]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
bump to 2012 in skeletons.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
35430378
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
c932d613 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
ea0a7676 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
35430378 41under the terms of the GNU Free Documentation License,
241ac701 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
35430378 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
35430378 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
35430378
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
35430378 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
35430378 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
35430378 91* Copying:: The GNU General Public License says
f56274a8 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f56274a8
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f56274a8
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f56274a8
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
9913d6e4 106* Invocation:: How to run Bison (to produce the parser implementation).
f56274a8
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
71caec06 112* Bibliography:: Publications cited in this manual.
f56274a8 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f56274a8
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
83484365 128* Locations:: Overview of location tracking.
f56274a8
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
35430378 134Writing GLR Parsers
fa7e68c3 135
35430378
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 138* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 139* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 140
bfa74976
RS
141Examples
142
f56274a8
DJ
143* RPN Calc:: Reverse polish notation calculator;
144 a first example with no operator precedence.
145* Infix Calc:: Infix (algebraic) notation calculator.
146 Operator precedence is introduced.
bfa74976 147* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 148* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
149* Multi-function Calc:: Calculator with memory and trig functions.
150 It uses multiple data-types for semantic values.
151* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
152
153Reverse Polish Notation Calculator
154
f56274a8
DJ
155* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
156* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
157* Rpcalc Lexer:: The lexical analyzer.
158* Rpcalc Main:: The controlling function.
159* Rpcalc Error:: The error reporting function.
160* Rpcalc Generate:: Running Bison on the grammar file.
161* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
162
163Grammar Rules for @code{rpcalc}
164
13863333
AD
165* Rpcalc Input::
166* Rpcalc Line::
167* Rpcalc Expr::
bfa74976 168
342b8b6e
AD
169Location Tracking Calculator: @code{ltcalc}
170
f56274a8
DJ
171* Ltcalc Declarations:: Bison and C declarations for ltcalc.
172* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
173* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 174
bfa74976
RS
175Multi-Function Calculator: @code{mfcalc}
176
f56274a8
DJ
177* Mfcalc Declarations:: Bison declarations for multi-function calculator.
178* Mfcalc Rules:: Grammar rules for the calculator.
179* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
180
181Bison Grammar Files
182
7404cdf3
JD
183* Grammar Outline:: Overall layout of the grammar file.
184* Symbols:: Terminal and nonterminal symbols.
185* Rules:: How to write grammar rules.
186* Recursion:: Writing recursive rules.
187* Semantics:: Semantic values and actions.
188* Tracking Locations:: Locations and actions.
189* Named References:: Using named references in actions.
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
192
193Outline of a Bison Grammar
194
f56274a8 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
210
93dd49ab
PE
211Tracking Locations
212
213* Location Type:: Specifying a data type for locations.
214* Actions and Locations:: Using locations in actions.
215* Location Default Action:: Defining a general way to compute locations.
216
bfa74976
RS
217Bison Declarations
218
b50d2359 219* Require Decl:: Requiring a Bison version.
bfa74976
RS
220* Token Decl:: Declaring terminal symbols.
221* Precedence Decl:: Declaring terminals with precedence and associativity.
222* Union Decl:: Declaring the set of all semantic value types.
223* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 224* Initial Action Decl:: Code run before parsing starts.
72f889cc 225* Destructor Decl:: Declaring how symbols are freed.
d6328241 226* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
227* Start Decl:: Specifying the start symbol.
228* Pure Decl:: Requesting a reentrant parser.
9987d1b3 229* Push Decl:: Requesting a push parser.
bfa74976 230* Decl Summary:: Table of all Bison declarations.
2f4518a1 231* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 232* %code Summary:: Inserting code into the parser source.
bfa74976
RS
233
234Parser C-Language Interface
235
f56274a8
DJ
236* Parser Function:: How to call @code{yyparse} and what it returns.
237* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
238* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
239* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
240* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
241* Lexical:: You must supply a function @code{yylex}
242 which reads tokens.
243* Error Reporting:: You must supply a function @code{yyerror}.
244* Action Features:: Special features for use in actions.
245* Internationalization:: How to let the parser speak in the user's
246 native language.
bfa74976
RS
247
248The Lexical Analyzer Function @code{yylex}
249
250* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
251* Token Values:: How @code{yylex} must return the semantic value
252 of the token it has read.
253* Token Locations:: How @code{yylex} must return the text location
254 (line number, etc.) of the token, if the
255 actions want that.
256* Pure Calling:: How the calling convention differs in a pure parser
257 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 258
13863333 259The Bison Parser Algorithm
bfa74976 260
742e4900 261* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
262* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
263* Precedence:: Operator precedence works by resolving conflicts.
264* Contextual Precedence:: When an operator's precedence depends on context.
265* Parser States:: The parser is a finite-state-machine with stack.
266* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 267* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 268* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 269* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 270* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
271
272Operator Precedence
273
274* Why Precedence:: An example showing why precedence is needed.
275* Using Precedence:: How to specify precedence in Bison grammars.
276* Precedence Examples:: How these features are used in the previous example.
277* How Precedence:: How they work.
278
6f04ee6c
JD
279Tuning LR
280
281* LR Table Construction:: Choose a different construction algorithm.
282* Default Reductions:: Disable default reductions.
283* LAC:: Correct lookahead sets in the parser states.
284* Unreachable States:: Keep unreachable parser states for debugging.
285
bfa74976
RS
286Handling Context Dependencies
287
288* Semantic Tokens:: Token parsing can depend on the semantic context.
289* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
290* Tie-in Recovery:: Lexical tie-ins have implications for how
291 error recovery rules must be written.
292
93dd49ab 293Debugging Your Parser
ec3bc396
AD
294
295* Understanding:: Understanding the structure of your parser.
296* Tracing:: Tracing the execution of your parser.
297
bfa74976
RS
298Invoking Bison
299
13863333 300* Bison Options:: All the options described in detail,
c827f760 301 in alphabetical order by short options.
bfa74976 302* Option Cross Key:: Alphabetical list of long options.
93dd49ab 303* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 304
8405b70c 305Parsers Written In Other Languages
12545799
AD
306
307* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 308* Java Parsers:: The interface to generate Java parser classes
12545799
AD
309
310C++ Parsers
311
312* C++ Bison Interface:: Asking for C++ parser generation
313* C++ Semantic Values:: %union vs. C++
314* C++ Location Values:: The position and location classes
315* C++ Parser Interface:: Instantiating and running the parser
316* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 317* A Complete C++ Example:: Demonstrating their use
12545799 318
936c88d1
AD
319C++ Location Values
320
321* C++ position:: One point in the source file
322* C++ location:: Two points in the source file
323
12545799
AD
324A Complete C++ Example
325
326* Calc++ --- C++ Calculator:: The specifications
327* Calc++ Parsing Driver:: An active parsing context
328* Calc++ Parser:: A parser class
329* Calc++ Scanner:: A pure C++ Flex scanner
330* Calc++ Top Level:: Conducting the band
331
8405b70c
PB
332Java Parsers
333
f56274a8
DJ
334* Java Bison Interface:: Asking for Java parser generation
335* Java Semantic Values:: %type and %token vs. Java
336* Java Location Values:: The position and location classes
337* Java Parser Interface:: Instantiating and running the parser
338* Java Scanner Interface:: Specifying the scanner for the parser
339* Java Action Features:: Special features for use in actions
340* Java Differences:: Differences between C/C++ and Java Grammars
341* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 342
d1a1114f
AD
343Frequently Asked Questions
344
f56274a8
DJ
345* Memory Exhausted:: Breaking the Stack Limits
346* How Can I Reset the Parser:: @code{yyparse} Keeps some State
347* Strings are Destroyed:: @code{yylval} Loses Track of Strings
348* Implementing Gotos/Loops:: Control Flow in the Calculator
349* Multiple start-symbols:: Factoring closely related grammars
35430378 350* Secure? Conform?:: Is Bison POSIX safe?
f56274a8
DJ
351* I can't build Bison:: Troubleshooting
352* Where can I find help?:: Troubleshouting
353* Bug Reports:: Troublereporting
354* More Languages:: Parsers in C++, Java, and so on
355* Beta Testing:: Experimenting development versions
356* Mailing Lists:: Meeting other Bison users
d1a1114f 357
f2b5126e
PB
358Copying This Manual
359
f56274a8 360* Copying This Manual:: License for copying this manual.
f2b5126e 361
342b8b6e 362@end detailmenu
bfa74976
RS
363@end menu
364
342b8b6e 365@node Introduction
bfa74976
RS
366@unnumbered Introduction
367@cindex introduction
368
6077da58 369@dfn{Bison} is a general-purpose parser generator that converts an
d89e48b3
JD
370annotated context-free grammar into a deterministic LR or generalized
371LR (GLR) parser employing LALR(1) parser tables. As an experimental
372feature, Bison can also generate IELR(1) or canonical LR(1) parser
373tables. Once you are proficient with Bison, you can use it to develop
374a wide range of language parsers, from those used in simple desk
375calculators to complex programming languages.
376
377Bison is upward compatible with Yacc: all properly-written Yacc
378grammars ought to work with Bison with no change. Anyone familiar
379with Yacc should be able to use Bison with little trouble. You need
380to be fluent in C or C++ programming in order to use Bison or to
381understand this manual. Java is also supported as an experimental
382feature.
383
384We begin with tutorial chapters that explain the basic concepts of
385using Bison and show three explained examples, each building on the
386last. If you don't know Bison or Yacc, start by reading these
387chapters. Reference chapters follow, which describe specific aspects
388of Bison in detail.
bfa74976 389
840341d6
JD
390Bison was written originally by Robert Corbett. Richard Stallman made
391it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
392added multi-character string literals and other features. Since then,
393Bison has grown more robust and evolved many other new features thanks
394to the hard work of a long list of volunteers. For details, see the
395@file{THANKS} and @file{ChangeLog} files included in the Bison
396distribution.
931c7513 397
df1af54c 398This edition corresponds to version @value{VERSION} of Bison.
bfa74976 399
342b8b6e 400@node Conditions
bfa74976
RS
401@unnumbered Conditions for Using Bison
402
193d7c70
PE
403The distribution terms for Bison-generated parsers permit using the
404parsers in nonfree programs. Before Bison version 2.2, these extra
35430378 405permissions applied only when Bison was generating LALR(1)
193d7c70 406parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 407parsers could be used only in programs that were free software.
a31239f1 408
35430378 409The other GNU programming tools, such as the GNU C
c827f760 410compiler, have never
9ecbd125 411had such a requirement. They could always be used for nonfree
a31239f1
RS
412software. The reason Bison was different was not due to a special
413policy decision; it resulted from applying the usual General Public
414License to all of the Bison source code.
415
9913d6e4
JD
416The main output of the Bison utility---the Bison parser implementation
417file---contains a verbatim copy of a sizable piece of Bison, which is
418the code for the parser's implementation. (The actions from your
419grammar are inserted into this implementation at one point, but most
420of the rest of the implementation is not changed.) When we applied
421the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
422the effect was to restrict the use of Bison output to free software.
423
424We didn't change the terms because of sympathy for people who want to
425make software proprietary. @strong{Software should be free.} But we
426concluded that limiting Bison's use to free software was doing little to
427encourage people to make other software free. So we decided to make the
428practical conditions for using Bison match the practical conditions for
35430378 429using the other GNU tools.
bfa74976 430
193d7c70
PE
431This exception applies when Bison is generating code for a parser.
432You can tell whether the exception applies to a Bison output file by
433inspecting the file for text beginning with ``As a special
434exception@dots{}''. The text spells out the exact terms of the
435exception.
262aa8dd 436
f16b0819
PE
437@node Copying
438@unnumbered GNU GENERAL PUBLIC LICENSE
439@include gpl-3.0.texi
bfa74976 440
342b8b6e 441@node Concepts
bfa74976
RS
442@chapter The Concepts of Bison
443
444This chapter introduces many of the basic concepts without which the
445details of Bison will not make sense. If you do not already know how to
446use Bison or Yacc, we suggest you start by reading this chapter carefully.
447
448@menu
f56274a8
DJ
449* Language and Grammar:: Languages and context-free grammars,
450 as mathematical ideas.
451* Grammar in Bison:: How we represent grammars for Bison's sake.
452* Semantic Values:: Each token or syntactic grouping can have
453 a semantic value (the value of an integer,
454 the name of an identifier, etc.).
455* Semantic Actions:: Each rule can have an action containing C code.
456* GLR Parsers:: Writing parsers for general context-free languages.
83484365 457* Locations:: Overview of location tracking.
f56274a8
DJ
458* Bison Parser:: What are Bison's input and output,
459 how is the output used?
460* Stages:: Stages in writing and running Bison grammars.
461* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
462@end menu
463
342b8b6e 464@node Language and Grammar
bfa74976
RS
465@section Languages and Context-Free Grammars
466
bfa74976
RS
467@cindex context-free grammar
468@cindex grammar, context-free
469In order for Bison to parse a language, it must be described by a
470@dfn{context-free grammar}. This means that you specify one or more
471@dfn{syntactic groupings} and give rules for constructing them from their
472parts. For example, in the C language, one kind of grouping is called an
473`expression'. One rule for making an expression might be, ``An expression
474can be made of a minus sign and another expression''. Another would be,
475``An expression can be an integer''. As you can see, rules are often
476recursive, but there must be at least one rule which leads out of the
477recursion.
478
35430378 479@cindex BNF
bfa74976
RS
480@cindex Backus-Naur form
481The most common formal system for presenting such rules for humans to read
35430378 482is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 483order to specify the language Algol 60. Any grammar expressed in
35430378
JD
484BNF is a context-free grammar. The input to Bison is
485essentially machine-readable BNF.
bfa74976 486
6f04ee6c
JD
487@cindex LALR grammars
488@cindex IELR grammars
489@cindex LR grammars
490There are various important subclasses of context-free grammars. Although
491it can handle almost all context-free grammars, Bison is optimized for what
492are called LR(1) grammars. In brief, in these grammars, it must be possible
493to tell how to parse any portion of an input string with just a single token
494of lookahead. For historical reasons, Bison by default is limited by the
495additional restrictions of LALR(1), which is hard to explain simply.
5da0355a
JD
496@xref{Mysterious Conflicts}, for more information on this. As an
497experimental feature, you can escape these additional restrictions by
498requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
499Construction}, to learn how.
bfa74976 500
35430378
JD
501@cindex GLR parsing
502@cindex generalized LR (GLR) parsing
676385e2 503@cindex ambiguous grammars
9d9b8b70 504@cindex nondeterministic parsing
9501dc6e 505
35430378 506Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
507roughly that the next grammar rule to apply at any point in the input is
508uniquely determined by the preceding input and a fixed, finite portion
742e4900 509(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 510grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 511apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 512grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 513lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 514With the proper declarations, Bison is also able to parse these more
35430378
JD
515general context-free grammars, using a technique known as GLR
516parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
517are able to handle any context-free grammar for which the number of
518possible parses of any given string is finite.
676385e2 519
bfa74976
RS
520@cindex symbols (abstract)
521@cindex token
522@cindex syntactic grouping
523@cindex grouping, syntactic
9501dc6e
AD
524In the formal grammatical rules for a language, each kind of syntactic
525unit or grouping is named by a @dfn{symbol}. Those which are built by
526grouping smaller constructs according to grammatical rules are called
bfa74976
RS
527@dfn{nonterminal symbols}; those which can't be subdivided are called
528@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
529corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 530corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
531
532We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
533nonterminal, mean. The tokens of C are identifiers, constants (numeric
534and string), and the various keywords, arithmetic operators and
535punctuation marks. So the terminal symbols of a grammar for C include
536`identifier', `number', `string', plus one symbol for each keyword,
537operator or punctuation mark: `if', `return', `const', `static', `int',
538`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
539(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
540lexicography, not grammar.)
541
542Here is a simple C function subdivided into tokens:
543
9edcd895
AD
544@example
545int /* @r{keyword `int'} */
14d4662b 546square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
547 @r{identifier, close-paren} */
548@{ /* @r{open-brace} */
aa08666d
AD
549 return x * x; /* @r{keyword `return', identifier, asterisk,}
550 @r{identifier, semicolon} */
9edcd895
AD
551@} /* @r{close-brace} */
552@end example
bfa74976
RS
553
554The syntactic groupings of C include the expression, the statement, the
555declaration, and the function definition. These are represented in the
556grammar of C by nonterminal symbols `expression', `statement',
557`declaration' and `function definition'. The full grammar uses dozens of
558additional language constructs, each with its own nonterminal symbol, in
559order to express the meanings of these four. The example above is a
560function definition; it contains one declaration, and one statement. In
561the statement, each @samp{x} is an expression and so is @samp{x * x}.
562
563Each nonterminal symbol must have grammatical rules showing how it is made
564out of simpler constructs. For example, one kind of C statement is the
565@code{return} statement; this would be described with a grammar rule which
566reads informally as follows:
567
568@quotation
569A `statement' can be made of a `return' keyword, an `expression' and a
570`semicolon'.
571@end quotation
572
573@noindent
574There would be many other rules for `statement', one for each kind of
575statement in C.
576
577@cindex start symbol
578One nonterminal symbol must be distinguished as the special one which
579defines a complete utterance in the language. It is called the @dfn{start
580symbol}. In a compiler, this means a complete input program. In the C
581language, the nonterminal symbol `sequence of definitions and declarations'
582plays this role.
583
584For example, @samp{1 + 2} is a valid C expression---a valid part of a C
585program---but it is not valid as an @emph{entire} C program. In the
586context-free grammar of C, this follows from the fact that `expression' is
587not the start symbol.
588
589The Bison parser reads a sequence of tokens as its input, and groups the
590tokens using the grammar rules. If the input is valid, the end result is
591that the entire token sequence reduces to a single grouping whose symbol is
592the grammar's start symbol. If we use a grammar for C, the entire input
593must be a `sequence of definitions and declarations'. If not, the parser
594reports a syntax error.
595
342b8b6e 596@node Grammar in Bison
bfa74976
RS
597@section From Formal Rules to Bison Input
598@cindex Bison grammar
599@cindex grammar, Bison
600@cindex formal grammar
601
602A formal grammar is a mathematical construct. To define the language
603for Bison, you must write a file expressing the grammar in Bison syntax:
604a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
605
606A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 607as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
608in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
609
610The Bison representation for a terminal symbol is also called a @dfn{token
611type}. Token types as well can be represented as C-like identifiers. By
612convention, these identifiers should be upper case to distinguish them from
613nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
614@code{RETURN}. A terminal symbol that stands for a particular keyword in
615the language should be named after that keyword converted to upper case.
616The terminal symbol @code{error} is reserved for error recovery.
931c7513 617@xref{Symbols}.
bfa74976
RS
618
619A terminal symbol can also be represented as a character literal, just like
620a C character constant. You should do this whenever a token is just a
621single character (parenthesis, plus-sign, etc.): use that same character in
622a literal as the terminal symbol for that token.
623
931c7513
RS
624A third way to represent a terminal symbol is with a C string constant
625containing several characters. @xref{Symbols}, for more information.
626
bfa74976
RS
627The grammar rules also have an expression in Bison syntax. For example,
628here is the Bison rule for a C @code{return} statement. The semicolon in
629quotes is a literal character token, representing part of the C syntax for
630the statement; the naked semicolon, and the colon, are Bison punctuation
631used in every rule.
632
633@example
de6be119 634stmt: RETURN expr ';' ;
bfa74976
RS
635@end example
636
637@noindent
638@xref{Rules, ,Syntax of Grammar Rules}.
639
342b8b6e 640@node Semantic Values
bfa74976
RS
641@section Semantic Values
642@cindex semantic value
643@cindex value, semantic
644
645A formal grammar selects tokens only by their classifications: for example,
646if a rule mentions the terminal symbol `integer constant', it means that
647@emph{any} integer constant is grammatically valid in that position. The
648precise value of the constant is irrelevant to how to parse the input: if
649@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 650grammatical.
bfa74976
RS
651
652But the precise value is very important for what the input means once it is
653parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6543989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
655has both a token type and a @dfn{semantic value}. @xref{Semantics,
656,Defining Language Semantics},
bfa74976
RS
657for details.
658
659The token type is a terminal symbol defined in the grammar, such as
660@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
661you need to know to decide where the token may validly appear and how to
662group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 663except their types.
bfa74976
RS
664
665The semantic value has all the rest of the information about the
666meaning of the token, such as the value of an integer, or the name of an
667identifier. (A token such as @code{','} which is just punctuation doesn't
668need to have any semantic value.)
669
670For example, an input token might be classified as token type
671@code{INTEGER} and have the semantic value 4. Another input token might
672have the same token type @code{INTEGER} but value 3989. When a grammar
673rule says that @code{INTEGER} is allowed, either of these tokens is
674acceptable because each is an @code{INTEGER}. When the parser accepts the
675token, it keeps track of the token's semantic value.
676
677Each grouping can also have a semantic value as well as its nonterminal
678symbol. For example, in a calculator, an expression typically has a
679semantic value that is a number. In a compiler for a programming
680language, an expression typically has a semantic value that is a tree
681structure describing the meaning of the expression.
682
342b8b6e 683@node Semantic Actions
bfa74976
RS
684@section Semantic Actions
685@cindex semantic actions
686@cindex actions, semantic
687
688In order to be useful, a program must do more than parse input; it must
689also produce some output based on the input. In a Bison grammar, a grammar
690rule can have an @dfn{action} made up of C statements. Each time the
691parser recognizes a match for that rule, the action is executed.
692@xref{Actions}.
13863333 693
bfa74976
RS
694Most of the time, the purpose of an action is to compute the semantic value
695of the whole construct from the semantic values of its parts. For example,
696suppose we have a rule which says an expression can be the sum of two
697expressions. When the parser recognizes such a sum, each of the
698subexpressions has a semantic value which describes how it was built up.
699The action for this rule should create a similar sort of value for the
700newly recognized larger expression.
701
702For example, here is a rule that says an expression can be the sum of
703two subexpressions:
704
705@example
de6be119 706expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
707@end example
708
709@noindent
710The action says how to produce the semantic value of the sum expression
711from the values of the two subexpressions.
712
676385e2 713@node GLR Parsers
35430378
JD
714@section Writing GLR Parsers
715@cindex GLR parsing
716@cindex generalized LR (GLR) parsing
676385e2
PH
717@findex %glr-parser
718@cindex conflicts
719@cindex shift/reduce conflicts
fa7e68c3 720@cindex reduce/reduce conflicts
676385e2 721
34a6c2d1 722In some grammars, Bison's deterministic
35430378 723LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
724certain grammar rule at a given point. That is, it may not be able to
725decide (on the basis of the input read so far) which of two possible
726reductions (applications of a grammar rule) applies, or whether to apply
727a reduction or read more of the input and apply a reduction later in the
728input. These are known respectively as @dfn{reduce/reduce} conflicts
729(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
730(@pxref{Shift/Reduce}).
731
35430378 732To use a grammar that is not easily modified to be LR(1), a
9501dc6e 733more general parsing algorithm is sometimes necessary. If you include
676385e2 734@code{%glr-parser} among the Bison declarations in your file
35430378
JD
735(@pxref{Grammar Outline}), the result is a Generalized LR
736(GLR) parser. These parsers handle Bison grammars that
9501dc6e 737contain no unresolved conflicts (i.e., after applying precedence
34a6c2d1 738declarations) identically to deterministic parsers. However, when
9501dc6e 739faced with unresolved shift/reduce and reduce/reduce conflicts,
35430378 740GLR parsers use the simple expedient of doing both,
9501dc6e
AD
741effectively cloning the parser to follow both possibilities. Each of
742the resulting parsers can again split, so that at any given time, there
743can be any number of possible parses being explored. The parsers
676385e2
PH
744proceed in lockstep; that is, all of them consume (shift) a given input
745symbol before any of them proceed to the next. Each of the cloned
746parsers eventually meets one of two possible fates: either it runs into
747a parsing error, in which case it simply vanishes, or it merges with
748another parser, because the two of them have reduced the input to an
749identical set of symbols.
750
751During the time that there are multiple parsers, semantic actions are
752recorded, but not performed. When a parser disappears, its recorded
753semantic actions disappear as well, and are never performed. When a
754reduction makes two parsers identical, causing them to merge, Bison
755records both sets of semantic actions. Whenever the last two parsers
756merge, reverting to the single-parser case, Bison resolves all the
757outstanding actions either by precedences given to the grammar rules
758involved, or by performing both actions, and then calling a designated
759user-defined function on the resulting values to produce an arbitrary
760merged result.
761
fa7e68c3 762@menu
35430378
JD
763* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
764* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
f56274a8 765* GLR Semantic Actions:: Deferred semantic actions have special concerns.
35430378 766* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
767@end menu
768
769@node Simple GLR Parsers
35430378
JD
770@subsection Using GLR on Unambiguous Grammars
771@cindex GLR parsing, unambiguous grammars
772@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
773@findex %glr-parser
774@findex %expect-rr
775@cindex conflicts
776@cindex reduce/reduce conflicts
777@cindex shift/reduce conflicts
778
35430378
JD
779In the simplest cases, you can use the GLR algorithm
780to parse grammars that are unambiguous but fail to be LR(1).
34a6c2d1 781Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
782
783Consider a problem that
784arises in the declaration of enumerated and subrange types in the
785programming language Pascal. Here are some examples:
786
787@example
788type subrange = lo .. hi;
789type enum = (a, b, c);
790@end example
791
792@noindent
793The original language standard allows only numeric
794literals and constant identifiers for the subrange bounds (@samp{lo}
35430378 795and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
79610206) and many other
797Pascal implementations allow arbitrary expressions there. This gives
798rise to the following situation, containing a superfluous pair of
799parentheses:
800
801@example
802type subrange = (a) .. b;
803@end example
804
805@noindent
806Compare this to the following declaration of an enumerated
807type with only one value:
808
809@example
810type enum = (a);
811@end example
812
813@noindent
814(These declarations are contrived, but they are syntactically
815valid, and more-complicated cases can come up in practical programs.)
816
817These two declarations look identical until the @samp{..} token.
35430378 818With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
819possible to decide between the two forms when the identifier
820@samp{a} is parsed. It is, however, desirable
821for a parser to decide this, since in the latter case
822@samp{a} must become a new identifier to represent the enumeration
823value, while in the former case @samp{a} must be evaluated with its
824current meaning, which may be a constant or even a function call.
825
826You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
827to be resolved later, but this typically requires substantial
828contortions in both semantic actions and large parts of the
829grammar, where the parentheses are nested in the recursive rules for
830expressions.
831
832You might think of using the lexer to distinguish between the two
833forms by returning different tokens for currently defined and
834undefined identifiers. But if these declarations occur in a local
835scope, and @samp{a} is defined in an outer scope, then both forms
836are possible---either locally redefining @samp{a}, or using the
837value of @samp{a} from the outer scope. So this approach cannot
838work.
839
e757bb10 840A simple solution to this problem is to declare the parser to
35430378
JD
841use the GLR algorithm.
842When the GLR parser reaches the critical state, it
fa7e68c3
PE
843merely splits into two branches and pursues both syntax rules
844simultaneously. Sooner or later, one of them runs into a parsing
845error. If there is a @samp{..} token before the next
846@samp{;}, the rule for enumerated types fails since it cannot
847accept @samp{..} anywhere; otherwise, the subrange type rule
848fails since it requires a @samp{..} token. So one of the branches
849fails silently, and the other one continues normally, performing
850all the intermediate actions that were postponed during the split.
851
852If the input is syntactically incorrect, both branches fail and the parser
853reports a syntax error as usual.
854
855The effect of all this is that the parser seems to ``guess'' the
856correct branch to take, or in other words, it seems to use more
35430378
JD
857lookahead than the underlying LR(1) algorithm actually allows
858for. In this example, LR(2) would suffice, but also some cases
859that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 860
35430378 861In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
862and the current Bison parser even takes exponential time and space
863for some grammars. In practice, this rarely happens, and for many
864grammars it is possible to prove that it cannot happen.
865The present example contains only one conflict between two
866rules, and the type-declaration context containing the conflict
867cannot be nested. So the number of
868branches that can exist at any time is limited by the constant 2,
869and the parsing time is still linear.
870
871Here is a Bison grammar corresponding to the example above. It
872parses a vastly simplified form of Pascal type declarations.
873
874@example
875%token TYPE DOTDOT ID
876
877@group
878%left '+' '-'
879%left '*' '/'
880@end group
881
882%%
883
884@group
de6be119 885type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
886@end group
887
888@group
de6be119
AD
889type:
890 '(' id_list ')'
891| expr DOTDOT expr
892;
fa7e68c3
PE
893@end group
894
895@group
de6be119
AD
896id_list:
897 ID
898| id_list ',' ID
899;
fa7e68c3
PE
900@end group
901
902@group
de6be119
AD
903expr:
904 '(' expr ')'
905| expr '+' expr
906| expr '-' expr
907| expr '*' expr
908| expr '/' expr
909| ID
910;
fa7e68c3
PE
911@end group
912@end example
913
35430378 914When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
915about one reduce/reduce conflict. In the conflicting situation the
916parser chooses one of the alternatives, arbitrarily the one
917declared first. Therefore the following correct input is not
918recognized:
919
920@example
921type t = (a) .. b;
922@end example
923
35430378 924The parser can be turned into a GLR parser, while also telling Bison
9913d6e4
JD
925to be silent about the one known reduce/reduce conflict, by adding
926these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
927@samp{%%}):
928
929@example
930%glr-parser
931%expect-rr 1
932@end example
933
934@noindent
935No change in the grammar itself is required. Now the
936parser recognizes all valid declarations, according to the
937limited syntax above, transparently. In fact, the user does not even
938notice when the parser splits.
939
35430378 940So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
941almost without disadvantages. Even in simple cases like this, however,
942there are at least two potential problems to beware. First, always
35430378
JD
943analyze the conflicts reported by Bison to make sure that GLR
944splitting is only done where it is intended. A GLR parser
f8e1c9e5 945splitting inadvertently may cause problems less obvious than an
35430378 946LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
947conflict. Second, consider interactions with the lexer (@pxref{Semantic
948Tokens}) with great care. Since a split parser consumes tokens without
949performing any actions during the split, the lexer cannot obtain
950information via parser actions. Some cases of lexer interactions can be
35430378 951eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
952lexer to the parser. You must check the remaining cases for
953correctness.
954
955In our example, it would be safe for the lexer to return tokens based on
956their current meanings in some symbol table, because no new symbols are
957defined in the middle of a type declaration. Though it is possible for
958a parser to define the enumeration constants as they are parsed, before
959the type declaration is completed, it actually makes no difference since
960they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
961
962@node Merging GLR Parses
35430378
JD
963@subsection Using GLR to Resolve Ambiguities
964@cindex GLR parsing, ambiguous grammars
965@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
966@findex %dprec
967@findex %merge
968@cindex conflicts
969@cindex reduce/reduce conflicts
970
2a8d363a 971Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
972
973@example
974%@{
38a92d50
PE
975 #include <stdio.h>
976 #define YYSTYPE char const *
977 int yylex (void);
978 void yyerror (char const *);
676385e2
PH
979%@}
980
981%token TYPENAME ID
982
983%right '='
984%left '+'
985
986%glr-parser
987
988%%
989
de6be119
AD
990prog:
991 /* Nothing. */
992| prog stmt @{ printf ("\n"); @}
993;
676385e2 994
de6be119
AD
995stmt:
996 expr ';' %dprec 1
997| decl %dprec 2
998;
676385e2 999
de6be119
AD
1000expr:
1001 ID @{ printf ("%s ", $$); @}
1002| TYPENAME '(' expr ')'
1003 @{ printf ("%s <cast> ", $1); @}
1004| expr '+' expr @{ printf ("+ "); @}
1005| expr '=' expr @{ printf ("= "); @}
1006;
676385e2 1007
de6be119
AD
1008decl:
1009 TYPENAME declarator ';'
1010 @{ printf ("%s <declare> ", $1); @}
1011| TYPENAME declarator '=' expr ';'
1012 @{ printf ("%s <init-declare> ", $1); @}
1013;
676385e2 1014
de6be119
AD
1015declarator:
1016 ID @{ printf ("\"%s\" ", $1); @}
1017| '(' declarator ')'
1018;
676385e2
PH
1019@end example
1020
1021@noindent
1022This models a problematic part of the C++ grammar---the ambiguity between
1023certain declarations and statements. For example,
1024
1025@example
1026T (x) = y+z;
1027@end example
1028
1029@noindent
1030parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1031(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1032@samp{x} as an @code{ID}).
676385e2 1033Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1034@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1035time it encounters @code{x} in the example above. Since this is a
35430378 1036GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1037each choice of resolving the reduce/reduce conflict.
1038Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1039however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1040ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1041the other reduces @code{stmt : decl}, after which both parsers are in an
1042identical state: they've seen @samp{prog stmt} and have the same unprocessed
1043input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1044
35430378 1045At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1046grammar of how to choose between the competing parses.
1047In the example above, the two @code{%dprec}
e757bb10 1048declarations specify that Bison is to give precedence
fa7e68c3 1049to the parse that interprets the example as a
676385e2
PH
1050@code{decl}, which implies that @code{x} is a declarator.
1051The parser therefore prints
1052
1053@example
fae437e8 1054"x" y z + T <init-declare>
676385e2
PH
1055@end example
1056
fa7e68c3
PE
1057The @code{%dprec} declarations only come into play when more than one
1058parse survives. Consider a different input string for this parser:
676385e2
PH
1059
1060@example
1061T (x) + y;
1062@end example
1063
1064@noindent
35430378 1065This is another example of using GLR to parse an unambiguous
fa7e68c3 1066construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1067Here, there is no ambiguity (this cannot be parsed as a declaration).
1068However, at the time the Bison parser encounters @code{x}, it does not
1069have enough information to resolve the reduce/reduce conflict (again,
1070between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1071case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1072into two, one assuming that @code{x} is an @code{expr}, and the other
1073assuming @code{x} is a @code{declarator}. The second of these parsers
1074then vanishes when it sees @code{+}, and the parser prints
1075
1076@example
fae437e8 1077x T <cast> y +
676385e2
PH
1078@end example
1079
1080Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1081the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1082actions of the two possible parsers, rather than choosing one over the
1083other. To do so, you could change the declaration of @code{stmt} as
1084follows:
1085
1086@example
de6be119
AD
1087stmt:
1088 expr ';' %merge <stmtMerge>
1089| decl %merge <stmtMerge>
1090;
676385e2
PH
1091@end example
1092
1093@noindent
676385e2
PH
1094and define the @code{stmtMerge} function as:
1095
1096@example
38a92d50
PE
1097static YYSTYPE
1098stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1099@{
1100 printf ("<OR> ");
1101 return "";
1102@}
1103@end example
1104
1105@noindent
1106with an accompanying forward declaration
1107in the C declarations at the beginning of the file:
1108
1109@example
1110%@{
38a92d50 1111 #define YYSTYPE char const *
676385e2
PH
1112 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1113%@}
1114@end example
1115
1116@noindent
fa7e68c3
PE
1117With these declarations, the resulting parser parses the first example
1118as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1119
1120@example
fae437e8 1121"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1122@end example
1123
fa7e68c3 1124Bison requires that all of the
e757bb10 1125productions that participate in any particular merge have identical
fa7e68c3
PE
1126@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1127and the parser will report an error during any parse that results in
1128the offending merge.
9501dc6e 1129
32c29292
JD
1130@node GLR Semantic Actions
1131@subsection GLR Semantic Actions
1132
1133@cindex deferred semantic actions
1134By definition, a deferred semantic action is not performed at the same time as
1135the associated reduction.
1136This raises caveats for several Bison features you might use in a semantic
35430378 1137action in a GLR parser.
32c29292
JD
1138
1139@vindex yychar
35430378 1140@cindex GLR parsers and @code{yychar}
32c29292 1141@vindex yylval
35430378 1142@cindex GLR parsers and @code{yylval}
32c29292 1143@vindex yylloc
35430378 1144@cindex GLR parsers and @code{yylloc}
32c29292 1145In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1146the lookahead token present at the time of the associated reduction.
32c29292
JD
1147After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1148you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1149lookahead token's semantic value and location, if any.
32c29292
JD
1150In a nondeferred semantic action, you can also modify any of these variables to
1151influence syntax analysis.
742e4900 1152@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1153
1154@findex yyclearin
35430378 1155@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1156In a deferred semantic action, it's too late to influence syntax analysis.
1157In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1158shallow copies of the values they had at the time of the associated reduction.
1159For this reason alone, modifying them is dangerous.
1160Moreover, the result of modifying them is undefined and subject to change with
1161future versions of Bison.
1162For example, if a semantic action might be deferred, you should never write it
1163to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1164memory referenced by @code{yylval}.
1165
1166@findex YYERROR
35430378 1167@cindex GLR parsers and @code{YYERROR}
32c29292 1168Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1169(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1170initiate error recovery.
35430378 1171During deterministic GLR operation, the effect of @code{YYERROR} is
34a6c2d1 1172the same as its effect in a deterministic parser.
32c29292
JD
1173In a deferred semantic action, its effect is undefined.
1174@c The effect is probably a syntax error at the split point.
1175
8710fc41 1176Also, see @ref{Location Default Action, ,Default Action for Locations}, which
35430378 1177describes a special usage of @code{YYLLOC_DEFAULT} in GLR parsers.
8710fc41 1178
fa7e68c3 1179@node Compiler Requirements
35430378 1180@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1181@cindex @code{inline}
35430378 1182@cindex GLR parsers and @code{inline}
fa7e68c3 1183
35430378 1184The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1185later. In addition, they use the @code{inline} keyword, which is not
1186C89, but is C99 and is a common extension in pre-C99 compilers. It is
1187up to the user of these parsers to handle
9501dc6e
AD
1188portability issues. For instance, if using Autoconf and the Autoconf
1189macro @code{AC_C_INLINE}, a mere
1190
1191@example
1192%@{
38a92d50 1193 #include <config.h>
9501dc6e
AD
1194%@}
1195@end example
1196
1197@noindent
1198will suffice. Otherwise, we suggest
1199
1200@example
1201%@{
2c0f9706
AD
1202 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1203 && ! defined inline)
1204 # define inline
38a92d50 1205 #endif
9501dc6e
AD
1206%@}
1207@end example
676385e2 1208
83484365 1209@node Locations
847bf1f5
AD
1210@section Locations
1211@cindex location
95923bd6
AD
1212@cindex textual location
1213@cindex location, textual
847bf1f5
AD
1214
1215Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1216and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1217the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1218Bison provides a mechanism for handling these locations.
1219
72d2299c 1220Each token has a semantic value. In a similar fashion, each token has an
7404cdf3
JD
1221associated location, but the type of locations is the same for all tokens
1222and groupings. Moreover, the output parser is equipped with a default data
1223structure for storing locations (@pxref{Tracking Locations}, for more
1224details).
847bf1f5
AD
1225
1226Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1227set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1228is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1229@code{@@3}.
1230
1231When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1232of its left hand side (@pxref{Actions}). In the same way, another default
1233action is used for locations. However, the action for locations is general
847bf1f5 1234enough for most cases, meaning there is usually no need to describe for each
72d2299c 1235rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1236grouping, the default behavior of the output parser is to take the beginning
1237of the first symbol, and the end of the last symbol.
1238
342b8b6e 1239@node Bison Parser
9913d6e4 1240@section Bison Output: the Parser Implementation File
bfa74976
RS
1241@cindex Bison parser
1242@cindex Bison utility
1243@cindex lexical analyzer, purpose
1244@cindex parser
1245
9913d6e4
JD
1246When you run Bison, you give it a Bison grammar file as input. The
1247most important output is a C source file that implements a parser for
1248the language described by the grammar. This parser is called a
1249@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1250implementation file}. Keep in mind that the Bison utility and the
1251Bison parser are two distinct programs: the Bison utility is a program
1252whose output is the Bison parser implementation file that becomes part
1253of your program.
bfa74976
RS
1254
1255The job of the Bison parser is to group tokens into groupings according to
1256the grammar rules---for example, to build identifiers and operators into
1257expressions. As it does this, it runs the actions for the grammar rules it
1258uses.
1259
704a47c4
AD
1260The tokens come from a function called the @dfn{lexical analyzer} that
1261you must supply in some fashion (such as by writing it in C). The Bison
1262parser calls the lexical analyzer each time it wants a new token. It
1263doesn't know what is ``inside'' the tokens (though their semantic values
1264may reflect this). Typically the lexical analyzer makes the tokens by
1265parsing characters of text, but Bison does not depend on this.
1266@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1267
9913d6e4
JD
1268The Bison parser implementation file is C code which defines a
1269function named @code{yyparse} which implements that grammar. This
1270function does not make a complete C program: you must supply some
1271additional functions. One is the lexical analyzer. Another is an
1272error-reporting function which the parser calls to report an error.
1273In addition, a complete C program must start with a function called
1274@code{main}; you have to provide this, and arrange for it to call
1275@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1276C-Language Interface}.
bfa74976 1277
f7ab6a50 1278Aside from the token type names and the symbols in the actions you
9913d6e4
JD
1279write, all symbols defined in the Bison parser implementation file
1280itself begin with @samp{yy} or @samp{YY}. This includes interface
1281functions such as the lexical analyzer function @code{yylex}, the
1282error reporting function @code{yyerror} and the parser function
1283@code{yyparse} itself. This also includes numerous identifiers used
1284for internal purposes. Therefore, you should avoid using C
1285identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1286file except for the ones defined in this manual. Also, you should
1287avoid using the C identifiers @samp{malloc} and @samp{free} for
1288anything other than their usual meanings.
1289
1290In some cases the Bison parser implementation file includes system
1291headers, and in those cases your code should respect the identifiers
1292reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1293@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1294included as needed to declare memory allocators and related types.
1295@code{<libintl.h>} is included if message translation is in use
1296(@pxref{Internationalization}). Other system headers may be included
1297if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1298,Tracing Your Parser}).
7093d0f5 1299
342b8b6e 1300@node Stages
bfa74976
RS
1301@section Stages in Using Bison
1302@cindex stages in using Bison
1303@cindex using Bison
1304
1305The actual language-design process using Bison, from grammar specification
1306to a working compiler or interpreter, has these parts:
1307
1308@enumerate
1309@item
1310Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1311(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1312in the language, describe the action that is to be taken when an
1313instance of that rule is recognized. The action is described by a
1314sequence of C statements.
bfa74976
RS
1315
1316@item
704a47c4
AD
1317Write a lexical analyzer to process input and pass tokens to the parser.
1318The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1319Lexical Analyzer Function @code{yylex}}). It could also be produced
1320using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1321
1322@item
1323Write a controlling function that calls the Bison-produced parser.
1324
1325@item
1326Write error-reporting routines.
1327@end enumerate
1328
1329To turn this source code as written into a runnable program, you
1330must follow these steps:
1331
1332@enumerate
1333@item
1334Run Bison on the grammar to produce the parser.
1335
1336@item
1337Compile the code output by Bison, as well as any other source files.
1338
1339@item
1340Link the object files to produce the finished product.
1341@end enumerate
1342
342b8b6e 1343@node Grammar Layout
bfa74976
RS
1344@section The Overall Layout of a Bison Grammar
1345@cindex grammar file
1346@cindex file format
1347@cindex format of grammar file
1348@cindex layout of Bison grammar
1349
1350The input file for the Bison utility is a @dfn{Bison grammar file}. The
1351general form of a Bison grammar file is as follows:
1352
1353@example
1354%@{
08e49d20 1355@var{Prologue}
bfa74976
RS
1356%@}
1357
1358@var{Bison declarations}
1359
1360%%
1361@var{Grammar rules}
1362%%
08e49d20 1363@var{Epilogue}
bfa74976
RS
1364@end example
1365
1366@noindent
1367The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1368in every Bison grammar file to separate the sections.
1369
72d2299c 1370The prologue may define types and variables used in the actions. You can
342b8b6e 1371also use preprocessor commands to define macros used there, and use
bfa74976 1372@code{#include} to include header files that do any of these things.
38a92d50
PE
1373You need to declare the lexical analyzer @code{yylex} and the error
1374printer @code{yyerror} here, along with any other global identifiers
1375used by the actions in the grammar rules.
bfa74976
RS
1376
1377The Bison declarations declare the names of the terminal and nonterminal
1378symbols, and may also describe operator precedence and the data types of
1379semantic values of various symbols.
1380
1381The grammar rules define how to construct each nonterminal symbol from its
1382parts.
1383
38a92d50
PE
1384The epilogue can contain any code you want to use. Often the
1385definitions of functions declared in the prologue go here. In a
1386simple program, all the rest of the program can go here.
bfa74976 1387
342b8b6e 1388@node Examples
bfa74976
RS
1389@chapter Examples
1390@cindex simple examples
1391@cindex examples, simple
1392
2c0f9706 1393Now we show and explain several sample programs written using Bison: a
bfa74976 1394reverse polish notation calculator, an algebraic (infix) notation
2c0f9706
AD
1395calculator --- later extended to track ``locations'' ---
1396and a multi-function calculator. All
1397produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1398
1399These examples are simple, but Bison grammars for real programming
aa08666d
AD
1400languages are written the same way. You can copy these examples into a
1401source file to try them.
bfa74976
RS
1402
1403@menu
f56274a8
DJ
1404* RPN Calc:: Reverse polish notation calculator;
1405 a first example with no operator precedence.
1406* Infix Calc:: Infix (algebraic) notation calculator.
1407 Operator precedence is introduced.
bfa74976 1408* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1409* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f56274a8
DJ
1410* Multi-function Calc:: Calculator with memory and trig functions.
1411 It uses multiple data-types for semantic values.
1412* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1413@end menu
1414
342b8b6e 1415@node RPN Calc
bfa74976
RS
1416@section Reverse Polish Notation Calculator
1417@cindex reverse polish notation
1418@cindex polish notation calculator
1419@cindex @code{rpcalc}
1420@cindex calculator, simple
1421
1422The first example is that of a simple double-precision @dfn{reverse polish
1423notation} calculator (a calculator using postfix operators). This example
1424provides a good starting point, since operator precedence is not an issue.
1425The second example will illustrate how operator precedence is handled.
1426
1427The source code for this calculator is named @file{rpcalc.y}. The
9913d6e4 1428@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1429
1430@menu
f56274a8
DJ
1431* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1432* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1433* Rpcalc Lexer:: The lexical analyzer.
1434* Rpcalc Main:: The controlling function.
1435* Rpcalc Error:: The error reporting function.
1436* Rpcalc Generate:: Running Bison on the grammar file.
1437* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1438@end menu
1439
f56274a8 1440@node Rpcalc Declarations
bfa74976
RS
1441@subsection Declarations for @code{rpcalc}
1442
1443Here are the C and Bison declarations for the reverse polish notation
1444calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1445
1446@example
72d2299c 1447/* Reverse polish notation calculator. */
bfa74976
RS
1448
1449%@{
38a92d50
PE
1450 #define YYSTYPE double
1451 #include <math.h>
1452 int yylex (void);
1453 void yyerror (char const *);
bfa74976
RS
1454%@}
1455
1456%token NUM
1457
72d2299c 1458%% /* Grammar rules and actions follow. */
bfa74976
RS
1459@end example
1460
75f5aaea 1461The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1462preprocessor directives and two forward declarations.
bfa74976
RS
1463
1464The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1465specifying the C data type for semantic values of both tokens and
1466groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1467Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1468don't define it, @code{int} is the default. Because we specify
1469@code{double}, each token and each expression has an associated value,
1470which is a floating point number.
bfa74976
RS
1471
1472The @code{#include} directive is used to declare the exponentiation
1473function @code{pow}.
1474
38a92d50
PE
1475The forward declarations for @code{yylex} and @code{yyerror} are
1476needed because the C language requires that functions be declared
1477before they are used. These functions will be defined in the
1478epilogue, but the parser calls them so they must be declared in the
1479prologue.
1480
704a47c4
AD
1481The second section, Bison declarations, provides information to Bison
1482about the token types (@pxref{Bison Declarations, ,The Bison
1483Declarations Section}). Each terminal symbol that is not a
1484single-character literal must be declared here. (Single-character
bfa74976
RS
1485literals normally don't need to be declared.) In this example, all the
1486arithmetic operators are designated by single-character literals, so the
1487only terminal symbol that needs to be declared is @code{NUM}, the token
1488type for numeric constants.
1489
342b8b6e 1490@node Rpcalc Rules
bfa74976
RS
1491@subsection Grammar Rules for @code{rpcalc}
1492
1493Here are the grammar rules for the reverse polish notation calculator.
1494
1495@example
2c0f9706 1496@group
de6be119
AD
1497input:
1498 /* empty */
1499| input line
bfa74976 1500;
2c0f9706 1501@end group
bfa74976 1502
2c0f9706 1503@group
de6be119
AD
1504line:
1505 '\n'
1506| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1507;
2c0f9706 1508@end group
bfa74976 1509
2c0f9706 1510@group
de6be119
AD
1511exp:
1512 NUM @{ $$ = $1; @}
1513| exp exp '+' @{ $$ = $1 + $2; @}
1514| exp exp '-' @{ $$ = $1 - $2; @}
1515| exp exp '*' @{ $$ = $1 * $2; @}
1516| exp exp '/' @{ $$ = $1 / $2; @}
1517| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1518| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1519;
2c0f9706 1520@end group
bfa74976
RS
1521%%
1522@end example
1523
1524The groupings of the rpcalc ``language'' defined here are the expression
1525(given the name @code{exp}), the line of input (@code{line}), and the
1526complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1527symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1528which is read as ``or''. The following sections explain what these rules
1529mean.
1530
1531The semantics of the language is determined by the actions taken when a
1532grouping is recognized. The actions are the C code that appears inside
1533braces. @xref{Actions}.
1534
1535You must specify these actions in C, but Bison provides the means for
1536passing semantic values between the rules. In each action, the
1537pseudo-variable @code{$$} stands for the semantic value for the grouping
1538that the rule is going to construct. Assigning a value to @code{$$} is the
1539main job of most actions. The semantic values of the components of the
1540rule are referred to as @code{$1}, @code{$2}, and so on.
1541
1542@menu
13863333
AD
1543* Rpcalc Input::
1544* Rpcalc Line::
1545* Rpcalc Expr::
bfa74976
RS
1546@end menu
1547
342b8b6e 1548@node Rpcalc Input
bfa74976
RS
1549@subsubsection Explanation of @code{input}
1550
1551Consider the definition of @code{input}:
1552
1553@example
de6be119
AD
1554input:
1555 /* empty */
1556| input line
bfa74976
RS
1557;
1558@end example
1559
1560This definition reads as follows: ``A complete input is either an empty
1561string, or a complete input followed by an input line''. Notice that
1562``complete input'' is defined in terms of itself. This definition is said
1563to be @dfn{left recursive} since @code{input} appears always as the
1564leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1565
1566The first alternative is empty because there are no symbols between the
1567colon and the first @samp{|}; this means that @code{input} can match an
1568empty string of input (no tokens). We write the rules this way because it
1569is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1570It's conventional to put an empty alternative first and write the comment
1571@samp{/* empty */} in it.
1572
1573The second alternate rule (@code{input line}) handles all nontrivial input.
1574It means, ``After reading any number of lines, read one more line if
1575possible.'' The left recursion makes this rule into a loop. Since the
1576first alternative matches empty input, the loop can be executed zero or
1577more times.
1578
1579The parser function @code{yyparse} continues to process input until a
1580grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1581input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1582
342b8b6e 1583@node Rpcalc Line
bfa74976
RS
1584@subsubsection Explanation of @code{line}
1585
1586Now consider the definition of @code{line}:
1587
1588@example
de6be119
AD
1589line:
1590 '\n'
1591| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1592;
1593@end example
1594
1595The first alternative is a token which is a newline character; this means
1596that rpcalc accepts a blank line (and ignores it, since there is no
1597action). The second alternative is an expression followed by a newline.
1598This is the alternative that makes rpcalc useful. The semantic value of
1599the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1600question is the first symbol in the alternative. The action prints this
1601value, which is the result of the computation the user asked for.
1602
1603This action is unusual because it does not assign a value to @code{$$}. As
1604a consequence, the semantic value associated with the @code{line} is
1605uninitialized (its value will be unpredictable). This would be a bug if
1606that value were ever used, but we don't use it: once rpcalc has printed the
1607value of the user's input line, that value is no longer needed.
1608
342b8b6e 1609@node Rpcalc Expr
bfa74976
RS
1610@subsubsection Explanation of @code{expr}
1611
1612The @code{exp} grouping has several rules, one for each kind of expression.
1613The first rule handles the simplest expressions: those that are just numbers.
1614The second handles an addition-expression, which looks like two expressions
1615followed by a plus-sign. The third handles subtraction, and so on.
1616
1617@example
de6be119
AD
1618exp:
1619 NUM
1620| exp exp '+' @{ $$ = $1 + $2; @}
1621| exp exp '-' @{ $$ = $1 - $2; @}
1622@dots{}
1623;
bfa74976
RS
1624@end example
1625
1626We have used @samp{|} to join all the rules for @code{exp}, but we could
1627equally well have written them separately:
1628
1629@example
de6be119
AD
1630exp: NUM ;
1631exp: exp exp '+' @{ $$ = $1 + $2; @};
1632exp: exp exp '-' @{ $$ = $1 - $2; @};
1633@dots{}
bfa74976
RS
1634@end example
1635
1636Most of the rules have actions that compute the value of the expression in
1637terms of the value of its parts. For example, in the rule for addition,
1638@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1639the second one. The third component, @code{'+'}, has no meaningful
1640associated semantic value, but if it had one you could refer to it as
1641@code{$3}. When @code{yyparse} recognizes a sum expression using this
1642rule, the sum of the two subexpressions' values is produced as the value of
1643the entire expression. @xref{Actions}.
1644
1645You don't have to give an action for every rule. When a rule has no
1646action, Bison by default copies the value of @code{$1} into @code{$$}.
1647This is what happens in the first rule (the one that uses @code{NUM}).
1648
1649The formatting shown here is the recommended convention, but Bison does
72d2299c 1650not require it. You can add or change white space as much as you wish.
bfa74976
RS
1651For example, this:
1652
1653@example
de6be119 1654exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1655@end example
1656
1657@noindent
1658means the same thing as this:
1659
1660@example
de6be119
AD
1661exp:
1662 NUM
1663| exp exp '+' @{ $$ = $1 + $2; @}
1664| @dots{}
99a9344e 1665;
bfa74976
RS
1666@end example
1667
1668@noindent
1669The latter, however, is much more readable.
1670
342b8b6e 1671@node Rpcalc Lexer
bfa74976
RS
1672@subsection The @code{rpcalc} Lexical Analyzer
1673@cindex writing a lexical analyzer
1674@cindex lexical analyzer, writing
1675
704a47c4
AD
1676The lexical analyzer's job is low-level parsing: converting characters
1677or sequences of characters into tokens. The Bison parser gets its
1678tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1679Analyzer Function @code{yylex}}.
bfa74976 1680
35430378 1681Only a simple lexical analyzer is needed for the RPN
c827f760 1682calculator. This
bfa74976
RS
1683lexical analyzer skips blanks and tabs, then reads in numbers as
1684@code{double} and returns them as @code{NUM} tokens. Any other character
1685that isn't part of a number is a separate token. Note that the token-code
1686for such a single-character token is the character itself.
1687
1688The return value of the lexical analyzer function is a numeric code which
1689represents a token type. The same text used in Bison rules to stand for
1690this token type is also a C expression for the numeric code for the type.
1691This works in two ways. If the token type is a character literal, then its
e966383b 1692numeric code is that of the character; you can use the same
bfa74976
RS
1693character literal in the lexical analyzer to express the number. If the
1694token type is an identifier, that identifier is defined by Bison as a C
1695macro whose definition is the appropriate number. In this example,
1696therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1697
1964ad8c
AD
1698The semantic value of the token (if it has one) is stored into the
1699global variable @code{yylval}, which is where the Bison parser will look
1700for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f56274a8 1701defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1702,Declarations for @code{rpcalc}}.)
bfa74976 1703
72d2299c
PE
1704A token type code of zero is returned if the end-of-input is encountered.
1705(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1706
1707Here is the code for the lexical analyzer:
1708
1709@example
1710@group
72d2299c 1711/* The lexical analyzer returns a double floating point
e966383b 1712 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1713 of the character read if not a number. It skips all blanks
1714 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1715
1716#include <ctype.h>
1717@end group
1718
1719@group
13863333
AD
1720int
1721yylex (void)
bfa74976
RS
1722@{
1723 int c;
1724
72d2299c 1725 /* Skip white space. */
13863333 1726 while ((c = getchar ()) == ' ' || c == '\t')
98842516 1727 continue;
bfa74976
RS
1728@end group
1729@group
72d2299c 1730 /* Process numbers. */
13863333 1731 if (c == '.' || isdigit (c))
bfa74976
RS
1732 @{
1733 ungetc (c, stdin);
1734 scanf ("%lf", &yylval);
1735 return NUM;
1736 @}
1737@end group
1738@group
72d2299c 1739 /* Return end-of-input. */
13863333 1740 if (c == EOF)
bfa74976 1741 return 0;
72d2299c 1742 /* Return a single char. */
13863333 1743 return c;
bfa74976
RS
1744@}
1745@end group
1746@end example
1747
342b8b6e 1748@node Rpcalc Main
bfa74976
RS
1749@subsection The Controlling Function
1750@cindex controlling function
1751@cindex main function in simple example
1752
1753In keeping with the spirit of this example, the controlling function is
1754kept to the bare minimum. The only requirement is that it call
1755@code{yyparse} to start the process of parsing.
1756
1757@example
1758@group
13863333
AD
1759int
1760main (void)
bfa74976 1761@{
13863333 1762 return yyparse ();
bfa74976
RS
1763@}
1764@end group
1765@end example
1766
342b8b6e 1767@node Rpcalc Error
bfa74976
RS
1768@subsection The Error Reporting Routine
1769@cindex error reporting routine
1770
1771When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1772function @code{yyerror} to print an error message (usually but not
6e649e65 1773always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1774@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1775here is the definition we will use:
bfa74976
RS
1776
1777@example
1778@group
1779#include <stdio.h>
2c0f9706 1780@end group
bfa74976 1781
2c0f9706 1782@group
38a92d50 1783/* Called by yyparse on error. */
13863333 1784void
38a92d50 1785yyerror (char const *s)
bfa74976 1786@{
4e03e201 1787 fprintf (stderr, "%s\n", s);
bfa74976
RS
1788@}
1789@end group
1790@end example
1791
1792After @code{yyerror} returns, the Bison parser may recover from the error
1793and continue parsing if the grammar contains a suitable error rule
1794(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1795have not written any error rules in this example, so any invalid input will
1796cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1797real calculator, but it is adequate for the first example.
bfa74976 1798
f56274a8 1799@node Rpcalc Generate
bfa74976
RS
1800@subsection Running Bison to Make the Parser
1801@cindex running Bison (introduction)
1802
ceed8467
AD
1803Before running Bison to produce a parser, we need to decide how to
1804arrange all the source code in one or more source files. For such a
9913d6e4
JD
1805simple example, the easiest thing is to put everything in one file,
1806the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1807@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1808(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1809
1810For a large project, you would probably have several source files, and use
1811@code{make} to arrange to recompile them.
1812
9913d6e4
JD
1813With all the source in the grammar file, you use the following command
1814to convert it into a parser implementation file:
bfa74976
RS
1815
1816@example
fa4d969f 1817bison @var{file}.y
bfa74976
RS
1818@end example
1819
1820@noindent
9913d6e4
JD
1821In this example, the grammar file is called @file{rpcalc.y} (for
1822``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1823implementation file named @file{@var{file}.tab.c}, removing the
1824@samp{.y} from the grammar file name. The parser implementation file
1825contains the source code for @code{yyparse}. The additional functions
1826in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1827copied verbatim to the parser implementation file.
bfa74976 1828
342b8b6e 1829@node Rpcalc Compile
9913d6e4 1830@subsection Compiling the Parser Implementation File
bfa74976
RS
1831@cindex compiling the parser
1832
9913d6e4 1833Here is how to compile and run the parser implementation file:
bfa74976
RS
1834
1835@example
1836@group
1837# @r{List files in current directory.}
9edcd895 1838$ @kbd{ls}
bfa74976
RS
1839rpcalc.tab.c rpcalc.y
1840@end group
1841
1842@group
1843# @r{Compile the Bison parser.}
1844# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1845$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1846@end group
1847
1848@group
1849# @r{List files again.}
9edcd895 1850$ @kbd{ls}
bfa74976
RS
1851rpcalc rpcalc.tab.c rpcalc.y
1852@end group
1853@end example
1854
1855The file @file{rpcalc} now contains the executable code. Here is an
1856example session using @code{rpcalc}.
1857
1858@example
9edcd895
AD
1859$ @kbd{rpcalc}
1860@kbd{4 9 +}
bfa74976 186113
9edcd895 1862@kbd{3 7 + 3 4 5 *+-}
bfa74976 1863-13
9edcd895 1864@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 186513
9edcd895 1866@kbd{5 6 / 4 n +}
bfa74976 1867-3.166666667
9edcd895 1868@kbd{3 4 ^} @r{Exponentiation}
bfa74976 186981
9edcd895
AD
1870@kbd{^D} @r{End-of-file indicator}
1871$
bfa74976
RS
1872@end example
1873
342b8b6e 1874@node Infix Calc
bfa74976
RS
1875@section Infix Notation Calculator: @code{calc}
1876@cindex infix notation calculator
1877@cindex @code{calc}
1878@cindex calculator, infix notation
1879
1880We now modify rpcalc to handle infix operators instead of postfix. Infix
1881notation involves the concept of operator precedence and the need for
1882parentheses nested to arbitrary depth. Here is the Bison code for
1883@file{calc.y}, an infix desk-top calculator.
1884
1885@example
38a92d50 1886/* Infix notation calculator. */
bfa74976 1887
2c0f9706 1888@group
bfa74976 1889%@{
38a92d50
PE
1890 #define YYSTYPE double
1891 #include <math.h>
1892 #include <stdio.h>
1893 int yylex (void);
1894 void yyerror (char const *);
bfa74976 1895%@}
2c0f9706 1896@end group
bfa74976 1897
2c0f9706 1898@group
38a92d50 1899/* Bison declarations. */
bfa74976
RS
1900%token NUM
1901%left '-' '+'
1902%left '*' '/'
1903%left NEG /* negation--unary minus */
38a92d50 1904%right '^' /* exponentiation */
2c0f9706 1905@end group
bfa74976 1906
38a92d50 1907%% /* The grammar follows. */
2c0f9706 1908@group
de6be119
AD
1909input:
1910 /* empty */
1911| input line
bfa74976 1912;
2c0f9706 1913@end group
bfa74976 1914
2c0f9706 1915@group
de6be119
AD
1916line:
1917 '\n'
1918| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 1919;
2c0f9706 1920@end group
bfa74976 1921
2c0f9706 1922@group
de6be119
AD
1923exp:
1924 NUM @{ $$ = $1; @}
1925| exp '+' exp @{ $$ = $1 + $3; @}
1926| exp '-' exp @{ $$ = $1 - $3; @}
1927| exp '*' exp @{ $$ = $1 * $3; @}
1928| exp '/' exp @{ $$ = $1 / $3; @}
1929| '-' exp %prec NEG @{ $$ = -$2; @}
1930| exp '^' exp @{ $$ = pow ($1, $3); @}
1931| '(' exp ')' @{ $$ = $2; @}
bfa74976 1932;
2c0f9706 1933@end group
bfa74976
RS
1934%%
1935@end example
1936
1937@noindent
ceed8467
AD
1938The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1939same as before.
bfa74976
RS
1940
1941There are two important new features shown in this code.
1942
1943In the second section (Bison declarations), @code{%left} declares token
1944types and says they are left-associative operators. The declarations
1945@code{%left} and @code{%right} (right associativity) take the place of
1946@code{%token} which is used to declare a token type name without
1947associativity. (These tokens are single-character literals, which
1948ordinarily don't need to be declared. We declare them here to specify
1949the associativity.)
1950
1951Operator precedence is determined by the line ordering of the
1952declarations; the higher the line number of the declaration (lower on
1953the page or screen), the higher the precedence. Hence, exponentiation
1954has the highest precedence, unary minus (@code{NEG}) is next, followed
704a47c4
AD
1955by @samp{*} and @samp{/}, and so on. @xref{Precedence, ,Operator
1956Precedence}.
bfa74976 1957
704a47c4
AD
1958The other important new feature is the @code{%prec} in the grammar
1959section for the unary minus operator. The @code{%prec} simply instructs
1960Bison that the rule @samp{| '-' exp} has the same precedence as
1961@code{NEG}---in this case the next-to-highest. @xref{Contextual
1962Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
1963
1964Here is a sample run of @file{calc.y}:
1965
1966@need 500
1967@example
9edcd895
AD
1968$ @kbd{calc}
1969@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 19706.880952381
9edcd895 1971@kbd{-56 + 2}
bfa74976 1972-54
9edcd895 1973@kbd{3 ^ 2}
bfa74976
RS
19749
1975@end example
1976
342b8b6e 1977@node Simple Error Recovery
bfa74976
RS
1978@section Simple Error Recovery
1979@cindex error recovery, simple
1980
1981Up to this point, this manual has not addressed the issue of @dfn{error
1982recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
1983error. All we have handled is error reporting with @code{yyerror}.
1984Recall that by default @code{yyparse} returns after calling
1985@code{yyerror}. This means that an erroneous input line causes the
1986calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
1987
1988The Bison language itself includes the reserved word @code{error}, which
1989may be included in the grammar rules. In the example below it has
1990been added to one of the alternatives for @code{line}:
1991
1992@example
1993@group
de6be119
AD
1994line:
1995 '\n'
1996| exp '\n' @{ printf ("\t%.10g\n", $1); @}
1997| error '\n' @{ yyerrok; @}
bfa74976
RS
1998;
1999@end group
2000@end example
2001
ceed8467 2002This addition to the grammar allows for simple error recovery in the
6e649e65 2003event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2004read, the error will be recognized by the third rule for @code{line},
2005and parsing will continue. (The @code{yyerror} function is still called
2006upon to print its message as well.) The action executes the statement
2007@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2008that error recovery is complete (@pxref{Error Recovery}). Note the
2009difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2010misprint.
bfa74976
RS
2011
2012This form of error recovery deals with syntax errors. There are other
2013kinds of errors; for example, division by zero, which raises an exception
2014signal that is normally fatal. A real calculator program must handle this
2015signal and use @code{longjmp} to return to @code{main} and resume parsing
2016input lines; it would also have to discard the rest of the current line of
2017input. We won't discuss this issue further because it is not specific to
2018Bison programs.
2019
342b8b6e
AD
2020@node Location Tracking Calc
2021@section Location Tracking Calculator: @code{ltcalc}
2022@cindex location tracking calculator
2023@cindex @code{ltcalc}
2024@cindex calculator, location tracking
2025
9edcd895
AD
2026This example extends the infix notation calculator with location
2027tracking. This feature will be used to improve the error messages. For
2028the sake of clarity, this example is a simple integer calculator, since
2029most of the work needed to use locations will be done in the lexical
72d2299c 2030analyzer.
342b8b6e
AD
2031
2032@menu
f56274a8
DJ
2033* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2034* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2035* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2036@end menu
2037
f56274a8 2038@node Ltcalc Declarations
342b8b6e
AD
2039@subsection Declarations for @code{ltcalc}
2040
9edcd895
AD
2041The C and Bison declarations for the location tracking calculator are
2042the same as the declarations for the infix notation calculator.
342b8b6e
AD
2043
2044@example
2045/* Location tracking calculator. */
2046
2047%@{
38a92d50
PE
2048 #define YYSTYPE int
2049 #include <math.h>
2050 int yylex (void);
2051 void yyerror (char const *);
342b8b6e
AD
2052%@}
2053
2054/* Bison declarations. */
2055%token NUM
2056
2057%left '-' '+'
2058%left '*' '/'
2059%left NEG
2060%right '^'
2061
38a92d50 2062%% /* The grammar follows. */
342b8b6e
AD
2063@end example
2064
9edcd895
AD
2065@noindent
2066Note there are no declarations specific to locations. Defining a data
2067type for storing locations is not needed: we will use the type provided
2068by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2069four member structure with the following integer fields:
2070@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2071@code{last_column}. By conventions, and in accordance with the GNU
2072Coding Standards and common practice, the line and column count both
2073start at 1.
342b8b6e
AD
2074
2075@node Ltcalc Rules
2076@subsection Grammar Rules for @code{ltcalc}
2077
9edcd895
AD
2078Whether handling locations or not has no effect on the syntax of your
2079language. Therefore, grammar rules for this example will be very close
2080to those of the previous example: we will only modify them to benefit
2081from the new information.
342b8b6e 2082
9edcd895
AD
2083Here, we will use locations to report divisions by zero, and locate the
2084wrong expressions or subexpressions.
342b8b6e
AD
2085
2086@example
2087@group
de6be119
AD
2088input:
2089 /* empty */
2090| input line
342b8b6e
AD
2091;
2092@end group
2093
2094@group
de6be119
AD
2095line:
2096 '\n'
2097| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2098;
2099@end group
2100
2101@group
de6be119
AD
2102exp:
2103 NUM @{ $$ = $1; @}
2104| exp '+' exp @{ $$ = $1 + $3; @}
2105| exp '-' exp @{ $$ = $1 - $3; @}
2106| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2107@end group
342b8b6e 2108@group
de6be119
AD
2109| exp '/' exp
2110 @{
2111 if ($3)
2112 $$ = $1 / $3;
2113 else
2114 @{
2115 $$ = 1;
2116 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2117 @@3.first_line, @@3.first_column,
2118 @@3.last_line, @@3.last_column);
2119 @}
2120 @}
342b8b6e
AD
2121@end group
2122@group
de6be119
AD
2123| '-' exp %prec NEG @{ $$ = -$2; @}
2124| exp '^' exp @{ $$ = pow ($1, $3); @}
2125| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2126@end group
2127@end example
2128
2129This code shows how to reach locations inside of semantic actions, by
2130using the pseudo-variables @code{@@@var{n}} for rule components, and the
2131pseudo-variable @code{@@$} for groupings.
2132
9edcd895
AD
2133We don't need to assign a value to @code{@@$}: the output parser does it
2134automatically. By default, before executing the C code of each action,
2135@code{@@$} is set to range from the beginning of @code{@@1} to the end
2136of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2137can be redefined (@pxref{Location Default Action, , Default Action for
2138Locations}), and for very specific rules, @code{@@$} can be computed by
2139hand.
342b8b6e
AD
2140
2141@node Ltcalc Lexer
2142@subsection The @code{ltcalc} Lexical Analyzer.
2143
9edcd895 2144Until now, we relied on Bison's defaults to enable location
72d2299c 2145tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2146able to feed the parser with the token locations, as it already does for
2147semantic values.
342b8b6e 2148
9edcd895
AD
2149To this end, we must take into account every single character of the
2150input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2151
2152@example
2153@group
2154int
2155yylex (void)
2156@{
2157 int c;
18b519c0 2158@end group
342b8b6e 2159
18b519c0 2160@group
72d2299c 2161 /* Skip white space. */
342b8b6e
AD
2162 while ((c = getchar ()) == ' ' || c == '\t')
2163 ++yylloc.last_column;
18b519c0 2164@end group
342b8b6e 2165
18b519c0 2166@group
72d2299c 2167 /* Step. */
342b8b6e
AD
2168 yylloc.first_line = yylloc.last_line;
2169 yylloc.first_column = yylloc.last_column;
2170@end group
2171
2172@group
72d2299c 2173 /* Process numbers. */
342b8b6e
AD
2174 if (isdigit (c))
2175 @{
2176 yylval = c - '0';
2177 ++yylloc.last_column;
2178 while (isdigit (c = getchar ()))
2179 @{
2180 ++yylloc.last_column;
2181 yylval = yylval * 10 + c - '0';
2182 @}
2183 ungetc (c, stdin);
2184 return NUM;
2185 @}
2186@end group
2187
72d2299c 2188 /* Return end-of-input. */
342b8b6e
AD
2189 if (c == EOF)
2190 return 0;
2191
98842516 2192@group
72d2299c 2193 /* Return a single char, and update location. */
342b8b6e
AD
2194 if (c == '\n')
2195 @{
2196 ++yylloc.last_line;
2197 yylloc.last_column = 0;
2198 @}
2199 else
2200 ++yylloc.last_column;
2201 return c;
2202@}
98842516 2203@end group
342b8b6e
AD
2204@end example
2205
9edcd895
AD
2206Basically, the lexical analyzer performs the same processing as before:
2207it skips blanks and tabs, and reads numbers or single-character tokens.
2208In addition, it updates @code{yylloc}, the global variable (of type
2209@code{YYLTYPE}) containing the token's location.
342b8b6e 2210
9edcd895 2211Now, each time this function returns a token, the parser has its number
72d2299c 2212as well as its semantic value, and its location in the text. The last
9edcd895
AD
2213needed change is to initialize @code{yylloc}, for example in the
2214controlling function:
342b8b6e
AD
2215
2216@example
9edcd895 2217@group
342b8b6e
AD
2218int
2219main (void)
2220@{
2221 yylloc.first_line = yylloc.last_line = 1;
2222 yylloc.first_column = yylloc.last_column = 0;
2223 return yyparse ();
2224@}
9edcd895 2225@end group
342b8b6e
AD
2226@end example
2227
9edcd895
AD
2228Remember that computing locations is not a matter of syntax. Every
2229character must be associated to a location update, whether it is in
2230valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2231
2232@node Multi-function Calc
bfa74976
RS
2233@section Multi-Function Calculator: @code{mfcalc}
2234@cindex multi-function calculator
2235@cindex @code{mfcalc}
2236@cindex calculator, multi-function
2237
2238Now that the basics of Bison have been discussed, it is time to move on to
2239a more advanced problem. The above calculators provided only five
2240functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2241be nice to have a calculator that provides other mathematical functions such
2242as @code{sin}, @code{cos}, etc.
2243
2244It is easy to add new operators to the infix calculator as long as they are
2245only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2246back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2247adding a new operator. But we want something more flexible: built-in
2248functions whose syntax has this form:
2249
2250@example
2251@var{function_name} (@var{argument})
2252@end example
2253
2254@noindent
2255At the same time, we will add memory to the calculator, by allowing you
2256to create named variables, store values in them, and use them later.
2257Here is a sample session with the multi-function calculator:
2258
2259@example
9edcd895
AD
2260$ @kbd{mfcalc}
2261@kbd{pi = 3.141592653589}
bfa74976 22623.1415926536
9edcd895 2263@kbd{sin(pi)}
bfa74976 22640.0000000000
9edcd895 2265@kbd{alpha = beta1 = 2.3}
bfa74976 22662.3000000000
9edcd895 2267@kbd{alpha}
bfa74976 22682.3000000000
9edcd895 2269@kbd{ln(alpha)}
bfa74976 22700.8329091229
9edcd895 2271@kbd{exp(ln(beta1))}
bfa74976 22722.3000000000
9edcd895 2273$
bfa74976
RS
2274@end example
2275
2276Note that multiple assignment and nested function calls are permitted.
2277
2278@menu
f56274a8
DJ
2279* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2280* Mfcalc Rules:: Grammar rules for the calculator.
2281* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2282@end menu
2283
f56274a8 2284@node Mfcalc Declarations
bfa74976
RS
2285@subsection Declarations for @code{mfcalc}
2286
2287Here are the C and Bison declarations for the multi-function calculator.
2288
ea118b72
AD
2289@comment file: mfcalc.y
2290@example
18b519c0 2291@group
bfa74976 2292%@{
38a92d50
PE
2293 #include <math.h> /* For math functions, cos(), sin(), etc. */
2294 #include "calc.h" /* Contains definition of `symrec'. */
2295 int yylex (void);
2296 void yyerror (char const *);
bfa74976 2297%@}
18b519c0
AD
2298@end group
2299@group
bfa74976 2300%union @{
38a92d50
PE
2301 double val; /* For returning numbers. */
2302 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2303@}
18b519c0 2304@end group
38a92d50
PE
2305%token <val> NUM /* Simple double precision number. */
2306%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2307%type <val> exp
2308
18b519c0 2309@group
bfa74976
RS
2310%right '='
2311%left '-' '+'
2312%left '*' '/'
38a92d50
PE
2313%left NEG /* negation--unary minus */
2314%right '^' /* exponentiation */
18b519c0 2315@end group
38a92d50 2316%% /* The grammar follows. */
ea118b72 2317@end example
bfa74976
RS
2318
2319The above grammar introduces only two new features of the Bison language.
2320These features allow semantic values to have various data types
2321(@pxref{Multiple Types, ,More Than One Value Type}).
2322
2323The @code{%union} declaration specifies the entire list of possible types;
2324this is instead of defining @code{YYSTYPE}. The allowable types are now
2325double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2326the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2327
2328Since values can now have various types, it is necessary to associate a
2329type with each grammar symbol whose semantic value is used. These symbols
2330are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2331declarations are augmented with information about their data type (placed
2332between angle brackets).
2333
704a47c4
AD
2334The Bison construct @code{%type} is used for declaring nonterminal
2335symbols, just as @code{%token} is used for declaring token types. We
2336have not used @code{%type} before because nonterminal symbols are
2337normally declared implicitly by the rules that define them. But
2338@code{exp} must be declared explicitly so we can specify its value type.
2339@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2340
342b8b6e 2341@node Mfcalc Rules
bfa74976
RS
2342@subsection Grammar Rules for @code{mfcalc}
2343
2344Here are the grammar rules for the multi-function calculator.
2345Most of them are copied directly from @code{calc}; three rules,
2346those which mention @code{VAR} or @code{FNCT}, are new.
2347
ea118b72
AD
2348@comment file: mfcalc.y
2349@example
18b519c0 2350@group
de6be119
AD
2351input:
2352 /* empty */
2353| input line
bfa74976 2354;
18b519c0 2355@end group
bfa74976 2356
18b519c0 2357@group
bfa74976 2358line:
de6be119
AD
2359 '\n'
2360| exp '\n' @{ printf ("%.10g\n", $1); @}
2361| error '\n' @{ yyerrok; @}
bfa74976 2362;
18b519c0 2363@end group
bfa74976 2364
18b519c0 2365@group
de6be119
AD
2366exp:
2367 NUM @{ $$ = $1; @}
2368| VAR @{ $$ = $1->value.var; @}
2369| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2370| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2371| exp '+' exp @{ $$ = $1 + $3; @}
2372| exp '-' exp @{ $$ = $1 - $3; @}
2373| exp '*' exp @{ $$ = $1 * $3; @}
2374| exp '/' exp @{ $$ = $1 / $3; @}
2375| '-' exp %prec NEG @{ $$ = -$2; @}
2376| exp '^' exp @{ $$ = pow ($1, $3); @}
2377| '(' exp ')' @{ $$ = $2; @}
bfa74976 2378;
18b519c0 2379@end group
38a92d50 2380/* End of grammar. */
bfa74976 2381%%
ea118b72 2382@end example
bfa74976 2383
f56274a8 2384@node Mfcalc Symbol Table
bfa74976
RS
2385@subsection The @code{mfcalc} Symbol Table
2386@cindex symbol table example
2387
2388The multi-function calculator requires a symbol table to keep track of the
2389names and meanings of variables and functions. This doesn't affect the
2390grammar rules (except for the actions) or the Bison declarations, but it
2391requires some additional C functions for support.
2392
2393The symbol table itself consists of a linked list of records. Its
2394definition, which is kept in the header @file{calc.h}, is as follows. It
2395provides for either functions or variables to be placed in the table.
2396
ea118b72
AD
2397@comment file: calc.h
2398@example
bfa74976 2399@group
38a92d50 2400/* Function type. */
32dfccf8 2401typedef double (*func_t) (double);
72f889cc 2402@end group
32dfccf8 2403
72f889cc 2404@group
38a92d50 2405/* Data type for links in the chain of symbols. */
bfa74976
RS
2406struct symrec
2407@{
38a92d50 2408 char *name; /* name of symbol */
bfa74976 2409 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2410 union
2411 @{
38a92d50
PE
2412 double var; /* value of a VAR */
2413 func_t fnctptr; /* value of a FNCT */
bfa74976 2414 @} value;
38a92d50 2415 struct symrec *next; /* link field */
bfa74976
RS
2416@};
2417@end group
2418
2419@group
2420typedef struct symrec symrec;
2421
38a92d50 2422/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2423extern symrec *sym_table;
2424
a730d142 2425symrec *putsym (char const *, int);
38a92d50 2426symrec *getsym (char const *);
bfa74976 2427@end group
ea118b72 2428@end example
bfa74976
RS
2429
2430The new version of @code{main} includes a call to @code{init_table}, a
2431function that initializes the symbol table. Here it is, and
2432@code{init_table} as well:
2433
ea118b72 2434@example
bfa74976
RS
2435#include <stdio.h>
2436
18b519c0 2437@group
38a92d50 2438/* Called by yyparse on error. */
13863333 2439void
38a92d50 2440yyerror (char const *s)
bfa74976
RS
2441@{
2442 printf ("%s\n", s);
2443@}
18b519c0 2444@end group
bfa74976 2445
18b519c0 2446@group
bfa74976
RS
2447struct init
2448@{
38a92d50
PE
2449 char const *fname;
2450 double (*fnct) (double);
bfa74976
RS
2451@};
2452@end group
2453
2454@group
38a92d50 2455struct init const arith_fncts[] =
13863333 2456@{
32dfccf8
AD
2457 "sin", sin,
2458 "cos", cos,
13863333 2459 "atan", atan,
32dfccf8
AD
2460 "ln", log,
2461 "exp", exp,
13863333
AD
2462 "sqrt", sqrt,
2463 0, 0
2464@};
18b519c0 2465@end group
bfa74976 2466
18b519c0 2467@group
bfa74976 2468/* The symbol table: a chain of `struct symrec'. */
38a92d50 2469symrec *sym_table;
bfa74976
RS
2470@end group
2471
2472@group
72d2299c 2473/* Put arithmetic functions in table. */
13863333
AD
2474void
2475init_table (void)
bfa74976
RS
2476@{
2477 int i;
bfa74976
RS
2478 for (i = 0; arith_fncts[i].fname != 0; i++)
2479 @{
2c0f9706 2480 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2481 ptr->value.fnctptr = arith_fncts[i].fnct;
2482 @}
2483@}
2484@end group
38a92d50
PE
2485
2486@group
2487int
2488main (void)
2489@{
2490 init_table ();
2491 return yyparse ();
2492@}
2493@end group
ea118b72 2494@end example
bfa74976
RS
2495
2496By simply editing the initialization list and adding the necessary include
2497files, you can add additional functions to the calculator.
2498
2499Two important functions allow look-up and installation of symbols in the
2500symbol table. The function @code{putsym} is passed a name and the type
2501(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2502linked to the front of the list, and a pointer to the object is returned.
2503The function @code{getsym} is passed the name of the symbol to look up. If
2504found, a pointer to that symbol is returned; otherwise zero is returned.
2505
ea118b72
AD
2506@comment file: mfcalc.y
2507@example
98842516
AD
2508#include <stdlib.h> /* malloc. */
2509#include <string.h> /* strlen. */
2510
2511@group
bfa74976 2512symrec *
38a92d50 2513putsym (char const *sym_name, int sym_type)
bfa74976 2514@{
2c0f9706 2515 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2516 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2517 strcpy (ptr->name,sym_name);
2518 ptr->type = sym_type;
72d2299c 2519 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2520 ptr->next = (struct symrec *)sym_table;
2521 sym_table = ptr;
2522 return ptr;
2523@}
98842516 2524@end group
bfa74976 2525
98842516 2526@group
bfa74976 2527symrec *
38a92d50 2528getsym (char const *sym_name)
bfa74976
RS
2529@{
2530 symrec *ptr;
2531 for (ptr = sym_table; ptr != (symrec *) 0;
2532 ptr = (symrec *)ptr->next)
2533 if (strcmp (ptr->name,sym_name) == 0)
2534 return ptr;
2535 return 0;
2536@}
98842516 2537@end group
ea118b72 2538@end example
bfa74976
RS
2539
2540The function @code{yylex} must now recognize variables, numeric values, and
2541the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2542characters with a leading letter are recognized as either variables or
bfa74976
RS
2543functions depending on what the symbol table says about them.
2544
2545The string is passed to @code{getsym} for look up in the symbol table. If
2546the name appears in the table, a pointer to its location and its type
2547(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2548already in the table, then it is installed as a @code{VAR} using
2549@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2550returned to @code{yyparse}.
bfa74976
RS
2551
2552No change is needed in the handling of numeric values and arithmetic
2553operators in @code{yylex}.
2554
ea118b72
AD
2555@comment file: mfcalc.y
2556@example
bfa74976
RS
2557@group
2558#include <ctype.h>
18b519c0 2559@end group
13863333 2560
18b519c0 2561@group
13863333
AD
2562int
2563yylex (void)
bfa74976
RS
2564@{
2565 int c;
2566
72d2299c 2567 /* Ignore white space, get first nonwhite character. */
98842516
AD
2568 while ((c = getchar ()) == ' ' || c == '\t')
2569 continue;
bfa74976
RS
2570
2571 if (c == EOF)
2572 return 0;
2573@end group
2574
2575@group
2576 /* Char starts a number => parse the number. */
2577 if (c == '.' || isdigit (c))
2578 @{
2579 ungetc (c, stdin);
2580 scanf ("%lf", &yylval.val);
2581 return NUM;
2582 @}
2583@end group
2584
2585@group
2586 /* Char starts an identifier => read the name. */
2587 if (isalpha (c))
2588 @{
2c0f9706
AD
2589 /* Initially make the buffer long enough
2590 for a 40-character symbol name. */
2591 static size_t length = 40;
bfa74976 2592 static char *symbuf = 0;
2c0f9706 2593 symrec *s;
bfa74976
RS
2594 int i;
2595@end group
2596
2c0f9706
AD
2597 if (!symbuf)
2598 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2599
2600 i = 0;
2601 do
bfa74976
RS
2602@group
2603 @{
2604 /* If buffer is full, make it bigger. */
2605 if (i == length)
2606 @{
2607 length *= 2;
18b519c0 2608 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2609 @}
2610 /* Add this character to the buffer. */
2611 symbuf[i++] = c;
2612 /* Get another character. */
2613 c = getchar ();
2614 @}
2615@end group
2616@group
72d2299c 2617 while (isalnum (c));
bfa74976
RS
2618
2619 ungetc (c, stdin);
2620 symbuf[i] = '\0';
2621@end group
2622
2623@group
2624 s = getsym (symbuf);
2625 if (s == 0)
2626 s = putsym (symbuf, VAR);
2627 yylval.tptr = s;
2628 return s->type;
2629 @}
2630
2631 /* Any other character is a token by itself. */
2632 return c;
2633@}
2634@end group
ea118b72 2635@end example
bfa74976 2636
72d2299c 2637This program is both powerful and flexible. You may easily add new
704a47c4
AD
2638functions, and it is a simple job to modify this code to install
2639predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2640
342b8b6e 2641@node Exercises
bfa74976
RS
2642@section Exercises
2643@cindex exercises
2644
2645@enumerate
2646@item
2647Add some new functions from @file{math.h} to the initialization list.
2648
2649@item
2650Add another array that contains constants and their values. Then
2651modify @code{init_table} to add these constants to the symbol table.
2652It will be easiest to give the constants type @code{VAR}.
2653
2654@item
2655Make the program report an error if the user refers to an
2656uninitialized variable in any way except to store a value in it.
2657@end enumerate
2658
342b8b6e 2659@node Grammar File
bfa74976
RS
2660@chapter Bison Grammar Files
2661
2662Bison takes as input a context-free grammar specification and produces a
2663C-language function that recognizes correct instances of the grammar.
2664
9913d6e4 2665The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2666@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2667
2668@menu
7404cdf3
JD
2669* Grammar Outline:: Overall layout of the grammar file.
2670* Symbols:: Terminal and nonterminal symbols.
2671* Rules:: How to write grammar rules.
2672* Recursion:: Writing recursive rules.
2673* Semantics:: Semantic values and actions.
2674* Tracking Locations:: Locations and actions.
2675* Named References:: Using named references in actions.
2676* Declarations:: All kinds of Bison declarations are described here.
2677* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2678@end menu
2679
342b8b6e 2680@node Grammar Outline
bfa74976
RS
2681@section Outline of a Bison Grammar
2682
2683A Bison grammar file has four main sections, shown here with the
2684appropriate delimiters:
2685
2686@example
2687%@{
38a92d50 2688 @var{Prologue}
bfa74976
RS
2689%@}
2690
2691@var{Bison declarations}
2692
2693%%
2694@var{Grammar rules}
2695%%
2696
75f5aaea 2697@var{Epilogue}
bfa74976
RS
2698@end example
2699
2700Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
35430378 2701As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2702continues until end of line.
bfa74976
RS
2703
2704@menu
f56274a8 2705* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2706* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f56274a8
DJ
2707* Bison Declarations:: Syntax and usage of the Bison declarations section.
2708* Grammar Rules:: Syntax and usage of the grammar rules section.
2709* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2710@end menu
2711
38a92d50 2712@node Prologue
75f5aaea
MA
2713@subsection The prologue
2714@cindex declarations section
2715@cindex Prologue
2716@cindex declarations
bfa74976 2717
f8e1c9e5
AD
2718The @var{Prologue} section contains macro definitions and declarations
2719of functions and variables that are used in the actions in the grammar
9913d6e4
JD
2720rules. These are copied to the beginning of the parser implementation
2721file so that they precede the definition of @code{yyparse}. You can
2722use @samp{#include} to get the declarations from a header file. If
2723you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2724@samp{%@}} delimiters that bracket this section.
bfa74976 2725
9c437126 2726The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2727of @samp{%@}} that is outside a comment, a string literal, or a
2728character constant.
2729
c732d2c6
AD
2730You may have more than one @var{Prologue} section, intermixed with the
2731@var{Bison declarations}. This allows you to have C and Bison
2732declarations that refer to each other. For example, the @code{%union}
2733declaration may use types defined in a header file, and you may wish to
2734prototype functions that take arguments of type @code{YYSTYPE}. This
2735can be done with two @var{Prologue} blocks, one before and one after the
2736@code{%union} declaration.
2737
ea118b72 2738@example
c732d2c6 2739%@{
aef3da86 2740 #define _GNU_SOURCE
38a92d50
PE
2741 #include <stdio.h>
2742 #include "ptypes.h"
c732d2c6
AD
2743%@}
2744
2745%union @{
779e7ceb 2746 long int n;
c732d2c6
AD
2747 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2748@}
2749
2750%@{
38a92d50
PE
2751 static void print_token_value (FILE *, int, YYSTYPE);
2752 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2753%@}
2754
2755@dots{}
ea118b72 2756@end example
c732d2c6 2757
aef3da86
PE
2758When in doubt, it is usually safer to put prologue code before all
2759Bison declarations, rather than after. For example, any definitions
2760of feature test macros like @code{_GNU_SOURCE} or
2761@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2762feature test macros can affect the behavior of Bison-generated
2763@code{#include} directives.
2764
2cbe6b7f
JD
2765@node Prologue Alternatives
2766@subsection Prologue Alternatives
2767@cindex Prologue Alternatives
2768
136a0f76 2769@findex %code
16dc6a9e
JD
2770@findex %code requires
2771@findex %code provides
2772@findex %code top
85894313 2773
2cbe6b7f 2774The functionality of @var{Prologue} sections can often be subtle and
9913d6e4
JD
2775inflexible. As an alternative, Bison provides a @code{%code}
2776directive with an explicit qualifier field, which identifies the
2777purpose of the code and thus the location(s) where Bison should
2778generate it. For C/C++, the qualifier can be omitted for the default
2779location, or it can be one of @code{requires}, @code{provides},
8e6f2266 2780@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2781
2782Look again at the example of the previous section:
2783
ea118b72 2784@example
2cbe6b7f
JD
2785%@{
2786 #define _GNU_SOURCE
2787 #include <stdio.h>
2788 #include "ptypes.h"
2789%@}
2790
2791%union @{
2792 long int n;
2793 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2794@}
2795
2796%@{
2797 static void print_token_value (FILE *, int, YYSTYPE);
2798 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2799%@}
2800
2801@dots{}
ea118b72 2802@end example
2cbe6b7f
JD
2803
2804@noindent
9913d6e4
JD
2805Notice that there are two @var{Prologue} sections here, but there's a
2806subtle distinction between their functionality. For example, if you
2807decide to override Bison's default definition for @code{YYLTYPE}, in
2808which @var{Prologue} section should you write your new definition?
2809You should write it in the first since Bison will insert that code
2810into the parser implementation file @emph{before} the default
2811@code{YYLTYPE} definition. In which @var{Prologue} section should you
2812prototype an internal function, @code{trace_token}, that accepts
2813@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2814prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2815@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2816
2817This distinction in functionality between the two @var{Prologue} sections is
2818established by the appearance of the @code{%union} between them.
a501eca9 2819This behavior raises a few questions.
2cbe6b7f
JD
2820First, why should the position of a @code{%union} affect definitions related to
2821@code{YYLTYPE} and @code{yytokentype}?
2822Second, what if there is no @code{%union}?
2823In that case, the second kind of @var{Prologue} section is not available.
2824This behavior is not intuitive.
2825
8e0a5e9e 2826To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2827@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2828Let's go ahead and add the new @code{YYLTYPE} definition and the
2829@code{trace_token} prototype at the same time:
2830
ea118b72 2831@example
16dc6a9e 2832%code top @{
2cbe6b7f
JD
2833 #define _GNU_SOURCE
2834 #include <stdio.h>
8e0a5e9e
JD
2835
2836 /* WARNING: The following code really belongs
16dc6a9e 2837 * in a `%code requires'; see below. */
8e0a5e9e 2838
2cbe6b7f
JD
2839 #include "ptypes.h"
2840 #define YYLTYPE YYLTYPE
2841 typedef struct YYLTYPE
2842 @{
2843 int first_line;
2844 int first_column;
2845 int last_line;
2846 int last_column;
2847 char *filename;
2848 @} YYLTYPE;
2849@}
2850
2851%union @{
2852 long int n;
2853 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2854@}
2855
2856%code @{
2857 static void print_token_value (FILE *, int, YYSTYPE);
2858 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2859 static void trace_token (enum yytokentype token, YYLTYPE loc);
2860@}
2861
2862@dots{}
ea118b72 2863@end example
2cbe6b7f
JD
2864
2865@noindent
16dc6a9e
JD
2866In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2867functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2868explicit which kind you intend.
2cbe6b7f
JD
2869Moreover, both kinds are always available even in the absence of @code{%union}.
2870
9913d6e4
JD
2871The @code{%code top} block above logically contains two parts. The
2872first two lines before the warning need to appear near the top of the
2873parser implementation file. The first line after the warning is
2874required by @code{YYSTYPE} and thus also needs to appear in the parser
2875implementation file. However, if you've instructed Bison to generate
2876a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2877want that line to appear before the @code{YYSTYPE} definition in that
2878header file as well. The @code{YYLTYPE} definition should also appear
2879in the parser header file to override the default @code{YYLTYPE}
2880definition there.
2cbe6b7f 2881
16dc6a9e 2882In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2883lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2884definitions.
16dc6a9e 2885Thus, they belong in one or more @code{%code requires}:
9bc0dd67 2886
ea118b72 2887@example
98842516 2888@group
16dc6a9e 2889%code top @{
2cbe6b7f
JD
2890 #define _GNU_SOURCE
2891 #include <stdio.h>
2892@}
98842516 2893@end group
2cbe6b7f 2894
98842516 2895@group
16dc6a9e 2896%code requires @{
9bc0dd67
JD
2897 #include "ptypes.h"
2898@}
98842516
AD
2899@end group
2900@group
9bc0dd67
JD
2901%union @{
2902 long int n;
2903 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2904@}
98842516 2905@end group
9bc0dd67 2906
98842516 2907@group
16dc6a9e 2908%code requires @{
2cbe6b7f
JD
2909 #define YYLTYPE YYLTYPE
2910 typedef struct YYLTYPE
2911 @{
2912 int first_line;
2913 int first_column;
2914 int last_line;
2915 int last_column;
2916 char *filename;
2917 @} YYLTYPE;
2918@}
98842516 2919@end group
2cbe6b7f 2920
98842516 2921@group
136a0f76 2922%code @{
2cbe6b7f
JD
2923 static void print_token_value (FILE *, int, YYSTYPE);
2924 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2925 static void trace_token (enum yytokentype token, YYLTYPE loc);
2926@}
98842516 2927@end group
2cbe6b7f
JD
2928
2929@dots{}
ea118b72 2930@end example
2cbe6b7f
JD
2931
2932@noindent
9913d6e4
JD
2933Now Bison will insert @code{#include "ptypes.h"} and the new
2934@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2935and @code{YYLTYPE} definitions in both the parser implementation file
2936and the parser header file. (By the same reasoning, @code{%code
2937requires} would also be the appropriate place to write your own
2938definition for @code{YYSTYPE}.)
2939
2940When you are writing dependency code for @code{YYSTYPE} and
2941@code{YYLTYPE}, you should prefer @code{%code requires} over
2942@code{%code top} regardless of whether you instruct Bison to generate
2943a parser header file. When you are writing code that you need Bison
2944to insert only into the parser implementation file and that has no
2945special need to appear at the top of that file, you should prefer the
2946unqualified @code{%code} over @code{%code top}. These practices will
2947make the purpose of each block of your code explicit to Bison and to
2948other developers reading your grammar file. Following these
2949practices, we expect the unqualified @code{%code} and @code{%code
2950requires} to be the most important of the four @var{Prologue}
16dc6a9e 2951alternatives.
a501eca9 2952
9913d6e4
JD
2953At some point while developing your parser, you might decide to
2954provide @code{trace_token} to modules that are external to your
2955parser. Thus, you might wish for Bison to insert the prototype into
2956both the parser header file and the parser implementation file. Since
2957this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2958@code{YYLTYPE}, it doesn't make sense to move its prototype to a
9913d6e4
JD
2959@code{%code requires}. More importantly, since it depends upon
2960@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2961sufficient. Instead, move its prototype from the unqualified
2962@code{%code} to a @code{%code provides}:
2cbe6b7f 2963
ea118b72 2964@example
98842516 2965@group
16dc6a9e 2966%code top @{
2cbe6b7f 2967 #define _GNU_SOURCE
136a0f76 2968 #include <stdio.h>
2cbe6b7f 2969@}
98842516 2970@end group
136a0f76 2971
98842516 2972@group
16dc6a9e 2973%code requires @{
2cbe6b7f
JD
2974 #include "ptypes.h"
2975@}
98842516
AD
2976@end group
2977@group
2cbe6b7f
JD
2978%union @{
2979 long int n;
2980 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2981@}
98842516 2982@end group
2cbe6b7f 2983
98842516 2984@group
16dc6a9e 2985%code requires @{
2cbe6b7f
JD
2986 #define YYLTYPE YYLTYPE
2987 typedef struct YYLTYPE
2988 @{
2989 int first_line;
2990 int first_column;
2991 int last_line;
2992 int last_column;
2993 char *filename;
2994 @} YYLTYPE;
2995@}
98842516 2996@end group
2cbe6b7f 2997
98842516 2998@group
16dc6a9e 2999%code provides @{
2cbe6b7f
JD
3000 void trace_token (enum yytokentype token, YYLTYPE loc);
3001@}
98842516 3002@end group
2cbe6b7f 3003
98842516 3004@group
2cbe6b7f 3005%code @{
9bc0dd67
JD
3006 static void print_token_value (FILE *, int, YYSTYPE);
3007 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3008@}
98842516 3009@end group
9bc0dd67
JD
3010
3011@dots{}
ea118b72 3012@end example
9bc0dd67 3013
2cbe6b7f 3014@noindent
9913d6e4
JD
3015Bison will insert the @code{trace_token} prototype into both the
3016parser header file and the parser implementation file after the
3017definitions for @code{yytokentype}, @code{YYLTYPE}, and
3018@code{YYSTYPE}.
3019
3020The above examples are careful to write directives in an order that
3021reflects the layout of the generated parser implementation and header
3022files: @code{%code top}, @code{%code requires}, @code{%code provides},
3023and then @code{%code}. While your grammar files may generally be
3024easier to read if you also follow this order, Bison does not require
3025it. Instead, Bison lets you choose an organization that makes sense
3026to you.
2cbe6b7f 3027
a501eca9 3028You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3029In that case, Bison concatenates the contained code in declaration order.
3030This is the only way in which the position of one of these directives within
3031the grammar file affects its functionality.
3032
3033The result of the previous two properties is greater flexibility in how you may
3034organize your grammar file.
3035For example, you may organize semantic-type-related directives by semantic
3036type:
3037
ea118b72 3038@example
98842516 3039@group
16dc6a9e 3040%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3041%union @{ type1 field1; @}
3042%destructor @{ type1_free ($$); @} <field1>
3043%printer @{ type1_print ($$); @} <field1>
98842516 3044@end group
2cbe6b7f 3045
98842516 3046@group
16dc6a9e 3047%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3048%union @{ type2 field2; @}
3049%destructor @{ type2_free ($$); @} <field2>
3050%printer @{ type2_print ($$); @} <field2>
98842516 3051@end group
ea118b72 3052@end example
2cbe6b7f
JD
3053
3054@noindent
3055You could even place each of the above directive groups in the rules section of
3056the grammar file next to the set of rules that uses the associated semantic
3057type.
61fee93e
JD
3058(In the rules section, you must terminate each of those directives with a
3059semicolon.)
2cbe6b7f
JD
3060And you don't have to worry that some directive (like a @code{%union}) in the
3061definitions section is going to adversely affect their functionality in some
3062counter-intuitive manner just because it comes first.
3063Such an organization is not possible using @var{Prologue} sections.
3064
a501eca9 3065This section has been concerned with explaining the advantages of the four
8e0a5e9e 3066@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3067However, in most cases when using these directives, you shouldn't need to
3068think about all the low-level ordering issues discussed here.
3069Instead, you should simply use these directives to label each block of your
3070code according to its purpose and let Bison handle the ordering.
3071@code{%code} is the most generic label.
16dc6a9e
JD
3072Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3073as needed.
a501eca9 3074
342b8b6e 3075@node Bison Declarations
bfa74976
RS
3076@subsection The Bison Declarations Section
3077@cindex Bison declarations (introduction)
3078@cindex declarations, Bison (introduction)
3079
3080The @var{Bison declarations} section contains declarations that define
3081terminal and nonterminal symbols, specify precedence, and so on.
3082In some simple grammars you may not need any declarations.
3083@xref{Declarations, ,Bison Declarations}.
3084
342b8b6e 3085@node Grammar Rules
bfa74976
RS
3086@subsection The Grammar Rules Section
3087@cindex grammar rules section
3088@cindex rules section for grammar
3089
3090The @dfn{grammar rules} section contains one or more Bison grammar
3091rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3092
3093There must always be at least one grammar rule, and the first
3094@samp{%%} (which precedes the grammar rules) may never be omitted even
3095if it is the first thing in the file.
3096
38a92d50 3097@node Epilogue
75f5aaea 3098@subsection The epilogue
bfa74976 3099@cindex additional C code section
75f5aaea 3100@cindex epilogue
bfa74976
RS
3101@cindex C code, section for additional
3102
9913d6e4
JD
3103The @var{Epilogue} is copied verbatim to the end of the parser
3104implementation file, just as the @var{Prologue} is copied to the
3105beginning. This is the most convenient place to put anything that you
3106want to have in the parser implementation file but which need not come
3107before the definition of @code{yyparse}. For example, the definitions
3108of @code{yylex} and @code{yyerror} often go here. Because C requires
3109functions to be declared before being used, you often need to declare
3110functions like @code{yylex} and @code{yyerror} in the Prologue, even
3111if you define them in the Epilogue. @xref{Interface, ,Parser
3112C-Language Interface}.
bfa74976
RS
3113
3114If the last section is empty, you may omit the @samp{%%} that separates it
3115from the grammar rules.
3116
f8e1c9e5
AD
3117The Bison parser itself contains many macros and identifiers whose names
3118start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3119any such names (except those documented in this manual) in the epilogue
3120of the grammar file.
bfa74976 3121
342b8b6e 3122@node Symbols
bfa74976
RS
3123@section Symbols, Terminal and Nonterminal
3124@cindex nonterminal symbol
3125@cindex terminal symbol
3126@cindex token type
3127@cindex symbol
3128
3129@dfn{Symbols} in Bison grammars represent the grammatical classifications
3130of the language.
3131
3132A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3133class of syntactically equivalent tokens. You use the symbol in grammar
3134rules to mean that a token in that class is allowed. The symbol is
3135represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3136function returns a token type code to indicate what kind of token has
3137been read. You don't need to know what the code value is; you can use
3138the symbol to stand for it.
bfa74976 3139
f8e1c9e5
AD
3140A @dfn{nonterminal symbol} stands for a class of syntactically
3141equivalent groupings. The symbol name is used in writing grammar rules.
3142By convention, it should be all lower case.
bfa74976 3143
eb8c66bb
JD
3144Symbol names can contain letters, underscores, periods, and non-initial
3145digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3146with POSIX Yacc. Periods and dashes make symbol names less convenient to
3147use with named references, which require brackets around such names
3148(@pxref{Named References}). Terminal symbols that contain periods or dashes
3149make little sense: since they are not valid symbols (in most programming
3150languages) they are not exported as token names.
bfa74976 3151
931c7513 3152There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3153
3154@itemize @bullet
3155@item
3156A @dfn{named token type} is written with an identifier, like an
c827f760 3157identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3158such name must be defined with a Bison declaration such as
3159@code{%token}. @xref{Token Decl, ,Token Type Names}.
3160
3161@item
3162@cindex character token
3163@cindex literal token
3164@cindex single-character literal
931c7513
RS
3165A @dfn{character token type} (or @dfn{literal character token}) is
3166written in the grammar using the same syntax used in C for character
3167constants; for example, @code{'+'} is a character token type. A
3168character token type doesn't need to be declared unless you need to
3169specify its semantic value data type (@pxref{Value Type, ,Data Types of
3170Semantic Values}), associativity, or precedence (@pxref{Precedence,
3171,Operator Precedence}).
bfa74976
RS
3172
3173By convention, a character token type is used only to represent a
3174token that consists of that particular character. Thus, the token
3175type @code{'+'} is used to represent the character @samp{+} as a
3176token. Nothing enforces this convention, but if you depart from it,
3177your program will confuse other readers.
3178
3179All the usual escape sequences used in character literals in C can be
3180used in Bison as well, but you must not use the null character as a
72d2299c
PE
3181character literal because its numeric code, zero, signifies
3182end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3183for @code{yylex}}). Also, unlike standard C, trigraphs have no
3184special meaning in Bison character literals, nor is backslash-newline
3185allowed.
931c7513
RS
3186
3187@item
3188@cindex string token
3189@cindex literal string token
9ecbd125 3190@cindex multicharacter literal
931c7513
RS
3191A @dfn{literal string token} is written like a C string constant; for
3192example, @code{"<="} is a literal string token. A literal string token
3193doesn't need to be declared unless you need to specify its semantic
14ded682 3194value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3195(@pxref{Precedence}).
3196
3197You can associate the literal string token with a symbolic name as an
3198alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3199Declarations}). If you don't do that, the lexical analyzer has to
3200retrieve the token number for the literal string token from the
3201@code{yytname} table (@pxref{Calling Convention}).
3202
c827f760 3203@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3204
3205By convention, a literal string token is used only to represent a token
3206that consists of that particular string. Thus, you should use the token
3207type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3208does not enforce this convention, but if you depart from it, people who
931c7513
RS
3209read your program will be confused.
3210
3211All the escape sequences used in string literals in C can be used in
92ac3705
PE
3212Bison as well, except that you must not use a null character within a
3213string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3214meaning in Bison string literals, nor is backslash-newline allowed. A
3215literal string token must contain two or more characters; for a token
3216containing just one character, use a character token (see above).
bfa74976
RS
3217@end itemize
3218
3219How you choose to write a terminal symbol has no effect on its
3220grammatical meaning. That depends only on where it appears in rules and
3221on when the parser function returns that symbol.
3222
72d2299c
PE
3223The value returned by @code{yylex} is always one of the terminal
3224symbols, except that a zero or negative value signifies end-of-input.
3225Whichever way you write the token type in the grammar rules, you write
3226it the same way in the definition of @code{yylex}. The numeric code
3227for a character token type is simply the positive numeric code of the
3228character, so @code{yylex} can use the identical value to generate the
3229requisite code, though you may need to convert it to @code{unsigned
3230char} to avoid sign-extension on hosts where @code{char} is signed.
9913d6e4
JD
3231Each named token type becomes a C macro in the parser implementation
3232file, so @code{yylex} can use the name to stand for the code. (This
3233is why periods don't make sense in terminal symbols.) @xref{Calling
3234Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3235
3236If @code{yylex} is defined in a separate file, you need to arrange for the
3237token-type macro definitions to be available there. Use the @samp{-d}
3238option when you run Bison, so that it will write these macro definitions
3239into a separate header file @file{@var{name}.tab.h} which you can include
3240in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3241
72d2299c 3242If you want to write a grammar that is portable to any Standard C
9d9b8b70 3243host, you must use only nonnull character tokens taken from the basic
c827f760 3244execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3245digits, the 52 lower- and upper-case English letters, and the
3246characters in the following C-language string:
3247
3248@example
3249"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3250@end example
3251
f8e1c9e5
AD
3252The @code{yylex} function and Bison must use a consistent character set
3253and encoding for character tokens. For example, if you run Bison in an
35430378 3254ASCII environment, but then compile and run the resulting
f8e1c9e5 3255program in an environment that uses an incompatible character set like
35430378
JD
3256EBCDIC, the resulting program may not work because the tables
3257generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3258character tokens. It is standard practice for software distributions to
3259contain C source files that were generated by Bison in an
35430378
JD
3260ASCII environment, so installers on platforms that are
3261incompatible with ASCII must rebuild those files before
f8e1c9e5 3262compiling them.
e966383b 3263
bfa74976
RS
3264The symbol @code{error} is a terminal symbol reserved for error recovery
3265(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3266In particular, @code{yylex} should never return this value. The default
3267value of the error token is 256, unless you explicitly assigned 256 to
3268one of your tokens with a @code{%token} declaration.
bfa74976 3269
342b8b6e 3270@node Rules
bfa74976
RS
3271@section Syntax of Grammar Rules
3272@cindex rule syntax
3273@cindex grammar rule syntax
3274@cindex syntax of grammar rules
3275
3276A Bison grammar rule has the following general form:
3277
3278@example
e425e872 3279@group
de6be119 3280@var{result}: @var{components}@dots{};
e425e872 3281@end group
bfa74976
RS
3282@end example
3283
3284@noindent
9ecbd125 3285where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3286and @var{components} are various terminal and nonterminal symbols that
13863333 3287are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3288
3289For example,
3290
3291@example
3292@group
de6be119 3293exp: exp '+' exp;
bfa74976
RS
3294@end group
3295@end example
3296
3297@noindent
3298says that two groupings of type @code{exp}, with a @samp{+} token in between,
3299can be combined into a larger grouping of type @code{exp}.
3300
72d2299c
PE
3301White space in rules is significant only to separate symbols. You can add
3302extra white space as you wish.
bfa74976
RS
3303
3304Scattered among the components can be @var{actions} that determine
3305the semantics of the rule. An action looks like this:
3306
3307@example
3308@{@var{C statements}@}
3309@end example
3310
3311@noindent
287c78f6
PE
3312@cindex braced code
3313This is an example of @dfn{braced code}, that is, C code surrounded by
3314braces, much like a compound statement in C@. Braced code can contain
3315any sequence of C tokens, so long as its braces are balanced. Bison
3316does not check the braced code for correctness directly; it merely
9913d6e4
JD
3317copies the code to the parser implementation file, where the C
3318compiler can check it.
287c78f6
PE
3319
3320Within braced code, the balanced-brace count is not affected by braces
3321within comments, string literals, or character constants, but it is
3322affected by the C digraphs @samp{<%} and @samp{%>} that represent
3323braces. At the top level braced code must be terminated by @samp{@}}
3324and not by a digraph. Bison does not look for trigraphs, so if braced
3325code uses trigraphs you should ensure that they do not affect the
3326nesting of braces or the boundaries of comments, string literals, or
3327character constants.
3328
bfa74976
RS
3329Usually there is only one action and it follows the components.
3330@xref{Actions}.
3331
3332@findex |
3333Multiple rules for the same @var{result} can be written separately or can
3334be joined with the vertical-bar character @samp{|} as follows:
3335
bfa74976
RS
3336@example
3337@group
de6be119
AD
3338@var{result}:
3339 @var{rule1-components}@dots{}
3340| @var{rule2-components}@dots{}
3341@dots{}
3342;
bfa74976
RS
3343@end group
3344@end example
bfa74976
RS
3345
3346@noindent
3347They are still considered distinct rules even when joined in this way.
3348
3349If @var{components} in a rule is empty, it means that @var{result} can
3350match the empty string. For example, here is how to define a
3351comma-separated sequence of zero or more @code{exp} groupings:
3352
3353@example
3354@group
de6be119
AD
3355expseq:
3356 /* empty */
3357| expseq1
3358;
bfa74976
RS
3359@end group
3360
3361@group
de6be119
AD
3362expseq1:
3363 exp
3364| expseq1 ',' exp
3365;
bfa74976
RS
3366@end group
3367@end example
3368
3369@noindent
3370It is customary to write a comment @samp{/* empty */} in each rule
3371with no components.
3372
342b8b6e 3373@node Recursion
bfa74976
RS
3374@section Recursive Rules
3375@cindex recursive rule
3376
f8e1c9e5
AD
3377A rule is called @dfn{recursive} when its @var{result} nonterminal
3378appears also on its right hand side. Nearly all Bison grammars need to
3379use recursion, because that is the only way to define a sequence of any
3380number of a particular thing. Consider this recursive definition of a
9ecbd125 3381comma-separated sequence of one or more expressions:
bfa74976
RS
3382
3383@example
3384@group
de6be119
AD
3385expseq1:
3386 exp
3387| expseq1 ',' exp
3388;
bfa74976
RS
3389@end group
3390@end example
3391
3392@cindex left recursion
3393@cindex right recursion
3394@noindent
3395Since the recursive use of @code{expseq1} is the leftmost symbol in the
3396right hand side, we call this @dfn{left recursion}. By contrast, here
3397the same construct is defined using @dfn{right recursion}:
3398
3399@example
3400@group
de6be119
AD
3401expseq1:
3402 exp
3403| exp ',' expseq1
3404;
bfa74976
RS
3405@end group
3406@end example
3407
3408@noindent
ec3bc396
AD
3409Any kind of sequence can be defined using either left recursion or right
3410recursion, but you should always use left recursion, because it can
3411parse a sequence of any number of elements with bounded stack space.
3412Right recursion uses up space on the Bison stack in proportion to the
3413number of elements in the sequence, because all the elements must be
3414shifted onto the stack before the rule can be applied even once.
3415@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3416of this.
bfa74976
RS
3417
3418@cindex mutual recursion
3419@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3420rule does not appear directly on its right hand side, but does appear
3421in rules for other nonterminals which do appear on its right hand
13863333 3422side.
bfa74976
RS
3423
3424For example:
3425
3426@example
3427@group
de6be119
AD
3428expr:
3429 primary
3430| primary '+' primary
3431;
bfa74976
RS
3432@end group
3433
3434@group
de6be119
AD
3435primary:
3436 constant
3437| '(' expr ')'
3438;
bfa74976
RS
3439@end group
3440@end example
3441
3442@noindent
3443defines two mutually-recursive nonterminals, since each refers to the
3444other.
3445
342b8b6e 3446@node Semantics
bfa74976
RS
3447@section Defining Language Semantics
3448@cindex defining language semantics
13863333 3449@cindex language semantics, defining
bfa74976
RS
3450
3451The grammar rules for a language determine only the syntax. The semantics
3452are determined by the semantic values associated with various tokens and
3453groupings, and by the actions taken when various groupings are recognized.
3454
3455For example, the calculator calculates properly because the value
3456associated with each expression is the proper number; it adds properly
3457because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3458the numbers associated with @var{x} and @var{y}.
3459
3460@menu
3461* Value Type:: Specifying one data type for all semantic values.
3462* Multiple Types:: Specifying several alternative data types.
3463* Actions:: An action is the semantic definition of a grammar rule.
3464* Action Types:: Specifying data types for actions to operate on.
3465* Mid-Rule Actions:: Most actions go at the end of a rule.
3466 This says when, why and how to use the exceptional
3467 action in the middle of a rule.
3468@end menu
3469
342b8b6e 3470@node Value Type
bfa74976
RS
3471@subsection Data Types of Semantic Values
3472@cindex semantic value type
3473@cindex value type, semantic
3474@cindex data types of semantic values
3475@cindex default data type
3476
3477In a simple program it may be sufficient to use the same data type for
3478the semantic values of all language constructs. This was true in the
35430378 3479RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3480Notation Calculator}).
bfa74976 3481
ddc8ede1
PE
3482Bison normally uses the type @code{int} for semantic values if your
3483program uses the same data type for all language constructs. To
bfa74976
RS
3484specify some other type, define @code{YYSTYPE} as a macro, like this:
3485
3486@example
3487#define YYSTYPE double
3488@end example
3489
3490@noindent
50cce58e
PE
3491@code{YYSTYPE}'s replacement list should be a type name
3492that does not contain parentheses or square brackets.
342b8b6e 3493This macro definition must go in the prologue of the grammar file
75f5aaea 3494(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3495
342b8b6e 3496@node Multiple Types
bfa74976
RS
3497@subsection More Than One Value Type
3498
3499In most programs, you will need different data types for different kinds
3500of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3501@code{int} or @code{long int}, while a string constant needs type
3502@code{char *}, and an identifier might need a pointer to an entry in the
3503symbol table.
bfa74976
RS
3504
3505To use more than one data type for semantic values in one parser, Bison
3506requires you to do two things:
3507
3508@itemize @bullet
3509@item
ddc8ede1 3510Specify the entire collection of possible data types, either by using the
704a47c4 3511@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3512Value Types}), or by using a @code{typedef} or a @code{#define} to
3513define @code{YYSTYPE} to be a union type whose member names are
3514the type tags.
bfa74976
RS
3515
3516@item
14ded682
AD
3517Choose one of those types for each symbol (terminal or nonterminal) for
3518which semantic values are used. This is done for tokens with the
3519@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3520and for groupings with the @code{%type} Bison declaration (@pxref{Type
3521Decl, ,Nonterminal Symbols}).
bfa74976
RS
3522@end itemize
3523
342b8b6e 3524@node Actions
bfa74976
RS
3525@subsection Actions
3526@cindex action
3527@vindex $$
3528@vindex $@var{n}
1f68dca5
AR
3529@vindex $@var{name}
3530@vindex $[@var{name}]
bfa74976
RS
3531
3532An action accompanies a syntactic rule and contains C code to be executed
3533each time an instance of that rule is recognized. The task of most actions
3534is to compute a semantic value for the grouping built by the rule from the
3535semantic values associated with tokens or smaller groupings.
3536
287c78f6
PE
3537An action consists of braced code containing C statements, and can be
3538placed at any position in the rule;
704a47c4
AD
3539it is executed at that position. Most rules have just one action at the
3540end of the rule, following all the components. Actions in the middle of
3541a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3542Actions, ,Actions in Mid-Rule}).
bfa74976 3543
9913d6e4
JD
3544The C code in an action can refer to the semantic values of the
3545components matched by the rule with the construct @code{$@var{n}},
3546which stands for the value of the @var{n}th component. The semantic
3547value for the grouping being constructed is @code{$$}. In addition,
3548the semantic values of symbols can be accessed with the named
3549references construct @code{$@var{name}} or @code{$[@var{name}]}.
3550Bison translates both of these constructs into expressions of the
3551appropriate type when it copies the actions into the parser
3552implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3553for the current grouping) is translated to a modifiable lvalue, so it
3554can be assigned to.
bfa74976
RS
3555
3556Here is a typical example:
3557
3558@example
3559@group
de6be119
AD
3560exp:
3561@dots{}
3562| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3563@end group
3564@end example
3565
1f68dca5
AR
3566Or, in terms of named references:
3567
3568@example
3569@group
de6be119
AD
3570exp[result]:
3571@dots{}
3572| exp[left] '+' exp[right] @{ $result = $left + $right; @}
1f68dca5
AR
3573@end group
3574@end example
3575
bfa74976
RS
3576@noindent
3577This rule constructs an @code{exp} from two smaller @code{exp} groupings
3578connected by a plus-sign token. In the action, @code{$1} and @code{$3}
1f68dca5 3579(@code{$left} and @code{$right})
bfa74976
RS
3580refer to the semantic values of the two component @code{exp} groupings,
3581which are the first and third symbols on the right hand side of the rule.
1f68dca5
AR
3582The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3583semantic value of
bfa74976
RS
3584the addition-expression just recognized by the rule. If there were a
3585useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3586referred to as @code{$2}.
bfa74976 3587
ce24f7f5
JD
3588@xref{Named References}, for more information about using the named
3589references construct.
1f68dca5 3590
3ded9a63
AD
3591Note that the vertical-bar character @samp{|} is really a rule
3592separator, and actions are attached to a single rule. This is a
3593difference with tools like Flex, for which @samp{|} stands for either
3594``or'', or ``the same action as that of the next rule''. In the
3595following example, the action is triggered only when @samp{b} is found:
3596
3597@example
3598@group
3599a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3600@end group
3601@end example
3602
bfa74976
RS
3603@cindex default action
3604If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3605@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3606becomes the value of the whole rule. Of course, the default action is
3607valid only if the two data types match. There is no meaningful default
3608action for an empty rule; every empty rule must have an explicit action
3609unless the rule's value does not matter.
bfa74976
RS
3610
3611@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3612to tokens and groupings on the stack @emph{before} those that match the
3613current rule. This is a very risky practice, and to use it reliably
3614you must be certain of the context in which the rule is applied. Here
3615is a case in which you can use this reliably:
3616
3617@example
3618@group
de6be119
AD
3619foo:
3620 expr bar '+' expr @{ @dots{} @}
3621| expr bar '-' expr @{ @dots{} @}
3622;
bfa74976
RS
3623@end group
3624
3625@group
de6be119
AD
3626bar:
3627 /* empty */ @{ previous_expr = $0; @}
3628;
bfa74976
RS
3629@end group
3630@end example
3631
3632As long as @code{bar} is used only in the fashion shown here, @code{$0}
3633always refers to the @code{expr} which precedes @code{bar} in the
3634definition of @code{foo}.
3635
32c29292 3636@vindex yylval
742e4900 3637It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3638any, from a semantic action.
3639This semantic value is stored in @code{yylval}.
3640@xref{Action Features, ,Special Features for Use in Actions}.
3641
342b8b6e 3642@node Action Types
bfa74976
RS
3643@subsection Data Types of Values in Actions
3644@cindex action data types
3645@cindex data types in actions
3646
3647If you have chosen a single data type for semantic values, the @code{$$}
3648and @code{$@var{n}} constructs always have that data type.
3649
3650If you have used @code{%union} to specify a variety of data types, then you
3651must declare a choice among these types for each terminal or nonterminal
3652symbol that can have a semantic value. Then each time you use @code{$$} or
3653@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3654in the rule. In this example,
bfa74976
RS
3655
3656@example
3657@group
de6be119
AD
3658exp:
3659 @dots{}
3660| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3661@end group
3662@end example
3663
3664@noindent
3665@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3666have the data type declared for the nonterminal symbol @code{exp}. If
3667@code{$2} were used, it would have the data type declared for the
e0c471a9 3668terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3669
3670Alternatively, you can specify the data type when you refer to the value,
3671by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3672reference. For example, if you have defined types as shown here:
3673
3674@example
3675@group
3676%union @{
3677 int itype;
3678 double dtype;
3679@}
3680@end group
3681@end example
3682
3683@noindent
3684then you can write @code{$<itype>1} to refer to the first subunit of the
3685rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3686
342b8b6e 3687@node Mid-Rule Actions
bfa74976
RS
3688@subsection Actions in Mid-Rule
3689@cindex actions in mid-rule
3690@cindex mid-rule actions
3691
3692Occasionally it is useful to put an action in the middle of a rule.
3693These actions are written just like usual end-of-rule actions, but they
3694are executed before the parser even recognizes the following components.
3695
3696A mid-rule action may refer to the components preceding it using
3697@code{$@var{n}}, but it may not refer to subsequent components because
3698it is run before they are parsed.
3699
3700The mid-rule action itself counts as one of the components of the rule.
3701This makes a difference when there is another action later in the same rule
3702(and usually there is another at the end): you have to count the actions
3703along with the symbols when working out which number @var{n} to use in
3704@code{$@var{n}}.
3705
3706The mid-rule action can also have a semantic value. The action can set
3707its value with an assignment to @code{$$}, and actions later in the rule
3708can refer to the value using @code{$@var{n}}. Since there is no symbol
3709to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3710in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3711specify a data type each time you refer to this value.
bfa74976
RS
3712
3713There is no way to set the value of the entire rule with a mid-rule
3714action, because assignments to @code{$$} do not have that effect. The
3715only way to set the value for the entire rule is with an ordinary action
3716at the end of the rule.
3717
3718Here is an example from a hypothetical compiler, handling a @code{let}
3719statement that looks like @samp{let (@var{variable}) @var{statement}} and
3720serves to create a variable named @var{variable} temporarily for the
3721duration of @var{statement}. To parse this construct, we must put
3722@var{variable} into the symbol table while @var{statement} is parsed, then
3723remove it afterward. Here is how it is done:
3724
3725@example
3726@group
de6be119
AD
3727stmt:
3728 LET '(' var ')'
3729 @{ $<context>$ = push_context (); declare_variable ($3); @}
3730 stmt
3731 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3732@end group
3733@end example
3734
3735@noindent
3736As soon as @samp{let (@var{variable})} has been recognized, the first
3737action is run. It saves a copy of the current semantic context (the
3738list of accessible variables) as its semantic value, using alternative
3739@code{context} in the data-type union. Then it calls
3740@code{declare_variable} to add the new variable to that list. Once the
3741first action is finished, the embedded statement @code{stmt} can be
3742parsed. Note that the mid-rule action is component number 5, so the
3743@samp{stmt} is component number 6.
3744
3745After the embedded statement is parsed, its semantic value becomes the
3746value of the entire @code{let}-statement. Then the semantic value from the
3747earlier action is used to restore the prior list of variables. This
3748removes the temporary @code{let}-variable from the list so that it won't
3749appear to exist while the rest of the program is parsed.
3750
841a7737
JD
3751@findex %destructor
3752@cindex discarded symbols, mid-rule actions
3753@cindex error recovery, mid-rule actions
3754In the above example, if the parser initiates error recovery (@pxref{Error
3755Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3756it might discard the previous semantic context @code{$<context>5} without
3757restoring it.
3758Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3759Discarded Symbols}).
ec5479ce
JD
3760However, Bison currently provides no means to declare a destructor specific to
3761a particular mid-rule action's semantic value.
841a7737
JD
3762
3763One solution is to bury the mid-rule action inside a nonterminal symbol and to
3764declare a destructor for that symbol:
3765
3766@example
3767@group
3768%type <context> let
3769%destructor @{ pop_context ($$); @} let
3770
3771%%
3772
de6be119
AD
3773stmt:
3774 let stmt
3775 @{
3776 $$ = $2;
3777 pop_context ($1);
3778 @};
841a7737 3779
de6be119
AD
3780let:
3781 LET '(' var ')'
3782 @{
3783 $$ = push_context ();
3784 declare_variable ($3);
3785 @};
841a7737
JD
3786
3787@end group
3788@end example
3789
3790@noindent
3791Note that the action is now at the end of its rule.
3792Any mid-rule action can be converted to an end-of-rule action in this way, and
3793this is what Bison actually does to implement mid-rule actions.
3794
bfa74976
RS
3795Taking action before a rule is completely recognized often leads to
3796conflicts since the parser must commit to a parse in order to execute the
3797action. For example, the following two rules, without mid-rule actions,
3798can coexist in a working parser because the parser can shift the open-brace
3799token and look at what follows before deciding whether there is a
3800declaration or not:
3801
3802@example
3803@group
de6be119
AD
3804compound:
3805 '@{' declarations statements '@}'
3806| '@{' statements '@}'
3807;
bfa74976
RS
3808@end group
3809@end example
3810
3811@noindent
3812But when we add a mid-rule action as follows, the rules become nonfunctional:
3813
3814@example
3815@group
de6be119
AD
3816compound:
3817 @{ prepare_for_local_variables (); @}
3818 '@{' declarations statements '@}'
bfa74976
RS
3819@end group
3820@group
de6be119
AD
3821| '@{' statements '@}'
3822;
bfa74976
RS
3823@end group
3824@end example
3825
3826@noindent
3827Now the parser is forced to decide whether to run the mid-rule action
3828when it has read no farther than the open-brace. In other words, it
3829must commit to using one rule or the other, without sufficient
3830information to do it correctly. (The open-brace token is what is called
742e4900
JD
3831the @dfn{lookahead} token at this time, since the parser is still
3832deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3833
3834You might think that you could correct the problem by putting identical
3835actions into the two rules, like this:
3836
3837@example
3838@group
de6be119
AD
3839compound:
3840 @{ prepare_for_local_variables (); @}
3841 '@{' declarations statements '@}'
3842| @{ prepare_for_local_variables (); @}
3843 '@{' statements '@}'
3844;
bfa74976
RS
3845@end group
3846@end example
3847
3848@noindent
3849But this does not help, because Bison does not realize that the two actions
3850are identical. (Bison never tries to understand the C code in an action.)
3851
3852If the grammar is such that a declaration can be distinguished from a
3853statement by the first token (which is true in C), then one solution which
3854does work is to put the action after the open-brace, like this:
3855
3856@example
3857@group
de6be119
AD
3858compound:
3859 '@{' @{ prepare_for_local_variables (); @}
3860 declarations statements '@}'
3861| '@{' statements '@}'
3862;
bfa74976
RS
3863@end group
3864@end example
3865
3866@noindent
3867Now the first token of the following declaration or statement,
3868which would in any case tell Bison which rule to use, can still do so.
3869
3870Another solution is to bury the action inside a nonterminal symbol which
3871serves as a subroutine:
3872
3873@example
3874@group
de6be119
AD
3875subroutine:
3876 /* empty */ @{ prepare_for_local_variables (); @}
3877;
bfa74976
RS
3878@end group
3879
3880@group
de6be119
AD
3881compound:
3882 subroutine '@{' declarations statements '@}'
3883| subroutine '@{' statements '@}'
3884;
bfa74976
RS
3885@end group
3886@end example
3887
3888@noindent
3889Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3890deciding which rule for @code{compound} it will eventually use.
bfa74976 3891
7404cdf3 3892@node Tracking Locations
847bf1f5
AD
3893@section Tracking Locations
3894@cindex location
95923bd6
AD
3895@cindex textual location
3896@cindex location, textual
847bf1f5
AD
3897
3898Though grammar rules and semantic actions are enough to write a fully
72d2299c 3899functional parser, it can be useful to process some additional information,
3e259915
MA
3900especially symbol locations.
3901
704a47c4
AD
3902The way locations are handled is defined by providing a data type, and
3903actions to take when rules are matched.
847bf1f5
AD
3904
3905@menu
3906* Location Type:: Specifying a data type for locations.
3907* Actions and Locations:: Using locations in actions.
3908* Location Default Action:: Defining a general way to compute locations.
3909@end menu
3910
342b8b6e 3911@node Location Type
847bf1f5
AD
3912@subsection Data Type of Locations
3913@cindex data type of locations
3914@cindex default location type
3915
3916Defining a data type for locations is much simpler than for semantic values,
3917since all tokens and groupings always use the same type.
3918
50cce58e
PE
3919You can specify the type of locations by defining a macro called
3920@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3921defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3922When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3923four members:
3924
3925@example
6273355b 3926typedef struct YYLTYPE
847bf1f5
AD
3927@{
3928 int first_line;
3929 int first_column;
3930 int last_line;
3931 int last_column;
6273355b 3932@} YYLTYPE;
847bf1f5
AD
3933@end example
3934
8fbbeba2
AD
3935When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3936initializes all these fields to 1 for @code{yylloc}. To initialize
3937@code{yylloc} with a custom location type (or to chose a different
3938initialization), use the @code{%initial-action} directive. @xref{Initial
3939Action Decl, , Performing Actions before Parsing}.
cd48d21d 3940
342b8b6e 3941@node Actions and Locations
847bf1f5
AD
3942@subsection Actions and Locations
3943@cindex location actions
3944@cindex actions, location
3945@vindex @@$
3946@vindex @@@var{n}
1f68dca5
AR
3947@vindex @@@var{name}
3948@vindex @@[@var{name}]
847bf1f5
AD
3949
3950Actions are not only useful for defining language semantics, but also for
3951describing the behavior of the output parser with locations.
3952
3953The most obvious way for building locations of syntactic groupings is very
72d2299c 3954similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3955constructs can be used to access the locations of the elements being matched.
3956The location of the @var{n}th component of the right hand side is
3957@code{@@@var{n}}, while the location of the left hand side grouping is
3958@code{@@$}.
3959
1f68dca5
AR
3960In addition, the named references construct @code{@@@var{name}} and
3961@code{@@[@var{name}]} may also be used to address the symbol locations.
ce24f7f5
JD
3962@xref{Named References}, for more information about using the named
3963references construct.
1f68dca5 3964
3e259915 3965Here is a basic example using the default data type for locations:
847bf1f5
AD
3966
3967@example
3968@group
de6be119
AD
3969exp:
3970 @dots{}
3971| exp '/' exp
3972 @{
3973 @@$.first_column = @@1.first_column;
3974 @@$.first_line = @@1.first_line;
3975 @@$.last_column = @@3.last_column;
3976 @@$.last_line = @@3.last_line;
3977 if ($3)
3978 $$ = $1 / $3;
3979 else
3980 @{
3981 $$ = 1;
3982 fprintf (stderr,
3983 "Division by zero, l%d,c%d-l%d,c%d",
3984 @@3.first_line, @@3.first_column,
3985 @@3.last_line, @@3.last_column);
3986 @}
3987 @}
847bf1f5
AD
3988@end group
3989@end example
3990
3e259915 3991As for semantic values, there is a default action for locations that is
72d2299c 3992run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3993beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3994last symbol.
3e259915 3995
72d2299c 3996With this default action, the location tracking can be fully automatic. The
3e259915
MA
3997example above simply rewrites this way:
3998
3999@example
4000@group
de6be119
AD
4001exp:
4002 @dots{}
4003| exp '/' exp
4004 @{
4005 if ($3)
4006 $$ = $1 / $3;
4007 else
4008 @{
4009 $$ = 1;
4010 fprintf (stderr,
4011 "Division by zero, l%d,c%d-l%d,c%d",
4012 @@3.first_line, @@3.first_column,
4013 @@3.last_line, @@3.last_column);
4014 @}
4015 @}
3e259915
MA
4016@end group
4017@end example
847bf1f5 4018
32c29292 4019@vindex yylloc
742e4900 4020It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4021from a semantic action.
4022This location is stored in @code{yylloc}.
4023@xref{Action Features, ,Special Features for Use in Actions}.
4024
342b8b6e 4025@node Location Default Action
847bf1f5
AD
4026@subsection Default Action for Locations
4027@vindex YYLLOC_DEFAULT
35430378 4028@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4029
72d2299c 4030Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4031locations are much more general than semantic values, there is room in
4032the output parser to redefine the default action to take for each
72d2299c 4033rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4034matched, before the associated action is run. It is also invoked
4035while processing a syntax error, to compute the error's location.
35430378 4036Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4037parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4038of that ambiguity.
847bf1f5 4039
3e259915 4040Most of the time, this macro is general enough to suppress location
79282c6c 4041dedicated code from semantic actions.
847bf1f5 4042
72d2299c 4043The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4044the location of the grouping (the result of the computation). When a
766de5eb 4045rule is matched, the second parameter identifies locations of
96b93a3d 4046all right hand side elements of the rule being matched, and the third
8710fc41 4047parameter is the size of the rule's right hand side.
35430378 4048When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4049right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4050When processing a syntax error, the second parameter identifies locations
4051of the symbols that were discarded during error processing, and the third
96b93a3d 4052parameter is the number of discarded symbols.
847bf1f5 4053
766de5eb 4054By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4055
ea118b72 4056@example
847bf1f5 4057@group
ea118b72
AD
4058# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4059do \
4060 if (N) \
4061 @{ \
4062 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4063 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4064 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4065 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4066 @} \
4067 else \
4068 @{ \
4069 (Cur).first_line = (Cur).last_line = \
4070 YYRHSLOC(Rhs, 0).last_line; \
4071 (Cur).first_column = (Cur).last_column = \
4072 YYRHSLOC(Rhs, 0).last_column; \
4073 @} \
4074while (0)
847bf1f5 4075@end group
ea118b72 4076@end example
676385e2 4077
2c0f9706 4078@noindent
766de5eb
PE
4079where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4080in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4081just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4082
3e259915 4083When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4084
3e259915 4085@itemize @bullet
79282c6c 4086@item
72d2299c 4087All arguments are free of side-effects. However, only the first one (the
3e259915 4088result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4089
3e259915 4090@item
766de5eb
PE
4091For consistency with semantic actions, valid indexes within the
4092right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4093valid index, and it refers to the symbol just before the reduction.
4094During error processing @var{n} is always positive.
0ae99356
PE
4095
4096@item
4097Your macro should parenthesize its arguments, if need be, since the
4098actual arguments may not be surrounded by parentheses. Also, your
4099macro should expand to something that can be used as a single
4100statement when it is followed by a semicolon.
3e259915 4101@end itemize
847bf1f5 4102
908c8647 4103@node Named References
ce24f7f5 4104@section Named References
908c8647
JD
4105@cindex named references
4106
7d31f092
JD
4107As described in the preceding sections, the traditional way to refer to any
4108semantic value or location is a @dfn{positional reference}, which takes the
4109form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4110such a reference is not very descriptive. Moreover, if you later decide to
4111insert or remove symbols in the right-hand side of a grammar rule, the need
4112to renumber such references can be tedious and error-prone.
4113
4114To avoid these issues, you can also refer to a semantic value or location
4115using a @dfn{named reference}. First of all, original symbol names may be
4116used as named references. For example:
908c8647
JD
4117
4118@example
4119@group
4120invocation: op '(' args ')'
4121 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4122@end group
4123@end example
4124
4125@noindent
7d31f092 4126Positional and named references can be mixed arbitrarily. For example:
908c8647
JD
4127
4128@example
4129@group
4130invocation: op '(' args ')'
4131 @{ $$ = new_invocation ($op, $args, @@$); @}
4132@end group
4133@end example
4134
4135@noindent
4136However, sometimes regular symbol names are not sufficient due to
4137ambiguities:
4138
4139@example
4140@group
4141exp: exp '/' exp
4142 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4143
4144exp: exp '/' exp
4145 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4146
4147exp: exp '/' exp
4148 @{ $$ = $1 / $3; @} // No error.
4149@end group
4150@end example
4151
4152@noindent
4153When ambiguity occurs, explicitly declared names may be used for values and
4154locations. Explicit names are declared as a bracketed name after a symbol
4155appearance in rule definitions. For example:
4156@example
4157@group
4158exp[result]: exp[left] '/' exp[right]
4159 @{ $result = $left / $right; @}
4160@end group
4161@end example
4162
4163@noindent
ce24f7f5
JD
4164In order to access a semantic value generated by a mid-rule action, an
4165explicit name may also be declared by putting a bracketed name after the
4166closing brace of the mid-rule action code:
908c8647
JD
4167@example
4168@group
4169exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4170 @{ $res = $left + $right; @}
4171@end group
4172@end example
4173
4174@noindent
4175
4176In references, in order to specify names containing dots and dashes, an explicit
4177bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4178@example
4179@group
14f4455e 4180if-stmt: "if" '(' expr ')' "then" then.stmt ';'
908c8647
JD
4181 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4182@end group
4183@end example
4184
4185It often happens that named references are followed by a dot, dash or other
4186C punctuation marks and operators. By default, Bison will read
ce24f7f5
JD
4187@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4188@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4189value. In order to force Bison to recognize @samp{name.suffix} in its
4190entirety as the name of a semantic value, the bracketed syntax
4191@samp{$[name.suffix]} must be used.
4192
4193The named references feature is experimental. More user feedback will help
4194to stabilize it.
908c8647 4195
342b8b6e 4196@node Declarations
bfa74976
RS
4197@section Bison Declarations
4198@cindex declarations, Bison
4199@cindex Bison declarations
4200
4201The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4202used in formulating the grammar and the data types of semantic values.
4203@xref{Symbols}.
4204
4205All token type names (but not single-character literal tokens such as
4206@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4207declared if you need to specify which data type to use for the semantic
4208value (@pxref{Multiple Types, ,More Than One Value Type}).
4209
9913d6e4
JD
4210The first rule in the grammar file also specifies the start symbol, by
4211default. If you want some other symbol to be the start symbol, you
4212must declare it explicitly (@pxref{Language and Grammar, ,Languages
4213and Context-Free Grammars}).
bfa74976
RS
4214
4215@menu
b50d2359 4216* Require Decl:: Requiring a Bison version.
bfa74976
RS
4217* Token Decl:: Declaring terminal symbols.
4218* Precedence Decl:: Declaring terminals with precedence and associativity.
4219* Union Decl:: Declaring the set of all semantic value types.
4220* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4221* Initial Action Decl:: Code run before parsing starts.
72f889cc 4222* Destructor Decl:: Declaring how symbols are freed.
d6328241 4223* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4224* Start Decl:: Specifying the start symbol.
4225* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4226* Push Decl:: Requesting a push parser.
bfa74976 4227* Decl Summary:: Table of all Bison declarations.
2f4518a1 4228* %define Summary:: Defining variables to adjust Bison's behavior.
8e6f2266 4229* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4230@end menu
4231
b50d2359
AD
4232@node Require Decl
4233@subsection Require a Version of Bison
4234@cindex version requirement
4235@cindex requiring a version of Bison
4236@findex %require
4237
4238You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4239the requirement is not met, @command{bison} exits with an error (exit
4240status 63).
b50d2359
AD
4241
4242@example
4243%require "@var{version}"
4244@end example
4245
342b8b6e 4246@node Token Decl
bfa74976
RS
4247@subsection Token Type Names
4248@cindex declaring token type names
4249@cindex token type names, declaring
931c7513 4250@cindex declaring literal string tokens
bfa74976
RS
4251@findex %token
4252
4253The basic way to declare a token type name (terminal symbol) is as follows:
4254
4255@example
4256%token @var{name}
4257@end example
4258
4259Bison will convert this into a @code{#define} directive in
4260the parser, so that the function @code{yylex} (if it is in this file)
4261can use the name @var{name} to stand for this token type's code.
4262
14ded682
AD
4263Alternatively, you can use @code{%left}, @code{%right}, or
4264@code{%nonassoc} instead of @code{%token}, if you wish to specify
4265associativity and precedence. @xref{Precedence Decl, ,Operator
4266Precedence}.
bfa74976
RS
4267
4268You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4269a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4270following the token name:
bfa74976
RS
4271
4272@example
4273%token NUM 300
1452af69 4274%token XNUM 0x12d // a GNU extension
bfa74976
RS
4275@end example
4276
4277@noindent
4278It is generally best, however, to let Bison choose the numeric codes for
4279all token types. Bison will automatically select codes that don't conflict
e966383b 4280with each other or with normal characters.
bfa74976
RS
4281
4282In the event that the stack type is a union, you must augment the
4283@code{%token} or other token declaration to include the data type
704a47c4
AD
4284alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4285Than One Value Type}).
bfa74976
RS
4286
4287For example:
4288
4289@example
4290@group
4291%union @{ /* define stack type */
4292 double val;
4293 symrec *tptr;
4294@}
4295%token <val> NUM /* define token NUM and its type */
4296@end group
4297@end example
4298
931c7513
RS
4299You can associate a literal string token with a token type name by
4300writing the literal string at the end of a @code{%token}
4301declaration which declares the name. For example:
4302
4303@example
4304%token arrow "=>"
4305@end example
4306
4307@noindent
4308For example, a grammar for the C language might specify these names with
4309equivalent literal string tokens:
4310
4311@example
4312%token <operator> OR "||"
4313%token <operator> LE 134 "<="
4314%left OR "<="
4315@end example
4316
4317@noindent
4318Once you equate the literal string and the token name, you can use them
4319interchangeably in further declarations or the grammar rules. The
4320@code{yylex} function can use the token name or the literal string to
4321obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4322Syntax error messages passed to @code{yyerror} from the parser will reference
4323the literal string instead of the token name.
4324
4325The token numbered as 0 corresponds to end of file; the following line
4326allows for nicer error messages referring to ``end of file'' instead
4327of ``$end'':
4328
4329@example
4330%token END 0 "end of file"
4331@end example
931c7513 4332
342b8b6e 4333@node Precedence Decl
bfa74976
RS
4334@subsection Operator Precedence
4335@cindex precedence declarations
4336@cindex declaring operator precedence
4337@cindex operator precedence, declaring
4338
4339Use the @code{%left}, @code{%right} or @code{%nonassoc} declaration to
4340declare a token and specify its precedence and associativity, all at
4341once. These are called @dfn{precedence declarations}.
704a47c4
AD
4342@xref{Precedence, ,Operator Precedence}, for general information on
4343operator precedence.
bfa74976 4344
ab7f29f8 4345The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4346@code{%token}: either
4347
4348@example
4349%left @var{symbols}@dots{}
4350@end example
4351
4352@noindent
4353or
4354
4355@example
4356%left <@var{type}> @var{symbols}@dots{}
4357@end example
4358
4359And indeed any of these declarations serves the purposes of @code{%token}.
4360But in addition, they specify the associativity and relative precedence for
4361all the @var{symbols}:
4362
4363@itemize @bullet
4364@item
4365The associativity of an operator @var{op} determines how repeated uses
4366of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4367@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4368grouping @var{y} with @var{z} first. @code{%left} specifies
4369left-associativity (grouping @var{x} with @var{y} first) and
4370@code{%right} specifies right-associativity (grouping @var{y} with
4371@var{z} first). @code{%nonassoc} specifies no associativity, which
4372means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4373considered a syntax error.
4374
4375@item
4376The precedence of an operator determines how it nests with other operators.
4377All the tokens declared in a single precedence declaration have equal
4378precedence and nest together according to their associativity.
4379When two tokens declared in different precedence declarations associate,
4380the one declared later has the higher precedence and is grouped first.
4381@end itemize
4382
ab7f29f8
JD
4383For backward compatibility, there is a confusing difference between the
4384argument lists of @code{%token} and precedence declarations.
4385Only a @code{%token} can associate a literal string with a token type name.
4386A precedence declaration always interprets a literal string as a reference to a
4387separate token.
4388For example:
4389
4390@example
4391%left OR "<=" // Does not declare an alias.
4392%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4393@end example
4394
342b8b6e 4395@node Union Decl
bfa74976
RS
4396@subsection The Collection of Value Types
4397@cindex declaring value types
4398@cindex value types, declaring
4399@findex %union
4400
287c78f6
PE
4401The @code{%union} declaration specifies the entire collection of
4402possible data types for semantic values. The keyword @code{%union} is
4403followed by braced code containing the same thing that goes inside a
4404@code{union} in C@.
bfa74976
RS
4405
4406For example:
4407
4408@example
4409@group
4410%union @{
4411 double val;
4412 symrec *tptr;
4413@}
4414@end group
4415@end example
4416
4417@noindent
4418This says that the two alternative types are @code{double} and @code{symrec
4419*}. They are given names @code{val} and @code{tptr}; these names are used
4420in the @code{%token} and @code{%type} declarations to pick one of the types
4421for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4422
35430378 4423As an extension to POSIX, a tag is allowed after the
6273355b
PE
4424@code{union}. For example:
4425
4426@example
4427@group
4428%union value @{
4429 double val;
4430 symrec *tptr;
4431@}
4432@end group
4433@end example
4434
d6ca7905 4435@noindent
6273355b
PE
4436specifies the union tag @code{value}, so the corresponding C type is
4437@code{union value}. If you do not specify a tag, it defaults to
4438@code{YYSTYPE}.
4439
35430378 4440As another extension to POSIX, you may specify multiple
d6ca7905
PE
4441@code{%union} declarations; their contents are concatenated. However,
4442only the first @code{%union} declaration can specify a tag.
4443
6273355b 4444Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4445a semicolon after the closing brace.
4446
ddc8ede1
PE
4447Instead of @code{%union}, you can define and use your own union type
4448@code{YYSTYPE} if your grammar contains at least one
4449@samp{<@var{type}>} tag. For example, you can put the following into
4450a header file @file{parser.h}:
4451
4452@example
4453@group
4454union YYSTYPE @{
4455 double val;
4456 symrec *tptr;
4457@};
4458typedef union YYSTYPE YYSTYPE;
4459@end group
4460@end example
4461
4462@noindent
4463and then your grammar can use the following
4464instead of @code{%union}:
4465
4466@example
4467@group
4468%@{
4469#include "parser.h"
4470%@}
4471%type <val> expr
4472%token <tptr> ID
4473@end group
4474@end example
4475
342b8b6e 4476@node Type Decl
bfa74976
RS
4477@subsection Nonterminal Symbols
4478@cindex declaring value types, nonterminals
4479@cindex value types, nonterminals, declaring
4480@findex %type
4481
4482@noindent
4483When you use @code{%union} to specify multiple value types, you must
4484declare the value type of each nonterminal symbol for which values are
4485used. This is done with a @code{%type} declaration, like this:
4486
4487@example
4488%type <@var{type}> @var{nonterminal}@dots{}
4489@end example
4490
4491@noindent
704a47c4
AD
4492Here @var{nonterminal} is the name of a nonterminal symbol, and
4493@var{type} is the name given in the @code{%union} to the alternative
4494that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4495can give any number of nonterminal symbols in the same @code{%type}
4496declaration, if they have the same value type. Use spaces to separate
4497the symbol names.
bfa74976 4498
931c7513
RS
4499You can also declare the value type of a terminal symbol. To do this,
4500use the same @code{<@var{type}>} construction in a declaration for the
4501terminal symbol. All kinds of token declarations allow
4502@code{<@var{type}>}.
4503
18d192f0
AD
4504@node Initial Action Decl
4505@subsection Performing Actions before Parsing
4506@findex %initial-action
4507
4508Sometimes your parser needs to perform some initializations before
4509parsing. The @code{%initial-action} directive allows for such arbitrary
4510code.
4511
4512@deffn {Directive} %initial-action @{ @var{code} @}
4513@findex %initial-action
287c78f6 4514Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4515@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4516@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4517@code{%parse-param}.
18d192f0
AD
4518@end deffn
4519
451364ed
AD
4520For instance, if your locations use a file name, you may use
4521
4522@example
48b16bbc 4523%parse-param @{ char const *file_name @};
451364ed
AD
4524%initial-action
4525@{
4626a15d 4526 @@$.initialize (file_name);
451364ed
AD
4527@};
4528@end example
4529
18d192f0 4530
72f889cc
AD
4531@node Destructor Decl
4532@subsection Freeing Discarded Symbols
4533@cindex freeing discarded symbols
4534@findex %destructor
12e35840 4535@findex <*>
3ebecc24 4536@findex <>
a85284cf
AD
4537During error recovery (@pxref{Error Recovery}), symbols already pushed
4538on the stack and tokens coming from the rest of the file are discarded
4539until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4540or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4541symbols on the stack must be discarded. Even if the parser succeeds, it
4542must discard the start symbol.
258b75ca
PE
4543
4544When discarded symbols convey heap based information, this memory is
4545lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4546in traditional compilers, it is unacceptable for programs like shells or
4547protocol implementations that may parse and execute indefinitely.
258b75ca 4548
a85284cf
AD
4549The @code{%destructor} directive defines code that is called when a
4550symbol is automatically discarded.
72f889cc
AD
4551
4552@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4553@findex %destructor
287c78f6
PE
4554Invoke the braced @var{code} whenever the parser discards one of the
4555@var{symbols}.
4b367315 4556Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4557with the discarded symbol, and @code{@@$} designates its location.
4558The additional parser parameters are also available (@pxref{Parser Function, ,
4559The Parser Function @code{yyparse}}).
ec5479ce 4560
b2a0b7ca
JD
4561When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4562per-symbol @code{%destructor}.
4563You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4564tag among @var{symbols}.
b2a0b7ca 4565In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4566grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4567per-symbol @code{%destructor}.
4568
12e35840 4569Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4570(These default forms are experimental.
4571More user feedback will help to determine whether they should become permanent
4572features.)
3ebecc24 4573You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4574exactly one @code{%destructor} declaration in your grammar file.
4575The parser will invoke the @var{code} associated with one of these whenever it
4576discards any user-defined grammar symbol that has no per-symbol and no per-type
4577@code{%destructor}.
4578The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4579symbol for which you have formally declared a semantic type tag (@code{%type}
4580counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4581The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4582symbol that has no declared semantic type tag.
72f889cc
AD
4583@end deffn
4584
b2a0b7ca 4585@noindent
12e35840 4586For example:
72f889cc 4587
ea118b72 4588@example
ec5479ce
JD
4589%union @{ char *string; @}
4590%token <string> STRING1
4591%token <string> STRING2
4592%type <string> string1
4593%type <string> string2
b2a0b7ca
JD
4594%union @{ char character; @}
4595%token <character> CHR
4596%type <character> chr
12e35840
JD
4597%token TAGLESS
4598
b2a0b7ca 4599%destructor @{ @} <character>
12e35840
JD
4600%destructor @{ free ($$); @} <*>
4601%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4602%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
ea118b72 4603@end example
72f889cc
AD
4604
4605@noindent
b2a0b7ca
JD
4606guarantees that, when the parser discards any user-defined symbol that has a
4607semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4608to @code{free} by default.
ec5479ce
JD
4609However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4610prints its line number to @code{stdout}.
4611It performs only the second @code{%destructor} in this case, so it invokes
4612@code{free} only once.
12e35840
JD
4613Finally, the parser merely prints a message whenever it discards any symbol,
4614such as @code{TAGLESS}, that has no semantic type tag.
4615
4616A Bison-generated parser invokes the default @code{%destructor}s only for
4617user-defined as opposed to Bison-defined symbols.
4618For example, the parser will not invoke either kind of default
4619@code{%destructor} for the special Bison-defined symbols @code{$accept},
4620@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4621none of which you can reference in your grammar.
4622It also will not invoke either for the @code{error} token (@pxref{Table of
4623Symbols, ,error}), which is always defined by Bison regardless of whether you
4624reference it in your grammar.
4625However, it may invoke one of them for the end token (token 0) if you
4626redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4627
ea118b72 4628@example
3508ce36 4629%token END 0
ea118b72 4630@end example
3508ce36 4631
12e35840
JD
4632@cindex actions in mid-rule
4633@cindex mid-rule actions
4634Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4635mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
ce24f7f5
JD
4636That is, Bison does not consider a mid-rule to have a semantic value if you
4637do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4638(where @var{n} is the right-hand side symbol position of the mid-rule) in
4639any later action in that rule. However, if you do reference either, the
4640Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4641it discards the mid-rule symbol.
12e35840 4642
3508ce36
JD
4643@ignore
4644@noindent
4645In the future, it may be possible to redefine the @code{error} token as a
4646nonterminal that captures the discarded symbols.
4647In that case, the parser will invoke the default destructor for it as well.
4648@end ignore
4649
e757bb10
AD
4650@sp 1
4651
4652@cindex discarded symbols
4653@dfn{Discarded symbols} are the following:
4654
4655@itemize
4656@item
4657stacked symbols popped during the first phase of error recovery,
4658@item
4659incoming terminals during the second phase of error recovery,
4660@item
742e4900 4661the current lookahead and the entire stack (except the current
9d9b8b70 4662right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4663@item
4664the start symbol, when the parser succeeds.
e757bb10
AD
4665@end itemize
4666
9d9b8b70
PE
4667The parser can @dfn{return immediately} because of an explicit call to
4668@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4669exhaustion.
4670
29553547 4671Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4672error via @code{YYERROR} are not discarded automatically. As a rule
4673of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4674the memory.
e757bb10 4675
342b8b6e 4676@node Expect Decl
bfa74976
RS
4677@subsection Suppressing Conflict Warnings
4678@cindex suppressing conflict warnings
4679@cindex preventing warnings about conflicts
4680@cindex warnings, preventing
4681@cindex conflicts, suppressing warnings of
4682@findex %expect
d6328241 4683@findex %expect-rr
bfa74976
RS
4684
4685Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4686(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4687have harmless shift/reduce conflicts which are resolved in a predictable
4688way and would be difficult to eliminate. It is desirable to suppress
4689the warning about these conflicts unless the number of conflicts
4690changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4691
4692The declaration looks like this:
4693
4694@example
4695%expect @var{n}
4696@end example
4697
035aa4a0
PE
4698Here @var{n} is a decimal integer. The declaration says there should
4699be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4700Bison reports an error if the number of shift/reduce conflicts differs
4701from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4702
34a6c2d1 4703For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4704serious, and should be eliminated entirely. Bison will always report
35430378 4705reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4706parsers, however, both kinds of conflicts are routine; otherwise,
35430378 4707there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4708also possible to specify an expected number of reduce/reduce conflicts
35430378 4709in GLR parsers, using the declaration:
d6328241
PH
4710
4711@example
4712%expect-rr @var{n}
4713@end example
4714
bfa74976
RS
4715In general, using @code{%expect} involves these steps:
4716
4717@itemize @bullet
4718@item
4719Compile your grammar without @code{%expect}. Use the @samp{-v} option
4720to get a verbose list of where the conflicts occur. Bison will also
4721print the number of conflicts.
4722
4723@item
4724Check each of the conflicts to make sure that Bison's default
4725resolution is what you really want. If not, rewrite the grammar and
4726go back to the beginning.
4727
4728@item
4729Add an @code{%expect} declaration, copying the number @var{n} from the
35430378 4730number which Bison printed. With GLR parsers, add an
035aa4a0 4731@code{%expect-rr} declaration as well.
bfa74976
RS
4732@end itemize
4733
cf22447c
JD
4734Now Bison will report an error if you introduce an unexpected conflict,
4735but will keep silent otherwise.
bfa74976 4736
342b8b6e 4737@node Start Decl
bfa74976
RS
4738@subsection The Start-Symbol
4739@cindex declaring the start symbol
4740@cindex start symbol, declaring
4741@cindex default start symbol
4742@findex %start
4743
4744Bison assumes by default that the start symbol for the grammar is the first
4745nonterminal specified in the grammar specification section. The programmer
4746may override this restriction with the @code{%start} declaration as follows:
4747
4748@example
4749%start @var{symbol}
4750@end example
4751
342b8b6e 4752@node Pure Decl
bfa74976
RS
4753@subsection A Pure (Reentrant) Parser
4754@cindex reentrant parser
4755@cindex pure parser
d9df47b6 4756@findex %define api.pure
bfa74976
RS
4757
4758A @dfn{reentrant} program is one which does not alter in the course of
4759execution; in other words, it consists entirely of @dfn{pure} (read-only)
4760code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4761for example, a nonreentrant program may not be safe to call from a signal
4762handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4763program must be called only within interlocks.
4764
70811b85 4765Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4766suitable for most uses, and it permits compatibility with Yacc. (The
4767standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4768statically allocated variables for communication with @code{yylex},
4769including @code{yylval} and @code{yylloc}.)
bfa74976 4770
70811b85 4771Alternatively, you can generate a pure, reentrant parser. The Bison
d9df47b6 4772declaration @code{%define api.pure} says that you want the parser to be
70811b85 4773reentrant. It looks like this:
bfa74976
RS
4774
4775@example
d9df47b6 4776%define api.pure
bfa74976
RS
4777@end example
4778
70811b85
RS
4779The result is that the communication variables @code{yylval} and
4780@code{yylloc} become local variables in @code{yyparse}, and a different
4781calling convention is used for the lexical analyzer function
4782@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4783Parsers}, for the details of this. The variable @code{yynerrs}
4784becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4785of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4786Reporting Function @code{yyerror}}). The convention for calling
4787@code{yyparse} itself is unchanged.
4788
4789Whether the parser is pure has nothing to do with the grammar rules.
4790You can generate either a pure parser or a nonreentrant parser from any
4791valid grammar.
bfa74976 4792
9987d1b3
JD
4793@node Push Decl
4794@subsection A Push Parser
4795@cindex push parser
4796@cindex push parser
812775a0 4797@findex %define api.push-pull
9987d1b3 4798
59da312b
JD
4799(The current push parsing interface is experimental and may evolve.
4800More user feedback will help to stabilize it.)
4801
f4101aa6
AD
4802A pull parser is called once and it takes control until all its input
4803is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4804each time a new token is made available.
4805
f4101aa6 4806A push parser is typically useful when the parser is part of a
9987d1b3 4807main event loop in the client's application. This is typically
f4101aa6
AD
4808a requirement of a GUI, when the main event loop needs to be triggered
4809within a certain time period.
9987d1b3 4810
d782395d
JD
4811Normally, Bison generates a pull parser.
4812The following Bison declaration says that you want the parser to be a push
2f4518a1 4813parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4814
4815@example
f37495f6 4816%define api.push-pull push
9987d1b3
JD
4817@end example
4818
4819In almost all cases, you want to ensure that your push parser is also
4820a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4821time you should create an impure push parser is to have backwards
9987d1b3
JD
4822compatibility with the impure Yacc pull mode interface. Unless you know
4823what you are doing, your declarations should look like this:
4824
4825@example
d9df47b6 4826%define api.pure
f37495f6 4827%define api.push-pull push
9987d1b3
JD
4828@end example
4829
f4101aa6
AD
4830There is a major notable functional difference between the pure push parser
4831and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4832many parser instances, of the same type of parser, in memory at the same time.
4833An impure push parser should only use one parser at a time.
4834
4835When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4836the generated parser. @code{yypstate} is a structure that the generated
4837parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4838function that will create a new parser instance. @code{yypstate_delete}
4839will free the resources associated with the corresponding parser instance.
f4101aa6 4840Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4841token is available to provide the parser. A trivial example
4842of using a pure push parser would look like this:
4843
4844@example
4845int status;
4846yypstate *ps = yypstate_new ();
4847do @{
4848 status = yypush_parse (ps, yylex (), NULL);
4849@} while (status == YYPUSH_MORE);
4850yypstate_delete (ps);
4851@end example
4852
4853If the user decided to use an impure push parser, a few things about
f4101aa6 4854the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4855a global variable instead of a variable in the @code{yypush_parse} function.
4856For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4857changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4858example would thus look like this:
4859
4860@example
4861extern int yychar;
4862int status;
4863yypstate *ps = yypstate_new ();
4864do @{
4865 yychar = yylex ();
4866 status = yypush_parse (ps);
4867@} while (status == YYPUSH_MORE);
4868yypstate_delete (ps);
4869@end example
4870
f4101aa6 4871That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4872for use by the next invocation of the @code{yypush_parse} function.
4873
f4101aa6 4874Bison also supports both the push parser interface along with the pull parser
9987d1b3 4875interface in the same generated parser. In order to get this functionality,
f37495f6
JD
4876you should replace the @code{%define api.push-pull push} declaration with the
4877@code{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4878the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4879and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4880would be used. However, the user should note that it is implemented in the
d782395d
JD
4881generated parser by calling @code{yypull_parse}.
4882This makes the @code{yyparse} function that is generated with the
f37495f6 4883@code{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4884@code{yyparse} function. If the user
4885calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4886stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4887and then @code{yypull_parse} the rest of the input stream. If you would like
4888to switch back and forth between between parsing styles, you would have to
4889write your own @code{yypull_parse} function that knows when to quit looking
4890for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4891like this:
4892
4893@example
4894yypstate *ps = yypstate_new ();
4895yypull_parse (ps); /* Will call the lexer */
4896yypstate_delete (ps);
4897@end example
4898
d9df47b6 4899Adding the @code{%define api.pure} declaration does exactly the same thing to
f37495f6
JD
4900the generated parser with @code{%define api.push-pull both} as it did for
4901@code{%define api.push-pull push}.
9987d1b3 4902
342b8b6e 4903@node Decl Summary
bfa74976
RS
4904@subsection Bison Declaration Summary
4905@cindex Bison declaration summary
4906@cindex declaration summary
4907@cindex summary, Bison declaration
4908
d8988b2f 4909Here is a summary of the declarations used to define a grammar:
bfa74976 4910
18b519c0 4911@deffn {Directive} %union
bfa74976
RS
4912Declare the collection of data types that semantic values may have
4913(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4914@end deffn
bfa74976 4915
18b519c0 4916@deffn {Directive} %token
bfa74976
RS
4917Declare a terminal symbol (token type name) with no precedence
4918or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4919@end deffn
bfa74976 4920
18b519c0 4921@deffn {Directive} %right
bfa74976
RS
4922Declare a terminal symbol (token type name) that is right-associative
4923(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4924@end deffn
bfa74976 4925
18b519c0 4926@deffn {Directive} %left
bfa74976
RS
4927Declare a terminal symbol (token type name) that is left-associative
4928(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4929@end deffn
bfa74976 4930
18b519c0 4931@deffn {Directive} %nonassoc
bfa74976 4932Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4933(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4934Using it in a way that would be associative is a syntax error.
4935@end deffn
4936
91d2c560 4937@ifset defaultprec
39a06c25 4938@deffn {Directive} %default-prec
22fccf95 4939Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4940(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4941@end deffn
91d2c560 4942@end ifset
bfa74976 4943
18b519c0 4944@deffn {Directive} %type
bfa74976
RS
4945Declare the type of semantic values for a nonterminal symbol
4946(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4947@end deffn
bfa74976 4948
18b519c0 4949@deffn {Directive} %start
89cab50d
AD
4950Specify the grammar's start symbol (@pxref{Start Decl, ,The
4951Start-Symbol}).
18b519c0 4952@end deffn
bfa74976 4953
18b519c0 4954@deffn {Directive} %expect
bfa74976
RS
4955Declare the expected number of shift-reduce conflicts
4956(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4957@end deffn
4958
bfa74976 4959
d8988b2f
AD
4960@sp 1
4961@noindent
4962In order to change the behavior of @command{bison}, use the following
4963directives:
4964
148d66d8 4965@deffn {Directive} %code @{@var{code}@}
8e6f2266 4966@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4967@findex %code
8e6f2266
JD
4968Insert @var{code} verbatim into the output parser source at the
4969default location or at the location specified by @var{qualifier}.
4970@xref{%code Summary}.
148d66d8
JD
4971@end deffn
4972
18b519c0 4973@deffn {Directive} %debug
9913d6e4
JD
4974In the parser implementation file, define the macro @code{YYDEBUG} to
49751 if it is not already defined, so that the debugging facilities are
4976compiled. @xref{Tracing, ,Tracing Your Parser}.
bd5df716 4977@end deffn
d8988b2f 4978
2f4518a1
JD
4979@deffn {Directive} %define @var{variable}
4980@deffnx {Directive} %define @var{variable} @var{value}
4981@deffnx {Directive} %define @var{variable} "@var{value}"
4982Define a variable to adjust Bison's behavior. @xref{%define Summary}.
4983@end deffn
4984
4985@deffn {Directive} %defines
4986Write a parser header file containing macro definitions for the token
4987type names defined in the grammar as well as a few other declarations.
4988If the parser implementation file is named @file{@var{name}.c} then
4989the parser header file is named @file{@var{name}.h}.
4990
4991For C parsers, the parser header file declares @code{YYSTYPE} unless
4992@code{YYSTYPE} is already defined as a macro or you have used a
4993@code{<@var{type}>} tag without using @code{%union}. Therefore, if
4994you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
4995Value Type}) with components that require other definitions, or if you
4996have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
4997Type, ,Data Types of Semantic Values}), you need to arrange for these
4998definitions to be propagated to all modules, e.g., by putting them in
4999a prerequisite header that is included both by your parser and by any
5000other module that needs @code{YYSTYPE}.
5001
5002Unless your parser is pure, the parser header file declares
5003@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5004(Reentrant) Parser}.
5005
5006If you have also used locations, the parser header file declares
7404cdf3
JD
5007@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5008@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
2f4518a1
JD
5009
5010This parser header file is normally essential if you wish to put the
5011definition of @code{yylex} in a separate source file, because
5012@code{yylex} typically needs to be able to refer to the
5013above-mentioned declarations and to the token type codes. @xref{Token
5014Values, ,Semantic Values of Tokens}.
5015
5016@findex %code requires
5017@findex %code provides
5018If you have declared @code{%code requires} or @code{%code provides}, the output
5019header also contains their code.
5020@xref{%code Summary}.
5021@end deffn
5022
5023@deffn {Directive} %defines @var{defines-file}
5024Same as above, but save in the file @var{defines-file}.
5025@end deffn
5026
5027@deffn {Directive} %destructor
5028Specify how the parser should reclaim the memory associated to
5029discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5030@end deffn
5031
5032@deffn {Directive} %file-prefix "@var{prefix}"
5033Specify a prefix to use for all Bison output file names. The names
5034are chosen as if the grammar file were named @file{@var{prefix}.y}.
5035@end deffn
5036
5037@deffn {Directive} %language "@var{language}"
5038Specify the programming language for the generated parser. Currently
5039supported languages include C, C++, and Java.
5040@var{language} is case-insensitive.
5041
5042This directive is experimental and its effect may be modified in future
5043releases.
5044@end deffn
5045
5046@deffn {Directive} %locations
5047Generate the code processing the locations (@pxref{Action Features,
5048,Special Features for Use in Actions}). This mode is enabled as soon as
5049the grammar uses the special @samp{@@@var{n}} tokens, but if your
5050grammar does not use it, using @samp{%locations} allows for more
5051accurate syntax error messages.
5052@end deffn
5053
5054@deffn {Directive} %name-prefix "@var{prefix}"
5055Rename the external symbols used in the parser so that they start with
5056@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5057in C parsers
5058is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5059@code{yylval}, @code{yychar}, @code{yydebug}, and
5060(if locations are used) @code{yylloc}. If you use a push parser,
5061@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5062@code{yypstate_new} and @code{yypstate_delete} will
5063also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5064names become @code{c_parse}, @code{c_lex}, and so on.
5065For C++ parsers, see the @code{%define namespace} documentation in this
5066section.
5067@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5068@end deffn
5069
5070@ifset defaultprec
5071@deffn {Directive} %no-default-prec
5072Do not assign a precedence to rules lacking an explicit @code{%prec}
5073modifier (@pxref{Contextual Precedence, ,Context-Dependent
5074Precedence}).
5075@end deffn
5076@end ifset
5077
5078@deffn {Directive} %no-lines
5079Don't generate any @code{#line} preprocessor commands in the parser
5080implementation file. Ordinarily Bison writes these commands in the
5081parser implementation file so that the C compiler and debuggers will
5082associate errors and object code with your source file (the grammar
5083file). This directive causes them to associate errors with the parser
5084implementation file, treating it as an independent source file in its
5085own right.
5086@end deffn
5087
5088@deffn {Directive} %output "@var{file}"
5089Specify @var{file} for the parser implementation file.
5090@end deffn
5091
5092@deffn {Directive} %pure-parser
5093Deprecated version of @code{%define api.pure} (@pxref{%define
5094Summary,,api.pure}), for which Bison is more careful to warn about
5095unreasonable usage.
5096@end deffn
5097
5098@deffn {Directive} %require "@var{version}"
5099Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5100Require a Version of Bison}.
5101@end deffn
5102
5103@deffn {Directive} %skeleton "@var{file}"
5104Specify the skeleton to use.
5105
5106@c You probably don't need this option unless you are developing Bison.
5107@c You should use @code{%language} if you want to specify the skeleton for a
5108@c different language, because it is clearer and because it will always choose the
5109@c correct skeleton for non-deterministic or push parsers.
5110
5111If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5112file in the Bison installation directory.
5113If it does, @var{file} is an absolute file name or a file name relative to the
5114directory of the grammar file.
5115This is similar to how most shells resolve commands.
5116@end deffn
5117
5118@deffn {Directive} %token-table
5119Generate an array of token names in the parser implementation file.
5120The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5121the name of the token whose internal Bison token code number is
5122@var{i}. The first three elements of @code{yytname} correspond to the
5123predefined tokens @code{"$end"}, @code{"error"}, and
5124@code{"$undefined"}; after these come the symbols defined in the
5125grammar file.
5126
5127The name in the table includes all the characters needed to represent
5128the token in Bison. For single-character literals and literal
5129strings, this includes the surrounding quoting characters and any
5130escape sequences. For example, the Bison single-character literal
5131@code{'+'} corresponds to a three-character name, represented in C as
5132@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5133corresponds to a five-character name, represented in C as
5134@code{"\"\\\\/\""}.
5135
5136When you specify @code{%token-table}, Bison also generates macro
5137definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5138@code{YYNRULES}, and @code{YYNSTATES}:
5139
5140@table @code
5141@item YYNTOKENS
5142The highest token number, plus one.
5143@item YYNNTS
5144The number of nonterminal symbols.
5145@item YYNRULES
5146The number of grammar rules,
5147@item YYNSTATES
5148The number of parser states (@pxref{Parser States}).
5149@end table
5150@end deffn
5151
5152@deffn {Directive} %verbose
5153Write an extra output file containing verbose descriptions of the
5154parser states and what is done for each type of lookahead token in
5155that state. @xref{Understanding, , Understanding Your Parser}, for more
5156information.
5157@end deffn
5158
5159@deffn {Directive} %yacc
5160Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5161including its naming conventions. @xref{Bison Options}, for more.
5162@end deffn
5163
5164
5165@node %define Summary
5166@subsection %define Summary
406dec82
JD
5167
5168There are many features of Bison's behavior that can be controlled by
5169assigning the feature a single value. For historical reasons, some
5170such features are assigned values by dedicated directives, such as
5171@code{%start}, which assigns the start symbol. However, newer such
5172features are associated with variables, which are assigned by the
5173@code{%define} directive:
5174
c1d19e10 5175@deffn {Directive} %define @var{variable}
f37495f6 5176@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5177@deffnx {Directive} %define @var{variable} "@var{value}"
406dec82 5178Define @var{variable} to @var{value}.
9611cfa2 5179
406dec82
JD
5180@var{value} must be placed in quotation marks if it contains any
5181character other than a letter, underscore, period, or non-initial dash
5182or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5183to specifying @code{""}.
9611cfa2 5184
406dec82
JD
5185It is an error if a @var{variable} is defined by @code{%define}
5186multiple times, but see @ref{Bison Options,,-D
5187@var{name}[=@var{value}]}.
5188@end deffn
f37495f6 5189
406dec82
JD
5190The rest of this section summarizes variables and values that
5191@code{%define} accepts.
9611cfa2 5192
406dec82
JD
5193Some @var{variable}s take Boolean values. In this case, Bison will
5194complain if the variable definition does not meet one of the following
5195four conditions:
9611cfa2
JD
5196
5197@enumerate
f37495f6 5198@item @code{@var{value}} is @code{true}
9611cfa2 5199
f37495f6
JD
5200@item @code{@var{value}} is omitted (or @code{""} is specified).
5201This is equivalent to @code{true}.
9611cfa2 5202
f37495f6 5203@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5204
5205@item @var{variable} is never defined.
628be6c9 5206In this case, Bison selects a default value.
9611cfa2 5207@end enumerate
148d66d8 5208
628be6c9
JD
5209What @var{variable}s are accepted, as well as their meanings and default
5210values, depend on the selected target language and/or the parser
5211skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5212Summary,,%skeleton}).
5213Unaccepted @var{variable}s produce an error.
793fbca5
JD
5214Some of the accepted @var{variable}s are:
5215
5216@itemize @bullet
ea118b72 5217@c ================================================== api.pure
d9df47b6
JD
5218@item api.pure
5219@findex %define api.pure
5220
5221@itemize @bullet
5222@item Language(s): C
5223
5224@item Purpose: Request a pure (reentrant) parser program.
5225@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5226
5227@item Accepted Values: Boolean
5228
f37495f6 5229@item Default Value: @code{false}
d9df47b6
JD
5230@end itemize
5231
812775a0
JD
5232@item api.push-pull
5233@findex %define api.push-pull
793fbca5
JD
5234
5235@itemize @bullet
34a6c2d1 5236@item Language(s): C (deterministic parsers only)
793fbca5 5237
3b1977ea 5238@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5239@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5240(The current push parsing interface is experimental and may evolve.
5241More user feedback will help to stabilize it.)
793fbca5 5242
f37495f6 5243@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5244
f37495f6 5245@item Default Value: @code{pull}
793fbca5
JD
5246@end itemize
5247
232be91a
AD
5248@c ================================================== lr.default-reductions
5249
1d0f55cc 5250@item lr.default-reductions
1d0f55cc 5251@findex %define lr.default-reductions
34a6c2d1
JD
5252
5253@itemize @bullet
5254@item Language(s): all
5255
4c38b19e 5256@item Purpose: Specify the kind of states that are permitted to
6f04ee6c
JD
5257contain default reductions. @xref{Default Reductions}. (The ability to
5258specify where default reductions should be used is experimental. More user
5259feedback will help to stabilize it.)
34a6c2d1 5260
a6e5a280 5261@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
34a6c2d1
JD
5262@item Default Value:
5263@itemize
f37495f6 5264@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
a6e5a280 5265@item @code{most} otherwise.
34a6c2d1
JD
5266@end itemize
5267@end itemize
5268
232be91a
AD
5269@c ============================================ lr.keep-unreachable-states
5270
812775a0
JD
5271@item lr.keep-unreachable-states
5272@findex %define lr.keep-unreachable-states
31984206
JD
5273
5274@itemize @bullet
5275@item Language(s): all
3b1977ea 5276@item Purpose: Request that Bison allow unreachable parser states to
6f04ee6c 5277remain in the parser tables. @xref{Unreachable States}.
31984206 5278@item Accepted Values: Boolean
f37495f6 5279@item Default Value: @code{false}
31984206
JD
5280@end itemize
5281
232be91a
AD
5282@c ================================================== lr.type
5283
34a6c2d1
JD
5284@item lr.type
5285@findex %define lr.type
34a6c2d1
JD
5286
5287@itemize @bullet
5288@item Language(s): all
5289
3b1977ea 5290@item Purpose: Specify the type of parser tables within the
6f04ee6c 5291LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
34a6c2d1
JD
5292More user feedback will help to stabilize it.)
5293
6f04ee6c 5294@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
34a6c2d1 5295
f37495f6 5296@item Default Value: @code{lalr}
34a6c2d1
JD
5297@end itemize
5298
793fbca5
JD
5299@item namespace
5300@findex %define namespace
5301
5302@itemize
5303@item Languages(s): C++
5304
3b1977ea 5305@item Purpose: Specify the namespace for the parser class.
793fbca5
JD
5306For example, if you specify:
5307
5308@smallexample
5309%define namespace "foo::bar"
5310@end smallexample
5311
5312Bison uses @code{foo::bar} verbatim in references such as:
5313
5314@smallexample
5315foo::bar::parser::semantic_type
5316@end smallexample
5317
5318However, to open a namespace, Bison removes any leading @code{::} and then
5319splits on any remaining occurrences:
5320
5321@smallexample
5322namespace foo @{ namespace bar @{
5323 class position;
5324 class location;
5325@} @}
5326@end smallexample
5327
5328@item Accepted Values: Any absolute or relative C++ namespace reference without
5329a trailing @code{"::"}.
5330For example, @code{"foo"} or @code{"::foo::bar"}.
5331
5332@item Default Value: The value specified by @code{%name-prefix}, which defaults
5333to @code{yy}.
5334This usage of @code{%name-prefix} is for backward compatibility and can be
5335confusing since @code{%name-prefix} also specifies the textual prefix for the
5336lexical analyzer function.
5337Thus, if you specify @code{%name-prefix}, it is best to also specify
5338@code{%define namespace} so that @code{%name-prefix} @emph{only} affects the
5339lexical analyzer function.
5340For example, if you specify:
5341
5342@smallexample
5343%define namespace "foo"
5344%name-prefix "bar::"
5345@end smallexample
5346
5347The parser namespace is @code{foo} and @code{yylex} is referenced as
5348@code{bar::lex}.
5349@end itemize
4c38b19e
JD
5350
5351@c ================================================== parse.lac
5352@item parse.lac
5353@findex %define parse.lac
4c38b19e
JD
5354
5355@itemize
6f04ee6c 5356@item Languages(s): C (deterministic parsers only)
4c38b19e 5357
35430378 5358@item Purpose: Enable LAC (lookahead correction) to improve
6f04ee6c 5359syntax error handling. @xref{LAC}.
4c38b19e 5360@item Accepted Values: @code{none}, @code{full}
4c38b19e
JD
5361@item Default Value: @code{none}
5362@end itemize
793fbca5
JD
5363@end itemize
5364
d8988b2f 5365
8e6f2266
JD
5366@node %code Summary
5367@subsection %code Summary
8e6f2266 5368@findex %code
8e6f2266 5369@cindex Prologue
406dec82
JD
5370
5371The @code{%code} directive inserts code verbatim into the output
5372parser source at any of a predefined set of locations. It thus serves
5373as a flexible and user-friendly alternative to the traditional Yacc
5374prologue, @code{%@{@var{code}%@}}. This section summarizes the
5375functionality of @code{%code} for the various target languages
5376supported by Bison. For a detailed discussion of how to use
5377@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5378is advantageous to do so, @pxref{Prologue Alternatives}.
5379
5380@deffn {Directive} %code @{@var{code}@}
5381This is the unqualified form of the @code{%code} directive. It
5382inserts @var{code} verbatim at a language-dependent default location
5383in the parser implementation.
5384
8e6f2266 5385For C/C++, the default location is the parser implementation file
406dec82
JD
5386after the usual contents of the parser header file. Thus, the
5387unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
8e6f2266
JD
5388
5389For Java, the default location is inside the parser class.
5390@end deffn
5391
5392@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5393This is the qualified form of the @code{%code} directive.
406dec82
JD
5394@var{qualifier} identifies the purpose of @var{code} and thus the
5395location(s) where Bison should insert it. That is, if you need to
5396specify location-sensitive @var{code} that does not belong at the
5397default location selected by the unqualified @code{%code} form, use
5398this form instead.
5399@end deffn
5400
5401For any particular qualifier or for the unqualified form, if there are
5402multiple occurrences of the @code{%code} directive, Bison concatenates
5403the specified code in the order in which it appears in the grammar
5404file.
8e6f2266 5405
406dec82
JD
5406Not all qualifiers are accepted for all target languages. Unaccepted
5407qualifiers produce an error. Some of the accepted qualifiers are:
8e6f2266
JD
5408
5409@itemize @bullet
5410@item requires
5411@findex %code requires
5412
5413@itemize @bullet
5414@item Language(s): C, C++
5415
5416@item Purpose: This is the best place to write dependency code required for
5417@code{YYSTYPE} and @code{YYLTYPE}.
5418In other words, it's the best place to define types referenced in @code{%union}
5419directives, and it's the best place to override Bison's default @code{YYSTYPE}
5420and @code{YYLTYPE} definitions.
5421
5422@item Location(s): The parser header file and the parser implementation file
5423before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5424definitions.
5425@end itemize
5426
5427@item provides
5428@findex %code provides
5429
5430@itemize @bullet
5431@item Language(s): C, C++
5432
5433@item Purpose: This is the best place to write additional definitions and
5434declarations that should be provided to other modules.
5435
5436@item Location(s): The parser header file and the parser implementation
5437file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5438token definitions.
5439@end itemize
5440
5441@item top
5442@findex %code top
5443
5444@itemize @bullet
5445@item Language(s): C, C++
5446
5447@item Purpose: The unqualified @code{%code} or @code{%code requires}
5448should usually be more appropriate than @code{%code top}. However,
5449occasionally it is necessary to insert code much nearer the top of the
5450parser implementation file. For example:
5451
ea118b72 5452@example
8e6f2266
JD
5453%code top @{
5454 #define _GNU_SOURCE
5455 #include <stdio.h>
5456@}
ea118b72 5457@end example
8e6f2266
JD
5458
5459@item Location(s): Near the top of the parser implementation file.
5460@end itemize
5461
5462@item imports
5463@findex %code imports
5464
5465@itemize @bullet
5466@item Language(s): Java
5467
5468@item Purpose: This is the best place to write Java import directives.
5469
5470@item Location(s): The parser Java file after any Java package directive and
5471before any class definitions.
5472@end itemize
5473@end itemize
5474
406dec82
JD
5475Though we say the insertion locations are language-dependent, they are
5476technically skeleton-dependent. Writers of non-standard skeletons
5477however should choose their locations consistently with the behavior
5478of the standard Bison skeletons.
8e6f2266 5479
d8988b2f 5480
342b8b6e 5481@node Multiple Parsers
bfa74976
RS
5482@section Multiple Parsers in the Same Program
5483
5484Most programs that use Bison parse only one language and therefore contain
5485only one Bison parser. But what if you want to parse more than one
5486language with the same program? Then you need to avoid a name conflict
5487between different definitions of @code{yyparse}, @code{yylval}, and so on.
5488
5489The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5490(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5491functions and variables of the Bison parser to start with @var{prefix}
5492instead of @samp{yy}. You can use this to give each parser distinct
5493names that do not conflict.
bfa74976
RS
5494
5495The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5496@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5497@code{yychar} and @code{yydebug}. If you use a push parser,
5498@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5499@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5500For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5501@code{clex}, and so on.
bfa74976
RS
5502
5503@strong{All the other variables and macros associated with Bison are not
5504renamed.} These others are not global; there is no conflict if the same
5505name is used in different parsers. For example, @code{YYSTYPE} is not
5506renamed, but defining this in different ways in different parsers causes
5507no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5508
9913d6e4
JD
5509The @samp{-p} option works by adding macro definitions to the
5510beginning of the parser implementation file, defining @code{yyparse}
5511as @code{@var{prefix}parse}, and so on. This effectively substitutes
5512one name for the other in the entire parser implementation file.
bfa74976 5513
342b8b6e 5514@node Interface
bfa74976
RS
5515@chapter Parser C-Language Interface
5516@cindex C-language interface
5517@cindex interface
5518
5519The Bison parser is actually a C function named @code{yyparse}. Here we
5520describe the interface conventions of @code{yyparse} and the other
5521functions that it needs to use.
5522
5523Keep in mind that the parser uses many C identifiers starting with
5524@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5525identifier (aside from those in this manual) in an action or in epilogue
5526in the grammar file, you are likely to run into trouble.
bfa74976
RS
5527
5528@menu
f56274a8
DJ
5529* Parser Function:: How to call @code{yyparse} and what it returns.
5530* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5531* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5532* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5533* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5534* Lexical:: You must supply a function @code{yylex}
5535 which reads tokens.
5536* Error Reporting:: You must supply a function @code{yyerror}.
5537* Action Features:: Special features for use in actions.
5538* Internationalization:: How to let the parser speak in the user's
5539 native language.
bfa74976
RS
5540@end menu
5541
342b8b6e 5542@node Parser Function
bfa74976
RS
5543@section The Parser Function @code{yyparse}
5544@findex yyparse
5545
5546You call the function @code{yyparse} to cause parsing to occur. This
5547function reads tokens, executes actions, and ultimately returns when it
5548encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5549write an action which directs @code{yyparse} to return immediately
5550without reading further.
bfa74976 5551
2a8d363a
AD
5552
5553@deftypefun int yyparse (void)
bfa74976
RS
5554The value returned by @code{yyparse} is 0 if parsing was successful (return
5555is due to end-of-input).
5556
b47dbebe
PE
5557The value is 1 if parsing failed because of invalid input, i.e., input
5558that contains a syntax error or that causes @code{YYABORT} to be
5559invoked.
5560
5561The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5562@end deftypefun
bfa74976
RS
5563
5564In an action, you can cause immediate return from @code{yyparse} by using
5565these macros:
5566
2a8d363a 5567@defmac YYACCEPT
bfa74976
RS
5568@findex YYACCEPT
5569Return immediately with value 0 (to report success).
2a8d363a 5570@end defmac
bfa74976 5571
2a8d363a 5572@defmac YYABORT
bfa74976
RS
5573@findex YYABORT
5574Return immediately with value 1 (to report failure).
2a8d363a
AD
5575@end defmac
5576
5577If you use a reentrant parser, you can optionally pass additional
5578parameter information to it in a reentrant way. To do so, use the
5579declaration @code{%parse-param}:
5580
feeb0eda 5581@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a 5582@findex %parse-param
287c78f6
PE
5583Declare that an argument declared by the braced-code
5584@var{argument-declaration} is an additional @code{yyparse} argument.
94175978 5585The @var{argument-declaration} is used when declaring
feeb0eda
PE
5586functions or prototypes. The last identifier in
5587@var{argument-declaration} must be the argument name.
2a8d363a
AD
5588@end deffn
5589
5590Here's an example. Write this in the parser:
5591
5592@example
feeb0eda
PE
5593%parse-param @{int *nastiness@}
5594%parse-param @{int *randomness@}
2a8d363a
AD
5595@end example
5596
5597@noindent
5598Then call the parser like this:
5599
5600@example
5601@{
5602 int nastiness, randomness;
5603 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5604 value = yyparse (&nastiness, &randomness);
5605 @dots{}
5606@}
5607@end example
5608
5609@noindent
5610In the grammar actions, use expressions like this to refer to the data:
5611
5612@example
5613exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5614@end example
5615
9987d1b3
JD
5616@node Push Parser Function
5617@section The Push Parser Function @code{yypush_parse}
5618@findex yypush_parse
5619
59da312b
JD
5620(The current push parsing interface is experimental and may evolve.
5621More user feedback will help to stabilize it.)
5622
f4101aa6 5623You call the function @code{yypush_parse} to parse a single token. This
f37495f6
JD
5624function is available if either the @code{%define api.push-pull push} or
5625@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5626@xref{Push Decl, ,A Push Parser}.
5627
5628@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5629The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5630following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5631is required to finish parsing the grammar.
5632@end deftypefun
5633
5634@node Pull Parser Function
5635@section The Pull Parser Function @code{yypull_parse}
5636@findex yypull_parse
5637
59da312b
JD
5638(The current push parsing interface is experimental and may evolve.
5639More user feedback will help to stabilize it.)
5640
f4101aa6 5641You call the function @code{yypull_parse} to parse the rest of the input
f37495f6 5642stream. This function is available if the @code{%define api.push-pull both}
f4101aa6 5643declaration is used.
9987d1b3
JD
5644@xref{Push Decl, ,A Push Parser}.
5645
5646@deftypefun int yypull_parse (yypstate *yyps)
5647The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5648@end deftypefun
5649
5650@node Parser Create Function
5651@section The Parser Create Function @code{yystate_new}
5652@findex yypstate_new
5653
59da312b
JD
5654(The current push parsing interface is experimental and may evolve.
5655More user feedback will help to stabilize it.)
5656
f4101aa6 5657You call the function @code{yypstate_new} to create a new parser instance.
f37495f6
JD
5658This function is available if either the @code{%define api.push-pull push} or
5659@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5660@xref{Push Decl, ,A Push Parser}.
5661
5662@deftypefun yypstate *yypstate_new (void)
c781580d 5663The function will return a valid parser instance if there was memory available
333e670c
JD
5664or 0 if no memory was available.
5665In impure mode, it will also return 0 if a parser instance is currently
5666allocated.
9987d1b3
JD
5667@end deftypefun
5668
5669@node Parser Delete Function
5670@section The Parser Delete Function @code{yystate_delete}
5671@findex yypstate_delete
5672
59da312b
JD
5673(The current push parsing interface is experimental and may evolve.
5674More user feedback will help to stabilize it.)
5675
9987d1b3 5676You call the function @code{yypstate_delete} to delete a parser instance.
f37495f6
JD
5677function is available if either the @code{%define api.push-pull push} or
5678@code{%define api.push-pull both} declaration is used.
9987d1b3
JD
5679@xref{Push Decl, ,A Push Parser}.
5680
5681@deftypefun void yypstate_delete (yypstate *yyps)
5682This function will reclaim the memory associated with a parser instance.
5683After this call, you should no longer attempt to use the parser instance.
5684@end deftypefun
bfa74976 5685
342b8b6e 5686@node Lexical
bfa74976
RS
5687@section The Lexical Analyzer Function @code{yylex}
5688@findex yylex
5689@cindex lexical analyzer
5690
5691The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5692the input stream and returns them to the parser. Bison does not create
5693this function automatically; you must write it so that @code{yyparse} can
5694call it. The function is sometimes referred to as a lexical scanner.
5695
9913d6e4
JD
5696In simple programs, @code{yylex} is often defined at the end of the
5697Bison grammar file. If @code{yylex} is defined in a separate source
5698file, you need to arrange for the token-type macro definitions to be
5699available there. To do this, use the @samp{-d} option when you run
5700Bison, so that it will write these macro definitions into the separate
5701parser header file, @file{@var{name}.tab.h}, which you can include in
5702the other source files that need it. @xref{Invocation, ,Invoking
5703Bison}.
bfa74976
RS
5704
5705@menu
5706* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f56274a8
DJ
5707* Token Values:: How @code{yylex} must return the semantic value
5708 of the token it has read.
5709* Token Locations:: How @code{yylex} must return the text location
5710 (line number, etc.) of the token, if the
5711 actions want that.
5712* Pure Calling:: How the calling convention differs in a pure parser
5713 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5714@end menu
5715
342b8b6e 5716@node Calling Convention
bfa74976
RS
5717@subsection Calling Convention for @code{yylex}
5718
72d2299c
PE
5719The value that @code{yylex} returns must be the positive numeric code
5720for the type of token it has just found; a zero or negative value
5721signifies end-of-input.
bfa74976
RS
5722
5723When a token is referred to in the grammar rules by a name, that name
9913d6e4
JD
5724in the parser implementation file becomes a C macro whose definition
5725is the proper numeric code for that token type. So @code{yylex} can
5726use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5727
5728When a token is referred to in the grammar rules by a character literal,
5729the numeric code for that character is also the code for the token type.
72d2299c
PE
5730So @code{yylex} can simply return that character code, possibly converted
5731to @code{unsigned char} to avoid sign-extension. The null character
5732must not be used this way, because its code is zero and that
bfa74976
RS
5733signifies end-of-input.
5734
5735Here is an example showing these things:
5736
5737@example
13863333
AD
5738int
5739yylex (void)
bfa74976
RS
5740@{
5741 @dots{}
72d2299c 5742 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5743 return 0;
5744 @dots{}
5745 if (c == '+' || c == '-')
72d2299c 5746 return c; /* Assume token type for `+' is '+'. */
bfa74976 5747 @dots{}
72d2299c 5748 return INT; /* Return the type of the token. */
bfa74976
RS
5749 @dots{}
5750@}
5751@end example
5752
5753@noindent
5754This interface has been designed so that the output from the @code{lex}
5755utility can be used without change as the definition of @code{yylex}.
5756
931c7513
RS
5757If the grammar uses literal string tokens, there are two ways that
5758@code{yylex} can determine the token type codes for them:
5759
5760@itemize @bullet
5761@item
5762If the grammar defines symbolic token names as aliases for the
5763literal string tokens, @code{yylex} can use these symbolic names like
5764all others. In this case, the use of the literal string tokens in
5765the grammar file has no effect on @code{yylex}.
5766
5767@item
9ecbd125 5768@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5769table. The index of the token in the table is the token type's code.
9ecbd125 5770The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5771double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5772token's characters are escaped as necessary to be suitable as input
5773to Bison.
931c7513 5774
9e0876fb
PE
5775Here's code for looking up a multicharacter token in @code{yytname},
5776assuming that the characters of the token are stored in
5777@code{token_buffer}, and assuming that the token does not contain any
5778characters like @samp{"} that require escaping.
931c7513 5779
ea118b72 5780@example
931c7513
RS
5781for (i = 0; i < YYNTOKENS; i++)
5782 @{
5783 if (yytname[i] != 0
5784 && yytname[i][0] == '"'
68449b3a
PE
5785 && ! strncmp (yytname[i] + 1, token_buffer,
5786 strlen (token_buffer))
931c7513
RS
5787 && yytname[i][strlen (token_buffer) + 1] == '"'
5788 && yytname[i][strlen (token_buffer) + 2] == 0)
5789 break;
5790 @}
ea118b72 5791@end example
931c7513
RS
5792
5793The @code{yytname} table is generated only if you use the
8c9a50be 5794@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5795@end itemize
5796
342b8b6e 5797@node Token Values
bfa74976
RS
5798@subsection Semantic Values of Tokens
5799
5800@vindex yylval
9d9b8b70 5801In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5802be stored into the global variable @code{yylval}. When you are using
5803just one data type for semantic values, @code{yylval} has that type.
5804Thus, if the type is @code{int} (the default), you might write this in
5805@code{yylex}:
5806
5807@example
5808@group
5809 @dots{}
72d2299c
PE
5810 yylval = value; /* Put value onto Bison stack. */
5811 return INT; /* Return the type of the token. */
bfa74976
RS
5812 @dots{}
5813@end group
5814@end example
5815
5816When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5817made from the @code{%union} declaration (@pxref{Union Decl, ,The
5818Collection of Value Types}). So when you store a token's value, you
5819must use the proper member of the union. If the @code{%union}
5820declaration looks like this:
bfa74976
RS
5821
5822@example
5823@group
5824%union @{
5825 int intval;
5826 double val;
5827 symrec *tptr;
5828@}
5829@end group
5830@end example
5831
5832@noindent
5833then the code in @code{yylex} might look like this:
5834
5835@example
5836@group
5837 @dots{}
72d2299c
PE
5838 yylval.intval = value; /* Put value onto Bison stack. */
5839 return INT; /* Return the type of the token. */
bfa74976
RS
5840 @dots{}
5841@end group
5842@end example
5843
95923bd6
AD
5844@node Token Locations
5845@subsection Textual Locations of Tokens
bfa74976
RS
5846
5847@vindex yylloc
7404cdf3
JD
5848If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
5849in actions to keep track of the textual locations of tokens and groupings,
5850then you must provide this information in @code{yylex}. The function
5851@code{yyparse} expects to find the textual location of a token just parsed
5852in the global variable @code{yylloc}. So @code{yylex} must store the proper
5853data in that variable.
847bf1f5
AD
5854
5855By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
5856initialize the members that are going to be used by the actions. The
5857four members are called @code{first_line}, @code{first_column},
5858@code{last_line} and @code{last_column}. Note that the use of this
5859feature makes the parser noticeably slower.
bfa74976
RS
5860
5861@tindex YYLTYPE
5862The data type of @code{yylloc} has the name @code{YYLTYPE}.
5863
342b8b6e 5864@node Pure Calling
c656404a 5865@subsection Calling Conventions for Pure Parsers
bfa74976 5866
d9df47b6 5867When you use the Bison declaration @code{%define api.pure} to request a
e425e872
RS
5868pure, reentrant parser, the global communication variables @code{yylval}
5869and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
5870Parser}.) In such parsers the two global variables are replaced by
5871pointers passed as arguments to @code{yylex}. You must declare them as
5872shown here, and pass the information back by storing it through those
5873pointers.
bfa74976
RS
5874
5875@example
13863333
AD
5876int
5877yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
5878@{
5879 @dots{}
5880 *lvalp = value; /* Put value onto Bison stack. */
5881 return INT; /* Return the type of the token. */
5882 @dots{}
5883@}
5884@end example
5885
5886If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 5887textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
5888this case, omit the second argument; @code{yylex} will be called with
5889only one argument.
5890
e425e872 5891
2a8d363a
AD
5892If you wish to pass the additional parameter data to @code{yylex}, use
5893@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
5894Function}).
e425e872 5895
feeb0eda 5896@deffn {Directive} lex-param @{@var{argument-declaration}@}
2a8d363a 5897@findex %lex-param
287c78f6
PE
5898Declare that the braced-code @var{argument-declaration} is an
5899additional @code{yylex} argument declaration.
2a8d363a 5900@end deffn
e425e872 5901
2a8d363a 5902For instance:
e425e872
RS
5903
5904@example
feeb0eda
PE
5905%parse-param @{int *nastiness@}
5906%lex-param @{int *nastiness@}
5907%parse-param @{int *randomness@}
e425e872
RS
5908@end example
5909
5910@noindent
2a8d363a 5911results in the following signature:
e425e872
RS
5912
5913@example
2a8d363a
AD
5914int yylex (int *nastiness);
5915int yyparse (int *nastiness, int *randomness);
e425e872
RS
5916@end example
5917
d9df47b6 5918If @code{%define api.pure} is added:
c656404a
RS
5919
5920@example
2a8d363a
AD
5921int yylex (YYSTYPE *lvalp, int *nastiness);
5922int yyparse (int *nastiness, int *randomness);
c656404a
RS
5923@end example
5924
2a8d363a 5925@noindent
d9df47b6 5926and finally, if both @code{%define api.pure} and @code{%locations} are used:
c656404a 5927
2a8d363a
AD
5928@example
5929int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
5930int yyparse (int *nastiness, int *randomness);
5931@end example
931c7513 5932
342b8b6e 5933@node Error Reporting
bfa74976
RS
5934@section The Error Reporting Function @code{yyerror}
5935@cindex error reporting function
5936@findex yyerror
5937@cindex parse error
5938@cindex syntax error
5939
6e649e65 5940The Bison parser detects a @dfn{syntax error} or @dfn{parse error}
9ecbd125 5941whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 5942action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
5943macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
5944in Actions}).
bfa74976
RS
5945
5946The Bison parser expects to report the error by calling an error
5947reporting function named @code{yyerror}, which you must supply. It is
5948called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
5949receives one argument. For a syntax error, the string is normally
5950@w{@code{"syntax error"}}.
bfa74976 5951
2a8d363a 5952@findex %error-verbose
6f04ee6c
JD
5953If you invoke the directive @code{%error-verbose} in the Bison declarations
5954section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
5955Bison provides a more verbose and specific error message string instead of
5956just plain @w{@code{"syntax error"}}. However, that message sometimes
5957contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 5958
1a059451
PE
5959The parser can detect one other kind of error: memory exhaustion. This
5960can happen when the input contains constructions that are very deeply
bfa74976 5961nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
5962parser normally extends its stack automatically up to a very large limit. But
5963if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
5964fashion, except that the argument string is @w{@code{"memory exhausted"}}.
5965
5966In some cases diagnostics like @w{@code{"syntax error"}} are
5967translated automatically from English to some other language before
5968they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
5969
5970The following definition suffices in simple programs:
5971
5972@example
5973@group
13863333 5974void
38a92d50 5975yyerror (char const *s)
bfa74976
RS
5976@{
5977@end group
5978@group
5979 fprintf (stderr, "%s\n", s);
5980@}
5981@end group
5982@end example
5983
5984After @code{yyerror} returns to @code{yyparse}, the latter will attempt
5985error recovery if you have written suitable error recovery grammar rules
5986(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
5987immediately return 1.
5988
93724f13 5989Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 5990an access to the current location.
35430378 5991This is indeed the case for the GLR
2a8d363a 5992parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 5993@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
5994@code{yyerror} are:
5995
5996@example
38a92d50
PE
5997void yyerror (char const *msg); /* Yacc parsers. */
5998void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
5999@end example
6000
feeb0eda 6001If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6002
6003@example
b317297e
PE
6004void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6005void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6006@end example
6007
35430378 6008Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6009convention for absolutely pure parsers, i.e., when the calling
6010convention of @code{yylex} @emph{and} the calling convention of
d9df47b6
JD
6011@code{%define api.pure} are pure.
6012I.e.:
2a8d363a
AD
6013
6014@example
6015/* Location tracking. */
6016%locations
6017/* Pure yylex. */
d9df47b6 6018%define api.pure
feeb0eda 6019%lex-param @{int *nastiness@}
2a8d363a 6020/* Pure yyparse. */
feeb0eda
PE
6021%parse-param @{int *nastiness@}
6022%parse-param @{int *randomness@}
2a8d363a
AD
6023@end example
6024
6025@noindent
6026results in the following signatures for all the parser kinds:
6027
6028@example
6029int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6030int yyparse (int *nastiness, int *randomness);
93724f13
AD
6031void yyerror (YYLTYPE *locp,
6032 int *nastiness, int *randomness,
38a92d50 6033 char const *msg);
2a8d363a
AD
6034@end example
6035
1c0c3e95 6036@noindent
38a92d50
PE
6037The prototypes are only indications of how the code produced by Bison
6038uses @code{yyerror}. Bison-generated code always ignores the returned
6039value, so @code{yyerror} can return any type, including @code{void}.
6040Also, @code{yyerror} can be a variadic function; that is why the
6041message is always passed last.
6042
6043Traditionally @code{yyerror} returns an @code{int} that is always
6044ignored, but this is purely for historical reasons, and @code{void} is
6045preferable since it more accurately describes the return type for
6046@code{yyerror}.
93724f13 6047
bfa74976
RS
6048@vindex yynerrs
6049The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6050reported so far. Normally this variable is global; but if you
704a47c4
AD
6051request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6052then it is a local variable which only the actions can access.
bfa74976 6053
342b8b6e 6054@node Action Features
bfa74976
RS
6055@section Special Features for Use in Actions
6056@cindex summary, action features
6057@cindex action features summary
6058
6059Here is a table of Bison constructs, variables and macros that
6060are useful in actions.
6061
18b519c0 6062@deffn {Variable} $$
bfa74976
RS
6063Acts like a variable that contains the semantic value for the
6064grouping made by the current rule. @xref{Actions}.
18b519c0 6065@end deffn
bfa74976 6066
18b519c0 6067@deffn {Variable} $@var{n}
bfa74976
RS
6068Acts like a variable that contains the semantic value for the
6069@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6070@end deffn
bfa74976 6071
18b519c0 6072@deffn {Variable} $<@var{typealt}>$
bfa74976 6073Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6074specified by the @code{%union} declaration. @xref{Action Types, ,Data
6075Types of Values in Actions}.
18b519c0 6076@end deffn
bfa74976 6077
18b519c0 6078@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6079Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6080union specified by the @code{%union} declaration.
e0c471a9 6081@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6082@end deffn
bfa74976 6083
18b519c0 6084@deffn {Macro} YYABORT;
bfa74976
RS
6085Return immediately from @code{yyparse}, indicating failure.
6086@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6087@end deffn
bfa74976 6088
18b519c0 6089@deffn {Macro} YYACCEPT;
bfa74976
RS
6090Return immediately from @code{yyparse}, indicating success.
6091@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6092@end deffn
bfa74976 6093
18b519c0 6094@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6095@findex YYBACKUP
6096Unshift a token. This macro is allowed only for rules that reduce
742e4900 6097a single value, and only when there is no lookahead token.
35430378 6098It is also disallowed in GLR parsers.
742e4900 6099It installs a lookahead token with token type @var{token} and
bfa74976
RS
6100semantic value @var{value}; then it discards the value that was
6101going to be reduced by this rule.
6102
6103If the macro is used when it is not valid, such as when there is
742e4900 6104a lookahead token already, then it reports a syntax error with
bfa74976
RS
6105a message @samp{cannot back up} and performs ordinary error
6106recovery.
6107
6108In either case, the rest of the action is not executed.
18b519c0 6109@end deffn
bfa74976 6110
18b519c0 6111@deffn {Macro} YYEMPTY
bfa74976 6112@vindex YYEMPTY
742e4900 6113Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6114@end deffn
bfa74976 6115
32c29292
JD
6116@deffn {Macro} YYEOF
6117@vindex YYEOF
742e4900 6118Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6119stream.
6120@end deffn
6121
18b519c0 6122@deffn {Macro} YYERROR;
bfa74976
RS
6123@findex YYERROR
6124Cause an immediate syntax error. This statement initiates error
6125recovery just as if the parser itself had detected an error; however, it
6126does not call @code{yyerror}, and does not print any message. If you
6127want to print an error message, call @code{yyerror} explicitly before
6128the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6129@end deffn
bfa74976 6130
18b519c0 6131@deffn {Macro} YYRECOVERING
02103984
PE
6132@findex YYRECOVERING
6133The expression @code{YYRECOVERING ()} yields 1 when the parser
6134is recovering from a syntax error, and 0 otherwise.
bfa74976 6135@xref{Error Recovery}.
18b519c0 6136@end deffn
bfa74976 6137
18b519c0 6138@deffn {Variable} yychar
742e4900
JD
6139Variable containing either the lookahead token, or @code{YYEOF} when the
6140lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6141has been performed so the next token is not yet known.
6142Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6143Actions}).
742e4900 6144@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6145@end deffn
bfa74976 6146
18b519c0 6147@deffn {Macro} yyclearin;
742e4900 6148Discard the current lookahead token. This is useful primarily in
32c29292
JD
6149error rules.
6150Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6151Semantic Actions}).
6152@xref{Error Recovery}.
18b519c0 6153@end deffn
bfa74976 6154
18b519c0 6155@deffn {Macro} yyerrok;
bfa74976 6156Resume generating error messages immediately for subsequent syntax
13863333 6157errors. This is useful primarily in error rules.
bfa74976 6158@xref{Error Recovery}.
18b519c0 6159@end deffn
bfa74976 6160
32c29292 6161@deffn {Variable} yylloc
742e4900 6162Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6163to @code{YYEMPTY} or @code{YYEOF}.
6164Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6165Actions}).
6166@xref{Actions and Locations, ,Actions and Locations}.
6167@end deffn
6168
6169@deffn {Variable} yylval
742e4900 6170Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6171not set to @code{YYEMPTY} or @code{YYEOF}.
6172Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6173Actions}).
6174@xref{Actions, ,Actions}.
6175@end deffn
6176
18b519c0 6177@deffn {Value} @@$
847bf1f5 6178@findex @@$
7404cdf3
JD
6179Acts like a structure variable containing information on the textual
6180location of the grouping made by the current rule. @xref{Tracking
6181Locations}.
bfa74976 6182
847bf1f5
AD
6183@c Check if those paragraphs are still useful or not.
6184
6185@c @example
6186@c struct @{
6187@c int first_line, last_line;
6188@c int first_column, last_column;
6189@c @};
6190@c @end example
6191
6192@c Thus, to get the starting line number of the third component, you would
6193@c use @samp{@@3.first_line}.
bfa74976 6194
847bf1f5
AD
6195@c In order for the members of this structure to contain valid information,
6196@c you must make @code{yylex} supply this information about each token.
6197@c If you need only certain members, then @code{yylex} need only fill in
6198@c those members.
bfa74976 6199
847bf1f5 6200@c The use of this feature makes the parser noticeably slower.
18b519c0 6201@end deffn
847bf1f5 6202
18b519c0 6203@deffn {Value} @@@var{n}
847bf1f5 6204@findex @@@var{n}
7404cdf3
JD
6205Acts like a structure variable containing information on the textual
6206location of the @var{n}th component of the current rule. @xref{Tracking
6207Locations}.
18b519c0 6208@end deffn
bfa74976 6209
f7ab6a50
PE
6210@node Internationalization
6211@section Parser Internationalization
6212@cindex internationalization
6213@cindex i18n
6214@cindex NLS
6215@cindex gettext
6216@cindex bison-po
6217
6218A Bison-generated parser can print diagnostics, including error and
6219tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6220also supports outputting diagnostics in the user's native language. To
6221make this work, the user should set the usual environment variables.
6222@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6223For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
35430378 6224set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6225encoding. The exact set of available locales depends on the user's
6226installation.
6227
6228The maintainer of a package that uses a Bison-generated parser enables
6229the internationalization of the parser's output through the following
35430378
JD
6230steps. Here we assume a package that uses GNU Autoconf and
6231GNU Automake.
f7ab6a50
PE
6232
6233@enumerate
6234@item
30757c8c 6235@cindex bison-i18n.m4
35430378 6236Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6237by the package---often called @file{m4}---copy the
6238@file{bison-i18n.m4} file installed by Bison under
6239@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6240For example:
6241
6242@example
6243cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6244@end example
6245
6246@item
30757c8c
PE
6247@findex BISON_I18N
6248@vindex BISON_LOCALEDIR
6249@vindex YYENABLE_NLS
f7ab6a50
PE
6250In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6251invocation, add an invocation of @code{BISON_I18N}. This macro is
6252defined in the file @file{bison-i18n.m4} that you copied earlier. It
6253causes @samp{configure} to find the value of the
30757c8c
PE
6254@code{BISON_LOCALEDIR} variable, and it defines the source-language
6255symbol @code{YYENABLE_NLS} to enable translations in the
6256Bison-generated parser.
f7ab6a50
PE
6257
6258@item
6259In the @code{main} function of your program, designate the directory
6260containing Bison's runtime message catalog, through a call to
6261@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6262For example:
6263
6264@example
6265bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6266@end example
6267
6268Typically this appears after any other call @code{bindtextdomain
6269(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6270@samp{BISON_LOCALEDIR} to be defined as a string through the
6271@file{Makefile}.
6272
6273@item
6274In the @file{Makefile.am} that controls the compilation of the @code{main}
6275function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6276either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6277
6278@example
6279DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6280@end example
6281
6282or:
6283
6284@example
6285AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6286@end example
6287
6288@item
6289Finally, invoke the command @command{autoreconf} to generate the build
6290infrastructure.
6291@end enumerate
6292
bfa74976 6293
342b8b6e 6294@node Algorithm
13863333
AD
6295@chapter The Bison Parser Algorithm
6296@cindex Bison parser algorithm
bfa74976
RS
6297@cindex algorithm of parser
6298@cindex shifting
6299@cindex reduction
6300@cindex parser stack
6301@cindex stack, parser
6302
6303As Bison reads tokens, it pushes them onto a stack along with their
6304semantic values. The stack is called the @dfn{parser stack}. Pushing a
6305token is traditionally called @dfn{shifting}.
6306
6307For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6308@samp{3} to come. The stack will have four elements, one for each token
6309that was shifted.
6310
6311But the stack does not always have an element for each token read. When
6312the last @var{n} tokens and groupings shifted match the components of a
6313grammar rule, they can be combined according to that rule. This is called
6314@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6315single grouping whose symbol is the result (left hand side) of that rule.
6316Running the rule's action is part of the process of reduction, because this
6317is what computes the semantic value of the resulting grouping.
6318
6319For example, if the infix calculator's parser stack contains this:
6320
6321@example
63221 + 5 * 3
6323@end example
6324
6325@noindent
6326and the next input token is a newline character, then the last three
6327elements can be reduced to 15 via the rule:
6328
6329@example
6330expr: expr '*' expr;
6331@end example
6332
6333@noindent
6334Then the stack contains just these three elements:
6335
6336@example
63371 + 15
6338@end example
6339
6340@noindent
6341At this point, another reduction can be made, resulting in the single value
634216. Then the newline token can be shifted.
6343
6344The parser tries, by shifts and reductions, to reduce the entire input down
6345to a single grouping whose symbol is the grammar's start-symbol
6346(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6347
6348This kind of parser is known in the literature as a bottom-up parser.
6349
6350@menu
742e4900 6351* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6352* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6353* Precedence:: Operator precedence works by resolving conflicts.
6354* Contextual Precedence:: When an operator's precedence depends on context.
6355* Parser States:: The parser is a finite-state-machine with stack.
6356* Reduce/Reduce:: When two rules are applicable in the same situation.
5da0355a 6357* Mysterious Conflicts:: Conflicts that look unjustified.
6f04ee6c 6358* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6359* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6360* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6361@end menu
6362
742e4900
JD
6363@node Lookahead
6364@section Lookahead Tokens
6365@cindex lookahead token
bfa74976
RS
6366
6367The Bison parser does @emph{not} always reduce immediately as soon as the
6368last @var{n} tokens and groupings match a rule. This is because such a
6369simple strategy is inadequate to handle most languages. Instead, when a
6370reduction is possible, the parser sometimes ``looks ahead'' at the next
6371token in order to decide what to do.
6372
6373When a token is read, it is not immediately shifted; first it becomes the
742e4900 6374@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6375perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6376the lookahead token remains off to the side. When no more reductions
6377should take place, the lookahead token is shifted onto the stack. This
bfa74976 6378does not mean that all possible reductions have been done; depending on the
742e4900 6379token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6380application.
6381
742e4900 6382Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6383expressions which contain binary addition operators and postfix unary
6384factorial operators (@samp{!}), and allow parentheses for grouping.
6385
6386@example
6387@group
de6be119
AD
6388expr:
6389 term '+' expr
6390| term
6391;
bfa74976
RS
6392@end group
6393
6394@group
de6be119
AD
6395term:
6396 '(' expr ')'
6397| term '!'
6398| NUMBER
6399;
bfa74976
RS
6400@end group
6401@end example
6402
6403Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6404should be done? If the following token is @samp{)}, then the first three
6405tokens must be reduced to form an @code{expr}. This is the only valid
6406course, because shifting the @samp{)} would produce a sequence of symbols
6407@w{@code{term ')'}}, and no rule allows this.
6408
6409If the following token is @samp{!}, then it must be shifted immediately so
6410that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6411parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6412@code{expr}. It would then be impossible to shift the @samp{!} because
6413doing so would produce on the stack the sequence of symbols @code{expr
6414'!'}. No rule allows that sequence.
6415
6416@vindex yychar
32c29292
JD
6417@vindex yylval
6418@vindex yylloc
742e4900 6419The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6420Its semantic value and location, if any, are stored in the variables
6421@code{yylval} and @code{yylloc}.
bfa74976
RS
6422@xref{Action Features, ,Special Features for Use in Actions}.
6423
342b8b6e 6424@node Shift/Reduce
bfa74976
RS
6425@section Shift/Reduce Conflicts
6426@cindex conflicts
6427@cindex shift/reduce conflicts
6428@cindex dangling @code{else}
6429@cindex @code{else}, dangling
6430
6431Suppose we are parsing a language which has if-then and if-then-else
6432statements, with a pair of rules like this:
6433
6434@example
6435@group
6436if_stmt:
de6be119
AD
6437 IF expr THEN stmt
6438| IF expr THEN stmt ELSE stmt
6439;
bfa74976
RS
6440@end group
6441@end example
6442
6443@noindent
6444Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6445terminal symbols for specific keyword tokens.
6446
742e4900 6447When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6448contents of the stack (assuming the input is valid) are just right for
6449reduction by the first rule. But it is also legitimate to shift the
6450@code{ELSE}, because that would lead to eventual reduction by the second
6451rule.
6452
6453This situation, where either a shift or a reduction would be valid, is
6454called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6455these conflicts by choosing to shift, unless otherwise directed by
6456operator precedence declarations. To see the reason for this, let's
6457contrast it with the other alternative.
6458
6459Since the parser prefers to shift the @code{ELSE}, the result is to attach
6460the else-clause to the innermost if-statement, making these two inputs
6461equivalent:
6462
6463@example
6464if x then if y then win (); else lose;
6465
6466if x then do; if y then win (); else lose; end;
6467@end example
6468
6469But if the parser chose to reduce when possible rather than shift, the
6470result would be to attach the else-clause to the outermost if-statement,
6471making these two inputs equivalent:
6472
6473@example
6474if x then if y then win (); else lose;
6475
6476if x then do; if y then win (); end; else lose;
6477@end example
6478
6479The conflict exists because the grammar as written is ambiguous: either
6480parsing of the simple nested if-statement is legitimate. The established
6481convention is that these ambiguities are resolved by attaching the
6482else-clause to the innermost if-statement; this is what Bison accomplishes
6483by choosing to shift rather than reduce. (It would ideally be cleaner to
6484write an unambiguous grammar, but that is very hard to do in this case.)
6485This particular ambiguity was first encountered in the specifications of
6486Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6487
6488To avoid warnings from Bison about predictable, legitimate shift/reduce
cf22447c
JD
6489conflicts, use the @code{%expect @var{n}} declaration.
6490There will be no warning as long as the number of shift/reduce conflicts
6491is exactly @var{n}, and Bison will report an error if there is a
6492different number.
bfa74976
RS
6493@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6494
6495The definition of @code{if_stmt} above is solely to blame for the
6496conflict, but the conflict does not actually appear without additional
9913d6e4
JD
6497rules. Here is a complete Bison grammar file that actually manifests
6498the conflict:
bfa74976
RS
6499
6500@example
6501@group
6502%token IF THEN ELSE variable
6503%%
6504@end group
6505@group
de6be119
AD
6506stmt:
6507 expr
6508| if_stmt
6509;
bfa74976
RS
6510@end group
6511
6512@group
6513if_stmt:
de6be119
AD
6514 IF expr THEN stmt
6515| IF expr THEN stmt ELSE stmt
6516;
bfa74976
RS
6517@end group
6518
de6be119
AD
6519expr:
6520 variable
6521;
bfa74976
RS
6522@end example
6523
342b8b6e 6524@node Precedence
bfa74976
RS
6525@section Operator Precedence
6526@cindex operator precedence
6527@cindex precedence of operators
6528
6529Another situation where shift/reduce conflicts appear is in arithmetic
6530expressions. Here shifting is not always the preferred resolution; the
6531Bison declarations for operator precedence allow you to specify when to
6532shift and when to reduce.
6533
6534@menu
6535* Why Precedence:: An example showing why precedence is needed.
6536* Using Precedence:: How to specify precedence in Bison grammars.
6537* Precedence Examples:: How these features are used in the previous example.
6538* How Precedence:: How they work.
6539@end menu
6540
342b8b6e 6541@node Why Precedence
bfa74976
RS
6542@subsection When Precedence is Needed
6543
6544Consider the following ambiguous grammar fragment (ambiguous because the
6545input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6546
6547@example
6548@group
de6be119
AD
6549expr:
6550 expr '-' expr
6551| expr '*' expr
6552| expr '<' expr
6553| '(' expr ')'
6554@dots{}
6555;
bfa74976
RS
6556@end group
6557@end example
6558
6559@noindent
6560Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6561should it reduce them via the rule for the subtraction operator? It
6562depends on the next token. Of course, if the next token is @samp{)}, we
6563must reduce; shifting is invalid because no single rule can reduce the
6564token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6565the next token is @samp{*} or @samp{<}, we have a choice: either
6566shifting or reduction would allow the parse to complete, but with
6567different results.
6568
6569To decide which one Bison should do, we must consider the results. If
6570the next operator token @var{op} is shifted, then it must be reduced
6571first in order to permit another opportunity to reduce the difference.
6572The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6573hand, if the subtraction is reduced before shifting @var{op}, the result
6574is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6575reduce should depend on the relative precedence of the operators
6576@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6577@samp{<}.
bfa74976
RS
6578
6579@cindex associativity
6580What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6581@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6582operators we prefer the former, which is called @dfn{left association}.
6583The latter alternative, @dfn{right association}, is desirable for
6584assignment operators. The choice of left or right association is a
6585matter of whether the parser chooses to shift or reduce when the stack
742e4900 6586contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6587makes right-associativity.
bfa74976 6588
342b8b6e 6589@node Using Precedence
bfa74976
RS
6590@subsection Specifying Operator Precedence
6591@findex %left
6592@findex %right
6593@findex %nonassoc
6594
6595Bison allows you to specify these choices with the operator precedence
6596declarations @code{%left} and @code{%right}. Each such declaration
6597contains a list of tokens, which are operators whose precedence and
6598associativity is being declared. The @code{%left} declaration makes all
6599those operators left-associative and the @code{%right} declaration makes
6600them right-associative. A third alternative is @code{%nonassoc}, which
6601declares that it is a syntax error to find the same operator twice ``in a
6602row''.
6603
6604The relative precedence of different operators is controlled by the
6605order in which they are declared. The first @code{%left} or
6606@code{%right} declaration in the file declares the operators whose
6607precedence is lowest, the next such declaration declares the operators
6608whose precedence is a little higher, and so on.
6609
342b8b6e 6610@node Precedence Examples
bfa74976
RS
6611@subsection Precedence Examples
6612
6613In our example, we would want the following declarations:
6614
6615@example
6616%left '<'
6617%left '-'
6618%left '*'
6619@end example
6620
6621In a more complete example, which supports other operators as well, we
6622would declare them in groups of equal precedence. For example, @code{'+'} is
6623declared with @code{'-'}:
6624
6625@example
6626%left '<' '>' '=' NE LE GE
6627%left '+' '-'
6628%left '*' '/'
6629@end example
6630
6631@noindent
6632(Here @code{NE} and so on stand for the operators for ``not equal''
6633and so on. We assume that these tokens are more than one character long
6634and therefore are represented by names, not character literals.)
6635
342b8b6e 6636@node How Precedence
bfa74976
RS
6637@subsection How Precedence Works
6638
6639The first effect of the precedence declarations is to assign precedence
6640levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6641precedence levels to certain rules: each rule gets its precedence from
6642the last terminal symbol mentioned in the components. (You can also
6643specify explicitly the precedence of a rule. @xref{Contextual
6644Precedence, ,Context-Dependent Precedence}.)
6645
6646Finally, the resolution of conflicts works by comparing the precedence
742e4900 6647of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6648token's precedence is higher, the choice is to shift. If the rule's
6649precedence is higher, the choice is to reduce. If they have equal
6650precedence, the choice is made based on the associativity of that
6651precedence level. The verbose output file made by @samp{-v}
6652(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6653resolved.
bfa74976
RS
6654
6655Not all rules and not all tokens have precedence. If either the rule or
742e4900 6656the lookahead token has no precedence, then the default is to shift.
bfa74976 6657
342b8b6e 6658@node Contextual Precedence
bfa74976
RS
6659@section Context-Dependent Precedence
6660@cindex context-dependent precedence
6661@cindex unary operator precedence
6662@cindex precedence, context-dependent
6663@cindex precedence, unary operator
6664@findex %prec
6665
6666Often the precedence of an operator depends on the context. This sounds
6667outlandish at first, but it is really very common. For example, a minus
6668sign typically has a very high precedence as a unary operator, and a
6669somewhat lower precedence (lower than multiplication) as a binary operator.
6670
6671The Bison precedence declarations, @code{%left}, @code{%right} and
6672@code{%nonassoc}, can only be used once for a given token; so a token has
6673only one precedence declared in this way. For context-dependent
6674precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6675modifier for rules.
bfa74976
RS
6676
6677The @code{%prec} modifier declares the precedence of a particular rule by
6678specifying a terminal symbol whose precedence should be used for that rule.
6679It's not necessary for that symbol to appear otherwise in the rule. The
6680modifier's syntax is:
6681
6682@example
6683%prec @var{terminal-symbol}
6684@end example
6685
6686@noindent
6687and it is written after the components of the rule. Its effect is to
6688assign the rule the precedence of @var{terminal-symbol}, overriding
6689the precedence that would be deduced for it in the ordinary way. The
6690altered rule precedence then affects how conflicts involving that rule
6691are resolved (@pxref{Precedence, ,Operator Precedence}).
6692
6693Here is how @code{%prec} solves the problem of unary minus. First, declare
6694a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6695are no tokens of this type, but the symbol serves to stand for its
6696precedence:
6697
6698@example
6699@dots{}
6700%left '+' '-'
6701%left '*'
6702%left UMINUS
6703@end example
6704
6705Now the precedence of @code{UMINUS} can be used in specific rules:
6706
6707@example
6708@group
de6be119
AD
6709exp:
6710 @dots{}
6711| exp '-' exp
6712 @dots{}
6713| '-' exp %prec UMINUS
bfa74976
RS
6714@end group
6715@end example
6716
91d2c560 6717@ifset defaultprec
39a06c25
PE
6718If you forget to append @code{%prec UMINUS} to the rule for unary
6719minus, Bison silently assumes that minus has its usual precedence.
6720This kind of problem can be tricky to debug, since one typically
6721discovers the mistake only by testing the code.
6722
22fccf95 6723The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6724this kind of problem systematically. It causes rules that lack a
6725@code{%prec} modifier to have no precedence, even if the last terminal
6726symbol mentioned in their components has a declared precedence.
6727
22fccf95 6728If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6729for all rules that participate in precedence conflict resolution.
6730Then you will see any shift/reduce conflict until you tell Bison how
6731to resolve it, either by changing your grammar or by adding an
6732explicit precedence. This will probably add declarations to the
6733grammar, but it helps to protect against incorrect rule precedences.
6734
22fccf95
PE
6735The effect of @code{%no-default-prec;} can be reversed by giving
6736@code{%default-prec;}, which is the default.
91d2c560 6737@end ifset
39a06c25 6738
342b8b6e 6739@node Parser States
bfa74976
RS
6740@section Parser States
6741@cindex finite-state machine
6742@cindex parser state
6743@cindex state (of parser)
6744
6745The function @code{yyparse} is implemented using a finite-state machine.
6746The values pushed on the parser stack are not simply token type codes; they
6747represent the entire sequence of terminal and nonterminal symbols at or
6748near the top of the stack. The current state collects all the information
6749about previous input which is relevant to deciding what to do next.
6750
742e4900
JD
6751Each time a lookahead token is read, the current parser state together
6752with the type of lookahead token are looked up in a table. This table
6753entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6754specifies the new parser state, which is pushed onto the top of the
6755parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6756This means that a certain number of tokens or groupings are taken off
6757the top of the stack, and replaced by one grouping. In other words,
6758that number of states are popped from the stack, and one new state is
6759pushed.
6760
742e4900 6761There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6762is erroneous in the current state. This causes error processing to begin
6763(@pxref{Error Recovery}).
6764
342b8b6e 6765@node Reduce/Reduce
bfa74976
RS
6766@section Reduce/Reduce Conflicts
6767@cindex reduce/reduce conflict
6768@cindex conflicts, reduce/reduce
6769
6770A reduce/reduce conflict occurs if there are two or more rules that apply
6771to the same sequence of input. This usually indicates a serious error
6772in the grammar.
6773
6774For example, here is an erroneous attempt to define a sequence
6775of zero or more @code{word} groupings.
6776
6777@example
98842516 6778@group
de6be119
AD
6779sequence:
6780 /* empty */ @{ printf ("empty sequence\n"); @}
6781| maybeword
6782| sequence word @{ printf ("added word %s\n", $2); @}
6783;
98842516 6784@end group
bfa74976 6785
98842516 6786@group
de6be119
AD
6787maybeword:
6788 /* empty */ @{ printf ("empty maybeword\n"); @}
6789| word @{ printf ("single word %s\n", $1); @}
6790;
98842516 6791@end group
bfa74976
RS
6792@end example
6793
6794@noindent
6795The error is an ambiguity: there is more than one way to parse a single
6796@code{word} into a @code{sequence}. It could be reduced to a
6797@code{maybeword} and then into a @code{sequence} via the second rule.
6798Alternatively, nothing-at-all could be reduced into a @code{sequence}
6799via the first rule, and this could be combined with the @code{word}
6800using the third rule for @code{sequence}.
6801
6802There is also more than one way to reduce nothing-at-all into a
6803@code{sequence}. This can be done directly via the first rule,
6804or indirectly via @code{maybeword} and then the second rule.
6805
6806You might think that this is a distinction without a difference, because it
6807does not change whether any particular input is valid or not. But it does
6808affect which actions are run. One parsing order runs the second rule's
6809action; the other runs the first rule's action and the third rule's action.
6810In this example, the output of the program changes.
6811
6812Bison resolves a reduce/reduce conflict by choosing to use the rule that
6813appears first in the grammar, but it is very risky to rely on this. Every
6814reduce/reduce conflict must be studied and usually eliminated. Here is the
6815proper way to define @code{sequence}:
6816
6817@example
de6be119
AD
6818sequence:
6819 /* empty */ @{ printf ("empty sequence\n"); @}
6820| sequence word @{ printf ("added word %s\n", $2); @}
6821;
bfa74976
RS
6822@end example
6823
6824Here is another common error that yields a reduce/reduce conflict:
6825
6826@example
de6be119
AD
6827sequence:
6828 /* empty */
6829| sequence words
6830| sequence redirects
6831;
bfa74976 6832
de6be119
AD
6833words:
6834 /* empty */
6835| words word
6836;
bfa74976 6837
de6be119
AD
6838redirects:
6839 /* empty */
6840| redirects redirect
6841;
bfa74976
RS
6842@end example
6843
6844@noindent
6845The intention here is to define a sequence which can contain either
6846@code{word} or @code{redirect} groupings. The individual definitions of
6847@code{sequence}, @code{words} and @code{redirects} are error-free, but the
6848three together make a subtle ambiguity: even an empty input can be parsed
6849in infinitely many ways!
6850
6851Consider: nothing-at-all could be a @code{words}. Or it could be two
6852@code{words} in a row, or three, or any number. It could equally well be a
6853@code{redirects}, or two, or any number. Or it could be a @code{words}
6854followed by three @code{redirects} and another @code{words}. And so on.
6855
6856Here are two ways to correct these rules. First, to make it a single level
6857of sequence:
6858
6859@example
de6be119
AD
6860sequence:
6861 /* empty */
6862| sequence word
6863| sequence redirect
6864;
bfa74976
RS
6865@end example
6866
6867Second, to prevent either a @code{words} or a @code{redirects}
6868from being empty:
6869
6870@example
98842516 6871@group
de6be119
AD
6872sequence:
6873 /* empty */
6874| sequence words
6875| sequence redirects
6876;
98842516 6877@end group
bfa74976 6878
98842516 6879@group
de6be119
AD
6880words:
6881 word
6882| words word
6883;
98842516 6884@end group
bfa74976 6885
98842516 6886@group
de6be119
AD
6887redirects:
6888 redirect
6889| redirects redirect
6890;
98842516 6891@end group
bfa74976
RS
6892@end example
6893
5da0355a
JD
6894@node Mysterious Conflicts
6895@section Mysterious Conflicts
6f04ee6c 6896@cindex Mysterious Conflicts
bfa74976
RS
6897
6898Sometimes reduce/reduce conflicts can occur that don't look warranted.
6899Here is an example:
6900
6901@example
6902@group
6903%token ID
6904
6905%%
de6be119 6906def: param_spec return_spec ',';
bfa74976 6907param_spec:
de6be119
AD
6908 type
6909| name_list ':' type
6910;
bfa74976
RS
6911@end group
6912@group
6913return_spec:
de6be119
AD
6914 type
6915| name ':' type
6916;
bfa74976
RS
6917@end group
6918@group
de6be119 6919type: ID;
bfa74976
RS
6920@end group
6921@group
de6be119 6922name: ID;
bfa74976 6923name_list:
de6be119
AD
6924 name
6925| name ',' name_list
6926;
bfa74976
RS
6927@end group
6928@end example
6929
6930It would seem that this grammar can be parsed with only a single token
742e4900 6931of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 6932a @code{name} if a comma or colon follows, or a @code{type} if another
35430378 6933@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 6934
6f04ee6c
JD
6935@cindex LR
6936@cindex LALR
34a6c2d1 6937However, for historical reasons, Bison cannot by default handle all
35430378 6938LR(1) grammars.
34a6c2d1
JD
6939In this grammar, two contexts, that after an @code{ID} at the beginning
6940of a @code{param_spec} and likewise at the beginning of a
6941@code{return_spec}, are similar enough that Bison assumes they are the
6942same.
6943They appear similar because the same set of rules would be
bfa74976
RS
6944active---the rule for reducing to a @code{name} and that for reducing to
6945a @code{type}. Bison is unable to determine at that stage of processing
742e4900 6946that the rules would require different lookahead tokens in the two
bfa74976
RS
6947contexts, so it makes a single parser state for them both. Combining
6948the two contexts causes a conflict later. In parser terminology, this
35430378 6949occurrence means that the grammar is not LALR(1).
bfa74976 6950
6f04ee6c
JD
6951@cindex IELR
6952@cindex canonical LR
6953For many practical grammars (specifically those that fall into the non-LR(1)
6954class), the limitations of LALR(1) result in difficulties beyond just
6955mysterious reduce/reduce conflicts. The best way to fix all these problems
6956is to select a different parser table construction algorithm. Either
6957IELR(1) or canonical LR(1) would suffice, but the former is more efficient
6958and easier to debug during development. @xref{LR Table Construction}, for
6959details. (Bison's IELR(1) and canonical LR(1) implementations are
6960experimental. More user feedback will help to stabilize them.)
34a6c2d1 6961
35430378 6962If you instead wish to work around LALR(1)'s limitations, you
34a6c2d1
JD
6963can often fix a mysterious conflict by identifying the two parser states
6964that are being confused, and adding something to make them look
6965distinct. In the above example, adding one rule to
bfa74976
RS
6966@code{return_spec} as follows makes the problem go away:
6967
6968@example
6969@group
6970%token BOGUS
6971@dots{}
6972%%
6973@dots{}
6974return_spec:
de6be119
AD
6975 type
6976| name ':' type
6977| ID BOGUS /* This rule is never used. */
6978;
bfa74976
RS
6979@end group
6980@end example
6981
6982This corrects the problem because it introduces the possibility of an
6983additional active rule in the context after the @code{ID} at the beginning of
6984@code{return_spec}. This rule is not active in the corresponding context
6985in a @code{param_spec}, so the two contexts receive distinct parser states.
6986As long as the token @code{BOGUS} is never generated by @code{yylex},
6987the added rule cannot alter the way actual input is parsed.
6988
6989In this particular example, there is another way to solve the problem:
6990rewrite the rule for @code{return_spec} to use @code{ID} directly
6991instead of via @code{name}. This also causes the two confusing
6992contexts to have different sets of active rules, because the one for
6993@code{return_spec} activates the altered rule for @code{return_spec}
6994rather than the one for @code{name}.
6995
6996@example
6997param_spec:
de6be119
AD
6998 type
6999| name_list ':' type
7000;
bfa74976 7001return_spec:
de6be119
AD
7002 type
7003| ID ':' type
7004;
bfa74976
RS
7005@end example
7006
35430378 7007For a more detailed exposition of LALR(1) parsers and parser
71caec06 7008generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7009
6f04ee6c
JD
7010@node Tuning LR
7011@section Tuning LR
7012
7013The default behavior of Bison's LR-based parsers is chosen mostly for
7014historical reasons, but that behavior is often not robust. For example, in
7015the previous section, we discussed the mysterious conflicts that can be
7016produced by LALR(1), Bison's default parser table construction algorithm.
7017Another example is Bison's @code{%error-verbose} directive, which instructs
7018the generated parser to produce verbose syntax error messages, which can
7019sometimes contain incorrect information.
7020
7021In this section, we explore several modern features of Bison that allow you
7022to tune fundamental aspects of the generated LR-based parsers. Some of
7023these features easily eliminate shortcomings like those mentioned above.
7024Others can be helpful purely for understanding your parser.
7025
7026Most of the features discussed in this section are still experimental. More
7027user feedback will help to stabilize them.
7028
7029@menu
7030* LR Table Construction:: Choose a different construction algorithm.
7031* Default Reductions:: Disable default reductions.
7032* LAC:: Correct lookahead sets in the parser states.
7033* Unreachable States:: Keep unreachable parser states for debugging.
7034@end menu
7035
7036@node LR Table Construction
7037@subsection LR Table Construction
7038@cindex Mysterious Conflict
7039@cindex LALR
7040@cindex IELR
7041@cindex canonical LR
7042@findex %define lr.type
7043
7044For historical reasons, Bison constructs LALR(1) parser tables by default.
7045However, LALR does not possess the full language-recognition power of LR.
7046As a result, the behavior of parsers employing LALR parser tables is often
5da0355a 7047mysterious. We presented a simple example of this effect in @ref{Mysterious
6f04ee6c
JD
7048Conflicts}.
7049
7050As we also demonstrated in that example, the traditional approach to
7051eliminating such mysterious behavior is to restructure the grammar.
7052Unfortunately, doing so correctly is often difficult. Moreover, merely
7053discovering that LALR causes mysterious behavior in your parser can be
7054difficult as well.
7055
7056Fortunately, Bison provides an easy way to eliminate the possibility of such
7057mysterious behavior altogether. You simply need to activate a more powerful
7058parser table construction algorithm by using the @code{%define lr.type}
7059directive.
7060
7061@deffn {Directive} {%define lr.type @var{TYPE}}
7062Specify the type of parser tables within the LR(1) family. The accepted
7063values for @var{TYPE} are:
7064
7065@itemize
7066@item @code{lalr} (default)
7067@item @code{ielr}
7068@item @code{canonical-lr}
7069@end itemize
7070
7071(This feature is experimental. More user feedback will help to stabilize
7072it.)
7073@end deffn
7074
7075For example, to activate IELR, you might add the following directive to you
7076grammar file:
7077
7078@example
7079%define lr.type ielr
7080@end example
7081
5da0355a 7082@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
6f04ee6c
JD
7083conflict is then eliminated, so there is no need to invest time in
7084comprehending the conflict or restructuring the grammar to fix it. If,
7085during future development, the grammar evolves such that all mysterious
7086behavior would have disappeared using just LALR, you need not fear that
7087continuing to use IELR will result in unnecessarily large parser tables.
7088That is, IELR generates LALR tables when LALR (using a deterministic parsing
7089algorithm) is sufficient to support the full language-recognition power of
7090LR. Thus, by enabling IELR at the start of grammar development, you can
7091safely and completely eliminate the need to consider LALR's shortcomings.
7092
7093While IELR is almost always preferable, there are circumstances where LALR
7094or the canonical LR parser tables described by Knuth
7095(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7096relative advantages of each parser table construction algorithm within
7097Bison:
7098
7099@itemize
7100@item LALR
7101
7102There are at least two scenarios where LALR can be worthwhile:
7103
7104@itemize
7105@item GLR without static conflict resolution.
7106
7107@cindex GLR with LALR
7108When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7109conflicts statically (for example, with @code{%left} or @code{%prec}), then
7110the parser explores all potential parses of any given input. In this case,
7111the choice of parser table construction algorithm is guaranteed not to alter
7112the language accepted by the parser. LALR parser tables are the smallest
7113parser tables Bison can currently construct, so they may then be preferable.
7114Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7115more like a deterministic parser in the syntactic contexts where those
7116conflicts appear, and so either IELR or canonical LR can then be helpful to
7117avoid LALR's mysterious behavior.
7118
7119@item Malformed grammars.
7120
7121Occasionally during development, an especially malformed grammar with a
7122major recurring flaw may severely impede the IELR or canonical LR parser
7123table construction algorithm. LALR can be a quick way to construct parser
7124tables in order to investigate such problems while ignoring the more subtle
7125differences from IELR and canonical LR.
7126@end itemize
7127
7128@item IELR
7129
7130IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7131any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7132always accept exactly the same set of sentences. However, like LALR, IELR
7133merges parser states during parser table construction so that the number of
7134parser states is often an order of magnitude less than for canonical LR.
7135More importantly, because canonical LR's extra parser states may contain
7136duplicate conflicts in the case of non-LR grammars, the number of conflicts
7137for IELR is often an order of magnitude less as well. This effect can
7138significantly reduce the complexity of developing a grammar.
7139
7140@item Canonical LR
7141
7142@cindex delayed syntax error detection
7143@cindex LAC
7144@findex %nonassoc
7145While inefficient, canonical LR parser tables can be an interesting means to
7146explore a grammar because they possess a property that IELR and LALR tables
7147do not. That is, if @code{%nonassoc} is not used and default reductions are
7148left disabled (@pxref{Default Reductions}), then, for every left context of
7149every canonical LR state, the set of tokens accepted by that state is
7150guaranteed to be the exact set of tokens that is syntactically acceptable in
7151that left context. It might then seem that an advantage of canonical LR
7152parsers in production is that, under the above constraints, they are
7153guaranteed to detect a syntax error as soon as possible without performing
7154any unnecessary reductions. However, IELR parsers that use LAC are also
7155able to achieve this behavior without sacrificing @code{%nonassoc} or
7156default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7157@end itemize
7158
7159For a more detailed exposition of the mysterious behavior in LALR parsers
7160and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7161@ref{Bibliography,,Denny 2010 November}.
7162
7163@node Default Reductions
7164@subsection Default Reductions
7165@cindex default reductions
7166@findex %define lr.default-reductions
7167@findex %nonassoc
7168
7169After parser table construction, Bison identifies the reduction with the
7170largest lookahead set in each parser state. To reduce the size of the
7171parser state, traditional Bison behavior is to remove that lookahead set and
7172to assign that reduction to be the default parser action. Such a reduction
7173is known as a @dfn{default reduction}.
7174
7175Default reductions affect more than the size of the parser tables. They
7176also affect the behavior of the parser:
7177
7178@itemize
7179@item Delayed @code{yylex} invocations.
7180
7181@cindex delayed yylex invocations
7182@cindex consistent states
7183@cindex defaulted states
7184A @dfn{consistent state} is a state that has only one possible parser
7185action. If that action is a reduction and is encoded as a default
7186reduction, then that consistent state is called a @dfn{defaulted state}.
7187Upon reaching a defaulted state, a Bison-generated parser does not bother to
7188invoke @code{yylex} to fetch the next token before performing the reduction.
7189In other words, whether default reductions are enabled in consistent states
7190determines how soon a Bison-generated parser invokes @code{yylex} for a
7191token: immediately when it @emph{reaches} that token in the input or when it
7192eventually @emph{needs} that token as a lookahead to determine the next
7193parser action. Traditionally, default reductions are enabled, and so the
7194parser exhibits the latter behavior.
7195
7196The presence of defaulted states is an important consideration when
7197designing @code{yylex} and the grammar file. That is, if the behavior of
7198@code{yylex} can influence or be influenced by the semantic actions
7199associated with the reductions in defaulted states, then the delay of the
7200next @code{yylex} invocation until after those reductions is significant.
7201For example, the semantic actions might pop a scope stack that @code{yylex}
7202uses to determine what token to return. Thus, the delay might be necessary
7203to ensure that @code{yylex} does not look up the next token in a scope that
7204should already be considered closed.
7205
7206@item Delayed syntax error detection.
7207
7208@cindex delayed syntax error detection
7209When the parser fetches a new token by invoking @code{yylex}, it checks
7210whether there is an action for that token in the current parser state. The
7211parser detects a syntax error if and only if either (1) there is no action
7212for that token or (2) the action for that token is the error action (due to
7213the use of @code{%nonassoc}). However, if there is a default reduction in
7214that state (which might or might not be a defaulted state), then it is
7215impossible for condition 1 to exist. That is, all tokens have an action.
7216Thus, the parser sometimes fails to detect the syntax error until it reaches
7217a later state.
7218
7219@cindex LAC
7220@c If there's an infinite loop, default reductions can prevent an incorrect
7221@c sentence from being rejected.
7222While default reductions never cause the parser to accept syntactically
7223incorrect sentences, the delay of syntax error detection can have unexpected
7224effects on the behavior of the parser. However, the delay can be caused
7225anyway by parser state merging and the use of @code{%nonassoc}, and it can
7226be fixed by another Bison feature, LAC. We discuss the effects of delayed
7227syntax error detection and LAC more in the next section (@pxref{LAC}).
7228@end itemize
7229
7230For canonical LR, the only default reduction that Bison enables by default
7231is the accept action, which appears only in the accepting state, which has
7232no other action and is thus a defaulted state. However, the default accept
7233action does not delay any @code{yylex} invocation or syntax error detection
7234because the accept action ends the parse.
7235
7236For LALR and IELR, Bison enables default reductions in nearly all states by
7237default. There are only two exceptions. First, states that have a shift
7238action on the @code{error} token do not have default reductions because
7239delayed syntax error detection could then prevent the @code{error} token
7240from ever being shifted in that state. However, parser state merging can
7241cause the same effect anyway, and LAC fixes it in both cases, so future
7242versions of Bison might drop this exception when LAC is activated. Second,
7243GLR parsers do not record the default reduction as the action on a lookahead
7244token for which there is a conflict. The correct action in this case is to
7245split the parse instead.
7246
7247To adjust which states have default reductions enabled, use the
7248@code{%define lr.default-reductions} directive.
7249
7250@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7251Specify the kind of states that are permitted to contain default reductions.
7252The accepted values of @var{WHERE} are:
7253@itemize
a6e5a280 7254@item @code{most} (default for LALR and IELR)
6f04ee6c
JD
7255@item @code{consistent}
7256@item @code{accepting} (default for canonical LR)
7257@end itemize
7258
7259(The ability to specify where default reductions are permitted is
7260experimental. More user feedback will help to stabilize it.)
7261@end deffn
7262
6f04ee6c
JD
7263@node LAC
7264@subsection LAC
7265@findex %define parse.lac
7266@cindex LAC
7267@cindex lookahead correction
7268
7269Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7270encountering a syntax error. First, the parser might perform additional
7271parser stack reductions before discovering the syntax error. Such
7272reductions can perform user semantic actions that are unexpected because
7273they are based on an invalid token, and they cause error recovery to begin
7274in a different syntactic context than the one in which the invalid token was
7275encountered. Second, when verbose error messages are enabled (@pxref{Error
7276Reporting}), the expected token list in the syntax error message can both
7277contain invalid tokens and omit valid tokens.
7278
7279The culprits for the above problems are @code{%nonassoc}, default reductions
7280in inconsistent states (@pxref{Default Reductions}), and parser state
7281merging. Because IELR and LALR merge parser states, they suffer the most.
7282Canonical LR can suffer only if @code{%nonassoc} is used or if default
7283reductions are enabled for inconsistent states.
7284
7285LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7286that solves these problems for canonical LR, IELR, and LALR without
7287sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7288enable LAC with the @code{%define parse.lac} directive.
7289
7290@deffn {Directive} {%define parse.lac @var{VALUE}}
7291Enable LAC to improve syntax error handling.
7292@itemize
7293@item @code{none} (default)
7294@item @code{full}
7295@end itemize
7296(This feature is experimental. More user feedback will help to stabilize
7297it. Moreover, it is currently only available for deterministic parsers in
7298C.)
7299@end deffn
7300
7301Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7302fetches a new token from the scanner so that it can determine the next
7303parser action, it immediately suspends normal parsing and performs an
7304exploratory parse using a temporary copy of the normal parser state stack.
7305During this exploratory parse, the parser does not perform user semantic
7306actions. If the exploratory parse reaches a shift action, normal parsing
7307then resumes on the normal parser stacks. If the exploratory parse reaches
7308an error instead, the parser reports a syntax error. If verbose syntax
7309error messages are enabled, the parser must then discover the list of
7310expected tokens, so it performs a separate exploratory parse for each token
7311in the grammar.
7312
7313There is one subtlety about the use of LAC. That is, when in a consistent
7314parser state with a default reduction, the parser will not attempt to fetch
7315a token from the scanner because no lookahead is needed to determine the
7316next parser action. Thus, whether default reductions are enabled in
7317consistent states (@pxref{Default Reductions}) affects how soon the parser
7318detects a syntax error: immediately when it @emph{reaches} an erroneous
7319token or when it eventually @emph{needs} that token as a lookahead to
7320determine the next parser action. The latter behavior is probably more
7321intuitive, so Bison currently provides no way to achieve the former behavior
7322while default reductions are enabled in consistent states.
7323
7324Thus, when LAC is in use, for some fixed decision of whether to enable
7325default reductions in consistent states, canonical LR and IELR behave almost
7326exactly the same for both syntactically acceptable and syntactically
7327unacceptable input. While LALR still does not support the full
7328language-recognition power of canonical LR and IELR, LAC at least enables
7329LALR's syntax error handling to correctly reflect LALR's
7330language-recognition power.
7331
7332There are a few caveats to consider when using LAC:
7333
7334@itemize
7335@item Infinite parsing loops.
7336
7337IELR plus LAC does have one shortcoming relative to canonical LR. Some
7338parsers generated by Bison can loop infinitely. LAC does not fix infinite
7339parsing loops that occur between encountering a syntax error and detecting
7340it, but enabling canonical LR or disabling default reductions sometimes
7341does.
7342
7343@item Verbose error message limitations.
7344
7345Because of internationalization considerations, Bison-generated parsers
7346limit the size of the expected token list they are willing to report in a
7347verbose syntax error message. If the number of expected tokens exceeds that
7348limit, the list is simply dropped from the message. Enabling LAC can
7349increase the size of the list and thus cause the parser to drop it. Of
7350course, dropping the list is better than reporting an incorrect list.
7351
7352@item Performance.
7353
7354Because LAC requires many parse actions to be performed twice, it can have a
7355performance penalty. However, not all parse actions must be performed
7356twice. Specifically, during a series of default reductions in consistent
7357states and shift actions, the parser never has to initiate an exploratory
7358parse. Moreover, the most time-consuming tasks in a parse are often the
7359file I/O, the lexical analysis performed by the scanner, and the user's
7360semantic actions, but none of these are performed during the exploratory
7361parse. Finally, the base of the temporary stack used during an exploratory
7362parse is a pointer into the normal parser state stack so that the stack is
7363never physically copied. In our experience, the performance penalty of LAC
56da1e52 7364has proved insignificant for practical grammars.
6f04ee6c
JD
7365@end itemize
7366
56706c61
JD
7367While the LAC algorithm shares techniques that have been recognized in the
7368parser community for years, for the publication that introduces LAC,
7369@pxref{Bibliography,,Denny 2010 May}.
121c4982 7370
6f04ee6c
JD
7371@node Unreachable States
7372@subsection Unreachable States
7373@findex %define lr.keep-unreachable-states
7374@cindex unreachable states
7375
7376If there exists no sequence of transitions from the parser's start state to
7377some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7378state}. A state can become unreachable during conflict resolution if Bison
7379disables a shift action leading to it from a predecessor state.
7380
7381By default, Bison removes unreachable states from the parser after conflict
7382resolution because they are useless in the generated parser. However,
7383keeping unreachable states is sometimes useful when trying to understand the
7384relationship between the parser and the grammar.
7385
7386@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7387Request that Bison allow unreachable states to remain in the parser tables.
7388@var{VALUE} must be a Boolean. The default is @code{false}.
7389@end deffn
7390
7391There are a few caveats to consider:
7392
7393@itemize @bullet
7394@item Missing or extraneous warnings.
7395
7396Unreachable states may contain conflicts and may use rules not used in any
7397other state. Thus, keeping unreachable states may induce warnings that are
7398irrelevant to your parser's behavior, and it may eliminate warnings that are
7399relevant. Of course, the change in warnings may actually be relevant to a
7400parser table analysis that wants to keep unreachable states, so this
7401behavior will likely remain in future Bison releases.
7402
7403@item Other useless states.
7404
7405While Bison is able to remove unreachable states, it is not guaranteed to
7406remove other kinds of useless states. Specifically, when Bison disables
7407reduce actions during conflict resolution, some goto actions may become
7408useless, and thus some additional states may become useless. If Bison were
7409to compute which goto actions were useless and then disable those actions,
7410it could identify such states as unreachable and then remove those states.
7411However, Bison does not compute which goto actions are useless.
7412@end itemize
7413
fae437e8 7414@node Generalized LR Parsing
35430378
JD
7415@section Generalized LR (GLR) Parsing
7416@cindex GLR parsing
7417@cindex generalized LR (GLR) parsing
676385e2 7418@cindex ambiguous grammars
9d9b8b70 7419@cindex nondeterministic parsing
676385e2 7420
fae437e8
AD
7421Bison produces @emph{deterministic} parsers that choose uniquely
7422when to reduce and which reduction to apply
742e4900 7423based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7424As a result, normal Bison handles a proper subset of the family of
7425context-free languages.
fae437e8 7426Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7427sequence of reductions cannot have deterministic parsers in this sense.
7428The same is true of languages that require more than one symbol of
742e4900 7429lookahead, since the parser lacks the information necessary to make a
676385e2 7430decision at the point it must be made in a shift-reduce parser.
5da0355a 7431Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
34a6c2d1 7432there are languages where Bison's default choice of how to
676385e2
PH
7433summarize the input seen so far loses necessary information.
7434
7435When you use the @samp{%glr-parser} declaration in your grammar file,
7436Bison generates a parser that uses a different algorithm, called
35430378 7437Generalized LR (or GLR). A Bison GLR
c827f760 7438parser uses the same basic
676385e2
PH
7439algorithm for parsing as an ordinary Bison parser, but behaves
7440differently in cases where there is a shift-reduce conflict that has not
fae437e8 7441been resolved by precedence rules (@pxref{Precedence}) or a
35430378 7442reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7443situation, it
fae437e8 7444effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7445shift or reduction. These parsers then proceed as usual, consuming
7446tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7447and split further, with the result that instead of a sequence of states,
35430378 7448a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7449
7450In effect, each stack represents a guess as to what the proper parse
7451is. Additional input may indicate that a guess was wrong, in which case
7452the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7453actions generated in each stack are saved, rather than being executed
676385e2 7454immediately. When a stack disappears, its saved semantic actions never
fae437e8 7455get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7456their sets of semantic actions are both saved with the state that
7457results from the reduction. We say that two stacks are equivalent
fae437e8 7458when they both represent the same sequence of states,
676385e2
PH
7459and each pair of corresponding states represents a
7460grammar symbol that produces the same segment of the input token
7461stream.
7462
7463Whenever the parser makes a transition from having multiple
34a6c2d1 7464states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7465algorithm, after resolving and executing the saved-up actions.
7466At this transition, some of the states on the stack will have semantic
7467values that are sets (actually multisets) of possible actions. The
7468parser tries to pick one of the actions by first finding one whose rule
7469has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7470declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7471precedence, but there the same merging function is declared for both
fae437e8 7472rules by the @samp{%merge} declaration,
676385e2
PH
7473Bison resolves and evaluates both and then calls the merge function on
7474the result. Otherwise, it reports an ambiguity.
7475
35430378
JD
7476It is possible to use a data structure for the GLR parsing tree that
7477permits the processing of any LR(1) grammar in linear time (in the
c827f760 7478size of the input), any unambiguous (not necessarily
35430378 7479LR(1)) grammar in
fae437e8 7480quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7481context-free grammar in cubic worst-case time. However, Bison currently
7482uses a simpler data structure that requires time proportional to the
7483length of the input times the maximum number of stacks required for any
9d9b8b70 7484prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7485grammars can require exponential time and space to process. Such badly
7486behaving examples, however, are not generally of practical interest.
9d9b8b70 7487Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7488doubt'' only for a few tokens at a time. Therefore, the current data
35430378 7489structure should generally be adequate. On LR(1) portions of a
34a6c2d1 7490grammar, in particular, it is only slightly slower than with the
35430378 7491deterministic LR(1) Bison parser.
676385e2 7492
71caec06
JD
7493For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
74942000}.
f6481e2f 7495
1a059451
PE
7496@node Memory Management
7497@section Memory Management, and How to Avoid Memory Exhaustion
7498@cindex memory exhaustion
7499@cindex memory management
bfa74976
RS
7500@cindex stack overflow
7501@cindex parser stack overflow
7502@cindex overflow of parser stack
7503
1a059451 7504The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7505not reduced. When this happens, the parser function @code{yyparse}
1a059451 7506calls @code{yyerror} and then returns 2.
bfa74976 7507
c827f760 7508Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7509usually results from using a right recursion instead of a left
7510recursion, @xref{Recursion, ,Recursive Rules}.
7511
bfa74976
RS
7512@vindex YYMAXDEPTH
7513By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7514parser stack can become before memory is exhausted. Define the
bfa74976
RS
7515macro with a value that is an integer. This value is the maximum number
7516of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7517
7518The stack space allowed is not necessarily allocated. If you specify a
1a059451 7519large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7520stack at first, and then makes it bigger by stages as needed. This
7521increasing allocation happens automatically and silently. Therefore,
7522you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7523space for ordinary inputs that do not need much stack.
7524
d7e14fc0
PE
7525However, do not allow @code{YYMAXDEPTH} to be a value so large that
7526arithmetic overflow could occur when calculating the size of the stack
7527space. Also, do not allow @code{YYMAXDEPTH} to be less than
7528@code{YYINITDEPTH}.
7529
bfa74976
RS
7530@cindex default stack limit
7531The default value of @code{YYMAXDEPTH}, if you do not define it, is
753210000.
7533
7534@vindex YYINITDEPTH
7535You can control how much stack is allocated initially by defining the
34a6c2d1
JD
7536macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7537parser in C, this value must be a compile-time constant
d7e14fc0
PE
7538unless you are assuming C99 or some other target language or compiler
7539that allows variable-length arrays. The default is 200.
7540
1a059451 7541Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7542
d1a1114f 7543@c FIXME: C++ output.
c781580d 7544Because of semantic differences between C and C++, the deterministic
34a6c2d1 7545parsers in C produced by Bison cannot grow when compiled
1a059451
PE
7546by C++ compilers. In this precise case (compiling a C parser as C++) you are
7547suggested to grow @code{YYINITDEPTH}. The Bison maintainers hope to fix
7548this deficiency in a future release.
d1a1114f 7549
342b8b6e 7550@node Error Recovery
bfa74976
RS
7551@chapter Error Recovery
7552@cindex error recovery
7553@cindex recovery from errors
7554
6e649e65 7555It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7556error. For example, a compiler should recover sufficiently to parse the
7557rest of the input file and check it for errors; a calculator should accept
7558another expression.
7559
7560In a simple interactive command parser where each input is one line, it may
7561be sufficient to allow @code{yyparse} to return 1 on error and have the
7562caller ignore the rest of the input line when that happens (and then call
7563@code{yyparse} again). But this is inadequate for a compiler, because it
7564forgets all the syntactic context leading up to the error. A syntax error
7565deep within a function in the compiler input should not cause the compiler
7566to treat the following line like the beginning of a source file.
7567
7568@findex error
7569You can define how to recover from a syntax error by writing rules to
7570recognize the special token @code{error}. This is a terminal symbol that
7571is always defined (you need not declare it) and reserved for error
7572handling. The Bison parser generates an @code{error} token whenever a
7573syntax error happens; if you have provided a rule to recognize this token
13863333 7574in the current context, the parse can continue.
bfa74976
RS
7575
7576For example:
7577
7578@example
0765d393 7579stmts:
de6be119 7580 /* empty string */
0765d393
AD
7581| stmts '\n'
7582| stmts exp '\n'
7583| stmts error '\n'
bfa74976
RS
7584@end example
7585
7586The fourth rule in this example says that an error followed by a newline
0765d393 7587makes a valid addition to any @code{stmts}.
bfa74976
RS
7588
7589What happens if a syntax error occurs in the middle of an @code{exp}? The
7590error recovery rule, interpreted strictly, applies to the precise sequence
0765d393 7591of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 7592the middle of an @code{exp}, there will probably be some additional tokens
0765d393 7593and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
7594will be tokens to read before the next newline. So the rule is not
7595applicable in the ordinary way.
7596
7597But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7598the semantic context and part of the input. First it discards states
7599and objects from the stack until it gets back to a state in which the
bfa74976 7600@code{error} token is acceptable. (This means that the subexpressions
0765d393 7601already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 7602At this point the @code{error} token can be shifted. Then, if the old
742e4900 7603lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7604tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7605this example, Bison reads and discards input until the next newline so
7606that the fourth rule can apply. Note that discarded symbols are
7607possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7608Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7609
7610The choice of error rules in the grammar is a choice of strategies for
7611error recovery. A simple and useful strategy is simply to skip the rest of
7612the current input line or current statement if an error is detected:
7613
7614@example
0765d393 7615stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7616@end example
7617
7618It is also useful to recover to the matching close-delimiter of an
7619opening-delimiter that has already been parsed. Otherwise the
7620close-delimiter will probably appear to be unmatched, and generate another,
7621spurious error message:
7622
7623@example
de6be119
AD
7624primary:
7625 '(' expr ')'
7626| '(' error ')'
7627@dots{}
7628;
bfa74976
RS
7629@end example
7630
7631Error recovery strategies are necessarily guesses. When they guess wrong,
7632one syntax error often leads to another. In the above example, the error
7633recovery rule guesses that an error is due to bad input within one
0765d393
AD
7634@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
7635middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
7636from the first error, another syntax error will be found straightaway,
7637since the text following the spurious semicolon is also an invalid
0765d393 7638@code{stmt}.
bfa74976
RS
7639
7640To prevent an outpouring of error messages, the parser will output no error
7641message for another syntax error that happens shortly after the first; only
7642after three consecutive input tokens have been successfully shifted will
7643error messages resume.
7644
7645Note that rules which accept the @code{error} token may have actions, just
7646as any other rules can.
7647
7648@findex yyerrok
7649You can make error messages resume immediately by using the macro
7650@code{yyerrok} in an action. If you do this in the error rule's action, no
7651error messages will be suppressed. This macro requires no arguments;
7652@samp{yyerrok;} is a valid C statement.
7653
7654@findex yyclearin
742e4900 7655The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7656this is unacceptable, then the macro @code{yyclearin} may be used to clear
7657this token. Write the statement @samp{yyclearin;} in the error rule's
7658action.
32c29292 7659@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7660
6e649e65 7661For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7662called that advances the input stream to some point where parsing should
7663once again commence. The next symbol returned by the lexical scanner is
742e4900 7664probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7665with @samp{yyclearin;}.
7666
7667@vindex YYRECOVERING
02103984
PE
7668The expression @code{YYRECOVERING ()} yields 1 when the parser
7669is recovering from a syntax error, and 0 otherwise.
7670Syntax error diagnostics are suppressed while recovering from a syntax
7671error.
bfa74976 7672
342b8b6e 7673@node Context Dependency
bfa74976
RS
7674@chapter Handling Context Dependencies
7675
7676The Bison paradigm is to parse tokens first, then group them into larger
7677syntactic units. In many languages, the meaning of a token is affected by
7678its context. Although this violates the Bison paradigm, certain techniques
7679(known as @dfn{kludges}) may enable you to write Bison parsers for such
7680languages.
7681
7682@menu
7683* Semantic Tokens:: Token parsing can depend on the semantic context.
7684* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7685* Tie-in Recovery:: Lexical tie-ins have implications for how
7686 error recovery rules must be written.
7687@end menu
7688
7689(Actually, ``kludge'' means any technique that gets its job done but is
7690neither clean nor robust.)
7691
342b8b6e 7692@node Semantic Tokens
bfa74976
RS
7693@section Semantic Info in Token Types
7694
7695The C language has a context dependency: the way an identifier is used
7696depends on what its current meaning is. For example, consider this:
7697
7698@example
7699foo (x);
7700@end example
7701
7702This looks like a function call statement, but if @code{foo} is a typedef
7703name, then this is actually a declaration of @code{x}. How can a Bison
7704parser for C decide how to parse this input?
7705
35430378 7706The method used in GNU C is to have two different token types,
bfa74976
RS
7707@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7708identifier, it looks up the current declaration of the identifier in order
7709to decide which token type to return: @code{TYPENAME} if the identifier is
7710declared as a typedef, @code{IDENTIFIER} otherwise.
7711
7712The grammar rules can then express the context dependency by the choice of
7713token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7714but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7715@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7716is @emph{not} significant, such as in declarations that can shadow a
7717typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7718accepted---there is one rule for each of the two token types.
7719
7720This technique is simple to use if the decision of which kinds of
7721identifiers to allow is made at a place close to where the identifier is
7722parsed. But in C this is not always so: C allows a declaration to
7723redeclare a typedef name provided an explicit type has been specified
7724earlier:
7725
7726@example
3a4f411f
PE
7727typedef int foo, bar;
7728int baz (void)
98842516 7729@group
3a4f411f
PE
7730@{
7731 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7732 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7733 return foo (bar);
7734@}
98842516 7735@end group
bfa74976
RS
7736@end example
7737
7738Unfortunately, the name being declared is separated from the declaration
7739construct itself by a complicated syntactic structure---the ``declarator''.
7740
9ecbd125 7741As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7742all the nonterminal names changed: once for parsing a declaration in
7743which a typedef name can be redefined, and once for parsing a
7744declaration in which that can't be done. Here is a part of the
7745duplication, with actions omitted for brevity:
bfa74976
RS
7746
7747@example
98842516 7748@group
bfa74976 7749initdcl:
de6be119
AD
7750 declarator maybeasm '=' init
7751| declarator maybeasm
7752;
98842516 7753@end group
bfa74976 7754
98842516 7755@group
bfa74976 7756notype_initdcl:
de6be119
AD
7757 notype_declarator maybeasm '=' init
7758| notype_declarator maybeasm
7759;
98842516 7760@end group
bfa74976
RS
7761@end example
7762
7763@noindent
7764Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7765cannot. The distinction between @code{declarator} and
7766@code{notype_declarator} is the same sort of thing.
7767
7768There is some similarity between this technique and a lexical tie-in
7769(described next), in that information which alters the lexical analysis is
7770changed during parsing by other parts of the program. The difference is
7771here the information is global, and is used for other purposes in the
7772program. A true lexical tie-in has a special-purpose flag controlled by
7773the syntactic context.
7774
342b8b6e 7775@node Lexical Tie-ins
bfa74976
RS
7776@section Lexical Tie-ins
7777@cindex lexical tie-in
7778
7779One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7780which is set by Bison actions, whose purpose is to alter the way tokens are
7781parsed.
7782
7783For example, suppose we have a language vaguely like C, but with a special
7784construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7785an expression in parentheses in which all integers are hexadecimal. In
7786particular, the token @samp{a1b} must be treated as an integer rather than
7787as an identifier if it appears in that context. Here is how you can do it:
7788
7789@example
7790@group
7791%@{
38a92d50
PE
7792 int hexflag;
7793 int yylex (void);
7794 void yyerror (char const *);
bfa74976
RS
7795%@}
7796%%
7797@dots{}
7798@end group
7799@group
de6be119
AD
7800expr:
7801 IDENTIFIER
7802| constant
7803| HEX '(' @{ hexflag = 1; @}
7804 expr ')' @{ hexflag = 0; $$ = $4; @}
7805| expr '+' expr @{ $$ = make_sum ($1, $3); @}
7806@dots{}
7807;
bfa74976
RS
7808@end group
7809
7810@group
7811constant:
de6be119
AD
7812 INTEGER
7813| STRING
7814;
bfa74976
RS
7815@end group
7816@end example
7817
7818@noindent
7819Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
7820it is nonzero, all integers are parsed in hexadecimal, and tokens starting
7821with letters are parsed as integers if possible.
7822
9913d6e4
JD
7823The declaration of @code{hexflag} shown in the prologue of the grammar
7824file is needed to make it accessible to the actions (@pxref{Prologue,
7825,The Prologue}). You must also write the code in @code{yylex} to obey
7826the flag.
bfa74976 7827
342b8b6e 7828@node Tie-in Recovery
bfa74976
RS
7829@section Lexical Tie-ins and Error Recovery
7830
7831Lexical tie-ins make strict demands on any error recovery rules you have.
7832@xref{Error Recovery}.
7833
7834The reason for this is that the purpose of an error recovery rule is to
7835abort the parsing of one construct and resume in some larger construct.
7836For example, in C-like languages, a typical error recovery rule is to skip
7837tokens until the next semicolon, and then start a new statement, like this:
7838
7839@example
de6be119
AD
7840stmt:
7841 expr ';'
7842| IF '(' expr ')' stmt @{ @dots{} @}
7843@dots{}
7844| error ';' @{ hexflag = 0; @}
7845;
bfa74976
RS
7846@end example
7847
7848If there is a syntax error in the middle of a @samp{hex (@var{expr})}
7849construct, this error rule will apply, and then the action for the
7850completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
7851remain set for the entire rest of the input, or until the next @code{hex}
7852keyword, causing identifiers to be misinterpreted as integers.
7853
7854To avoid this problem the error recovery rule itself clears @code{hexflag}.
7855
7856There may also be an error recovery rule that works within expressions.
7857For example, there could be a rule which applies within parentheses
7858and skips to the close-parenthesis:
7859
7860@example
7861@group
de6be119
AD
7862expr:
7863 @dots{}
7864| '(' expr ')' @{ $$ = $2; @}
7865| '(' error ')'
7866@dots{}
bfa74976
RS
7867@end group
7868@end example
7869
7870If this rule acts within the @code{hex} construct, it is not going to abort
7871that construct (since it applies to an inner level of parentheses within
7872the construct). Therefore, it should not clear the flag: the rest of
7873the @code{hex} construct should be parsed with the flag still in effect.
7874
7875What if there is an error recovery rule which might abort out of the
7876@code{hex} construct or might not, depending on circumstances? There is no
7877way you can write the action to determine whether a @code{hex} construct is
7878being aborted or not. So if you are using a lexical tie-in, you had better
7879make sure your error recovery rules are not of this kind. Each rule must
7880be such that you can be sure that it always will, or always won't, have to
7881clear the flag.
7882
ec3bc396
AD
7883@c ================================================== Debugging Your Parser
7884
342b8b6e 7885@node Debugging
bfa74976 7886@chapter Debugging Your Parser
ec3bc396
AD
7887
7888Developing a parser can be a challenge, especially if you don't
7889understand the algorithm (@pxref{Algorithm, ,The Bison Parser
7890Algorithm}). Even so, sometimes a detailed description of the automaton
7891can help (@pxref{Understanding, , Understanding Your Parser}), or
7892tracing the execution of the parser can give some insight on why it
7893behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
7894
7895@menu
7896* Understanding:: Understanding the structure of your parser.
7897* Tracing:: Tracing the execution of your parser.
7898@end menu
7899
7900@node Understanding
7901@section Understanding Your Parser
7902
7903As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
7904Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
7905frequent than one would hope), looking at this automaton is required to
7906tune or simply fix a parser. Bison provides two different
35fe0834 7907representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
7908
7909The textual file is generated when the options @option{--report} or
7910@option{--verbose} are specified, see @xref{Invocation, , Invoking
7911Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
9913d6e4
JD
7912the parser implementation file name, and adding @samp{.output}
7913instead. Therefore, if the grammar file is @file{foo.y}, then the
7914parser implementation file is called @file{foo.tab.c} by default. As
7915a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
7916
7917The following grammar file, @file{calc.y}, will be used in the sequel:
7918
7919@example
7920%token NUM STR
7921%left '+' '-'
7922%left '*'
7923%%
de6be119
AD
7924exp:
7925 exp '+' exp
7926| exp '-' exp
7927| exp '*' exp
7928| exp '/' exp
7929| NUM
7930;
ec3bc396
AD
7931useless: STR;
7932%%
7933@end example
7934
88bce5a2
AD
7935@command{bison} reports:
7936
7937@example
379261b3
JD
7938calc.y: warning: 1 nonterminal useless in grammar
7939calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
7940calc.y:11.1-7: warning: nonterminal useless in grammar: useless
7941calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 7942calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
7943@end example
7944
7945When given @option{--report=state}, in addition to @file{calc.tab.c}, it
7946creates a file @file{calc.output} with contents detailed below. The
7947order of the output and the exact presentation might vary, but the
7948interpretation is the same.
ec3bc396 7949
ec3bc396
AD
7950@noindent
7951@cindex token, useless
7952@cindex useless token
7953@cindex nonterminal, useless
7954@cindex useless nonterminal
7955@cindex rule, useless
7956@cindex useless rule
84c1cdc7
AD
7957The first section reports useless tokens, nonterminals and rules. Useless
7958nonterminals and rules are removed in order to produce a smaller parser, but
7959useless tokens are preserved, since they might be used by the scanner (note
7960the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
7961
7962@example
84c1cdc7 7963Nonterminals useless in grammar
ec3bc396
AD
7964 useless
7965
84c1cdc7 7966Terminals unused in grammar
ec3bc396
AD
7967 STR
7968
84c1cdc7
AD
7969Rules useless in grammar
7970 6 useless: STR
ec3bc396
AD
7971@end example
7972
7973@noindent
84c1cdc7
AD
7974The next section lists states that still have conflicts.
7975
7976@example
7977State 8 conflicts: 1 shift/reduce
7978State 9 conflicts: 1 shift/reduce
7979State 10 conflicts: 1 shift/reduce
7980State 11 conflicts: 4 shift/reduce
7981@end example
7982
7983@noindent
7984Then Bison reproduces the exact grammar it used:
ec3bc396
AD
7985
7986@example
7987Grammar
7988
84c1cdc7
AD
7989 0 $accept: exp $end
7990
7991 1 exp: exp '+' exp
7992 2 | exp '-' exp
7993 3 | exp '*' exp
7994 4 | exp '/' exp
7995 5 | NUM
ec3bc396
AD
7996@end example
7997
7998@noindent
7999and reports the uses of the symbols:
8000
8001@example
98842516 8002@group
ec3bc396
AD
8003Terminals, with rules where they appear
8004
88bce5a2 8005$end (0) 0
ec3bc396
AD
8006'*' (42) 3
8007'+' (43) 1
8008'-' (45) 2
8009'/' (47) 4
8010error (256)
8011NUM (258) 5
84c1cdc7 8012STR (259)
98842516 8013@end group
ec3bc396 8014
98842516 8015@group
ec3bc396
AD
8016Nonterminals, with rules where they appear
8017
84c1cdc7 8018$accept (9)
ec3bc396 8019 on left: 0
84c1cdc7 8020exp (10)
ec3bc396 8021 on left: 1 2 3 4 5, on right: 0 1 2 3 4
98842516 8022@end group
ec3bc396
AD
8023@end example
8024
8025@noindent
8026@cindex item
8027@cindex pointed rule
8028@cindex rule, pointed
8029Bison then proceeds onto the automaton itself, describing each state
d13d14cc
PE
8030with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8031item is a production rule together with a point (@samp{.}) marking
8032the location of the input cursor.
ec3bc396
AD
8033
8034@example
8035state 0
8036
84c1cdc7 8037 0 $accept: . exp $end
ec3bc396 8038
84c1cdc7 8039 NUM shift, and go to state 1
ec3bc396 8040
84c1cdc7 8041 exp go to state 2
ec3bc396
AD
8042@end example
8043
8044This reads as follows: ``state 0 corresponds to being at the very
8045beginning of the parsing, in the initial rule, right before the start
8046symbol (here, @code{exp}). When the parser returns to this state right
8047after having reduced a rule that produced an @code{exp}, the control
8048flow jumps to state 2. If there is no such transition on a nonterminal
d13d14cc 8049symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8050the parse stack, and the control flow jumps to state 1. Any other
742e4900 8051lookahead triggers a syntax error.''
ec3bc396
AD
8052
8053@cindex core, item set
8054@cindex item set core
8055@cindex kernel, item set
8056@cindex item set core
8057Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8058report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8059at the beginning of any rule deriving an @code{exp}. By default Bison
8060reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8061you want to see more detail you can invoke @command{bison} with
d13d14cc 8062@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8063
8064@example
8065state 0
8066
84c1cdc7
AD
8067 0 $accept: . exp $end
8068 1 exp: . exp '+' exp
8069 2 | . exp '-' exp
8070 3 | . exp '*' exp
8071 4 | . exp '/' exp
8072 5 | . NUM
ec3bc396 8073
84c1cdc7 8074 NUM shift, and go to state 1
ec3bc396 8075
84c1cdc7 8076 exp go to state 2
ec3bc396
AD
8077@end example
8078
8079@noindent
84c1cdc7 8080In the state 1@dots{}
ec3bc396
AD
8081
8082@example
8083state 1
8084
84c1cdc7 8085 5 exp: NUM .
ec3bc396 8086
84c1cdc7 8087 $default reduce using rule 5 (exp)
ec3bc396
AD
8088@end example
8089
8090@noindent
742e4900 8091the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8092(@samp{$default}), the parser will reduce it. If it was coming from
8093state 0, then, after this reduction it will return to state 0, and will
8094jump to state 2 (@samp{exp: go to state 2}).
8095
8096@example
8097state 2
8098
84c1cdc7
AD
8099 0 $accept: exp . $end
8100 1 exp: exp . '+' exp
8101 2 | exp . '-' exp
8102 3 | exp . '*' exp
8103 4 | exp . '/' exp
ec3bc396 8104
84c1cdc7
AD
8105 $end shift, and go to state 3
8106 '+' shift, and go to state 4
8107 '-' shift, and go to state 5
8108 '*' shift, and go to state 6
8109 '/' shift, and go to state 7
ec3bc396
AD
8110@end example
8111
8112@noindent
8113In state 2, the automaton can only shift a symbol. For instance,
84c1cdc7 8114because of the item @samp{exp: exp . '+' exp}, if the lookahead is
d13d14cc 8115@samp{+} it is shifted onto the parse stack, and the automaton
84c1cdc7 8116jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
d13d14cc
PE
8117Since there is no default action, any lookahead not listed triggers a syntax
8118error.
ec3bc396 8119
34a6c2d1 8120@cindex accepting state
ec3bc396
AD
8121The state 3 is named the @dfn{final state}, or the @dfn{accepting
8122state}:
8123
8124@example
8125state 3
8126
84c1cdc7 8127 0 $accept: exp $end .
ec3bc396 8128
84c1cdc7 8129 $default accept
ec3bc396
AD
8130@end example
8131
8132@noindent
84c1cdc7
AD
8133the initial rule is completed (the start symbol and the end-of-input were
8134read), the parsing exits successfully.
ec3bc396
AD
8135
8136The interpretation of states 4 to 7 is straightforward, and is left to
8137the reader.
8138
8139@example
8140state 4
8141
84c1cdc7 8142 1 exp: exp '+' . exp
ec3bc396 8143
84c1cdc7
AD
8144 NUM shift, and go to state 1
8145
8146 exp go to state 8
ec3bc396 8147
ec3bc396
AD
8148
8149state 5
8150
84c1cdc7
AD
8151 2 exp: exp '-' . exp
8152
8153 NUM shift, and go to state 1
ec3bc396 8154
84c1cdc7 8155 exp go to state 9
ec3bc396 8156
ec3bc396
AD
8157
8158state 6
8159
84c1cdc7 8160 3 exp: exp '*' . exp
ec3bc396 8161
84c1cdc7
AD
8162 NUM shift, and go to state 1
8163
8164 exp go to state 10
ec3bc396 8165
ec3bc396
AD
8166
8167state 7
8168
84c1cdc7 8169 4 exp: exp '/' . exp
ec3bc396 8170
84c1cdc7 8171 NUM shift, and go to state 1
ec3bc396 8172
84c1cdc7 8173 exp go to state 11
ec3bc396
AD
8174@end example
8175
5a99098d
PE
8176As was announced in beginning of the report, @samp{State 8 conflicts:
81771 shift/reduce}:
ec3bc396
AD
8178
8179@example
8180state 8
8181
84c1cdc7
AD
8182 1 exp: exp . '+' exp
8183 1 | exp '+' exp .
8184 2 | exp . '-' exp
8185 3 | exp . '*' exp
8186 4 | exp . '/' exp
ec3bc396 8187
84c1cdc7
AD
8188 '*' shift, and go to state 6
8189 '/' shift, and go to state 7
ec3bc396 8190
84c1cdc7
AD
8191 '/' [reduce using rule 1 (exp)]
8192 $default reduce using rule 1 (exp)
ec3bc396
AD
8193@end example
8194
742e4900 8195Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8196either shifting (and going to state 7), or reducing rule 1. The
8197conflict means that either the grammar is ambiguous, or the parser lacks
8198information to make the right decision. Indeed the grammar is
8199ambiguous, as, since we did not specify the precedence of @samp{/}, the
8200sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8201NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8202NUM}, which corresponds to reducing rule 1.
8203
34a6c2d1 8204Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8205arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
84c1cdc7 8206Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8207square brackets.
8208
8209Note that all the previous states had a single possible action: either
8210shifting the next token and going to the corresponding state, or
8211reducing a single rule. In the other cases, i.e., when shifting
8212@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8213possible, the lookahead is required to select the action. State 8 is
8214one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8215is shifting, otherwise the action is reducing rule 1. In other words,
8216the first two items, corresponding to rule 1, are not eligible when the
742e4900 8217lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8218precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8219with some set of possible lookahead tokens. When run with
8220@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8221
8222@example
8223state 8
8224
84c1cdc7
AD
8225 1 exp: exp . '+' exp
8226 1 | exp '+' exp . [$end, '+', '-', '/']
8227 2 | exp . '-' exp
8228 3 | exp . '*' exp
8229 4 | exp . '/' exp
8230
8231 '*' shift, and go to state 6
8232 '/' shift, and go to state 7
ec3bc396 8233
84c1cdc7
AD
8234 '/' [reduce using rule 1 (exp)]
8235 $default reduce using rule 1 (exp)
8236@end example
8237
8238Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8239the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8240solved thanks to associativity and precedence directives. If invoked with
8241@option{--report=solved}, Bison includes information about the solved
8242conflicts in the report:
ec3bc396 8243
84c1cdc7
AD
8244@example
8245Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8246Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8247Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8248@end example
8249
84c1cdc7 8250
ec3bc396
AD
8251The remaining states are similar:
8252
8253@example
98842516 8254@group
ec3bc396
AD
8255state 9
8256
84c1cdc7
AD
8257 1 exp: exp . '+' exp
8258 2 | exp . '-' exp
8259 2 | exp '-' exp .
8260 3 | exp . '*' exp
8261 4 | exp . '/' exp
ec3bc396 8262
84c1cdc7
AD
8263 '*' shift, and go to state 6
8264 '/' shift, and go to state 7
ec3bc396 8265
84c1cdc7
AD
8266 '/' [reduce using rule 2 (exp)]
8267 $default reduce using rule 2 (exp)
98842516 8268@end group
ec3bc396 8269
98842516 8270@group
ec3bc396
AD
8271state 10
8272
84c1cdc7
AD
8273 1 exp: exp . '+' exp
8274 2 | exp . '-' exp
8275 3 | exp . '*' exp
8276 3 | exp '*' exp .
8277 4 | exp . '/' exp
ec3bc396 8278
84c1cdc7 8279 '/' shift, and go to state 7
ec3bc396 8280
84c1cdc7
AD
8281 '/' [reduce using rule 3 (exp)]
8282 $default reduce using rule 3 (exp)
98842516 8283@end group
ec3bc396 8284
98842516 8285@group
ec3bc396
AD
8286state 11
8287
84c1cdc7
AD
8288 1 exp: exp . '+' exp
8289 2 | exp . '-' exp
8290 3 | exp . '*' exp
8291 4 | exp . '/' exp
8292 4 | exp '/' exp .
8293
8294 '+' shift, and go to state 4
8295 '-' shift, and go to state 5
8296 '*' shift, and go to state 6
8297 '/' shift, and go to state 7
8298
8299 '+' [reduce using rule 4 (exp)]
8300 '-' [reduce using rule 4 (exp)]
8301 '*' [reduce using rule 4 (exp)]
8302 '/' [reduce using rule 4 (exp)]
8303 $default reduce using rule 4 (exp)
98842516 8304@end group
ec3bc396
AD
8305@end example
8306
8307@noindent
fa7e68c3
PE
8308Observe that state 11 contains conflicts not only due to the lack of
8309precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8310@samp{*}, but also because the
ec3bc396
AD
8311associativity of @samp{/} is not specified.
8312
8313
8314@node Tracing
8315@section Tracing Your Parser
bfa74976
RS
8316@findex yydebug
8317@cindex debugging
8318@cindex tracing the parser
8319
8320If a Bison grammar compiles properly but doesn't do what you want when it
8321runs, the @code{yydebug} parser-trace feature can help you figure out why.
8322
3ded9a63
AD
8323There are several means to enable compilation of trace facilities:
8324
8325@table @asis
8326@item the macro @code{YYDEBUG}
8327@findex YYDEBUG
8328Define the macro @code{YYDEBUG} to a nonzero value when you compile the
35430378 8329parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8330@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8331YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8332Prologue}).
8333
8334@item the option @option{-t}, @option{--debug}
8335Use the @samp{-t} option when you run Bison (@pxref{Invocation,
35430378 8336,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8337
8338@item the directive @samp{%debug}
8339@findex %debug
8340Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison
8341Declaration Summary}). This is a Bison extension, which will prove
8342useful when Bison will output parsers for languages that don't use a
35430378 8343preprocessor. Unless POSIX and Yacc portability matter to
c827f760 8344you, this is
3ded9a63
AD
8345the preferred solution.
8346@end table
8347
8348We suggest that you always enable the debug option so that debugging is
8349always possible.
bfa74976 8350
02a81e05 8351The trace facility outputs messages with macro calls of the form
e2742e46 8352@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8353@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8354arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8355define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8356and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8357
8358Once you have compiled the program with trace facilities, the way to
8359request a trace is to store a nonzero value in the variable @code{yydebug}.
8360You can do this by making the C code do it (in @code{main}, perhaps), or
8361you can alter the value with a C debugger.
8362
8363Each step taken by the parser when @code{yydebug} is nonzero produces a
8364line or two of trace information, written on @code{stderr}. The trace
8365messages tell you these things:
8366
8367@itemize @bullet
8368@item
8369Each time the parser calls @code{yylex}, what kind of token was read.
8370
8371@item
8372Each time a token is shifted, the depth and complete contents of the
8373state stack (@pxref{Parser States}).
8374
8375@item
8376Each time a rule is reduced, which rule it is, and the complete contents
8377of the state stack afterward.
8378@end itemize
8379
8380To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8381produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8382Bison}). This file shows the meaning of each state in terms of
8383positions in various rules, and also what each state will do with each
8384possible input token. As you read the successive trace messages, you
8385can see that the parser is functioning according to its specification in
8386the listing file. Eventually you will arrive at the place where
8387something undesirable happens, and you will see which parts of the
8388grammar are to blame.
bfa74976 8389
9913d6e4
JD
8390The parser implementation file is a C program and you can use C
8391debuggers on it, but it's not easy to interpret what it is doing. The
8392parser function is a finite-state machine interpreter, and aside from
8393the actions it executes the same code over and over. Only the values
8394of variables show where in the grammar it is working.
bfa74976
RS
8395
8396@findex YYPRINT
8397The debugging information normally gives the token type of each token
8398read, but not its semantic value. You can optionally define a macro
8399named @code{YYPRINT} to provide a way to print the value. If you define
8400@code{YYPRINT}, it should take three arguments. The parser will pass a
8401standard I/O stream, the numeric code for the token type, and the token
8402value (from @code{yylval}).
8403
8404Here is an example of @code{YYPRINT} suitable for the multi-function
f56274a8 8405calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 8406
ea118b72 8407@example
38a92d50
PE
8408%@{
8409 static void print_token_value (FILE *, int, YYSTYPE);
ea118b72
AD
8410 #define YYPRINT(file, type, value) \
8411 print_token_value (file, type, value)
38a92d50
PE
8412%@}
8413
8414@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8415
8416static void
831d3c99 8417print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8418@{
8419 if (type == VAR)
d3c4e709 8420 fprintf (file, "%s", value.tptr->name);
bfa74976 8421 else if (type == NUM)
d3c4e709 8422 fprintf (file, "%d", value.val);
bfa74976 8423@}
ea118b72 8424@end example
bfa74976 8425
ec3bc396
AD
8426@c ================================================= Invoking Bison
8427
342b8b6e 8428@node Invocation
bfa74976
RS
8429@chapter Invoking Bison
8430@cindex invoking Bison
8431@cindex Bison invocation
8432@cindex options for invoking Bison
8433
8434The usual way to invoke Bison is as follows:
8435
8436@example
8437bison @var{infile}
8438@end example
8439
8440Here @var{infile} is the grammar file name, which usually ends in
9913d6e4
JD
8441@samp{.y}. The parser implementation file's name is made by replacing
8442the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8443Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8444the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8445also possible, in case you are writing C++ code instead of C in your
8446grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8447output files will take an extension like the given one as input
8448(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8449feature takes effect with all options that manipulate file names like
234a3be3
AD
8450@samp{-o} or @samp{-d}.
8451
8452For example :
8453
8454@example
8455bison -d @var{infile.yxx}
8456@end example
84163231 8457@noindent
72d2299c 8458will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8459
8460@example
b56471a6 8461bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8462@end example
84163231 8463@noindent
234a3be3
AD
8464will produce @file{output.c++} and @file{outfile.h++}.
8465
35430378 8466For compatibility with POSIX, the standard Bison
397ec073
PE
8467distribution also contains a shell script called @command{yacc} that
8468invokes Bison with the @option{-y} option.
8469
bfa74976 8470@menu
13863333 8471* Bison Options:: All the options described in detail,
c827f760 8472 in alphabetical order by short options.
bfa74976 8473* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8474* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8475@end menu
8476
342b8b6e 8477@node Bison Options
bfa74976
RS
8478@section Bison Options
8479
8480Bison supports both traditional single-letter options and mnemonic long
8481option names. Long option names are indicated with @samp{--} instead of
8482@samp{-}. Abbreviations for option names are allowed as long as they
8483are unique. When a long option takes an argument, like
8484@samp{--file-prefix}, connect the option name and the argument with
8485@samp{=}.
8486
8487Here is a list of options that can be used with Bison, alphabetized by
8488short option. It is followed by a cross key alphabetized by long
8489option.
8490
89cab50d
AD
8491@c Please, keep this ordered as in `bison --help'.
8492@noindent
8493Operations modes:
8494@table @option
8495@item -h
8496@itemx --help
8497Print a summary of the command-line options to Bison and exit.
bfa74976 8498
89cab50d
AD
8499@item -V
8500@itemx --version
8501Print the version number of Bison and exit.
bfa74976 8502
f7ab6a50
PE
8503@item --print-localedir
8504Print the name of the directory containing locale-dependent data.
8505
a0de5091
JD
8506@item --print-datadir
8507Print the name of the directory containing skeletons and XSLT.
8508
89cab50d
AD
8509@item -y
8510@itemx --yacc
9913d6e4
JD
8511Act more like the traditional Yacc command. This can cause different
8512diagnostics to be generated, and may change behavior in other minor
8513ways. Most importantly, imitate Yacc's output file name conventions,
8514so that the parser implementation file is called @file{y.tab.c}, and
8515the other outputs are called @file{y.output} and @file{y.tab.h}.
8516Also, if generating a deterministic parser in C, generate
8517@code{#define} statements in addition to an @code{enum} to associate
8518token numbers with token names. Thus, the following shell script can
8519substitute for Yacc, and the Bison distribution contains such a script
8520for compatibility with POSIX:
bfa74976 8521
89cab50d 8522@example
397ec073 8523#! /bin/sh
26e06a21 8524bison -y "$@@"
89cab50d 8525@end example
54662697
PE
8526
8527The @option{-y}/@option{--yacc} option is intended for use with
8528traditional Yacc grammars. If your grammar uses a Bison extension
8529like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8530this option is specified.
8531
ecd1b61c
JD
8532@item -W [@var{category}]
8533@itemx --warnings[=@var{category}]
118d4978
AD
8534Output warnings falling in @var{category}. @var{category} can be one
8535of:
8536@table @code
8537@item midrule-values
8e55b3aa
JD
8538Warn about mid-rule values that are set but not used within any of the actions
8539of the parent rule.
8540For example, warn about unused @code{$2} in:
118d4978
AD
8541
8542@example
8543exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8544@end example
8545
8e55b3aa
JD
8546Also warn about mid-rule values that are used but not set.
8547For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8548
8549@example
de6be119 8550exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
8551@end example
8552
8553These warnings are not enabled by default since they sometimes prove to
8554be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8555@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8556
118d4978 8557@item yacc
35430378 8558Incompatibilities with POSIX Yacc.
118d4978 8559
6f8bdce2
JD
8560@item conflicts-sr
8561@itemx conflicts-rr
8562S/R and R/R conflicts. These warnings are enabled by default. However, if
8563the @code{%expect} or @code{%expect-rr} directive is specified, an
8564unexpected number of conflicts is an error, and an expected number of
8565conflicts is not reported, so @option{-W} and @option{--warning} then have
8566no effect on the conflict report.
8567
8ffd7912
JD
8568@item other
8569All warnings not categorized above. These warnings are enabled by default.
8570
8571This category is provided merely for the sake of completeness. Future
8572releases of Bison may move warnings from this category to new, more specific
8573categories.
8574
118d4978 8575@item all
8e55b3aa 8576All the warnings.
118d4978 8577@item none
8e55b3aa 8578Turn off all the warnings.
118d4978 8579@item error
8e55b3aa 8580Treat warnings as errors.
118d4978
AD
8581@end table
8582
8583A category can be turned off by prefixing its name with @samp{no-}. For
cf22447c 8584instance, @option{-Wno-yacc} will hide the warnings about
35430378 8585POSIX Yacc incompatibilities.
89cab50d
AD
8586@end table
8587
8588@noindent
8589Tuning the parser:
8590
8591@table @option
8592@item -t
8593@itemx --debug
9913d6e4
JD
8594In the parser implementation file, define the macro @code{YYDEBUG} to
85951 if it is not already defined, so that the debugging facilities are
8596compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8597
e14c6831
AD
8598@item -D @var{name}[=@var{value}]
8599@itemx --define=@var{name}[=@var{value}]
c33bc800 8600@itemx -F @var{name}[=@var{value}]
34d41938
JD
8601@itemx --force-define=@var{name}[=@var{value}]
8602Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
2f4518a1 8603(@pxref{%define Summary}) except that Bison processes multiple
34d41938
JD
8604definitions for the same @var{name} as follows:
8605
8606@itemize
8607@item
e3a33f7c
JD
8608Bison quietly ignores all command-line definitions for @var{name} except
8609the last.
34d41938 8610@item
e3a33f7c
JD
8611If that command-line definition is specified by a @code{-D} or
8612@code{--define}, Bison reports an error for any @code{%define}
8613definition for @var{name}.
34d41938 8614@item
e3a33f7c
JD
8615If that command-line definition is specified by a @code{-F} or
8616@code{--force-define} instead, Bison quietly ignores all @code{%define}
8617definitions for @var{name}.
8618@item
8619Otherwise, Bison reports an error if there are multiple @code{%define}
8620definitions for @var{name}.
34d41938
JD
8621@end itemize
8622
8623You should avoid using @code{-F} and @code{--force-define} in your
9913d6e4
JD
8624make files unless you are confident that it is safe to quietly ignore
8625any conflicting @code{%define} that may be added to the grammar file.
e14c6831 8626
0e021770
PE
8627@item -L @var{language}
8628@itemx --language=@var{language}
8629Specify the programming language for the generated parser, as if
8630@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8631Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8632@var{language} is case-insensitive.
0e021770 8633
ed4d67dc
JD
8634This option is experimental and its effect may be modified in future
8635releases.
8636
89cab50d 8637@item --locations
d8988b2f 8638Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8639
8640@item -p @var{prefix}
8641@itemx --name-prefix=@var{prefix}
02975b9a 8642Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8643@xref{Decl Summary}.
bfa74976
RS
8644
8645@item -l
8646@itemx --no-lines
9913d6e4
JD
8647Don't put any @code{#line} preprocessor commands in the parser
8648implementation file. Ordinarily Bison puts them in the parser
8649implementation file so that the C compiler and debuggers will
8650associate errors with your source file, the grammar file. This option
8651causes them to associate errors with the parser implementation file,
8652treating it as an independent source file in its own right.
bfa74976 8653
e6e704dc
JD
8654@item -S @var{file}
8655@itemx --skeleton=@var{file}
a7867f53 8656Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8657(@pxref{Decl Summary, , Bison Declaration Summary}).
8658
ed4d67dc
JD
8659@c You probably don't need this option unless you are developing Bison.
8660@c You should use @option{--language} if you want to specify the skeleton for a
8661@c different language, because it is clearer and because it will always
8662@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8663
a7867f53
JD
8664If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8665file in the Bison installation directory.
8666If it does, @var{file} is an absolute file name or a file name relative to the
8667current working directory.
8668This is similar to how most shells resolve commands.
8669
89cab50d
AD
8670@item -k
8671@itemx --token-table
d8988b2f 8672Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8673@end table
bfa74976 8674
89cab50d
AD
8675@noindent
8676Adjust the output:
bfa74976 8677
89cab50d 8678@table @option
8e55b3aa 8679@item --defines[=@var{file}]
d8988b2f 8680Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8681file containing macro definitions for the token type names defined in
4bfd5e4e 8682the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8683
8e55b3aa
JD
8684@item -d
8685This is the same as @code{--defines} except @code{-d} does not accept a
8686@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8687with other short options.
342b8b6e 8688
89cab50d
AD
8689@item -b @var{file-prefix}
8690@itemx --file-prefix=@var{prefix}
9c437126 8691Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8692for all Bison output file names. @xref{Decl Summary}.
bfa74976 8693
ec3bc396
AD
8694@item -r @var{things}
8695@itemx --report=@var{things}
8696Write an extra output file containing verbose description of the comma
8697separated list of @var{things} among:
8698
8699@table @code
8700@item state
8701Description of the grammar, conflicts (resolved and unresolved), and
34a6c2d1 8702parser's automaton.
ec3bc396 8703
742e4900 8704@item lookahead
ec3bc396 8705Implies @code{state} and augments the description of the automaton with
742e4900 8706each rule's lookahead set.
ec3bc396
AD
8707
8708@item itemset
8709Implies @code{state} and augments the description of the automaton with
8710the full set of items for each state, instead of its core only.
8711@end table
8712
1bb2bd75
JD
8713@item --report-file=@var{file}
8714Specify the @var{file} for the verbose description.
8715
bfa74976
RS
8716@item -v
8717@itemx --verbose
9c437126 8718Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8719file containing verbose descriptions of the grammar and
72d2299c 8720parser. @xref{Decl Summary}.
bfa74976 8721
fa4d969f
PE
8722@item -o @var{file}
8723@itemx --output=@var{file}
9913d6e4 8724Specify the @var{file} for the parser implementation file.
bfa74976 8725
fa4d969f 8726The other output files' names are constructed from @var{file} as
d8988b2f 8727described under the @samp{-v} and @samp{-d} options.
342b8b6e 8728
72183df4 8729@item -g [@var{file}]
8e55b3aa 8730@itemx --graph[=@var{file}]
34a6c2d1 8731Output a graphical representation of the parser's
35fe0834 8732automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
35430378 8733@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8734@code{@var{file}} is optional.
8735If omitted and the grammar file is @file{foo.y}, the output file will be
8736@file{foo.dot}.
59da312b 8737
72183df4 8738@item -x [@var{file}]
8e55b3aa 8739@itemx --xml[=@var{file}]
34a6c2d1 8740Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8741@code{@var{file}} is optional.
59da312b
JD
8742If omitted and the grammar file is @file{foo.y}, the output file will be
8743@file{foo.xml}.
8744(The current XML schema is experimental and may evolve.
8745More user feedback will help to stabilize it.)
bfa74976
RS
8746@end table
8747
342b8b6e 8748@node Option Cross Key
bfa74976
RS
8749@section Option Cross Key
8750
8751Here is a list of options, alphabetized by long option, to help you find
34d41938 8752the corresponding short option and directive.
bfa74976 8753
34d41938 8754@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
72183df4 8755@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8756@include cross-options.texi
aa08666d 8757@end multitable
bfa74976 8758
93dd49ab
PE
8759@node Yacc Library
8760@section Yacc Library
8761
8762The Yacc library contains default implementations of the
8763@code{yyerror} and @code{main} functions. These default
35430378 8764implementations are normally not useful, but POSIX requires
93dd49ab
PE
8765them. To use the Yacc library, link your program with the
8766@option{-ly} option. Note that Bison's implementation of the Yacc
35430378 8767library is distributed under the terms of the GNU General
93dd49ab
PE
8768Public License (@pxref{Copying}).
8769
8770If you use the Yacc library's @code{yyerror} function, you should
8771declare @code{yyerror} as follows:
8772
8773@example
8774int yyerror (char const *);
8775@end example
8776
8777Bison ignores the @code{int} value returned by this @code{yyerror}.
8778If you use the Yacc library's @code{main} function, your
8779@code{yyparse} function should have the following type signature:
8780
8781@example
8782int yyparse (void);
8783@end example
8784
12545799
AD
8785@c ================================================= C++ Bison
8786
8405b70c
PB
8787@node Other Languages
8788@chapter Parsers Written In Other Languages
12545799
AD
8789
8790@menu
8791* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8792* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8793@end menu
8794
8795@node C++ Parsers
8796@section C++ Parsers
8797
8798@menu
8799* C++ Bison Interface:: Asking for C++ parser generation
8800* C++ Semantic Values:: %union vs. C++
8801* C++ Location Values:: The position and location classes
8802* C++ Parser Interface:: Instantiating and running the parser
8803* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8804* A Complete C++ Example:: Demonstrating their use
12545799
AD
8805@end menu
8806
8807@node C++ Bison Interface
8808@subsection C++ Bison Interface
ed4d67dc 8809@c - %skeleton "lalr1.cc"
12545799
AD
8810@c - Always pure
8811@c - initial action
8812
34a6c2d1 8813The C++ deterministic parser is selected using the skeleton directive,
baacae49
AD
8814@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8815@option{--skeleton=lalr1.cc}.
e6e704dc 8816@xref{Decl Summary}.
0e021770 8817
793fbca5
JD
8818When run, @command{bison} will create several entities in the @samp{yy}
8819namespace.
8820@findex %define namespace
2f4518a1
JD
8821Use the @samp{%define namespace} directive to change the namespace
8822name, see @ref{%define Summary,,namespace}. The various classes are
8823generated in the following files:
aa08666d 8824
12545799
AD
8825@table @file
8826@item position.hh
8827@itemx location.hh
8828The definition of the classes @code{position} and @code{location},
8829used for location tracking. @xref{C++ Location Values}.
8830
8831@item stack.hh
8832An auxiliary class @code{stack} used by the parser.
8833
fa4d969f
PE
8834@item @var{file}.hh
8835@itemx @var{file}.cc
9913d6e4 8836(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
8837declaration and implementation of the C++ parser class. The basename
8838and extension of these two files follow the same rules as with regular C
8839parsers (@pxref{Invocation}).
12545799 8840
cd8b5791
AD
8841The header is @emph{mandatory}; you must either pass
8842@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
8843@samp{%defines} directive.
8844@end table
8845
8846All these files are documented using Doxygen; run @command{doxygen}
8847for a complete and accurate documentation.
8848
8849@node C++ Semantic Values
8850@subsection C++ Semantic Values
8851@c - No objects in unions
178e123e 8852@c - YYSTYPE
12545799
AD
8853@c - Printer and destructor
8854
8855The @code{%union} directive works as for C, see @ref{Union Decl, ,The
8856Collection of Value Types}. In particular it produces a genuine
8857@code{union}@footnote{In the future techniques to allow complex types
fb9712a9
AD
8858within pseudo-unions (similar to Boost variants) might be implemented to
8859alleviate these issues.}, which have a few specific features in C++.
12545799
AD
8860@itemize @minus
8861@item
fb9712a9
AD
8862The type @code{YYSTYPE} is defined but its use is discouraged: rather
8863you should refer to the parser's encapsulated type
8864@code{yy::parser::semantic_type}.
12545799
AD
8865@item
8866Non POD (Plain Old Data) types cannot be used. C++ forbids any
8867instance of classes with constructors in unions: only @emph{pointers}
8868to such objects are allowed.
8869@end itemize
8870
8871Because objects have to be stored via pointers, memory is not
8872reclaimed automatically: using the @code{%destructor} directive is the
8873only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
8874Symbols}.
8875
8876
8877@node C++ Location Values
8878@subsection C++ Location Values
8879@c - %locations
8880@c - class Position
8881@c - class Location
16dc6a9e 8882@c - %define filename_type "const symbol::Symbol"
12545799
AD
8883
8884When the directive @code{%locations} is used, the C++ parser supports
7404cdf3
JD
8885location tracking, see @ref{Tracking Locations}. Two auxiliary classes
8886define a @code{position}, a single point in a file, and a @code{location}, a
8887range composed of a pair of @code{position}s (possibly spanning several
8888files).
12545799 8889
936c88d1
AD
8890@tindex uint
8891In this section @code{uint} is an abbreviation for @code{unsigned int}: in
8892genuine code only the latter is used.
8893
8894@menu
8895* C++ position:: One point in the source file
8896* C++ location:: Two points in the source file
8897@end menu
8898
8899@node C++ position
8900@subsubsection C++ @code{position}
8901
8902@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
8903Create a @code{position} denoting a given point. Note that @code{file} is
8904not reclaimed when the @code{position} is destroyed: memory managed must be
8905handled elsewhere.
8906@end deftypeop
8907
8908@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
8909Reset the position to the given values.
8910@end deftypemethod
8911
8912@deftypeivar {position} {std::string*} file
12545799
AD
8913The name of the file. It will always be handled as a pointer, the
8914parser will never duplicate nor deallocate it. As an experimental
8915feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 8916filename_type "@var{type}"}.
936c88d1 8917@end deftypeivar
12545799 8918
936c88d1 8919@deftypeivar {position} {uint} line
12545799 8920The line, starting at 1.
936c88d1 8921@end deftypeivar
12545799 8922
936c88d1 8923@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
8924Advance by @var{height} lines, resetting the column number.
8925@end deftypemethod
8926
936c88d1
AD
8927@deftypeivar {position} {uint} column
8928The column, starting at 1.
8929@end deftypeivar
12545799 8930
936c88d1 8931@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
8932Advance by @var{width} columns, without changing the line number.
8933@end deftypemethod
8934
936c88d1
AD
8935@deftypemethod {position} {position&} operator+= (int @var{width})
8936@deftypemethodx {position} {position} operator+ (int @var{width})
8937@deftypemethodx {position} {position&} operator-= (int @var{width})
8938@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
8939Various forms of syntactic sugar for @code{columns}.
8940@end deftypemethod
8941
936c88d1
AD
8942@deftypemethod {position} {bool} operator== (const position& @var{that})
8943@deftypemethodx {position} {bool} operator!= (const position& @var{that})
8944Whether @code{*this} and @code{that} denote equal/different positions.
8945@end deftypemethod
8946
8947@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 8948Report @var{p} on @var{o} like this:
fa4d969f
PE
8949@samp{@var{file}:@var{line}.@var{column}}, or
8950@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
8951@end deftypefun
8952
8953@node C++ location
8954@subsubsection C++ @code{location}
8955
8956@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
8957Create a @code{Location} from the endpoints of the range.
8958@end deftypeop
8959
8960@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
8961@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
8962Create a @code{Location} denoting an empty range located at a given point.
8963@end deftypeop
8964
8965@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
8966Reset the location to an empty range at the given values.
12545799
AD
8967@end deftypemethod
8968
936c88d1
AD
8969@deftypeivar {location} {position} begin
8970@deftypeivarx {location} {position} end
12545799 8971The first, inclusive, position of the range, and the first beyond.
936c88d1 8972@end deftypeivar
12545799 8973
936c88d1
AD
8974@deftypemethod {location} {uint} columns (int @var{width} = 1)
8975@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
8976Advance the @code{end} position.
8977@end deftypemethod
8978
936c88d1
AD
8979@deftypemethod {location} {location} operator+ (const location& @var{end})
8980@deftypemethodx {location} {location} operator+ (int @var{width})
8981@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
8982Various forms of syntactic sugar.
8983@end deftypemethod
8984
8985@deftypemethod {location} {void} step ()
8986Move @code{begin} onto @code{end}.
8987@end deftypemethod
8988
936c88d1
AD
8989@deftypemethod {location} {bool} operator== (const location& @var{that})
8990@deftypemethodx {location} {bool} operator!= (const location& @var{that})
8991Whether @code{*this} and @code{that} denote equal/different ranges of
8992positions.
8993@end deftypemethod
8994
8995@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
8996Report @var{p} on @var{o}, taking care of special cases such as: no
8997@code{filename} defined, or equal filename/line or column.
8998@end deftypefun
12545799
AD
8999
9000@node C++ Parser Interface
9001@subsection C++ Parser Interface
9002@c - define parser_class_name
9003@c - Ctor
9004@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9005@c debug_stream.
9006@c - Reporting errors
9007
9008The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9009declare and define the parser class in the namespace @code{yy}. The
9010class name defaults to @code{parser}, but may be changed using
16dc6a9e 9011@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9012this class is detailed below. It can be extended using the
12545799
AD
9013@code{%parse-param} feature: its semantics is slightly changed since
9014it describes an additional member of the parser class, and an
9015additional argument for its constructor.
9016
baacae49
AD
9017@defcv {Type} {parser} {semantic_type}
9018@defcvx {Type} {parser} {location_type}
12545799 9019The types for semantics value and locations.
8a0adb01 9020@end defcv
12545799 9021
baacae49 9022@defcv {Type} {parser} {token}
2c0f9706
AD
9023A structure that contains (only) the @code{yytokentype} enumeration, which
9024defines the tokens. To refer to the token @code{FOO},
9025use @code{yy::parser::token::FOO}. The scanner can use
baacae49
AD
9026@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9027(@pxref{Calc++ Scanner}).
9028@end defcv
9029
12545799
AD
9030@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9031Build a new parser object. There are no arguments by default, unless
9032@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9033@end deftypemethod
9034
9035@deftypemethod {parser} {int} parse ()
9036Run the syntactic analysis, and return 0 on success, 1 otherwise.
9037@end deftypemethod
9038
9039@deftypemethod {parser} {std::ostream&} debug_stream ()
9040@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9041Get or set the stream used for tracing the parsing. It defaults to
9042@code{std::cerr}.
9043@end deftypemethod
9044
9045@deftypemethod {parser} {debug_level_type} debug_level ()
9046@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9047Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9048or nonzero, full tracing.
12545799
AD
9049@end deftypemethod
9050
9051@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
9052The definition for this member function must be supplied by the user:
9053the parser uses it to report a parser error occurring at @var{l},
9054described by @var{m}.
9055@end deftypemethod
9056
9057
9058@node C++ Scanner Interface
9059@subsection C++ Scanner Interface
9060@c - prefix for yylex.
9061@c - Pure interface to yylex
9062@c - %lex-param
9063
9064The parser invokes the scanner by calling @code{yylex}. Contrary to C
9065parsers, C++ parsers are always pure: there is no point in using the
d9df47b6 9066@code{%define api.pure} directive. Therefore the interface is as follows.
12545799 9067
baacae49 9068@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
12545799
AD
9069Return the next token. Its type is the return value, its semantic
9070value and location being @var{yylval} and @var{yylloc}. Invocations of
9071@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9072@end deftypemethod
9073
9074
9075@node A Complete C++ Example
8405b70c 9076@subsection A Complete C++ Example
12545799
AD
9077
9078This section demonstrates the use of a C++ parser with a simple but
9079complete example. This example should be available on your system,
9080ready to compile, in the directory @dfn{../bison/examples/calc++}. It
9081focuses on the use of Bison, therefore the design of the various C++
9082classes is very naive: no accessors, no encapsulation of members etc.
9083We will use a Lex scanner, and more precisely, a Flex scanner, to
9084demonstrate the various interaction. A hand written scanner is
9085actually easier to interface with.
9086
9087@menu
9088* Calc++ --- C++ Calculator:: The specifications
9089* Calc++ Parsing Driver:: An active parsing context
9090* Calc++ Parser:: A parser class
9091* Calc++ Scanner:: A pure C++ Flex scanner
9092* Calc++ Top Level:: Conducting the band
9093@end menu
9094
9095@node Calc++ --- C++ Calculator
8405b70c 9096@subsubsection Calc++ --- C++ Calculator
12545799
AD
9097
9098Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9099expression, possibly preceded by variable assignments. An
12545799
AD
9100environment containing possibly predefined variables such as
9101@code{one} and @code{two}, is exchanged with the parser. An example
9102of valid input follows.
9103
9104@example
9105three := 3
9106seven := one + two * three
9107seven * seven
9108@end example
9109
9110@node Calc++ Parsing Driver
8405b70c 9111@subsubsection Calc++ Parsing Driver
12545799
AD
9112@c - An env
9113@c - A place to store error messages
9114@c - A place for the result
9115
9116To support a pure interface with the parser (and the scanner) the
9117technique of the ``parsing context'' is convenient: a structure
9118containing all the data to exchange. Since, in addition to simply
9119launch the parsing, there are several auxiliary tasks to execute (open
9120the file for parsing, instantiate the parser etc.), we recommend
9121transforming the simple parsing context structure into a fully blown
9122@dfn{parsing driver} class.
9123
9124The declaration of this driver class, @file{calc++-driver.hh}, is as
9125follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9126required standard library components, and the declaration of the parser
9127class.
12545799 9128
1c59e0a1 9129@comment file: calc++-driver.hh
12545799
AD
9130@example
9131#ifndef CALCXX_DRIVER_HH
9132# define CALCXX_DRIVER_HH
9133# include <string>
9134# include <map>
fb9712a9 9135# include "calc++-parser.hh"
12545799
AD
9136@end example
9137
12545799
AD
9138
9139@noindent
9140Then comes the declaration of the scanning function. Flex expects
9141the signature of @code{yylex} to be defined in the macro
9142@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9143factor both as follows.
1c59e0a1
AD
9144
9145@comment file: calc++-driver.hh
12545799 9146@example
3dc5e96b
PE
9147// Tell Flex the lexer's prototype ...
9148# define YY_DECL \
c095d689
AD
9149 yy::calcxx_parser::token_type \
9150 yylex (yy::calcxx_parser::semantic_type* yylval, \
9151 yy::calcxx_parser::location_type* yylloc, \
9152 calcxx_driver& driver)
12545799
AD
9153// ... and declare it for the parser's sake.
9154YY_DECL;
9155@end example
9156
9157@noindent
9158The @code{calcxx_driver} class is then declared with its most obvious
9159members.
9160
1c59e0a1 9161@comment file: calc++-driver.hh
12545799
AD
9162@example
9163// Conducting the whole scanning and parsing of Calc++.
9164class calcxx_driver
9165@{
9166public:
9167 calcxx_driver ();
9168 virtual ~calcxx_driver ();
9169
9170 std::map<std::string, int> variables;
9171
9172 int result;
9173@end example
9174
9175@noindent
9176To encapsulate the coordination with the Flex scanner, it is useful to
9177have two members function to open and close the scanning phase.
12545799 9178
1c59e0a1 9179@comment file: calc++-driver.hh
12545799
AD
9180@example
9181 // Handling the scanner.
9182 void scan_begin ();
9183 void scan_end ();
9184 bool trace_scanning;
9185@end example
9186
9187@noindent
9188Similarly for the parser itself.
9189
1c59e0a1 9190@comment file: calc++-driver.hh
12545799 9191@example
bb32f4f2
AD
9192 // Run the parser. Return 0 on success.
9193 int parse (const std::string& f);
12545799
AD
9194 std::string file;
9195 bool trace_parsing;
9196@end example
9197
9198@noindent
9199To demonstrate pure handling of parse errors, instead of simply
9200dumping them on the standard error output, we will pass them to the
9201compiler driver using the following two member functions. Finally, we
9202close the class declaration and CPP guard.
9203
1c59e0a1 9204@comment file: calc++-driver.hh
12545799
AD
9205@example
9206 // Error handling.
9207 void error (const yy::location& l, const std::string& m);
9208 void error (const std::string& m);
9209@};
9210#endif // ! CALCXX_DRIVER_HH
9211@end example
9212
9213The implementation of the driver is straightforward. The @code{parse}
9214member function deserves some attention. The @code{error} functions
9215are simple stubs, they should actually register the located error
9216messages and set error state.
9217
1c59e0a1 9218@comment file: calc++-driver.cc
12545799
AD
9219@example
9220#include "calc++-driver.hh"
9221#include "calc++-parser.hh"
9222
9223calcxx_driver::calcxx_driver ()
9224 : trace_scanning (false), trace_parsing (false)
9225@{
9226 variables["one"] = 1;
9227 variables["two"] = 2;
9228@}
9229
9230calcxx_driver::~calcxx_driver ()
9231@{
9232@}
9233
bb32f4f2 9234int
12545799
AD
9235calcxx_driver::parse (const std::string &f)
9236@{
9237 file = f;
9238 scan_begin ();
9239 yy::calcxx_parser parser (*this);
9240 parser.set_debug_level (trace_parsing);
bb32f4f2 9241 int res = parser.parse ();
12545799 9242 scan_end ();
bb32f4f2 9243 return res;
12545799
AD
9244@}
9245
9246void
9247calcxx_driver::error (const yy::location& l, const std::string& m)
9248@{
9249 std::cerr << l << ": " << m << std::endl;
9250@}
9251
9252void
9253calcxx_driver::error (const std::string& m)
9254@{
9255 std::cerr << m << std::endl;
9256@}
9257@end example
9258
9259@node Calc++ Parser
8405b70c 9260@subsubsection Calc++ Parser
12545799 9261
9913d6e4
JD
9262The grammar file @file{calc++-parser.yy} starts by asking for the C++
9263deterministic parser skeleton, the creation of the parser header file,
9264and specifies the name of the parser class. Because the C++ skeleton
9265changed several times, it is safer to require the version you designed
9266the grammar for.
1c59e0a1
AD
9267
9268@comment file: calc++-parser.yy
12545799 9269@example
ea118b72 9270%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9271%require "@value{VERSION}"
12545799 9272%defines
16dc6a9e 9273%define parser_class_name "calcxx_parser"
fb9712a9
AD
9274@end example
9275
9276@noindent
16dc6a9e 9277@findex %code requires
fb9712a9
AD
9278Then come the declarations/inclusions needed to define the
9279@code{%union}. Because the parser uses the parsing driver and
9280reciprocally, both cannot include the header of the other. Because the
9281driver's header needs detailed knowledge about the parser class (in
9282particular its inner types), it is the parser's header which will simply
9283use a forward declaration of the driver.
8e6f2266 9284@xref{%code Summary}.
fb9712a9
AD
9285
9286@comment file: calc++-parser.yy
9287@example
16dc6a9e 9288%code requires @{
12545799 9289# include <string>
fb9712a9 9290class calcxx_driver;
9bc0dd67 9291@}
12545799
AD
9292@end example
9293
9294@noindent
9295The driver is passed by reference to the parser and to the scanner.
9296This provides a simple but effective pure interface, not relying on
9297global variables.
9298
1c59e0a1 9299@comment file: calc++-parser.yy
12545799
AD
9300@example
9301// The parsing context.
9302%parse-param @{ calcxx_driver& driver @}
9303%lex-param @{ calcxx_driver& driver @}
9304@end example
9305
9306@noindent
9307Then we request the location tracking feature, and initialize the
c781580d 9308first location's file name. Afterward new locations are computed
12545799
AD
9309relatively to the previous locations: the file name will be
9310automatically propagated.
9311
1c59e0a1 9312@comment file: calc++-parser.yy
12545799
AD
9313@example
9314%locations
9315%initial-action
9316@{
9317 // Initialize the initial location.
b47dbebe 9318 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9319@};
9320@end example
9321
9322@noindent
6f04ee6c
JD
9323Use the two following directives to enable parser tracing and verbose error
9324messages. However, verbose error messages can contain incorrect information
9325(@pxref{LAC}).
12545799 9326
1c59e0a1 9327@comment file: calc++-parser.yy
12545799
AD
9328@example
9329%debug
9330%error-verbose
9331@end example
9332
9333@noindent
9334Semantic values cannot use ``real'' objects, but only pointers to
9335them.
9336
1c59e0a1 9337@comment file: calc++-parser.yy
12545799
AD
9338@example
9339// Symbols.
9340%union
9341@{
9342 int ival;
9343 std::string *sval;
9344@};
9345@end example
9346
fb9712a9 9347@noindent
136a0f76
PB
9348@findex %code
9349The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9350@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9351
9352@comment file: calc++-parser.yy
9353@example
136a0f76 9354%code @{
fb9712a9 9355# include "calc++-driver.hh"
34f98f46 9356@}
fb9712a9
AD
9357@end example
9358
9359
12545799
AD
9360@noindent
9361The token numbered as 0 corresponds to end of file; the following line
9362allows for nicer error messages referring to ``end of file'' instead
9363of ``$end''. Similarly user friendly named are provided for each
9364symbol. Note that the tokens names are prefixed by @code{TOKEN_} to
9365avoid name clashes.
9366
1c59e0a1 9367@comment file: calc++-parser.yy
12545799 9368@example
fb9712a9
AD
9369%token END 0 "end of file"
9370%token ASSIGN ":="
9371%token <sval> IDENTIFIER "identifier"
9372%token <ival> NUMBER "number"
a8c2e813 9373%type <ival> exp
12545799
AD
9374@end example
9375
9376@noindent
9377To enable memory deallocation during error recovery, use
9378@code{%destructor}.
9379
287c78f6 9380@c FIXME: Document %printer, and mention that it takes a braced-code operand.
1c59e0a1 9381@comment file: calc++-parser.yy
12545799
AD
9382@example
9383%printer @{ debug_stream () << *$$; @} "identifier"
9384%destructor @{ delete $$; @} "identifier"
9385
a8c2e813 9386%printer @{ debug_stream () << $$; @} <ival>
12545799
AD
9387@end example
9388
9389@noindent
9390The grammar itself is straightforward.
9391
1c59e0a1 9392@comment file: calc++-parser.yy
12545799
AD
9393@example
9394%%
9395%start unit;
9396unit: assignments exp @{ driver.result = $2; @};
9397
de6be119
AD
9398assignments:
9399 /* Nothing. */ @{@}
9400| assignments assignment @{@};
12545799 9401
3dc5e96b
PE
9402assignment:
9403 "identifier" ":=" exp
9404 @{ driver.variables[*$1] = $3; delete $1; @};
12545799
AD
9405
9406%left '+' '-';
9407%left '*' '/';
9408exp: exp '+' exp @{ $$ = $1 + $3; @}
9409 | exp '-' exp @{ $$ = $1 - $3; @}
9410 | exp '*' exp @{ $$ = $1 * $3; @}
9411 | exp '/' exp @{ $$ = $1 / $3; @}
3dc5e96b 9412 | "identifier" @{ $$ = driver.variables[*$1]; delete $1; @}
fb9712a9 9413 | "number" @{ $$ = $1; @};
12545799
AD
9414%%
9415@end example
9416
9417@noindent
9418Finally the @code{error} member function registers the errors to the
9419driver.
9420
1c59e0a1 9421@comment file: calc++-parser.yy
12545799
AD
9422@example
9423void
1c59e0a1
AD
9424yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,
9425 const std::string& m)
12545799
AD
9426@{
9427 driver.error (l, m);
9428@}
9429@end example
9430
9431@node Calc++ Scanner
8405b70c 9432@subsubsection Calc++ Scanner
12545799
AD
9433
9434The Flex scanner first includes the driver declaration, then the
9435parser's to get the set of defined tokens.
9436
1c59e0a1 9437@comment file: calc++-scanner.ll
12545799 9438@example
ea118b72 9439%@{ /* -*- C++ -*- */
04098407 9440# include <cstdlib>
b10dd689
AD
9441# include <cerrno>
9442# include <climits>
12545799
AD
9443# include <string>
9444# include "calc++-driver.hh"
9445# include "calc++-parser.hh"
eaea13f5
PE
9446
9447/* Work around an incompatibility in flex (at least versions
9448 2.5.31 through 2.5.33): it generates code that does
9449 not conform to C89. See Debian bug 333231
9450 <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */
7870f699
PE
9451# undef yywrap
9452# define yywrap() 1
eaea13f5 9453
c095d689
AD
9454/* By default yylex returns int, we use token_type.
9455 Unfortunately yyterminate by default returns 0, which is
9456 not of token_type. */
8c5b881d 9457#define yyterminate() return token::END
12545799
AD
9458%@}
9459@end example
9460
9461@noindent
9462Because there is no @code{#include}-like feature we don't need
9463@code{yywrap}, we don't need @code{unput} either, and we parse an
9464actual file, this is not an interactive session with the user.
9465Finally we enable the scanner tracing features.
9466
1c59e0a1 9467@comment file: calc++-scanner.ll
12545799
AD
9468@example
9469%option noyywrap nounput batch debug
9470@end example
9471
9472@noindent
9473Abbreviations allow for more readable rules.
9474
1c59e0a1 9475@comment file: calc++-scanner.ll
12545799
AD
9476@example
9477id [a-zA-Z][a-zA-Z_0-9]*
9478int [0-9]+
9479blank [ \t]
9480@end example
9481
9482@noindent
9d9b8b70 9483The following paragraph suffices to track locations accurately. Each
12545799
AD
9484time @code{yylex} is invoked, the begin position is moved onto the end
9485position. Then when a pattern is matched, the end position is
9486advanced of its width. In case it matched ends of lines, the end
9487cursor is adjusted, and each time blanks are matched, the begin cursor
9488is moved onto the end cursor to effectively ignore the blanks
9489preceding tokens. Comments would be treated equally.
9490
1c59e0a1 9491@comment file: calc++-scanner.ll
12545799 9492@example
98842516 9493@group
828c373b
AD
9494%@{
9495# define YY_USER_ACTION yylloc->columns (yyleng);
9496%@}
98842516 9497@end group
12545799
AD
9498%%
9499%@{
9500 yylloc->step ();
12545799
AD
9501%@}
9502@{blank@}+ yylloc->step ();
9503[\n]+ yylloc->lines (yyleng); yylloc->step ();
9504@end example
9505
9506@noindent
fb9712a9
AD
9507The rules are simple, just note the use of the driver to report errors.
9508It is convenient to use a typedef to shorten
9509@code{yy::calcxx_parser::token::identifier} into
9d9b8b70 9510@code{token::identifier} for instance.
12545799 9511
1c59e0a1 9512@comment file: calc++-scanner.ll
12545799 9513@example
fb9712a9
AD
9514%@{
9515 typedef yy::calcxx_parser::token token;
9516%@}
8c5b881d 9517 /* Convert ints to the actual type of tokens. */
c095d689 9518[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
fb9712a9 9519":=" return token::ASSIGN;
04098407
PE
9520@{int@} @{
9521 errno = 0;
9522 long n = strtol (yytext, NULL, 10);
9523 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
9524 driver.error (*yylloc, "integer is out of range");
9525 yylval->ival = n;
fb9712a9 9526 return token::NUMBER;
04098407 9527@}
fb9712a9 9528@{id@} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
12545799
AD
9529. driver.error (*yylloc, "invalid character");
9530%%
9531@end example
9532
9533@noindent
9534Finally, because the scanner related driver's member function depend
9535on the scanner's data, it is simpler to implement them in this file.
9536
1c59e0a1 9537@comment file: calc++-scanner.ll
12545799 9538@example
98842516 9539@group
12545799
AD
9540void
9541calcxx_driver::scan_begin ()
9542@{
9543 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9544 if (file == "-")
9545 yyin = stdin;
9546 else if (!(yyin = fopen (file.c_str (), "r")))
9547 @{
2c0f9706 9548 error ("cannot open " + file + ": " + strerror(errno));
dd561157 9549 exit (EXIT_FAILURE);
bb32f4f2 9550 @}
12545799 9551@}
98842516 9552@end group
12545799 9553
98842516 9554@group
12545799
AD
9555void
9556calcxx_driver::scan_end ()
9557@{
9558 fclose (yyin);
9559@}
98842516 9560@end group
12545799
AD
9561@end example
9562
9563@node Calc++ Top Level
8405b70c 9564@subsubsection Calc++ Top Level
12545799
AD
9565
9566The top level file, @file{calc++.cc}, poses no problem.
9567
1c59e0a1 9568@comment file: calc++.cc
12545799
AD
9569@example
9570#include <iostream>
9571#include "calc++-driver.hh"
9572
98842516 9573@group
12545799 9574int
fa4d969f 9575main (int argc, char *argv[])
12545799
AD
9576@{
9577 calcxx_driver driver;
9578 for (++argv; argv[0]; ++argv)
9579 if (*argv == std::string ("-p"))
9580 driver.trace_parsing = true;
9581 else if (*argv == std::string ("-s"))
9582 driver.trace_scanning = true;
bb32f4f2
AD
9583 else if (!driver.parse (*argv))
9584 std::cout << driver.result << std::endl;
12545799 9585@}
98842516 9586@end group
12545799
AD
9587@end example
9588
8405b70c
PB
9589@node Java Parsers
9590@section Java Parsers
9591
9592@menu
f56274a8
DJ
9593* Java Bison Interface:: Asking for Java parser generation
9594* Java Semantic Values:: %type and %token vs. Java
9595* Java Location Values:: The position and location classes
9596* Java Parser Interface:: Instantiating and running the parser
9597* Java Scanner Interface:: Specifying the scanner for the parser
9598* Java Action Features:: Special features for use in actions
9599* Java Differences:: Differences between C/C++ and Java Grammars
9600* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9601@end menu
9602
9603@node Java Bison Interface
9604@subsection Java Bison Interface
9605@c - %language "Java"
8405b70c 9606
59da312b
JD
9607(The current Java interface is experimental and may evolve.
9608More user feedback will help to stabilize it.)
9609
e254a580
DJ
9610The Java parser skeletons are selected using the @code{%language "Java"}
9611directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9612
e254a580 9613@c FIXME: Documented bug.
9913d6e4
JD
9614When generating a Java parser, @code{bison @var{basename}.y} will
9615create a single Java source file named @file{@var{basename}.java}
9616containing the parser implementation. Using a grammar file without a
9617@file{.y} suffix is currently broken. The basename of the parser
9618implementation file can be changed by the @code{%file-prefix}
9619directive or the @option{-p}/@option{--name-prefix} option. The
9620entire parser implementation file name can be changed by the
9621@code{%output} directive or the @option{-o}/@option{--output} option.
9622The parser implementation file contains a single class for the parser.
8405b70c 9623
e254a580 9624You can create documentation for generated parsers using Javadoc.
8405b70c 9625
e254a580
DJ
9626Contrary to C parsers, Java parsers do not use global variables; the
9627state of the parser is always local to an instance of the parser class.
9628Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
9629and @code{%define api.pure} directives does not do anything when used in
9630Java.
8405b70c 9631
e254a580 9632Push parsers are currently unsupported in Java and @code{%define
812775a0 9633api.push-pull} have no effect.
01b477c6 9634
35430378 9635GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
9636@code{glr-parser} directive.
9637
9638No header file can be generated for Java parsers. Do not use the
9639@code{%defines} directive or the @option{-d}/@option{--defines} options.
9640
9641@c FIXME: Possible code change.
9642Currently, support for debugging and verbose errors are always compiled
9643in. Thus the @code{%debug} and @code{%token-table} directives and the
9644@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
9645options have no effect. This may change in the future to eliminate
9646unused code in the generated parser, so use @code{%debug} and
9647@code{%verbose-error} explicitly if needed. Also, in the future the
9648@code{%token-table} directive might enable a public interface to
9649access the token names and codes.
8405b70c
PB
9650
9651@node Java Semantic Values
9652@subsection Java Semantic Values
9653@c - No %union, specify type in %type/%token.
9654@c - YYSTYPE
9655@c - Printer and destructor
9656
9657There is no @code{%union} directive in Java parsers. Instead, the
9658semantic values' types (class names) should be specified in the
9659@code{%type} or @code{%token} directive:
9660
9661@example
9662%type <Expression> expr assignment_expr term factor
9663%type <Integer> number
9664@end example
9665
9666By default, the semantic stack is declared to have @code{Object} members,
9667which means that the class types you specify can be of any class.
9668To improve the type safety of the parser, you can declare the common
e254a580
DJ
9669superclass of all the semantic values using the @code{%define stype}
9670directive. For example, after the following declaration:
8405b70c
PB
9671
9672@example
e254a580 9673%define stype "ASTNode"
8405b70c
PB
9674@end example
9675
9676@noindent
9677any @code{%type} or @code{%token} specifying a semantic type which
9678is not a subclass of ASTNode, will cause a compile-time error.
9679
e254a580 9680@c FIXME: Documented bug.
8405b70c
PB
9681Types used in the directives may be qualified with a package name.
9682Primitive data types are accepted for Java version 1.5 or later. Note
9683that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
9684Generic types may not be used; this is due to a limitation in the
9685implementation of Bison, and may change in future releases.
8405b70c
PB
9686
9687Java parsers do not support @code{%destructor}, since the language
9688adopts garbage collection. The parser will try to hold references
9689to semantic values for as little time as needed.
9690
9691Java parsers do not support @code{%printer}, as @code{toString()}
9692can be used to print the semantic values. This however may change
9693(in a backwards-compatible way) in future versions of Bison.
9694
9695
9696@node Java Location Values
9697@subsection Java Location Values
9698@c - %locations
9699@c - class Position
9700@c - class Location
9701
7404cdf3
JD
9702When the directive @code{%locations} is used, the Java parser supports
9703location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
9704class defines a @dfn{position}, a single point in a file; Bison itself
9705defines a class representing a @dfn{location}, a range composed of a pair of
9706positions (possibly spanning several files). The location class is an inner
9707class of the parser; the name is @code{Location} by default, and may also be
9708renamed using @code{%define location_type "@var{class-name}"}.
8405b70c
PB
9709
9710The location class treats the position as a completely opaque value.
9711By default, the class name is @code{Position}, but this can be changed
e254a580
DJ
9712with @code{%define position_type "@var{class-name}"}. This class must
9713be supplied by the user.
8405b70c
PB
9714
9715
e254a580
DJ
9716@deftypeivar {Location} {Position} begin
9717@deftypeivarx {Location} {Position} end
8405b70c 9718The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
9719@end deftypeivar
9720
9721@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c046698e 9722Create a @code{Location} denoting an empty range located at a given point.
e254a580 9723@end deftypeop
8405b70c 9724
e254a580
DJ
9725@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
9726Create a @code{Location} from the endpoints of the range.
9727@end deftypeop
9728
9729@deftypemethod {Location} {String} toString ()
8405b70c
PB
9730Prints the range represented by the location. For this to work
9731properly, the position class should override the @code{equals} and
9732@code{toString} methods appropriately.
9733@end deftypemethod
9734
9735
9736@node Java Parser Interface
9737@subsection Java Parser Interface
9738@c - define parser_class_name
9739@c - Ctor
9740@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9741@c debug_stream.
9742@c - Reporting errors
9743
e254a580
DJ
9744The name of the generated parser class defaults to @code{YYParser}. The
9745@code{YY} prefix may be changed using the @code{%name-prefix} directive
9746or the @option{-p}/@option{--name-prefix} option. Alternatively, use
9747@code{%define parser_class_name "@var{name}"} to give a custom name to
9748the class. The interface of this class is detailed below.
8405b70c 9749
e254a580
DJ
9750By default, the parser class has package visibility. A declaration
9751@code{%define public} will change to public visibility. Remember that,
9752according to the Java language specification, the name of the @file{.java}
9753file should match the name of the class in this case. Similarly, you can
9754use @code{abstract}, @code{final} and @code{strictfp} with the
9755@code{%define} declaration to add other modifiers to the parser class.
9756
9757The Java package name of the parser class can be specified using the
9758@code{%define package} directive. The superclass and the implemented
9759interfaces of the parser class can be specified with the @code{%define
9760extends} and @code{%define implements} directives.
9761
9762The parser class defines an inner class, @code{Location}, that is used
9763for location tracking (see @ref{Java Location Values}), and a inner
9764interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
9765these inner class/interface, and the members described in the interface
9766below, all the other members and fields are preceded with a @code{yy} or
9767@code{YY} prefix to avoid clashes with user code.
9768
9769@c FIXME: The following constants and variables are still undocumented:
9770@c @code{bisonVersion}, @code{bisonSkeleton} and @code{errorVerbose}.
9771
9772The parser class can be extended using the @code{%parse-param}
9773directive. Each occurrence of the directive will add a @code{protected
9774final} field to the parser class, and an argument to its constructor,
9775which initialize them automatically.
9776
9777Token names defined by @code{%token} and the predefined @code{EOF} token
9778name are added as constant fields to the parser class.
9779
9780@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
9781Build a new parser object with embedded @code{%code lexer}. There are
9782no parameters, unless @code{%parse-param}s and/or @code{%lex-param}s are
9783used.
9784@end deftypeop
9785
9786@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
9787Build a new parser object using the specified scanner. There are no
9788additional parameters unless @code{%parse-param}s are used.
9789
9790If the scanner is defined by @code{%code lexer}, this constructor is
9791declared @code{protected} and is called automatically with a scanner
9792created with the correct @code{%lex-param}s.
9793@end deftypeop
8405b70c
PB
9794
9795@deftypemethod {YYParser} {boolean} parse ()
9796Run the syntactic analysis, and return @code{true} on success,
9797@code{false} otherwise.
9798@end deftypemethod
9799
01b477c6 9800@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 9801During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
9802from a syntax error.
9803@xref{Error Recovery}.
8405b70c
PB
9804@end deftypemethod
9805
9806@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
9807@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
9808Get or set the stream used for tracing the parsing. It defaults to
9809@code{System.err}.
9810@end deftypemethod
9811
9812@deftypemethod {YYParser} {int} getDebugLevel ()
9813@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
9814Get or set the tracing level. Currently its value is either 0, no trace,
9815or nonzero, full tracing.
9816@end deftypemethod
9817
8405b70c
PB
9818
9819@node Java Scanner Interface
9820@subsection Java Scanner Interface
01b477c6 9821@c - %code lexer
8405b70c 9822@c - %lex-param
01b477c6 9823@c - Lexer interface
8405b70c 9824
e254a580
DJ
9825There are two possible ways to interface a Bison-generated Java parser
9826with a scanner: the scanner may be defined by @code{%code lexer}, or
9827defined elsewhere. In either case, the scanner has to implement the
9828@code{Lexer} inner interface of the parser class.
9829
9830In the first case, the body of the scanner class is placed in
9831@code{%code lexer} blocks. If you want to pass parameters from the
9832parser constructor to the scanner constructor, specify them with
9833@code{%lex-param}; they are passed before @code{%parse-param}s to the
9834constructor.
01b477c6 9835
59c5ac72 9836In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
9837which is defined within the parser class (e.g., @code{YYParser.Lexer}).
9838The constructor of the parser object will then accept an object
9839implementing the interface; @code{%lex-param} is not used in this
9840case.
9841
9842In both cases, the scanner has to implement the following methods.
9843
e254a580
DJ
9844@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
9845This method is defined by the user to emit an error message. The first
9846parameter is omitted if location tracking is not active. Its type can be
9847changed using @code{%define location_type "@var{class-name}".}
8405b70c
PB
9848@end deftypemethod
9849
e254a580 9850@deftypemethod {Lexer} {int} yylex ()
8405b70c 9851Return the next token. Its type is the return value, its semantic
c781580d 9852value and location are saved and returned by the their methods in the
e254a580
DJ
9853interface.
9854
9855Use @code{%define lex_throws} to specify any uncaught exceptions.
9856Default is @code{java.io.IOException}.
8405b70c
PB
9857@end deftypemethod
9858
9859@deftypemethod {Lexer} {Position} getStartPos ()
9860@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
9861Return respectively the first position of the last token that
9862@code{yylex} returned, and the first position beyond it. These
9863methods are not needed unless location tracking is active.
8405b70c 9864
e254a580 9865The return type can be changed using @code{%define position_type
8405b70c
PB
9866"@var{class-name}".}
9867@end deftypemethod
9868
9869@deftypemethod {Lexer} {Object} getLVal ()
c781580d 9870Return the semantic value of the last token that yylex returned.
8405b70c 9871
e254a580 9872The return type can be changed using @code{%define stype
8405b70c
PB
9873"@var{class-name}".}
9874@end deftypemethod
9875
9876
e254a580
DJ
9877@node Java Action Features
9878@subsection Special Features for Use in Java Actions
9879
9880The following special constructs can be uses in Java actions.
9881Other analogous C action features are currently unavailable for Java.
9882
9883Use @code{%define throws} to specify any uncaught exceptions from parser
9884actions, and initial actions specified by @code{%initial-action}.
9885
9886@defvar $@var{n}
9887The semantic value for the @var{n}th component of the current rule.
9888This may not be assigned to.
9889@xref{Java Semantic Values}.
9890@end defvar
9891
9892@defvar $<@var{typealt}>@var{n}
9893Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
9894@xref{Java Semantic Values}.
9895@end defvar
9896
9897@defvar $$
9898The semantic value for the grouping made by the current rule. As a
9899value, this is in the base type (@code{Object} or as specified by
9900@code{%define stype}) as in not cast to the declared subtype because
9901casts are not allowed on the left-hand side of Java assignments.
9902Use an explicit Java cast if the correct subtype is needed.
9903@xref{Java Semantic Values}.
9904@end defvar
9905
9906@defvar $<@var{typealt}>$
9907Same as @code{$$} since Java always allow assigning to the base type.
9908Perhaps we should use this and @code{$<>$} for the value and @code{$$}
9909for setting the value but there is currently no easy way to distinguish
9910these constructs.
9911@xref{Java Semantic Values}.
9912@end defvar
9913
9914@defvar @@@var{n}
9915The location information of the @var{n}th component of the current rule.
9916This may not be assigned to.
9917@xref{Java Location Values}.
9918@end defvar
9919
9920@defvar @@$
9921The location information of the grouping made by the current rule.
9922@xref{Java Location Values}.
9923@end defvar
9924
9925@deffn {Statement} {return YYABORT;}
9926Return immediately from the parser, indicating failure.
9927@xref{Java Parser Interface}.
9928@end deffn
8405b70c 9929
e254a580
DJ
9930@deffn {Statement} {return YYACCEPT;}
9931Return immediately from the parser, indicating success.
9932@xref{Java Parser Interface}.
9933@end deffn
8405b70c 9934
e254a580 9935@deffn {Statement} {return YYERROR;}
c046698e 9936Start error recovery without printing an error message.
e254a580
DJ
9937@xref{Error Recovery}.
9938@end deffn
8405b70c 9939
e254a580
DJ
9940@deftypefn {Function} {boolean} recovering ()
9941Return whether error recovery is being done. In this state, the parser
9942reads token until it reaches a known state, and then restarts normal
9943operation.
9944@xref{Error Recovery}.
9945@end deftypefn
8405b70c 9946
e254a580
DJ
9947@deftypefn {Function} {protected void} yyerror (String msg)
9948@deftypefnx {Function} {protected void} yyerror (Position pos, String msg)
9949@deftypefnx {Function} {protected void} yyerror (Location loc, String msg)
9950Print an error message using the @code{yyerror} method of the scanner
9951instance in use.
9952@end deftypefn
8405b70c 9953
8405b70c 9954
8405b70c
PB
9955@node Java Differences
9956@subsection Differences between C/C++ and Java Grammars
9957
9958The different structure of the Java language forces several differences
9959between C/C++ grammars, and grammars designed for Java parsers. This
29553547 9960section summarizes these differences.
8405b70c
PB
9961
9962@itemize
9963@item
01b477c6 9964Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 9965@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
9966macros. Instead, they should be preceded by @code{return} when they
9967appear in an action. The actual definition of these symbols is
8405b70c
PB
9968opaque to the Bison grammar, and it might change in the future. The
9969only meaningful operation that you can do, is to return them.
e254a580 9970See @pxref{Java Action Features}.
8405b70c
PB
9971
9972Note that of these three symbols, only @code{YYACCEPT} and
9973@code{YYABORT} will cause a return from the @code{yyparse}
9974method@footnote{Java parsers include the actions in a separate
9975method than @code{yyparse} in order to have an intuitive syntax that
9976corresponds to these C macros.}.
9977
e254a580
DJ
9978@item
9979Java lacks unions, so @code{%union} has no effect. Instead, semantic
9980values have a common base type: @code{Object} or as specified by
c781580d 9981@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
9982@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
9983an union. The type of @code{$$}, even with angle brackets, is the base
9984type since Java casts are not allow on the left-hand side of assignments.
9985Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
9986left-hand side of assignments. See @pxref{Java Semantic Values} and
9987@pxref{Java Action Features}.
9988
8405b70c 9989@item
c781580d 9990The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
9991@table @asis
9992@item @code{%code imports}
9993blocks are placed at the beginning of the Java source code. They may
9994include copyright notices. For a @code{package} declarations, it is
9995suggested to use @code{%define package} instead.
8405b70c 9996
01b477c6
PB
9997@item unqualified @code{%code}
9998blocks are placed inside the parser class.
9999
10000@item @code{%code lexer}
10001blocks, if specified, should include the implementation of the
10002scanner. If there is no such block, the scanner can be any class
10003that implements the appropriate interface (see @pxref{Java Scanner
10004Interface}).
29553547 10005@end table
8405b70c
PB
10006
10007Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10008In particular, @code{%@{ @dots{} %@}} blocks should not be used
10009and may give an error in future versions of Bison.
10010
01b477c6 10011The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10012be used to define other classes used by the parser @emph{outside}
10013the parser class.
8405b70c
PB
10014@end itemize
10015
e254a580
DJ
10016
10017@node Java Declarations Summary
10018@subsection Java Declarations Summary
10019
10020This summary only include declarations specific to Java or have special
10021meaning when used in a Java parser.
10022
10023@deffn {Directive} {%language "Java"}
10024Generate a Java class for the parser.
10025@end deffn
10026
10027@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10028A parameter for the lexer class defined by @code{%code lexer}
10029@emph{only}, added as parameters to the lexer constructor and the parser
10030constructor that @emph{creates} a lexer. Default is none.
10031@xref{Java Scanner Interface}.
10032@end deffn
10033
10034@deffn {Directive} %name-prefix "@var{prefix}"
10035The prefix of the parser class name @code{@var{prefix}Parser} if
10036@code{%define parser_class_name} is not used. Default is @code{YY}.
10037@xref{Java Bison Interface}.
10038@end deffn
10039
10040@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10041A parameter for the parser class added as parameters to constructor(s)
10042and as fields initialized by the constructor(s). Default is none.
10043@xref{Java Parser Interface}.
10044@end deffn
10045
10046@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10047Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10048@xref{Java Semantic Values}.
10049@end deffn
10050
10051@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10052Declare the type of nonterminals. Note that the angle brackets enclose
10053a Java @emph{type}.
10054@xref{Java Semantic Values}.
10055@end deffn
10056
10057@deffn {Directive} %code @{ @var{code} @dots{} @}
10058Code appended to the inside of the parser class.
10059@xref{Java Differences}.
10060@end deffn
10061
10062@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10063Code inserted just after the @code{package} declaration.
10064@xref{Java Differences}.
10065@end deffn
10066
10067@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10068Code added to the body of a inner lexer class within the parser class.
10069@xref{Java Scanner Interface}.
10070@end deffn
10071
10072@deffn {Directive} %% @var{code} @dots{}
10073Code (after the second @code{%%}) appended to the end of the file,
10074@emph{outside} the parser class.
10075@xref{Java Differences}.
10076@end deffn
10077
10078@deffn {Directive} %@{ @var{code} @dots{} %@}
10079Not supported. Use @code{%code import} instead.
10080@xref{Java Differences}.
10081@end deffn
10082
10083@deffn {Directive} {%define abstract}
10084Whether the parser class is declared @code{abstract}. Default is false.
10085@xref{Java Bison Interface}.
10086@end deffn
10087
10088@deffn {Directive} {%define extends} "@var{superclass}"
10089The superclass of the parser class. Default is none.
10090@xref{Java Bison Interface}.
10091@end deffn
10092
10093@deffn {Directive} {%define final}
10094Whether the parser class is declared @code{final}. Default is false.
10095@xref{Java Bison Interface}.
10096@end deffn
10097
10098@deffn {Directive} {%define implements} "@var{interfaces}"
10099The implemented interfaces of the parser class, a comma-separated list.
10100Default is none.
10101@xref{Java Bison Interface}.
10102@end deffn
10103
10104@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10105The exceptions thrown by the @code{yylex} method of the lexer, a
10106comma-separated list. Default is @code{java.io.IOException}.
10107@xref{Java Scanner Interface}.
10108@end deffn
10109
10110@deffn {Directive} {%define location_type} "@var{class}"
10111The name of the class used for locations (a range between two
10112positions). This class is generated as an inner class of the parser
10113class by @command{bison}. Default is @code{Location}.
10114@xref{Java Location Values}.
10115@end deffn
10116
10117@deffn {Directive} {%define package} "@var{package}"
10118The package to put the parser class in. Default is none.
10119@xref{Java Bison Interface}.
10120@end deffn
10121
10122@deffn {Directive} {%define parser_class_name} "@var{name}"
10123The name of the parser class. Default is @code{YYParser} or
10124@code{@var{name-prefix}Parser}.
10125@xref{Java Bison Interface}.
10126@end deffn
10127
10128@deffn {Directive} {%define position_type} "@var{class}"
10129The name of the class used for positions. This class must be supplied by
10130the user. Default is @code{Position}.
10131@xref{Java Location Values}.
10132@end deffn
10133
10134@deffn {Directive} {%define public}
10135Whether the parser class is declared @code{public}. Default is false.
10136@xref{Java Bison Interface}.
10137@end deffn
10138
10139@deffn {Directive} {%define stype} "@var{class}"
10140The base type of semantic values. Default is @code{Object}.
10141@xref{Java Semantic Values}.
10142@end deffn
10143
10144@deffn {Directive} {%define strictfp}
10145Whether the parser class is declared @code{strictfp}. Default is false.
10146@xref{Java Bison Interface}.
10147@end deffn
10148
10149@deffn {Directive} {%define throws} "@var{exceptions}"
10150The exceptions thrown by user-supplied parser actions and
10151@code{%initial-action}, a comma-separated list. Default is none.
10152@xref{Java Parser Interface}.
10153@end deffn
10154
10155
12545799 10156@c ================================================= FAQ
d1a1114f
AD
10157
10158@node FAQ
10159@chapter Frequently Asked Questions
10160@cindex frequently asked questions
10161@cindex questions
10162
10163Several questions about Bison come up occasionally. Here some of them
10164are addressed.
10165
10166@menu
55ba27be
AD
10167* Memory Exhausted:: Breaking the Stack Limits
10168* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10169* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10170* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10171* Multiple start-symbols:: Factoring closely related grammars
35430378 10172* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10173* I can't build Bison:: Troubleshooting
10174* Where can I find help?:: Troubleshouting
10175* Bug Reports:: Troublereporting
8405b70c 10176* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10177* Beta Testing:: Experimenting development versions
10178* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10179@end menu
10180
1a059451
PE
10181@node Memory Exhausted
10182@section Memory Exhausted
d1a1114f 10183
ab8932bf 10184@quotation
1a059451 10185My parser returns with error with a @samp{memory exhausted}
d1a1114f 10186message. What can I do?
ab8932bf 10187@end quotation
d1a1114f
AD
10188
10189This question is already addressed elsewhere, @xref{Recursion,
10190,Recursive Rules}.
10191
e64fec0a
PE
10192@node How Can I Reset the Parser
10193@section How Can I Reset the Parser
5b066063 10194
0e14ad77
PE
10195The following phenomenon has several symptoms, resulting in the
10196following typical questions:
5b066063 10197
ab8932bf 10198@quotation
5b066063
AD
10199I invoke @code{yyparse} several times, and on correct input it works
10200properly; but when a parse error is found, all the other calls fail
0e14ad77 10201too. How can I reset the error flag of @code{yyparse}?
ab8932bf 10202@end quotation
5b066063
AD
10203
10204@noindent
10205or
10206
ab8932bf 10207@quotation
0e14ad77 10208My parser includes support for an @samp{#include}-like feature, in
5b066063 10209which case I run @code{yyparse} from @code{yyparse}. This fails
ab8932bf
AD
10210although I did specify @samp{%define api.pure}.
10211@end quotation
5b066063 10212
0e14ad77
PE
10213These problems typically come not from Bison itself, but from
10214Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10215speed, they might not notice a change of input file. As a
10216demonstration, consider the following source file,
10217@file{first-line.l}:
10218
98842516
AD
10219@example
10220@group
10221%@{
5b066063
AD
10222#include <stdio.h>
10223#include <stdlib.h>
98842516
AD
10224%@}
10225@end group
5b066063
AD
10226%%
10227.*\n ECHO; return 1;
10228%%
98842516 10229@group
5b066063 10230int
0e14ad77 10231yyparse (char const *file)
98842516 10232@{
5b066063
AD
10233 yyin = fopen (file, "r");
10234 if (!yyin)
98842516
AD
10235 @{
10236 perror ("fopen");
10237 exit (EXIT_FAILURE);
10238 @}
10239@end group
10240@group
fa7e68c3 10241 /* One token only. */
5b066063 10242 yylex ();
0e14ad77 10243 if (fclose (yyin) != 0)
98842516
AD
10244 @{
10245 perror ("fclose");
10246 exit (EXIT_FAILURE);
10247 @}
5b066063 10248 return 0;
98842516
AD
10249@}
10250@end group
5b066063 10251
98842516 10252@group
5b066063 10253int
0e14ad77 10254main (void)
98842516 10255@{
5b066063
AD
10256 yyparse ("input");
10257 yyparse ("input");
10258 return 0;
98842516
AD
10259@}
10260@end group
10261@end example
5b066063
AD
10262
10263@noindent
10264If the file @file{input} contains
10265
ab8932bf 10266@example
5b066063
AD
10267input:1: Hello,
10268input:2: World!
ab8932bf 10269@end example
5b066063
AD
10270
10271@noindent
0e14ad77 10272then instead of getting the first line twice, you get:
5b066063
AD
10273
10274@example
10275$ @kbd{flex -ofirst-line.c first-line.l}
10276$ @kbd{gcc -ofirst-line first-line.c -ll}
10277$ @kbd{./first-line}
10278input:1: Hello,
10279input:2: World!
10280@end example
10281
0e14ad77
PE
10282Therefore, whenever you change @code{yyin}, you must tell the
10283Lex-generated scanner to discard its current buffer and switch to the
10284new one. This depends upon your implementation of Lex; see its
10285documentation for more. For Flex, it suffices to call
10286@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10287Flex-generated scanner needs to read from several input streams to
10288handle features like include files, you might consider using Flex
10289functions like @samp{yy_switch_to_buffer} that manipulate multiple
10290input buffers.
5b066063 10291
b165c324
AD
10292If your Flex-generated scanner uses start conditions (@pxref{Start
10293conditions, , Start conditions, flex, The Flex Manual}), you might
10294also want to reset the scanner's state, i.e., go back to the initial
10295start condition, through a call to @samp{BEGIN (0)}.
10296
fef4cb51
AD
10297@node Strings are Destroyed
10298@section Strings are Destroyed
10299
ab8932bf 10300@quotation
c7e441b4 10301My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10302them. Instead of reporting @samp{"foo", "bar"}, it reports
10303@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
ab8932bf 10304@end quotation
fef4cb51
AD
10305
10306This error is probably the single most frequent ``bug report'' sent to
10307Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10308of the scanner. Consider the following Lex code:
fef4cb51 10309
ab8932bf 10310@example
98842516 10311@group
ab8932bf 10312%@{
fef4cb51
AD
10313#include <stdio.h>
10314char *yylval = NULL;
ab8932bf 10315%@}
98842516
AD
10316@end group
10317@group
fef4cb51
AD
10318%%
10319.* yylval = yytext; return 1;
10320\n /* IGNORE */
10321%%
98842516
AD
10322@end group
10323@group
fef4cb51
AD
10324int
10325main ()
ab8932bf 10326@{
fa7e68c3 10327 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10328 char *fst = (yylex (), yylval);
10329 char *snd = (yylex (), yylval);
10330 printf ("\"%s\", \"%s\"\n", fst, snd);
10331 return 0;
ab8932bf 10332@}
98842516 10333@end group
ab8932bf 10334@end example
fef4cb51
AD
10335
10336If you compile and run this code, you get:
10337
10338@example
10339$ @kbd{flex -osplit-lines.c split-lines.l}
10340$ @kbd{gcc -osplit-lines split-lines.c -ll}
10341$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10342"one
10343two", "two"
10344@end example
10345
10346@noindent
10347this is because @code{yytext} is a buffer provided for @emph{reading}
10348in the action, but if you want to keep it, you have to duplicate it
10349(e.g., using @code{strdup}). Note that the output may depend on how
10350your implementation of Lex handles @code{yytext}. For instance, when
10351given the Lex compatibility option @option{-l} (which triggers the
10352option @samp{%array}) Flex generates a different behavior:
10353
10354@example
10355$ @kbd{flex -l -osplit-lines.c split-lines.l}
10356$ @kbd{gcc -osplit-lines split-lines.c -ll}
10357$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10358"two", "two"
10359@end example
10360
10361
2fa09258
AD
10362@node Implementing Gotos/Loops
10363@section Implementing Gotos/Loops
a06ea4aa 10364
ab8932bf 10365@quotation
a06ea4aa 10366My simple calculator supports variables, assignments, and functions,
2fa09258 10367but how can I implement gotos, or loops?
ab8932bf 10368@end quotation
a06ea4aa
AD
10369
10370Although very pedagogical, the examples included in the document blur
a1c84f45 10371the distinction to make between the parser---whose job is to recover
a06ea4aa 10372the structure of a text and to transmit it to subsequent modules of
a1c84f45 10373the program---and the processing (such as the execution) of this
a06ea4aa
AD
10374structure. This works well with so called straight line programs,
10375i.e., precisely those that have a straightforward execution model:
10376execute simple instructions one after the others.
10377
10378@cindex abstract syntax tree
35430378 10379@cindex AST
a06ea4aa
AD
10380If you want a richer model, you will probably need to use the parser
10381to construct a tree that does represent the structure it has
10382recovered; this tree is usually called the @dfn{abstract syntax tree},
35430378 10383or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10384traversing it in various ways, will enable treatments such as its
10385execution or its translation, which will result in an interpreter or a
10386compiler.
10387
10388This topic is way beyond the scope of this manual, and the reader is
10389invited to consult the dedicated literature.
10390
10391
ed2e6384
AD
10392@node Multiple start-symbols
10393@section Multiple start-symbols
10394
ab8932bf 10395@quotation
ed2e6384
AD
10396I have several closely related grammars, and I would like to share their
10397implementations. In fact, I could use a single grammar but with
10398multiple entry points.
ab8932bf 10399@end quotation
ed2e6384
AD
10400
10401Bison does not support multiple start-symbols, but there is a very
10402simple means to simulate them. If @code{foo} and @code{bar} are the two
10403pseudo start-symbols, then introduce two new tokens, say
10404@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10405real start-symbol:
10406
10407@example
10408%token START_FOO START_BAR;
10409%start start;
de6be119
AD
10410start:
10411 START_FOO foo
10412| START_BAR bar;
ed2e6384
AD
10413@end example
10414
10415These tokens prevents the introduction of new conflicts. As far as the
10416parser goes, that is all that is needed.
10417
10418Now the difficult part is ensuring that the scanner will send these
10419tokens first. If your scanner is hand-written, that should be
10420straightforward. If your scanner is generated by Lex, them there is
10421simple means to do it: recall that anything between @samp{%@{ ... %@}}
10422after the first @code{%%} is copied verbatim in the top of the generated
10423@code{yylex} function. Make sure a variable @code{start_token} is
10424available in the scanner (e.g., a global variable or using
10425@code{%lex-param} etc.), and use the following:
10426
10427@example
10428 /* @r{Prologue.} */
10429%%
10430%@{
10431 if (start_token)
10432 @{
10433 int t = start_token;
10434 start_token = 0;
10435 return t;
10436 @}
10437%@}
10438 /* @r{The rules.} */
10439@end example
10440
10441
55ba27be
AD
10442@node Secure? Conform?
10443@section Secure? Conform?
10444
ab8932bf 10445@quotation
55ba27be 10446Is Bison secure? Does it conform to POSIX?
ab8932bf 10447@end quotation
55ba27be
AD
10448
10449If you're looking for a guarantee or certification, we don't provide it.
10450However, Bison is intended to be a reliable program that conforms to the
35430378 10451POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10452please send us a bug report.
10453
10454@node I can't build Bison
10455@section I can't build Bison
10456
ab8932bf 10457@quotation
8c5b881d
PE
10458I can't build Bison because @command{make} complains that
10459@code{msgfmt} is not found.
55ba27be 10460What should I do?
ab8932bf 10461@end quotation
55ba27be
AD
10462
10463Like most GNU packages with internationalization support, that feature
10464is turned on by default. If you have problems building in the @file{po}
10465subdirectory, it indicates that your system's internationalization
10466support is lacking. You can re-configure Bison with
10467@option{--disable-nls} to turn off this support, or you can install GNU
10468gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10469Bison. See the file @file{ABOUT-NLS} for more information.
10470
10471
10472@node Where can I find help?
10473@section Where can I find help?
10474
ab8932bf 10475@quotation
55ba27be 10476I'm having trouble using Bison. Where can I find help?
ab8932bf 10477@end quotation
55ba27be
AD
10478
10479First, read this fine manual. Beyond that, you can send mail to
10480@email{help-bison@@gnu.org}. This mailing list is intended to be
10481populated with people who are willing to answer questions about using
10482and installing Bison. Please keep in mind that (most of) the people on
10483the list have aspects of their lives which are not related to Bison (!),
10484so you may not receive an answer to your question right away. This can
10485be frustrating, but please try not to honk them off; remember that any
10486help they provide is purely voluntary and out of the kindness of their
10487hearts.
10488
10489@node Bug Reports
10490@section Bug Reports
10491
ab8932bf 10492@quotation
55ba27be 10493I found a bug. What should I include in the bug report?
ab8932bf 10494@end quotation
55ba27be
AD
10495
10496Before you send a bug report, make sure you are using the latest
10497version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10498mirrors. Be sure to include the version number in your bug report. If
10499the bug is present in the latest version but not in a previous version,
10500try to determine the most recent version which did not contain the bug.
10501
10502If the bug is parser-related, you should include the smallest grammar
10503you can which demonstrates the bug. The grammar file should also be
10504complete (i.e., I should be able to run it through Bison without having
10505to edit or add anything). The smaller and simpler the grammar, the
10506easier it will be to fix the bug.
10507
10508Include information about your compilation environment, including your
10509operating system's name and version and your compiler's name and
10510version. If you have trouble compiling, you should also include a
10511transcript of the build session, starting with the invocation of
10512`configure'. Depending on the nature of the bug, you may be asked to
10513send additional files as well (such as `config.h' or `config.cache').
10514
10515Patches are most welcome, but not required. That is, do not hesitate to
d6864e19 10516send a bug report just because you cannot provide a fix.
55ba27be
AD
10517
10518Send bug reports to @email{bug-bison@@gnu.org}.
10519
8405b70c
PB
10520@node More Languages
10521@section More Languages
55ba27be 10522
ab8932bf 10523@quotation
8405b70c 10524Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 10525favorite language here}?
ab8932bf 10526@end quotation
55ba27be 10527
8405b70c 10528C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10529languages; contributions are welcome.
10530
10531@node Beta Testing
10532@section Beta Testing
10533
ab8932bf 10534@quotation
55ba27be 10535What is involved in being a beta tester?
ab8932bf 10536@end quotation
55ba27be
AD
10537
10538It's not terribly involved. Basically, you would download a test
10539release, compile it, and use it to build and run a parser or two. After
10540that, you would submit either a bug report or a message saying that
10541everything is okay. It is important to report successes as well as
10542failures because test releases eventually become mainstream releases,
10543but only if they are adequately tested. If no one tests, development is
10544essentially halted.
10545
10546Beta testers are particularly needed for operating systems to which the
10547developers do not have easy access. They currently have easy access to
10548recent GNU/Linux and Solaris versions. Reports about other operating
10549systems are especially welcome.
10550
10551@node Mailing Lists
10552@section Mailing Lists
10553
ab8932bf 10554@quotation
55ba27be 10555How do I join the help-bison and bug-bison mailing lists?
ab8932bf 10556@end quotation
55ba27be
AD
10557
10558See @url{http://lists.gnu.org/}.
a06ea4aa 10559
d1a1114f
AD
10560@c ================================================= Table of Symbols
10561
342b8b6e 10562@node Table of Symbols
bfa74976
RS
10563@appendix Bison Symbols
10564@cindex Bison symbols, table of
10565@cindex symbols in Bison, table of
10566
18b519c0 10567@deffn {Variable} @@$
3ded9a63 10568In an action, the location of the left-hand side of the rule.
7404cdf3 10569@xref{Tracking Locations}.
18b519c0 10570@end deffn
3ded9a63 10571
18b519c0 10572@deffn {Variable} @@@var{n}
7404cdf3
JD
10573In an action, the location of the @var{n}-th symbol of the right-hand side
10574of the rule. @xref{Tracking Locations}.
18b519c0 10575@end deffn
3ded9a63 10576
1f68dca5 10577@deffn {Variable} @@@var{name}
7404cdf3
JD
10578In an action, the location of a symbol addressed by name. @xref{Tracking
10579Locations}.
1f68dca5
AR
10580@end deffn
10581
10582@deffn {Variable} @@[@var{name}]
7404cdf3
JD
10583In an action, the location of a symbol addressed by name. @xref{Tracking
10584Locations}.
1f68dca5
AR
10585@end deffn
10586
18b519c0 10587@deffn {Variable} $$
3ded9a63
AD
10588In an action, the semantic value of the left-hand side of the rule.
10589@xref{Actions}.
18b519c0 10590@end deffn
3ded9a63 10591
18b519c0 10592@deffn {Variable} $@var{n}
3ded9a63
AD
10593In an action, the semantic value of the @var{n}-th symbol of the
10594right-hand side of the rule. @xref{Actions}.
18b519c0 10595@end deffn
3ded9a63 10596
1f68dca5
AR
10597@deffn {Variable} $@var{name}
10598In an action, the semantic value of a symbol addressed by name.
10599@xref{Actions}.
10600@end deffn
10601
10602@deffn {Variable} $[@var{name}]
10603In an action, the semantic value of a symbol addressed by name.
10604@xref{Actions}.
10605@end deffn
10606
dd8d9022
AD
10607@deffn {Delimiter} %%
10608Delimiter used to separate the grammar rule section from the
10609Bison declarations section or the epilogue.
10610@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 10611@end deffn
bfa74976 10612
dd8d9022
AD
10613@c Don't insert spaces, or check the DVI output.
10614@deffn {Delimiter} %@{@var{code}%@}
9913d6e4
JD
10615All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
10616to the parser implementation file. Such code forms the prologue of
10617the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 10618Grammar}.
18b519c0 10619@end deffn
bfa74976 10620
dd8d9022
AD
10621@deffn {Construct} /*@dots{}*/
10622Comment delimiters, as in C.
18b519c0 10623@end deffn
bfa74976 10624
dd8d9022
AD
10625@deffn {Delimiter} :
10626Separates a rule's result from its components. @xref{Rules, ,Syntax of
10627Grammar Rules}.
18b519c0 10628@end deffn
bfa74976 10629
dd8d9022
AD
10630@deffn {Delimiter} ;
10631Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10632@end deffn
bfa74976 10633
dd8d9022
AD
10634@deffn {Delimiter} |
10635Separates alternate rules for the same result nonterminal.
10636@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 10637@end deffn
bfa74976 10638
12e35840
JD
10639@deffn {Directive} <*>
10640Used to define a default tagged @code{%destructor} or default tagged
10641@code{%printer}.
85894313
JD
10642
10643This feature is experimental.
10644More user feedback will help to determine whether it should become a permanent
10645feature.
10646
12e35840
JD
10647@xref{Destructor Decl, , Freeing Discarded Symbols}.
10648@end deffn
10649
3ebecc24 10650@deffn {Directive} <>
12e35840
JD
10651Used to define a default tagless @code{%destructor} or default tagless
10652@code{%printer}.
85894313
JD
10653
10654This feature is experimental.
10655More user feedback will help to determine whether it should become a permanent
10656feature.
10657
12e35840
JD
10658@xref{Destructor Decl, , Freeing Discarded Symbols}.
10659@end deffn
10660
dd8d9022
AD
10661@deffn {Symbol} $accept
10662The predefined nonterminal whose only rule is @samp{$accept: @var{start}
10663$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
10664Start-Symbol}. It cannot be used in the grammar.
18b519c0 10665@end deffn
bfa74976 10666
136a0f76 10667@deffn {Directive} %code @{@var{code}@}
148d66d8 10668@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
406dec82
JD
10669Insert @var{code} verbatim into the output parser source at the
10670default location or at the location specified by @var{qualifier}.
8e6f2266 10671@xref{%code Summary}.
9bc0dd67 10672@end deffn
9bc0dd67 10673
18b519c0 10674@deffn {Directive} %debug
6deb4447 10675Equip the parser for debugging. @xref{Decl Summary}.
18b519c0 10676@end deffn
6deb4447 10677
91d2c560 10678@ifset defaultprec
22fccf95
PE
10679@deffn {Directive} %default-prec
10680Assign a precedence to rules that lack an explicit @samp{%prec}
10681modifier. @xref{Contextual Precedence, ,Context-Dependent
10682Precedence}.
39a06c25 10683@end deffn
91d2c560 10684@end ifset
39a06c25 10685
6f04ee6c
JD
10686@deffn {Directive} %define @var{variable}
10687@deffnx {Directive} %define @var{variable} @var{value}
10688@deffnx {Directive} %define @var{variable} "@var{value}"
2f4518a1 10689Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
10690@end deffn
10691
18b519c0 10692@deffn {Directive} %defines
9913d6e4
JD
10693Bison declaration to create a parser header file, which is usually
10694meant for the scanner. @xref{Decl Summary}.
18b519c0 10695@end deffn
6deb4447 10696
02975b9a
JD
10697@deffn {Directive} %defines @var{defines-file}
10698Same as above, but save in the file @var{defines-file}.
10699@xref{Decl Summary}.
10700@end deffn
10701
18b519c0 10702@deffn {Directive} %destructor
258b75ca 10703Specify how the parser should reclaim the memory associated to
fa7e68c3 10704discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 10705@end deffn
72f889cc 10706
18b519c0 10707@deffn {Directive} %dprec
676385e2 10708Bison declaration to assign a precedence to a rule that is used at parse
c827f760 10709time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
35430378 10710GLR Parsers}.
18b519c0 10711@end deffn
676385e2 10712
dd8d9022
AD
10713@deffn {Symbol} $end
10714The predefined token marking the end of the token stream. It cannot be
10715used in the grammar.
10716@end deffn
10717
10718@deffn {Symbol} error
10719A token name reserved for error recovery. This token may be used in
10720grammar rules so as to allow the Bison parser to recognize an error in
10721the grammar without halting the process. In effect, a sentence
10722containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
10723token @code{error} becomes the current lookahead token. Actions
10724corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
10725token is reset to the token that originally caused the violation.
10726@xref{Error Recovery}.
18d192f0
AD
10727@end deffn
10728
18b519c0 10729@deffn {Directive} %error-verbose
2a8d363a 10730Bison declaration to request verbose, specific error message strings
6f04ee6c 10731when @code{yyerror} is called. @xref{Error Reporting}.
18b519c0 10732@end deffn
2a8d363a 10733
02975b9a 10734@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 10735Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 10736Summary}.
18b519c0 10737@end deffn
d8988b2f 10738
18b519c0 10739@deffn {Directive} %glr-parser
35430378
JD
10740Bison declaration to produce a GLR parser. @xref{GLR
10741Parsers, ,Writing GLR Parsers}.
18b519c0 10742@end deffn
676385e2 10743
dd8d9022
AD
10744@deffn {Directive} %initial-action
10745Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
10746@end deffn
10747
e6e704dc
JD
10748@deffn {Directive} %language
10749Specify the programming language for the generated parser.
10750@xref{Decl Summary}.
10751@end deffn
10752
18b519c0 10753@deffn {Directive} %left
bfa74976
RS
10754Bison declaration to assign left associativity to token(s).
10755@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10756@end deffn
bfa74976 10757
feeb0eda 10758@deffn {Directive} %lex-param @{@var{argument-declaration}@}
2a8d363a
AD
10759Bison declaration to specifying an additional parameter that
10760@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
10761for Pure Parsers}.
18b519c0 10762@end deffn
2a8d363a 10763
18b519c0 10764@deffn {Directive} %merge
676385e2 10765Bison declaration to assign a merging function to a rule. If there is a
fae437e8 10766reduce/reduce conflict with a rule having the same merging function, the
676385e2 10767function is applied to the two semantic values to get a single result.
35430378 10768@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 10769@end deffn
676385e2 10770
02975b9a 10771@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 10772Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 10773@end deffn
d8988b2f 10774
91d2c560 10775@ifset defaultprec
22fccf95
PE
10776@deffn {Directive} %no-default-prec
10777Do not assign a precedence to rules that lack an explicit @samp{%prec}
10778modifier. @xref{Contextual Precedence, ,Context-Dependent
10779Precedence}.
10780@end deffn
91d2c560 10781@end ifset
22fccf95 10782
18b519c0 10783@deffn {Directive} %no-lines
931c7513 10784Bison declaration to avoid generating @code{#line} directives in the
9913d6e4 10785parser implementation file. @xref{Decl Summary}.
18b519c0 10786@end deffn
931c7513 10787
18b519c0 10788@deffn {Directive} %nonassoc
9d9b8b70 10789Bison declaration to assign nonassociativity to token(s).
bfa74976 10790@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10791@end deffn
bfa74976 10792
02975b9a 10793@deffn {Directive} %output "@var{file}"
9913d6e4
JD
10794Bison declaration to set the name of the parser implementation file.
10795@xref{Decl Summary}.
18b519c0 10796@end deffn
d8988b2f 10797
feeb0eda 10798@deffn {Directive} %parse-param @{@var{argument-declaration}@}
2a8d363a
AD
10799Bison declaration to specifying an additional parameter that
10800@code{yyparse} should accept. @xref{Parser Function,, The Parser
10801Function @code{yyparse}}.
18b519c0 10802@end deffn
2a8d363a 10803
18b519c0 10804@deffn {Directive} %prec
bfa74976
RS
10805Bison declaration to assign a precedence to a specific rule.
10806@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 10807@end deffn
bfa74976 10808
18b519c0 10809@deffn {Directive} %pure-parser
2f4518a1
JD
10810Deprecated version of @code{%define api.pure} (@pxref{%define
10811Summary,,api.pure}), for which Bison is more careful to warn about
10812unreasonable usage.
18b519c0 10813@end deffn
bfa74976 10814
b50d2359 10815@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
10816Require version @var{version} or higher of Bison. @xref{Require Decl, ,
10817Require a Version of Bison}.
b50d2359
AD
10818@end deffn
10819
18b519c0 10820@deffn {Directive} %right
bfa74976
RS
10821Bison declaration to assign right associativity to token(s).
10822@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 10823@end deffn
bfa74976 10824
e6e704dc
JD
10825@deffn {Directive} %skeleton
10826Specify the skeleton to use; usually for development.
10827@xref{Decl Summary}.
10828@end deffn
10829
18b519c0 10830@deffn {Directive} %start
704a47c4
AD
10831Bison declaration to specify the start symbol. @xref{Start Decl, ,The
10832Start-Symbol}.
18b519c0 10833@end deffn
bfa74976 10834
18b519c0 10835@deffn {Directive} %token
bfa74976
RS
10836Bison declaration to declare token(s) without specifying precedence.
10837@xref{Token Decl, ,Token Type Names}.
18b519c0 10838@end deffn
bfa74976 10839
18b519c0 10840@deffn {Directive} %token-table
9913d6e4
JD
10841Bison declaration to include a token name table in the parser
10842implementation file. @xref{Decl Summary}.
18b519c0 10843@end deffn
931c7513 10844
18b519c0 10845@deffn {Directive} %type
704a47c4
AD
10846Bison declaration to declare nonterminals. @xref{Type Decl,
10847,Nonterminal Symbols}.
18b519c0 10848@end deffn
bfa74976 10849
dd8d9022
AD
10850@deffn {Symbol} $undefined
10851The predefined token onto which all undefined values returned by
10852@code{yylex} are mapped. It cannot be used in the grammar, rather, use
10853@code{error}.
10854@end deffn
10855
18b519c0 10856@deffn {Directive} %union
bfa74976
RS
10857Bison declaration to specify several possible data types for semantic
10858values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 10859@end deffn
bfa74976 10860
dd8d9022
AD
10861@deffn {Macro} YYABORT
10862Macro to pretend that an unrecoverable syntax error has occurred, by
10863making @code{yyparse} return 1 immediately. The error reporting
10864function @code{yyerror} is not called. @xref{Parser Function, ,The
10865Parser Function @code{yyparse}}.
8405b70c
PB
10866
10867For Java parsers, this functionality is invoked using @code{return YYABORT;}
10868instead.
dd8d9022 10869@end deffn
3ded9a63 10870
dd8d9022
AD
10871@deffn {Macro} YYACCEPT
10872Macro to pretend that a complete utterance of the language has been
10873read, by making @code{yyparse} return 0 immediately.
10874@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
10875
10876For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
10877instead.
dd8d9022 10878@end deffn
bfa74976 10879
dd8d9022 10880@deffn {Macro} YYBACKUP
742e4900 10881Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 10882token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10883@end deffn
bfa74976 10884
dd8d9022 10885@deffn {Variable} yychar
32c29292 10886External integer variable that contains the integer value of the
742e4900 10887lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
10888@code{yyparse}.) Error-recovery rule actions may examine this variable.
10889@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 10890@end deffn
bfa74976 10891
dd8d9022
AD
10892@deffn {Variable} yyclearin
10893Macro used in error-recovery rule actions. It clears the previous
742e4900 10894lookahead token. @xref{Error Recovery}.
18b519c0 10895@end deffn
bfa74976 10896
dd8d9022
AD
10897@deffn {Macro} YYDEBUG
10898Macro to define to equip the parser with tracing code. @xref{Tracing,
10899,Tracing Your Parser}.
18b519c0 10900@end deffn
bfa74976 10901
dd8d9022
AD
10902@deffn {Variable} yydebug
10903External integer variable set to zero by default. If @code{yydebug}
10904is given a nonzero value, the parser will output information on input
10905symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 10906@end deffn
bfa74976 10907
dd8d9022
AD
10908@deffn {Macro} yyerrok
10909Macro to cause parser to recover immediately to its normal mode
10910after a syntax error. @xref{Error Recovery}.
10911@end deffn
10912
10913@deffn {Macro} YYERROR
10914Macro to pretend that a syntax error has just been detected: call
10915@code{yyerror} and then perform normal error recovery if possible
10916(@pxref{Error Recovery}), or (if recovery is impossible) make
10917@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
10918
10919For Java parsers, this functionality is invoked using @code{return YYERROR;}
10920instead.
dd8d9022
AD
10921@end deffn
10922
10923@deffn {Function} yyerror
10924User-supplied function to be called by @code{yyparse} on error.
10925@xref{Error Reporting, ,The Error
10926Reporting Function @code{yyerror}}.
10927@end deffn
10928
10929@deffn {Macro} YYERROR_VERBOSE
10930An obsolete macro that you define with @code{#define} in the prologue
10931to request verbose, specific error message strings
10932when @code{yyerror} is called. It doesn't matter what definition you
10933use for @code{YYERROR_VERBOSE}, just whether you define it. Using
6f04ee6c 10934@code{%error-verbose} is preferred. @xref{Error Reporting}.
dd8d9022
AD
10935@end deffn
10936
10937@deffn {Macro} YYINITDEPTH
10938Macro for specifying the initial size of the parser stack.
1a059451 10939@xref{Memory Management}.
dd8d9022
AD
10940@end deffn
10941
10942@deffn {Function} yylex
10943User-supplied lexical analyzer function, called with no arguments to get
10944the next token. @xref{Lexical, ,The Lexical Analyzer Function
10945@code{yylex}}.
10946@end deffn
10947
10948@deffn {Macro} YYLEX_PARAM
10949An obsolete macro for specifying an extra argument (or list of extra
32c29292 10950arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
10951macro is deprecated, and is supported only for Yacc like parsers.
10952@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
10953@end deffn
10954
10955@deffn {Variable} yylloc
10956External variable in which @code{yylex} should place the line and column
10957numbers associated with a token. (In a pure parser, it is a local
10958variable within @code{yyparse}, and its address is passed to
32c29292
JD
10959@code{yylex}.)
10960You can ignore this variable if you don't use the @samp{@@} feature in the
10961grammar actions.
10962@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 10963In semantic actions, it stores the location of the lookahead token.
32c29292 10964@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
10965@end deffn
10966
10967@deffn {Type} YYLTYPE
10968Data type of @code{yylloc}; by default, a structure with four
10969members. @xref{Location Type, , Data Types of Locations}.
10970@end deffn
10971
10972@deffn {Variable} yylval
10973External variable in which @code{yylex} should place the semantic
10974value associated with a token. (In a pure parser, it is a local
10975variable within @code{yyparse}, and its address is passed to
32c29292
JD
10976@code{yylex}.)
10977@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 10978In semantic actions, it stores the semantic value of the lookahead token.
32c29292 10979@xref{Actions, ,Actions}.
dd8d9022
AD
10980@end deffn
10981
10982@deffn {Macro} YYMAXDEPTH
1a059451
PE
10983Macro for specifying the maximum size of the parser stack. @xref{Memory
10984Management}.
dd8d9022
AD
10985@end deffn
10986
10987@deffn {Variable} yynerrs
8a2800e7 10988Global variable which Bison increments each time it reports a syntax error.
f4101aa6 10989(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 10990pure push parser, it is a member of yypstate.)
dd8d9022
AD
10991@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
10992@end deffn
10993
10994@deffn {Function} yyparse
10995The parser function produced by Bison; call this function to start
10996parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
10997@end deffn
10998
9987d1b3 10999@deffn {Function} yypstate_delete
f4101aa6 11000The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11001call this function to delete the memory associated with a parser.
f4101aa6 11002@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11003@code{yypstate_delete}}.
59da312b
JD
11004(The current push parsing interface is experimental and may evolve.
11005More user feedback will help to stabilize it.)
9987d1b3
JD
11006@end deffn
11007
11008@deffn {Function} yypstate_new
f4101aa6 11009The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11010call this function to create a new parser.
f4101aa6 11011@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11012@code{yypstate_new}}.
59da312b
JD
11013(The current push parsing interface is experimental and may evolve.
11014More user feedback will help to stabilize it.)
9987d1b3
JD
11015@end deffn
11016
11017@deffn {Function} yypull_parse
f4101aa6
AD
11018The parser function produced by Bison in push mode; call this function to
11019parse the rest of the input stream.
11020@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11021@code{yypull_parse}}.
59da312b
JD
11022(The current push parsing interface is experimental and may evolve.
11023More user feedback will help to stabilize it.)
9987d1b3
JD
11024@end deffn
11025
11026@deffn {Function} yypush_parse
f4101aa6
AD
11027The parser function produced by Bison in push mode; call this function to
11028parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11029@code{yypush_parse}}.
59da312b
JD
11030(The current push parsing interface is experimental and may evolve.
11031More user feedback will help to stabilize it.)
9987d1b3
JD
11032@end deffn
11033
dd8d9022
AD
11034@deffn {Macro} YYPARSE_PARAM
11035An obsolete macro for specifying the name of a parameter that
11036@code{yyparse} should accept. The use of this macro is deprecated, and
11037is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11038Conventions for Pure Parsers}.
11039@end deffn
11040
11041@deffn {Macro} YYRECOVERING
02103984
PE
11042The expression @code{YYRECOVERING ()} yields 1 when the parser
11043is recovering from a syntax error, and 0 otherwise.
11044@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11045@end deffn
11046
11047@deffn {Macro} YYSTACK_USE_ALLOCA
34a6c2d1
JD
11048Macro used to control the use of @code{alloca} when the
11049deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11050the parser will use @code{malloc} to extend its stacks. If defined to
110511, the parser will use @code{alloca}. Values other than 0 and 1 are
11052reserved for future Bison extensions. If not defined,
11053@code{YYSTACK_USE_ALLOCA} defaults to 0.
11054
55289366 11055In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11056limited stack and with unreliable stack-overflow checking, you should
11057set @code{YYMAXDEPTH} to a value that cannot possibly result in
11058unchecked stack overflow on any of your target hosts when
11059@code{alloca} is called. You can inspect the code that Bison
11060generates in order to determine the proper numeric values. This will
11061require some expertise in low-level implementation details.
dd8d9022
AD
11062@end deffn
11063
11064@deffn {Type} YYSTYPE
11065Data type of semantic values; @code{int} by default.
11066@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11067@end deffn
bfa74976 11068
342b8b6e 11069@node Glossary
bfa74976
RS
11070@appendix Glossary
11071@cindex glossary
11072
11073@table @asis
6f04ee6c 11074@item Accepting state
34a6c2d1
JD
11075A state whose only action is the accept action.
11076The accepting state is thus a consistent state.
11077@xref{Understanding,,}.
11078
35430378 11079@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11080Formal method of specifying context-free grammars originally proposed
11081by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11082committee document contributing to what became the Algol 60 report.
11083@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11084
6f04ee6c
JD
11085@item Consistent state
11086A state containing only one possible action. @xref{Default Reductions}.
34a6c2d1 11087
bfa74976
RS
11088@item Context-free grammars
11089Grammars specified as rules that can be applied regardless of context.
11090Thus, if there is a rule which says that an integer can be used as an
11091expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11092permitted. @xref{Language and Grammar, ,Languages and Context-Free
11093Grammars}.
bfa74976 11094
6f04ee6c 11095@item Default reduction
620b5727 11096The reduction that a parser should perform if the current parser state
2f4518a1 11097contains no other action for the lookahead token. In permitted parser
6f04ee6c
JD
11098states, Bison declares the reduction with the largest lookahead set to be
11099the default reduction and removes that lookahead set. @xref{Default
11100Reductions}.
11101
11102@item Defaulted state
11103A consistent state with a default reduction. @xref{Default Reductions}.
34a6c2d1 11104
bfa74976
RS
11105@item Dynamic allocation
11106Allocation of memory that occurs during execution, rather than at
11107compile time or on entry to a function.
11108
11109@item Empty string
11110Analogous to the empty set in set theory, the empty string is a
11111character string of length zero.
11112
11113@item Finite-state stack machine
11114A ``machine'' that has discrete states in which it is said to exist at
11115each instant in time. As input to the machine is processed, the
11116machine moves from state to state as specified by the logic of the
11117machine. In the case of the parser, the input is the language being
11118parsed, and the states correspond to various stages in the grammar
c827f760 11119rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11120
35430378 11121@item Generalized LR (GLR)
676385e2 11122A parsing algorithm that can handle all context-free grammars, including those
35430378 11123that are not LR(1). It resolves situations that Bison's
34a6c2d1 11124deterministic parsing
676385e2
PH
11125algorithm cannot by effectively splitting off multiple parsers, trying all
11126possible parsers, and discarding those that fail in the light of additional
c827f760 11127right context. @xref{Generalized LR Parsing, ,Generalized
35430378 11128LR Parsing}.
676385e2 11129
bfa74976
RS
11130@item Grouping
11131A language construct that is (in general) grammatically divisible;
c827f760 11132for example, `expression' or `declaration' in C@.
bfa74976
RS
11133@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11134
6f04ee6c
JD
11135@item IELR(1) (Inadequacy Elimination LR(1))
11136A minimal LR(1) parser table construction algorithm. That is, given any
2f4518a1 11137context-free grammar, IELR(1) generates parser tables with the full
6f04ee6c
JD
11138language-recognition power of canonical LR(1) but with nearly the same
11139number of parser states as LALR(1). This reduction in parser states is
11140often an order of magnitude. More importantly, because canonical LR(1)'s
11141extra parser states may contain duplicate conflicts in the case of non-LR(1)
11142grammars, the number of conflicts for IELR(1) is often an order of magnitude
11143less as well. This can significantly reduce the complexity of developing a
11144grammar. @xref{LR Table Construction}.
34a6c2d1 11145
bfa74976
RS
11146@item Infix operator
11147An arithmetic operator that is placed between the operands on which it
11148performs some operation.
11149
11150@item Input stream
11151A continuous flow of data between devices or programs.
11152
35430378 11153@item LAC (Lookahead Correction)
4c38b19e 11154A parsing mechanism that fixes the problem of delayed syntax error
6f04ee6c
JD
11155detection, which is caused by LR state merging, default reductions, and the
11156use of @code{%nonassoc}. Delayed syntax error detection results in
11157unexpected semantic actions, initiation of error recovery in the wrong
11158syntactic context, and an incorrect list of expected tokens in a verbose
11159syntax error message. @xref{LAC}.
4c38b19e 11160
bfa74976
RS
11161@item Language construct
11162One of the typical usage schemas of the language. For example, one of
11163the constructs of the C language is the @code{if} statement.
11164@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11165
11166@item Left associativity
11167Operators having left associativity are analyzed from left to right:
11168@samp{a+b+c} first computes @samp{a+b} and then combines with
11169@samp{c}. @xref{Precedence, ,Operator Precedence}.
11170
11171@item Left recursion
89cab50d
AD
11172A rule whose result symbol is also its first component symbol; for
11173example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11174Rules}.
bfa74976
RS
11175
11176@item Left-to-right parsing
11177Parsing a sentence of a language by analyzing it token by token from
c827f760 11178left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11179
11180@item Lexical analyzer (scanner)
11181A function that reads an input stream and returns tokens one by one.
11182@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11183
11184@item Lexical tie-in
11185A flag, set by actions in the grammar rules, which alters the way
11186tokens are parsed. @xref{Lexical Tie-ins}.
11187
931c7513 11188@item Literal string token
14ded682 11189A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11190
742e4900
JD
11191@item Lookahead token
11192A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11193Tokens}.
bfa74976 11194
35430378 11195@item LALR(1)
bfa74976 11196The class of context-free grammars that Bison (like most other parser
35430378 11197generators) can handle by default; a subset of LR(1).
5da0355a 11198@xref{Mysterious Conflicts}.
bfa74976 11199
35430378 11200@item LR(1)
bfa74976 11201The class of context-free grammars in which at most one token of
742e4900 11202lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11203
11204@item Nonterminal symbol
11205A grammar symbol standing for a grammatical construct that can
11206be expressed through rules in terms of smaller constructs; in other
11207words, a construct that is not a token. @xref{Symbols}.
11208
bfa74976
RS
11209@item Parser
11210A function that recognizes valid sentences of a language by analyzing
11211the syntax structure of a set of tokens passed to it from a lexical
11212analyzer.
11213
11214@item Postfix operator
11215An arithmetic operator that is placed after the operands upon which it
11216performs some operation.
11217
11218@item Reduction
11219Replacing a string of nonterminals and/or terminals with a single
89cab50d 11220nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11221Parser Algorithm}.
bfa74976
RS
11222
11223@item Reentrant
11224A reentrant subprogram is a subprogram which can be in invoked any
11225number of times in parallel, without interference between the various
11226invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11227
11228@item Reverse polish notation
11229A language in which all operators are postfix operators.
11230
11231@item Right recursion
89cab50d
AD
11232A rule whose result symbol is also its last component symbol; for
11233example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11234Rules}.
bfa74976
RS
11235
11236@item Semantics
11237In computer languages, the semantics are specified by the actions
11238taken for each instance of the language, i.e., the meaning of
11239each statement. @xref{Semantics, ,Defining Language Semantics}.
11240
11241@item Shift
11242A parser is said to shift when it makes the choice of analyzing
11243further input from the stream rather than reducing immediately some
c827f760 11244already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11245
11246@item Single-character literal
11247A single character that is recognized and interpreted as is.
11248@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11249
11250@item Start symbol
11251The nonterminal symbol that stands for a complete valid utterance in
11252the language being parsed. The start symbol is usually listed as the
13863333 11253first nonterminal symbol in a language specification.
bfa74976
RS
11254@xref{Start Decl, ,The Start-Symbol}.
11255
11256@item Symbol table
11257A data structure where symbol names and associated data are stored
11258during parsing to allow for recognition and use of existing
11259information in repeated uses of a symbol. @xref{Multi-function Calc}.
11260
6e649e65
PE
11261@item Syntax error
11262An error encountered during parsing of an input stream due to invalid
11263syntax. @xref{Error Recovery}.
11264
bfa74976
RS
11265@item Token
11266A basic, grammatically indivisible unit of a language. The symbol
11267that describes a token in the grammar is a terminal symbol.
11268The input of the Bison parser is a stream of tokens which comes from
11269the lexical analyzer. @xref{Symbols}.
11270
11271@item Terminal symbol
89cab50d
AD
11272A grammar symbol that has no rules in the grammar and therefore is
11273grammatically indivisible. The piece of text it represents is a token.
11274@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
6f04ee6c
JD
11275
11276@item Unreachable state
11277A parser state to which there does not exist a sequence of transitions from
11278the parser's start state. A state can become unreachable during conflict
11279resolution. @xref{Unreachable States}.
bfa74976
RS
11280@end table
11281
342b8b6e 11282@node Copying This Manual
f2b5126e 11283@appendix Copying This Manual
f2b5126e
PB
11284@include fdl.texi
11285
71caec06
JD
11286@node Bibliography
11287@unnumbered Bibliography
11288
11289@table @asis
11290@item [Denny 2008]
11291Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11292for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
112932008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11294pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11295
11296@item [Denny 2010 May]
11297Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11298Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11299University, Clemson, SC, USA (May 2010).
11300@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11301
11302@item [Denny 2010 November]
11303Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11304Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11305in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
113062010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11307
11308@item [DeRemer 1982]
11309Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11310Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11311Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11312615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11313
11314@item [Knuth 1965]
11315Donald E. Knuth, On the Translation of Languages from Left to Right, in
11316@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11317607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11318
11319@item [Scott 2000]
11320Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11321@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11322London, Department of Computer Science, TR-00-12 (December 2000).
11323@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11324@end table
11325
342b8b6e 11326@node Index
bfa74976
RS
11327@unnumbered Index
11328
11329@printindex cp
11330
bfa74976 11331@bye
a06ea4aa 11332
232be91a
AD
11333@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11334@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11335@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11336@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11337@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11338@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11339@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11340@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11341@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11342@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11343@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11344@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11345@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
56da1e52 11346@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
232be91a
AD
11347@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11348@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11349@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11350@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11351@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11352@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11353@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11354@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11355@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
56da1e52 11356@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
232be91a
AD
11357@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11358@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11359@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11360@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11361@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
4c38b19e 11362@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
56da1e52
AD
11363@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
11364@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
232be91a 11365@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
56da1e52 11366@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
232be91a
AD
11367@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11368@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11369@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
56da1e52 11370@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
232be91a 11371@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
56da1e52 11372@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
232be91a
AD
11373@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11374@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11375@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11376@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
56da1e52 11377@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
232be91a
AD
11378@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11379@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11380@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11381@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11382@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
56da1e52
AD
11383@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
11384@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy
11385@c LocalWords: Scannerless ispell american
f3103c5b
AD
11386
11387@c Local Variables:
11388@c ispell-dictionary: "american"
11389@c fill-column: 76
11390@c End: