]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: reformat grammar snippets.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
d6328241 229* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
230* Start Decl:: Specifying the start symbol.
231* Pure Decl:: Requesting a reentrant parser.
9987d1b3 232* Push Decl:: Requesting a push parser.
bfa74976 233* Decl Summary:: Table of all Bison declarations.
35c1e5f0 234* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 235* %code Summary:: Inserting code into the parser source.
bfa74976
RS
236
237Parser C-Language Interface
238
f5f419de
DJ
239* Parser Function:: How to call @code{yyparse} and what it returns.
240* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
241* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
242* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
243* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
244* Lexical:: You must supply a function @code{yylex}
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
256* Token Locations:: How @code{yylex} must return the text location
257 (line number, etc.) of the token, if the
258 actions want that.
259* Pure Calling:: How the calling convention differs in a pure parser
260 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 261
13863333 262The Bison Parser Algorithm
bfa74976 263
742e4900 264* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 270* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 271* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 272* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 273* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
274
275Operator Precedence
276
277* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
278* Using Precedence:: How to specify precedence and associativity.
279* Precedence Only:: How to specify precedence only.
bfa74976
RS
280* Precedence Examples:: How these features are used in the previous example.
281* How Precedence:: How they work.
282
7fceb615
JD
283Tuning LR
284
285* LR Table Construction:: Choose a different construction algorithm.
286* Default Reductions:: Disable default reductions.
287* LAC:: Correct lookahead sets in the parser states.
288* Unreachable States:: Keep unreachable parser states for debugging.
289
bfa74976
RS
290Handling Context Dependencies
291
292* Semantic Tokens:: Token parsing can depend on the semantic context.
293* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
294* Tie-in Recovery:: Lexical tie-ins have implications for how
295 error recovery rules must be written.
296
93dd49ab 297Debugging Your Parser
ec3bc396
AD
298
299* Understanding:: Understanding the structure of your parser.
300* Tracing:: Tracing the execution of your parser.
301
bfa74976
RS
302Invoking Bison
303
13863333 304* Bison Options:: All the options described in detail,
c827f760 305 in alphabetical order by short options.
bfa74976 306* Option Cross Key:: Alphabetical list of long options.
93dd49ab 307* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 308
8405b70c 309Parsers Written In Other Languages
12545799
AD
310
311* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 312* Java Parsers:: The interface to generate Java parser classes
12545799
AD
313
314C++ Parsers
315
316* C++ Bison Interface:: Asking for C++ parser generation
317* C++ Semantic Values:: %union vs. C++
318* C++ Location Values:: The position and location classes
319* C++ Parser Interface:: Instantiating and running the parser
320* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 321* A Complete C++ Example:: Demonstrating their use
12545799
AD
322
323A Complete C++ Example
324
325* Calc++ --- C++ Calculator:: The specifications
326* Calc++ Parsing Driver:: An active parsing context
327* Calc++ Parser:: A parser class
328* Calc++ Scanner:: A pure C++ Flex scanner
329* Calc++ Top Level:: Conducting the band
330
8405b70c
PB
331Java Parsers
332
f5f419de
DJ
333* Java Bison Interface:: Asking for Java parser generation
334* Java Semantic Values:: %type and %token vs. Java
335* Java Location Values:: The position and location classes
336* Java Parser Interface:: Instantiating and running the parser
337* Java Scanner Interface:: Specifying the scanner for the parser
338* Java Action Features:: Special features for use in actions
339* Java Differences:: Differences between C/C++ and Java Grammars
340* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 341
d1a1114f
AD
342Frequently Asked Questions
343
f5f419de
DJ
344* Memory Exhausted:: Breaking the Stack Limits
345* How Can I Reset the Parser:: @code{yyparse} Keeps some State
346* Strings are Destroyed:: @code{yylval} Loses Track of Strings
347* Implementing Gotos/Loops:: Control Flow in the Calculator
348* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 349* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
350* I can't build Bison:: Troubleshooting
351* Where can I find help?:: Troubleshouting
352* Bug Reports:: Troublereporting
353* More Languages:: Parsers in C++, Java, and so on
354* Beta Testing:: Experimenting development versions
355* Mailing Lists:: Meeting other Bison users
d1a1114f 356
f2b5126e
PB
357Copying This Manual
358
f5f419de 359* Copying This Manual:: License for copying this manual.
f2b5126e 360
342b8b6e 361@end detailmenu
bfa74976
RS
362@end menu
363
342b8b6e 364@node Introduction
bfa74976
RS
365@unnumbered Introduction
366@cindex introduction
367
6077da58 368@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
369annotated context-free grammar into a deterministic LR or generalized
370LR (GLR) parser employing LALR(1) parser tables. As an experimental
371feature, Bison can also generate IELR(1) or canonical LR(1) parser
372tables. Once you are proficient with Bison, you can use it to develop
373a wide range of language parsers, from those used in simple desk
374calculators to complex programming languages.
375
376Bison is upward compatible with Yacc: all properly-written Yacc
377grammars ought to work with Bison with no change. Anyone familiar
378with Yacc should be able to use Bison with little trouble. You need
379to be fluent in C or C++ programming in order to use Bison or to
380understand this manual. Java is also supported as an experimental
381feature.
382
383We begin with tutorial chapters that explain the basic concepts of
384using Bison and show three explained examples, each building on the
385last. If you don't know Bison or Yacc, start by reading these
386chapters. Reference chapters follow, which describe specific aspects
387of Bison in detail.
bfa74976 388
679e9935
JD
389Bison was written originally by Robert Corbett. Richard Stallman made
390it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
391added multi-character string literals and other features. Since then,
392Bison has grown more robust and evolved many other new features thanks
393to the hard work of a long list of volunteers. For details, see the
394@file{THANKS} and @file{ChangeLog} files included in the Bison
395distribution.
931c7513 396
df1af54c 397This edition corresponds to version @value{VERSION} of Bison.
bfa74976 398
342b8b6e 399@node Conditions
bfa74976
RS
400@unnumbered Conditions for Using Bison
401
193d7c70
PE
402The distribution terms for Bison-generated parsers permit using the
403parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 404permissions applied only when Bison was generating LALR(1)
193d7c70 405parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 406parsers could be used only in programs that were free software.
a31239f1 407
8a4281b9 408The other GNU programming tools, such as the GNU C
c827f760 409compiler, have never
9ecbd125 410had such a requirement. They could always be used for nonfree
a31239f1
RS
411software. The reason Bison was different was not due to a special
412policy decision; it resulted from applying the usual General Public
413License to all of the Bison source code.
414
ff7571c0
JD
415The main output of the Bison utility---the Bison parser implementation
416file---contains a verbatim copy of a sizable piece of Bison, which is
417the code for the parser's implementation. (The actions from your
418grammar are inserted into this implementation at one point, but most
419of the rest of the implementation is not changed.) When we applied
420the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
421the effect was to restrict the use of Bison output to free software.
422
423We didn't change the terms because of sympathy for people who want to
424make software proprietary. @strong{Software should be free.} But we
425concluded that limiting Bison's use to free software was doing little to
426encourage people to make other software free. So we decided to make the
427practical conditions for using Bison match the practical conditions for
8a4281b9 428using the other GNU tools.
bfa74976 429
193d7c70
PE
430This exception applies when Bison is generating code for a parser.
431You can tell whether the exception applies to a Bison output file by
432inspecting the file for text beginning with ``As a special
433exception@dots{}''. The text spells out the exact terms of the
434exception.
262aa8dd 435
f16b0819
PE
436@node Copying
437@unnumbered GNU GENERAL PUBLIC LICENSE
438@include gpl-3.0.texi
bfa74976 439
342b8b6e 440@node Concepts
bfa74976
RS
441@chapter The Concepts of Bison
442
443This chapter introduces many of the basic concepts without which the
444details of Bison will not make sense. If you do not already know how to
445use Bison or Yacc, we suggest you start by reading this chapter carefully.
446
447@menu
f5f419de
DJ
448* Language and Grammar:: Languages and context-free grammars,
449 as mathematical ideas.
450* Grammar in Bison:: How we represent grammars for Bison's sake.
451* Semantic Values:: Each token or syntactic grouping can have
452 a semantic value (the value of an integer,
453 the name of an identifier, etc.).
454* Semantic Actions:: Each rule can have an action containing C code.
455* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 456* Locations:: Overview of location tracking.
f5f419de
DJ
457* Bison Parser:: What are Bison's input and output,
458 how is the output used?
459* Stages:: Stages in writing and running Bison grammars.
460* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
461@end menu
462
342b8b6e 463@node Language and Grammar
bfa74976
RS
464@section Languages and Context-Free Grammars
465
bfa74976
RS
466@cindex context-free grammar
467@cindex grammar, context-free
468In order for Bison to parse a language, it must be described by a
469@dfn{context-free grammar}. This means that you specify one or more
470@dfn{syntactic groupings} and give rules for constructing them from their
471parts. For example, in the C language, one kind of grouping is called an
472`expression'. One rule for making an expression might be, ``An expression
473can be made of a minus sign and another expression''. Another would be,
474``An expression can be an integer''. As you can see, rules are often
475recursive, but there must be at least one rule which leads out of the
476recursion.
477
8a4281b9 478@cindex BNF
bfa74976
RS
479@cindex Backus-Naur form
480The most common formal system for presenting such rules for humans to read
8a4281b9 481is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 482order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
483BNF is a context-free grammar. The input to Bison is
484essentially machine-readable BNF.
bfa74976 485
7fceb615
JD
486@cindex LALR grammars
487@cindex IELR grammars
488@cindex LR grammars
489There are various important subclasses of context-free grammars. Although
490it can handle almost all context-free grammars, Bison is optimized for what
491are called LR(1) grammars. In brief, in these grammars, it must be possible
492to tell how to parse any portion of an input string with just a single token
493of lookahead. For historical reasons, Bison by default is limited by the
494additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
495@xref{Mysterious Conflicts}, for more information on this. As an
496experimental feature, you can escape these additional restrictions by
497requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
498Construction}, to learn how.
bfa74976 499
8a4281b9
JD
500@cindex GLR parsing
501@cindex generalized LR (GLR) parsing
676385e2 502@cindex ambiguous grammars
9d9b8b70 503@cindex nondeterministic parsing
9501dc6e 504
8a4281b9 505Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
506roughly that the next grammar rule to apply at any point in the input is
507uniquely determined by the preceding input and a fixed, finite portion
742e4900 508(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 509grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 510apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 511grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 512lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 513With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
514general context-free grammars, using a technique known as GLR
515parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
516are able to handle any context-free grammar for which the number of
517possible parses of any given string is finite.
676385e2 518
bfa74976
RS
519@cindex symbols (abstract)
520@cindex token
521@cindex syntactic grouping
522@cindex grouping, syntactic
9501dc6e
AD
523In the formal grammatical rules for a language, each kind of syntactic
524unit or grouping is named by a @dfn{symbol}. Those which are built by
525grouping smaller constructs according to grammatical rules are called
bfa74976
RS
526@dfn{nonterminal symbols}; those which can't be subdivided are called
527@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
528corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 529corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
530
531We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
532nonterminal, mean. The tokens of C are identifiers, constants (numeric
533and string), and the various keywords, arithmetic operators and
534punctuation marks. So the terminal symbols of a grammar for C include
535`identifier', `number', `string', plus one symbol for each keyword,
536operator or punctuation mark: `if', `return', `const', `static', `int',
537`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
538(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
539lexicography, not grammar.)
540
541Here is a simple C function subdivided into tokens:
542
9edcd895
AD
543@ifinfo
544@example
545int /* @r{keyword `int'} */
14d4662b 546square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
547 @r{identifier, close-paren} */
548@{ /* @r{open-brace} */
aa08666d
AD
549 return x * x; /* @r{keyword `return', identifier, asterisk,}
550 @r{identifier, semicolon} */
9edcd895
AD
551@} /* @r{close-brace} */
552@end example
553@end ifinfo
554@ifnotinfo
bfa74976
RS
555@example
556int /* @r{keyword `int'} */
14d4662b 557square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 558@{ /* @r{open-brace} */
9edcd895 559 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
560@} /* @r{close-brace} */
561@end example
9edcd895 562@end ifnotinfo
bfa74976
RS
563
564The syntactic groupings of C include the expression, the statement, the
565declaration, and the function definition. These are represented in the
566grammar of C by nonterminal symbols `expression', `statement',
567`declaration' and `function definition'. The full grammar uses dozens of
568additional language constructs, each with its own nonterminal symbol, in
569order to express the meanings of these four. The example above is a
570function definition; it contains one declaration, and one statement. In
571the statement, each @samp{x} is an expression and so is @samp{x * x}.
572
573Each nonterminal symbol must have grammatical rules showing how it is made
574out of simpler constructs. For example, one kind of C statement is the
575@code{return} statement; this would be described with a grammar rule which
576reads informally as follows:
577
578@quotation
579A `statement' can be made of a `return' keyword, an `expression' and a
580`semicolon'.
581@end quotation
582
583@noindent
584There would be many other rules for `statement', one for each kind of
585statement in C.
586
587@cindex start symbol
588One nonterminal symbol must be distinguished as the special one which
589defines a complete utterance in the language. It is called the @dfn{start
590symbol}. In a compiler, this means a complete input program. In the C
591language, the nonterminal symbol `sequence of definitions and declarations'
592plays this role.
593
594For example, @samp{1 + 2} is a valid C expression---a valid part of a C
595program---but it is not valid as an @emph{entire} C program. In the
596context-free grammar of C, this follows from the fact that `expression' is
597not the start symbol.
598
599The Bison parser reads a sequence of tokens as its input, and groups the
600tokens using the grammar rules. If the input is valid, the end result is
601that the entire token sequence reduces to a single grouping whose symbol is
602the grammar's start symbol. If we use a grammar for C, the entire input
603must be a `sequence of definitions and declarations'. If not, the parser
604reports a syntax error.
605
342b8b6e 606@node Grammar in Bison
bfa74976
RS
607@section From Formal Rules to Bison Input
608@cindex Bison grammar
609@cindex grammar, Bison
610@cindex formal grammar
611
612A formal grammar is a mathematical construct. To define the language
613for Bison, you must write a file expressing the grammar in Bison syntax:
614a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
615
616A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 617as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
618in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
619
620The Bison representation for a terminal symbol is also called a @dfn{token
621type}. Token types as well can be represented as C-like identifiers. By
622convention, these identifiers should be upper case to distinguish them from
623nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
624@code{RETURN}. A terminal symbol that stands for a particular keyword in
625the language should be named after that keyword converted to upper case.
626The terminal symbol @code{error} is reserved for error recovery.
931c7513 627@xref{Symbols}.
bfa74976
RS
628
629A terminal symbol can also be represented as a character literal, just like
630a C character constant. You should do this whenever a token is just a
631single character (parenthesis, plus-sign, etc.): use that same character in
632a literal as the terminal symbol for that token.
633
931c7513
RS
634A third way to represent a terminal symbol is with a C string constant
635containing several characters. @xref{Symbols}, for more information.
636
bfa74976
RS
637The grammar rules also have an expression in Bison syntax. For example,
638here is the Bison rule for a C @code{return} statement. The semicolon in
639quotes is a literal character token, representing part of the C syntax for
640the statement; the naked semicolon, and the colon, are Bison punctuation
641used in every rule.
642
643@example
5e9b6624 644stmt: RETURN expr ';' ;
bfa74976
RS
645@end example
646
647@noindent
648@xref{Rules, ,Syntax of Grammar Rules}.
649
342b8b6e 650@node Semantic Values
bfa74976
RS
651@section Semantic Values
652@cindex semantic value
653@cindex value, semantic
654
655A formal grammar selects tokens only by their classifications: for example,
656if a rule mentions the terminal symbol `integer constant', it means that
657@emph{any} integer constant is grammatically valid in that position. The
658precise value of the constant is irrelevant to how to parse the input: if
659@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 660grammatical.
bfa74976
RS
661
662But the precise value is very important for what the input means once it is
663parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6643989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
665has both a token type and a @dfn{semantic value}. @xref{Semantics,
666,Defining Language Semantics},
bfa74976
RS
667for details.
668
669The token type is a terminal symbol defined in the grammar, such as
670@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
671you need to know to decide where the token may validly appear and how to
672group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 673except their types.
bfa74976
RS
674
675The semantic value has all the rest of the information about the
676meaning of the token, such as the value of an integer, or the name of an
677identifier. (A token such as @code{','} which is just punctuation doesn't
678need to have any semantic value.)
679
680For example, an input token might be classified as token type
681@code{INTEGER} and have the semantic value 4. Another input token might
682have the same token type @code{INTEGER} but value 3989. When a grammar
683rule says that @code{INTEGER} is allowed, either of these tokens is
684acceptable because each is an @code{INTEGER}. When the parser accepts the
685token, it keeps track of the token's semantic value.
686
687Each grouping can also have a semantic value as well as its nonterminal
688symbol. For example, in a calculator, an expression typically has a
689semantic value that is a number. In a compiler for a programming
690language, an expression typically has a semantic value that is a tree
691structure describing the meaning of the expression.
692
342b8b6e 693@node Semantic Actions
bfa74976
RS
694@section Semantic Actions
695@cindex semantic actions
696@cindex actions, semantic
697
698In order to be useful, a program must do more than parse input; it must
699also produce some output based on the input. In a Bison grammar, a grammar
700rule can have an @dfn{action} made up of C statements. Each time the
701parser recognizes a match for that rule, the action is executed.
702@xref{Actions}.
13863333 703
bfa74976
RS
704Most of the time, the purpose of an action is to compute the semantic value
705of the whole construct from the semantic values of its parts. For example,
706suppose we have a rule which says an expression can be the sum of two
707expressions. When the parser recognizes such a sum, each of the
708subexpressions has a semantic value which describes how it was built up.
709The action for this rule should create a similar sort of value for the
710newly recognized larger expression.
711
712For example, here is a rule that says an expression can be the sum of
713two subexpressions:
714
715@example
5e9b6624 716expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
717@end example
718
719@noindent
720The action says how to produce the semantic value of the sum expression
721from the values of the two subexpressions.
722
676385e2 723@node GLR Parsers
8a4281b9
JD
724@section Writing GLR Parsers
725@cindex GLR parsing
726@cindex generalized LR (GLR) parsing
676385e2
PH
727@findex %glr-parser
728@cindex conflicts
729@cindex shift/reduce conflicts
fa7e68c3 730@cindex reduce/reduce conflicts
676385e2 731
eb45ef3b 732In some grammars, Bison's deterministic
8a4281b9 733LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
734certain grammar rule at a given point. That is, it may not be able to
735decide (on the basis of the input read so far) which of two possible
736reductions (applications of a grammar rule) applies, or whether to apply
737a reduction or read more of the input and apply a reduction later in the
738input. These are known respectively as @dfn{reduce/reduce} conflicts
739(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
740(@pxref{Shift/Reduce}).
741
8a4281b9 742To use a grammar that is not easily modified to be LR(1), a
9501dc6e 743more general parsing algorithm is sometimes necessary. If you include
676385e2 744@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
745(@pxref{Grammar Outline}), the result is a Generalized LR
746(GLR) parser. These parsers handle Bison grammars that
9501dc6e 747contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 748declarations) identically to deterministic parsers. However, when
9501dc6e 749faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 750GLR parsers use the simple expedient of doing both,
9501dc6e
AD
751effectively cloning the parser to follow both possibilities. Each of
752the resulting parsers can again split, so that at any given time, there
753can be any number of possible parses being explored. The parsers
676385e2
PH
754proceed in lockstep; that is, all of them consume (shift) a given input
755symbol before any of them proceed to the next. Each of the cloned
756parsers eventually meets one of two possible fates: either it runs into
757a parsing error, in which case it simply vanishes, or it merges with
758another parser, because the two of them have reduced the input to an
759identical set of symbols.
760
761During the time that there are multiple parsers, semantic actions are
762recorded, but not performed. When a parser disappears, its recorded
763semantic actions disappear as well, and are never performed. When a
764reduction makes two parsers identical, causing them to merge, Bison
765records both sets of semantic actions. Whenever the last two parsers
766merge, reverting to the single-parser case, Bison resolves all the
767outstanding actions either by precedences given to the grammar rules
768involved, or by performing both actions, and then calling a designated
769user-defined function on the resulting values to produce an arbitrary
770merged result.
771
fa7e68c3 772@menu
8a4281b9
JD
773* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
774* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 775* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 776* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 777* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
778@end menu
779
780@node Simple GLR Parsers
8a4281b9
JD
781@subsection Using GLR on Unambiguous Grammars
782@cindex GLR parsing, unambiguous grammars
783@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
784@findex %glr-parser
785@findex %expect-rr
786@cindex conflicts
787@cindex reduce/reduce conflicts
788@cindex shift/reduce conflicts
789
8a4281b9
JD
790In the simplest cases, you can use the GLR algorithm
791to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 792Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
793
794Consider a problem that
795arises in the declaration of enumerated and subrange types in the
796programming language Pascal. Here are some examples:
797
798@example
799type subrange = lo .. hi;
800type enum = (a, b, c);
801@end example
802
803@noindent
804The original language standard allows only numeric
805literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 806and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80710206) and many other
808Pascal implementations allow arbitrary expressions there. This gives
809rise to the following situation, containing a superfluous pair of
810parentheses:
811
812@example
813type subrange = (a) .. b;
814@end example
815
816@noindent
817Compare this to the following declaration of an enumerated
818type with only one value:
819
820@example
821type enum = (a);
822@end example
823
824@noindent
825(These declarations are contrived, but they are syntactically
826valid, and more-complicated cases can come up in practical programs.)
827
828These two declarations look identical until the @samp{..} token.
8a4281b9 829With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
830possible to decide between the two forms when the identifier
831@samp{a} is parsed. It is, however, desirable
832for a parser to decide this, since in the latter case
833@samp{a} must become a new identifier to represent the enumeration
834value, while in the former case @samp{a} must be evaluated with its
835current meaning, which may be a constant or even a function call.
836
837You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
838to be resolved later, but this typically requires substantial
839contortions in both semantic actions and large parts of the
840grammar, where the parentheses are nested in the recursive rules for
841expressions.
842
843You might think of using the lexer to distinguish between the two
844forms by returning different tokens for currently defined and
845undefined identifiers. But if these declarations occur in a local
846scope, and @samp{a} is defined in an outer scope, then both forms
847are possible---either locally redefining @samp{a}, or using the
848value of @samp{a} from the outer scope. So this approach cannot
849work.
850
e757bb10 851A simple solution to this problem is to declare the parser to
8a4281b9
JD
852use the GLR algorithm.
853When the GLR parser reaches the critical state, it
fa7e68c3
PE
854merely splits into two branches and pursues both syntax rules
855simultaneously. Sooner or later, one of them runs into a parsing
856error. If there is a @samp{..} token before the next
857@samp{;}, the rule for enumerated types fails since it cannot
858accept @samp{..} anywhere; otherwise, the subrange type rule
859fails since it requires a @samp{..} token. So one of the branches
860fails silently, and the other one continues normally, performing
861all the intermediate actions that were postponed during the split.
862
863If the input is syntactically incorrect, both branches fail and the parser
864reports a syntax error as usual.
865
866The effect of all this is that the parser seems to ``guess'' the
867correct branch to take, or in other words, it seems to use more
8a4281b9
JD
868lookahead than the underlying LR(1) algorithm actually allows
869for. In this example, LR(2) would suffice, but also some cases
870that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 871
8a4281b9 872In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
873and the current Bison parser even takes exponential time and space
874for some grammars. In practice, this rarely happens, and for many
875grammars it is possible to prove that it cannot happen.
876The present example contains only one conflict between two
877rules, and the type-declaration context containing the conflict
878cannot be nested. So the number of
879branches that can exist at any time is limited by the constant 2,
880and the parsing time is still linear.
881
882Here is a Bison grammar corresponding to the example above. It
883parses a vastly simplified form of Pascal type declarations.
884
885@example
886%token TYPE DOTDOT ID
887
888@group
889%left '+' '-'
890%left '*' '/'
891@end group
892
893%%
894
895@group
5e9b6624 896type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
897@end group
898
899@group
5e9b6624
AD
900type:
901 '(' id_list ')'
902| expr DOTDOT expr
903;
fa7e68c3
PE
904@end group
905
906@group
5e9b6624
AD
907id_list:
908 ID
909| id_list ',' ID
910;
fa7e68c3
PE
911@end group
912
913@group
5e9b6624
AD
914expr:
915 '(' expr ')'
916| expr '+' expr
917| expr '-' expr
918| expr '*' expr
919| expr '/' expr
920| ID
921;
fa7e68c3
PE
922@end group
923@end example
924
8a4281b9 925When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
926about one reduce/reduce conflict. In the conflicting situation the
927parser chooses one of the alternatives, arbitrarily the one
928declared first. Therefore the following correct input is not
929recognized:
930
931@example
932type t = (a) .. b;
933@end example
934
8a4281b9 935The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
936to be silent about the one known reduce/reduce conflict, by adding
937these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
938@samp{%%}):
939
940@example
941%glr-parser
942%expect-rr 1
943@end example
944
945@noindent
946No change in the grammar itself is required. Now the
947parser recognizes all valid declarations, according to the
948limited syntax above, transparently. In fact, the user does not even
949notice when the parser splits.
950
8a4281b9 951So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
952almost without disadvantages. Even in simple cases like this, however,
953there are at least two potential problems to beware. First, always
8a4281b9
JD
954analyze the conflicts reported by Bison to make sure that GLR
955splitting is only done where it is intended. A GLR parser
f8e1c9e5 956splitting inadvertently may cause problems less obvious than an
8a4281b9 957LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
958conflict. Second, consider interactions with the lexer (@pxref{Semantic
959Tokens}) with great care. Since a split parser consumes tokens without
960performing any actions during the split, the lexer cannot obtain
961information via parser actions. Some cases of lexer interactions can be
8a4281b9 962eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
963lexer to the parser. You must check the remaining cases for
964correctness.
965
966In our example, it would be safe for the lexer to return tokens based on
967their current meanings in some symbol table, because no new symbols are
968defined in the middle of a type declaration. Though it is possible for
969a parser to define the enumeration constants as they are parsed, before
970the type declaration is completed, it actually makes no difference since
971they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
972
973@node Merging GLR Parses
8a4281b9
JD
974@subsection Using GLR to Resolve Ambiguities
975@cindex GLR parsing, ambiguous grammars
976@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
977@findex %dprec
978@findex %merge
979@cindex conflicts
980@cindex reduce/reduce conflicts
981
2a8d363a 982Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
983
984@example
985%@{
38a92d50
PE
986 #include <stdio.h>
987 #define YYSTYPE char const *
988 int yylex (void);
989 void yyerror (char const *);
676385e2
PH
990%@}
991
992%token TYPENAME ID
993
994%right '='
995%left '+'
996
997%glr-parser
998
999%%
1000
5e9b6624
AD
1001prog:
1002 /* Nothing. */
1003| prog stmt @{ printf ("\n"); @}
1004;
676385e2 1005
5e9b6624
AD
1006stmt:
1007 expr ';' %dprec 1
1008| decl %dprec 2
1009;
676385e2 1010
5e9b6624
AD
1011expr:
1012 ID @{ printf ("%s ", $$); @}
1013| TYPENAME '(' expr ')'
1014 @{ printf ("%s <cast> ", $1); @}
1015| expr '+' expr @{ printf ("+ "); @}
1016| expr '=' expr @{ printf ("= "); @}
1017;
676385e2 1018
5e9b6624
AD
1019decl:
1020 TYPENAME declarator ';'
1021 @{ printf ("%s <declare> ", $1); @}
1022| TYPENAME declarator '=' expr ';'
1023 @{ printf ("%s <init-declare> ", $1); @}
1024;
676385e2 1025
5e9b6624
AD
1026declarator:
1027 ID @{ printf ("\"%s\" ", $1); @}
1028| '(' declarator ')'
1029;
676385e2
PH
1030@end example
1031
1032@noindent
1033This models a problematic part of the C++ grammar---the ambiguity between
1034certain declarations and statements. For example,
1035
1036@example
1037T (x) = y+z;
1038@end example
1039
1040@noindent
1041parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1042(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1043@samp{x} as an @code{ID}).
676385e2 1044Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1045@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1046time it encounters @code{x} in the example above. Since this is a
8a4281b9 1047GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1048each choice of resolving the reduce/reduce conflict.
1049Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1050however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1051ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1052the other reduces @code{stmt : decl}, after which both parsers are in an
1053identical state: they've seen @samp{prog stmt} and have the same unprocessed
1054input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1055
8a4281b9 1056At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1057grammar of how to choose between the competing parses.
1058In the example above, the two @code{%dprec}
e757bb10 1059declarations specify that Bison is to give precedence
fa7e68c3 1060to the parse that interprets the example as a
676385e2
PH
1061@code{decl}, which implies that @code{x} is a declarator.
1062The parser therefore prints
1063
1064@example
fae437e8 1065"x" y z + T <init-declare>
676385e2
PH
1066@end example
1067
fa7e68c3
PE
1068The @code{%dprec} declarations only come into play when more than one
1069parse survives. Consider a different input string for this parser:
676385e2
PH
1070
1071@example
1072T (x) + y;
1073@end example
1074
1075@noindent
8a4281b9 1076This is another example of using GLR to parse an unambiguous
fa7e68c3 1077construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1078Here, there is no ambiguity (this cannot be parsed as a declaration).
1079However, at the time the Bison parser encounters @code{x}, it does not
1080have enough information to resolve the reduce/reduce conflict (again,
1081between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1082case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1083into two, one assuming that @code{x} is an @code{expr}, and the other
1084assuming @code{x} is a @code{declarator}. The second of these parsers
1085then vanishes when it sees @code{+}, and the parser prints
1086
1087@example
fae437e8 1088x T <cast> y +
676385e2
PH
1089@end example
1090
1091Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1092the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1093actions of the two possible parsers, rather than choosing one over the
1094other. To do so, you could change the declaration of @code{stmt} as
1095follows:
1096
1097@example
5e9b6624
AD
1098stmt:
1099 expr ';' %merge <stmtMerge>
1100| decl %merge <stmtMerge>
1101;
676385e2
PH
1102@end example
1103
1104@noindent
676385e2
PH
1105and define the @code{stmtMerge} function as:
1106
1107@example
38a92d50
PE
1108static YYSTYPE
1109stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1110@{
1111 printf ("<OR> ");
1112 return "";
1113@}
1114@end example
1115
1116@noindent
1117with an accompanying forward declaration
1118in the C declarations at the beginning of the file:
1119
1120@example
1121%@{
38a92d50 1122 #define YYSTYPE char const *
676385e2
PH
1123 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1124%@}
1125@end example
1126
1127@noindent
fa7e68c3
PE
1128With these declarations, the resulting parser parses the first example
1129as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1130
1131@example
fae437e8 1132"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1133@end example
1134
fa7e68c3 1135Bison requires that all of the
e757bb10 1136productions that participate in any particular merge have identical
fa7e68c3
PE
1137@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1138and the parser will report an error during any parse that results in
1139the offending merge.
9501dc6e 1140
32c29292
JD
1141@node GLR Semantic Actions
1142@subsection GLR Semantic Actions
1143
8a4281b9 1144The nature of GLR parsing and the structure of the generated
20be2f92
PH
1145parsers give rise to certain restrictions on semantic values and actions.
1146
1147@subsubsection Deferred semantic actions
32c29292
JD
1148@cindex deferred semantic actions
1149By definition, a deferred semantic action is not performed at the same time as
1150the associated reduction.
1151This raises caveats for several Bison features you might use in a semantic
8a4281b9 1152action in a GLR parser.
32c29292
JD
1153
1154@vindex yychar
8a4281b9 1155@cindex GLR parsers and @code{yychar}
32c29292 1156@vindex yylval
8a4281b9 1157@cindex GLR parsers and @code{yylval}
32c29292 1158@vindex yylloc
8a4281b9 1159@cindex GLR parsers and @code{yylloc}
32c29292 1160In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1161the lookahead token present at the time of the associated reduction.
32c29292
JD
1162After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1163you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1164lookahead token's semantic value and location, if any.
32c29292
JD
1165In a nondeferred semantic action, you can also modify any of these variables to
1166influence syntax analysis.
742e4900 1167@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1168
1169@findex yyclearin
8a4281b9 1170@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1171In a deferred semantic action, it's too late to influence syntax analysis.
1172In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1173shallow copies of the values they had at the time of the associated reduction.
1174For this reason alone, modifying them is dangerous.
1175Moreover, the result of modifying them is undefined and subject to change with
1176future versions of Bison.
1177For example, if a semantic action might be deferred, you should never write it
1178to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1179memory referenced by @code{yylval}.
1180
20be2f92 1181@subsubsection YYERROR
32c29292 1182@findex YYERROR
8a4281b9 1183@cindex GLR parsers and @code{YYERROR}
32c29292 1184Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1185(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1186initiate error recovery.
8a4281b9 1187During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1188the same as its effect in a deterministic parser.
411614fa
JM
1189The effect in a deferred action is similar, but the precise point of the
1190error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1191selecting an unspecified stack on which to continue with a syntax error.
1192In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1193parsing, @code{YYERROR} silently prunes
1194the parse that invoked the test.
1195
1196@subsubsection Restrictions on semantic values and locations
8a4281b9 1197GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1198semantic values and location types when using the generated parsers as
1199C++ code.
8710fc41 1200
ca2a6d15
PH
1201@node Semantic Predicates
1202@subsection Controlling a Parse with Arbitrary Predicates
1203@findex %?
8a4281b9 1204@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1205
1206In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1207GLR parsers
ca2a6d15
PH
1208allow you to reject parses on the basis of arbitrary computations executed
1209in user code, without having Bison treat this rejection as an error
1210if there are alternative parses. (This feature is experimental and may
1211evolve. We welcome user feedback.) For example,
1212
c93f22fc
AD
1213@example
1214widget:
5e9b6624
AD
1215 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1216| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1217;
c93f22fc 1218@end example
ca2a6d15
PH
1219
1220@noindent
411614fa 1221is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1222widgets. The clause preceded by @code{%?} is treated like an ordinary
1223action, except that its text is treated as an expression and is always
411614fa 1224evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1225expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1226which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1227to die. In a deterministic parser, it acts like YYERROR.
1228
1229As the example shows, predicates otherwise look like semantic actions, and
1230therefore you must be take them into account when determining the numbers
1231to use for denoting the semantic values of right-hand side symbols.
1232Predicate actions, however, have no defined value, and may not be given
1233labels.
1234
1235There is a subtle difference between semantic predicates and ordinary
1236actions in nondeterministic mode, since the latter are deferred.
411614fa 1237For example, we could try to rewrite the previous example as
ca2a6d15 1238
c93f22fc
AD
1239@example
1240widget:
5e9b6624
AD
1241 @{ if (!new_syntax) YYERROR; @}
1242 "widget" id new_args @{ $$ = f($3, $4); @}
1243| @{ if (new_syntax) YYERROR; @}
1244 "widget" id old_args @{ $$ = f($3, $4); @}
1245;
c93f22fc 1246@end example
ca2a6d15
PH
1247
1248@noindent
1249(reversing the sense of the predicate tests to cause an error when they are
1250false). However, this
1251does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1252have overlapping syntax.
411614fa 1253Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1254a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1255for cases where @code{new_args} and @code{old_args} recognize the same string
1256@emph{before} performing the tests of @code{new_syntax}. It therefore
1257reports an error.
1258
1259Finally, be careful in writing predicates: deferred actions have not been
1260evaluated, so that using them in a predicate will have undefined effects.
1261
fa7e68c3 1262@node Compiler Requirements
8a4281b9 1263@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1264@cindex @code{inline}
8a4281b9 1265@cindex GLR parsers and @code{inline}
fa7e68c3 1266
8a4281b9 1267The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1268later. In addition, they use the @code{inline} keyword, which is not
1269C89, but is C99 and is a common extension in pre-C99 compilers. It is
1270up to the user of these parsers to handle
9501dc6e
AD
1271portability issues. For instance, if using Autoconf and the Autoconf
1272macro @code{AC_C_INLINE}, a mere
1273
1274@example
1275%@{
38a92d50 1276 #include <config.h>
9501dc6e
AD
1277%@}
1278@end example
1279
1280@noindent
1281will suffice. Otherwise, we suggest
1282
1283@example
1284%@{
aaaa2aae
AD
1285 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1286 && ! defined inline)
1287 # define inline
38a92d50 1288 #endif
9501dc6e
AD
1289%@}
1290@end example
676385e2 1291
1769eb30 1292@node Locations
847bf1f5
AD
1293@section Locations
1294@cindex location
95923bd6
AD
1295@cindex textual location
1296@cindex location, textual
847bf1f5
AD
1297
1298Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1299and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1300the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1301Bison provides a mechanism for handling these locations.
1302
72d2299c 1303Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1304associated location, but the type of locations is the same for all tokens
1305and groupings. Moreover, the output parser is equipped with a default data
1306structure for storing locations (@pxref{Tracking Locations}, for more
1307details).
847bf1f5
AD
1308
1309Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1310set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1311is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1312@code{@@3}.
1313
1314When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1315of its left hand side (@pxref{Actions}). In the same way, another default
1316action is used for locations. However, the action for locations is general
847bf1f5 1317enough for most cases, meaning there is usually no need to describe for each
72d2299c 1318rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1319grouping, the default behavior of the output parser is to take the beginning
1320of the first symbol, and the end of the last symbol.
1321
342b8b6e 1322@node Bison Parser
ff7571c0 1323@section Bison Output: the Parser Implementation File
bfa74976
RS
1324@cindex Bison parser
1325@cindex Bison utility
1326@cindex lexical analyzer, purpose
1327@cindex parser
1328
ff7571c0
JD
1329When you run Bison, you give it a Bison grammar file as input. The
1330most important output is a C source file that implements a parser for
1331the language described by the grammar. This parser is called a
1332@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1333implementation file}. Keep in mind that the Bison utility and the
1334Bison parser are two distinct programs: the Bison utility is a program
1335whose output is the Bison parser implementation file that becomes part
1336of your program.
bfa74976
RS
1337
1338The job of the Bison parser is to group tokens into groupings according to
1339the grammar rules---for example, to build identifiers and operators into
1340expressions. As it does this, it runs the actions for the grammar rules it
1341uses.
1342
704a47c4
AD
1343The tokens come from a function called the @dfn{lexical analyzer} that
1344you must supply in some fashion (such as by writing it in C). The Bison
1345parser calls the lexical analyzer each time it wants a new token. It
1346doesn't know what is ``inside'' the tokens (though their semantic values
1347may reflect this). Typically the lexical analyzer makes the tokens by
1348parsing characters of text, but Bison does not depend on this.
1349@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1350
ff7571c0
JD
1351The Bison parser implementation file is C code which defines a
1352function named @code{yyparse} which implements that grammar. This
1353function does not make a complete C program: you must supply some
1354additional functions. One is the lexical analyzer. Another is an
1355error-reporting function which the parser calls to report an error.
1356In addition, a complete C program must start with a function called
1357@code{main}; you have to provide this, and arrange for it to call
1358@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1359C-Language Interface}.
bfa74976 1360
f7ab6a50 1361Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1362write, all symbols defined in the Bison parser implementation file
1363itself begin with @samp{yy} or @samp{YY}. This includes interface
1364functions such as the lexical analyzer function @code{yylex}, the
1365error reporting function @code{yyerror} and the parser function
1366@code{yyparse} itself. This also includes numerous identifiers used
1367for internal purposes. Therefore, you should avoid using C
1368identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1369file except for the ones defined in this manual. Also, you should
1370avoid using the C identifiers @samp{malloc} and @samp{free} for
1371anything other than their usual meanings.
1372
1373In some cases the Bison parser implementation file includes system
1374headers, and in those cases your code should respect the identifiers
1375reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1376@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1377included as needed to declare memory allocators and related types.
1378@code{<libintl.h>} is included if message translation is in use
1379(@pxref{Internationalization}). Other system headers may be included
1380if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1381,Tracing Your Parser}).
7093d0f5 1382
342b8b6e 1383@node Stages
bfa74976
RS
1384@section Stages in Using Bison
1385@cindex stages in using Bison
1386@cindex using Bison
1387
1388The actual language-design process using Bison, from grammar specification
1389to a working compiler or interpreter, has these parts:
1390
1391@enumerate
1392@item
1393Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1394(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1395in the language, describe the action that is to be taken when an
1396instance of that rule is recognized. The action is described by a
1397sequence of C statements.
bfa74976
RS
1398
1399@item
704a47c4
AD
1400Write a lexical analyzer to process input and pass tokens to the parser.
1401The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1402Lexical Analyzer Function @code{yylex}}). It could also be produced
1403using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1404
1405@item
1406Write a controlling function that calls the Bison-produced parser.
1407
1408@item
1409Write error-reporting routines.
1410@end enumerate
1411
1412To turn this source code as written into a runnable program, you
1413must follow these steps:
1414
1415@enumerate
1416@item
1417Run Bison on the grammar to produce the parser.
1418
1419@item
1420Compile the code output by Bison, as well as any other source files.
1421
1422@item
1423Link the object files to produce the finished product.
1424@end enumerate
1425
342b8b6e 1426@node Grammar Layout
bfa74976
RS
1427@section The Overall Layout of a Bison Grammar
1428@cindex grammar file
1429@cindex file format
1430@cindex format of grammar file
1431@cindex layout of Bison grammar
1432
1433The input file for the Bison utility is a @dfn{Bison grammar file}. The
1434general form of a Bison grammar file is as follows:
1435
1436@example
1437%@{
08e49d20 1438@var{Prologue}
bfa74976
RS
1439%@}
1440
1441@var{Bison declarations}
1442
1443%%
1444@var{Grammar rules}
1445%%
08e49d20 1446@var{Epilogue}
bfa74976
RS
1447@end example
1448
1449@noindent
1450The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1451in every Bison grammar file to separate the sections.
1452
72d2299c 1453The prologue may define types and variables used in the actions. You can
342b8b6e 1454also use preprocessor commands to define macros used there, and use
bfa74976 1455@code{#include} to include header files that do any of these things.
38a92d50
PE
1456You need to declare the lexical analyzer @code{yylex} and the error
1457printer @code{yyerror} here, along with any other global identifiers
1458used by the actions in the grammar rules.
bfa74976
RS
1459
1460The Bison declarations declare the names of the terminal and nonterminal
1461symbols, and may also describe operator precedence and the data types of
1462semantic values of various symbols.
1463
1464The grammar rules define how to construct each nonterminal symbol from its
1465parts.
1466
38a92d50
PE
1467The epilogue can contain any code you want to use. Often the
1468definitions of functions declared in the prologue go here. In a
1469simple program, all the rest of the program can go here.
bfa74976 1470
342b8b6e 1471@node Examples
bfa74976
RS
1472@chapter Examples
1473@cindex simple examples
1474@cindex examples, simple
1475
aaaa2aae 1476Now we show and explain several sample programs written using Bison: a
bfa74976 1477reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1478calculator --- later extended to track ``locations'' ---
1479and a multi-function calculator. All
1480produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1481
1482These examples are simple, but Bison grammars for real programming
aa08666d
AD
1483languages are written the same way. You can copy these examples into a
1484source file to try them.
bfa74976
RS
1485
1486@menu
f5f419de
DJ
1487* RPN Calc:: Reverse polish notation calculator;
1488 a first example with no operator precedence.
1489* Infix Calc:: Infix (algebraic) notation calculator.
1490 Operator precedence is introduced.
bfa74976 1491* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1492* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1493* Multi-function Calc:: Calculator with memory and trig functions.
1494 It uses multiple data-types for semantic values.
1495* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1496@end menu
1497
342b8b6e 1498@node RPN Calc
bfa74976
RS
1499@section Reverse Polish Notation Calculator
1500@cindex reverse polish notation
1501@cindex polish notation calculator
1502@cindex @code{rpcalc}
1503@cindex calculator, simple
1504
1505The first example is that of a simple double-precision @dfn{reverse polish
1506notation} calculator (a calculator using postfix operators). This example
1507provides a good starting point, since operator precedence is not an issue.
1508The second example will illustrate how operator precedence is handled.
1509
1510The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1511@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1512
1513@menu
f5f419de
DJ
1514* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1515* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1516* Rpcalc Lexer:: The lexical analyzer.
1517* Rpcalc Main:: The controlling function.
1518* Rpcalc Error:: The error reporting function.
1519* Rpcalc Generate:: Running Bison on the grammar file.
1520* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1521@end menu
1522
f5f419de 1523@node Rpcalc Declarations
bfa74976
RS
1524@subsection Declarations for @code{rpcalc}
1525
1526Here are the C and Bison declarations for the reverse polish notation
1527calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1528
24ec0837 1529@comment file: rpcalc.y
bfa74976 1530@example
72d2299c 1531/* Reverse polish notation calculator. */
bfa74976
RS
1532
1533%@{
38a92d50 1534 #define YYSTYPE double
24ec0837 1535 #include <stdio.h>
38a92d50
PE
1536 #include <math.h>
1537 int yylex (void);
1538 void yyerror (char const *);
bfa74976
RS
1539%@}
1540
1541%token NUM
1542
72d2299c 1543%% /* Grammar rules and actions follow. */
bfa74976
RS
1544@end example
1545
75f5aaea 1546The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1547preprocessor directives and two forward declarations.
bfa74976
RS
1548
1549The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1550specifying the C data type for semantic values of both tokens and
1551groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1552Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1553don't define it, @code{int} is the default. Because we specify
1554@code{double}, each token and each expression has an associated value,
1555which is a floating point number.
bfa74976
RS
1556
1557The @code{#include} directive is used to declare the exponentiation
1558function @code{pow}.
1559
38a92d50
PE
1560The forward declarations for @code{yylex} and @code{yyerror} are
1561needed because the C language requires that functions be declared
1562before they are used. These functions will be defined in the
1563epilogue, but the parser calls them so they must be declared in the
1564prologue.
1565
704a47c4
AD
1566The second section, Bison declarations, provides information to Bison
1567about the token types (@pxref{Bison Declarations, ,The Bison
1568Declarations Section}). Each terminal symbol that is not a
1569single-character literal must be declared here. (Single-character
bfa74976
RS
1570literals normally don't need to be declared.) In this example, all the
1571arithmetic operators are designated by single-character literals, so the
1572only terminal symbol that needs to be declared is @code{NUM}, the token
1573type for numeric constants.
1574
342b8b6e 1575@node Rpcalc Rules
bfa74976
RS
1576@subsection Grammar Rules for @code{rpcalc}
1577
1578Here are the grammar rules for the reverse polish notation calculator.
1579
24ec0837 1580@comment file: rpcalc.y
bfa74976 1581@example
aaaa2aae 1582@group
5e9b6624
AD
1583input:
1584 /* empty */
1585| input line
bfa74976 1586;
aaaa2aae 1587@end group
bfa74976 1588
aaaa2aae 1589@group
5e9b6624
AD
1590line:
1591 '\n'
1592| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1593;
aaaa2aae 1594@end group
bfa74976 1595
aaaa2aae 1596@group
5e9b6624
AD
1597exp:
1598 NUM @{ $$ = $1; @}
1599| exp exp '+' @{ $$ = $1 + $2; @}
1600| exp exp '-' @{ $$ = $1 - $2; @}
1601| exp exp '*' @{ $$ = $1 * $2; @}
1602| exp exp '/' @{ $$ = $1 / $2; @}
1603| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1604| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1605;
aaaa2aae 1606@end group
bfa74976
RS
1607%%
1608@end example
1609
1610The groupings of the rpcalc ``language'' defined here are the expression
1611(given the name @code{exp}), the line of input (@code{line}), and the
1612complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1613symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1614which is read as ``or''. The following sections explain what these rules
1615mean.
1616
1617The semantics of the language is determined by the actions taken when a
1618grouping is recognized. The actions are the C code that appears inside
1619braces. @xref{Actions}.
1620
1621You must specify these actions in C, but Bison provides the means for
1622passing semantic values between the rules. In each action, the
1623pseudo-variable @code{$$} stands for the semantic value for the grouping
1624that the rule is going to construct. Assigning a value to @code{$$} is the
1625main job of most actions. The semantic values of the components of the
1626rule are referred to as @code{$1}, @code{$2}, and so on.
1627
1628@menu
24ec0837
AD
1629* Rpcalc Input:: Explanation of the @code{input} nonterminal
1630* Rpcalc Line:: Explanation of the @code{line} nonterminal
1631* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1632@end menu
1633
342b8b6e 1634@node Rpcalc Input
bfa74976
RS
1635@subsubsection Explanation of @code{input}
1636
1637Consider the definition of @code{input}:
1638
1639@example
5e9b6624
AD
1640input:
1641 /* empty */
1642| input line
bfa74976
RS
1643;
1644@end example
1645
1646This definition reads as follows: ``A complete input is either an empty
1647string, or a complete input followed by an input line''. Notice that
1648``complete input'' is defined in terms of itself. This definition is said
1649to be @dfn{left recursive} since @code{input} appears always as the
1650leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1651
1652The first alternative is empty because there are no symbols between the
1653colon and the first @samp{|}; this means that @code{input} can match an
1654empty string of input (no tokens). We write the rules this way because it
1655is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1656It's conventional to put an empty alternative first and write the comment
1657@samp{/* empty */} in it.
1658
1659The second alternate rule (@code{input line}) handles all nontrivial input.
1660It means, ``After reading any number of lines, read one more line if
1661possible.'' The left recursion makes this rule into a loop. Since the
1662first alternative matches empty input, the loop can be executed zero or
1663more times.
1664
1665The parser function @code{yyparse} continues to process input until a
1666grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1667input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1668
342b8b6e 1669@node Rpcalc Line
bfa74976
RS
1670@subsubsection Explanation of @code{line}
1671
1672Now consider the definition of @code{line}:
1673
1674@example
5e9b6624
AD
1675line:
1676 '\n'
1677| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1678;
1679@end example
1680
1681The first alternative is a token which is a newline character; this means
1682that rpcalc accepts a blank line (and ignores it, since there is no
1683action). The second alternative is an expression followed by a newline.
1684This is the alternative that makes rpcalc useful. The semantic value of
1685the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1686question is the first symbol in the alternative. The action prints this
1687value, which is the result of the computation the user asked for.
1688
1689This action is unusual because it does not assign a value to @code{$$}. As
1690a consequence, the semantic value associated with the @code{line} is
1691uninitialized (its value will be unpredictable). This would be a bug if
1692that value were ever used, but we don't use it: once rpcalc has printed the
1693value of the user's input line, that value is no longer needed.
1694
342b8b6e 1695@node Rpcalc Expr
bfa74976
RS
1696@subsubsection Explanation of @code{expr}
1697
1698The @code{exp} grouping has several rules, one for each kind of expression.
1699The first rule handles the simplest expressions: those that are just numbers.
1700The second handles an addition-expression, which looks like two expressions
1701followed by a plus-sign. The third handles subtraction, and so on.
1702
1703@example
5e9b6624
AD
1704exp:
1705 NUM
1706| exp exp '+' @{ $$ = $1 + $2; @}
1707| exp exp '-' @{ $$ = $1 - $2; @}
1708@dots{}
1709;
bfa74976
RS
1710@end example
1711
1712We have used @samp{|} to join all the rules for @code{exp}, but we could
1713equally well have written them separately:
1714
1715@example
5e9b6624
AD
1716exp: NUM ;
1717exp: exp exp '+' @{ $$ = $1 + $2; @};
1718exp: exp exp '-' @{ $$ = $1 - $2; @};
1719@dots{}
bfa74976
RS
1720@end example
1721
1722Most of the rules have actions that compute the value of the expression in
1723terms of the value of its parts. For example, in the rule for addition,
1724@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1725the second one. The third component, @code{'+'}, has no meaningful
1726associated semantic value, but if it had one you could refer to it as
1727@code{$3}. When @code{yyparse} recognizes a sum expression using this
1728rule, the sum of the two subexpressions' values is produced as the value of
1729the entire expression. @xref{Actions}.
1730
1731You don't have to give an action for every rule. When a rule has no
1732action, Bison by default copies the value of @code{$1} into @code{$$}.
1733This is what happens in the first rule (the one that uses @code{NUM}).
1734
1735The formatting shown here is the recommended convention, but Bison does
72d2299c 1736not require it. You can add or change white space as much as you wish.
bfa74976
RS
1737For example, this:
1738
1739@example
5e9b6624 1740exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1741@end example
1742
1743@noindent
1744means the same thing as this:
1745
1746@example
5e9b6624
AD
1747exp:
1748 NUM
1749| exp exp '+' @{ $$ = $1 + $2; @}
1750| @dots{}
99a9344e 1751;
bfa74976
RS
1752@end example
1753
1754@noindent
1755The latter, however, is much more readable.
1756
342b8b6e 1757@node Rpcalc Lexer
bfa74976
RS
1758@subsection The @code{rpcalc} Lexical Analyzer
1759@cindex writing a lexical analyzer
1760@cindex lexical analyzer, writing
1761
704a47c4
AD
1762The lexical analyzer's job is low-level parsing: converting characters
1763or sequences of characters into tokens. The Bison parser gets its
1764tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1765Analyzer Function @code{yylex}}.
bfa74976 1766
8a4281b9 1767Only a simple lexical analyzer is needed for the RPN
c827f760 1768calculator. This
bfa74976
RS
1769lexical analyzer skips blanks and tabs, then reads in numbers as
1770@code{double} and returns them as @code{NUM} tokens. Any other character
1771that isn't part of a number is a separate token. Note that the token-code
1772for such a single-character token is the character itself.
1773
1774The return value of the lexical analyzer function is a numeric code which
1775represents a token type. The same text used in Bison rules to stand for
1776this token type is also a C expression for the numeric code for the type.
1777This works in two ways. If the token type is a character literal, then its
e966383b 1778numeric code is that of the character; you can use the same
bfa74976
RS
1779character literal in the lexical analyzer to express the number. If the
1780token type is an identifier, that identifier is defined by Bison as a C
1781macro whose definition is the appropriate number. In this example,
1782therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1783
1964ad8c
AD
1784The semantic value of the token (if it has one) is stored into the
1785global variable @code{yylval}, which is where the Bison parser will look
1786for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1787defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1788,Declarations for @code{rpcalc}}.)
bfa74976 1789
72d2299c
PE
1790A token type code of zero is returned if the end-of-input is encountered.
1791(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1792
1793Here is the code for the lexical analyzer:
1794
24ec0837 1795@comment file: rpcalc.y
bfa74976
RS
1796@example
1797@group
72d2299c 1798/* The lexical analyzer returns a double floating point
e966383b 1799 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1800 of the character read if not a number. It skips all blanks
1801 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1802
1803#include <ctype.h>
1804@end group
1805
1806@group
13863333
AD
1807int
1808yylex (void)
bfa74976
RS
1809@{
1810 int c;
1811
72d2299c 1812 /* Skip white space. */
13863333 1813 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1814 continue;
bfa74976
RS
1815@end group
1816@group
72d2299c 1817 /* Process numbers. */
13863333 1818 if (c == '.' || isdigit (c))
bfa74976
RS
1819 @{
1820 ungetc (c, stdin);
1821 scanf ("%lf", &yylval);
1822 return NUM;
1823 @}
1824@end group
1825@group
72d2299c 1826 /* Return end-of-input. */
13863333 1827 if (c == EOF)
bfa74976 1828 return 0;
72d2299c 1829 /* Return a single char. */
13863333 1830 return c;
bfa74976
RS
1831@}
1832@end group
1833@end example
1834
342b8b6e 1835@node Rpcalc Main
bfa74976
RS
1836@subsection The Controlling Function
1837@cindex controlling function
1838@cindex main function in simple example
1839
1840In keeping with the spirit of this example, the controlling function is
1841kept to the bare minimum. The only requirement is that it call
1842@code{yyparse} to start the process of parsing.
1843
24ec0837 1844@comment file: rpcalc.y
bfa74976
RS
1845@example
1846@group
13863333
AD
1847int
1848main (void)
bfa74976 1849@{
13863333 1850 return yyparse ();
bfa74976
RS
1851@}
1852@end group
1853@end example
1854
342b8b6e 1855@node Rpcalc Error
bfa74976
RS
1856@subsection The Error Reporting Routine
1857@cindex error reporting routine
1858
1859When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1860function @code{yyerror} to print an error message (usually but not
6e649e65 1861always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1862@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1863here is the definition we will use:
bfa74976 1864
24ec0837 1865@comment file: rpcalc.y
bfa74976
RS
1866@example
1867@group
1868#include <stdio.h>
aaaa2aae 1869@end group
bfa74976 1870
aaaa2aae 1871@group
38a92d50 1872/* Called by yyparse on error. */
13863333 1873void
38a92d50 1874yyerror (char const *s)
bfa74976 1875@{
4e03e201 1876 fprintf (stderr, "%s\n", s);
bfa74976
RS
1877@}
1878@end group
1879@end example
1880
1881After @code{yyerror} returns, the Bison parser may recover from the error
1882and continue parsing if the grammar contains a suitable error rule
1883(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1884have not written any error rules in this example, so any invalid input will
1885cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1886real calculator, but it is adequate for the first example.
bfa74976 1887
f5f419de 1888@node Rpcalc Generate
bfa74976
RS
1889@subsection Running Bison to Make the Parser
1890@cindex running Bison (introduction)
1891
ceed8467
AD
1892Before running Bison to produce a parser, we need to decide how to
1893arrange all the source code in one or more source files. For such a
ff7571c0
JD
1894simple example, the easiest thing is to put everything in one file,
1895the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1896@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1897(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1898
1899For a large project, you would probably have several source files, and use
1900@code{make} to arrange to recompile them.
1901
ff7571c0
JD
1902With all the source in the grammar file, you use the following command
1903to convert it into a parser implementation file:
bfa74976
RS
1904
1905@example
fa4d969f 1906bison @var{file}.y
bfa74976
RS
1907@end example
1908
1909@noindent
ff7571c0
JD
1910In this example, the grammar file is called @file{rpcalc.y} (for
1911``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1912implementation file named @file{@var{file}.tab.c}, removing the
1913@samp{.y} from the grammar file name. The parser implementation file
1914contains the source code for @code{yyparse}. The additional functions
1915in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1916copied verbatim to the parser implementation file.
bfa74976 1917
342b8b6e 1918@node Rpcalc Compile
ff7571c0 1919@subsection Compiling the Parser Implementation File
bfa74976
RS
1920@cindex compiling the parser
1921
ff7571c0 1922Here is how to compile and run the parser implementation file:
bfa74976
RS
1923
1924@example
1925@group
1926# @r{List files in current directory.}
9edcd895 1927$ @kbd{ls}
bfa74976
RS
1928rpcalc.tab.c rpcalc.y
1929@end group
1930
1931@group
1932# @r{Compile the Bison parser.}
1933# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1934$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1935@end group
1936
1937@group
1938# @r{List files again.}
9edcd895 1939$ @kbd{ls}
bfa74976
RS
1940rpcalc rpcalc.tab.c rpcalc.y
1941@end group
1942@end example
1943
1944The file @file{rpcalc} now contains the executable code. Here is an
1945example session using @code{rpcalc}.
1946
1947@example
9edcd895
AD
1948$ @kbd{rpcalc}
1949@kbd{4 9 +}
24ec0837 1950@result{} 13
9edcd895 1951@kbd{3 7 + 3 4 5 *+-}
24ec0837 1952@result{} -13
9edcd895 1953@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1954@result{} 13
9edcd895 1955@kbd{5 6 / 4 n +}
24ec0837 1956@result{} -3.166666667
9edcd895 1957@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1958@result{} 81
9edcd895
AD
1959@kbd{^D} @r{End-of-file indicator}
1960$
bfa74976
RS
1961@end example
1962
342b8b6e 1963@node Infix Calc
bfa74976
RS
1964@section Infix Notation Calculator: @code{calc}
1965@cindex infix notation calculator
1966@cindex @code{calc}
1967@cindex calculator, infix notation
1968
1969We now modify rpcalc to handle infix operators instead of postfix. Infix
1970notation involves the concept of operator precedence and the need for
1971parentheses nested to arbitrary depth. Here is the Bison code for
1972@file{calc.y}, an infix desk-top calculator.
1973
1974@example
38a92d50 1975/* Infix notation calculator. */
bfa74976 1976
aaaa2aae 1977@group
bfa74976 1978%@{
38a92d50
PE
1979 #define YYSTYPE double
1980 #include <math.h>
1981 #include <stdio.h>
1982 int yylex (void);
1983 void yyerror (char const *);
bfa74976 1984%@}
aaaa2aae 1985@end group
bfa74976 1986
aaaa2aae 1987@group
38a92d50 1988/* Bison declarations. */
bfa74976
RS
1989%token NUM
1990%left '-' '+'
1991%left '*' '/'
d78f0ac9
AD
1992%precedence NEG /* negation--unary minus */
1993%right '^' /* exponentiation */
aaaa2aae 1994@end group
bfa74976 1995
38a92d50 1996%% /* The grammar follows. */
aaaa2aae 1997@group
5e9b6624
AD
1998input:
1999 /* empty */
2000| input line
bfa74976 2001;
aaaa2aae 2002@end group
bfa74976 2003
aaaa2aae 2004@group
5e9b6624
AD
2005line:
2006 '\n'
2007| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2008;
aaaa2aae 2009@end group
bfa74976 2010
aaaa2aae 2011@group
5e9b6624
AD
2012exp:
2013 NUM @{ $$ = $1; @}
2014| exp '+' exp @{ $$ = $1 + $3; @}
2015| exp '-' exp @{ $$ = $1 - $3; @}
2016| exp '*' exp @{ $$ = $1 * $3; @}
2017| exp '/' exp @{ $$ = $1 / $3; @}
2018| '-' exp %prec NEG @{ $$ = -$2; @}
2019| exp '^' exp @{ $$ = pow ($1, $3); @}
2020| '(' exp ')' @{ $$ = $2; @}
bfa74976 2021;
aaaa2aae 2022@end group
bfa74976
RS
2023%%
2024@end example
2025
2026@noindent
ceed8467
AD
2027The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2028same as before.
bfa74976
RS
2029
2030There are two important new features shown in this code.
2031
2032In the second section (Bison declarations), @code{%left} declares token
2033types and says they are left-associative operators. The declarations
2034@code{%left} and @code{%right} (right associativity) take the place of
2035@code{%token} which is used to declare a token type name without
d78f0ac9 2036associativity/precedence. (These tokens are single-character literals, which
bfa74976 2037ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2038the associativity/precedence.)
bfa74976
RS
2039
2040Operator precedence is determined by the line ordering of the
2041declarations; the higher the line number of the declaration (lower on
2042the page or screen), the higher the precedence. Hence, exponentiation
2043has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2044by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2045only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2046Precedence}.
bfa74976 2047
704a47c4
AD
2048The other important new feature is the @code{%prec} in the grammar
2049section for the unary minus operator. The @code{%prec} simply instructs
2050Bison that the rule @samp{| '-' exp} has the same precedence as
2051@code{NEG}---in this case the next-to-highest. @xref{Contextual
2052Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2053
2054Here is a sample run of @file{calc.y}:
2055
2056@need 500
2057@example
9edcd895
AD
2058$ @kbd{calc}
2059@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20606.880952381
9edcd895 2061@kbd{-56 + 2}
bfa74976 2062-54
9edcd895 2063@kbd{3 ^ 2}
bfa74976
RS
20649
2065@end example
2066
342b8b6e 2067@node Simple Error Recovery
bfa74976
RS
2068@section Simple Error Recovery
2069@cindex error recovery, simple
2070
2071Up to this point, this manual has not addressed the issue of @dfn{error
2072recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2073error. All we have handled is error reporting with @code{yyerror}.
2074Recall that by default @code{yyparse} returns after calling
2075@code{yyerror}. This means that an erroneous input line causes the
2076calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2077
2078The Bison language itself includes the reserved word @code{error}, which
2079may be included in the grammar rules. In the example below it has
2080been added to one of the alternatives for @code{line}:
2081
2082@example
2083@group
5e9b6624
AD
2084line:
2085 '\n'
2086| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2087| error '\n' @{ yyerrok; @}
bfa74976
RS
2088;
2089@end group
2090@end example
2091
ceed8467 2092This addition to the grammar allows for simple error recovery in the
6e649e65 2093event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2094read, the error will be recognized by the third rule for @code{line},
2095and parsing will continue. (The @code{yyerror} function is still called
2096upon to print its message as well.) The action executes the statement
2097@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2098that error recovery is complete (@pxref{Error Recovery}). Note the
2099difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2100misprint.
bfa74976
RS
2101
2102This form of error recovery deals with syntax errors. There are other
2103kinds of errors; for example, division by zero, which raises an exception
2104signal that is normally fatal. A real calculator program must handle this
2105signal and use @code{longjmp} to return to @code{main} and resume parsing
2106input lines; it would also have to discard the rest of the current line of
2107input. We won't discuss this issue further because it is not specific to
2108Bison programs.
2109
342b8b6e
AD
2110@node Location Tracking Calc
2111@section Location Tracking Calculator: @code{ltcalc}
2112@cindex location tracking calculator
2113@cindex @code{ltcalc}
2114@cindex calculator, location tracking
2115
9edcd895
AD
2116This example extends the infix notation calculator with location
2117tracking. This feature will be used to improve the error messages. For
2118the sake of clarity, this example is a simple integer calculator, since
2119most of the work needed to use locations will be done in the lexical
72d2299c 2120analyzer.
342b8b6e
AD
2121
2122@menu
f5f419de
DJ
2123* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2124* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2125* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2126@end menu
2127
f5f419de 2128@node Ltcalc Declarations
342b8b6e
AD
2129@subsection Declarations for @code{ltcalc}
2130
9edcd895
AD
2131The C and Bison declarations for the location tracking calculator are
2132the same as the declarations for the infix notation calculator.
342b8b6e
AD
2133
2134@example
2135/* Location tracking calculator. */
2136
2137%@{
38a92d50
PE
2138 #define YYSTYPE int
2139 #include <math.h>
2140 int yylex (void);
2141 void yyerror (char const *);
342b8b6e
AD
2142%@}
2143
2144/* Bison declarations. */
2145%token NUM
2146
2147%left '-' '+'
2148%left '*' '/'
d78f0ac9 2149%precedence NEG
342b8b6e
AD
2150%right '^'
2151
38a92d50 2152%% /* The grammar follows. */
342b8b6e
AD
2153@end example
2154
9edcd895
AD
2155@noindent
2156Note there are no declarations specific to locations. Defining a data
2157type for storing locations is not needed: we will use the type provided
2158by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2159four member structure with the following integer fields:
2160@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2161@code{last_column}. By conventions, and in accordance with the GNU
2162Coding Standards and common practice, the line and column count both
2163start at 1.
342b8b6e
AD
2164
2165@node Ltcalc Rules
2166@subsection Grammar Rules for @code{ltcalc}
2167
9edcd895
AD
2168Whether handling locations or not has no effect on the syntax of your
2169language. Therefore, grammar rules for this example will be very close
2170to those of the previous example: we will only modify them to benefit
2171from the new information.
342b8b6e 2172
9edcd895
AD
2173Here, we will use locations to report divisions by zero, and locate the
2174wrong expressions or subexpressions.
342b8b6e
AD
2175
2176@example
2177@group
5e9b6624
AD
2178input:
2179 /* empty */
2180| input line
342b8b6e
AD
2181;
2182@end group
2183
2184@group
5e9b6624
AD
2185line:
2186 '\n'
2187| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2188;
2189@end group
2190
2191@group
5e9b6624
AD
2192exp:
2193 NUM @{ $$ = $1; @}
2194| exp '+' exp @{ $$ = $1 + $3; @}
2195| exp '-' exp @{ $$ = $1 - $3; @}
2196| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2197@end group
342b8b6e 2198@group
5e9b6624
AD
2199| exp '/' exp
2200 @{
2201 if ($3)
2202 $$ = $1 / $3;
2203 else
2204 @{
2205 $$ = 1;
2206 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2207 @@3.first_line, @@3.first_column,
2208 @@3.last_line, @@3.last_column);
2209 @}
2210 @}
342b8b6e
AD
2211@end group
2212@group
5e9b6624
AD
2213| '-' exp %prec NEG @{ $$ = -$2; @}
2214| exp '^' exp @{ $$ = pow ($1, $3); @}
2215| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2216@end group
2217@end example
2218
2219This code shows how to reach locations inside of semantic actions, by
2220using the pseudo-variables @code{@@@var{n}} for rule components, and the
2221pseudo-variable @code{@@$} for groupings.
2222
9edcd895
AD
2223We don't need to assign a value to @code{@@$}: the output parser does it
2224automatically. By default, before executing the C code of each action,
2225@code{@@$} is set to range from the beginning of @code{@@1} to the end
2226of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2227can be redefined (@pxref{Location Default Action, , Default Action for
2228Locations}), and for very specific rules, @code{@@$} can be computed by
2229hand.
342b8b6e
AD
2230
2231@node Ltcalc Lexer
2232@subsection The @code{ltcalc} Lexical Analyzer.
2233
9edcd895 2234Until now, we relied on Bison's defaults to enable location
72d2299c 2235tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2236able to feed the parser with the token locations, as it already does for
2237semantic values.
342b8b6e 2238
9edcd895
AD
2239To this end, we must take into account every single character of the
2240input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2241
2242@example
2243@group
2244int
2245yylex (void)
2246@{
2247 int c;
18b519c0 2248@end group
342b8b6e 2249
18b519c0 2250@group
72d2299c 2251 /* Skip white space. */
342b8b6e
AD
2252 while ((c = getchar ()) == ' ' || c == '\t')
2253 ++yylloc.last_column;
18b519c0 2254@end group
342b8b6e 2255
18b519c0 2256@group
72d2299c 2257 /* Step. */
342b8b6e
AD
2258 yylloc.first_line = yylloc.last_line;
2259 yylloc.first_column = yylloc.last_column;
2260@end group
2261
2262@group
72d2299c 2263 /* Process numbers. */
342b8b6e
AD
2264 if (isdigit (c))
2265 @{
2266 yylval = c - '0';
2267 ++yylloc.last_column;
2268 while (isdigit (c = getchar ()))
2269 @{
2270 ++yylloc.last_column;
2271 yylval = yylval * 10 + c - '0';
2272 @}
2273 ungetc (c, stdin);
2274 return NUM;
2275 @}
2276@end group
2277
72d2299c 2278 /* Return end-of-input. */
342b8b6e
AD
2279 if (c == EOF)
2280 return 0;
2281
d4fca427 2282@group
72d2299c 2283 /* Return a single char, and update location. */
342b8b6e
AD
2284 if (c == '\n')
2285 @{
2286 ++yylloc.last_line;
2287 yylloc.last_column = 0;
2288 @}
2289 else
2290 ++yylloc.last_column;
2291 return c;
2292@}
d4fca427 2293@end group
342b8b6e
AD
2294@end example
2295
9edcd895
AD
2296Basically, the lexical analyzer performs the same processing as before:
2297it skips blanks and tabs, and reads numbers or single-character tokens.
2298In addition, it updates @code{yylloc}, the global variable (of type
2299@code{YYLTYPE}) containing the token's location.
342b8b6e 2300
9edcd895 2301Now, each time this function returns a token, the parser has its number
72d2299c 2302as well as its semantic value, and its location in the text. The last
9edcd895
AD
2303needed change is to initialize @code{yylloc}, for example in the
2304controlling function:
342b8b6e
AD
2305
2306@example
9edcd895 2307@group
342b8b6e
AD
2308int
2309main (void)
2310@{
2311 yylloc.first_line = yylloc.last_line = 1;
2312 yylloc.first_column = yylloc.last_column = 0;
2313 return yyparse ();
2314@}
9edcd895 2315@end group
342b8b6e
AD
2316@end example
2317
9edcd895
AD
2318Remember that computing locations is not a matter of syntax. Every
2319character must be associated to a location update, whether it is in
2320valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2321
2322@node Multi-function Calc
bfa74976
RS
2323@section Multi-Function Calculator: @code{mfcalc}
2324@cindex multi-function calculator
2325@cindex @code{mfcalc}
2326@cindex calculator, multi-function
2327
2328Now that the basics of Bison have been discussed, it is time to move on to
2329a more advanced problem. The above calculators provided only five
2330functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2331be nice to have a calculator that provides other mathematical functions such
2332as @code{sin}, @code{cos}, etc.
2333
2334It is easy to add new operators to the infix calculator as long as they are
2335only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2336back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2337adding a new operator. But we want something more flexible: built-in
2338functions whose syntax has this form:
2339
2340@example
2341@var{function_name} (@var{argument})
2342@end example
2343
2344@noindent
2345At the same time, we will add memory to the calculator, by allowing you
2346to create named variables, store values in them, and use them later.
2347Here is a sample session with the multi-function calculator:
2348
2349@example
d4fca427 2350@group
9edcd895
AD
2351$ @kbd{mfcalc}
2352@kbd{pi = 3.141592653589}
f9c75dd0 2353@result{} 3.1415926536
d4fca427
AD
2354@end group
2355@group
9edcd895 2356@kbd{sin(pi)}
f9c75dd0 2357@result{} 0.0000000000
d4fca427 2358@end group
9edcd895 2359@kbd{alpha = beta1 = 2.3}
f9c75dd0 2360@result{} 2.3000000000
9edcd895 2361@kbd{alpha}
f9c75dd0 2362@result{} 2.3000000000
9edcd895 2363@kbd{ln(alpha)}
f9c75dd0 2364@result{} 0.8329091229
9edcd895 2365@kbd{exp(ln(beta1))}
f9c75dd0 2366@result{} 2.3000000000
9edcd895 2367$
bfa74976
RS
2368@end example
2369
2370Note that multiple assignment and nested function calls are permitted.
2371
2372@menu
f5f419de
DJ
2373* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2374* Mfcalc Rules:: Grammar rules for the calculator.
2375* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2376* Mfcalc Lexer:: The lexical analyzer.
2377* Mfcalc Main:: The controlling function.
bfa74976
RS
2378@end menu
2379
f5f419de 2380@node Mfcalc Declarations
bfa74976
RS
2381@subsection Declarations for @code{mfcalc}
2382
2383Here are the C and Bison declarations for the multi-function calculator.
2384
f9c75dd0 2385@comment file: mfcalc.y
c93f22fc 2386@example
18b519c0 2387@group
bfa74976 2388%@{
f9c75dd0 2389 #include <stdio.h> /* For printf, etc. */
578e3413 2390 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2391 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2392 int yylex (void);
2393 void yyerror (char const *);
bfa74976 2394%@}
18b519c0
AD
2395@end group
2396@group
bfa74976 2397%union @{
38a92d50
PE
2398 double val; /* For returning numbers. */
2399 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2400@}
18b519c0 2401@end group
38a92d50
PE
2402%token <val> NUM /* Simple double precision number. */
2403%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2404%type <val> exp
2405
18b519c0 2406@group
bfa74976
RS
2407%right '='
2408%left '-' '+'
2409%left '*' '/'
d78f0ac9
AD
2410%precedence NEG /* negation--unary minus */
2411%right '^' /* exponentiation */
18b519c0 2412@end group
38a92d50 2413%% /* The grammar follows. */
c93f22fc 2414@end example
bfa74976
RS
2415
2416The above grammar introduces only two new features of the Bison language.
2417These features allow semantic values to have various data types
2418(@pxref{Multiple Types, ,More Than One Value Type}).
2419
2420The @code{%union} declaration specifies the entire list of possible types;
2421this is instead of defining @code{YYSTYPE}. The allowable types are now
2422double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2423the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2424
2425Since values can now have various types, it is necessary to associate a
2426type with each grammar symbol whose semantic value is used. These symbols
2427are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2428declarations are augmented with information about their data type (placed
2429between angle brackets).
2430
704a47c4
AD
2431The Bison construct @code{%type} is used for declaring nonterminal
2432symbols, just as @code{%token} is used for declaring token types. We
2433have not used @code{%type} before because nonterminal symbols are
2434normally declared implicitly by the rules that define them. But
2435@code{exp} must be declared explicitly so we can specify its value type.
2436@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2437
342b8b6e 2438@node Mfcalc Rules
bfa74976
RS
2439@subsection Grammar Rules for @code{mfcalc}
2440
2441Here are the grammar rules for the multi-function calculator.
2442Most of them are copied directly from @code{calc}; three rules,
2443those which mention @code{VAR} or @code{FNCT}, are new.
2444
f9c75dd0 2445@comment file: mfcalc.y
c93f22fc 2446@example
18b519c0 2447@group
5e9b6624
AD
2448input:
2449 /* empty */
2450| input line
bfa74976 2451;
18b519c0 2452@end group
bfa74976 2453
18b519c0 2454@group
bfa74976 2455line:
5e9b6624
AD
2456 '\n'
2457| exp '\n' @{ printf ("%.10g\n", $1); @}
2458| error '\n' @{ yyerrok; @}
bfa74976 2459;
18b519c0 2460@end group
bfa74976 2461
18b519c0 2462@group
5e9b6624
AD
2463exp:
2464 NUM @{ $$ = $1; @}
2465| VAR @{ $$ = $1->value.var; @}
2466| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2467| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2468| exp '+' exp @{ $$ = $1 + $3; @}
2469| exp '-' exp @{ $$ = $1 - $3; @}
2470| exp '*' exp @{ $$ = $1 * $3; @}
2471| exp '/' exp @{ $$ = $1 / $3; @}
2472| '-' exp %prec NEG @{ $$ = -$2; @}
2473| exp '^' exp @{ $$ = pow ($1, $3); @}
2474| '(' exp ')' @{ $$ = $2; @}
bfa74976 2475;
18b519c0 2476@end group
38a92d50 2477/* End of grammar. */
bfa74976 2478%%
c93f22fc 2479@end example
bfa74976 2480
f5f419de 2481@node Mfcalc Symbol Table
bfa74976
RS
2482@subsection The @code{mfcalc} Symbol Table
2483@cindex symbol table example
2484
2485The multi-function calculator requires a symbol table to keep track of the
2486names and meanings of variables and functions. This doesn't affect the
2487grammar rules (except for the actions) or the Bison declarations, but it
2488requires some additional C functions for support.
2489
2490The symbol table itself consists of a linked list of records. Its
2491definition, which is kept in the header @file{calc.h}, is as follows. It
2492provides for either functions or variables to be placed in the table.
2493
f9c75dd0 2494@comment file: calc.h
c93f22fc 2495@example
bfa74976 2496@group
38a92d50 2497/* Function type. */
32dfccf8 2498typedef double (*func_t) (double);
72f889cc 2499@end group
32dfccf8 2500
72f889cc 2501@group
38a92d50 2502/* Data type for links in the chain of symbols. */
bfa74976
RS
2503struct symrec
2504@{
38a92d50 2505 char *name; /* name of symbol */
bfa74976 2506 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2507 union
2508 @{
38a92d50
PE
2509 double var; /* value of a VAR */
2510 func_t fnctptr; /* value of a FNCT */
bfa74976 2511 @} value;
38a92d50 2512 struct symrec *next; /* link field */
bfa74976
RS
2513@};
2514@end group
2515
2516@group
2517typedef struct symrec symrec;
2518
38a92d50 2519/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2520extern symrec *sym_table;
2521
a730d142 2522symrec *putsym (char const *, int);
38a92d50 2523symrec *getsym (char const *);
bfa74976 2524@end group
c93f22fc 2525@end example
bfa74976 2526
aeb57fb6
AD
2527The new version of @code{main} will call @code{init_table} to initialize
2528the symbol table:
bfa74976 2529
f9c75dd0 2530@comment file: mfcalc.y
c93f22fc 2531@example
18b519c0 2532@group
bfa74976
RS
2533struct init
2534@{
38a92d50
PE
2535 char const *fname;
2536 double (*fnct) (double);
bfa74976
RS
2537@};
2538@end group
2539
2540@group
38a92d50 2541struct init const arith_fncts[] =
13863333 2542@{
f9c75dd0
AD
2543 @{ "atan", atan @},
2544 @{ "cos", cos @},
2545 @{ "exp", exp @},
2546 @{ "ln", log @},
2547 @{ "sin", sin @},
2548 @{ "sqrt", sqrt @},
2549 @{ 0, 0 @},
13863333 2550@};
18b519c0 2551@end group
bfa74976 2552
18b519c0 2553@group
bfa74976 2554/* The symbol table: a chain of `struct symrec'. */
38a92d50 2555symrec *sym_table;
bfa74976
RS
2556@end group
2557
2558@group
72d2299c 2559/* Put arithmetic functions in table. */
f9c75dd0 2560static
13863333
AD
2561void
2562init_table (void)
bfa74976
RS
2563@{
2564 int i;
bfa74976
RS
2565 for (i = 0; arith_fncts[i].fname != 0; i++)
2566 @{
aaaa2aae 2567 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2568 ptr->value.fnctptr = arith_fncts[i].fnct;
2569 @}
2570@}
2571@end group
c93f22fc 2572@end example
bfa74976
RS
2573
2574By simply editing the initialization list and adding the necessary include
2575files, you can add additional functions to the calculator.
2576
2577Two important functions allow look-up and installation of symbols in the
2578symbol table. The function @code{putsym} is passed a name and the type
2579(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2580linked to the front of the list, and a pointer to the object is returned.
2581The function @code{getsym} is passed the name of the symbol to look up. If
2582found, a pointer to that symbol is returned; otherwise zero is returned.
2583
f9c75dd0 2584@comment file: mfcalc.y
c93f22fc 2585@example
f9c75dd0
AD
2586#include <stdlib.h> /* malloc. */
2587#include <string.h> /* strlen. */
2588
d4fca427 2589@group
bfa74976 2590symrec *
38a92d50 2591putsym (char const *sym_name, int sym_type)
bfa74976 2592@{
aaaa2aae 2593 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2594 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2595 strcpy (ptr->name,sym_name);
2596 ptr->type = sym_type;
72d2299c 2597 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2598 ptr->next = (struct symrec *)sym_table;
2599 sym_table = ptr;
2600 return ptr;
2601@}
d4fca427 2602@end group
bfa74976 2603
d4fca427 2604@group
bfa74976 2605symrec *
38a92d50 2606getsym (char const *sym_name)
bfa74976
RS
2607@{
2608 symrec *ptr;
2609 for (ptr = sym_table; ptr != (symrec *) 0;
2610 ptr = (symrec *)ptr->next)
f518dbaf 2611 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2612 return ptr;
2613 return 0;
2614@}
d4fca427 2615@end group
c93f22fc 2616@end example
bfa74976 2617
aeb57fb6
AD
2618@node Mfcalc Lexer
2619@subsection The @code{mfcalc} Lexer
2620
bfa74976
RS
2621The function @code{yylex} must now recognize variables, numeric values, and
2622the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2623characters with a leading letter are recognized as either variables or
bfa74976
RS
2624functions depending on what the symbol table says about them.
2625
2626The string is passed to @code{getsym} for look up in the symbol table. If
2627the name appears in the table, a pointer to its location and its type
2628(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2629already in the table, then it is installed as a @code{VAR} using
2630@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2631returned to @code{yyparse}.
bfa74976
RS
2632
2633No change is needed in the handling of numeric values and arithmetic
2634operators in @code{yylex}.
2635
f9c75dd0 2636@comment file: mfcalc.y
c93f22fc 2637@example
bfa74976
RS
2638@group
2639#include <ctype.h>
18b519c0 2640@end group
13863333 2641
18b519c0 2642@group
13863333
AD
2643int
2644yylex (void)
bfa74976
RS
2645@{
2646 int c;
2647
72d2299c 2648 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2649 while ((c = getchar ()) == ' ' || c == '\t')
2650 continue;
bfa74976
RS
2651
2652 if (c == EOF)
2653 return 0;
2654@end group
2655
2656@group
2657 /* Char starts a number => parse the number. */
2658 if (c == '.' || isdigit (c))
2659 @{
2660 ungetc (c, stdin);
2661 scanf ("%lf", &yylval.val);
2662 return NUM;
2663 @}
2664@end group
2665
2666@group
2667 /* Char starts an identifier => read the name. */
2668 if (isalpha (c))
2669 @{
aaaa2aae
AD
2670 /* Initially make the buffer long enough
2671 for a 40-character symbol name. */
2672 static size_t length = 40;
bfa74976 2673 static char *symbuf = 0;
aaaa2aae 2674 symrec *s;
bfa74976
RS
2675 int i;
2676@end group
aaaa2aae
AD
2677 if (!symbuf)
2678 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2679
2680 i = 0;
2681 do
bfa74976
RS
2682@group
2683 @{
2684 /* If buffer is full, make it bigger. */
2685 if (i == length)
2686 @{
2687 length *= 2;
18b519c0 2688 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2689 @}
2690 /* Add this character to the buffer. */
2691 symbuf[i++] = c;
2692 /* Get another character. */
2693 c = getchar ();
2694 @}
2695@end group
2696@group
72d2299c 2697 while (isalnum (c));
bfa74976
RS
2698
2699 ungetc (c, stdin);
2700 symbuf[i] = '\0';
2701@end group
2702
2703@group
2704 s = getsym (symbuf);
2705 if (s == 0)
2706 s = putsym (symbuf, VAR);
2707 yylval.tptr = s;
2708 return s->type;
2709 @}
2710
2711 /* Any other character is a token by itself. */
2712 return c;
2713@}
2714@end group
c93f22fc 2715@end example
bfa74976 2716
aeb57fb6
AD
2717@node Mfcalc Main
2718@subsection The @code{mfcalc} Main
2719
2720The error reporting function is unchanged, and the new version of
2721@code{main} includes a call to @code{init_table}:
2722
2723@comment file: mfcalc.y
c93f22fc 2724@example
aeb57fb6
AD
2725@group
2726/* Called by yyparse on error. */
2727void
2728yyerror (char const *s)
2729@{
2730 fprintf (stderr, "%s\n", s);
2731@}
2732@end group
2733
aaaa2aae 2734@group
aeb57fb6
AD
2735int
2736main (int argc, char const* argv[])
2737@{
2738 init_table ();
2739 return yyparse ();
2740@}
2741@end group
c93f22fc 2742@end example
aeb57fb6 2743
72d2299c 2744This program is both powerful and flexible. You may easily add new
704a47c4
AD
2745functions, and it is a simple job to modify this code to install
2746predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2747
342b8b6e 2748@node Exercises
bfa74976
RS
2749@section Exercises
2750@cindex exercises
2751
2752@enumerate
2753@item
2754Add some new functions from @file{math.h} to the initialization list.
2755
2756@item
2757Add another array that contains constants and their values. Then
2758modify @code{init_table} to add these constants to the symbol table.
2759It will be easiest to give the constants type @code{VAR}.
2760
2761@item
2762Make the program report an error if the user refers to an
2763uninitialized variable in any way except to store a value in it.
2764@end enumerate
2765
342b8b6e 2766@node Grammar File
bfa74976
RS
2767@chapter Bison Grammar Files
2768
2769Bison takes as input a context-free grammar specification and produces a
2770C-language function that recognizes correct instances of the grammar.
2771
ff7571c0 2772The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2773@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2774
2775@menu
303834cc
JD
2776* Grammar Outline:: Overall layout of the grammar file.
2777* Symbols:: Terminal and nonterminal symbols.
2778* Rules:: How to write grammar rules.
2779* Recursion:: Writing recursive rules.
2780* Semantics:: Semantic values and actions.
2781* Tracking Locations:: Locations and actions.
2782* Named References:: Using named references in actions.
2783* Declarations:: All kinds of Bison declarations are described here.
2784* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2785@end menu
2786
342b8b6e 2787@node Grammar Outline
bfa74976
RS
2788@section Outline of a Bison Grammar
2789
2790A Bison grammar file has four main sections, shown here with the
2791appropriate delimiters:
2792
2793@example
2794%@{
38a92d50 2795 @var{Prologue}
bfa74976
RS
2796%@}
2797
2798@var{Bison declarations}
2799
2800%%
2801@var{Grammar rules}
2802%%
2803
75f5aaea 2804@var{Epilogue}
bfa74976
RS
2805@end example
2806
2807Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2808As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2809continues until end of line.
bfa74976
RS
2810
2811@menu
f5f419de 2812* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2813* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2814* Bison Declarations:: Syntax and usage of the Bison declarations section.
2815* Grammar Rules:: Syntax and usage of the grammar rules section.
2816* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2817@end menu
2818
38a92d50 2819@node Prologue
75f5aaea
MA
2820@subsection The prologue
2821@cindex declarations section
2822@cindex Prologue
2823@cindex declarations
bfa74976 2824
f8e1c9e5
AD
2825The @var{Prologue} section contains macro definitions and declarations
2826of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2827rules. These are copied to the beginning of the parser implementation
2828file so that they precede the definition of @code{yyparse}. You can
2829use @samp{#include} to get the declarations from a header file. If
2830you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2831@samp{%@}} delimiters that bracket this section.
bfa74976 2832
9c437126 2833The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2834of @samp{%@}} that is outside a comment, a string literal, or a
2835character constant.
2836
c732d2c6
AD
2837You may have more than one @var{Prologue} section, intermixed with the
2838@var{Bison declarations}. This allows you to have C and Bison
2839declarations that refer to each other. For example, the @code{%union}
2840declaration may use types defined in a header file, and you may wish to
2841prototype functions that take arguments of type @code{YYSTYPE}. This
2842can be done with two @var{Prologue} blocks, one before and one after the
2843@code{%union} declaration.
2844
c93f22fc 2845@example
c732d2c6 2846%@{
aef3da86 2847 #define _GNU_SOURCE
38a92d50
PE
2848 #include <stdio.h>
2849 #include "ptypes.h"
c732d2c6
AD
2850%@}
2851
2852%union @{
779e7ceb 2853 long int n;
c732d2c6
AD
2854 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2855@}
2856
2857%@{
38a92d50
PE
2858 static void print_token_value (FILE *, int, YYSTYPE);
2859 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2860%@}
2861
2862@dots{}
c93f22fc 2863@end example
c732d2c6 2864
aef3da86
PE
2865When in doubt, it is usually safer to put prologue code before all
2866Bison declarations, rather than after. For example, any definitions
2867of feature test macros like @code{_GNU_SOURCE} or
2868@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2869feature test macros can affect the behavior of Bison-generated
2870@code{#include} directives.
2871
2cbe6b7f
JD
2872@node Prologue Alternatives
2873@subsection Prologue Alternatives
2874@cindex Prologue Alternatives
2875
136a0f76 2876@findex %code
16dc6a9e
JD
2877@findex %code requires
2878@findex %code provides
2879@findex %code top
85894313 2880
2cbe6b7f 2881The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2882inflexible. As an alternative, Bison provides a @code{%code}
2883directive with an explicit qualifier field, which identifies the
2884purpose of the code and thus the location(s) where Bison should
2885generate it. For C/C++, the qualifier can be omitted for the default
2886location, or it can be one of @code{requires}, @code{provides},
e0c07222 2887@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2888
2889Look again at the example of the previous section:
2890
c93f22fc 2891@example
2cbe6b7f
JD
2892%@{
2893 #define _GNU_SOURCE
2894 #include <stdio.h>
2895 #include "ptypes.h"
2896%@}
2897
2898%union @{
2899 long int n;
2900 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2901@}
2902
2903%@{
2904 static void print_token_value (FILE *, int, YYSTYPE);
2905 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2906%@}
2907
2908@dots{}
c93f22fc 2909@end example
2cbe6b7f
JD
2910
2911@noindent
ff7571c0
JD
2912Notice that there are two @var{Prologue} sections here, but there's a
2913subtle distinction between their functionality. For example, if you
2914decide to override Bison's default definition for @code{YYLTYPE}, in
2915which @var{Prologue} section should you write your new definition?
2916You should write it in the first since Bison will insert that code
2917into the parser implementation file @emph{before} the default
2918@code{YYLTYPE} definition. In which @var{Prologue} section should you
2919prototype an internal function, @code{trace_token}, that accepts
2920@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2921prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2922@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2923
2924This distinction in functionality between the two @var{Prologue} sections is
2925established by the appearance of the @code{%union} between them.
a501eca9 2926This behavior raises a few questions.
2cbe6b7f
JD
2927First, why should the position of a @code{%union} affect definitions related to
2928@code{YYLTYPE} and @code{yytokentype}?
2929Second, what if there is no @code{%union}?
2930In that case, the second kind of @var{Prologue} section is not available.
2931This behavior is not intuitive.
2932
8e0a5e9e 2933To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2934@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2935Let's go ahead and add the new @code{YYLTYPE} definition and the
2936@code{trace_token} prototype at the same time:
2937
c93f22fc 2938@example
16dc6a9e 2939%code top @{
2cbe6b7f
JD
2940 #define _GNU_SOURCE
2941 #include <stdio.h>
8e0a5e9e
JD
2942
2943 /* WARNING: The following code really belongs
16dc6a9e 2944 * in a `%code requires'; see below. */
8e0a5e9e 2945
2cbe6b7f
JD
2946 #include "ptypes.h"
2947 #define YYLTYPE YYLTYPE
2948 typedef struct YYLTYPE
2949 @{
2950 int first_line;
2951 int first_column;
2952 int last_line;
2953 int last_column;
2954 char *filename;
2955 @} YYLTYPE;
2956@}
2957
2958%union @{
2959 long int n;
2960 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2961@}
2962
2963%code @{
2964 static void print_token_value (FILE *, int, YYSTYPE);
2965 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2966 static void trace_token (enum yytokentype token, YYLTYPE loc);
2967@}
2968
2969@dots{}
c93f22fc 2970@end example
2cbe6b7f
JD
2971
2972@noindent
16dc6a9e
JD
2973In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2974functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2975explicit which kind you intend.
2cbe6b7f
JD
2976Moreover, both kinds are always available even in the absence of @code{%union}.
2977
ff7571c0
JD
2978The @code{%code top} block above logically contains two parts. The
2979first two lines before the warning need to appear near the top of the
2980parser implementation file. The first line after the warning is
2981required by @code{YYSTYPE} and thus also needs to appear in the parser
2982implementation file. However, if you've instructed Bison to generate
2983a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2984want that line to appear before the @code{YYSTYPE} definition in that
2985header file as well. The @code{YYLTYPE} definition should also appear
2986in the parser header file to override the default @code{YYLTYPE}
2987definition there.
2cbe6b7f 2988
16dc6a9e 2989In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2990lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2991definitions.
16dc6a9e 2992Thus, they belong in one or more @code{%code requires}:
9bc0dd67 2993
c93f22fc 2994@example
d4fca427 2995@group
16dc6a9e 2996%code top @{
2cbe6b7f
JD
2997 #define _GNU_SOURCE
2998 #include <stdio.h>
2999@}
d4fca427 3000@end group
2cbe6b7f 3001
d4fca427 3002@group
16dc6a9e 3003%code requires @{
9bc0dd67
JD
3004 #include "ptypes.h"
3005@}
d4fca427
AD
3006@end group
3007@group
9bc0dd67
JD
3008%union @{
3009 long int n;
3010 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3011@}
d4fca427 3012@end group
9bc0dd67 3013
d4fca427 3014@group
16dc6a9e 3015%code requires @{
2cbe6b7f
JD
3016 #define YYLTYPE YYLTYPE
3017 typedef struct YYLTYPE
3018 @{
3019 int first_line;
3020 int first_column;
3021 int last_line;
3022 int last_column;
3023 char *filename;
3024 @} YYLTYPE;
3025@}
d4fca427 3026@end group
2cbe6b7f 3027
d4fca427 3028@group
136a0f76 3029%code @{
2cbe6b7f
JD
3030 static void print_token_value (FILE *, int, YYSTYPE);
3031 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3032 static void trace_token (enum yytokentype token, YYLTYPE loc);
3033@}
d4fca427 3034@end group
2cbe6b7f
JD
3035
3036@dots{}
c93f22fc 3037@end example
2cbe6b7f
JD
3038
3039@noindent
ff7571c0
JD
3040Now Bison will insert @code{#include "ptypes.h"} and the new
3041@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3042and @code{YYLTYPE} definitions in both the parser implementation file
3043and the parser header file. (By the same reasoning, @code{%code
3044requires} would also be the appropriate place to write your own
3045definition for @code{YYSTYPE}.)
3046
3047When you are writing dependency code for @code{YYSTYPE} and
3048@code{YYLTYPE}, you should prefer @code{%code requires} over
3049@code{%code top} regardless of whether you instruct Bison to generate
3050a parser header file. When you are writing code that you need Bison
3051to insert only into the parser implementation file and that has no
3052special need to appear at the top of that file, you should prefer the
3053unqualified @code{%code} over @code{%code top}. These practices will
3054make the purpose of each block of your code explicit to Bison and to
3055other developers reading your grammar file. Following these
3056practices, we expect the unqualified @code{%code} and @code{%code
3057requires} to be the most important of the four @var{Prologue}
16dc6a9e 3058alternatives.
a501eca9 3059
ff7571c0
JD
3060At some point while developing your parser, you might decide to
3061provide @code{trace_token} to modules that are external to your
3062parser. Thus, you might wish for Bison to insert the prototype into
3063both the parser header file and the parser implementation file. Since
3064this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3065@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3066@code{%code requires}. More importantly, since it depends upon
3067@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3068sufficient. Instead, move its prototype from the unqualified
3069@code{%code} to a @code{%code provides}:
2cbe6b7f 3070
c93f22fc 3071@example
d4fca427 3072@group
16dc6a9e 3073%code top @{
2cbe6b7f 3074 #define _GNU_SOURCE
136a0f76 3075 #include <stdio.h>
2cbe6b7f 3076@}
d4fca427 3077@end group
136a0f76 3078
d4fca427 3079@group
16dc6a9e 3080%code requires @{
2cbe6b7f
JD
3081 #include "ptypes.h"
3082@}
d4fca427
AD
3083@end group
3084@group
2cbe6b7f
JD
3085%union @{
3086 long int n;
3087 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3088@}
d4fca427 3089@end group
2cbe6b7f 3090
d4fca427 3091@group
16dc6a9e 3092%code requires @{
2cbe6b7f
JD
3093 #define YYLTYPE YYLTYPE
3094 typedef struct YYLTYPE
3095 @{
3096 int first_line;
3097 int first_column;
3098 int last_line;
3099 int last_column;
3100 char *filename;
3101 @} YYLTYPE;
3102@}
d4fca427 3103@end group
2cbe6b7f 3104
d4fca427 3105@group
16dc6a9e 3106%code provides @{
2cbe6b7f
JD
3107 void trace_token (enum yytokentype token, YYLTYPE loc);
3108@}
d4fca427 3109@end group
2cbe6b7f 3110
d4fca427 3111@group
2cbe6b7f 3112%code @{
9bc0dd67
JD
3113 static void print_token_value (FILE *, int, YYSTYPE);
3114 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3115@}
d4fca427 3116@end group
9bc0dd67
JD
3117
3118@dots{}
c93f22fc 3119@end example
9bc0dd67 3120
2cbe6b7f 3121@noindent
ff7571c0
JD
3122Bison will insert the @code{trace_token} prototype into both the
3123parser header file and the parser implementation file after the
3124definitions for @code{yytokentype}, @code{YYLTYPE}, and
3125@code{YYSTYPE}.
2cbe6b7f 3126
ff7571c0
JD
3127The above examples are careful to write directives in an order that
3128reflects the layout of the generated parser implementation and header
3129files: @code{%code top}, @code{%code requires}, @code{%code provides},
3130and then @code{%code}. While your grammar files may generally be
3131easier to read if you also follow this order, Bison does not require
3132it. Instead, Bison lets you choose an organization that makes sense
3133to you.
2cbe6b7f 3134
a501eca9 3135You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3136In that case, Bison concatenates the contained code in declaration order.
3137This is the only way in which the position of one of these directives within
3138the grammar file affects its functionality.
3139
3140The result of the previous two properties is greater flexibility in how you may
3141organize your grammar file.
3142For example, you may organize semantic-type-related directives by semantic
3143type:
3144
c93f22fc 3145@example
d4fca427 3146@group
16dc6a9e 3147%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3148%union @{ type1 field1; @}
3149%destructor @{ type1_free ($$); @} <field1>
3150%printer @{ type1_print ($$); @} <field1>
d4fca427 3151@end group
2cbe6b7f 3152
d4fca427 3153@group
16dc6a9e 3154%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3155%union @{ type2 field2; @}
3156%destructor @{ type2_free ($$); @} <field2>
3157%printer @{ type2_print ($$); @} <field2>
d4fca427 3158@end group
c93f22fc 3159@end example
2cbe6b7f
JD
3160
3161@noindent
3162You could even place each of the above directive groups in the rules section of
3163the grammar file next to the set of rules that uses the associated semantic
3164type.
61fee93e
JD
3165(In the rules section, you must terminate each of those directives with a
3166semicolon.)
2cbe6b7f
JD
3167And you don't have to worry that some directive (like a @code{%union}) in the
3168definitions section is going to adversely affect their functionality in some
3169counter-intuitive manner just because it comes first.
3170Such an organization is not possible using @var{Prologue} sections.
3171
a501eca9 3172This section has been concerned with explaining the advantages of the four
8e0a5e9e 3173@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3174However, in most cases when using these directives, you shouldn't need to
3175think about all the low-level ordering issues discussed here.
3176Instead, you should simply use these directives to label each block of your
3177code according to its purpose and let Bison handle the ordering.
3178@code{%code} is the most generic label.
16dc6a9e
JD
3179Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3180as needed.
a501eca9 3181
342b8b6e 3182@node Bison Declarations
bfa74976
RS
3183@subsection The Bison Declarations Section
3184@cindex Bison declarations (introduction)
3185@cindex declarations, Bison (introduction)
3186
3187The @var{Bison declarations} section contains declarations that define
3188terminal and nonterminal symbols, specify precedence, and so on.
3189In some simple grammars you may not need any declarations.
3190@xref{Declarations, ,Bison Declarations}.
3191
342b8b6e 3192@node Grammar Rules
bfa74976
RS
3193@subsection The Grammar Rules Section
3194@cindex grammar rules section
3195@cindex rules section for grammar
3196
3197The @dfn{grammar rules} section contains one or more Bison grammar
3198rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3199
3200There must always be at least one grammar rule, and the first
3201@samp{%%} (which precedes the grammar rules) may never be omitted even
3202if it is the first thing in the file.
3203
38a92d50 3204@node Epilogue
75f5aaea 3205@subsection The epilogue
bfa74976 3206@cindex additional C code section
75f5aaea 3207@cindex epilogue
bfa74976
RS
3208@cindex C code, section for additional
3209
ff7571c0
JD
3210The @var{Epilogue} is copied verbatim to the end of the parser
3211implementation file, just as the @var{Prologue} is copied to the
3212beginning. This is the most convenient place to put anything that you
3213want to have in the parser implementation file but which need not come
3214before the definition of @code{yyparse}. For example, the definitions
3215of @code{yylex} and @code{yyerror} often go here. Because C requires
3216functions to be declared before being used, you often need to declare
3217functions like @code{yylex} and @code{yyerror} in the Prologue, even
3218if you define them in the Epilogue. @xref{Interface, ,Parser
3219C-Language Interface}.
bfa74976
RS
3220
3221If the last section is empty, you may omit the @samp{%%} that separates it
3222from the grammar rules.
3223
f8e1c9e5
AD
3224The Bison parser itself contains many macros and identifiers whose names
3225start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3226any such names (except those documented in this manual) in the epilogue
3227of the grammar file.
bfa74976 3228
342b8b6e 3229@node Symbols
bfa74976
RS
3230@section Symbols, Terminal and Nonterminal
3231@cindex nonterminal symbol
3232@cindex terminal symbol
3233@cindex token type
3234@cindex symbol
3235
3236@dfn{Symbols} in Bison grammars represent the grammatical classifications
3237of the language.
3238
3239A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3240class of syntactically equivalent tokens. You use the symbol in grammar
3241rules to mean that a token in that class is allowed. The symbol is
3242represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3243function returns a token type code to indicate what kind of token has
3244been read. You don't need to know what the code value is; you can use
3245the symbol to stand for it.
bfa74976 3246
f8e1c9e5
AD
3247A @dfn{nonterminal symbol} stands for a class of syntactically
3248equivalent groupings. The symbol name is used in writing grammar rules.
3249By convention, it should be all lower case.
bfa74976 3250
82f3355e
JD
3251Symbol names can contain letters, underscores, periods, and non-initial
3252digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3253with POSIX Yacc. Periods and dashes make symbol names less convenient to
3254use with named references, which require brackets around such names
3255(@pxref{Named References}). Terminal symbols that contain periods or dashes
3256make little sense: since they are not valid symbols (in most programming
3257languages) they are not exported as token names.
bfa74976 3258
931c7513 3259There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3260
3261@itemize @bullet
3262@item
3263A @dfn{named token type} is written with an identifier, like an
c827f760 3264identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3265such name must be defined with a Bison declaration such as
3266@code{%token}. @xref{Token Decl, ,Token Type Names}.
3267
3268@item
3269@cindex character token
3270@cindex literal token
3271@cindex single-character literal
931c7513
RS
3272A @dfn{character token type} (or @dfn{literal character token}) is
3273written in the grammar using the same syntax used in C for character
3274constants; for example, @code{'+'} is a character token type. A
3275character token type doesn't need to be declared unless you need to
3276specify its semantic value data type (@pxref{Value Type, ,Data Types of
3277Semantic Values}), associativity, or precedence (@pxref{Precedence,
3278,Operator Precedence}).
bfa74976
RS
3279
3280By convention, a character token type is used only to represent a
3281token that consists of that particular character. Thus, the token
3282type @code{'+'} is used to represent the character @samp{+} as a
3283token. Nothing enforces this convention, but if you depart from it,
3284your program will confuse other readers.
3285
3286All the usual escape sequences used in character literals in C can be
3287used in Bison as well, but you must not use the null character as a
72d2299c
PE
3288character literal because its numeric code, zero, signifies
3289end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3290for @code{yylex}}). Also, unlike standard C, trigraphs have no
3291special meaning in Bison character literals, nor is backslash-newline
3292allowed.
931c7513
RS
3293
3294@item
3295@cindex string token
3296@cindex literal string token
9ecbd125 3297@cindex multicharacter literal
931c7513
RS
3298A @dfn{literal string token} is written like a C string constant; for
3299example, @code{"<="} is a literal string token. A literal string token
3300doesn't need to be declared unless you need to specify its semantic
14ded682 3301value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3302(@pxref{Precedence}).
3303
3304You can associate the literal string token with a symbolic name as an
3305alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3306Declarations}). If you don't do that, the lexical analyzer has to
3307retrieve the token number for the literal string token from the
3308@code{yytname} table (@pxref{Calling Convention}).
3309
c827f760 3310@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3311
3312By convention, a literal string token is used only to represent a token
3313that consists of that particular string. Thus, you should use the token
3314type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3315does not enforce this convention, but if you depart from it, people who
931c7513
RS
3316read your program will be confused.
3317
3318All the escape sequences used in string literals in C can be used in
92ac3705
PE
3319Bison as well, except that you must not use a null character within a
3320string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3321meaning in Bison string literals, nor is backslash-newline allowed. A
3322literal string token must contain two or more characters; for a token
3323containing just one character, use a character token (see above).
bfa74976
RS
3324@end itemize
3325
3326How you choose to write a terminal symbol has no effect on its
3327grammatical meaning. That depends only on where it appears in rules and
3328on when the parser function returns that symbol.
3329
72d2299c
PE
3330The value returned by @code{yylex} is always one of the terminal
3331symbols, except that a zero or negative value signifies end-of-input.
3332Whichever way you write the token type in the grammar rules, you write
3333it the same way in the definition of @code{yylex}. The numeric code
3334for a character token type is simply the positive numeric code of the
3335character, so @code{yylex} can use the identical value to generate the
3336requisite code, though you may need to convert it to @code{unsigned
3337char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3338Each named token type becomes a C macro in the parser implementation
3339file, so @code{yylex} can use the name to stand for the code. (This
3340is why periods don't make sense in terminal symbols.) @xref{Calling
3341Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3342
3343If @code{yylex} is defined in a separate file, you need to arrange for the
3344token-type macro definitions to be available there. Use the @samp{-d}
3345option when you run Bison, so that it will write these macro definitions
3346into a separate header file @file{@var{name}.tab.h} which you can include
3347in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3348
72d2299c 3349If you want to write a grammar that is portable to any Standard C
9d9b8b70 3350host, you must use only nonnull character tokens taken from the basic
c827f760 3351execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3352digits, the 52 lower- and upper-case English letters, and the
3353characters in the following C-language string:
3354
3355@example
3356"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3357@end example
3358
f8e1c9e5
AD
3359The @code{yylex} function and Bison must use a consistent character set
3360and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3361ASCII environment, but then compile and run the resulting
f8e1c9e5 3362program in an environment that uses an incompatible character set like
8a4281b9
JD
3363EBCDIC, the resulting program may not work because the tables
3364generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3365character tokens. It is standard practice for software distributions to
3366contain C source files that were generated by Bison in an
8a4281b9
JD
3367ASCII environment, so installers on platforms that are
3368incompatible with ASCII must rebuild those files before
f8e1c9e5 3369compiling them.
e966383b 3370
bfa74976
RS
3371The symbol @code{error} is a terminal symbol reserved for error recovery
3372(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3373In particular, @code{yylex} should never return this value. The default
3374value of the error token is 256, unless you explicitly assigned 256 to
3375one of your tokens with a @code{%token} declaration.
bfa74976 3376
342b8b6e 3377@node Rules
bfa74976
RS
3378@section Syntax of Grammar Rules
3379@cindex rule syntax
3380@cindex grammar rule syntax
3381@cindex syntax of grammar rules
3382
3383A Bison grammar rule has the following general form:
3384
3385@example
e425e872 3386@group
5e9b6624 3387@var{result}: @var{components}@dots{};
e425e872 3388@end group
bfa74976
RS
3389@end example
3390
3391@noindent
9ecbd125 3392where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3393and @var{components} are various terminal and nonterminal symbols that
13863333 3394are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3395
3396For example,
3397
3398@example
3399@group
5e9b6624 3400exp: exp '+' exp;
bfa74976
RS
3401@end group
3402@end example
3403
3404@noindent
3405says that two groupings of type @code{exp}, with a @samp{+} token in between,
3406can be combined into a larger grouping of type @code{exp}.
3407
72d2299c
PE
3408White space in rules is significant only to separate symbols. You can add
3409extra white space as you wish.
bfa74976
RS
3410
3411Scattered among the components can be @var{actions} that determine
3412the semantics of the rule. An action looks like this:
3413
3414@example
3415@{@var{C statements}@}
3416@end example
3417
3418@noindent
287c78f6
PE
3419@cindex braced code
3420This is an example of @dfn{braced code}, that is, C code surrounded by
3421braces, much like a compound statement in C@. Braced code can contain
3422any sequence of C tokens, so long as its braces are balanced. Bison
3423does not check the braced code for correctness directly; it merely
ff7571c0
JD
3424copies the code to the parser implementation file, where the C
3425compiler can check it.
287c78f6
PE
3426
3427Within braced code, the balanced-brace count is not affected by braces
3428within comments, string literals, or character constants, but it is
3429affected by the C digraphs @samp{<%} and @samp{%>} that represent
3430braces. At the top level braced code must be terminated by @samp{@}}
3431and not by a digraph. Bison does not look for trigraphs, so if braced
3432code uses trigraphs you should ensure that they do not affect the
3433nesting of braces or the boundaries of comments, string literals, or
3434character constants.
3435
bfa74976
RS
3436Usually there is only one action and it follows the components.
3437@xref{Actions}.
3438
3439@findex |
3440Multiple rules for the same @var{result} can be written separately or can
3441be joined with the vertical-bar character @samp{|} as follows:
3442
bfa74976
RS
3443@example
3444@group
5e9b6624
AD
3445@var{result}:
3446 @var{rule1-components}@dots{}
3447| @var{rule2-components}@dots{}
3448@dots{}
3449;
bfa74976
RS
3450@end group
3451@end example
bfa74976
RS
3452
3453@noindent
3454They are still considered distinct rules even when joined in this way.
3455
3456If @var{components} in a rule is empty, it means that @var{result} can
3457match the empty string. For example, here is how to define a
3458comma-separated sequence of zero or more @code{exp} groupings:
3459
3460@example
3461@group
5e9b6624
AD
3462expseq:
3463 /* empty */
3464| expseq1
3465;
bfa74976
RS
3466@end group
3467
3468@group
5e9b6624
AD
3469expseq1:
3470 exp
3471| expseq1 ',' exp
3472;
bfa74976
RS
3473@end group
3474@end example
3475
3476@noindent
3477It is customary to write a comment @samp{/* empty */} in each rule
3478with no components.
3479
342b8b6e 3480@node Recursion
bfa74976
RS
3481@section Recursive Rules
3482@cindex recursive rule
3483
f8e1c9e5
AD
3484A rule is called @dfn{recursive} when its @var{result} nonterminal
3485appears also on its right hand side. Nearly all Bison grammars need to
3486use recursion, because that is the only way to define a sequence of any
3487number of a particular thing. Consider this recursive definition of a
9ecbd125 3488comma-separated sequence of one or more expressions:
bfa74976
RS
3489
3490@example
3491@group
5e9b6624
AD
3492expseq1:
3493 exp
3494| expseq1 ',' exp
3495;
bfa74976
RS
3496@end group
3497@end example
3498
3499@cindex left recursion
3500@cindex right recursion
3501@noindent
3502Since the recursive use of @code{expseq1} is the leftmost symbol in the
3503right hand side, we call this @dfn{left recursion}. By contrast, here
3504the same construct is defined using @dfn{right recursion}:
3505
3506@example
3507@group
5e9b6624
AD
3508expseq1:
3509 exp
3510| exp ',' expseq1
3511;
bfa74976
RS
3512@end group
3513@end example
3514
3515@noindent
ec3bc396
AD
3516Any kind of sequence can be defined using either left recursion or right
3517recursion, but you should always use left recursion, because it can
3518parse a sequence of any number of elements with bounded stack space.
3519Right recursion uses up space on the Bison stack in proportion to the
3520number of elements in the sequence, because all the elements must be
3521shifted onto the stack before the rule can be applied even once.
3522@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3523of this.
bfa74976
RS
3524
3525@cindex mutual recursion
3526@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3527rule does not appear directly on its right hand side, but does appear
3528in rules for other nonterminals which do appear on its right hand
13863333 3529side.
bfa74976
RS
3530
3531For example:
3532
3533@example
3534@group
5e9b6624
AD
3535expr:
3536 primary
3537| primary '+' primary
3538;
bfa74976
RS
3539@end group
3540
3541@group
5e9b6624
AD
3542primary:
3543 constant
3544| '(' expr ')'
3545;
bfa74976
RS
3546@end group
3547@end example
3548
3549@noindent
3550defines two mutually-recursive nonterminals, since each refers to the
3551other.
3552
342b8b6e 3553@node Semantics
bfa74976
RS
3554@section Defining Language Semantics
3555@cindex defining language semantics
13863333 3556@cindex language semantics, defining
bfa74976
RS
3557
3558The grammar rules for a language determine only the syntax. The semantics
3559are determined by the semantic values associated with various tokens and
3560groupings, and by the actions taken when various groupings are recognized.
3561
3562For example, the calculator calculates properly because the value
3563associated with each expression is the proper number; it adds properly
3564because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3565the numbers associated with @var{x} and @var{y}.
3566
3567@menu
3568* Value Type:: Specifying one data type for all semantic values.
3569* Multiple Types:: Specifying several alternative data types.
3570* Actions:: An action is the semantic definition of a grammar rule.
3571* Action Types:: Specifying data types for actions to operate on.
3572* Mid-Rule Actions:: Most actions go at the end of a rule.
3573 This says when, why and how to use the exceptional
3574 action in the middle of a rule.
3575@end menu
3576
342b8b6e 3577@node Value Type
bfa74976
RS
3578@subsection Data Types of Semantic Values
3579@cindex semantic value type
3580@cindex value type, semantic
3581@cindex data types of semantic values
3582@cindex default data type
3583
3584In a simple program it may be sufficient to use the same data type for
3585the semantic values of all language constructs. This was true in the
8a4281b9 3586RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3587Notation Calculator}).
bfa74976 3588
ddc8ede1
PE
3589Bison normally uses the type @code{int} for semantic values if your
3590program uses the same data type for all language constructs. To
bfa74976
RS
3591specify some other type, define @code{YYSTYPE} as a macro, like this:
3592
3593@example
3594#define YYSTYPE double
3595@end example
3596
3597@noindent
50cce58e
PE
3598@code{YYSTYPE}'s replacement list should be a type name
3599that does not contain parentheses or square brackets.
342b8b6e 3600This macro definition must go in the prologue of the grammar file
75f5aaea 3601(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3602
342b8b6e 3603@node Multiple Types
bfa74976
RS
3604@subsection More Than One Value Type
3605
3606In most programs, you will need different data types for different kinds
3607of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3608@code{int} or @code{long int}, while a string constant needs type
3609@code{char *}, and an identifier might need a pointer to an entry in the
3610symbol table.
bfa74976
RS
3611
3612To use more than one data type for semantic values in one parser, Bison
3613requires you to do two things:
3614
3615@itemize @bullet
3616@item
ddc8ede1 3617Specify the entire collection of possible data types, either by using the
704a47c4 3618@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3619Value Types}), or by using a @code{typedef} or a @code{#define} to
3620define @code{YYSTYPE} to be a union type whose member names are
3621the type tags.
bfa74976
RS
3622
3623@item
14ded682
AD
3624Choose one of those types for each symbol (terminal or nonterminal) for
3625which semantic values are used. This is done for tokens with the
3626@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3627and for groupings with the @code{%type} Bison declaration (@pxref{Type
3628Decl, ,Nonterminal Symbols}).
bfa74976
RS
3629@end itemize
3630
342b8b6e 3631@node Actions
bfa74976
RS
3632@subsection Actions
3633@cindex action
3634@vindex $$
3635@vindex $@var{n}
d013372c
AR
3636@vindex $@var{name}
3637@vindex $[@var{name}]
bfa74976
RS
3638
3639An action accompanies a syntactic rule and contains C code to be executed
3640each time an instance of that rule is recognized. The task of most actions
3641is to compute a semantic value for the grouping built by the rule from the
3642semantic values associated with tokens or smaller groupings.
3643
287c78f6
PE
3644An action consists of braced code containing C statements, and can be
3645placed at any position in the rule;
704a47c4
AD
3646it is executed at that position. Most rules have just one action at the
3647end of the rule, following all the components. Actions in the middle of
3648a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3649Actions, ,Actions in Mid-Rule}).
bfa74976 3650
ff7571c0
JD
3651The C code in an action can refer to the semantic values of the
3652components matched by the rule with the construct @code{$@var{n}},
3653which stands for the value of the @var{n}th component. The semantic
3654value for the grouping being constructed is @code{$$}. In addition,
3655the semantic values of symbols can be accessed with the named
3656references construct @code{$@var{name}} or @code{$[@var{name}]}.
3657Bison translates both of these constructs into expressions of the
3658appropriate type when it copies the actions into the parser
3659implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3660for the current grouping) is translated to a modifiable lvalue, so it
3661can be assigned to.
bfa74976
RS
3662
3663Here is a typical example:
3664
3665@example
3666@group
5e9b6624
AD
3667exp:
3668@dots{}
3669| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3670@end group
3671@end example
3672
d013372c
AR
3673Or, in terms of named references:
3674
3675@example
3676@group
5e9b6624
AD
3677exp[result]:
3678@dots{}
3679| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3680@end group
3681@end example
3682
bfa74976
RS
3683@noindent
3684This rule constructs an @code{exp} from two smaller @code{exp} groupings
3685connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3686(@code{$left} and @code{$right})
bfa74976
RS
3687refer to the semantic values of the two component @code{exp} groupings,
3688which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3689The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3690semantic value of
bfa74976
RS
3691the addition-expression just recognized by the rule. If there were a
3692useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3693referred to as @code{$2}.
bfa74976 3694
a7b15ab9
JD
3695@xref{Named References}, for more information about using the named
3696references construct.
d013372c 3697
3ded9a63
AD
3698Note that the vertical-bar character @samp{|} is really a rule
3699separator, and actions are attached to a single rule. This is a
3700difference with tools like Flex, for which @samp{|} stands for either
3701``or'', or ``the same action as that of the next rule''. In the
3702following example, the action is triggered only when @samp{b} is found:
3703
3704@example
3705@group
3706a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3707@end group
3708@end example
3709
bfa74976
RS
3710@cindex default action
3711If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3712@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3713becomes the value of the whole rule. Of course, the default action is
3714valid only if the two data types match. There is no meaningful default
3715action for an empty rule; every empty rule must have an explicit action
3716unless the rule's value does not matter.
bfa74976
RS
3717
3718@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3719to tokens and groupings on the stack @emph{before} those that match the
3720current rule. This is a very risky practice, and to use it reliably
3721you must be certain of the context in which the rule is applied. Here
3722is a case in which you can use this reliably:
3723
3724@example
3725@group
5e9b6624
AD
3726foo:
3727 expr bar '+' expr @{ @dots{} @}
3728| expr bar '-' expr @{ @dots{} @}
3729;
bfa74976
RS
3730@end group
3731
3732@group
5e9b6624
AD
3733bar:
3734 /* empty */ @{ previous_expr = $0; @}
3735;
bfa74976
RS
3736@end group
3737@end example
3738
3739As long as @code{bar} is used only in the fashion shown here, @code{$0}
3740always refers to the @code{expr} which precedes @code{bar} in the
3741definition of @code{foo}.
3742
32c29292 3743@vindex yylval
742e4900 3744It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3745any, from a semantic action.
3746This semantic value is stored in @code{yylval}.
3747@xref{Action Features, ,Special Features for Use in Actions}.
3748
342b8b6e 3749@node Action Types
bfa74976
RS
3750@subsection Data Types of Values in Actions
3751@cindex action data types
3752@cindex data types in actions
3753
3754If you have chosen a single data type for semantic values, the @code{$$}
3755and @code{$@var{n}} constructs always have that data type.
3756
3757If you have used @code{%union} to specify a variety of data types, then you
3758must declare a choice among these types for each terminal or nonterminal
3759symbol that can have a semantic value. Then each time you use @code{$$} or
3760@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3761in the rule. In this example,
bfa74976
RS
3762
3763@example
3764@group
5e9b6624
AD
3765exp:
3766 @dots{}
3767| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3768@end group
3769@end example
3770
3771@noindent
3772@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3773have the data type declared for the nonterminal symbol @code{exp}. If
3774@code{$2} were used, it would have the data type declared for the
e0c471a9 3775terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3776
3777Alternatively, you can specify the data type when you refer to the value,
3778by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3779reference. For example, if you have defined types as shown here:
3780
3781@example
3782@group
3783%union @{
3784 int itype;
3785 double dtype;
3786@}
3787@end group
3788@end example
3789
3790@noindent
3791then you can write @code{$<itype>1} to refer to the first subunit of the
3792rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3793
342b8b6e 3794@node Mid-Rule Actions
bfa74976
RS
3795@subsection Actions in Mid-Rule
3796@cindex actions in mid-rule
3797@cindex mid-rule actions
3798
3799Occasionally it is useful to put an action in the middle of a rule.
3800These actions are written just like usual end-of-rule actions, but they
3801are executed before the parser even recognizes the following components.
3802
3803A mid-rule action may refer to the components preceding it using
3804@code{$@var{n}}, but it may not refer to subsequent components because
3805it is run before they are parsed.
3806
3807The mid-rule action itself counts as one of the components of the rule.
3808This makes a difference when there is another action later in the same rule
3809(and usually there is another at the end): you have to count the actions
3810along with the symbols when working out which number @var{n} to use in
3811@code{$@var{n}}.
3812
3813The mid-rule action can also have a semantic value. The action can set
3814its value with an assignment to @code{$$}, and actions later in the rule
3815can refer to the value using @code{$@var{n}}. Since there is no symbol
3816to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3817in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3818specify a data type each time you refer to this value.
bfa74976
RS
3819
3820There is no way to set the value of the entire rule with a mid-rule
3821action, because assignments to @code{$$} do not have that effect. The
3822only way to set the value for the entire rule is with an ordinary action
3823at the end of the rule.
3824
3825Here is an example from a hypothetical compiler, handling a @code{let}
3826statement that looks like @samp{let (@var{variable}) @var{statement}} and
3827serves to create a variable named @var{variable} temporarily for the
3828duration of @var{statement}. To parse this construct, we must put
3829@var{variable} into the symbol table while @var{statement} is parsed, then
3830remove it afterward. Here is how it is done:
3831
3832@example
3833@group
5e9b6624
AD
3834stmt:
3835 LET '(' var ')'
3836 @{ $<context>$ = push_context (); declare_variable ($3); @}
3837 stmt
3838 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3839@end group
3840@end example
3841
3842@noindent
3843As soon as @samp{let (@var{variable})} has been recognized, the first
3844action is run. It saves a copy of the current semantic context (the
3845list of accessible variables) as its semantic value, using alternative
3846@code{context} in the data-type union. Then it calls
3847@code{declare_variable} to add the new variable to that list. Once the
3848first action is finished, the embedded statement @code{stmt} can be
3849parsed. Note that the mid-rule action is component number 5, so the
3850@samp{stmt} is component number 6.
3851
3852After the embedded statement is parsed, its semantic value becomes the
3853value of the entire @code{let}-statement. Then the semantic value from the
3854earlier action is used to restore the prior list of variables. This
3855removes the temporary @code{let}-variable from the list so that it won't
3856appear to exist while the rest of the program is parsed.
3857
841a7737
JD
3858@findex %destructor
3859@cindex discarded symbols, mid-rule actions
3860@cindex error recovery, mid-rule actions
3861In the above example, if the parser initiates error recovery (@pxref{Error
3862Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3863it might discard the previous semantic context @code{$<context>5} without
3864restoring it.
3865Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3866Discarded Symbols}).
ec5479ce
JD
3867However, Bison currently provides no means to declare a destructor specific to
3868a particular mid-rule action's semantic value.
841a7737
JD
3869
3870One solution is to bury the mid-rule action inside a nonterminal symbol and to
3871declare a destructor for that symbol:
3872
3873@example
3874@group
3875%type <context> let
3876%destructor @{ pop_context ($$); @} let
3877
3878%%
3879
5e9b6624
AD
3880stmt:
3881 let stmt
3882 @{
3883 $$ = $2;
3884 pop_context ($1);
3885 @};
841a7737 3886
5e9b6624
AD
3887let:
3888 LET '(' var ')'
3889 @{
3890 $$ = push_context ();
3891 declare_variable ($3);
3892 @};
841a7737
JD
3893
3894@end group
3895@end example
3896
3897@noindent
3898Note that the action is now at the end of its rule.
3899Any mid-rule action can be converted to an end-of-rule action in this way, and
3900this is what Bison actually does to implement mid-rule actions.
3901
bfa74976
RS
3902Taking action before a rule is completely recognized often leads to
3903conflicts since the parser must commit to a parse in order to execute the
3904action. For example, the following two rules, without mid-rule actions,
3905can coexist in a working parser because the parser can shift the open-brace
3906token and look at what follows before deciding whether there is a
3907declaration or not:
3908
3909@example
3910@group
5e9b6624
AD
3911compound:
3912 '@{' declarations statements '@}'
3913| '@{' statements '@}'
3914;
bfa74976
RS
3915@end group
3916@end example
3917
3918@noindent
3919But when we add a mid-rule action as follows, the rules become nonfunctional:
3920
3921@example
3922@group
5e9b6624
AD
3923compound:
3924 @{ prepare_for_local_variables (); @}
3925 '@{' declarations statements '@}'
bfa74976
RS
3926@end group
3927@group
5e9b6624
AD
3928| '@{' statements '@}'
3929;
bfa74976
RS
3930@end group
3931@end example
3932
3933@noindent
3934Now the parser is forced to decide whether to run the mid-rule action
3935when it has read no farther than the open-brace. In other words, it
3936must commit to using one rule or the other, without sufficient
3937information to do it correctly. (The open-brace token is what is called
742e4900
JD
3938the @dfn{lookahead} token at this time, since the parser is still
3939deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3940
3941You might think that you could correct the problem by putting identical
3942actions into the two rules, like this:
3943
3944@example
3945@group
5e9b6624
AD
3946compound:
3947 @{ prepare_for_local_variables (); @}
3948 '@{' declarations statements '@}'
3949| @{ prepare_for_local_variables (); @}
3950 '@{' statements '@}'
3951;
bfa74976
RS
3952@end group
3953@end example
3954
3955@noindent
3956But this does not help, because Bison does not realize that the two actions
3957are identical. (Bison never tries to understand the C code in an action.)
3958
3959If the grammar is such that a declaration can be distinguished from a
3960statement by the first token (which is true in C), then one solution which
3961does work is to put the action after the open-brace, like this:
3962
3963@example
3964@group
5e9b6624
AD
3965compound:
3966 '@{' @{ prepare_for_local_variables (); @}
3967 declarations statements '@}'
3968| '@{' statements '@}'
3969;
bfa74976
RS
3970@end group
3971@end example
3972
3973@noindent
3974Now the first token of the following declaration or statement,
3975which would in any case tell Bison which rule to use, can still do so.
3976
3977Another solution is to bury the action inside a nonterminal symbol which
3978serves as a subroutine:
3979
3980@example
3981@group
5e9b6624
AD
3982subroutine:
3983 /* empty */ @{ prepare_for_local_variables (); @}
3984;
bfa74976
RS
3985@end group
3986
3987@group
5e9b6624
AD
3988compound:
3989 subroutine '@{' declarations statements '@}'
3990| subroutine '@{' statements '@}'
3991;
bfa74976
RS
3992@end group
3993@end example
3994
3995@noindent
3996Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3997deciding which rule for @code{compound} it will eventually use.
bfa74976 3998
303834cc 3999@node Tracking Locations
847bf1f5
AD
4000@section Tracking Locations
4001@cindex location
95923bd6
AD
4002@cindex textual location
4003@cindex location, textual
847bf1f5
AD
4004
4005Though grammar rules and semantic actions are enough to write a fully
72d2299c 4006functional parser, it can be useful to process some additional information,
3e259915
MA
4007especially symbol locations.
4008
704a47c4
AD
4009The way locations are handled is defined by providing a data type, and
4010actions to take when rules are matched.
847bf1f5
AD
4011
4012@menu
4013* Location Type:: Specifying a data type for locations.
4014* Actions and Locations:: Using locations in actions.
4015* Location Default Action:: Defining a general way to compute locations.
4016@end menu
4017
342b8b6e 4018@node Location Type
847bf1f5
AD
4019@subsection Data Type of Locations
4020@cindex data type of locations
4021@cindex default location type
4022
4023Defining a data type for locations is much simpler than for semantic values,
4024since all tokens and groupings always use the same type.
4025
50cce58e
PE
4026You can specify the type of locations by defining a macro called
4027@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4028defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4029When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4030four members:
4031
4032@example
6273355b 4033typedef struct YYLTYPE
847bf1f5
AD
4034@{
4035 int first_line;
4036 int first_column;
4037 int last_line;
4038 int last_column;
6273355b 4039@} YYLTYPE;
847bf1f5
AD
4040@end example
4041
d59e456d
AD
4042When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4043initializes all these fields to 1 for @code{yylloc}. To initialize
4044@code{yylloc} with a custom location type (or to chose a different
4045initialization), use the @code{%initial-action} directive. @xref{Initial
4046Action Decl, , Performing Actions before Parsing}.
cd48d21d 4047
342b8b6e 4048@node Actions and Locations
847bf1f5
AD
4049@subsection Actions and Locations
4050@cindex location actions
4051@cindex actions, location
4052@vindex @@$
4053@vindex @@@var{n}
d013372c
AR
4054@vindex @@@var{name}
4055@vindex @@[@var{name}]
847bf1f5
AD
4056
4057Actions are not only useful for defining language semantics, but also for
4058describing the behavior of the output parser with locations.
4059
4060The most obvious way for building locations of syntactic groupings is very
72d2299c 4061similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4062constructs can be used to access the locations of the elements being matched.
4063The location of the @var{n}th component of the right hand side is
4064@code{@@@var{n}}, while the location of the left hand side grouping is
4065@code{@@$}.
4066
d013372c
AR
4067In addition, the named references construct @code{@@@var{name}} and
4068@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4069@xref{Named References}, for more information about using the named
4070references construct.
d013372c 4071
3e259915 4072Here is a basic example using the default data type for locations:
847bf1f5
AD
4073
4074@example
4075@group
5e9b6624
AD
4076exp:
4077 @dots{}
4078| exp '/' exp
4079 @{
4080 @@$.first_column = @@1.first_column;
4081 @@$.first_line = @@1.first_line;
4082 @@$.last_column = @@3.last_column;
4083 @@$.last_line = @@3.last_line;
4084 if ($3)
4085 $$ = $1 / $3;
4086 else
4087 @{
4088 $$ = 1;
4089 fprintf (stderr,
4090 "Division by zero, l%d,c%d-l%d,c%d",
4091 @@3.first_line, @@3.first_column,
4092 @@3.last_line, @@3.last_column);
4093 @}
4094 @}
847bf1f5
AD
4095@end group
4096@end example
4097
3e259915 4098As for semantic values, there is a default action for locations that is
72d2299c 4099run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4100beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4101last symbol.
3e259915 4102
72d2299c 4103With this default action, the location tracking can be fully automatic. The
3e259915
MA
4104example above simply rewrites this way:
4105
4106@example
4107@group
5e9b6624
AD
4108exp:
4109 @dots{}
4110| exp '/' exp
4111 @{
4112 if ($3)
4113 $$ = $1 / $3;
4114 else
4115 @{
4116 $$ = 1;
4117 fprintf (stderr,
4118 "Division by zero, l%d,c%d-l%d,c%d",
4119 @@3.first_line, @@3.first_column,
4120 @@3.last_line, @@3.last_column);
4121 @}
4122 @}
3e259915
MA
4123@end group
4124@end example
847bf1f5 4125
32c29292 4126@vindex yylloc
742e4900 4127It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4128from a semantic action.
4129This location is stored in @code{yylloc}.
4130@xref{Action Features, ,Special Features for Use in Actions}.
4131
342b8b6e 4132@node Location Default Action
847bf1f5
AD
4133@subsection Default Action for Locations
4134@vindex YYLLOC_DEFAULT
8a4281b9 4135@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4136
72d2299c 4137Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4138locations are much more general than semantic values, there is room in
4139the output parser to redefine the default action to take for each
72d2299c 4140rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4141matched, before the associated action is run. It is also invoked
4142while processing a syntax error, to compute the error's location.
8a4281b9 4143Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4144parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4145of that ambiguity.
847bf1f5 4146
3e259915 4147Most of the time, this macro is general enough to suppress location
79282c6c 4148dedicated code from semantic actions.
847bf1f5 4149
72d2299c 4150The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4151the location of the grouping (the result of the computation). When a
766de5eb 4152rule is matched, the second parameter identifies locations of
96b93a3d 4153all right hand side elements of the rule being matched, and the third
8710fc41 4154parameter is the size of the rule's right hand side.
8a4281b9 4155When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4156right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4157When processing a syntax error, the second parameter identifies locations
4158of the symbols that were discarded during error processing, and the third
96b93a3d 4159parameter is the number of discarded symbols.
847bf1f5 4160
766de5eb 4161By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4162
c93f22fc
AD
4163@example
4164@group
4165# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4166do \
4167 if (N) \
4168 @{ \
4169 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4170 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4171 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4172 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4173 @} \
4174 else \
4175 @{ \
4176 (Cur).first_line = (Cur).last_line = \
4177 YYRHSLOC(Rhs, 0).last_line; \
4178 (Cur).first_column = (Cur).last_column = \
4179 YYRHSLOC(Rhs, 0).last_column; \
4180 @} \
4181while (0)
4182@end group
4183@end example
676385e2 4184
aaaa2aae 4185@noindent
766de5eb
PE
4186where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4187in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4188just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4189
3e259915 4190When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4191
3e259915 4192@itemize @bullet
79282c6c 4193@item
72d2299c 4194All arguments are free of side-effects. However, only the first one (the
3e259915 4195result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4196
3e259915 4197@item
766de5eb
PE
4198For consistency with semantic actions, valid indexes within the
4199right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4200valid index, and it refers to the symbol just before the reduction.
4201During error processing @var{n} is always positive.
0ae99356
PE
4202
4203@item
4204Your macro should parenthesize its arguments, if need be, since the
4205actual arguments may not be surrounded by parentheses. Also, your
4206macro should expand to something that can be used as a single
4207statement when it is followed by a semicolon.
3e259915 4208@end itemize
847bf1f5 4209
378e917c 4210@node Named References
a7b15ab9 4211@section Named References
378e917c
JD
4212@cindex named references
4213
a40e77eb
JD
4214As described in the preceding sections, the traditional way to refer to any
4215semantic value or location is a @dfn{positional reference}, which takes the
4216form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4217such a reference is not very descriptive. Moreover, if you later decide to
4218insert or remove symbols in the right-hand side of a grammar rule, the need
4219to renumber such references can be tedious and error-prone.
4220
4221To avoid these issues, you can also refer to a semantic value or location
4222using a @dfn{named reference}. First of all, original symbol names may be
4223used as named references. For example:
378e917c
JD
4224
4225@example
4226@group
4227invocation: op '(' args ')'
4228 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4229@end group
4230@end example
4231
4232@noindent
a40e77eb 4233Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4234
4235@example
4236@group
4237invocation: op '(' args ')'
4238 @{ $$ = new_invocation ($op, $args, @@$); @}
4239@end group
4240@end example
4241
4242@noindent
4243However, sometimes regular symbol names are not sufficient due to
4244ambiguities:
4245
4246@example
4247@group
4248exp: exp '/' exp
4249 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4250
4251exp: exp '/' exp
4252 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4253
4254exp: exp '/' exp
4255 @{ $$ = $1 / $3; @} // No error.
4256@end group
4257@end example
4258
4259@noindent
4260When ambiguity occurs, explicitly declared names may be used for values and
4261locations. Explicit names are declared as a bracketed name after a symbol
4262appearance in rule definitions. For example:
4263@example
4264@group
4265exp[result]: exp[left] '/' exp[right]
4266 @{ $result = $left / $right; @}
4267@end group
4268@end example
4269
4270@noindent
a7b15ab9
JD
4271In order to access a semantic value generated by a mid-rule action, an
4272explicit name may also be declared by putting a bracketed name after the
4273closing brace of the mid-rule action code:
378e917c
JD
4274@example
4275@group
4276exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4277 @{ $res = $left + $right; @}
4278@end group
4279@end example
4280
4281@noindent
4282
4283In references, in order to specify names containing dots and dashes, an explicit
4284bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4285@example
4286@group
762caaf6 4287if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4288 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4289@end group
4290@end example
4291
4292It often happens that named references are followed by a dot, dash or other
4293C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4294@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4295@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4296value. In order to force Bison to recognize @samp{name.suffix} in its
4297entirety as the name of a semantic value, the bracketed syntax
4298@samp{$[name.suffix]} must be used.
4299
4300The named references feature is experimental. More user feedback will help
4301to stabilize it.
378e917c 4302
342b8b6e 4303@node Declarations
bfa74976
RS
4304@section Bison Declarations
4305@cindex declarations, Bison
4306@cindex Bison declarations
4307
4308The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4309used in formulating the grammar and the data types of semantic values.
4310@xref{Symbols}.
4311
4312All token type names (but not single-character literal tokens such as
4313@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4314declared if you need to specify which data type to use for the semantic
4315value (@pxref{Multiple Types, ,More Than One Value Type}).
4316
ff7571c0
JD
4317The first rule in the grammar file also specifies the start symbol, by
4318default. If you want some other symbol to be the start symbol, you
4319must declare it explicitly (@pxref{Language and Grammar, ,Languages
4320and Context-Free Grammars}).
bfa74976
RS
4321
4322@menu
b50d2359 4323* Require Decl:: Requiring a Bison version.
bfa74976
RS
4324* Token Decl:: Declaring terminal symbols.
4325* Precedence Decl:: Declaring terminals with precedence and associativity.
4326* Union Decl:: Declaring the set of all semantic value types.
4327* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4328* Initial Action Decl:: Code run before parsing starts.
72f889cc 4329* Destructor Decl:: Declaring how symbols are freed.
d6328241 4330* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4331* Start Decl:: Specifying the start symbol.
4332* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4333* Push Decl:: Requesting a push parser.
bfa74976 4334* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4335* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4336* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4337@end menu
4338
b50d2359
AD
4339@node Require Decl
4340@subsection Require a Version of Bison
4341@cindex version requirement
4342@cindex requiring a version of Bison
4343@findex %require
4344
4345You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4346the requirement is not met, @command{bison} exits with an error (exit
4347status 63).
b50d2359
AD
4348
4349@example
4350%require "@var{version}"
4351@end example
4352
342b8b6e 4353@node Token Decl
bfa74976
RS
4354@subsection Token Type Names
4355@cindex declaring token type names
4356@cindex token type names, declaring
931c7513 4357@cindex declaring literal string tokens
bfa74976
RS
4358@findex %token
4359
4360The basic way to declare a token type name (terminal symbol) is as follows:
4361
4362@example
4363%token @var{name}
4364@end example
4365
4366Bison will convert this into a @code{#define} directive in
4367the parser, so that the function @code{yylex} (if it is in this file)
4368can use the name @var{name} to stand for this token type's code.
4369
d78f0ac9
AD
4370Alternatively, you can use @code{%left}, @code{%right},
4371@code{%precedence}, or
14ded682
AD
4372@code{%nonassoc} instead of @code{%token}, if you wish to specify
4373associativity and precedence. @xref{Precedence Decl, ,Operator
4374Precedence}.
bfa74976
RS
4375
4376You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4377a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4378following the token name:
bfa74976
RS
4379
4380@example
4381%token NUM 300
1452af69 4382%token XNUM 0x12d // a GNU extension
bfa74976
RS
4383@end example
4384
4385@noindent
4386It is generally best, however, to let Bison choose the numeric codes for
4387all token types. Bison will automatically select codes that don't conflict
e966383b 4388with each other or with normal characters.
bfa74976
RS
4389
4390In the event that the stack type is a union, you must augment the
4391@code{%token} or other token declaration to include the data type
704a47c4
AD
4392alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4393Than One Value Type}).
bfa74976
RS
4394
4395For example:
4396
4397@example
4398@group
4399%union @{ /* define stack type */
4400 double val;
4401 symrec *tptr;
4402@}
4403%token <val> NUM /* define token NUM and its type */
4404@end group
4405@end example
4406
931c7513
RS
4407You can associate a literal string token with a token type name by
4408writing the literal string at the end of a @code{%token}
4409declaration which declares the name. For example:
4410
4411@example
4412%token arrow "=>"
4413@end example
4414
4415@noindent
4416For example, a grammar for the C language might specify these names with
4417equivalent literal string tokens:
4418
4419@example
4420%token <operator> OR "||"
4421%token <operator> LE 134 "<="
4422%left OR "<="
4423@end example
4424
4425@noindent
4426Once you equate the literal string and the token name, you can use them
4427interchangeably in further declarations or the grammar rules. The
4428@code{yylex} function can use the token name or the literal string to
4429obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4430Syntax error messages passed to @code{yyerror} from the parser will reference
4431the literal string instead of the token name.
4432
4433The token numbered as 0 corresponds to end of file; the following line
4434allows for nicer error messages referring to ``end of file'' instead
4435of ``$end'':
4436
4437@example
4438%token END 0 "end of file"
4439@end example
931c7513 4440
342b8b6e 4441@node Precedence Decl
bfa74976
RS
4442@subsection Operator Precedence
4443@cindex precedence declarations
4444@cindex declaring operator precedence
4445@cindex operator precedence, declaring
4446
d78f0ac9
AD
4447Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4448@code{%precedence} declaration to
bfa74976
RS
4449declare a token and specify its precedence and associativity, all at
4450once. These are called @dfn{precedence declarations}.
704a47c4
AD
4451@xref{Precedence, ,Operator Precedence}, for general information on
4452operator precedence.
bfa74976 4453
ab7f29f8 4454The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4455@code{%token}: either
4456
4457@example
4458%left @var{symbols}@dots{}
4459@end example
4460
4461@noindent
4462or
4463
4464@example
4465%left <@var{type}> @var{symbols}@dots{}
4466@end example
4467
4468And indeed any of these declarations serves the purposes of @code{%token}.
4469But in addition, they specify the associativity and relative precedence for
4470all the @var{symbols}:
4471
4472@itemize @bullet
4473@item
4474The associativity of an operator @var{op} determines how repeated uses
4475of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4476@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4477grouping @var{y} with @var{z} first. @code{%left} specifies
4478left-associativity (grouping @var{x} with @var{y} first) and
4479@code{%right} specifies right-associativity (grouping @var{y} with
4480@var{z} first). @code{%nonassoc} specifies no associativity, which
4481means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4482considered a syntax error.
4483
d78f0ac9
AD
4484@code{%precedence} gives only precedence to the @var{symbols}, and
4485defines no associativity at all. Use this to define precedence only,
4486and leave any potential conflict due to associativity enabled.
4487
bfa74976
RS
4488@item
4489The precedence of an operator determines how it nests with other operators.
4490All the tokens declared in a single precedence declaration have equal
4491precedence and nest together according to their associativity.
4492When two tokens declared in different precedence declarations associate,
4493the one declared later has the higher precedence and is grouped first.
4494@end itemize
4495
ab7f29f8
JD
4496For backward compatibility, there is a confusing difference between the
4497argument lists of @code{%token} and precedence declarations.
4498Only a @code{%token} can associate a literal string with a token type name.
4499A precedence declaration always interprets a literal string as a reference to a
4500separate token.
4501For example:
4502
4503@example
4504%left OR "<=" // Does not declare an alias.
4505%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4506@end example
4507
342b8b6e 4508@node Union Decl
bfa74976
RS
4509@subsection The Collection of Value Types
4510@cindex declaring value types
4511@cindex value types, declaring
4512@findex %union
4513
287c78f6
PE
4514The @code{%union} declaration specifies the entire collection of
4515possible data types for semantic values. The keyword @code{%union} is
4516followed by braced code containing the same thing that goes inside a
4517@code{union} in C@.
bfa74976
RS
4518
4519For example:
4520
4521@example
4522@group
4523%union @{
4524 double val;
4525 symrec *tptr;
4526@}
4527@end group
4528@end example
4529
4530@noindent
4531This says that the two alternative types are @code{double} and @code{symrec
4532*}. They are given names @code{val} and @code{tptr}; these names are used
4533in the @code{%token} and @code{%type} declarations to pick one of the types
4534for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4535
8a4281b9 4536As an extension to POSIX, a tag is allowed after the
6273355b
PE
4537@code{union}. For example:
4538
4539@example
4540@group
4541%union value @{
4542 double val;
4543 symrec *tptr;
4544@}
4545@end group
4546@end example
4547
d6ca7905 4548@noindent
6273355b
PE
4549specifies the union tag @code{value}, so the corresponding C type is
4550@code{union value}. If you do not specify a tag, it defaults to
4551@code{YYSTYPE}.
4552
8a4281b9 4553As another extension to POSIX, you may specify multiple
d6ca7905
PE
4554@code{%union} declarations; their contents are concatenated. However,
4555only the first @code{%union} declaration can specify a tag.
4556
6273355b 4557Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4558a semicolon after the closing brace.
4559
ddc8ede1
PE
4560Instead of @code{%union}, you can define and use your own union type
4561@code{YYSTYPE} if your grammar contains at least one
4562@samp{<@var{type}>} tag. For example, you can put the following into
4563a header file @file{parser.h}:
4564
4565@example
4566@group
4567union YYSTYPE @{
4568 double val;
4569 symrec *tptr;
4570@};
4571typedef union YYSTYPE YYSTYPE;
4572@end group
4573@end example
4574
4575@noindent
4576and then your grammar can use the following
4577instead of @code{%union}:
4578
4579@example
4580@group
4581%@{
4582#include "parser.h"
4583%@}
4584%type <val> expr
4585%token <tptr> ID
4586@end group
4587@end example
4588
342b8b6e 4589@node Type Decl
bfa74976
RS
4590@subsection Nonterminal Symbols
4591@cindex declaring value types, nonterminals
4592@cindex value types, nonterminals, declaring
4593@findex %type
4594
4595@noindent
4596When you use @code{%union} to specify multiple value types, you must
4597declare the value type of each nonterminal symbol for which values are
4598used. This is done with a @code{%type} declaration, like this:
4599
4600@example
4601%type <@var{type}> @var{nonterminal}@dots{}
4602@end example
4603
4604@noindent
704a47c4
AD
4605Here @var{nonterminal} is the name of a nonterminal symbol, and
4606@var{type} is the name given in the @code{%union} to the alternative
4607that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4608can give any number of nonterminal symbols in the same @code{%type}
4609declaration, if they have the same value type. Use spaces to separate
4610the symbol names.
bfa74976 4611
931c7513
RS
4612You can also declare the value type of a terminal symbol. To do this,
4613use the same @code{<@var{type}>} construction in a declaration for the
4614terminal symbol. All kinds of token declarations allow
4615@code{<@var{type}>}.
4616
18d192f0
AD
4617@node Initial Action Decl
4618@subsection Performing Actions before Parsing
4619@findex %initial-action
4620
4621Sometimes your parser needs to perform some initializations before
4622parsing. The @code{%initial-action} directive allows for such arbitrary
4623code.
4624
4625@deffn {Directive} %initial-action @{ @var{code} @}
4626@findex %initial-action
287c78f6 4627Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4628@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4629@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4630@code{%parse-param}.
18d192f0
AD
4631@end deffn
4632
451364ed
AD
4633For instance, if your locations use a file name, you may use
4634
4635@example
48b16bbc 4636%parse-param @{ char const *file_name @};
451364ed
AD
4637%initial-action
4638@{
4626a15d 4639 @@$.initialize (file_name);
451364ed
AD
4640@};
4641@end example
4642
18d192f0 4643
72f889cc
AD
4644@node Destructor Decl
4645@subsection Freeing Discarded Symbols
4646@cindex freeing discarded symbols
4647@findex %destructor
12e35840 4648@findex <*>
3ebecc24 4649@findex <>
a85284cf
AD
4650During error recovery (@pxref{Error Recovery}), symbols already pushed
4651on the stack and tokens coming from the rest of the file are discarded
4652until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4653or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4654symbols on the stack must be discarded. Even if the parser succeeds, it
4655must discard the start symbol.
258b75ca
PE
4656
4657When discarded symbols convey heap based information, this memory is
4658lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4659in traditional compilers, it is unacceptable for programs like shells or
4660protocol implementations that may parse and execute indefinitely.
258b75ca 4661
a85284cf
AD
4662The @code{%destructor} directive defines code that is called when a
4663symbol is automatically discarded.
72f889cc
AD
4664
4665@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4666@findex %destructor
287c78f6
PE
4667Invoke the braced @var{code} whenever the parser discards one of the
4668@var{symbols}.
4b367315 4669Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4670with the discarded symbol, and @code{@@$} designates its location.
4671The additional parser parameters are also available (@pxref{Parser Function, ,
4672The Parser Function @code{yyparse}}).
ec5479ce 4673
b2a0b7ca
JD
4674When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4675per-symbol @code{%destructor}.
4676You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4677tag among @var{symbols}.
b2a0b7ca 4678In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4679grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4680per-symbol @code{%destructor}.
4681
12e35840 4682Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4683(These default forms are experimental.
4684More user feedback will help to determine whether they should become permanent
4685features.)
3ebecc24 4686You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4687exactly one @code{%destructor} declaration in your grammar file.
4688The parser will invoke the @var{code} associated with one of these whenever it
4689discards any user-defined grammar symbol that has no per-symbol and no per-type
4690@code{%destructor}.
4691The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4692symbol for which you have formally declared a semantic type tag (@code{%type}
4693counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4694The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4695symbol that has no declared semantic type tag.
72f889cc
AD
4696@end deffn
4697
b2a0b7ca 4698@noindent
12e35840 4699For example:
72f889cc 4700
c93f22fc 4701@example
ec5479ce
JD
4702%union @{ char *string; @}
4703%token <string> STRING1
4704%token <string> STRING2
4705%type <string> string1
4706%type <string> string2
b2a0b7ca
JD
4707%union @{ char character; @}
4708%token <character> CHR
4709%type <character> chr
12e35840
JD
4710%token TAGLESS
4711
b2a0b7ca 4712%destructor @{ @} <character>
12e35840
JD
4713%destructor @{ free ($$); @} <*>
4714%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4715%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4716@end example
72f889cc
AD
4717
4718@noindent
b2a0b7ca
JD
4719guarantees that, when the parser discards any user-defined symbol that has a
4720semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4721to @code{free} by default.
ec5479ce
JD
4722However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4723prints its line number to @code{stdout}.
4724It performs only the second @code{%destructor} in this case, so it invokes
4725@code{free} only once.
12e35840
JD
4726Finally, the parser merely prints a message whenever it discards any symbol,
4727such as @code{TAGLESS}, that has no semantic type tag.
4728
4729A Bison-generated parser invokes the default @code{%destructor}s only for
4730user-defined as opposed to Bison-defined symbols.
4731For example, the parser will not invoke either kind of default
4732@code{%destructor} for the special Bison-defined symbols @code{$accept},
4733@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4734none of which you can reference in your grammar.
4735It also will not invoke either for the @code{error} token (@pxref{Table of
4736Symbols, ,error}), which is always defined by Bison regardless of whether you
4737reference it in your grammar.
4738However, it may invoke one of them for the end token (token 0) if you
4739redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4740
c93f22fc 4741@example
3508ce36 4742%token END 0
c93f22fc 4743@end example
3508ce36 4744
12e35840
JD
4745@cindex actions in mid-rule
4746@cindex mid-rule actions
4747Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4748mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4749That is, Bison does not consider a mid-rule to have a semantic value if you
4750do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4751(where @var{n} is the right-hand side symbol position of the mid-rule) in
4752any later action in that rule. However, if you do reference either, the
4753Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4754it discards the mid-rule symbol.
12e35840 4755
3508ce36
JD
4756@ignore
4757@noindent
4758In the future, it may be possible to redefine the @code{error} token as a
4759nonterminal that captures the discarded symbols.
4760In that case, the parser will invoke the default destructor for it as well.
4761@end ignore
4762
e757bb10
AD
4763@sp 1
4764
4765@cindex discarded symbols
4766@dfn{Discarded symbols} are the following:
4767
4768@itemize
4769@item
4770stacked symbols popped during the first phase of error recovery,
4771@item
4772incoming terminals during the second phase of error recovery,
4773@item
742e4900 4774the current lookahead and the entire stack (except the current
9d9b8b70 4775right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4776@item
4777the start symbol, when the parser succeeds.
e757bb10
AD
4778@end itemize
4779
9d9b8b70
PE
4780The parser can @dfn{return immediately} because of an explicit call to
4781@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4782exhaustion.
4783
29553547 4784Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4785error via @code{YYERROR} are not discarded automatically. As a rule
4786of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4787the memory.
e757bb10 4788
342b8b6e 4789@node Expect Decl
bfa74976
RS
4790@subsection Suppressing Conflict Warnings
4791@cindex suppressing conflict warnings
4792@cindex preventing warnings about conflicts
4793@cindex warnings, preventing
4794@cindex conflicts, suppressing warnings of
4795@findex %expect
d6328241 4796@findex %expect-rr
bfa74976
RS
4797
4798Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4799(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4800have harmless shift/reduce conflicts which are resolved in a predictable
4801way and would be difficult to eliminate. It is desirable to suppress
4802the warning about these conflicts unless the number of conflicts
4803changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4804
4805The declaration looks like this:
4806
4807@example
4808%expect @var{n}
4809@end example
4810
035aa4a0
PE
4811Here @var{n} is a decimal integer. The declaration says there should
4812be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4813Bison reports an error if the number of shift/reduce conflicts differs
4814from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4815
eb45ef3b 4816For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4817serious, and should be eliminated entirely. Bison will always report
8a4281b9 4818reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4819parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4820there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4821also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4822in GLR parsers, using the declaration:
d6328241
PH
4823
4824@example
4825%expect-rr @var{n}
4826@end example
4827
bfa74976
RS
4828In general, using @code{%expect} involves these steps:
4829
4830@itemize @bullet
4831@item
4832Compile your grammar without @code{%expect}. Use the @samp{-v} option
4833to get a verbose list of where the conflicts occur. Bison will also
4834print the number of conflicts.
4835
4836@item
4837Check each of the conflicts to make sure that Bison's default
4838resolution is what you really want. If not, rewrite the grammar and
4839go back to the beginning.
4840
4841@item
4842Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4843number which Bison printed. With GLR parsers, add an
035aa4a0 4844@code{%expect-rr} declaration as well.
bfa74976
RS
4845@end itemize
4846
93d7dde9
JD
4847Now Bison will report an error if you introduce an unexpected conflict,
4848but will keep silent otherwise.
bfa74976 4849
342b8b6e 4850@node Start Decl
bfa74976
RS
4851@subsection The Start-Symbol
4852@cindex declaring the start symbol
4853@cindex start symbol, declaring
4854@cindex default start symbol
4855@findex %start
4856
4857Bison assumes by default that the start symbol for the grammar is the first
4858nonterminal specified in the grammar specification section. The programmer
4859may override this restriction with the @code{%start} declaration as follows:
4860
4861@example
4862%start @var{symbol}
4863@end example
4864
342b8b6e 4865@node Pure Decl
bfa74976
RS
4866@subsection A Pure (Reentrant) Parser
4867@cindex reentrant parser
4868@cindex pure parser
d9df47b6 4869@findex %define api.pure
bfa74976
RS
4870
4871A @dfn{reentrant} program is one which does not alter in the course of
4872execution; in other words, it consists entirely of @dfn{pure} (read-only)
4873code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4874for example, a nonreentrant program may not be safe to call from a signal
4875handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4876program must be called only within interlocks.
4877
70811b85 4878Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4879suitable for most uses, and it permits compatibility with Yacc. (The
4880standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4881statically allocated variables for communication with @code{yylex},
4882including @code{yylval} and @code{yylloc}.)
bfa74976 4883
70811b85 4884Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4885declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4886reentrant. It looks like this:
bfa74976
RS
4887
4888@example
d9df47b6 4889%define api.pure
bfa74976
RS
4890@end example
4891
70811b85
RS
4892The result is that the communication variables @code{yylval} and
4893@code{yylloc} become local variables in @code{yyparse}, and a different
4894calling convention is used for the lexical analyzer function
4895@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4896Parsers}, for the details of this. The variable @code{yynerrs}
4897becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4898of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4899Reporting Function @code{yyerror}}). The convention for calling
4900@code{yyparse} itself is unchanged.
4901
4902Whether the parser is pure has nothing to do with the grammar rules.
4903You can generate either a pure parser or a nonreentrant parser from any
4904valid grammar.
bfa74976 4905
9987d1b3
JD
4906@node Push Decl
4907@subsection A Push Parser
4908@cindex push parser
4909@cindex push parser
67212941 4910@findex %define api.push-pull
9987d1b3 4911
59da312b
JD
4912(The current push parsing interface is experimental and may evolve.
4913More user feedback will help to stabilize it.)
4914
f4101aa6
AD
4915A pull parser is called once and it takes control until all its input
4916is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4917each time a new token is made available.
4918
f4101aa6 4919A push parser is typically useful when the parser is part of a
9987d1b3 4920main event loop in the client's application. This is typically
f4101aa6
AD
4921a requirement of a GUI, when the main event loop needs to be triggered
4922within a certain time period.
9987d1b3 4923
d782395d
JD
4924Normally, Bison generates a pull parser.
4925The following Bison declaration says that you want the parser to be a push
35c1e5f0 4926parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4927
4928@example
cf499cff 4929%define api.push-pull push
9987d1b3
JD
4930@end example
4931
4932In almost all cases, you want to ensure that your push parser is also
4933a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4934time you should create an impure push parser is to have backwards
9987d1b3
JD
4935compatibility with the impure Yacc pull mode interface. Unless you know
4936what you are doing, your declarations should look like this:
4937
4938@example
d9df47b6 4939%define api.pure
cf499cff 4940%define api.push-pull push
9987d1b3
JD
4941@end example
4942
f4101aa6
AD
4943There is a major notable functional difference between the pure push parser
4944and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4945many parser instances, of the same type of parser, in memory at the same time.
4946An impure push parser should only use one parser at a time.
4947
4948When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4949the generated parser. @code{yypstate} is a structure that the generated
4950parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4951function that will create a new parser instance. @code{yypstate_delete}
4952will free the resources associated with the corresponding parser instance.
f4101aa6 4953Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4954token is available to provide the parser. A trivial example
4955of using a pure push parser would look like this:
4956
4957@example
4958int status;
4959yypstate *ps = yypstate_new ();
4960do @{
4961 status = yypush_parse (ps, yylex (), NULL);
4962@} while (status == YYPUSH_MORE);
4963yypstate_delete (ps);
4964@end example
4965
4966If the user decided to use an impure push parser, a few things about
f4101aa6 4967the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4968a global variable instead of a variable in the @code{yypush_parse} function.
4969For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4970changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4971example would thus look like this:
4972
4973@example
4974extern int yychar;
4975int status;
4976yypstate *ps = yypstate_new ();
4977do @{
4978 yychar = yylex ();
4979 status = yypush_parse (ps);
4980@} while (status == YYPUSH_MORE);
4981yypstate_delete (ps);
4982@end example
4983
f4101aa6 4984That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4985for use by the next invocation of the @code{yypush_parse} function.
4986
f4101aa6 4987Bison also supports both the push parser interface along with the pull parser
9987d1b3 4988interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4989you should replace the @samp{%define api.push-pull push} declaration with the
4990@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4991the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4992and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4993would be used. However, the user should note that it is implemented in the
d782395d
JD
4994generated parser by calling @code{yypull_parse}.
4995This makes the @code{yyparse} function that is generated with the
cf499cff 4996@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4997@code{yyparse} function. If the user
4998calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4999stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5000and then @code{yypull_parse} the rest of the input stream. If you would like
5001to switch back and forth between between parsing styles, you would have to
5002write your own @code{yypull_parse} function that knows when to quit looking
5003for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5004like this:
5005
5006@example
5007yypstate *ps = yypstate_new ();
5008yypull_parse (ps); /* Will call the lexer */
5009yypstate_delete (ps);
5010@end example
5011
67501061 5012Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5013the generated parser with @samp{%define api.push-pull both} as it did for
5014@samp{%define api.push-pull push}.
9987d1b3 5015
342b8b6e 5016@node Decl Summary
bfa74976
RS
5017@subsection Bison Declaration Summary
5018@cindex Bison declaration summary
5019@cindex declaration summary
5020@cindex summary, Bison declaration
5021
d8988b2f 5022Here is a summary of the declarations used to define a grammar:
bfa74976 5023
18b519c0 5024@deffn {Directive} %union
bfa74976
RS
5025Declare the collection of data types that semantic values may have
5026(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5027@end deffn
bfa74976 5028
18b519c0 5029@deffn {Directive} %token
bfa74976
RS
5030Declare a terminal symbol (token type name) with no precedence
5031or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5032@end deffn
bfa74976 5033
18b519c0 5034@deffn {Directive} %right
bfa74976
RS
5035Declare a terminal symbol (token type name) that is right-associative
5036(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5037@end deffn
bfa74976 5038
18b519c0 5039@deffn {Directive} %left
bfa74976
RS
5040Declare a terminal symbol (token type name) that is left-associative
5041(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5042@end deffn
bfa74976 5043
18b519c0 5044@deffn {Directive} %nonassoc
bfa74976 5045Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5046(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5047Using it in a way that would be associative is a syntax error.
5048@end deffn
5049
91d2c560 5050@ifset defaultprec
39a06c25 5051@deffn {Directive} %default-prec
22fccf95 5052Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5053(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5054@end deffn
91d2c560 5055@end ifset
bfa74976 5056
18b519c0 5057@deffn {Directive} %type
bfa74976
RS
5058Declare the type of semantic values for a nonterminal symbol
5059(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5060@end deffn
bfa74976 5061
18b519c0 5062@deffn {Directive} %start
89cab50d
AD
5063Specify the grammar's start symbol (@pxref{Start Decl, ,The
5064Start-Symbol}).
18b519c0 5065@end deffn
bfa74976 5066
18b519c0 5067@deffn {Directive} %expect
bfa74976
RS
5068Declare the expected number of shift-reduce conflicts
5069(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5070@end deffn
5071
bfa74976 5072
d8988b2f
AD
5073@sp 1
5074@noindent
5075In order to change the behavior of @command{bison}, use the following
5076directives:
5077
148d66d8 5078@deffn {Directive} %code @{@var{code}@}
e0c07222 5079@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5080@findex %code
e0c07222
JD
5081Insert @var{code} verbatim into the output parser source at the
5082default location or at the location specified by @var{qualifier}.
5083@xref{%code Summary}.
148d66d8
JD
5084@end deffn
5085
18b519c0 5086@deffn {Directive} %debug
fa819509
AD
5087Instrument the output parser for traces. Obsoleted by @samp{%define
5088parse.trace}.
ec3bc396 5089@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5090@end deffn
d8988b2f 5091
35c1e5f0
JD
5092@deffn {Directive} %define @var{variable}
5093@deffnx {Directive} %define @var{variable} @var{value}
5094@deffnx {Directive} %define @var{variable} "@var{value}"
5095Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5096@end deffn
5097
5098@deffn {Directive} %defines
5099Write a parser header file containing macro definitions for the token
5100type names defined in the grammar as well as a few other declarations.
5101If the parser implementation file is named @file{@var{name}.c} then
5102the parser header file is named @file{@var{name}.h}.
5103
5104For C parsers, the parser header file declares @code{YYSTYPE} unless
5105@code{YYSTYPE} is already defined as a macro or you have used a
5106@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5107you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5108Value Type}) with components that require other definitions, or if you
5109have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5110Type, ,Data Types of Semantic Values}), you need to arrange for these
5111definitions to be propagated to all modules, e.g., by putting them in
5112a prerequisite header that is included both by your parser and by any
5113other module that needs @code{YYSTYPE}.
5114
5115Unless your parser is pure, the parser header file declares
5116@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5117(Reentrant) Parser}.
5118
5119If you have also used locations, the parser header file declares
303834cc
JD
5120@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5121@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5122
5123This parser header file is normally essential if you wish to put the
5124definition of @code{yylex} in a separate source file, because
5125@code{yylex} typically needs to be able to refer to the
5126above-mentioned declarations and to the token type codes. @xref{Token
5127Values, ,Semantic Values of Tokens}.
5128
5129@findex %code requires
5130@findex %code provides
5131If you have declared @code{%code requires} or @code{%code provides}, the output
5132header also contains their code.
5133@xref{%code Summary}.
5134@end deffn
5135
5136@deffn {Directive} %defines @var{defines-file}
5137Same as above, but save in the file @var{defines-file}.
5138@end deffn
5139
5140@deffn {Directive} %destructor
5141Specify how the parser should reclaim the memory associated to
5142discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5143@end deffn
5144
5145@deffn {Directive} %file-prefix "@var{prefix}"
5146Specify a prefix to use for all Bison output file names. The names
5147are chosen as if the grammar file were named @file{@var{prefix}.y}.
5148@end deffn
5149
5150@deffn {Directive} %language "@var{language}"
5151Specify the programming language for the generated parser. Currently
5152supported languages include C, C++, and Java.
5153@var{language} is case-insensitive.
5154
5155This directive is experimental and its effect may be modified in future
5156releases.
5157@end deffn
5158
5159@deffn {Directive} %locations
5160Generate the code processing the locations (@pxref{Action Features,
5161,Special Features for Use in Actions}). This mode is enabled as soon as
5162the grammar uses the special @samp{@@@var{n}} tokens, but if your
5163grammar does not use it, using @samp{%locations} allows for more
5164accurate syntax error messages.
5165@end deffn
5166
5167@deffn {Directive} %name-prefix "@var{prefix}"
5168Rename the external symbols used in the parser so that they start with
5169@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5170in C parsers
5171is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5172@code{yylval}, @code{yychar}, @code{yydebug}, and
5173(if locations are used) @code{yylloc}. If you use a push parser,
5174@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5175@code{yypstate_new} and @code{yypstate_delete} will
5176also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5177names become @code{c_parse}, @code{c_lex}, and so on.
5178For C++ parsers, see the @samp{%define api.namespace} documentation in this
5179section.
5180@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5181@end deffn
5182
5183@ifset defaultprec
5184@deffn {Directive} %no-default-prec
5185Do not assign a precedence to rules lacking an explicit @code{%prec}
5186modifier (@pxref{Contextual Precedence, ,Context-Dependent
5187Precedence}).
5188@end deffn
5189@end ifset
5190
5191@deffn {Directive} %no-lines
5192Don't generate any @code{#line} preprocessor commands in the parser
5193implementation file. Ordinarily Bison writes these commands in the
5194parser implementation file so that the C compiler and debuggers will
5195associate errors and object code with your source file (the grammar
5196file). This directive causes them to associate errors with the parser
5197implementation file, treating it as an independent source file in its
5198own right.
5199@end deffn
5200
5201@deffn {Directive} %output "@var{file}"
5202Specify @var{file} for the parser implementation file.
5203@end deffn
5204
5205@deffn {Directive} %pure-parser
5206Deprecated version of @samp{%define api.pure} (@pxref{%define
5207Summary,,api.pure}), for which Bison is more careful to warn about
5208unreasonable usage.
5209@end deffn
5210
5211@deffn {Directive} %require "@var{version}"
5212Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5213Require a Version of Bison}.
5214@end deffn
5215
5216@deffn {Directive} %skeleton "@var{file}"
5217Specify the skeleton to use.
5218
5219@c You probably don't need this option unless you are developing Bison.
5220@c You should use @code{%language} if you want to specify the skeleton for a
5221@c different language, because it is clearer and because it will always choose the
5222@c correct skeleton for non-deterministic or push parsers.
5223
5224If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5225file in the Bison installation directory.
5226If it does, @var{file} is an absolute file name or a file name relative to the
5227directory of the grammar file.
5228This is similar to how most shells resolve commands.
5229@end deffn
5230
5231@deffn {Directive} %token-table
5232Generate an array of token names in the parser implementation file.
5233The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5234the name of the token whose internal Bison token code number is
5235@var{i}. The first three elements of @code{yytname} correspond to the
5236predefined tokens @code{"$end"}, @code{"error"}, and
5237@code{"$undefined"}; after these come the symbols defined in the
5238grammar file.
5239
5240The name in the table includes all the characters needed to represent
5241the token in Bison. For single-character literals and literal
5242strings, this includes the surrounding quoting characters and any
5243escape sequences. For example, the Bison single-character literal
5244@code{'+'} corresponds to a three-character name, represented in C as
5245@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5246corresponds to a five-character name, represented in C as
5247@code{"\"\\\\/\""}.
5248
5249When you specify @code{%token-table}, Bison also generates macro
5250definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5251@code{YYNRULES}, and @code{YYNSTATES}:
5252
5253@table @code
5254@item YYNTOKENS
5255The highest token number, plus one.
5256@item YYNNTS
5257The number of nonterminal symbols.
5258@item YYNRULES
5259The number of grammar rules,
5260@item YYNSTATES
5261The number of parser states (@pxref{Parser States}).
5262@end table
5263@end deffn
5264
5265@deffn {Directive} %verbose
5266Write an extra output file containing verbose descriptions of the
5267parser states and what is done for each type of lookahead token in
5268that state. @xref{Understanding, , Understanding Your Parser}, for more
5269information.
5270@end deffn
5271
5272@deffn {Directive} %yacc
5273Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5274including its naming conventions. @xref{Bison Options}, for more.
5275@end deffn
5276
5277
5278@node %define Summary
5279@subsection %define Summary
51151d91
JD
5280
5281There are many features of Bison's behavior that can be controlled by
5282assigning the feature a single value. For historical reasons, some
5283such features are assigned values by dedicated directives, such as
5284@code{%start}, which assigns the start symbol. However, newer such
5285features are associated with variables, which are assigned by the
5286@code{%define} directive:
5287
c1d19e10 5288@deffn {Directive} %define @var{variable}
cf499cff 5289@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5290@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5291Define @var{variable} to @var{value}.
9611cfa2 5292
51151d91
JD
5293@var{value} must be placed in quotation marks if it contains any
5294character other than a letter, underscore, period, or non-initial dash
5295or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5296to specifying @code{""}.
9611cfa2 5297
51151d91
JD
5298It is an error if a @var{variable} is defined by @code{%define}
5299multiple times, but see @ref{Bison Options,,-D
5300@var{name}[=@var{value}]}.
5301@end deffn
cf499cff 5302
51151d91
JD
5303The rest of this section summarizes variables and values that
5304@code{%define} accepts.
9611cfa2 5305
51151d91
JD
5306Some @var{variable}s take Boolean values. In this case, Bison will
5307complain if the variable definition does not meet one of the following
5308four conditions:
9611cfa2
JD
5309
5310@enumerate
cf499cff 5311@item @code{@var{value}} is @code{true}
9611cfa2 5312
cf499cff
JD
5313@item @code{@var{value}} is omitted (or @code{""} is specified).
5314This is equivalent to @code{true}.
9611cfa2 5315
cf499cff 5316@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5317
5318@item @var{variable} is never defined.
c6abeab1 5319In this case, Bison selects a default value.
9611cfa2 5320@end enumerate
148d66d8 5321
c6abeab1
JD
5322What @var{variable}s are accepted, as well as their meanings and default
5323values, depend on the selected target language and/or the parser
5324skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5325Summary,,%skeleton}).
5326Unaccepted @var{variable}s produce an error.
793fbca5
JD
5327Some of the accepted @var{variable}s are:
5328
fa819509 5329@table @code
6b5a0de9 5330@c ================================================== api.namespace
67501061
AD
5331@item api.namespace
5332@findex %define api.namespace
5333@itemize
5334@item Languages(s): C++
5335
f1b238df 5336@item Purpose: Specify the namespace for the parser class.
67501061
AD
5337For example, if you specify:
5338
c93f22fc 5339@example
67501061 5340%define api.namespace "foo::bar"
c93f22fc 5341@end example
67501061
AD
5342
5343Bison uses @code{foo::bar} verbatim in references such as:
5344
c93f22fc 5345@example
67501061 5346foo::bar::parser::semantic_type
c93f22fc 5347@end example
67501061
AD
5348
5349However, to open a namespace, Bison removes any leading @code{::} and then
5350splits on any remaining occurrences:
5351
c93f22fc 5352@example
67501061
AD
5353namespace foo @{ namespace bar @{
5354 class position;
5355 class location;
5356@} @}
c93f22fc 5357@end example
67501061
AD
5358
5359@item Accepted Values:
5360Any absolute or relative C++ namespace reference without a trailing
5361@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5362
5363@item Default Value:
5364The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5365This usage of @code{%name-prefix} is for backward compatibility and can
5366be confusing since @code{%name-prefix} also specifies the textual prefix
5367for the lexical analyzer function. Thus, if you specify
5368@code{%name-prefix}, it is best to also specify @samp{%define
5369api.namespace} so that @code{%name-prefix} @emph{only} affects the
5370lexical analyzer function. For example, if you specify:
5371
c93f22fc 5372@example
67501061
AD
5373%define api.namespace "foo"
5374%name-prefix "bar::"
c93f22fc 5375@end example
67501061
AD
5376
5377The parser namespace is @code{foo} and @code{yylex} is referenced as
5378@code{bar::lex}.
5379@end itemize
5380@c namespace
5381
5382
5383
5384@c ================================================== api.pure
d9df47b6
JD
5385@item api.pure
5386@findex %define api.pure
5387
5388@itemize @bullet
5389@item Language(s): C
5390
5391@item Purpose: Request a pure (reentrant) parser program.
5392@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5393
5394@item Accepted Values: Boolean
5395
cf499cff 5396@item Default Value: @code{false}
d9df47b6 5397@end itemize
71b00ed8 5398@c api.pure
d9df47b6 5399
67501061
AD
5400
5401
5402@c ================================================== api.push-pull
67212941
JD
5403@item api.push-pull
5404@findex %define api.push-pull
793fbca5
JD
5405
5406@itemize @bullet
eb45ef3b 5407@item Language(s): C (deterministic parsers only)
793fbca5 5408
f1b238df 5409@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5410@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5411(The current push parsing interface is experimental and may evolve.
5412More user feedback will help to stabilize it.)
793fbca5 5413
cf499cff 5414@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5415
cf499cff 5416@item Default Value: @code{pull}
793fbca5 5417@end itemize
67212941 5418@c api.push-pull
71b00ed8 5419
6b5a0de9
AD
5420
5421
5422@c ================================================== api.tokens.prefix
4c6622c2
AD
5423@item api.tokens.prefix
5424@findex %define api.tokens.prefix
5425
5426@itemize
5427@item Languages(s): all
5428
5429@item Purpose:
5430Add a prefix to the token names when generating their definition in the
5431target language. For instance
5432
5433@example
5434%token FILE for ERROR
5435%define api.tokens.prefix "TOK_"
5436%%
5437start: FILE for ERROR;
5438@end example
5439
5440@noindent
5441generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5442and @code{TOK_ERROR} in the generated source files. In particular, the
5443scanner must use these prefixed token names, while the grammar itself
5444may still use the short names (as in the sample rule given above). The
5445generated informational files (@file{*.output}, @file{*.xml},
5446@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5447and @ref{Calc++ Scanner}, for a complete example.
5448
5449@item Accepted Values:
5450Any string. Should be a valid identifier prefix in the target language,
5451in other words, it should typically be an identifier itself (sequence of
5452letters, underscores, and ---not at the beginning--- digits).
5453
5454@item Default Value:
5455empty
5456@end itemize
5457@c api.tokens.prefix
5458
5459
3cdc21cf 5460@c ================================================== lex_symbol
84072495 5461@item lex_symbol
3cdc21cf
AD
5462@findex %define lex_symbol
5463
5464@itemize @bullet
5465@item Language(s):
5466C++
5467
5468@item Purpose:
5469When variant-based semantic values are enabled (@pxref{C++ Variants}),
5470request that symbols be handled as a whole (type, value, and possibly
5471location) in the scanner. @xref{Complete Symbols}, for details.
5472
5473@item Accepted Values:
5474Boolean.
5475
5476@item Default Value:
5477@code{false}
5478@end itemize
5479@c lex_symbol
5480
5481
6b5a0de9
AD
5482@c ================================================== lr.default-reductions
5483
5bab9d08 5484@item lr.default-reductions
5bab9d08 5485@findex %define lr.default-reductions
eb45ef3b
JD
5486
5487@itemize @bullet
5488@item Language(s): all
5489
fcf834f9 5490@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5491contain default reductions. @xref{Default Reductions}. (The ability to
5492specify where default reductions should be used is experimental. More user
5493feedback will help to stabilize it.)
eb45ef3b 5494
f0ad1b2f 5495@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5496@item Default Value:
5497@itemize
cf499cff 5498@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5499@item @code{most} otherwise.
eb45ef3b
JD
5500@end itemize
5501@end itemize
5502
6b5a0de9
AD
5503@c ============================================ lr.keep-unreachable-states
5504
67212941
JD
5505@item lr.keep-unreachable-states
5506@findex %define lr.keep-unreachable-states
31984206
JD
5507
5508@itemize @bullet
5509@item Language(s): all
f1b238df 5510@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5511remain in the parser tables. @xref{Unreachable States}.
31984206 5512@item Accepted Values: Boolean
cf499cff 5513@item Default Value: @code{false}
31984206 5514@end itemize
67212941 5515@c lr.keep-unreachable-states
31984206 5516
6b5a0de9
AD
5517@c ================================================== lr.type
5518
eb45ef3b
JD
5519@item lr.type
5520@findex %define lr.type
eb45ef3b
JD
5521
5522@itemize @bullet
5523@item Language(s): all
5524
f1b238df 5525@item Purpose: Specify the type of parser tables within the
7fceb615 5526LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5527More user feedback will help to stabilize it.)
5528
7fceb615 5529@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5530
cf499cff 5531@item Default Value: @code{lalr}
eb45ef3b
JD
5532@end itemize
5533
67501061
AD
5534
5535@c ================================================== namespace
793fbca5
JD
5536@item namespace
5537@findex %define namespace
67501061 5538Obsoleted by @code{api.namespace}
fa819509
AD
5539@c namespace
5540
31b850d2
AD
5541
5542@c ================================================== parse.assert
0c90a1f5
AD
5543@item parse.assert
5544@findex %define parse.assert
5545
5546@itemize
5547@item Languages(s): C++
5548
5549@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5550In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5551constructed and
0c90a1f5
AD
5552destroyed properly. This option checks these constraints.
5553
5554@item Accepted Values: Boolean
5555
5556@item Default Value: @code{false}
5557@end itemize
5558@c parse.assert
5559
31b850d2
AD
5560
5561@c ================================================== parse.error
5562@item parse.error
5563@findex %define parse.error
5564@itemize
5565@item Languages(s):
fcf834f9 5566all
31b850d2
AD
5567@item Purpose:
5568Control the kind of error messages passed to the error reporting
5569function. @xref{Error Reporting, ,The Error Reporting Function
5570@code{yyerror}}.
5571@item Accepted Values:
5572@itemize
cf499cff 5573@item @code{simple}
31b850d2
AD
5574Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5575error"}}.
cf499cff 5576@item @code{verbose}
7fceb615
JD
5577Error messages report the unexpected token, and possibly the expected ones.
5578However, this report can often be incorrect when LAC is not enabled
5579(@pxref{LAC}).
31b850d2
AD
5580@end itemize
5581
5582@item Default Value:
5583@code{simple}
5584@end itemize
5585@c parse.error
5586
5587
fcf834f9
JD
5588@c ================================================== parse.lac
5589@item parse.lac
5590@findex %define parse.lac
fcf834f9
JD
5591
5592@itemize
7fceb615 5593@item Languages(s): C (deterministic parsers only)
fcf834f9 5594
8a4281b9 5595@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5596syntax error handling. @xref{LAC}.
fcf834f9 5597@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5598@item Default Value: @code{none}
5599@end itemize
5600@c parse.lac
5601
31b850d2 5602@c ================================================== parse.trace
fa819509
AD
5603@item parse.trace
5604@findex %define parse.trace
5605
5606@itemize
5607@item Languages(s): C, C++
5608
5609@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5610In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5611file if it is not already defined, so that the debugging facilities are
5612compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5613
fa819509
AD
5614@item Accepted Values: Boolean
5615
5616@item Default Value: @code{false}
5617@end itemize
fa819509 5618@c parse.trace
99c08fb6 5619
3cdc21cf
AD
5620@c ================================================== variant
5621@item variant
5622@findex %define variant
5623
5624@itemize @bullet
5625@item Language(s):
5626C++
5627
5628@item Purpose:
f1b238df 5629Request variant-based semantic values.
3cdc21cf
AD
5630@xref{C++ Variants}.
5631
5632@item Accepted Values:
5633Boolean.
5634
5635@item Default Value:
5636@code{false}
5637@end itemize
5638@c variant
99c08fb6 5639@end table
592d0b1e 5640
d8988b2f 5641
e0c07222
JD
5642@node %code Summary
5643@subsection %code Summary
e0c07222 5644@findex %code
e0c07222 5645@cindex Prologue
51151d91
JD
5646
5647The @code{%code} directive inserts code verbatim into the output
5648parser source at any of a predefined set of locations. It thus serves
5649as a flexible and user-friendly alternative to the traditional Yacc
5650prologue, @code{%@{@var{code}%@}}. This section summarizes the
5651functionality of @code{%code} for the various target languages
5652supported by Bison. For a detailed discussion of how to use
5653@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5654is advantageous to do so, @pxref{Prologue Alternatives}.
5655
5656@deffn {Directive} %code @{@var{code}@}
5657This is the unqualified form of the @code{%code} directive. It
5658inserts @var{code} verbatim at a language-dependent default location
5659in the parser implementation.
5660
e0c07222 5661For C/C++, the default location is the parser implementation file
51151d91
JD
5662after the usual contents of the parser header file. Thus, the
5663unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5664
5665For Java, the default location is inside the parser class.
5666@end deffn
5667
5668@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5669This is the qualified form of the @code{%code} directive.
51151d91
JD
5670@var{qualifier} identifies the purpose of @var{code} and thus the
5671location(s) where Bison should insert it. That is, if you need to
5672specify location-sensitive @var{code} that does not belong at the
5673default location selected by the unqualified @code{%code} form, use
5674this form instead.
5675@end deffn
5676
5677For any particular qualifier or for the unqualified form, if there are
5678multiple occurrences of the @code{%code} directive, Bison concatenates
5679the specified code in the order in which it appears in the grammar
5680file.
e0c07222 5681
51151d91
JD
5682Not all qualifiers are accepted for all target languages. Unaccepted
5683qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5684
84072495 5685@table @code
e0c07222
JD
5686@item requires
5687@findex %code requires
5688
5689@itemize @bullet
5690@item Language(s): C, C++
5691
5692@item Purpose: This is the best place to write dependency code required for
5693@code{YYSTYPE} and @code{YYLTYPE}.
5694In other words, it's the best place to define types referenced in @code{%union}
5695directives, and it's the best place to override Bison's default @code{YYSTYPE}
5696and @code{YYLTYPE} definitions.
5697
5698@item Location(s): The parser header file and the parser implementation file
5699before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5700definitions.
5701@end itemize
5702
5703@item provides
5704@findex %code provides
5705
5706@itemize @bullet
5707@item Language(s): C, C++
5708
5709@item Purpose: This is the best place to write additional definitions and
5710declarations that should be provided to other modules.
5711
5712@item Location(s): The parser header file and the parser implementation
5713file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5714token definitions.
5715@end itemize
5716
5717@item top
5718@findex %code top
5719
5720@itemize @bullet
5721@item Language(s): C, C++
5722
5723@item Purpose: The unqualified @code{%code} or @code{%code requires}
5724should usually be more appropriate than @code{%code top}. However,
5725occasionally it is necessary to insert code much nearer the top of the
5726parser implementation file. For example:
5727
c93f22fc 5728@example
e0c07222
JD
5729%code top @{
5730 #define _GNU_SOURCE
5731 #include <stdio.h>
5732@}
c93f22fc 5733@end example
e0c07222
JD
5734
5735@item Location(s): Near the top of the parser implementation file.
5736@end itemize
5737
5738@item imports
5739@findex %code imports
5740
5741@itemize @bullet
5742@item Language(s): Java
5743
5744@item Purpose: This is the best place to write Java import directives.
5745
5746@item Location(s): The parser Java file after any Java package directive and
5747before any class definitions.
5748@end itemize
84072495 5749@end table
e0c07222 5750
51151d91
JD
5751Though we say the insertion locations are language-dependent, they are
5752technically skeleton-dependent. Writers of non-standard skeletons
5753however should choose their locations consistently with the behavior
5754of the standard Bison skeletons.
e0c07222 5755
d8988b2f 5756
342b8b6e 5757@node Multiple Parsers
bfa74976
RS
5758@section Multiple Parsers in the Same Program
5759
5760Most programs that use Bison parse only one language and therefore contain
5761only one Bison parser. But what if you want to parse more than one
5762language with the same program? Then you need to avoid a name conflict
5763between different definitions of @code{yyparse}, @code{yylval}, and so on.
5764
5765The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5766(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5767functions and variables of the Bison parser to start with @var{prefix}
5768instead of @samp{yy}. You can use this to give each parser distinct
5769names that do not conflict.
bfa74976
RS
5770
5771The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5772@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5773@code{yychar} and @code{yydebug}. If you use a push parser,
5774@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5775@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5776For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5777@code{clex}, and so on.
bfa74976
RS
5778
5779@strong{All the other variables and macros associated with Bison are not
5780renamed.} These others are not global; there is no conflict if the same
5781name is used in different parsers. For example, @code{YYSTYPE} is not
5782renamed, but defining this in different ways in different parsers causes
5783no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5784
ff7571c0
JD
5785The @samp{-p} option works by adding macro definitions to the
5786beginning of the parser implementation file, defining @code{yyparse}
5787as @code{@var{prefix}parse}, and so on. This effectively substitutes
5788one name for the other in the entire parser implementation file.
bfa74976 5789
342b8b6e 5790@node Interface
bfa74976
RS
5791@chapter Parser C-Language Interface
5792@cindex C-language interface
5793@cindex interface
5794
5795The Bison parser is actually a C function named @code{yyparse}. Here we
5796describe the interface conventions of @code{yyparse} and the other
5797functions that it needs to use.
5798
5799Keep in mind that the parser uses many C identifiers starting with
5800@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5801identifier (aside from those in this manual) in an action or in epilogue
5802in the grammar file, you are likely to run into trouble.
bfa74976
RS
5803
5804@menu
f5f419de
DJ
5805* Parser Function:: How to call @code{yyparse} and what it returns.
5806* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5807* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5808* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5809* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5810* Lexical:: You must supply a function @code{yylex}
5811 which reads tokens.
5812* Error Reporting:: You must supply a function @code{yyerror}.
5813* Action Features:: Special features for use in actions.
5814* Internationalization:: How to let the parser speak in the user's
5815 native language.
bfa74976
RS
5816@end menu
5817
342b8b6e 5818@node Parser Function
bfa74976
RS
5819@section The Parser Function @code{yyparse}
5820@findex yyparse
5821
5822You call the function @code{yyparse} to cause parsing to occur. This
5823function reads tokens, executes actions, and ultimately returns when it
5824encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5825write an action which directs @code{yyparse} to return immediately
5826without reading further.
bfa74976 5827
2a8d363a
AD
5828
5829@deftypefun int yyparse (void)
bfa74976
RS
5830The value returned by @code{yyparse} is 0 if parsing was successful (return
5831is due to end-of-input).
5832
b47dbebe
PE
5833The value is 1 if parsing failed because of invalid input, i.e., input
5834that contains a syntax error or that causes @code{YYABORT} to be
5835invoked.
5836
5837The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5838@end deftypefun
bfa74976
RS
5839
5840In an action, you can cause immediate return from @code{yyparse} by using
5841these macros:
5842
2a8d363a 5843@defmac YYACCEPT
bfa74976
RS
5844@findex YYACCEPT
5845Return immediately with value 0 (to report success).
2a8d363a 5846@end defmac
bfa74976 5847
2a8d363a 5848@defmac YYABORT
bfa74976
RS
5849@findex YYABORT
5850Return immediately with value 1 (to report failure).
2a8d363a
AD
5851@end defmac
5852
5853If you use a reentrant parser, you can optionally pass additional
5854parameter information to it in a reentrant way. To do so, use the
5855declaration @code{%parse-param}:
5856
2055a44e 5857@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5858@findex %parse-param
2055a44e
AD
5859Declare that one or more
5860@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5861The @var{argument-declaration} is used when declaring
feeb0eda
PE
5862functions or prototypes. The last identifier in
5863@var{argument-declaration} must be the argument name.
2a8d363a
AD
5864@end deffn
5865
5866Here's an example. Write this in the parser:
5867
5868@example
2055a44e 5869%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5870@end example
5871
5872@noindent
5873Then call the parser like this:
5874
5875@example
5876@{
5877 int nastiness, randomness;
5878 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5879 value = yyparse (&nastiness, &randomness);
5880 @dots{}
5881@}
5882@end example
5883
5884@noindent
5885In the grammar actions, use expressions like this to refer to the data:
5886
5887@example
5888exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5889@end example
5890
9987d1b3
JD
5891@node Push Parser Function
5892@section The Push Parser Function @code{yypush_parse}
5893@findex yypush_parse
5894
59da312b
JD
5895(The current push parsing interface is experimental and may evolve.
5896More user feedback will help to stabilize it.)
5897
f4101aa6 5898You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5899function is available if either the @samp{%define api.push-pull push} or
5900@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5901@xref{Push Decl, ,A Push Parser}.
5902
5903@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5904The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5905following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5906is required to finish parsing the grammar.
5907@end deftypefun
5908
5909@node Pull Parser Function
5910@section The Pull Parser Function @code{yypull_parse}
5911@findex yypull_parse
5912
59da312b
JD
5913(The current push parsing interface is experimental and may evolve.
5914More user feedback will help to stabilize it.)
5915
f4101aa6 5916You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5917stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5918declaration is used.
9987d1b3
JD
5919@xref{Push Decl, ,A Push Parser}.
5920
5921@deftypefun int yypull_parse (yypstate *yyps)
5922The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5923@end deftypefun
5924
5925@node Parser Create Function
5926@section The Parser Create Function @code{yystate_new}
5927@findex yypstate_new
5928
59da312b
JD
5929(The current push parsing interface is experimental and may evolve.
5930More user feedback will help to stabilize it.)
5931
f4101aa6 5932You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5933This function is available if either the @samp{%define api.push-pull push} or
5934@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5935@xref{Push Decl, ,A Push Parser}.
5936
5937@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5938The function will return a valid parser instance if there was memory available
333e670c
JD
5939or 0 if no memory was available.
5940In impure mode, it will also return 0 if a parser instance is currently
5941allocated.
9987d1b3
JD
5942@end deftypefun
5943
5944@node Parser Delete Function
5945@section The Parser Delete Function @code{yystate_delete}
5946@findex yypstate_delete
5947
59da312b
JD
5948(The current push parsing interface is experimental and may evolve.
5949More user feedback will help to stabilize it.)
5950
9987d1b3 5951You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5952function is available if either the @samp{%define api.push-pull push} or
5953@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5954@xref{Push Decl, ,A Push Parser}.
5955
5956@deftypefun void yypstate_delete (yypstate *yyps)
5957This function will reclaim the memory associated with a parser instance.
5958After this call, you should no longer attempt to use the parser instance.
5959@end deftypefun
bfa74976 5960
342b8b6e 5961@node Lexical
bfa74976
RS
5962@section The Lexical Analyzer Function @code{yylex}
5963@findex yylex
5964@cindex lexical analyzer
5965
5966The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5967the input stream and returns them to the parser. Bison does not create
5968this function automatically; you must write it so that @code{yyparse} can
5969call it. The function is sometimes referred to as a lexical scanner.
5970
ff7571c0
JD
5971In simple programs, @code{yylex} is often defined at the end of the
5972Bison grammar file. If @code{yylex} is defined in a separate source
5973file, you need to arrange for the token-type macro definitions to be
5974available there. To do this, use the @samp{-d} option when you run
5975Bison, so that it will write these macro definitions into the separate
5976parser header file, @file{@var{name}.tab.h}, which you can include in
5977the other source files that need it. @xref{Invocation, ,Invoking
5978Bison}.
bfa74976
RS
5979
5980@menu
5981* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5982* Token Values:: How @code{yylex} must return the semantic value
5983 of the token it has read.
5984* Token Locations:: How @code{yylex} must return the text location
5985 (line number, etc.) of the token, if the
5986 actions want that.
5987* Pure Calling:: How the calling convention differs in a pure parser
5988 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5989@end menu
5990
342b8b6e 5991@node Calling Convention
bfa74976
RS
5992@subsection Calling Convention for @code{yylex}
5993
72d2299c
PE
5994The value that @code{yylex} returns must be the positive numeric code
5995for the type of token it has just found; a zero or negative value
5996signifies end-of-input.
bfa74976
RS
5997
5998When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
5999in the parser implementation file becomes a C macro whose definition
6000is the proper numeric code for that token type. So @code{yylex} can
6001use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6002
6003When a token is referred to in the grammar rules by a character literal,
6004the numeric code for that character is also the code for the token type.
72d2299c
PE
6005So @code{yylex} can simply return that character code, possibly converted
6006to @code{unsigned char} to avoid sign-extension. The null character
6007must not be used this way, because its code is zero and that
bfa74976
RS
6008signifies end-of-input.
6009
6010Here is an example showing these things:
6011
6012@example
13863333
AD
6013int
6014yylex (void)
bfa74976
RS
6015@{
6016 @dots{}
72d2299c 6017 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6018 return 0;
6019 @dots{}
6020 if (c == '+' || c == '-')
72d2299c 6021 return c; /* Assume token type for `+' is '+'. */
bfa74976 6022 @dots{}
72d2299c 6023 return INT; /* Return the type of the token. */
bfa74976
RS
6024 @dots{}
6025@}
6026@end example
6027
6028@noindent
6029This interface has been designed so that the output from the @code{lex}
6030utility can be used without change as the definition of @code{yylex}.
6031
931c7513
RS
6032If the grammar uses literal string tokens, there are two ways that
6033@code{yylex} can determine the token type codes for them:
6034
6035@itemize @bullet
6036@item
6037If the grammar defines symbolic token names as aliases for the
6038literal string tokens, @code{yylex} can use these symbolic names like
6039all others. In this case, the use of the literal string tokens in
6040the grammar file has no effect on @code{yylex}.
6041
6042@item
9ecbd125 6043@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6044table. The index of the token in the table is the token type's code.
9ecbd125 6045The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6046double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6047token's characters are escaped as necessary to be suitable as input
6048to Bison.
931c7513 6049
9e0876fb
PE
6050Here's code for looking up a multicharacter token in @code{yytname},
6051assuming that the characters of the token are stored in
6052@code{token_buffer}, and assuming that the token does not contain any
6053characters like @samp{"} that require escaping.
931c7513 6054
c93f22fc 6055@example
931c7513
RS
6056for (i = 0; i < YYNTOKENS; i++)
6057 @{
6058 if (yytname[i] != 0
6059 && yytname[i][0] == '"'
68449b3a
PE
6060 && ! strncmp (yytname[i] + 1, token_buffer,
6061 strlen (token_buffer))
931c7513
RS
6062 && yytname[i][strlen (token_buffer) + 1] == '"'
6063 && yytname[i][strlen (token_buffer) + 2] == 0)
6064 break;
6065 @}
c93f22fc 6066@end example
931c7513
RS
6067
6068The @code{yytname} table is generated only if you use the
8c9a50be 6069@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6070@end itemize
6071
342b8b6e 6072@node Token Values
bfa74976
RS
6073@subsection Semantic Values of Tokens
6074
6075@vindex yylval
9d9b8b70 6076In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6077be stored into the global variable @code{yylval}. When you are using
6078just one data type for semantic values, @code{yylval} has that type.
6079Thus, if the type is @code{int} (the default), you might write this in
6080@code{yylex}:
6081
6082@example
6083@group
6084 @dots{}
72d2299c
PE
6085 yylval = value; /* Put value onto Bison stack. */
6086 return INT; /* Return the type of the token. */
bfa74976
RS
6087 @dots{}
6088@end group
6089@end example
6090
6091When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6092made from the @code{%union} declaration (@pxref{Union Decl, ,The
6093Collection of Value Types}). So when you store a token's value, you
6094must use the proper member of the union. If the @code{%union}
6095declaration looks like this:
bfa74976
RS
6096
6097@example
6098@group
6099%union @{
6100 int intval;
6101 double val;
6102 symrec *tptr;
6103@}
6104@end group
6105@end example
6106
6107@noindent
6108then the code in @code{yylex} might look like this:
6109
6110@example
6111@group
6112 @dots{}
72d2299c
PE
6113 yylval.intval = value; /* Put value onto Bison stack. */
6114 return INT; /* Return the type of the token. */
bfa74976
RS
6115 @dots{}
6116@end group
6117@end example
6118
95923bd6
AD
6119@node Token Locations
6120@subsection Textual Locations of Tokens
bfa74976
RS
6121
6122@vindex yylloc
303834cc
JD
6123If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6124in actions to keep track of the textual locations of tokens and groupings,
6125then you must provide this information in @code{yylex}. The function
6126@code{yyparse} expects to find the textual location of a token just parsed
6127in the global variable @code{yylloc}. So @code{yylex} must store the proper
6128data in that variable.
847bf1f5
AD
6129
6130By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6131initialize the members that are going to be used by the actions. The
6132four members are called @code{first_line}, @code{first_column},
6133@code{last_line} and @code{last_column}. Note that the use of this
6134feature makes the parser noticeably slower.
bfa74976
RS
6135
6136@tindex YYLTYPE
6137The data type of @code{yylloc} has the name @code{YYLTYPE}.
6138
342b8b6e 6139@node Pure Calling
c656404a 6140@subsection Calling Conventions for Pure Parsers
bfa74976 6141
67501061 6142When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6143pure, reentrant parser, the global communication variables @code{yylval}
6144and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6145Parser}.) In such parsers the two global variables are replaced by
6146pointers passed as arguments to @code{yylex}. You must declare them as
6147shown here, and pass the information back by storing it through those
6148pointers.
bfa74976
RS
6149
6150@example
13863333
AD
6151int
6152yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6153@{
6154 @dots{}
6155 *lvalp = value; /* Put value onto Bison stack. */
6156 return INT; /* Return the type of the token. */
6157 @dots{}
6158@}
6159@end example
6160
6161If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6162textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6163this case, omit the second argument; @code{yylex} will be called with
6164only one argument.
6165
2055a44e 6166If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6167@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6168Function}). To pass additional arguments to both @code{yylex} and
6169@code{yyparse}, use @code{%param}.
e425e872 6170
2055a44e 6171@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6172@findex %lex-param
2055a44e
AD
6173Specify that @var{argument-declaration} are additional @code{yylex} argument
6174declarations. You may pass one or more such declarations, which is
6175equivalent to repeating @code{%lex-param}.
6176@end deffn
6177
6178@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6179@findex %param
6180Specify that @var{argument-declaration} are additional
6181@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6182@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6183@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6184declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6185@end deffn
e425e872 6186
2a8d363a 6187For instance:
e425e872
RS
6188
6189@example
2055a44e
AD
6190%lex-param @{scanner_mode *mode@}
6191%parse-param @{parser_mode *mode@}
6192%param @{environment_type *env@}
e425e872
RS
6193@end example
6194
6195@noindent
2a8d363a 6196results in the following signature:
e425e872
RS
6197
6198@example
2055a44e
AD
6199int yylex (scanner_mode *mode, environment_type *env);
6200int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6201@end example
6202
67501061 6203If @samp{%define api.pure} is added:
c656404a
RS
6204
6205@example
2055a44e
AD
6206int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6207int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6208@end example
6209
2a8d363a 6210@noindent
67501061 6211and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6212
2a8d363a 6213@example
2055a44e
AD
6214int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6215 scanner_mode *mode, environment_type *env);
6216int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6217@end example
931c7513 6218
342b8b6e 6219@node Error Reporting
bfa74976
RS
6220@section The Error Reporting Function @code{yyerror}
6221@cindex error reporting function
6222@findex yyerror
6223@cindex parse error
6224@cindex syntax error
6225
31b850d2 6226The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6227whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6228action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6229macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6230in Actions}).
bfa74976
RS
6231
6232The Bison parser expects to report the error by calling an error
6233reporting function named @code{yyerror}, which you must supply. It is
6234called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6235receives one argument. For a syntax error, the string is normally
6236@w{@code{"syntax error"}}.
bfa74976 6237
31b850d2 6238@findex %define parse.error
7fceb615
JD
6239If you invoke @samp{%define parse.error verbose} in the Bison declarations
6240section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6241Bison provides a more verbose and specific error message string instead of
6242just plain @w{@code{"syntax error"}}. However, that message sometimes
6243contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6244
1a059451
PE
6245The parser can detect one other kind of error: memory exhaustion. This
6246can happen when the input contains constructions that are very deeply
bfa74976 6247nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6248parser normally extends its stack automatically up to a very large limit. But
6249if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6250fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6251
6252In some cases diagnostics like @w{@code{"syntax error"}} are
6253translated automatically from English to some other language before
6254they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6255
6256The following definition suffices in simple programs:
6257
6258@example
6259@group
13863333 6260void
38a92d50 6261yyerror (char const *s)
bfa74976
RS
6262@{
6263@end group
6264@group
6265 fprintf (stderr, "%s\n", s);
6266@}
6267@end group
6268@end example
6269
6270After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6271error recovery if you have written suitable error recovery grammar rules
6272(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6273immediately return 1.
6274
93724f13 6275Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6276an access to the current location.
8a4281b9 6277This is indeed the case for the GLR
2a8d363a 6278parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6279@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6280@code{yyerror} are:
6281
6282@example
38a92d50
PE
6283void yyerror (char const *msg); /* Yacc parsers. */
6284void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6285@end example
6286
feeb0eda 6287If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6288
6289@example
b317297e
PE
6290void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6291void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6292@end example
6293
8a4281b9 6294Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6295convention for absolutely pure parsers, i.e., when the calling
6296convention of @code{yylex} @emph{and} the calling convention of
67501061 6297@samp{%define api.pure} are pure.
d9df47b6 6298I.e.:
2a8d363a
AD
6299
6300@example
6301/* Location tracking. */
6302%locations
6303/* Pure yylex. */
d9df47b6 6304%define api.pure
feeb0eda 6305%lex-param @{int *nastiness@}
2a8d363a 6306/* Pure yyparse. */
feeb0eda
PE
6307%parse-param @{int *nastiness@}
6308%parse-param @{int *randomness@}
2a8d363a
AD
6309@end example
6310
6311@noindent
6312results in the following signatures for all the parser kinds:
6313
6314@example
6315int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6316int yyparse (int *nastiness, int *randomness);
93724f13
AD
6317void yyerror (YYLTYPE *locp,
6318 int *nastiness, int *randomness,
38a92d50 6319 char const *msg);
2a8d363a
AD
6320@end example
6321
1c0c3e95 6322@noindent
38a92d50
PE
6323The prototypes are only indications of how the code produced by Bison
6324uses @code{yyerror}. Bison-generated code always ignores the returned
6325value, so @code{yyerror} can return any type, including @code{void}.
6326Also, @code{yyerror} can be a variadic function; that is why the
6327message is always passed last.
6328
6329Traditionally @code{yyerror} returns an @code{int} that is always
6330ignored, but this is purely for historical reasons, and @code{void} is
6331preferable since it more accurately describes the return type for
6332@code{yyerror}.
93724f13 6333
bfa74976
RS
6334@vindex yynerrs
6335The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6336reported so far. Normally this variable is global; but if you
704a47c4
AD
6337request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6338then it is a local variable which only the actions can access.
bfa74976 6339
342b8b6e 6340@node Action Features
bfa74976
RS
6341@section Special Features for Use in Actions
6342@cindex summary, action features
6343@cindex action features summary
6344
6345Here is a table of Bison constructs, variables and macros that
6346are useful in actions.
6347
18b519c0 6348@deffn {Variable} $$
bfa74976
RS
6349Acts like a variable that contains the semantic value for the
6350grouping made by the current rule. @xref{Actions}.
18b519c0 6351@end deffn
bfa74976 6352
18b519c0 6353@deffn {Variable} $@var{n}
bfa74976
RS
6354Acts like a variable that contains the semantic value for the
6355@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6356@end deffn
bfa74976 6357
18b519c0 6358@deffn {Variable} $<@var{typealt}>$
bfa74976 6359Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6360specified by the @code{%union} declaration. @xref{Action Types, ,Data
6361Types of Values in Actions}.
18b519c0 6362@end deffn
bfa74976 6363
18b519c0 6364@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6365Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6366union specified by the @code{%union} declaration.
e0c471a9 6367@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6368@end deffn
bfa74976 6369
18b519c0 6370@deffn {Macro} YYABORT;
bfa74976
RS
6371Return immediately from @code{yyparse}, indicating failure.
6372@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6373@end deffn
bfa74976 6374
18b519c0 6375@deffn {Macro} YYACCEPT;
bfa74976
RS
6376Return immediately from @code{yyparse}, indicating success.
6377@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6378@end deffn
bfa74976 6379
18b519c0 6380@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6381@findex YYBACKUP
6382Unshift a token. This macro is allowed only for rules that reduce
742e4900 6383a single value, and only when there is no lookahead token.
8a4281b9 6384It is also disallowed in GLR parsers.
742e4900 6385It installs a lookahead token with token type @var{token} and
bfa74976
RS
6386semantic value @var{value}; then it discards the value that was
6387going to be reduced by this rule.
6388
6389If the macro is used when it is not valid, such as when there is
742e4900 6390a lookahead token already, then it reports a syntax error with
bfa74976
RS
6391a message @samp{cannot back up} and performs ordinary error
6392recovery.
6393
6394In either case, the rest of the action is not executed.
18b519c0 6395@end deffn
bfa74976 6396
18b519c0 6397@deffn {Macro} YYEMPTY
bfa74976 6398@vindex YYEMPTY
742e4900 6399Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6400@end deffn
bfa74976 6401
32c29292
JD
6402@deffn {Macro} YYEOF
6403@vindex YYEOF
742e4900 6404Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6405stream.
6406@end deffn
6407
18b519c0 6408@deffn {Macro} YYERROR;
bfa74976
RS
6409@findex YYERROR
6410Cause an immediate syntax error. This statement initiates error
6411recovery just as if the parser itself had detected an error; however, it
6412does not call @code{yyerror}, and does not print any message. If you
6413want to print an error message, call @code{yyerror} explicitly before
6414the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6415@end deffn
bfa74976 6416
18b519c0 6417@deffn {Macro} YYRECOVERING
02103984
PE
6418@findex YYRECOVERING
6419The expression @code{YYRECOVERING ()} yields 1 when the parser
6420is recovering from a syntax error, and 0 otherwise.
bfa74976 6421@xref{Error Recovery}.
18b519c0 6422@end deffn
bfa74976 6423
18b519c0 6424@deffn {Variable} yychar
742e4900
JD
6425Variable containing either the lookahead token, or @code{YYEOF} when the
6426lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6427has been performed so the next token is not yet known.
6428Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6429Actions}).
742e4900 6430@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6431@end deffn
bfa74976 6432
18b519c0 6433@deffn {Macro} yyclearin;
742e4900 6434Discard the current lookahead token. This is useful primarily in
32c29292
JD
6435error rules.
6436Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6437Semantic Actions}).
6438@xref{Error Recovery}.
18b519c0 6439@end deffn
bfa74976 6440
18b519c0 6441@deffn {Macro} yyerrok;
bfa74976 6442Resume generating error messages immediately for subsequent syntax
13863333 6443errors. This is useful primarily in error rules.
bfa74976 6444@xref{Error Recovery}.
18b519c0 6445@end deffn
bfa74976 6446
32c29292 6447@deffn {Variable} yylloc
742e4900 6448Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6449to @code{YYEMPTY} or @code{YYEOF}.
6450Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6451Actions}).
6452@xref{Actions and Locations, ,Actions and Locations}.
6453@end deffn
6454
6455@deffn {Variable} yylval
742e4900 6456Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6457not set to @code{YYEMPTY} or @code{YYEOF}.
6458Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6459Actions}).
6460@xref{Actions, ,Actions}.
6461@end deffn
6462
18b519c0 6463@deffn {Value} @@$
847bf1f5 6464@findex @@$
303834cc
JD
6465Acts like a structure variable containing information on the textual
6466location of the grouping made by the current rule. @xref{Tracking
6467Locations}.
bfa74976 6468
847bf1f5
AD
6469@c Check if those paragraphs are still useful or not.
6470
6471@c @example
6472@c struct @{
6473@c int first_line, last_line;
6474@c int first_column, last_column;
6475@c @};
6476@c @end example
6477
6478@c Thus, to get the starting line number of the third component, you would
6479@c use @samp{@@3.first_line}.
bfa74976 6480
847bf1f5
AD
6481@c In order for the members of this structure to contain valid information,
6482@c you must make @code{yylex} supply this information about each token.
6483@c If you need only certain members, then @code{yylex} need only fill in
6484@c those members.
bfa74976 6485
847bf1f5 6486@c The use of this feature makes the parser noticeably slower.
18b519c0 6487@end deffn
847bf1f5 6488
18b519c0 6489@deffn {Value} @@@var{n}
847bf1f5 6490@findex @@@var{n}
303834cc
JD
6491Acts like a structure variable containing information on the textual
6492location of the @var{n}th component of the current rule. @xref{Tracking
6493Locations}.
18b519c0 6494@end deffn
bfa74976 6495
f7ab6a50
PE
6496@node Internationalization
6497@section Parser Internationalization
6498@cindex internationalization
6499@cindex i18n
6500@cindex NLS
6501@cindex gettext
6502@cindex bison-po
6503
6504A Bison-generated parser can print diagnostics, including error and
6505tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6506also supports outputting diagnostics in the user's native language. To
6507make this work, the user should set the usual environment variables.
6508@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6509For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6510set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6511encoding. The exact set of available locales depends on the user's
6512installation.
6513
6514The maintainer of a package that uses a Bison-generated parser enables
6515the internationalization of the parser's output through the following
8a4281b9
JD
6516steps. Here we assume a package that uses GNU Autoconf and
6517GNU Automake.
f7ab6a50
PE
6518
6519@enumerate
6520@item
30757c8c 6521@cindex bison-i18n.m4
8a4281b9 6522Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6523by the package---often called @file{m4}---copy the
6524@file{bison-i18n.m4} file installed by Bison under
6525@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6526For example:
6527
6528@example
6529cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6530@end example
6531
6532@item
30757c8c
PE
6533@findex BISON_I18N
6534@vindex BISON_LOCALEDIR
6535@vindex YYENABLE_NLS
f7ab6a50
PE
6536In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6537invocation, add an invocation of @code{BISON_I18N}. This macro is
6538defined in the file @file{bison-i18n.m4} that you copied earlier. It
6539causes @samp{configure} to find the value of the
30757c8c
PE
6540@code{BISON_LOCALEDIR} variable, and it defines the source-language
6541symbol @code{YYENABLE_NLS} to enable translations in the
6542Bison-generated parser.
f7ab6a50
PE
6543
6544@item
6545In the @code{main} function of your program, designate the directory
6546containing Bison's runtime message catalog, through a call to
6547@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6548For example:
6549
6550@example
6551bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6552@end example
6553
6554Typically this appears after any other call @code{bindtextdomain
6555(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6556@samp{BISON_LOCALEDIR} to be defined as a string through the
6557@file{Makefile}.
6558
6559@item
6560In the @file{Makefile.am} that controls the compilation of the @code{main}
6561function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6562either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6563
6564@example
6565DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6566@end example
6567
6568or:
6569
6570@example
6571AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6572@end example
6573
6574@item
6575Finally, invoke the command @command{autoreconf} to generate the build
6576infrastructure.
6577@end enumerate
6578
bfa74976 6579
342b8b6e 6580@node Algorithm
13863333
AD
6581@chapter The Bison Parser Algorithm
6582@cindex Bison parser algorithm
bfa74976
RS
6583@cindex algorithm of parser
6584@cindex shifting
6585@cindex reduction
6586@cindex parser stack
6587@cindex stack, parser
6588
6589As Bison reads tokens, it pushes them onto a stack along with their
6590semantic values. The stack is called the @dfn{parser stack}. Pushing a
6591token is traditionally called @dfn{shifting}.
6592
6593For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6594@samp{3} to come. The stack will have four elements, one for each token
6595that was shifted.
6596
6597But the stack does not always have an element for each token read. When
6598the last @var{n} tokens and groupings shifted match the components of a
6599grammar rule, they can be combined according to that rule. This is called
6600@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6601single grouping whose symbol is the result (left hand side) of that rule.
6602Running the rule's action is part of the process of reduction, because this
6603is what computes the semantic value of the resulting grouping.
6604
6605For example, if the infix calculator's parser stack contains this:
6606
6607@example
66081 + 5 * 3
6609@end example
6610
6611@noindent
6612and the next input token is a newline character, then the last three
6613elements can be reduced to 15 via the rule:
6614
6615@example
6616expr: expr '*' expr;
6617@end example
6618
6619@noindent
6620Then the stack contains just these three elements:
6621
6622@example
66231 + 15
6624@end example
6625
6626@noindent
6627At this point, another reduction can be made, resulting in the single value
662816. Then the newline token can be shifted.
6629
6630The parser tries, by shifts and reductions, to reduce the entire input down
6631to a single grouping whose symbol is the grammar's start-symbol
6632(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6633
6634This kind of parser is known in the literature as a bottom-up parser.
6635
6636@menu
742e4900 6637* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6638* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6639* Precedence:: Operator precedence works by resolving conflicts.
6640* Contextual Precedence:: When an operator's precedence depends on context.
6641* Parser States:: The parser is a finite-state-machine with stack.
6642* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6643* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6644* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6645* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6646* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6647@end menu
6648
742e4900
JD
6649@node Lookahead
6650@section Lookahead Tokens
6651@cindex lookahead token
bfa74976
RS
6652
6653The Bison parser does @emph{not} always reduce immediately as soon as the
6654last @var{n} tokens and groupings match a rule. This is because such a
6655simple strategy is inadequate to handle most languages. Instead, when a
6656reduction is possible, the parser sometimes ``looks ahead'' at the next
6657token in order to decide what to do.
6658
6659When a token is read, it is not immediately shifted; first it becomes the
742e4900 6660@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6661perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6662the lookahead token remains off to the side. When no more reductions
6663should take place, the lookahead token is shifted onto the stack. This
bfa74976 6664does not mean that all possible reductions have been done; depending on the
742e4900 6665token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6666application.
6667
742e4900 6668Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6669expressions which contain binary addition operators and postfix unary
6670factorial operators (@samp{!}), and allow parentheses for grouping.
6671
6672@example
6673@group
5e9b6624
AD
6674expr:
6675 term '+' expr
6676| term
6677;
bfa74976
RS
6678@end group
6679
6680@group
5e9b6624
AD
6681term:
6682 '(' expr ')'
6683| term '!'
6684| NUMBER
6685;
bfa74976
RS
6686@end group
6687@end example
6688
6689Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6690should be done? If the following token is @samp{)}, then the first three
6691tokens must be reduced to form an @code{expr}. This is the only valid
6692course, because shifting the @samp{)} would produce a sequence of symbols
6693@w{@code{term ')'}}, and no rule allows this.
6694
6695If the following token is @samp{!}, then it must be shifted immediately so
6696that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6697parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6698@code{expr}. It would then be impossible to shift the @samp{!} because
6699doing so would produce on the stack the sequence of symbols @code{expr
6700'!'}. No rule allows that sequence.
6701
6702@vindex yychar
32c29292
JD
6703@vindex yylval
6704@vindex yylloc
742e4900 6705The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6706Its semantic value and location, if any, are stored in the variables
6707@code{yylval} and @code{yylloc}.
bfa74976
RS
6708@xref{Action Features, ,Special Features for Use in Actions}.
6709
342b8b6e 6710@node Shift/Reduce
bfa74976
RS
6711@section Shift/Reduce Conflicts
6712@cindex conflicts
6713@cindex shift/reduce conflicts
6714@cindex dangling @code{else}
6715@cindex @code{else}, dangling
6716
6717Suppose we are parsing a language which has if-then and if-then-else
6718statements, with a pair of rules like this:
6719
6720@example
6721@group
6722if_stmt:
5e9b6624
AD
6723 IF expr THEN stmt
6724| IF expr THEN stmt ELSE stmt
6725;
bfa74976
RS
6726@end group
6727@end example
6728
6729@noindent
6730Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6731terminal symbols for specific keyword tokens.
6732
742e4900 6733When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6734contents of the stack (assuming the input is valid) are just right for
6735reduction by the first rule. But it is also legitimate to shift the
6736@code{ELSE}, because that would lead to eventual reduction by the second
6737rule.
6738
6739This situation, where either a shift or a reduction would be valid, is
6740called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6741these conflicts by choosing to shift, unless otherwise directed by
6742operator precedence declarations. To see the reason for this, let's
6743contrast it with the other alternative.
6744
6745Since the parser prefers to shift the @code{ELSE}, the result is to attach
6746the else-clause to the innermost if-statement, making these two inputs
6747equivalent:
6748
6749@example
6750if x then if y then win (); else lose;
6751
6752if x then do; if y then win (); else lose; end;
6753@end example
6754
6755But if the parser chose to reduce when possible rather than shift, the
6756result would be to attach the else-clause to the outermost if-statement,
6757making these two inputs equivalent:
6758
6759@example
6760if x then if y then win (); else lose;
6761
6762if x then do; if y then win (); end; else lose;
6763@end example
6764
6765The conflict exists because the grammar as written is ambiguous: either
6766parsing of the simple nested if-statement is legitimate. The established
6767convention is that these ambiguities are resolved by attaching the
6768else-clause to the innermost if-statement; this is what Bison accomplishes
6769by choosing to shift rather than reduce. (It would ideally be cleaner to
6770write an unambiguous grammar, but that is very hard to do in this case.)
6771This particular ambiguity was first encountered in the specifications of
6772Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6773
6774To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6775conflicts, use the @code{%expect @var{n}} declaration.
6776There will be no warning as long as the number of shift/reduce conflicts
6777is exactly @var{n}, and Bison will report an error if there is a
6778different number.
bfa74976
RS
6779@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6780
6781The definition of @code{if_stmt} above is solely to blame for the
6782conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6783rules. Here is a complete Bison grammar file that actually manifests
6784the conflict:
bfa74976
RS
6785
6786@example
6787@group
6788%token IF THEN ELSE variable
6789%%
6790@end group
6791@group
5e9b6624
AD
6792stmt:
6793 expr
6794| if_stmt
6795;
bfa74976
RS
6796@end group
6797
6798@group
6799if_stmt:
5e9b6624
AD
6800 IF expr THEN stmt
6801| IF expr THEN stmt ELSE stmt
6802;
bfa74976
RS
6803@end group
6804
5e9b6624
AD
6805expr:
6806 variable
6807;
bfa74976
RS
6808@end example
6809
342b8b6e 6810@node Precedence
bfa74976
RS
6811@section Operator Precedence
6812@cindex operator precedence
6813@cindex precedence of operators
6814
6815Another situation where shift/reduce conflicts appear is in arithmetic
6816expressions. Here shifting is not always the preferred resolution; the
6817Bison declarations for operator precedence allow you to specify when to
6818shift and when to reduce.
6819
6820@menu
6821* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6822* Using Precedence:: How to specify precedence and associativity.
6823* Precedence Only:: How to specify precedence only.
bfa74976
RS
6824* Precedence Examples:: How these features are used in the previous example.
6825* How Precedence:: How they work.
6826@end menu
6827
342b8b6e 6828@node Why Precedence
bfa74976
RS
6829@subsection When Precedence is Needed
6830
6831Consider the following ambiguous grammar fragment (ambiguous because the
6832input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6833
6834@example
6835@group
5e9b6624
AD
6836expr:
6837 expr '-' expr
6838| expr '*' expr
6839| expr '<' expr
6840| '(' expr ')'
6841@dots{}
6842;
bfa74976
RS
6843@end group
6844@end example
6845
6846@noindent
6847Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6848should it reduce them via the rule for the subtraction operator? It
6849depends on the next token. Of course, if the next token is @samp{)}, we
6850must reduce; shifting is invalid because no single rule can reduce the
6851token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6852the next token is @samp{*} or @samp{<}, we have a choice: either
6853shifting or reduction would allow the parse to complete, but with
6854different results.
6855
6856To decide which one Bison should do, we must consider the results. If
6857the next operator token @var{op} is shifted, then it must be reduced
6858first in order to permit another opportunity to reduce the difference.
6859The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6860hand, if the subtraction is reduced before shifting @var{op}, the result
6861is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6862reduce should depend on the relative precedence of the operators
6863@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6864@samp{<}.
bfa74976
RS
6865
6866@cindex associativity
6867What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6868@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6869operators we prefer the former, which is called @dfn{left association}.
6870The latter alternative, @dfn{right association}, is desirable for
6871assignment operators. The choice of left or right association is a
6872matter of whether the parser chooses to shift or reduce when the stack
742e4900 6873contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6874makes right-associativity.
bfa74976 6875
342b8b6e 6876@node Using Precedence
bfa74976
RS
6877@subsection Specifying Operator Precedence
6878@findex %left
bfa74976 6879@findex %nonassoc
d78f0ac9
AD
6880@findex %precedence
6881@findex %right
bfa74976
RS
6882
6883Bison allows you to specify these choices with the operator precedence
6884declarations @code{%left} and @code{%right}. Each such declaration
6885contains a list of tokens, which are operators whose precedence and
6886associativity is being declared. The @code{%left} declaration makes all
6887those operators left-associative and the @code{%right} declaration makes
6888them right-associative. A third alternative is @code{%nonassoc}, which
6889declares that it is a syntax error to find the same operator twice ``in a
6890row''.
d78f0ac9
AD
6891The last alternative, @code{%precedence}, allows to define only
6892precedence and no associativity at all. As a result, any
6893associativity-related conflict that remains will be reported as an
6894compile-time error. The directive @code{%nonassoc} creates run-time
6895error: using the operator in a associative way is a syntax error. The
6896directive @code{%precedence} creates compile-time errors: an operator
6897@emph{can} be involved in an associativity-related conflict, contrary to
6898what expected the grammar author.
bfa74976
RS
6899
6900The relative precedence of different operators is controlled by the
d78f0ac9
AD
6901order in which they are declared. The first precedence/associativity
6902declaration in the file declares the operators whose
bfa74976
RS
6903precedence is lowest, the next such declaration declares the operators
6904whose precedence is a little higher, and so on.
6905
d78f0ac9
AD
6906@node Precedence Only
6907@subsection Specifying Precedence Only
6908@findex %precedence
6909
8a4281b9 6910Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6911@code{%nonassoc}, which all defines precedence and associativity, little
6912attention is paid to the fact that precedence cannot be defined without
6913defining associativity. Yet, sometimes, when trying to solve a
6914conflict, precedence suffices. In such a case, using @code{%left},
6915@code{%right}, or @code{%nonassoc} might hide future (associativity
6916related) conflicts that would remain hidden.
6917
6918The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6919Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6920in the following situation, where the period denotes the current parsing
6921state:
6922
6923@example
6924if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6925@end example
6926
6927The conflict involves the reduction of the rule @samp{IF expr THEN
6928stmt}, which precedence is by default that of its last token
6929(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6930disambiguation (attach the @code{else} to the closest @code{if}),
6931shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6932higher than that of @code{THEN}. But neither is expected to be involved
6933in an associativity related conflict, which can be specified as follows.
6934
6935@example
6936%precedence THEN
6937%precedence ELSE
6938@end example
6939
6940The unary-minus is another typical example where associativity is
6941usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6942Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6943used to declare the precedence of @code{NEG}, which is more than needed
6944since it also defines its associativity. While this is harmless in the
6945traditional example, who knows how @code{NEG} might be used in future
6946evolutions of the grammar@dots{}
6947
342b8b6e 6948@node Precedence Examples
bfa74976
RS
6949@subsection Precedence Examples
6950
6951In our example, we would want the following declarations:
6952
6953@example
6954%left '<'
6955%left '-'
6956%left '*'
6957@end example
6958
6959In a more complete example, which supports other operators as well, we
6960would declare them in groups of equal precedence. For example, @code{'+'} is
6961declared with @code{'-'}:
6962
6963@example
6964%left '<' '>' '=' NE LE GE
6965%left '+' '-'
6966%left '*' '/'
6967@end example
6968
6969@noindent
6970(Here @code{NE} and so on stand for the operators for ``not equal''
6971and so on. We assume that these tokens are more than one character long
6972and therefore are represented by names, not character literals.)
6973
342b8b6e 6974@node How Precedence
bfa74976
RS
6975@subsection How Precedence Works
6976
6977The first effect of the precedence declarations is to assign precedence
6978levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6979precedence levels to certain rules: each rule gets its precedence from
6980the last terminal symbol mentioned in the components. (You can also
6981specify explicitly the precedence of a rule. @xref{Contextual
6982Precedence, ,Context-Dependent Precedence}.)
6983
6984Finally, the resolution of conflicts works by comparing the precedence
742e4900 6985of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6986token's precedence is higher, the choice is to shift. If the rule's
6987precedence is higher, the choice is to reduce. If they have equal
6988precedence, the choice is made based on the associativity of that
6989precedence level. The verbose output file made by @samp{-v}
6990(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6991resolved.
bfa74976
RS
6992
6993Not all rules and not all tokens have precedence. If either the rule or
742e4900 6994the lookahead token has no precedence, then the default is to shift.
bfa74976 6995
342b8b6e 6996@node Contextual Precedence
bfa74976
RS
6997@section Context-Dependent Precedence
6998@cindex context-dependent precedence
6999@cindex unary operator precedence
7000@cindex precedence, context-dependent
7001@cindex precedence, unary operator
7002@findex %prec
7003
7004Often the precedence of an operator depends on the context. This sounds
7005outlandish at first, but it is really very common. For example, a minus
7006sign typically has a very high precedence as a unary operator, and a
7007somewhat lower precedence (lower than multiplication) as a binary operator.
7008
d78f0ac9
AD
7009The Bison precedence declarations
7010can only be used once for a given token; so a token has
bfa74976
RS
7011only one precedence declared in this way. For context-dependent
7012precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7013modifier for rules.
bfa74976
RS
7014
7015The @code{%prec} modifier declares the precedence of a particular rule by
7016specifying a terminal symbol whose precedence should be used for that rule.
7017It's not necessary for that symbol to appear otherwise in the rule. The
7018modifier's syntax is:
7019
7020@example
7021%prec @var{terminal-symbol}
7022@end example
7023
7024@noindent
7025and it is written after the components of the rule. Its effect is to
7026assign the rule the precedence of @var{terminal-symbol}, overriding
7027the precedence that would be deduced for it in the ordinary way. The
7028altered rule precedence then affects how conflicts involving that rule
7029are resolved (@pxref{Precedence, ,Operator Precedence}).
7030
7031Here is how @code{%prec} solves the problem of unary minus. First, declare
7032a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7033are no tokens of this type, but the symbol serves to stand for its
7034precedence:
7035
7036@example
7037@dots{}
7038%left '+' '-'
7039%left '*'
7040%left UMINUS
7041@end example
7042
7043Now the precedence of @code{UMINUS} can be used in specific rules:
7044
7045@example
7046@group
5e9b6624
AD
7047exp:
7048 @dots{}
7049| exp '-' exp
7050 @dots{}
7051| '-' exp %prec UMINUS
bfa74976
RS
7052@end group
7053@end example
7054
91d2c560 7055@ifset defaultprec
39a06c25
PE
7056If you forget to append @code{%prec UMINUS} to the rule for unary
7057minus, Bison silently assumes that minus has its usual precedence.
7058This kind of problem can be tricky to debug, since one typically
7059discovers the mistake only by testing the code.
7060
22fccf95 7061The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7062this kind of problem systematically. It causes rules that lack a
7063@code{%prec} modifier to have no precedence, even if the last terminal
7064symbol mentioned in their components has a declared precedence.
7065
22fccf95 7066If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7067for all rules that participate in precedence conflict resolution.
7068Then you will see any shift/reduce conflict until you tell Bison how
7069to resolve it, either by changing your grammar or by adding an
7070explicit precedence. This will probably add declarations to the
7071grammar, but it helps to protect against incorrect rule precedences.
7072
22fccf95
PE
7073The effect of @code{%no-default-prec;} can be reversed by giving
7074@code{%default-prec;}, which is the default.
91d2c560 7075@end ifset
39a06c25 7076
342b8b6e 7077@node Parser States
bfa74976
RS
7078@section Parser States
7079@cindex finite-state machine
7080@cindex parser state
7081@cindex state (of parser)
7082
7083The function @code{yyparse} is implemented using a finite-state machine.
7084The values pushed on the parser stack are not simply token type codes; they
7085represent the entire sequence of terminal and nonterminal symbols at or
7086near the top of the stack. The current state collects all the information
7087about previous input which is relevant to deciding what to do next.
7088
742e4900
JD
7089Each time a lookahead token is read, the current parser state together
7090with the type of lookahead token are looked up in a table. This table
7091entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7092specifies the new parser state, which is pushed onto the top of the
7093parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7094This means that a certain number of tokens or groupings are taken off
7095the top of the stack, and replaced by one grouping. In other words,
7096that number of states are popped from the stack, and one new state is
7097pushed.
7098
742e4900 7099There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7100is erroneous in the current state. This causes error processing to begin
7101(@pxref{Error Recovery}).
7102
342b8b6e 7103@node Reduce/Reduce
bfa74976
RS
7104@section Reduce/Reduce Conflicts
7105@cindex reduce/reduce conflict
7106@cindex conflicts, reduce/reduce
7107
7108A reduce/reduce conflict occurs if there are two or more rules that apply
7109to the same sequence of input. This usually indicates a serious error
7110in the grammar.
7111
7112For example, here is an erroneous attempt to define a sequence
7113of zero or more @code{word} groupings.
7114
7115@example
d4fca427 7116@group
5e9b6624
AD
7117sequence:
7118 /* empty */ @{ printf ("empty sequence\n"); @}
7119| maybeword
7120| sequence word @{ printf ("added word %s\n", $2); @}
7121;
d4fca427 7122@end group
bfa74976 7123
d4fca427 7124@group
5e9b6624
AD
7125maybeword:
7126 /* empty */ @{ printf ("empty maybeword\n"); @}
7127| word @{ printf ("single word %s\n", $1); @}
7128;
d4fca427 7129@end group
bfa74976
RS
7130@end example
7131
7132@noindent
7133The error is an ambiguity: there is more than one way to parse a single
7134@code{word} into a @code{sequence}. It could be reduced to a
7135@code{maybeword} and then into a @code{sequence} via the second rule.
7136Alternatively, nothing-at-all could be reduced into a @code{sequence}
7137via the first rule, and this could be combined with the @code{word}
7138using the third rule for @code{sequence}.
7139
7140There is also more than one way to reduce nothing-at-all into a
7141@code{sequence}. This can be done directly via the first rule,
7142or indirectly via @code{maybeword} and then the second rule.
7143
7144You might think that this is a distinction without a difference, because it
7145does not change whether any particular input is valid or not. But it does
7146affect which actions are run. One parsing order runs the second rule's
7147action; the other runs the first rule's action and the third rule's action.
7148In this example, the output of the program changes.
7149
7150Bison resolves a reduce/reduce conflict by choosing to use the rule that
7151appears first in the grammar, but it is very risky to rely on this. Every
7152reduce/reduce conflict must be studied and usually eliminated. Here is the
7153proper way to define @code{sequence}:
7154
7155@example
5e9b6624
AD
7156sequence:
7157 /* empty */ @{ printf ("empty sequence\n"); @}
7158| sequence word @{ printf ("added word %s\n", $2); @}
7159;
bfa74976
RS
7160@end example
7161
7162Here is another common error that yields a reduce/reduce conflict:
7163
7164@example
5e9b6624
AD
7165sequence:
7166 /* empty */
7167| sequence words
7168| sequence redirects
7169;
bfa74976 7170
5e9b6624
AD
7171words:
7172 /* empty */
7173| words word
7174;
bfa74976 7175
5e9b6624
AD
7176redirects:
7177 /* empty */
7178| redirects redirect
7179;
bfa74976
RS
7180@end example
7181
7182@noindent
7183The intention here is to define a sequence which can contain either
7184@code{word} or @code{redirect} groupings. The individual definitions of
7185@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7186three together make a subtle ambiguity: even an empty input can be parsed
7187in infinitely many ways!
7188
7189Consider: nothing-at-all could be a @code{words}. Or it could be two
7190@code{words} in a row, or three, or any number. It could equally well be a
7191@code{redirects}, or two, or any number. Or it could be a @code{words}
7192followed by three @code{redirects} and another @code{words}. And so on.
7193
7194Here are two ways to correct these rules. First, to make it a single level
7195of sequence:
7196
7197@example
5e9b6624
AD
7198sequence:
7199 /* empty */
7200| sequence word
7201| sequence redirect
7202;
bfa74976
RS
7203@end example
7204
7205Second, to prevent either a @code{words} or a @code{redirects}
7206from being empty:
7207
7208@example
d4fca427 7209@group
5e9b6624
AD
7210sequence:
7211 /* empty */
7212| sequence words
7213| sequence redirects
7214;
d4fca427 7215@end group
bfa74976 7216
d4fca427 7217@group
5e9b6624
AD
7218words:
7219 word
7220| words word
7221;
d4fca427 7222@end group
bfa74976 7223
d4fca427 7224@group
5e9b6624
AD
7225redirects:
7226 redirect
7227| redirects redirect
7228;
d4fca427 7229@end group
bfa74976
RS
7230@end example
7231
cc09e5be
JD
7232@node Mysterious Conflicts
7233@section Mysterious Conflicts
7fceb615 7234@cindex Mysterious Conflicts
bfa74976
RS
7235
7236Sometimes reduce/reduce conflicts can occur that don't look warranted.
7237Here is an example:
7238
7239@example
7240@group
7241%token ID
7242
7243%%
5e9b6624 7244def: param_spec return_spec ',';
bfa74976 7245param_spec:
5e9b6624
AD
7246 type
7247| name_list ':' type
7248;
bfa74976
RS
7249@end group
7250@group
7251return_spec:
5e9b6624
AD
7252 type
7253| name ':' type
7254;
bfa74976
RS
7255@end group
7256@group
5e9b6624 7257type: ID;
bfa74976
RS
7258@end group
7259@group
5e9b6624 7260name: ID;
bfa74976 7261name_list:
5e9b6624
AD
7262 name
7263| name ',' name_list
7264;
bfa74976
RS
7265@end group
7266@end example
7267
7268It would seem that this grammar can be parsed with only a single token
742e4900 7269of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7270a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7271@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7272
7fceb615
JD
7273@cindex LR
7274@cindex LALR
eb45ef3b 7275However, for historical reasons, Bison cannot by default handle all
8a4281b9 7276LR(1) grammars.
eb45ef3b
JD
7277In this grammar, two contexts, that after an @code{ID} at the beginning
7278of a @code{param_spec} and likewise at the beginning of a
7279@code{return_spec}, are similar enough that Bison assumes they are the
7280same.
7281They appear similar because the same set of rules would be
bfa74976
RS
7282active---the rule for reducing to a @code{name} and that for reducing to
7283a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7284that the rules would require different lookahead tokens in the two
bfa74976
RS
7285contexts, so it makes a single parser state for them both. Combining
7286the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7287occurrence means that the grammar is not LALR(1).
bfa74976 7288
7fceb615
JD
7289@cindex IELR
7290@cindex canonical LR
7291For many practical grammars (specifically those that fall into the non-LR(1)
7292class), the limitations of LALR(1) result in difficulties beyond just
7293mysterious reduce/reduce conflicts. The best way to fix all these problems
7294is to select a different parser table construction algorithm. Either
7295IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7296and easier to debug during development. @xref{LR Table Construction}, for
7297details. (Bison's IELR(1) and canonical LR(1) implementations are
7298experimental. More user feedback will help to stabilize them.)
eb45ef3b 7299
8a4281b9 7300If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7301can often fix a mysterious conflict by identifying the two parser states
7302that are being confused, and adding something to make them look
7303distinct. In the above example, adding one rule to
bfa74976
RS
7304@code{return_spec} as follows makes the problem go away:
7305
7306@example
7307@group
7308%token BOGUS
7309@dots{}
7310%%
7311@dots{}
7312return_spec:
5e9b6624
AD
7313 type
7314| name ':' type
7315| ID BOGUS /* This rule is never used. */
7316;
bfa74976
RS
7317@end group
7318@end example
7319
7320This corrects the problem because it introduces the possibility of an
7321additional active rule in the context after the @code{ID} at the beginning of
7322@code{return_spec}. This rule is not active in the corresponding context
7323in a @code{param_spec}, so the two contexts receive distinct parser states.
7324As long as the token @code{BOGUS} is never generated by @code{yylex},
7325the added rule cannot alter the way actual input is parsed.
7326
7327In this particular example, there is another way to solve the problem:
7328rewrite the rule for @code{return_spec} to use @code{ID} directly
7329instead of via @code{name}. This also causes the two confusing
7330contexts to have different sets of active rules, because the one for
7331@code{return_spec} activates the altered rule for @code{return_spec}
7332rather than the one for @code{name}.
7333
7334@example
7335param_spec:
5e9b6624
AD
7336 type
7337| name_list ':' type
7338;
bfa74976 7339return_spec:
5e9b6624
AD
7340 type
7341| ID ':' type
7342;
bfa74976
RS
7343@end example
7344
8a4281b9 7345For a more detailed exposition of LALR(1) parsers and parser
5e528941 7346generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7347
7fceb615
JD
7348@node Tuning LR
7349@section Tuning LR
7350
7351The default behavior of Bison's LR-based parsers is chosen mostly for
7352historical reasons, but that behavior is often not robust. For example, in
7353the previous section, we discussed the mysterious conflicts that can be
7354produced by LALR(1), Bison's default parser table construction algorithm.
7355Another example is Bison's @code{%define parse.error verbose} directive,
7356which instructs the generated parser to produce verbose syntax error
7357messages, which can sometimes contain incorrect information.
7358
7359In this section, we explore several modern features of Bison that allow you
7360to tune fundamental aspects of the generated LR-based parsers. Some of
7361these features easily eliminate shortcomings like those mentioned above.
7362Others can be helpful purely for understanding your parser.
7363
7364Most of the features discussed in this section are still experimental. More
7365user feedback will help to stabilize them.
7366
7367@menu
7368* LR Table Construction:: Choose a different construction algorithm.
7369* Default Reductions:: Disable default reductions.
7370* LAC:: Correct lookahead sets in the parser states.
7371* Unreachable States:: Keep unreachable parser states for debugging.
7372@end menu
7373
7374@node LR Table Construction
7375@subsection LR Table Construction
7376@cindex Mysterious Conflict
7377@cindex LALR
7378@cindex IELR
7379@cindex canonical LR
7380@findex %define lr.type
7381
7382For historical reasons, Bison constructs LALR(1) parser tables by default.
7383However, LALR does not possess the full language-recognition power of LR.
7384As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7385mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7386Conflicts}.
7387
7388As we also demonstrated in that example, the traditional approach to
7389eliminating such mysterious behavior is to restructure the grammar.
7390Unfortunately, doing so correctly is often difficult. Moreover, merely
7391discovering that LALR causes mysterious behavior in your parser can be
7392difficult as well.
7393
7394Fortunately, Bison provides an easy way to eliminate the possibility of such
7395mysterious behavior altogether. You simply need to activate a more powerful
7396parser table construction algorithm by using the @code{%define lr.type}
7397directive.
7398
7399@deffn {Directive} {%define lr.type @var{TYPE}}
7400Specify the type of parser tables within the LR(1) family. The accepted
7401values for @var{TYPE} are:
7402
7403@itemize
7404@item @code{lalr} (default)
7405@item @code{ielr}
7406@item @code{canonical-lr}
7407@end itemize
7408
7409(This feature is experimental. More user feedback will help to stabilize
7410it.)
7411@end deffn
7412
7413For example, to activate IELR, you might add the following directive to you
7414grammar file:
7415
7416@example
7417%define lr.type ielr
7418@end example
7419
cc09e5be 7420@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7421conflict is then eliminated, so there is no need to invest time in
7422comprehending the conflict or restructuring the grammar to fix it. If,
7423during future development, the grammar evolves such that all mysterious
7424behavior would have disappeared using just LALR, you need not fear that
7425continuing to use IELR will result in unnecessarily large parser tables.
7426That is, IELR generates LALR tables when LALR (using a deterministic parsing
7427algorithm) is sufficient to support the full language-recognition power of
7428LR. Thus, by enabling IELR at the start of grammar development, you can
7429safely and completely eliminate the need to consider LALR's shortcomings.
7430
7431While IELR is almost always preferable, there are circumstances where LALR
7432or the canonical LR parser tables described by Knuth
7433(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7434relative advantages of each parser table construction algorithm within
7435Bison:
7436
7437@itemize
7438@item LALR
7439
7440There are at least two scenarios where LALR can be worthwhile:
7441
7442@itemize
7443@item GLR without static conflict resolution.
7444
7445@cindex GLR with LALR
7446When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7447conflicts statically (for example, with @code{%left} or @code{%prec}), then
7448the parser explores all potential parses of any given input. In this case,
7449the choice of parser table construction algorithm is guaranteed not to alter
7450the language accepted by the parser. LALR parser tables are the smallest
7451parser tables Bison can currently construct, so they may then be preferable.
7452Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7453more like a deterministic parser in the syntactic contexts where those
7454conflicts appear, and so either IELR or canonical LR can then be helpful to
7455avoid LALR's mysterious behavior.
7456
7457@item Malformed grammars.
7458
7459Occasionally during development, an especially malformed grammar with a
7460major recurring flaw may severely impede the IELR or canonical LR parser
7461table construction algorithm. LALR can be a quick way to construct parser
7462tables in order to investigate such problems while ignoring the more subtle
7463differences from IELR and canonical LR.
7464@end itemize
7465
7466@item IELR
7467
7468IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7469any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7470always accept exactly the same set of sentences. However, like LALR, IELR
7471merges parser states during parser table construction so that the number of
7472parser states is often an order of magnitude less than for canonical LR.
7473More importantly, because canonical LR's extra parser states may contain
7474duplicate conflicts in the case of non-LR grammars, the number of conflicts
7475for IELR is often an order of magnitude less as well. This effect can
7476significantly reduce the complexity of developing a grammar.
7477
7478@item Canonical LR
7479
7480@cindex delayed syntax error detection
7481@cindex LAC
7482@findex %nonassoc
7483While inefficient, canonical LR parser tables can be an interesting means to
7484explore a grammar because they possess a property that IELR and LALR tables
7485do not. That is, if @code{%nonassoc} is not used and default reductions are
7486left disabled (@pxref{Default Reductions}), then, for every left context of
7487every canonical LR state, the set of tokens accepted by that state is
7488guaranteed to be the exact set of tokens that is syntactically acceptable in
7489that left context. It might then seem that an advantage of canonical LR
7490parsers in production is that, under the above constraints, they are
7491guaranteed to detect a syntax error as soon as possible without performing
7492any unnecessary reductions. However, IELR parsers that use LAC are also
7493able to achieve this behavior without sacrificing @code{%nonassoc} or
7494default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7495@end itemize
7496
7497For a more detailed exposition of the mysterious behavior in LALR parsers
7498and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7499@ref{Bibliography,,Denny 2010 November}.
7500
7501@node Default Reductions
7502@subsection Default Reductions
7503@cindex default reductions
7504@findex %define lr.default-reductions
7505@findex %nonassoc
7506
7507After parser table construction, Bison identifies the reduction with the
7508largest lookahead set in each parser state. To reduce the size of the
7509parser state, traditional Bison behavior is to remove that lookahead set and
7510to assign that reduction to be the default parser action. Such a reduction
7511is known as a @dfn{default reduction}.
7512
7513Default reductions affect more than the size of the parser tables. They
7514also affect the behavior of the parser:
7515
7516@itemize
7517@item Delayed @code{yylex} invocations.
7518
7519@cindex delayed yylex invocations
7520@cindex consistent states
7521@cindex defaulted states
7522A @dfn{consistent state} is a state that has only one possible parser
7523action. If that action is a reduction and is encoded as a default
7524reduction, then that consistent state is called a @dfn{defaulted state}.
7525Upon reaching a defaulted state, a Bison-generated parser does not bother to
7526invoke @code{yylex} to fetch the next token before performing the reduction.
7527In other words, whether default reductions are enabled in consistent states
7528determines how soon a Bison-generated parser invokes @code{yylex} for a
7529token: immediately when it @emph{reaches} that token in the input or when it
7530eventually @emph{needs} that token as a lookahead to determine the next
7531parser action. Traditionally, default reductions are enabled, and so the
7532parser exhibits the latter behavior.
7533
7534The presence of defaulted states is an important consideration when
7535designing @code{yylex} and the grammar file. That is, if the behavior of
7536@code{yylex} can influence or be influenced by the semantic actions
7537associated with the reductions in defaulted states, then the delay of the
7538next @code{yylex} invocation until after those reductions is significant.
7539For example, the semantic actions might pop a scope stack that @code{yylex}
7540uses to determine what token to return. Thus, the delay might be necessary
7541to ensure that @code{yylex} does not look up the next token in a scope that
7542should already be considered closed.
7543
7544@item Delayed syntax error detection.
7545
7546@cindex delayed syntax error detection
7547When the parser fetches a new token by invoking @code{yylex}, it checks
7548whether there is an action for that token in the current parser state. The
7549parser detects a syntax error if and only if either (1) there is no action
7550for that token or (2) the action for that token is the error action (due to
7551the use of @code{%nonassoc}). However, if there is a default reduction in
7552that state (which might or might not be a defaulted state), then it is
7553impossible for condition 1 to exist. That is, all tokens have an action.
7554Thus, the parser sometimes fails to detect the syntax error until it reaches
7555a later state.
7556
7557@cindex LAC
7558@c If there's an infinite loop, default reductions can prevent an incorrect
7559@c sentence from being rejected.
7560While default reductions never cause the parser to accept syntactically
7561incorrect sentences, the delay of syntax error detection can have unexpected
7562effects on the behavior of the parser. However, the delay can be caused
7563anyway by parser state merging and the use of @code{%nonassoc}, and it can
7564be fixed by another Bison feature, LAC. We discuss the effects of delayed
7565syntax error detection and LAC more in the next section (@pxref{LAC}).
7566@end itemize
7567
7568For canonical LR, the only default reduction that Bison enables by default
7569is the accept action, which appears only in the accepting state, which has
7570no other action and is thus a defaulted state. However, the default accept
7571action does not delay any @code{yylex} invocation or syntax error detection
7572because the accept action ends the parse.
7573
7574For LALR and IELR, Bison enables default reductions in nearly all states by
7575default. There are only two exceptions. First, states that have a shift
7576action on the @code{error} token do not have default reductions because
7577delayed syntax error detection could then prevent the @code{error} token
7578from ever being shifted in that state. However, parser state merging can
7579cause the same effect anyway, and LAC fixes it in both cases, so future
7580versions of Bison might drop this exception when LAC is activated. Second,
7581GLR parsers do not record the default reduction as the action on a lookahead
7582token for which there is a conflict. The correct action in this case is to
7583split the parse instead.
7584
7585To adjust which states have default reductions enabled, use the
7586@code{%define lr.default-reductions} directive.
7587
7588@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7589Specify the kind of states that are permitted to contain default reductions.
7590The accepted values of @var{WHERE} are:
7591@itemize
f0ad1b2f 7592@item @code{most} (default for LALR and IELR)
7fceb615
JD
7593@item @code{consistent}
7594@item @code{accepting} (default for canonical LR)
7595@end itemize
7596
7597(The ability to specify where default reductions are permitted is
7598experimental. More user feedback will help to stabilize it.)
7599@end deffn
7600
7fceb615
JD
7601@node LAC
7602@subsection LAC
7603@findex %define parse.lac
7604@cindex LAC
7605@cindex lookahead correction
7606
7607Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7608encountering a syntax error. First, the parser might perform additional
7609parser stack reductions before discovering the syntax error. Such
7610reductions can perform user semantic actions that are unexpected because
7611they are based on an invalid token, and they cause error recovery to begin
7612in a different syntactic context than the one in which the invalid token was
7613encountered. Second, when verbose error messages are enabled (@pxref{Error
7614Reporting}), the expected token list in the syntax error message can both
7615contain invalid tokens and omit valid tokens.
7616
7617The culprits for the above problems are @code{%nonassoc}, default reductions
7618in inconsistent states (@pxref{Default Reductions}), and parser state
7619merging. Because IELR and LALR merge parser states, they suffer the most.
7620Canonical LR can suffer only if @code{%nonassoc} is used or if default
7621reductions are enabled for inconsistent states.
7622
7623LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7624that solves these problems for canonical LR, IELR, and LALR without
7625sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7626enable LAC with the @code{%define parse.lac} directive.
7627
7628@deffn {Directive} {%define parse.lac @var{VALUE}}
7629Enable LAC to improve syntax error handling.
7630@itemize
7631@item @code{none} (default)
7632@item @code{full}
7633@end itemize
7634(This feature is experimental. More user feedback will help to stabilize
7635it. Moreover, it is currently only available for deterministic parsers in
7636C.)
7637@end deffn
7638
7639Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7640fetches a new token from the scanner so that it can determine the next
7641parser action, it immediately suspends normal parsing and performs an
7642exploratory parse using a temporary copy of the normal parser state stack.
7643During this exploratory parse, the parser does not perform user semantic
7644actions. If the exploratory parse reaches a shift action, normal parsing
7645then resumes on the normal parser stacks. If the exploratory parse reaches
7646an error instead, the parser reports a syntax error. If verbose syntax
7647error messages are enabled, the parser must then discover the list of
7648expected tokens, so it performs a separate exploratory parse for each token
7649in the grammar.
7650
7651There is one subtlety about the use of LAC. That is, when in a consistent
7652parser state with a default reduction, the parser will not attempt to fetch
7653a token from the scanner because no lookahead is needed to determine the
7654next parser action. Thus, whether default reductions are enabled in
7655consistent states (@pxref{Default Reductions}) affects how soon the parser
7656detects a syntax error: immediately when it @emph{reaches} an erroneous
7657token or when it eventually @emph{needs} that token as a lookahead to
7658determine the next parser action. The latter behavior is probably more
7659intuitive, so Bison currently provides no way to achieve the former behavior
7660while default reductions are enabled in consistent states.
7661
7662Thus, when LAC is in use, for some fixed decision of whether to enable
7663default reductions in consistent states, canonical LR and IELR behave almost
7664exactly the same for both syntactically acceptable and syntactically
7665unacceptable input. While LALR still does not support the full
7666language-recognition power of canonical LR and IELR, LAC at least enables
7667LALR's syntax error handling to correctly reflect LALR's
7668language-recognition power.
7669
7670There are a few caveats to consider when using LAC:
7671
7672@itemize
7673@item Infinite parsing loops.
7674
7675IELR plus LAC does have one shortcoming relative to canonical LR. Some
7676parsers generated by Bison can loop infinitely. LAC does not fix infinite
7677parsing loops that occur between encountering a syntax error and detecting
7678it, but enabling canonical LR or disabling default reductions sometimes
7679does.
7680
7681@item Verbose error message limitations.
7682
7683Because of internationalization considerations, Bison-generated parsers
7684limit the size of the expected token list they are willing to report in a
7685verbose syntax error message. If the number of expected tokens exceeds that
7686limit, the list is simply dropped from the message. Enabling LAC can
7687increase the size of the list and thus cause the parser to drop it. Of
7688course, dropping the list is better than reporting an incorrect list.
7689
7690@item Performance.
7691
7692Because LAC requires many parse actions to be performed twice, it can have a
7693performance penalty. However, not all parse actions must be performed
7694twice. Specifically, during a series of default reductions in consistent
7695states and shift actions, the parser never has to initiate an exploratory
7696parse. Moreover, the most time-consuming tasks in a parse are often the
7697file I/O, the lexical analysis performed by the scanner, and the user's
7698semantic actions, but none of these are performed during the exploratory
7699parse. Finally, the base of the temporary stack used during an exploratory
7700parse is a pointer into the normal parser state stack so that the stack is
7701never physically copied. In our experience, the performance penalty of LAC
7702has proven insignificant for practical grammars.
7703@end itemize
7704
709c7d11
JD
7705While the LAC algorithm shares techniques that have been recognized in the
7706parser community for years, for the publication that introduces LAC,
7707@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7708
7fceb615
JD
7709@node Unreachable States
7710@subsection Unreachable States
7711@findex %define lr.keep-unreachable-states
7712@cindex unreachable states
7713
7714If there exists no sequence of transitions from the parser's start state to
7715some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7716state}. A state can become unreachable during conflict resolution if Bison
7717disables a shift action leading to it from a predecessor state.
7718
7719By default, Bison removes unreachable states from the parser after conflict
7720resolution because they are useless in the generated parser. However,
7721keeping unreachable states is sometimes useful when trying to understand the
7722relationship between the parser and the grammar.
7723
7724@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7725Request that Bison allow unreachable states to remain in the parser tables.
7726@var{VALUE} must be a Boolean. The default is @code{false}.
7727@end deffn
7728
7729There are a few caveats to consider:
7730
7731@itemize @bullet
7732@item Missing or extraneous warnings.
7733
7734Unreachable states may contain conflicts and may use rules not used in any
7735other state. Thus, keeping unreachable states may induce warnings that are
7736irrelevant to your parser's behavior, and it may eliminate warnings that are
7737relevant. Of course, the change in warnings may actually be relevant to a
7738parser table analysis that wants to keep unreachable states, so this
7739behavior will likely remain in future Bison releases.
7740
7741@item Other useless states.
7742
7743While Bison is able to remove unreachable states, it is not guaranteed to
7744remove other kinds of useless states. Specifically, when Bison disables
7745reduce actions during conflict resolution, some goto actions may become
7746useless, and thus some additional states may become useless. If Bison were
7747to compute which goto actions were useless and then disable those actions,
7748it could identify such states as unreachable and then remove those states.
7749However, Bison does not compute which goto actions are useless.
7750@end itemize
7751
fae437e8 7752@node Generalized LR Parsing
8a4281b9
JD
7753@section Generalized LR (GLR) Parsing
7754@cindex GLR parsing
7755@cindex generalized LR (GLR) parsing
676385e2 7756@cindex ambiguous grammars
9d9b8b70 7757@cindex nondeterministic parsing
676385e2 7758
fae437e8
AD
7759Bison produces @emph{deterministic} parsers that choose uniquely
7760when to reduce and which reduction to apply
742e4900 7761based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7762As a result, normal Bison handles a proper subset of the family of
7763context-free languages.
fae437e8 7764Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7765sequence of reductions cannot have deterministic parsers in this sense.
7766The same is true of languages that require more than one symbol of
742e4900 7767lookahead, since the parser lacks the information necessary to make a
676385e2 7768decision at the point it must be made in a shift-reduce parser.
cc09e5be 7769Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7770there are languages where Bison's default choice of how to
676385e2
PH
7771summarize the input seen so far loses necessary information.
7772
7773When you use the @samp{%glr-parser} declaration in your grammar file,
7774Bison generates a parser that uses a different algorithm, called
8a4281b9 7775Generalized LR (or GLR). A Bison GLR
c827f760 7776parser uses the same basic
676385e2
PH
7777algorithm for parsing as an ordinary Bison parser, but behaves
7778differently in cases where there is a shift-reduce conflict that has not
fae437e8 7779been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7780reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7781situation, it
fae437e8 7782effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7783shift or reduction. These parsers then proceed as usual, consuming
7784tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7785and split further, with the result that instead of a sequence of states,
8a4281b9 7786a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7787
7788In effect, each stack represents a guess as to what the proper parse
7789is. Additional input may indicate that a guess was wrong, in which case
7790the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7791actions generated in each stack are saved, rather than being executed
676385e2 7792immediately. When a stack disappears, its saved semantic actions never
fae437e8 7793get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7794their sets of semantic actions are both saved with the state that
7795results from the reduction. We say that two stacks are equivalent
fae437e8 7796when they both represent the same sequence of states,
676385e2
PH
7797and each pair of corresponding states represents a
7798grammar symbol that produces the same segment of the input token
7799stream.
7800
7801Whenever the parser makes a transition from having multiple
eb45ef3b 7802states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7803algorithm, after resolving and executing the saved-up actions.
7804At this transition, some of the states on the stack will have semantic
7805values that are sets (actually multisets) of possible actions. The
7806parser tries to pick one of the actions by first finding one whose rule
7807has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7808declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7809precedence, but there the same merging function is declared for both
fae437e8 7810rules by the @samp{%merge} declaration,
676385e2
PH
7811Bison resolves and evaluates both and then calls the merge function on
7812the result. Otherwise, it reports an ambiguity.
7813
8a4281b9
JD
7814It is possible to use a data structure for the GLR parsing tree that
7815permits the processing of any LR(1) grammar in linear time (in the
c827f760 7816size of the input), any unambiguous (not necessarily
8a4281b9 7817LR(1)) grammar in
fae437e8 7818quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7819context-free grammar in cubic worst-case time. However, Bison currently
7820uses a simpler data structure that requires time proportional to the
7821length of the input times the maximum number of stacks required for any
9d9b8b70 7822prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7823grammars can require exponential time and space to process. Such badly
7824behaving examples, however, are not generally of practical interest.
9d9b8b70 7825Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7826doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7827structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7828grammar, in particular, it is only slightly slower than with the
8a4281b9 7829deterministic LR(1) Bison parser.
676385e2 7830
5e528941
JD
7831For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
78322000}.
f6481e2f 7833
1a059451
PE
7834@node Memory Management
7835@section Memory Management, and How to Avoid Memory Exhaustion
7836@cindex memory exhaustion
7837@cindex memory management
bfa74976
RS
7838@cindex stack overflow
7839@cindex parser stack overflow
7840@cindex overflow of parser stack
7841
1a059451 7842The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7843not reduced. When this happens, the parser function @code{yyparse}
1a059451 7844calls @code{yyerror} and then returns 2.
bfa74976 7845
c827f760 7846Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7847usually results from using a right recursion instead of a left
7848recursion, @xref{Recursion, ,Recursive Rules}.
7849
bfa74976
RS
7850@vindex YYMAXDEPTH
7851By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7852parser stack can become before memory is exhausted. Define the
bfa74976
RS
7853macro with a value that is an integer. This value is the maximum number
7854of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7855
7856The stack space allowed is not necessarily allocated. If you specify a
1a059451 7857large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7858stack at first, and then makes it bigger by stages as needed. This
7859increasing allocation happens automatically and silently. Therefore,
7860you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7861space for ordinary inputs that do not need much stack.
7862
d7e14fc0
PE
7863However, do not allow @code{YYMAXDEPTH} to be a value so large that
7864arithmetic overflow could occur when calculating the size of the stack
7865space. Also, do not allow @code{YYMAXDEPTH} to be less than
7866@code{YYINITDEPTH}.
7867
bfa74976
RS
7868@cindex default stack limit
7869The default value of @code{YYMAXDEPTH}, if you do not define it, is
787010000.
7871
7872@vindex YYINITDEPTH
7873You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7874macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7875parser in C, this value must be a compile-time constant
d7e14fc0
PE
7876unless you are assuming C99 or some other target language or compiler
7877that allows variable-length arrays. The default is 200.
7878
1a059451 7879Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7880
20be2f92 7881You can generate a deterministic parser containing C++ user code from
411614fa 7882the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
7883(@pxref{C++ Parsers}). However, if you do use the default skeleton
7884and want to allow the parsing stack to grow,
7885be careful not to use semantic types or location types that require
7886non-trivial copy constructors.
7887The C skeleton bypasses these constructors when copying data to
7888new, larger stacks.
d1a1114f 7889
342b8b6e 7890@node Error Recovery
bfa74976
RS
7891@chapter Error Recovery
7892@cindex error recovery
7893@cindex recovery from errors
7894
6e649e65 7895It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7896error. For example, a compiler should recover sufficiently to parse the
7897rest of the input file and check it for errors; a calculator should accept
7898another expression.
7899
7900In a simple interactive command parser where each input is one line, it may
7901be sufficient to allow @code{yyparse} to return 1 on error and have the
7902caller ignore the rest of the input line when that happens (and then call
7903@code{yyparse} again). But this is inadequate for a compiler, because it
7904forgets all the syntactic context leading up to the error. A syntax error
7905deep within a function in the compiler input should not cause the compiler
7906to treat the following line like the beginning of a source file.
7907
7908@findex error
7909You can define how to recover from a syntax error by writing rules to
7910recognize the special token @code{error}. This is a terminal symbol that
7911is always defined (you need not declare it) and reserved for error
7912handling. The Bison parser generates an @code{error} token whenever a
7913syntax error happens; if you have provided a rule to recognize this token
13863333 7914in the current context, the parse can continue.
bfa74976
RS
7915
7916For example:
7917
7918@example
5e9b6624
AD
7919stmnts:
7920 /* empty string */
7921| stmnts '\n'
7922| stmnts exp '\n'
7923| stmnts error '\n'
bfa74976
RS
7924@end example
7925
7926The fourth rule in this example says that an error followed by a newline
7927makes a valid addition to any @code{stmnts}.
7928
7929What happens if a syntax error occurs in the middle of an @code{exp}? The
7930error recovery rule, interpreted strictly, applies to the precise sequence
7931of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7932the middle of an @code{exp}, there will probably be some additional tokens
7933and subexpressions on the stack after the last @code{stmnts}, and there
7934will be tokens to read before the next newline. So the rule is not
7935applicable in the ordinary way.
7936
7937But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7938the semantic context and part of the input. First it discards states
7939and objects from the stack until it gets back to a state in which the
bfa74976 7940@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7941already parsed are discarded, back to the last complete @code{stmnts}.)
7942At this point the @code{error} token can be shifted. Then, if the old
742e4900 7943lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7944tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7945this example, Bison reads and discards input until the next newline so
7946that the fourth rule can apply. Note that discarded symbols are
7947possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7948Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7949
7950The choice of error rules in the grammar is a choice of strategies for
7951error recovery. A simple and useful strategy is simply to skip the rest of
7952the current input line or current statement if an error is detected:
7953
7954@example
72d2299c 7955stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7956@end example
7957
7958It is also useful to recover to the matching close-delimiter of an
7959opening-delimiter that has already been parsed. Otherwise the
7960close-delimiter will probably appear to be unmatched, and generate another,
7961spurious error message:
7962
7963@example
5e9b6624
AD
7964primary:
7965 '(' expr ')'
7966| '(' error ')'
7967@dots{}
7968;
bfa74976
RS
7969@end example
7970
7971Error recovery strategies are necessarily guesses. When they guess wrong,
7972one syntax error often leads to another. In the above example, the error
7973recovery rule guesses that an error is due to bad input within one
7974@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7975middle of a valid @code{stmnt}. After the error recovery rule recovers
7976from the first error, another syntax error will be found straightaway,
7977since the text following the spurious semicolon is also an invalid
7978@code{stmnt}.
7979
7980To prevent an outpouring of error messages, the parser will output no error
7981message for another syntax error that happens shortly after the first; only
7982after three consecutive input tokens have been successfully shifted will
7983error messages resume.
7984
7985Note that rules which accept the @code{error} token may have actions, just
7986as any other rules can.
7987
7988@findex yyerrok
7989You can make error messages resume immediately by using the macro
7990@code{yyerrok} in an action. If you do this in the error rule's action, no
7991error messages will be suppressed. This macro requires no arguments;
7992@samp{yyerrok;} is a valid C statement.
7993
7994@findex yyclearin
742e4900 7995The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7996this is unacceptable, then the macro @code{yyclearin} may be used to clear
7997this token. Write the statement @samp{yyclearin;} in the error rule's
7998action.
32c29292 7999@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8000
6e649e65 8001For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8002called that advances the input stream to some point where parsing should
8003once again commence. The next symbol returned by the lexical scanner is
742e4900 8004probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8005with @samp{yyclearin;}.
8006
8007@vindex YYRECOVERING
02103984
PE
8008The expression @code{YYRECOVERING ()} yields 1 when the parser
8009is recovering from a syntax error, and 0 otherwise.
8010Syntax error diagnostics are suppressed while recovering from a syntax
8011error.
bfa74976 8012
342b8b6e 8013@node Context Dependency
bfa74976
RS
8014@chapter Handling Context Dependencies
8015
8016The Bison paradigm is to parse tokens first, then group them into larger
8017syntactic units. In many languages, the meaning of a token is affected by
8018its context. Although this violates the Bison paradigm, certain techniques
8019(known as @dfn{kludges}) may enable you to write Bison parsers for such
8020languages.
8021
8022@menu
8023* Semantic Tokens:: Token parsing can depend on the semantic context.
8024* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8025* Tie-in Recovery:: Lexical tie-ins have implications for how
8026 error recovery rules must be written.
8027@end menu
8028
8029(Actually, ``kludge'' means any technique that gets its job done but is
8030neither clean nor robust.)
8031
342b8b6e 8032@node Semantic Tokens
bfa74976
RS
8033@section Semantic Info in Token Types
8034
8035The C language has a context dependency: the way an identifier is used
8036depends on what its current meaning is. For example, consider this:
8037
8038@example
8039foo (x);
8040@end example
8041
8042This looks like a function call statement, but if @code{foo} is a typedef
8043name, then this is actually a declaration of @code{x}. How can a Bison
8044parser for C decide how to parse this input?
8045
8a4281b9 8046The method used in GNU C is to have two different token types,
bfa74976
RS
8047@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8048identifier, it looks up the current declaration of the identifier in order
8049to decide which token type to return: @code{TYPENAME} if the identifier is
8050declared as a typedef, @code{IDENTIFIER} otherwise.
8051
8052The grammar rules can then express the context dependency by the choice of
8053token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8054but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8055@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8056is @emph{not} significant, such as in declarations that can shadow a
8057typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8058accepted---there is one rule for each of the two token types.
8059
8060This technique is simple to use if the decision of which kinds of
8061identifiers to allow is made at a place close to where the identifier is
8062parsed. But in C this is not always so: C allows a declaration to
8063redeclare a typedef name provided an explicit type has been specified
8064earlier:
8065
8066@example
3a4f411f
PE
8067typedef int foo, bar;
8068int baz (void)
d4fca427 8069@group
3a4f411f
PE
8070@{
8071 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8072 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8073 return foo (bar);
8074@}
d4fca427 8075@end group
bfa74976
RS
8076@end example
8077
8078Unfortunately, the name being declared is separated from the declaration
8079construct itself by a complicated syntactic structure---the ``declarator''.
8080
9ecbd125 8081As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8082all the nonterminal names changed: once for parsing a declaration in
8083which a typedef name can be redefined, and once for parsing a
8084declaration in which that can't be done. Here is a part of the
8085duplication, with actions omitted for brevity:
bfa74976
RS
8086
8087@example
d4fca427 8088@group
bfa74976 8089initdcl:
5e9b6624
AD
8090 declarator maybeasm '=' init
8091| declarator maybeasm
8092;
d4fca427 8093@end group
bfa74976 8094
d4fca427 8095@group
bfa74976 8096notype_initdcl:
5e9b6624
AD
8097 notype_declarator maybeasm '=' init
8098| notype_declarator maybeasm
8099;
d4fca427 8100@end group
bfa74976
RS
8101@end example
8102
8103@noindent
8104Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8105cannot. The distinction between @code{declarator} and
8106@code{notype_declarator} is the same sort of thing.
8107
8108There is some similarity between this technique and a lexical tie-in
8109(described next), in that information which alters the lexical analysis is
8110changed during parsing by other parts of the program. The difference is
8111here the information is global, and is used for other purposes in the
8112program. A true lexical tie-in has a special-purpose flag controlled by
8113the syntactic context.
8114
342b8b6e 8115@node Lexical Tie-ins
bfa74976
RS
8116@section Lexical Tie-ins
8117@cindex lexical tie-in
8118
8119One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8120which is set by Bison actions, whose purpose is to alter the way tokens are
8121parsed.
8122
8123For example, suppose we have a language vaguely like C, but with a special
8124construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8125an expression in parentheses in which all integers are hexadecimal. In
8126particular, the token @samp{a1b} must be treated as an integer rather than
8127as an identifier if it appears in that context. Here is how you can do it:
8128
8129@example
8130@group
8131%@{
38a92d50
PE
8132 int hexflag;
8133 int yylex (void);
8134 void yyerror (char const *);
bfa74976
RS
8135%@}
8136%%
8137@dots{}
8138@end group
8139@group
5e9b6624
AD
8140expr:
8141 IDENTIFIER
8142| constant
8143| HEX '(' @{ hexflag = 1; @}
8144 expr ')' @{ hexflag = 0; $$ = $4; @}
8145| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8146@dots{}
8147;
bfa74976
RS
8148@end group
8149
8150@group
8151constant:
5e9b6624
AD
8152 INTEGER
8153| STRING
8154;
bfa74976
RS
8155@end group
8156@end example
8157
8158@noindent
8159Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8160it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8161with letters are parsed as integers if possible.
8162
ff7571c0
JD
8163The declaration of @code{hexflag} shown in the prologue of the grammar
8164file is needed to make it accessible to the actions (@pxref{Prologue,
8165,The Prologue}). You must also write the code in @code{yylex} to obey
8166the flag.
bfa74976 8167
342b8b6e 8168@node Tie-in Recovery
bfa74976
RS
8169@section Lexical Tie-ins and Error Recovery
8170
8171Lexical tie-ins make strict demands on any error recovery rules you have.
8172@xref{Error Recovery}.
8173
8174The reason for this is that the purpose of an error recovery rule is to
8175abort the parsing of one construct and resume in some larger construct.
8176For example, in C-like languages, a typical error recovery rule is to skip
8177tokens until the next semicolon, and then start a new statement, like this:
8178
8179@example
5e9b6624
AD
8180stmt:
8181 expr ';'
8182| IF '(' expr ')' stmt @{ @dots{} @}
8183@dots{}
8184| error ';' @{ hexflag = 0; @}
8185;
bfa74976
RS
8186@end example
8187
8188If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8189construct, this error rule will apply, and then the action for the
8190completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8191remain set for the entire rest of the input, or until the next @code{hex}
8192keyword, causing identifiers to be misinterpreted as integers.
8193
8194To avoid this problem the error recovery rule itself clears @code{hexflag}.
8195
8196There may also be an error recovery rule that works within expressions.
8197For example, there could be a rule which applies within parentheses
8198and skips to the close-parenthesis:
8199
8200@example
8201@group
5e9b6624
AD
8202expr:
8203 @dots{}
8204| '(' expr ')' @{ $$ = $2; @}
8205| '(' error ')'
8206@dots{}
bfa74976
RS
8207@end group
8208@end example
8209
8210If this rule acts within the @code{hex} construct, it is not going to abort
8211that construct (since it applies to an inner level of parentheses within
8212the construct). Therefore, it should not clear the flag: the rest of
8213the @code{hex} construct should be parsed with the flag still in effect.
8214
8215What if there is an error recovery rule which might abort out of the
8216@code{hex} construct or might not, depending on circumstances? There is no
8217way you can write the action to determine whether a @code{hex} construct is
8218being aborted or not. So if you are using a lexical tie-in, you had better
8219make sure your error recovery rules are not of this kind. Each rule must
8220be such that you can be sure that it always will, or always won't, have to
8221clear the flag.
8222
ec3bc396
AD
8223@c ================================================== Debugging Your Parser
8224
342b8b6e 8225@node Debugging
bfa74976 8226@chapter Debugging Your Parser
ec3bc396
AD
8227
8228Developing a parser can be a challenge, especially if you don't
8229understand the algorithm (@pxref{Algorithm, ,The Bison Parser
8230Algorithm}). Even so, sometimes a detailed description of the automaton
8231can help (@pxref{Understanding, , Understanding Your Parser}), or
8232tracing the execution of the parser can give some insight on why it
8233behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
8234
8235@menu
8236* Understanding:: Understanding the structure of your parser.
8237* Tracing:: Tracing the execution of your parser.
8238@end menu
8239
8240@node Understanding
8241@section Understanding Your Parser
8242
8243As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8244Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8245frequent than one would hope), looking at this automaton is required to
8246tune or simply fix a parser. Bison provides two different
35fe0834 8247representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8248
8249The textual file is generated when the options @option{--report} or
8250@option{--verbose} are specified, see @xref{Invocation, , Invoking
8251Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8252the parser implementation file name, and adding @samp{.output}
8253instead. Therefore, if the grammar file is @file{foo.y}, then the
8254parser implementation file is called @file{foo.tab.c} by default. As
8255a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8256
8257The following grammar file, @file{calc.y}, will be used in the sequel:
8258
8259@example
8260%token NUM STR
8261%left '+' '-'
8262%left '*'
8263%%
5e9b6624
AD
8264exp:
8265 exp '+' exp
8266| exp '-' exp
8267| exp '*' exp
8268| exp '/' exp
8269| NUM
8270;
ec3bc396
AD
8271useless: STR;
8272%%
8273@end example
8274
88bce5a2
AD
8275@command{bison} reports:
8276
8277@example
8f0d265e
JD
8278calc.y: warning: 1 nonterminal useless in grammar
8279calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8280calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8281calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8282calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8283@end example
8284
8285When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8286creates a file @file{calc.output} with contents detailed below. The
8287order of the output and the exact presentation might vary, but the
8288interpretation is the same.
ec3bc396
AD
8289
8290The first section includes details on conflicts that were solved thanks
8291to precedence and/or associativity:
8292
8293@example
8294Conflict in state 8 between rule 2 and token '+' resolved as reduce.
8295Conflict in state 8 between rule 2 and token '-' resolved as reduce.
8296Conflict in state 8 between rule 2 and token '*' resolved as shift.
8297@exdent @dots{}
8298@end example
8299
8300@noindent
8301The next section lists states that still have conflicts.
8302
8303@example
5a99098d
PE
8304State 8 conflicts: 1 shift/reduce
8305State 9 conflicts: 1 shift/reduce
8306State 10 conflicts: 1 shift/reduce
8307State 11 conflicts: 4 shift/reduce
ec3bc396
AD
8308@end example
8309
8310@noindent
8311@cindex token, useless
8312@cindex useless token
8313@cindex nonterminal, useless
8314@cindex useless nonterminal
8315@cindex rule, useless
8316@cindex useless rule
8317The next section reports useless tokens, nonterminal and rules. Useless
8318nonterminals and rules are removed in order to produce a smaller parser,
8319but useless tokens are preserved, since they might be used by the
d80fb37a 8320scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
8321below):
8322
8323@example
d80fb37a 8324Nonterminals useless in grammar:
ec3bc396
AD
8325 useless
8326
d80fb37a 8327Terminals unused in grammar:
ec3bc396
AD
8328 STR
8329
cff03fb2 8330Rules useless in grammar:
ec3bc396
AD
8331#6 useless: STR;
8332@end example
8333
8334@noindent
8335The next section reproduces the exact grammar that Bison used:
8336
8337@example
8338Grammar
8339
8340 Number, Line, Rule
88bce5a2 8341 0 5 $accept -> exp $end
ec3bc396
AD
8342 1 5 exp -> exp '+' exp
8343 2 6 exp -> exp '-' exp
8344 3 7 exp -> exp '*' exp
8345 4 8 exp -> exp '/' exp
8346 5 9 exp -> NUM
8347@end example
8348
8349@noindent
8350and reports the uses of the symbols:
8351
8352@example
d4fca427 8353@group
ec3bc396
AD
8354Terminals, with rules where they appear
8355
88bce5a2 8356$end (0) 0
ec3bc396
AD
8357'*' (42) 3
8358'+' (43) 1
8359'-' (45) 2
8360'/' (47) 4
8361error (256)
8362NUM (258) 5
d4fca427 8363@end group
ec3bc396 8364
d4fca427 8365@group
ec3bc396
AD
8366Nonterminals, with rules where they appear
8367
88bce5a2 8368$accept (8)
ec3bc396
AD
8369 on left: 0
8370exp (9)
8371 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8372@end group
ec3bc396
AD
8373@end example
8374
8375@noindent
8376@cindex item
8377@cindex pointed rule
8378@cindex rule, pointed
8379Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8380with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8381item is a production rule together with a point (@samp{.}) marking
8382the location of the input cursor.
ec3bc396
AD
8383
8384@example
8385state 0
8386
88bce5a2 8387 $accept -> . exp $ (rule 0)
ec3bc396 8388
2a8d363a 8389 NUM shift, and go to state 1
ec3bc396 8390
2a8d363a 8391 exp go to state 2
ec3bc396
AD
8392@end example
8393
8394This reads as follows: ``state 0 corresponds to being at the very
8395beginning of the parsing, in the initial rule, right before the start
8396symbol (here, @code{exp}). When the parser returns to this state right
8397after having reduced a rule that produced an @code{exp}, the control
8398flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8399symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8400the parse stack, and the control flow jumps to state 1. Any other
742e4900 8401lookahead triggers a syntax error.''
ec3bc396
AD
8402
8403@cindex core, item set
8404@cindex item set core
8405@cindex kernel, item set
8406@cindex item set core
8407Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8408report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8409at the beginning of any rule deriving an @code{exp}. By default Bison
8410reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8411you want to see more detail you can invoke @command{bison} with
35880c82 8412@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8413
8414@example
8415state 0
8416
88bce5a2 8417 $accept -> . exp $ (rule 0)
ec3bc396
AD
8418 exp -> . exp '+' exp (rule 1)
8419 exp -> . exp '-' exp (rule 2)
8420 exp -> . exp '*' exp (rule 3)
8421 exp -> . exp '/' exp (rule 4)
8422 exp -> . NUM (rule 5)
8423
8424 NUM shift, and go to state 1
8425
8426 exp go to state 2
8427@end example
8428
8429@noindent
8430In the state 1...
8431
8432@example
8433state 1
8434
8435 exp -> NUM . (rule 5)
8436
2a8d363a 8437 $default reduce using rule 5 (exp)
ec3bc396
AD
8438@end example
8439
8440@noindent
742e4900 8441the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8442(@samp{$default}), the parser will reduce it. If it was coming from
8443state 0, then, after this reduction it will return to state 0, and will
8444jump to state 2 (@samp{exp: go to state 2}).
8445
8446@example
8447state 2
8448
88bce5a2 8449 $accept -> exp . $ (rule 0)
ec3bc396
AD
8450 exp -> exp . '+' exp (rule 1)
8451 exp -> exp . '-' exp (rule 2)
8452 exp -> exp . '*' exp (rule 3)
8453 exp -> exp . '/' exp (rule 4)
8454
2a8d363a
AD
8455 $ shift, and go to state 3
8456 '+' shift, and go to state 4
8457 '-' shift, and go to state 5
8458 '*' shift, and go to state 6
8459 '/' shift, and go to state 7
ec3bc396
AD
8460@end example
8461
8462@noindent
8463In state 2, the automaton can only shift a symbol. For instance,
35880c82
PE
8464because of the item @samp{exp -> exp . '+' exp}, if the lookahead is
8465@samp{+} it is shifted onto the parse stack, and the automaton
8466jumps to state 4, corresponding to the item @samp{exp -> exp '+' . exp}.
8467Since there is no default action, any lookahead not listed triggers a syntax
8468error.
ec3bc396 8469
eb45ef3b 8470@cindex accepting state
ec3bc396
AD
8471The state 3 is named the @dfn{final state}, or the @dfn{accepting
8472state}:
8473
8474@example
8475state 3
8476
88bce5a2 8477 $accept -> exp $ . (rule 0)
ec3bc396 8478
2a8d363a 8479 $default accept
ec3bc396
AD
8480@end example
8481
8482@noindent
8483the initial rule is completed (the start symbol and the end
8484of input were read), the parsing exits successfully.
8485
8486The interpretation of states 4 to 7 is straightforward, and is left to
8487the reader.
8488
8489@example
8490state 4
8491
8492 exp -> exp '+' . exp (rule 1)
8493
2a8d363a 8494 NUM shift, and go to state 1
ec3bc396 8495
2a8d363a 8496 exp go to state 8
ec3bc396
AD
8497
8498state 5
8499
8500 exp -> exp '-' . exp (rule 2)
8501
2a8d363a 8502 NUM shift, and go to state 1
ec3bc396 8503
2a8d363a 8504 exp go to state 9
ec3bc396
AD
8505
8506state 6
8507
8508 exp -> exp '*' . exp (rule 3)
8509
2a8d363a 8510 NUM shift, and go to state 1
ec3bc396 8511
2a8d363a 8512 exp go to state 10
ec3bc396
AD
8513
8514state 7
8515
8516 exp -> exp '/' . exp (rule 4)
8517
2a8d363a 8518 NUM shift, and go to state 1
ec3bc396 8519
2a8d363a 8520 exp go to state 11
ec3bc396
AD
8521@end example
8522
5a99098d
PE
8523As was announced in beginning of the report, @samp{State 8 conflicts:
85241 shift/reduce}:
ec3bc396
AD
8525
8526@example
8527state 8
8528
8529 exp -> exp . '+' exp (rule 1)
8530 exp -> exp '+' exp . (rule 1)
8531 exp -> exp . '-' exp (rule 2)
8532 exp -> exp . '*' exp (rule 3)
8533 exp -> exp . '/' exp (rule 4)
8534
2a8d363a
AD
8535 '*' shift, and go to state 6
8536 '/' shift, and go to state 7
ec3bc396 8537
2a8d363a
AD
8538 '/' [reduce using rule 1 (exp)]
8539 $default reduce using rule 1 (exp)
ec3bc396
AD
8540@end example
8541
742e4900 8542Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8543either shifting (and going to state 7), or reducing rule 1. The
8544conflict means that either the grammar is ambiguous, or the parser lacks
8545information to make the right decision. Indeed the grammar is
8546ambiguous, as, since we did not specify the precedence of @samp{/}, the
8547sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8548NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8549NUM}, which corresponds to reducing rule 1.
8550
eb45ef3b 8551Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8552arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8553Shift/Reduce Conflicts}. Discarded actions are reported in between
8554square brackets.
8555
8556Note that all the previous states had a single possible action: either
8557shifting the next token and going to the corresponding state, or
8558reducing a single rule. In the other cases, i.e., when shifting
8559@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8560possible, the lookahead is required to select the action. State 8 is
8561one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8562is shifting, otherwise the action is reducing rule 1. In other words,
8563the first two items, corresponding to rule 1, are not eligible when the
742e4900 8564lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8565precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8566with some set of possible lookahead tokens. When run with
8567@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8568
8569@example
8570state 8
8571
88c78747 8572 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8573 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8574 exp -> exp . '-' exp (rule 2)
8575 exp -> exp . '*' exp (rule 3)
8576 exp -> exp . '/' exp (rule 4)
8577
8578 '*' shift, and go to state 6
8579 '/' shift, and go to state 7
8580
8581 '/' [reduce using rule 1 (exp)]
8582 $default reduce using rule 1 (exp)
8583@end example
8584
8585The remaining states are similar:
8586
8587@example
d4fca427 8588@group
ec3bc396
AD
8589state 9
8590
8591 exp -> exp . '+' exp (rule 1)
8592 exp -> exp . '-' exp (rule 2)
8593 exp -> exp '-' exp . (rule 2)
8594 exp -> exp . '*' exp (rule 3)
8595 exp -> exp . '/' exp (rule 4)
8596
2a8d363a
AD
8597 '*' shift, and go to state 6
8598 '/' shift, and go to state 7
ec3bc396 8599
2a8d363a
AD
8600 '/' [reduce using rule 2 (exp)]
8601 $default reduce using rule 2 (exp)
d4fca427 8602@end group
ec3bc396 8603
d4fca427 8604@group
ec3bc396
AD
8605state 10
8606
8607 exp -> exp . '+' exp (rule 1)
8608 exp -> exp . '-' exp (rule 2)
8609 exp -> exp . '*' exp (rule 3)
8610 exp -> exp '*' exp . (rule 3)
8611 exp -> exp . '/' exp (rule 4)
8612
2a8d363a 8613 '/' shift, and go to state 7
ec3bc396 8614
2a8d363a
AD
8615 '/' [reduce using rule 3 (exp)]
8616 $default reduce using rule 3 (exp)
d4fca427 8617@end group
ec3bc396 8618
d4fca427 8619@group
ec3bc396
AD
8620state 11
8621
8622 exp -> exp . '+' exp (rule 1)
8623 exp -> exp . '-' exp (rule 2)
8624 exp -> exp . '*' exp (rule 3)
8625 exp -> exp . '/' exp (rule 4)
8626 exp -> exp '/' exp . (rule 4)
8627
2a8d363a
AD
8628 '+' shift, and go to state 4
8629 '-' shift, and go to state 5
8630 '*' shift, and go to state 6
8631 '/' shift, and go to state 7
ec3bc396 8632
2a8d363a
AD
8633 '+' [reduce using rule 4 (exp)]
8634 '-' [reduce using rule 4 (exp)]
8635 '*' [reduce using rule 4 (exp)]
8636 '/' [reduce using rule 4 (exp)]
8637 $default reduce using rule 4 (exp)
d4fca427 8638@end group
ec3bc396
AD
8639@end example
8640
8641@noindent
fa7e68c3
PE
8642Observe that state 11 contains conflicts not only due to the lack of
8643precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8644@samp{*}, but also because the
ec3bc396
AD
8645associativity of @samp{/} is not specified.
8646
8647
8648@node Tracing
8649@section Tracing Your Parser
bfa74976
RS
8650@findex yydebug
8651@cindex debugging
8652@cindex tracing the parser
8653
8654If a Bison grammar compiles properly but doesn't do what you want when it
8655runs, the @code{yydebug} parser-trace feature can help you figure out why.
8656
3ded9a63
AD
8657There are several means to enable compilation of trace facilities:
8658
8659@table @asis
8660@item the macro @code{YYDEBUG}
8661@findex YYDEBUG
8662Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8663parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8664@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8665YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8666Prologue}).
8667
8668@item the option @option{-t}, @option{--debug}
8669Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8670,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8671
8672@item the directive @samp{%debug}
8673@findex %debug
fa819509
AD
8674Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8675Summary}). This Bison extension is maintained for backward
8676compatibility with previous versions of Bison.
8677
8678@item the variable @samp{parse.trace}
8679@findex %define parse.trace
35c1e5f0
JD
8680Add the @samp{%define parse.trace} directive (@pxref{%define
8681Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8682(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8683useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8684portability matter to you, this is the preferred solution.
3ded9a63
AD
8685@end table
8686
fa819509 8687We suggest that you always enable the trace option so that debugging is
3ded9a63 8688always possible.
bfa74976 8689
02a81e05 8690The trace facility outputs messages with macro calls of the form
e2742e46 8691@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8692@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8693arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8694define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8695and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8696
8697Once you have compiled the program with trace facilities, the way to
8698request a trace is to store a nonzero value in the variable @code{yydebug}.
8699You can do this by making the C code do it (in @code{main}, perhaps), or
8700you can alter the value with a C debugger.
8701
8702Each step taken by the parser when @code{yydebug} is nonzero produces a
8703line or two of trace information, written on @code{stderr}. The trace
8704messages tell you these things:
8705
8706@itemize @bullet
8707@item
8708Each time the parser calls @code{yylex}, what kind of token was read.
8709
8710@item
8711Each time a token is shifted, the depth and complete contents of the
8712state stack (@pxref{Parser States}).
8713
8714@item
8715Each time a rule is reduced, which rule it is, and the complete contents
8716of the state stack afterward.
8717@end itemize
8718
8719To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8720produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8721Bison}). This file shows the meaning of each state in terms of
8722positions in various rules, and also what each state will do with each
8723possible input token. As you read the successive trace messages, you
8724can see that the parser is functioning according to its specification in
8725the listing file. Eventually you will arrive at the place where
8726something undesirable happens, and you will see which parts of the
8727grammar are to blame.
bfa74976 8728
ff7571c0
JD
8729The parser implementation file is a C program and you can use C
8730debuggers on it, but it's not easy to interpret what it is doing. The
8731parser function is a finite-state machine interpreter, and aside from
8732the actions it executes the same code over and over. Only the values
8733of variables show where in the grammar it is working.
bfa74976
RS
8734
8735@findex YYPRINT
8736The debugging information normally gives the token type of each token
8737read, but not its semantic value. You can optionally define a macro
8738named @code{YYPRINT} to provide a way to print the value. If you define
8739@code{YYPRINT}, it should take three arguments. The parser will pass a
8740standard I/O stream, the numeric code for the token type, and the token
8741value (from @code{yylval}).
8742
8743Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8744calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 8745
c93f22fc 8746@example
38a92d50
PE
8747%@{
8748 static void print_token_value (FILE *, int, YYSTYPE);
c93f22fc
AD
8749 #define YYPRINT(file, type, value) \
8750 print_token_value (file, type, value)
38a92d50
PE
8751%@}
8752
8753@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8754
8755static void
831d3c99 8756print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8757@{
8758 if (type == VAR)
d3c4e709 8759 fprintf (file, "%s", value.tptr->name);
bfa74976 8760 else if (type == NUM)
d3c4e709 8761 fprintf (file, "%d", value.val);
bfa74976 8762@}
c93f22fc 8763@end example
bfa74976 8764
ec3bc396
AD
8765@c ================================================= Invoking Bison
8766
342b8b6e 8767@node Invocation
bfa74976
RS
8768@chapter Invoking Bison
8769@cindex invoking Bison
8770@cindex Bison invocation
8771@cindex options for invoking Bison
8772
8773The usual way to invoke Bison is as follows:
8774
8775@example
8776bison @var{infile}
8777@end example
8778
8779Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
8780@samp{.y}. The parser implementation file's name is made by replacing
8781the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8782Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8783the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8784also possible, in case you are writing C++ code instead of C in your
8785grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8786output files will take an extension like the given one as input
8787(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8788feature takes effect with all options that manipulate file names like
234a3be3
AD
8789@samp{-o} or @samp{-d}.
8790
8791For example :
8792
8793@example
8794bison -d @var{infile.yxx}
8795@end example
84163231 8796@noindent
72d2299c 8797will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8798
8799@example
b56471a6 8800bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8801@end example
84163231 8802@noindent
234a3be3
AD
8803will produce @file{output.c++} and @file{outfile.h++}.
8804
8a4281b9 8805For compatibility with POSIX, the standard Bison
397ec073
PE
8806distribution also contains a shell script called @command{yacc} that
8807invokes Bison with the @option{-y} option.
8808
bfa74976 8809@menu
13863333 8810* Bison Options:: All the options described in detail,
c827f760 8811 in alphabetical order by short options.
bfa74976 8812* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8813* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8814@end menu
8815
342b8b6e 8816@node Bison Options
bfa74976
RS
8817@section Bison Options
8818
8819Bison supports both traditional single-letter options and mnemonic long
8820option names. Long option names are indicated with @samp{--} instead of
8821@samp{-}. Abbreviations for option names are allowed as long as they
8822are unique. When a long option takes an argument, like
8823@samp{--file-prefix}, connect the option name and the argument with
8824@samp{=}.
8825
8826Here is a list of options that can be used with Bison, alphabetized by
8827short option. It is followed by a cross key alphabetized by long
8828option.
8829
89cab50d
AD
8830@c Please, keep this ordered as in `bison --help'.
8831@noindent
8832Operations modes:
8833@table @option
8834@item -h
8835@itemx --help
8836Print a summary of the command-line options to Bison and exit.
bfa74976 8837
89cab50d
AD
8838@item -V
8839@itemx --version
8840Print the version number of Bison and exit.
bfa74976 8841
f7ab6a50
PE
8842@item --print-localedir
8843Print the name of the directory containing locale-dependent data.
8844
a0de5091
JD
8845@item --print-datadir
8846Print the name of the directory containing skeletons and XSLT.
8847
89cab50d
AD
8848@item -y
8849@itemx --yacc
ff7571c0
JD
8850Act more like the traditional Yacc command. This can cause different
8851diagnostics to be generated, and may change behavior in other minor
8852ways. Most importantly, imitate Yacc's output file name conventions,
8853so that the parser implementation file is called @file{y.tab.c}, and
8854the other outputs are called @file{y.output} and @file{y.tab.h}.
8855Also, if generating a deterministic parser in C, generate
8856@code{#define} statements in addition to an @code{enum} to associate
8857token numbers with token names. Thus, the following shell script can
8858substitute for Yacc, and the Bison distribution contains such a script
8859for compatibility with POSIX:
bfa74976 8860
89cab50d 8861@example
397ec073 8862#! /bin/sh
26e06a21 8863bison -y "$@@"
89cab50d 8864@end example
54662697
PE
8865
8866The @option{-y}/@option{--yacc} option is intended for use with
8867traditional Yacc grammars. If your grammar uses a Bison extension
8868like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8869this option is specified.
8870
1d5b3c08
JD
8871@item -W [@var{category}]
8872@itemx --warnings[=@var{category}]
118d4978
AD
8873Output warnings falling in @var{category}. @var{category} can be one
8874of:
8875@table @code
8876@item midrule-values
8e55b3aa
JD
8877Warn about mid-rule values that are set but not used within any of the actions
8878of the parent rule.
8879For example, warn about unused @code{$2} in:
118d4978
AD
8880
8881@example
8882exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8883@end example
8884
8e55b3aa
JD
8885Also warn about mid-rule values that are used but not set.
8886For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8887
8888@example
5e9b6624 8889exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
8890@end example
8891
8892These warnings are not enabled by default since they sometimes prove to
8893be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8894@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8895
118d4978 8896@item yacc
8a4281b9 8897Incompatibilities with POSIX Yacc.
118d4978 8898
786743d5
JD
8899@item conflicts-sr
8900@itemx conflicts-rr
8901S/R and R/R conflicts. These warnings are enabled by default. However, if
8902the @code{%expect} or @code{%expect-rr} directive is specified, an
8903unexpected number of conflicts is an error, and an expected number of
8904conflicts is not reported, so @option{-W} and @option{--warning} then have
8905no effect on the conflict report.
8906
c39014ae
JD
8907@item other
8908All warnings not categorized above. These warnings are enabled by default.
8909
8910This category is provided merely for the sake of completeness. Future
8911releases of Bison may move warnings from this category to new, more specific
8912categories.
8913
118d4978 8914@item all
8e55b3aa 8915All the warnings.
118d4978 8916@item none
8e55b3aa 8917Turn off all the warnings.
118d4978 8918@item error
8e55b3aa 8919Treat warnings as errors.
118d4978
AD
8920@end table
8921
8922A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8923instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8924POSIX Yacc incompatibilities.
89cab50d
AD
8925@end table
8926
8927@noindent
8928Tuning the parser:
8929
8930@table @option
8931@item -t
8932@itemx --debug
ff7571c0
JD
8933In the parser implementation file, define the macro @code{YYDEBUG} to
89341 if it is not already defined, so that the debugging facilities are
8935compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8936
58697c6d
AD
8937@item -D @var{name}[=@var{value}]
8938@itemx --define=@var{name}[=@var{value}]
17aed602 8939@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8940@itemx --force-define=@var{name}[=@var{value}]
8941Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 8942(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
8943definitions for the same @var{name} as follows:
8944
8945@itemize
8946@item
0b6d43c5
JD
8947Bison quietly ignores all command-line definitions for @var{name} except
8948the last.
de5ab940 8949@item
0b6d43c5
JD
8950If that command-line definition is specified by a @code{-D} or
8951@code{--define}, Bison reports an error for any @code{%define}
8952definition for @var{name}.
de5ab940 8953@item
0b6d43c5
JD
8954If that command-line definition is specified by a @code{-F} or
8955@code{--force-define} instead, Bison quietly ignores all @code{%define}
8956definitions for @var{name}.
8957@item
8958Otherwise, Bison reports an error if there are multiple @code{%define}
8959definitions for @var{name}.
de5ab940
JD
8960@end itemize
8961
8962You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
8963make files unless you are confident that it is safe to quietly ignore
8964any conflicting @code{%define} that may be added to the grammar file.
58697c6d 8965
0e021770
PE
8966@item -L @var{language}
8967@itemx --language=@var{language}
8968Specify the programming language for the generated parser, as if
8969@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8970Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8971@var{language} is case-insensitive.
0e021770 8972
ed4d67dc
JD
8973This option is experimental and its effect may be modified in future
8974releases.
8975
89cab50d 8976@item --locations
d8988b2f 8977Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8978
8979@item -p @var{prefix}
8980@itemx --name-prefix=@var{prefix}
02975b9a 8981Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8982@xref{Decl Summary}.
bfa74976
RS
8983
8984@item -l
8985@itemx --no-lines
ff7571c0
JD
8986Don't put any @code{#line} preprocessor commands in the parser
8987implementation file. Ordinarily Bison puts them in the parser
8988implementation file so that the C compiler and debuggers will
8989associate errors with your source file, the grammar file. This option
8990causes them to associate errors with the parser implementation file,
8991treating it as an independent source file in its own right.
bfa74976 8992
e6e704dc
JD
8993@item -S @var{file}
8994@itemx --skeleton=@var{file}
a7867f53 8995Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8996(@pxref{Decl Summary, , Bison Declaration Summary}).
8997
ed4d67dc
JD
8998@c You probably don't need this option unless you are developing Bison.
8999@c You should use @option{--language} if you want to specify the skeleton for a
9000@c different language, because it is clearer and because it will always
9001@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9002
a7867f53
JD
9003If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9004file in the Bison installation directory.
9005If it does, @var{file} is an absolute file name or a file name relative to the
9006current working directory.
9007This is similar to how most shells resolve commands.
9008
89cab50d
AD
9009@item -k
9010@itemx --token-table
d8988b2f 9011Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9012@end table
bfa74976 9013
89cab50d
AD
9014@noindent
9015Adjust the output:
bfa74976 9016
89cab50d 9017@table @option
8e55b3aa 9018@item --defines[=@var{file}]
d8988b2f 9019Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9020file containing macro definitions for the token type names defined in
4bfd5e4e 9021the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9022
8e55b3aa
JD
9023@item -d
9024This is the same as @code{--defines} except @code{-d} does not accept a
9025@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9026with other short options.
342b8b6e 9027
89cab50d
AD
9028@item -b @var{file-prefix}
9029@itemx --file-prefix=@var{prefix}
9c437126 9030Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9031for all Bison output file names. @xref{Decl Summary}.
bfa74976 9032
ec3bc396
AD
9033@item -r @var{things}
9034@itemx --report=@var{things}
9035Write an extra output file containing verbose description of the comma
9036separated list of @var{things} among:
9037
9038@table @code
9039@item state
9040Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9041parser's automaton.
ec3bc396 9042
742e4900 9043@item lookahead
ec3bc396 9044Implies @code{state} and augments the description of the automaton with
742e4900 9045each rule's lookahead set.
ec3bc396
AD
9046
9047@item itemset
9048Implies @code{state} and augments the description of the automaton with
9049the full set of items for each state, instead of its core only.
9050@end table
9051
1bb2bd75
JD
9052@item --report-file=@var{file}
9053Specify the @var{file} for the verbose description.
9054
bfa74976
RS
9055@item -v
9056@itemx --verbose
9c437126 9057Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9058file containing verbose descriptions of the grammar and
72d2299c 9059parser. @xref{Decl Summary}.
bfa74976 9060
fa4d969f
PE
9061@item -o @var{file}
9062@itemx --output=@var{file}
ff7571c0 9063Specify the @var{file} for the parser implementation file.
bfa74976 9064
fa4d969f 9065The other output files' names are constructed from @var{file} as
d8988b2f 9066described under the @samp{-v} and @samp{-d} options.
342b8b6e 9067
a7c09cba 9068@item -g [@var{file}]
8e55b3aa 9069@itemx --graph[=@var{file}]
eb45ef3b 9070Output a graphical representation of the parser's
35fe0834 9071automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9072@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9073@code{@var{file}} is optional.
9074If omitted and the grammar file is @file{foo.y}, the output file will be
9075@file{foo.dot}.
59da312b 9076
a7c09cba 9077@item -x [@var{file}]
8e55b3aa 9078@itemx --xml[=@var{file}]
eb45ef3b 9079Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9080@code{@var{file}} is optional.
59da312b
JD
9081If omitted and the grammar file is @file{foo.y}, the output file will be
9082@file{foo.xml}.
9083(The current XML schema is experimental and may evolve.
9084More user feedback will help to stabilize it.)
bfa74976
RS
9085@end table
9086
342b8b6e 9087@node Option Cross Key
bfa74976
RS
9088@section Option Cross Key
9089
9090Here is a list of options, alphabetized by long option, to help you find
de5ab940 9091the corresponding short option and directive.
bfa74976 9092
de5ab940 9093@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9094@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9095@include cross-options.texi
aa08666d 9096@end multitable
bfa74976 9097
93dd49ab
PE
9098@node Yacc Library
9099@section Yacc Library
9100
9101The Yacc library contains default implementations of the
9102@code{yyerror} and @code{main} functions. These default
8a4281b9 9103implementations are normally not useful, but POSIX requires
93dd49ab
PE
9104them. To use the Yacc library, link your program with the
9105@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9106library is distributed under the terms of the GNU General
93dd49ab
PE
9107Public License (@pxref{Copying}).
9108
9109If you use the Yacc library's @code{yyerror} function, you should
9110declare @code{yyerror} as follows:
9111
9112@example
9113int yyerror (char const *);
9114@end example
9115
9116Bison ignores the @code{int} value returned by this @code{yyerror}.
9117If you use the Yacc library's @code{main} function, your
9118@code{yyparse} function should have the following type signature:
9119
9120@example
9121int yyparse (void);
9122@end example
9123
12545799
AD
9124@c ================================================= C++ Bison
9125
8405b70c
PB
9126@node Other Languages
9127@chapter Parsers Written In Other Languages
12545799
AD
9128
9129@menu
9130* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9131* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9132@end menu
9133
9134@node C++ Parsers
9135@section C++ Parsers
9136
9137@menu
9138* C++ Bison Interface:: Asking for C++ parser generation
9139* C++ Semantic Values:: %union vs. C++
9140* C++ Location Values:: The position and location classes
9141* C++ Parser Interface:: Instantiating and running the parser
9142* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9143* A Complete C++ Example:: Demonstrating their use
12545799
AD
9144@end menu
9145
9146@node C++ Bison Interface
9147@subsection C++ Bison Interface
ed4d67dc 9148@c - %skeleton "lalr1.cc"
12545799
AD
9149@c - Always pure
9150@c - initial action
9151
eb45ef3b 9152The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9153@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9154@option{--skeleton=lalr1.cc}.
e6e704dc 9155@xref{Decl Summary}.
0e021770 9156
793fbca5
JD
9157When run, @command{bison} will create several entities in the @samp{yy}
9158namespace.
67501061 9159@findex %define api.namespace
35c1e5f0
JD
9160Use the @samp{%define api.namespace} directive to change the namespace name,
9161see @ref{%define Summary,,api.namespace}. The various classes are generated
9162in the following files:
aa08666d 9163
12545799
AD
9164@table @file
9165@item position.hh
9166@itemx location.hh
9167The definition of the classes @code{position} and @code{location},
3cdc21cf 9168used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9169
9170@item stack.hh
9171An auxiliary class @code{stack} used by the parser.
9172
fa4d969f
PE
9173@item @var{file}.hh
9174@itemx @var{file}.cc
ff7571c0 9175(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9176declaration and implementation of the C++ parser class. The basename
9177and extension of these two files follow the same rules as with regular C
9178parsers (@pxref{Invocation}).
12545799 9179
cd8b5791
AD
9180The header is @emph{mandatory}; you must either pass
9181@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9182@samp{%defines} directive.
9183@end table
9184
9185All these files are documented using Doxygen; run @command{doxygen}
9186for a complete and accurate documentation.
9187
9188@node C++ Semantic Values
9189@subsection C++ Semantic Values
9190@c - No objects in unions
178e123e 9191@c - YYSTYPE
12545799
AD
9192@c - Printer and destructor
9193
3cdc21cf
AD
9194Bison supports two different means to handle semantic values in C++. One is
9195alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9196practitioners know, unions are inconvenient in C++, therefore another
9197approach is provided, based on variants (@pxref{C++ Variants}).
9198
9199@menu
9200* C++ Unions:: Semantic values cannot be objects
9201* C++ Variants:: Using objects as semantic values
9202@end menu
9203
9204@node C++ Unions
9205@subsubsection C++ Unions
9206
12545799
AD
9207The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9208Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9209@code{union}, which have a few specific features in C++.
12545799
AD
9210@itemize @minus
9211@item
fb9712a9
AD
9212The type @code{YYSTYPE} is defined but its use is discouraged: rather
9213you should refer to the parser's encapsulated type
9214@code{yy::parser::semantic_type}.
12545799
AD
9215@item
9216Non POD (Plain Old Data) types cannot be used. C++ forbids any
9217instance of classes with constructors in unions: only @emph{pointers}
9218to such objects are allowed.
9219@end itemize
9220
9221Because objects have to be stored via pointers, memory is not
9222reclaimed automatically: using the @code{%destructor} directive is the
9223only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9224Symbols}.
9225
3cdc21cf
AD
9226@node C++ Variants
9227@subsubsection C++ Variants
9228
9229Starting with version 2.6, Bison provides a @emph{variant} based
9230implementation of semantic values for C++. This alleviates all the
9231limitations reported in the previous section, and in particular, object
9232types can be used without pointers.
9233
9234To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9235@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9236@code{%union} is ignored, and instead of using the name of the fields of the
9237@code{%union} to ``type'' the symbols, use genuine types.
9238
9239For instance, instead of
9240
9241@example
9242%union
9243@{
9244 int ival;
9245 std::string* sval;
9246@}
9247%token <ival> NUMBER;
9248%token <sval> STRING;
9249@end example
9250
9251@noindent
9252write
9253
9254@example
9255%token <int> NUMBER;
9256%token <std::string> STRING;
9257@end example
9258
9259@code{STRING} is no longer a pointer, which should fairly simplify the user
9260actions in the grammar and in the scanner (in particular the memory
9261management).
9262
9263Since C++ features destructors, and since it is customary to specialize
9264@code{operator<<} to support uniform printing of values, variants also
9265typically simplify Bison printers and destructors.
9266
9267Variants are stricter than unions. When based on unions, you may play any
9268dirty game with @code{yylval}, say storing an @code{int}, reading a
9269@code{char*}, and then storing a @code{double} in it. This is no longer
9270possible with variants: they must be initialized, then assigned to, and
9271eventually, destroyed.
9272
9273@deftypemethod {semantic_type} {T&} build<T> ()
9274Initialize, but leave empty. Returns the address where the actual value may
9275be stored. Requires that the variant was not initialized yet.
9276@end deftypemethod
9277
9278@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9279Initialize, and copy-construct from @var{t}.
9280@end deftypemethod
9281
9282
9283@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9284appeared unacceptable to require Boost on the user's machine (i.e., the
9285machine on which the generated parser will be compiled, not the machine on
9286which @command{bison} was run). Second, for each possible semantic value,
9287Boost.Variant not only stores the value, but also a tag specifying its
9288type. But the parser already ``knows'' the type of the semantic value, so
9289that would be duplicating the information.
9290
9291Therefore we developed light-weight variants whose type tag is external (so
9292they are really like @code{unions} for C++ actually). But our code is much
9293less mature that Boost.Variant. So there is a number of limitations in
9294(the current implementation of) variants:
9295@itemize
9296@item
9297Alignment must be enforced: values should be aligned in memory according to
9298the most demanding type. Computing the smallest alignment possible requires
9299meta-programming techniques that are not currently implemented in Bison, and
9300therefore, since, as far as we know, @code{double} is the most demanding
9301type on all platforms, alignments are enforced for @code{double} whatever
9302types are actually used. This may waste space in some cases.
9303
9304@item
9305Our implementation is not conforming with strict aliasing rules. Alias
9306analysis is a technique used in optimizing compilers to detect when two
9307pointers are disjoint (they cannot ``meet''). Our implementation breaks
9308some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9309alias analysis must be disabled}. Use the option
9310@option{-fno-strict-aliasing} to compile the generated parser.
9311
9312@item
9313There might be portability issues we are not aware of.
9314@end itemize
9315
a6ca4ce2 9316As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9317is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9318
9319@node C++ Location Values
9320@subsection C++ Location Values
9321@c - %locations
9322@c - class Position
9323@c - class Location
16dc6a9e 9324@c - %define filename_type "const symbol::Symbol"
12545799
AD
9325
9326When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9327location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9328define a @code{position}, a single point in a file, and a @code{location}, a
9329range composed of a pair of @code{position}s (possibly spanning several
9330files).
12545799 9331
fa4d969f 9332@deftypemethod {position} {std::string*} file
12545799
AD
9333The name of the file. It will always be handled as a pointer, the
9334parser will never duplicate nor deallocate it. As an experimental
9335feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9336filename_type "@var{type}"}.
12545799
AD
9337@end deftypemethod
9338
9339@deftypemethod {position} {unsigned int} line
9340The line, starting at 1.
9341@end deftypemethod
9342
9343@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
9344Advance by @var{height} lines, resetting the column number.
9345@end deftypemethod
9346
9347@deftypemethod {position} {unsigned int} column
9348The column, starting at 0.
9349@end deftypemethod
9350
9351@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
9352Advance by @var{width} columns, without changing the line number.
9353@end deftypemethod
9354
9355@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
9356@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
9357@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
9358@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
9359Various forms of syntactic sugar for @code{columns}.
9360@end deftypemethod
9361
9362@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
9363Report @var{p} on @var{o} like this:
fa4d969f
PE
9364@samp{@var{file}:@var{line}.@var{column}}, or
9365@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
9366@end deftypemethod
9367
9368@deftypemethod {location} {position} begin
9369@deftypemethodx {location} {position} end
9370The first, inclusive, position of the range, and the first beyond.
9371@end deftypemethod
9372
9373@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
9374@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
9375Advance the @code{end} position.
9376@end deftypemethod
9377
9378@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
9379@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
9380@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
9381Various forms of syntactic sugar.
9382@end deftypemethod
9383
9384@deftypemethod {location} {void} step ()
9385Move @code{begin} onto @code{end}.
9386@end deftypemethod
9387
9388
9389@node C++ Parser Interface
9390@subsection C++ Parser Interface
9391@c - define parser_class_name
9392@c - Ctor
9393@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9394@c debug_stream.
9395@c - Reporting errors
9396
9397The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9398declare and define the parser class in the namespace @code{yy}. The
9399class name defaults to @code{parser}, but may be changed using
16dc6a9e 9400@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9401this class is detailed below. It can be extended using the
12545799
AD
9402@code{%parse-param} feature: its semantics is slightly changed since
9403it describes an additional member of the parser class, and an
9404additional argument for its constructor.
9405
3cdc21cf
AD
9406@defcv {Type} {parser} {semantic_type}
9407@defcvx {Type} {parser} {location_type}
9408The types for semantic values and locations (if enabled).
9409@end defcv
9410
86e5b440 9411@defcv {Type} {parser} {token}
aaaa2aae
AD
9412A structure that contains (only) the @code{yytokentype} enumeration, which
9413defines the tokens. To refer to the token @code{FOO},
9414use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
9415@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9416(@pxref{Calc++ Scanner}).
9417@end defcv
9418
3cdc21cf
AD
9419@defcv {Type} {parser} {syntax_error}
9420This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9421from the scanner or from the user actions to raise parse errors. This is
9422equivalent with first
3cdc21cf
AD
9423invoking @code{error} to report the location and message of the syntax
9424error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9425But contrary to @code{YYERROR} which can only be invoked from user actions
9426(i.e., written in the action itself), the exception can be thrown from
9427function invoked from the user action.
8a0adb01 9428@end defcv
12545799
AD
9429
9430@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9431Build a new parser object. There are no arguments by default, unless
9432@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9433@end deftypemethod
9434
3cdc21cf
AD
9435@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9436@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9437Instantiate a syntax-error exception.
9438@end deftypemethod
9439
12545799
AD
9440@deftypemethod {parser} {int} parse ()
9441Run the syntactic analysis, and return 0 on success, 1 otherwise.
9442@end deftypemethod
9443
9444@deftypemethod {parser} {std::ostream&} debug_stream ()
9445@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9446Get or set the stream used for tracing the parsing. It defaults to
9447@code{std::cerr}.
9448@end deftypemethod
9449
9450@deftypemethod {parser} {debug_level_type} debug_level ()
9451@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9452Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9453or nonzero, full tracing.
12545799
AD
9454@end deftypemethod
9455
9456@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9457@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9458The definition for this member function must be supplied by the user:
9459the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9460described by @var{m}. If location tracking is not enabled, the second
9461signature is used.
12545799
AD
9462@end deftypemethod
9463
9464
9465@node C++ Scanner Interface
9466@subsection C++ Scanner Interface
9467@c - prefix for yylex.
9468@c - Pure interface to yylex
9469@c - %lex-param
9470
9471The parser invokes the scanner by calling @code{yylex}. Contrary to C
9472parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9473@samp{%define api.pure} directive. The actual interface with @code{yylex}
9474depends whether you use unions, or variants.
12545799 9475
3cdc21cf
AD
9476@menu
9477* Split Symbols:: Passing symbols as two/three components
9478* Complete Symbols:: Making symbols a whole
9479@end menu
9480
9481@node Split Symbols
9482@subsubsection Split Symbols
9483
9484Therefore the interface is as follows.
9485
86e5b440
AD
9486@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9487@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9488Return the next token. Its type is the return value, its semantic value and
9489location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9490@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9491@end deftypemethod
9492
3cdc21cf
AD
9493Note that when using variants, the interface for @code{yylex} is the same,
9494but @code{yylval} is handled differently.
9495
9496Regular union-based code in Lex scanner typically look like:
9497
9498@example
9499[0-9]+ @{
9500 yylval.ival = text_to_int (yytext);
9501 return yy::parser::INTEGER;
9502 @}
9503[a-z]+ @{
9504 yylval.sval = new std::string (yytext);
9505 return yy::parser::IDENTIFIER;
9506 @}
9507@end example
9508
9509Using variants, @code{yylval} is already constructed, but it is not
9510initialized. So the code would look like:
9511
9512@example
9513[0-9]+ @{
9514 yylval.build<int>() = text_to_int (yytext);
9515 return yy::parser::INTEGER;
9516 @}
9517[a-z]+ @{
9518 yylval.build<std::string> = yytext;
9519 return yy::parser::IDENTIFIER;
9520 @}
9521@end example
9522
9523@noindent
9524or
9525
9526@example
9527[0-9]+ @{
9528 yylval.build(text_to_int (yytext));
9529 return yy::parser::INTEGER;
9530 @}
9531[a-z]+ @{
9532 yylval.build(yytext);
9533 return yy::parser::IDENTIFIER;
9534 @}
9535@end example
9536
9537
9538@node Complete Symbols
9539@subsubsection Complete Symbols
9540
9541If you specified both @code{%define variant} and @code{%define lex_symbol},
9542the @code{parser} class also defines the class @code{parser::symbol_type}
9543which defines a @emph{complete} symbol, aggregating its type (i.e., the
9544traditional value returned by @code{yylex}), its semantic value (i.e., the
9545value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9546
9547@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9548Build a complete terminal symbol which token type is @var{type}, and which
9549semantic value is @var{value}. If location tracking is enabled, also pass
9550the @var{location}.
9551@end deftypemethod
9552
9553This interface is low-level and should not be used for two reasons. First,
9554it is inconvenient, as you still have to build the semantic value, which is
9555a variant, and second, because consistency is not enforced: as with unions,
9556it is still possible to give an integer as semantic value for a string.
9557
9558So for each token type, Bison generates named constructors as follows.
9559
9560@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9561@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9562Build a complete terminal symbol for the token type @var{token} (not
9563including the @code{api.tokens.prefix}) whose possible semantic value is
9564@var{value} of adequate @var{value_type}. If location tracking is enabled,
9565also pass the @var{location}.
9566@end deftypemethod
9567
9568For instance, given the following declarations:
9569
9570@example
9571%define api.tokens.prefix "TOK_"
9572%token <std::string> IDENTIFIER;
9573%token <int> INTEGER;
9574%token COLON;
9575@end example
9576
9577@noindent
9578Bison generates the following functions:
9579
9580@example
9581symbol_type make_IDENTIFIER(const std::string& v,
9582 const location_type& l);
9583symbol_type make_INTEGER(const int& v,
9584 const location_type& loc);
9585symbol_type make_COLON(const location_type& loc);
9586@end example
9587
9588@noindent
9589which should be used in a Lex-scanner as follows.
9590
9591@example
9592[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9593[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9594":" return yy::parser::make_COLON(loc);
9595@end example
9596
9597Tokens that do not have an identifier are not accessible: you cannot simply
9598use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9599
9600@node A Complete C++ Example
8405b70c 9601@subsection A Complete C++ Example
12545799
AD
9602
9603This section demonstrates the use of a C++ parser with a simple but
9604complete example. This example should be available on your system,
3cdc21cf 9605ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9606focuses on the use of Bison, therefore the design of the various C++
9607classes is very naive: no accessors, no encapsulation of members etc.
9608We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9609demonstrate the various interactions. A hand-written scanner is
12545799
AD
9610actually easier to interface with.
9611
9612@menu
9613* Calc++ --- C++ Calculator:: The specifications
9614* Calc++ Parsing Driver:: An active parsing context
9615* Calc++ Parser:: A parser class
9616* Calc++ Scanner:: A pure C++ Flex scanner
9617* Calc++ Top Level:: Conducting the band
9618@end menu
9619
9620@node Calc++ --- C++ Calculator
8405b70c 9621@subsubsection Calc++ --- C++ Calculator
12545799
AD
9622
9623Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9624expression, possibly preceded by variable assignments. An
12545799
AD
9625environment containing possibly predefined variables such as
9626@code{one} and @code{two}, is exchanged with the parser. An example
9627of valid input follows.
9628
9629@example
9630three := 3
9631seven := one + two * three
9632seven * seven
9633@end example
9634
9635@node Calc++ Parsing Driver
8405b70c 9636@subsubsection Calc++ Parsing Driver
12545799
AD
9637@c - An env
9638@c - A place to store error messages
9639@c - A place for the result
9640
9641To support a pure interface with the parser (and the scanner) the
9642technique of the ``parsing context'' is convenient: a structure
9643containing all the data to exchange. Since, in addition to simply
9644launch the parsing, there are several auxiliary tasks to execute (open
9645the file for parsing, instantiate the parser etc.), we recommend
9646transforming the simple parsing context structure into a fully blown
9647@dfn{parsing driver} class.
9648
9649The declaration of this driver class, @file{calc++-driver.hh}, is as
9650follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9651required standard library components, and the declaration of the parser
9652class.
12545799 9653
1c59e0a1 9654@comment file: calc++-driver.hh
12545799
AD
9655@example
9656#ifndef CALCXX_DRIVER_HH
9657# define CALCXX_DRIVER_HH
9658# include <string>
9659# include <map>
fb9712a9 9660# include "calc++-parser.hh"
12545799
AD
9661@end example
9662
12545799
AD
9663
9664@noindent
9665Then comes the declaration of the scanning function. Flex expects
9666the signature of @code{yylex} to be defined in the macro
9667@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9668factor both as follows.
1c59e0a1
AD
9669
9670@comment file: calc++-driver.hh
12545799 9671@example
3dc5e96b 9672// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9673# define YY_DECL \
9674 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9675// ... and declare it for the parser's sake.
9676YY_DECL;
9677@end example
9678
9679@noindent
9680The @code{calcxx_driver} class is then declared with its most obvious
9681members.
9682
1c59e0a1 9683@comment file: calc++-driver.hh
12545799
AD
9684@example
9685// Conducting the whole scanning and parsing of Calc++.
9686class calcxx_driver
9687@{
9688public:
9689 calcxx_driver ();
9690 virtual ~calcxx_driver ();
9691
9692 std::map<std::string, int> variables;
9693
9694 int result;
9695@end example
9696
9697@noindent
3cdc21cf
AD
9698To encapsulate the coordination with the Flex scanner, it is useful to have
9699member functions to open and close the scanning phase.
12545799 9700
1c59e0a1 9701@comment file: calc++-driver.hh
12545799
AD
9702@example
9703 // Handling the scanner.
9704 void scan_begin ();
9705 void scan_end ();
9706 bool trace_scanning;
9707@end example
9708
9709@noindent
9710Similarly for the parser itself.
9711
1c59e0a1 9712@comment file: calc++-driver.hh
12545799 9713@example
3cdc21cf
AD
9714 // Run the parser on file F.
9715 // Return 0 on success.
bb32f4f2 9716 int parse (const std::string& f);
3cdc21cf
AD
9717 // The name of the file being parsed.
9718 // Used later to pass the file name to the location tracker.
12545799 9719 std::string file;
3cdc21cf 9720 // Whether parser traces should be generated.
12545799
AD
9721 bool trace_parsing;
9722@end example
9723
9724@noindent
9725To demonstrate pure handling of parse errors, instead of simply
9726dumping them on the standard error output, we will pass them to the
9727compiler driver using the following two member functions. Finally, we
9728close the class declaration and CPP guard.
9729
1c59e0a1 9730@comment file: calc++-driver.hh
12545799
AD
9731@example
9732 // Error handling.
9733 void error (const yy::location& l, const std::string& m);
9734 void error (const std::string& m);
9735@};
9736#endif // ! CALCXX_DRIVER_HH
9737@end example
9738
9739The implementation of the driver is straightforward. The @code{parse}
9740member function deserves some attention. The @code{error} functions
9741are simple stubs, they should actually register the located error
9742messages and set error state.
9743
1c59e0a1 9744@comment file: calc++-driver.cc
12545799
AD
9745@example
9746#include "calc++-driver.hh"
9747#include "calc++-parser.hh"
9748
9749calcxx_driver::calcxx_driver ()
9750 : trace_scanning (false), trace_parsing (false)
9751@{
9752 variables["one"] = 1;
9753 variables["two"] = 2;
9754@}
9755
9756calcxx_driver::~calcxx_driver ()
9757@{
9758@}
9759
bb32f4f2 9760int
12545799
AD
9761calcxx_driver::parse (const std::string &f)
9762@{
9763 file = f;
9764 scan_begin ();
9765 yy::calcxx_parser parser (*this);
9766 parser.set_debug_level (trace_parsing);
bb32f4f2 9767 int res = parser.parse ();
12545799 9768 scan_end ();
bb32f4f2 9769 return res;
12545799
AD
9770@}
9771
9772void
9773calcxx_driver::error (const yy::location& l, const std::string& m)
9774@{
9775 std::cerr << l << ": " << m << std::endl;
9776@}
9777
9778void
9779calcxx_driver::error (const std::string& m)
9780@{
9781 std::cerr << m << std::endl;
9782@}
9783@end example
9784
9785@node Calc++ Parser
8405b70c 9786@subsubsection Calc++ Parser
12545799 9787
ff7571c0
JD
9788The grammar file @file{calc++-parser.yy} starts by asking for the C++
9789deterministic parser skeleton, the creation of the parser header file,
9790and specifies the name of the parser class. Because the C++ skeleton
9791changed several times, it is safer to require the version you designed
9792the grammar for.
1c59e0a1
AD
9793
9794@comment file: calc++-parser.yy
12545799 9795@example
c93f22fc 9796%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9797%require "@value{VERSION}"
12545799 9798%defines
16dc6a9e 9799%define parser_class_name "calcxx_parser"
fb9712a9
AD
9800@end example
9801
3cdc21cf
AD
9802@noindent
9803@findex %define variant
9804@findex %define lex_symbol
9805This example will use genuine C++ objects as semantic values, therefore, we
9806require the variant-based interface. To make sure we properly use it, we
9807enable assertions. To fully benefit from type-safety and more natural
9808definition of ``symbol'', we enable @code{lex_symbol}.
9809
9810@comment file: calc++-parser.yy
9811@example
9812%define variant
9813%define parse.assert
9814%define lex_symbol
9815@end example
9816
fb9712a9 9817@noindent
16dc6a9e 9818@findex %code requires
3cdc21cf
AD
9819Then come the declarations/inclusions needed by the semantic values.
9820Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9821to include the header of the other, which is, of course, insane. This
3cdc21cf 9822mutual dependency will be broken using forward declarations. Because the
fb9712a9 9823driver's header needs detailed knowledge about the parser class (in
3cdc21cf 9824particular its inner types), it is the parser's header which will use a
e0c07222 9825forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
9826
9827@comment file: calc++-parser.yy
9828@example
3cdc21cf
AD
9829%code requires
9830@{
12545799 9831# include <string>
fb9712a9 9832class calcxx_driver;
9bc0dd67 9833@}
12545799
AD
9834@end example
9835
9836@noindent
9837The driver is passed by reference to the parser and to the scanner.
9838This provides a simple but effective pure interface, not relying on
9839global variables.
9840
1c59e0a1 9841@comment file: calc++-parser.yy
12545799
AD
9842@example
9843// The parsing context.
2055a44e 9844%param @{ calcxx_driver& driver @}
12545799
AD
9845@end example
9846
9847@noindent
2055a44e 9848Then we request location tracking, and initialize the
f50bfcd6 9849first location's file name. Afterward new locations are computed
12545799 9850relatively to the previous locations: the file name will be
2055a44e 9851propagated.
12545799 9852
1c59e0a1 9853@comment file: calc++-parser.yy
12545799
AD
9854@example
9855%locations
9856%initial-action
9857@{
9858 // Initialize the initial location.
b47dbebe 9859 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9860@};
9861@end example
9862
9863@noindent
7fceb615
JD
9864Use the following two directives to enable parser tracing and verbose error
9865messages. However, verbose error messages can contain incorrect information
9866(@pxref{LAC}).
12545799 9867
1c59e0a1 9868@comment file: calc++-parser.yy
12545799 9869@example
fa819509 9870%define parse.trace
cf499cff 9871%define parse.error verbose
12545799
AD
9872@end example
9873
fb9712a9 9874@noindent
136a0f76
PB
9875@findex %code
9876The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9877@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9878
9879@comment file: calc++-parser.yy
9880@example
3cdc21cf
AD
9881%code
9882@{
fb9712a9 9883# include "calc++-driver.hh"
34f98f46 9884@}
fb9712a9
AD
9885@end example
9886
9887
12545799
AD
9888@noindent
9889The token numbered as 0 corresponds to end of file; the following line
99c08fb6 9890allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
9891``$end''. Similarly user friendly names are provided for each symbol. To
9892avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
9893tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 9894
1c59e0a1 9895@comment file: calc++-parser.yy
12545799 9896@example
4c6622c2 9897%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9898%token
9899 END 0 "end of file"
9900 ASSIGN ":="
9901 MINUS "-"
9902 PLUS "+"
9903 STAR "*"
9904 SLASH "/"
9905 LPAREN "("
9906 RPAREN ")"
9907;
12545799
AD
9908@end example
9909
9910@noindent
3cdc21cf
AD
9911Since we use variant-based semantic values, @code{%union} is not used, and
9912both @code{%type} and @code{%token} expect genuine types, as opposed to type
9913tags.
12545799 9914
1c59e0a1 9915@comment file: calc++-parser.yy
12545799 9916@example
3cdc21cf
AD
9917%token <std::string> IDENTIFIER "identifier"
9918%token <int> NUMBER "number"
9919%type <int> exp
9920@end example
9921
9922@noindent
9923No @code{%destructor} is needed to enable memory deallocation during error
9924recovery; the memory, for strings for instance, will be reclaimed by the
9925regular destructors. All the values are printed using their
9926@code{operator<<}.
12545799 9927
3cdc21cf
AD
9928@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9929@comment file: calc++-parser.yy
9930@example
9931%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9932@end example
9933
9934@noindent
3cdc21cf
AD
9935The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9936Location Tracking Calculator: @code{ltcalc}}).
12545799 9937
1c59e0a1 9938@comment file: calc++-parser.yy
12545799
AD
9939@example
9940%%
9941%start unit;
9942unit: assignments exp @{ driver.result = $2; @};
9943
99c08fb6 9944assignments:
5e9b6624
AD
9945 /* Nothing. */ @{@}
9946| assignments assignment @{@};
12545799 9947
3dc5e96b 9948assignment:
3cdc21cf 9949 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9950
3cdc21cf
AD
9951%left "+" "-";
9952%left "*" "/";
99c08fb6 9953exp:
3cdc21cf
AD
9954 exp "+" exp @{ $$ = $1 + $3; @}
9955| exp "-" exp @{ $$ = $1 - $3; @}
9956| exp "*" exp @{ $$ = $1 * $3; @}
9957| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9958| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9959| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9960| "number" @{ std::swap ($$, $1); @};
12545799
AD
9961%%
9962@end example
9963
9964@noindent
9965Finally the @code{error} member function registers the errors to the
9966driver.
9967
1c59e0a1 9968@comment file: calc++-parser.yy
12545799
AD
9969@example
9970void
3cdc21cf 9971yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9972 const std::string& m)
12545799
AD
9973@{
9974 driver.error (l, m);
9975@}
9976@end example
9977
9978@node Calc++ Scanner
8405b70c 9979@subsubsection Calc++ Scanner
12545799
AD
9980
9981The Flex scanner first includes the driver declaration, then the
9982parser's to get the set of defined tokens.
9983
1c59e0a1 9984@comment file: calc++-scanner.ll
12545799 9985@example
c93f22fc 9986%@{ /* -*- C++ -*- */
3c248d70
AD
9987# include <cerrno>
9988# include <climits>
3cdc21cf 9989# include <cstdlib>
12545799
AD
9990# include <string>
9991# include "calc++-driver.hh"
9992# include "calc++-parser.hh"
eaea13f5 9993
3cdc21cf
AD
9994// Work around an incompatibility in flex (at least versions
9995// 2.5.31 through 2.5.33): it generates code that does
9996// not conform to C89. See Debian bug 333231
9997// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9998# undef yywrap
9999# define yywrap() 1
eaea13f5 10000
3cdc21cf
AD
10001// The location of the current token.
10002static yy::location loc;
12545799
AD
10003%@}
10004@end example
10005
10006@noindent
10007Because there is no @code{#include}-like feature we don't need
10008@code{yywrap}, we don't need @code{unput} either, and we parse an
10009actual file, this is not an interactive session with the user.
3cdc21cf 10010Finally, we enable scanner tracing.
12545799 10011
1c59e0a1 10012@comment file: calc++-scanner.ll
12545799
AD
10013@example
10014%option noyywrap nounput batch debug
10015@end example
10016
10017@noindent
10018Abbreviations allow for more readable rules.
10019
1c59e0a1 10020@comment file: calc++-scanner.ll
12545799
AD
10021@example
10022id [a-zA-Z][a-zA-Z_0-9]*
10023int [0-9]+
10024blank [ \t]
10025@end example
10026
10027@noindent
9d9b8b70 10028The following paragraph suffices to track locations accurately. Each
12545799 10029time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
10030position. Then when a pattern is matched, its width is added to the end
10031column. When matching ends of lines, the end
12545799
AD
10032cursor is adjusted, and each time blanks are matched, the begin cursor
10033is moved onto the end cursor to effectively ignore the blanks
10034preceding tokens. Comments would be treated equally.
10035
1c59e0a1 10036@comment file: calc++-scanner.ll
12545799 10037@example
d4fca427 10038@group
828c373b 10039%@{
3cdc21cf
AD
10040 // Code run each time a pattern is matched.
10041 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 10042%@}
d4fca427 10043@end group
12545799 10044%%
d4fca427 10045@group
12545799 10046%@{
3cdc21cf
AD
10047 // Code run each time yylex is called.
10048 loc.step ();
12545799 10049%@}
d4fca427 10050@end group
3cdc21cf
AD
10051@{blank@}+ loc.step ();
10052[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10053@end example
10054
10055@noindent
3cdc21cf 10056The rules are simple. The driver is used to report errors.
12545799 10057
1c59e0a1 10058@comment file: calc++-scanner.ll
12545799 10059@example
3cdc21cf
AD
10060"-" return yy::calcxx_parser::make_MINUS(loc);
10061"+" return yy::calcxx_parser::make_PLUS(loc);
10062"*" return yy::calcxx_parser::make_STAR(loc);
10063"/" return yy::calcxx_parser::make_SLASH(loc);
10064"(" return yy::calcxx_parser::make_LPAREN(loc);
10065")" return yy::calcxx_parser::make_RPAREN(loc);
10066":=" return yy::calcxx_parser::make_ASSIGN(loc);
10067
d4fca427 10068@group
04098407
PE
10069@{int@} @{
10070 errno = 0;
10071 long n = strtol (yytext, NULL, 10);
10072 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10073 driver.error (loc, "integer is out of range");
10074 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10075@}
d4fca427 10076@end group
3cdc21cf
AD
10077@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10078. driver.error (loc, "invalid character");
10079<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10080%%
10081@end example
10082
10083@noindent
3cdc21cf 10084Finally, because the scanner-related driver's member-functions depend
12545799
AD
10085on the scanner's data, it is simpler to implement them in this file.
10086
1c59e0a1 10087@comment file: calc++-scanner.ll
12545799 10088@example
d4fca427 10089@group
12545799
AD
10090void
10091calcxx_driver::scan_begin ()
10092@{
10093 yy_flex_debug = trace_scanning;
bb32f4f2
AD
10094 if (file == "-")
10095 yyin = stdin;
10096 else if (!(yyin = fopen (file.c_str (), "r")))
10097 @{
aaaa2aae 10098 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10099 exit (EXIT_FAILURE);
bb32f4f2 10100 @}
12545799 10101@}
d4fca427 10102@end group
12545799 10103
d4fca427 10104@group
12545799
AD
10105void
10106calcxx_driver::scan_end ()
10107@{
10108 fclose (yyin);
10109@}
d4fca427 10110@end group
12545799
AD
10111@end example
10112
10113@node Calc++ Top Level
8405b70c 10114@subsubsection Calc++ Top Level
12545799
AD
10115
10116The top level file, @file{calc++.cc}, poses no problem.
10117
1c59e0a1 10118@comment file: calc++.cc
12545799
AD
10119@example
10120#include <iostream>
10121#include "calc++-driver.hh"
10122
d4fca427 10123@group
12545799 10124int
fa4d969f 10125main (int argc, char *argv[])
12545799 10126@{
414c76a4 10127 int res = 0;
12545799
AD
10128 calcxx_driver driver;
10129 for (++argv; argv[0]; ++argv)
10130 if (*argv == std::string ("-p"))
10131 driver.trace_parsing = true;
10132 else if (*argv == std::string ("-s"))
10133 driver.trace_scanning = true;
bb32f4f2
AD
10134 else if (!driver.parse (*argv))
10135 std::cout << driver.result << std::endl;
414c76a4
AD
10136 else
10137 res = 1;
10138 return res;
12545799 10139@}
d4fca427 10140@end group
12545799
AD
10141@end example
10142
8405b70c
PB
10143@node Java Parsers
10144@section Java Parsers
10145
10146@menu
f5f419de
DJ
10147* Java Bison Interface:: Asking for Java parser generation
10148* Java Semantic Values:: %type and %token vs. Java
10149* Java Location Values:: The position and location classes
10150* Java Parser Interface:: Instantiating and running the parser
10151* Java Scanner Interface:: Specifying the scanner for the parser
10152* Java Action Features:: Special features for use in actions
10153* Java Differences:: Differences between C/C++ and Java Grammars
10154* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10155@end menu
10156
10157@node Java Bison Interface
10158@subsection Java Bison Interface
10159@c - %language "Java"
8405b70c 10160
59da312b
JD
10161(The current Java interface is experimental and may evolve.
10162More user feedback will help to stabilize it.)
10163
e254a580
DJ
10164The Java parser skeletons are selected using the @code{%language "Java"}
10165directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10166
e254a580 10167@c FIXME: Documented bug.
ff7571c0
JD
10168When generating a Java parser, @code{bison @var{basename}.y} will
10169create a single Java source file named @file{@var{basename}.java}
10170containing the parser implementation. Using a grammar file without a
10171@file{.y} suffix is currently broken. The basename of the parser
10172implementation file can be changed by the @code{%file-prefix}
10173directive or the @option{-p}/@option{--name-prefix} option. The
10174entire parser implementation file name can be changed by the
10175@code{%output} directive or the @option{-o}/@option{--output} option.
10176The parser implementation file contains a single class for the parser.
8405b70c 10177
e254a580 10178You can create documentation for generated parsers using Javadoc.
8405b70c 10179
e254a580
DJ
10180Contrary to C parsers, Java parsers do not use global variables; the
10181state of the parser is always local to an instance of the parser class.
10182Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10183and @samp{%define api.pure} directives does not do anything when used in
e254a580 10184Java.
8405b70c 10185
e254a580 10186Push parsers are currently unsupported in Java and @code{%define
67212941 10187api.push-pull} have no effect.
01b477c6 10188
8a4281b9 10189GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10190@code{glr-parser} directive.
10191
10192No header file can be generated for Java parsers. Do not use the
10193@code{%defines} directive or the @option{-d}/@option{--defines} options.
10194
10195@c FIXME: Possible code change.
fa819509
AD
10196Currently, support for tracing is always compiled
10197in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10198directives and the
e254a580
DJ
10199@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10200options have no effect. This may change in the future to eliminate
fa819509
AD
10201unused code in the generated parser, so use @samp{%define parse.trace}
10202explicitly
1979121c 10203if needed. Also, in the future the
e254a580
DJ
10204@code{%token-table} directive might enable a public interface to
10205access the token names and codes.
8405b70c 10206
09ccae9b 10207Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10208hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10209Try reducing the amount of code in actions and static initializers;
10210otherwise, report a bug so that the parser skeleton will be improved.
10211
10212
8405b70c
PB
10213@node Java Semantic Values
10214@subsection Java Semantic Values
10215@c - No %union, specify type in %type/%token.
10216@c - YYSTYPE
10217@c - Printer and destructor
10218
10219There is no @code{%union} directive in Java parsers. Instead, the
10220semantic values' types (class names) should be specified in the
10221@code{%type} or @code{%token} directive:
10222
10223@example
10224%type <Expression> expr assignment_expr term factor
10225%type <Integer> number
10226@end example
10227
10228By default, the semantic stack is declared to have @code{Object} members,
10229which means that the class types you specify can be of any class.
10230To improve the type safety of the parser, you can declare the common
67501061 10231superclass of all the semantic values using the @samp{%define stype}
e254a580 10232directive. For example, after the following declaration:
8405b70c
PB
10233
10234@example
e254a580 10235%define stype "ASTNode"
8405b70c
PB
10236@end example
10237
10238@noindent
10239any @code{%type} or @code{%token} specifying a semantic type which
10240is not a subclass of ASTNode, will cause a compile-time error.
10241
e254a580 10242@c FIXME: Documented bug.
8405b70c
PB
10243Types used in the directives may be qualified with a package name.
10244Primitive data types are accepted for Java version 1.5 or later. Note
10245that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10246Generic types may not be used; this is due to a limitation in the
10247implementation of Bison, and may change in future releases.
8405b70c
PB
10248
10249Java parsers do not support @code{%destructor}, since the language
10250adopts garbage collection. The parser will try to hold references
10251to semantic values for as little time as needed.
10252
10253Java parsers do not support @code{%printer}, as @code{toString()}
10254can be used to print the semantic values. This however may change
10255(in a backwards-compatible way) in future versions of Bison.
10256
10257
10258@node Java Location Values
10259@subsection Java Location Values
10260@c - %locations
10261@c - class Position
10262@c - class Location
10263
303834cc
JD
10264When the directive @code{%locations} is used, the Java parser supports
10265location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10266class defines a @dfn{position}, a single point in a file; Bison itself
10267defines a class representing a @dfn{location}, a range composed of a pair of
10268positions (possibly spanning several files). The location class is an inner
10269class of the parser; the name is @code{Location} by default, and may also be
10270renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10271
10272The location class treats the position as a completely opaque value.
10273By default, the class name is @code{Position}, but this can be changed
67501061 10274with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10275be supplied by the user.
8405b70c
PB
10276
10277
e254a580
DJ
10278@deftypeivar {Location} {Position} begin
10279@deftypeivarx {Location} {Position} end
8405b70c 10280The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10281@end deftypeivar
10282
10283@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10284Create a @code{Location} denoting an empty range located at a given point.
e254a580 10285@end deftypeop
8405b70c 10286
e254a580
DJ
10287@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10288Create a @code{Location} from the endpoints of the range.
10289@end deftypeop
10290
10291@deftypemethod {Location} {String} toString ()
8405b70c
PB
10292Prints the range represented by the location. For this to work
10293properly, the position class should override the @code{equals} and
10294@code{toString} methods appropriately.
10295@end deftypemethod
10296
10297
10298@node Java Parser Interface
10299@subsection Java Parser Interface
10300@c - define parser_class_name
10301@c - Ctor
10302@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10303@c debug_stream.
10304@c - Reporting errors
10305
e254a580
DJ
10306The name of the generated parser class defaults to @code{YYParser}. The
10307@code{YY} prefix may be changed using the @code{%name-prefix} directive
10308or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10309@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10310the class. The interface of this class is detailed below.
8405b70c 10311
e254a580 10312By default, the parser class has package visibility. A declaration
67501061 10313@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10314according to the Java language specification, the name of the @file{.java}
10315file should match the name of the class in this case. Similarly, you can
10316use @code{abstract}, @code{final} and @code{strictfp} with the
10317@code{%define} declaration to add other modifiers to the parser class.
67501061 10318A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10319be used to add any number of annotations to the parser class.
e254a580
DJ
10320
10321The Java package name of the parser class can be specified using the
67501061 10322@samp{%define package} directive. The superclass and the implemented
e254a580 10323interfaces of the parser class can be specified with the @code{%define
67501061 10324extends} and @samp{%define implements} directives.
e254a580
DJ
10325
10326The parser class defines an inner class, @code{Location}, that is used
10327for location tracking (see @ref{Java Location Values}), and a inner
10328interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10329these inner class/interface, and the members described in the interface
10330below, all the other members and fields are preceded with a @code{yy} or
10331@code{YY} prefix to avoid clashes with user code.
10332
e254a580
DJ
10333The parser class can be extended using the @code{%parse-param}
10334directive. Each occurrence of the directive will add a @code{protected
10335final} field to the parser class, and an argument to its constructor,
10336which initialize them automatically.
10337
e254a580
DJ
10338@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10339Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10340no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10341@code{%lex-param}s are used.
1979121c
DJ
10342
10343Use @code{%code init} for code added to the start of the constructor
10344body. This is especially useful to initialize superclasses. Use
f50bfcd6 10345@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10346@end deftypeop
10347
10348@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10349Build a new parser object using the specified scanner. There are no
2055a44e
AD
10350additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10351used.
e254a580
DJ
10352
10353If the scanner is defined by @code{%code lexer}, this constructor is
10354declared @code{protected} and is called automatically with a scanner
2055a44e 10355created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10356
10357Use @code{%code init} for code added to the start of the constructor
10358body. This is especially useful to initialize superclasses. Use
67501061 10359@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 10360@end deftypeop
8405b70c
PB
10361
10362@deftypemethod {YYParser} {boolean} parse ()
10363Run the syntactic analysis, and return @code{true} on success,
10364@code{false} otherwise.
10365@end deftypemethod
10366
1979121c
DJ
10367@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10368@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10369Get or set the option to produce verbose error messages. These are only
cf499cff 10370available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10371verbose error messages.
10372@end deftypemethod
10373
10374@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10375@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10376@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10377Print an error message using the @code{yyerror} method of the scanner
10378instance in use. The @code{Location} and @code{Position} parameters are
10379available only if location tracking is active.
10380@end deftypemethod
10381
01b477c6 10382@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10383During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10384from a syntax error.
10385@xref{Error Recovery}.
8405b70c
PB
10386@end deftypemethod
10387
10388@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10389@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10390Get or set the stream used for tracing the parsing. It defaults to
10391@code{System.err}.
10392@end deftypemethod
10393
10394@deftypemethod {YYParser} {int} getDebugLevel ()
10395@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10396Get or set the tracing level. Currently its value is either 0, no trace,
10397or nonzero, full tracing.
10398@end deftypemethod
10399
1979121c
DJ
10400@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10401@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10402Identify the Bison version and skeleton used to generate this parser.
10403@end deftypecv
10404
8405b70c
PB
10405
10406@node Java Scanner Interface
10407@subsection Java Scanner Interface
01b477c6 10408@c - %code lexer
8405b70c 10409@c - %lex-param
01b477c6 10410@c - Lexer interface
8405b70c 10411
e254a580
DJ
10412There are two possible ways to interface a Bison-generated Java parser
10413with a scanner: the scanner may be defined by @code{%code lexer}, or
10414defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10415@code{Lexer} inner interface of the parser class. This interface also
10416contain constants for all user-defined token names and the predefined
10417@code{EOF} token.
e254a580
DJ
10418
10419In the first case, the body of the scanner class is placed in
10420@code{%code lexer} blocks. If you want to pass parameters from the
10421parser constructor to the scanner constructor, specify them with
10422@code{%lex-param}; they are passed before @code{%parse-param}s to the
10423constructor.
01b477c6 10424
59c5ac72 10425In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10426which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10427The constructor of the parser object will then accept an object
10428implementing the interface; @code{%lex-param} is not used in this
10429case.
10430
10431In both cases, the scanner has to implement the following methods.
10432
e254a580
DJ
10433@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10434This method is defined by the user to emit an error message. The first
10435parameter is omitted if location tracking is not active. Its type can be
67501061 10436changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10437@end deftypemethod
10438
e254a580 10439@deftypemethod {Lexer} {int} yylex ()
8405b70c 10440Return the next token. Its type is the return value, its semantic
f50bfcd6 10441value and location are saved and returned by the their methods in the
e254a580
DJ
10442interface.
10443
67501061 10444Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10445Default is @code{java.io.IOException}.
8405b70c
PB
10446@end deftypemethod
10447
10448@deftypemethod {Lexer} {Position} getStartPos ()
10449@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10450Return respectively the first position of the last token that
10451@code{yylex} returned, and the first position beyond it. These
10452methods are not needed unless location tracking is active.
8405b70c 10453
67501061 10454The return type can be changed using @samp{%define position_type
8405b70c
PB
10455"@var{class-name}".}
10456@end deftypemethod
10457
10458@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10459Return the semantic value of the last token that yylex returned.
8405b70c 10460
67501061 10461The return type can be changed using @samp{%define stype
8405b70c
PB
10462"@var{class-name}".}
10463@end deftypemethod
10464
10465
e254a580
DJ
10466@node Java Action Features
10467@subsection Special Features for Use in Java Actions
10468
10469The following special constructs can be uses in Java actions.
10470Other analogous C action features are currently unavailable for Java.
10471
67501061 10472Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10473actions, and initial actions specified by @code{%initial-action}.
10474
10475@defvar $@var{n}
10476The semantic value for the @var{n}th component of the current rule.
10477This may not be assigned to.
10478@xref{Java Semantic Values}.
10479@end defvar
10480
10481@defvar $<@var{typealt}>@var{n}
10482Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10483@xref{Java Semantic Values}.
10484@end defvar
10485
10486@defvar $$
10487The semantic value for the grouping made by the current rule. As a
10488value, this is in the base type (@code{Object} or as specified by
67501061 10489@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10490casts are not allowed on the left-hand side of Java assignments.
10491Use an explicit Java cast if the correct subtype is needed.
10492@xref{Java Semantic Values}.
10493@end defvar
10494
10495@defvar $<@var{typealt}>$
10496Same as @code{$$} since Java always allow assigning to the base type.
10497Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10498for setting the value but there is currently no easy way to distinguish
10499these constructs.
10500@xref{Java Semantic Values}.
10501@end defvar
10502
10503@defvar @@@var{n}
10504The location information of the @var{n}th component of the current rule.
10505This may not be assigned to.
10506@xref{Java Location Values}.
10507@end defvar
10508
10509@defvar @@$
10510The location information of the grouping made by the current rule.
10511@xref{Java Location Values}.
10512@end defvar
10513
10514@deffn {Statement} {return YYABORT;}
10515Return immediately from the parser, indicating failure.
10516@xref{Java Parser Interface}.
10517@end deffn
8405b70c 10518
e254a580
DJ
10519@deffn {Statement} {return YYACCEPT;}
10520Return immediately from the parser, indicating success.
10521@xref{Java Parser Interface}.
10522@end deffn
8405b70c 10523
e254a580 10524@deffn {Statement} {return YYERROR;}
c265fd6b 10525Start error recovery without printing an error message.
e254a580
DJ
10526@xref{Error Recovery}.
10527@end deffn
8405b70c 10528
e254a580
DJ
10529@deftypefn {Function} {boolean} recovering ()
10530Return whether error recovery is being done. In this state, the parser
10531reads token until it reaches a known state, and then restarts normal
10532operation.
10533@xref{Error Recovery}.
10534@end deftypefn
8405b70c 10535
1979121c
DJ
10536@deftypefn {Function} {void} yyerror (String @var{msg})
10537@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10538@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10539Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10540instance in use. The @code{Location} and @code{Position} parameters are
10541available only if location tracking is active.
e254a580 10542@end deftypefn
8405b70c 10543
8405b70c 10544
8405b70c
PB
10545@node Java Differences
10546@subsection Differences between C/C++ and Java Grammars
10547
10548The different structure of the Java language forces several differences
10549between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10550section summarizes these differences.
8405b70c
PB
10551
10552@itemize
10553@item
01b477c6 10554Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10555@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10556macros. Instead, they should be preceded by @code{return} when they
10557appear in an action. The actual definition of these symbols is
8405b70c
PB
10558opaque to the Bison grammar, and it might change in the future. The
10559only meaningful operation that you can do, is to return them.
e254a580 10560See @pxref{Java Action Features}.
8405b70c
PB
10561
10562Note that of these three symbols, only @code{YYACCEPT} and
10563@code{YYABORT} will cause a return from the @code{yyparse}
10564method@footnote{Java parsers include the actions in a separate
10565method than @code{yyparse} in order to have an intuitive syntax that
10566corresponds to these C macros.}.
10567
e254a580
DJ
10568@item
10569Java lacks unions, so @code{%union} has no effect. Instead, semantic
10570values have a common base type: @code{Object} or as specified by
f50bfcd6 10571@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10572@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10573an union. The type of @code{$$}, even with angle brackets, is the base
10574type since Java casts are not allow on the left-hand side of assignments.
10575Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10576left-hand side of assignments. See @pxref{Java Semantic Values} and
10577@pxref{Java Action Features}.
10578
8405b70c 10579@item
f50bfcd6 10580The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10581@table @asis
10582@item @code{%code imports}
10583blocks are placed at the beginning of the Java source code. They may
10584include copyright notices. For a @code{package} declarations, it is
67501061 10585suggested to use @samp{%define package} instead.
8405b70c 10586
01b477c6
PB
10587@item unqualified @code{%code}
10588blocks are placed inside the parser class.
10589
10590@item @code{%code lexer}
10591blocks, if specified, should include the implementation of the
10592scanner. If there is no such block, the scanner can be any class
10593that implements the appropriate interface (see @pxref{Java Scanner
10594Interface}).
29553547 10595@end table
8405b70c
PB
10596
10597Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10598In particular, @code{%@{ @dots{} %@}} blocks should not be used
10599and may give an error in future versions of Bison.
10600
01b477c6 10601The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10602be used to define other classes used by the parser @emph{outside}
10603the parser class.
8405b70c
PB
10604@end itemize
10605
e254a580
DJ
10606
10607@node Java Declarations Summary
10608@subsection Java Declarations Summary
10609
10610This summary only include declarations specific to Java or have special
10611meaning when used in a Java parser.
10612
10613@deffn {Directive} {%language "Java"}
10614Generate a Java class for the parser.
10615@end deffn
10616
10617@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10618A parameter for the lexer class defined by @code{%code lexer}
10619@emph{only}, added as parameters to the lexer constructor and the parser
10620constructor that @emph{creates} a lexer. Default is none.
10621@xref{Java Scanner Interface}.
10622@end deffn
10623
10624@deffn {Directive} %name-prefix "@var{prefix}"
10625The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10626@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10627@xref{Java Bison Interface}.
10628@end deffn
10629
10630@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10631A parameter for the parser class added as parameters to constructor(s)
10632and as fields initialized by the constructor(s). Default is none.
10633@xref{Java Parser Interface}.
10634@end deffn
10635
10636@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10637Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10638@xref{Java Semantic Values}.
10639@end deffn
10640
10641@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10642Declare the type of nonterminals. Note that the angle brackets enclose
10643a Java @emph{type}.
10644@xref{Java Semantic Values}.
10645@end deffn
10646
10647@deffn {Directive} %code @{ @var{code} @dots{} @}
10648Code appended to the inside of the parser class.
10649@xref{Java Differences}.
10650@end deffn
10651
10652@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10653Code inserted just after the @code{package} declaration.
10654@xref{Java Differences}.
10655@end deffn
10656
1979121c
DJ
10657@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10658Code inserted at the beginning of the parser constructor body.
10659@xref{Java Parser Interface}.
10660@end deffn
10661
e254a580
DJ
10662@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10663Code added to the body of a inner lexer class within the parser class.
10664@xref{Java Scanner Interface}.
10665@end deffn
10666
10667@deffn {Directive} %% @var{code} @dots{}
10668Code (after the second @code{%%}) appended to the end of the file,
10669@emph{outside} the parser class.
10670@xref{Java Differences}.
10671@end deffn
10672
10673@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10674Not supported. Use @code{%code imports} instead.
e254a580
DJ
10675@xref{Java Differences}.
10676@end deffn
10677
10678@deffn {Directive} {%define abstract}
10679Whether the parser class is declared @code{abstract}. Default is false.
10680@xref{Java Bison Interface}.
10681@end deffn
10682
1979121c
DJ
10683@deffn {Directive} {%define annotations} "@var{annotations}"
10684The Java annotations for the parser class. Default is none.
10685@xref{Java Bison Interface}.
10686@end deffn
10687
e254a580
DJ
10688@deffn {Directive} {%define extends} "@var{superclass}"
10689The superclass of the parser class. Default is none.
10690@xref{Java Bison Interface}.
10691@end deffn
10692
10693@deffn {Directive} {%define final}
10694Whether the parser class is declared @code{final}. Default is false.
10695@xref{Java Bison Interface}.
10696@end deffn
10697
10698@deffn {Directive} {%define implements} "@var{interfaces}"
10699The implemented interfaces of the parser class, a comma-separated list.
10700Default is none.
10701@xref{Java Bison Interface}.
10702@end deffn
10703
1979121c
DJ
10704@deffn {Directive} {%define init_throws} "@var{exceptions}"
10705The exceptions thrown by @code{%code init} from the parser class
10706constructor. Default is none.
10707@xref{Java Parser Interface}.
10708@end deffn
10709
e254a580
DJ
10710@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10711The exceptions thrown by the @code{yylex} method of the lexer, a
10712comma-separated list. Default is @code{java.io.IOException}.
10713@xref{Java Scanner Interface}.
10714@end deffn
10715
10716@deffn {Directive} {%define location_type} "@var{class}"
10717The name of the class used for locations (a range between two
10718positions). This class is generated as an inner class of the parser
10719class by @command{bison}. Default is @code{Location}.
10720@xref{Java Location Values}.
10721@end deffn
10722
10723@deffn {Directive} {%define package} "@var{package}"
10724The package to put the parser class in. Default is none.
10725@xref{Java Bison Interface}.
10726@end deffn
10727
10728@deffn {Directive} {%define parser_class_name} "@var{name}"
10729The name of the parser class. Default is @code{YYParser} or
10730@code{@var{name-prefix}Parser}.
10731@xref{Java Bison Interface}.
10732@end deffn
10733
10734@deffn {Directive} {%define position_type} "@var{class}"
10735The name of the class used for positions. This class must be supplied by
10736the user. Default is @code{Position}.
10737@xref{Java Location Values}.
10738@end deffn
10739
10740@deffn {Directive} {%define public}
10741Whether the parser class is declared @code{public}. Default is false.
10742@xref{Java Bison Interface}.
10743@end deffn
10744
10745@deffn {Directive} {%define stype} "@var{class}"
10746The base type of semantic values. Default is @code{Object}.
10747@xref{Java Semantic Values}.
10748@end deffn
10749
10750@deffn {Directive} {%define strictfp}
10751Whether the parser class is declared @code{strictfp}. Default is false.
10752@xref{Java Bison Interface}.
10753@end deffn
10754
10755@deffn {Directive} {%define throws} "@var{exceptions}"
10756The exceptions thrown by user-supplied parser actions and
10757@code{%initial-action}, a comma-separated list. Default is none.
10758@xref{Java Parser Interface}.
10759@end deffn
10760
10761
12545799 10762@c ================================================= FAQ
d1a1114f
AD
10763
10764@node FAQ
10765@chapter Frequently Asked Questions
10766@cindex frequently asked questions
10767@cindex questions
10768
10769Several questions about Bison come up occasionally. Here some of them
10770are addressed.
10771
10772@menu
55ba27be
AD
10773* Memory Exhausted:: Breaking the Stack Limits
10774* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10775* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10776* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10777* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10778* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10779* I can't build Bison:: Troubleshooting
10780* Where can I find help?:: Troubleshouting
10781* Bug Reports:: Troublereporting
8405b70c 10782* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10783* Beta Testing:: Experimenting development versions
10784* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10785@end menu
10786
1a059451
PE
10787@node Memory Exhausted
10788@section Memory Exhausted
d1a1114f 10789
71b52b13 10790@quotation
1a059451 10791My parser returns with error with a @samp{memory exhausted}
d1a1114f 10792message. What can I do?
71b52b13 10793@end quotation
d1a1114f
AD
10794
10795This question is already addressed elsewhere, @xref{Recursion,
10796,Recursive Rules}.
10797
e64fec0a
PE
10798@node How Can I Reset the Parser
10799@section How Can I Reset the Parser
5b066063 10800
0e14ad77
PE
10801The following phenomenon has several symptoms, resulting in the
10802following typical questions:
5b066063 10803
71b52b13 10804@quotation
5b066063
AD
10805I invoke @code{yyparse} several times, and on correct input it works
10806properly; but when a parse error is found, all the other calls fail
0e14ad77 10807too. How can I reset the error flag of @code{yyparse}?
71b52b13 10808@end quotation
5b066063
AD
10809
10810@noindent
10811or
10812
71b52b13 10813@quotation
0e14ad77 10814My parser includes support for an @samp{#include}-like feature, in
5b066063 10815which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10816although I did specify @samp{%define api.pure}.
71b52b13 10817@end quotation
5b066063 10818
0e14ad77
PE
10819These problems typically come not from Bison itself, but from
10820Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10821speed, they might not notice a change of input file. As a
10822demonstration, consider the following source file,
10823@file{first-line.l}:
10824
d4fca427
AD
10825@example
10826@group
10827%@{
5b066063
AD
10828#include <stdio.h>
10829#include <stdlib.h>
d4fca427
AD
10830%@}
10831@end group
5b066063
AD
10832%%
10833.*\n ECHO; return 1;
10834%%
d4fca427 10835@group
5b066063 10836int
0e14ad77 10837yyparse (char const *file)
d4fca427 10838@{
5b066063
AD
10839 yyin = fopen (file, "r");
10840 if (!yyin)
d4fca427
AD
10841 @{
10842 perror ("fopen");
10843 exit (EXIT_FAILURE);
10844 @}
10845@end group
10846@group
fa7e68c3 10847 /* One token only. */
5b066063 10848 yylex ();
0e14ad77 10849 if (fclose (yyin) != 0)
d4fca427
AD
10850 @{
10851 perror ("fclose");
10852 exit (EXIT_FAILURE);
10853 @}
5b066063 10854 return 0;
d4fca427
AD
10855@}
10856@end group
5b066063 10857
d4fca427 10858@group
5b066063 10859int
0e14ad77 10860main (void)
d4fca427 10861@{
5b066063
AD
10862 yyparse ("input");
10863 yyparse ("input");
10864 return 0;
d4fca427
AD
10865@}
10866@end group
10867@end example
5b066063
AD
10868
10869@noindent
10870If the file @file{input} contains
10871
71b52b13 10872@example
5b066063
AD
10873input:1: Hello,
10874input:2: World!
71b52b13 10875@end example
5b066063
AD
10876
10877@noindent
0e14ad77 10878then instead of getting the first line twice, you get:
5b066063
AD
10879
10880@example
10881$ @kbd{flex -ofirst-line.c first-line.l}
10882$ @kbd{gcc -ofirst-line first-line.c -ll}
10883$ @kbd{./first-line}
10884input:1: Hello,
10885input:2: World!
10886@end example
10887
0e14ad77
PE
10888Therefore, whenever you change @code{yyin}, you must tell the
10889Lex-generated scanner to discard its current buffer and switch to the
10890new one. This depends upon your implementation of Lex; see its
10891documentation for more. For Flex, it suffices to call
10892@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10893Flex-generated scanner needs to read from several input streams to
10894handle features like include files, you might consider using Flex
10895functions like @samp{yy_switch_to_buffer} that manipulate multiple
10896input buffers.
5b066063 10897
b165c324
AD
10898If your Flex-generated scanner uses start conditions (@pxref{Start
10899conditions, , Start conditions, flex, The Flex Manual}), you might
10900also want to reset the scanner's state, i.e., go back to the initial
10901start condition, through a call to @samp{BEGIN (0)}.
10902
fef4cb51
AD
10903@node Strings are Destroyed
10904@section Strings are Destroyed
10905
71b52b13 10906@quotation
c7e441b4 10907My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10908them. Instead of reporting @samp{"foo", "bar"}, it reports
10909@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 10910@end quotation
fef4cb51
AD
10911
10912This error is probably the single most frequent ``bug report'' sent to
10913Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10914of the scanner. Consider the following Lex code:
fef4cb51 10915
71b52b13 10916@example
d4fca427 10917@group
71b52b13 10918%@{
fef4cb51
AD
10919#include <stdio.h>
10920char *yylval = NULL;
71b52b13 10921%@}
d4fca427
AD
10922@end group
10923@group
fef4cb51
AD
10924%%
10925.* yylval = yytext; return 1;
10926\n /* IGNORE */
10927%%
d4fca427
AD
10928@end group
10929@group
fef4cb51
AD
10930int
10931main ()
71b52b13 10932@{
fa7e68c3 10933 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10934 char *fst = (yylex (), yylval);
10935 char *snd = (yylex (), yylval);
10936 printf ("\"%s\", \"%s\"\n", fst, snd);
10937 return 0;
71b52b13 10938@}
d4fca427 10939@end group
71b52b13 10940@end example
fef4cb51
AD
10941
10942If you compile and run this code, you get:
10943
10944@example
10945$ @kbd{flex -osplit-lines.c split-lines.l}
10946$ @kbd{gcc -osplit-lines split-lines.c -ll}
10947$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10948"one
10949two", "two"
10950@end example
10951
10952@noindent
10953this is because @code{yytext} is a buffer provided for @emph{reading}
10954in the action, but if you want to keep it, you have to duplicate it
10955(e.g., using @code{strdup}). Note that the output may depend on how
10956your implementation of Lex handles @code{yytext}. For instance, when
10957given the Lex compatibility option @option{-l} (which triggers the
10958option @samp{%array}) Flex generates a different behavior:
10959
10960@example
10961$ @kbd{flex -l -osplit-lines.c split-lines.l}
10962$ @kbd{gcc -osplit-lines split-lines.c -ll}
10963$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10964"two", "two"
10965@end example
10966
10967
2fa09258
AD
10968@node Implementing Gotos/Loops
10969@section Implementing Gotos/Loops
a06ea4aa 10970
71b52b13 10971@quotation
a06ea4aa 10972My simple calculator supports variables, assignments, and functions,
2fa09258 10973but how can I implement gotos, or loops?
71b52b13 10974@end quotation
a06ea4aa
AD
10975
10976Although very pedagogical, the examples included in the document blur
a1c84f45 10977the distinction to make between the parser---whose job is to recover
a06ea4aa 10978the structure of a text and to transmit it to subsequent modules of
a1c84f45 10979the program---and the processing (such as the execution) of this
a06ea4aa
AD
10980structure. This works well with so called straight line programs,
10981i.e., precisely those that have a straightforward execution model:
10982execute simple instructions one after the others.
10983
10984@cindex abstract syntax tree
8a4281b9 10985@cindex AST
a06ea4aa
AD
10986If you want a richer model, you will probably need to use the parser
10987to construct a tree that does represent the structure it has
10988recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10989or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10990traversing it in various ways, will enable treatments such as its
10991execution or its translation, which will result in an interpreter or a
10992compiler.
10993
10994This topic is way beyond the scope of this manual, and the reader is
10995invited to consult the dedicated literature.
10996
10997
ed2e6384
AD
10998@node Multiple start-symbols
10999@section Multiple start-symbols
11000
71b52b13 11001@quotation
ed2e6384
AD
11002I have several closely related grammars, and I would like to share their
11003implementations. In fact, I could use a single grammar but with
11004multiple entry points.
71b52b13 11005@end quotation
ed2e6384
AD
11006
11007Bison does not support multiple start-symbols, but there is a very
11008simple means to simulate them. If @code{foo} and @code{bar} are the two
11009pseudo start-symbols, then introduce two new tokens, say
11010@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11011real start-symbol:
11012
11013@example
11014%token START_FOO START_BAR;
11015%start start;
5e9b6624
AD
11016start:
11017 START_FOO foo
11018| START_BAR bar;
ed2e6384
AD
11019@end example
11020
11021These tokens prevents the introduction of new conflicts. As far as the
11022parser goes, that is all that is needed.
11023
11024Now the difficult part is ensuring that the scanner will send these
11025tokens first. If your scanner is hand-written, that should be
11026straightforward. If your scanner is generated by Lex, them there is
11027simple means to do it: recall that anything between @samp{%@{ ... %@}}
11028after the first @code{%%} is copied verbatim in the top of the generated
11029@code{yylex} function. Make sure a variable @code{start_token} is
11030available in the scanner (e.g., a global variable or using
11031@code{%lex-param} etc.), and use the following:
11032
11033@example
11034 /* @r{Prologue.} */
11035%%
11036%@{
11037 if (start_token)
11038 @{
11039 int t = start_token;
11040 start_token = 0;
11041 return t;
11042 @}
11043%@}
11044 /* @r{The rules.} */
11045@end example
11046
11047
55ba27be
AD
11048@node Secure? Conform?
11049@section Secure? Conform?
11050
71b52b13 11051@quotation
55ba27be 11052Is Bison secure? Does it conform to POSIX?
71b52b13 11053@end quotation
55ba27be
AD
11054
11055If you're looking for a guarantee or certification, we don't provide it.
11056However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11057POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11058please send us a bug report.
11059
11060@node I can't build Bison
11061@section I can't build Bison
11062
71b52b13 11063@quotation
8c5b881d
PE
11064I can't build Bison because @command{make} complains that
11065@code{msgfmt} is not found.
55ba27be 11066What should I do?
71b52b13 11067@end quotation
55ba27be
AD
11068
11069Like most GNU packages with internationalization support, that feature
11070is turned on by default. If you have problems building in the @file{po}
11071subdirectory, it indicates that your system's internationalization
11072support is lacking. You can re-configure Bison with
11073@option{--disable-nls} to turn off this support, or you can install GNU
11074gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11075Bison. See the file @file{ABOUT-NLS} for more information.
11076
11077
11078@node Where can I find help?
11079@section Where can I find help?
11080
71b52b13 11081@quotation
55ba27be 11082I'm having trouble using Bison. Where can I find help?
71b52b13 11083@end quotation
55ba27be
AD
11084
11085First, read this fine manual. Beyond that, you can send mail to
11086@email{help-bison@@gnu.org}. This mailing list is intended to be
11087populated with people who are willing to answer questions about using
11088and installing Bison. Please keep in mind that (most of) the people on
11089the list have aspects of their lives which are not related to Bison (!),
11090so you may not receive an answer to your question right away. This can
11091be frustrating, but please try not to honk them off; remember that any
11092help they provide is purely voluntary and out of the kindness of their
11093hearts.
11094
11095@node Bug Reports
11096@section Bug Reports
11097
71b52b13 11098@quotation
55ba27be 11099I found a bug. What should I include in the bug report?
71b52b13 11100@end quotation
55ba27be
AD
11101
11102Before you send a bug report, make sure you are using the latest
11103version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11104mirrors. Be sure to include the version number in your bug report. If
11105the bug is present in the latest version but not in a previous version,
11106try to determine the most recent version which did not contain the bug.
11107
11108If the bug is parser-related, you should include the smallest grammar
11109you can which demonstrates the bug. The grammar file should also be
11110complete (i.e., I should be able to run it through Bison without having
11111to edit or add anything). The smaller and simpler the grammar, the
11112easier it will be to fix the bug.
11113
11114Include information about your compilation environment, including your
11115operating system's name and version and your compiler's name and
11116version. If you have trouble compiling, you should also include a
11117transcript of the build session, starting with the invocation of
11118`configure'. Depending on the nature of the bug, you may be asked to
11119send additional files as well (such as `config.h' or `config.cache').
11120
11121Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11122send a bug report just because you cannot provide a fix.
55ba27be
AD
11123
11124Send bug reports to @email{bug-bison@@gnu.org}.
11125
8405b70c
PB
11126@node More Languages
11127@section More Languages
55ba27be 11128
71b52b13 11129@quotation
8405b70c 11130Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11131favorite language here}?
71b52b13 11132@end quotation
55ba27be 11133
8405b70c 11134C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11135languages; contributions are welcome.
11136
11137@node Beta Testing
11138@section Beta Testing
11139
71b52b13 11140@quotation
55ba27be 11141What is involved in being a beta tester?
71b52b13 11142@end quotation
55ba27be
AD
11143
11144It's not terribly involved. Basically, you would download a test
11145release, compile it, and use it to build and run a parser or two. After
11146that, you would submit either a bug report or a message saying that
11147everything is okay. It is important to report successes as well as
11148failures because test releases eventually become mainstream releases,
11149but only if they are adequately tested. If no one tests, development is
11150essentially halted.
11151
11152Beta testers are particularly needed for operating systems to which the
11153developers do not have easy access. They currently have easy access to
11154recent GNU/Linux and Solaris versions. Reports about other operating
11155systems are especially welcome.
11156
11157@node Mailing Lists
11158@section Mailing Lists
11159
71b52b13 11160@quotation
55ba27be 11161How do I join the help-bison and bug-bison mailing lists?
71b52b13 11162@end quotation
55ba27be
AD
11163
11164See @url{http://lists.gnu.org/}.
a06ea4aa 11165
d1a1114f
AD
11166@c ================================================= Table of Symbols
11167
342b8b6e 11168@node Table of Symbols
bfa74976
RS
11169@appendix Bison Symbols
11170@cindex Bison symbols, table of
11171@cindex symbols in Bison, table of
11172
18b519c0 11173@deffn {Variable} @@$
3ded9a63 11174In an action, the location of the left-hand side of the rule.
303834cc 11175@xref{Tracking Locations}.
18b519c0 11176@end deffn
3ded9a63 11177
18b519c0 11178@deffn {Variable} @@@var{n}
303834cc
JD
11179In an action, the location of the @var{n}-th symbol of the right-hand side
11180of the rule. @xref{Tracking Locations}.
18b519c0 11181@end deffn
3ded9a63 11182
d013372c 11183@deffn {Variable} @@@var{name}
303834cc
JD
11184In an action, the location of a symbol addressed by name. @xref{Tracking
11185Locations}.
d013372c
AR
11186@end deffn
11187
11188@deffn {Variable} @@[@var{name}]
303834cc
JD
11189In an action, the location of a symbol addressed by name. @xref{Tracking
11190Locations}.
d013372c
AR
11191@end deffn
11192
18b519c0 11193@deffn {Variable} $$
3ded9a63
AD
11194In an action, the semantic value of the left-hand side of the rule.
11195@xref{Actions}.
18b519c0 11196@end deffn
3ded9a63 11197
18b519c0 11198@deffn {Variable} $@var{n}
3ded9a63
AD
11199In an action, the semantic value of the @var{n}-th symbol of the
11200right-hand side of the rule. @xref{Actions}.
18b519c0 11201@end deffn
3ded9a63 11202
d013372c
AR
11203@deffn {Variable} $@var{name}
11204In an action, the semantic value of a symbol addressed by name.
11205@xref{Actions}.
11206@end deffn
11207
11208@deffn {Variable} $[@var{name}]
11209In an action, the semantic value of a symbol addressed by name.
11210@xref{Actions}.
11211@end deffn
11212
dd8d9022
AD
11213@deffn {Delimiter} %%
11214Delimiter used to separate the grammar rule section from the
11215Bison declarations section or the epilogue.
11216@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11217@end deffn
bfa74976 11218
dd8d9022
AD
11219@c Don't insert spaces, or check the DVI output.
11220@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11221All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11222to the parser implementation file. Such code forms the prologue of
11223the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11224Grammar}.
18b519c0 11225@end deffn
bfa74976 11226
ca2a6d15
PH
11227@deffn {Directive} %?@{@var{expression}@}
11228Predicate actions. This is a type of action clause that may appear in
11229rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11230GLR parsers during nondeterministic operation,
ca2a6d15
PH
11231this silently causes an alternative parse to die. During deterministic
11232operation, it is the same as the effect of YYERROR.
11233@xref{Semantic Predicates}.
11234
11235This feature is experimental.
11236More user feedback will help to determine whether it should become a permanent
11237feature.
11238@end deffn
11239
dd8d9022
AD
11240@deffn {Construct} /*@dots{}*/
11241Comment delimiters, as in C.
18b519c0 11242@end deffn
bfa74976 11243
dd8d9022
AD
11244@deffn {Delimiter} :
11245Separates a rule's result from its components. @xref{Rules, ,Syntax of
11246Grammar Rules}.
18b519c0 11247@end deffn
bfa74976 11248
dd8d9022
AD
11249@deffn {Delimiter} ;
11250Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11251@end deffn
bfa74976 11252
dd8d9022
AD
11253@deffn {Delimiter} |
11254Separates alternate rules for the same result nonterminal.
11255@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11256@end deffn
bfa74976 11257
12e35840
JD
11258@deffn {Directive} <*>
11259Used to define a default tagged @code{%destructor} or default tagged
11260@code{%printer}.
85894313
JD
11261
11262This feature is experimental.
11263More user feedback will help to determine whether it should become a permanent
11264feature.
11265
12e35840
JD
11266@xref{Destructor Decl, , Freeing Discarded Symbols}.
11267@end deffn
11268
3ebecc24 11269@deffn {Directive} <>
12e35840
JD
11270Used to define a default tagless @code{%destructor} or default tagless
11271@code{%printer}.
85894313
JD
11272
11273This feature is experimental.
11274More user feedback will help to determine whether it should become a permanent
11275feature.
11276
12e35840
JD
11277@xref{Destructor Decl, , Freeing Discarded Symbols}.
11278@end deffn
11279
dd8d9022
AD
11280@deffn {Symbol} $accept
11281The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11282$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11283Start-Symbol}. It cannot be used in the grammar.
18b519c0 11284@end deffn
bfa74976 11285
136a0f76 11286@deffn {Directive} %code @{@var{code}@}
148d66d8 11287@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11288Insert @var{code} verbatim into the output parser source at the
11289default location or at the location specified by @var{qualifier}.
e0c07222 11290@xref{%code Summary}.
9bc0dd67
JD
11291@end deffn
11292
11293@deffn {Directive} %debug
11294Equip the parser for debugging. @xref{Decl Summary}.
11295@end deffn
11296
91d2c560 11297@ifset defaultprec
22fccf95
PE
11298@deffn {Directive} %default-prec
11299Assign a precedence to rules that lack an explicit @samp{%prec}
11300modifier. @xref{Contextual Precedence, ,Context-Dependent
11301Precedence}.
39a06c25 11302@end deffn
91d2c560 11303@end ifset
39a06c25 11304
7fceb615
JD
11305@deffn {Directive} %define @var{variable}
11306@deffnx {Directive} %define @var{variable} @var{value}
11307@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11308Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11309@end deffn
11310
18b519c0 11311@deffn {Directive} %defines
ff7571c0
JD
11312Bison declaration to create a parser header file, which is usually
11313meant for the scanner. @xref{Decl Summary}.
18b519c0 11314@end deffn
6deb4447 11315
02975b9a
JD
11316@deffn {Directive} %defines @var{defines-file}
11317Same as above, but save in the file @var{defines-file}.
11318@xref{Decl Summary}.
11319@end deffn
11320
18b519c0 11321@deffn {Directive} %destructor
258b75ca 11322Specify how the parser should reclaim the memory associated to
fa7e68c3 11323discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11324@end deffn
72f889cc 11325
18b519c0 11326@deffn {Directive} %dprec
676385e2 11327Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11328time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11329GLR Parsers}.
18b519c0 11330@end deffn
676385e2 11331
dd8d9022
AD
11332@deffn {Symbol} $end
11333The predefined token marking the end of the token stream. It cannot be
11334used in the grammar.
11335@end deffn
11336
11337@deffn {Symbol} error
11338A token name reserved for error recovery. This token may be used in
11339grammar rules so as to allow the Bison parser to recognize an error in
11340the grammar without halting the process. In effect, a sentence
11341containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11342token @code{error} becomes the current lookahead token. Actions
11343corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11344token is reset to the token that originally caused the violation.
11345@xref{Error Recovery}.
18d192f0
AD
11346@end deffn
11347
18b519c0 11348@deffn {Directive} %error-verbose
7fceb615
JD
11349An obsolete directive standing for @samp{%define parse.error verbose}
11350(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11351@end deffn
2a8d363a 11352
02975b9a 11353@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11354Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11355Summary}.
18b519c0 11356@end deffn
d8988b2f 11357
18b519c0 11358@deffn {Directive} %glr-parser
8a4281b9
JD
11359Bison declaration to produce a GLR parser. @xref{GLR
11360Parsers, ,Writing GLR Parsers}.
18b519c0 11361@end deffn
676385e2 11362
dd8d9022
AD
11363@deffn {Directive} %initial-action
11364Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11365@end deffn
11366
e6e704dc
JD
11367@deffn {Directive} %language
11368Specify the programming language for the generated parser.
11369@xref{Decl Summary}.
11370@end deffn
11371
18b519c0 11372@deffn {Directive} %left
d78f0ac9 11373Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11374@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11375@end deffn
bfa74976 11376
2055a44e
AD
11377@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11378Bison declaration to specifying additional arguments that
2a8d363a
AD
11379@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11380for Pure Parsers}.
18b519c0 11381@end deffn
2a8d363a 11382
18b519c0 11383@deffn {Directive} %merge
676385e2 11384Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11385reduce/reduce conflict with a rule having the same merging function, the
676385e2 11386function is applied to the two semantic values to get a single result.
8a4281b9 11387@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11388@end deffn
676385e2 11389
02975b9a 11390@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 11391Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 11392@end deffn
d8988b2f 11393
91d2c560 11394@ifset defaultprec
22fccf95
PE
11395@deffn {Directive} %no-default-prec
11396Do not assign a precedence to rules that lack an explicit @samp{%prec}
11397modifier. @xref{Contextual Precedence, ,Context-Dependent
11398Precedence}.
11399@end deffn
91d2c560 11400@end ifset
22fccf95 11401
18b519c0 11402@deffn {Directive} %no-lines
931c7513 11403Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11404parser implementation file. @xref{Decl Summary}.
18b519c0 11405@end deffn
931c7513 11406
18b519c0 11407@deffn {Directive} %nonassoc
d78f0ac9 11408Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11409@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11410@end deffn
bfa74976 11411
02975b9a 11412@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11413Bison declaration to set the name of the parser implementation file.
11414@xref{Decl Summary}.
18b519c0 11415@end deffn
d8988b2f 11416
2055a44e
AD
11417@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11418Bison declaration to specify additional arguments that both
11419@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11420Parser Function @code{yyparse}}.
11421@end deffn
11422
11423@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11424Bison declaration to specify additional arguments that @code{yyparse}
11425should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11426@end deffn
2a8d363a 11427
18b519c0 11428@deffn {Directive} %prec
bfa74976
RS
11429Bison declaration to assign a precedence to a specific rule.
11430@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11431@end deffn
bfa74976 11432
d78f0ac9
AD
11433@deffn {Directive} %precedence
11434Bison declaration to assign precedence to token(s), but no associativity
11435@xref{Precedence Decl, ,Operator Precedence}.
11436@end deffn
11437
18b519c0 11438@deffn {Directive} %pure-parser
35c1e5f0
JD
11439Deprecated version of @samp{%define api.pure} (@pxref{%define
11440Summary,,api.pure}), for which Bison is more careful to warn about
11441unreasonable usage.
18b519c0 11442@end deffn
bfa74976 11443
b50d2359 11444@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11445Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11446Require a Version of Bison}.
b50d2359
AD
11447@end deffn
11448
18b519c0 11449@deffn {Directive} %right
d78f0ac9 11450Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11451@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11452@end deffn
bfa74976 11453
e6e704dc
JD
11454@deffn {Directive} %skeleton
11455Specify the skeleton to use; usually for development.
11456@xref{Decl Summary}.
11457@end deffn
11458
18b519c0 11459@deffn {Directive} %start
704a47c4
AD
11460Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11461Start-Symbol}.
18b519c0 11462@end deffn
bfa74976 11463
18b519c0 11464@deffn {Directive} %token
bfa74976
RS
11465Bison declaration to declare token(s) without specifying precedence.
11466@xref{Token Decl, ,Token Type Names}.
18b519c0 11467@end deffn
bfa74976 11468
18b519c0 11469@deffn {Directive} %token-table
ff7571c0
JD
11470Bison declaration to include a token name table in the parser
11471implementation file. @xref{Decl Summary}.
18b519c0 11472@end deffn
931c7513 11473
18b519c0 11474@deffn {Directive} %type
704a47c4
AD
11475Bison declaration to declare nonterminals. @xref{Type Decl,
11476,Nonterminal Symbols}.
18b519c0 11477@end deffn
bfa74976 11478
dd8d9022
AD
11479@deffn {Symbol} $undefined
11480The predefined token onto which all undefined values returned by
11481@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11482@code{error}.
11483@end deffn
11484
18b519c0 11485@deffn {Directive} %union
bfa74976
RS
11486Bison declaration to specify several possible data types for semantic
11487values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11488@end deffn
bfa74976 11489
dd8d9022
AD
11490@deffn {Macro} YYABORT
11491Macro to pretend that an unrecoverable syntax error has occurred, by
11492making @code{yyparse} return 1 immediately. The error reporting
11493function @code{yyerror} is not called. @xref{Parser Function, ,The
11494Parser Function @code{yyparse}}.
8405b70c
PB
11495
11496For Java parsers, this functionality is invoked using @code{return YYABORT;}
11497instead.
dd8d9022 11498@end deffn
3ded9a63 11499
dd8d9022
AD
11500@deffn {Macro} YYACCEPT
11501Macro to pretend that a complete utterance of the language has been
11502read, by making @code{yyparse} return 0 immediately.
11503@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11504
11505For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11506instead.
dd8d9022 11507@end deffn
bfa74976 11508
dd8d9022 11509@deffn {Macro} YYBACKUP
742e4900 11510Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11511token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11512@end deffn
bfa74976 11513
dd8d9022 11514@deffn {Variable} yychar
32c29292 11515External integer variable that contains the integer value of the
742e4900 11516lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11517@code{yyparse}.) Error-recovery rule actions may examine this variable.
11518@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11519@end deffn
bfa74976 11520
dd8d9022
AD
11521@deffn {Variable} yyclearin
11522Macro used in error-recovery rule actions. It clears the previous
742e4900 11523lookahead token. @xref{Error Recovery}.
18b519c0 11524@end deffn
bfa74976 11525
dd8d9022
AD
11526@deffn {Macro} YYDEBUG
11527Macro to define to equip the parser with tracing code. @xref{Tracing,
11528,Tracing Your Parser}.
18b519c0 11529@end deffn
bfa74976 11530
dd8d9022
AD
11531@deffn {Variable} yydebug
11532External integer variable set to zero by default. If @code{yydebug}
11533is given a nonzero value, the parser will output information on input
11534symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11535@end deffn
bfa74976 11536
dd8d9022
AD
11537@deffn {Macro} yyerrok
11538Macro to cause parser to recover immediately to its normal mode
11539after a syntax error. @xref{Error Recovery}.
11540@end deffn
11541
11542@deffn {Macro} YYERROR
11543Macro to pretend that a syntax error has just been detected: call
11544@code{yyerror} and then perform normal error recovery if possible
11545(@pxref{Error Recovery}), or (if recovery is impossible) make
11546@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11547
11548For Java parsers, this functionality is invoked using @code{return YYERROR;}
11549instead.
dd8d9022
AD
11550@end deffn
11551
11552@deffn {Function} yyerror
11553User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11554@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11555@end deffn
11556
11557@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11558An obsolete macro used in the @file{yacc.c} skeleton, that you define
11559with @code{#define} in the prologue to request verbose, specific error
11560message strings when @code{yyerror} is called. It doesn't matter what
11561definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11562it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11563(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11564@end deffn
11565
11566@deffn {Macro} YYINITDEPTH
11567Macro for specifying the initial size of the parser stack.
1a059451 11568@xref{Memory Management}.
dd8d9022
AD
11569@end deffn
11570
11571@deffn {Function} yylex
11572User-supplied lexical analyzer function, called with no arguments to get
11573the next token. @xref{Lexical, ,The Lexical Analyzer Function
11574@code{yylex}}.
11575@end deffn
11576
11577@deffn {Macro} YYLEX_PARAM
11578An obsolete macro for specifying an extra argument (or list of extra
32c29292 11579arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11580macro is deprecated, and is supported only for Yacc like parsers.
11581@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11582@end deffn
11583
11584@deffn {Variable} yylloc
11585External variable in which @code{yylex} should place the line and column
11586numbers associated with a token. (In a pure parser, it is a local
11587variable within @code{yyparse}, and its address is passed to
32c29292
JD
11588@code{yylex}.)
11589You can ignore this variable if you don't use the @samp{@@} feature in the
11590grammar actions.
11591@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11592In semantic actions, it stores the location of the lookahead token.
32c29292 11593@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11594@end deffn
11595
11596@deffn {Type} YYLTYPE
11597Data type of @code{yylloc}; by default, a structure with four
11598members. @xref{Location Type, , Data Types of Locations}.
11599@end deffn
11600
11601@deffn {Variable} yylval
11602External variable in which @code{yylex} should place the semantic
11603value associated with a token. (In a pure parser, it is a local
11604variable within @code{yyparse}, and its address is passed to
32c29292
JD
11605@code{yylex}.)
11606@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11607In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11608@xref{Actions, ,Actions}.
dd8d9022
AD
11609@end deffn
11610
11611@deffn {Macro} YYMAXDEPTH
1a059451
PE
11612Macro for specifying the maximum size of the parser stack. @xref{Memory
11613Management}.
dd8d9022
AD
11614@end deffn
11615
11616@deffn {Variable} yynerrs
8a2800e7 11617Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11618(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11619pure push parser, it is a member of yypstate.)
dd8d9022
AD
11620@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11621@end deffn
11622
11623@deffn {Function} yyparse
11624The parser function produced by Bison; call this function to start
11625parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11626@end deffn
11627
9987d1b3 11628@deffn {Function} yypstate_delete
f4101aa6 11629The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11630call this function to delete the memory associated with a parser.
f4101aa6 11631@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11632@code{yypstate_delete}}.
59da312b
JD
11633(The current push parsing interface is experimental and may evolve.
11634More user feedback will help to stabilize it.)
9987d1b3
JD
11635@end deffn
11636
11637@deffn {Function} yypstate_new
f4101aa6 11638The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11639call this function to create a new parser.
f4101aa6 11640@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11641@code{yypstate_new}}.
59da312b
JD
11642(The current push parsing interface is experimental and may evolve.
11643More user feedback will help to stabilize it.)
9987d1b3
JD
11644@end deffn
11645
11646@deffn {Function} yypull_parse
f4101aa6
AD
11647The parser function produced by Bison in push mode; call this function to
11648parse the rest of the input stream.
11649@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11650@code{yypull_parse}}.
59da312b
JD
11651(The current push parsing interface is experimental and may evolve.
11652More user feedback will help to stabilize it.)
9987d1b3
JD
11653@end deffn
11654
11655@deffn {Function} yypush_parse
f4101aa6
AD
11656The parser function produced by Bison in push mode; call this function to
11657parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11658@code{yypush_parse}}.
59da312b
JD
11659(The current push parsing interface is experimental and may evolve.
11660More user feedback will help to stabilize it.)
9987d1b3
JD
11661@end deffn
11662
dd8d9022
AD
11663@deffn {Macro} YYPARSE_PARAM
11664An obsolete macro for specifying the name of a parameter that
11665@code{yyparse} should accept. The use of this macro is deprecated, and
11666is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11667Conventions for Pure Parsers}.
11668@end deffn
11669
11670@deffn {Macro} YYRECOVERING
02103984
PE
11671The expression @code{YYRECOVERING ()} yields 1 when the parser
11672is recovering from a syntax error, and 0 otherwise.
11673@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11674@end deffn
11675
11676@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11677Macro used to control the use of @code{alloca} when the
11678deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11679the parser will use @code{malloc} to extend its stacks. If defined to
116801, the parser will use @code{alloca}. Values other than 0 and 1 are
11681reserved for future Bison extensions. If not defined,
11682@code{YYSTACK_USE_ALLOCA} defaults to 0.
11683
55289366 11684In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11685limited stack and with unreliable stack-overflow checking, you should
11686set @code{YYMAXDEPTH} to a value that cannot possibly result in
11687unchecked stack overflow on any of your target hosts when
11688@code{alloca} is called. You can inspect the code that Bison
11689generates in order to determine the proper numeric values. This will
11690require some expertise in low-level implementation details.
dd8d9022
AD
11691@end deffn
11692
11693@deffn {Type} YYSTYPE
11694Data type of semantic values; @code{int} by default.
11695@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11696@end deffn
bfa74976 11697
342b8b6e 11698@node Glossary
bfa74976
RS
11699@appendix Glossary
11700@cindex glossary
11701
11702@table @asis
7fceb615 11703@item Accepting state
eb45ef3b
JD
11704A state whose only action is the accept action.
11705The accepting state is thus a consistent state.
11706@xref{Understanding,,}.
11707
8a4281b9 11708@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11709Formal method of specifying context-free grammars originally proposed
11710by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11711committee document contributing to what became the Algol 60 report.
11712@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11713
7fceb615
JD
11714@item Consistent state
11715A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 11716
bfa74976
RS
11717@item Context-free grammars
11718Grammars specified as rules that can be applied regardless of context.
11719Thus, if there is a rule which says that an integer can be used as an
11720expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11721permitted. @xref{Language and Grammar, ,Languages and Context-Free
11722Grammars}.
bfa74976 11723
7fceb615 11724@item Default reduction
110ef36a 11725The reduction that a parser should perform if the current parser state
35c1e5f0 11726contains no other action for the lookahead token. In permitted parser
7fceb615
JD
11727states, Bison declares the reduction with the largest lookahead set to be
11728the default reduction and removes that lookahead set. @xref{Default
11729Reductions}.
11730
11731@item Defaulted state
11732A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 11733
bfa74976
RS
11734@item Dynamic allocation
11735Allocation of memory that occurs during execution, rather than at
11736compile time or on entry to a function.
11737
11738@item Empty string
11739Analogous to the empty set in set theory, the empty string is a
11740character string of length zero.
11741
11742@item Finite-state stack machine
11743A ``machine'' that has discrete states in which it is said to exist at
11744each instant in time. As input to the machine is processed, the
11745machine moves from state to state as specified by the logic of the
11746machine. In the case of the parser, the input is the language being
11747parsed, and the states correspond to various stages in the grammar
c827f760 11748rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11749
8a4281b9 11750@item Generalized LR (GLR)
676385e2 11751A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11752that are not LR(1). It resolves situations that Bison's
eb45ef3b 11753deterministic parsing
676385e2
PH
11754algorithm cannot by effectively splitting off multiple parsers, trying all
11755possible parsers, and discarding those that fail in the light of additional
c827f760 11756right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11757LR Parsing}.
676385e2 11758
bfa74976
RS
11759@item Grouping
11760A language construct that is (in general) grammatically divisible;
c827f760 11761for example, `expression' or `declaration' in C@.
bfa74976
RS
11762@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11763
7fceb615
JD
11764@item IELR(1) (Inadequacy Elimination LR(1))
11765A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 11766context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
11767language-recognition power of canonical LR(1) but with nearly the same
11768number of parser states as LALR(1). This reduction in parser states is
11769often an order of magnitude. More importantly, because canonical LR(1)'s
11770extra parser states may contain duplicate conflicts in the case of non-LR(1)
11771grammars, the number of conflicts for IELR(1) is often an order of magnitude
11772less as well. This can significantly reduce the complexity of developing a
11773grammar. @xref{LR Table Construction}.
eb45ef3b 11774
bfa74976
RS
11775@item Infix operator
11776An arithmetic operator that is placed between the operands on which it
11777performs some operation.
11778
11779@item Input stream
11780A continuous flow of data between devices or programs.
11781
8a4281b9 11782@item LAC (Lookahead Correction)
fcf834f9 11783A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
11784detection, which is caused by LR state merging, default reductions, and the
11785use of @code{%nonassoc}. Delayed syntax error detection results in
11786unexpected semantic actions, initiation of error recovery in the wrong
11787syntactic context, and an incorrect list of expected tokens in a verbose
11788syntax error message. @xref{LAC}.
fcf834f9 11789
bfa74976
RS
11790@item Language construct
11791One of the typical usage schemas of the language. For example, one of
11792the constructs of the C language is the @code{if} statement.
11793@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11794
11795@item Left associativity
11796Operators having left associativity are analyzed from left to right:
11797@samp{a+b+c} first computes @samp{a+b} and then combines with
11798@samp{c}. @xref{Precedence, ,Operator Precedence}.
11799
11800@item Left recursion
89cab50d
AD
11801A rule whose result symbol is also its first component symbol; for
11802example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11803Rules}.
bfa74976
RS
11804
11805@item Left-to-right parsing
11806Parsing a sentence of a language by analyzing it token by token from
c827f760 11807left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11808
11809@item Lexical analyzer (scanner)
11810A function that reads an input stream and returns tokens one by one.
11811@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11812
11813@item Lexical tie-in
11814A flag, set by actions in the grammar rules, which alters the way
11815tokens are parsed. @xref{Lexical Tie-ins}.
11816
931c7513 11817@item Literal string token
14ded682 11818A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11819
742e4900
JD
11820@item Lookahead token
11821A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11822Tokens}.
bfa74976 11823
8a4281b9 11824@item LALR(1)
bfa74976 11825The class of context-free grammars that Bison (like most other parser
8a4281b9 11826generators) can handle by default; a subset of LR(1).
cc09e5be 11827@xref{Mysterious Conflicts}.
bfa74976 11828
8a4281b9 11829@item LR(1)
bfa74976 11830The class of context-free grammars in which at most one token of
742e4900 11831lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11832
11833@item Nonterminal symbol
11834A grammar symbol standing for a grammatical construct that can
11835be expressed through rules in terms of smaller constructs; in other
11836words, a construct that is not a token. @xref{Symbols}.
11837
bfa74976
RS
11838@item Parser
11839A function that recognizes valid sentences of a language by analyzing
11840the syntax structure of a set of tokens passed to it from a lexical
11841analyzer.
11842
11843@item Postfix operator
11844An arithmetic operator that is placed after the operands upon which it
11845performs some operation.
11846
11847@item Reduction
11848Replacing a string of nonterminals and/or terminals with a single
89cab50d 11849nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11850Parser Algorithm}.
bfa74976
RS
11851
11852@item Reentrant
11853A reentrant subprogram is a subprogram which can be in invoked any
11854number of times in parallel, without interference between the various
11855invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11856
11857@item Reverse polish notation
11858A language in which all operators are postfix operators.
11859
11860@item Right recursion
89cab50d
AD
11861A rule whose result symbol is also its last component symbol; for
11862example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11863Rules}.
bfa74976
RS
11864
11865@item Semantics
11866In computer languages, the semantics are specified by the actions
11867taken for each instance of the language, i.e., the meaning of
11868each statement. @xref{Semantics, ,Defining Language Semantics}.
11869
11870@item Shift
11871A parser is said to shift when it makes the choice of analyzing
11872further input from the stream rather than reducing immediately some
c827f760 11873already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11874
11875@item Single-character literal
11876A single character that is recognized and interpreted as is.
11877@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11878
11879@item Start symbol
11880The nonterminal symbol that stands for a complete valid utterance in
11881the language being parsed. The start symbol is usually listed as the
13863333 11882first nonterminal symbol in a language specification.
bfa74976
RS
11883@xref{Start Decl, ,The Start-Symbol}.
11884
11885@item Symbol table
11886A data structure where symbol names and associated data are stored
11887during parsing to allow for recognition and use of existing
11888information in repeated uses of a symbol. @xref{Multi-function Calc}.
11889
6e649e65
PE
11890@item Syntax error
11891An error encountered during parsing of an input stream due to invalid
11892syntax. @xref{Error Recovery}.
11893
bfa74976
RS
11894@item Token
11895A basic, grammatically indivisible unit of a language. The symbol
11896that describes a token in the grammar is a terminal symbol.
11897The input of the Bison parser is a stream of tokens which comes from
11898the lexical analyzer. @xref{Symbols}.
11899
11900@item Terminal symbol
89cab50d
AD
11901A grammar symbol that has no rules in the grammar and therefore is
11902grammatically indivisible. The piece of text it represents is a token.
11903@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
11904
11905@item Unreachable state
11906A parser state to which there does not exist a sequence of transitions from
11907the parser's start state. A state can become unreachable during conflict
11908resolution. @xref{Unreachable States}.
bfa74976
RS
11909@end table
11910
342b8b6e 11911@node Copying This Manual
f2b5126e 11912@appendix Copying This Manual
f2b5126e
PB
11913@include fdl.texi
11914
5e528941
JD
11915@node Bibliography
11916@unnumbered Bibliography
11917
11918@table @asis
11919@item [Denny 2008]
11920Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11921for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
119222008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11923pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11924
11925@item [Denny 2010 May]
11926Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11927Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11928University, Clemson, SC, USA (May 2010).
11929@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11930
11931@item [Denny 2010 November]
11932Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11933Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11934in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
119352010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11936
11937@item [DeRemer 1982]
11938Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11939Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11940Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11941615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11942
11943@item [Knuth 1965]
11944Donald E. Knuth, On the Translation of Languages from Left to Right, in
11945@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11946607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11947
11948@item [Scott 2000]
11949Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11950@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11951London, Department of Computer Science, TR-00-12 (December 2000).
11952@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11953@end table
11954
342b8b6e 11955@node Index
bfa74976
RS
11956@unnumbered Index
11957
11958@printindex cp
11959
bfa74976 11960@bye
a06ea4aa 11961
6b5a0de9
AD
11962@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11963@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11964@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11965@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11966@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11967@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11968@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11969@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11970@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11971@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11972@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11973@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11974@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
c93f22fc 11975@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum
6b5a0de9
AD
11976@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11977@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11978@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11979@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11980@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11981@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11982@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11983@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11984@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11985@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11986@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11987@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11988@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11989@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11990@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11991@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9 11992@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
ff7571c0 11993@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
6b5a0de9
AD
11994@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11995@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11996@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11997@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11998@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11999@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
12000@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
ff7571c0 12001@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
6b5a0de9
AD
12002@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12003@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12004@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12005@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
12006@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
12007@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12008@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12009@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12010@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
12011@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
679e9935 12012@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
6b5a0de9 12013@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
12014
12015@c Local Variables:
12016@c ispell-dictionary: "american"
12017@c fill-column: 76
12018@c End: