]> git.saurik.com Git - bison.git/blame - doc/bison.texi
warnings: fix early exit of warnings treated as errors
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
93c150b6 229* Printer Decl:: Declaring how symbol values are displayed.
d6328241 230* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
231* Start Decl:: Specifying the start symbol.
232* Pure Decl:: Requesting a reentrant parser.
9987d1b3 233* Push Decl:: Requesting a push parser.
bfa74976 234* Decl Summary:: Table of all Bison declarations.
35c1e5f0 235* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 236* %code Summary:: Inserting code into the parser source.
bfa74976
RS
237
238Parser C-Language Interface
239
f5f419de
DJ
240* Parser Function:: How to call @code{yyparse} and what it returns.
241* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
242* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
243* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
244* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
245* Lexical:: You must supply a function @code{yylex}
246 which reads tokens.
247* Error Reporting:: You must supply a function @code{yyerror}.
248* Action Features:: Special features for use in actions.
249* Internationalization:: How to let the parser speak in the user's
250 native language.
bfa74976
RS
251
252The Lexical Analyzer Function @code{yylex}
253
254* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
255* Token Values:: How @code{yylex} must return the semantic value
256 of the token it has read.
257* Token Locations:: How @code{yylex} must return the text location
258 (line number, etc.) of the token, if the
259 actions want that.
260* Pure Calling:: How the calling convention differs in a pure parser
261 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 262
13863333 263The Bison Parser Algorithm
bfa74976 264
742e4900 265* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
266* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
267* Precedence:: Operator precedence works by resolving conflicts.
268* Contextual Precedence:: When an operator's precedence depends on context.
269* Parser States:: The parser is a finite-state-machine with stack.
270* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 271* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 272* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 273* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 274* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
275
276Operator Precedence
277
278* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
279* Using Precedence:: How to specify precedence and associativity.
280* Precedence Only:: How to specify precedence only.
bfa74976
RS
281* Precedence Examples:: How these features are used in the previous example.
282* How Precedence:: How they work.
283
7fceb615
JD
284Tuning LR
285
286* LR Table Construction:: Choose a different construction algorithm.
287* Default Reductions:: Disable default reductions.
288* LAC:: Correct lookahead sets in the parser states.
289* Unreachable States:: Keep unreachable parser states for debugging.
290
bfa74976
RS
291Handling Context Dependencies
292
293* Semantic Tokens:: Token parsing can depend on the semantic context.
294* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
295* Tie-in Recovery:: Lexical tie-ins have implications for how
296 error recovery rules must be written.
297
93dd49ab 298Debugging Your Parser
ec3bc396
AD
299
300* Understanding:: Understanding the structure of your parser.
fc4fdd62 301* Graphviz:: Getting a visual representation of the parser.
ec3bc396
AD
302* Tracing:: Tracing the execution of your parser.
303
93c150b6
AD
304Tracing Your Parser
305
306* Enabling Traces:: Activating run-time trace support
307* Mfcalc Traces:: Extending @code{mfcalc} to support traces
308* The YYPRINT Macro:: Obsolete interface for semantic value reports
309
bfa74976
RS
310Invoking Bison
311
13863333 312* Bison Options:: All the options described in detail,
c827f760 313 in alphabetical order by short options.
bfa74976 314* Option Cross Key:: Alphabetical list of long options.
93dd49ab 315* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 316
8405b70c 317Parsers Written In Other Languages
12545799
AD
318
319* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 320* Java Parsers:: The interface to generate Java parser classes
12545799
AD
321
322C++ Parsers
323
324* C++ Bison Interface:: Asking for C++ parser generation
325* C++ Semantic Values:: %union vs. C++
326* C++ Location Values:: The position and location classes
327* C++ Parser Interface:: Instantiating and running the parser
328* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 329* A Complete C++ Example:: Demonstrating their use
12545799 330
936c88d1
AD
331C++ Location Values
332
333* C++ position:: One point in the source file
334* C++ location:: Two points in the source file
db8ab2be 335* User Defined Location Type:: Required interface for locations
936c88d1 336
12545799
AD
337A Complete C++ Example
338
339* Calc++ --- C++ Calculator:: The specifications
340* Calc++ Parsing Driver:: An active parsing context
341* Calc++ Parser:: A parser class
342* Calc++ Scanner:: A pure C++ Flex scanner
343* Calc++ Top Level:: Conducting the band
344
8405b70c
PB
345Java Parsers
346
f5f419de
DJ
347* Java Bison Interface:: Asking for Java parser generation
348* Java Semantic Values:: %type and %token vs. Java
349* Java Location Values:: The position and location classes
350* Java Parser Interface:: Instantiating and running the parser
351* Java Scanner Interface:: Specifying the scanner for the parser
352* Java Action Features:: Special features for use in actions
353* Java Differences:: Differences between C/C++ and Java Grammars
354* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 355
d1a1114f
AD
356Frequently Asked Questions
357
f5f419de
DJ
358* Memory Exhausted:: Breaking the Stack Limits
359* How Can I Reset the Parser:: @code{yyparse} Keeps some State
360* Strings are Destroyed:: @code{yylval} Loses Track of Strings
361* Implementing Gotos/Loops:: Control Flow in the Calculator
362* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 363* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
364* I can't build Bison:: Troubleshooting
365* Where can I find help?:: Troubleshouting
366* Bug Reports:: Troublereporting
367* More Languages:: Parsers in C++, Java, and so on
368* Beta Testing:: Experimenting development versions
369* Mailing Lists:: Meeting other Bison users
d1a1114f 370
f2b5126e
PB
371Copying This Manual
372
f5f419de 373* Copying This Manual:: License for copying this manual.
f2b5126e 374
342b8b6e 375@end detailmenu
bfa74976
RS
376@end menu
377
342b8b6e 378@node Introduction
bfa74976
RS
379@unnumbered Introduction
380@cindex introduction
381
6077da58 382@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
383annotated context-free grammar into a deterministic LR or generalized
384LR (GLR) parser employing LALR(1) parser tables. As an experimental
385feature, Bison can also generate IELR(1) or canonical LR(1) parser
386tables. Once you are proficient with Bison, you can use it to develop
387a wide range of language parsers, from those used in simple desk
388calculators to complex programming languages.
389
390Bison is upward compatible with Yacc: all properly-written Yacc
391grammars ought to work with Bison with no change. Anyone familiar
392with Yacc should be able to use Bison with little trouble. You need
393to be fluent in C or C++ programming in order to use Bison or to
394understand this manual. Java is also supported as an experimental
395feature.
396
397We begin with tutorial chapters that explain the basic concepts of
398using Bison and show three explained examples, each building on the
399last. If you don't know Bison or Yacc, start by reading these
400chapters. Reference chapters follow, which describe specific aspects
401of Bison in detail.
bfa74976 402
679e9935
JD
403Bison was written originally by Robert Corbett. Richard Stallman made
404it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
405added multi-character string literals and other features. Since then,
406Bison has grown more robust and evolved many other new features thanks
407to the hard work of a long list of volunteers. For details, see the
408@file{THANKS} and @file{ChangeLog} files included in the Bison
409distribution.
931c7513 410
df1af54c 411This edition corresponds to version @value{VERSION} of Bison.
bfa74976 412
342b8b6e 413@node Conditions
bfa74976
RS
414@unnumbered Conditions for Using Bison
415
193d7c70
PE
416The distribution terms for Bison-generated parsers permit using the
417parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 418permissions applied only when Bison was generating LALR(1)
193d7c70 419parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 420parsers could be used only in programs that were free software.
a31239f1 421
8a4281b9 422The other GNU programming tools, such as the GNU C
c827f760 423compiler, have never
9ecbd125 424had such a requirement. They could always be used for nonfree
a31239f1
RS
425software. The reason Bison was different was not due to a special
426policy decision; it resulted from applying the usual General Public
427License to all of the Bison source code.
428
ff7571c0
JD
429The main output of the Bison utility---the Bison parser implementation
430file---contains a verbatim copy of a sizable piece of Bison, which is
431the code for the parser's implementation. (The actions from your
432grammar are inserted into this implementation at one point, but most
433of the rest of the implementation is not changed.) When we applied
434the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
435the effect was to restrict the use of Bison output to free software.
436
437We didn't change the terms because of sympathy for people who want to
438make software proprietary. @strong{Software should be free.} But we
439concluded that limiting Bison's use to free software was doing little to
440encourage people to make other software free. So we decided to make the
441practical conditions for using Bison match the practical conditions for
8a4281b9 442using the other GNU tools.
bfa74976 443
193d7c70
PE
444This exception applies when Bison is generating code for a parser.
445You can tell whether the exception applies to a Bison output file by
446inspecting the file for text beginning with ``As a special
447exception@dots{}''. The text spells out the exact terms of the
448exception.
262aa8dd 449
f16b0819
PE
450@node Copying
451@unnumbered GNU GENERAL PUBLIC LICENSE
452@include gpl-3.0.texi
bfa74976 453
342b8b6e 454@node Concepts
bfa74976
RS
455@chapter The Concepts of Bison
456
457This chapter introduces many of the basic concepts without which the
458details of Bison will not make sense. If you do not already know how to
459use Bison or Yacc, we suggest you start by reading this chapter carefully.
460
461@menu
f5f419de
DJ
462* Language and Grammar:: Languages and context-free grammars,
463 as mathematical ideas.
464* Grammar in Bison:: How we represent grammars for Bison's sake.
465* Semantic Values:: Each token or syntactic grouping can have
466 a semantic value (the value of an integer,
467 the name of an identifier, etc.).
468* Semantic Actions:: Each rule can have an action containing C code.
469* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 470* Locations:: Overview of location tracking.
f5f419de
DJ
471* Bison Parser:: What are Bison's input and output,
472 how is the output used?
473* Stages:: Stages in writing and running Bison grammars.
474* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
475@end menu
476
342b8b6e 477@node Language and Grammar
bfa74976
RS
478@section Languages and Context-Free Grammars
479
bfa74976
RS
480@cindex context-free grammar
481@cindex grammar, context-free
482In order for Bison to parse a language, it must be described by a
483@dfn{context-free grammar}. This means that you specify one or more
484@dfn{syntactic groupings} and give rules for constructing them from their
485parts. For example, in the C language, one kind of grouping is called an
486`expression'. One rule for making an expression might be, ``An expression
487can be made of a minus sign and another expression''. Another would be,
488``An expression can be an integer''. As you can see, rules are often
489recursive, but there must be at least one rule which leads out of the
490recursion.
491
8a4281b9 492@cindex BNF
bfa74976
RS
493@cindex Backus-Naur form
494The most common formal system for presenting such rules for humans to read
8a4281b9 495is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 496order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
497BNF is a context-free grammar. The input to Bison is
498essentially machine-readable BNF.
bfa74976 499
7fceb615
JD
500@cindex LALR grammars
501@cindex IELR grammars
502@cindex LR grammars
503There are various important subclasses of context-free grammars. Although
504it can handle almost all context-free grammars, Bison is optimized for what
505are called LR(1) grammars. In brief, in these grammars, it must be possible
506to tell how to parse any portion of an input string with just a single token
507of lookahead. For historical reasons, Bison by default is limited by the
508additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
509@xref{Mysterious Conflicts}, for more information on this. As an
510experimental feature, you can escape these additional restrictions by
511requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
512Construction}, to learn how.
bfa74976 513
8a4281b9
JD
514@cindex GLR parsing
515@cindex generalized LR (GLR) parsing
676385e2 516@cindex ambiguous grammars
9d9b8b70 517@cindex nondeterministic parsing
9501dc6e 518
8a4281b9 519Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
520roughly that the next grammar rule to apply at any point in the input is
521uniquely determined by the preceding input and a fixed, finite portion
742e4900 522(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 523grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 524apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 525grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 526lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 527With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
528general context-free grammars, using a technique known as GLR
529parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
530are able to handle any context-free grammar for which the number of
531possible parses of any given string is finite.
676385e2 532
bfa74976
RS
533@cindex symbols (abstract)
534@cindex token
535@cindex syntactic grouping
536@cindex grouping, syntactic
9501dc6e
AD
537In the formal grammatical rules for a language, each kind of syntactic
538unit or grouping is named by a @dfn{symbol}. Those which are built by
539grouping smaller constructs according to grammatical rules are called
bfa74976
RS
540@dfn{nonterminal symbols}; those which can't be subdivided are called
541@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
542corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 543corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
544
545We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
546nonterminal, mean. The tokens of C are identifiers, constants (numeric
547and string), and the various keywords, arithmetic operators and
548punctuation marks. So the terminal symbols of a grammar for C include
549`identifier', `number', `string', plus one symbol for each keyword,
550operator or punctuation mark: `if', `return', `const', `static', `int',
551`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
552(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
553lexicography, not grammar.)
554
555Here is a simple C function subdivided into tokens:
556
9edcd895
AD
557@example
558int /* @r{keyword `int'} */
14d4662b 559square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
560 @r{identifier, close-paren} */
561@{ /* @r{open-brace} */
aa08666d
AD
562 return x * x; /* @r{keyword `return', identifier, asterisk,}
563 @r{identifier, semicolon} */
9edcd895
AD
564@} /* @r{close-brace} */
565@end example
bfa74976
RS
566
567The syntactic groupings of C include the expression, the statement, the
568declaration, and the function definition. These are represented in the
569grammar of C by nonterminal symbols `expression', `statement',
570`declaration' and `function definition'. The full grammar uses dozens of
571additional language constructs, each with its own nonterminal symbol, in
572order to express the meanings of these four. The example above is a
573function definition; it contains one declaration, and one statement. In
574the statement, each @samp{x} is an expression and so is @samp{x * x}.
575
576Each nonterminal symbol must have grammatical rules showing how it is made
577out of simpler constructs. For example, one kind of C statement is the
578@code{return} statement; this would be described with a grammar rule which
579reads informally as follows:
580
581@quotation
582A `statement' can be made of a `return' keyword, an `expression' and a
583`semicolon'.
584@end quotation
585
586@noindent
587There would be many other rules for `statement', one for each kind of
588statement in C.
589
590@cindex start symbol
591One nonterminal symbol must be distinguished as the special one which
592defines a complete utterance in the language. It is called the @dfn{start
593symbol}. In a compiler, this means a complete input program. In the C
594language, the nonterminal symbol `sequence of definitions and declarations'
595plays this role.
596
597For example, @samp{1 + 2} is a valid C expression---a valid part of a C
598program---but it is not valid as an @emph{entire} C program. In the
599context-free grammar of C, this follows from the fact that `expression' is
600not the start symbol.
601
602The Bison parser reads a sequence of tokens as its input, and groups the
603tokens using the grammar rules. If the input is valid, the end result is
604that the entire token sequence reduces to a single grouping whose symbol is
605the grammar's start symbol. If we use a grammar for C, the entire input
606must be a `sequence of definitions and declarations'. If not, the parser
607reports a syntax error.
608
342b8b6e 609@node Grammar in Bison
bfa74976
RS
610@section From Formal Rules to Bison Input
611@cindex Bison grammar
612@cindex grammar, Bison
613@cindex formal grammar
614
615A formal grammar is a mathematical construct. To define the language
616for Bison, you must write a file expressing the grammar in Bison syntax:
617a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
618
619A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 620as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
621in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
622
623The Bison representation for a terminal symbol is also called a @dfn{token
624type}. Token types as well can be represented as C-like identifiers. By
625convention, these identifiers should be upper case to distinguish them from
626nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
627@code{RETURN}. A terminal symbol that stands for a particular keyword in
628the language should be named after that keyword converted to upper case.
629The terminal symbol @code{error} is reserved for error recovery.
931c7513 630@xref{Symbols}.
bfa74976
RS
631
632A terminal symbol can also be represented as a character literal, just like
633a C character constant. You should do this whenever a token is just a
634single character (parenthesis, plus-sign, etc.): use that same character in
635a literal as the terminal symbol for that token.
636
931c7513
RS
637A third way to represent a terminal symbol is with a C string constant
638containing several characters. @xref{Symbols}, for more information.
639
bfa74976
RS
640The grammar rules also have an expression in Bison syntax. For example,
641here is the Bison rule for a C @code{return} statement. The semicolon in
642quotes is a literal character token, representing part of the C syntax for
643the statement; the naked semicolon, and the colon, are Bison punctuation
644used in every rule.
645
646@example
5e9b6624 647stmt: RETURN expr ';' ;
bfa74976
RS
648@end example
649
650@noindent
651@xref{Rules, ,Syntax of Grammar Rules}.
652
342b8b6e 653@node Semantic Values
bfa74976
RS
654@section Semantic Values
655@cindex semantic value
656@cindex value, semantic
657
658A formal grammar selects tokens only by their classifications: for example,
659if a rule mentions the terminal symbol `integer constant', it means that
660@emph{any} integer constant is grammatically valid in that position. The
661precise value of the constant is irrelevant to how to parse the input: if
662@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 663grammatical.
bfa74976
RS
664
665But the precise value is very important for what the input means once it is
666parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6673989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
668has both a token type and a @dfn{semantic value}. @xref{Semantics,
669,Defining Language Semantics},
bfa74976
RS
670for details.
671
672The token type is a terminal symbol defined in the grammar, such as
673@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
674you need to know to decide where the token may validly appear and how to
675group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 676except their types.
bfa74976
RS
677
678The semantic value has all the rest of the information about the
679meaning of the token, such as the value of an integer, or the name of an
680identifier. (A token such as @code{','} which is just punctuation doesn't
681need to have any semantic value.)
682
683For example, an input token might be classified as token type
684@code{INTEGER} and have the semantic value 4. Another input token might
685have the same token type @code{INTEGER} but value 3989. When a grammar
686rule says that @code{INTEGER} is allowed, either of these tokens is
687acceptable because each is an @code{INTEGER}. When the parser accepts the
688token, it keeps track of the token's semantic value.
689
690Each grouping can also have a semantic value as well as its nonterminal
691symbol. For example, in a calculator, an expression typically has a
692semantic value that is a number. In a compiler for a programming
693language, an expression typically has a semantic value that is a tree
694structure describing the meaning of the expression.
695
342b8b6e 696@node Semantic Actions
bfa74976
RS
697@section Semantic Actions
698@cindex semantic actions
699@cindex actions, semantic
700
701In order to be useful, a program must do more than parse input; it must
702also produce some output based on the input. In a Bison grammar, a grammar
703rule can have an @dfn{action} made up of C statements. Each time the
704parser recognizes a match for that rule, the action is executed.
705@xref{Actions}.
13863333 706
bfa74976
RS
707Most of the time, the purpose of an action is to compute the semantic value
708of the whole construct from the semantic values of its parts. For example,
709suppose we have a rule which says an expression can be the sum of two
710expressions. When the parser recognizes such a sum, each of the
711subexpressions has a semantic value which describes how it was built up.
712The action for this rule should create a similar sort of value for the
713newly recognized larger expression.
714
715For example, here is a rule that says an expression can be the sum of
716two subexpressions:
717
718@example
5e9b6624 719expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
720@end example
721
722@noindent
723The action says how to produce the semantic value of the sum expression
724from the values of the two subexpressions.
725
676385e2 726@node GLR Parsers
8a4281b9
JD
727@section Writing GLR Parsers
728@cindex GLR parsing
729@cindex generalized LR (GLR) parsing
676385e2
PH
730@findex %glr-parser
731@cindex conflicts
732@cindex shift/reduce conflicts
fa7e68c3 733@cindex reduce/reduce conflicts
676385e2 734
eb45ef3b 735In some grammars, Bison's deterministic
8a4281b9 736LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
737certain grammar rule at a given point. That is, it may not be able to
738decide (on the basis of the input read so far) which of two possible
739reductions (applications of a grammar rule) applies, or whether to apply
740a reduction or read more of the input and apply a reduction later in the
741input. These are known respectively as @dfn{reduce/reduce} conflicts
742(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
743(@pxref{Shift/Reduce}).
744
8a4281b9 745To use a grammar that is not easily modified to be LR(1), a
9501dc6e 746more general parsing algorithm is sometimes necessary. If you include
676385e2 747@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
748(@pxref{Grammar Outline}), the result is a Generalized LR
749(GLR) parser. These parsers handle Bison grammars that
9501dc6e 750contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 751declarations) identically to deterministic parsers. However, when
9501dc6e 752faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 753GLR parsers use the simple expedient of doing both,
9501dc6e
AD
754effectively cloning the parser to follow both possibilities. Each of
755the resulting parsers can again split, so that at any given time, there
756can be any number of possible parses being explored. The parsers
676385e2
PH
757proceed in lockstep; that is, all of them consume (shift) a given input
758symbol before any of them proceed to the next. Each of the cloned
759parsers eventually meets one of two possible fates: either it runs into
760a parsing error, in which case it simply vanishes, or it merges with
761another parser, because the two of them have reduced the input to an
762identical set of symbols.
763
764During the time that there are multiple parsers, semantic actions are
765recorded, but not performed. When a parser disappears, its recorded
766semantic actions disappear as well, and are never performed. When a
767reduction makes two parsers identical, causing them to merge, Bison
768records both sets of semantic actions. Whenever the last two parsers
769merge, reverting to the single-parser case, Bison resolves all the
770outstanding actions either by precedences given to the grammar rules
771involved, or by performing both actions, and then calling a designated
772user-defined function on the resulting values to produce an arbitrary
773merged result.
774
fa7e68c3 775@menu
8a4281b9
JD
776* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
777* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 778* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 779* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 780* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
781@end menu
782
783@node Simple GLR Parsers
8a4281b9
JD
784@subsection Using GLR on Unambiguous Grammars
785@cindex GLR parsing, unambiguous grammars
786@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
787@findex %glr-parser
788@findex %expect-rr
789@cindex conflicts
790@cindex reduce/reduce conflicts
791@cindex shift/reduce conflicts
792
8a4281b9
JD
793In the simplest cases, you can use the GLR algorithm
794to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 795Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
796
797Consider a problem that
798arises in the declaration of enumerated and subrange types in the
799programming language Pascal. Here are some examples:
800
801@example
802type subrange = lo .. hi;
803type enum = (a, b, c);
804@end example
805
806@noindent
807The original language standard allows only numeric
808literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 809and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
81010206) and many other
811Pascal implementations allow arbitrary expressions there. This gives
812rise to the following situation, containing a superfluous pair of
813parentheses:
814
815@example
816type subrange = (a) .. b;
817@end example
818
819@noindent
820Compare this to the following declaration of an enumerated
821type with only one value:
822
823@example
824type enum = (a);
825@end example
826
827@noindent
828(These declarations are contrived, but they are syntactically
829valid, and more-complicated cases can come up in practical programs.)
830
831These two declarations look identical until the @samp{..} token.
8a4281b9 832With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
833possible to decide between the two forms when the identifier
834@samp{a} is parsed. It is, however, desirable
835for a parser to decide this, since in the latter case
836@samp{a} must become a new identifier to represent the enumeration
837value, while in the former case @samp{a} must be evaluated with its
838current meaning, which may be a constant or even a function call.
839
840You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
841to be resolved later, but this typically requires substantial
842contortions in both semantic actions and large parts of the
843grammar, where the parentheses are nested in the recursive rules for
844expressions.
845
846You might think of using the lexer to distinguish between the two
847forms by returning different tokens for currently defined and
848undefined identifiers. But if these declarations occur in a local
849scope, and @samp{a} is defined in an outer scope, then both forms
850are possible---either locally redefining @samp{a}, or using the
851value of @samp{a} from the outer scope. So this approach cannot
852work.
853
e757bb10 854A simple solution to this problem is to declare the parser to
8a4281b9
JD
855use the GLR algorithm.
856When the GLR parser reaches the critical state, it
fa7e68c3
PE
857merely splits into two branches and pursues both syntax rules
858simultaneously. Sooner or later, one of them runs into a parsing
859error. If there is a @samp{..} token before the next
860@samp{;}, the rule for enumerated types fails since it cannot
861accept @samp{..} anywhere; otherwise, the subrange type rule
862fails since it requires a @samp{..} token. So one of the branches
863fails silently, and the other one continues normally, performing
864all the intermediate actions that were postponed during the split.
865
866If the input is syntactically incorrect, both branches fail and the parser
867reports a syntax error as usual.
868
869The effect of all this is that the parser seems to ``guess'' the
870correct branch to take, or in other words, it seems to use more
8a4281b9
JD
871lookahead than the underlying LR(1) algorithm actually allows
872for. In this example, LR(2) would suffice, but also some cases
873that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 874
8a4281b9 875In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
876and the current Bison parser even takes exponential time and space
877for some grammars. In practice, this rarely happens, and for many
878grammars it is possible to prove that it cannot happen.
879The present example contains only one conflict between two
880rules, and the type-declaration context containing the conflict
881cannot be nested. So the number of
882branches that can exist at any time is limited by the constant 2,
883and the parsing time is still linear.
884
885Here is a Bison grammar corresponding to the example above. It
886parses a vastly simplified form of Pascal type declarations.
887
888@example
889%token TYPE DOTDOT ID
890
891@group
892%left '+' '-'
893%left '*' '/'
894@end group
895
896%%
897
898@group
5e9b6624 899type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
900@end group
901
902@group
5e9b6624
AD
903type:
904 '(' id_list ')'
905| expr DOTDOT expr
906;
fa7e68c3
PE
907@end group
908
909@group
5e9b6624
AD
910id_list:
911 ID
912| id_list ',' ID
913;
fa7e68c3
PE
914@end group
915
916@group
5e9b6624
AD
917expr:
918 '(' expr ')'
919| expr '+' expr
920| expr '-' expr
921| expr '*' expr
922| expr '/' expr
923| ID
924;
fa7e68c3
PE
925@end group
926@end example
927
8a4281b9 928When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
929about one reduce/reduce conflict. In the conflicting situation the
930parser chooses one of the alternatives, arbitrarily the one
931declared first. Therefore the following correct input is not
932recognized:
933
934@example
935type t = (a) .. b;
936@end example
937
8a4281b9 938The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
939to be silent about the one known reduce/reduce conflict, by adding
940these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
941@samp{%%}):
942
943@example
944%glr-parser
945%expect-rr 1
946@end example
947
948@noindent
949No change in the grammar itself is required. Now the
950parser recognizes all valid declarations, according to the
951limited syntax above, transparently. In fact, the user does not even
952notice when the parser splits.
953
8a4281b9 954So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
955almost without disadvantages. Even in simple cases like this, however,
956there are at least two potential problems to beware. First, always
8a4281b9
JD
957analyze the conflicts reported by Bison to make sure that GLR
958splitting is only done where it is intended. A GLR parser
f8e1c9e5 959splitting inadvertently may cause problems less obvious than an
8a4281b9 960LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
961conflict. Second, consider interactions with the lexer (@pxref{Semantic
962Tokens}) with great care. Since a split parser consumes tokens without
963performing any actions during the split, the lexer cannot obtain
964information via parser actions. Some cases of lexer interactions can be
8a4281b9 965eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
966lexer to the parser. You must check the remaining cases for
967correctness.
968
969In our example, it would be safe for the lexer to return tokens based on
970their current meanings in some symbol table, because no new symbols are
971defined in the middle of a type declaration. Though it is possible for
972a parser to define the enumeration constants as they are parsed, before
973the type declaration is completed, it actually makes no difference since
974they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
975
976@node Merging GLR Parses
8a4281b9
JD
977@subsection Using GLR to Resolve Ambiguities
978@cindex GLR parsing, ambiguous grammars
979@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
980@findex %dprec
981@findex %merge
982@cindex conflicts
983@cindex reduce/reduce conflicts
984
2a8d363a 985Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
986
987@example
988%@{
38a92d50
PE
989 #include <stdio.h>
990 #define YYSTYPE char const *
991 int yylex (void);
992 void yyerror (char const *);
676385e2
PH
993%@}
994
995%token TYPENAME ID
996
997%right '='
998%left '+'
999
1000%glr-parser
1001
1002%%
1003
5e9b6624
AD
1004prog:
1005 /* Nothing. */
1006| prog stmt @{ printf ("\n"); @}
1007;
676385e2 1008
5e9b6624
AD
1009stmt:
1010 expr ';' %dprec 1
1011| decl %dprec 2
1012;
676385e2 1013
5e9b6624
AD
1014expr:
1015 ID @{ printf ("%s ", $$); @}
1016| TYPENAME '(' expr ')'
1017 @{ printf ("%s <cast> ", $1); @}
1018| expr '+' expr @{ printf ("+ "); @}
1019| expr '=' expr @{ printf ("= "); @}
1020;
676385e2 1021
5e9b6624
AD
1022decl:
1023 TYPENAME declarator ';'
1024 @{ printf ("%s <declare> ", $1); @}
1025| TYPENAME declarator '=' expr ';'
1026 @{ printf ("%s <init-declare> ", $1); @}
1027;
676385e2 1028
5e9b6624
AD
1029declarator:
1030 ID @{ printf ("\"%s\" ", $1); @}
1031| '(' declarator ')'
1032;
676385e2
PH
1033@end example
1034
1035@noindent
1036This models a problematic part of the C++ grammar---the ambiguity between
1037certain declarations and statements. For example,
1038
1039@example
1040T (x) = y+z;
1041@end example
1042
1043@noindent
1044parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1045(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1046@samp{x} as an @code{ID}).
676385e2 1047Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1048@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1049time it encounters @code{x} in the example above. Since this is a
8a4281b9 1050GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1051each choice of resolving the reduce/reduce conflict.
1052Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1053however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1054ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1055the other reduces @code{stmt : decl}, after which both parsers are in an
1056identical state: they've seen @samp{prog stmt} and have the same unprocessed
1057input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1058
8a4281b9 1059At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1060grammar of how to choose between the competing parses.
1061In the example above, the two @code{%dprec}
e757bb10 1062declarations specify that Bison is to give precedence
fa7e68c3 1063to the parse that interprets the example as a
676385e2
PH
1064@code{decl}, which implies that @code{x} is a declarator.
1065The parser therefore prints
1066
1067@example
fae437e8 1068"x" y z + T <init-declare>
676385e2
PH
1069@end example
1070
fa7e68c3
PE
1071The @code{%dprec} declarations only come into play when more than one
1072parse survives. Consider a different input string for this parser:
676385e2
PH
1073
1074@example
1075T (x) + y;
1076@end example
1077
1078@noindent
8a4281b9 1079This is another example of using GLR to parse an unambiguous
fa7e68c3 1080construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1081Here, there is no ambiguity (this cannot be parsed as a declaration).
1082However, at the time the Bison parser encounters @code{x}, it does not
1083have enough information to resolve the reduce/reduce conflict (again,
1084between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1085case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1086into two, one assuming that @code{x} is an @code{expr}, and the other
1087assuming @code{x} is a @code{declarator}. The second of these parsers
1088then vanishes when it sees @code{+}, and the parser prints
1089
1090@example
fae437e8 1091x T <cast> y +
676385e2
PH
1092@end example
1093
1094Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1095the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1096actions of the two possible parsers, rather than choosing one over the
1097other. To do so, you could change the declaration of @code{stmt} as
1098follows:
1099
1100@example
5e9b6624
AD
1101stmt:
1102 expr ';' %merge <stmtMerge>
1103| decl %merge <stmtMerge>
1104;
676385e2
PH
1105@end example
1106
1107@noindent
676385e2
PH
1108and define the @code{stmtMerge} function as:
1109
1110@example
38a92d50
PE
1111static YYSTYPE
1112stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1113@{
1114 printf ("<OR> ");
1115 return "";
1116@}
1117@end example
1118
1119@noindent
1120with an accompanying forward declaration
1121in the C declarations at the beginning of the file:
1122
1123@example
1124%@{
38a92d50 1125 #define YYSTYPE char const *
676385e2
PH
1126 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1127%@}
1128@end example
1129
1130@noindent
fa7e68c3
PE
1131With these declarations, the resulting parser parses the first example
1132as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1133
1134@example
fae437e8 1135"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1136@end example
1137
fa7e68c3 1138Bison requires that all of the
e757bb10 1139productions that participate in any particular merge have identical
fa7e68c3
PE
1140@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1141and the parser will report an error during any parse that results in
1142the offending merge.
9501dc6e 1143
32c29292
JD
1144@node GLR Semantic Actions
1145@subsection GLR Semantic Actions
1146
8a4281b9 1147The nature of GLR parsing and the structure of the generated
20be2f92
PH
1148parsers give rise to certain restrictions on semantic values and actions.
1149
1150@subsubsection Deferred semantic actions
32c29292
JD
1151@cindex deferred semantic actions
1152By definition, a deferred semantic action is not performed at the same time as
1153the associated reduction.
1154This raises caveats for several Bison features you might use in a semantic
8a4281b9 1155action in a GLR parser.
32c29292
JD
1156
1157@vindex yychar
8a4281b9 1158@cindex GLR parsers and @code{yychar}
32c29292 1159@vindex yylval
8a4281b9 1160@cindex GLR parsers and @code{yylval}
32c29292 1161@vindex yylloc
8a4281b9 1162@cindex GLR parsers and @code{yylloc}
32c29292 1163In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1164the lookahead token present at the time of the associated reduction.
32c29292
JD
1165After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1166you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1167lookahead token's semantic value and location, if any.
32c29292
JD
1168In a nondeferred semantic action, you can also modify any of these variables to
1169influence syntax analysis.
742e4900 1170@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1171
1172@findex yyclearin
8a4281b9 1173@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1174In a deferred semantic action, it's too late to influence syntax analysis.
1175In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1176shallow copies of the values they had at the time of the associated reduction.
1177For this reason alone, modifying them is dangerous.
1178Moreover, the result of modifying them is undefined and subject to change with
1179future versions of Bison.
1180For example, if a semantic action might be deferred, you should never write it
1181to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1182memory referenced by @code{yylval}.
1183
20be2f92 1184@subsubsection YYERROR
32c29292 1185@findex YYERROR
8a4281b9 1186@cindex GLR parsers and @code{YYERROR}
32c29292 1187Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1188(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1189initiate error recovery.
8a4281b9 1190During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1191the same as its effect in a deterministic parser.
411614fa
JM
1192The effect in a deferred action is similar, but the precise point of the
1193error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1194selecting an unspecified stack on which to continue with a syntax error.
1195In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1196parsing, @code{YYERROR} silently prunes
1197the parse that invoked the test.
1198
1199@subsubsection Restrictions on semantic values and locations
8a4281b9 1200GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1201semantic values and location types when using the generated parsers as
1202C++ code.
8710fc41 1203
ca2a6d15
PH
1204@node Semantic Predicates
1205@subsection Controlling a Parse with Arbitrary Predicates
1206@findex %?
8a4281b9 1207@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1208
1209In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1210GLR parsers
ca2a6d15
PH
1211allow you to reject parses on the basis of arbitrary computations executed
1212in user code, without having Bison treat this rejection as an error
1213if there are alternative parses. (This feature is experimental and may
1214evolve. We welcome user feedback.) For example,
1215
c93f22fc
AD
1216@example
1217widget:
5e9b6624
AD
1218 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1219| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1220;
c93f22fc 1221@end example
ca2a6d15
PH
1222
1223@noindent
411614fa 1224is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1225widgets. The clause preceded by @code{%?} is treated like an ordinary
1226action, except that its text is treated as an expression and is always
411614fa 1227evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1228expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1229which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1230to die. In a deterministic parser, it acts like YYERROR.
1231
1232As the example shows, predicates otherwise look like semantic actions, and
1233therefore you must be take them into account when determining the numbers
1234to use for denoting the semantic values of right-hand side symbols.
1235Predicate actions, however, have no defined value, and may not be given
1236labels.
1237
1238There is a subtle difference between semantic predicates and ordinary
1239actions in nondeterministic mode, since the latter are deferred.
411614fa 1240For example, we could try to rewrite the previous example as
ca2a6d15 1241
c93f22fc
AD
1242@example
1243widget:
5e9b6624
AD
1244 @{ if (!new_syntax) YYERROR; @}
1245 "widget" id new_args @{ $$ = f($3, $4); @}
1246| @{ if (new_syntax) YYERROR; @}
1247 "widget" id old_args @{ $$ = f($3, $4); @}
1248;
c93f22fc 1249@end example
ca2a6d15
PH
1250
1251@noindent
1252(reversing the sense of the predicate tests to cause an error when they are
1253false). However, this
1254does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1255have overlapping syntax.
411614fa 1256Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1257a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1258for cases where @code{new_args} and @code{old_args} recognize the same string
1259@emph{before} performing the tests of @code{new_syntax}. It therefore
1260reports an error.
1261
1262Finally, be careful in writing predicates: deferred actions have not been
1263evaluated, so that using them in a predicate will have undefined effects.
1264
fa7e68c3 1265@node Compiler Requirements
8a4281b9 1266@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1267@cindex @code{inline}
8a4281b9 1268@cindex GLR parsers and @code{inline}
fa7e68c3 1269
8a4281b9 1270The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1271later. In addition, they use the @code{inline} keyword, which is not
1272C89, but is C99 and is a common extension in pre-C99 compilers. It is
1273up to the user of these parsers to handle
9501dc6e
AD
1274portability issues. For instance, if using Autoconf and the Autoconf
1275macro @code{AC_C_INLINE}, a mere
1276
1277@example
1278%@{
38a92d50 1279 #include <config.h>
9501dc6e
AD
1280%@}
1281@end example
1282
1283@noindent
1284will suffice. Otherwise, we suggest
1285
1286@example
1287%@{
aaaa2aae
AD
1288 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1289 && ! defined inline)
1290 # define inline
38a92d50 1291 #endif
9501dc6e
AD
1292%@}
1293@end example
676385e2 1294
1769eb30 1295@node Locations
847bf1f5
AD
1296@section Locations
1297@cindex location
95923bd6
AD
1298@cindex textual location
1299@cindex location, textual
847bf1f5
AD
1300
1301Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1302and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1303the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1304Bison provides a mechanism for handling these locations.
1305
72d2299c 1306Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1307associated location, but the type of locations is the same for all tokens
1308and groupings. Moreover, the output parser is equipped with a default data
1309structure for storing locations (@pxref{Tracking Locations}, for more
1310details).
847bf1f5
AD
1311
1312Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1313set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1314is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1315@code{@@3}.
1316
1317When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1318of its left hand side (@pxref{Actions}). In the same way, another default
1319action is used for locations. However, the action for locations is general
847bf1f5 1320enough for most cases, meaning there is usually no need to describe for each
72d2299c 1321rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1322grouping, the default behavior of the output parser is to take the beginning
1323of the first symbol, and the end of the last symbol.
1324
342b8b6e 1325@node Bison Parser
ff7571c0 1326@section Bison Output: the Parser Implementation File
bfa74976
RS
1327@cindex Bison parser
1328@cindex Bison utility
1329@cindex lexical analyzer, purpose
1330@cindex parser
1331
ff7571c0
JD
1332When you run Bison, you give it a Bison grammar file as input. The
1333most important output is a C source file that implements a parser for
1334the language described by the grammar. This parser is called a
1335@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1336implementation file}. Keep in mind that the Bison utility and the
1337Bison parser are two distinct programs: the Bison utility is a program
1338whose output is the Bison parser implementation file that becomes part
1339of your program.
bfa74976
RS
1340
1341The job of the Bison parser is to group tokens into groupings according to
1342the grammar rules---for example, to build identifiers and operators into
1343expressions. As it does this, it runs the actions for the grammar rules it
1344uses.
1345
704a47c4
AD
1346The tokens come from a function called the @dfn{lexical analyzer} that
1347you must supply in some fashion (such as by writing it in C). The Bison
1348parser calls the lexical analyzer each time it wants a new token. It
1349doesn't know what is ``inside'' the tokens (though their semantic values
1350may reflect this). Typically the lexical analyzer makes the tokens by
1351parsing characters of text, but Bison does not depend on this.
1352@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1353
ff7571c0
JD
1354The Bison parser implementation file is C code which defines a
1355function named @code{yyparse} which implements that grammar. This
1356function does not make a complete C program: you must supply some
1357additional functions. One is the lexical analyzer. Another is an
1358error-reporting function which the parser calls to report an error.
1359In addition, a complete C program must start with a function called
1360@code{main}; you have to provide this, and arrange for it to call
1361@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1362C-Language Interface}.
bfa74976 1363
f7ab6a50 1364Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1365write, all symbols defined in the Bison parser implementation file
1366itself begin with @samp{yy} or @samp{YY}. This includes interface
1367functions such as the lexical analyzer function @code{yylex}, the
1368error reporting function @code{yyerror} and the parser function
1369@code{yyparse} itself. This also includes numerous identifiers used
1370for internal purposes. Therefore, you should avoid using C
1371identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1372file except for the ones defined in this manual. Also, you should
1373avoid using the C identifiers @samp{malloc} and @samp{free} for
1374anything other than their usual meanings.
1375
1376In some cases the Bison parser implementation file includes system
1377headers, and in those cases your code should respect the identifiers
1378reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1379@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1380included as needed to declare memory allocators and related types.
1381@code{<libintl.h>} is included if message translation is in use
1382(@pxref{Internationalization}). Other system headers may be included
1383if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1384,Tracing Your Parser}).
7093d0f5 1385
342b8b6e 1386@node Stages
bfa74976
RS
1387@section Stages in Using Bison
1388@cindex stages in using Bison
1389@cindex using Bison
1390
1391The actual language-design process using Bison, from grammar specification
1392to a working compiler or interpreter, has these parts:
1393
1394@enumerate
1395@item
1396Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1397(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1398in the language, describe the action that is to be taken when an
1399instance of that rule is recognized. The action is described by a
1400sequence of C statements.
bfa74976
RS
1401
1402@item
704a47c4
AD
1403Write a lexical analyzer to process input and pass tokens to the parser.
1404The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1405Lexical Analyzer Function @code{yylex}}). It could also be produced
1406using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1407
1408@item
1409Write a controlling function that calls the Bison-produced parser.
1410
1411@item
1412Write error-reporting routines.
1413@end enumerate
1414
1415To turn this source code as written into a runnable program, you
1416must follow these steps:
1417
1418@enumerate
1419@item
1420Run Bison on the grammar to produce the parser.
1421
1422@item
1423Compile the code output by Bison, as well as any other source files.
1424
1425@item
1426Link the object files to produce the finished product.
1427@end enumerate
1428
342b8b6e 1429@node Grammar Layout
bfa74976
RS
1430@section The Overall Layout of a Bison Grammar
1431@cindex grammar file
1432@cindex file format
1433@cindex format of grammar file
1434@cindex layout of Bison grammar
1435
1436The input file for the Bison utility is a @dfn{Bison grammar file}. The
1437general form of a Bison grammar file is as follows:
1438
1439@example
1440%@{
08e49d20 1441@var{Prologue}
bfa74976
RS
1442%@}
1443
1444@var{Bison declarations}
1445
1446%%
1447@var{Grammar rules}
1448%%
08e49d20 1449@var{Epilogue}
bfa74976
RS
1450@end example
1451
1452@noindent
1453The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1454in every Bison grammar file to separate the sections.
1455
72d2299c 1456The prologue may define types and variables used in the actions. You can
342b8b6e 1457also use preprocessor commands to define macros used there, and use
bfa74976 1458@code{#include} to include header files that do any of these things.
38a92d50
PE
1459You need to declare the lexical analyzer @code{yylex} and the error
1460printer @code{yyerror} here, along with any other global identifiers
1461used by the actions in the grammar rules.
bfa74976
RS
1462
1463The Bison declarations declare the names of the terminal and nonterminal
1464symbols, and may also describe operator precedence and the data types of
1465semantic values of various symbols.
1466
1467The grammar rules define how to construct each nonterminal symbol from its
1468parts.
1469
38a92d50
PE
1470The epilogue can contain any code you want to use. Often the
1471definitions of functions declared in the prologue go here. In a
1472simple program, all the rest of the program can go here.
bfa74976 1473
342b8b6e 1474@node Examples
bfa74976
RS
1475@chapter Examples
1476@cindex simple examples
1477@cindex examples, simple
1478
aaaa2aae 1479Now we show and explain several sample programs written using Bison: a
bfa74976 1480reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1481calculator --- later extended to track ``locations'' ---
1482and a multi-function calculator. All
1483produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1484
1485These examples are simple, but Bison grammars for real programming
aa08666d
AD
1486languages are written the same way. You can copy these examples into a
1487source file to try them.
bfa74976
RS
1488
1489@menu
f5f419de
DJ
1490* RPN Calc:: Reverse polish notation calculator;
1491 a first example with no operator precedence.
1492* Infix Calc:: Infix (algebraic) notation calculator.
1493 Operator precedence is introduced.
bfa74976 1494* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1495* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1496* Multi-function Calc:: Calculator with memory and trig functions.
1497 It uses multiple data-types for semantic values.
1498* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1499@end menu
1500
342b8b6e 1501@node RPN Calc
bfa74976
RS
1502@section Reverse Polish Notation Calculator
1503@cindex reverse polish notation
1504@cindex polish notation calculator
1505@cindex @code{rpcalc}
1506@cindex calculator, simple
1507
1508The first example is that of a simple double-precision @dfn{reverse polish
1509notation} calculator (a calculator using postfix operators). This example
1510provides a good starting point, since operator precedence is not an issue.
1511The second example will illustrate how operator precedence is handled.
1512
1513The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1514@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1515
1516@menu
f5f419de
DJ
1517* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1518* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1519* Rpcalc Lexer:: The lexical analyzer.
1520* Rpcalc Main:: The controlling function.
1521* Rpcalc Error:: The error reporting function.
1522* Rpcalc Generate:: Running Bison on the grammar file.
1523* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1524@end menu
1525
f5f419de 1526@node Rpcalc Declarations
bfa74976
RS
1527@subsection Declarations for @code{rpcalc}
1528
1529Here are the C and Bison declarations for the reverse polish notation
1530calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1531
24ec0837 1532@comment file: rpcalc.y
bfa74976 1533@example
72d2299c 1534/* Reverse polish notation calculator. */
bfa74976
RS
1535
1536%@{
38a92d50 1537 #define YYSTYPE double
24ec0837 1538 #include <stdio.h>
38a92d50
PE
1539 #include <math.h>
1540 int yylex (void);
1541 void yyerror (char const *);
bfa74976
RS
1542%@}
1543
1544%token NUM
1545
72d2299c 1546%% /* Grammar rules and actions follow. */
bfa74976
RS
1547@end example
1548
75f5aaea 1549The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1550preprocessor directives and two forward declarations.
bfa74976
RS
1551
1552The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1553specifying the C data type for semantic values of both tokens and
1554groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1555Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1556don't define it, @code{int} is the default. Because we specify
1557@code{double}, each token and each expression has an associated value,
1558which is a floating point number.
bfa74976
RS
1559
1560The @code{#include} directive is used to declare the exponentiation
1561function @code{pow}.
1562
38a92d50
PE
1563The forward declarations for @code{yylex} and @code{yyerror} are
1564needed because the C language requires that functions be declared
1565before they are used. These functions will be defined in the
1566epilogue, but the parser calls them so they must be declared in the
1567prologue.
1568
704a47c4
AD
1569The second section, Bison declarations, provides information to Bison
1570about the token types (@pxref{Bison Declarations, ,The Bison
1571Declarations Section}). Each terminal symbol that is not a
1572single-character literal must be declared here. (Single-character
bfa74976
RS
1573literals normally don't need to be declared.) In this example, all the
1574arithmetic operators are designated by single-character literals, so the
1575only terminal symbol that needs to be declared is @code{NUM}, the token
1576type for numeric constants.
1577
342b8b6e 1578@node Rpcalc Rules
bfa74976
RS
1579@subsection Grammar Rules for @code{rpcalc}
1580
1581Here are the grammar rules for the reverse polish notation calculator.
1582
24ec0837 1583@comment file: rpcalc.y
bfa74976 1584@example
aaaa2aae 1585@group
5e9b6624
AD
1586input:
1587 /* empty */
1588| input line
bfa74976 1589;
aaaa2aae 1590@end group
bfa74976 1591
aaaa2aae 1592@group
5e9b6624
AD
1593line:
1594 '\n'
1595| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1596;
aaaa2aae 1597@end group
bfa74976 1598
aaaa2aae 1599@group
5e9b6624
AD
1600exp:
1601 NUM @{ $$ = $1; @}
1602| exp exp '+' @{ $$ = $1 + $2; @}
1603| exp exp '-' @{ $$ = $1 - $2; @}
1604| exp exp '*' @{ $$ = $1 * $2; @}
1605| exp exp '/' @{ $$ = $1 / $2; @}
1606| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1607| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1608;
aaaa2aae 1609@end group
bfa74976
RS
1610%%
1611@end example
1612
1613The groupings of the rpcalc ``language'' defined here are the expression
1614(given the name @code{exp}), the line of input (@code{line}), and the
1615complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1616symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1617which is read as ``or''. The following sections explain what these rules
1618mean.
1619
1620The semantics of the language is determined by the actions taken when a
1621grouping is recognized. The actions are the C code that appears inside
1622braces. @xref{Actions}.
1623
1624You must specify these actions in C, but Bison provides the means for
1625passing semantic values between the rules. In each action, the
1626pseudo-variable @code{$$} stands for the semantic value for the grouping
1627that the rule is going to construct. Assigning a value to @code{$$} is the
1628main job of most actions. The semantic values of the components of the
1629rule are referred to as @code{$1}, @code{$2}, and so on.
1630
1631@menu
24ec0837
AD
1632* Rpcalc Input:: Explanation of the @code{input} nonterminal
1633* Rpcalc Line:: Explanation of the @code{line} nonterminal
1634* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1635@end menu
1636
342b8b6e 1637@node Rpcalc Input
bfa74976
RS
1638@subsubsection Explanation of @code{input}
1639
1640Consider the definition of @code{input}:
1641
1642@example
5e9b6624
AD
1643input:
1644 /* empty */
1645| input line
bfa74976
RS
1646;
1647@end example
1648
1649This definition reads as follows: ``A complete input is either an empty
1650string, or a complete input followed by an input line''. Notice that
1651``complete input'' is defined in terms of itself. This definition is said
1652to be @dfn{left recursive} since @code{input} appears always as the
1653leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1654
1655The first alternative is empty because there are no symbols between the
1656colon and the first @samp{|}; this means that @code{input} can match an
1657empty string of input (no tokens). We write the rules this way because it
1658is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1659It's conventional to put an empty alternative first and write the comment
1660@samp{/* empty */} in it.
1661
1662The second alternate rule (@code{input line}) handles all nontrivial input.
1663It means, ``After reading any number of lines, read one more line if
1664possible.'' The left recursion makes this rule into a loop. Since the
1665first alternative matches empty input, the loop can be executed zero or
1666more times.
1667
1668The parser function @code{yyparse} continues to process input until a
1669grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1670input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1671
342b8b6e 1672@node Rpcalc Line
bfa74976
RS
1673@subsubsection Explanation of @code{line}
1674
1675Now consider the definition of @code{line}:
1676
1677@example
5e9b6624
AD
1678line:
1679 '\n'
1680| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1681;
1682@end example
1683
1684The first alternative is a token which is a newline character; this means
1685that rpcalc accepts a blank line (and ignores it, since there is no
1686action). The second alternative is an expression followed by a newline.
1687This is the alternative that makes rpcalc useful. The semantic value of
1688the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1689question is the first symbol in the alternative. The action prints this
1690value, which is the result of the computation the user asked for.
1691
1692This action is unusual because it does not assign a value to @code{$$}. As
1693a consequence, the semantic value associated with the @code{line} is
1694uninitialized (its value will be unpredictable). This would be a bug if
1695that value were ever used, but we don't use it: once rpcalc has printed the
1696value of the user's input line, that value is no longer needed.
1697
342b8b6e 1698@node Rpcalc Expr
bfa74976
RS
1699@subsubsection Explanation of @code{expr}
1700
1701The @code{exp} grouping has several rules, one for each kind of expression.
1702The first rule handles the simplest expressions: those that are just numbers.
1703The second handles an addition-expression, which looks like two expressions
1704followed by a plus-sign. The third handles subtraction, and so on.
1705
1706@example
5e9b6624
AD
1707exp:
1708 NUM
1709| exp exp '+' @{ $$ = $1 + $2; @}
1710| exp exp '-' @{ $$ = $1 - $2; @}
1711@dots{}
1712;
bfa74976
RS
1713@end example
1714
1715We have used @samp{|} to join all the rules for @code{exp}, but we could
1716equally well have written them separately:
1717
1718@example
5e9b6624
AD
1719exp: NUM ;
1720exp: exp exp '+' @{ $$ = $1 + $2; @};
1721exp: exp exp '-' @{ $$ = $1 - $2; @};
1722@dots{}
bfa74976
RS
1723@end example
1724
1725Most of the rules have actions that compute the value of the expression in
1726terms of the value of its parts. For example, in the rule for addition,
1727@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1728the second one. The third component, @code{'+'}, has no meaningful
1729associated semantic value, but if it had one you could refer to it as
1730@code{$3}. When @code{yyparse} recognizes a sum expression using this
1731rule, the sum of the two subexpressions' values is produced as the value of
1732the entire expression. @xref{Actions}.
1733
1734You don't have to give an action for every rule. When a rule has no
1735action, Bison by default copies the value of @code{$1} into @code{$$}.
1736This is what happens in the first rule (the one that uses @code{NUM}).
1737
1738The formatting shown here is the recommended convention, but Bison does
72d2299c 1739not require it. You can add or change white space as much as you wish.
bfa74976
RS
1740For example, this:
1741
1742@example
5e9b6624 1743exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1744@end example
1745
1746@noindent
1747means the same thing as this:
1748
1749@example
5e9b6624
AD
1750exp:
1751 NUM
1752| exp exp '+' @{ $$ = $1 + $2; @}
1753| @dots{}
99a9344e 1754;
bfa74976
RS
1755@end example
1756
1757@noindent
1758The latter, however, is much more readable.
1759
342b8b6e 1760@node Rpcalc Lexer
bfa74976
RS
1761@subsection The @code{rpcalc} Lexical Analyzer
1762@cindex writing a lexical analyzer
1763@cindex lexical analyzer, writing
1764
704a47c4
AD
1765The lexical analyzer's job is low-level parsing: converting characters
1766or sequences of characters into tokens. The Bison parser gets its
1767tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1768Analyzer Function @code{yylex}}.
bfa74976 1769
8a4281b9 1770Only a simple lexical analyzer is needed for the RPN
c827f760 1771calculator. This
bfa74976
RS
1772lexical analyzer skips blanks and tabs, then reads in numbers as
1773@code{double} and returns them as @code{NUM} tokens. Any other character
1774that isn't part of a number is a separate token. Note that the token-code
1775for such a single-character token is the character itself.
1776
1777The return value of the lexical analyzer function is a numeric code which
1778represents a token type. The same text used in Bison rules to stand for
1779this token type is also a C expression for the numeric code for the type.
1780This works in two ways. If the token type is a character literal, then its
e966383b 1781numeric code is that of the character; you can use the same
bfa74976
RS
1782character literal in the lexical analyzer to express the number. If the
1783token type is an identifier, that identifier is defined by Bison as a C
1784macro whose definition is the appropriate number. In this example,
1785therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1786
1964ad8c
AD
1787The semantic value of the token (if it has one) is stored into the
1788global variable @code{yylval}, which is where the Bison parser will look
1789for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1790defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1791,Declarations for @code{rpcalc}}.)
bfa74976 1792
72d2299c
PE
1793A token type code of zero is returned if the end-of-input is encountered.
1794(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1795
1796Here is the code for the lexical analyzer:
1797
24ec0837 1798@comment file: rpcalc.y
bfa74976
RS
1799@example
1800@group
72d2299c 1801/* The lexical analyzer returns a double floating point
e966383b 1802 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1803 of the character read if not a number. It skips all blanks
1804 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1805
1806#include <ctype.h>
1807@end group
1808
1809@group
13863333
AD
1810int
1811yylex (void)
bfa74976
RS
1812@{
1813 int c;
1814
72d2299c 1815 /* Skip white space. */
13863333 1816 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1817 continue;
bfa74976
RS
1818@end group
1819@group
72d2299c 1820 /* Process numbers. */
13863333 1821 if (c == '.' || isdigit (c))
bfa74976
RS
1822 @{
1823 ungetc (c, stdin);
1824 scanf ("%lf", &yylval);
1825 return NUM;
1826 @}
1827@end group
1828@group
72d2299c 1829 /* Return end-of-input. */
13863333 1830 if (c == EOF)
bfa74976 1831 return 0;
72d2299c 1832 /* Return a single char. */
13863333 1833 return c;
bfa74976
RS
1834@}
1835@end group
1836@end example
1837
342b8b6e 1838@node Rpcalc Main
bfa74976
RS
1839@subsection The Controlling Function
1840@cindex controlling function
1841@cindex main function in simple example
1842
1843In keeping with the spirit of this example, the controlling function is
1844kept to the bare minimum. The only requirement is that it call
1845@code{yyparse} to start the process of parsing.
1846
24ec0837 1847@comment file: rpcalc.y
bfa74976
RS
1848@example
1849@group
13863333
AD
1850int
1851main (void)
bfa74976 1852@{
13863333 1853 return yyparse ();
bfa74976
RS
1854@}
1855@end group
1856@end example
1857
342b8b6e 1858@node Rpcalc Error
bfa74976
RS
1859@subsection The Error Reporting Routine
1860@cindex error reporting routine
1861
1862When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1863function @code{yyerror} to print an error message (usually but not
6e649e65 1864always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1865@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1866here is the definition we will use:
bfa74976 1867
24ec0837 1868@comment file: rpcalc.y
bfa74976
RS
1869@example
1870@group
1871#include <stdio.h>
aaaa2aae 1872@end group
bfa74976 1873
aaaa2aae 1874@group
38a92d50 1875/* Called by yyparse on error. */
13863333 1876void
38a92d50 1877yyerror (char const *s)
bfa74976 1878@{
4e03e201 1879 fprintf (stderr, "%s\n", s);
bfa74976
RS
1880@}
1881@end group
1882@end example
1883
1884After @code{yyerror} returns, the Bison parser may recover from the error
1885and continue parsing if the grammar contains a suitable error rule
1886(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1887have not written any error rules in this example, so any invalid input will
1888cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1889real calculator, but it is adequate for the first example.
bfa74976 1890
f5f419de 1891@node Rpcalc Generate
bfa74976
RS
1892@subsection Running Bison to Make the Parser
1893@cindex running Bison (introduction)
1894
ceed8467
AD
1895Before running Bison to produce a parser, we need to decide how to
1896arrange all the source code in one or more source files. For such a
ff7571c0
JD
1897simple example, the easiest thing is to put everything in one file,
1898the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1899@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1900(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1901
1902For a large project, you would probably have several source files, and use
1903@code{make} to arrange to recompile them.
1904
ff7571c0
JD
1905With all the source in the grammar file, you use the following command
1906to convert it into a parser implementation file:
bfa74976
RS
1907
1908@example
fa4d969f 1909bison @var{file}.y
bfa74976
RS
1910@end example
1911
1912@noindent
ff7571c0
JD
1913In this example, the grammar file is called @file{rpcalc.y} (for
1914``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1915implementation file named @file{@var{file}.tab.c}, removing the
1916@samp{.y} from the grammar file name. The parser implementation file
1917contains the source code for @code{yyparse}. The additional functions
1918in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1919copied verbatim to the parser implementation file.
bfa74976 1920
342b8b6e 1921@node Rpcalc Compile
ff7571c0 1922@subsection Compiling the Parser Implementation File
bfa74976
RS
1923@cindex compiling the parser
1924
ff7571c0 1925Here is how to compile and run the parser implementation file:
bfa74976
RS
1926
1927@example
1928@group
1929# @r{List files in current directory.}
9edcd895 1930$ @kbd{ls}
bfa74976
RS
1931rpcalc.tab.c rpcalc.y
1932@end group
1933
1934@group
1935# @r{Compile the Bison parser.}
1936# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1937$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1938@end group
1939
1940@group
1941# @r{List files again.}
9edcd895 1942$ @kbd{ls}
bfa74976
RS
1943rpcalc rpcalc.tab.c rpcalc.y
1944@end group
1945@end example
1946
1947The file @file{rpcalc} now contains the executable code. Here is an
1948example session using @code{rpcalc}.
1949
1950@example
9edcd895
AD
1951$ @kbd{rpcalc}
1952@kbd{4 9 +}
24ec0837 1953@result{} 13
9edcd895 1954@kbd{3 7 + 3 4 5 *+-}
24ec0837 1955@result{} -13
9edcd895 1956@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1957@result{} 13
9edcd895 1958@kbd{5 6 / 4 n +}
24ec0837 1959@result{} -3.166666667
9edcd895 1960@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1961@result{} 81
9edcd895
AD
1962@kbd{^D} @r{End-of-file indicator}
1963$
bfa74976
RS
1964@end example
1965
342b8b6e 1966@node Infix Calc
bfa74976
RS
1967@section Infix Notation Calculator: @code{calc}
1968@cindex infix notation calculator
1969@cindex @code{calc}
1970@cindex calculator, infix notation
1971
1972We now modify rpcalc to handle infix operators instead of postfix. Infix
1973notation involves the concept of operator precedence and the need for
1974parentheses nested to arbitrary depth. Here is the Bison code for
1975@file{calc.y}, an infix desk-top calculator.
1976
1977@example
38a92d50 1978/* Infix notation calculator. */
bfa74976 1979
aaaa2aae 1980@group
bfa74976 1981%@{
38a92d50
PE
1982 #define YYSTYPE double
1983 #include <math.h>
1984 #include <stdio.h>
1985 int yylex (void);
1986 void yyerror (char const *);
bfa74976 1987%@}
aaaa2aae 1988@end group
bfa74976 1989
aaaa2aae 1990@group
38a92d50 1991/* Bison declarations. */
bfa74976
RS
1992%token NUM
1993%left '-' '+'
1994%left '*' '/'
d78f0ac9
AD
1995%precedence NEG /* negation--unary minus */
1996%right '^' /* exponentiation */
aaaa2aae 1997@end group
bfa74976 1998
38a92d50 1999%% /* The grammar follows. */
aaaa2aae 2000@group
5e9b6624
AD
2001input:
2002 /* empty */
2003| input line
bfa74976 2004;
aaaa2aae 2005@end group
bfa74976 2006
aaaa2aae 2007@group
5e9b6624
AD
2008line:
2009 '\n'
2010| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2011;
aaaa2aae 2012@end group
bfa74976 2013
aaaa2aae 2014@group
5e9b6624
AD
2015exp:
2016 NUM @{ $$ = $1; @}
2017| exp '+' exp @{ $$ = $1 + $3; @}
2018| exp '-' exp @{ $$ = $1 - $3; @}
2019| exp '*' exp @{ $$ = $1 * $3; @}
2020| exp '/' exp @{ $$ = $1 / $3; @}
2021| '-' exp %prec NEG @{ $$ = -$2; @}
2022| exp '^' exp @{ $$ = pow ($1, $3); @}
2023| '(' exp ')' @{ $$ = $2; @}
bfa74976 2024;
aaaa2aae 2025@end group
bfa74976
RS
2026%%
2027@end example
2028
2029@noindent
ceed8467
AD
2030The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2031same as before.
bfa74976
RS
2032
2033There are two important new features shown in this code.
2034
2035In the second section (Bison declarations), @code{%left} declares token
2036types and says they are left-associative operators. The declarations
2037@code{%left} and @code{%right} (right associativity) take the place of
2038@code{%token} which is used to declare a token type name without
d78f0ac9 2039associativity/precedence. (These tokens are single-character literals, which
bfa74976 2040ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2041the associativity/precedence.)
bfa74976
RS
2042
2043Operator precedence is determined by the line ordering of the
2044declarations; the higher the line number of the declaration (lower on
2045the page or screen), the higher the precedence. Hence, exponentiation
2046has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2047by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2048only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2049Precedence}.
bfa74976 2050
704a47c4
AD
2051The other important new feature is the @code{%prec} in the grammar
2052section for the unary minus operator. The @code{%prec} simply instructs
2053Bison that the rule @samp{| '-' exp} has the same precedence as
2054@code{NEG}---in this case the next-to-highest. @xref{Contextual
2055Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2056
2057Here is a sample run of @file{calc.y}:
2058
2059@need 500
2060@example
9edcd895
AD
2061$ @kbd{calc}
2062@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20636.880952381
9edcd895 2064@kbd{-56 + 2}
bfa74976 2065-54
9edcd895 2066@kbd{3 ^ 2}
bfa74976
RS
20679
2068@end example
2069
342b8b6e 2070@node Simple Error Recovery
bfa74976
RS
2071@section Simple Error Recovery
2072@cindex error recovery, simple
2073
2074Up to this point, this manual has not addressed the issue of @dfn{error
2075recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2076error. All we have handled is error reporting with @code{yyerror}.
2077Recall that by default @code{yyparse} returns after calling
2078@code{yyerror}. This means that an erroneous input line causes the
2079calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2080
2081The Bison language itself includes the reserved word @code{error}, which
2082may be included in the grammar rules. In the example below it has
2083been added to one of the alternatives for @code{line}:
2084
2085@example
2086@group
5e9b6624
AD
2087line:
2088 '\n'
2089| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2090| error '\n' @{ yyerrok; @}
bfa74976
RS
2091;
2092@end group
2093@end example
2094
ceed8467 2095This addition to the grammar allows for simple error recovery in the
6e649e65 2096event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2097read, the error will be recognized by the third rule for @code{line},
2098and parsing will continue. (The @code{yyerror} function is still called
2099upon to print its message as well.) The action executes the statement
2100@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2101that error recovery is complete (@pxref{Error Recovery}). Note the
2102difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2103misprint.
bfa74976
RS
2104
2105This form of error recovery deals with syntax errors. There are other
2106kinds of errors; for example, division by zero, which raises an exception
2107signal that is normally fatal. A real calculator program must handle this
2108signal and use @code{longjmp} to return to @code{main} and resume parsing
2109input lines; it would also have to discard the rest of the current line of
2110input. We won't discuss this issue further because it is not specific to
2111Bison programs.
2112
342b8b6e
AD
2113@node Location Tracking Calc
2114@section Location Tracking Calculator: @code{ltcalc}
2115@cindex location tracking calculator
2116@cindex @code{ltcalc}
2117@cindex calculator, location tracking
2118
9edcd895
AD
2119This example extends the infix notation calculator with location
2120tracking. This feature will be used to improve the error messages. For
2121the sake of clarity, this example is a simple integer calculator, since
2122most of the work needed to use locations will be done in the lexical
72d2299c 2123analyzer.
342b8b6e
AD
2124
2125@menu
f5f419de
DJ
2126* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2127* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2128* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2129@end menu
2130
f5f419de 2131@node Ltcalc Declarations
342b8b6e
AD
2132@subsection Declarations for @code{ltcalc}
2133
9edcd895
AD
2134The C and Bison declarations for the location tracking calculator are
2135the same as the declarations for the infix notation calculator.
342b8b6e
AD
2136
2137@example
2138/* Location tracking calculator. */
2139
2140%@{
38a92d50
PE
2141 #define YYSTYPE int
2142 #include <math.h>
2143 int yylex (void);
2144 void yyerror (char const *);
342b8b6e
AD
2145%@}
2146
2147/* Bison declarations. */
2148%token NUM
2149
2150%left '-' '+'
2151%left '*' '/'
d78f0ac9 2152%precedence NEG
342b8b6e
AD
2153%right '^'
2154
38a92d50 2155%% /* The grammar follows. */
342b8b6e
AD
2156@end example
2157
9edcd895
AD
2158@noindent
2159Note there are no declarations specific to locations. Defining a data
2160type for storing locations is not needed: we will use the type provided
2161by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2162four member structure with the following integer fields:
2163@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2164@code{last_column}. By conventions, and in accordance with the GNU
2165Coding Standards and common practice, the line and column count both
2166start at 1.
342b8b6e
AD
2167
2168@node Ltcalc Rules
2169@subsection Grammar Rules for @code{ltcalc}
2170
9edcd895
AD
2171Whether handling locations or not has no effect on the syntax of your
2172language. Therefore, grammar rules for this example will be very close
2173to those of the previous example: we will only modify them to benefit
2174from the new information.
342b8b6e 2175
9edcd895
AD
2176Here, we will use locations to report divisions by zero, and locate the
2177wrong expressions or subexpressions.
342b8b6e
AD
2178
2179@example
2180@group
5e9b6624
AD
2181input:
2182 /* empty */
2183| input line
342b8b6e
AD
2184;
2185@end group
2186
2187@group
5e9b6624
AD
2188line:
2189 '\n'
2190| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2191;
2192@end group
2193
2194@group
5e9b6624
AD
2195exp:
2196 NUM @{ $$ = $1; @}
2197| exp '+' exp @{ $$ = $1 + $3; @}
2198| exp '-' exp @{ $$ = $1 - $3; @}
2199| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2200@end group
342b8b6e 2201@group
5e9b6624
AD
2202| exp '/' exp
2203 @{
2204 if ($3)
2205 $$ = $1 / $3;
2206 else
2207 @{
2208 $$ = 1;
2209 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2210 @@3.first_line, @@3.first_column,
2211 @@3.last_line, @@3.last_column);
2212 @}
2213 @}
342b8b6e
AD
2214@end group
2215@group
5e9b6624
AD
2216| '-' exp %prec NEG @{ $$ = -$2; @}
2217| exp '^' exp @{ $$ = pow ($1, $3); @}
2218| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2219@end group
2220@end example
2221
2222This code shows how to reach locations inside of semantic actions, by
2223using the pseudo-variables @code{@@@var{n}} for rule components, and the
2224pseudo-variable @code{@@$} for groupings.
2225
9edcd895
AD
2226We don't need to assign a value to @code{@@$}: the output parser does it
2227automatically. By default, before executing the C code of each action,
2228@code{@@$} is set to range from the beginning of @code{@@1} to the end
2229of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2230can be redefined (@pxref{Location Default Action, , Default Action for
2231Locations}), and for very specific rules, @code{@@$} can be computed by
2232hand.
342b8b6e
AD
2233
2234@node Ltcalc Lexer
2235@subsection The @code{ltcalc} Lexical Analyzer.
2236
9edcd895 2237Until now, we relied on Bison's defaults to enable location
72d2299c 2238tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2239able to feed the parser with the token locations, as it already does for
2240semantic values.
342b8b6e 2241
9edcd895
AD
2242To this end, we must take into account every single character of the
2243input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2244
2245@example
2246@group
2247int
2248yylex (void)
2249@{
2250 int c;
18b519c0 2251@end group
342b8b6e 2252
18b519c0 2253@group
72d2299c 2254 /* Skip white space. */
342b8b6e
AD
2255 while ((c = getchar ()) == ' ' || c == '\t')
2256 ++yylloc.last_column;
18b519c0 2257@end group
342b8b6e 2258
18b519c0 2259@group
72d2299c 2260 /* Step. */
342b8b6e
AD
2261 yylloc.first_line = yylloc.last_line;
2262 yylloc.first_column = yylloc.last_column;
2263@end group
2264
2265@group
72d2299c 2266 /* Process numbers. */
342b8b6e
AD
2267 if (isdigit (c))
2268 @{
2269 yylval = c - '0';
2270 ++yylloc.last_column;
2271 while (isdigit (c = getchar ()))
2272 @{
2273 ++yylloc.last_column;
2274 yylval = yylval * 10 + c - '0';
2275 @}
2276 ungetc (c, stdin);
2277 return NUM;
2278 @}
2279@end group
2280
72d2299c 2281 /* Return end-of-input. */
342b8b6e
AD
2282 if (c == EOF)
2283 return 0;
2284
d4fca427 2285@group
72d2299c 2286 /* Return a single char, and update location. */
342b8b6e
AD
2287 if (c == '\n')
2288 @{
2289 ++yylloc.last_line;
2290 yylloc.last_column = 0;
2291 @}
2292 else
2293 ++yylloc.last_column;
2294 return c;
2295@}
d4fca427 2296@end group
342b8b6e
AD
2297@end example
2298
9edcd895
AD
2299Basically, the lexical analyzer performs the same processing as before:
2300it skips blanks and tabs, and reads numbers or single-character tokens.
2301In addition, it updates @code{yylloc}, the global variable (of type
2302@code{YYLTYPE}) containing the token's location.
342b8b6e 2303
9edcd895 2304Now, each time this function returns a token, the parser has its number
72d2299c 2305as well as its semantic value, and its location in the text. The last
9edcd895
AD
2306needed change is to initialize @code{yylloc}, for example in the
2307controlling function:
342b8b6e
AD
2308
2309@example
9edcd895 2310@group
342b8b6e
AD
2311int
2312main (void)
2313@{
2314 yylloc.first_line = yylloc.last_line = 1;
2315 yylloc.first_column = yylloc.last_column = 0;
2316 return yyparse ();
2317@}
9edcd895 2318@end group
342b8b6e
AD
2319@end example
2320
9edcd895
AD
2321Remember that computing locations is not a matter of syntax. Every
2322character must be associated to a location update, whether it is in
2323valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2324
2325@node Multi-function Calc
bfa74976
RS
2326@section Multi-Function Calculator: @code{mfcalc}
2327@cindex multi-function calculator
2328@cindex @code{mfcalc}
2329@cindex calculator, multi-function
2330
2331Now that the basics of Bison have been discussed, it is time to move on to
2332a more advanced problem. The above calculators provided only five
2333functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2334be nice to have a calculator that provides other mathematical functions such
2335as @code{sin}, @code{cos}, etc.
2336
2337It is easy to add new operators to the infix calculator as long as they are
2338only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2339back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2340adding a new operator. But we want something more flexible: built-in
2341functions whose syntax has this form:
2342
2343@example
2344@var{function_name} (@var{argument})
2345@end example
2346
2347@noindent
2348At the same time, we will add memory to the calculator, by allowing you
2349to create named variables, store values in them, and use them later.
2350Here is a sample session with the multi-function calculator:
2351
2352@example
d4fca427 2353@group
9edcd895
AD
2354$ @kbd{mfcalc}
2355@kbd{pi = 3.141592653589}
f9c75dd0 2356@result{} 3.1415926536
d4fca427
AD
2357@end group
2358@group
9edcd895 2359@kbd{sin(pi)}
f9c75dd0 2360@result{} 0.0000000000
d4fca427 2361@end group
9edcd895 2362@kbd{alpha = beta1 = 2.3}
f9c75dd0 2363@result{} 2.3000000000
9edcd895 2364@kbd{alpha}
f9c75dd0 2365@result{} 2.3000000000
9edcd895 2366@kbd{ln(alpha)}
f9c75dd0 2367@result{} 0.8329091229
9edcd895 2368@kbd{exp(ln(beta1))}
f9c75dd0 2369@result{} 2.3000000000
9edcd895 2370$
bfa74976
RS
2371@end example
2372
2373Note that multiple assignment and nested function calls are permitted.
2374
2375@menu
f5f419de
DJ
2376* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2377* Mfcalc Rules:: Grammar rules for the calculator.
2378* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2379* Mfcalc Lexer:: The lexical analyzer.
2380* Mfcalc Main:: The controlling function.
bfa74976
RS
2381@end menu
2382
f5f419de 2383@node Mfcalc Declarations
bfa74976
RS
2384@subsection Declarations for @code{mfcalc}
2385
2386Here are the C and Bison declarations for the multi-function calculator.
2387
93c150b6 2388@comment file: mfcalc.y: 1
c93f22fc 2389@example
18b519c0 2390@group
bfa74976 2391%@{
f9c75dd0 2392 #include <stdio.h> /* For printf, etc. */
578e3413 2393 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2394 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2395 int yylex (void);
2396 void yyerror (char const *);
bfa74976 2397%@}
18b519c0 2398@end group
93c150b6 2399
18b519c0 2400@group
bfa74976 2401%union @{
38a92d50
PE
2402 double val; /* For returning numbers. */
2403 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2404@}
18b519c0 2405@end group
38a92d50 2406%token <val> NUM /* Simple double precision number. */
93c150b6 2407%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2408%type <val> exp
2409
18b519c0 2410@group
bfa74976
RS
2411%right '='
2412%left '-' '+'
2413%left '*' '/'
d78f0ac9
AD
2414%precedence NEG /* negation--unary minus */
2415%right '^' /* exponentiation */
18b519c0 2416@end group
c93f22fc 2417@end example
bfa74976
RS
2418
2419The above grammar introduces only two new features of the Bison language.
2420These features allow semantic values to have various data types
2421(@pxref{Multiple Types, ,More Than One Value Type}).
2422
2423The @code{%union} declaration specifies the entire list of possible types;
2424this is instead of defining @code{YYSTYPE}. The allowable types are now
2425double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2426the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2427
2428Since values can now have various types, it is necessary to associate a
2429type with each grammar symbol whose semantic value is used. These symbols
2430are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2431declarations are augmented with information about their data type (placed
2432between angle brackets).
2433
704a47c4
AD
2434The Bison construct @code{%type} is used for declaring nonterminal
2435symbols, just as @code{%token} is used for declaring token types. We
2436have not used @code{%type} before because nonterminal symbols are
2437normally declared implicitly by the rules that define them. But
2438@code{exp} must be declared explicitly so we can specify its value type.
2439@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2440
342b8b6e 2441@node Mfcalc Rules
bfa74976
RS
2442@subsection Grammar Rules for @code{mfcalc}
2443
2444Here are the grammar rules for the multi-function calculator.
2445Most of them are copied directly from @code{calc}; three rules,
2446those which mention @code{VAR} or @code{FNCT}, are new.
2447
93c150b6 2448@comment file: mfcalc.y: 3
c93f22fc 2449@example
93c150b6 2450%% /* The grammar follows. */
18b519c0 2451@group
5e9b6624
AD
2452input:
2453 /* empty */
2454| input line
bfa74976 2455;
18b519c0 2456@end group
bfa74976 2457
18b519c0 2458@group
bfa74976 2459line:
5e9b6624
AD
2460 '\n'
2461| exp '\n' @{ printf ("%.10g\n", $1); @}
2462| error '\n' @{ yyerrok; @}
bfa74976 2463;
18b519c0 2464@end group
bfa74976 2465
18b519c0 2466@group
5e9b6624
AD
2467exp:
2468 NUM @{ $$ = $1; @}
2469| VAR @{ $$ = $1->value.var; @}
2470| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2471| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2472| exp '+' exp @{ $$ = $1 + $3; @}
2473| exp '-' exp @{ $$ = $1 - $3; @}
2474| exp '*' exp @{ $$ = $1 * $3; @}
2475| exp '/' exp @{ $$ = $1 / $3; @}
2476| '-' exp %prec NEG @{ $$ = -$2; @}
2477| exp '^' exp @{ $$ = pow ($1, $3); @}
2478| '(' exp ')' @{ $$ = $2; @}
bfa74976 2479;
18b519c0 2480@end group
38a92d50 2481/* End of grammar. */
bfa74976 2482%%
c93f22fc 2483@end example
bfa74976 2484
f5f419de 2485@node Mfcalc Symbol Table
bfa74976
RS
2486@subsection The @code{mfcalc} Symbol Table
2487@cindex symbol table example
2488
2489The multi-function calculator requires a symbol table to keep track of the
2490names and meanings of variables and functions. This doesn't affect the
2491grammar rules (except for the actions) or the Bison declarations, but it
2492requires some additional C functions for support.
2493
2494The symbol table itself consists of a linked list of records. Its
2495definition, which is kept in the header @file{calc.h}, is as follows. It
2496provides for either functions or variables to be placed in the table.
2497
f9c75dd0 2498@comment file: calc.h
c93f22fc 2499@example
bfa74976 2500@group
38a92d50 2501/* Function type. */
32dfccf8 2502typedef double (*func_t) (double);
72f889cc 2503@end group
32dfccf8 2504
72f889cc 2505@group
38a92d50 2506/* Data type for links in the chain of symbols. */
bfa74976
RS
2507struct symrec
2508@{
38a92d50 2509 char *name; /* name of symbol */
bfa74976 2510 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2511 union
2512 @{
38a92d50
PE
2513 double var; /* value of a VAR */
2514 func_t fnctptr; /* value of a FNCT */
bfa74976 2515 @} value;
38a92d50 2516 struct symrec *next; /* link field */
bfa74976
RS
2517@};
2518@end group
2519
2520@group
2521typedef struct symrec symrec;
2522
38a92d50 2523/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2524extern symrec *sym_table;
2525
a730d142 2526symrec *putsym (char const *, int);
38a92d50 2527symrec *getsym (char const *);
bfa74976 2528@end group
c93f22fc 2529@end example
bfa74976 2530
aeb57fb6
AD
2531The new version of @code{main} will call @code{init_table} to initialize
2532the symbol table:
bfa74976 2533
93c150b6 2534@comment file: mfcalc.y: 3
c93f22fc 2535@example
18b519c0 2536@group
bfa74976
RS
2537struct init
2538@{
38a92d50
PE
2539 char const *fname;
2540 double (*fnct) (double);
bfa74976
RS
2541@};
2542@end group
2543
2544@group
38a92d50 2545struct init const arith_fncts[] =
13863333 2546@{
f9c75dd0
AD
2547 @{ "atan", atan @},
2548 @{ "cos", cos @},
2549 @{ "exp", exp @},
2550 @{ "ln", log @},
2551 @{ "sin", sin @},
2552 @{ "sqrt", sqrt @},
2553 @{ 0, 0 @},
13863333 2554@};
18b519c0 2555@end group
bfa74976 2556
18b519c0 2557@group
bfa74976 2558/* The symbol table: a chain of `struct symrec'. */
38a92d50 2559symrec *sym_table;
bfa74976
RS
2560@end group
2561
2562@group
72d2299c 2563/* Put arithmetic functions in table. */
f9c75dd0 2564static
13863333
AD
2565void
2566init_table (void)
bfa74976
RS
2567@{
2568 int i;
bfa74976
RS
2569 for (i = 0; arith_fncts[i].fname != 0; i++)
2570 @{
aaaa2aae 2571 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2572 ptr->value.fnctptr = arith_fncts[i].fnct;
2573 @}
2574@}
2575@end group
c93f22fc 2576@end example
bfa74976
RS
2577
2578By simply editing the initialization list and adding the necessary include
2579files, you can add additional functions to the calculator.
2580
2581Two important functions allow look-up and installation of symbols in the
2582symbol table. The function @code{putsym} is passed a name and the type
2583(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2584linked to the front of the list, and a pointer to the object is returned.
2585The function @code{getsym} is passed the name of the symbol to look up. If
2586found, a pointer to that symbol is returned; otherwise zero is returned.
2587
93c150b6 2588@comment file: mfcalc.y: 3
c93f22fc 2589@example
f9c75dd0
AD
2590#include <stdlib.h> /* malloc. */
2591#include <string.h> /* strlen. */
2592
d4fca427 2593@group
bfa74976 2594symrec *
38a92d50 2595putsym (char const *sym_name, int sym_type)
bfa74976 2596@{
aaaa2aae 2597 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2598 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2599 strcpy (ptr->name,sym_name);
2600 ptr->type = sym_type;
72d2299c 2601 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2602 ptr->next = (struct symrec *)sym_table;
2603 sym_table = ptr;
2604 return ptr;
2605@}
d4fca427 2606@end group
bfa74976 2607
d4fca427 2608@group
bfa74976 2609symrec *
38a92d50 2610getsym (char const *sym_name)
bfa74976
RS
2611@{
2612 symrec *ptr;
2613 for (ptr = sym_table; ptr != (symrec *) 0;
2614 ptr = (symrec *)ptr->next)
f518dbaf 2615 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2616 return ptr;
2617 return 0;
2618@}
d4fca427 2619@end group
c93f22fc 2620@end example
bfa74976 2621
aeb57fb6
AD
2622@node Mfcalc Lexer
2623@subsection The @code{mfcalc} Lexer
2624
bfa74976
RS
2625The function @code{yylex} must now recognize variables, numeric values, and
2626the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2627characters with a leading letter are recognized as either variables or
bfa74976
RS
2628functions depending on what the symbol table says about them.
2629
2630The string is passed to @code{getsym} for look up in the symbol table. If
2631the name appears in the table, a pointer to its location and its type
2632(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2633already in the table, then it is installed as a @code{VAR} using
2634@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2635returned to @code{yyparse}.
bfa74976
RS
2636
2637No change is needed in the handling of numeric values and arithmetic
2638operators in @code{yylex}.
2639
93c150b6 2640@comment file: mfcalc.y: 3
c93f22fc 2641@example
bfa74976
RS
2642@group
2643#include <ctype.h>
18b519c0 2644@end group
13863333 2645
18b519c0 2646@group
13863333
AD
2647int
2648yylex (void)
bfa74976
RS
2649@{
2650 int c;
2651
72d2299c 2652 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2653 while ((c = getchar ()) == ' ' || c == '\t')
2654 continue;
bfa74976
RS
2655
2656 if (c == EOF)
2657 return 0;
2658@end group
2659
2660@group
2661 /* Char starts a number => parse the number. */
2662 if (c == '.' || isdigit (c))
2663 @{
2664 ungetc (c, stdin);
2665 scanf ("%lf", &yylval.val);
2666 return NUM;
2667 @}
2668@end group
2669
2670@group
2671 /* Char starts an identifier => read the name. */
2672 if (isalpha (c))
2673 @{
aaaa2aae
AD
2674 /* Initially make the buffer long enough
2675 for a 40-character symbol name. */
2676 static size_t length = 40;
bfa74976 2677 static char *symbuf = 0;
aaaa2aae 2678 symrec *s;
bfa74976
RS
2679 int i;
2680@end group
aaaa2aae
AD
2681 if (!symbuf)
2682 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2683
2684 i = 0;
2685 do
bfa74976
RS
2686@group
2687 @{
2688 /* If buffer is full, make it bigger. */
2689 if (i == length)
2690 @{
2691 length *= 2;
18b519c0 2692 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2693 @}
2694 /* Add this character to the buffer. */
2695 symbuf[i++] = c;
2696 /* Get another character. */
2697 c = getchar ();
2698 @}
2699@end group
2700@group
72d2299c 2701 while (isalnum (c));
bfa74976
RS
2702
2703 ungetc (c, stdin);
2704 symbuf[i] = '\0';
2705@end group
2706
2707@group
2708 s = getsym (symbuf);
2709 if (s == 0)
2710 s = putsym (symbuf, VAR);
2711 yylval.tptr = s;
2712 return s->type;
2713 @}
2714
2715 /* Any other character is a token by itself. */
2716 return c;
2717@}
2718@end group
c93f22fc 2719@end example
bfa74976 2720
aeb57fb6
AD
2721@node Mfcalc Main
2722@subsection The @code{mfcalc} Main
2723
2724The error reporting function is unchanged, and the new version of
93c150b6
AD
2725@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2726on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2727
93c150b6 2728@comment file: mfcalc.y: 3
c93f22fc 2729@example
aeb57fb6
AD
2730@group
2731/* Called by yyparse on error. */
2732void
2733yyerror (char const *s)
2734@{
2735 fprintf (stderr, "%s\n", s);
2736@}
2737@end group
2738
aaaa2aae 2739@group
aeb57fb6
AD
2740int
2741main (int argc, char const* argv[])
2742@{
93c150b6
AD
2743 int i;
2744 /* Enable parse traces on option -p. */
2745 for (i = 1; i < argc; ++i)
2746 if (!strcmp(argv[i], "-p"))
2747 yydebug = 1;
aeb57fb6
AD
2748 init_table ();
2749 return yyparse ();
2750@}
2751@end group
c93f22fc 2752@end example
aeb57fb6 2753
72d2299c 2754This program is both powerful and flexible. You may easily add new
704a47c4
AD
2755functions, and it is a simple job to modify this code to install
2756predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2757
342b8b6e 2758@node Exercises
bfa74976
RS
2759@section Exercises
2760@cindex exercises
2761
2762@enumerate
2763@item
2764Add some new functions from @file{math.h} to the initialization list.
2765
2766@item
2767Add another array that contains constants and their values. Then
2768modify @code{init_table} to add these constants to the symbol table.
2769It will be easiest to give the constants type @code{VAR}.
2770
2771@item
2772Make the program report an error if the user refers to an
2773uninitialized variable in any way except to store a value in it.
2774@end enumerate
2775
342b8b6e 2776@node Grammar File
bfa74976
RS
2777@chapter Bison Grammar Files
2778
2779Bison takes as input a context-free grammar specification and produces a
2780C-language function that recognizes correct instances of the grammar.
2781
ff7571c0 2782The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2783@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2784
2785@menu
303834cc
JD
2786* Grammar Outline:: Overall layout of the grammar file.
2787* Symbols:: Terminal and nonterminal symbols.
2788* Rules:: How to write grammar rules.
2789* Recursion:: Writing recursive rules.
2790* Semantics:: Semantic values and actions.
2791* Tracking Locations:: Locations and actions.
2792* Named References:: Using named references in actions.
2793* Declarations:: All kinds of Bison declarations are described here.
2794* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2795@end menu
2796
342b8b6e 2797@node Grammar Outline
bfa74976
RS
2798@section Outline of a Bison Grammar
2799
2800A Bison grammar file has four main sections, shown here with the
2801appropriate delimiters:
2802
2803@example
2804%@{
38a92d50 2805 @var{Prologue}
bfa74976
RS
2806%@}
2807
2808@var{Bison declarations}
2809
2810%%
2811@var{Grammar rules}
2812%%
2813
75f5aaea 2814@var{Epilogue}
bfa74976
RS
2815@end example
2816
2817Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2818As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2819continues until end of line.
bfa74976
RS
2820
2821@menu
f5f419de 2822* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2823* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2824* Bison Declarations:: Syntax and usage of the Bison declarations section.
2825* Grammar Rules:: Syntax and usage of the grammar rules section.
2826* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2827@end menu
2828
38a92d50 2829@node Prologue
75f5aaea
MA
2830@subsection The prologue
2831@cindex declarations section
2832@cindex Prologue
2833@cindex declarations
bfa74976 2834
f8e1c9e5
AD
2835The @var{Prologue} section contains macro definitions and declarations
2836of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2837rules. These are copied to the beginning of the parser implementation
2838file so that they precede the definition of @code{yyparse}. You can
2839use @samp{#include} to get the declarations from a header file. If
2840you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2841@samp{%@}} delimiters that bracket this section.
bfa74976 2842
9c437126 2843The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2844of @samp{%@}} that is outside a comment, a string literal, or a
2845character constant.
2846
c732d2c6
AD
2847You may have more than one @var{Prologue} section, intermixed with the
2848@var{Bison declarations}. This allows you to have C and Bison
2849declarations that refer to each other. For example, the @code{%union}
2850declaration may use types defined in a header file, and you may wish to
2851prototype functions that take arguments of type @code{YYSTYPE}. This
2852can be done with two @var{Prologue} blocks, one before and one after the
2853@code{%union} declaration.
2854
c93f22fc 2855@example
c732d2c6 2856%@{
aef3da86 2857 #define _GNU_SOURCE
38a92d50
PE
2858 #include <stdio.h>
2859 #include "ptypes.h"
c732d2c6
AD
2860%@}
2861
2862%union @{
779e7ceb 2863 long int n;
c732d2c6
AD
2864 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2865@}
2866
2867%@{
38a92d50
PE
2868 static void print_token_value (FILE *, int, YYSTYPE);
2869 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2870%@}
2871
2872@dots{}
c93f22fc 2873@end example
c732d2c6 2874
aef3da86
PE
2875When in doubt, it is usually safer to put prologue code before all
2876Bison declarations, rather than after. For example, any definitions
2877of feature test macros like @code{_GNU_SOURCE} or
2878@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2879feature test macros can affect the behavior of Bison-generated
2880@code{#include} directives.
2881
2cbe6b7f
JD
2882@node Prologue Alternatives
2883@subsection Prologue Alternatives
2884@cindex Prologue Alternatives
2885
136a0f76 2886@findex %code
16dc6a9e
JD
2887@findex %code requires
2888@findex %code provides
2889@findex %code top
85894313 2890
2cbe6b7f 2891The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2892inflexible. As an alternative, Bison provides a @code{%code}
2893directive with an explicit qualifier field, which identifies the
2894purpose of the code and thus the location(s) where Bison should
2895generate it. For C/C++, the qualifier can be omitted for the default
2896location, or it can be one of @code{requires}, @code{provides},
e0c07222 2897@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2898
2899Look again at the example of the previous section:
2900
c93f22fc 2901@example
2cbe6b7f
JD
2902%@{
2903 #define _GNU_SOURCE
2904 #include <stdio.h>
2905 #include "ptypes.h"
2906%@}
2907
2908%union @{
2909 long int n;
2910 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2911@}
2912
2913%@{
2914 static void print_token_value (FILE *, int, YYSTYPE);
2915 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2916%@}
2917
2918@dots{}
c93f22fc 2919@end example
2cbe6b7f
JD
2920
2921@noindent
ff7571c0
JD
2922Notice that there are two @var{Prologue} sections here, but there's a
2923subtle distinction between their functionality. For example, if you
2924decide to override Bison's default definition for @code{YYLTYPE}, in
2925which @var{Prologue} section should you write your new definition?
2926You should write it in the first since Bison will insert that code
2927into the parser implementation file @emph{before} the default
2928@code{YYLTYPE} definition. In which @var{Prologue} section should you
2929prototype an internal function, @code{trace_token}, that accepts
2930@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2931prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2932@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2933
2934This distinction in functionality between the two @var{Prologue} sections is
2935established by the appearance of the @code{%union} between them.
a501eca9 2936This behavior raises a few questions.
2cbe6b7f
JD
2937First, why should the position of a @code{%union} affect definitions related to
2938@code{YYLTYPE} and @code{yytokentype}?
2939Second, what if there is no @code{%union}?
2940In that case, the second kind of @var{Prologue} section is not available.
2941This behavior is not intuitive.
2942
8e0a5e9e 2943To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2944@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2945Let's go ahead and add the new @code{YYLTYPE} definition and the
2946@code{trace_token} prototype at the same time:
2947
c93f22fc 2948@example
16dc6a9e 2949%code top @{
2cbe6b7f
JD
2950 #define _GNU_SOURCE
2951 #include <stdio.h>
8e0a5e9e
JD
2952
2953 /* WARNING: The following code really belongs
16dc6a9e 2954 * in a `%code requires'; see below. */
8e0a5e9e 2955
2cbe6b7f
JD
2956 #include "ptypes.h"
2957 #define YYLTYPE YYLTYPE
2958 typedef struct YYLTYPE
2959 @{
2960 int first_line;
2961 int first_column;
2962 int last_line;
2963 int last_column;
2964 char *filename;
2965 @} YYLTYPE;
2966@}
2967
2968%union @{
2969 long int n;
2970 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2971@}
2972
2973%code @{
2974 static void print_token_value (FILE *, int, YYSTYPE);
2975 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2976 static void trace_token (enum yytokentype token, YYLTYPE loc);
2977@}
2978
2979@dots{}
c93f22fc 2980@end example
2cbe6b7f
JD
2981
2982@noindent
16dc6a9e
JD
2983In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2984functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2985explicit which kind you intend.
2cbe6b7f
JD
2986Moreover, both kinds are always available even in the absence of @code{%union}.
2987
ff7571c0
JD
2988The @code{%code top} block above logically contains two parts. The
2989first two lines before the warning need to appear near the top of the
2990parser implementation file. The first line after the warning is
2991required by @code{YYSTYPE} and thus also needs to appear in the parser
2992implementation file. However, if you've instructed Bison to generate
2993a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2994want that line to appear before the @code{YYSTYPE} definition in that
2995header file as well. The @code{YYLTYPE} definition should also appear
2996in the parser header file to override the default @code{YYLTYPE}
2997definition there.
2cbe6b7f 2998
16dc6a9e 2999In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
3000lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
3001definitions.
16dc6a9e 3002Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3003
c93f22fc 3004@example
d4fca427 3005@group
16dc6a9e 3006%code top @{
2cbe6b7f
JD
3007 #define _GNU_SOURCE
3008 #include <stdio.h>
3009@}
d4fca427 3010@end group
2cbe6b7f 3011
d4fca427 3012@group
16dc6a9e 3013%code requires @{
9bc0dd67
JD
3014 #include "ptypes.h"
3015@}
d4fca427
AD
3016@end group
3017@group
9bc0dd67
JD
3018%union @{
3019 long int n;
3020 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3021@}
d4fca427 3022@end group
9bc0dd67 3023
d4fca427 3024@group
16dc6a9e 3025%code requires @{
2cbe6b7f
JD
3026 #define YYLTYPE YYLTYPE
3027 typedef struct YYLTYPE
3028 @{
3029 int first_line;
3030 int first_column;
3031 int last_line;
3032 int last_column;
3033 char *filename;
3034 @} YYLTYPE;
3035@}
d4fca427 3036@end group
2cbe6b7f 3037
d4fca427 3038@group
136a0f76 3039%code @{
2cbe6b7f
JD
3040 static void print_token_value (FILE *, int, YYSTYPE);
3041 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3042 static void trace_token (enum yytokentype token, YYLTYPE loc);
3043@}
d4fca427 3044@end group
2cbe6b7f
JD
3045
3046@dots{}
c93f22fc 3047@end example
2cbe6b7f
JD
3048
3049@noindent
ff7571c0
JD
3050Now Bison will insert @code{#include "ptypes.h"} and the new
3051@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3052and @code{YYLTYPE} definitions in both the parser implementation file
3053and the parser header file. (By the same reasoning, @code{%code
3054requires} would also be the appropriate place to write your own
3055definition for @code{YYSTYPE}.)
3056
3057When you are writing dependency code for @code{YYSTYPE} and
3058@code{YYLTYPE}, you should prefer @code{%code requires} over
3059@code{%code top} regardless of whether you instruct Bison to generate
3060a parser header file. When you are writing code that you need Bison
3061to insert only into the parser implementation file and that has no
3062special need to appear at the top of that file, you should prefer the
3063unqualified @code{%code} over @code{%code top}. These practices will
3064make the purpose of each block of your code explicit to Bison and to
3065other developers reading your grammar file. Following these
3066practices, we expect the unqualified @code{%code} and @code{%code
3067requires} to be the most important of the four @var{Prologue}
16dc6a9e 3068alternatives.
a501eca9 3069
ff7571c0
JD
3070At some point while developing your parser, you might decide to
3071provide @code{trace_token} to modules that are external to your
3072parser. Thus, you might wish for Bison to insert the prototype into
3073both the parser header file and the parser implementation file. Since
3074this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3075@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3076@code{%code requires}. More importantly, since it depends upon
3077@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3078sufficient. Instead, move its prototype from the unqualified
3079@code{%code} to a @code{%code provides}:
2cbe6b7f 3080
c93f22fc 3081@example
d4fca427 3082@group
16dc6a9e 3083%code top @{
2cbe6b7f 3084 #define _GNU_SOURCE
136a0f76 3085 #include <stdio.h>
2cbe6b7f 3086@}
d4fca427 3087@end group
136a0f76 3088
d4fca427 3089@group
16dc6a9e 3090%code requires @{
2cbe6b7f
JD
3091 #include "ptypes.h"
3092@}
d4fca427
AD
3093@end group
3094@group
2cbe6b7f
JD
3095%union @{
3096 long int n;
3097 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3098@}
d4fca427 3099@end group
2cbe6b7f 3100
d4fca427 3101@group
16dc6a9e 3102%code requires @{
2cbe6b7f
JD
3103 #define YYLTYPE YYLTYPE
3104 typedef struct YYLTYPE
3105 @{
3106 int first_line;
3107 int first_column;
3108 int last_line;
3109 int last_column;
3110 char *filename;
3111 @} YYLTYPE;
3112@}
d4fca427 3113@end group
2cbe6b7f 3114
d4fca427 3115@group
16dc6a9e 3116%code provides @{
2cbe6b7f
JD
3117 void trace_token (enum yytokentype token, YYLTYPE loc);
3118@}
d4fca427 3119@end group
2cbe6b7f 3120
d4fca427 3121@group
2cbe6b7f 3122%code @{
9bc0dd67
JD
3123 static void print_token_value (FILE *, int, YYSTYPE);
3124 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3125@}
d4fca427 3126@end group
9bc0dd67
JD
3127
3128@dots{}
c93f22fc 3129@end example
9bc0dd67 3130
2cbe6b7f 3131@noindent
ff7571c0
JD
3132Bison will insert the @code{trace_token} prototype into both the
3133parser header file and the parser implementation file after the
3134definitions for @code{yytokentype}, @code{YYLTYPE}, and
3135@code{YYSTYPE}.
2cbe6b7f 3136
ff7571c0
JD
3137The above examples are careful to write directives in an order that
3138reflects the layout of the generated parser implementation and header
3139files: @code{%code top}, @code{%code requires}, @code{%code provides},
3140and then @code{%code}. While your grammar files may generally be
3141easier to read if you also follow this order, Bison does not require
3142it. Instead, Bison lets you choose an organization that makes sense
3143to you.
2cbe6b7f 3144
a501eca9 3145You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3146In that case, Bison concatenates the contained code in declaration order.
3147This is the only way in which the position of one of these directives within
3148the grammar file affects its functionality.
3149
3150The result of the previous two properties is greater flexibility in how you may
3151organize your grammar file.
3152For example, you may organize semantic-type-related directives by semantic
3153type:
3154
c93f22fc 3155@example
d4fca427 3156@group
16dc6a9e 3157%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3158%union @{ type1 field1; @}
3159%destructor @{ type1_free ($$); @} <field1>
c5026327 3160%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3161@end group
2cbe6b7f 3162
d4fca427 3163@group
16dc6a9e 3164%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3165%union @{ type2 field2; @}
3166%destructor @{ type2_free ($$); @} <field2>
c5026327 3167%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3168@end group
c93f22fc 3169@end example
2cbe6b7f
JD
3170
3171@noindent
3172You could even place each of the above directive groups in the rules section of
3173the grammar file next to the set of rules that uses the associated semantic
3174type.
61fee93e
JD
3175(In the rules section, you must terminate each of those directives with a
3176semicolon.)
2cbe6b7f
JD
3177And you don't have to worry that some directive (like a @code{%union}) in the
3178definitions section is going to adversely affect their functionality in some
3179counter-intuitive manner just because it comes first.
3180Such an organization is not possible using @var{Prologue} sections.
3181
a501eca9 3182This section has been concerned with explaining the advantages of the four
8e0a5e9e 3183@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3184However, in most cases when using these directives, you shouldn't need to
3185think about all the low-level ordering issues discussed here.
3186Instead, you should simply use these directives to label each block of your
3187code according to its purpose and let Bison handle the ordering.
3188@code{%code} is the most generic label.
16dc6a9e
JD
3189Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3190as needed.
a501eca9 3191
342b8b6e 3192@node Bison Declarations
bfa74976
RS
3193@subsection The Bison Declarations Section
3194@cindex Bison declarations (introduction)
3195@cindex declarations, Bison (introduction)
3196
3197The @var{Bison declarations} section contains declarations that define
3198terminal and nonterminal symbols, specify precedence, and so on.
3199In some simple grammars you may not need any declarations.
3200@xref{Declarations, ,Bison Declarations}.
3201
342b8b6e 3202@node Grammar Rules
bfa74976
RS
3203@subsection The Grammar Rules Section
3204@cindex grammar rules section
3205@cindex rules section for grammar
3206
3207The @dfn{grammar rules} section contains one or more Bison grammar
3208rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3209
3210There must always be at least one grammar rule, and the first
3211@samp{%%} (which precedes the grammar rules) may never be omitted even
3212if it is the first thing in the file.
3213
38a92d50 3214@node Epilogue
75f5aaea 3215@subsection The epilogue
bfa74976 3216@cindex additional C code section
75f5aaea 3217@cindex epilogue
bfa74976
RS
3218@cindex C code, section for additional
3219
ff7571c0
JD
3220The @var{Epilogue} is copied verbatim to the end of the parser
3221implementation file, just as the @var{Prologue} is copied to the
3222beginning. This is the most convenient place to put anything that you
3223want to have in the parser implementation file but which need not come
3224before the definition of @code{yyparse}. For example, the definitions
3225of @code{yylex} and @code{yyerror} often go here. Because C requires
3226functions to be declared before being used, you often need to declare
3227functions like @code{yylex} and @code{yyerror} in the Prologue, even
3228if you define them in the Epilogue. @xref{Interface, ,Parser
3229C-Language Interface}.
bfa74976
RS
3230
3231If the last section is empty, you may omit the @samp{%%} that separates it
3232from the grammar rules.
3233
f8e1c9e5
AD
3234The Bison parser itself contains many macros and identifiers whose names
3235start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3236any such names (except those documented in this manual) in the epilogue
3237of the grammar file.
bfa74976 3238
342b8b6e 3239@node Symbols
bfa74976
RS
3240@section Symbols, Terminal and Nonterminal
3241@cindex nonterminal symbol
3242@cindex terminal symbol
3243@cindex token type
3244@cindex symbol
3245
3246@dfn{Symbols} in Bison grammars represent the grammatical classifications
3247of the language.
3248
3249A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3250class of syntactically equivalent tokens. You use the symbol in grammar
3251rules to mean that a token in that class is allowed. The symbol is
3252represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3253function returns a token type code to indicate what kind of token has
3254been read. You don't need to know what the code value is; you can use
3255the symbol to stand for it.
bfa74976 3256
f8e1c9e5
AD
3257A @dfn{nonterminal symbol} stands for a class of syntactically
3258equivalent groupings. The symbol name is used in writing grammar rules.
3259By convention, it should be all lower case.
bfa74976 3260
82f3355e
JD
3261Symbol names can contain letters, underscores, periods, and non-initial
3262digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3263with POSIX Yacc. Periods and dashes make symbol names less convenient to
3264use with named references, which require brackets around such names
3265(@pxref{Named References}). Terminal symbols that contain periods or dashes
3266make little sense: since they are not valid symbols (in most programming
3267languages) they are not exported as token names.
bfa74976 3268
931c7513 3269There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3270
3271@itemize @bullet
3272@item
3273A @dfn{named token type} is written with an identifier, like an
c827f760 3274identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3275such name must be defined with a Bison declaration such as
3276@code{%token}. @xref{Token Decl, ,Token Type Names}.
3277
3278@item
3279@cindex character token
3280@cindex literal token
3281@cindex single-character literal
931c7513
RS
3282A @dfn{character token type} (or @dfn{literal character token}) is
3283written in the grammar using the same syntax used in C for character
3284constants; for example, @code{'+'} is a character token type. A
3285character token type doesn't need to be declared unless you need to
3286specify its semantic value data type (@pxref{Value Type, ,Data Types of
3287Semantic Values}), associativity, or precedence (@pxref{Precedence,
3288,Operator Precedence}).
bfa74976
RS
3289
3290By convention, a character token type is used only to represent a
3291token that consists of that particular character. Thus, the token
3292type @code{'+'} is used to represent the character @samp{+} as a
3293token. Nothing enforces this convention, but if you depart from it,
3294your program will confuse other readers.
3295
3296All the usual escape sequences used in character literals in C can be
3297used in Bison as well, but you must not use the null character as a
72d2299c
PE
3298character literal because its numeric code, zero, signifies
3299end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3300for @code{yylex}}). Also, unlike standard C, trigraphs have no
3301special meaning in Bison character literals, nor is backslash-newline
3302allowed.
931c7513
RS
3303
3304@item
3305@cindex string token
3306@cindex literal string token
9ecbd125 3307@cindex multicharacter literal
931c7513
RS
3308A @dfn{literal string token} is written like a C string constant; for
3309example, @code{"<="} is a literal string token. A literal string token
3310doesn't need to be declared unless you need to specify its semantic
14ded682 3311value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3312(@pxref{Precedence}).
3313
3314You can associate the literal string token with a symbolic name as an
3315alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3316Declarations}). If you don't do that, the lexical analyzer has to
3317retrieve the token number for the literal string token from the
3318@code{yytname} table (@pxref{Calling Convention}).
3319
c827f760 3320@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3321
3322By convention, a literal string token is used only to represent a token
3323that consists of that particular string. Thus, you should use the token
3324type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3325does not enforce this convention, but if you depart from it, people who
931c7513
RS
3326read your program will be confused.
3327
3328All the escape sequences used in string literals in C can be used in
92ac3705
PE
3329Bison as well, except that you must not use a null character within a
3330string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3331meaning in Bison string literals, nor is backslash-newline allowed. A
3332literal string token must contain two or more characters; for a token
3333containing just one character, use a character token (see above).
bfa74976
RS
3334@end itemize
3335
3336How you choose to write a terminal symbol has no effect on its
3337grammatical meaning. That depends only on where it appears in rules and
3338on when the parser function returns that symbol.
3339
72d2299c
PE
3340The value returned by @code{yylex} is always one of the terminal
3341symbols, except that a zero or negative value signifies end-of-input.
3342Whichever way you write the token type in the grammar rules, you write
3343it the same way in the definition of @code{yylex}. The numeric code
3344for a character token type is simply the positive numeric code of the
3345character, so @code{yylex} can use the identical value to generate the
3346requisite code, though you may need to convert it to @code{unsigned
3347char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3348Each named token type becomes a C macro in the parser implementation
3349file, so @code{yylex} can use the name to stand for the code. (This
3350is why periods don't make sense in terminal symbols.) @xref{Calling
3351Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3352
3353If @code{yylex} is defined in a separate file, you need to arrange for the
3354token-type macro definitions to be available there. Use the @samp{-d}
3355option when you run Bison, so that it will write these macro definitions
3356into a separate header file @file{@var{name}.tab.h} which you can include
3357in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3358
72d2299c 3359If you want to write a grammar that is portable to any Standard C
9d9b8b70 3360host, you must use only nonnull character tokens taken from the basic
c827f760 3361execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3362digits, the 52 lower- and upper-case English letters, and the
3363characters in the following C-language string:
3364
3365@example
3366"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3367@end example
3368
f8e1c9e5
AD
3369The @code{yylex} function and Bison must use a consistent character set
3370and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3371ASCII environment, but then compile and run the resulting
f8e1c9e5 3372program in an environment that uses an incompatible character set like
8a4281b9
JD
3373EBCDIC, the resulting program may not work because the tables
3374generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3375character tokens. It is standard practice for software distributions to
3376contain C source files that were generated by Bison in an
8a4281b9
JD
3377ASCII environment, so installers on platforms that are
3378incompatible with ASCII must rebuild those files before
f8e1c9e5 3379compiling them.
e966383b 3380
bfa74976
RS
3381The symbol @code{error} is a terminal symbol reserved for error recovery
3382(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3383In particular, @code{yylex} should never return this value. The default
3384value of the error token is 256, unless you explicitly assigned 256 to
3385one of your tokens with a @code{%token} declaration.
bfa74976 3386
342b8b6e 3387@node Rules
bfa74976
RS
3388@section Syntax of Grammar Rules
3389@cindex rule syntax
3390@cindex grammar rule syntax
3391@cindex syntax of grammar rules
3392
3393A Bison grammar rule has the following general form:
3394
3395@example
e425e872 3396@group
5e9b6624 3397@var{result}: @var{components}@dots{};
e425e872 3398@end group
bfa74976
RS
3399@end example
3400
3401@noindent
9ecbd125 3402where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3403and @var{components} are various terminal and nonterminal symbols that
13863333 3404are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3405
3406For example,
3407
3408@example
3409@group
5e9b6624 3410exp: exp '+' exp;
bfa74976
RS
3411@end group
3412@end example
3413
3414@noindent
3415says that two groupings of type @code{exp}, with a @samp{+} token in between,
3416can be combined into a larger grouping of type @code{exp}.
3417
72d2299c
PE
3418White space in rules is significant only to separate symbols. You can add
3419extra white space as you wish.
bfa74976
RS
3420
3421Scattered among the components can be @var{actions} that determine
3422the semantics of the rule. An action looks like this:
3423
3424@example
3425@{@var{C statements}@}
3426@end example
3427
3428@noindent
287c78f6
PE
3429@cindex braced code
3430This is an example of @dfn{braced code}, that is, C code surrounded by
3431braces, much like a compound statement in C@. Braced code can contain
3432any sequence of C tokens, so long as its braces are balanced. Bison
3433does not check the braced code for correctness directly; it merely
ff7571c0
JD
3434copies the code to the parser implementation file, where the C
3435compiler can check it.
287c78f6
PE
3436
3437Within braced code, the balanced-brace count is not affected by braces
3438within comments, string literals, or character constants, but it is
3439affected by the C digraphs @samp{<%} and @samp{%>} that represent
3440braces. At the top level braced code must be terminated by @samp{@}}
3441and not by a digraph. Bison does not look for trigraphs, so if braced
3442code uses trigraphs you should ensure that they do not affect the
3443nesting of braces or the boundaries of comments, string literals, or
3444character constants.
3445
bfa74976
RS
3446Usually there is only one action and it follows the components.
3447@xref{Actions}.
3448
3449@findex |
3450Multiple rules for the same @var{result} can be written separately or can
3451be joined with the vertical-bar character @samp{|} as follows:
3452
bfa74976
RS
3453@example
3454@group
5e9b6624
AD
3455@var{result}:
3456 @var{rule1-components}@dots{}
3457| @var{rule2-components}@dots{}
3458@dots{}
3459;
bfa74976
RS
3460@end group
3461@end example
bfa74976
RS
3462
3463@noindent
3464They are still considered distinct rules even when joined in this way.
3465
3466If @var{components} in a rule is empty, it means that @var{result} can
3467match the empty string. For example, here is how to define a
3468comma-separated sequence of zero or more @code{exp} groupings:
3469
3470@example
3471@group
5e9b6624
AD
3472expseq:
3473 /* empty */
3474| expseq1
3475;
bfa74976
RS
3476@end group
3477
3478@group
5e9b6624
AD
3479expseq1:
3480 exp
3481| expseq1 ',' exp
3482;
bfa74976
RS
3483@end group
3484@end example
3485
3486@noindent
3487It is customary to write a comment @samp{/* empty */} in each rule
3488with no components.
3489
342b8b6e 3490@node Recursion
bfa74976
RS
3491@section Recursive Rules
3492@cindex recursive rule
3493
f8e1c9e5
AD
3494A rule is called @dfn{recursive} when its @var{result} nonterminal
3495appears also on its right hand side. Nearly all Bison grammars need to
3496use recursion, because that is the only way to define a sequence of any
3497number of a particular thing. Consider this recursive definition of a
9ecbd125 3498comma-separated sequence of one or more expressions:
bfa74976
RS
3499
3500@example
3501@group
5e9b6624
AD
3502expseq1:
3503 exp
3504| expseq1 ',' exp
3505;
bfa74976
RS
3506@end group
3507@end example
3508
3509@cindex left recursion
3510@cindex right recursion
3511@noindent
3512Since the recursive use of @code{expseq1} is the leftmost symbol in the
3513right hand side, we call this @dfn{left recursion}. By contrast, here
3514the same construct is defined using @dfn{right recursion}:
3515
3516@example
3517@group
5e9b6624
AD
3518expseq1:
3519 exp
3520| exp ',' expseq1
3521;
bfa74976
RS
3522@end group
3523@end example
3524
3525@noindent
ec3bc396
AD
3526Any kind of sequence can be defined using either left recursion or right
3527recursion, but you should always use left recursion, because it can
3528parse a sequence of any number of elements with bounded stack space.
3529Right recursion uses up space on the Bison stack in proportion to the
3530number of elements in the sequence, because all the elements must be
3531shifted onto the stack before the rule can be applied even once.
3532@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3533of this.
bfa74976
RS
3534
3535@cindex mutual recursion
3536@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3537rule does not appear directly on its right hand side, but does appear
3538in rules for other nonterminals which do appear on its right hand
13863333 3539side.
bfa74976
RS
3540
3541For example:
3542
3543@example
3544@group
5e9b6624
AD
3545expr:
3546 primary
3547| primary '+' primary
3548;
bfa74976
RS
3549@end group
3550
3551@group
5e9b6624
AD
3552primary:
3553 constant
3554| '(' expr ')'
3555;
bfa74976
RS
3556@end group
3557@end example
3558
3559@noindent
3560defines two mutually-recursive nonterminals, since each refers to the
3561other.
3562
342b8b6e 3563@node Semantics
bfa74976
RS
3564@section Defining Language Semantics
3565@cindex defining language semantics
13863333 3566@cindex language semantics, defining
bfa74976
RS
3567
3568The grammar rules for a language determine only the syntax. The semantics
3569are determined by the semantic values associated with various tokens and
3570groupings, and by the actions taken when various groupings are recognized.
3571
3572For example, the calculator calculates properly because the value
3573associated with each expression is the proper number; it adds properly
3574because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3575the numbers associated with @var{x} and @var{y}.
3576
3577@menu
3578* Value Type:: Specifying one data type for all semantic values.
3579* Multiple Types:: Specifying several alternative data types.
3580* Actions:: An action is the semantic definition of a grammar rule.
3581* Action Types:: Specifying data types for actions to operate on.
3582* Mid-Rule Actions:: Most actions go at the end of a rule.
3583 This says when, why and how to use the exceptional
3584 action in the middle of a rule.
3585@end menu
3586
342b8b6e 3587@node Value Type
bfa74976
RS
3588@subsection Data Types of Semantic Values
3589@cindex semantic value type
3590@cindex value type, semantic
3591@cindex data types of semantic values
3592@cindex default data type
3593
3594In a simple program it may be sufficient to use the same data type for
3595the semantic values of all language constructs. This was true in the
8a4281b9 3596RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3597Notation Calculator}).
bfa74976 3598
ddc8ede1
PE
3599Bison normally uses the type @code{int} for semantic values if your
3600program uses the same data type for all language constructs. To
bfa74976
RS
3601specify some other type, define @code{YYSTYPE} as a macro, like this:
3602
3603@example
3604#define YYSTYPE double
3605@end example
3606
3607@noindent
50cce58e
PE
3608@code{YYSTYPE}'s replacement list should be a type name
3609that does not contain parentheses or square brackets.
342b8b6e 3610This macro definition must go in the prologue of the grammar file
75f5aaea 3611(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3612
342b8b6e 3613@node Multiple Types
bfa74976
RS
3614@subsection More Than One Value Type
3615
3616In most programs, you will need different data types for different kinds
3617of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3618@code{int} or @code{long int}, while a string constant needs type
3619@code{char *}, and an identifier might need a pointer to an entry in the
3620symbol table.
bfa74976
RS
3621
3622To use more than one data type for semantic values in one parser, Bison
3623requires you to do two things:
3624
3625@itemize @bullet
3626@item
ddc8ede1 3627Specify the entire collection of possible data types, either by using the
704a47c4 3628@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3629Value Types}), or by using a @code{typedef} or a @code{#define} to
3630define @code{YYSTYPE} to be a union type whose member names are
3631the type tags.
bfa74976
RS
3632
3633@item
14ded682
AD
3634Choose one of those types for each symbol (terminal or nonterminal) for
3635which semantic values are used. This is done for tokens with the
3636@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3637and for groupings with the @code{%type} Bison declaration (@pxref{Type
3638Decl, ,Nonterminal Symbols}).
bfa74976
RS
3639@end itemize
3640
342b8b6e 3641@node Actions
bfa74976
RS
3642@subsection Actions
3643@cindex action
3644@vindex $$
3645@vindex $@var{n}
d013372c
AR
3646@vindex $@var{name}
3647@vindex $[@var{name}]
bfa74976
RS
3648
3649An action accompanies a syntactic rule and contains C code to be executed
3650each time an instance of that rule is recognized. The task of most actions
3651is to compute a semantic value for the grouping built by the rule from the
3652semantic values associated with tokens or smaller groupings.
3653
287c78f6
PE
3654An action consists of braced code containing C statements, and can be
3655placed at any position in the rule;
704a47c4
AD
3656it is executed at that position. Most rules have just one action at the
3657end of the rule, following all the components. Actions in the middle of
3658a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3659Actions, ,Actions in Mid-Rule}).
bfa74976 3660
ff7571c0
JD
3661The C code in an action can refer to the semantic values of the
3662components matched by the rule with the construct @code{$@var{n}},
3663which stands for the value of the @var{n}th component. The semantic
3664value for the grouping being constructed is @code{$$}. In addition,
3665the semantic values of symbols can be accessed with the named
3666references construct @code{$@var{name}} or @code{$[@var{name}]}.
3667Bison translates both of these constructs into expressions of the
3668appropriate type when it copies the actions into the parser
3669implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3670for the current grouping) is translated to a modifiable lvalue, so it
3671can be assigned to.
bfa74976
RS
3672
3673Here is a typical example:
3674
3675@example
3676@group
5e9b6624
AD
3677exp:
3678@dots{}
3679| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3680@end group
3681@end example
3682
d013372c
AR
3683Or, in terms of named references:
3684
3685@example
3686@group
5e9b6624
AD
3687exp[result]:
3688@dots{}
3689| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3690@end group
3691@end example
3692
bfa74976
RS
3693@noindent
3694This rule constructs an @code{exp} from two smaller @code{exp} groupings
3695connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3696(@code{$left} and @code{$right})
bfa74976
RS
3697refer to the semantic values of the two component @code{exp} groupings,
3698which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3699The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3700semantic value of
bfa74976
RS
3701the addition-expression just recognized by the rule. If there were a
3702useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3703referred to as @code{$2}.
bfa74976 3704
a7b15ab9
JD
3705@xref{Named References}, for more information about using the named
3706references construct.
d013372c 3707
3ded9a63
AD
3708Note that the vertical-bar character @samp{|} is really a rule
3709separator, and actions are attached to a single rule. This is a
3710difference with tools like Flex, for which @samp{|} stands for either
3711``or'', or ``the same action as that of the next rule''. In the
3712following example, the action is triggered only when @samp{b} is found:
3713
3714@example
3715@group
3716a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3717@end group
3718@end example
3719
bfa74976
RS
3720@cindex default action
3721If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3722@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3723becomes the value of the whole rule. Of course, the default action is
3724valid only if the two data types match. There is no meaningful default
3725action for an empty rule; every empty rule must have an explicit action
3726unless the rule's value does not matter.
bfa74976
RS
3727
3728@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3729to tokens and groupings on the stack @emph{before} those that match the
3730current rule. This is a very risky practice, and to use it reliably
3731you must be certain of the context in which the rule is applied. Here
3732is a case in which you can use this reliably:
3733
3734@example
3735@group
5e9b6624
AD
3736foo:
3737 expr bar '+' expr @{ @dots{} @}
3738| expr bar '-' expr @{ @dots{} @}
3739;
bfa74976
RS
3740@end group
3741
3742@group
5e9b6624
AD
3743bar:
3744 /* empty */ @{ previous_expr = $0; @}
3745;
bfa74976
RS
3746@end group
3747@end example
3748
3749As long as @code{bar} is used only in the fashion shown here, @code{$0}
3750always refers to the @code{expr} which precedes @code{bar} in the
3751definition of @code{foo}.
3752
32c29292 3753@vindex yylval
742e4900 3754It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3755any, from a semantic action.
3756This semantic value is stored in @code{yylval}.
3757@xref{Action Features, ,Special Features for Use in Actions}.
3758
342b8b6e 3759@node Action Types
bfa74976
RS
3760@subsection Data Types of Values in Actions
3761@cindex action data types
3762@cindex data types in actions
3763
3764If you have chosen a single data type for semantic values, the @code{$$}
3765and @code{$@var{n}} constructs always have that data type.
3766
3767If you have used @code{%union} to specify a variety of data types, then you
3768must declare a choice among these types for each terminal or nonterminal
3769symbol that can have a semantic value. Then each time you use @code{$$} or
3770@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3771in the rule. In this example,
bfa74976
RS
3772
3773@example
3774@group
5e9b6624
AD
3775exp:
3776 @dots{}
3777| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3778@end group
3779@end example
3780
3781@noindent
3782@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3783have the data type declared for the nonterminal symbol @code{exp}. If
3784@code{$2} were used, it would have the data type declared for the
e0c471a9 3785terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3786
3787Alternatively, you can specify the data type when you refer to the value,
3788by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3789reference. For example, if you have defined types as shown here:
3790
3791@example
3792@group
3793%union @{
3794 int itype;
3795 double dtype;
3796@}
3797@end group
3798@end example
3799
3800@noindent
3801then you can write @code{$<itype>1} to refer to the first subunit of the
3802rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3803
342b8b6e 3804@node Mid-Rule Actions
bfa74976
RS
3805@subsection Actions in Mid-Rule
3806@cindex actions in mid-rule
3807@cindex mid-rule actions
3808
3809Occasionally it is useful to put an action in the middle of a rule.
3810These actions are written just like usual end-of-rule actions, but they
3811are executed before the parser even recognizes the following components.
3812
3813A mid-rule action may refer to the components preceding it using
3814@code{$@var{n}}, but it may not refer to subsequent components because
3815it is run before they are parsed.
3816
3817The mid-rule action itself counts as one of the components of the rule.
3818This makes a difference when there is another action later in the same rule
3819(and usually there is another at the end): you have to count the actions
3820along with the symbols when working out which number @var{n} to use in
3821@code{$@var{n}}.
3822
3823The mid-rule action can also have a semantic value. The action can set
3824its value with an assignment to @code{$$}, and actions later in the rule
3825can refer to the value using @code{$@var{n}}. Since there is no symbol
3826to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3827in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3828specify a data type each time you refer to this value.
bfa74976
RS
3829
3830There is no way to set the value of the entire rule with a mid-rule
3831action, because assignments to @code{$$} do not have that effect. The
3832only way to set the value for the entire rule is with an ordinary action
3833at the end of the rule.
3834
3835Here is an example from a hypothetical compiler, handling a @code{let}
3836statement that looks like @samp{let (@var{variable}) @var{statement}} and
3837serves to create a variable named @var{variable} temporarily for the
3838duration of @var{statement}. To parse this construct, we must put
3839@var{variable} into the symbol table while @var{statement} is parsed, then
3840remove it afterward. Here is how it is done:
3841
3842@example
3843@group
5e9b6624
AD
3844stmt:
3845 LET '(' var ')'
3846 @{ $<context>$ = push_context (); declare_variable ($3); @}
3847 stmt
3848 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3849@end group
3850@end example
3851
3852@noindent
3853As soon as @samp{let (@var{variable})} has been recognized, the first
3854action is run. It saves a copy of the current semantic context (the
3855list of accessible variables) as its semantic value, using alternative
3856@code{context} in the data-type union. Then it calls
3857@code{declare_variable} to add the new variable to that list. Once the
3858first action is finished, the embedded statement @code{stmt} can be
3859parsed. Note that the mid-rule action is component number 5, so the
3860@samp{stmt} is component number 6.
3861
3862After the embedded statement is parsed, its semantic value becomes the
3863value of the entire @code{let}-statement. Then the semantic value from the
3864earlier action is used to restore the prior list of variables. This
3865removes the temporary @code{let}-variable from the list so that it won't
3866appear to exist while the rest of the program is parsed.
3867
841a7737
JD
3868@findex %destructor
3869@cindex discarded symbols, mid-rule actions
3870@cindex error recovery, mid-rule actions
3871In the above example, if the parser initiates error recovery (@pxref{Error
3872Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3873it might discard the previous semantic context @code{$<context>5} without
3874restoring it.
3875Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3876Discarded Symbols}).
ec5479ce
JD
3877However, Bison currently provides no means to declare a destructor specific to
3878a particular mid-rule action's semantic value.
841a7737
JD
3879
3880One solution is to bury the mid-rule action inside a nonterminal symbol and to
3881declare a destructor for that symbol:
3882
3883@example
3884@group
3885%type <context> let
3886%destructor @{ pop_context ($$); @} let
3887
3888%%
3889
5e9b6624
AD
3890stmt:
3891 let stmt
3892 @{
3893 $$ = $2;
3894 pop_context ($1);
3895 @};
841a7737 3896
5e9b6624
AD
3897let:
3898 LET '(' var ')'
3899 @{
3900 $$ = push_context ();
3901 declare_variable ($3);
3902 @};
841a7737
JD
3903
3904@end group
3905@end example
3906
3907@noindent
3908Note that the action is now at the end of its rule.
3909Any mid-rule action can be converted to an end-of-rule action in this way, and
3910this is what Bison actually does to implement mid-rule actions.
3911
bfa74976
RS
3912Taking action before a rule is completely recognized often leads to
3913conflicts since the parser must commit to a parse in order to execute the
3914action. For example, the following two rules, without mid-rule actions,
3915can coexist in a working parser because the parser can shift the open-brace
3916token and look at what follows before deciding whether there is a
3917declaration or not:
3918
3919@example
3920@group
5e9b6624
AD
3921compound:
3922 '@{' declarations statements '@}'
3923| '@{' statements '@}'
3924;
bfa74976
RS
3925@end group
3926@end example
3927
3928@noindent
3929But when we add a mid-rule action as follows, the rules become nonfunctional:
3930
3931@example
3932@group
5e9b6624
AD
3933compound:
3934 @{ prepare_for_local_variables (); @}
3935 '@{' declarations statements '@}'
bfa74976
RS
3936@end group
3937@group
5e9b6624
AD
3938| '@{' statements '@}'
3939;
bfa74976
RS
3940@end group
3941@end example
3942
3943@noindent
3944Now the parser is forced to decide whether to run the mid-rule action
3945when it has read no farther than the open-brace. In other words, it
3946must commit to using one rule or the other, without sufficient
3947information to do it correctly. (The open-brace token is what is called
742e4900
JD
3948the @dfn{lookahead} token at this time, since the parser is still
3949deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3950
3951You might think that you could correct the problem by putting identical
3952actions into the two rules, like this:
3953
3954@example
3955@group
5e9b6624
AD
3956compound:
3957 @{ prepare_for_local_variables (); @}
3958 '@{' declarations statements '@}'
3959| @{ prepare_for_local_variables (); @}
3960 '@{' statements '@}'
3961;
bfa74976
RS
3962@end group
3963@end example
3964
3965@noindent
3966But this does not help, because Bison does not realize that the two actions
3967are identical. (Bison never tries to understand the C code in an action.)
3968
3969If the grammar is such that a declaration can be distinguished from a
3970statement by the first token (which is true in C), then one solution which
3971does work is to put the action after the open-brace, like this:
3972
3973@example
3974@group
5e9b6624
AD
3975compound:
3976 '@{' @{ prepare_for_local_variables (); @}
3977 declarations statements '@}'
3978| '@{' statements '@}'
3979;
bfa74976
RS
3980@end group
3981@end example
3982
3983@noindent
3984Now the first token of the following declaration or statement,
3985which would in any case tell Bison which rule to use, can still do so.
3986
3987Another solution is to bury the action inside a nonterminal symbol which
3988serves as a subroutine:
3989
3990@example
3991@group
5e9b6624
AD
3992subroutine:
3993 /* empty */ @{ prepare_for_local_variables (); @}
3994;
bfa74976
RS
3995@end group
3996
3997@group
5e9b6624
AD
3998compound:
3999 subroutine '@{' declarations statements '@}'
4000| subroutine '@{' statements '@}'
4001;
bfa74976
RS
4002@end group
4003@end example
4004
4005@noindent
4006Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4007deciding which rule for @code{compound} it will eventually use.
bfa74976 4008
303834cc 4009@node Tracking Locations
847bf1f5
AD
4010@section Tracking Locations
4011@cindex location
95923bd6
AD
4012@cindex textual location
4013@cindex location, textual
847bf1f5
AD
4014
4015Though grammar rules and semantic actions are enough to write a fully
72d2299c 4016functional parser, it can be useful to process some additional information,
3e259915
MA
4017especially symbol locations.
4018
704a47c4
AD
4019The way locations are handled is defined by providing a data type, and
4020actions to take when rules are matched.
847bf1f5
AD
4021
4022@menu
4023* Location Type:: Specifying a data type for locations.
4024* Actions and Locations:: Using locations in actions.
4025* Location Default Action:: Defining a general way to compute locations.
4026@end menu
4027
342b8b6e 4028@node Location Type
847bf1f5
AD
4029@subsection Data Type of Locations
4030@cindex data type of locations
4031@cindex default location type
4032
4033Defining a data type for locations is much simpler than for semantic values,
4034since all tokens and groupings always use the same type.
4035
50cce58e
PE
4036You can specify the type of locations by defining a macro called
4037@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4038defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4039When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4040four members:
4041
4042@example
6273355b 4043typedef struct YYLTYPE
847bf1f5
AD
4044@{
4045 int first_line;
4046 int first_column;
4047 int last_line;
4048 int last_column;
6273355b 4049@} YYLTYPE;
847bf1f5
AD
4050@end example
4051
d59e456d
AD
4052When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4053initializes all these fields to 1 for @code{yylloc}. To initialize
4054@code{yylloc} with a custom location type (or to chose a different
4055initialization), use the @code{%initial-action} directive. @xref{Initial
4056Action Decl, , Performing Actions before Parsing}.
cd48d21d 4057
342b8b6e 4058@node Actions and Locations
847bf1f5
AD
4059@subsection Actions and Locations
4060@cindex location actions
4061@cindex actions, location
4062@vindex @@$
4063@vindex @@@var{n}
d013372c
AR
4064@vindex @@@var{name}
4065@vindex @@[@var{name}]
847bf1f5
AD
4066
4067Actions are not only useful for defining language semantics, but also for
4068describing the behavior of the output parser with locations.
4069
4070The most obvious way for building locations of syntactic groupings is very
72d2299c 4071similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4072constructs can be used to access the locations of the elements being matched.
4073The location of the @var{n}th component of the right hand side is
4074@code{@@@var{n}}, while the location of the left hand side grouping is
4075@code{@@$}.
4076
d013372c
AR
4077In addition, the named references construct @code{@@@var{name}} and
4078@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4079@xref{Named References}, for more information about using the named
4080references construct.
d013372c 4081
3e259915 4082Here is a basic example using the default data type for locations:
847bf1f5
AD
4083
4084@example
4085@group
5e9b6624
AD
4086exp:
4087 @dots{}
4088| exp '/' exp
4089 @{
4090 @@$.first_column = @@1.first_column;
4091 @@$.first_line = @@1.first_line;
4092 @@$.last_column = @@3.last_column;
4093 @@$.last_line = @@3.last_line;
4094 if ($3)
4095 $$ = $1 / $3;
4096 else
4097 @{
4098 $$ = 1;
4099 fprintf (stderr,
4100 "Division by zero, l%d,c%d-l%d,c%d",
4101 @@3.first_line, @@3.first_column,
4102 @@3.last_line, @@3.last_column);
4103 @}
4104 @}
847bf1f5
AD
4105@end group
4106@end example
4107
3e259915 4108As for semantic values, there is a default action for locations that is
72d2299c 4109run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4110beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4111last symbol.
3e259915 4112
72d2299c 4113With this default action, the location tracking can be fully automatic. The
3e259915
MA
4114example above simply rewrites this way:
4115
4116@example
4117@group
5e9b6624
AD
4118exp:
4119 @dots{}
4120| exp '/' exp
4121 @{
4122 if ($3)
4123 $$ = $1 / $3;
4124 else
4125 @{
4126 $$ = 1;
4127 fprintf (stderr,
4128 "Division by zero, l%d,c%d-l%d,c%d",
4129 @@3.first_line, @@3.first_column,
4130 @@3.last_line, @@3.last_column);
4131 @}
4132 @}
3e259915
MA
4133@end group
4134@end example
847bf1f5 4135
32c29292 4136@vindex yylloc
742e4900 4137It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4138from a semantic action.
4139This location is stored in @code{yylloc}.
4140@xref{Action Features, ,Special Features for Use in Actions}.
4141
342b8b6e 4142@node Location Default Action
847bf1f5
AD
4143@subsection Default Action for Locations
4144@vindex YYLLOC_DEFAULT
8a4281b9 4145@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4146
72d2299c 4147Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4148locations are much more general than semantic values, there is room in
4149the output parser to redefine the default action to take for each
72d2299c 4150rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4151matched, before the associated action is run. It is also invoked
4152while processing a syntax error, to compute the error's location.
8a4281b9 4153Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4154parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4155of that ambiguity.
847bf1f5 4156
3e259915 4157Most of the time, this macro is general enough to suppress location
79282c6c 4158dedicated code from semantic actions.
847bf1f5 4159
72d2299c 4160The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4161the location of the grouping (the result of the computation). When a
766de5eb 4162rule is matched, the second parameter identifies locations of
96b93a3d 4163all right hand side elements of the rule being matched, and the third
8710fc41 4164parameter is the size of the rule's right hand side.
8a4281b9 4165When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4166right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4167When processing a syntax error, the second parameter identifies locations
4168of the symbols that were discarded during error processing, and the third
96b93a3d 4169parameter is the number of discarded symbols.
847bf1f5 4170
766de5eb 4171By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4172
c93f22fc
AD
4173@example
4174@group
4175# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4176do \
4177 if (N) \
4178 @{ \
4179 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4180 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4181 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4182 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4183 @} \
4184 else \
4185 @{ \
4186 (Cur).first_line = (Cur).last_line = \
4187 YYRHSLOC(Rhs, 0).last_line; \
4188 (Cur).first_column = (Cur).last_column = \
4189 YYRHSLOC(Rhs, 0).last_column; \
4190 @} \
4191while (0)
4192@end group
4193@end example
676385e2 4194
aaaa2aae 4195@noindent
766de5eb
PE
4196where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4197in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4198just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4199
3e259915 4200When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4201
3e259915 4202@itemize @bullet
79282c6c 4203@item
72d2299c 4204All arguments are free of side-effects. However, only the first one (the
3e259915 4205result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4206
3e259915 4207@item
766de5eb
PE
4208For consistency with semantic actions, valid indexes within the
4209right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4210valid index, and it refers to the symbol just before the reduction.
4211During error processing @var{n} is always positive.
0ae99356
PE
4212
4213@item
4214Your macro should parenthesize its arguments, if need be, since the
4215actual arguments may not be surrounded by parentheses. Also, your
4216macro should expand to something that can be used as a single
4217statement when it is followed by a semicolon.
3e259915 4218@end itemize
847bf1f5 4219
378e917c 4220@node Named References
a7b15ab9 4221@section Named References
378e917c
JD
4222@cindex named references
4223
a40e77eb
JD
4224As described in the preceding sections, the traditional way to refer to any
4225semantic value or location is a @dfn{positional reference}, which takes the
4226form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4227such a reference is not very descriptive. Moreover, if you later decide to
4228insert or remove symbols in the right-hand side of a grammar rule, the need
4229to renumber such references can be tedious and error-prone.
4230
4231To avoid these issues, you can also refer to a semantic value or location
4232using a @dfn{named reference}. First of all, original symbol names may be
4233used as named references. For example:
378e917c
JD
4234
4235@example
4236@group
4237invocation: op '(' args ')'
4238 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4239@end group
4240@end example
4241
4242@noindent
a40e77eb 4243Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4244
4245@example
4246@group
4247invocation: op '(' args ')'
4248 @{ $$ = new_invocation ($op, $args, @@$); @}
4249@end group
4250@end example
4251
4252@noindent
4253However, sometimes regular symbol names are not sufficient due to
4254ambiguities:
4255
4256@example
4257@group
4258exp: exp '/' exp
4259 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4260
4261exp: exp '/' exp
4262 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4263
4264exp: exp '/' exp
4265 @{ $$ = $1 / $3; @} // No error.
4266@end group
4267@end example
4268
4269@noindent
4270When ambiguity occurs, explicitly declared names may be used for values and
4271locations. Explicit names are declared as a bracketed name after a symbol
4272appearance in rule definitions. For example:
4273@example
4274@group
4275exp[result]: exp[left] '/' exp[right]
4276 @{ $result = $left / $right; @}
4277@end group
4278@end example
4279
4280@noindent
a7b15ab9
JD
4281In order to access a semantic value generated by a mid-rule action, an
4282explicit name may also be declared by putting a bracketed name after the
4283closing brace of the mid-rule action code:
378e917c
JD
4284@example
4285@group
4286exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4287 @{ $res = $left + $right; @}
4288@end group
4289@end example
4290
4291@noindent
4292
4293In references, in order to specify names containing dots and dashes, an explicit
4294bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4295@example
4296@group
762caaf6 4297if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4298 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4299@end group
4300@end example
4301
4302It often happens that named references are followed by a dot, dash or other
4303C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4304@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4305@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4306value. In order to force Bison to recognize @samp{name.suffix} in its
4307entirety as the name of a semantic value, the bracketed syntax
4308@samp{$[name.suffix]} must be used.
4309
4310The named references feature is experimental. More user feedback will help
4311to stabilize it.
378e917c 4312
342b8b6e 4313@node Declarations
bfa74976
RS
4314@section Bison Declarations
4315@cindex declarations, Bison
4316@cindex Bison declarations
4317
4318The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4319used in formulating the grammar and the data types of semantic values.
4320@xref{Symbols}.
4321
4322All token type names (but not single-character literal tokens such as
4323@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4324declared if you need to specify which data type to use for the semantic
4325value (@pxref{Multiple Types, ,More Than One Value Type}).
4326
ff7571c0
JD
4327The first rule in the grammar file also specifies the start symbol, by
4328default. If you want some other symbol to be the start symbol, you
4329must declare it explicitly (@pxref{Language and Grammar, ,Languages
4330and Context-Free Grammars}).
bfa74976
RS
4331
4332@menu
b50d2359 4333* Require Decl:: Requiring a Bison version.
bfa74976
RS
4334* Token Decl:: Declaring terminal symbols.
4335* Precedence Decl:: Declaring terminals with precedence and associativity.
4336* Union Decl:: Declaring the set of all semantic value types.
4337* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4338* Initial Action Decl:: Code run before parsing starts.
72f889cc 4339* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4340* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4341* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4342* Start Decl:: Specifying the start symbol.
4343* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4344* Push Decl:: Requesting a push parser.
bfa74976 4345* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4346* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4347* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4348@end menu
4349
b50d2359
AD
4350@node Require Decl
4351@subsection Require a Version of Bison
4352@cindex version requirement
4353@cindex requiring a version of Bison
4354@findex %require
4355
4356You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4357the requirement is not met, @command{bison} exits with an error (exit
4358status 63).
b50d2359
AD
4359
4360@example
4361%require "@var{version}"
4362@end example
4363
342b8b6e 4364@node Token Decl
bfa74976
RS
4365@subsection Token Type Names
4366@cindex declaring token type names
4367@cindex token type names, declaring
931c7513 4368@cindex declaring literal string tokens
bfa74976
RS
4369@findex %token
4370
4371The basic way to declare a token type name (terminal symbol) is as follows:
4372
4373@example
4374%token @var{name}
4375@end example
4376
4377Bison will convert this into a @code{#define} directive in
4378the parser, so that the function @code{yylex} (if it is in this file)
4379can use the name @var{name} to stand for this token type's code.
4380
d78f0ac9
AD
4381Alternatively, you can use @code{%left}, @code{%right},
4382@code{%precedence}, or
14ded682
AD
4383@code{%nonassoc} instead of @code{%token}, if you wish to specify
4384associativity and precedence. @xref{Precedence Decl, ,Operator
4385Precedence}.
bfa74976
RS
4386
4387You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4388a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4389following the token name:
bfa74976
RS
4390
4391@example
4392%token NUM 300
1452af69 4393%token XNUM 0x12d // a GNU extension
bfa74976
RS
4394@end example
4395
4396@noindent
4397It is generally best, however, to let Bison choose the numeric codes for
4398all token types. Bison will automatically select codes that don't conflict
e966383b 4399with each other or with normal characters.
bfa74976
RS
4400
4401In the event that the stack type is a union, you must augment the
4402@code{%token} or other token declaration to include the data type
704a47c4
AD
4403alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4404Than One Value Type}).
bfa74976
RS
4405
4406For example:
4407
4408@example
4409@group
4410%union @{ /* define stack type */
4411 double val;
4412 symrec *tptr;
4413@}
4414%token <val> NUM /* define token NUM and its type */
4415@end group
4416@end example
4417
931c7513
RS
4418You can associate a literal string token with a token type name by
4419writing the literal string at the end of a @code{%token}
4420declaration which declares the name. For example:
4421
4422@example
4423%token arrow "=>"
4424@end example
4425
4426@noindent
4427For example, a grammar for the C language might specify these names with
4428equivalent literal string tokens:
4429
4430@example
4431%token <operator> OR "||"
4432%token <operator> LE 134 "<="
4433%left OR "<="
4434@end example
4435
4436@noindent
4437Once you equate the literal string and the token name, you can use them
4438interchangeably in further declarations or the grammar rules. The
4439@code{yylex} function can use the token name or the literal string to
4440obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4441Syntax error messages passed to @code{yyerror} from the parser will reference
4442the literal string instead of the token name.
4443
4444The token numbered as 0 corresponds to end of file; the following line
4445allows for nicer error messages referring to ``end of file'' instead
4446of ``$end'':
4447
4448@example
4449%token END 0 "end of file"
4450@end example
931c7513 4451
342b8b6e 4452@node Precedence Decl
bfa74976
RS
4453@subsection Operator Precedence
4454@cindex precedence declarations
4455@cindex declaring operator precedence
4456@cindex operator precedence, declaring
4457
d78f0ac9
AD
4458Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4459@code{%precedence} declaration to
bfa74976
RS
4460declare a token and specify its precedence and associativity, all at
4461once. These are called @dfn{precedence declarations}.
704a47c4
AD
4462@xref{Precedence, ,Operator Precedence}, for general information on
4463operator precedence.
bfa74976 4464
ab7f29f8 4465The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4466@code{%token}: either
4467
4468@example
4469%left @var{symbols}@dots{}
4470@end example
4471
4472@noindent
4473or
4474
4475@example
4476%left <@var{type}> @var{symbols}@dots{}
4477@end example
4478
4479And indeed any of these declarations serves the purposes of @code{%token}.
4480But in addition, they specify the associativity and relative precedence for
4481all the @var{symbols}:
4482
4483@itemize @bullet
4484@item
4485The associativity of an operator @var{op} determines how repeated uses
4486of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4487@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4488grouping @var{y} with @var{z} first. @code{%left} specifies
4489left-associativity (grouping @var{x} with @var{y} first) and
4490@code{%right} specifies right-associativity (grouping @var{y} with
4491@var{z} first). @code{%nonassoc} specifies no associativity, which
4492means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4493considered a syntax error.
4494
d78f0ac9
AD
4495@code{%precedence} gives only precedence to the @var{symbols}, and
4496defines no associativity at all. Use this to define precedence only,
4497and leave any potential conflict due to associativity enabled.
4498
bfa74976
RS
4499@item
4500The precedence of an operator determines how it nests with other operators.
4501All the tokens declared in a single precedence declaration have equal
4502precedence and nest together according to their associativity.
4503When two tokens declared in different precedence declarations associate,
4504the one declared later has the higher precedence and is grouped first.
4505@end itemize
4506
ab7f29f8
JD
4507For backward compatibility, there is a confusing difference between the
4508argument lists of @code{%token} and precedence declarations.
4509Only a @code{%token} can associate a literal string with a token type name.
4510A precedence declaration always interprets a literal string as a reference to a
4511separate token.
4512For example:
4513
4514@example
4515%left OR "<=" // Does not declare an alias.
4516%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4517@end example
4518
342b8b6e 4519@node Union Decl
bfa74976
RS
4520@subsection The Collection of Value Types
4521@cindex declaring value types
4522@cindex value types, declaring
4523@findex %union
4524
287c78f6
PE
4525The @code{%union} declaration specifies the entire collection of
4526possible data types for semantic values. The keyword @code{%union} is
4527followed by braced code containing the same thing that goes inside a
4528@code{union} in C@.
bfa74976
RS
4529
4530For example:
4531
4532@example
4533@group
4534%union @{
4535 double val;
4536 symrec *tptr;
4537@}
4538@end group
4539@end example
4540
4541@noindent
4542This says that the two alternative types are @code{double} and @code{symrec
4543*}. They are given names @code{val} and @code{tptr}; these names are used
4544in the @code{%token} and @code{%type} declarations to pick one of the types
4545for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4546
8a4281b9 4547As an extension to POSIX, a tag is allowed after the
6273355b
PE
4548@code{union}. For example:
4549
4550@example
4551@group
4552%union value @{
4553 double val;
4554 symrec *tptr;
4555@}
4556@end group
4557@end example
4558
d6ca7905 4559@noindent
6273355b
PE
4560specifies the union tag @code{value}, so the corresponding C type is
4561@code{union value}. If you do not specify a tag, it defaults to
4562@code{YYSTYPE}.
4563
8a4281b9 4564As another extension to POSIX, you may specify multiple
d6ca7905
PE
4565@code{%union} declarations; their contents are concatenated. However,
4566only the first @code{%union} declaration can specify a tag.
4567
6273355b 4568Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4569a semicolon after the closing brace.
4570
ddc8ede1
PE
4571Instead of @code{%union}, you can define and use your own union type
4572@code{YYSTYPE} if your grammar contains at least one
4573@samp{<@var{type}>} tag. For example, you can put the following into
4574a header file @file{parser.h}:
4575
4576@example
4577@group
4578union YYSTYPE @{
4579 double val;
4580 symrec *tptr;
4581@};
4582typedef union YYSTYPE YYSTYPE;
4583@end group
4584@end example
4585
4586@noindent
4587and then your grammar can use the following
4588instead of @code{%union}:
4589
4590@example
4591@group
4592%@{
4593#include "parser.h"
4594%@}
4595%type <val> expr
4596%token <tptr> ID
4597@end group
4598@end example
4599
342b8b6e 4600@node Type Decl
bfa74976
RS
4601@subsection Nonterminal Symbols
4602@cindex declaring value types, nonterminals
4603@cindex value types, nonterminals, declaring
4604@findex %type
4605
4606@noindent
4607When you use @code{%union} to specify multiple value types, you must
4608declare the value type of each nonterminal symbol for which values are
4609used. This is done with a @code{%type} declaration, like this:
4610
4611@example
4612%type <@var{type}> @var{nonterminal}@dots{}
4613@end example
4614
4615@noindent
704a47c4
AD
4616Here @var{nonterminal} is the name of a nonterminal symbol, and
4617@var{type} is the name given in the @code{%union} to the alternative
4618that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4619can give any number of nonterminal symbols in the same @code{%type}
4620declaration, if they have the same value type. Use spaces to separate
4621the symbol names.
bfa74976 4622
931c7513
RS
4623You can also declare the value type of a terminal symbol. To do this,
4624use the same @code{<@var{type}>} construction in a declaration for the
4625terminal symbol. All kinds of token declarations allow
4626@code{<@var{type}>}.
4627
18d192f0
AD
4628@node Initial Action Decl
4629@subsection Performing Actions before Parsing
4630@findex %initial-action
4631
4632Sometimes your parser needs to perform some initializations before
4633parsing. The @code{%initial-action} directive allows for such arbitrary
4634code.
4635
4636@deffn {Directive} %initial-action @{ @var{code} @}
4637@findex %initial-action
287c78f6 4638Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4639@code{yyparse} is called. The @var{code} may use @code{$$} (or
4640@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4641lookahead --- and the @code{%parse-param}.
18d192f0
AD
4642@end deffn
4643
451364ed
AD
4644For instance, if your locations use a file name, you may use
4645
4646@example
48b16bbc 4647%parse-param @{ char const *file_name @};
451364ed
AD
4648%initial-action
4649@{
4626a15d 4650 @@$.initialize (file_name);
451364ed
AD
4651@};
4652@end example
4653
18d192f0 4654
72f889cc
AD
4655@node Destructor Decl
4656@subsection Freeing Discarded Symbols
4657@cindex freeing discarded symbols
4658@findex %destructor
12e35840 4659@findex <*>
3ebecc24 4660@findex <>
a85284cf
AD
4661During error recovery (@pxref{Error Recovery}), symbols already pushed
4662on the stack and tokens coming from the rest of the file are discarded
4663until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4664or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4665symbols on the stack must be discarded. Even if the parser succeeds, it
4666must discard the start symbol.
258b75ca
PE
4667
4668When discarded symbols convey heap based information, this memory is
4669lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4670in traditional compilers, it is unacceptable for programs like shells or
4671protocol implementations that may parse and execute indefinitely.
258b75ca 4672
a85284cf
AD
4673The @code{%destructor} directive defines code that is called when a
4674symbol is automatically discarded.
72f889cc
AD
4675
4676@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4677@findex %destructor
287c78f6 4678Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4679@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4680designates the semantic value associated with the discarded symbol, and
4681@code{@@$} designates its location. The additional parser parameters are
4682also available (@pxref{Parser Function, , The Parser Function
4683@code{yyparse}}).
ec5479ce 4684
b2a0b7ca
JD
4685When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4686per-symbol @code{%destructor}.
4687You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4688tag among @var{symbols}.
b2a0b7ca 4689In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4690grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4691per-symbol @code{%destructor}.
4692
12e35840 4693Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4694(These default forms are experimental.
4695More user feedback will help to determine whether they should become permanent
4696features.)
3ebecc24 4697You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4698exactly one @code{%destructor} declaration in your grammar file.
4699The parser will invoke the @var{code} associated with one of these whenever it
4700discards any user-defined grammar symbol that has no per-symbol and no per-type
4701@code{%destructor}.
4702The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4703symbol for which you have formally declared a semantic type tag (@code{%type}
4704counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4705The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4706symbol that has no declared semantic type tag.
72f889cc
AD
4707@end deffn
4708
b2a0b7ca 4709@noindent
12e35840 4710For example:
72f889cc 4711
c93f22fc 4712@example
ec5479ce
JD
4713%union @{ char *string; @}
4714%token <string> STRING1
4715%token <string> STRING2
4716%type <string> string1
4717%type <string> string2
b2a0b7ca
JD
4718%union @{ char character; @}
4719%token <character> CHR
4720%type <character> chr
12e35840
JD
4721%token TAGLESS
4722
b2a0b7ca 4723%destructor @{ @} <character>
12e35840
JD
4724%destructor @{ free ($$); @} <*>
4725%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4726%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4727@end example
72f889cc
AD
4728
4729@noindent
b2a0b7ca
JD
4730guarantees that, when the parser discards any user-defined symbol that has a
4731semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4732to @code{free} by default.
ec5479ce
JD
4733However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4734prints its line number to @code{stdout}.
4735It performs only the second @code{%destructor} in this case, so it invokes
4736@code{free} only once.
12e35840
JD
4737Finally, the parser merely prints a message whenever it discards any symbol,
4738such as @code{TAGLESS}, that has no semantic type tag.
4739
4740A Bison-generated parser invokes the default @code{%destructor}s only for
4741user-defined as opposed to Bison-defined symbols.
4742For example, the parser will not invoke either kind of default
4743@code{%destructor} for the special Bison-defined symbols @code{$accept},
4744@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4745none of which you can reference in your grammar.
4746It also will not invoke either for the @code{error} token (@pxref{Table of
4747Symbols, ,error}), which is always defined by Bison regardless of whether you
4748reference it in your grammar.
4749However, it may invoke one of them for the end token (token 0) if you
4750redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4751
c93f22fc 4752@example
3508ce36 4753%token END 0
c93f22fc 4754@end example
3508ce36 4755
12e35840
JD
4756@cindex actions in mid-rule
4757@cindex mid-rule actions
4758Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4759mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4760That is, Bison does not consider a mid-rule to have a semantic value if you
4761do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4762(where @var{n} is the right-hand side symbol position of the mid-rule) in
4763any later action in that rule. However, if you do reference either, the
4764Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4765it discards the mid-rule symbol.
12e35840 4766
3508ce36
JD
4767@ignore
4768@noindent
4769In the future, it may be possible to redefine the @code{error} token as a
4770nonterminal that captures the discarded symbols.
4771In that case, the parser will invoke the default destructor for it as well.
4772@end ignore
4773
e757bb10
AD
4774@sp 1
4775
4776@cindex discarded symbols
4777@dfn{Discarded symbols} are the following:
4778
4779@itemize
4780@item
4781stacked symbols popped during the first phase of error recovery,
4782@item
4783incoming terminals during the second phase of error recovery,
4784@item
742e4900 4785the current lookahead and the entire stack (except the current
9d9b8b70 4786right-hand side symbols) when the parser returns immediately, and
258b75ca 4787@item
d3e4409a
AD
4788the current lookahead and the entire stack (including the current right-hand
4789side symbols) when the C++ parser (@file{lalr1.cc}) catches an exception in
4790@code{parse},
4791@item
258b75ca 4792the start symbol, when the parser succeeds.
e757bb10
AD
4793@end itemize
4794
9d9b8b70
PE
4795The parser can @dfn{return immediately} because of an explicit call to
4796@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4797exhaustion.
4798
29553547 4799Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4800error via @code{YYERROR} are not discarded automatically. As a rule
4801of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4802the memory.
e757bb10 4803
93c150b6
AD
4804@node Printer Decl
4805@subsection Printing Semantic Values
4806@cindex printing semantic values
4807@findex %printer
4808@findex <*>
4809@findex <>
4810When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4811the parser reports its actions, such as reductions. When a symbol involved
4812in an action is reported, only its kind is displayed, as the parser cannot
4813know how semantic values should be formatted.
4814
4815The @code{%printer} directive defines code that is called when a symbol is
4816reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4817Decl, , Freeing Discarded Symbols}).
4818
4819@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4820@findex %printer
4821@vindex yyoutput
4822@c This is the same text as for %destructor.
4823Invoke the braced @var{code} whenever the parser displays one of the
4824@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4825(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4826@code{$<@var{tag}>$}) designates the semantic value associated with the
4827symbol, and @code{@@$} its location. The additional parser parameters are
4828also available (@pxref{Parser Function, , The Parser Function
4829@code{yyparse}}).
93c150b6
AD
4830
4831The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4832Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4833@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4834typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4835@samp{<>}).
4836@end deffn
4837
4838@noindent
4839For example:
4840
4841@example
4842%union @{ char *string; @}
4843%token <string> STRING1
4844%token <string> STRING2
4845%type <string> string1
4846%type <string> string2
4847%union @{ char character; @}
4848%token <character> CHR
4849%type <character> chr
4850%token TAGLESS
4851
4852%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4853%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4854%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4855%printer @{ fprintf (yyoutput, "<>"); @} <>
4856@end example
4857
4858@noindent
4859guarantees that, when the parser print any symbol that has a semantic type
4860tag other than @code{<character>}, it display the address of the semantic
4861value by default. However, when the parser displays a @code{STRING1} or a
4862@code{string1}, it formats it as a string in double quotes. It performs
4863only the second @code{%printer} in this case, so it prints only once.
4864Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4865that has no semantic type tag. See also
4866
4867
342b8b6e 4868@node Expect Decl
bfa74976
RS
4869@subsection Suppressing Conflict Warnings
4870@cindex suppressing conflict warnings
4871@cindex preventing warnings about conflicts
4872@cindex warnings, preventing
4873@cindex conflicts, suppressing warnings of
4874@findex %expect
d6328241 4875@findex %expect-rr
bfa74976
RS
4876
4877Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4878(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4879have harmless shift/reduce conflicts which are resolved in a predictable
4880way and would be difficult to eliminate. It is desirable to suppress
4881the warning about these conflicts unless the number of conflicts
4882changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4883
4884The declaration looks like this:
4885
4886@example
4887%expect @var{n}
4888@end example
4889
035aa4a0
PE
4890Here @var{n} is a decimal integer. The declaration says there should
4891be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4892Bison reports an error if the number of shift/reduce conflicts differs
4893from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4894
eb45ef3b 4895For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4896serious, and should be eliminated entirely. Bison will always report
8a4281b9 4897reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4898parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4899there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4900also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4901in GLR parsers, using the declaration:
d6328241
PH
4902
4903@example
4904%expect-rr @var{n}
4905@end example
4906
bfa74976
RS
4907In general, using @code{%expect} involves these steps:
4908
4909@itemize @bullet
4910@item
4911Compile your grammar without @code{%expect}. Use the @samp{-v} option
4912to get a verbose list of where the conflicts occur. Bison will also
4913print the number of conflicts.
4914
4915@item
4916Check each of the conflicts to make sure that Bison's default
4917resolution is what you really want. If not, rewrite the grammar and
4918go back to the beginning.
4919
4920@item
4921Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4922number which Bison printed. With GLR parsers, add an
035aa4a0 4923@code{%expect-rr} declaration as well.
bfa74976
RS
4924@end itemize
4925
93d7dde9
JD
4926Now Bison will report an error if you introduce an unexpected conflict,
4927but will keep silent otherwise.
bfa74976 4928
342b8b6e 4929@node Start Decl
bfa74976
RS
4930@subsection The Start-Symbol
4931@cindex declaring the start symbol
4932@cindex start symbol, declaring
4933@cindex default start symbol
4934@findex %start
4935
4936Bison assumes by default that the start symbol for the grammar is the first
4937nonterminal specified in the grammar specification section. The programmer
4938may override this restriction with the @code{%start} declaration as follows:
4939
4940@example
4941%start @var{symbol}
4942@end example
4943
342b8b6e 4944@node Pure Decl
bfa74976
RS
4945@subsection A Pure (Reentrant) Parser
4946@cindex reentrant parser
4947@cindex pure parser
d9df47b6 4948@findex %define api.pure
bfa74976
RS
4949
4950A @dfn{reentrant} program is one which does not alter in the course of
4951execution; in other words, it consists entirely of @dfn{pure} (read-only)
4952code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4953for example, a nonreentrant program may not be safe to call from a signal
4954handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4955program must be called only within interlocks.
4956
70811b85 4957Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4958suitable for most uses, and it permits compatibility with Yacc. (The
4959standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4960statically allocated variables for communication with @code{yylex},
4961including @code{yylval} and @code{yylloc}.)
bfa74976 4962
70811b85 4963Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4964declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4965reentrant. It looks like this:
bfa74976
RS
4966
4967@example
d9df47b6 4968%define api.pure
bfa74976
RS
4969@end example
4970
70811b85
RS
4971The result is that the communication variables @code{yylval} and
4972@code{yylloc} become local variables in @code{yyparse}, and a different
4973calling convention is used for the lexical analyzer function
4974@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4975Parsers}, for the details of this. The variable @code{yynerrs}
4976becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4977of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4978Reporting Function @code{yyerror}}). The convention for calling
4979@code{yyparse} itself is unchanged.
4980
4981Whether the parser is pure has nothing to do with the grammar rules.
4982You can generate either a pure parser or a nonreentrant parser from any
4983valid grammar.
bfa74976 4984
9987d1b3
JD
4985@node Push Decl
4986@subsection A Push Parser
4987@cindex push parser
4988@cindex push parser
67212941 4989@findex %define api.push-pull
9987d1b3 4990
59da312b
JD
4991(The current push parsing interface is experimental and may evolve.
4992More user feedback will help to stabilize it.)
4993
f4101aa6
AD
4994A pull parser is called once and it takes control until all its input
4995is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4996each time a new token is made available.
4997
f4101aa6 4998A push parser is typically useful when the parser is part of a
9987d1b3 4999main event loop in the client's application. This is typically
f4101aa6
AD
5000a requirement of a GUI, when the main event loop needs to be triggered
5001within a certain time period.
9987d1b3 5002
d782395d
JD
5003Normally, Bison generates a pull parser.
5004The following Bison declaration says that you want the parser to be a push
35c1e5f0 5005parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5006
5007@example
cf499cff 5008%define api.push-pull push
9987d1b3
JD
5009@end example
5010
5011In almost all cases, you want to ensure that your push parser is also
5012a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5013time you should create an impure push parser is to have backwards
9987d1b3
JD
5014compatibility with the impure Yacc pull mode interface. Unless you know
5015what you are doing, your declarations should look like this:
5016
5017@example
d9df47b6 5018%define api.pure
cf499cff 5019%define api.push-pull push
9987d1b3
JD
5020@end example
5021
f4101aa6
AD
5022There is a major notable functional difference between the pure push parser
5023and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5024many parser instances, of the same type of parser, in memory at the same time.
5025An impure push parser should only use one parser at a time.
5026
5027When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5028the generated parser. @code{yypstate} is a structure that the generated
5029parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5030function that will create a new parser instance. @code{yypstate_delete}
5031will free the resources associated with the corresponding parser instance.
f4101aa6 5032Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5033token is available to provide the parser. A trivial example
5034of using a pure push parser would look like this:
5035
5036@example
5037int status;
5038yypstate *ps = yypstate_new ();
5039do @{
5040 status = yypush_parse (ps, yylex (), NULL);
5041@} while (status == YYPUSH_MORE);
5042yypstate_delete (ps);
5043@end example
5044
5045If the user decided to use an impure push parser, a few things about
f4101aa6 5046the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5047a global variable instead of a variable in the @code{yypush_parse} function.
5048For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5049changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5050example would thus look like this:
5051
5052@example
5053extern int yychar;
5054int status;
5055yypstate *ps = yypstate_new ();
5056do @{
5057 yychar = yylex ();
5058 status = yypush_parse (ps);
5059@} while (status == YYPUSH_MORE);
5060yypstate_delete (ps);
5061@end example
5062
f4101aa6 5063That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5064for use by the next invocation of the @code{yypush_parse} function.
5065
f4101aa6 5066Bison also supports both the push parser interface along with the pull parser
9987d1b3 5067interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5068you should replace the @samp{%define api.push-pull push} declaration with the
5069@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5070the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5071and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5072would be used. However, the user should note that it is implemented in the
d782395d
JD
5073generated parser by calling @code{yypull_parse}.
5074This makes the @code{yyparse} function that is generated with the
cf499cff 5075@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5076@code{yyparse} function. If the user
5077calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5078stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5079and then @code{yypull_parse} the rest of the input stream. If you would like
5080to switch back and forth between between parsing styles, you would have to
5081write your own @code{yypull_parse} function that knows when to quit looking
5082for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5083like this:
5084
5085@example
5086yypstate *ps = yypstate_new ();
5087yypull_parse (ps); /* Will call the lexer */
5088yypstate_delete (ps);
5089@end example
5090
67501061 5091Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5092the generated parser with @samp{%define api.push-pull both} as it did for
5093@samp{%define api.push-pull push}.
9987d1b3 5094
342b8b6e 5095@node Decl Summary
bfa74976
RS
5096@subsection Bison Declaration Summary
5097@cindex Bison declaration summary
5098@cindex declaration summary
5099@cindex summary, Bison declaration
5100
d8988b2f 5101Here is a summary of the declarations used to define a grammar:
bfa74976 5102
18b519c0 5103@deffn {Directive} %union
bfa74976
RS
5104Declare the collection of data types that semantic values may have
5105(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5106@end deffn
bfa74976 5107
18b519c0 5108@deffn {Directive} %token
bfa74976
RS
5109Declare a terminal symbol (token type name) with no precedence
5110or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5111@end deffn
bfa74976 5112
18b519c0 5113@deffn {Directive} %right
bfa74976
RS
5114Declare a terminal symbol (token type name) that is right-associative
5115(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5116@end deffn
bfa74976 5117
18b519c0 5118@deffn {Directive} %left
bfa74976
RS
5119Declare a terminal symbol (token type name) that is left-associative
5120(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5121@end deffn
bfa74976 5122
18b519c0 5123@deffn {Directive} %nonassoc
bfa74976 5124Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5125(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5126Using it in a way that would be associative is a syntax error.
5127@end deffn
5128
91d2c560 5129@ifset defaultprec
39a06c25 5130@deffn {Directive} %default-prec
22fccf95 5131Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5132(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5133@end deffn
91d2c560 5134@end ifset
bfa74976 5135
18b519c0 5136@deffn {Directive} %type
bfa74976
RS
5137Declare the type of semantic values for a nonterminal symbol
5138(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5139@end deffn
bfa74976 5140
18b519c0 5141@deffn {Directive} %start
89cab50d
AD
5142Specify the grammar's start symbol (@pxref{Start Decl, ,The
5143Start-Symbol}).
18b519c0 5144@end deffn
bfa74976 5145
18b519c0 5146@deffn {Directive} %expect
bfa74976
RS
5147Declare the expected number of shift-reduce conflicts
5148(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5149@end deffn
5150
bfa74976 5151
d8988b2f
AD
5152@sp 1
5153@noindent
5154In order to change the behavior of @command{bison}, use the following
5155directives:
5156
148d66d8 5157@deffn {Directive} %code @{@var{code}@}
e0c07222 5158@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5159@findex %code
e0c07222
JD
5160Insert @var{code} verbatim into the output parser source at the
5161default location or at the location specified by @var{qualifier}.
5162@xref{%code Summary}.
148d66d8
JD
5163@end deffn
5164
18b519c0 5165@deffn {Directive} %debug
60aa04a2 5166Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5167parse.trace}.
ec3bc396 5168@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5169@end deffn
d8988b2f 5170
35c1e5f0
JD
5171@deffn {Directive} %define @var{variable}
5172@deffnx {Directive} %define @var{variable} @var{value}
5173@deffnx {Directive} %define @var{variable} "@var{value}"
5174Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5175@end deffn
5176
5177@deffn {Directive} %defines
5178Write a parser header file containing macro definitions for the token
5179type names defined in the grammar as well as a few other declarations.
5180If the parser implementation file is named @file{@var{name}.c} then
5181the parser header file is named @file{@var{name}.h}.
5182
5183For C parsers, the parser header file declares @code{YYSTYPE} unless
5184@code{YYSTYPE} is already defined as a macro or you have used a
5185@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5186you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5187Value Type}) with components that require other definitions, or if you
5188have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5189Type, ,Data Types of Semantic Values}), you need to arrange for these
5190definitions to be propagated to all modules, e.g., by putting them in
5191a prerequisite header that is included both by your parser and by any
5192other module that needs @code{YYSTYPE}.
5193
5194Unless your parser is pure, the parser header file declares
5195@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5196(Reentrant) Parser}.
5197
5198If you have also used locations, the parser header file declares
303834cc
JD
5199@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5200@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5201
5202This parser header file is normally essential if you wish to put the
5203definition of @code{yylex} in a separate source file, because
5204@code{yylex} typically needs to be able to refer to the
5205above-mentioned declarations and to the token type codes. @xref{Token
5206Values, ,Semantic Values of Tokens}.
5207
5208@findex %code requires
5209@findex %code provides
5210If you have declared @code{%code requires} or @code{%code provides}, the output
5211header also contains their code.
5212@xref{%code Summary}.
c9d5bcc9
AD
5213
5214@cindex Header guard
5215The generated header is protected against multiple inclusions with a C
5216preprocessor guard: @samp{YY_@var{PREFIX}_@var{FILE}_INCLUDED}, where
5217@var{PREFIX} and @var{FILE} are the prefix (@pxref{Multiple Parsers,
5218,Multiple Parsers in the Same Program}) and generated file name turned
5219uppercase, with each series of non alphanumerical characters converted to a
5220single underscore.
5221
5222For instance with @samp{%define api.prefix "calc"} and @samp{%defines
5223"lib/parse.h"}, the header will be guarded as follows.
5224@example
5225#ifndef YY_CALC_LIB_PARSE_H_INCLUDED
5226# define YY_CALC_LIB_PARSE_H_INCLUDED
5227...
5228#endif /* ! YY_CALC_LIB_PARSE_H_INCLUDED */
5229@end example
35c1e5f0
JD
5230@end deffn
5231
5232@deffn {Directive} %defines @var{defines-file}
5233Same as above, but save in the file @var{defines-file}.
5234@end deffn
5235
5236@deffn {Directive} %destructor
5237Specify how the parser should reclaim the memory associated to
5238discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5239@end deffn
5240
5241@deffn {Directive} %file-prefix "@var{prefix}"
5242Specify a prefix to use for all Bison output file names. The names
5243are chosen as if the grammar file were named @file{@var{prefix}.y}.
5244@end deffn
5245
5246@deffn {Directive} %language "@var{language}"
5247Specify the programming language for the generated parser. Currently
5248supported languages include C, C++, and Java.
5249@var{language} is case-insensitive.
5250
5251This directive is experimental and its effect may be modified in future
5252releases.
5253@end deffn
5254
5255@deffn {Directive} %locations
5256Generate the code processing the locations (@pxref{Action Features,
5257,Special Features for Use in Actions}). This mode is enabled as soon as
5258the grammar uses the special @samp{@@@var{n}} tokens, but if your
5259grammar does not use it, using @samp{%locations} allows for more
5260accurate syntax error messages.
5261@end deffn
5262
5263@deffn {Directive} %name-prefix "@var{prefix}"
5264Rename the external symbols used in the parser so that they start with
5265@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5266in C parsers
5267is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5268@code{yylval}, @code{yychar}, @code{yydebug}, and
5269(if locations are used) @code{yylloc}. If you use a push parser,
5270@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5271@code{yypstate_new} and @code{yypstate_delete} will
5272also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5273names become @code{c_parse}, @code{c_lex}, and so on.
5274For C++ parsers, see the @samp{%define api.namespace} documentation in this
5275section.
5276@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5277@end deffn
5278
5279@ifset defaultprec
5280@deffn {Directive} %no-default-prec
5281Do not assign a precedence to rules lacking an explicit @code{%prec}
5282modifier (@pxref{Contextual Precedence, ,Context-Dependent
5283Precedence}).
5284@end deffn
5285@end ifset
5286
5287@deffn {Directive} %no-lines
5288Don't generate any @code{#line} preprocessor commands in the parser
5289implementation file. Ordinarily Bison writes these commands in the
5290parser implementation file so that the C compiler and debuggers will
5291associate errors and object code with your source file (the grammar
5292file). This directive causes them to associate errors with the parser
5293implementation file, treating it as an independent source file in its
5294own right.
5295@end deffn
5296
5297@deffn {Directive} %output "@var{file}"
5298Specify @var{file} for the parser implementation file.
5299@end deffn
5300
5301@deffn {Directive} %pure-parser
5302Deprecated version of @samp{%define api.pure} (@pxref{%define
5303Summary,,api.pure}), for which Bison is more careful to warn about
5304unreasonable usage.
5305@end deffn
5306
5307@deffn {Directive} %require "@var{version}"
5308Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5309Require a Version of Bison}.
5310@end deffn
5311
5312@deffn {Directive} %skeleton "@var{file}"
5313Specify the skeleton to use.
5314
5315@c You probably don't need this option unless you are developing Bison.
5316@c You should use @code{%language} if you want to specify the skeleton for a
5317@c different language, because it is clearer and because it will always choose the
5318@c correct skeleton for non-deterministic or push parsers.
5319
5320If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5321file in the Bison installation directory.
5322If it does, @var{file} is an absolute file name or a file name relative to the
5323directory of the grammar file.
5324This is similar to how most shells resolve commands.
5325@end deffn
5326
5327@deffn {Directive} %token-table
5328Generate an array of token names in the parser implementation file.
5329The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5330the name of the token whose internal Bison token code number is
5331@var{i}. The first three elements of @code{yytname} correspond to the
5332predefined tokens @code{"$end"}, @code{"error"}, and
5333@code{"$undefined"}; after these come the symbols defined in the
5334grammar file.
5335
5336The name in the table includes all the characters needed to represent
5337the token in Bison. For single-character literals and literal
5338strings, this includes the surrounding quoting characters and any
5339escape sequences. For example, the Bison single-character literal
5340@code{'+'} corresponds to a three-character name, represented in C as
5341@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5342corresponds to a five-character name, represented in C as
5343@code{"\"\\\\/\""}.
5344
5345When you specify @code{%token-table}, Bison also generates macro
5346definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5347@code{YYNRULES}, and @code{YYNSTATES}:
5348
5349@table @code
5350@item YYNTOKENS
5351The highest token number, plus one.
5352@item YYNNTS
5353The number of nonterminal symbols.
5354@item YYNRULES
5355The number of grammar rules,
5356@item YYNSTATES
5357The number of parser states (@pxref{Parser States}).
5358@end table
5359@end deffn
5360
5361@deffn {Directive} %verbose
5362Write an extra output file containing verbose descriptions of the
5363parser states and what is done for each type of lookahead token in
5364that state. @xref{Understanding, , Understanding Your Parser}, for more
5365information.
5366@end deffn
5367
5368@deffn {Directive} %yacc
5369Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5370including its naming conventions. @xref{Bison Options}, for more.
5371@end deffn
5372
5373
5374@node %define Summary
5375@subsection %define Summary
51151d91
JD
5376
5377There are many features of Bison's behavior that can be controlled by
5378assigning the feature a single value. For historical reasons, some
5379such features are assigned values by dedicated directives, such as
5380@code{%start}, which assigns the start symbol. However, newer such
5381features are associated with variables, which are assigned by the
5382@code{%define} directive:
5383
c1d19e10 5384@deffn {Directive} %define @var{variable}
cf499cff 5385@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5386@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5387Define @var{variable} to @var{value}.
9611cfa2 5388
51151d91
JD
5389@var{value} must be placed in quotation marks if it contains any
5390character other than a letter, underscore, period, or non-initial dash
5391or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5392to specifying @code{""}.
9611cfa2 5393
51151d91
JD
5394It is an error if a @var{variable} is defined by @code{%define}
5395multiple times, but see @ref{Bison Options,,-D
5396@var{name}[=@var{value}]}.
5397@end deffn
cf499cff 5398
51151d91
JD
5399The rest of this section summarizes variables and values that
5400@code{%define} accepts.
9611cfa2 5401
51151d91
JD
5402Some @var{variable}s take Boolean values. In this case, Bison will
5403complain if the variable definition does not meet one of the following
5404four conditions:
9611cfa2
JD
5405
5406@enumerate
cf499cff 5407@item @code{@var{value}} is @code{true}
9611cfa2 5408
cf499cff
JD
5409@item @code{@var{value}} is omitted (or @code{""} is specified).
5410This is equivalent to @code{true}.
9611cfa2 5411
cf499cff 5412@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5413
5414@item @var{variable} is never defined.
c6abeab1 5415In this case, Bison selects a default value.
9611cfa2 5416@end enumerate
148d66d8 5417
c6abeab1
JD
5418What @var{variable}s are accepted, as well as their meanings and default
5419values, depend on the selected target language and/or the parser
5420skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5421Summary,,%skeleton}).
5422Unaccepted @var{variable}s produce an error.
793fbca5
JD
5423Some of the accepted @var{variable}s are:
5424
fa819509 5425@table @code
6b5a0de9 5426@c ================================================== api.namespace
67501061
AD
5427@item api.namespace
5428@findex %define api.namespace
5429@itemize
5430@item Languages(s): C++
5431
f1b238df 5432@item Purpose: Specify the namespace for the parser class.
67501061
AD
5433For example, if you specify:
5434
c93f22fc 5435@example
67501061 5436%define api.namespace "foo::bar"
c93f22fc 5437@end example
67501061
AD
5438
5439Bison uses @code{foo::bar} verbatim in references such as:
5440
c93f22fc 5441@example
67501061 5442foo::bar::parser::semantic_type
c93f22fc 5443@end example
67501061
AD
5444
5445However, to open a namespace, Bison removes any leading @code{::} and then
5446splits on any remaining occurrences:
5447
c93f22fc 5448@example
67501061
AD
5449namespace foo @{ namespace bar @{
5450 class position;
5451 class location;
5452@} @}
c93f22fc 5453@end example
67501061
AD
5454
5455@item Accepted Values:
5456Any absolute or relative C++ namespace reference without a trailing
5457@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5458
5459@item Default Value:
5460The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5461This usage of @code{%name-prefix} is for backward compatibility and can
5462be confusing since @code{%name-prefix} also specifies the textual prefix
5463for the lexical analyzer function. Thus, if you specify
5464@code{%name-prefix}, it is best to also specify @samp{%define
5465api.namespace} so that @code{%name-prefix} @emph{only} affects the
5466lexical analyzer function. For example, if you specify:
5467
c93f22fc 5468@example
67501061
AD
5469%define api.namespace "foo"
5470%name-prefix "bar::"
c93f22fc 5471@end example
67501061
AD
5472
5473The parser namespace is @code{foo} and @code{yylex} is referenced as
5474@code{bar::lex}.
5475@end itemize
5476@c namespace
5477
db8ab2be
AD
5478@c ================================================== api.location.type
5479@item @code{api.location.type}
5480@findex %define api.location.type
5481
5482@itemize @bullet
7287be84 5483@item Language(s): C++, Java
db8ab2be
AD
5484
5485@item Purpose: Define the location type.
5486@xref{User Defined Location Type}.
5487
5488@item Accepted Values: String
5489
5490@item Default Value: none
5491
5492@item History: introduced in Bison 2.7
5493@end itemize
67501061 5494
4b3847c3 5495@c ================================================== api.prefix
5458913a 5496@item api.prefix
4b3847c3
AD
5497@findex %define api.prefix
5498
5499@itemize @bullet
5500@item Language(s): All
5501
db8ab2be 5502@item Purpose: Rename exported symbols.
4b3847c3
AD
5503@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5504
5505@item Accepted Values: String
5506
5507@item Default Value: @code{yy}
e358222b
AD
5508
5509@item History: introduced in Bison 2.6
4b3847c3 5510@end itemize
67501061
AD
5511
5512@c ================================================== api.pure
d9df47b6
JD
5513@item api.pure
5514@findex %define api.pure
5515
5516@itemize @bullet
5517@item Language(s): C
5518
5519@item Purpose: Request a pure (reentrant) parser program.
5520@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5521
5522@item Accepted Values: Boolean
5523
cf499cff 5524@item Default Value: @code{false}
d9df47b6 5525@end itemize
71b00ed8 5526@c api.pure
d9df47b6 5527
67501061
AD
5528
5529
5530@c ================================================== api.push-pull
67212941
JD
5531@item api.push-pull
5532@findex %define api.push-pull
793fbca5
JD
5533
5534@itemize @bullet
eb45ef3b 5535@item Language(s): C (deterministic parsers only)
793fbca5 5536
f1b238df 5537@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5538@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5539(The current push parsing interface is experimental and may evolve.
5540More user feedback will help to stabilize it.)
793fbca5 5541
cf499cff 5542@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5543
cf499cff 5544@item Default Value: @code{pull}
793fbca5 5545@end itemize
67212941 5546@c api.push-pull
71b00ed8 5547
6b5a0de9
AD
5548
5549
2a6b66c5
AD
5550@c ================================================== api.token.prefix
5551@item api.token.prefix
5552@findex %define api.token.prefix
4c6622c2
AD
5553
5554@itemize
5555@item Languages(s): all
5556
5557@item Purpose:
5558Add a prefix to the token names when generating their definition in the
5559target language. For instance
5560
5561@example
5562%token FILE for ERROR
2a6b66c5 5563%define api.token.prefix "TOK_"
4c6622c2
AD
5564%%
5565start: FILE for ERROR;
5566@end example
5567
5568@noindent
5569generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5570and @code{TOK_ERROR} in the generated source files. In particular, the
5571scanner must use these prefixed token names, while the grammar itself
5572may still use the short names (as in the sample rule given above). The
5573generated informational files (@file{*.output}, @file{*.xml},
5574@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5575and @ref{Calc++ Scanner}, for a complete example.
5576
5577@item Accepted Values:
5578Any string. Should be a valid identifier prefix in the target language,
5579in other words, it should typically be an identifier itself (sequence of
5580letters, underscores, and ---not at the beginning--- digits).
5581
5582@item Default Value:
5583empty
2a6b66c5
AD
5584@item History:
5585introduced in Bison 2.8
4c6622c2 5586@end itemize
2a6b66c5 5587@c api.token.prefix
4c6622c2
AD
5588
5589
3cdc21cf 5590@c ================================================== lex_symbol
84072495 5591@item lex_symbol
3cdc21cf
AD
5592@findex %define lex_symbol
5593
5594@itemize @bullet
5595@item Language(s):
5596C++
5597
5598@item Purpose:
5599When variant-based semantic values are enabled (@pxref{C++ Variants}),
5600request that symbols be handled as a whole (type, value, and possibly
5601location) in the scanner. @xref{Complete Symbols}, for details.
5602
5603@item Accepted Values:
5604Boolean.
5605
5606@item Default Value:
5607@code{false}
5608@end itemize
5609@c lex_symbol
5610
5611
f3bc3386 5612@c ================================================== lr.default-reduction
6b5a0de9 5613
f3bc3386
AD
5614@item lr.default-reduction
5615@findex %define lr.default-reduction
eb45ef3b
JD
5616
5617@itemize @bullet
5618@item Language(s): all
5619
fcf834f9 5620@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5621contain default reductions. @xref{Default Reductions}. (The ability to
5622specify where default reductions should be used is experimental. More user
5623feedback will help to stabilize it.)
eb45ef3b 5624
f0ad1b2f 5625@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5626@item Default Value:
5627@itemize
cf499cff 5628@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5629@item @code{most} otherwise.
eb45ef3b 5630@end itemize
f3bc3386
AD
5631@item History:
5632introduced as @code{lr.default-reduction} in 2.5, renamed as
5633@code{lr.default-reduction} in 2.8.
eb45ef3b
JD
5634@end itemize
5635
f3bc3386 5636@c ============================================ lr.keep-unreachable-state
6b5a0de9 5637
f3bc3386
AD
5638@item lr.keep-unreachable-state
5639@findex %define lr.keep-unreachable-state
31984206
JD
5640
5641@itemize @bullet
5642@item Language(s): all
f1b238df 5643@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5644remain in the parser tables. @xref{Unreachable States}.
31984206 5645@item Accepted Values: Boolean
cf499cff 5646@item Default Value: @code{false}
31984206 5647@end itemize
f3bc3386
AD
5648introduced as @code{lr.keep_unreachable_states} in 2.3b, renamed as
5649@code{lr.keep-unreachable-state} in 2.5, and as
5650@code{lr.keep-unreachable-state} in 2.8.
5651@c lr.keep-unreachable-state
31984206 5652
6b5a0de9
AD
5653@c ================================================== lr.type
5654
eb45ef3b
JD
5655@item lr.type
5656@findex %define lr.type
eb45ef3b
JD
5657
5658@itemize @bullet
5659@item Language(s): all
5660
f1b238df 5661@item Purpose: Specify the type of parser tables within the
7fceb615 5662LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5663More user feedback will help to stabilize it.)
5664
7fceb615 5665@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5666
cf499cff 5667@item Default Value: @code{lalr}
eb45ef3b
JD
5668@end itemize
5669
67501061
AD
5670
5671@c ================================================== namespace
793fbca5
JD
5672@item namespace
5673@findex %define namespace
67501061 5674Obsoleted by @code{api.namespace}
fa819509
AD
5675@c namespace
5676
31b850d2
AD
5677
5678@c ================================================== parse.assert
0c90a1f5
AD
5679@item parse.assert
5680@findex %define parse.assert
5681
5682@itemize
5683@item Languages(s): C++
5684
5685@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5686In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5687constructed and
0c90a1f5
AD
5688destroyed properly. This option checks these constraints.
5689
5690@item Accepted Values: Boolean
5691
5692@item Default Value: @code{false}
5693@end itemize
5694@c parse.assert
5695
31b850d2
AD
5696
5697@c ================================================== parse.error
5698@item parse.error
5699@findex %define parse.error
5700@itemize
5701@item Languages(s):
fcf834f9 5702all
31b850d2
AD
5703@item Purpose:
5704Control the kind of error messages passed to the error reporting
5705function. @xref{Error Reporting, ,The Error Reporting Function
5706@code{yyerror}}.
5707@item Accepted Values:
5708@itemize
cf499cff 5709@item @code{simple}
31b850d2
AD
5710Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5711error"}}.
cf499cff 5712@item @code{verbose}
7fceb615
JD
5713Error messages report the unexpected token, and possibly the expected ones.
5714However, this report can often be incorrect when LAC is not enabled
5715(@pxref{LAC}).
31b850d2
AD
5716@end itemize
5717
5718@item Default Value:
5719@code{simple}
5720@end itemize
5721@c parse.error
5722
5723
fcf834f9
JD
5724@c ================================================== parse.lac
5725@item parse.lac
5726@findex %define parse.lac
fcf834f9
JD
5727
5728@itemize
7fceb615 5729@item Languages(s): C (deterministic parsers only)
fcf834f9 5730
8a4281b9 5731@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5732syntax error handling. @xref{LAC}.
fcf834f9 5733@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5734@item Default Value: @code{none}
5735@end itemize
5736@c parse.lac
5737
31b850d2 5738@c ================================================== parse.trace
fa819509
AD
5739@item parse.trace
5740@findex %define parse.trace
5741
5742@itemize
60aa04a2 5743@item Languages(s): C, C++, Java
fa819509
AD
5744
5745@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
5746@xref{Tracing, ,Tracing Your Parser}.
5747
5748In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
5749@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
5750,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 5751file if it is not already defined, so that the debugging facilities are
60aa04a2 5752compiled.
793fbca5 5753
fa819509
AD
5754@item Accepted Values: Boolean
5755
5756@item Default Value: @code{false}
5757@end itemize
fa819509 5758@c parse.trace
99c08fb6 5759
3cdc21cf
AD
5760@c ================================================== variant
5761@item variant
5762@findex %define variant
5763
5764@itemize @bullet
5765@item Language(s):
5766C++
5767
5768@item Purpose:
f1b238df 5769Request variant-based semantic values.
3cdc21cf
AD
5770@xref{C++ Variants}.
5771
5772@item Accepted Values:
5773Boolean.
5774
5775@item Default Value:
5776@code{false}
5777@end itemize
5778@c variant
99c08fb6 5779@end table
592d0b1e 5780
d8988b2f 5781
e0c07222
JD
5782@node %code Summary
5783@subsection %code Summary
e0c07222 5784@findex %code
e0c07222 5785@cindex Prologue
51151d91
JD
5786
5787The @code{%code} directive inserts code verbatim into the output
5788parser source at any of a predefined set of locations. It thus serves
5789as a flexible and user-friendly alternative to the traditional Yacc
5790prologue, @code{%@{@var{code}%@}}. This section summarizes the
5791functionality of @code{%code} for the various target languages
5792supported by Bison. For a detailed discussion of how to use
5793@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5794is advantageous to do so, @pxref{Prologue Alternatives}.
5795
5796@deffn {Directive} %code @{@var{code}@}
5797This is the unqualified form of the @code{%code} directive. It
5798inserts @var{code} verbatim at a language-dependent default location
5799in the parser implementation.
5800
e0c07222 5801For C/C++, the default location is the parser implementation file
51151d91
JD
5802after the usual contents of the parser header file. Thus, the
5803unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5804
5805For Java, the default location is inside the parser class.
5806@end deffn
5807
5808@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5809This is the qualified form of the @code{%code} directive.
51151d91
JD
5810@var{qualifier} identifies the purpose of @var{code} and thus the
5811location(s) where Bison should insert it. That is, if you need to
5812specify location-sensitive @var{code} that does not belong at the
5813default location selected by the unqualified @code{%code} form, use
5814this form instead.
5815@end deffn
5816
5817For any particular qualifier or for the unqualified form, if there are
5818multiple occurrences of the @code{%code} directive, Bison concatenates
5819the specified code in the order in which it appears in the grammar
5820file.
e0c07222 5821
51151d91
JD
5822Not all qualifiers are accepted for all target languages. Unaccepted
5823qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5824
84072495 5825@table @code
e0c07222
JD
5826@item requires
5827@findex %code requires
5828
5829@itemize @bullet
5830@item Language(s): C, C++
5831
5832@item Purpose: This is the best place to write dependency code required for
5833@code{YYSTYPE} and @code{YYLTYPE}.
5834In other words, it's the best place to define types referenced in @code{%union}
5835directives, and it's the best place to override Bison's default @code{YYSTYPE}
5836and @code{YYLTYPE} definitions.
5837
5838@item Location(s): The parser header file and the parser implementation file
5839before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5840definitions.
5841@end itemize
5842
5843@item provides
5844@findex %code provides
5845
5846@itemize @bullet
5847@item Language(s): C, C++
5848
5849@item Purpose: This is the best place to write additional definitions and
5850declarations that should be provided to other modules.
5851
5852@item Location(s): The parser header file and the parser implementation
5853file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5854token definitions.
5855@end itemize
5856
5857@item top
5858@findex %code top
5859
5860@itemize @bullet
5861@item Language(s): C, C++
5862
5863@item Purpose: The unqualified @code{%code} or @code{%code requires}
5864should usually be more appropriate than @code{%code top}. However,
5865occasionally it is necessary to insert code much nearer the top of the
5866parser implementation file. For example:
5867
c93f22fc 5868@example
e0c07222
JD
5869%code top @{
5870 #define _GNU_SOURCE
5871 #include <stdio.h>
5872@}
c93f22fc 5873@end example
e0c07222
JD
5874
5875@item Location(s): Near the top of the parser implementation file.
5876@end itemize
5877
5878@item imports
5879@findex %code imports
5880
5881@itemize @bullet
5882@item Language(s): Java
5883
5884@item Purpose: This is the best place to write Java import directives.
5885
5886@item Location(s): The parser Java file after any Java package directive and
5887before any class definitions.
5888@end itemize
84072495 5889@end table
e0c07222 5890
51151d91
JD
5891Though we say the insertion locations are language-dependent, they are
5892technically skeleton-dependent. Writers of non-standard skeletons
5893however should choose their locations consistently with the behavior
5894of the standard Bison skeletons.
e0c07222 5895
d8988b2f 5896
342b8b6e 5897@node Multiple Parsers
bfa74976
RS
5898@section Multiple Parsers in the Same Program
5899
5900Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
5901only one Bison parser. But what if you want to parse more than one language
5902with the same program? Then you need to avoid name conflicts between
5903different definitions of functions and variables such as @code{yyparse},
5904@code{yylval}. To use different parsers from the same compilation unit, you
5905also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
5906exported in the generated header.
5907
5908The easy way to do this is to define the @code{%define} variable
e358222b
AD
5909@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
5910headers do not conflict when included together, and that compiled objects
5911can be linked together too. Specifying @samp{%define api.prefix
5912@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
5913@ref{Invocation, ,Invoking Bison}) renames the interface functions and
5914variables of the Bison parser to start with @var{prefix} instead of
5915@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
5916upper-cased) instead of @samp{YY}.
4b3847c3
AD
5917
5918The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
5919@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
5920@code{yydebug}. If you use a push parser, @code{yypush_parse},
5921@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
5922@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
5923@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
5924specifically --- more about this below.
4b3847c3
AD
5925
5926For example, if you use @samp{%define api.prefix c}, the names become
5927@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
5928on.
5929
5930The @code{%define} variable @code{api.prefix} works in two different ways.
5931In the implementation file, it works by adding macro definitions to the
5932beginning of the parser implementation file, defining @code{yyparse} as
5933@code{@var{prefix}parse}, and so on:
5934
5935@example
5936#define YYSTYPE CTYPE
5937#define yyparse cparse
5938#define yylval clval
5939...
5940YYSTYPE yylval;
5941int yyparse (void);
5942@end example
5943
5944This effectively substitutes one name for the other in the entire parser
5945implementation file, thus the ``original'' names (@code{yylex},
5946@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
5947
5948However, in the parser header file, the symbols are defined renamed, for
5949instance:
bfa74976 5950
4b3847c3
AD
5951@example
5952extern CSTYPE clval;
5953int cparse (void);
5954@end example
bfa74976 5955
e358222b
AD
5956The macro @code{YYDEBUG} is commonly used to enable the tracing support in
5957parsers. To comply with this tradition, when @code{api.prefix} is used,
5958@code{YYDEBUG} (not renamed) is used as a default value:
5959
5960@example
5961/* Enabling traces. */
5962#ifndef CDEBUG
5963# if defined YYDEBUG
5964# if YYDEBUG
5965# define CDEBUG 1
5966# else
5967# define CDEBUG 0
5968# endif
5969# else
5970# define CDEBUG 0
5971# endif
5972#endif
5973#if CDEBUG
5974extern int cdebug;
5975#endif
5976@end example
5977
5978@sp 2
5979
5980Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
5981the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
5982Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 5983
342b8b6e 5984@node Interface
bfa74976
RS
5985@chapter Parser C-Language Interface
5986@cindex C-language interface
5987@cindex interface
5988
5989The Bison parser is actually a C function named @code{yyparse}. Here we
5990describe the interface conventions of @code{yyparse} and the other
5991functions that it needs to use.
5992
5993Keep in mind that the parser uses many C identifiers starting with
5994@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5995identifier (aside from those in this manual) in an action or in epilogue
5996in the grammar file, you are likely to run into trouble.
bfa74976
RS
5997
5998@menu
f5f419de
DJ
5999* Parser Function:: How to call @code{yyparse} and what it returns.
6000* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
6001* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
6002* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
6003* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
6004* Lexical:: You must supply a function @code{yylex}
6005 which reads tokens.
6006* Error Reporting:: You must supply a function @code{yyerror}.
6007* Action Features:: Special features for use in actions.
6008* Internationalization:: How to let the parser speak in the user's
6009 native language.
bfa74976
RS
6010@end menu
6011
342b8b6e 6012@node Parser Function
bfa74976
RS
6013@section The Parser Function @code{yyparse}
6014@findex yyparse
6015
6016You call the function @code{yyparse} to cause parsing to occur. This
6017function reads tokens, executes actions, and ultimately returns when it
6018encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
6019write an action which directs @code{yyparse} to return immediately
6020without reading further.
bfa74976 6021
2a8d363a
AD
6022
6023@deftypefun int yyparse (void)
bfa74976
RS
6024The value returned by @code{yyparse} is 0 if parsing was successful (return
6025is due to end-of-input).
6026
b47dbebe
PE
6027The value is 1 if parsing failed because of invalid input, i.e., input
6028that contains a syntax error or that causes @code{YYABORT} to be
6029invoked.
6030
6031The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 6032@end deftypefun
bfa74976
RS
6033
6034In an action, you can cause immediate return from @code{yyparse} by using
6035these macros:
6036
2a8d363a 6037@defmac YYACCEPT
bfa74976
RS
6038@findex YYACCEPT
6039Return immediately with value 0 (to report success).
2a8d363a 6040@end defmac
bfa74976 6041
2a8d363a 6042@defmac YYABORT
bfa74976
RS
6043@findex YYABORT
6044Return immediately with value 1 (to report failure).
2a8d363a
AD
6045@end defmac
6046
6047If you use a reentrant parser, you can optionally pass additional
6048parameter information to it in a reentrant way. To do so, use the
6049declaration @code{%parse-param}:
6050
2055a44e 6051@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6052@findex %parse-param
2055a44e
AD
6053Declare that one or more
6054@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6055The @var{argument-declaration} is used when declaring
feeb0eda
PE
6056functions or prototypes. The last identifier in
6057@var{argument-declaration} must be the argument name.
2a8d363a
AD
6058@end deffn
6059
6060Here's an example. Write this in the parser:
6061
6062@example
2055a44e 6063%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6064@end example
6065
6066@noindent
6067Then call the parser like this:
6068
6069@example
6070@{
6071 int nastiness, randomness;
6072 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6073 value = yyparse (&nastiness, &randomness);
6074 @dots{}
6075@}
6076@end example
6077
6078@noindent
6079In the grammar actions, use expressions like this to refer to the data:
6080
6081@example
6082exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6083@end example
6084
9987d1b3
JD
6085@node Push Parser Function
6086@section The Push Parser Function @code{yypush_parse}
6087@findex yypush_parse
6088
59da312b
JD
6089(The current push parsing interface is experimental and may evolve.
6090More user feedback will help to stabilize it.)
6091
f4101aa6 6092You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6093function is available if either the @samp{%define api.push-pull push} or
6094@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6095@xref{Push Decl, ,A Push Parser}.
6096
6097@deftypefun int yypush_parse (yypstate *yyps)
ad60e80f
AD
6098The value returned by @code{yypush_parse} is the same as for yyparse with
6099the following exception: it returns @code{YYPUSH_MORE} if more input is
6100required to finish parsing the grammar.
9987d1b3
JD
6101@end deftypefun
6102
6103@node Pull Parser Function
6104@section The Pull Parser Function @code{yypull_parse}
6105@findex yypull_parse
6106
59da312b
JD
6107(The current push parsing interface is experimental and may evolve.
6108More user feedback will help to stabilize it.)
6109
f4101aa6 6110You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6111stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6112declaration is used.
9987d1b3
JD
6113@xref{Push Decl, ,A Push Parser}.
6114
6115@deftypefun int yypull_parse (yypstate *yyps)
6116The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6117@end deftypefun
6118
6119@node Parser Create Function
6120@section The Parser Create Function @code{yystate_new}
6121@findex yypstate_new
6122
59da312b
JD
6123(The current push parsing interface is experimental and may evolve.
6124More user feedback will help to stabilize it.)
6125
f4101aa6 6126You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6127This function is available if either the @samp{%define api.push-pull push} or
6128@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6129@xref{Push Decl, ,A Push Parser}.
6130
34a41a93 6131@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6132The function will return a valid parser instance if there was memory available
333e670c
JD
6133or 0 if no memory was available.
6134In impure mode, it will also return 0 if a parser instance is currently
6135allocated.
9987d1b3
JD
6136@end deftypefun
6137
6138@node Parser Delete Function
6139@section The Parser Delete Function @code{yystate_delete}
6140@findex yypstate_delete
6141
59da312b
JD
6142(The current push parsing interface is experimental and may evolve.
6143More user feedback will help to stabilize it.)
6144
9987d1b3 6145You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6146function is available if either the @samp{%define api.push-pull push} or
6147@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6148@xref{Push Decl, ,A Push Parser}.
6149
6150@deftypefun void yypstate_delete (yypstate *yyps)
6151This function will reclaim the memory associated with a parser instance.
6152After this call, you should no longer attempt to use the parser instance.
6153@end deftypefun
bfa74976 6154
342b8b6e 6155@node Lexical
bfa74976
RS
6156@section The Lexical Analyzer Function @code{yylex}
6157@findex yylex
6158@cindex lexical analyzer
6159
6160The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6161the input stream and returns them to the parser. Bison does not create
6162this function automatically; you must write it so that @code{yyparse} can
6163call it. The function is sometimes referred to as a lexical scanner.
6164
ff7571c0
JD
6165In simple programs, @code{yylex} is often defined at the end of the
6166Bison grammar file. If @code{yylex} is defined in a separate source
6167file, you need to arrange for the token-type macro definitions to be
6168available there. To do this, use the @samp{-d} option when you run
6169Bison, so that it will write these macro definitions into the separate
6170parser header file, @file{@var{name}.tab.h}, which you can include in
6171the other source files that need it. @xref{Invocation, ,Invoking
6172Bison}.
bfa74976
RS
6173
6174@menu
6175* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6176* Token Values:: How @code{yylex} must return the semantic value
6177 of the token it has read.
6178* Token Locations:: How @code{yylex} must return the text location
6179 (line number, etc.) of the token, if the
6180 actions want that.
6181* Pure Calling:: How the calling convention differs in a pure parser
6182 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6183@end menu
6184
342b8b6e 6185@node Calling Convention
bfa74976
RS
6186@subsection Calling Convention for @code{yylex}
6187
72d2299c
PE
6188The value that @code{yylex} returns must be the positive numeric code
6189for the type of token it has just found; a zero or negative value
6190signifies end-of-input.
bfa74976
RS
6191
6192When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6193in the parser implementation file becomes a C macro whose definition
6194is the proper numeric code for that token type. So @code{yylex} can
6195use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6196
6197When a token is referred to in the grammar rules by a character literal,
6198the numeric code for that character is also the code for the token type.
72d2299c
PE
6199So @code{yylex} can simply return that character code, possibly converted
6200to @code{unsigned char} to avoid sign-extension. The null character
6201must not be used this way, because its code is zero and that
bfa74976
RS
6202signifies end-of-input.
6203
6204Here is an example showing these things:
6205
6206@example
13863333
AD
6207int
6208yylex (void)
bfa74976
RS
6209@{
6210 @dots{}
72d2299c 6211 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6212 return 0;
6213 @dots{}
6214 if (c == '+' || c == '-')
72d2299c 6215 return c; /* Assume token type for `+' is '+'. */
bfa74976 6216 @dots{}
72d2299c 6217 return INT; /* Return the type of the token. */
bfa74976
RS
6218 @dots{}
6219@}
6220@end example
6221
6222@noindent
6223This interface has been designed so that the output from the @code{lex}
6224utility can be used without change as the definition of @code{yylex}.
6225
931c7513
RS
6226If the grammar uses literal string tokens, there are two ways that
6227@code{yylex} can determine the token type codes for them:
6228
6229@itemize @bullet
6230@item
6231If the grammar defines symbolic token names as aliases for the
6232literal string tokens, @code{yylex} can use these symbolic names like
6233all others. In this case, the use of the literal string tokens in
6234the grammar file has no effect on @code{yylex}.
6235
6236@item
9ecbd125 6237@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6238table. The index of the token in the table is the token type's code.
9ecbd125 6239The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6240double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6241token's characters are escaped as necessary to be suitable as input
6242to Bison.
931c7513 6243
9e0876fb
PE
6244Here's code for looking up a multicharacter token in @code{yytname},
6245assuming that the characters of the token are stored in
6246@code{token_buffer}, and assuming that the token does not contain any
6247characters like @samp{"} that require escaping.
931c7513 6248
c93f22fc 6249@example
931c7513
RS
6250for (i = 0; i < YYNTOKENS; i++)
6251 @{
6252 if (yytname[i] != 0
6253 && yytname[i][0] == '"'
68449b3a
PE
6254 && ! strncmp (yytname[i] + 1, token_buffer,
6255 strlen (token_buffer))
931c7513
RS
6256 && yytname[i][strlen (token_buffer) + 1] == '"'
6257 && yytname[i][strlen (token_buffer) + 2] == 0)
6258 break;
6259 @}
c93f22fc 6260@end example
931c7513
RS
6261
6262The @code{yytname} table is generated only if you use the
8c9a50be 6263@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6264@end itemize
6265
342b8b6e 6266@node Token Values
bfa74976
RS
6267@subsection Semantic Values of Tokens
6268
6269@vindex yylval
9d9b8b70 6270In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6271be stored into the global variable @code{yylval}. When you are using
6272just one data type for semantic values, @code{yylval} has that type.
6273Thus, if the type is @code{int} (the default), you might write this in
6274@code{yylex}:
6275
6276@example
6277@group
6278 @dots{}
72d2299c
PE
6279 yylval = value; /* Put value onto Bison stack. */
6280 return INT; /* Return the type of the token. */
bfa74976
RS
6281 @dots{}
6282@end group
6283@end example
6284
6285When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6286made from the @code{%union} declaration (@pxref{Union Decl, ,The
6287Collection of Value Types}). So when you store a token's value, you
6288must use the proper member of the union. If the @code{%union}
6289declaration looks like this:
bfa74976
RS
6290
6291@example
6292@group
6293%union @{
6294 int intval;
6295 double val;
6296 symrec *tptr;
6297@}
6298@end group
6299@end example
6300
6301@noindent
6302then the code in @code{yylex} might look like this:
6303
6304@example
6305@group
6306 @dots{}
72d2299c
PE
6307 yylval.intval = value; /* Put value onto Bison stack. */
6308 return INT; /* Return the type of the token. */
bfa74976
RS
6309 @dots{}
6310@end group
6311@end example
6312
95923bd6
AD
6313@node Token Locations
6314@subsection Textual Locations of Tokens
bfa74976
RS
6315
6316@vindex yylloc
303834cc
JD
6317If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6318in actions to keep track of the textual locations of tokens and groupings,
6319then you must provide this information in @code{yylex}. The function
6320@code{yyparse} expects to find the textual location of a token just parsed
6321in the global variable @code{yylloc}. So @code{yylex} must store the proper
6322data in that variable.
847bf1f5
AD
6323
6324By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6325initialize the members that are going to be used by the actions. The
6326four members are called @code{first_line}, @code{first_column},
6327@code{last_line} and @code{last_column}. Note that the use of this
6328feature makes the parser noticeably slower.
bfa74976
RS
6329
6330@tindex YYLTYPE
6331The data type of @code{yylloc} has the name @code{YYLTYPE}.
6332
342b8b6e 6333@node Pure Calling
c656404a 6334@subsection Calling Conventions for Pure Parsers
bfa74976 6335
67501061 6336When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6337pure, reentrant parser, the global communication variables @code{yylval}
6338and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6339Parser}.) In such parsers the two global variables are replaced by
6340pointers passed as arguments to @code{yylex}. You must declare them as
6341shown here, and pass the information back by storing it through those
6342pointers.
bfa74976
RS
6343
6344@example
13863333
AD
6345int
6346yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6347@{
6348 @dots{}
6349 *lvalp = value; /* Put value onto Bison stack. */
6350 return INT; /* Return the type of the token. */
6351 @dots{}
6352@}
6353@end example
6354
6355If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6356textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6357this case, omit the second argument; @code{yylex} will be called with
6358only one argument.
6359
2055a44e 6360If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6361@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6362Function}). To pass additional arguments to both @code{yylex} and
6363@code{yyparse}, use @code{%param}.
e425e872 6364
2055a44e 6365@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6366@findex %lex-param
2055a44e
AD
6367Specify that @var{argument-declaration} are additional @code{yylex} argument
6368declarations. You may pass one or more such declarations, which is
6369equivalent to repeating @code{%lex-param}.
6370@end deffn
6371
6372@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6373@findex %param
6374Specify that @var{argument-declaration} are additional
6375@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6376@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6377@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6378declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6379@end deffn
e425e872 6380
2a8d363a 6381For instance:
e425e872
RS
6382
6383@example
2055a44e
AD
6384%lex-param @{scanner_mode *mode@}
6385%parse-param @{parser_mode *mode@}
6386%param @{environment_type *env@}
e425e872
RS
6387@end example
6388
6389@noindent
18ad57b3 6390results in the following signatures:
e425e872
RS
6391
6392@example
2055a44e
AD
6393int yylex (scanner_mode *mode, environment_type *env);
6394int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6395@end example
6396
67501061 6397If @samp{%define api.pure} is added:
c656404a
RS
6398
6399@example
2055a44e
AD
6400int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6401int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6402@end example
6403
2a8d363a 6404@noindent
67501061 6405and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6406
2a8d363a 6407@example
2055a44e
AD
6408int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6409 scanner_mode *mode, environment_type *env);
6410int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6411@end example
931c7513 6412
342b8b6e 6413@node Error Reporting
bfa74976
RS
6414@section The Error Reporting Function @code{yyerror}
6415@cindex error reporting function
6416@findex yyerror
6417@cindex parse error
6418@cindex syntax error
6419
31b850d2 6420The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6421whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6422action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6423macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6424in Actions}).
bfa74976
RS
6425
6426The Bison parser expects to report the error by calling an error
6427reporting function named @code{yyerror}, which you must supply. It is
6428called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6429receives one argument. For a syntax error, the string is normally
6430@w{@code{"syntax error"}}.
bfa74976 6431
31b850d2 6432@findex %define parse.error
7fceb615
JD
6433If you invoke @samp{%define parse.error verbose} in the Bison declarations
6434section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6435Bison provides a more verbose and specific error message string instead of
6436just plain @w{@code{"syntax error"}}. However, that message sometimes
6437contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6438
1a059451
PE
6439The parser can detect one other kind of error: memory exhaustion. This
6440can happen when the input contains constructions that are very deeply
bfa74976 6441nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6442parser normally extends its stack automatically up to a very large limit. But
6443if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6444fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6445
6446In some cases diagnostics like @w{@code{"syntax error"}} are
6447translated automatically from English to some other language before
6448they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6449
6450The following definition suffices in simple programs:
6451
6452@example
6453@group
13863333 6454void
38a92d50 6455yyerror (char const *s)
bfa74976
RS
6456@{
6457@end group
6458@group
6459 fprintf (stderr, "%s\n", s);
6460@}
6461@end group
6462@end example
6463
6464After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6465error recovery if you have written suitable error recovery grammar rules
6466(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6467immediately return 1.
6468
93724f13 6469Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6470an access to the current location.
8a4281b9 6471This is indeed the case for the GLR
2a8d363a 6472parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6473@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6474@code{yyerror} are:
6475
6476@example
38a92d50
PE
6477void yyerror (char const *msg); /* Yacc parsers. */
6478void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6479@end example
6480
feeb0eda 6481If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6482
6483@example
b317297e
PE
6484void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6485void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6486@end example
6487
8a4281b9 6488Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6489convention for absolutely pure parsers, i.e., when the calling
6490convention of @code{yylex} @emph{and} the calling convention of
67501061 6491@samp{%define api.pure} are pure.
d9df47b6 6492I.e.:
2a8d363a
AD
6493
6494@example
6495/* Location tracking. */
6496%locations
6497/* Pure yylex. */
d9df47b6 6498%define api.pure
feeb0eda 6499%lex-param @{int *nastiness@}
2a8d363a 6500/* Pure yyparse. */
feeb0eda
PE
6501%parse-param @{int *nastiness@}
6502%parse-param @{int *randomness@}
2a8d363a
AD
6503@end example
6504
6505@noindent
6506results in the following signatures for all the parser kinds:
6507
6508@example
6509int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6510int yyparse (int *nastiness, int *randomness);
93724f13
AD
6511void yyerror (YYLTYPE *locp,
6512 int *nastiness, int *randomness,
38a92d50 6513 char const *msg);
2a8d363a
AD
6514@end example
6515
1c0c3e95 6516@noindent
38a92d50
PE
6517The prototypes are only indications of how the code produced by Bison
6518uses @code{yyerror}. Bison-generated code always ignores the returned
6519value, so @code{yyerror} can return any type, including @code{void}.
6520Also, @code{yyerror} can be a variadic function; that is why the
6521message is always passed last.
6522
6523Traditionally @code{yyerror} returns an @code{int} that is always
6524ignored, but this is purely for historical reasons, and @code{void} is
6525preferable since it more accurately describes the return type for
6526@code{yyerror}.
93724f13 6527
bfa74976
RS
6528@vindex yynerrs
6529The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6530reported so far. Normally this variable is global; but if you
704a47c4
AD
6531request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6532then it is a local variable which only the actions can access.
bfa74976 6533
342b8b6e 6534@node Action Features
bfa74976
RS
6535@section Special Features for Use in Actions
6536@cindex summary, action features
6537@cindex action features summary
6538
6539Here is a table of Bison constructs, variables and macros that
6540are useful in actions.
6541
18b519c0 6542@deffn {Variable} $$
bfa74976
RS
6543Acts like a variable that contains the semantic value for the
6544grouping made by the current rule. @xref{Actions}.
18b519c0 6545@end deffn
bfa74976 6546
18b519c0 6547@deffn {Variable} $@var{n}
bfa74976
RS
6548Acts like a variable that contains the semantic value for the
6549@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6550@end deffn
bfa74976 6551
18b519c0 6552@deffn {Variable} $<@var{typealt}>$
bfa74976 6553Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6554specified by the @code{%union} declaration. @xref{Action Types, ,Data
6555Types of Values in Actions}.
18b519c0 6556@end deffn
bfa74976 6557
18b519c0 6558@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6559Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6560union specified by the @code{%union} declaration.
e0c471a9 6561@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6562@end deffn
bfa74976 6563
34a41a93 6564@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6565Return immediately from @code{yyparse}, indicating failure.
6566@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6567@end deffn
bfa74976 6568
34a41a93 6569@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6570Return immediately from @code{yyparse}, indicating success.
6571@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6572@end deffn
bfa74976 6573
34a41a93 6574@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6575@findex YYBACKUP
6576Unshift a token. This macro is allowed only for rules that reduce
742e4900 6577a single value, and only when there is no lookahead token.
8a4281b9 6578It is also disallowed in GLR parsers.
742e4900 6579It installs a lookahead token with token type @var{token} and
bfa74976
RS
6580semantic value @var{value}; then it discards the value that was
6581going to be reduced by this rule.
6582
6583If the macro is used when it is not valid, such as when there is
742e4900 6584a lookahead token already, then it reports a syntax error with
bfa74976
RS
6585a message @samp{cannot back up} and performs ordinary error
6586recovery.
6587
6588In either case, the rest of the action is not executed.
18b519c0 6589@end deffn
bfa74976 6590
18b519c0 6591@deffn {Macro} YYEMPTY
742e4900 6592Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6593@end deffn
bfa74976 6594
32c29292 6595@deffn {Macro} YYEOF
742e4900 6596Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6597stream.
6598@end deffn
6599
34a41a93 6600@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6601Cause an immediate syntax error. This statement initiates error
6602recovery just as if the parser itself had detected an error; however, it
6603does not call @code{yyerror}, and does not print any message. If you
6604want to print an error message, call @code{yyerror} explicitly before
6605the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6606@end deffn
bfa74976 6607
18b519c0 6608@deffn {Macro} YYRECOVERING
02103984
PE
6609@findex YYRECOVERING
6610The expression @code{YYRECOVERING ()} yields 1 when the parser
6611is recovering from a syntax error, and 0 otherwise.
bfa74976 6612@xref{Error Recovery}.
18b519c0 6613@end deffn
bfa74976 6614
18b519c0 6615@deffn {Variable} yychar
742e4900
JD
6616Variable containing either the lookahead token, or @code{YYEOF} when the
6617lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6618has been performed so the next token is not yet known.
6619Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6620Actions}).
742e4900 6621@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6622@end deffn
bfa74976 6623
34a41a93 6624@deffn {Macro} yyclearin @code{;}
742e4900 6625Discard the current lookahead token. This is useful primarily in
32c29292
JD
6626error rules.
6627Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6628Semantic Actions}).
6629@xref{Error Recovery}.
18b519c0 6630@end deffn
bfa74976 6631
34a41a93 6632@deffn {Macro} yyerrok @code{;}
bfa74976 6633Resume generating error messages immediately for subsequent syntax
13863333 6634errors. This is useful primarily in error rules.
bfa74976 6635@xref{Error Recovery}.
18b519c0 6636@end deffn
bfa74976 6637
32c29292 6638@deffn {Variable} yylloc
742e4900 6639Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6640to @code{YYEMPTY} or @code{YYEOF}.
6641Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6642Actions}).
6643@xref{Actions and Locations, ,Actions and Locations}.
6644@end deffn
6645
6646@deffn {Variable} yylval
742e4900 6647Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6648not set to @code{YYEMPTY} or @code{YYEOF}.
6649Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6650Actions}).
6651@xref{Actions, ,Actions}.
6652@end deffn
6653
18b519c0 6654@deffn {Value} @@$
847bf1f5 6655@findex @@$
303834cc
JD
6656Acts like a structure variable containing information on the textual
6657location of the grouping made by the current rule. @xref{Tracking
6658Locations}.
bfa74976 6659
847bf1f5
AD
6660@c Check if those paragraphs are still useful or not.
6661
6662@c @example
6663@c struct @{
6664@c int first_line, last_line;
6665@c int first_column, last_column;
6666@c @};
6667@c @end example
6668
6669@c Thus, to get the starting line number of the third component, you would
6670@c use @samp{@@3.first_line}.
bfa74976 6671
847bf1f5
AD
6672@c In order for the members of this structure to contain valid information,
6673@c you must make @code{yylex} supply this information about each token.
6674@c If you need only certain members, then @code{yylex} need only fill in
6675@c those members.
bfa74976 6676
847bf1f5 6677@c The use of this feature makes the parser noticeably slower.
18b519c0 6678@end deffn
847bf1f5 6679
18b519c0 6680@deffn {Value} @@@var{n}
847bf1f5 6681@findex @@@var{n}
303834cc
JD
6682Acts like a structure variable containing information on the textual
6683location of the @var{n}th component of the current rule. @xref{Tracking
6684Locations}.
18b519c0 6685@end deffn
bfa74976 6686
f7ab6a50
PE
6687@node Internationalization
6688@section Parser Internationalization
6689@cindex internationalization
6690@cindex i18n
6691@cindex NLS
6692@cindex gettext
6693@cindex bison-po
6694
6695A Bison-generated parser can print diagnostics, including error and
6696tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6697also supports outputting diagnostics in the user's native language. To
6698make this work, the user should set the usual environment variables.
6699@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6700For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6701set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6702encoding. The exact set of available locales depends on the user's
6703installation.
6704
6705The maintainer of a package that uses a Bison-generated parser enables
6706the internationalization of the parser's output through the following
8a4281b9
JD
6707steps. Here we assume a package that uses GNU Autoconf and
6708GNU Automake.
f7ab6a50
PE
6709
6710@enumerate
6711@item
30757c8c 6712@cindex bison-i18n.m4
8a4281b9 6713Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6714by the package---often called @file{m4}---copy the
6715@file{bison-i18n.m4} file installed by Bison under
6716@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6717For example:
6718
6719@example
6720cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6721@end example
6722
6723@item
30757c8c
PE
6724@findex BISON_I18N
6725@vindex BISON_LOCALEDIR
6726@vindex YYENABLE_NLS
f7ab6a50
PE
6727In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6728invocation, add an invocation of @code{BISON_I18N}. This macro is
6729defined in the file @file{bison-i18n.m4} that you copied earlier. It
6730causes @samp{configure} to find the value of the
30757c8c
PE
6731@code{BISON_LOCALEDIR} variable, and it defines the source-language
6732symbol @code{YYENABLE_NLS} to enable translations in the
6733Bison-generated parser.
f7ab6a50
PE
6734
6735@item
6736In the @code{main} function of your program, designate the directory
6737containing Bison's runtime message catalog, through a call to
6738@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6739For example:
6740
6741@example
6742bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6743@end example
6744
6745Typically this appears after any other call @code{bindtextdomain
6746(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6747@samp{BISON_LOCALEDIR} to be defined as a string through the
6748@file{Makefile}.
6749
6750@item
6751In the @file{Makefile.am} that controls the compilation of the @code{main}
6752function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6753either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6754
6755@example
6756DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6757@end example
6758
6759or:
6760
6761@example
6762AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6763@end example
6764
6765@item
6766Finally, invoke the command @command{autoreconf} to generate the build
6767infrastructure.
6768@end enumerate
6769
bfa74976 6770
342b8b6e 6771@node Algorithm
13863333
AD
6772@chapter The Bison Parser Algorithm
6773@cindex Bison parser algorithm
bfa74976
RS
6774@cindex algorithm of parser
6775@cindex shifting
6776@cindex reduction
6777@cindex parser stack
6778@cindex stack, parser
6779
6780As Bison reads tokens, it pushes them onto a stack along with their
6781semantic values. The stack is called the @dfn{parser stack}. Pushing a
6782token is traditionally called @dfn{shifting}.
6783
6784For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6785@samp{3} to come. The stack will have four elements, one for each token
6786that was shifted.
6787
6788But the stack does not always have an element for each token read. When
6789the last @var{n} tokens and groupings shifted match the components of a
6790grammar rule, they can be combined according to that rule. This is called
6791@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6792single grouping whose symbol is the result (left hand side) of that rule.
6793Running the rule's action is part of the process of reduction, because this
6794is what computes the semantic value of the resulting grouping.
6795
6796For example, if the infix calculator's parser stack contains this:
6797
6798@example
67991 + 5 * 3
6800@end example
6801
6802@noindent
6803and the next input token is a newline character, then the last three
6804elements can be reduced to 15 via the rule:
6805
6806@example
6807expr: expr '*' expr;
6808@end example
6809
6810@noindent
6811Then the stack contains just these three elements:
6812
6813@example
68141 + 15
6815@end example
6816
6817@noindent
6818At this point, another reduction can be made, resulting in the single value
681916. Then the newline token can be shifted.
6820
6821The parser tries, by shifts and reductions, to reduce the entire input down
6822to a single grouping whose symbol is the grammar's start-symbol
6823(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6824
6825This kind of parser is known in the literature as a bottom-up parser.
6826
6827@menu
742e4900 6828* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6829* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6830* Precedence:: Operator precedence works by resolving conflicts.
6831* Contextual Precedence:: When an operator's precedence depends on context.
6832* Parser States:: The parser is a finite-state-machine with stack.
6833* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6834* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6835* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6836* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6837* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6838@end menu
6839
742e4900
JD
6840@node Lookahead
6841@section Lookahead Tokens
6842@cindex lookahead token
bfa74976
RS
6843
6844The Bison parser does @emph{not} always reduce immediately as soon as the
6845last @var{n} tokens and groupings match a rule. This is because such a
6846simple strategy is inadequate to handle most languages. Instead, when a
6847reduction is possible, the parser sometimes ``looks ahead'' at the next
6848token in order to decide what to do.
6849
6850When a token is read, it is not immediately shifted; first it becomes the
742e4900 6851@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6852perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6853the lookahead token remains off to the side. When no more reductions
6854should take place, the lookahead token is shifted onto the stack. This
bfa74976 6855does not mean that all possible reductions have been done; depending on the
742e4900 6856token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6857application.
6858
742e4900 6859Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6860expressions which contain binary addition operators and postfix unary
6861factorial operators (@samp{!}), and allow parentheses for grouping.
6862
6863@example
6864@group
5e9b6624
AD
6865expr:
6866 term '+' expr
6867| term
6868;
bfa74976
RS
6869@end group
6870
6871@group
5e9b6624
AD
6872term:
6873 '(' expr ')'
6874| term '!'
6875| NUMBER
6876;
bfa74976
RS
6877@end group
6878@end example
6879
6880Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6881should be done? If the following token is @samp{)}, then the first three
6882tokens must be reduced to form an @code{expr}. This is the only valid
6883course, because shifting the @samp{)} would produce a sequence of symbols
6884@w{@code{term ')'}}, and no rule allows this.
6885
6886If the following token is @samp{!}, then it must be shifted immediately so
6887that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6888parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6889@code{expr}. It would then be impossible to shift the @samp{!} because
6890doing so would produce on the stack the sequence of symbols @code{expr
6891'!'}. No rule allows that sequence.
6892
6893@vindex yychar
32c29292
JD
6894@vindex yylval
6895@vindex yylloc
742e4900 6896The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6897Its semantic value and location, if any, are stored in the variables
6898@code{yylval} and @code{yylloc}.
bfa74976
RS
6899@xref{Action Features, ,Special Features for Use in Actions}.
6900
342b8b6e 6901@node Shift/Reduce
bfa74976
RS
6902@section Shift/Reduce Conflicts
6903@cindex conflicts
6904@cindex shift/reduce conflicts
6905@cindex dangling @code{else}
6906@cindex @code{else}, dangling
6907
6908Suppose we are parsing a language which has if-then and if-then-else
6909statements, with a pair of rules like this:
6910
6911@example
6912@group
6913if_stmt:
5e9b6624
AD
6914 IF expr THEN stmt
6915| IF expr THEN stmt ELSE stmt
6916;
bfa74976
RS
6917@end group
6918@end example
6919
6920@noindent
6921Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6922terminal symbols for specific keyword tokens.
6923
742e4900 6924When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6925contents of the stack (assuming the input is valid) are just right for
6926reduction by the first rule. But it is also legitimate to shift the
6927@code{ELSE}, because that would lead to eventual reduction by the second
6928rule.
6929
6930This situation, where either a shift or a reduction would be valid, is
6931called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6932these conflicts by choosing to shift, unless otherwise directed by
6933operator precedence declarations. To see the reason for this, let's
6934contrast it with the other alternative.
6935
6936Since the parser prefers to shift the @code{ELSE}, the result is to attach
6937the else-clause to the innermost if-statement, making these two inputs
6938equivalent:
6939
6940@example
6941if x then if y then win (); else lose;
6942
6943if x then do; if y then win (); else lose; end;
6944@end example
6945
6946But if the parser chose to reduce when possible rather than shift, the
6947result would be to attach the else-clause to the outermost if-statement,
6948making these two inputs equivalent:
6949
6950@example
6951if x then if y then win (); else lose;
6952
6953if x then do; if y then win (); end; else lose;
6954@end example
6955
6956The conflict exists because the grammar as written is ambiguous: either
6957parsing of the simple nested if-statement is legitimate. The established
6958convention is that these ambiguities are resolved by attaching the
6959else-clause to the innermost if-statement; this is what Bison accomplishes
6960by choosing to shift rather than reduce. (It would ideally be cleaner to
6961write an unambiguous grammar, but that is very hard to do in this case.)
6962This particular ambiguity was first encountered in the specifications of
6963Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6964
6965To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6966conflicts, use the @code{%expect @var{n}} declaration.
6967There will be no warning as long as the number of shift/reduce conflicts
6968is exactly @var{n}, and Bison will report an error if there is a
6969different number.
bfa74976
RS
6970@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6971
6972The definition of @code{if_stmt} above is solely to blame for the
6973conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6974rules. Here is a complete Bison grammar file that actually manifests
6975the conflict:
bfa74976
RS
6976
6977@example
6978@group
6979%token IF THEN ELSE variable
6980%%
6981@end group
6982@group
5e9b6624
AD
6983stmt:
6984 expr
6985| if_stmt
6986;
bfa74976
RS
6987@end group
6988
6989@group
6990if_stmt:
5e9b6624
AD
6991 IF expr THEN stmt
6992| IF expr THEN stmt ELSE stmt
6993;
bfa74976
RS
6994@end group
6995
5e9b6624
AD
6996expr:
6997 variable
6998;
bfa74976
RS
6999@end example
7000
342b8b6e 7001@node Precedence
bfa74976
RS
7002@section Operator Precedence
7003@cindex operator precedence
7004@cindex precedence of operators
7005
7006Another situation where shift/reduce conflicts appear is in arithmetic
7007expressions. Here shifting is not always the preferred resolution; the
7008Bison declarations for operator precedence allow you to specify when to
7009shift and when to reduce.
7010
7011@menu
7012* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
7013* Using Precedence:: How to specify precedence and associativity.
7014* Precedence Only:: How to specify precedence only.
bfa74976
RS
7015* Precedence Examples:: How these features are used in the previous example.
7016* How Precedence:: How they work.
7017@end menu
7018
342b8b6e 7019@node Why Precedence
bfa74976
RS
7020@subsection When Precedence is Needed
7021
7022Consider the following ambiguous grammar fragment (ambiguous because the
7023input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
7024
7025@example
7026@group
5e9b6624
AD
7027expr:
7028 expr '-' expr
7029| expr '*' expr
7030| expr '<' expr
7031| '(' expr ')'
7032@dots{}
7033;
bfa74976
RS
7034@end group
7035@end example
7036
7037@noindent
7038Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
7039should it reduce them via the rule for the subtraction operator? It
7040depends on the next token. Of course, if the next token is @samp{)}, we
7041must reduce; shifting is invalid because no single rule can reduce the
7042token sequence @w{@samp{- 2 )}} or anything starting with that. But if
7043the next token is @samp{*} or @samp{<}, we have a choice: either
7044shifting or reduction would allow the parse to complete, but with
7045different results.
7046
7047To decide which one Bison should do, we must consider the results. If
7048the next operator token @var{op} is shifted, then it must be reduced
7049first in order to permit another opportunity to reduce the difference.
7050The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7051hand, if the subtraction is reduced before shifting @var{op}, the result
7052is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7053reduce should depend on the relative precedence of the operators
7054@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7055@samp{<}.
bfa74976
RS
7056
7057@cindex associativity
7058What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7059@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7060operators we prefer the former, which is called @dfn{left association}.
7061The latter alternative, @dfn{right association}, is desirable for
7062assignment operators. The choice of left or right association is a
7063matter of whether the parser chooses to shift or reduce when the stack
742e4900 7064contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7065makes right-associativity.
bfa74976 7066
342b8b6e 7067@node Using Precedence
bfa74976
RS
7068@subsection Specifying Operator Precedence
7069@findex %left
bfa74976 7070@findex %nonassoc
d78f0ac9
AD
7071@findex %precedence
7072@findex %right
bfa74976
RS
7073
7074Bison allows you to specify these choices with the operator precedence
7075declarations @code{%left} and @code{%right}. Each such declaration
7076contains a list of tokens, which are operators whose precedence and
7077associativity is being declared. The @code{%left} declaration makes all
7078those operators left-associative and the @code{%right} declaration makes
7079them right-associative. A third alternative is @code{%nonassoc}, which
7080declares that it is a syntax error to find the same operator twice ``in a
7081row''.
d78f0ac9
AD
7082The last alternative, @code{%precedence}, allows to define only
7083precedence and no associativity at all. As a result, any
7084associativity-related conflict that remains will be reported as an
7085compile-time error. The directive @code{%nonassoc} creates run-time
7086error: using the operator in a associative way is a syntax error. The
7087directive @code{%precedence} creates compile-time errors: an operator
7088@emph{can} be involved in an associativity-related conflict, contrary to
7089what expected the grammar author.
bfa74976
RS
7090
7091The relative precedence of different operators is controlled by the
d78f0ac9
AD
7092order in which they are declared. The first precedence/associativity
7093declaration in the file declares the operators whose
bfa74976
RS
7094precedence is lowest, the next such declaration declares the operators
7095whose precedence is a little higher, and so on.
7096
d78f0ac9
AD
7097@node Precedence Only
7098@subsection Specifying Precedence Only
7099@findex %precedence
7100
8a4281b9 7101Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7102@code{%nonassoc}, which all defines precedence and associativity, little
7103attention is paid to the fact that precedence cannot be defined without
7104defining associativity. Yet, sometimes, when trying to solve a
7105conflict, precedence suffices. In such a case, using @code{%left},
7106@code{%right}, or @code{%nonassoc} might hide future (associativity
7107related) conflicts that would remain hidden.
7108
7109The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7110Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7111in the following situation, where the period denotes the current parsing
7112state:
7113
7114@example
7115if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7116@end example
7117
7118The conflict involves the reduction of the rule @samp{IF expr THEN
7119stmt}, which precedence is by default that of its last token
7120(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7121disambiguation (attach the @code{else} to the closest @code{if}),
7122shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7123higher than that of @code{THEN}. But neither is expected to be involved
7124in an associativity related conflict, which can be specified as follows.
7125
7126@example
7127%precedence THEN
7128%precedence ELSE
7129@end example
7130
7131The unary-minus is another typical example where associativity is
7132usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7133Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7134used to declare the precedence of @code{NEG}, which is more than needed
7135since it also defines its associativity. While this is harmless in the
7136traditional example, who knows how @code{NEG} might be used in future
7137evolutions of the grammar@dots{}
7138
342b8b6e 7139@node Precedence Examples
bfa74976
RS
7140@subsection Precedence Examples
7141
7142In our example, we would want the following declarations:
7143
7144@example
7145%left '<'
7146%left '-'
7147%left '*'
7148@end example
7149
7150In a more complete example, which supports other operators as well, we
7151would declare them in groups of equal precedence. For example, @code{'+'} is
7152declared with @code{'-'}:
7153
7154@example
7155%left '<' '>' '=' NE LE GE
7156%left '+' '-'
7157%left '*' '/'
7158@end example
7159
7160@noindent
7161(Here @code{NE} and so on stand for the operators for ``not equal''
7162and so on. We assume that these tokens are more than one character long
7163and therefore are represented by names, not character literals.)
7164
342b8b6e 7165@node How Precedence
bfa74976
RS
7166@subsection How Precedence Works
7167
7168The first effect of the precedence declarations is to assign precedence
7169levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7170precedence levels to certain rules: each rule gets its precedence from
7171the last terminal symbol mentioned in the components. (You can also
7172specify explicitly the precedence of a rule. @xref{Contextual
7173Precedence, ,Context-Dependent Precedence}.)
7174
7175Finally, the resolution of conflicts works by comparing the precedence
742e4900 7176of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7177token's precedence is higher, the choice is to shift. If the rule's
7178precedence is higher, the choice is to reduce. If they have equal
7179precedence, the choice is made based on the associativity of that
7180precedence level. The verbose output file made by @samp{-v}
7181(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7182resolved.
bfa74976
RS
7183
7184Not all rules and not all tokens have precedence. If either the rule or
742e4900 7185the lookahead token has no precedence, then the default is to shift.
bfa74976 7186
342b8b6e 7187@node Contextual Precedence
bfa74976
RS
7188@section Context-Dependent Precedence
7189@cindex context-dependent precedence
7190@cindex unary operator precedence
7191@cindex precedence, context-dependent
7192@cindex precedence, unary operator
7193@findex %prec
7194
7195Often the precedence of an operator depends on the context. This sounds
7196outlandish at first, but it is really very common. For example, a minus
7197sign typically has a very high precedence as a unary operator, and a
7198somewhat lower precedence (lower than multiplication) as a binary operator.
7199
d78f0ac9
AD
7200The Bison precedence declarations
7201can only be used once for a given token; so a token has
bfa74976
RS
7202only one precedence declared in this way. For context-dependent
7203precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7204modifier for rules.
bfa74976
RS
7205
7206The @code{%prec} modifier declares the precedence of a particular rule by
7207specifying a terminal symbol whose precedence should be used for that rule.
7208It's not necessary for that symbol to appear otherwise in the rule. The
7209modifier's syntax is:
7210
7211@example
7212%prec @var{terminal-symbol}
7213@end example
7214
7215@noindent
7216and it is written after the components of the rule. Its effect is to
7217assign the rule the precedence of @var{terminal-symbol}, overriding
7218the precedence that would be deduced for it in the ordinary way. The
7219altered rule precedence then affects how conflicts involving that rule
7220are resolved (@pxref{Precedence, ,Operator Precedence}).
7221
7222Here is how @code{%prec} solves the problem of unary minus. First, declare
7223a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7224are no tokens of this type, but the symbol serves to stand for its
7225precedence:
7226
7227@example
7228@dots{}
7229%left '+' '-'
7230%left '*'
7231%left UMINUS
7232@end example
7233
7234Now the precedence of @code{UMINUS} can be used in specific rules:
7235
7236@example
7237@group
5e9b6624
AD
7238exp:
7239 @dots{}
7240| exp '-' exp
7241 @dots{}
7242| '-' exp %prec UMINUS
bfa74976
RS
7243@end group
7244@end example
7245
91d2c560 7246@ifset defaultprec
39a06c25
PE
7247If you forget to append @code{%prec UMINUS} to the rule for unary
7248minus, Bison silently assumes that minus has its usual precedence.
7249This kind of problem can be tricky to debug, since one typically
7250discovers the mistake only by testing the code.
7251
22fccf95 7252The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7253this kind of problem systematically. It causes rules that lack a
7254@code{%prec} modifier to have no precedence, even if the last terminal
7255symbol mentioned in their components has a declared precedence.
7256
22fccf95 7257If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7258for all rules that participate in precedence conflict resolution.
7259Then you will see any shift/reduce conflict until you tell Bison how
7260to resolve it, either by changing your grammar or by adding an
7261explicit precedence. This will probably add declarations to the
7262grammar, but it helps to protect against incorrect rule precedences.
7263
22fccf95
PE
7264The effect of @code{%no-default-prec;} can be reversed by giving
7265@code{%default-prec;}, which is the default.
91d2c560 7266@end ifset
39a06c25 7267
342b8b6e 7268@node Parser States
bfa74976
RS
7269@section Parser States
7270@cindex finite-state machine
7271@cindex parser state
7272@cindex state (of parser)
7273
7274The function @code{yyparse} is implemented using a finite-state machine.
7275The values pushed on the parser stack are not simply token type codes; they
7276represent the entire sequence of terminal and nonterminal symbols at or
7277near the top of the stack. The current state collects all the information
7278about previous input which is relevant to deciding what to do next.
7279
742e4900
JD
7280Each time a lookahead token is read, the current parser state together
7281with the type of lookahead token are looked up in a table. This table
7282entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7283specifies the new parser state, which is pushed onto the top of the
7284parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7285This means that a certain number of tokens or groupings are taken off
7286the top of the stack, and replaced by one grouping. In other words,
7287that number of states are popped from the stack, and one new state is
7288pushed.
7289
742e4900 7290There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7291is erroneous in the current state. This causes error processing to begin
7292(@pxref{Error Recovery}).
7293
342b8b6e 7294@node Reduce/Reduce
bfa74976
RS
7295@section Reduce/Reduce Conflicts
7296@cindex reduce/reduce conflict
7297@cindex conflicts, reduce/reduce
7298
7299A reduce/reduce conflict occurs if there are two or more rules that apply
7300to the same sequence of input. This usually indicates a serious error
7301in the grammar.
7302
7303For example, here is an erroneous attempt to define a sequence
7304of zero or more @code{word} groupings.
7305
7306@example
d4fca427 7307@group
5e9b6624
AD
7308sequence:
7309 /* empty */ @{ printf ("empty sequence\n"); @}
7310| maybeword
7311| sequence word @{ printf ("added word %s\n", $2); @}
7312;
d4fca427 7313@end group
bfa74976 7314
d4fca427 7315@group
5e9b6624
AD
7316maybeword:
7317 /* empty */ @{ printf ("empty maybeword\n"); @}
7318| word @{ printf ("single word %s\n", $1); @}
7319;
d4fca427 7320@end group
bfa74976
RS
7321@end example
7322
7323@noindent
7324The error is an ambiguity: there is more than one way to parse a single
7325@code{word} into a @code{sequence}. It could be reduced to a
7326@code{maybeword} and then into a @code{sequence} via the second rule.
7327Alternatively, nothing-at-all could be reduced into a @code{sequence}
7328via the first rule, and this could be combined with the @code{word}
7329using the third rule for @code{sequence}.
7330
7331There is also more than one way to reduce nothing-at-all into a
7332@code{sequence}. This can be done directly via the first rule,
7333or indirectly via @code{maybeword} and then the second rule.
7334
7335You might think that this is a distinction without a difference, because it
7336does not change whether any particular input is valid or not. But it does
7337affect which actions are run. One parsing order runs the second rule's
7338action; the other runs the first rule's action and the third rule's action.
7339In this example, the output of the program changes.
7340
7341Bison resolves a reduce/reduce conflict by choosing to use the rule that
7342appears first in the grammar, but it is very risky to rely on this. Every
7343reduce/reduce conflict must be studied and usually eliminated. Here is the
7344proper way to define @code{sequence}:
7345
7346@example
5e9b6624
AD
7347sequence:
7348 /* empty */ @{ printf ("empty sequence\n"); @}
7349| sequence word @{ printf ("added word %s\n", $2); @}
7350;
bfa74976
RS
7351@end example
7352
7353Here is another common error that yields a reduce/reduce conflict:
7354
7355@example
5e9b6624
AD
7356sequence:
7357 /* empty */
7358| sequence words
7359| sequence redirects
7360;
bfa74976 7361
5e9b6624
AD
7362words:
7363 /* empty */
7364| words word
7365;
bfa74976 7366
5e9b6624
AD
7367redirects:
7368 /* empty */
7369| redirects redirect
7370;
bfa74976
RS
7371@end example
7372
7373@noindent
7374The intention here is to define a sequence which can contain either
7375@code{word} or @code{redirect} groupings. The individual definitions of
7376@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7377three together make a subtle ambiguity: even an empty input can be parsed
7378in infinitely many ways!
7379
7380Consider: nothing-at-all could be a @code{words}. Or it could be two
7381@code{words} in a row, or three, or any number. It could equally well be a
7382@code{redirects}, or two, or any number. Or it could be a @code{words}
7383followed by three @code{redirects} and another @code{words}. And so on.
7384
7385Here are two ways to correct these rules. First, to make it a single level
7386of sequence:
7387
7388@example
5e9b6624
AD
7389sequence:
7390 /* empty */
7391| sequence word
7392| sequence redirect
7393;
bfa74976
RS
7394@end example
7395
7396Second, to prevent either a @code{words} or a @code{redirects}
7397from being empty:
7398
7399@example
d4fca427 7400@group
5e9b6624
AD
7401sequence:
7402 /* empty */
7403| sequence words
7404| sequence redirects
7405;
d4fca427 7406@end group
bfa74976 7407
d4fca427 7408@group
5e9b6624
AD
7409words:
7410 word
7411| words word
7412;
d4fca427 7413@end group
bfa74976 7414
d4fca427 7415@group
5e9b6624
AD
7416redirects:
7417 redirect
7418| redirects redirect
7419;
d4fca427 7420@end group
bfa74976
RS
7421@end example
7422
cc09e5be
JD
7423@node Mysterious Conflicts
7424@section Mysterious Conflicts
7fceb615 7425@cindex Mysterious Conflicts
bfa74976
RS
7426
7427Sometimes reduce/reduce conflicts can occur that don't look warranted.
7428Here is an example:
7429
7430@example
7431@group
7432%token ID
7433
7434%%
5e9b6624 7435def: param_spec return_spec ',';
bfa74976 7436param_spec:
5e9b6624
AD
7437 type
7438| name_list ':' type
7439;
bfa74976
RS
7440@end group
7441@group
7442return_spec:
5e9b6624
AD
7443 type
7444| name ':' type
7445;
bfa74976
RS
7446@end group
7447@group
5e9b6624 7448type: ID;
bfa74976
RS
7449@end group
7450@group
5e9b6624 7451name: ID;
bfa74976 7452name_list:
5e9b6624
AD
7453 name
7454| name ',' name_list
7455;
bfa74976
RS
7456@end group
7457@end example
7458
7459It would seem that this grammar can be parsed with only a single token
742e4900 7460of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7461a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7462@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7463
7fceb615
JD
7464@cindex LR
7465@cindex LALR
eb45ef3b 7466However, for historical reasons, Bison cannot by default handle all
8a4281b9 7467LR(1) grammars.
eb45ef3b
JD
7468In this grammar, two contexts, that after an @code{ID} at the beginning
7469of a @code{param_spec} and likewise at the beginning of a
7470@code{return_spec}, are similar enough that Bison assumes they are the
7471same.
7472They appear similar because the same set of rules would be
bfa74976
RS
7473active---the rule for reducing to a @code{name} and that for reducing to
7474a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7475that the rules would require different lookahead tokens in the two
bfa74976
RS
7476contexts, so it makes a single parser state for them both. Combining
7477the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7478occurrence means that the grammar is not LALR(1).
bfa74976 7479
7fceb615
JD
7480@cindex IELR
7481@cindex canonical LR
7482For many practical grammars (specifically those that fall into the non-LR(1)
7483class), the limitations of LALR(1) result in difficulties beyond just
7484mysterious reduce/reduce conflicts. The best way to fix all these problems
7485is to select a different parser table construction algorithm. Either
7486IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7487and easier to debug during development. @xref{LR Table Construction}, for
7488details. (Bison's IELR(1) and canonical LR(1) implementations are
7489experimental. More user feedback will help to stabilize them.)
eb45ef3b 7490
8a4281b9 7491If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7492can often fix a mysterious conflict by identifying the two parser states
7493that are being confused, and adding something to make them look
7494distinct. In the above example, adding one rule to
bfa74976
RS
7495@code{return_spec} as follows makes the problem go away:
7496
7497@example
7498@group
7499%token BOGUS
7500@dots{}
7501%%
7502@dots{}
7503return_spec:
5e9b6624
AD
7504 type
7505| name ':' type
7506| ID BOGUS /* This rule is never used. */
7507;
bfa74976
RS
7508@end group
7509@end example
7510
7511This corrects the problem because it introduces the possibility of an
7512additional active rule in the context after the @code{ID} at the beginning of
7513@code{return_spec}. This rule is not active in the corresponding context
7514in a @code{param_spec}, so the two contexts receive distinct parser states.
7515As long as the token @code{BOGUS} is never generated by @code{yylex},
7516the added rule cannot alter the way actual input is parsed.
7517
7518In this particular example, there is another way to solve the problem:
7519rewrite the rule for @code{return_spec} to use @code{ID} directly
7520instead of via @code{name}. This also causes the two confusing
7521contexts to have different sets of active rules, because the one for
7522@code{return_spec} activates the altered rule for @code{return_spec}
7523rather than the one for @code{name}.
7524
7525@example
7526param_spec:
5e9b6624
AD
7527 type
7528| name_list ':' type
7529;
bfa74976 7530return_spec:
5e9b6624
AD
7531 type
7532| ID ':' type
7533;
bfa74976
RS
7534@end example
7535
8a4281b9 7536For a more detailed exposition of LALR(1) parsers and parser
5e528941 7537generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7538
7fceb615
JD
7539@node Tuning LR
7540@section Tuning LR
7541
7542The default behavior of Bison's LR-based parsers is chosen mostly for
7543historical reasons, but that behavior is often not robust. For example, in
7544the previous section, we discussed the mysterious conflicts that can be
7545produced by LALR(1), Bison's default parser table construction algorithm.
7546Another example is Bison's @code{%define parse.error verbose} directive,
7547which instructs the generated parser to produce verbose syntax error
7548messages, which can sometimes contain incorrect information.
7549
7550In this section, we explore several modern features of Bison that allow you
7551to tune fundamental aspects of the generated LR-based parsers. Some of
7552these features easily eliminate shortcomings like those mentioned above.
7553Others can be helpful purely for understanding your parser.
7554
7555Most of the features discussed in this section are still experimental. More
7556user feedback will help to stabilize them.
7557
7558@menu
7559* LR Table Construction:: Choose a different construction algorithm.
7560* Default Reductions:: Disable default reductions.
7561* LAC:: Correct lookahead sets in the parser states.
7562* Unreachable States:: Keep unreachable parser states for debugging.
7563@end menu
7564
7565@node LR Table Construction
7566@subsection LR Table Construction
7567@cindex Mysterious Conflict
7568@cindex LALR
7569@cindex IELR
7570@cindex canonical LR
7571@findex %define lr.type
7572
7573For historical reasons, Bison constructs LALR(1) parser tables by default.
7574However, LALR does not possess the full language-recognition power of LR.
7575As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7576mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7577Conflicts}.
7578
7579As we also demonstrated in that example, the traditional approach to
7580eliminating such mysterious behavior is to restructure the grammar.
7581Unfortunately, doing so correctly is often difficult. Moreover, merely
7582discovering that LALR causes mysterious behavior in your parser can be
7583difficult as well.
7584
7585Fortunately, Bison provides an easy way to eliminate the possibility of such
7586mysterious behavior altogether. You simply need to activate a more powerful
7587parser table construction algorithm by using the @code{%define lr.type}
7588directive.
7589
7590@deffn {Directive} {%define lr.type @var{TYPE}}
7591Specify the type of parser tables within the LR(1) family. The accepted
7592values for @var{TYPE} are:
7593
7594@itemize
7595@item @code{lalr} (default)
7596@item @code{ielr}
7597@item @code{canonical-lr}
7598@end itemize
7599
7600(This feature is experimental. More user feedback will help to stabilize
7601it.)
7602@end deffn
7603
7604For example, to activate IELR, you might add the following directive to you
7605grammar file:
7606
7607@example
7608%define lr.type ielr
7609@end example
7610
cc09e5be 7611@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7612conflict is then eliminated, so there is no need to invest time in
7613comprehending the conflict or restructuring the grammar to fix it. If,
7614during future development, the grammar evolves such that all mysterious
7615behavior would have disappeared using just LALR, you need not fear that
7616continuing to use IELR will result in unnecessarily large parser tables.
7617That is, IELR generates LALR tables when LALR (using a deterministic parsing
7618algorithm) is sufficient to support the full language-recognition power of
7619LR. Thus, by enabling IELR at the start of grammar development, you can
7620safely and completely eliminate the need to consider LALR's shortcomings.
7621
7622While IELR is almost always preferable, there are circumstances where LALR
7623or the canonical LR parser tables described by Knuth
7624(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7625relative advantages of each parser table construction algorithm within
7626Bison:
7627
7628@itemize
7629@item LALR
7630
7631There are at least two scenarios where LALR can be worthwhile:
7632
7633@itemize
7634@item GLR without static conflict resolution.
7635
7636@cindex GLR with LALR
7637When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7638conflicts statically (for example, with @code{%left} or @code{%prec}), then
7639the parser explores all potential parses of any given input. In this case,
7640the choice of parser table construction algorithm is guaranteed not to alter
7641the language accepted by the parser. LALR parser tables are the smallest
7642parser tables Bison can currently construct, so they may then be preferable.
7643Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7644more like a deterministic parser in the syntactic contexts where those
7645conflicts appear, and so either IELR or canonical LR can then be helpful to
7646avoid LALR's mysterious behavior.
7647
7648@item Malformed grammars.
7649
7650Occasionally during development, an especially malformed grammar with a
7651major recurring flaw may severely impede the IELR or canonical LR parser
7652table construction algorithm. LALR can be a quick way to construct parser
7653tables in order to investigate such problems while ignoring the more subtle
7654differences from IELR and canonical LR.
7655@end itemize
7656
7657@item IELR
7658
7659IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7660any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7661always accept exactly the same set of sentences. However, like LALR, IELR
7662merges parser states during parser table construction so that the number of
7663parser states is often an order of magnitude less than for canonical LR.
7664More importantly, because canonical LR's extra parser states may contain
7665duplicate conflicts in the case of non-LR grammars, the number of conflicts
7666for IELR is often an order of magnitude less as well. This effect can
7667significantly reduce the complexity of developing a grammar.
7668
7669@item Canonical LR
7670
7671@cindex delayed syntax error detection
7672@cindex LAC
7673@findex %nonassoc
7674While inefficient, canonical LR parser tables can be an interesting means to
7675explore a grammar because they possess a property that IELR and LALR tables
7676do not. That is, if @code{%nonassoc} is not used and default reductions are
7677left disabled (@pxref{Default Reductions}), then, for every left context of
7678every canonical LR state, the set of tokens accepted by that state is
7679guaranteed to be the exact set of tokens that is syntactically acceptable in
7680that left context. It might then seem that an advantage of canonical LR
7681parsers in production is that, under the above constraints, they are
7682guaranteed to detect a syntax error as soon as possible without performing
7683any unnecessary reductions. However, IELR parsers that use LAC are also
7684able to achieve this behavior without sacrificing @code{%nonassoc} or
7685default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7686@end itemize
7687
7688For a more detailed exposition of the mysterious behavior in LALR parsers
7689and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7690@ref{Bibliography,,Denny 2010 November}.
7691
7692@node Default Reductions
7693@subsection Default Reductions
7694@cindex default reductions
f3bc3386 7695@findex %define lr.default-reduction
7fceb615
JD
7696@findex %nonassoc
7697
7698After parser table construction, Bison identifies the reduction with the
7699largest lookahead set in each parser state. To reduce the size of the
7700parser state, traditional Bison behavior is to remove that lookahead set and
7701to assign that reduction to be the default parser action. Such a reduction
7702is known as a @dfn{default reduction}.
7703
7704Default reductions affect more than the size of the parser tables. They
7705also affect the behavior of the parser:
7706
7707@itemize
7708@item Delayed @code{yylex} invocations.
7709
7710@cindex delayed yylex invocations
7711@cindex consistent states
7712@cindex defaulted states
7713A @dfn{consistent state} is a state that has only one possible parser
7714action. If that action is a reduction and is encoded as a default
7715reduction, then that consistent state is called a @dfn{defaulted state}.
7716Upon reaching a defaulted state, a Bison-generated parser does not bother to
7717invoke @code{yylex} to fetch the next token before performing the reduction.
7718In other words, whether default reductions are enabled in consistent states
7719determines how soon a Bison-generated parser invokes @code{yylex} for a
7720token: immediately when it @emph{reaches} that token in the input or when it
7721eventually @emph{needs} that token as a lookahead to determine the next
7722parser action. Traditionally, default reductions are enabled, and so the
7723parser exhibits the latter behavior.
7724
7725The presence of defaulted states is an important consideration when
7726designing @code{yylex} and the grammar file. That is, if the behavior of
7727@code{yylex} can influence or be influenced by the semantic actions
7728associated with the reductions in defaulted states, then the delay of the
7729next @code{yylex} invocation until after those reductions is significant.
7730For example, the semantic actions might pop a scope stack that @code{yylex}
7731uses to determine what token to return. Thus, the delay might be necessary
7732to ensure that @code{yylex} does not look up the next token in a scope that
7733should already be considered closed.
7734
7735@item Delayed syntax error detection.
7736
7737@cindex delayed syntax error detection
7738When the parser fetches a new token by invoking @code{yylex}, it checks
7739whether there is an action for that token in the current parser state. The
7740parser detects a syntax error if and only if either (1) there is no action
7741for that token or (2) the action for that token is the error action (due to
7742the use of @code{%nonassoc}). However, if there is a default reduction in
7743that state (which might or might not be a defaulted state), then it is
7744impossible for condition 1 to exist. That is, all tokens have an action.
7745Thus, the parser sometimes fails to detect the syntax error until it reaches
7746a later state.
7747
7748@cindex LAC
7749@c If there's an infinite loop, default reductions can prevent an incorrect
7750@c sentence from being rejected.
7751While default reductions never cause the parser to accept syntactically
7752incorrect sentences, the delay of syntax error detection can have unexpected
7753effects on the behavior of the parser. However, the delay can be caused
7754anyway by parser state merging and the use of @code{%nonassoc}, and it can
7755be fixed by another Bison feature, LAC. We discuss the effects of delayed
7756syntax error detection and LAC more in the next section (@pxref{LAC}).
7757@end itemize
7758
7759For canonical LR, the only default reduction that Bison enables by default
7760is the accept action, which appears only in the accepting state, which has
7761no other action and is thus a defaulted state. However, the default accept
7762action does not delay any @code{yylex} invocation or syntax error detection
7763because the accept action ends the parse.
7764
7765For LALR and IELR, Bison enables default reductions in nearly all states by
7766default. There are only two exceptions. First, states that have a shift
7767action on the @code{error} token do not have default reductions because
7768delayed syntax error detection could then prevent the @code{error} token
7769from ever being shifted in that state. However, parser state merging can
7770cause the same effect anyway, and LAC fixes it in both cases, so future
7771versions of Bison might drop this exception when LAC is activated. Second,
7772GLR parsers do not record the default reduction as the action on a lookahead
7773token for which there is a conflict. The correct action in this case is to
7774split the parse instead.
7775
7776To adjust which states have default reductions enabled, use the
f3bc3386 7777@code{%define lr.default-reduction} directive.
7fceb615 7778
f3bc3386 7779@deffn {Directive} {%define lr.default-reduction @var{WHERE}}
7fceb615
JD
7780Specify the kind of states that are permitted to contain default reductions.
7781The accepted values of @var{WHERE} are:
7782@itemize
f0ad1b2f 7783@item @code{most} (default for LALR and IELR)
7fceb615
JD
7784@item @code{consistent}
7785@item @code{accepting} (default for canonical LR)
7786@end itemize
7787
7788(The ability to specify where default reductions are permitted is
7789experimental. More user feedback will help to stabilize it.)
7790@end deffn
7791
7fceb615
JD
7792@node LAC
7793@subsection LAC
7794@findex %define parse.lac
7795@cindex LAC
7796@cindex lookahead correction
7797
7798Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7799encountering a syntax error. First, the parser might perform additional
7800parser stack reductions before discovering the syntax error. Such
7801reductions can perform user semantic actions that are unexpected because
7802they are based on an invalid token, and they cause error recovery to begin
7803in a different syntactic context than the one in which the invalid token was
7804encountered. Second, when verbose error messages are enabled (@pxref{Error
7805Reporting}), the expected token list in the syntax error message can both
7806contain invalid tokens and omit valid tokens.
7807
7808The culprits for the above problems are @code{%nonassoc}, default reductions
7809in inconsistent states (@pxref{Default Reductions}), and parser state
7810merging. Because IELR and LALR merge parser states, they suffer the most.
7811Canonical LR can suffer only if @code{%nonassoc} is used or if default
7812reductions are enabled for inconsistent states.
7813
7814LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7815that solves these problems for canonical LR, IELR, and LALR without
7816sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7817enable LAC with the @code{%define parse.lac} directive.
7818
7819@deffn {Directive} {%define parse.lac @var{VALUE}}
7820Enable LAC to improve syntax error handling.
7821@itemize
7822@item @code{none} (default)
7823@item @code{full}
7824@end itemize
7825(This feature is experimental. More user feedback will help to stabilize
7826it. Moreover, it is currently only available for deterministic parsers in
7827C.)
7828@end deffn
7829
7830Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7831fetches a new token from the scanner so that it can determine the next
7832parser action, it immediately suspends normal parsing and performs an
7833exploratory parse using a temporary copy of the normal parser state stack.
7834During this exploratory parse, the parser does not perform user semantic
7835actions. If the exploratory parse reaches a shift action, normal parsing
7836then resumes on the normal parser stacks. If the exploratory parse reaches
7837an error instead, the parser reports a syntax error. If verbose syntax
7838error messages are enabled, the parser must then discover the list of
7839expected tokens, so it performs a separate exploratory parse for each token
7840in the grammar.
7841
7842There is one subtlety about the use of LAC. That is, when in a consistent
7843parser state with a default reduction, the parser will not attempt to fetch
7844a token from the scanner because no lookahead is needed to determine the
7845next parser action. Thus, whether default reductions are enabled in
7846consistent states (@pxref{Default Reductions}) affects how soon the parser
7847detects a syntax error: immediately when it @emph{reaches} an erroneous
7848token or when it eventually @emph{needs} that token as a lookahead to
7849determine the next parser action. The latter behavior is probably more
7850intuitive, so Bison currently provides no way to achieve the former behavior
7851while default reductions are enabled in consistent states.
7852
7853Thus, when LAC is in use, for some fixed decision of whether to enable
7854default reductions in consistent states, canonical LR and IELR behave almost
7855exactly the same for both syntactically acceptable and syntactically
7856unacceptable input. While LALR still does not support the full
7857language-recognition power of canonical LR and IELR, LAC at least enables
7858LALR's syntax error handling to correctly reflect LALR's
7859language-recognition power.
7860
7861There are a few caveats to consider when using LAC:
7862
7863@itemize
7864@item Infinite parsing loops.
7865
7866IELR plus LAC does have one shortcoming relative to canonical LR. Some
7867parsers generated by Bison can loop infinitely. LAC does not fix infinite
7868parsing loops that occur between encountering a syntax error and detecting
7869it, but enabling canonical LR or disabling default reductions sometimes
7870does.
7871
7872@item Verbose error message limitations.
7873
7874Because of internationalization considerations, Bison-generated parsers
7875limit the size of the expected token list they are willing to report in a
7876verbose syntax error message. If the number of expected tokens exceeds that
7877limit, the list is simply dropped from the message. Enabling LAC can
7878increase the size of the list and thus cause the parser to drop it. Of
7879course, dropping the list is better than reporting an incorrect list.
7880
7881@item Performance.
7882
7883Because LAC requires many parse actions to be performed twice, it can have a
7884performance penalty. However, not all parse actions must be performed
7885twice. Specifically, during a series of default reductions in consistent
7886states and shift actions, the parser never has to initiate an exploratory
7887parse. Moreover, the most time-consuming tasks in a parse are often the
7888file I/O, the lexical analysis performed by the scanner, and the user's
7889semantic actions, but none of these are performed during the exploratory
7890parse. Finally, the base of the temporary stack used during an exploratory
7891parse is a pointer into the normal parser state stack so that the stack is
7892never physically copied. In our experience, the performance penalty of LAC
5a321748 7893has proved insignificant for practical grammars.
7fceb615
JD
7894@end itemize
7895
709c7d11
JD
7896While the LAC algorithm shares techniques that have been recognized in the
7897parser community for years, for the publication that introduces LAC,
7898@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7899
7fceb615
JD
7900@node Unreachable States
7901@subsection Unreachable States
f3bc3386 7902@findex %define lr.keep-unreachable-state
7fceb615
JD
7903@cindex unreachable states
7904
7905If there exists no sequence of transitions from the parser's start state to
7906some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7907state}. A state can become unreachable during conflict resolution if Bison
7908disables a shift action leading to it from a predecessor state.
7909
7910By default, Bison removes unreachable states from the parser after conflict
7911resolution because they are useless in the generated parser. However,
7912keeping unreachable states is sometimes useful when trying to understand the
7913relationship between the parser and the grammar.
7914
f3bc3386 7915@deffn {Directive} {%define lr.keep-unreachable-state @var{VALUE}}
7fceb615
JD
7916Request that Bison allow unreachable states to remain in the parser tables.
7917@var{VALUE} must be a Boolean. The default is @code{false}.
7918@end deffn
7919
7920There are a few caveats to consider:
7921
7922@itemize @bullet
7923@item Missing or extraneous warnings.
7924
7925Unreachable states may contain conflicts and may use rules not used in any
7926other state. Thus, keeping unreachable states may induce warnings that are
7927irrelevant to your parser's behavior, and it may eliminate warnings that are
7928relevant. Of course, the change in warnings may actually be relevant to a
7929parser table analysis that wants to keep unreachable states, so this
7930behavior will likely remain in future Bison releases.
7931
7932@item Other useless states.
7933
7934While Bison is able to remove unreachable states, it is not guaranteed to
7935remove other kinds of useless states. Specifically, when Bison disables
7936reduce actions during conflict resolution, some goto actions may become
7937useless, and thus some additional states may become useless. If Bison were
7938to compute which goto actions were useless and then disable those actions,
7939it could identify such states as unreachable and then remove those states.
7940However, Bison does not compute which goto actions are useless.
7941@end itemize
7942
fae437e8 7943@node Generalized LR Parsing
8a4281b9
JD
7944@section Generalized LR (GLR) Parsing
7945@cindex GLR parsing
7946@cindex generalized LR (GLR) parsing
676385e2 7947@cindex ambiguous grammars
9d9b8b70 7948@cindex nondeterministic parsing
676385e2 7949
fae437e8
AD
7950Bison produces @emph{deterministic} parsers that choose uniquely
7951when to reduce and which reduction to apply
742e4900 7952based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7953As a result, normal Bison handles a proper subset of the family of
7954context-free languages.
fae437e8 7955Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7956sequence of reductions cannot have deterministic parsers in this sense.
7957The same is true of languages that require more than one symbol of
742e4900 7958lookahead, since the parser lacks the information necessary to make a
676385e2 7959decision at the point it must be made in a shift-reduce parser.
cc09e5be 7960Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7961there are languages where Bison's default choice of how to
676385e2
PH
7962summarize the input seen so far loses necessary information.
7963
7964When you use the @samp{%glr-parser} declaration in your grammar file,
7965Bison generates a parser that uses a different algorithm, called
8a4281b9 7966Generalized LR (or GLR). A Bison GLR
c827f760 7967parser uses the same basic
676385e2
PH
7968algorithm for parsing as an ordinary Bison parser, but behaves
7969differently in cases where there is a shift-reduce conflict that has not
fae437e8 7970been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7971reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7972situation, it
fae437e8 7973effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7974shift or reduction. These parsers then proceed as usual, consuming
7975tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7976and split further, with the result that instead of a sequence of states,
8a4281b9 7977a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7978
7979In effect, each stack represents a guess as to what the proper parse
7980is. Additional input may indicate that a guess was wrong, in which case
7981the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7982actions generated in each stack are saved, rather than being executed
676385e2 7983immediately. When a stack disappears, its saved semantic actions never
fae437e8 7984get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7985their sets of semantic actions are both saved with the state that
7986results from the reduction. We say that two stacks are equivalent
fae437e8 7987when they both represent the same sequence of states,
676385e2
PH
7988and each pair of corresponding states represents a
7989grammar symbol that produces the same segment of the input token
7990stream.
7991
7992Whenever the parser makes a transition from having multiple
eb45ef3b 7993states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7994algorithm, after resolving and executing the saved-up actions.
7995At this transition, some of the states on the stack will have semantic
7996values that are sets (actually multisets) of possible actions. The
7997parser tries to pick one of the actions by first finding one whose rule
7998has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7999declaration. Otherwise, if the alternative actions are not ordered by
676385e2 8000precedence, but there the same merging function is declared for both
fae437e8 8001rules by the @samp{%merge} declaration,
676385e2
PH
8002Bison resolves and evaluates both and then calls the merge function on
8003the result. Otherwise, it reports an ambiguity.
8004
8a4281b9
JD
8005It is possible to use a data structure for the GLR parsing tree that
8006permits the processing of any LR(1) grammar in linear time (in the
c827f760 8007size of the input), any unambiguous (not necessarily
8a4281b9 8008LR(1)) grammar in
fae437e8 8009quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
8010context-free grammar in cubic worst-case time. However, Bison currently
8011uses a simpler data structure that requires time proportional to the
8012length of the input times the maximum number of stacks required for any
9d9b8b70 8013prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
8014grammars can require exponential time and space to process. Such badly
8015behaving examples, however, are not generally of practical interest.
9d9b8b70 8016Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 8017doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 8018structure should generally be adequate. On LR(1) portions of a
eb45ef3b 8019grammar, in particular, it is only slightly slower than with the
8a4281b9 8020deterministic LR(1) Bison parser.
676385e2 8021
5e528941
JD
8022For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
80232000}.
f6481e2f 8024
1a059451
PE
8025@node Memory Management
8026@section Memory Management, and How to Avoid Memory Exhaustion
8027@cindex memory exhaustion
8028@cindex memory management
bfa74976
RS
8029@cindex stack overflow
8030@cindex parser stack overflow
8031@cindex overflow of parser stack
8032
1a059451 8033The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 8034not reduced. When this happens, the parser function @code{yyparse}
1a059451 8035calls @code{yyerror} and then returns 2.
bfa74976 8036
c827f760 8037Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 8038usually results from using a right recursion instead of a left
188867ac 8039recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 8040
bfa74976
RS
8041@vindex YYMAXDEPTH
8042By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 8043parser stack can become before memory is exhausted. Define the
bfa74976
RS
8044macro with a value that is an integer. This value is the maximum number
8045of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
8046
8047The stack space allowed is not necessarily allocated. If you specify a
1a059451 8048large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8049stack at first, and then makes it bigger by stages as needed. This
8050increasing allocation happens automatically and silently. Therefore,
8051you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8052space for ordinary inputs that do not need much stack.
8053
d7e14fc0
PE
8054However, do not allow @code{YYMAXDEPTH} to be a value so large that
8055arithmetic overflow could occur when calculating the size of the stack
8056space. Also, do not allow @code{YYMAXDEPTH} to be less than
8057@code{YYINITDEPTH}.
8058
bfa74976
RS
8059@cindex default stack limit
8060The default value of @code{YYMAXDEPTH}, if you do not define it, is
806110000.
8062
8063@vindex YYINITDEPTH
8064You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8065macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8066parser in C, this value must be a compile-time constant
d7e14fc0
PE
8067unless you are assuming C99 or some other target language or compiler
8068that allows variable-length arrays. The default is 200.
8069
1a059451 8070Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8071
20be2f92 8072You can generate a deterministic parser containing C++ user code from
411614fa 8073the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8074(@pxref{C++ Parsers}). However, if you do use the default skeleton
8075and want to allow the parsing stack to grow,
8076be careful not to use semantic types or location types that require
8077non-trivial copy constructors.
8078The C skeleton bypasses these constructors when copying data to
8079new, larger stacks.
d1a1114f 8080
342b8b6e 8081@node Error Recovery
bfa74976
RS
8082@chapter Error Recovery
8083@cindex error recovery
8084@cindex recovery from errors
8085
6e649e65 8086It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8087error. For example, a compiler should recover sufficiently to parse the
8088rest of the input file and check it for errors; a calculator should accept
8089another expression.
8090
8091In a simple interactive command parser where each input is one line, it may
8092be sufficient to allow @code{yyparse} to return 1 on error and have the
8093caller ignore the rest of the input line when that happens (and then call
8094@code{yyparse} again). But this is inadequate for a compiler, because it
8095forgets all the syntactic context leading up to the error. A syntax error
8096deep within a function in the compiler input should not cause the compiler
8097to treat the following line like the beginning of a source file.
8098
8099@findex error
8100You can define how to recover from a syntax error by writing rules to
8101recognize the special token @code{error}. This is a terminal symbol that
8102is always defined (you need not declare it) and reserved for error
8103handling. The Bison parser generates an @code{error} token whenever a
8104syntax error happens; if you have provided a rule to recognize this token
13863333 8105in the current context, the parse can continue.
bfa74976
RS
8106
8107For example:
8108
8109@example
0860e383 8110stmts:
5e9b6624 8111 /* empty string */
0860e383
AD
8112| stmts '\n'
8113| stmts exp '\n'
8114| stmts error '\n'
bfa74976
RS
8115@end example
8116
8117The fourth rule in this example says that an error followed by a newline
0860e383 8118makes a valid addition to any @code{stmts}.
bfa74976
RS
8119
8120What happens if a syntax error occurs in the middle of an @code{exp}? The
8121error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8122of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8123the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8124and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8125will be tokens to read before the next newline. So the rule is not
8126applicable in the ordinary way.
8127
8128But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8129the semantic context and part of the input. First it discards states
8130and objects from the stack until it gets back to a state in which the
bfa74976 8131@code{error} token is acceptable. (This means that the subexpressions
0860e383 8132already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8133At this point the @code{error} token can be shifted. Then, if the old
742e4900 8134lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8135tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8136this example, Bison reads and discards input until the next newline so
8137that the fourth rule can apply. Note that discarded symbols are
8138possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8139Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8140
8141The choice of error rules in the grammar is a choice of strategies for
8142error recovery. A simple and useful strategy is simply to skip the rest of
8143the current input line or current statement if an error is detected:
8144
8145@example
0860e383 8146stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8147@end example
8148
8149It is also useful to recover to the matching close-delimiter of an
8150opening-delimiter that has already been parsed. Otherwise the
8151close-delimiter will probably appear to be unmatched, and generate another,
8152spurious error message:
8153
8154@example
5e9b6624
AD
8155primary:
8156 '(' expr ')'
8157| '(' error ')'
8158@dots{}
8159;
bfa74976
RS
8160@end example
8161
8162Error recovery strategies are necessarily guesses. When they guess wrong,
8163one syntax error often leads to another. In the above example, the error
8164recovery rule guesses that an error is due to bad input within one
0860e383
AD
8165@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8166middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8167from the first error, another syntax error will be found straightaway,
8168since the text following the spurious semicolon is also an invalid
0860e383 8169@code{stmt}.
bfa74976
RS
8170
8171To prevent an outpouring of error messages, the parser will output no error
8172message for another syntax error that happens shortly after the first; only
8173after three consecutive input tokens have been successfully shifted will
8174error messages resume.
8175
8176Note that rules which accept the @code{error} token may have actions, just
8177as any other rules can.
8178
8179@findex yyerrok
8180You can make error messages resume immediately by using the macro
8181@code{yyerrok} in an action. If you do this in the error rule's action, no
8182error messages will be suppressed. This macro requires no arguments;
8183@samp{yyerrok;} is a valid C statement.
8184
8185@findex yyclearin
742e4900 8186The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8187this is unacceptable, then the macro @code{yyclearin} may be used to clear
8188this token. Write the statement @samp{yyclearin;} in the error rule's
8189action.
32c29292 8190@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8191
6e649e65 8192For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8193called that advances the input stream to some point where parsing should
8194once again commence. The next symbol returned by the lexical scanner is
742e4900 8195probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8196with @samp{yyclearin;}.
8197
8198@vindex YYRECOVERING
02103984
PE
8199The expression @code{YYRECOVERING ()} yields 1 when the parser
8200is recovering from a syntax error, and 0 otherwise.
8201Syntax error diagnostics are suppressed while recovering from a syntax
8202error.
bfa74976 8203
342b8b6e 8204@node Context Dependency
bfa74976
RS
8205@chapter Handling Context Dependencies
8206
8207The Bison paradigm is to parse tokens first, then group them into larger
8208syntactic units. In many languages, the meaning of a token is affected by
8209its context. Although this violates the Bison paradigm, certain techniques
8210(known as @dfn{kludges}) may enable you to write Bison parsers for such
8211languages.
8212
8213@menu
8214* Semantic Tokens:: Token parsing can depend on the semantic context.
8215* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8216* Tie-in Recovery:: Lexical tie-ins have implications for how
8217 error recovery rules must be written.
8218@end menu
8219
8220(Actually, ``kludge'' means any technique that gets its job done but is
8221neither clean nor robust.)
8222
342b8b6e 8223@node Semantic Tokens
bfa74976
RS
8224@section Semantic Info in Token Types
8225
8226The C language has a context dependency: the way an identifier is used
8227depends on what its current meaning is. For example, consider this:
8228
8229@example
8230foo (x);
8231@end example
8232
8233This looks like a function call statement, but if @code{foo} is a typedef
8234name, then this is actually a declaration of @code{x}. How can a Bison
8235parser for C decide how to parse this input?
8236
8a4281b9 8237The method used in GNU C is to have two different token types,
bfa74976
RS
8238@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8239identifier, it looks up the current declaration of the identifier in order
8240to decide which token type to return: @code{TYPENAME} if the identifier is
8241declared as a typedef, @code{IDENTIFIER} otherwise.
8242
8243The grammar rules can then express the context dependency by the choice of
8244token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8245but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8246@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8247is @emph{not} significant, such as in declarations that can shadow a
8248typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8249accepted---there is one rule for each of the two token types.
8250
8251This technique is simple to use if the decision of which kinds of
8252identifiers to allow is made at a place close to where the identifier is
8253parsed. But in C this is not always so: C allows a declaration to
8254redeclare a typedef name provided an explicit type has been specified
8255earlier:
8256
8257@example
3a4f411f
PE
8258typedef int foo, bar;
8259int baz (void)
d4fca427 8260@group
3a4f411f
PE
8261@{
8262 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8263 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8264 return foo (bar);
8265@}
d4fca427 8266@end group
bfa74976
RS
8267@end example
8268
8269Unfortunately, the name being declared is separated from the declaration
8270construct itself by a complicated syntactic structure---the ``declarator''.
8271
9ecbd125 8272As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8273all the nonterminal names changed: once for parsing a declaration in
8274which a typedef name can be redefined, and once for parsing a
8275declaration in which that can't be done. Here is a part of the
8276duplication, with actions omitted for brevity:
bfa74976
RS
8277
8278@example
d4fca427 8279@group
bfa74976 8280initdcl:
5e9b6624
AD
8281 declarator maybeasm '=' init
8282| declarator maybeasm
8283;
d4fca427 8284@end group
bfa74976 8285
d4fca427 8286@group
bfa74976 8287notype_initdcl:
5e9b6624
AD
8288 notype_declarator maybeasm '=' init
8289| notype_declarator maybeasm
8290;
d4fca427 8291@end group
bfa74976
RS
8292@end example
8293
8294@noindent
8295Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8296cannot. The distinction between @code{declarator} and
8297@code{notype_declarator} is the same sort of thing.
8298
8299There is some similarity between this technique and a lexical tie-in
8300(described next), in that information which alters the lexical analysis is
8301changed during parsing by other parts of the program. The difference is
8302here the information is global, and is used for other purposes in the
8303program. A true lexical tie-in has a special-purpose flag controlled by
8304the syntactic context.
8305
342b8b6e 8306@node Lexical Tie-ins
bfa74976
RS
8307@section Lexical Tie-ins
8308@cindex lexical tie-in
8309
8310One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8311which is set by Bison actions, whose purpose is to alter the way tokens are
8312parsed.
8313
8314For example, suppose we have a language vaguely like C, but with a special
8315construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8316an expression in parentheses in which all integers are hexadecimal. In
8317particular, the token @samp{a1b} must be treated as an integer rather than
8318as an identifier if it appears in that context. Here is how you can do it:
8319
8320@example
8321@group
8322%@{
38a92d50
PE
8323 int hexflag;
8324 int yylex (void);
8325 void yyerror (char const *);
bfa74976
RS
8326%@}
8327%%
8328@dots{}
8329@end group
8330@group
5e9b6624
AD
8331expr:
8332 IDENTIFIER
8333| constant
8334| HEX '(' @{ hexflag = 1; @}
8335 expr ')' @{ hexflag = 0; $$ = $4; @}
8336| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8337@dots{}
8338;
bfa74976
RS
8339@end group
8340
8341@group
8342constant:
5e9b6624
AD
8343 INTEGER
8344| STRING
8345;
bfa74976
RS
8346@end group
8347@end example
8348
8349@noindent
8350Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8351it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8352with letters are parsed as integers if possible.
8353
ff7571c0
JD
8354The declaration of @code{hexflag} shown in the prologue of the grammar
8355file is needed to make it accessible to the actions (@pxref{Prologue,
8356,The Prologue}). You must also write the code in @code{yylex} to obey
8357the flag.
bfa74976 8358
342b8b6e 8359@node Tie-in Recovery
bfa74976
RS
8360@section Lexical Tie-ins and Error Recovery
8361
8362Lexical tie-ins make strict demands on any error recovery rules you have.
8363@xref{Error Recovery}.
8364
8365The reason for this is that the purpose of an error recovery rule is to
8366abort the parsing of one construct and resume in some larger construct.
8367For example, in C-like languages, a typical error recovery rule is to skip
8368tokens until the next semicolon, and then start a new statement, like this:
8369
8370@example
5e9b6624
AD
8371stmt:
8372 expr ';'
8373| IF '(' expr ')' stmt @{ @dots{} @}
8374@dots{}
8375| error ';' @{ hexflag = 0; @}
8376;
bfa74976
RS
8377@end example
8378
8379If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8380construct, this error rule will apply, and then the action for the
8381completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8382remain set for the entire rest of the input, or until the next @code{hex}
8383keyword, causing identifiers to be misinterpreted as integers.
8384
8385To avoid this problem the error recovery rule itself clears @code{hexflag}.
8386
8387There may also be an error recovery rule that works within expressions.
8388For example, there could be a rule which applies within parentheses
8389and skips to the close-parenthesis:
8390
8391@example
8392@group
5e9b6624
AD
8393expr:
8394 @dots{}
8395| '(' expr ')' @{ $$ = $2; @}
8396| '(' error ')'
8397@dots{}
bfa74976
RS
8398@end group
8399@end example
8400
8401If this rule acts within the @code{hex} construct, it is not going to abort
8402that construct (since it applies to an inner level of parentheses within
8403the construct). Therefore, it should not clear the flag: the rest of
8404the @code{hex} construct should be parsed with the flag still in effect.
8405
8406What if there is an error recovery rule which might abort out of the
8407@code{hex} construct or might not, depending on circumstances? There is no
8408way you can write the action to determine whether a @code{hex} construct is
8409being aborted or not. So if you are using a lexical tie-in, you had better
8410make sure your error recovery rules are not of this kind. Each rule must
8411be such that you can be sure that it always will, or always won't, have to
8412clear the flag.
8413
ec3bc396
AD
8414@c ================================================== Debugging Your Parser
8415
342b8b6e 8416@node Debugging
bfa74976 8417@chapter Debugging Your Parser
ec3bc396 8418
93c150b6
AD
8419Developing a parser can be a challenge, especially if you don't understand
8420the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8421chapter explains how to generate and read the detailed description of the
8422automaton, and how to enable and understand the parser run-time traces.
ec3bc396
AD
8423
8424@menu
8425* Understanding:: Understanding the structure of your parser.
fc4fdd62 8426* Graphviz:: Getting a visual representation of the parser.
ec3bc396
AD
8427* Tracing:: Tracing the execution of your parser.
8428@end menu
8429
8430@node Understanding
8431@section Understanding Your Parser
8432
8433As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8434Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8435frequent than one would hope), looking at this automaton is required to
8436tune or simply fix a parser. Bison provides two different
35fe0834 8437representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8438
8439The textual file is generated when the options @option{--report} or
e3fd1dcb 8440@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8441Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8442the parser implementation file name, and adding @samp{.output}
8443instead. Therefore, if the grammar file is @file{foo.y}, then the
8444parser implementation file is called @file{foo.tab.c} by default. As
8445a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8446
8447The following grammar file, @file{calc.y}, will be used in the sequel:
8448
8449@example
8450%token NUM STR
8451%left '+' '-'
8452%left '*'
8453%%
5e9b6624
AD
8454exp:
8455 exp '+' exp
8456| exp '-' exp
8457| exp '*' exp
8458| exp '/' exp
8459| NUM
8460;
ec3bc396
AD
8461useless: STR;
8462%%
8463@end example
8464
88bce5a2
AD
8465@command{bison} reports:
8466
8467@example
8f0d265e
JD
8468calc.y: warning: 1 nonterminal useless in grammar
8469calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8470calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8471calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8472calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8473@end example
8474
8475When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8476creates a file @file{calc.output} with contents detailed below. The
8477order of the output and the exact presentation might vary, but the
8478interpretation is the same.
ec3bc396 8479
ec3bc396
AD
8480@noindent
8481@cindex token, useless
8482@cindex useless token
8483@cindex nonterminal, useless
8484@cindex useless nonterminal
8485@cindex rule, useless
8486@cindex useless rule
62243aa5 8487The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8488nonterminals and rules are removed in order to produce a smaller parser, but
8489useless tokens are preserved, since they might be used by the scanner (note
8490the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8491
8492@example
29e20e22 8493Nonterminals useless in grammar
ec3bc396
AD
8494 useless
8495
29e20e22 8496Terminals unused in grammar
ec3bc396
AD
8497 STR
8498
29e20e22
AD
8499Rules useless in grammar
8500 6 useless: STR
ec3bc396
AD
8501@end example
8502
8503@noindent
29e20e22
AD
8504The next section lists states that still have conflicts.
8505
8506@example
8507State 8 conflicts: 1 shift/reduce
8508State 9 conflicts: 1 shift/reduce
8509State 10 conflicts: 1 shift/reduce
8510State 11 conflicts: 4 shift/reduce
8511@end example
8512
8513@noindent
8514Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8515
8516@example
8517Grammar
8518
29e20e22
AD
8519 0 $accept: exp $end
8520
8521 1 exp: exp '+' exp
8522 2 | exp '-' exp
8523 3 | exp '*' exp
8524 4 | exp '/' exp
8525 5 | NUM
ec3bc396
AD
8526@end example
8527
8528@noindent
8529and reports the uses of the symbols:
8530
8531@example
d4fca427 8532@group
ec3bc396
AD
8533Terminals, with rules where they appear
8534
88bce5a2 8535$end (0) 0
ec3bc396
AD
8536'*' (42) 3
8537'+' (43) 1
8538'-' (45) 2
8539'/' (47) 4
8540error (256)
8541NUM (258) 5
29e20e22 8542STR (259)
d4fca427 8543@end group
ec3bc396 8544
d4fca427 8545@group
ec3bc396
AD
8546Nonterminals, with rules where they appear
8547
29e20e22 8548$accept (9)
ec3bc396 8549 on left: 0
29e20e22 8550exp (10)
ec3bc396 8551 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8552@end group
ec3bc396
AD
8553@end example
8554
8555@noindent
8556@cindex item
8557@cindex pointed rule
8558@cindex rule, pointed
8559Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8560with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8561item is a production rule together with a point (@samp{.}) marking
8562the location of the input cursor.
ec3bc396
AD
8563
8564@example
8565state 0
8566
29e20e22 8567 0 $accept: . exp $end
ec3bc396 8568
29e20e22 8569 NUM shift, and go to state 1
ec3bc396 8570
29e20e22 8571 exp go to state 2
ec3bc396
AD
8572@end example
8573
8574This reads as follows: ``state 0 corresponds to being at the very
8575beginning of the parsing, in the initial rule, right before the start
8576symbol (here, @code{exp}). When the parser returns to this state right
8577after having reduced a rule that produced an @code{exp}, the control
8578flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8579symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8580the parse stack, and the control flow jumps to state 1. Any other
742e4900 8581lookahead triggers a syntax error.''
ec3bc396
AD
8582
8583@cindex core, item set
8584@cindex item set core
8585@cindex kernel, item set
8586@cindex item set core
8587Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8588report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8589at the beginning of any rule deriving an @code{exp}. By default Bison
8590reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8591you want to see more detail you can invoke @command{bison} with
35880c82 8592@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8593
8594@example
8595state 0
8596
29e20e22
AD
8597 0 $accept: . exp $end
8598 1 exp: . exp '+' exp
8599 2 | . exp '-' exp
8600 3 | . exp '*' exp
8601 4 | . exp '/' exp
8602 5 | . NUM
ec3bc396 8603
29e20e22 8604 NUM shift, and go to state 1
ec3bc396 8605
29e20e22 8606 exp go to state 2
ec3bc396
AD
8607@end example
8608
8609@noindent
29e20e22 8610In the state 1@dots{}
ec3bc396
AD
8611
8612@example
8613state 1
8614
29e20e22 8615 5 exp: NUM .
ec3bc396 8616
29e20e22 8617 $default reduce using rule 5 (exp)
ec3bc396
AD
8618@end example
8619
8620@noindent
742e4900 8621the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8622(@samp{$default}), the parser will reduce it. If it was coming from
8623state 0, then, after this reduction it will return to state 0, and will
8624jump to state 2 (@samp{exp: go to state 2}).
8625
8626@example
8627state 2
8628
29e20e22
AD
8629 0 $accept: exp . $end
8630 1 exp: exp . '+' exp
8631 2 | exp . '-' exp
8632 3 | exp . '*' exp
8633 4 | exp . '/' exp
ec3bc396 8634
29e20e22
AD
8635 $end shift, and go to state 3
8636 '+' shift, and go to state 4
8637 '-' shift, and go to state 5
8638 '*' shift, and go to state 6
8639 '/' shift, and go to state 7
ec3bc396
AD
8640@end example
8641
8642@noindent
8643In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8644because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8645@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8646jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8647Since there is no default action, any lookahead not listed triggers a syntax
8648error.
ec3bc396 8649
eb45ef3b 8650@cindex accepting state
ec3bc396
AD
8651The state 3 is named the @dfn{final state}, or the @dfn{accepting
8652state}:
8653
8654@example
8655state 3
8656
29e20e22 8657 0 $accept: exp $end .
ec3bc396 8658
29e20e22 8659 $default accept
ec3bc396
AD
8660@end example
8661
8662@noindent
29e20e22
AD
8663the initial rule is completed (the start symbol and the end-of-input were
8664read), the parsing exits successfully.
ec3bc396
AD
8665
8666The interpretation of states 4 to 7 is straightforward, and is left to
8667the reader.
8668
8669@example
8670state 4
8671
29e20e22 8672 1 exp: exp '+' . exp
ec3bc396 8673
29e20e22
AD
8674 NUM shift, and go to state 1
8675
8676 exp go to state 8
ec3bc396 8677
ec3bc396
AD
8678
8679state 5
8680
29e20e22
AD
8681 2 exp: exp '-' . exp
8682
8683 NUM shift, and go to state 1
ec3bc396 8684
29e20e22 8685 exp go to state 9
ec3bc396 8686
ec3bc396
AD
8687
8688state 6
8689
29e20e22 8690 3 exp: exp '*' . exp
ec3bc396 8691
29e20e22
AD
8692 NUM shift, and go to state 1
8693
8694 exp go to state 10
ec3bc396 8695
ec3bc396
AD
8696
8697state 7
8698
29e20e22 8699 4 exp: exp '/' . exp
ec3bc396 8700
29e20e22 8701 NUM shift, and go to state 1
ec3bc396 8702
29e20e22 8703 exp go to state 11
ec3bc396
AD
8704@end example
8705
5a99098d
PE
8706As was announced in beginning of the report, @samp{State 8 conflicts:
87071 shift/reduce}:
ec3bc396
AD
8708
8709@example
8710state 8
8711
29e20e22
AD
8712 1 exp: exp . '+' exp
8713 1 | exp '+' exp .
8714 2 | exp . '-' exp
8715 3 | exp . '*' exp
8716 4 | exp . '/' exp
ec3bc396 8717
29e20e22
AD
8718 '*' shift, and go to state 6
8719 '/' shift, and go to state 7
ec3bc396 8720
29e20e22
AD
8721 '/' [reduce using rule 1 (exp)]
8722 $default reduce using rule 1 (exp)
ec3bc396
AD
8723@end example
8724
742e4900 8725Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8726either shifting (and going to state 7), or reducing rule 1. The
8727conflict means that either the grammar is ambiguous, or the parser lacks
8728information to make the right decision. Indeed the grammar is
8729ambiguous, as, since we did not specify the precedence of @samp{/}, the
8730sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8731NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8732NUM}, which corresponds to reducing rule 1.
8733
eb45ef3b 8734Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8735arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 8736Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8737square brackets.
8738
8739Note that all the previous states had a single possible action: either
8740shifting the next token and going to the corresponding state, or
8741reducing a single rule. In the other cases, i.e., when shifting
8742@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8743possible, the lookahead is required to select the action. State 8 is
8744one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8745is shifting, otherwise the action is reducing rule 1. In other words,
8746the first two items, corresponding to rule 1, are not eligible when the
742e4900 8747lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8748precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8749with some set of possible lookahead tokens. When run with
8750@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8751
8752@example
8753state 8
8754
29e20e22
AD
8755 1 exp: exp . '+' exp
8756 1 | exp '+' exp . [$end, '+', '-', '/']
8757 2 | exp . '-' exp
8758 3 | exp . '*' exp
8759 4 | exp . '/' exp
8760
8761 '*' shift, and go to state 6
8762 '/' shift, and go to state 7
ec3bc396 8763
29e20e22
AD
8764 '/' [reduce using rule 1 (exp)]
8765 $default reduce using rule 1 (exp)
8766@end example
8767
8768Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8769the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8770solved thanks to associativity and precedence directives. If invoked with
8771@option{--report=solved}, Bison includes information about the solved
8772conflicts in the report:
ec3bc396 8773
29e20e22
AD
8774@example
8775Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8776Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8777Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8778@end example
8779
29e20e22 8780
ec3bc396
AD
8781The remaining states are similar:
8782
8783@example
d4fca427 8784@group
ec3bc396
AD
8785state 9
8786
29e20e22
AD
8787 1 exp: exp . '+' exp
8788 2 | exp . '-' exp
8789 2 | exp '-' exp .
8790 3 | exp . '*' exp
8791 4 | exp . '/' exp
ec3bc396 8792
29e20e22
AD
8793 '*' shift, and go to state 6
8794 '/' shift, and go to state 7
ec3bc396 8795
29e20e22
AD
8796 '/' [reduce using rule 2 (exp)]
8797 $default reduce using rule 2 (exp)
d4fca427 8798@end group
ec3bc396 8799
d4fca427 8800@group
ec3bc396
AD
8801state 10
8802
29e20e22
AD
8803 1 exp: exp . '+' exp
8804 2 | exp . '-' exp
8805 3 | exp . '*' exp
8806 3 | exp '*' exp .
8807 4 | exp . '/' exp
ec3bc396 8808
29e20e22 8809 '/' shift, and go to state 7
ec3bc396 8810
29e20e22
AD
8811 '/' [reduce using rule 3 (exp)]
8812 $default reduce using rule 3 (exp)
d4fca427 8813@end group
ec3bc396 8814
d4fca427 8815@group
ec3bc396
AD
8816state 11
8817
29e20e22
AD
8818 1 exp: exp . '+' exp
8819 2 | exp . '-' exp
8820 3 | exp . '*' exp
8821 4 | exp . '/' exp
8822 4 | exp '/' exp .
8823
8824 '+' shift, and go to state 4
8825 '-' shift, and go to state 5
8826 '*' shift, and go to state 6
8827 '/' shift, and go to state 7
8828
8829 '+' [reduce using rule 4 (exp)]
8830 '-' [reduce using rule 4 (exp)]
8831 '*' [reduce using rule 4 (exp)]
8832 '/' [reduce using rule 4 (exp)]
8833 $default reduce using rule 4 (exp)
d4fca427 8834@end group
ec3bc396
AD
8835@end example
8836
8837@noindent
fa7e68c3
PE
8838Observe that state 11 contains conflicts not only due to the lack of
8839precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8840@samp{*}, but also because the
ec3bc396
AD
8841associativity of @samp{/} is not specified.
8842
fc4fdd62
TR
8843@c ================================================= Graphical Representation
8844
8845@node Graphviz
8846@section Visualizing Your Parser
8847@cindex dot
8848
8849As another means to gain better understanding of the shift/reduce
8850automaton corresponding to the Bison parser, a DOT file can be generated. Note
8851that debugging a real grammar with this is tedious at best, and impractical
8852most of the times, because the generated files are huge (the generation of
8853a PDF or PNG file from it will take very long, and more often than not it will
8854fail due to memory exhaustion). This option was rather designed for beginners,
8855to help them understand LR parsers.
8856
8857This file is generated when the @option{--graph} option is specified (see
8858@pxref{Invocation, , Invoking Bison}). Its name is made by removing
8859@samp{.tab.c} or @samp{.c} from the parser implementation file name, and
8860adding @samp{.dot} instead. If the grammar file is @file{foo.y}, the
8861Graphviz output file is called @file{foo.dot}.
8862
8863The following grammar file, @file{rr.y}, will be used in the sequel:
8864
8865@example
8866%%
8867@group
8868exp: a ";" | b ".";
8869a: "0";
8870b: "0";
8871@end group
8872@end example
8873
8874The graphical output is very similar to the textual one, and as such it is
8875easier understood by making direct comparisons between them. See
8876@ref{Debugging, , Debugging Your Parser} for a detailled analysis of the
8877textual report.
8878
8879@subheading Graphical Representation of States
8880
8881The items (pointed rules) for each state are grouped together in graph nodes.
8882Their numbering is the same as in the verbose file. See the following points,
8883about transitions, for examples
8884
8885When invoked with @option{--report=lookaheads}, the lookahead tokens, when
8886needed, are shown next to the relevant rule between square brackets as a
8887comma separated list. This is the case in the figure for the representation of
8888reductions, below.
8889
8890@sp 1
8891
8892The transitions are represented as directed edges between the current and
8893the target states.
8894
8895@subheading Graphical Representation of Shifts
8896
8897Shifts are shown as solid arrows, labelled with the lookahead token for that
8898shift. The following describes a reduction in the @file{rr.output} file:
8899
8900@example
8901@group
8902state 3
8903
8904 1 exp: a . ";"
8905
8906 ";" shift, and go to state 6
8907@end group
8908@end example
8909
8910A Graphviz rendering of this portion of the graph could be:
8911
8912@center @image{figs/example-shift, 100pt}
8913
8914@subheading Graphical Representation of Reductions
8915
8916Reductions are shown as solid arrows, leading to a diamond-shaped node
8917bearing the number of the reduction rule. The arrow is labelled with the
8918appropriate comma separated lookahead tokens. If the reduction is the default
8919action for the given state, there is no such label.
8920
8921This is how reductions are represented in the verbose file @file{rr.output}:
8922@example
8923state 1
8924
8925 3 a: "0" . [";"]
8926 4 b: "0" . ["."]
8927
8928 "." reduce using rule 4 (b)
8929 $default reduce using rule 3 (a)
8930@end example
8931
8932A Graphviz rendering of this portion of the graph could be:
8933
8934@center @image{figs/example-reduce, 120pt}
8935
8936When unresolved conflicts are present, because in deterministic parsing
8937a single decision can be made, Bison can arbitrarily choose to disable a
8938reduction, see @ref{Shift/Reduce, , Shift/Reduce Conflicts}. Discarded actions
8939are distinguished by a red filling color on these nodes, just like how they are
8940reported between square brackets in the verbose file.
8941
8942The reduction corresponding to the rule number 0 is the acceptation state. It
8943is shown as a blue diamond, labelled "Acc".
8944
8945@subheading Graphical representation of go tos
8946
8947The @samp{go to} jump transitions are represented as dotted lines bearing
8948the name of the rule being jumped to.
8949
8950@c ================================================= Tracing
ec3bc396
AD
8951
8952@node Tracing
8953@section Tracing Your Parser
bfa74976
RS
8954@findex yydebug
8955@cindex debugging
8956@cindex tracing the parser
8957
93c150b6
AD
8958When a Bison grammar compiles properly but parses ``incorrectly'', the
8959@code{yydebug} parser-trace feature helps figuring out why.
8960
8961@menu
8962* Enabling Traces:: Activating run-time trace support
8963* Mfcalc Traces:: Extending @code{mfcalc} to support traces
8964* The YYPRINT Macro:: Obsolete interface for semantic value reports
8965@end menu
bfa74976 8966
93c150b6
AD
8967@node Enabling Traces
8968@subsection Enabling Traces
3ded9a63
AD
8969There are several means to enable compilation of trace facilities:
8970
8971@table @asis
8972@item the macro @code{YYDEBUG}
8973@findex YYDEBUG
8974Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8975parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8976@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8977YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8978Prologue}).
8979
e6ae99fe 8980If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
8981Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
8982api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
5a05f42e
AD
8983tracing feature (enabled if and only if nonzero); otherwise tracing is
8984enabled if and only if @code{YYDEBUG} is nonzero.
e358222b
AD
8985
8986@item the option @option{-t} (POSIX Yacc compliant)
8987@itemx the option @option{--debug} (Bison extension)
8988Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
8989Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
8990otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
8991
8992@item the directive @samp{%debug}
8993@findex %debug
fa819509
AD
8994Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8995Summary}). This Bison extension is maintained for backward
8996compatibility with previous versions of Bison.
8997
8998@item the variable @samp{parse.trace}
8999@findex %define parse.trace
35c1e5f0
JD
9000Add the @samp{%define parse.trace} directive (@pxref{%define
9001Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 9002(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
9003useful for languages that don't use a preprocessor. Unless POSIX and Yacc
9004portability matter to you, this is the preferred solution.
3ded9a63
AD
9005@end table
9006
fa819509 9007We suggest that you always enable the trace option so that debugging is
3ded9a63 9008always possible.
bfa74976 9009
93c150b6 9010@findex YYFPRINTF
02a81e05 9011The trace facility outputs messages with macro calls of the form
e2742e46 9012@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 9013@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
9014arguments. If you define @code{YYDEBUG} to a nonzero value but do not
9015define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 9016and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
9017
9018Once you have compiled the program with trace facilities, the way to
9019request a trace is to store a nonzero value in the variable @code{yydebug}.
9020You can do this by making the C code do it (in @code{main}, perhaps), or
9021you can alter the value with a C debugger.
9022
9023Each step taken by the parser when @code{yydebug} is nonzero produces a
9024line or two of trace information, written on @code{stderr}. The trace
9025messages tell you these things:
9026
9027@itemize @bullet
9028@item
9029Each time the parser calls @code{yylex}, what kind of token was read.
9030
9031@item
9032Each time a token is shifted, the depth and complete contents of the
9033state stack (@pxref{Parser States}).
9034
9035@item
9036Each time a rule is reduced, which rule it is, and the complete contents
9037of the state stack afterward.
9038@end itemize
9039
93c150b6
AD
9040To make sense of this information, it helps to refer to the automaton
9041description file (@pxref{Understanding, ,Understanding Your Parser}).
9042This file shows the meaning of each state in terms of
704a47c4
AD
9043positions in various rules, and also what each state will do with each
9044possible input token. As you read the successive trace messages, you
9045can see that the parser is functioning according to its specification in
9046the listing file. Eventually you will arrive at the place where
9047something undesirable happens, and you will see which parts of the
9048grammar are to blame.
bfa74976 9049
93c150b6 9050The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
9051debuggers on it, but it's not easy to interpret what it is doing. The
9052parser function is a finite-state machine interpreter, and aside from
9053the actions it executes the same code over and over. Only the values
9054of variables show where in the grammar it is working.
bfa74976 9055
93c150b6
AD
9056@node Mfcalc Traces
9057@subsection Enabling Debug Traces for @code{mfcalc}
9058
9059The debugging information normally gives the token type of each token read,
9060but not its semantic value. The @code{%printer} directive allows specify
9061how semantic values are reported, see @ref{Printer Decl, , Printing
9062Semantic Values}. For backward compatibility, Yacc like C parsers may also
9063use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
9064Macro}), but its use is discouraged.
9065
9066As a demonstration of @code{%printer}, consider the multi-function
9067calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
9068traces, and semantic value reports, insert the following directives in its
9069prologue:
9070
9071@comment file: mfcalc.y: 2
9072@example
9073/* Generate the parser description file. */
9074%verbose
9075/* Enable run-time traces (yydebug). */
9076%define parse.trace
9077
9078/* Formatting semantic values. */
9079%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
9080%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
9081%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
9082@end example
9083
9084The @code{%define} directive instructs Bison to generate run-time trace
9085support. Then, activation of these traces is controlled at run-time by the
9086@code{yydebug} variable, which is disabled by default. Because these traces
9087will refer to the ``states'' of the parser, it is helpful to ask for the
9088creation of a description of that parser; this is the purpose of (admittedly
9089ill-named) @code{%verbose} directive.
9090
9091The set of @code{%printer} directives demonstrates how to format the
9092semantic value in the traces. Note that the specification can be done
9093either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
9094tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
9095printer will be used for them.
9096
9097Here is a sample of the information provided by run-time traces. The traces
9098are sent onto standard error.
9099
9100@example
9101$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
9102Starting parse
9103Entering state 0
9104Reducing stack by rule 1 (line 34):
9105-> $$ = nterm input ()
9106Stack now 0
9107Entering state 1
9108@end example
9109
9110@noindent
9111This first batch shows a specific feature of this grammar: the first rule
9112(which is in line 34 of @file{mfcalc.y} can be reduced without even having
9113to look for the first token. The resulting left-hand symbol (@code{$$}) is
9114a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
9115
9116Then the parser calls the scanner.
9117@example
9118Reading a token: Next token is token FNCT (sin())
9119Shifting token FNCT (sin())
9120Entering state 6
9121@end example
9122
9123@noindent
9124That token (@code{token}) is a function (@code{FNCT}) whose value is
9125@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
9126The parser stores (@code{Shifting}) that token, and others, until it can do
9127something about it.
9128
9129@example
9130Reading a token: Next token is token '(' ()
9131Shifting token '(' ()
9132Entering state 14
9133Reading a token: Next token is token NUM (1.000000)
9134Shifting token NUM (1.000000)
9135Entering state 4
9136Reducing stack by rule 6 (line 44):
9137 $1 = token NUM (1.000000)
9138-> $$ = nterm exp (1.000000)
9139Stack now 0 1 6 14
9140Entering state 24
9141@end example
9142
9143@noindent
9144The previous reduction demonstrates the @code{%printer} directive for
9145@code{<val>}: both the token @code{NUM} and the resulting non-terminal
9146@code{exp} have @samp{1} as value.
9147
9148@example
9149Reading a token: Next token is token '-' ()
9150Shifting token '-' ()
9151Entering state 17
9152Reading a token: Next token is token NUM (1.000000)
9153Shifting token NUM (1.000000)
9154Entering state 4
9155Reducing stack by rule 6 (line 44):
9156 $1 = token NUM (1.000000)
9157-> $$ = nterm exp (1.000000)
9158Stack now 0 1 6 14 24 17
9159Entering state 26
9160Reading a token: Next token is token ')' ()
9161Reducing stack by rule 11 (line 49):
9162 $1 = nterm exp (1.000000)
9163 $2 = token '-' ()
9164 $3 = nterm exp (1.000000)
9165-> $$ = nterm exp (0.000000)
9166Stack now 0 1 6 14
9167Entering state 24
9168@end example
9169
9170@noindent
9171The rule for the subtraction was just reduced. The parser is about to
9172discover the end of the call to @code{sin}.
9173
9174@example
9175Next token is token ')' ()
9176Shifting token ')' ()
9177Entering state 31
9178Reducing stack by rule 9 (line 47):
9179 $1 = token FNCT (sin())
9180 $2 = token '(' ()
9181 $3 = nterm exp (0.000000)
9182 $4 = token ')' ()
9183-> $$ = nterm exp (0.000000)
9184Stack now 0 1
9185Entering state 11
9186@end example
9187
9188@noindent
9189Finally, the end-of-line allow the parser to complete the computation, and
9190display its result.
9191
9192@example
9193Reading a token: Next token is token '\n' ()
9194Shifting token '\n' ()
9195Entering state 22
9196Reducing stack by rule 4 (line 40):
9197 $1 = nterm exp (0.000000)
9198 $2 = token '\n' ()
9199@result{} 0
9200-> $$ = nterm line ()
9201Stack now 0 1
9202Entering state 10
9203Reducing stack by rule 2 (line 35):
9204 $1 = nterm input ()
9205 $2 = nterm line ()
9206-> $$ = nterm input ()
9207Stack now 0
9208Entering state 1
9209@end example
9210
9211The parser has returned into state 1, in which it is waiting for the next
9212expression to evaluate, or for the end-of-file token, which causes the
9213completion of the parsing.
9214
9215@example
9216Reading a token: Now at end of input.
9217Shifting token $end ()
9218Entering state 2
9219Stack now 0 1 2
9220Cleanup: popping token $end ()
9221Cleanup: popping nterm input ()
9222@end example
9223
9224
9225@node The YYPRINT Macro
9226@subsection The @code{YYPRINT} Macro
9227
bfa74976 9228@findex YYPRINT
93c150b6
AD
9229Before @code{%printer} support, semantic values could be displayed using the
9230@code{YYPRINT} macro, which works only for terminal symbols and only with
9231the @file{yacc.c} skeleton.
9232
9233@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9234@findex YYPRINT
9235If you define @code{YYPRINT}, it should take three arguments. The parser
9236will pass a standard I/O stream, the numeric code for the token type, and
9237the token value (from @code{yylval}).
9238
9239For @file{yacc.c} only. Obsoleted by @code{%printer}.
9240@end deffn
bfa74976
RS
9241
9242Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9243calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9244
c93f22fc 9245@example
38a92d50
PE
9246%@{
9247 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9248 #define YYPRINT(File, Type, Value) \
9249 print_token_value (File, Type, Value)
38a92d50
PE
9250%@}
9251
9252@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9253
9254static void
831d3c99 9255print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9256@{
9257 if (type == VAR)
d3c4e709 9258 fprintf (file, "%s", value.tptr->name);
bfa74976 9259 else if (type == NUM)
d3c4e709 9260 fprintf (file, "%d", value.val);
bfa74976 9261@}
c93f22fc 9262@end example
bfa74976 9263
ec3bc396
AD
9264@c ================================================= Invoking Bison
9265
342b8b6e 9266@node Invocation
bfa74976
RS
9267@chapter Invoking Bison
9268@cindex invoking Bison
9269@cindex Bison invocation
9270@cindex options for invoking Bison
9271
9272The usual way to invoke Bison is as follows:
9273
9274@example
9275bison @var{infile}
9276@end example
9277
9278Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9279@samp{.y}. The parser implementation file's name is made by replacing
9280the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9281Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9282the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9283also possible, in case you are writing C++ code instead of C in your
9284grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9285output files will take an extension like the given one as input
9286(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9287feature takes effect with all options that manipulate file names like
234a3be3
AD
9288@samp{-o} or @samp{-d}.
9289
9290For example :
9291
9292@example
9293bison -d @var{infile.yxx}
9294@end example
84163231 9295@noindent
72d2299c 9296will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9297
9298@example
b56471a6 9299bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9300@end example
84163231 9301@noindent
234a3be3
AD
9302will produce @file{output.c++} and @file{outfile.h++}.
9303
8a4281b9 9304For compatibility with POSIX, the standard Bison
397ec073
PE
9305distribution also contains a shell script called @command{yacc} that
9306invokes Bison with the @option{-y} option.
9307
bfa74976 9308@menu
13863333 9309* Bison Options:: All the options described in detail,
c827f760 9310 in alphabetical order by short options.
bfa74976 9311* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9312* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9313@end menu
9314
342b8b6e 9315@node Bison Options
bfa74976
RS
9316@section Bison Options
9317
9318Bison supports both traditional single-letter options and mnemonic long
9319option names. Long option names are indicated with @samp{--} instead of
9320@samp{-}. Abbreviations for option names are allowed as long as they
9321are unique. When a long option takes an argument, like
9322@samp{--file-prefix}, connect the option name and the argument with
9323@samp{=}.
9324
9325Here is a list of options that can be used with Bison, alphabetized by
9326short option. It is followed by a cross key alphabetized by long
9327option.
9328
89cab50d
AD
9329@c Please, keep this ordered as in `bison --help'.
9330@noindent
9331Operations modes:
9332@table @option
9333@item -h
9334@itemx --help
9335Print a summary of the command-line options to Bison and exit.
bfa74976 9336
89cab50d
AD
9337@item -V
9338@itemx --version
9339Print the version number of Bison and exit.
bfa74976 9340
f7ab6a50
PE
9341@item --print-localedir
9342Print the name of the directory containing locale-dependent data.
9343
a0de5091
JD
9344@item --print-datadir
9345Print the name of the directory containing skeletons and XSLT.
9346
89cab50d
AD
9347@item -y
9348@itemx --yacc
ff7571c0
JD
9349Act more like the traditional Yacc command. This can cause different
9350diagnostics to be generated, and may change behavior in other minor
9351ways. Most importantly, imitate Yacc's output file name conventions,
9352so that the parser implementation file is called @file{y.tab.c}, and
9353the other outputs are called @file{y.output} and @file{y.tab.h}.
9354Also, if generating a deterministic parser in C, generate
9355@code{#define} statements in addition to an @code{enum} to associate
9356token numbers with token names. Thus, the following shell script can
9357substitute for Yacc, and the Bison distribution contains such a script
9358for compatibility with POSIX:
bfa74976 9359
89cab50d 9360@example
397ec073 9361#! /bin/sh
26e06a21 9362bison -y "$@@"
89cab50d 9363@end example
54662697
PE
9364
9365The @option{-y}/@option{--yacc} option is intended for use with
9366traditional Yacc grammars. If your grammar uses a Bison extension
9367like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9368this option is specified.
9369
1d5b3c08
JD
9370@item -W [@var{category}]
9371@itemx --warnings[=@var{category}]
118d4978
AD
9372Output warnings falling in @var{category}. @var{category} can be one
9373of:
9374@table @code
9375@item midrule-values
8e55b3aa
JD
9376Warn about mid-rule values that are set but not used within any of the actions
9377of the parent rule.
9378For example, warn about unused @code{$2} in:
118d4978
AD
9379
9380@example
9381exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9382@end example
9383
8e55b3aa
JD
9384Also warn about mid-rule values that are used but not set.
9385For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9386
9387@example
5e9b6624 9388exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9389@end example
9390
9391These warnings are not enabled by default since they sometimes prove to
9392be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9393@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9394
118d4978 9395@item yacc
8a4281b9 9396Incompatibilities with POSIX Yacc.
118d4978 9397
786743d5
JD
9398@item conflicts-sr
9399@itemx conflicts-rr
9400S/R and R/R conflicts. These warnings are enabled by default. However, if
9401the @code{%expect} or @code{%expect-rr} directive is specified, an
9402unexpected number of conflicts is an error, and an expected number of
9403conflicts is not reported, so @option{-W} and @option{--warning} then have
9404no effect on the conflict report.
9405
518e8830
AD
9406@item deprecated
9407Deprecated constructs whose support will be removed in future versions of
9408Bison.
9409
c39014ae
JD
9410@item other
9411All warnings not categorized above. These warnings are enabled by default.
9412
9413This category is provided merely for the sake of completeness. Future
9414releases of Bison may move warnings from this category to new, more specific
9415categories.
9416
118d4978 9417@item all
8e55b3aa 9418All the warnings.
118d4978 9419@item none
8e55b3aa 9420Turn off all the warnings.
118d4978 9421@item error
1048a1c9 9422See @option{-Werror}, below.
118d4978
AD
9423@end table
9424
9425A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9426instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9427POSIX Yacc incompatibilities.
1048a1c9
AD
9428
9429@item -Werror[=@var{category}]
9430@itemx -Wno-error[=@var{category}]
9431Enable warnings falling in @var{category}, and treat them as errors. If no
9432@var{category} is given, it defaults to making all enabled warnings into errors.
9433
9434@var{category} is the same as for @option{--warnings}, with the exception that
9435it may not be prefixed with @samp{no-} (see above).
9436
9437Prefixed with @samp{no}, it deactivates the error treatment for this
9438@var{category}. However, the warning itself won't be disabled, or enabled, by
9439this option.
9440
9441Note that the precedence of the @samp{=} and @samp{,} operators is such that
9442the following commands are @emph{not} equivalent, as the first will not treat
9443S/R conflicts as errors.
9444
9445@example
9446$ bison -Werror=yacc,conflicts-sr input.y
9447$ bison -Werror=yacc,error=conflicts-sr input.y
9448@end example
89cab50d
AD
9449@end table
9450
9451@noindent
9452Tuning the parser:
9453
9454@table @option
9455@item -t
9456@itemx --debug
ff7571c0
JD
9457In the parser implementation file, define the macro @code{YYDEBUG} to
94581 if it is not already defined, so that the debugging facilities are
9459compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9460
58697c6d
AD
9461@item -D @var{name}[=@var{value}]
9462@itemx --define=@var{name}[=@var{value}]
17aed602 9463@itemx -F @var{name}[=@var{value}]
de5ab940
JD
9464@itemx --force-define=@var{name}[=@var{value}]
9465Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 9466(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
9467definitions for the same @var{name} as follows:
9468
9469@itemize
9470@item
0b6d43c5
JD
9471Bison quietly ignores all command-line definitions for @var{name} except
9472the last.
de5ab940 9473@item
0b6d43c5
JD
9474If that command-line definition is specified by a @code{-D} or
9475@code{--define}, Bison reports an error for any @code{%define}
9476definition for @var{name}.
de5ab940 9477@item
0b6d43c5
JD
9478If that command-line definition is specified by a @code{-F} or
9479@code{--force-define} instead, Bison quietly ignores all @code{%define}
9480definitions for @var{name}.
9481@item
9482Otherwise, Bison reports an error if there are multiple @code{%define}
9483definitions for @var{name}.
de5ab940
JD
9484@end itemize
9485
9486You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
9487make files unless you are confident that it is safe to quietly ignore
9488any conflicting @code{%define} that may be added to the grammar file.
58697c6d 9489
0e021770
PE
9490@item -L @var{language}
9491@itemx --language=@var{language}
9492Specify the programming language for the generated parser, as if
9493@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9494Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9495@var{language} is case-insensitive.
0e021770 9496
ed4d67dc
JD
9497This option is experimental and its effect may be modified in future
9498releases.
9499
89cab50d 9500@item --locations
d8988b2f 9501Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9502
9503@item -p @var{prefix}
9504@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9505Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9506Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9507Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9508
9509@item -l
9510@itemx --no-lines
ff7571c0
JD
9511Don't put any @code{#line} preprocessor commands in the parser
9512implementation file. Ordinarily Bison puts them in the parser
9513implementation file so that the C compiler and debuggers will
9514associate errors with your source file, the grammar file. This option
9515causes them to associate errors with the parser implementation file,
9516treating it as an independent source file in its own right.
bfa74976 9517
e6e704dc
JD
9518@item -S @var{file}
9519@itemx --skeleton=@var{file}
a7867f53 9520Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9521(@pxref{Decl Summary, , Bison Declaration Summary}).
9522
ed4d67dc
JD
9523@c You probably don't need this option unless you are developing Bison.
9524@c You should use @option{--language} if you want to specify the skeleton for a
9525@c different language, because it is clearer and because it will always
9526@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9527
a7867f53
JD
9528If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9529file in the Bison installation directory.
9530If it does, @var{file} is an absolute file name or a file name relative to the
9531current working directory.
9532This is similar to how most shells resolve commands.
9533
89cab50d
AD
9534@item -k
9535@itemx --token-table
d8988b2f 9536Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9537@end table
bfa74976 9538
89cab50d
AD
9539@noindent
9540Adjust the output:
bfa74976 9541
89cab50d 9542@table @option
8e55b3aa 9543@item --defines[=@var{file}]
d8988b2f 9544Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9545file containing macro definitions for the token type names defined in
4bfd5e4e 9546the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9547
8e55b3aa
JD
9548@item -d
9549This is the same as @code{--defines} except @code{-d} does not accept a
9550@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9551with other short options.
342b8b6e 9552
89cab50d
AD
9553@item -b @var{file-prefix}
9554@itemx --file-prefix=@var{prefix}
9c437126 9555Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9556for all Bison output file names. @xref{Decl Summary}.
bfa74976 9557
ec3bc396
AD
9558@item -r @var{things}
9559@itemx --report=@var{things}
9560Write an extra output file containing verbose description of the comma
9561separated list of @var{things} among:
9562
9563@table @code
9564@item state
9565Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9566parser's automaton.
ec3bc396 9567
57f8bd8d
AD
9568@item itemset
9569Implies @code{state} and augments the description of the automaton with
9570the full set of items for each state, instead of its core only.
9571
742e4900 9572@item lookahead
ec3bc396 9573Implies @code{state} and augments the description of the automaton with
742e4900 9574each rule's lookahead set.
ec3bc396 9575
57f8bd8d
AD
9576@item solved
9577Implies @code{state}. Explain how conflicts were solved thanks to
9578precedence and associativity directives.
9579
9580@item all
9581Enable all the items.
9582
9583@item none
9584Do not generate the report.
ec3bc396
AD
9585@end table
9586
1bb2bd75
JD
9587@item --report-file=@var{file}
9588Specify the @var{file} for the verbose description.
9589
bfa74976
RS
9590@item -v
9591@itemx --verbose
9c437126 9592Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9593file containing verbose descriptions of the grammar and
72d2299c 9594parser. @xref{Decl Summary}.
bfa74976 9595
fa4d969f
PE
9596@item -o @var{file}
9597@itemx --output=@var{file}
ff7571c0 9598Specify the @var{file} for the parser implementation file.
bfa74976 9599
fa4d969f 9600The other output files' names are constructed from @var{file} as
d8988b2f 9601described under the @samp{-v} and @samp{-d} options.
342b8b6e 9602
a7c09cba 9603@item -g [@var{file}]
8e55b3aa 9604@itemx --graph[=@var{file}]
eb45ef3b 9605Output a graphical representation of the parser's
35fe0834 9606automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9607@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9608@code{@var{file}} is optional.
9609If omitted and the grammar file is @file{foo.y}, the output file will be
9610@file{foo.dot}.
59da312b 9611
a7c09cba 9612@item -x [@var{file}]
8e55b3aa 9613@itemx --xml[=@var{file}]
eb45ef3b 9614Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9615@code{@var{file}} is optional.
59da312b
JD
9616If omitted and the grammar file is @file{foo.y}, the output file will be
9617@file{foo.xml}.
9618(The current XML schema is experimental and may evolve.
9619More user feedback will help to stabilize it.)
bfa74976
RS
9620@end table
9621
342b8b6e 9622@node Option Cross Key
bfa74976
RS
9623@section Option Cross Key
9624
9625Here is a list of options, alphabetized by long option, to help you find
de5ab940 9626the corresponding short option and directive.
bfa74976 9627
de5ab940 9628@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9629@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9630@include cross-options.texi
aa08666d 9631@end multitable
bfa74976 9632
93dd49ab
PE
9633@node Yacc Library
9634@section Yacc Library
9635
9636The Yacc library contains default implementations of the
9637@code{yyerror} and @code{main} functions. These default
8a4281b9 9638implementations are normally not useful, but POSIX requires
93dd49ab
PE
9639them. To use the Yacc library, link your program with the
9640@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9641library is distributed under the terms of the GNU General
93dd49ab
PE
9642Public License (@pxref{Copying}).
9643
9644If you use the Yacc library's @code{yyerror} function, you should
9645declare @code{yyerror} as follows:
9646
9647@example
9648int yyerror (char const *);
9649@end example
9650
9651Bison ignores the @code{int} value returned by this @code{yyerror}.
9652If you use the Yacc library's @code{main} function, your
9653@code{yyparse} function should have the following type signature:
9654
9655@example
9656int yyparse (void);
9657@end example
9658
12545799
AD
9659@c ================================================= C++ Bison
9660
8405b70c
PB
9661@node Other Languages
9662@chapter Parsers Written In Other Languages
12545799
AD
9663
9664@menu
9665* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9666* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9667@end menu
9668
9669@node C++ Parsers
9670@section C++ Parsers
9671
9672@menu
9673* C++ Bison Interface:: Asking for C++ parser generation
9674* C++ Semantic Values:: %union vs. C++
9675* C++ Location Values:: The position and location classes
9676* C++ Parser Interface:: Instantiating and running the parser
9677* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9678* A Complete C++ Example:: Demonstrating their use
12545799
AD
9679@end menu
9680
9681@node C++ Bison Interface
9682@subsection C++ Bison Interface
ed4d67dc 9683@c - %skeleton "lalr1.cc"
12545799
AD
9684@c - Always pure
9685@c - initial action
9686
eb45ef3b 9687The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9688@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9689@option{--skeleton=lalr1.cc}.
e6e704dc 9690@xref{Decl Summary}.
0e021770 9691
793fbca5
JD
9692When run, @command{bison} will create several entities in the @samp{yy}
9693namespace.
67501061 9694@findex %define api.namespace
35c1e5f0
JD
9695Use the @samp{%define api.namespace} directive to change the namespace name,
9696see @ref{%define Summary,,api.namespace}. The various classes are generated
9697in the following files:
aa08666d 9698
12545799
AD
9699@table @file
9700@item position.hh
9701@itemx location.hh
db8ab2be 9702The definition of the classes @code{position} and @code{location}, used for
f6b561d9
AD
9703location tracking when enabled. These files are not generated if the
9704@code{%define} variable @code{api.location.type} is defined. @xref{C++
9705Location Values}.
12545799
AD
9706
9707@item stack.hh
9708An auxiliary class @code{stack} used by the parser.
9709
fa4d969f
PE
9710@item @var{file}.hh
9711@itemx @var{file}.cc
ff7571c0 9712(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9713declaration and implementation of the C++ parser class. The basename
9714and extension of these two files follow the same rules as with regular C
9715parsers (@pxref{Invocation}).
12545799 9716
cd8b5791
AD
9717The header is @emph{mandatory}; you must either pass
9718@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9719@samp{%defines} directive.
9720@end table
9721
9722All these files are documented using Doxygen; run @command{doxygen}
9723for a complete and accurate documentation.
9724
9725@node C++ Semantic Values
9726@subsection C++ Semantic Values
9727@c - No objects in unions
178e123e 9728@c - YYSTYPE
12545799
AD
9729@c - Printer and destructor
9730
3cdc21cf
AD
9731Bison supports two different means to handle semantic values in C++. One is
9732alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9733practitioners know, unions are inconvenient in C++, therefore another
9734approach is provided, based on variants (@pxref{C++ Variants}).
9735
9736@menu
9737* C++ Unions:: Semantic values cannot be objects
9738* C++ Variants:: Using objects as semantic values
9739@end menu
9740
9741@node C++ Unions
9742@subsubsection C++ Unions
9743
12545799
AD
9744The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9745Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9746@code{union}, which have a few specific features in C++.
12545799
AD
9747@itemize @minus
9748@item
fb9712a9
AD
9749The type @code{YYSTYPE} is defined but its use is discouraged: rather
9750you should refer to the parser's encapsulated type
9751@code{yy::parser::semantic_type}.
12545799
AD
9752@item
9753Non POD (Plain Old Data) types cannot be used. C++ forbids any
9754instance of classes with constructors in unions: only @emph{pointers}
9755to such objects are allowed.
9756@end itemize
9757
9758Because objects have to be stored via pointers, memory is not
9759reclaimed automatically: using the @code{%destructor} directive is the
9760only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9761Symbols}.
9762
3cdc21cf
AD
9763@node C++ Variants
9764@subsubsection C++ Variants
9765
9766Starting with version 2.6, Bison provides a @emph{variant} based
9767implementation of semantic values for C++. This alleviates all the
9768limitations reported in the previous section, and in particular, object
9769types can be used without pointers.
9770
9771To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9772@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9773@code{%union} is ignored, and instead of using the name of the fields of the
9774@code{%union} to ``type'' the symbols, use genuine types.
9775
9776For instance, instead of
9777
9778@example
9779%union
9780@{
9781 int ival;
9782 std::string* sval;
9783@}
9784%token <ival> NUMBER;
9785%token <sval> STRING;
9786@end example
9787
9788@noindent
9789write
9790
9791@example
9792%token <int> NUMBER;
9793%token <std::string> STRING;
9794@end example
9795
9796@code{STRING} is no longer a pointer, which should fairly simplify the user
9797actions in the grammar and in the scanner (in particular the memory
9798management).
9799
9800Since C++ features destructors, and since it is customary to specialize
9801@code{operator<<} to support uniform printing of values, variants also
9802typically simplify Bison printers and destructors.
9803
9804Variants are stricter than unions. When based on unions, you may play any
9805dirty game with @code{yylval}, say storing an @code{int}, reading a
9806@code{char*}, and then storing a @code{double} in it. This is no longer
9807possible with variants: they must be initialized, then assigned to, and
9808eventually, destroyed.
9809
9810@deftypemethod {semantic_type} {T&} build<T> ()
9811Initialize, but leave empty. Returns the address where the actual value may
9812be stored. Requires that the variant was not initialized yet.
9813@end deftypemethod
9814
9815@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9816Initialize, and copy-construct from @var{t}.
9817@end deftypemethod
9818
9819
9820@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9821appeared unacceptable to require Boost on the user's machine (i.e., the
9822machine on which the generated parser will be compiled, not the machine on
9823which @command{bison} was run). Second, for each possible semantic value,
9824Boost.Variant not only stores the value, but also a tag specifying its
9825type. But the parser already ``knows'' the type of the semantic value, so
9826that would be duplicating the information.
9827
9828Therefore we developed light-weight variants whose type tag is external (so
9829they are really like @code{unions} for C++ actually). But our code is much
9830less mature that Boost.Variant. So there is a number of limitations in
9831(the current implementation of) variants:
9832@itemize
9833@item
9834Alignment must be enforced: values should be aligned in memory according to
9835the most demanding type. Computing the smallest alignment possible requires
9836meta-programming techniques that are not currently implemented in Bison, and
9837therefore, since, as far as we know, @code{double} is the most demanding
9838type on all platforms, alignments are enforced for @code{double} whatever
9839types are actually used. This may waste space in some cases.
9840
9841@item
9842Our implementation is not conforming with strict aliasing rules. Alias
9843analysis is a technique used in optimizing compilers to detect when two
9844pointers are disjoint (they cannot ``meet''). Our implementation breaks
9845some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9846alias analysis must be disabled}. Use the option
9847@option{-fno-strict-aliasing} to compile the generated parser.
9848
9849@item
9850There might be portability issues we are not aware of.
9851@end itemize
9852
a6ca4ce2 9853As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9854is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9855
9856@node C++ Location Values
9857@subsection C++ Location Values
9858@c - %locations
9859@c - class Position
9860@c - class Location
16dc6a9e 9861@c - %define filename_type "const symbol::Symbol"
12545799
AD
9862
9863When the directive @code{%locations} is used, the C++ parser supports
db8ab2be
AD
9864location tracking, see @ref{Tracking Locations}.
9865
9866By default, two auxiliary classes define a @code{position}, a single point
9867in a file, and a @code{location}, a range composed of a pair of
9868@code{position}s (possibly spanning several files). But if the
9869@code{%define} variable @code{api.location.type} is defined, then these
9870classes will not be generated, and the user defined type will be used.
12545799 9871
936c88d1
AD
9872@tindex uint
9873In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9874genuine code only the latter is used.
9875
9876@menu
9877* C++ position:: One point in the source file
9878* C++ location:: Two points in the source file
db8ab2be 9879* User Defined Location Type:: Required interface for locations
936c88d1
AD
9880@end menu
9881
9882@node C++ position
9883@subsubsection C++ @code{position}
9884
9885@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9886Create a @code{position} denoting a given point. Note that @code{file} is
9887not reclaimed when the @code{position} is destroyed: memory managed must be
9888handled elsewhere.
9889@end deftypeop
9890
9891@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9892Reset the position to the given values.
9893@end deftypemethod
9894
9895@deftypeivar {position} {std::string*} file
12545799
AD
9896The name of the file. It will always be handled as a pointer, the
9897parser will never duplicate nor deallocate it. As an experimental
9898feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9899filename_type "@var{type}"}.
936c88d1 9900@end deftypeivar
12545799 9901
936c88d1 9902@deftypeivar {position} {uint} line
12545799 9903The line, starting at 1.
936c88d1 9904@end deftypeivar
12545799 9905
936c88d1 9906@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
9907Advance by @var{height} lines, resetting the column number.
9908@end deftypemethod
9909
936c88d1
AD
9910@deftypeivar {position} {uint} column
9911The column, starting at 1.
9912@end deftypeivar
12545799 9913
936c88d1 9914@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
9915Advance by @var{width} columns, without changing the line number.
9916@end deftypemethod
9917
936c88d1
AD
9918@deftypemethod {position} {position&} operator+= (int @var{width})
9919@deftypemethodx {position} {position} operator+ (int @var{width})
9920@deftypemethodx {position} {position&} operator-= (int @var{width})
9921@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
9922Various forms of syntactic sugar for @code{columns}.
9923@end deftypemethod
9924
936c88d1
AD
9925@deftypemethod {position} {bool} operator== (const position& @var{that})
9926@deftypemethodx {position} {bool} operator!= (const position& @var{that})
9927Whether @code{*this} and @code{that} denote equal/different positions.
9928@end deftypemethod
9929
9930@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 9931Report @var{p} on @var{o} like this:
fa4d969f
PE
9932@samp{@var{file}:@var{line}.@var{column}}, or
9933@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
9934@end deftypefun
9935
9936@node C++ location
9937@subsubsection C++ @code{location}
9938
9939@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9940Create a @code{Location} from the endpoints of the range.
9941@end deftypeop
9942
9943@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9944@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9945Create a @code{Location} denoting an empty range located at a given point.
9946@end deftypeop
9947
9948@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9949Reset the location to an empty range at the given values.
12545799
AD
9950@end deftypemethod
9951
936c88d1
AD
9952@deftypeivar {location} {position} begin
9953@deftypeivarx {location} {position} end
12545799 9954The first, inclusive, position of the range, and the first beyond.
936c88d1 9955@end deftypeivar
12545799 9956
936c88d1
AD
9957@deftypemethod {location} {uint} columns (int @var{width} = 1)
9958@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
9959Advance the @code{end} position.
9960@end deftypemethod
9961
936c88d1
AD
9962@deftypemethod {location} {location} operator+ (const location& @var{end})
9963@deftypemethodx {location} {location} operator+ (int @var{width})
9964@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
9965Various forms of syntactic sugar.
9966@end deftypemethod
9967
9968@deftypemethod {location} {void} step ()
9969Move @code{begin} onto @code{end}.
9970@end deftypemethod
9971
936c88d1
AD
9972@deftypemethod {location} {bool} operator== (const location& @var{that})
9973@deftypemethodx {location} {bool} operator!= (const location& @var{that})
9974Whether @code{*this} and @code{that} denote equal/different ranges of
9975positions.
9976@end deftypemethod
9977
9978@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9979Report @var{p} on @var{o}, taking care of special cases such as: no
9980@code{filename} defined, or equal filename/line or column.
9981@end deftypefun
12545799 9982
db8ab2be
AD
9983@node User Defined Location Type
9984@subsubsection User Defined Location Type
9985@findex %define api.location.type
9986
9987Instead of using the built-in types you may use the @code{%define} variable
9988@code{api.location.type} to specify your own type:
9989
9990@example
9991%define api.location.type @var{LocationType}
9992@end example
9993
9994The requirements over your @var{LocationType} are:
9995@itemize
9996@item
9997it must be copyable;
9998
9999@item
10000in order to compute the (default) value of @code{@@$} in a reduction, the
10001parser basically runs
10002@example
10003@@$.begin = @@$1.begin;
10004@@$.end = @@$@var{N}.end; // The location of last right-hand side symbol.
10005@end example
10006@noindent
10007so there must be copyable @code{begin} and @code{end} members;
10008
10009@item
10010alternatively you may redefine the computation of the default location, in
10011which case these members are not required (@pxref{Location Default Action});
10012
10013@item
10014if traces are enabled, then there must exist an @samp{std::ostream&
10015 operator<< (std::ostream& o, const @var{LocationType}& s)} function.
10016@end itemize
10017
10018@sp 1
10019
10020In programs with several C++ parsers, you may also use the @code{%define}
10021variable @code{api.location.type} to share a common set of built-in
10022definitions for @code{position} and @code{location}. For instance, one
10023parser @file{master/parser.yy} might use:
10024
10025@example
10026%defines
10027%locations
10028%define namespace "master::"
10029@end example
10030
10031@noindent
10032to generate the @file{master/position.hh} and @file{master/location.hh}
10033files, reused by other parsers as follows:
10034
10035@example
7287be84 10036%define api.location.type "master::location"
db8ab2be
AD
10037%code requires @{ #include <master/location.hh> @}
10038@end example
10039
12545799
AD
10040@node C++ Parser Interface
10041@subsection C++ Parser Interface
10042@c - define parser_class_name
10043@c - Ctor
10044@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10045@c debug_stream.
10046@c - Reporting errors
10047
10048The output files @file{@var{output}.hh} and @file{@var{output}.cc}
10049declare and define the parser class in the namespace @code{yy}. The
10050class name defaults to @code{parser}, but may be changed using
16dc6a9e 10051@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 10052this class is detailed below. It can be extended using the
12545799
AD
10053@code{%parse-param} feature: its semantics is slightly changed since
10054it describes an additional member of the parser class, and an
10055additional argument for its constructor.
10056
3cdc21cf
AD
10057@defcv {Type} {parser} {semantic_type}
10058@defcvx {Type} {parser} {location_type}
10059The types for semantic values and locations (if enabled).
10060@end defcv
10061
86e5b440 10062@defcv {Type} {parser} {token}
aaaa2aae
AD
10063A structure that contains (only) the @code{yytokentype} enumeration, which
10064defines the tokens. To refer to the token @code{FOO},
10065use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
10066@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
10067(@pxref{Calc++ Scanner}).
10068@end defcv
10069
3cdc21cf
AD
10070@defcv {Type} {parser} {syntax_error}
10071This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
10072from the scanner or from the user actions to raise parse errors. This is
10073equivalent with first
3cdc21cf
AD
10074invoking @code{error} to report the location and message of the syntax
10075error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
10076But contrary to @code{YYERROR} which can only be invoked from user actions
10077(i.e., written in the action itself), the exception can be thrown from
10078function invoked from the user action.
8a0adb01 10079@end defcv
12545799
AD
10080
10081@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
10082Build a new parser object. There are no arguments by default, unless
10083@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
10084@end deftypemethod
10085
3cdc21cf
AD
10086@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
10087@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
10088Instantiate a syntax-error exception.
10089@end deftypemethod
10090
12545799
AD
10091@deftypemethod {parser} {int} parse ()
10092Run the syntactic analysis, and return 0 on success, 1 otherwise.
d3e4409a
AD
10093
10094@cindex exceptions
10095The whole function is wrapped in a @code{try}/@code{catch} block, so that
10096when an exception is thrown, the @code{%destructor}s are called to release
10097the lookahead symbol, and the symbols pushed on the stack.
12545799
AD
10098@end deftypemethod
10099
10100@deftypemethod {parser} {std::ostream&} debug_stream ()
10101@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
10102Get or set the stream used for tracing the parsing. It defaults to
10103@code{std::cerr}.
10104@end deftypemethod
10105
10106@deftypemethod {parser} {debug_level_type} debug_level ()
10107@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
10108Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 10109or nonzero, full tracing.
12545799
AD
10110@end deftypemethod
10111
10112@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 10113@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
10114The definition for this member function must be supplied by the user:
10115the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
10116described by @var{m}. If location tracking is not enabled, the second
10117signature is used.
12545799
AD
10118@end deftypemethod
10119
10120
10121@node C++ Scanner Interface
10122@subsection C++ Scanner Interface
10123@c - prefix for yylex.
10124@c - Pure interface to yylex
10125@c - %lex-param
10126
10127The parser invokes the scanner by calling @code{yylex}. Contrary to C
10128parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
10129@samp{%define api.pure} directive. The actual interface with @code{yylex}
10130depends whether you use unions, or variants.
12545799 10131
3cdc21cf
AD
10132@menu
10133* Split Symbols:: Passing symbols as two/three components
10134* Complete Symbols:: Making symbols a whole
10135@end menu
10136
10137@node Split Symbols
10138@subsubsection Split Symbols
10139
10140Therefore the interface is as follows.
10141
86e5b440
AD
10142@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
10143@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
10144Return the next token. Its type is the return value, its semantic value and
10145location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
10146@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
10147@end deftypemethod
10148
3cdc21cf
AD
10149Note that when using variants, the interface for @code{yylex} is the same,
10150but @code{yylval} is handled differently.
10151
10152Regular union-based code in Lex scanner typically look like:
10153
10154@example
10155[0-9]+ @{
10156 yylval.ival = text_to_int (yytext);
10157 return yy::parser::INTEGER;
10158 @}
10159[a-z]+ @{
10160 yylval.sval = new std::string (yytext);
10161 return yy::parser::IDENTIFIER;
10162 @}
10163@end example
10164
10165Using variants, @code{yylval} is already constructed, but it is not
10166initialized. So the code would look like:
10167
10168@example
10169[0-9]+ @{
10170 yylval.build<int>() = text_to_int (yytext);
10171 return yy::parser::INTEGER;
10172 @}
10173[a-z]+ @{
10174 yylval.build<std::string> = yytext;
10175 return yy::parser::IDENTIFIER;
10176 @}
10177@end example
10178
10179@noindent
10180or
10181
10182@example
10183[0-9]+ @{
10184 yylval.build(text_to_int (yytext));
10185 return yy::parser::INTEGER;
10186 @}
10187[a-z]+ @{
10188 yylval.build(yytext);
10189 return yy::parser::IDENTIFIER;
10190 @}
10191@end example
10192
10193
10194@node Complete Symbols
10195@subsubsection Complete Symbols
10196
10197If you specified both @code{%define variant} and @code{%define lex_symbol},
10198the @code{parser} class also defines the class @code{parser::symbol_type}
10199which defines a @emph{complete} symbol, aggregating its type (i.e., the
10200traditional value returned by @code{yylex}), its semantic value (i.e., the
10201value passed in @code{yylval}, and possibly its location (@code{yylloc}).
10202
10203@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
10204Build a complete terminal symbol which token type is @var{type}, and which
10205semantic value is @var{value}. If location tracking is enabled, also pass
10206the @var{location}.
10207@end deftypemethod
10208
10209This interface is low-level and should not be used for two reasons. First,
10210it is inconvenient, as you still have to build the semantic value, which is
10211a variant, and second, because consistency is not enforced: as with unions,
10212it is still possible to give an integer as semantic value for a string.
10213
10214So for each token type, Bison generates named constructors as follows.
10215
10216@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
10217@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
10218Build a complete terminal symbol for the token type @var{token} (not
2a6b66c5 10219including the @code{api.token.prefix}) whose possible semantic value is
3cdc21cf
AD
10220@var{value} of adequate @var{value_type}. If location tracking is enabled,
10221also pass the @var{location}.
10222@end deftypemethod
10223
10224For instance, given the following declarations:
10225
10226@example
2a6b66c5 10227%define api.token.prefix "TOK_"
3cdc21cf
AD
10228%token <std::string> IDENTIFIER;
10229%token <int> INTEGER;
10230%token COLON;
10231@end example
10232
10233@noindent
10234Bison generates the following functions:
10235
10236@example
10237symbol_type make_IDENTIFIER(const std::string& v,
10238 const location_type& l);
10239symbol_type make_INTEGER(const int& v,
10240 const location_type& loc);
10241symbol_type make_COLON(const location_type& loc);
10242@end example
10243
10244@noindent
10245which should be used in a Lex-scanner as follows.
10246
10247@example
10248[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
10249[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
10250":" return yy::parser::make_COLON(loc);
10251@end example
10252
10253Tokens that do not have an identifier are not accessible: you cannot simply
10254use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
10255
10256@node A Complete C++ Example
8405b70c 10257@subsection A Complete C++ Example
12545799
AD
10258
10259This section demonstrates the use of a C++ parser with a simple but
10260complete example. This example should be available on your system,
3cdc21cf 10261ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10262focuses on the use of Bison, therefore the design of the various C++
10263classes is very naive: no accessors, no encapsulation of members etc.
10264We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10265demonstrate the various interactions. A hand-written scanner is
12545799
AD
10266actually easier to interface with.
10267
10268@menu
10269* Calc++ --- C++ Calculator:: The specifications
10270* Calc++ Parsing Driver:: An active parsing context
10271* Calc++ Parser:: A parser class
10272* Calc++ Scanner:: A pure C++ Flex scanner
10273* Calc++ Top Level:: Conducting the band
10274@end menu
10275
10276@node Calc++ --- C++ Calculator
8405b70c 10277@subsubsection Calc++ --- C++ Calculator
12545799
AD
10278
10279Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10280expression, possibly preceded by variable assignments. An
12545799
AD
10281environment containing possibly predefined variables such as
10282@code{one} and @code{two}, is exchanged with the parser. An example
10283of valid input follows.
10284
10285@example
10286three := 3
10287seven := one + two * three
10288seven * seven
10289@end example
10290
10291@node Calc++ Parsing Driver
8405b70c 10292@subsubsection Calc++ Parsing Driver
12545799
AD
10293@c - An env
10294@c - A place to store error messages
10295@c - A place for the result
10296
10297To support a pure interface with the parser (and the scanner) the
10298technique of the ``parsing context'' is convenient: a structure
10299containing all the data to exchange. Since, in addition to simply
10300launch the parsing, there are several auxiliary tasks to execute (open
10301the file for parsing, instantiate the parser etc.), we recommend
10302transforming the simple parsing context structure into a fully blown
10303@dfn{parsing driver} class.
10304
10305The declaration of this driver class, @file{calc++-driver.hh}, is as
10306follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10307required standard library components, and the declaration of the parser
10308class.
12545799 10309
1c59e0a1 10310@comment file: calc++-driver.hh
12545799
AD
10311@example
10312#ifndef CALCXX_DRIVER_HH
10313# define CALCXX_DRIVER_HH
10314# include <string>
10315# include <map>
fb9712a9 10316# include "calc++-parser.hh"
12545799
AD
10317@end example
10318
12545799
AD
10319
10320@noindent
10321Then comes the declaration of the scanning function. Flex expects
10322the signature of @code{yylex} to be defined in the macro
10323@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10324factor both as follows.
1c59e0a1
AD
10325
10326@comment file: calc++-driver.hh
12545799 10327@example
3dc5e96b 10328// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10329# define YY_DECL \
10330 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10331// ... and declare it for the parser's sake.
10332YY_DECL;
10333@end example
10334
10335@noindent
10336The @code{calcxx_driver} class is then declared with its most obvious
10337members.
10338
1c59e0a1 10339@comment file: calc++-driver.hh
12545799
AD
10340@example
10341// Conducting the whole scanning and parsing of Calc++.
10342class calcxx_driver
10343@{
10344public:
10345 calcxx_driver ();
10346 virtual ~calcxx_driver ();
10347
10348 std::map<std::string, int> variables;
10349
10350 int result;
10351@end example
10352
10353@noindent
3cdc21cf
AD
10354To encapsulate the coordination with the Flex scanner, it is useful to have
10355member functions to open and close the scanning phase.
12545799 10356
1c59e0a1 10357@comment file: calc++-driver.hh
12545799
AD
10358@example
10359 // Handling the scanner.
10360 void scan_begin ();
10361 void scan_end ();
10362 bool trace_scanning;
10363@end example
10364
10365@noindent
10366Similarly for the parser itself.
10367
1c59e0a1 10368@comment file: calc++-driver.hh
12545799 10369@example
3cdc21cf
AD
10370 // Run the parser on file F.
10371 // Return 0 on success.
bb32f4f2 10372 int parse (const std::string& f);
3cdc21cf
AD
10373 // The name of the file being parsed.
10374 // Used later to pass the file name to the location tracker.
12545799 10375 std::string file;
3cdc21cf 10376 // Whether parser traces should be generated.
12545799
AD
10377 bool trace_parsing;
10378@end example
10379
10380@noindent
10381To demonstrate pure handling of parse errors, instead of simply
10382dumping them on the standard error output, we will pass them to the
10383compiler driver using the following two member functions. Finally, we
10384close the class declaration and CPP guard.
10385
1c59e0a1 10386@comment file: calc++-driver.hh
12545799
AD
10387@example
10388 // Error handling.
10389 void error (const yy::location& l, const std::string& m);
10390 void error (const std::string& m);
10391@};
10392#endif // ! CALCXX_DRIVER_HH
10393@end example
10394
10395The implementation of the driver is straightforward. The @code{parse}
10396member function deserves some attention. The @code{error} functions
10397are simple stubs, they should actually register the located error
10398messages and set error state.
10399
1c59e0a1 10400@comment file: calc++-driver.cc
12545799
AD
10401@example
10402#include "calc++-driver.hh"
10403#include "calc++-parser.hh"
10404
10405calcxx_driver::calcxx_driver ()
10406 : trace_scanning (false), trace_parsing (false)
10407@{
10408 variables["one"] = 1;
10409 variables["two"] = 2;
10410@}
10411
10412calcxx_driver::~calcxx_driver ()
10413@{
10414@}
10415
bb32f4f2 10416int
12545799
AD
10417calcxx_driver::parse (const std::string &f)
10418@{
10419 file = f;
10420 scan_begin ();
10421 yy::calcxx_parser parser (*this);
10422 parser.set_debug_level (trace_parsing);
bb32f4f2 10423 int res = parser.parse ();
12545799 10424 scan_end ();
bb32f4f2 10425 return res;
12545799
AD
10426@}
10427
10428void
10429calcxx_driver::error (const yy::location& l, const std::string& m)
10430@{
10431 std::cerr << l << ": " << m << std::endl;
10432@}
10433
10434void
10435calcxx_driver::error (const std::string& m)
10436@{
10437 std::cerr << m << std::endl;
10438@}
10439@end example
10440
10441@node Calc++ Parser
8405b70c 10442@subsubsection Calc++ Parser
12545799 10443
ff7571c0
JD
10444The grammar file @file{calc++-parser.yy} starts by asking for the C++
10445deterministic parser skeleton, the creation of the parser header file,
10446and specifies the name of the parser class. Because the C++ skeleton
10447changed several times, it is safer to require the version you designed
10448the grammar for.
1c59e0a1
AD
10449
10450@comment file: calc++-parser.yy
12545799 10451@example
c93f22fc 10452%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10453%require "@value{VERSION}"
12545799 10454%defines
16dc6a9e 10455%define parser_class_name "calcxx_parser"
fb9712a9
AD
10456@end example
10457
3cdc21cf
AD
10458@noindent
10459@findex %define variant
10460@findex %define lex_symbol
10461This example will use genuine C++ objects as semantic values, therefore, we
10462require the variant-based interface. To make sure we properly use it, we
10463enable assertions. To fully benefit from type-safety and more natural
10464definition of ``symbol'', we enable @code{lex_symbol}.
10465
10466@comment file: calc++-parser.yy
10467@example
10468%define variant
10469%define parse.assert
10470%define lex_symbol
10471@end example
10472
fb9712a9 10473@noindent
16dc6a9e 10474@findex %code requires
3cdc21cf
AD
10475Then come the declarations/inclusions needed by the semantic values.
10476Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 10477to include the header of the other, which is, of course, insane. This
3cdc21cf 10478mutual dependency will be broken using forward declarations. Because the
fb9712a9 10479driver's header needs detailed knowledge about the parser class (in
3cdc21cf 10480particular its inner types), it is the parser's header which will use a
e0c07222 10481forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
10482
10483@comment file: calc++-parser.yy
10484@example
3cdc21cf
AD
10485%code requires
10486@{
12545799 10487# include <string>
fb9712a9 10488class calcxx_driver;
9bc0dd67 10489@}
12545799
AD
10490@end example
10491
10492@noindent
10493The driver is passed by reference to the parser and to the scanner.
10494This provides a simple but effective pure interface, not relying on
10495global variables.
10496
1c59e0a1 10497@comment file: calc++-parser.yy
12545799
AD
10498@example
10499// The parsing context.
2055a44e 10500%param @{ calcxx_driver& driver @}
12545799
AD
10501@end example
10502
10503@noindent
2055a44e 10504Then we request location tracking, and initialize the
f50bfcd6 10505first location's file name. Afterward new locations are computed
12545799 10506relatively to the previous locations: the file name will be
2055a44e 10507propagated.
12545799 10508
1c59e0a1 10509@comment file: calc++-parser.yy
12545799
AD
10510@example
10511%locations
10512%initial-action
10513@{
10514 // Initialize the initial location.
b47dbebe 10515 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
10516@};
10517@end example
10518
10519@noindent
7fceb615
JD
10520Use the following two directives to enable parser tracing and verbose error
10521messages. However, verbose error messages can contain incorrect information
10522(@pxref{LAC}).
12545799 10523
1c59e0a1 10524@comment file: calc++-parser.yy
12545799 10525@example
fa819509 10526%define parse.trace
cf499cff 10527%define parse.error verbose
12545799
AD
10528@end example
10529
fb9712a9 10530@noindent
136a0f76
PB
10531@findex %code
10532The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 10533@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
10534
10535@comment file: calc++-parser.yy
10536@example
3cdc21cf
AD
10537%code
10538@{
fb9712a9 10539# include "calc++-driver.hh"
34f98f46 10540@}
fb9712a9
AD
10541@end example
10542
10543
12545799
AD
10544@noindent
10545The token numbered as 0 corresponds to end of file; the following line
99c08fb6 10546allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
10547``$end''. Similarly user friendly names are provided for each symbol. To
10548avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
2a6b66c5 10549tokens with @code{TOK_} (@pxref{%define Summary,,api.token.prefix}).
12545799 10550
1c59e0a1 10551@comment file: calc++-parser.yy
12545799 10552@example
2a6b66c5 10553%define api.token.prefix "TOK_"
3cdc21cf
AD
10554%token
10555 END 0 "end of file"
10556 ASSIGN ":="
10557 MINUS "-"
10558 PLUS "+"
10559 STAR "*"
10560 SLASH "/"
10561 LPAREN "("
10562 RPAREN ")"
10563;
12545799
AD
10564@end example
10565
10566@noindent
3cdc21cf
AD
10567Since we use variant-based semantic values, @code{%union} is not used, and
10568both @code{%type} and @code{%token} expect genuine types, as opposed to type
10569tags.
12545799 10570
1c59e0a1 10571@comment file: calc++-parser.yy
12545799 10572@example
3cdc21cf
AD
10573%token <std::string> IDENTIFIER "identifier"
10574%token <int> NUMBER "number"
10575%type <int> exp
10576@end example
10577
10578@noindent
10579No @code{%destructor} is needed to enable memory deallocation during error
10580recovery; the memory, for strings for instance, will be reclaimed by the
10581regular destructors. All the values are printed using their
a76c741d 10582@code{operator<<} (@pxref{Printer Decl, , Printing Semantic Values}).
12545799 10583
3cdc21cf
AD
10584@comment file: calc++-parser.yy
10585@example
c5026327 10586%printer @{ yyoutput << $$; @} <*>;
12545799
AD
10587@end example
10588
10589@noindent
3cdc21cf
AD
10590The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
10591Location Tracking Calculator: @code{ltcalc}}).
12545799 10592
1c59e0a1 10593@comment file: calc++-parser.yy
12545799
AD
10594@example
10595%%
10596%start unit;
10597unit: assignments exp @{ driver.result = $2; @};
10598
99c08fb6 10599assignments:
5e9b6624
AD
10600 /* Nothing. */ @{@}
10601| assignments assignment @{@};
12545799 10602
3dc5e96b 10603assignment:
3cdc21cf 10604 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 10605
3cdc21cf
AD
10606%left "+" "-";
10607%left "*" "/";
99c08fb6 10608exp:
3cdc21cf
AD
10609 exp "+" exp @{ $$ = $1 + $3; @}
10610| exp "-" exp @{ $$ = $1 - $3; @}
10611| exp "*" exp @{ $$ = $1 * $3; @}
10612| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 10613| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 10614| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 10615| "number" @{ std::swap ($$, $1); @};
12545799
AD
10616%%
10617@end example
10618
10619@noindent
10620Finally the @code{error} member function registers the errors to the
10621driver.
10622
1c59e0a1 10623@comment file: calc++-parser.yy
12545799
AD
10624@example
10625void
3cdc21cf 10626yy::calcxx_parser::error (const location_type& l,
1c59e0a1 10627 const std::string& m)
12545799
AD
10628@{
10629 driver.error (l, m);
10630@}
10631@end example
10632
10633@node Calc++ Scanner
8405b70c 10634@subsubsection Calc++ Scanner
12545799
AD
10635
10636The Flex scanner first includes the driver declaration, then the
10637parser's to get the set of defined tokens.
10638
1c59e0a1 10639@comment file: calc++-scanner.ll
12545799 10640@example
c93f22fc 10641%@{ /* -*- C++ -*- */
3c248d70
AD
10642# include <cerrno>
10643# include <climits>
3cdc21cf 10644# include <cstdlib>
12545799
AD
10645# include <string>
10646# include "calc++-driver.hh"
10647# include "calc++-parser.hh"
eaea13f5 10648
3cdc21cf
AD
10649// Work around an incompatibility in flex (at least versions
10650// 2.5.31 through 2.5.33): it generates code that does
10651// not conform to C89. See Debian bug 333231
10652// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
10653# undef yywrap
10654# define yywrap() 1
eaea13f5 10655
3cdc21cf
AD
10656// The location of the current token.
10657static yy::location loc;
12545799
AD
10658%@}
10659@end example
10660
10661@noindent
10662Because there is no @code{#include}-like feature we don't need
10663@code{yywrap}, we don't need @code{unput} either, and we parse an
10664actual file, this is not an interactive session with the user.
3cdc21cf 10665Finally, we enable scanner tracing.
12545799 10666
1c59e0a1 10667@comment file: calc++-scanner.ll
12545799
AD
10668@example
10669%option noyywrap nounput batch debug
10670@end example
10671
10672@noindent
10673Abbreviations allow for more readable rules.
10674
1c59e0a1 10675@comment file: calc++-scanner.ll
12545799
AD
10676@example
10677id [a-zA-Z][a-zA-Z_0-9]*
10678int [0-9]+
10679blank [ \t]
10680@end example
10681
10682@noindent
9d9b8b70 10683The following paragraph suffices to track locations accurately. Each
12545799 10684time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
10685position. Then when a pattern is matched, its width is added to the end
10686column. When matching ends of lines, the end
12545799
AD
10687cursor is adjusted, and each time blanks are matched, the begin cursor
10688is moved onto the end cursor to effectively ignore the blanks
10689preceding tokens. Comments would be treated equally.
10690
1c59e0a1 10691@comment file: calc++-scanner.ll
12545799 10692@example
d4fca427 10693@group
828c373b 10694%@{
3cdc21cf
AD
10695 // Code run each time a pattern is matched.
10696 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 10697%@}
d4fca427 10698@end group
12545799 10699%%
d4fca427 10700@group
12545799 10701%@{
3cdc21cf
AD
10702 // Code run each time yylex is called.
10703 loc.step ();
12545799 10704%@}
d4fca427 10705@end group
3cdc21cf
AD
10706@{blank@}+ loc.step ();
10707[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10708@end example
10709
10710@noindent
3cdc21cf 10711The rules are simple. The driver is used to report errors.
12545799 10712
1c59e0a1 10713@comment file: calc++-scanner.ll
12545799 10714@example
3cdc21cf
AD
10715"-" return yy::calcxx_parser::make_MINUS(loc);
10716"+" return yy::calcxx_parser::make_PLUS(loc);
10717"*" return yy::calcxx_parser::make_STAR(loc);
10718"/" return yy::calcxx_parser::make_SLASH(loc);
10719"(" return yy::calcxx_parser::make_LPAREN(loc);
10720")" return yy::calcxx_parser::make_RPAREN(loc);
10721":=" return yy::calcxx_parser::make_ASSIGN(loc);
10722
d4fca427 10723@group
04098407
PE
10724@{int@} @{
10725 errno = 0;
10726 long n = strtol (yytext, NULL, 10);
10727 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10728 driver.error (loc, "integer is out of range");
10729 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10730@}
d4fca427 10731@end group
3cdc21cf
AD
10732@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10733. driver.error (loc, "invalid character");
10734<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10735%%
10736@end example
10737
10738@noindent
3cdc21cf 10739Finally, because the scanner-related driver's member-functions depend
12545799
AD
10740on the scanner's data, it is simpler to implement them in this file.
10741
1c59e0a1 10742@comment file: calc++-scanner.ll
12545799 10743@example
d4fca427 10744@group
12545799
AD
10745void
10746calcxx_driver::scan_begin ()
10747@{
10748 yy_flex_debug = trace_scanning;
93c150b6 10749 if (file.empty () || file == "-")
bb32f4f2
AD
10750 yyin = stdin;
10751 else if (!(yyin = fopen (file.c_str (), "r")))
10752 @{
aaaa2aae 10753 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10754 exit (EXIT_FAILURE);
bb32f4f2 10755 @}
12545799 10756@}
d4fca427 10757@end group
12545799 10758
d4fca427 10759@group
12545799
AD
10760void
10761calcxx_driver::scan_end ()
10762@{
10763 fclose (yyin);
10764@}
d4fca427 10765@end group
12545799
AD
10766@end example
10767
10768@node Calc++ Top Level
8405b70c 10769@subsubsection Calc++ Top Level
12545799
AD
10770
10771The top level file, @file{calc++.cc}, poses no problem.
10772
1c59e0a1 10773@comment file: calc++.cc
12545799
AD
10774@example
10775#include <iostream>
10776#include "calc++-driver.hh"
10777
d4fca427 10778@group
12545799 10779int
fa4d969f 10780main (int argc, char *argv[])
12545799 10781@{
414c76a4 10782 int res = 0;
12545799 10783 calcxx_driver driver;
93c150b6
AD
10784 for (int i = 1; i < argc; ++i)
10785 if (argv[i] == std::string ("-p"))
12545799 10786 driver.trace_parsing = true;
93c150b6 10787 else if (argv[i] == std::string ("-s"))
12545799 10788 driver.trace_scanning = true;
93c150b6 10789 else if (!driver.parse (argv[i]))
bb32f4f2 10790 std::cout << driver.result << std::endl;
414c76a4
AD
10791 else
10792 res = 1;
10793 return res;
12545799 10794@}
d4fca427 10795@end group
12545799
AD
10796@end example
10797
8405b70c
PB
10798@node Java Parsers
10799@section Java Parsers
10800
10801@menu
f5f419de
DJ
10802* Java Bison Interface:: Asking for Java parser generation
10803* Java Semantic Values:: %type and %token vs. Java
10804* Java Location Values:: The position and location classes
10805* Java Parser Interface:: Instantiating and running the parser
10806* Java Scanner Interface:: Specifying the scanner for the parser
10807* Java Action Features:: Special features for use in actions
10808* Java Differences:: Differences between C/C++ and Java Grammars
10809* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10810@end menu
10811
10812@node Java Bison Interface
10813@subsection Java Bison Interface
10814@c - %language "Java"
8405b70c 10815
59da312b
JD
10816(The current Java interface is experimental and may evolve.
10817More user feedback will help to stabilize it.)
10818
e254a580
DJ
10819The Java parser skeletons are selected using the @code{%language "Java"}
10820directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10821
e254a580 10822@c FIXME: Documented bug.
ff7571c0
JD
10823When generating a Java parser, @code{bison @var{basename}.y} will
10824create a single Java source file named @file{@var{basename}.java}
10825containing the parser implementation. Using a grammar file without a
10826@file{.y} suffix is currently broken. The basename of the parser
10827implementation file can be changed by the @code{%file-prefix}
10828directive or the @option{-p}/@option{--name-prefix} option. The
10829entire parser implementation file name can be changed by the
10830@code{%output} directive or the @option{-o}/@option{--output} option.
10831The parser implementation file contains a single class for the parser.
8405b70c 10832
e254a580 10833You can create documentation for generated parsers using Javadoc.
8405b70c 10834
e254a580
DJ
10835Contrary to C parsers, Java parsers do not use global variables; the
10836state of the parser is always local to an instance of the parser class.
10837Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10838and @samp{%define api.pure} directives does not do anything when used in
e254a580 10839Java.
8405b70c 10840
e254a580 10841Push parsers are currently unsupported in Java and @code{%define
67212941 10842api.push-pull} have no effect.
01b477c6 10843
8a4281b9 10844GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10845@code{glr-parser} directive.
10846
10847No header file can be generated for Java parsers. Do not use the
10848@code{%defines} directive or the @option{-d}/@option{--defines} options.
10849
10850@c FIXME: Possible code change.
fa819509
AD
10851Currently, support for tracing is always compiled
10852in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10853directives and the
e254a580
DJ
10854@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10855options have no effect. This may change in the future to eliminate
fa819509
AD
10856unused code in the generated parser, so use @samp{%define parse.trace}
10857explicitly
1979121c 10858if needed. Also, in the future the
e254a580
DJ
10859@code{%token-table} directive might enable a public interface to
10860access the token names and codes.
8405b70c 10861
09ccae9b 10862Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10863hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10864Try reducing the amount of code in actions and static initializers;
10865otherwise, report a bug so that the parser skeleton will be improved.
10866
10867
8405b70c
PB
10868@node Java Semantic Values
10869@subsection Java Semantic Values
10870@c - No %union, specify type in %type/%token.
10871@c - YYSTYPE
10872@c - Printer and destructor
10873
10874There is no @code{%union} directive in Java parsers. Instead, the
10875semantic values' types (class names) should be specified in the
10876@code{%type} or @code{%token} directive:
10877
10878@example
10879%type <Expression> expr assignment_expr term factor
10880%type <Integer> number
10881@end example
10882
10883By default, the semantic stack is declared to have @code{Object} members,
10884which means that the class types you specify can be of any class.
10885To improve the type safety of the parser, you can declare the common
67501061 10886superclass of all the semantic values using the @samp{%define stype}
e254a580 10887directive. For example, after the following declaration:
8405b70c
PB
10888
10889@example
e254a580 10890%define stype "ASTNode"
8405b70c
PB
10891@end example
10892
10893@noindent
10894any @code{%type} or @code{%token} specifying a semantic type which
10895is not a subclass of ASTNode, will cause a compile-time error.
10896
e254a580 10897@c FIXME: Documented bug.
8405b70c
PB
10898Types used in the directives may be qualified with a package name.
10899Primitive data types are accepted for Java version 1.5 or later. Note
10900that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10901Generic types may not be used; this is due to a limitation in the
10902implementation of Bison, and may change in future releases.
8405b70c
PB
10903
10904Java parsers do not support @code{%destructor}, since the language
10905adopts garbage collection. The parser will try to hold references
10906to semantic values for as little time as needed.
10907
10908Java parsers do not support @code{%printer}, as @code{toString()}
10909can be used to print the semantic values. This however may change
10910(in a backwards-compatible way) in future versions of Bison.
10911
10912
10913@node Java Location Values
10914@subsection Java Location Values
10915@c - %locations
10916@c - class Position
10917@c - class Location
10918
303834cc
JD
10919When the directive @code{%locations} is used, the Java parser supports
10920location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10921class defines a @dfn{position}, a single point in a file; Bison itself
10922defines a class representing a @dfn{location}, a range composed of a pair of
10923positions (possibly spanning several files). The location class is an inner
10924class of the parser; the name is @code{Location} by default, and may also be
7287be84 10925renamed using @code{%define api.location.type "@var{class-name}"}.
8405b70c
PB
10926
10927The location class treats the position as a completely opaque value.
10928By default, the class name is @code{Position}, but this can be changed
7287be84 10929with @code{%define api.position.type "@var{class-name}"}. This class must
e254a580 10930be supplied by the user.
8405b70c
PB
10931
10932
e254a580
DJ
10933@deftypeivar {Location} {Position} begin
10934@deftypeivarx {Location} {Position} end
8405b70c 10935The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10936@end deftypeivar
10937
10938@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10939Create a @code{Location} denoting an empty range located at a given point.
e254a580 10940@end deftypeop
8405b70c 10941
e254a580
DJ
10942@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10943Create a @code{Location} from the endpoints of the range.
10944@end deftypeop
10945
10946@deftypemethod {Location} {String} toString ()
8405b70c
PB
10947Prints the range represented by the location. For this to work
10948properly, the position class should override the @code{equals} and
10949@code{toString} methods appropriately.
10950@end deftypemethod
10951
10952
10953@node Java Parser Interface
10954@subsection Java Parser Interface
10955@c - define parser_class_name
10956@c - Ctor
10957@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10958@c debug_stream.
10959@c - Reporting errors
10960
e254a580
DJ
10961The name of the generated parser class defaults to @code{YYParser}. The
10962@code{YY} prefix may be changed using the @code{%name-prefix} directive
10963or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10964@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10965the class. The interface of this class is detailed below.
8405b70c 10966
e254a580 10967By default, the parser class has package visibility. A declaration
67501061 10968@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10969according to the Java language specification, the name of the @file{.java}
10970file should match the name of the class in this case. Similarly, you can
10971use @code{abstract}, @code{final} and @code{strictfp} with the
10972@code{%define} declaration to add other modifiers to the parser class.
67501061 10973A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10974be used to add any number of annotations to the parser class.
e254a580
DJ
10975
10976The Java package name of the parser class can be specified using the
67501061 10977@samp{%define package} directive. The superclass and the implemented
e254a580 10978interfaces of the parser class can be specified with the @code{%define
67501061 10979extends} and @samp{%define implements} directives.
e254a580
DJ
10980
10981The parser class defines an inner class, @code{Location}, that is used
10982for location tracking (see @ref{Java Location Values}), and a inner
10983interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10984these inner class/interface, and the members described in the interface
10985below, all the other members and fields are preceded with a @code{yy} or
10986@code{YY} prefix to avoid clashes with user code.
10987
e254a580
DJ
10988The parser class can be extended using the @code{%parse-param}
10989directive. Each occurrence of the directive will add a @code{protected
10990final} field to the parser class, and an argument to its constructor,
10991which initialize them automatically.
10992
e254a580
DJ
10993@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10994Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10995no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10996@code{%lex-param}s are used.
1979121c
DJ
10997
10998Use @code{%code init} for code added to the start of the constructor
10999body. This is especially useful to initialize superclasses. Use
f50bfcd6 11000@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
11001@end deftypeop
11002
11003@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
11004Build a new parser object using the specified scanner. There are no
2055a44e
AD
11005additional parameters unless @code{%param}s and/or @code{%parse-param}s are
11006used.
e254a580
DJ
11007
11008If the scanner is defined by @code{%code lexer}, this constructor is
11009declared @code{protected} and is called automatically with a scanner
2055a44e 11010created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
11011
11012Use @code{%code init} for code added to the start of the constructor
11013body. This is especially useful to initialize superclasses. Use
5a321748 11014@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 11015@end deftypeop
8405b70c
PB
11016
11017@deftypemethod {YYParser} {boolean} parse ()
11018Run the syntactic analysis, and return @code{true} on success,
11019@code{false} otherwise.
11020@end deftypemethod
11021
1979121c
DJ
11022@deftypemethod {YYParser} {boolean} getErrorVerbose ()
11023@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
11024Get or set the option to produce verbose error messages. These are only
cf499cff 11025available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
11026verbose error messages.
11027@end deftypemethod
11028
11029@deftypemethod {YYParser} {void} yyerror (String @var{msg})
11030@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
11031@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
11032Print an error message using the @code{yyerror} method of the scanner
11033instance in use. The @code{Location} and @code{Position} parameters are
11034available only if location tracking is active.
11035@end deftypemethod
11036
01b477c6 11037@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 11038During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
11039from a syntax error.
11040@xref{Error Recovery}.
8405b70c
PB
11041@end deftypemethod
11042
11043@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
11044@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
11045Get or set the stream used for tracing the parsing. It defaults to
11046@code{System.err}.
11047@end deftypemethod
11048
11049@deftypemethod {YYParser} {int} getDebugLevel ()
11050@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
11051Get or set the tracing level. Currently its value is either 0, no trace,
11052or nonzero, full tracing.
11053@end deftypemethod
11054
1979121c
DJ
11055@deftypecv {Constant} {YYParser} {String} {bisonVersion}
11056@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
11057Identify the Bison version and skeleton used to generate this parser.
11058@end deftypecv
11059
8405b70c
PB
11060
11061@node Java Scanner Interface
11062@subsection Java Scanner Interface
01b477c6 11063@c - %code lexer
8405b70c 11064@c - %lex-param
01b477c6 11065@c - Lexer interface
8405b70c 11066
e254a580
DJ
11067There are two possible ways to interface a Bison-generated Java parser
11068with a scanner: the scanner may be defined by @code{%code lexer}, or
11069defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
11070@code{Lexer} inner interface of the parser class. This interface also
11071contain constants for all user-defined token names and the predefined
11072@code{EOF} token.
e254a580
DJ
11073
11074In the first case, the body of the scanner class is placed in
11075@code{%code lexer} blocks. If you want to pass parameters from the
11076parser constructor to the scanner constructor, specify them with
11077@code{%lex-param}; they are passed before @code{%parse-param}s to the
11078constructor.
01b477c6 11079
59c5ac72 11080In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
11081which is defined within the parser class (e.g., @code{YYParser.Lexer}).
11082The constructor of the parser object will then accept an object
11083implementing the interface; @code{%lex-param} is not used in this
11084case.
11085
11086In both cases, the scanner has to implement the following methods.
11087
e254a580
DJ
11088@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
11089This method is defined by the user to emit an error message. The first
11090parameter is omitted if location tracking is not active. Its type can be
7287be84 11091changed using @code{%define api.location.type "@var{class-name}".}
8405b70c
PB
11092@end deftypemethod
11093
e254a580 11094@deftypemethod {Lexer} {int} yylex ()
8405b70c 11095Return the next token. Its type is the return value, its semantic
f50bfcd6 11096value and location are saved and returned by the their methods in the
e254a580
DJ
11097interface.
11098
67501061 11099Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 11100Default is @code{java.io.IOException}.
8405b70c
PB
11101@end deftypemethod
11102
11103@deftypemethod {Lexer} {Position} getStartPos ()
11104@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
11105Return respectively the first position of the last token that
11106@code{yylex} returned, and the first position beyond it. These
11107methods are not needed unless location tracking is active.
8405b70c 11108
7287be84 11109The return type can be changed using @code{%define api.position.type
8405b70c
PB
11110"@var{class-name}".}
11111@end deftypemethod
11112
11113@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 11114Return the semantic value of the last token that yylex returned.
8405b70c 11115
67501061 11116The return type can be changed using @samp{%define stype
8405b70c
PB
11117"@var{class-name}".}
11118@end deftypemethod
11119
11120
e254a580
DJ
11121@node Java Action Features
11122@subsection Special Features for Use in Java Actions
11123
11124The following special constructs can be uses in Java actions.
11125Other analogous C action features are currently unavailable for Java.
11126
67501061 11127Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
11128actions, and initial actions specified by @code{%initial-action}.
11129
11130@defvar $@var{n}
11131The semantic value for the @var{n}th component of the current rule.
11132This may not be assigned to.
11133@xref{Java Semantic Values}.
11134@end defvar
11135
11136@defvar $<@var{typealt}>@var{n}
11137Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
11138@xref{Java Semantic Values}.
11139@end defvar
11140
11141@defvar $$
11142The semantic value for the grouping made by the current rule. As a
11143value, this is in the base type (@code{Object} or as specified by
67501061 11144@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
11145casts are not allowed on the left-hand side of Java assignments.
11146Use an explicit Java cast if the correct subtype is needed.
11147@xref{Java Semantic Values}.
11148@end defvar
11149
11150@defvar $<@var{typealt}>$
11151Same as @code{$$} since Java always allow assigning to the base type.
11152Perhaps we should use this and @code{$<>$} for the value and @code{$$}
11153for setting the value but there is currently no easy way to distinguish
11154these constructs.
11155@xref{Java Semantic Values}.
11156@end defvar
11157
11158@defvar @@@var{n}
11159The location information of the @var{n}th component of the current rule.
11160This may not be assigned to.
11161@xref{Java Location Values}.
11162@end defvar
11163
11164@defvar @@$
11165The location information of the grouping made by the current rule.
11166@xref{Java Location Values}.
11167@end defvar
11168
34a41a93 11169@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
11170Return immediately from the parser, indicating failure.
11171@xref{Java Parser Interface}.
34a41a93 11172@end deftypefn
8405b70c 11173
34a41a93 11174@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
11175Return immediately from the parser, indicating success.
11176@xref{Java Parser Interface}.
34a41a93 11177@end deftypefn
8405b70c 11178
34a41a93 11179@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 11180Start error recovery (without printing an error message).
e254a580 11181@xref{Error Recovery}.
34a41a93 11182@end deftypefn
8405b70c 11183
e254a580
DJ
11184@deftypefn {Function} {boolean} recovering ()
11185Return whether error recovery is being done. In this state, the parser
11186reads token until it reaches a known state, and then restarts normal
11187operation.
11188@xref{Error Recovery}.
11189@end deftypefn
8405b70c 11190
1979121c
DJ
11191@deftypefn {Function} {void} yyerror (String @var{msg})
11192@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
11193@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 11194Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
11195instance in use. The @code{Location} and @code{Position} parameters are
11196available only if location tracking is active.
e254a580 11197@end deftypefn
8405b70c 11198
8405b70c 11199
8405b70c
PB
11200@node Java Differences
11201@subsection Differences between C/C++ and Java Grammars
11202
11203The different structure of the Java language forces several differences
11204between C/C++ grammars, and grammars designed for Java parsers. This
29553547 11205section summarizes these differences.
8405b70c
PB
11206
11207@itemize
11208@item
01b477c6 11209Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 11210@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
11211macros. Instead, they should be preceded by @code{return} when they
11212appear in an action. The actual definition of these symbols is
8405b70c
PB
11213opaque to the Bison grammar, and it might change in the future. The
11214only meaningful operation that you can do, is to return them.
e3fd1dcb 11215@xref{Java Action Features}.
8405b70c
PB
11216
11217Note that of these three symbols, only @code{YYACCEPT} and
11218@code{YYABORT} will cause a return from the @code{yyparse}
11219method@footnote{Java parsers include the actions in a separate
11220method than @code{yyparse} in order to have an intuitive syntax that
11221corresponds to these C macros.}.
11222
e254a580
DJ
11223@item
11224Java lacks unions, so @code{%union} has no effect. Instead, semantic
11225values have a common base type: @code{Object} or as specified by
f50bfcd6 11226@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
11227@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
11228an union. The type of @code{$$}, even with angle brackets, is the base
11229type since Java casts are not allow on the left-hand side of assignments.
11230Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 11231left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 11232@ref{Java Action Features}.
e254a580 11233
8405b70c 11234@item
f50bfcd6 11235The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
11236@table @asis
11237@item @code{%code imports}
11238blocks are placed at the beginning of the Java source code. They may
11239include copyright notices. For a @code{package} declarations, it is
67501061 11240suggested to use @samp{%define package} instead.
8405b70c 11241
01b477c6
PB
11242@item unqualified @code{%code}
11243blocks are placed inside the parser class.
11244
11245@item @code{%code lexer}
11246blocks, if specified, should include the implementation of the
11247scanner. If there is no such block, the scanner can be any class
e3fd1dcb 11248that implements the appropriate interface (@pxref{Java Scanner
01b477c6 11249Interface}).
29553547 11250@end table
8405b70c
PB
11251
11252Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
11253In particular, @code{%@{ @dots{} %@}} blocks should not be used
11254and may give an error in future versions of Bison.
11255
01b477c6 11256The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
11257be used to define other classes used by the parser @emph{outside}
11258the parser class.
8405b70c
PB
11259@end itemize
11260
e254a580
DJ
11261
11262@node Java Declarations Summary
11263@subsection Java Declarations Summary
11264
11265This summary only include declarations specific to Java or have special
11266meaning when used in a Java parser.
11267
11268@deffn {Directive} {%language "Java"}
11269Generate a Java class for the parser.
11270@end deffn
11271
11272@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11273A parameter for the lexer class defined by @code{%code lexer}
11274@emph{only}, added as parameters to the lexer constructor and the parser
11275constructor that @emph{creates} a lexer. Default is none.
11276@xref{Java Scanner Interface}.
11277@end deffn
11278
11279@deffn {Directive} %name-prefix "@var{prefix}"
11280The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11281@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11282@xref{Java Bison Interface}.
11283@end deffn
11284
11285@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11286A parameter for the parser class added as parameters to constructor(s)
11287and as fields initialized by the constructor(s). Default is none.
11288@xref{Java Parser Interface}.
11289@end deffn
11290
11291@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11292Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11293@xref{Java Semantic Values}.
11294@end deffn
11295
11296@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11297Declare the type of nonterminals. Note that the angle brackets enclose
11298a Java @emph{type}.
11299@xref{Java Semantic Values}.
11300@end deffn
11301
11302@deffn {Directive} %code @{ @var{code} @dots{} @}
11303Code appended to the inside of the parser class.
11304@xref{Java Differences}.
11305@end deffn
11306
11307@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11308Code inserted just after the @code{package} declaration.
11309@xref{Java Differences}.
11310@end deffn
11311
1979121c
DJ
11312@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11313Code inserted at the beginning of the parser constructor body.
11314@xref{Java Parser Interface}.
11315@end deffn
11316
e254a580
DJ
11317@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11318Code added to the body of a inner lexer class within the parser class.
11319@xref{Java Scanner Interface}.
11320@end deffn
11321
11322@deffn {Directive} %% @var{code} @dots{}
11323Code (after the second @code{%%}) appended to the end of the file,
11324@emph{outside} the parser class.
11325@xref{Java Differences}.
11326@end deffn
11327
11328@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11329Not supported. Use @code{%code imports} instead.
e254a580
DJ
11330@xref{Java Differences}.
11331@end deffn
11332
11333@deffn {Directive} {%define abstract}
11334Whether the parser class is declared @code{abstract}. Default is false.
11335@xref{Java Bison Interface}.
11336@end deffn
11337
1979121c
DJ
11338@deffn {Directive} {%define annotations} "@var{annotations}"
11339The Java annotations for the parser class. Default is none.
11340@xref{Java Bison Interface}.
11341@end deffn
11342
e254a580
DJ
11343@deffn {Directive} {%define extends} "@var{superclass}"
11344The superclass of the parser class. Default is none.
11345@xref{Java Bison Interface}.
11346@end deffn
11347
11348@deffn {Directive} {%define final}
11349Whether the parser class is declared @code{final}. Default is false.
11350@xref{Java Bison Interface}.
11351@end deffn
11352
11353@deffn {Directive} {%define implements} "@var{interfaces}"
11354The implemented interfaces of the parser class, a comma-separated list.
11355Default is none.
11356@xref{Java Bison Interface}.
11357@end deffn
11358
1979121c
DJ
11359@deffn {Directive} {%define init_throws} "@var{exceptions}"
11360The exceptions thrown by @code{%code init} from the parser class
11361constructor. Default is none.
11362@xref{Java Parser Interface}.
11363@end deffn
11364
e254a580
DJ
11365@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11366The exceptions thrown by the @code{yylex} method of the lexer, a
11367comma-separated list. Default is @code{java.io.IOException}.
11368@xref{Java Scanner Interface}.
11369@end deffn
11370
7287be84 11371@deffn {Directive} {%define api.location.type} "@var{class}"
e254a580
DJ
11372The name of the class used for locations (a range between two
11373positions). This class is generated as an inner class of the parser
11374class by @command{bison}. Default is @code{Location}.
7287be84 11375Formerly named @code{location_type}.
e254a580
DJ
11376@xref{Java Location Values}.
11377@end deffn
11378
11379@deffn {Directive} {%define package} "@var{package}"
11380The package to put the parser class in. Default is none.
11381@xref{Java Bison Interface}.
11382@end deffn
11383
11384@deffn {Directive} {%define parser_class_name} "@var{name}"
11385The name of the parser class. Default is @code{YYParser} or
11386@code{@var{name-prefix}Parser}.
11387@xref{Java Bison Interface}.
11388@end deffn
11389
7287be84 11390@deffn {Directive} {%define api.position.type} "@var{class}"
e254a580
DJ
11391The name of the class used for positions. This class must be supplied by
11392the user. Default is @code{Position}.
7287be84 11393Formerly named @code{position_type}.
e254a580
DJ
11394@xref{Java Location Values}.
11395@end deffn
11396
11397@deffn {Directive} {%define public}
11398Whether the parser class is declared @code{public}. Default is false.
11399@xref{Java Bison Interface}.
11400@end deffn
11401
11402@deffn {Directive} {%define stype} "@var{class}"
11403The base type of semantic values. Default is @code{Object}.
11404@xref{Java Semantic Values}.
11405@end deffn
11406
11407@deffn {Directive} {%define strictfp}
11408Whether the parser class is declared @code{strictfp}. Default is false.
11409@xref{Java Bison Interface}.
11410@end deffn
11411
11412@deffn {Directive} {%define throws} "@var{exceptions}"
11413The exceptions thrown by user-supplied parser actions and
11414@code{%initial-action}, a comma-separated list. Default is none.
11415@xref{Java Parser Interface}.
11416@end deffn
11417
11418
12545799 11419@c ================================================= FAQ
d1a1114f
AD
11420
11421@node FAQ
11422@chapter Frequently Asked Questions
11423@cindex frequently asked questions
11424@cindex questions
11425
11426Several questions about Bison come up occasionally. Here some of them
11427are addressed.
11428
11429@menu
55ba27be
AD
11430* Memory Exhausted:: Breaking the Stack Limits
11431* How Can I Reset the Parser:: @code{yyparse} Keeps some State
11432* Strings are Destroyed:: @code{yylval} Loses Track of Strings
11433* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 11434* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 11435* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
11436* I can't build Bison:: Troubleshooting
11437* Where can I find help?:: Troubleshouting
11438* Bug Reports:: Troublereporting
8405b70c 11439* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
11440* Beta Testing:: Experimenting development versions
11441* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
11442@end menu
11443
1a059451
PE
11444@node Memory Exhausted
11445@section Memory Exhausted
d1a1114f 11446
71b52b13 11447@quotation
1a059451 11448My parser returns with error with a @samp{memory exhausted}
d1a1114f 11449message. What can I do?
71b52b13 11450@end quotation
d1a1114f 11451
188867ac
AD
11452This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
11453Rules}.
d1a1114f 11454
e64fec0a
PE
11455@node How Can I Reset the Parser
11456@section How Can I Reset the Parser
5b066063 11457
0e14ad77
PE
11458The following phenomenon has several symptoms, resulting in the
11459following typical questions:
5b066063 11460
71b52b13 11461@quotation
5b066063
AD
11462I invoke @code{yyparse} several times, and on correct input it works
11463properly; but when a parse error is found, all the other calls fail
0e14ad77 11464too. How can I reset the error flag of @code{yyparse}?
71b52b13 11465@end quotation
5b066063
AD
11466
11467@noindent
11468or
11469
71b52b13 11470@quotation
0e14ad77 11471My parser includes support for an @samp{#include}-like feature, in
5b066063 11472which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 11473although I did specify @samp{%define api.pure}.
71b52b13 11474@end quotation
5b066063 11475
0e14ad77
PE
11476These problems typically come not from Bison itself, but from
11477Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
11478speed, they might not notice a change of input file. As a
11479demonstration, consider the following source file,
11480@file{first-line.l}:
11481
d4fca427
AD
11482@example
11483@group
11484%@{
5b066063
AD
11485#include <stdio.h>
11486#include <stdlib.h>
d4fca427
AD
11487%@}
11488@end group
5b066063
AD
11489%%
11490.*\n ECHO; return 1;
11491%%
d4fca427 11492@group
5b066063 11493int
0e14ad77 11494yyparse (char const *file)
d4fca427 11495@{
5b066063
AD
11496 yyin = fopen (file, "r");
11497 if (!yyin)
d4fca427
AD
11498 @{
11499 perror ("fopen");
11500 exit (EXIT_FAILURE);
11501 @}
11502@end group
11503@group
fa7e68c3 11504 /* One token only. */
5b066063 11505 yylex ();
0e14ad77 11506 if (fclose (yyin) != 0)
d4fca427
AD
11507 @{
11508 perror ("fclose");
11509 exit (EXIT_FAILURE);
11510 @}
5b066063 11511 return 0;
d4fca427
AD
11512@}
11513@end group
5b066063 11514
d4fca427 11515@group
5b066063 11516int
0e14ad77 11517main (void)
d4fca427 11518@{
5b066063
AD
11519 yyparse ("input");
11520 yyparse ("input");
11521 return 0;
d4fca427
AD
11522@}
11523@end group
11524@end example
5b066063
AD
11525
11526@noindent
11527If the file @file{input} contains
11528
71b52b13 11529@example
5b066063
AD
11530input:1: Hello,
11531input:2: World!
71b52b13 11532@end example
5b066063
AD
11533
11534@noindent
0e14ad77 11535then instead of getting the first line twice, you get:
5b066063
AD
11536
11537@example
11538$ @kbd{flex -ofirst-line.c first-line.l}
11539$ @kbd{gcc -ofirst-line first-line.c -ll}
11540$ @kbd{./first-line}
11541input:1: Hello,
11542input:2: World!
11543@end example
11544
0e14ad77
PE
11545Therefore, whenever you change @code{yyin}, you must tell the
11546Lex-generated scanner to discard its current buffer and switch to the
11547new one. This depends upon your implementation of Lex; see its
11548documentation for more. For Flex, it suffices to call
11549@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
11550Flex-generated scanner needs to read from several input streams to
11551handle features like include files, you might consider using Flex
11552functions like @samp{yy_switch_to_buffer} that manipulate multiple
11553input buffers.
5b066063 11554
b165c324
AD
11555If your Flex-generated scanner uses start conditions (@pxref{Start
11556conditions, , Start conditions, flex, The Flex Manual}), you might
11557also want to reset the scanner's state, i.e., go back to the initial
11558start condition, through a call to @samp{BEGIN (0)}.
11559
fef4cb51
AD
11560@node Strings are Destroyed
11561@section Strings are Destroyed
11562
71b52b13 11563@quotation
c7e441b4 11564My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
11565them. Instead of reporting @samp{"foo", "bar"}, it reports
11566@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 11567@end quotation
fef4cb51
AD
11568
11569This error is probably the single most frequent ``bug report'' sent to
11570Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 11571of the scanner. Consider the following Lex code:
fef4cb51 11572
71b52b13 11573@example
d4fca427 11574@group
71b52b13 11575%@{
fef4cb51
AD
11576#include <stdio.h>
11577char *yylval = NULL;
71b52b13 11578%@}
d4fca427
AD
11579@end group
11580@group
fef4cb51
AD
11581%%
11582.* yylval = yytext; return 1;
11583\n /* IGNORE */
11584%%
d4fca427
AD
11585@end group
11586@group
fef4cb51
AD
11587int
11588main ()
71b52b13 11589@{
fa7e68c3 11590 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
11591 char *fst = (yylex (), yylval);
11592 char *snd = (yylex (), yylval);
11593 printf ("\"%s\", \"%s\"\n", fst, snd);
11594 return 0;
71b52b13 11595@}
d4fca427 11596@end group
71b52b13 11597@end example
fef4cb51
AD
11598
11599If you compile and run this code, you get:
11600
11601@example
11602$ @kbd{flex -osplit-lines.c split-lines.l}
11603$ @kbd{gcc -osplit-lines split-lines.c -ll}
11604$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11605"one
11606two", "two"
11607@end example
11608
11609@noindent
11610this is because @code{yytext} is a buffer provided for @emph{reading}
11611in the action, but if you want to keep it, you have to duplicate it
11612(e.g., using @code{strdup}). Note that the output may depend on how
11613your implementation of Lex handles @code{yytext}. For instance, when
11614given the Lex compatibility option @option{-l} (which triggers the
11615option @samp{%array}) Flex generates a different behavior:
11616
11617@example
11618$ @kbd{flex -l -osplit-lines.c split-lines.l}
11619$ @kbd{gcc -osplit-lines split-lines.c -ll}
11620$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11621"two", "two"
11622@end example
11623
11624
2fa09258
AD
11625@node Implementing Gotos/Loops
11626@section Implementing Gotos/Loops
a06ea4aa 11627
71b52b13 11628@quotation
a06ea4aa 11629My simple calculator supports variables, assignments, and functions,
2fa09258 11630but how can I implement gotos, or loops?
71b52b13 11631@end quotation
a06ea4aa
AD
11632
11633Although very pedagogical, the examples included in the document blur
a1c84f45 11634the distinction to make between the parser---whose job is to recover
a06ea4aa 11635the structure of a text and to transmit it to subsequent modules of
a1c84f45 11636the program---and the processing (such as the execution) of this
a06ea4aa
AD
11637structure. This works well with so called straight line programs,
11638i.e., precisely those that have a straightforward execution model:
11639execute simple instructions one after the others.
11640
11641@cindex abstract syntax tree
8a4281b9 11642@cindex AST
a06ea4aa
AD
11643If you want a richer model, you will probably need to use the parser
11644to construct a tree that does represent the structure it has
11645recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 11646or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11647traversing it in various ways, will enable treatments such as its
11648execution or its translation, which will result in an interpreter or a
11649compiler.
11650
11651This topic is way beyond the scope of this manual, and the reader is
11652invited to consult the dedicated literature.
11653
11654
ed2e6384
AD
11655@node Multiple start-symbols
11656@section Multiple start-symbols
11657
71b52b13 11658@quotation
ed2e6384
AD
11659I have several closely related grammars, and I would like to share their
11660implementations. In fact, I could use a single grammar but with
11661multiple entry points.
71b52b13 11662@end quotation
ed2e6384
AD
11663
11664Bison does not support multiple start-symbols, but there is a very
11665simple means to simulate them. If @code{foo} and @code{bar} are the two
11666pseudo start-symbols, then introduce two new tokens, say
11667@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11668real start-symbol:
11669
11670@example
11671%token START_FOO START_BAR;
11672%start start;
5e9b6624
AD
11673start:
11674 START_FOO foo
11675| START_BAR bar;
ed2e6384
AD
11676@end example
11677
11678These tokens prevents the introduction of new conflicts. As far as the
11679parser goes, that is all that is needed.
11680
11681Now the difficult part is ensuring that the scanner will send these
11682tokens first. If your scanner is hand-written, that should be
11683straightforward. If your scanner is generated by Lex, them there is
11684simple means to do it: recall that anything between @samp{%@{ ... %@}}
11685after the first @code{%%} is copied verbatim in the top of the generated
11686@code{yylex} function. Make sure a variable @code{start_token} is
11687available in the scanner (e.g., a global variable or using
11688@code{%lex-param} etc.), and use the following:
11689
11690@example
11691 /* @r{Prologue.} */
11692%%
11693%@{
11694 if (start_token)
11695 @{
11696 int t = start_token;
11697 start_token = 0;
11698 return t;
11699 @}
11700%@}
11701 /* @r{The rules.} */
11702@end example
11703
11704
55ba27be
AD
11705@node Secure? Conform?
11706@section Secure? Conform?
11707
71b52b13 11708@quotation
55ba27be 11709Is Bison secure? Does it conform to POSIX?
71b52b13 11710@end quotation
55ba27be
AD
11711
11712If you're looking for a guarantee or certification, we don't provide it.
11713However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11714POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11715please send us a bug report.
11716
11717@node I can't build Bison
11718@section I can't build Bison
11719
71b52b13 11720@quotation
8c5b881d
PE
11721I can't build Bison because @command{make} complains that
11722@code{msgfmt} is not found.
55ba27be 11723What should I do?
71b52b13 11724@end quotation
55ba27be
AD
11725
11726Like most GNU packages with internationalization support, that feature
11727is turned on by default. If you have problems building in the @file{po}
11728subdirectory, it indicates that your system's internationalization
11729support is lacking. You can re-configure Bison with
11730@option{--disable-nls} to turn off this support, or you can install GNU
11731gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11732Bison. See the file @file{ABOUT-NLS} for more information.
11733
11734
11735@node Where can I find help?
11736@section Where can I find help?
11737
71b52b13 11738@quotation
55ba27be 11739I'm having trouble using Bison. Where can I find help?
71b52b13 11740@end quotation
55ba27be
AD
11741
11742First, read this fine manual. Beyond that, you can send mail to
11743@email{help-bison@@gnu.org}. This mailing list is intended to be
11744populated with people who are willing to answer questions about using
11745and installing Bison. Please keep in mind that (most of) the people on
11746the list have aspects of their lives which are not related to Bison (!),
11747so you may not receive an answer to your question right away. This can
11748be frustrating, but please try not to honk them off; remember that any
11749help they provide is purely voluntary and out of the kindness of their
11750hearts.
11751
11752@node Bug Reports
11753@section Bug Reports
11754
71b52b13 11755@quotation
55ba27be 11756I found a bug. What should I include in the bug report?
71b52b13 11757@end quotation
55ba27be
AD
11758
11759Before you send a bug report, make sure you are using the latest
11760version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11761mirrors. Be sure to include the version number in your bug report. If
11762the bug is present in the latest version but not in a previous version,
11763try to determine the most recent version which did not contain the bug.
11764
11765If the bug is parser-related, you should include the smallest grammar
11766you can which demonstrates the bug. The grammar file should also be
11767complete (i.e., I should be able to run it through Bison without having
11768to edit or add anything). The smaller and simpler the grammar, the
11769easier it will be to fix the bug.
11770
11771Include information about your compilation environment, including your
11772operating system's name and version and your compiler's name and
11773version. If you have trouble compiling, you should also include a
11774transcript of the build session, starting with the invocation of
11775`configure'. Depending on the nature of the bug, you may be asked to
11776send additional files as well (such as `config.h' or `config.cache').
11777
11778Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11779send a bug report just because you cannot provide a fix.
55ba27be
AD
11780
11781Send bug reports to @email{bug-bison@@gnu.org}.
11782
8405b70c
PB
11783@node More Languages
11784@section More Languages
55ba27be 11785
71b52b13 11786@quotation
8405b70c 11787Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11788favorite language here}?
71b52b13 11789@end quotation
55ba27be 11790
8405b70c 11791C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11792languages; contributions are welcome.
11793
11794@node Beta Testing
11795@section Beta Testing
11796
71b52b13 11797@quotation
55ba27be 11798What is involved in being a beta tester?
71b52b13 11799@end quotation
55ba27be
AD
11800
11801It's not terribly involved. Basically, you would download a test
11802release, compile it, and use it to build and run a parser or two. After
11803that, you would submit either a bug report or a message saying that
11804everything is okay. It is important to report successes as well as
11805failures because test releases eventually become mainstream releases,
11806but only if they are adequately tested. If no one tests, development is
11807essentially halted.
11808
11809Beta testers are particularly needed for operating systems to which the
11810developers do not have easy access. They currently have easy access to
11811recent GNU/Linux and Solaris versions. Reports about other operating
11812systems are especially welcome.
11813
11814@node Mailing Lists
11815@section Mailing Lists
11816
71b52b13 11817@quotation
55ba27be 11818How do I join the help-bison and bug-bison mailing lists?
71b52b13 11819@end quotation
55ba27be
AD
11820
11821See @url{http://lists.gnu.org/}.
a06ea4aa 11822
d1a1114f
AD
11823@c ================================================= Table of Symbols
11824
342b8b6e 11825@node Table of Symbols
bfa74976
RS
11826@appendix Bison Symbols
11827@cindex Bison symbols, table of
11828@cindex symbols in Bison, table of
11829
18b519c0 11830@deffn {Variable} @@$
3ded9a63 11831In an action, the location of the left-hand side of the rule.
303834cc 11832@xref{Tracking Locations}.
18b519c0 11833@end deffn
3ded9a63 11834
18b519c0 11835@deffn {Variable} @@@var{n}
303834cc
JD
11836In an action, the location of the @var{n}-th symbol of the right-hand side
11837of the rule. @xref{Tracking Locations}.
18b519c0 11838@end deffn
3ded9a63 11839
d013372c 11840@deffn {Variable} @@@var{name}
303834cc
JD
11841In an action, the location of a symbol addressed by name. @xref{Tracking
11842Locations}.
d013372c
AR
11843@end deffn
11844
11845@deffn {Variable} @@[@var{name}]
303834cc
JD
11846In an action, the location of a symbol addressed by name. @xref{Tracking
11847Locations}.
d013372c
AR
11848@end deffn
11849
18b519c0 11850@deffn {Variable} $$
3ded9a63
AD
11851In an action, the semantic value of the left-hand side of the rule.
11852@xref{Actions}.
18b519c0 11853@end deffn
3ded9a63 11854
18b519c0 11855@deffn {Variable} $@var{n}
3ded9a63
AD
11856In an action, the semantic value of the @var{n}-th symbol of the
11857right-hand side of the rule. @xref{Actions}.
18b519c0 11858@end deffn
3ded9a63 11859
d013372c
AR
11860@deffn {Variable} $@var{name}
11861In an action, the semantic value of a symbol addressed by name.
11862@xref{Actions}.
11863@end deffn
11864
11865@deffn {Variable} $[@var{name}]
11866In an action, the semantic value of a symbol addressed by name.
11867@xref{Actions}.
11868@end deffn
11869
dd8d9022
AD
11870@deffn {Delimiter} %%
11871Delimiter used to separate the grammar rule section from the
11872Bison declarations section or the epilogue.
11873@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11874@end deffn
bfa74976 11875
dd8d9022
AD
11876@c Don't insert spaces, or check the DVI output.
11877@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11878All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11879to the parser implementation file. Such code forms the prologue of
11880the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11881Grammar}.
18b519c0 11882@end deffn
bfa74976 11883
ca2a6d15
PH
11884@deffn {Directive} %?@{@var{expression}@}
11885Predicate actions. This is a type of action clause that may appear in
11886rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11887GLR parsers during nondeterministic operation,
ca2a6d15
PH
11888this silently causes an alternative parse to die. During deterministic
11889operation, it is the same as the effect of YYERROR.
11890@xref{Semantic Predicates}.
11891
11892This feature is experimental.
11893More user feedback will help to determine whether it should become a permanent
11894feature.
11895@end deffn
11896
dd8d9022
AD
11897@deffn {Construct} /*@dots{}*/
11898Comment delimiters, as in C.
18b519c0 11899@end deffn
bfa74976 11900
dd8d9022
AD
11901@deffn {Delimiter} :
11902Separates a rule's result from its components. @xref{Rules, ,Syntax of
11903Grammar Rules}.
18b519c0 11904@end deffn
bfa74976 11905
dd8d9022
AD
11906@deffn {Delimiter} ;
11907Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11908@end deffn
bfa74976 11909
dd8d9022
AD
11910@deffn {Delimiter} |
11911Separates alternate rules for the same result nonterminal.
11912@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11913@end deffn
bfa74976 11914
12e35840
JD
11915@deffn {Directive} <*>
11916Used to define a default tagged @code{%destructor} or default tagged
11917@code{%printer}.
85894313
JD
11918
11919This feature is experimental.
11920More user feedback will help to determine whether it should become a permanent
11921feature.
11922
12e35840
JD
11923@xref{Destructor Decl, , Freeing Discarded Symbols}.
11924@end deffn
11925
3ebecc24 11926@deffn {Directive} <>
12e35840
JD
11927Used to define a default tagless @code{%destructor} or default tagless
11928@code{%printer}.
85894313
JD
11929
11930This feature is experimental.
11931More user feedback will help to determine whether it should become a permanent
11932feature.
11933
12e35840
JD
11934@xref{Destructor Decl, , Freeing Discarded Symbols}.
11935@end deffn
11936
dd8d9022
AD
11937@deffn {Symbol} $accept
11938The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11939$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11940Start-Symbol}. It cannot be used in the grammar.
18b519c0 11941@end deffn
bfa74976 11942
136a0f76 11943@deffn {Directive} %code @{@var{code}@}
148d66d8 11944@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11945Insert @var{code} verbatim into the output parser source at the
11946default location or at the location specified by @var{qualifier}.
e0c07222 11947@xref{%code Summary}.
9bc0dd67
JD
11948@end deffn
11949
11950@deffn {Directive} %debug
11951Equip the parser for debugging. @xref{Decl Summary}.
11952@end deffn
11953
91d2c560 11954@ifset defaultprec
22fccf95
PE
11955@deffn {Directive} %default-prec
11956Assign a precedence to rules that lack an explicit @samp{%prec}
11957modifier. @xref{Contextual Precedence, ,Context-Dependent
11958Precedence}.
39a06c25 11959@end deffn
91d2c560 11960@end ifset
39a06c25 11961
7fceb615
JD
11962@deffn {Directive} %define @var{variable}
11963@deffnx {Directive} %define @var{variable} @var{value}
11964@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11965Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11966@end deffn
11967
18b519c0 11968@deffn {Directive} %defines
ff7571c0
JD
11969Bison declaration to create a parser header file, which is usually
11970meant for the scanner. @xref{Decl Summary}.
18b519c0 11971@end deffn
6deb4447 11972
02975b9a
JD
11973@deffn {Directive} %defines @var{defines-file}
11974Same as above, but save in the file @var{defines-file}.
11975@xref{Decl Summary}.
11976@end deffn
11977
18b519c0 11978@deffn {Directive} %destructor
258b75ca 11979Specify how the parser should reclaim the memory associated to
fa7e68c3 11980discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11981@end deffn
72f889cc 11982
18b519c0 11983@deffn {Directive} %dprec
676385e2 11984Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11985time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11986GLR Parsers}.
18b519c0 11987@end deffn
676385e2 11988
dd8d9022
AD
11989@deffn {Symbol} $end
11990The predefined token marking the end of the token stream. It cannot be
11991used in the grammar.
11992@end deffn
11993
11994@deffn {Symbol} error
11995A token name reserved for error recovery. This token may be used in
11996grammar rules so as to allow the Bison parser to recognize an error in
11997the grammar without halting the process. In effect, a sentence
11998containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11999token @code{error} becomes the current lookahead token. Actions
12000corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
12001token is reset to the token that originally caused the violation.
12002@xref{Error Recovery}.
18d192f0
AD
12003@end deffn
12004
18b519c0 12005@deffn {Directive} %error-verbose
7fceb615
JD
12006An obsolete directive standing for @samp{%define parse.error verbose}
12007(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 12008@end deffn
2a8d363a 12009
02975b9a 12010@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 12011Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 12012Summary}.
18b519c0 12013@end deffn
d8988b2f 12014
18b519c0 12015@deffn {Directive} %glr-parser
8a4281b9
JD
12016Bison declaration to produce a GLR parser. @xref{GLR
12017Parsers, ,Writing GLR Parsers}.
18b519c0 12018@end deffn
676385e2 12019
dd8d9022
AD
12020@deffn {Directive} %initial-action
12021Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
12022@end deffn
12023
e6e704dc
JD
12024@deffn {Directive} %language
12025Specify the programming language for the generated parser.
12026@xref{Decl Summary}.
12027@end deffn
12028
18b519c0 12029@deffn {Directive} %left
d78f0ac9 12030Bison declaration to assign precedence and left associativity to token(s).
bfa74976 12031@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12032@end deffn
bfa74976 12033
2055a44e
AD
12034@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
12035Bison declaration to specifying additional arguments that
2a8d363a
AD
12036@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
12037for Pure Parsers}.
18b519c0 12038@end deffn
2a8d363a 12039
18b519c0 12040@deffn {Directive} %merge
676385e2 12041Bison declaration to assign a merging function to a rule. If there is a
fae437e8 12042reduce/reduce conflict with a rule having the same merging function, the
676385e2 12043function is applied to the two semantic values to get a single result.
8a4281b9 12044@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 12045@end deffn
676385e2 12046
02975b9a 12047@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
12048Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
12049Parsers, ,Multiple Parsers in the Same Program}).
12050
12051Rename the external symbols (variables and functions) used in the parser so
12052that they start with @var{prefix} instead of @samp{yy}. Contrary to
12053@code{api.prefix}, do no rename types and macros.
12054
12055The precise list of symbols renamed in C parsers is @code{yyparse},
12056@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
12057@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
12058push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
12059@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
12060example, if you use @samp{%name-prefix "c_"}, the names become
12061@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
12062@code{%define namespace} documentation in this section.
18b519c0 12063@end deffn
d8988b2f 12064
4b3847c3 12065
91d2c560 12066@ifset defaultprec
22fccf95
PE
12067@deffn {Directive} %no-default-prec
12068Do not assign a precedence to rules that lack an explicit @samp{%prec}
12069modifier. @xref{Contextual Precedence, ,Context-Dependent
12070Precedence}.
12071@end deffn
91d2c560 12072@end ifset
22fccf95 12073
18b519c0 12074@deffn {Directive} %no-lines
931c7513 12075Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 12076parser implementation file. @xref{Decl Summary}.
18b519c0 12077@end deffn
931c7513 12078
18b519c0 12079@deffn {Directive} %nonassoc
d78f0ac9 12080Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 12081@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12082@end deffn
bfa74976 12083
02975b9a 12084@deffn {Directive} %output "@var{file}"
ff7571c0
JD
12085Bison declaration to set the name of the parser implementation file.
12086@xref{Decl Summary}.
18b519c0 12087@end deffn
d8988b2f 12088
2055a44e
AD
12089@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
12090Bison declaration to specify additional arguments that both
12091@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
12092Parser Function @code{yyparse}}.
12093@end deffn
12094
12095@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
12096Bison declaration to specify additional arguments that @code{yyparse}
12097should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 12098@end deffn
2a8d363a 12099
18b519c0 12100@deffn {Directive} %prec
bfa74976
RS
12101Bison declaration to assign a precedence to a specific rule.
12102@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 12103@end deffn
bfa74976 12104
d78f0ac9
AD
12105@deffn {Directive} %precedence
12106Bison declaration to assign precedence to token(s), but no associativity
12107@xref{Precedence Decl, ,Operator Precedence}.
12108@end deffn
12109
18b519c0 12110@deffn {Directive} %pure-parser
35c1e5f0
JD
12111Deprecated version of @samp{%define api.pure} (@pxref{%define
12112Summary,,api.pure}), for which Bison is more careful to warn about
12113unreasonable usage.
18b519c0 12114@end deffn
bfa74976 12115
b50d2359 12116@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
12117Require version @var{version} or higher of Bison. @xref{Require Decl, ,
12118Require a Version of Bison}.
b50d2359
AD
12119@end deffn
12120
18b519c0 12121@deffn {Directive} %right
d78f0ac9 12122Bison declaration to assign precedence and right associativity to token(s).
bfa74976 12123@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 12124@end deffn
bfa74976 12125
e6e704dc
JD
12126@deffn {Directive} %skeleton
12127Specify the skeleton to use; usually for development.
12128@xref{Decl Summary}.
12129@end deffn
12130
18b519c0 12131@deffn {Directive} %start
704a47c4
AD
12132Bison declaration to specify the start symbol. @xref{Start Decl, ,The
12133Start-Symbol}.
18b519c0 12134@end deffn
bfa74976 12135
18b519c0 12136@deffn {Directive} %token
bfa74976
RS
12137Bison declaration to declare token(s) without specifying precedence.
12138@xref{Token Decl, ,Token Type Names}.
18b519c0 12139@end deffn
bfa74976 12140
18b519c0 12141@deffn {Directive} %token-table
ff7571c0
JD
12142Bison declaration to include a token name table in the parser
12143implementation file. @xref{Decl Summary}.
18b519c0 12144@end deffn
931c7513 12145
18b519c0 12146@deffn {Directive} %type
704a47c4
AD
12147Bison declaration to declare nonterminals. @xref{Type Decl,
12148,Nonterminal Symbols}.
18b519c0 12149@end deffn
bfa74976 12150
dd8d9022
AD
12151@deffn {Symbol} $undefined
12152The predefined token onto which all undefined values returned by
12153@code{yylex} are mapped. It cannot be used in the grammar, rather, use
12154@code{error}.
12155@end deffn
12156
18b519c0 12157@deffn {Directive} %union
bfa74976
RS
12158Bison declaration to specify several possible data types for semantic
12159values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 12160@end deffn
bfa74976 12161
dd8d9022
AD
12162@deffn {Macro} YYABORT
12163Macro to pretend that an unrecoverable syntax error has occurred, by
12164making @code{yyparse} return 1 immediately. The error reporting
12165function @code{yyerror} is not called. @xref{Parser Function, ,The
12166Parser Function @code{yyparse}}.
8405b70c
PB
12167
12168For Java parsers, this functionality is invoked using @code{return YYABORT;}
12169instead.
dd8d9022 12170@end deffn
3ded9a63 12171
dd8d9022
AD
12172@deffn {Macro} YYACCEPT
12173Macro to pretend that a complete utterance of the language has been
12174read, by making @code{yyparse} return 0 immediately.
12175@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
12176
12177For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
12178instead.
dd8d9022 12179@end deffn
bfa74976 12180
dd8d9022 12181@deffn {Macro} YYBACKUP
742e4900 12182Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 12183token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12184@end deffn
bfa74976 12185
dd8d9022 12186@deffn {Variable} yychar
32c29292 12187External integer variable that contains the integer value of the
742e4900 12188lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
12189@code{yyparse}.) Error-recovery rule actions may examine this variable.
12190@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 12191@end deffn
bfa74976 12192
dd8d9022
AD
12193@deffn {Variable} yyclearin
12194Macro used in error-recovery rule actions. It clears the previous
742e4900 12195lookahead token. @xref{Error Recovery}.
18b519c0 12196@end deffn
bfa74976 12197
dd8d9022
AD
12198@deffn {Macro} YYDEBUG
12199Macro to define to equip the parser with tracing code. @xref{Tracing,
12200,Tracing Your Parser}.
18b519c0 12201@end deffn
bfa74976 12202
dd8d9022
AD
12203@deffn {Variable} yydebug
12204External integer variable set to zero by default. If @code{yydebug}
12205is given a nonzero value, the parser will output information on input
12206symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 12207@end deffn
bfa74976 12208
dd8d9022
AD
12209@deffn {Macro} yyerrok
12210Macro to cause parser to recover immediately to its normal mode
12211after a syntax error. @xref{Error Recovery}.
12212@end deffn
12213
12214@deffn {Macro} YYERROR
4a11b852
AD
12215Cause an immediate syntax error. This statement initiates error
12216recovery just as if the parser itself had detected an error; however, it
12217does not call @code{yyerror}, and does not print any message. If you
12218want to print an error message, call @code{yyerror} explicitly before
12219the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
12220
12221For Java parsers, this functionality is invoked using @code{return YYERROR;}
12222instead.
dd8d9022
AD
12223@end deffn
12224
12225@deffn {Function} yyerror
12226User-supplied function to be called by @code{yyparse} on error.
71b00ed8 12227@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
12228@end deffn
12229
12230@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
12231An obsolete macro used in the @file{yacc.c} skeleton, that you define
12232with @code{#define} in the prologue to request verbose, specific error
12233message strings when @code{yyerror} is called. It doesn't matter what
12234definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 12235it. Using @samp{%define parse.error verbose} is preferred
31b850d2 12236(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
12237@end deffn
12238
93c150b6
AD
12239@deffn {Macro} YYFPRINTF
12240Macro used to output run-time traces.
12241@xref{Enabling Traces}.
12242@end deffn
12243
dd8d9022
AD
12244@deffn {Macro} YYINITDEPTH
12245Macro for specifying the initial size of the parser stack.
1a059451 12246@xref{Memory Management}.
dd8d9022
AD
12247@end deffn
12248
12249@deffn {Function} yylex
12250User-supplied lexical analyzer function, called with no arguments to get
12251the next token. @xref{Lexical, ,The Lexical Analyzer Function
12252@code{yylex}}.
12253@end deffn
12254
12255@deffn {Macro} YYLEX_PARAM
12256An obsolete macro for specifying an extra argument (or list of extra
32c29292 12257arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
12258macro is deprecated, and is supported only for Yacc like parsers.
12259@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
12260@end deffn
12261
12262@deffn {Variable} yylloc
12263External variable in which @code{yylex} should place the line and column
12264numbers associated with a token. (In a pure parser, it is a local
12265variable within @code{yyparse}, and its address is passed to
32c29292
JD
12266@code{yylex}.)
12267You can ignore this variable if you don't use the @samp{@@} feature in the
12268grammar actions.
12269@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12270In semantic actions, it stores the location of the lookahead token.
32c29292 12271@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12272@end deffn
12273
12274@deffn {Type} YYLTYPE
12275Data type of @code{yylloc}; by default, a structure with four
12276members. @xref{Location Type, , Data Types of Locations}.
12277@end deffn
12278
12279@deffn {Variable} yylval
12280External variable in which @code{yylex} should place the semantic
12281value associated with a token. (In a pure parser, it is a local
12282variable within @code{yyparse}, and its address is passed to
32c29292
JD
12283@code{yylex}.)
12284@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12285In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12286@xref{Actions, ,Actions}.
dd8d9022
AD
12287@end deffn
12288
12289@deffn {Macro} YYMAXDEPTH
1a059451
PE
12290Macro for specifying the maximum size of the parser stack. @xref{Memory
12291Management}.
dd8d9022
AD
12292@end deffn
12293
12294@deffn {Variable} yynerrs
8a2800e7 12295Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12296(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 12297pure push parser, it is a member of yypstate.)
dd8d9022
AD
12298@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12299@end deffn
12300
12301@deffn {Function} yyparse
12302The parser function produced by Bison; call this function to start
12303parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12304@end deffn
12305
93c150b6
AD
12306@deffn {Macro} YYPRINT
12307Macro used to output token semantic values. For @file{yacc.c} only.
12308Obsoleted by @code{%printer}.
12309@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12310@end deffn
12311
9987d1b3 12312@deffn {Function} yypstate_delete
f4101aa6 12313The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12314call this function to delete the memory associated with a parser.
f4101aa6 12315@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12316@code{yypstate_delete}}.
59da312b
JD
12317(The current push parsing interface is experimental and may evolve.
12318More user feedback will help to stabilize it.)
9987d1b3
JD
12319@end deffn
12320
12321@deffn {Function} yypstate_new
f4101aa6 12322The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12323call this function to create a new parser.
f4101aa6 12324@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12325@code{yypstate_new}}.
59da312b
JD
12326(The current push parsing interface is experimental and may evolve.
12327More user feedback will help to stabilize it.)
9987d1b3
JD
12328@end deffn
12329
12330@deffn {Function} yypull_parse
f4101aa6
AD
12331The parser function produced by Bison in push mode; call this function to
12332parse the rest of the input stream.
12333@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12334@code{yypull_parse}}.
59da312b
JD
12335(The current push parsing interface is experimental and may evolve.
12336More user feedback will help to stabilize it.)
9987d1b3
JD
12337@end deffn
12338
12339@deffn {Function} yypush_parse
f4101aa6
AD
12340The parser function produced by Bison in push mode; call this function to
12341parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12342@code{yypush_parse}}.
59da312b
JD
12343(The current push parsing interface is experimental and may evolve.
12344More user feedback will help to stabilize it.)
9987d1b3
JD
12345@end deffn
12346
dd8d9022 12347@deffn {Macro} YYRECOVERING
02103984
PE
12348The expression @code{YYRECOVERING ()} yields 1 when the parser
12349is recovering from a syntax error, and 0 otherwise.
12350@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12351@end deffn
12352
12353@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12354Macro used to control the use of @code{alloca} when the
12355deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12356the parser will use @code{malloc} to extend its stacks. If defined to
123571, the parser will use @code{alloca}. Values other than 0 and 1 are
12358reserved for future Bison extensions. If not defined,
12359@code{YYSTACK_USE_ALLOCA} defaults to 0.
12360
55289366 12361In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12362limited stack and with unreliable stack-overflow checking, you should
12363set @code{YYMAXDEPTH} to a value that cannot possibly result in
12364unchecked stack overflow on any of your target hosts when
12365@code{alloca} is called. You can inspect the code that Bison
12366generates in order to determine the proper numeric values. This will
12367require some expertise in low-level implementation details.
dd8d9022
AD
12368@end deffn
12369
12370@deffn {Type} YYSTYPE
12371Data type of semantic values; @code{int} by default.
12372@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12373@end deffn
bfa74976 12374
342b8b6e 12375@node Glossary
bfa74976
RS
12376@appendix Glossary
12377@cindex glossary
12378
12379@table @asis
7fceb615 12380@item Accepting state
eb45ef3b
JD
12381A state whose only action is the accept action.
12382The accepting state is thus a consistent state.
12383@xref{Understanding,,}.
12384
8a4281b9 12385@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12386Formal method of specifying context-free grammars originally proposed
12387by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12388committee document contributing to what became the Algol 60 report.
12389@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12390
7fceb615
JD
12391@item Consistent state
12392A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12393
bfa74976
RS
12394@item Context-free grammars
12395Grammars specified as rules that can be applied regardless of context.
12396Thus, if there is a rule which says that an integer can be used as an
12397expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12398permitted. @xref{Language and Grammar, ,Languages and Context-Free
12399Grammars}.
bfa74976 12400
7fceb615 12401@item Default reduction
110ef36a 12402The reduction that a parser should perform if the current parser state
35c1e5f0 12403contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12404states, Bison declares the reduction with the largest lookahead set to be
12405the default reduction and removes that lookahead set. @xref{Default
12406Reductions}.
12407
12408@item Defaulted state
12409A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12410
bfa74976
RS
12411@item Dynamic allocation
12412Allocation of memory that occurs during execution, rather than at
12413compile time or on entry to a function.
12414
12415@item Empty string
12416Analogous to the empty set in set theory, the empty string is a
12417character string of length zero.
12418
12419@item Finite-state stack machine
12420A ``machine'' that has discrete states in which it is said to exist at
12421each instant in time. As input to the machine is processed, the
12422machine moves from state to state as specified by the logic of the
12423machine. In the case of the parser, the input is the language being
12424parsed, and the states correspond to various stages in the grammar
c827f760 12425rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12426
8a4281b9 12427@item Generalized LR (GLR)
676385e2 12428A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12429that are not LR(1). It resolves situations that Bison's
eb45ef3b 12430deterministic parsing
676385e2
PH
12431algorithm cannot by effectively splitting off multiple parsers, trying all
12432possible parsers, and discarding those that fail in the light of additional
c827f760 12433right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 12434LR Parsing}.
676385e2 12435
bfa74976
RS
12436@item Grouping
12437A language construct that is (in general) grammatically divisible;
c827f760 12438for example, `expression' or `declaration' in C@.
bfa74976
RS
12439@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12440
7fceb615
JD
12441@item IELR(1) (Inadequacy Elimination LR(1))
12442A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 12443context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
12444language-recognition power of canonical LR(1) but with nearly the same
12445number of parser states as LALR(1). This reduction in parser states is
12446often an order of magnitude. More importantly, because canonical LR(1)'s
12447extra parser states may contain duplicate conflicts in the case of non-LR(1)
12448grammars, the number of conflicts for IELR(1) is often an order of magnitude
12449less as well. This can significantly reduce the complexity of developing a
12450grammar. @xref{LR Table Construction}.
eb45ef3b 12451
bfa74976
RS
12452@item Infix operator
12453An arithmetic operator that is placed between the operands on which it
12454performs some operation.
12455
12456@item Input stream
12457A continuous flow of data between devices or programs.
12458
8a4281b9 12459@item LAC (Lookahead Correction)
fcf834f9 12460A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
12461detection, which is caused by LR state merging, default reductions, and the
12462use of @code{%nonassoc}. Delayed syntax error detection results in
12463unexpected semantic actions, initiation of error recovery in the wrong
12464syntactic context, and an incorrect list of expected tokens in a verbose
12465syntax error message. @xref{LAC}.
fcf834f9 12466
bfa74976
RS
12467@item Language construct
12468One of the typical usage schemas of the language. For example, one of
12469the constructs of the C language is the @code{if} statement.
12470@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12471
12472@item Left associativity
12473Operators having left associativity are analyzed from left to right:
12474@samp{a+b+c} first computes @samp{a+b} and then combines with
12475@samp{c}. @xref{Precedence, ,Operator Precedence}.
12476
12477@item Left recursion
89cab50d
AD
12478A rule whose result symbol is also its first component symbol; for
12479example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
12480Rules}.
bfa74976
RS
12481
12482@item Left-to-right parsing
12483Parsing a sentence of a language by analyzing it token by token from
c827f760 12484left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12485
12486@item Lexical analyzer (scanner)
12487A function that reads an input stream and returns tokens one by one.
12488@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
12489
12490@item Lexical tie-in
12491A flag, set by actions in the grammar rules, which alters the way
12492tokens are parsed. @xref{Lexical Tie-ins}.
12493
931c7513 12494@item Literal string token
14ded682 12495A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 12496
742e4900
JD
12497@item Lookahead token
12498A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 12499Tokens}.
bfa74976 12500
8a4281b9 12501@item LALR(1)
bfa74976 12502The class of context-free grammars that Bison (like most other parser
8a4281b9 12503generators) can handle by default; a subset of LR(1).
cc09e5be 12504@xref{Mysterious Conflicts}.
bfa74976 12505
8a4281b9 12506@item LR(1)
bfa74976 12507The class of context-free grammars in which at most one token of
742e4900 12508lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
12509
12510@item Nonterminal symbol
12511A grammar symbol standing for a grammatical construct that can
12512be expressed through rules in terms of smaller constructs; in other
12513words, a construct that is not a token. @xref{Symbols}.
12514
bfa74976
RS
12515@item Parser
12516A function that recognizes valid sentences of a language by analyzing
12517the syntax structure of a set of tokens passed to it from a lexical
12518analyzer.
12519
12520@item Postfix operator
12521An arithmetic operator that is placed after the operands upon which it
12522performs some operation.
12523
12524@item Reduction
12525Replacing a string of nonterminals and/or terminals with a single
89cab50d 12526nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 12527Parser Algorithm}.
bfa74976
RS
12528
12529@item Reentrant
12530A reentrant subprogram is a subprogram which can be in invoked any
12531number of times in parallel, without interference between the various
12532invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
12533
12534@item Reverse polish notation
12535A language in which all operators are postfix operators.
12536
12537@item Right recursion
89cab50d
AD
12538A rule whose result symbol is also its last component symbol; for
12539example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
12540Rules}.
bfa74976
RS
12541
12542@item Semantics
12543In computer languages, the semantics are specified by the actions
12544taken for each instance of the language, i.e., the meaning of
12545each statement. @xref{Semantics, ,Defining Language Semantics}.
12546
12547@item Shift
12548A parser is said to shift when it makes the choice of analyzing
12549further input from the stream rather than reducing immediately some
c827f760 12550already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12551
12552@item Single-character literal
12553A single character that is recognized and interpreted as is.
12554@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
12555
12556@item Start symbol
12557The nonterminal symbol that stands for a complete valid utterance in
12558the language being parsed. The start symbol is usually listed as the
13863333 12559first nonterminal symbol in a language specification.
bfa74976
RS
12560@xref{Start Decl, ,The Start-Symbol}.
12561
12562@item Symbol table
12563A data structure where symbol names and associated data are stored
12564during parsing to allow for recognition and use of existing
12565information in repeated uses of a symbol. @xref{Multi-function Calc}.
12566
6e649e65
PE
12567@item Syntax error
12568An error encountered during parsing of an input stream due to invalid
12569syntax. @xref{Error Recovery}.
12570
bfa74976
RS
12571@item Token
12572A basic, grammatically indivisible unit of a language. The symbol
12573that describes a token in the grammar is a terminal symbol.
12574The input of the Bison parser is a stream of tokens which comes from
12575the lexical analyzer. @xref{Symbols}.
12576
12577@item Terminal symbol
89cab50d
AD
12578A grammar symbol that has no rules in the grammar and therefore is
12579grammatically indivisible. The piece of text it represents is a token.
12580@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
12581
12582@item Unreachable state
12583A parser state to which there does not exist a sequence of transitions from
12584the parser's start state. A state can become unreachable during conflict
12585resolution. @xref{Unreachable States}.
bfa74976
RS
12586@end table
12587
342b8b6e 12588@node Copying This Manual
f2b5126e 12589@appendix Copying This Manual
f2b5126e
PB
12590@include fdl.texi
12591
5e528941
JD
12592@node Bibliography
12593@unnumbered Bibliography
12594
12595@table @asis
12596@item [Denny 2008]
12597Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
12598for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
125992008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
12600pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
12601
12602@item [Denny 2010 May]
12603Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
12604Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
12605University, Clemson, SC, USA (May 2010).
12606@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
12607
12608@item [Denny 2010 November]
12609Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
12610Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
12611in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
126122010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
12613
12614@item [DeRemer 1982]
12615Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
12616Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
12617Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
12618615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
12619
12620@item [Knuth 1965]
12621Donald E. Knuth, On the Translation of Languages from Left to Right, in
12622@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
12623607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
12624
12625@item [Scott 2000]
12626Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
12627@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
12628London, Department of Computer Science, TR-00-12 (December 2000).
12629@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
12630@end table
12631
f9b86351
AD
12632@node Index of Terms
12633@unnumbered Index of Terms
bfa74976
RS
12634
12635@printindex cp
12636
bfa74976 12637@bye
a06ea4aa 12638
6b5a0de9
AD
12639@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
12640@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
12641@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
12642@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12643@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12644@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12645@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12646@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12647@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12648@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12649@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12650@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12651@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 12652@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
12653@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12654@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
12655@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
12656@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
12657@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
12658@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
12659@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
12660@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
12661@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 12662@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
12663@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
12664@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
12665@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
12666@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
12667@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 12668@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
12669@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
12670@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 12671@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 12672@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
12673@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
12674@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
12675@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 12676@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 12677@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 12678@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
12679@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12680@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12681@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12682@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 12683@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
12684@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12685@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12686@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12687@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
5a05f42e 12688@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos uint
5a321748 12689@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
5a05f42e
AD
12690@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy ints
12691@c LocalWords: Scannerless ispell american ChangeLog smallexample CSTYPE CLTYPE
7287be84 12692@c LocalWords: clval CDEBUG cdebug deftypeopx yyterminate LocationType
b7226022 12693@c LocalWords: errorVerbose
e944aaff
AD
12694
12695@c Local Variables:
12696@c ispell-dictionary: "american"
12697@c fill-column: 76
12698@c End: