationalization considerations, Bison-generated parsers
7341limit the size of the expected token list they are willing to report in a
7342verbose syntax error message. If the number of expected tokens exceeds that
7343limit, the list is simply dropped from the message. Enabling LAC can
7344increase the size of the list and thus cause the parser to drop it. Of
7345course, dropping the list is better than reporting an incorrect list.
7346
7347@item Performance.
7348
7349Because LAC requires many parse actions to be performed twice, it can have a
7350performance penalty. However, not all parse actions must be performed
7351twice. Specifically, during a series of default reductions in consistent
7352states and shift actions, the parser never has to initiate an exploratory
7353parse. Moreover, the most time-consuming tasks in a parse are often the
7354file I/O, the lexical analysis performed by the scanner, and the user's
7355semantic actions, but none of these are performed during the exploratory
7356parse. Finally, the base of the temporary stack used during an exploratory
7357parse is a pointer into the normal parser state stack so that the stack is
7358never physically copied. In our experience, the performance penalty of LAC
56da1e52 7359has proved insignificant for practical grammars.
6f04ee6c
JD
7360@end itemize
7361
56706c61
JD
7362While the LAC algorithm shares techniques that have been recognized in the
7363parser community for years, for the publication that introduces LAC,
7364@pxref{Bibliography,,Denny 2010 May}.
121c4982 7365
6f04ee6c
JD
7366@node Unreachable States
7367@subsection Unreachable States
7368@findex %define lr.keep-unreachable-states
7369@cindex unreachable states
7370
7371If there exists no sequence of transitions from the parser's start state to
7372some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7373state}. A state can become unreachable during conflict resolution if Bison
7374disables a shift action leading to it from a predecessor state.
7375
7376By default, Bison removes unreachable states from the parser after conflict
7377resolution because they are useless in the generated parser. However,
7378keeping unreachable states is sometimes useful when trying to understand the
7379relationship between the parser and the grammar.
7380
7381@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7382Request that Bison allow unreachable states to remain in the parser tables.
7383@var{VALUE} must be a Boolean. The default is @code{false}.
7384@end deffn
7385
7386There are a few caveats to consider:
7387
7388@itemize @bullet
7389@item Missing or extraneous warnings.
7390
7391Unreachable states may contain conflicts and may use rules not used in any
7392other state. Thus, keeping unreachable states may induce warnings that are
7393irrelevant to your parser's behavior, and it may eliminate warnings that are
7394relevant. Of course, the change in warnings may actually be relevant to a
7395parser table analysis that wants to keep unreachable states, so this
7396behavior will likely remain in future Bison releases.
7397
7398@item Other useless states.
7399
7400While Bison is able to remove unreachable states, it is not guaranteed to
7401remove other kinds of useless states. Specifically, when Bison disables
7402reduce actions during conflict resolution, some goto actions may become
7403useless, and thus some additional states may become useless. If Bison were
7404to compute which goto actions were useless and then disable those actions,
7405it could identify such states as unreachable and then remove those states.
7406However, Bison does not compute which goto actions are useless.
7407@end itemize
7408
fae437e8 7409@node Generalized LR Parsing
35430378
JD
7410@section Generalized LR (GLR) Parsing
7411@cindex GLR parsing
7412@cindex generalized LR (GLR) parsing
676385e2 7413@cindex ambiguous grammars
9d9b8b70 7414@cindex nondeterministic parsing
676385e2 7415
fae437e8
AD
7416Bison produces @emph{deterministic} parsers that choose uniquely
7417when to reduce and which reduction to apply
742e4900 7418based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7419As a result, normal Bison handles a proper subset of the family of
7420context-free languages.
fae437e8 7421Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7422sequence of reductions cannot have deterministic parsers in this sense.
7423The same is true of languages that require more than one symbol of
742e4900 7424lookahead, since the parser lacks the information necessary to make a
676385e2 7425decision at the point it must be made in a shift-reduce parser.
5da0355a 7426Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
34a6c2d1 7427there are languages where Bison's default choice of how to
676385e2
PH
7428summarize the input seen so far loses necessary information.
7429
7430When you use the @samp{%glr-parser} declaration in your grammar file,
7431Bison generates a parser that uses a different algorithm, called
35430378 7432Generalized LR (or GLR). A Bison GLR
c827f760 7433parser uses the same basic
676385e2
PH
7434algorithm for parsing as an ordinary Bison parser, but behaves
7435differently in cases where there is a shift-reduce conflict that has not
fae437e8 7436been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7437reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7438situation, it
fae437e8 7439effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7440shift or reduction. These parsers then proceed as usual, consuming
7441tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7442and split further, with the result that instead of a sequence of states,
35430378 7443a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7444
7445In effect, each stack represents a guess as to what the proper parse
7446is. Additional input may indicate that a guess was wrong, in which case
7447the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7448actions generated in each stack are saved, rather than being executed
676385e2 7449immediately. When a stack disappears, its saved semantic actions never
fae437e8 7450get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7451their sets of semantic actions are both saved with the state that
7452results from the reduction. We say that two stacks are equivalent
fae437e8 7453when they both represent the same sequence of states,
676385e2
PH
7454and each pair of corresponding states represents a
7455grammar symbol that produces the same segment of the input token
7456stream.
7457
7458Whenever the parser makes a transition from having multiple
34a6c2d1 7459states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7460algorithm, after resolving and executing the saved-up actions.
7461At this transition, some of the states on the stack will have semantic
7462values that are sets (actually multisets) of possible actions. The
7463parser tries to pick one of the actions by first finding one whose rule
7464has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7465declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7466precedence, but there the same merging function is declared for both
fae437e8 7467rules by the @samp{%merge} declaration,
676385e2
PH
7468Bison resolves and evaluates both and then calls the merge function on
7469the result. Otherwise, it reports an ambiguity.
7470
35430378
JD
7471It is possible to use a data structure for the GLR parsing tree that
7472permits the processing of any LR(1) grammar in linear time (in the
c827f760 7473size of the input), any unambiguous (not necessarily
35430378 7474LR(1)) grammar in
fae437e8 7475quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7476context-free grammar in cubic worst-case time. However, Bison currently
7477uses a simpler data structure that requires time proportional to the
7478length of the input times the maximum number of stacks required for any
9d9b8b70 7479prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7480grammars can require exponential time and space to process. Such badly
7481behaving examples, however, are not generally of practical interest.
9d9b8b70 7482Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7483doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7484structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7485grammar, in particular, it is only slightly slower than with the
35430378 7486deterministic LR(1) Bison parser.
676385e2 7487
71caec06
JD
7488For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
74892000}.
f6481e2f 7490
1a059451
PE
7491@node Memory Management
7492@section Memory Management, and How to Avoid Memory Exhaustion
7493@cindex memory exhaustion
7494@cindex memory management
bfa74976
RS
7495@cindex stack overflow
7496@cindex parser stack overflow
7497@cindex overflow of parser stack
7498
1a059451 7499The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7500not reduced. When this happens, the parser function @code{yyparse}
1a059451 7501calls @code{yyerror} and then returns 2.
bfa74976 7502
c827f760 7503Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7504usually results from using a right recursion instead of a left
7505recursion, @xref{Recursion, ,Recursive Rules}.
7506
bfa74976
RS
7507@vindex YYMAXDEPTH
7508By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7509parser stack can become before memory is exhausted. Define the
bfa74976
RS
7510macro with a value that is an integer. This value is the maximum number
7511of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7512
7513The stack space allowed is not necessarily allocated. If you specify a
1a059451 7514large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7515stack at first, and then makes it bigger by stages as needed. This
7516increasing allocation happens automatically and silently. Therefore,
7517you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7518space for ordinary inputs that do not need much stack.
7519
d7e14fc0
PE
7520However, do not allow @code{YYMAXDEPTH} to be a value so large that
7521arithmetic overflow could occur when calculating the size of the stack
7522space. Also, do not allow @code{YYMAXDEPTH} to be less than
7523@code{YYINITDEPTH}.
7524
bfa74976
RS
7525@cindex default stack limit
7526The default value of @code{YYMAXDEPTH}, if you do not define it, is
752710000.
7528
7529@vindex YYINITDEPTH
7530You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7531macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7532parser in C, this value must be a compile-time constant
d7e14fc0
PE
7533unless you are assuming C99 or some other target language or compiler
7534that allows variable-length arrays. The default is 200.
7535
1a059451 7536Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7537
d1a1114f 7538@c FIXME: C++ output.
c781580d 7539Because of semantic differences between C and C++, the deterministic
34a6c2d1 7540parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7541by C++ compilers. In this precise case (compiling a C parser as C++) you are
7542suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7543this deficiency in a future release.
d1a1114f 7544
342b8b6e 7545@node Error Recovery
bfa74976
RS
7546@chapter Error Recovery
7547@cindex error recovery
7548@cindex recovery from errors
7549
6e649e65 7550It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7551error. For example, a compiler should recover sufficiently to parse the
7552rest of the input file and check it for errors; a calculator should accept
7553another expression.
7554
7555In a simple interactive command parser where each input is one line, it may
7556be sufficient to allow @code{yyparse} to return 1 on error and have the
7557caller ignore the rest of the input line when that happens (and then call
7558@code{yyparse} again). But this is inadequate for a compiler, because it
7559forgets all the syntactic context leading up to the error. A syntax error
7560deep within a function in the compiler input should not cause the compiler
7561to treat the following line like the beginning of a source file.
7562
7563@findex error
7564You can define how to recover from a syntax error by writing rules to
7565recognize the special token @code{error}. This is a terminal symbol that
7566is always defined (you need not declare it) and reserved for error
7567handling. The Bison parser generates an @code{error} token whenever a
7568syntax error happens; if you have provided a rule to recognize this token
13863333 7569in the current context, the parse can continue.
bfa74976
RS
7570
7571For example:
7572
7573@example
0765d393 7574stmts:
de6be119 7575 /* empty string */
0765d393
AD
7576| stmts '\n'
7577| stmts exp '\n'
7578| stmts error '\n'
bfa74976
RS
7579@end example
7580
7581The fourth rule in this example says that an error followed by a newline
0765d393 7582makes a valid addition to any @code{stmts}.
bfa74976
RS
7583
7584What happens if a syntax error occurs in the middle of an @code{exp}? The
7585error recovery rule, interpreted strictly, applies to the precise sequence
0765d393 7586of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 7587the middle of an @code{exp}, there will probably be some additional tokens
0765d393 7588and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
7589will be tokens to read before the next newline. So the rule is not
7590applicable in the ordinary way.
7591
7592But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7593the semantic context and part of the input. First it discards states
7594and objects from the stack until it gets back to a state in which the
bfa74976 7595@code{error} token is acceptable. (This means that the subexpressions
0765d393 7596already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 7597At this point the @code{error} token can be shifted. Then, if the old
742e4900 7598lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7599tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7600this example, Bison reads and discards input until the next newline so
7601that the fourth rule can apply. Note that discarded symbols are
7602possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7603Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7604
7605The choice of error rules in the grammar is a choice of strategies for
7606error recovery. A simple and useful strategy is simply to skip the rest of
7607the current input line or current statement if an error is detected:
7608
7609@example
0765d393 7610stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7611@end example
7612
7613It is also useful to recover to the matching close-delimiter of an
7614opening-delimiter that has already been parsed. Otherwise the
7615close-delimiter will probably appear to be unmatched, and generate another,
7616spurious error message:
7617
7618@example
de6be119
AD
7619primary:
7620 '(' expr ')'
7621| '(' error ')'
7622@dots{}
7623;
bfa74976
RS
7624@end example
7625
7626Error recovery strategies are necessarily guesses. When they guess wrong,
7627one syntax error often leads to another. In the above example, the error
7628recovery rule guesses that an error is due to bad input within one
0765d393
AD
7629@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
7630middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
7631from the first error, another syntax error will be found straightaway,
7632since the text following the spurious semicolon is also an invalid
0765d393 7633@code{stmt}.
bfa74976
RS
7634
7635To prevent an outpouring of error messages, the parser will output no error
7636message for another syntax error that happens shortly after the first; only
7637after three consecutive input tokens have been successfully shifted will
7638error messages resume.
7639
7640Note that rules which accept the @code{error} token may have actions, just
7641as any other rules can.
7642
7643@findex yyerrok
7644You can make error messages resume immediately by using the macro
7645@code{yyerrok} in an action. If you do this in the error rule's action, no
7646error messages will be suppressed. This macro requires no arguments;
7647@samp{yyerrok;} is a valid C statement.
7648
7649@findex yyclearin
742e4900 7650The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7651this is unacceptable, then the macro @code{yyclearin} may be used to clear
7652this token. Write the statement @samp{yyclearin;} in the error rule's
7653action.
32c29292 7654@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7655
6e649e65 7656For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7657called that advances the input stream to some point where parsing should
7658once again commence. The next symbol returned by the lexical scanner is
742e4900 7659probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7660with @samp{yyclearin;}.
7661
7662@vindex YYRECOVERING
02103984
PE
7663The expression @code{YYRECOVERING ()} yields 1 when the parser
7664is recovering from a syntax error, and 0 otherwise.
7665Syntax error diagnostics are suppressed while recovering from a syntax
7666error.
bfa74976 7667
342b8b6e 7668@node Context Dependency
bfa74976
RS
7669@chapter Handling Context Dependencies
7670
7671The Bison paradigm is to parse tokens first, then group them into larger
7672syntactic units. In many languages, the meaning of a token is affected by
7673its context. Although this violates the Bison paradigm, certain techniques
7674(known as @dfn{kludges}) may enable you to write Bison parsers for such
7675languages.
7676
7677@menu
7678* Semantic Tokens:: Token parsing can depend on the semantic context.
7679* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7680* Tie-in Recovery:: Lexical tie-ins have implications for how
7681 error recovery rules must be written.
7682@end menu
7683
7684(Actually, ``kludge'' means any technique that gets its job done but is
7685neither clean nor robust.)
7686
342b8b6e 7687@node Semantic Tokens
bfa74976
RS
7688@section Semantic Info in Token Types
7689
7690The C language has a context dependency: the way an identifier is used
7691depends on what its current meaning is. For example, consider this:
7692
7693@example
7694foo (x);
7695@end example
7696
7697This looks like a function call statement, but if @code{foo} is a typedef
7698name, then this is actually a declaration of @code{x}. How can a Bison
7699parser for C decide how to parse this input?
7700
35430378 7701The method used in GNU C is to have two different token types,
bfa74976
RS
7702@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7703identifier, it looks up the current declaration of the identifier in order
7704to decide which token type to return: @code{TYPENAME} if the identifier is
7705declared as a typedef, @code{IDENTIFIER} otherwise.
7706
7707The grammar rules can then express the context dependency by the choice of
7708token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7709but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7710@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7711is @emph{not} significant, such as in declarations that can shadow a
7712typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7713accepted---there is one rule for each of the two token types.
7714
7715This technique is simple to use if the decision of which kinds of
7716identifiers to allow is made at a place close to where the identifier is
7717parsed. But in C this is not always so: C allows a declaration to
7718redeclare a typedef name provided an explicit type has been specified
7719earlier:
7720
7721@example
3a4f411f
PE
7722typedef int foo, bar;
7723int baz (void)
98842516 7724@group
3a4f411f
PE
7725@{
7726 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7727 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7728 return foo (bar);
7729@}
98842516 7730@end group
bfa74976
RS
7731@end example
7732
7733Unfortunately, the name being declared is separated from the declaration
7734construct itself by a complicated syntactic structure---the ``declarator''.
7735
9ecbd125 7736As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7737all the nonterminal names changed: once for parsing a declaration in
7738which a typedef name can be redefined, and once for parsing a
7739declaration in which that can't be done. Here is a part of the
7740duplication, with actions omitted for brevity:
bfa74976
RS
7741
7742@example
98842516 7743@group
bfa74976 7744initdcl:
de6be119
AD
7745 declarator maybeasm '=' init
7746| declarator maybeasm
7747;
98842516 7748@end group
bfa74976 7749
98842516 7750@group
bfa74976 7751notype_initdcl:
de6be119
AD
7752 notype_declarator maybeasm '=' init
7753| notype_declarator maybeasm
7754;
98842516 7755@end group
bfa74976
RS
7756@end example
7757
7758@noindent
7759Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7760cannot. The distinction between @code{declarator} and
7761@code{notype_declarator} is the same sort of thing.
7762
7763There is some similarity between this technique and a lexical tie-in
7764(described next), in that information which alters the lexical analysis is
7765changed during parsing by other parts of the program. The difference is
7766here the information is global, and is used for other purposes in the
7767program. A true lexical tie-in has a special-purpose flag controlled by
7768the syntactic context.
7769
342b8b6e 7770@node Lexical Tie-ins
bfa74976
RS
7771@section Lexical Tie-ins
7772@cindex lexical tie-in
7773
7774One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7775which is set by Bison actions, whose purpose is to alter the way tokens are
7776parsed.
7777
7778For example, suppose we have a language vaguely like C, but with a special
7779construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7780an expression in parentheses in which all integers are hexadecimal. In
7781particular, the token @samp{a1b} must be treated as an integer rather than
7782as an identifier if it appears in that context. Here is how you can do it:
7783
7784@example
7785@group
7786%@{
38a92d50
PE
7787 int hexflag;
7788 int yylex (void);
7789 void yyerror (char const *);
bfa74976
RS
7790%@}
7791%%
7792@dots{}
7793@end group
7794@group
de6be119
AD
7795expr:
7796 IDENTIFIER
7797| constant
7798| HEX '(' @{ hexflag = 1; @}
7799 expr ')' @{ hexflag = 0; $$ = $4; @}
7800| expr '+' expr @{ $$ = make_sum ($1, $3); @}
7801@dots{}
7802;
bfa74976
RS
7803@end group
7804
7805@group
7806constant:
de6be119
AD
7807 INTEGER
7808| STRING
7809;
bfa74976
RS
7810@end group
7811@end example
7812
7813@noindent
7814Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7815it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7816with letters are parsed as integers if possible.
7817
9913d6e4
JD
7818The declaration of @code{hexflag} shown in the prologue of the grammar
7819file is needed to make it accessible to the actions (@pxref{Prologue,
7820,The Prologue}). You must also write the code in @code{yylex} to obey
7821the flag.
bfa74976 7822
342b8b6e 7823@node Tie-in Recovery
bfa74976
RS
7824@section Lexical Tie-ins and Error Recovery
7825
7826Lexical tie-ins make strict demands on any error recovery rules you have.
7827@xref{Error Recovery}.
7828
7829The reason for this is that the purpose of an error recovery rule is to
7830abort the parsing of one construct and resume in some larger construct.
7831For example, in C-like languages, a typical error recovery rule is to skip
7832tokens until the next semicolon, and then start a new statement, like this:
7833
7834@example
de6be119
AD
7835stmt:
7836 expr ';'
7837| IF '(' expr ')' stmt @{ @dots{} @}
7838@dots{}
7839| error ';' @{ hexflag = 0; @}
7840;
bfa74976
RS
7841@end example
7842
7843If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7844construct, this error rule will apply, and then the action for the
7845completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7846remain set for the entire rest of the input, or until the next @code{hex}
7847keyword, causing identifiers to be misinterpreted as integers.
7848
7849To avoid this problem the error recovery rule itself clears @code{hexflag}.
7850
7851There may also be an error recovery rule that works within expressions.
7852For example, there could be a rule which applies within parentheses
7853and skips to the close-parenthesis:
7854
7855@example
7856@group
de6be119
AD
7857expr:
7858 @dots{}
7859| '(' expr ')' @{ $$ = $2; @}
7860| '(' error ')'
7861@dots{}
bfa74976
RS
7862@end group
7863@end example
7864
7865If this rule acts within the @code{hex} construct, it is not going to abort
7866that construct (since it applies to an inner level of parentheses within
7867the construct). Therefore, it should not clear the flag: the rest of
7868the @code{hex} construct should be parsed with the flag still in effect.
7869
7870What if there is an error recovery rule which might abort out of the
7871@code{hex} construct or might not, depending on circumstances? There is no
7872way you can write the action to determine whether a @code{hex} construct is
7873being aborted or not. So if you are using a lexical tie-in, you had better
7874make sure your error recovery rules are not of this kind. Each rule must
7875be such that you can be sure that it always will, or always won't, have to
7876clear the flag.
7877
ec3bc396
AD
7878@c ================================================== Debugging Your Parser
7879
342b8b6e 7880@node Debugging
bfa74976 7881@chapter Debugging Your Parser
ec3bc396
AD
7882
7883Developing a parser can be a challenge, especially if you don't
7884understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7885Algorithm}). Even so, sometimes a detailed description of the automaton
7886can help (@pxref{Understanding, , Understanding Your Parser}), or
7887tracing the execution of the parser can give some insight on why it
7888behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7889
7890@menu
7891* Understanding:: Understanding the structure of your parser.
7892* Tracing:: Tracing the execution of your parser.
7893@end menu
7894
7895@node Understanding
7896@section Understanding Your Parser
7897
7898As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7899Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7900frequent than one would hope), looking at this automaton is required to
7901tune or simply fix a parser. Bison provides two different
35fe0834 7902representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7903
7904The textual file is generated when the options @option{--report} or
7905@option{--verbose} are specified, see @xref{Invocation, , Invoking
7906Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
7907the parser implementation file name, and adding @samp{.output}
7908instead. Therefore, if the grammar file is @file{foo.y}, then the
7909parser implementation file is called @file{foo.tab.c} by default. As
7910a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
7911
7912The following grammar file, @file{calc.y}, will be used in the sequel:
7913
7914@example
7915%token NUM STR
7916%left '+' '-'
7917%left '*'
7918%%
de6be119
AD
7919exp:
7920 exp '+' exp
7921| exp '-' exp
7922| exp '*' exp
7923| exp '/' exp
7924| NUM
7925;
ec3bc396
AD
7926useless: STR;
7927%%
7928@end example
7929
88bce5a2
AD
7930@command{bison} reports:
7931
7932@example
379261b3
JD
7933calc.y: warning: 1 nonterminal useless in grammar
7934calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7935calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7936calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7937calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7938@end example
7939
7940When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7941creates a file @file{calc.output} with contents detailed below. The
7942order of the output and the exact presentation might vary, but the
7943interpretation is the same.
ec3bc396 7944
ec3bc396
AD
7945@noindent
7946@cindex token, useless
7947@cindex useless token
7948@cindex nonterminal, useless
7949@cindex useless nonterminal
7950@cindex rule, useless
7951@cindex useless rule
84c1cdc7
AD
7952The first section reports useless tokens, nonterminals and rules. Useless
7953nonterminals and rules are removed in order to produce a smaller parser, but
7954useless tokens are preserved, since they might be used by the scanner (note
7955the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
7956
7957@example
84c1cdc7 7958Nonterminals useless in grammar
ec3bc396
AD
7959 useless
7960
84c1cdc7 7961Terminals unused in grammar
ec3bc396
AD
7962 STR
7963
84c1cdc7
AD
7964Rules useless in grammar
7965 6 useless: STR
ec3bc396
AD
7966@end example
7967
7968@noindent
84c1cdc7
AD
7969The next section lists states that still have conflicts.
7970
7971@example
7972State 8 conflicts: 1 shift/reduce
7973State 9 conflicts: 1 shift/reduce
7974State 10 conflicts: 1 shift/reduce
7975State 11 conflicts: 4 shift/reduce
7976@end example
7977
7978@noindent
7979Then Bison reproduces the exact grammar it used:
ec3bc396
AD
7980
7981@example
7982Grammar
7983
84c1cdc7
AD
7984 0 $accept: exp $end
7985
7986 1 exp: exp '+' exp
7987 2 | exp '-' exp
7988 3 | exp '*' exp
7989 4 | exp '/' exp
7990 5 | NUM
ec3bc396
AD
7991@end example
7992
7993@noindent
7994and reports the uses of the symbols:
7995
7996@example
98842516 7997@group
ec3bc396
AD
7998Terminals, with rules where they appear
7999
88bce5a2 8000$end (0) 0
ec3bc396
AD
8001'*' (42) 3
8002'+' (43) 1
8003'-' (45) 2
8004'/' (47) 4
8005error (256)
8006NUM (258) 5
84c1cdc7 8007STR (259)
98842516 8008@end group
ec3bc396 8009
98842516 8010@group
ec3bc396
AD
8011Nonterminals, with rules where they appear
8012
84c1cdc7 8013$accept (9)
ec3bc396 8014 on left: 0
84c1cdc7 8015exp (10)
ec3bc396 8016 on left: 1 2 3 4 5, on right: 0 1 2 3 4
98842516 8017@end group
ec3bc396
AD
8018@end example
8019
8020@noindent
8021@cindex item
8022@cindex pointed rule
8023@cindex rule, pointed
8024Bison then proceeds onto the automaton itself, describing each state
d13d14cc
PE
8025with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8026item is a production rule together with a point (@samp{.}) marking
8027the location of the input cursor.
ec3bc396
AD
8028
8029@example
8030state 0
8031
84c1cdc7 8032 0 $accept: . exp $end
ec3bc396 8033
84c1cdc7 8034 NUM shift, and go to state 1
ec3bc396 8035
84c1cdc7 8036 exp go to state 2
ec3bc396
AD
8037@end example
8038
8039This reads as follows: ``state 0 corresponds to being at the very
8040beginning of the parsing, in the initial rule, right before the start
8041symbol (here, @code{exp}). When the parser returns to this state right
8042after having reduced a rule that produced an @code{exp}, the control
8043flow jumps to state 2. If there is no such transition on a nonterminal
d13d14cc 8044symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8045the parse stack, and the control flow jumps to state 1. Any other
742e4900 8046lookahead triggers a syntax error.''
ec3bc396
AD
8047
8048@cindex core, item set
8049@cindex item set core
8050@cindex kernel, item set
8051@cindex item set core
8052Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8053report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8054at the beginning of any rule deriving an @code{exp}. By default Bison
8055reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8056you want to see more detail you can invoke @command{bison} with
d13d14cc 8057@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8058
8059@example
8060state 0
8061
84c1cdc7
AD
8062 0 $accept: . exp $end
8063 1 exp: . exp '+' exp
8064 2 | . exp '-' exp
8065 3 | . exp '*' exp
8066 4 | . exp '/' exp
8067 5 | . NUM
ec3bc396 8068
84c1cdc7 8069 NUM shift, and go to state 1
ec3bc396 8070
84c1cdc7 8071 exp go to state 2
ec3bc396
AD
8072@end example
8073
8074@noindent
84c1cdc7 8075In the state 1@dots{}
ec3bc396
AD
8076
8077@example
8078state 1
8079
84c1cdc7 8080 5 exp: NUM .
ec3bc396 8081
84c1cdc7 8082 $default reduce using rule 5 (exp)
ec3bc396
AD
8083@end example
8084
8085@noindent
742e4900 8086the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8087(@samp{$default}), the parser will reduce it. If it was coming from
8088state 0, then, after this reduction it will return to state 0, and will
8089jump to state 2 (@samp{exp: go to state 2}).
8090
8091@example
8092state 2
8093
84c1cdc7
AD
8094 0 $accept: exp . $end
8095 1 exp: exp . '+' exp
8096 2 | exp . '-' exp
8097 3 | exp . '*' exp
8098 4 | exp . '/' exp
ec3bc396 8099
84c1cdc7
AD
8100 $end shift, and go to state 3
8101 '+' shift, and go to state 4
8102 '-' shift, and go to state 5
8103 '*' shift, and go to state 6
8104 '/' shift, and go to state 7
ec3bc396
AD
8105@end example
8106
8107@noindent
8108In state 2, the automaton can only shift a symbol. For instance,
84c1cdc7 8109because of the item @samp{exp: exp . '+' exp}, if the lookahead is
d13d14cc 8110@samp{+} it is shifted onto the parse stack, and the automaton
84c1cdc7 8111jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
d13d14cc
PE
8112Since there is no default action, any lookahead not listed triggers a syntax
8113error.
ec3bc396 8114
34a6c2d1 8115@cindex accepting state
ec3bc396
AD
8116The state 3 is named the @dfn{final state}, or the @dfn{accepting
8117state}:
8118
8119@example
8120state 3
8121
84c1cdc7 8122 0 $accept: exp $end .
ec3bc396 8123
84c1cdc7 8124 $default accept
ec3bc396
AD
8125@end example
8126
8127@noindent
84c1cdc7
AD
8128the initial rule is completed (the start symbol and the end-of-input were
8129read), the parsing exits successfully.
ec3bc396
AD
8130
8131The interpretation of states 4 to 7 is straightforward, and is left to
8132the reader.
8133
8134@example
8135state 4
8136
84c1cdc7 8137 1 exp: exp '+' . exp
ec3bc396 8138
84c1cdc7
AD
8139 NUM shift, and go to state 1
8140
8141 exp go to state 8
ec3bc396 8142
ec3bc396
AD
8143
8144state 5
8145
84c1cdc7
AD
8146 2 exp: exp '-' . exp
8147
8148 NUM shift, and go to state 1
ec3bc396 8149
84c1cdc7 8150 exp go to state 9
ec3bc396 8151
ec3bc396
AD
8152
8153state 6
8154
84c1cdc7 8155 3 exp: exp '*' . exp
ec3bc396 8156
84c1cdc7
AD
8157 NUM shift, and go to state 1
8158
8159 exp go to state 10
ec3bc396 8160
ec3bc396
AD
8161
8162state 7
8163
84c1cdc7 8164 4 exp: exp '/' . exp
ec3bc396 8165
84c1cdc7 8166 NUM shift, and go to state 1
ec3bc396 8167
84c1cdc7 8168 exp go to state 11
ec3bc396
AD
8169@end example
8170
5a99098d
PE
8171As was announced in beginning of the report, @samp{State 8 conflicts:
81721 shift/reduce}:
ec3bc396
AD
8173
8174@example
8175state 8
8176
84c1cdc7
AD
8177 1 exp: exp . '+' exp
8178 1 | exp '+' exp .
8179 2 | exp . '-' exp
8180 3 | exp . '*' exp
8181 4 | exp . '/' exp
ec3bc396 8182
84c1cdc7
AD
8183 '*' shift, and go to state 6
8184 '/' shift, and go to state 7
ec3bc396 8185
84c1cdc7
AD
8186 '/' [reduce using rule 1 (exp)]
8187 $default reduce using rule 1 (exp)
ec3bc396
AD
8188@end example
8189
742e4900 8190Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8191either shifting (and going to state 7), or reducing rule 1. The
8192conflict means that either the grammar is ambiguous, or the parser lacks
8193information to make the right decision. Indeed the grammar is
8194ambiguous, as, since we did not specify the precedence of @samp{/}, the
8195sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8196NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8197NUM}, which corresponds to reducing rule 1.
8198
34a6c2d1 8199Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8200arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
84c1cdc7 8201Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8202square brackets.
8203
8204Note that all the previous states had a single possible action: either
8205shifting the next token and going to the corresponding state, or
8206reducing a single rule. In the other cases, i.e., when shifting
8207@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8208possible, the lookahead is required to select the action. State 8 is
8209one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8210is shifting, otherwise the action is reducing rule 1. In other words,
8211the first two items, corresponding to rule 1, are not eligible when the
742e4900 8212lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8213precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8214with some set of possible lookahead tokens. When run with
8215@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8216
8217@example
8218state 8
8219
84c1cdc7
AD
8220 1 exp: exp . '+' exp
8221 1 | exp '+' exp . [$end, '+', '-', '/']
8222 2 | exp . '-' exp
8223 3 | exp . '*' exp
8224 4 | exp . '/' exp
8225
8226 '*' shift, and go to state 6
8227 '/' shift, and go to state 7
ec3bc396 8228
84c1cdc7
AD
8229 '/' [reduce using rule 1 (exp)]
8230 $default reduce using rule 1 (exp)
8231@end example
8232
8233Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8234the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8235solved thanks to associativity and precedence directives. If invoked with
8236@option{--report=solved}, Bison includes information about the solved
8237conflicts in the report:
ec3bc396 8238
84c1cdc7
AD
8239@example
8240Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8241Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8242Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8243@end example
8244
84c1cdc7 8245
ec3bc396
AD
8246The remaining states are similar:
8247
8248@example
98842516 8249@group
ec3bc396
AD
8250state 9
8251
84c1cdc7
AD
8252 1 exp: exp . '+' exp
8253 2 | exp . '-' exp
8254 2 | exp '-' exp .
8255 3 | exp . '*' exp
8256 4 | exp . '/' exp
ec3bc396 8257
84c1cdc7
AD
8258 '*' shift, and go to state 6
8259 '/' shift, and go to state 7
ec3bc396 8260
84c1cdc7
AD
8261 '/' [reduce using rule 2 (exp)]
8262 $default reduce using rule 2 (exp)
98842516 8263@end group
ec3bc396 8264
98842516 8265@group
ec3bc396
AD
8266state 10
8267
84c1cdc7
AD
8268 1 exp: exp . '+' exp
8269 2 | exp . '-' exp
8270 3 | exp . '*' exp
8271 3 | exp '*' exp .
8272 4 | exp . '/' exp
ec3bc396 8273
84c1cdc7 8274 '/' shift, and go to state 7
ec3bc396 8275
84c1cdc7
AD
8276 '/' [reduce using rule 3 (exp)]
8277 $default reduce using rule 3 (exp)
98842516 8278@end group
ec3bc396 8279
98842516 8280@group
ec3bc396
AD
8281state 11
8282
84c1cdc7
AD
8283 1 exp: exp . '+' exp
8284 2 | exp . '-' exp
8285 3 | exp . '*' exp
8286 4 | exp . '/' exp
8287 4 | exp '/' exp .
8288
8289 '+' shift, and go to state 4
8290 '-' shift, and go to state 5
8291 '*' shift, and go to state 6
8292 '/' shift, and go to state 7
8293
8294 '+' [reduce using rule 4 (exp)]
8295 '-' [reduce using rule 4 (exp)]
8296 '*' [reduce using rule 4 (exp)]
8297 '/' [reduce using rule 4 (exp)]
8298 $default reduce using rule 4 (exp)
98842516 8299@end group
ec3bc396
AD
8300@end example
8301
8302@noindent
fa7e68c3
PE
8303Observe that state 11 contains conflicts not only due to the lack of
8304precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8305@samp{*}, but also because the
ec3bc396
AD
8306associativity of @samp{/} is not specified.
8307
8308
8309@node Tracing
8310@section Tracing Your Parser
bfa74976
RS
8311@findex yydebug
8312@cindex debugging
8313@cindex tracing the parser
8314
8315If a Bison grammar compiles properly but doesn't do what you want when it
8316runs, the @code{yydebug} parser-trace feature can help you figure out why.
8317
3ded9a63
AD
8318There are several means to enable compilation of trace facilities:
8319
8320@table @asis
8321@item the macro @code{YYDEBUG}
8322@findex YYDEBUG
8323Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 8324parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8325@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8326YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8327Prologue}).
8328
8329@item the option @option{-t}, @option{--debug}
8330Use the @samp{-t} option when you run Bison (@pxref{Invocation,
35430378 8331,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8332
8333@item the directive @samp{%debug}
8334@findex %debug
8335Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
8336Declaration Summary}). This is a Bison extension, which will prove
8337useful when Bison will output parsers for languages that don't use a
35430378 8338preprocessor. Unless POSIX and Yacc portability matter to
c827f760 8339you, this is
3ded9a63
AD
8340the preferred solution.
8341@end table
8342
8343We suggest that you always enable the debug option so that debugging is
8344always possible.
bfa74976 8345
02a81e05 8346The trace facility outputs messages with macro calls of the form
e2742e46 8347@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8348@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8349arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8350define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8351and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8352
8353Once you have compiled the program with trace facilities, the way to
8354request a trace is to store a nonzero value in the variable @code{yydebug}.
8355You can do this by making the C code do it (in @code{main}, perhaps), or
8356you can alter the value with a C debugger.
8357
8358Each step taken by the parser when @code{yydebug} is nonzero produces a
8359line or two of trace information, written on @code{stderr}. The trace
8360messages tell you these things:
8361
8362@itemize @bullet
8363@item
8364Each time the parser calls @code{yylex}, what kind of token was read.
8365
8366@item
8367Each time a token is shifted, the depth and complete contents of the
8368state stack (@pxref{Parser States}).
8369
8370@item
8371Each time a rule is reduced, which rule it is, and the complete contents
8372of the state stack afterward.
8373@end itemize
8374
8375To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8376produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8377Bison}). This file shows the meaning of each state in terms of
8378positions in various rules, and also what each state will do with each
8379possible input token. As you read the successive trace messages, you
8380can see that the parser is functioning according to its specification in
8381the listing file. Eventually you will arrive at the place where
8382something undesirable happens, and you will see which parts of the
8383grammar are to blame.
bfa74976 8384
9913d6e4
JD
8385The parser implementation file is a C program and you can use C
8386debuggers on it, but it's not easy to interpret what it is doing. The
8387parser function is a finite-state machine interpreter, and aside from
8388the actions it executes the same code over and over. Only the values
8389of variables show where in the grammar it is working.
bfa74976
RS
8390
8391@findex YYPRINT
8392The debugging information normally gives the token type of each token
8393read, but not its semantic value. You can optionally define a macro
8394named @code{YYPRINT} to provide a way to print the value. If you define
8395@code{YYPRINT}, it should take three arguments. The parser will pass a
8396standard I/O stream, the numeric code for the token type, and the token
8397value (from @code{yylval}).
8398
8399Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8400calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 8401
ea118b72 8402@example
38a92d50
PE
8403%@{
8404 static void print_token_value (FILE *, int, YYSTYPE);
ea118b72
AD
8405 #define YYPRINT(file, type, value) \
8406 print_token_value (file, type, value)
38a92d50
PE
8407%@}
8408
8409@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8410
8411static void
831d3c99 8412print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8413@{
8414 if (type == VAR)
d3c4e709 8415 fprintf (file, "%s", value.tptr->name);
bfa74976 8416 else if (type == NUM)
d3c4e709 8417 fprintf (file, "%d", value.val);
bfa74976 8418@}
ea118b72 8419@end example
bfa74976 8420
ec3bc396
AD
8421@c ================================================= Invoking Bison
8422
342b8b6e 8423@node Invocation
bfa74976
RS
8424@chapter Invoking Bison
8425@cindex invoking Bison
8426@cindex Bison invocation
8427@cindex options for invoking Bison
8428
8429The usual way to invoke Bison is as follows:
8430
8431@example
8432bison @var{infile}
8433@end example
8434
8435Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
8436@samp{.y}. The parser implementation file's name is made by replacing
8437the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8438Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8439the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8440also possible, in case you are writing C++ code instead of C in your
8441grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8442output files will take an extension like the given one as input
8443(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8444feature takes effect with all options that manipulate file names like
234a3be3
AD
8445@samp{-o} or @samp{-d}.
8446
8447For example :
8448
8449@example
8450bison -d @var{infile.yxx}
8451@end example
84163231 8452@noindent
72d2299c 8453will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8454
8455@example
b56471a6 8456bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8457@end example
84163231 8458@noindent
234a3be3
AD
8459will produce @file{output.c++} and @file{outfile.h++}.
8460
35430378 8461For compatibility with POSIX, the standard Bison
397ec073
PE
8462distribution also contains a shell script called @command{yacc} that
8463invokes Bison with the @option{-y} option.
8464
bfa74976 8465@menu
13863333 8466* Bison Options:: All the options described in detail,
c827f760 8467 in alphabetical order by short options.
bfa74976 8468* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8469* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8470@end menu
8471
342b8b6e 8472@node Bison Options
bfa74976
RS
8473@section Bison Options
8474
8475Bison supports both traditional single-letter options and mnemonic long
8476option names. Long option names are indicated with @samp{--} instead of
8477@samp{-}. Abbreviations for option names are allowed as long as they
8478are unique. When a long option takes an argument, like
8479@samp{--file-prefix}, connect the option name and the argument with
8480@samp{=}.
8481
8482Here is a list of options that can be used with Bison, alphabetized by
8483short option. It is followed by a cross key alphabetized by long
8484option.
8485
89cab50d
AD
8486@c Please, keep this ordered as in `bison --help'.
8487@noindent
8488Operations modes:
8489@table @option
8490@item -h
8491@itemx --help
8492Print a summary of the command-line options to Bison and exit.
bfa74976 8493
89cab50d
AD
8494@item -V
8495@itemx --version
8496Print the version number of Bison and exit.
bfa74976 8497
f7ab6a50
PE
8498@item --print-localedir
8499Print the name of the directory containing locale-dependent data.
8500
a0de5091
JD
8501@item --print-datadir
8502Print the name of the directory containing skeletons and XSLT.
8503
89cab50d
AD
8504@item -y
8505@itemx --yacc
9913d6e4
JD
8506Act more like the traditional Yacc command. This can cause different
8507diagnostics to be generated, and may change behavior in other minor
8508ways. Most importantly, imitate Yacc's output file name conventions,
8509so that the parser implementation file is called @file{y.tab.c}, and
8510the other outputs are called @file{y.output} and @file{y.tab.h}.
8511Also, if generating a deterministic parser in C, generate
8512@code{#define} statements in addition to an @code{enum} to associate
8513token numbers with token names. Thus, the following shell script can
8514substitute for Yacc, and the Bison distribution contains such a script
8515for compatibility with POSIX:
bfa74976 8516
89cab50d 8517@example
397ec073 8518#! /bin/sh
26e06a21 8519bison -y "$@@"
89cab50d 8520@end example
54662697
PE
8521
8522The @option{-y}/@option{--yacc} option is intended for use with
8523traditional Yacc grammars. If your grammar uses a Bison extension
8524like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8525this option is specified.
8526
ecd1b61c
JD
8527@item -W [@var{category}]
8528@itemx --warnings[=@var{category}]
118d4978
AD
8529Output warnings falling in @var{category}. @var{category} can be one
8530of:
8531@table @code
8532@item midrule-values
8e55b3aa
JD
8533Warn about mid-rule values that are set but not used within any of the actions
8534of the parent rule.
8535For example, warn about unused @code{$2} in:
118d4978
AD
8536
8537@example
8538exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8539@end example
8540
8e55b3aa
JD
8541Also warn about mid-rule values that are used but not set.
8542For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8543
8544@example
de6be119 8545exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
8546@end example
8547
8548These warnings are not enabled by default since they sometimes prove to
8549be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8550@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8551
118d4978 8552@item yacc
35430378 8553Incompatibilities with POSIX Yacc.
118d4978 8554
6f8bdce2
JD
8555@item conflicts-sr
8556@itemx conflicts-rr
8557S/R and R/R conflicts. These warnings are enabled by default. However, if
8558the @code{%expect} or @code{%expect-rr} directive is specified, an
8559unexpected number of conflicts is an error, and an expected number of
8560conflicts is not reported, so @option{-W} and @option{--warning} then have
8561no effect on the conflict report.
8562
8ffd7912
JD
8563@item other
8564All warnings not categorized above. These warnings are enabled by default.
8565
8566This category is provided merely for the sake of completeness. Future
8567releases of Bison may move warnings from this category to new, more specific
8568categories.
8569
118d4978 8570@item all
8e55b3aa 8571All the warnings.
118d4978 8572@item none
8e55b3aa 8573Turn off all the warnings.
118d4978 8574@item error
8e55b3aa 8575Treat warnings as errors.
118d4978
AD
8576@end table
8577
8578A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 8579instance, @option{-Wno-yacc} will hide the warnings about
35430378 8580POSIX Yacc incompatibilities.
89cab50d
AD
8581@end table
8582
8583@noindent
8584Tuning the parser:
8585
8586@table @option
8587@item -t
8588@itemx --debug
9913d6e4
JD
8589In the parser implementation file, define the macro @code{YYDEBUG} to
85901 if it is not already defined, so that the debugging facilities are
8591compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8592
e14c6831
AD
8593@item -D @var{name}[=@var{value}]
8594@itemx --define=@var{name}[=@var{value}]
c33bc800 8595@itemx -F @var{name}[=@var{value}]
34d41938
JD
8596@itemx --force-define=@var{name}[=@var{value}]
8597Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
2f4518a1 8598(@pxref{%define Summary}) except that Bison processes multiple
34d41938
JD
8599definitions for the same @var{name} as follows:
8600
8601@itemize
8602@item
e3a33f7c
JD
8603Bison quietly ignores all command-line definitions for @var{name} except
8604the last.
34d41938 8605@item
e3a33f7c
JD
8606If that command-line definition is specified by a @code{-D} or
8607@code{--define}, Bison reports an error for any @code{%define}
8608definition for @var{name}.
34d41938 8609@item
e3a33f7c
JD
8610If that command-line definition is specified by a @code{-F} or
8611@code{--force-define} instead, Bison quietly ignores all @code{%define}
8612definitions for @var{name}.
8613@item
8614Otherwise, Bison reports an error if there are multiple @code{%define}
8615definitions for @var{name}.
34d41938
JD
8616@end itemize
8617
8618You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
8619make files unless you are confident that it is safe to quietly ignore
8620any conflicting @code{%define} that may be added to the grammar file.
e14c6831 8621
0e021770
PE
8622@item -L @var{language}
8623@itemx --language=@var{language}
8624Specify the programming language for the generated parser, as if
8625@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8626Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8627@var{language} is case-insensitive.
0e021770 8628
ed4d67dc
JD
8629This option is experimental and its effect may be modified in future
8630releases.
8631
89cab50d 8632@item --locations
d8988b2f 8633Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8634
8635@item -p @var{prefix}
8636@itemx --name-prefix=@var{prefix}
02975b9a 8637Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8638@xref{Decl Summary}.
bfa74976
RS
8639
8640@item -l
8641@itemx --no-lines
9913d6e4
JD
8642Don't put any @code{#line} preprocessor commands in the parser
8643implementation file. Ordinarily Bison puts them in the parser
8644implementation file so that the C compiler and debuggers will
8645associate errors with your source file, the grammar file. This option
8646causes them to associate errors with the parser implementation file,
8647treating it as an independent source file in its own right.
bfa74976 8648
e6e704dc
JD
8649@item -S @var{file}
8650@itemx --skeleton=@var{file}
a7867f53 8651Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8652(@pxref{Decl Summary, , Bison Declaration Summary}).
8653
ed4d67dc
JD
8654@c You probably don't need this option unless you are developing Bison.
8655@c You should use @option{--language} if you want to specify the skeleton for a
8656@c different language, because it is clearer and because it will always
8657@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8658
a7867f53
JD
8659If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8660file in the Bison installation directory.
8661If it does, @var{file} is an absolute file name or a file name relative to the
8662current working directory.
8663This is similar to how most shells resolve commands.
8664
89cab50d
AD
8665@item -k
8666@itemx --token-table
d8988b2f 8667Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8668@end table
bfa74976 8669
89cab50d
AD
8670@noindent
8671Adjust the output:
bfa74976 8672
89cab50d 8673@table @option
8e55b3aa 8674@item --defines[=@var{file}]
d8988b2f 8675Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8676file containing macro definitions for the token type names defined in
4bfd5e4e 8677the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8678
8e55b3aa
JD
8679@item -d
8680This is the same as @code{--defines} except @code{-d} does not accept a
8681@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8682with other short options.
342b8b6e 8683
89cab50d
AD
8684@item -b @var{file-prefix}
8685@itemx --file-prefix=@var{prefix}
9c437126 8686Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8687for all Bison output file names. @xref{Decl Summary}.
bfa74976 8688
ec3bc396
AD
8689@item -r @var{things}
8690@itemx --report=@var{things}
8691Write an extra output file containing verbose description of the comma
8692separated list of @var{things} among:
8693
8694@table @code
8695@item state
8696Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8697parser's automaton.
ec3bc396 8698
742e4900 8699@item lookahead
ec3bc396 8700Implies @code{state} and augments the description of the automaton with
742e4900 8701each rule's lookahead set.
ec3bc396
AD
8702
8703@item itemset
8704Implies @code{state} and augments the description of the automaton with
8705the full set of items for each state, instead of its core only.
8706@end table
8707
1bb2bd75
JD
8708@item --report-file=@var{file}
8709Specify the @var{file} for the verbose description.
8710
bfa74976
RS
8711@item -v
8712@itemx --verbose
9c437126 8713Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8714file containing verbose descriptions of the grammar and
72d2299c 8715parser. @xref{Decl Summary}.
bfa74976 8716
fa4d969f
PE
8717@item -o @var{file}
8718@itemx --output=@var{file}
9913d6e4 8719Specify the @var{file} for the parser implementation file.
bfa74976 8720
fa4d969f 8721The other output files' names are constructed from @var{file} as
d8988b2f 8722described under the @samp{-v} and @samp{-d} options.
342b8b6e 8723
72183df4 8724@item -g [@var{file}]
8e55b3aa 8725@itemx --graph[=@var{file}]
34a6c2d1 8726Output a graphical representation of the parser's
35fe0834 8727automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 8728@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8729@code{@var{file}} is optional.
8730If omitted and the grammar file is @file{foo.y}, the output file will be
8731@file{foo.dot}.
59da312b 8732
72183df4 8733@item -x [@var{file}]
8e55b3aa 8734@itemx --xml[=@var{file}]
34a6c2d1 8735Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8736@code{@var{file}} is optional.
59da312b
JD
8737If omitted and the grammar file is @file{foo.y}, the output file will be
8738@file{foo.xml}.
8739(The current XML schema is experimental and may evolve.
8740More user feedback will help to stabilize it.)
bfa74976
RS
8741@end table
8742
342b8b6e 8743@node Option Cross Key
bfa74976
RS
8744@section Option Cross Key
8745
8746Here is a list of options, alphabetized by long option, to help you find
34d41938 8747the corresponding short option and directive.
bfa74976 8748
34d41938 8749@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8750@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8751@include cross-options.texi
aa08666d 8752@end multitable
bfa74976 8753
93dd49ab
PE
8754@node Yacc Library
8755@section Yacc Library
8756
8757The Yacc library contains default implementations of the
8758@code{yyerror} and @code{main} functions. These default
35430378 8759implementations are normally not useful, but POSIX requires
93dd49ab
PE
8760them. To use the Yacc library, link your program with the
8761@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 8762library is distributed under the terms of the GNU General
93dd49ab
PE
8763Public License (@pxref{Copying}).
8764
8765If you use the Yacc library's @code{yyerror} function, you should
8766declare @code{yyerror} as follows:
8767
8768@example
8769int yyerror (char const *);
8770@end example
8771
8772Bison ignores the @code{int} value returned by this @code{yyerror}.
8773If you use the Yacc library's @code{main} function, your
8774@code{yyparse} function should have the following type signature:
8775
8776@example
8777int yyparse (void);
8778@end example
8779
12545799
AD
8780@c ================================================= C++ Bison
8781
8405b70c
PB
8782@node Other Languages
8783@chapter Parsers Written In Other Languages
12545799
AD
8784
8785@menu
8786* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8787* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8788@end menu
8789
8790@node C++ Parsers
8791@section C++ Parsers
8792
8793@menu
8794* C++ Bison Interface:: Asking for C++ parser generation
8795* C++ Semantic Values:: %union vs. C++
8796* C++ Location Values:: The position and location classes
8797* C++ Parser Interface:: Instantiating and running the parser
8798* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8799* A Complete C++ Example:: Demonstrating their use
12545799
AD
8800@end menu
8801
8802@node C++ Bison Interface
8803@subsection C++ Bison Interface
ed4d67dc 8804@c - %skeleton "lalr1.cc"
12545799
AD
8805@c - Always pure
8806@c - initial action
8807
34a6c2d1 8808The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8809@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8810@option{--skeleton=lalr1.cc}.
e6e704dc 8811@xref{Decl Summary}.
0e021770 8812
793fbca5
JD
8813When run, @command{bison} will create several entities in the @samp{yy}
8814namespace.
8815@findex %define namespace
2f4518a1
JD
8816Use the @samp{%define namespace} directive to change the namespace
8817name, see @ref{%define Summary,,namespace}. The various classes are
8818generated in the following files:
aa08666d 8819
12545799
AD
8820@table @file
8821@item position.hh
8822@itemx location.hh
8823The definition of the classes @code{position} and @code{location},
8824used for location tracking. @xref{C++ Location Values}.
8825
8826@item stack.hh
8827An auxiliary class @code{stack} used by the parser.
8828
fa4d969f
PE
8829@item @var{file}.hh
8830@itemx @var{file}.cc
9913d6e4 8831(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
8832declaration and implementation of the C++ parser class. The basename
8833and extension of these two files follow the same rules as with regular C
8834parsers (@pxref{Invocation}).
12545799 8835
cd8b5791
AD
8836The header is @emph{mandatory}; you must either pass
8837@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8838@samp{%defines} directive.
8839@end table
8840
8841All these files are documented using Doxygen; run @command{doxygen}
8842for a complete and accurate documentation.
8843
8844@node C++ Semantic Values
8845@subsection C++ Semantic Values
8846@c - No objects in unions
178e123e 8847@c - YYSTYPE
12545799
AD
8848@c - Printer and destructor
8849
8850The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8851Collection of Value Types}. In particular it produces a genuine
8852@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8853within pseudo-unions (similar to Boost variants) might be implemented to
8854alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8855@itemize @minus
8856@item
fb9712a9
AD
8857The type @code{YYSTYPE} is defined but its use is discouraged: rather
8858you should refer to the parser's encapsulated type
8859@code{yy::parser::semantic_type}.
12545799
AD
8860@item
8861Non POD (Plain Old Data) types cannot be used. C++ forbids any
8862instance of classes with constructors in unions: only @emph{pointers}
8863to such objects are allowed.
8864@end itemize
8865
8866Because objects have to be stored via pointers, memory is not
8867reclaimed automatically: using the @code{%destructor} directive is the
8868only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8869Symbols}.
8870
8871
8872@node C++ Location Values
8873@subsection C++ Location Values
8874@c - %locations
8875@c - class Position
8876@c - class Location
16dc6a9e 8877@c - %define filename_type "const symbol::Symbol"
12545799
AD
8878
8879When the directive @code{%locations} is used, the C++ parser supports
7404cdf3
JD
8880location tracking, see @ref{Tracking Locations}. Two auxiliary classes
8881define a @code{position}, a single point in a file, and a @code{location}, a
8882range composed of a pair of @code{position}s (possibly spanning several
8883files).
12545799 8884
fa4d969f 8885@deftypemethod {position} {std::string*} file
12545799
AD
8886The name of the file. It will always be handled as a pointer, the
8887parser will never duplicate nor deallocate it. As an experimental
8888feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8889filename_type "@var{type}"}.
12545799
AD
8890@end deftypemethod
8891
8892@deftypemethod {position} {unsigned int} line
8893The line, starting at 1.
8894@end deftypemethod
8895
8896@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
8897Advance by @var{height} lines, resetting the column number.
8898@end deftypemethod
8899
8900@deftypemethod {position} {unsigned int} column
8901The column, starting at 0.
8902@end deftypemethod
8903
8904@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
8905Advance by @var{width} columns, without changing the line number.
8906@end deftypemethod
8907
8908@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
8909@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
8910@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
8911@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
8912Various forms of syntactic sugar for @code{columns}.
8913@end deftypemethod
8914
8915@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
8916Report @var{p} on @var{o} like this:
fa4d969f
PE
8917@samp{@var{file}:@var{line}.@var{column}}, or
8918@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
8919@end deftypemethod
8920
8921@deftypemethod {location} {position} begin
8922@deftypemethodx {location} {position} end
8923The first, inclusive, position of the range, and the first beyond.
8924@end deftypemethod
8925
8926@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
8927@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
8928Advance the @code{end} position.
8929@end deftypemethod
8930
8931@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
8932@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
8933@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
8934Various forms of syntactic sugar.
8935@end deftypemethod
8936
8937@deftypemethod {location} {void} step ()
8938Move @code{begin} onto @code{end}.
8939@end deftypemethod
8940
8941
8942@node C++ Parser Interface
8943@subsection C++ Parser Interface
8944@c - define parser_class_name
8945@c - Ctor
8946@c - parse, error, set_debug_level, debug_level, set_debug_stream,
8947@c debug_stream.
8948@c - Reporting errors
8949
8950The output files @file{@var{output}.hh} and @file{@var{output}.cc}
8951declare and define the parser class in the namespace @code{yy}. The
8952class name defaults to @code{parser}, but may be changed using
16dc6a9e 8953@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 8954this class is detailed below. It can be extended using the
12545799
AD
8955@code{%parse-param} feature: its semantics is slightly changed since
8956it describes an additional member of the parser class, and an
8957additional argument for its constructor.
8958
baacae49
AD
8959@defcv {Type} {parser} {semantic_type}
8960@defcvx {Type} {parser} {location_type}
12545799 8961The types for semantics value and locations.
8a0adb01 8962@end defcv
12545799 8963
baacae49 8964@defcv {Type} {parser} {token}
2c0f9706
AD
8965A structure that contains (only) the @code{yytokentype} enumeration, which
8966defines the tokens. To refer to the token @code{FOO},
8967use @code{yy::parser::token::FOO}. The scanner can use
baacae49
AD
8968@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
8969(@pxref{Calc++ Scanner}).
8970@end defcv
8971
12545799
AD
8972@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
8973Build a new parser object. There are no arguments by default, unless
8974@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
8975@end deftypemethod
8976
8977@deftypemethod {parser} {int} parse ()
8978Run the syntactic analysis, and return 0 on success, 1 otherwise.
8979@end deftypemethod
8980
8981@deftypemethod {parser} {std::ostream&} debug_stream ()
8982@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
8983Get or set the stream used for tracing the parsing. It defaults to
8984@code{std::cerr}.
8985@end deftypemethod
8986
8987@deftypemethod {parser} {debug_level_type} debug_level ()
8988@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
8989Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 8990or nonzero, full tracing.
12545799
AD
8991@end deftypemethod
8992
8993@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
8994The definition for this member function must be supplied by the user:
8995the parser uses it to report a parser error occurring at @var{l},
8996described by @var{m}.
8997@end deftypemethod
8998
8999
9000@node C++ Scanner Interface
9001@subsection C++ Scanner Interface
9002@c - prefix for yylex.
9003@c - Pure interface to yylex
9004@c - %lex-param
9005
9006The parser invokes the scanner by calling @code{yylex}. Contrary to C
9007parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 9008@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 9009
baacae49 9010@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
9011Return the next token. Its type is the return value, its semantic
9012value and location being @var{yylval} and @var{yylloc}. Invocations of
9013@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9014@end deftypemethod
9015
9016
9017@node A Complete C++ Example
8405b70c 9018@subsection A Complete C++ Example
12545799
AD
9019
9020This section demonstrates the use of a C++ parser with a simple but
9021complete example. This example should be available on your system,
9022ready to compile, in the directory @dfn{../bison/examples/calc++}. It
9023focuses on the use of Bison, therefore the design of the various C++
9024classes is very naive: no accessors, no encapsulation of members etc.
9025We will use a Lex scanner, and more precisely, a Flex scanner, to
9026demonstrate the various interaction. A hand written scanner is
9027actually easier to interface with.
9028
9029@menu
9030* Calc++ --- C++ Calculator:: The specifications
9031* Calc++ Parsing Driver:: An active parsing context
9032* Calc++ Parser:: A parser class
9033* Calc++ Scanner:: A pure C++ Flex scanner
9034* Calc++ Top Level:: Conducting the band
9035@end menu
9036
9037@node Calc++ --- C++ Calculator
8405b70c 9038@subsubsection Calc++ --- C++ Calculator
12545799
AD
9039
9040Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9041expression, possibly preceded by variable assignments. An
12545799
AD
9042environment containing possibly predefined variables such as
9043@code{one} and @code{two}, is exchanged with the parser. An example
9044of valid input follows.
9045
9046@example
9047three := 3
9048seven := one + two * three
9049seven * seven
9050@end example
9051
9052@node Calc++ Parsing Driver
8405b70c 9053@subsubsection Calc++ Parsing Driver
12545799
AD
9054@c - An env
9055@c - A place to store error messages
9056@c - A place for the result
9057
9058To support a pure interface with the parser (and the scanner) the
9059technique of the ``parsing context'' is convenient: a structure
9060containing all the data to exchange. Since, in addition to simply
9061launch the parsing, there are several auxiliary tasks to execute (open
9062the file for parsing, instantiate the parser etc.), we recommend
9063transforming the simple parsing context structure into a fully blown
9064@dfn{parsing driver} class.
9065
9066The declaration of this driver class, @file{calc++-driver.hh}, is as
9067follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9068required standard library components, and the declaration of the parser
9069class.
12545799 9070
1c59e0a1 9071@comment file: calc++-driver.hh
12545799
AD
9072@example
9073#ifndef CALCXX_DRIVER_HH
9074# define CALCXX_DRIVER_HH
9075# include <string>
9076# include <map>
fb9712a9 9077# include "calc++-parser.hh"
12545799
AD
9078@end example
9079
12545799
AD
9080
9081@noindent
9082Then comes the declaration of the scanning function. Flex expects
9083the signature of @code{yylex} to be defined in the macro
9084@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9085factor both as follows.
1c59e0a1
AD
9086
9087@comment file: calc++-driver.hh
12545799 9088@example
3dc5e96b
PE
9089// Tell Flex the lexer's prototype ...
9090# define YY_DECL \
c095d689
AD
9091 yy::calcxx_parser::token_type \
9092 yylex (yy::calcxx_parser::semantic_type* yylval, \
9093 yy::calcxx_parser::location_type* yylloc, \
9094 calcxx_driver& driver)
12545799
AD
9095// ... and declare it for the parser's sake.
9096YY_DECL;
9097@end example
9098
9099@noindent
9100The @code{calcxx_driver} class is then declared with its most obvious
9101members.
9102
1c59e0a1 9103@comment file: calc++-driver.hh
12545799
AD
9104@example
9105// Conducting the whole scanning and parsing of Calc++.
9106class calcxx_driver
9107@{
9108public:
9109 calcxx_driver ();
9110 virtual ~calcxx_driver ();
9111
9112 std::map<std::string, int> variables;
9113
9114 int result;
9115@end example
9116
9117@noindent
9118To encapsulate the coordination with the Flex scanner, it is useful to
9119have two members function to open and close the scanning phase.
12545799 9120
1c59e0a1 9121@comment file: calc++-driver.hh
12545799
AD
9122@example
9123 // Handling the scanner.
9124 void scan_begin ();
9125 void scan_end ();
9126 bool trace_scanning;
9127@end example
9128
9129@noindent
9130Similarly for the parser itself.
9131
1c59e0a1 9132@comment file: calc++-driver.hh
12545799 9133@example
bb32f4f2
AD
9134 // Run the parser. Return 0 on success.
9135 int parse (const std::string& f);
12545799
AD
9136 std::string file;
9137 bool trace_parsing;
9138@end example
9139
9140@noindent
9141To demonstrate pure handling of parse errors, instead of simply
9142dumping them on the standard error output, we will pass them to the
9143compiler driver using the following two member functions. Finally, we
9144close the class declaration and CPP guard.
9145
1c59e0a1 9146@comment file: calc++-driver.hh
12545799
AD
9147@example
9148 // Error handling.
9149 void error (const yy::location& l, const std::string& m);
9150 void error (const std::string& m);
9151@};
9152#endif // ! CALCXX_DRIVER_HH
9153@end example
9154
9155The implementation of the driver is straightforward. The @code{parse}
9156member function deserves some attention. The @code{error} functions
9157are simple stubs, they should actually register the located error
9158messages and set error state.
9159
1c59e0a1 9160@comment file: calc++-driver.cc
12545799
AD
9161@example
9162#include "calc++-driver.hh"
9163#include "calc++-parser.hh"
9164
9165calcxx_driver::calcxx_driver ()
9166 : trace_scanning (false), trace_parsing (false)
9167@{
9168 variables["one"] = 1;
9169 variables["two"] = 2;
9170@}
9171
9172calcxx_driver::~calcxx_driver ()
9173@{
9174@}
9175
bb32f4f2 9176int
12545799
AD
9177calcxx_driver::parse (const std::string &f)
9178@{
9179 file = f;
9180 scan_begin ();
9181 yy::calcxx_parser parser (*this);
9182 parser.set_debug_level (trace_parsing);
bb32f4f2 9183 int res = parser.parse ();
12545799 9184 scan_end ();
bb32f4f2 9185 return res;
12545799
AD
9186@}
9187
9188void
9189calcxx_driver::error (const yy::location& l, const std::string& m)
9190@{
9191 std::cerr << l << ": " << m << std::endl;
9192@}
9193
9194void
9195calcxx_driver::error (const std::string& m)
9196@{
9197 std::cerr << m << std::endl;
9198@}
9199@end example
9200
9201@node Calc++ Parser
8405b70c 9202@subsubsection Calc++ Parser
12545799 9203
9913d6e4
JD
9204The grammar file @file{calc++-parser.yy} starts by asking for the C++
9205deterministic parser skeleton, the creation of the parser header file,
9206and specifies the name of the parser class. Because the C++ skeleton
9207changed several times, it is safer to require the version you designed
9208the grammar for.
1c59e0a1
AD
9209
9210@comment file: calc++-parser.yy
12545799 9211@example
ea118b72 9212%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9213%require "@value{VERSION}"
12545799 9214%defines
16dc6a9e 9215%define parser_class_name "calcxx_parser"
fb9712a9
AD
9216@end example
9217
9218@noindent
16dc6a9e 9219@findex %code requires
fb9712a9
AD
9220Then come the declarations/inclusions needed to define the
9221@code{%union}. Because the parser uses the parsing driver and
9222reciprocally, both cannot include the header of the other. Because the
9223driver's header needs detailed knowledge about the parser class (in
9224particular its inner types), it is the parser's header which will simply
9225use a forward declaration of the driver.
8e6f2266 9226@xref{%code Summary}.
fb9712a9
AD
9227
9228@comment file: calc++-parser.yy
9229@example
16dc6a9e 9230%code requires @{
12545799 9231# include <string>
fb9712a9 9232class calcxx_driver;
9bc0dd67 9233@}
12545799
AD
9234@end example
9235
9236@noindent
9237The driver is passed by reference to the parser and to the scanner.
9238This provides a simple but effective pure interface, not relying on
9239global variables.
9240
1c59e0a1 9241@comment file: calc++-parser.yy
12545799
AD
9242@example
9243// The parsing context.
9244%parse-param @{ calcxx_driver& driver @}
9245%lex-param @{ calcxx_driver& driver @}
9246@end example
9247
9248@noindent
9249Then we request the location tracking feature, and initialize the
c781580d 9250first location's file name. Afterward new locations are computed
12545799
AD
9251relatively to the previous locations: the file name will be
9252automatically propagated.
9253
1c59e0a1 9254@comment file: calc++-parser.yy
12545799
AD
9255@example
9256%locations
9257%initial-action
9258@{
9259 // Initialize the initial location.
b47dbebe 9260 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9261@};
9262@end example
9263
9264@noindent
6f04ee6c
JD
9265Use the two following directives to enable parser tracing and verbose error
9266messages. However, verbose error messages can contain incorrect information
9267(@pxref{LAC}).
12545799 9268
1c59e0a1 9269@comment file: calc++-parser.yy
12545799
AD
9270@example
9271%debug
9272%error-verbose
9273@end example
9274
9275@noindent
9276Semantic values cannot use ``real'' objects, but only pointers to
9277them.
9278
1c59e0a1 9279@comment file: calc++-parser.yy
12545799
AD
9280@example
9281// Symbols.
9282%union
9283@{
9284 int ival;
9285 std::string *sval;
9286@};
9287@end example
9288
fb9712a9 9289@noindent
136a0f76
PB
9290@findex %code
9291The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9292@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9293
9294@comment file: calc++-parser.yy
9295@example
136a0f76 9296%code @{
fb9712a9 9297# include "calc++-driver.hh"
34f98f46 9298@}
fb9712a9
AD
9299@end example
9300
9301
12545799
AD
9302@noindent
9303The token numbered as 0 corresponds to end of file; the following line
9304allows for nicer error messages referring to ``end of file'' instead
9305of ``$end''. Similarly user friendly named are provided for each
9306symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
9307avoid name clashes.
9308
1c59e0a1 9309@comment file: calc++-parser.yy
12545799 9310@example
fb9712a9
AD
9311%token END 0 "end of file"
9312%token ASSIGN ":="
9313%token <sval> IDENTIFIER "identifier"
9314%token <ival> NUMBER "number"
a8c2e813 9315%type <ival> exp
12545799
AD
9316@end example
9317
9318@noindent
9319To enable memory deallocation during error recovery, use
9320@code{%destructor}.
9321
287c78f6 9322@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 9323@comment file: calc++-parser.yy
12545799
AD
9324@example
9325%printer @{ debug_stream () << *$$; @} "identifier"
9326%destructor @{ delete $$; @} "identifier"
9327
a8c2e813 9328%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
9329@end example
9330
9331@noindent
9332The grammar itself is straightforward.
9333
1c59e0a1 9334@comment file: calc++-parser.yy
12545799
AD
9335@example
9336%%
9337%start unit;
9338unit: assignments exp @{ driver.result = $2; @};
9339
de6be119
AD
9340assignments:
9341 /* Nothing. */ @{@}
9342| assignments assignment @{@};
12545799 9343
3dc5e96b
PE
9344assignment:
9345 "identifier" ":=" exp
9346 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
9347
9348%left '+' '-';
9349%left '*' '/';
9350exp: exp '+' exp @{ $$ = $1 + $3; @}
9351 | exp '-' exp @{ $$ = $1 - $3; @}
9352 | exp '*' exp @{ $$ = $1 * $3; @}
9353 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 9354 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 9355 | "number" @{ $$ = $1; @};
12545799
AD
9356%%
9357@end example
9358
9359@noindent
9360Finally the @code{error} member function registers the errors to the
9361driver.
9362
1c59e0a1 9363@comment file: calc++-parser.yy
12545799
AD
9364@example
9365void
1c59e0a1
AD
9366yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
9367 const std::string& m)
12545799
AD
9368@{
9369 driver.error (l, m);
9370@}
9371@end example
9372
9373@node Calc++ Scanner
8405b70c 9374@subsubsection Calc++ Scanner
12545799
AD
9375
9376The Flex scanner first includes the driver declaration, then the
9377parser's to get the set of defined tokens.
9378
1c59e0a1 9379@comment file: calc++-scanner.ll
12545799 9380@example
ea118b72 9381%@{ /* -*- C++ -*- */
04098407 9382# include <cstdlib>
b10dd689
AD
9383# include <cerrno>
9384# include <climits>
12545799
AD
9385# include <string>
9386# include "calc++-driver.hh"
9387# include "calc++-parser.hh"
eaea13f5
PE
9388
9389/* Work around an incompatibility in flex (at least versions
9390 2.5.31 through 2.5.33): it generates code that does
9391 not conform to C89. See Debian bug 333231
9392 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9393# undef yywrap
9394# define yywrap() 1
eaea13f5 9395
c095d689
AD
9396/* By default yylex returns int, we use token_type.
9397 Unfortunately yyterminate by default returns 0, which is
9398 not of token_type. */
8c5b881d 9399#define yyterminate() return token::END
12545799
AD
9400%@}
9401@end example
9402
9403@noindent
9404Because there is no @code{#include}-like feature we don't need
9405@code{yywrap}, we don't need @code{unput} either, and we parse an
9406actual file, this is not an interactive session with the user.
9407Finally we enable the scanner tracing features.
9408
1c59e0a1 9409@comment file: calc++-scanner.ll
12545799
AD
9410@example
9411%option noyywrap nounput batch debug
9412@end example
9413
9414@noindent
9415Abbreviations allow for more readable rules.
9416
1c59e0a1 9417@comment file: calc++-scanner.ll
12545799
AD
9418@example
9419id [a-zA-Z][a-zA-Z_0-9]*
9420int [0-9]+
9421blank [ \t]
9422@end example
9423
9424@noindent
9d9b8b70 9425The following paragraph suffices to track locations accurately. Each
12545799
AD
9426time @code{yylex} is invoked, the begin position is moved onto the end
9427position. Then when a pattern is matched, the end position is
9428advanced of its width. In case it matched ends of lines, the end
9429cursor is adjusted, and each time blanks are matched, the begin cursor
9430is moved onto the end cursor to effectively ignore the blanks
9431preceding tokens. Comments would be treated equally.
9432
1c59e0a1 9433@comment file: calc++-scanner.ll
12545799 9434@example
98842516 9435@group
828c373b
AD
9436%@{
9437# define YY_USER_ACTION yylloc->columns (yyleng);
9438%@}
98842516 9439@end group
12545799
AD
9440%%
9441%@{
9442 yylloc->step ();
12545799
AD
9443%@}
9444@{blank@}+ yylloc->step ();
9445[\n]+ yylloc->lines (yyleng); yylloc->step ();
9446@end example
9447
9448@noindent
fb9712a9
AD
9449The rules are simple, just note the use of the driver to report errors.
9450It is convenient to use a typedef to shorten
9451@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9452@code{token::identifier} for instance.
12545799 9453
1c59e0a1 9454@comment file: calc++-scanner.ll
12545799 9455@example
fb9712a9
AD
9456%@{
9457 typedef yy::calcxx_parser::token token;
9458%@}
8c5b881d 9459 /* Convert ints to the actual type of tokens. */
c095d689 9460[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9461":=" return token::ASSIGN;
04098407
PE
9462@{int@} @{
9463 errno = 0;
9464 long n = strtol (yytext, NULL, 10);
9465 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9466 driver.error (*yylloc, "integer is out of range");
9467 yylval->ival = n;
fb9712a9 9468 return token::NUMBER;
04098407 9469@}
fb9712a9 9470@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9471. driver.error (*yylloc, "invalid character");
9472%%
9473@end example
9474
9475@noindent
9476Finally, because the scanner related driver's member function depend
9477on the scanner's data, it is simpler to implement them in this file.
9478
1c59e0a1 9479@comment file: calc++-scanner.ll
12545799 9480@example
98842516 9481@group
12545799
AD
9482void
9483calcxx_driver::scan_begin ()
9484@{
9485 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9486 if (file == "-")
9487 yyin = stdin;
9488 else if (!(yyin = fopen (file.c_str (), "r")))
9489 @{
2c0f9706 9490 error ("cannot open " + file + ": " + strerror(errno));
dd561157 9491 exit (EXIT_FAILURE);
bb32f4f2 9492 @}
12545799 9493@}
98842516 9494@end group
12545799 9495
98842516 9496@group
12545799
AD
9497void
9498calcxx_driver::scan_end ()
9499@{
9500 fclose (yyin);
9501@}
98842516 9502@end group
12545799
AD
9503@end example
9504
9505@node Calc++ Top Level
8405b70c 9506@subsubsection Calc++ Top Level
12545799
AD
9507
9508The top level file, @file{calc++.cc}, poses no problem.
9509
1c59e0a1 9510@comment file: calc++.cc
12545799
AD
9511@example
9512#include <iostream>
9513#include "calc++-driver.hh"
9514
98842516 9515@group
12545799 9516int
fa4d969f 9517main (int argc, char *argv[])
12545799
AD
9518@{
9519 calcxx_driver driver;
9520 for (++argv; argv[0]; ++argv)
9521 if (*argv == std::string ("-p"))
9522 driver.trace_parsing = true;
9523 else if (*argv == std::string ("-s"))
9524 driver.trace_scanning = true;
bb32f4f2
AD
9525 else if (!driver.parse (*argv))
9526 std::cout << driver.result << std::endl;
12545799 9527@}
98842516 9528@end group
12545799
AD
9529@end example
9530
8405b70c
PB
9531@node Java Parsers
9532@section Java Parsers
9533
9534@menu
f56274a8
DJ
9535* Java Bison Interface:: Asking for Java parser generation
9536* Java Semantic Values:: %type and %token vs. Java
9537* Java Location Values:: The position and location classes
9538* Java Parser Interface:: Instantiating and running the parser
9539* Java Scanner Interface:: Specifying the scanner for the parser
9540* Java Action Features:: Special features for use in actions
9541* Java Differences:: Differences between C/C++ and Java Grammars
9542* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9543@end menu
9544
9545@node Java Bison Interface
9546@subsection Java Bison Interface
9547@c - %language "Java"
8405b70c 9548
59da312b
JD
9549(The current Java interface is experimental and may evolve.
9550More user feedback will help to stabilize it.)
9551
e254a580
DJ
9552The Java parser skeletons are selected using the @code{%language "Java"}
9553directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9554
e254a580 9555@c FIXME: Documented bug.
9913d6e4
JD
9556When generating a Java parser, @code{bison @var{basename}.y} will
9557create a single Java source file named @file{@var{basename}.java}
9558containing the parser implementation. Using a grammar file without a
9559@file{.y} suffix is currently broken. The basename of the parser
9560implementation file can be changed by the @code{%file-prefix}
9561directive or the @option{-p}/@option{--name-prefix} option. The
9562entire parser implementation file name can be changed by the
9563@code{%output} directive or the @option{-o}/@option{--output} option.
9564The parser implementation file contains a single class for the parser.
8405b70c 9565
e254a580 9566You can create documentation for generated parsers using Javadoc.
8405b70c 9567
e254a580
DJ
9568Contrary to C parsers, Java parsers do not use global variables; the
9569state of the parser is always local to an instance of the parser class.
9570Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9571and @code{%define api.pure} directives does not do anything when used in
9572Java.
8405b70c 9573
e254a580 9574Push parsers are currently unsupported in Java and @code{%define
812775a0 9575api.push-pull} have no effect.
01b477c6 9576
35430378 9577GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9578@code{glr-parser} directive.
9579
9580No header file can be generated for Java parsers. Do not use the
9581@code{%defines} directive or the @option{-d}/@option{--defines} options.
9582
9583@c FIXME: Possible code change.
9584Currently, support for debugging and verbose errors are always compiled
9585in. Thus the @code{%debug} and @code{%token-table} directives and the
9586@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9587options have no effect. This may change in the future to eliminate
9588unused code in the generated parser, so use @code{%debug} and
9589@code{%verbose-error} explicitly if needed. Also, in the future the
9590@code{%token-table} directive might enable a public interface to
9591access the token names and codes.
8405b70c
PB
9592
9593@node Java Semantic Values
9594@subsection Java Semantic Values
9595@c - No %union, specify type in %type/%token.
9596@c - YYSTYPE
9597@c - Printer and destructor
9598
9599There is no @code{%union} directive in Java parsers. Instead, the
9600semantic values' types (class names) should be specified in the
9601@code{%type} or @code{%token} directive:
9602
9603@example
9604%type <Expression> expr assignment_expr term factor
9605%type <Integer> number
9606@end example
9607
9608By default, the semantic stack is declared to have @code{Object} members,
9609which means that the class types you specify can be of any class.
9610To improve the type safety of the parser, you can declare the common
e254a580
DJ
9611superclass of all the semantic values using the @code{%define stype}
9612directive. For example, after the following declaration:
8405b70c
PB
9613
9614@example
e254a580 9615%define stype "ASTNode"
8405b70c
PB
9616@end example
9617
9618@noindent
9619any @code{%type} or @code{%token} specifying a semantic type which
9620is not a subclass of ASTNode, will cause a compile-time error.
9621
e254a580 9622@c FIXME: Documented bug.
8405b70c
PB
9623Types used in the directives may be qualified with a package name.
9624Primitive data types are accepted for Java version 1.5 or later. Note
9625that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9626Generic types may not be used; this is due to a limitation in the
9627implementation of Bison, and may change in future releases.
8405b70c
PB
9628
9629Java parsers do not support @code{%destructor}, since the language
9630adopts garbage collection. The parser will try to hold references
9631to semantic values for as little time as needed.
9632
9633Java parsers do not support @code{%printer}, as @code{toString()}
9634can be used to print the semantic values. This however may change
9635(in a backwards-compatible way) in future versions of Bison.
9636
9637
9638@node Java Location Values
9639@subsection Java Location Values
9640@c - %locations
9641@c - class Position
9642@c - class Location
9643
7404cdf3
JD
9644When the directive @code{%locations} is used, the Java parser supports
9645location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
9646class defines a @dfn{position}, a single point in a file; Bison itself
9647defines a class representing a @dfn{location}, a range composed of a pair of
9648positions (possibly spanning several files). The location class is an inner
9649class of the parser; the name is @code{Location} by default, and may also be
9650renamed using @code{%define location_type "@var{class-name}"}.
8405b70c
PB
9651
9652The location class treats the position as a completely opaque value.
9653By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9654with @code{%define position_type "@var{class-name}"}. This class must
9655be supplied by the user.
8405b70c
PB
9656
9657
e254a580
DJ
9658@deftypeivar {Location} {Position} begin
9659@deftypeivarx {Location} {Position} end
8405b70c 9660The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9661@end deftypeivar
9662
9663@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9664Create a @code{Location} denoting an empty range located at a given point.
e254a580 9665@end deftypeop
8405b70c 9666
e254a580
DJ
9667@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9668Create a @code{Location} from the endpoints of the range.
9669@end deftypeop
9670
9671@deftypemethod {Location} {String} toString ()
8405b70c
PB
9672Prints the range represented by the location. For this to work
9673properly, the position class should override the @code{equals} and
9674@code{toString} methods appropriately.
9675@end deftypemethod
9676
9677
9678@node Java Parser Interface
9679@subsection Java Parser Interface
9680@c - define parser_class_name
9681@c - Ctor
9682@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9683@c debug_stream.
9684@c - Reporting errors
9685
e254a580
DJ
9686The name of the generated parser class defaults to @code{YYParser}. The
9687@code{YY} prefix may be changed using the @code{%name-prefix} directive
9688or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9689@code{%define parser_class_name "@var{name}"} to give a custom name to
9690the class. The interface of this class is detailed below.
8405b70c 9691
e254a580
DJ
9692By default, the parser class has package visibility. A declaration
9693@code{%define public} will change to public visibility. Remember that,
9694according to the Java language specification, the name of the @file{.java}
9695file should match the name of the class in this case. Similarly, you can
9696use @code{abstract}, @code{final} and @code{strictfp} with the
9697@code{%define} declaration to add other modifiers to the parser class.
9698
9699The Java package name of the parser class can be specified using the
9700@code{%define package} directive. The superclass and the implemented
9701interfaces of the parser class can be specified with the @code{%define
9702extends} and @code{%define implements} directives.
9703
9704The parser class defines an inner class, @code{Location}, that is used
9705for location tracking (see @ref{Java Location Values}), and a inner
9706interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9707these inner class/interface, and the members described in the interface
9708below, all the other members and fields are preceded with a @code{yy} or
9709@code{YY} prefix to avoid clashes with user code.
9710
9711@c FIXME: The following constants and variables are still undocumented:
9712@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9713
9714The parser class can be extended using the @code{%parse-param}
9715directive. Each occurrence of the directive will add a @code{protected
9716final} field to the parser class, and an argument to its constructor,
9717which initialize them automatically.
9718
9719Token names defined by @code{%token} and the predefined @code{EOF} token
9720name are added as constant fields to the parser class.
9721
9722@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9723Build a new parser object with embedded @code{%code lexer}. There are
9724no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9725used.
9726@end deftypeop
9727
9728@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9729Build a new parser object using the specified scanner. There are no
9730additional parameters unless @code{%parse-param}s are used.
9731
9732If the scanner is defined by @code{%code lexer}, this constructor is
9733declared @code{protected} and is called automatically with a scanner
9734created with the correct @code{%lex-param}s.
9735@end deftypeop
8405b70c
PB
9736
9737@deftypemethod {YYParser} {boolean} parse ()
9738Run the syntactic analysis, and return @code{true} on success,
9739@code{false} otherwise.
9740@end deftypemethod
9741
01b477c6 9742@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9743During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9744from a syntax error.
9745@xref{Error Recovery}.
8405b70c
PB
9746@end deftypemethod
9747
9748@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9749@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9750Get or set the stream used for tracing the parsing. It defaults to
9751@code{System.err}.
9752@end deftypemethod
9753
9754@deftypemethod {YYParser} {int} getDebugLevel ()
9755@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9756Get or set the tracing level. Currently its value is either 0, no trace,
9757or nonzero, full tracing.
9758@end deftypemethod
9759
8405b70c
PB
9760
9761@node Java Scanner Interface
9762@subsection Java Scanner Interface
01b477c6 9763@c - %code lexer
8405b70c 9764@c - %lex-param
01b477c6 9765@c - Lexer interface
8405b70c 9766
e254a580
DJ
9767There are two possible ways to interface a Bison-generated Java parser
9768with a scanner: the scanner may be defined by @code{%code lexer}, or
9769defined elsewhere. In either case, the scanner has to implement the
9770@code{Lexer} inner interface of the parser class.
9771
9772In the first case, the body of the scanner class is placed in
9773@code{%code lexer} blocks. If you want to pass parameters from the
9774parser constructor to the scanner constructor, specify them with
9775@code{%lex-param}; they are passed before @code{%parse-param}s to the
9776constructor.
01b477c6 9777
59c5ac72 9778In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9779which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9780The constructor of the parser object will then accept an object
9781implementing the interface; @code{%lex-param} is not used in this
9782case.
9783
9784In both cases, the scanner has to implement the following methods.
9785
e254a580
DJ
9786@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9787This method is defined by the user to emit an error message. The first
9788parameter is omitted if location tracking is not active. Its type can be
9789changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9790@end deftypemethod
9791
e254a580 9792@deftypemethod {Lexer} {int} yylex ()
8405b70c 9793Return the next token. Its type is the return value, its semantic
c781580d 9794value and location are saved and returned by the their methods in the
e254a580
DJ
9795interface.
9796
9797Use @code{%define lex_throws} to specify any uncaught exceptions.
9798Default is @code{java.io.IOException}.
8405b70c
PB
9799@end deftypemethod
9800
9801@deftypemethod {Lexer} {Position} getStartPos ()
9802@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9803Return respectively the first position of the last token that
9804@code{yylex} returned, and the first position beyond it. These
9805methods are not needed unless location tracking is active.
8405b70c 9806
e254a580 9807The return type can be changed using @code{%define position_type
8405b70c
PB
9808"@var{class-name}".}
9809@end deftypemethod
9810
9811@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9812Return the semantic value of the last token that yylex returned.
8405b70c 9813
e254a580 9814The return type can be changed using @code{%define stype
8405b70c
PB
9815"@var{class-name}".}
9816@end deftypemethod
9817
9818
e254a580
DJ
9819@node Java Action Features
9820@subsection Special Features for Use in Java Actions
9821
9822The following special constructs can be uses in Java actions.
9823Other analogous C action features are currently unavailable for Java.
9824
9825Use @code{%define throws} to specify any uncaught exceptions from parser
9826actions, and initial actions specified by @code{%initial-action}.
9827
9828@defvar $@var{n}
9829The semantic value for the @var{n}th component of the current rule.
9830This may not be assigned to.
9831@xref{Java Semantic Values}.
9832@end defvar
9833
9834@defvar $<@var{typealt}>@var{n}
9835Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9836@xref{Java Semantic Values}.
9837@end defvar
9838
9839@defvar $$
9840The semantic value for the grouping made by the current rule. As a
9841value, this is in the base type (@code{Object} or as specified by
9842@code{%define stype}) as in not cast to the declared subtype because
9843casts are not allowed on the left-hand side of Java assignments.
9844Use an explicit Java cast if the correct subtype is needed.
9845@xref{Java Semantic Values}.
9846@end defvar
9847
9848@defvar $<@var{typealt}>$
9849Same as @code{$$} since Java always allow assigning to the base type.
9850Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9851for setting the value but there is currently no easy way to distinguish
9852these constructs.
9853@xref{Java Semantic Values}.
9854@end defvar
9855
9856@defvar @@@var{n}
9857The location information of the @var{n}th component of the current rule.
9858This may not be assigned to.
9859@xref{Java Location Values}.
9860@end defvar
9861
9862@defvar @@$
9863The location information of the grouping made by the current rule.
9864@xref{Java Location Values}.
9865@end defvar
9866
9867@deffn {Statement} {return YYABORT;}
9868Return immediately from the parser, indicating failure.
9869@xref{Java Parser Interface}.
9870@end deffn
8405b70c 9871
e254a580
DJ
9872@deffn {Statement} {return YYACCEPT;}
9873Return immediately from the parser, indicating success.
9874@xref{Java Parser Interface}.
9875@end deffn
8405b70c 9876
e254a580 9877@deffn {Statement} {return YYERROR;}
c046698e 9878Start error recovery without printing an error message.
e254a580
DJ
9879@xref{Error Recovery}.
9880@end deffn
8405b70c 9881
e254a580
DJ
9882@deftypefn {Function} {boolean} recovering ()
9883Return whether error recovery is being done. In this state, the parser
9884reads token until it reaches a known state, and then restarts normal
9885operation.
9886@xref{Error Recovery}.
9887@end deftypefn
8405b70c 9888
e254a580
DJ
9889@deftypefn {Function} {protected void} yyerror (String msg)
9890@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9891@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9892Print an error message using the @code{yyerror} method of the scanner
9893instance in use.
9894@end deftypefn
8405b70c 9895
8405b70c 9896
8405b70c
PB
9897@node Java Differences
9898@subsection Differences between C/C++ and Java Grammars
9899
9900The different structure of the Java language forces several differences
9901between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9902section summarizes these differences.
8405b70c
PB
9903
9904@itemize
9905@item
01b477c6 9906Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9907@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9908macros. Instead, they should be preceded by @code{return} when they
9909appear in an action. The actual definition of these symbols is
8405b70c
PB
9910opaque to the Bison grammar, and it might change in the future. The
9911only meaningful operation that you can do, is to return them.
e254a580 9912See @pxref{Java Action Features}.
8405b70c
PB
9913
9914Note that of these three symbols, only @code{YYACCEPT} and
9915@code{YYABORT} will cause a return from the @code{yyparse}
9916method@footnote{Java parsers include the actions in a separate
9917method than @code{yyparse} in order to have an intuitive syntax that
9918corresponds to these C macros.}.
9919
e254a580
DJ
9920@item
9921Java lacks unions, so @code{%union} has no effect. Instead, semantic
9922values have a common base type: @code{Object} or as specified by
c781580d 9923@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9924@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9925an union. The type of @code{$$}, even with angle brackets, is the base
9926type since Java casts are not allow on the left-hand side of assignments.
9927Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9928left-hand side of assignments. See @pxref{Java Semantic Values} and
9929@pxref{Java Action Features}.
9930
8405b70c 9931@item
c781580d 9932The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9933@table @asis
9934@item @code{%code imports}
9935blocks are placed at the beginning of the Java source code. They may
9936include copyright notices. For a @code{package} declarations, it is
9937suggested to use @code{%define package} instead.
8405b70c 9938
01b477c6
PB
9939@item unqualified @code{%code}
9940blocks are placed inside the parser class.
9941
9942@item @code{%code lexer}
9943blocks, if specified, should include the implementation of the
9944scanner. If there is no such block, the scanner can be any class
9945that implements the appropriate interface (see @pxref{Java Scanner
9946Interface}).
29553547 9947@end table
8405b70c
PB
9948
9949Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
9950In particular, @code{%@{ @dots{} %@}} blocks should not be used
9951and may give an error in future versions of Bison.
9952
01b477c6 9953The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
9954be used to define other classes used by the parser @emph{outside}
9955the parser class.
8405b70c
PB
9956@end itemize
9957
e254a580
DJ
9958
9959@node Java Declarations Summary
9960@subsection Java Declarations Summary
9961
9962This summary only include declarations specific to Java or have special
9963meaning when used in a Java parser.
9964
9965@deffn {Directive} {%language "Java"}
9966Generate a Java class for the parser.
9967@end deffn
9968
9969@deffn {Directive} %lex-param @{@var{type} @var{name}@}
9970A parameter for the lexer class defined by @code{%code lexer}
9971@emph{only}, added as parameters to the lexer constructor and the parser
9972constructor that @emph{creates} a lexer. Default is none.
9973@xref{Java Scanner Interface}.
9974@end deffn
9975
9976@deffn {Directive} %name-prefix "@var{prefix}"
9977The prefix of the parser class name @code{@var{prefix}Parser} if
9978@code{%define parser_class_name} is not used. Default is @code{YY}.
9979@xref{Java Bison Interface}.
9980@end deffn
9981
9982@deffn {Directive} %parse-param @{@var{type} @var{name}@}
9983A parameter for the parser class added as parameters to constructor(s)
9984and as fields initialized by the constructor(s). Default is none.
9985@xref{Java Parser Interface}.
9986@end deffn
9987
9988@deffn {Directive} %token <@var{type}> @var{token} @dots{}
9989Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
9990@xref{Java Semantic Values}.
9991@end deffn
9992
9993@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
9994Declare the type of nonterminals. Note that the angle brackets enclose
9995a Java @emph{type}.
9996@xref{Java Semantic Values}.
9997@end deffn
9998
9999@deffn {Directive} %code @{ @var{code} @dots{} @}
10000Code appended to the inside of the parser class.
10001@xref{Java Differences}.
10002@end deffn
10003
10004@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10005Code inserted just after the @code{package} declaration.
10006@xref{Java Differences}.
10007@end deffn
10008
10009@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10010Code added to the body of a inner lexer class within the parser class.
10011@xref{Java Scanner Interface}.
10012@end deffn
10013
10014@deffn {Directive} %% @var{code} @dots{}
10015Code (after the second @code{%%}) appended to the end of the file,
10016@emph{outside} the parser class.
10017@xref{Java Differences}.
10018@end deffn
10019
10020@deffn {Directive} %@{ @var{code} @dots{} %@}
10021Not supported. Use @code{%code import} instead.
10022@xref{Java Differences}.
10023@end deffn
10024
10025@deffn {Directive} {%define abstract}
10026Whether the parser class is declared @code{abstract}. Default is false.
10027@xref{Java Bison Interface}.
10028@end deffn
10029
10030@deffn {Directive} {%define extends} "@var{superclass}"
10031The superclass of the parser class. Default is none.
10032@xref{Java Bison Interface}.
10033@end deffn
10034
10035@deffn {Directive} {%define final}
10036Whether the parser class is declared @code{final}. Default is false.
10037@xref{Java Bison Interface}.
10038@end deffn
10039
10040@deffn {Directive} {%define implements} "@var{interfaces}"
10041The implemented interfaces of the parser class, a comma-separated list.
10042Default is none.
10043@xref{Java Bison Interface}.
10044@end deffn
10045
10046@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10047The exceptions thrown by the @code{yylex} method of the lexer, a
10048comma-separated list. Default is @code{java.io.IOException}.
10049@xref{Java Scanner Interface}.
10050@end deffn
10051
10052@deffn {Directive} {%define location_type} "@var{class}"
10053The name of the class used for locations (a range between two
10054positions). This class is generated as an inner class of the parser
10055class by @command{bison}. Default is @code{Location}.
10056@xref{Java Location Values}.
10057@end deffn
10058
10059@deffn {Directive} {%define package} "@var{package}"
10060The package to put the parser class in. Default is none.
10061@xref{Java Bison Interface}.
10062@end deffn
10063
10064@deffn {Directive} {%define parser_class_name} "@var{name}"
10065The name of the parser class. Default is @code{YYParser} or
10066@code{@var{name-prefix}Parser}.
10067@xref{Java Bison Interface}.
10068@end deffn
10069
10070@deffn {Directive} {%define position_type} "@var{class}"
10071The name of the class used for positions. This class must be supplied by
10072the user. Default is @code{Position}.
10073@xref{Java Location Values}.
10074@end deffn
10075
10076@deffn {Directive} {%define public}
10077Whether the parser class is declared @code{public}. Default is false.
10078@xref{Java Bison Interface}.
10079@end deffn
10080
10081@deffn {Directive} {%define stype} "@var{class}"
10082The base type of semantic values. Default is @code{Object}.
10083@xref{Java Semantic Values}.
10084@end deffn
10085
10086@deffn {Directive} {%define strictfp}
10087Whether the parser class is declared @code{strictfp}. Default is false.
10088@xref{Java Bison Interface}.
10089@end deffn
10090
10091@deffn {Directive} {%define throws} "@var{exceptions}"
10092The exceptions thrown by user-supplied parser actions and
10093@code{%initial-action}, a comma-separated list. Default is none.
10094@xref{Java Parser Interface}.
10095@end deffn
10096
10097
12545799 10098@c ================================================= FAQ
d1a1114f
AD
10099
10100@node FAQ
10101@chapter Frequently Asked Questions
10102@cindex frequently asked questions
10103@cindex questions
10104
10105Several questions about Bison come up occasionally. Here some of them
10106are addressed.
10107
10108@menu
55ba27be
AD
10109* Memory Exhausted:: Breaking the Stack Limits
10110* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10111* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10112* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10113* Multiple start-symbols:: Factoring closely related grammars
35430378 10114* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10115* I can't build Bison:: Troubleshooting
10116* Where can I find help?:: Troubleshouting
10117* Bug Reports:: Troublereporting
8405b70c 10118* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10119* Beta Testing:: Experimenting development versions
10120* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10121@end menu
10122
1a059451
PE
10123@node Memory Exhausted
10124@section Memory Exhausted
d1a1114f 10125
ab8932bf 10126@quotation
1a059451 10127My parser returns with error with a @samp{memory exhausted}
d1a1114f 10128message. What can I do?
ab8932bf 10129@end quotation
d1a1114f
AD
10130
10131This question is already addressed elsewhere, @xref{Recursion,
10132,Recursive Rules}.
10133
e64fec0a
PE
10134@node How Can I Reset the Parser
10135@section How Can I Reset the Parser
5b066063 10136
0e14ad77
PE
10137The following phenomenon has several symptoms, resulting in the
10138following typical questions:
5b066063 10139
ab8932bf 10140@quotation
5b066063
AD
10141I invoke @code{yyparse} several times, and on correct input it works
10142properly; but when a parse error is found, all the other calls fail
0e14ad77 10143too. How can I reset the error flag of @code{yyparse}?
ab8932bf 10144@end quotation
5b066063
AD
10145
10146@noindent
10147or
10148
ab8932bf 10149@quotation
0e14ad77 10150My parser includes support for an @samp{#include}-like feature, in
5b066063 10151which case I run @code{yyparse} from @code{yyparse}. This fails
ab8932bf
AD
10152although I did specify @samp{%define api.pure}.
10153@end quotation
5b066063 10154
0e14ad77
PE
10155These problems typically come not from Bison itself, but from
10156Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10157speed, they might not notice a change of input file. As a
10158demonstration, consider the following source file,
10159@file{first-line.l}:
10160
98842516
AD
10161@example
10162@group
10163%@{
5b066063
AD
10164#include <stdio.h>
10165#include <stdlib.h>
98842516
AD
10166%@}
10167@end group
5b066063
AD
10168%%
10169.*\n ECHO; return 1;
10170%%
98842516 10171@group
5b066063 10172int
0e14ad77 10173yyparse (char const *file)
98842516 10174@{
5b066063
AD
10175 yyin = fopen (file, "r");
10176 if (!yyin)
98842516
AD
10177 @{
10178 perror ("fopen");
10179 exit (EXIT_FAILURE);
10180 @}
10181@end group
10182@group
fa7e68c3 10183 /* One token only. */
5b066063 10184 yylex ();
0e14ad77 10185 if (fclose (yyin) != 0)
98842516
AD
10186 @{
10187 perror ("fclose");
10188 exit (EXIT_FAILURE);
10189 @}
5b066063 10190 return 0;
98842516
AD
10191@}
10192@end group
5b066063 10193
98842516 10194@group
5b066063 10195int
0e14ad77 10196main (void)
98842516 10197@{
5b066063
AD
10198 yyparse ("input");
10199 yyparse ("input");
10200 return 0;
98842516
AD
10201@}
10202@end group
10203@end example
5b066063
AD
10204
10205@noindent
10206If the file @file{input} contains
10207
ab8932bf 10208@example
5b066063
AD
10209input:1: Hello,
10210input:2: World!
ab8932bf 10211@end example
5b066063
AD
10212
10213@noindent
0e14ad77 10214then instead of getting the first line twice, you get:
5b066063
AD
10215
10216@example
10217$ @kbd{flex -ofirst-line.c first-line.l}
10218$ @kbd{gcc -ofirst-line first-line.c -ll}
10219$ @kbd{./first-line}
10220input:1: Hello,
10221input:2: World!
10222@end example
10223
0e14ad77
PE
10224Therefore, whenever you change @code{yyin}, you must tell the
10225Lex-generated scanner to discard its current buffer and switch to the
10226new one. This depends upon your implementation of Lex; see its
10227documentation for more. For Flex, it suffices to call
10228@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10229Flex-generated scanner needs to read from several input streams to
10230handle features like include files, you might consider using Flex
10231functions like @samp{yy_switch_to_buffer} that manipulate multiple
10232input buffers.
5b066063 10233
b165c324
AD
10234If your Flex-generated scanner uses start conditions (@pxref{Start
10235conditions, , Start conditions, flex, The Flex Manual}), you might
10236also want to reset the scanner's state, i.e., go back to the initial
10237start condition, through a call to @samp{BEGIN (0)}.
10238
fef4cb51
AD
10239@node Strings are Destroyed
10240@section Strings are Destroyed
10241
ab8932bf 10242@quotation
c7e441b4 10243My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10244them. Instead of reporting @samp{"foo", "bar"}, it reports
10245@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
ab8932bf 10246@end quotation
fef4cb51
AD
10247
10248This error is probably the single most frequent ``bug report'' sent to
10249Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10250of the scanner. Consider the following Lex code:
fef4cb51 10251
ab8932bf 10252@example
98842516 10253@group
ab8932bf 10254%@{
fef4cb51
AD
10255#include <stdio.h>
10256char *yylval = NULL;
ab8932bf 10257%@}
98842516
AD
10258@end group
10259@group
fef4cb51
AD
10260%%
10261.* yylval = yytext; return 1;
10262\n /* IGNORE */
10263%%
98842516
AD
10264@end group
10265@group
fef4cb51
AD
10266int
10267main ()
ab8932bf 10268@{
fa7e68c3 10269 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10270 char *fst = (yylex (), yylval);
10271 char *snd = (yylex (), yylval);
10272 printf ("\"%s\", \"%s\"\n", fst, snd);
10273 return 0;
ab8932bf 10274@}
98842516 10275@end group
ab8932bf 10276@end example
fef4cb51
AD
10277
10278If you compile and run this code, you get:
10279
10280@example
10281$ @kbd{flex -osplit-lines.c split-lines.l}
10282$ @kbd{gcc -osplit-lines split-lines.c -ll}
10283$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10284"one
10285two", "two"
10286@end example
10287
10288@noindent
10289this is because @code{yytext} is a buffer provided for @emph{reading}
10290in the action, but if you want to keep it, you have to duplicate it
10291(e.g., using @code{strdup}). Note that the output may depend on how
10292your implementation of Lex handles @code{yytext}. For instance, when
10293given the Lex compatibility option @option{-l} (which triggers the
10294option @samp{%array}) Flex generates a different behavior:
10295
10296@example
10297$ @kbd{flex -l -osplit-lines.c split-lines.l}
10298$ @kbd{gcc -osplit-lines split-lines.c -ll}
10299$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10300"two", "two"
10301@end example
10302
10303
2fa09258
AD
10304@node Implementing Gotos/Loops
10305@section Implementing Gotos/Loops
a06ea4aa 10306
ab8932bf 10307@quotation
a06ea4aa 10308My simple calculator supports variables, assignments, and functions,
2fa09258 10309but how can I implement gotos, or loops?
ab8932bf 10310@end quotation
a06ea4aa
AD
10311
10312Although very pedagogical, the examples included in the document blur
a1c84f45 10313the distinction to make between the parser---whose job is to recover
a06ea4aa 10314the structure of a text and to transmit it to subsequent modules of
a1c84f45 10315the program---and the processing (such as the execution) of this
a06ea4aa
AD
10316structure. This works well with so called straight line programs,
10317i.e., precisely those that have a straightforward execution model:
10318execute simple instructions one after the others.
10319
10320@cindex abstract syntax tree
35430378 10321@cindex AST
a06ea4aa
AD
10322If you want a richer model, you will probably need to use the parser
10323to construct a tree that does represent the structure it has
10324recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 10325or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10326traversing it in various ways, will enable treatments such as its
10327execution or its translation, which will result in an interpreter or a
10328compiler.
10329
10330This topic is way beyond the scope of this manual, and the reader is
10331invited to consult the dedicated literature.
10332
10333
ed2e6384
AD
10334@node Multiple start-symbols
10335@section Multiple start-symbols
10336
ab8932bf 10337@quotation
ed2e6384
AD
10338I have several closely related grammars, and I would like to share their
10339implementations. In fact, I could use a single grammar but with
10340multiple entry points.
ab8932bf 10341@end quotation
ed2e6384
AD
10342
10343Bison does not support multiple start-symbols, but there is a very
10344simple means to simulate them. If @code{foo} and @code{bar} are the two
10345pseudo start-symbols, then introduce two new tokens, say
10346@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10347real start-symbol:
10348
10349@example
10350%token START_FOO START_BAR;
10351%start start;
de6be119
AD
10352start:
10353 START_FOO foo
10354| START_BAR bar;
ed2e6384
AD
10355@end example
10356
10357These tokens prevents the introduction of new conflicts. As far as the
10358parser goes, that is all that is needed.
10359
10360Now the difficult part is ensuring that the scanner will send these
10361tokens first. If your scanner is hand-written, that should be
10362straightforward. If your scanner is generated by Lex, them there is
10363simple means to do it: recall that anything between @samp{%@{ ... %@}}
10364after the first @code{%%} is copied verbatim in the top of the generated
10365@code{yylex} function. Make sure a variable @code{start_token} is
10366available in the scanner (e.g., a global variable or using
10367@code{%lex-param} etc.), and use the following:
10368
10369@example
10370 /* @r{Prologue.} */
10371%%
10372%@{
10373 if (start_token)
10374 @{
10375 int t = start_token;
10376 start_token = 0;
10377 return t;
10378 @}
10379%@}
10380 /* @r{The rules.} */
10381@end example
10382
10383
55ba27be
AD
10384@node Secure? Conform?
10385@section Secure? Conform?
10386
ab8932bf 10387@quotation
55ba27be 10388Is Bison secure? Does it conform to POSIX?
ab8932bf 10389@end quotation
55ba27be
AD
10390
10391If you're looking for a guarantee or certification, we don't provide it.
10392However, Bison is intended to be a reliable program that conforms to the
35430378 10393POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10394please send us a bug report.
10395
10396@node I can't build Bison
10397@section I can't build Bison
10398
ab8932bf 10399@quotation
8c5b881d
PE
10400I can't build Bison because @command{make} complains that
10401@code{msgfmt} is not found.
55ba27be 10402What should I do?
ab8932bf 10403@end quotation
55ba27be
AD
10404
10405Like most GNU packages with internationalization support, that feature
10406is turned on by default. If you have problems building in the @file{po}
10407subdirectory, it indicates that your system's internationalization
10408support is lacking. You can re-configure Bison with
10409@option{--disable-nls} to turn off this support, or you can install GNU
10410gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10411Bison. See the file @file{ABOUT-NLS} for more information.
10412
10413
10414@node Where can I find help?
10415@section Where can I find help?
10416
ab8932bf 10417@quotation
55ba27be 10418I'm having trouble using Bison. Where can I find help?
ab8932bf 10419@end quotation
55ba27be
AD
10420
10421First, read this fine manual. Beyond that, you can send mail to
10422@email{help-bison@@gnu.org}. This mailing list is intended to be
10423populated with people who are willing to answer questions about using
10424and installing Bison. Please keep in mind that (most of) the people on
10425the list have aspects of their lives which are not related to Bison (!),
10426so you may not receive an answer to your question right away. This can
10427be frustrating, but please try not to honk them off; remember that any
10428help they provide is purely voluntary and out of the kindness of their
10429hearts.
10430
10431@node Bug Reports
10432@section Bug Reports
10433
ab8932bf 10434@quotation
55ba27be 10435I found a bug. What should I include in the bug report?
ab8932bf 10436@end quotation
55ba27be
AD
10437
10438Before you send a bug report, make sure you are using the latest
10439version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10440mirrors. Be sure to include the version number in your bug report. If
10441the bug is present in the latest version but not in a previous version,
10442try to determine the most recent version which did not contain the bug.
10443
10444If the bug is parser-related, you should include the smallest grammar
10445you can which demonstrates the bug. The grammar file should also be
10446complete (i.e., I should be able to run it through Bison without having
10447to edit or add anything). The smaller and simpler the grammar, the
10448easier it will be to fix the bug.
10449
10450Include information about your compilation environment, including your
10451operating system's name and version and your compiler's name and
10452version. If you have trouble compiling, you should also include a
10453transcript of the build session, starting with the invocation of
10454`configure'. Depending on the nature of the bug, you may be asked to
10455send additional files as well (such as `config.h' or `config.cache').
10456
10457Patches are most welcome, but not required. That is, do not hesitate to
d6864e19 10458send a bug report just because you cannot provide a fix.
55ba27be
AD
10459
10460Send bug reports to @email{bug-bison@@gnu.org}.
10461
8405b70c
PB
10462@node More Languages
10463@section More Languages
55ba27be 10464
ab8932bf 10465@quotation
8405b70c 10466Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 10467favorite language here}?
ab8932bf 10468@end quotation
55ba27be 10469
8405b70c 10470C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10471languages; contributions are welcome.
10472
10473@node Beta Testing
10474@section Beta Testing
10475
ab8932bf 10476@quotation
55ba27be 10477What is involved in being a beta tester?
ab8932bf 10478@end quotation
55ba27be
AD
10479
10480It's not terribly involved. Basically, you would download a test
10481release, compile it, and use it to build and run a parser or two. After
10482that, you would submit either a bug report or a message saying that
10483everything is okay. It is important to report successes as well as
10484failures because test releases eventually become mainstream releases,
10485but only if they are adequately tested. If no one tests, development is
10486essentially halted.
10487
10488Beta testers are particularly needed for operating systems to which the
10489developers do not have easy access. They currently have easy access to
10490recent GNU/Linux and Solaris versions. Reports about other operating
10491systems are especially welcome.
10492
10493@node Mailing Lists
10494@section Mailing Lists
10495
ab8932bf 10496@quotation
55ba27be 10497How do I join the help-bison and bug-bison mailing lists?
ab8932bf 10498@end quotation
55ba27be
AD
10499
10500See @url{http://lists.gnu.org/}.
a06ea4aa 10501
d1a1114f
AD
10502@c ================================================= Table of Symbols
10503
342b8b6e 10504@node Table of Symbols
bfa74976
RS
10505@appendix Bison Symbols
10506@cindex Bison symbols, table of
10507@cindex symbols in Bison, table of
10508
18b519c0 10509@deffn {Variable} @@$
3ded9a63 10510In an action, the location of the left-hand side of the rule.
7404cdf3 10511@xref{Tracking Locations}.
18b519c0 10512@end deffn
3ded9a63 10513
18b519c0 10514@deffn {Variable} @@@var{n}
7404cdf3
JD
10515In an action, the location of the @var{n}-th symbol of the right-hand side
10516of the rule. @xref{Tracking Locations}.
18b519c0 10517@end deffn
3ded9a63 10518
1f68dca5 10519@deffn {Variable} @@@var{name}
7404cdf3
JD
10520In an action, the location of a symbol addressed by name. @xref{Tracking
10521Locations}.
1f68dca5
AR
10522@end deffn
10523
10524@deffn {Variable} @@[@var{name}]
7404cdf3
JD
10525In an action, the location of a symbol addressed by name. @xref{Tracking
10526Locations}.
1f68dca5
AR
10527@end deffn
10528
18b519c0 10529@deffn {Variable} $$
3ded9a63
AD
10530In an action, the semantic value of the left-hand side of the rule.
10531@xref{Actions}.
18b519c0 10532@end deffn
3ded9a63 10533
18b519c0 10534@deffn {Variable} $@var{n}
3ded9a63
AD
10535In an action, the semantic value of the @var{n}-th symbol of the
10536right-hand side of the rule. @xref{Actions}.
18b519c0 10537@end deffn
3ded9a63 10538
1f68dca5
AR
10539@deffn {Variable} $@var{name}
10540In an action, the semantic value of a symbol addressed by name.
10541@xref{Actions}.
10542@end deffn
10543
10544@deffn {Variable} $[@var{name}]
10545In an action, the semantic value of a symbol addressed by name.
10546@xref{Actions}.
10547@end deffn
10548
dd8d9022
AD
10549@deffn {Delimiter} %%
10550Delimiter used to separate the grammar rule section from the
10551Bison declarations section or the epilogue.
10552@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10553@end deffn
bfa74976 10554
dd8d9022
AD
10555@c Don't insert spaces, or check the DVI output.
10556@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
10557All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
10558to the parser implementation file. Such code forms the prologue of
10559the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 10560Grammar}.
18b519c0 10561@end deffn
bfa74976 10562
dd8d9022
AD
10563@deffn {Construct} /*@dots{}*/
10564Comment delimiters, as in C.
18b519c0 10565@end deffn
bfa74976 10566
dd8d9022
AD
10567@deffn {Delimiter} :
10568Separates a rule's result from its components. @xref{Rules, ,Syntax of
10569Grammar Rules}.
18b519c0 10570@end deffn
bfa74976 10571
dd8d9022
AD
10572@deffn {Delimiter} ;
10573Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10574@end deffn
bfa74976 10575
dd8d9022
AD
10576@deffn {Delimiter} |
10577Separates alternate rules for the same result nonterminal.
10578@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10579@end deffn
bfa74976 10580
12e35840
JD
10581@deffn {Directive} <*>
10582Used to define a default tagged @code{%destructor} or default tagged
10583@code{%printer}.
85894313
JD
10584
10585This feature is experimental.
10586More user feedback will help to determine whether it should become a permanent
10587feature.
10588
12e35840
JD
10589@xref{Destructor Decl, , Freeing Discarded Symbols}.
10590@end deffn
10591
3ebecc24 10592@deffn {Directive} <>
12e35840
JD
10593Used to define a default tagless @code{%destructor} or default tagless
10594@code{%printer}.
85894313
JD
10595
10596This feature is experimental.
10597More user feedback will help to determine whether it should become a permanent
10598feature.
10599
12e35840
JD
10600@xref{Destructor Decl, , Freeing Discarded Symbols}.
10601@end deffn
10602
dd8d9022
AD
10603@deffn {Symbol} $accept
10604The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10605$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10606Start-Symbol}. It cannot be used in the grammar.
18b519c0 10607@end deffn
bfa74976 10608
136a0f76 10609@deffn {Directive} %code @{@var{code}@}
148d66d8 10610@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
406dec82
JD
10611Insert @var{code} verbatim into the output parser source at the
10612default location or at the location specified by @var{qualifier}.
8e6f2266 10613@xref{%code Summary}.
9bc0dd67 10614@end deffn
9bc0dd67 10615
18b519c0 10616@deffn {Directive} %debug
6deb4447 10617Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10618@end deffn
6deb4447 10619
91d2c560 10620@ifset defaultprec
22fccf95
PE
10621@deffn {Directive} %default-prec
10622Assign a precedence to rules that lack an explicit @samp{%prec}
10623modifier. @xref{Contextual Precedence, ,Context-Dependent
10624Precedence}.
39a06c25 10625@end deffn
91d2c560 10626@end ifset
39a06c25 10627
6f04ee6c
JD
10628@deffn {Directive} %define @var{variable}
10629@deffnx {Directive} %define @var{variable} @var{value}
10630@deffnx {Directive} %define @var{variable} "@var{value}"
2f4518a1 10631Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
10632@end deffn
10633
18b519c0 10634@deffn {Directive} %defines
9913d6e4
JD
10635Bison declaration to create a parser header file, which is usually
10636meant for the scanner. @xref{Decl Summary}.
18b519c0 10637@end deffn
6deb4447 10638
02975b9a
JD
10639@deffn {Directive} %defines @var{defines-file}
10640Same as above, but save in the file @var{defines-file}.
10641@xref{Decl Summary}.
10642@end deffn
10643
18b519c0 10644@deffn {Directive} %destructor
258b75ca 10645Specify how the parser should reclaim the memory associated to
fa7e68c3 10646discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10647@end deffn
72f889cc 10648
18b519c0 10649@deffn {Directive} %dprec
676385e2 10650Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10651time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 10652GLR Parsers}.
18b519c0 10653@end deffn
676385e2 10654
dd8d9022
AD
10655@deffn {Symbol} $end
10656The predefined token marking the end of the token stream. It cannot be
10657used in the grammar.
10658@end deffn
10659
10660@deffn {Symbol} error
10661A token name reserved for error recovery. This token may be used in
10662grammar rules so as to allow the Bison parser to recognize an error in
10663the grammar without halting the process. In effect, a sentence
10664containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10665token @code{error} becomes the current lookahead token. Actions
10666corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10667token is reset to the token that originally caused the violation.
10668@xref{Error Recovery}.
18d192f0
AD
10669@end deffn
10670
18b519c0 10671@deffn {Directive} %error-verbose
2a8d363a 10672Bison declaration to request verbose, specific error message strings
6f04ee6c 10673when @code{yyerror} is called. @xref{Error Reporting}.
18b519c0 10674@end deffn
2a8d363a 10675
02975b9a 10676@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10677Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10678Summary}.
18b519c0 10679@end deffn
d8988b2f 10680
18b519c0 10681@deffn {Directive} %glr-parser
35430378
JD
10682Bison declaration to produce a GLR parser. @xref{GLR
10683Parsers, ,Writing GLR Parsers}.
18b519c0 10684@end deffn
676385e2 10685
dd8d9022
AD
10686@deffn {Directive} %initial-action
10687Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10688@end deffn
10689
e6e704dc
JD
10690@deffn {Directive} %language
10691Specify the programming language for the generated parser.
10692@xref{Decl Summary}.
10693@end deffn
10694
18b519c0 10695@deffn {Directive} %left
bfa74976
RS
10696Bison declaration to assign left associativity to token(s).
10697@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10698@end deffn
bfa74976 10699
feeb0eda 10700@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10701Bison declaration to specifying an additional parameter that
10702@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10703for Pure Parsers}.
18b519c0 10704@end deffn
2a8d363a 10705
18b519c0 10706@deffn {Directive} %merge
676385e2 10707Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10708reduce/reduce conflict with a rule having the same merging function, the
676385e2 10709function is applied to the two semantic values to get a single result.
35430378 10710@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10711@end deffn
676385e2 10712
02975b9a 10713@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10714Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10715@end deffn
d8988b2f 10716
91d2c560 10717@ifset defaultprec
22fccf95
PE
10718@deffn {Directive} %no-default-prec
10719Do not assign a precedence to rules that lack an explicit @samp{%prec}
10720modifier. @xref{Contextual Precedence, ,Context-Dependent
10721Precedence}.
10722@end deffn
91d2c560 10723@end ifset
22fccf95 10724
18b519c0 10725@deffn {Directive} %no-lines
931c7513 10726Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 10727parser implementation file. @xref{Decl Summary}.
18b519c0 10728@end deffn
931c7513 10729
18b519c0 10730@deffn {Directive} %nonassoc
9d9b8b70 10731Bison declaration to assign nonassociativity to token(s).
bfa74976 10732@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10733@end deffn
bfa74976 10734
02975b9a 10735@deffn {Directive} %output "@var{file}"
9913d6e4
JD
10736Bison declaration to set the name of the parser implementation file.
10737@xref{Decl Summary}.
18b519c0 10738@end deffn
d8988b2f 10739
feeb0eda 10740@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10741Bison declaration to specifying an additional parameter that
10742@code{yyparse} should accept. @xref{Parser Function,, The Parser
10743Function @code{yyparse}}.
18b519c0 10744@end deffn
2a8d363a 10745
18b519c0 10746@deffn {Directive} %prec
bfa74976
RS
10747Bison declaration to assign a precedence to a specific rule.
10748@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10749@end deffn
bfa74976 10750
18b519c0 10751@deffn {Directive} %pure-parser
2f4518a1
JD
10752Deprecated version of @code{%define api.pure} (@pxref{%define
10753Summary,,api.pure}), for which Bison is more careful to warn about
10754unreasonable usage.
18b519c0 10755@end deffn
bfa74976 10756
b50d2359 10757@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10758Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10759Require a Version of Bison}.
b50d2359
AD
10760@end deffn
10761
18b519c0 10762@deffn {Directive} %right
bfa74976
RS
10763Bison declaration to assign right associativity to token(s).
10764@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10765@end deffn
bfa74976 10766
e6e704dc
JD
10767@deffn {Directive} %skeleton
10768Specify the skeleton to use; usually for development.
10769@xref{Decl Summary}.
10770@end deffn
10771
18b519c0 10772@deffn {Directive} %start
704a47c4
AD
10773Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10774Start-Symbol}.
18b519c0 10775@end deffn
bfa74976 10776
18b519c0 10777@deffn {Directive} %token
bfa74976
RS
10778Bison declaration to declare token(s) without specifying precedence.
10779@xref{Token Decl, ,Token Type Names}.
18b519c0 10780@end deffn
bfa74976 10781
18b519c0 10782@deffn {Directive} %token-table
9913d6e4
JD
10783Bison declaration to include a token name table in the parser
10784implementation file. @xref{Decl Summary}.
18b519c0 10785@end deffn
931c7513 10786
18b519c0 10787@deffn {Directive} %type
704a47c4
AD
10788Bison declaration to declare nonterminals. @xref{Type Decl,
10789,Nonterminal Symbols}.
18b519c0 10790@end deffn
bfa74976 10791
dd8d9022
AD
10792@deffn {Symbol} $undefined
10793The predefined token onto which all undefined values returned by
10794@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10795@code{error}.
10796@end deffn
10797
18b519c0 10798@deffn {Directive} %union
bfa74976
RS
10799Bison declaration to specify several possible data types for semantic
10800values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10801@end deffn
bfa74976 10802
dd8d9022
AD
10803@deffn {Macro} YYABORT
10804Macro to pretend that an unrecoverable syntax error has occurred, by
10805making @code{yyparse} return 1 immediately. The error reporting
10806function @code{yyerror} is not called. @xref{Parser Function, ,The
10807Parser Function @code{yyparse}}.
8405b70c
PB
10808
10809For Java parsers, this functionality is invoked using @code{return YYABORT;}
10810instead.
dd8d9022 10811@end deffn
3ded9a63 10812
dd8d9022
AD
10813@deffn {Macro} YYACCEPT
10814Macro to pretend that a complete utterance of the language has been
10815read, by making @code{yyparse} return 0 immediately.
10816@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10817
10818For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10819instead.
dd8d9022 10820@end deffn
bfa74976 10821
dd8d9022 10822@deffn {Macro} YYBACKUP
742e4900 10823Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10824token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10825@end deffn
bfa74976 10826
dd8d9022 10827@deffn {Variable} yychar
32c29292 10828External integer variable that contains the integer value of the
742e4900 10829lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10830@code{yyparse}.) Error-recovery rule actions may examine this variable.
10831@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10832@end deffn
bfa74976 10833
dd8d9022
AD
10834@deffn {Variable} yyclearin
10835Macro used in error-recovery rule actions. It clears the previous
742e4900 10836lookahead token. @xref{Error Recovery}.
18b519c0 10837@end deffn
bfa74976 10838
dd8d9022
AD
10839@deffn {Macro} YYDEBUG
10840Macro to define to equip the parser with tracing code. @xref{Tracing,
10841,Tracing Your Parser}.
18b519c0 10842@end deffn
bfa74976 10843
dd8d9022
AD
10844@deffn {Variable} yydebug
10845External integer variable set to zero by default. If @code{yydebug}
10846is given a nonzero value, the parser will output information on input
10847symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10848@end deffn
bfa74976 10849
dd8d9022
AD
10850@deffn {Macro} yyerrok
10851Macro to cause parser to recover immediately to its normal mode
10852after a syntax error. @xref{Error Recovery}.
10853@end deffn
10854
10855@deffn {Macro} YYERROR
10856Macro to pretend that a syntax error has just been detected: call
10857@code{yyerror} and then perform normal error recovery if possible
10858(@pxref{Error Recovery}), or (if recovery is impossible) make
10859@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10860
10861For Java parsers, this functionality is invoked using @code{return YYERROR;}
10862instead.
dd8d9022
AD
10863@end deffn
10864
10865@deffn {Function} yyerror
10866User-supplied function to be called by @code{yyparse} on error.
10867@xref{Error Reporting, ,The Error
10868Reporting Function @code{yyerror}}.
10869@end deffn
10870
10871@deffn {Macro} YYERROR_VERBOSE
10872An obsolete macro that you define with @code{#define} in the prologue
10873to request verbose, specific error message strings
10874when @code{yyerror} is called. It doesn't matter what definition you
10875use for @code{YYERROR_VERBOSE}, just whether you define it. Using
6f04ee6c 10876@code{%error-verbose} is preferred. @xref{Error Reporting}.
dd8d9022
AD
10877@end deffn
10878
10879@deffn {Macro} YYINITDEPTH
10880Macro for specifying the initial size of the parser stack.
1a059451 10881@xref{Memory Management}.
dd8d9022
AD
10882@end deffn
10883
10884@deffn {Function} yylex
10885User-supplied lexical analyzer function, called with no arguments to get
10886the next token. @xref{Lexical, ,The Lexical Analyzer Function
10887@code{yylex}}.
10888@end deffn
10889
10890@deffn {Macro} YYLEX_PARAM
10891An obsolete macro for specifying an extra argument (or list of extra
32c29292 10892arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10893macro is deprecated, and is supported only for Yacc like parsers.
10894@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10895@end deffn
10896
10897@deffn {Variable} yylloc
10898External variable in which @code{yylex} should place the line and column
10899numbers associated with a token. (In a pure parser, it is a local
10900variable within @code{yyparse}, and its address is passed to
32c29292
JD
10901@code{yylex}.)
10902You can ignore this variable if you don't use the @samp{@@} feature in the
10903grammar actions.
10904@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10905In semantic actions, it stores the location of the lookahead token.
32c29292 10906@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10907@end deffn
10908
10909@deffn {Type} YYLTYPE
10910Data type of @code{yylloc}; by default, a structure with four
10911members. @xref{Location Type, , Data Types of Locations}.
10912@end deffn
10913
10914@deffn {Variable} yylval
10915External variable in which @code{yylex} should place the semantic
10916value associated with a token. (In a pure parser, it is a local
10917variable within @code{yyparse}, and its address is passed to
32c29292
JD
10918@code{yylex}.)
10919@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10920In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10921@xref{Actions, ,Actions}.
dd8d9022
AD
10922@end deffn
10923
10924@deffn {Macro} YYMAXDEPTH
1a059451
PE
10925Macro for specifying the maximum size of the parser stack. @xref{Memory
10926Management}.
dd8d9022
AD
10927@end deffn
10928
10929@deffn {Variable} yynerrs
8a2800e7 10930Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10931(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10932pure push parser, it is a member of yypstate.)
dd8d9022
AD
10933@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10934@end deffn
10935
10936@deffn {Function} yyparse
10937The parser function produced by Bison; call this function to start
10938parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10939@end deffn
10940
9987d1b3 10941@deffn {Function} yypstate_delete
f4101aa6 10942The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 10943call this function to delete the memory associated with a parser.
f4101aa6 10944@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 10945@code{yypstate_delete}}.
59da312b
JD
10946(The current push parsing interface is experimental and may evolve.
10947More user feedback will help to stabilize it.)
9987d1b3
JD
10948@end deffn
10949
10950@deffn {Function} yypstate_new
f4101aa6 10951The function to create a parser instance, produced by Bison in push mode;
9987d1b3 10952call this function to create a new parser.
f4101aa6 10953@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 10954@code{yypstate_new}}.
59da312b
JD
10955(The current push parsing interface is experimental and may evolve.
10956More user feedback will help to stabilize it.)
9987d1b3
JD
10957@end deffn
10958
10959@deffn {Function} yypull_parse
f4101aa6
AD
10960The parser function produced by Bison in push mode; call this function to
10961parse the rest of the input stream.
10962@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 10963@code{yypull_parse}}.
59da312b
JD
10964(The current push parsing interface is experimental and may evolve.
10965More user feedback will help to stabilize it.)
9987d1b3
JD
10966@end deffn
10967
10968@deffn {Function} yypush_parse
f4101aa6
AD
10969The parser function produced by Bison in push mode; call this function to
10970parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 10971@code{yypush_parse}}.
59da312b
JD
10972(The current push parsing interface is experimental and may evolve.
10973More user feedback will help to stabilize it.)
9987d1b3
JD
10974@end deffn
10975
dd8d9022
AD
10976@deffn {Macro} YYPARSE_PARAM
10977An obsolete macro for specifying the name of a parameter that
10978@code{yyparse} should accept. The use of this macro is deprecated, and
10979is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
10980Conventions for Pure Parsers}.
10981@end deffn
10982
10983@deffn {Macro} YYRECOVERING
02103984
PE
10984The expression @code{YYRECOVERING ()} yields 1 when the parser
10985is recovering from a syntax error, and 0 otherwise.
10986@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
10987@end deffn
10988
10989@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
10990Macro used to control the use of @code{alloca} when the
10991deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
10992the parser will use @code{malloc} to extend its stacks. If defined to
109931, the parser will use @code{alloca}. Values other than 0 and 1 are
10994reserved for future Bison extensions. If not defined,
10995@code{YYSTACK_USE_ALLOCA} defaults to 0.
10996
55289366 10997In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
10998limited stack and with unreliable stack-overflow checking, you should
10999set @code{YYMAXDEPTH} to a value that cannot possibly result in
11000unchecked stack overflow on any of your target hosts when
11001@code{alloca} is called. You can inspect the code that Bison
11002generates in order to determine the proper numeric values. This will
11003require some expertise in low-level implementation details.
dd8d9022
AD
11004@end deffn
11005
11006@deffn {Type} YYSTYPE
11007Data type of semantic values; @code{int} by default.
11008@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11009@end deffn
bfa74976 11010
342b8b6e 11011@node Glossary
bfa74976
RS
11012@appendix Glossary
11013@cindex glossary
11014
11015@table @asis
6f04ee6c 11016@item Accepting state
34a6c2d1
JD
11017A state whose only action is the accept action.
11018The accepting state is thus a consistent state.
11019@xref{Understanding,,}.
11020
35430378 11021@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11022Formal method of specifying context-free grammars originally proposed
11023by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11024committee document contributing to what became the Algol 60 report.
11025@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11026
6f04ee6c
JD
11027@item Consistent state
11028A state containing only one possible action. @xref{Default Reductions}.
34a6c2d1 11029
bfa74976
RS
11030@item Context-free grammars
11031Grammars specified as rules that can be applied regardless of context.
11032Thus, if there is a rule which says that an integer can be used as an
11033expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11034permitted. @xref{Language and Grammar, ,Languages and Context-Free
11035Grammars}.
bfa74976 11036
6f04ee6c 11037@item Default reduction
620b5727 11038The reduction that a parser should perform if the current parser state
2f4518a1 11039contains no other action for the lookahead token. In permitted parser
6f04ee6c
JD
11040states, Bison declares the reduction with the largest lookahead set to be
11041the default reduction and removes that lookahead set. @xref{Default
11042Reductions}.
11043
11044@item Defaulted state
11045A consistent state with a default reduction. @xref{Default Reductions}.
34a6c2d1 11046
bfa74976
RS
11047@item Dynamic allocation
11048Allocation of memory that occurs during execution, rather than at
11049compile time or on entry to a function.
11050
11051@item Empty string
11052Analogous to the empty set in set theory, the empty string is a
11053character string of length zero.
11054
11055@item Finite-state stack machine
11056A ``machine'' that has discrete states in which it is said to exist at
11057each instant in time. As input to the machine is processed, the
11058machine moves from state to state as specified by the logic of the
11059machine. In the case of the parser, the input is the language being
11060parsed, and the states correspond to various stages in the grammar
c827f760 11061rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11062
35430378 11063@item Generalized LR (GLR)
676385e2 11064A parsing algorithm that can handle all context-free grammars, including those
35430378 11065that are not LR(1). It resolves situations that Bison's
34a6c2d1 11066deterministic parsing
676385e2
PH
11067algorithm cannot by effectively splitting off multiple parsers, trying all
11068possible parsers, and discarding those that fail in the light of additional
c827f760 11069right context. @xref{Generalized LR Parsing, ,Generalized
35430378 11070LR Parsing}.
676385e2 11071
bfa74976
RS
11072@item Grouping
11073A language construct that is (in general) grammatically divisible;
c827f760 11074for example, `expression' or `declaration' in C@.
bfa74976
RS
11075@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11076
6f04ee6c
JD
11077@item IELR(1) (Inadequacy Elimination LR(1))
11078A minimal LR(1) parser table construction algorithm. That is, given any
2f4518a1 11079context-free grammar, IELR(1) generates parser tables with the full
6f04ee6c
JD
11080language-recognition power of canonical LR(1) but with nearly the same
11081number of parser states as LALR(1). This reduction in parser states is
11082often an order of magnitude. More importantly, because canonical LR(1)'s
11083extra parser states may contain duplicate conflicts in the case of non-LR(1)
11084grammars, the number of conflicts for IELR(1) is often an order of magnitude
11085less as well. This can significantly reduce the complexity of developing a
11086grammar. @xref{LR Table Construction}.
34a6c2d1 11087
bfa74976
RS
11088@item Infix operator
11089An arithmetic operator that is placed between the operands on which it
11090performs some operation.
11091
11092@item Input stream
11093A continuous flow of data between devices or programs.
11094
35430378 11095@item LAC (Lookahead Correction)
4c38b19e 11096A parsing mechanism that fixes the problem of delayed syntax error
6f04ee6c
JD
11097detection, which is caused by LR state merging, default reductions, and the
11098use of @code{%nonassoc}. Delayed syntax error detection results in
11099unexpected semantic actions, initiation of error recovery in the wrong
11100syntactic context, and an incorrect list of expected tokens in a verbose
11101syntax error message. @xref{LAC}.
4c38b19e 11102
bfa74976
RS
11103@item Language construct
11104One of the typical usage schemas of the language. For example, one of
11105the constructs of the C language is the @code{if} statement.
11106@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11107
11108@item Left associativity
11109Operators having left associativity are analyzed from left to right:
11110@samp{a+b+c} first computes @samp{a+b} and then combines with
11111@samp{c}. @xref{Precedence, ,Operator Precedence}.
11112
11113@item Left recursion
89cab50d
AD
11114A rule whose result symbol is also its first component symbol; for
11115example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11116Rules}.
bfa74976
RS
11117
11118@item Left-to-right parsing
11119Parsing a sentence of a language by analyzing it token by token from
c827f760 11120left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11121
11122@item Lexical analyzer (scanner)
11123A function that reads an input stream and returns tokens one by one.
11124@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11125
11126@item Lexical tie-in
11127A flag, set by actions in the grammar rules, which alters the way
11128tokens are parsed. @xref{Lexical Tie-ins}.
11129
931c7513 11130@item Literal string token
14ded682 11131A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11132
742e4900
JD
11133@item Lookahead token
11134A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11135Tokens}.
bfa74976 11136
35430378 11137@item LALR(1)
bfa74976 11138The class of context-free grammars that Bison (like most other parser
35430378 11139generators) can handle by default; a subset of LR(1).
5da0355a 11140@xref{Mysterious Conflicts}.
bfa74976 11141
35430378 11142@item LR(1)
bfa74976 11143The class of context-free grammars in which at most one token of
742e4900 11144lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11145
11146@item Nonterminal symbol
11147A grammar symbol standing for a grammatical construct that can
11148be expressed through rules in terms of smaller constructs; in other
11149words, a construct that is not a token. @xref{Symbols}.
11150
bfa74976
RS
11151@item Parser
11152A function that recognizes valid sentences of a language by analyzing
11153the syntax structure of a set of tokens passed to it from a lexical
11154analyzer.
11155
11156@item Postfix operator
11157An arithmetic operator that is placed after the operands upon which it
11158performs some operation.
11159
11160@item Reduction
11161Replacing a string of nonterminals and/or terminals with a single
89cab50d 11162nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11163Parser Algorithm}.
bfa74976
RS
11164
11165@item Reentrant
11166A reentrant subprogram is a subprogram which can be in invoked any
11167number of times in parallel, without interference between the various
11168invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11169
11170@item Reverse polish notation
11171A language in which all operators are postfix operators.
11172
11173@item Right recursion
89cab50d
AD
11174A rule whose result symbol is also its last component symbol; for
11175example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11176Rules}.
bfa74976
RS
11177
11178@item Semantics
11179In computer languages, the semantics are specified by the actions
11180taken for each instance of the language, i.e., the meaning of
11181each statement. @xref{Semantics, ,Defining Language Semantics}.
11182
11183@item Shift
11184A parser is said to shift when it makes the choice of analyzing
11185further input from the stream rather than reducing immediately some
c827f760 11186already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11187
11188@item Single-character literal
11189A single character that is recognized and interpreted as is.
11190@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11191
11192@item Start symbol
11193The nonterminal symbol that stands for a complete valid utterance in
11194the language being parsed. The start symbol is usually listed as the
13863333 11195first nonterminal symbol in a language specification.
bfa74976
RS
11196@xref{Start Decl, ,The Start-Symbol}.
11197
11198@item Symbol table
11199A data structure where symbol names and associated data are stored
11200during parsing to allow for recognition and use of existing
11201information in repeated uses of a symbol. @xref{Multi-function Calc}.
11202
6e649e65
PE
11203@item Syntax error
11204An error encountered during parsing of an input stream due to invalid
11205syntax. @xref{Error Recovery}.
11206
bfa74976
RS
11207@item Token
11208A basic, grammatically indivisible unit of a language. The symbol
11209that describes a token in the grammar is a terminal symbol.
11210The input of the Bison parser is a stream of tokens which comes from
11211the lexical analyzer. @xref{Symbols}.
11212
11213@item Terminal symbol
89cab50d
AD
11214A grammar symbol that has no rules in the grammar and therefore is
11215grammatically indivisible. The piece of text it represents is a token.
11216@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
6f04ee6c
JD
11217
11218@item Unreachable state
11219A parser state to which there does not exist a sequence of transitions from
11220the parser's start state. A state can become unreachable during conflict
11221resolution. @xref{Unreachable States}.
bfa74976
RS
11222@end table
11223
342b8b6e 11224@node Copying This Manual
f2b5126e 11225@appendix Copying This Manual
f2b5126e
PB
11226@include fdl.texi
11227
71caec06
JD
11228@node Bibliography
11229@unnumbered Bibliography
11230
11231@table @asis
11232@item [Denny 2008]
11233Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11234for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
112352008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11236pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11237
11238@item [Denny 2010 May]
11239Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11240Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11241University, Clemson, SC, USA (May 2010).
11242@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11243
11244@item [Denny 2010 November]
11245Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11246Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11247in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
112482010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11249
11250@item [DeRemer 1982]
11251Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11252Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11253Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11254615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11255
11256@item [Knuth 1965]
11257Donald E. Knuth, On the Translation of Languages from Left to Right, in
11258@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11259607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11260
11261@item [Scott 2000]
11262Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11263@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11264London, Department of Computer Science, TR-00-12 (December 2000).
11265@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11266@end table
11267
342b8b6e 11268@node Index
bfa74976
RS
11269@unnumbered Index
11270
11271@printindex cp
11272
bfa74976 11273@bye
a06ea4aa 11274
232be91a
AD
11275@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11276@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11277@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11278@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11279@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11280@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11281@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11282@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11283@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11284@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11285@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11286@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11287@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
56da1e52 11288@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
232be91a
AD
11289@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11290@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11291@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11292@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11293@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11294@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11295@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11296@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11297@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
56da1e52 11298@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
232be91a
AD
11299@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11300@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11301@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11302@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11303@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 11304@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
56da1e52
AD
11305@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
11306@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
232be91a 11307@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
56da1e52 11308@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
232be91a
AD
11309@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11310@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11311@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
56da1e52 11312@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
232be91a 11313@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
56da1e52 11314@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
232be91a
AD
11315@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11316@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11317@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11318@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
56da1e52 11319@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
232be91a
AD
11320@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11321@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11322@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11323@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11324@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
56da1e52
AD
11325@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
11326@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy
11327@c LocalWords: Scannerless ispell american
f3103c5b
AD
11328
11329@c Local Variables:
11330@c ispell-dictionary: "american"
11331@c fill-column: 76
11332@c End: