]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: help Doxygen find our files.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
d6328241 229* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
230* Start Decl:: Specifying the start symbol.
231* Pure Decl:: Requesting a reentrant parser.
9987d1b3 232* Push Decl:: Requesting a push parser.
bfa74976 233* Decl Summary:: Table of all Bison declarations.
35c1e5f0 234* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 235* %code Summary:: Inserting code into the parser source.
bfa74976
RS
236
237Parser C-Language Interface
238
f5f419de
DJ
239* Parser Function:: How to call @code{yyparse} and what it returns.
240* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
241* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
242* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
243* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
244* Lexical:: You must supply a function @code{yylex}
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
256* Token Locations:: How @code{yylex} must return the text location
257 (line number, etc.) of the token, if the
258 actions want that.
259* Pure Calling:: How the calling convention differs in a pure parser
260 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 261
13863333 262The Bison Parser Algorithm
bfa74976 263
742e4900 264* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 270* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 271* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 272* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 273* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
274
275Operator Precedence
276
277* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
278* Using Precedence:: How to specify precedence and associativity.
279* Precedence Only:: How to specify precedence only.
bfa74976
RS
280* Precedence Examples:: How these features are used in the previous example.
281* How Precedence:: How they work.
282
7fceb615
JD
283Tuning LR
284
285* LR Table Construction:: Choose a different construction algorithm.
286* Default Reductions:: Disable default reductions.
287* LAC:: Correct lookahead sets in the parser states.
288* Unreachable States:: Keep unreachable parser states for debugging.
289
bfa74976
RS
290Handling Context Dependencies
291
292* Semantic Tokens:: Token parsing can depend on the semantic context.
293* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
294* Tie-in Recovery:: Lexical tie-ins have implications for how
295 error recovery rules must be written.
296
93dd49ab 297Debugging Your Parser
ec3bc396
AD
298
299* Understanding:: Understanding the structure of your parser.
300* Tracing:: Tracing the execution of your parser.
301
bfa74976
RS
302Invoking Bison
303
13863333 304* Bison Options:: All the options described in detail,
c827f760 305 in alphabetical order by short options.
bfa74976 306* Option Cross Key:: Alphabetical list of long options.
93dd49ab 307* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 308
8405b70c 309Parsers Written In Other Languages
12545799
AD
310
311* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 312* Java Parsers:: The interface to generate Java parser classes
12545799
AD
313
314C++ Parsers
315
316* C++ Bison Interface:: Asking for C++ parser generation
317* C++ Semantic Values:: %union vs. C++
318* C++ Location Values:: The position and location classes
319* C++ Parser Interface:: Instantiating and running the parser
320* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 321* A Complete C++ Example:: Demonstrating their use
12545799 322
936c88d1
AD
323C++ Location Values
324
325* C++ position:: One point in the source file
326* C++ location:: Two points in the source file
327
12545799
AD
328A Complete C++ Example
329
330* Calc++ --- C++ Calculator:: The specifications
331* Calc++ Parsing Driver:: An active parsing context
332* Calc++ Parser:: A parser class
333* Calc++ Scanner:: A pure C++ Flex scanner
334* Calc++ Top Level:: Conducting the band
335
8405b70c
PB
336Java Parsers
337
f5f419de
DJ
338* Java Bison Interface:: Asking for Java parser generation
339* Java Semantic Values:: %type and %token vs. Java
340* Java Location Values:: The position and location classes
341* Java Parser Interface:: Instantiating and running the parser
342* Java Scanner Interface:: Specifying the scanner for the parser
343* Java Action Features:: Special features for use in actions
344* Java Differences:: Differences between C/C++ and Java Grammars
345* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 346
d1a1114f
AD
347Frequently Asked Questions
348
f5f419de
DJ
349* Memory Exhausted:: Breaking the Stack Limits
350* How Can I Reset the Parser:: @code{yyparse} Keeps some State
351* Strings are Destroyed:: @code{yylval} Loses Track of Strings
352* Implementing Gotos/Loops:: Control Flow in the Calculator
353* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 354* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
355* I can't build Bison:: Troubleshooting
356* Where can I find help?:: Troubleshouting
357* Bug Reports:: Troublereporting
358* More Languages:: Parsers in C++, Java, and so on
359* Beta Testing:: Experimenting development versions
360* Mailing Lists:: Meeting other Bison users
d1a1114f 361
f2b5126e
PB
362Copying This Manual
363
f5f419de 364* Copying This Manual:: License for copying this manual.
f2b5126e 365
342b8b6e 366@end detailmenu
bfa74976
RS
367@end menu
368
342b8b6e 369@node Introduction
bfa74976
RS
370@unnumbered Introduction
371@cindex introduction
372
6077da58 373@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
374annotated context-free grammar into a deterministic LR or generalized
375LR (GLR) parser employing LALR(1) parser tables. As an experimental
376feature, Bison can also generate IELR(1) or canonical LR(1) parser
377tables. Once you are proficient with Bison, you can use it to develop
378a wide range of language parsers, from those used in simple desk
379calculators to complex programming languages.
380
381Bison is upward compatible with Yacc: all properly-written Yacc
382grammars ought to work with Bison with no change. Anyone familiar
383with Yacc should be able to use Bison with little trouble. You need
384to be fluent in C or C++ programming in order to use Bison or to
385understand this manual. Java is also supported as an experimental
386feature.
387
388We begin with tutorial chapters that explain the basic concepts of
389using Bison and show three explained examples, each building on the
390last. If you don't know Bison or Yacc, start by reading these
391chapters. Reference chapters follow, which describe specific aspects
392of Bison in detail.
bfa74976 393
679e9935
JD
394Bison was written originally by Robert Corbett. Richard Stallman made
395it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
396added multi-character string literals and other features. Since then,
397Bison has grown more robust and evolved many other new features thanks
398to the hard work of a long list of volunteers. For details, see the
399@file{THANKS} and @file{ChangeLog} files included in the Bison
400distribution.
931c7513 401
df1af54c 402This edition corresponds to version @value{VERSION} of Bison.
bfa74976 403
342b8b6e 404@node Conditions
bfa74976
RS
405@unnumbered Conditions for Using Bison
406
193d7c70
PE
407The distribution terms for Bison-generated parsers permit using the
408parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 409permissions applied only when Bison was generating LALR(1)
193d7c70 410parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 411parsers could be used only in programs that were free software.
a31239f1 412
8a4281b9 413The other GNU programming tools, such as the GNU C
c827f760 414compiler, have never
9ecbd125 415had such a requirement. They could always be used for nonfree
a31239f1
RS
416software. The reason Bison was different was not due to a special
417policy decision; it resulted from applying the usual General Public
418License to all of the Bison source code.
419
ff7571c0
JD
420The main output of the Bison utility---the Bison parser implementation
421file---contains a verbatim copy of a sizable piece of Bison, which is
422the code for the parser's implementation. (The actions from your
423grammar are inserted into this implementation at one point, but most
424of the rest of the implementation is not changed.) When we applied
425the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
426the effect was to restrict the use of Bison output to free software.
427
428We didn't change the terms because of sympathy for people who want to
429make software proprietary. @strong{Software should be free.} But we
430concluded that limiting Bison's use to free software was doing little to
431encourage people to make other software free. So we decided to make the
432practical conditions for using Bison match the practical conditions for
8a4281b9 433using the other GNU tools.
bfa74976 434
193d7c70
PE
435This exception applies when Bison is generating code for a parser.
436You can tell whether the exception applies to a Bison output file by
437inspecting the file for text beginning with ``As a special
438exception@dots{}''. The text spells out the exact terms of the
439exception.
262aa8dd 440
f16b0819
PE
441@node Copying
442@unnumbered GNU GENERAL PUBLIC LICENSE
443@include gpl-3.0.texi
bfa74976 444
342b8b6e 445@node Concepts
bfa74976
RS
446@chapter The Concepts of Bison
447
448This chapter introduces many of the basic concepts without which the
449details of Bison will not make sense. If you do not already know how to
450use Bison or Yacc, we suggest you start by reading this chapter carefully.
451
452@menu
f5f419de
DJ
453* Language and Grammar:: Languages and context-free grammars,
454 as mathematical ideas.
455* Grammar in Bison:: How we represent grammars for Bison's sake.
456* Semantic Values:: Each token or syntactic grouping can have
457 a semantic value (the value of an integer,
458 the name of an identifier, etc.).
459* Semantic Actions:: Each rule can have an action containing C code.
460* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 461* Locations:: Overview of location tracking.
f5f419de
DJ
462* Bison Parser:: What are Bison's input and output,
463 how is the output used?
464* Stages:: Stages in writing and running Bison grammars.
465* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
466@end menu
467
342b8b6e 468@node Language and Grammar
bfa74976
RS
469@section Languages and Context-Free Grammars
470
bfa74976
RS
471@cindex context-free grammar
472@cindex grammar, context-free
473In order for Bison to parse a language, it must be described by a
474@dfn{context-free grammar}. This means that you specify one or more
475@dfn{syntactic groupings} and give rules for constructing them from their
476parts. For example, in the C language, one kind of grouping is called an
477`expression'. One rule for making an expression might be, ``An expression
478can be made of a minus sign and another expression''. Another would be,
479``An expression can be an integer''. As you can see, rules are often
480recursive, but there must be at least one rule which leads out of the
481recursion.
482
8a4281b9 483@cindex BNF
bfa74976
RS
484@cindex Backus-Naur form
485The most common formal system for presenting such rules for humans to read
8a4281b9 486is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 487order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
488BNF is a context-free grammar. The input to Bison is
489essentially machine-readable BNF.
bfa74976 490
7fceb615
JD
491@cindex LALR grammars
492@cindex IELR grammars
493@cindex LR grammars
494There are various important subclasses of context-free grammars. Although
495it can handle almost all context-free grammars, Bison is optimized for what
496are called LR(1) grammars. In brief, in these grammars, it must be possible
497to tell how to parse any portion of an input string with just a single token
498of lookahead. For historical reasons, Bison by default is limited by the
499additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
500@xref{Mysterious Conflicts}, for more information on this. As an
501experimental feature, you can escape these additional restrictions by
502requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
503Construction}, to learn how.
bfa74976 504
8a4281b9
JD
505@cindex GLR parsing
506@cindex generalized LR (GLR) parsing
676385e2 507@cindex ambiguous grammars
9d9b8b70 508@cindex nondeterministic parsing
9501dc6e 509
8a4281b9 510Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
511roughly that the next grammar rule to apply at any point in the input is
512uniquely determined by the preceding input and a fixed, finite portion
742e4900 513(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 514grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 515apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 516grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 517lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 518With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
519general context-free grammars, using a technique known as GLR
520parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
521are able to handle any context-free grammar for which the number of
522possible parses of any given string is finite.
676385e2 523
bfa74976
RS
524@cindex symbols (abstract)
525@cindex token
526@cindex syntactic grouping
527@cindex grouping, syntactic
9501dc6e
AD
528In the formal grammatical rules for a language, each kind of syntactic
529unit or grouping is named by a @dfn{symbol}. Those which are built by
530grouping smaller constructs according to grammatical rules are called
bfa74976
RS
531@dfn{nonterminal symbols}; those which can't be subdivided are called
532@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
533corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 534corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
535
536We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
537nonterminal, mean. The tokens of C are identifiers, constants (numeric
538and string), and the various keywords, arithmetic operators and
539punctuation marks. So the terminal symbols of a grammar for C include
540`identifier', `number', `string', plus one symbol for each keyword,
541operator or punctuation mark: `if', `return', `const', `static', `int',
542`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
543(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
544lexicography, not grammar.)
545
546Here is a simple C function subdivided into tokens:
547
9edcd895
AD
548@example
549int /* @r{keyword `int'} */
14d4662b 550square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
551 @r{identifier, close-paren} */
552@{ /* @r{open-brace} */
aa08666d
AD
553 return x * x; /* @r{keyword `return', identifier, asterisk,}
554 @r{identifier, semicolon} */
9edcd895
AD
555@} /* @r{close-brace} */
556@end example
bfa74976
RS
557
558The syntactic groupings of C include the expression, the statement, the
559declaration, and the function definition. These are represented in the
560grammar of C by nonterminal symbols `expression', `statement',
561`declaration' and `function definition'. The full grammar uses dozens of
562additional language constructs, each with its own nonterminal symbol, in
563order to express the meanings of these four. The example above is a
564function definition; it contains one declaration, and one statement. In
565the statement, each @samp{x} is an expression and so is @samp{x * x}.
566
567Each nonterminal symbol must have grammatical rules showing how it is made
568out of simpler constructs. For example, one kind of C statement is the
569@code{return} statement; this would be described with a grammar rule which
570reads informally as follows:
571
572@quotation
573A `statement' can be made of a `return' keyword, an `expression' and a
574`semicolon'.
575@end quotation
576
577@noindent
578There would be many other rules for `statement', one for each kind of
579statement in C.
580
581@cindex start symbol
582One nonterminal symbol must be distinguished as the special one which
583defines a complete utterance in the language. It is called the @dfn{start
584symbol}. In a compiler, this means a complete input program. In the C
585language, the nonterminal symbol `sequence of definitions and declarations'
586plays this role.
587
588For example, @samp{1 + 2} is a valid C expression---a valid part of a C
589program---but it is not valid as an @emph{entire} C program. In the
590context-free grammar of C, this follows from the fact that `expression' is
591not the start symbol.
592
593The Bison parser reads a sequence of tokens as its input, and groups the
594tokens using the grammar rules. If the input is valid, the end result is
595that the entire token sequence reduces to a single grouping whose symbol is
596the grammar's start symbol. If we use a grammar for C, the entire input
597must be a `sequence of definitions and declarations'. If not, the parser
598reports a syntax error.
599
342b8b6e 600@node Grammar in Bison
bfa74976
RS
601@section From Formal Rules to Bison Input
602@cindex Bison grammar
603@cindex grammar, Bison
604@cindex formal grammar
605
606A formal grammar is a mathematical construct. To define the language
607for Bison, you must write a file expressing the grammar in Bison syntax:
608a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
609
610A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 611as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
612in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
613
614The Bison representation for a terminal symbol is also called a @dfn{token
615type}. Token types as well can be represented as C-like identifiers. By
616convention, these identifiers should be upper case to distinguish them from
617nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
618@code{RETURN}. A terminal symbol that stands for a particular keyword in
619the language should be named after that keyword converted to upper case.
620The terminal symbol @code{error} is reserved for error recovery.
931c7513 621@xref{Symbols}.
bfa74976
RS
622
623A terminal symbol can also be represented as a character literal, just like
624a C character constant. You should do this whenever a token is just a
625single character (parenthesis, plus-sign, etc.): use that same character in
626a literal as the terminal symbol for that token.
627
931c7513
RS
628A third way to represent a terminal symbol is with a C string constant
629containing several characters. @xref{Symbols}, for more information.
630
bfa74976
RS
631The grammar rules also have an expression in Bison syntax. For example,
632here is the Bison rule for a C @code{return} statement. The semicolon in
633quotes is a literal character token, representing part of the C syntax for
634the statement; the naked semicolon, and the colon, are Bison punctuation
635used in every rule.
636
637@example
5e9b6624 638stmt: RETURN expr ';' ;
bfa74976
RS
639@end example
640
641@noindent
642@xref{Rules, ,Syntax of Grammar Rules}.
643
342b8b6e 644@node Semantic Values
bfa74976
RS
645@section Semantic Values
646@cindex semantic value
647@cindex value, semantic
648
649A formal grammar selects tokens only by their classifications: for example,
650if a rule mentions the terminal symbol `integer constant', it means that
651@emph{any} integer constant is grammatically valid in that position. The
652precise value of the constant is irrelevant to how to parse the input: if
653@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 654grammatical.
bfa74976
RS
655
656But the precise value is very important for what the input means once it is
657parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6583989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
659has both a token type and a @dfn{semantic value}. @xref{Semantics,
660,Defining Language Semantics},
bfa74976
RS
661for details.
662
663The token type is a terminal symbol defined in the grammar, such as
664@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
665you need to know to decide where the token may validly appear and how to
666group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 667except their types.
bfa74976
RS
668
669The semantic value has all the rest of the information about the
670meaning of the token, such as the value of an integer, or the name of an
671identifier. (A token such as @code{','} which is just punctuation doesn't
672need to have any semantic value.)
673
674For example, an input token might be classified as token type
675@code{INTEGER} and have the semantic value 4. Another input token might
676have the same token type @code{INTEGER} but value 3989. When a grammar
677rule says that @code{INTEGER} is allowed, either of these tokens is
678acceptable because each is an @code{INTEGER}. When the parser accepts the
679token, it keeps track of the token's semantic value.
680
681Each grouping can also have a semantic value as well as its nonterminal
682symbol. For example, in a calculator, an expression typically has a
683semantic value that is a number. In a compiler for a programming
684language, an expression typically has a semantic value that is a tree
685structure describing the meaning of the expression.
686
342b8b6e 687@node Semantic Actions
bfa74976
RS
688@section Semantic Actions
689@cindex semantic actions
690@cindex actions, semantic
691
692In order to be useful, a program must do more than parse input; it must
693also produce some output based on the input. In a Bison grammar, a grammar
694rule can have an @dfn{action} made up of C statements. Each time the
695parser recognizes a match for that rule, the action is executed.
696@xref{Actions}.
13863333 697
bfa74976
RS
698Most of the time, the purpose of an action is to compute the semantic value
699of the whole construct from the semantic values of its parts. For example,
700suppose we have a rule which says an expression can be the sum of two
701expressions. When the parser recognizes such a sum, each of the
702subexpressions has a semantic value which describes how it was built up.
703The action for this rule should create a similar sort of value for the
704newly recognized larger expression.
705
706For example, here is a rule that says an expression can be the sum of
707two subexpressions:
708
709@example
5e9b6624 710expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
711@end example
712
713@noindent
714The action says how to produce the semantic value of the sum expression
715from the values of the two subexpressions.
716
676385e2 717@node GLR Parsers
8a4281b9
JD
718@section Writing GLR Parsers
719@cindex GLR parsing
720@cindex generalized LR (GLR) parsing
676385e2
PH
721@findex %glr-parser
722@cindex conflicts
723@cindex shift/reduce conflicts
fa7e68c3 724@cindex reduce/reduce conflicts
676385e2 725
eb45ef3b 726In some grammars, Bison's deterministic
8a4281b9 727LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
728certain grammar rule at a given point. That is, it may not be able to
729decide (on the basis of the input read so far) which of two possible
730reductions (applications of a grammar rule) applies, or whether to apply
731a reduction or read more of the input and apply a reduction later in the
732input. These are known respectively as @dfn{reduce/reduce} conflicts
733(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
734(@pxref{Shift/Reduce}).
735
8a4281b9 736To use a grammar that is not easily modified to be LR(1), a
9501dc6e 737more general parsing algorithm is sometimes necessary. If you include
676385e2 738@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
739(@pxref{Grammar Outline}), the result is a Generalized LR
740(GLR) parser. These parsers handle Bison grammars that
9501dc6e 741contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 742declarations) identically to deterministic parsers. However, when
9501dc6e 743faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 744GLR parsers use the simple expedient of doing both,
9501dc6e
AD
745effectively cloning the parser to follow both possibilities. Each of
746the resulting parsers can again split, so that at any given time, there
747can be any number of possible parses being explored. The parsers
676385e2
PH
748proceed in lockstep; that is, all of them consume (shift) a given input
749symbol before any of them proceed to the next. Each of the cloned
750parsers eventually meets one of two possible fates: either it runs into
751a parsing error, in which case it simply vanishes, or it merges with
752another parser, because the two of them have reduced the input to an
753identical set of symbols.
754
755During the time that there are multiple parsers, semantic actions are
756recorded, but not performed. When a parser disappears, its recorded
757semantic actions disappear as well, and are never performed. When a
758reduction makes two parsers identical, causing them to merge, Bison
759records both sets of semantic actions. Whenever the last two parsers
760merge, reverting to the single-parser case, Bison resolves all the
761outstanding actions either by precedences given to the grammar rules
762involved, or by performing both actions, and then calling a designated
763user-defined function on the resulting values to produce an arbitrary
764merged result.
765
fa7e68c3 766@menu
8a4281b9
JD
767* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
768* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 769* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 770* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 771* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
772@end menu
773
774@node Simple GLR Parsers
8a4281b9
JD
775@subsection Using GLR on Unambiguous Grammars
776@cindex GLR parsing, unambiguous grammars
777@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
778@findex %glr-parser
779@findex %expect-rr
780@cindex conflicts
781@cindex reduce/reduce conflicts
782@cindex shift/reduce conflicts
783
8a4281b9
JD
784In the simplest cases, you can use the GLR algorithm
785to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 786Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
787
788Consider a problem that
789arises in the declaration of enumerated and subrange types in the
790programming language Pascal. Here are some examples:
791
792@example
793type subrange = lo .. hi;
794type enum = (a, b, c);
795@end example
796
797@noindent
798The original language standard allows only numeric
799literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 800and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80110206) and many other
802Pascal implementations allow arbitrary expressions there. This gives
803rise to the following situation, containing a superfluous pair of
804parentheses:
805
806@example
807type subrange = (a) .. b;
808@end example
809
810@noindent
811Compare this to the following declaration of an enumerated
812type with only one value:
813
814@example
815type enum = (a);
816@end example
817
818@noindent
819(These declarations are contrived, but they are syntactically
820valid, and more-complicated cases can come up in practical programs.)
821
822These two declarations look identical until the @samp{..} token.
8a4281b9 823With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
824possible to decide between the two forms when the identifier
825@samp{a} is parsed. It is, however, desirable
826for a parser to decide this, since in the latter case
827@samp{a} must become a new identifier to represent the enumeration
828value, while in the former case @samp{a} must be evaluated with its
829current meaning, which may be a constant or even a function call.
830
831You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
832to be resolved later, but this typically requires substantial
833contortions in both semantic actions and large parts of the
834grammar, where the parentheses are nested in the recursive rules for
835expressions.
836
837You might think of using the lexer to distinguish between the two
838forms by returning different tokens for currently defined and
839undefined identifiers. But if these declarations occur in a local
840scope, and @samp{a} is defined in an outer scope, then both forms
841are possible---either locally redefining @samp{a}, or using the
842value of @samp{a} from the outer scope. So this approach cannot
843work.
844
e757bb10 845A simple solution to this problem is to declare the parser to
8a4281b9
JD
846use the GLR algorithm.
847When the GLR parser reaches the critical state, it
fa7e68c3
PE
848merely splits into two branches and pursues both syntax rules
849simultaneously. Sooner or later, one of them runs into a parsing
850error. If there is a @samp{..} token before the next
851@samp{;}, the rule for enumerated types fails since it cannot
852accept @samp{..} anywhere; otherwise, the subrange type rule
853fails since it requires a @samp{..} token. So one of the branches
854fails silently, and the other one continues normally, performing
855all the intermediate actions that were postponed during the split.
856
857If the input is syntactically incorrect, both branches fail and the parser
858reports a syntax error as usual.
859
860The effect of all this is that the parser seems to ``guess'' the
861correct branch to take, or in other words, it seems to use more
8a4281b9
JD
862lookahead than the underlying LR(1) algorithm actually allows
863for. In this example, LR(2) would suffice, but also some cases
864that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 865
8a4281b9 866In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
867and the current Bison parser even takes exponential time and space
868for some grammars. In practice, this rarely happens, and for many
869grammars it is possible to prove that it cannot happen.
870The present example contains only one conflict between two
871rules, and the type-declaration context containing the conflict
872cannot be nested. So the number of
873branches that can exist at any time is limited by the constant 2,
874and the parsing time is still linear.
875
876Here is a Bison grammar corresponding to the example above. It
877parses a vastly simplified form of Pascal type declarations.
878
879@example
880%token TYPE DOTDOT ID
881
882@group
883%left '+' '-'
884%left '*' '/'
885@end group
886
887%%
888
889@group
5e9b6624 890type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
891@end group
892
893@group
5e9b6624
AD
894type:
895 '(' id_list ')'
896| expr DOTDOT expr
897;
fa7e68c3
PE
898@end group
899
900@group
5e9b6624
AD
901id_list:
902 ID
903| id_list ',' ID
904;
fa7e68c3
PE
905@end group
906
907@group
5e9b6624
AD
908expr:
909 '(' expr ')'
910| expr '+' expr
911| expr '-' expr
912| expr '*' expr
913| expr '/' expr
914| ID
915;
fa7e68c3
PE
916@end group
917@end example
918
8a4281b9 919When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
920about one reduce/reduce conflict. In the conflicting situation the
921parser chooses one of the alternatives, arbitrarily the one
922declared first. Therefore the following correct input is not
923recognized:
924
925@example
926type t = (a) .. b;
927@end example
928
8a4281b9 929The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
930to be silent about the one known reduce/reduce conflict, by adding
931these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
932@samp{%%}):
933
934@example
935%glr-parser
936%expect-rr 1
937@end example
938
939@noindent
940No change in the grammar itself is required. Now the
941parser recognizes all valid declarations, according to the
942limited syntax above, transparently. In fact, the user does not even
943notice when the parser splits.
944
8a4281b9 945So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
946almost without disadvantages. Even in simple cases like this, however,
947there are at least two potential problems to beware. First, always
8a4281b9
JD
948analyze the conflicts reported by Bison to make sure that GLR
949splitting is only done where it is intended. A GLR parser
f8e1c9e5 950splitting inadvertently may cause problems less obvious than an
8a4281b9 951LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
952conflict. Second, consider interactions with the lexer (@pxref{Semantic
953Tokens}) with great care. Since a split parser consumes tokens without
954performing any actions during the split, the lexer cannot obtain
955information via parser actions. Some cases of lexer interactions can be
8a4281b9 956eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
957lexer to the parser. You must check the remaining cases for
958correctness.
959
960In our example, it would be safe for the lexer to return tokens based on
961their current meanings in some symbol table, because no new symbols are
962defined in the middle of a type declaration. Though it is possible for
963a parser to define the enumeration constants as they are parsed, before
964the type declaration is completed, it actually makes no difference since
965they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
966
967@node Merging GLR Parses
8a4281b9
JD
968@subsection Using GLR to Resolve Ambiguities
969@cindex GLR parsing, ambiguous grammars
970@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
971@findex %dprec
972@findex %merge
973@cindex conflicts
974@cindex reduce/reduce conflicts
975
2a8d363a 976Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
977
978@example
979%@{
38a92d50
PE
980 #include <stdio.h>
981 #define YYSTYPE char const *
982 int yylex (void);
983 void yyerror (char const *);
676385e2
PH
984%@}
985
986%token TYPENAME ID
987
988%right '='
989%left '+'
990
991%glr-parser
992
993%%
994
5e9b6624
AD
995prog:
996 /* Nothing. */
997| prog stmt @{ printf ("\n"); @}
998;
676385e2 999
5e9b6624
AD
1000stmt:
1001 expr ';' %dprec 1
1002| decl %dprec 2
1003;
676385e2 1004
5e9b6624
AD
1005expr:
1006 ID @{ printf ("%s ", $$); @}
1007| TYPENAME '(' expr ')'
1008 @{ printf ("%s <cast> ", $1); @}
1009| expr '+' expr @{ printf ("+ "); @}
1010| expr '=' expr @{ printf ("= "); @}
1011;
676385e2 1012
5e9b6624
AD
1013decl:
1014 TYPENAME declarator ';'
1015 @{ printf ("%s <declare> ", $1); @}
1016| TYPENAME declarator '=' expr ';'
1017 @{ printf ("%s <init-declare> ", $1); @}
1018;
676385e2 1019
5e9b6624
AD
1020declarator:
1021 ID @{ printf ("\"%s\" ", $1); @}
1022| '(' declarator ')'
1023;
676385e2
PH
1024@end example
1025
1026@noindent
1027This models a problematic part of the C++ grammar---the ambiguity between
1028certain declarations and statements. For example,
1029
1030@example
1031T (x) = y+z;
1032@end example
1033
1034@noindent
1035parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1036(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1037@samp{x} as an @code{ID}).
676385e2 1038Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1039@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1040time it encounters @code{x} in the example above. Since this is a
8a4281b9 1041GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1042each choice of resolving the reduce/reduce conflict.
1043Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1044however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1045ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1046the other reduces @code{stmt : decl}, after which both parsers are in an
1047identical state: they've seen @samp{prog stmt} and have the same unprocessed
1048input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1049
8a4281b9 1050At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1051grammar of how to choose between the competing parses.
1052In the example above, the two @code{%dprec}
e757bb10 1053declarations specify that Bison is to give precedence
fa7e68c3 1054to the parse that interprets the example as a
676385e2
PH
1055@code{decl}, which implies that @code{x} is a declarator.
1056The parser therefore prints
1057
1058@example
fae437e8 1059"x" y z + T <init-declare>
676385e2
PH
1060@end example
1061
fa7e68c3
PE
1062The @code{%dprec} declarations only come into play when more than one
1063parse survives. Consider a different input string for this parser:
676385e2
PH
1064
1065@example
1066T (x) + y;
1067@end example
1068
1069@noindent
8a4281b9 1070This is another example of using GLR to parse an unambiguous
fa7e68c3 1071construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1072Here, there is no ambiguity (this cannot be parsed as a declaration).
1073However, at the time the Bison parser encounters @code{x}, it does not
1074have enough information to resolve the reduce/reduce conflict (again,
1075between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1076case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1077into two, one assuming that @code{x} is an @code{expr}, and the other
1078assuming @code{x} is a @code{declarator}. The second of these parsers
1079then vanishes when it sees @code{+}, and the parser prints
1080
1081@example
fae437e8 1082x T <cast> y +
676385e2
PH
1083@end example
1084
1085Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1086the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1087actions of the two possible parsers, rather than choosing one over the
1088other. To do so, you could change the declaration of @code{stmt} as
1089follows:
1090
1091@example
5e9b6624
AD
1092stmt:
1093 expr ';' %merge <stmtMerge>
1094| decl %merge <stmtMerge>
1095;
676385e2
PH
1096@end example
1097
1098@noindent
676385e2
PH
1099and define the @code{stmtMerge} function as:
1100
1101@example
38a92d50
PE
1102static YYSTYPE
1103stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1104@{
1105 printf ("<OR> ");
1106 return "";
1107@}
1108@end example
1109
1110@noindent
1111with an accompanying forward declaration
1112in the C declarations at the beginning of the file:
1113
1114@example
1115%@{
38a92d50 1116 #define YYSTYPE char const *
676385e2
PH
1117 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1118%@}
1119@end example
1120
1121@noindent
fa7e68c3
PE
1122With these declarations, the resulting parser parses the first example
1123as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1124
1125@example
fae437e8 1126"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1127@end example
1128
fa7e68c3 1129Bison requires that all of the
e757bb10 1130productions that participate in any particular merge have identical
fa7e68c3
PE
1131@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1132and the parser will report an error during any parse that results in
1133the offending merge.
9501dc6e 1134
32c29292
JD
1135@node GLR Semantic Actions
1136@subsection GLR Semantic Actions
1137
8a4281b9 1138The nature of GLR parsing and the structure of the generated
20be2f92
PH
1139parsers give rise to certain restrictions on semantic values and actions.
1140
1141@subsubsection Deferred semantic actions
32c29292
JD
1142@cindex deferred semantic actions
1143By definition, a deferred semantic action is not performed at the same time as
1144the associated reduction.
1145This raises caveats for several Bison features you might use in a semantic
8a4281b9 1146action in a GLR parser.
32c29292
JD
1147
1148@vindex yychar
8a4281b9 1149@cindex GLR parsers and @code{yychar}
32c29292 1150@vindex yylval
8a4281b9 1151@cindex GLR parsers and @code{yylval}
32c29292 1152@vindex yylloc
8a4281b9 1153@cindex GLR parsers and @code{yylloc}
32c29292 1154In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1155the lookahead token present at the time of the associated reduction.
32c29292
JD
1156After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1157you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1158lookahead token's semantic value and location, if any.
32c29292
JD
1159In a nondeferred semantic action, you can also modify any of these variables to
1160influence syntax analysis.
742e4900 1161@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1162
1163@findex yyclearin
8a4281b9 1164@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1165In a deferred semantic action, it's too late to influence syntax analysis.
1166In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1167shallow copies of the values they had at the time of the associated reduction.
1168For this reason alone, modifying them is dangerous.
1169Moreover, the result of modifying them is undefined and subject to change with
1170future versions of Bison.
1171For example, if a semantic action might be deferred, you should never write it
1172to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1173memory referenced by @code{yylval}.
1174
20be2f92 1175@subsubsection YYERROR
32c29292 1176@findex YYERROR
8a4281b9 1177@cindex GLR parsers and @code{YYERROR}
32c29292 1178Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1179(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1180initiate error recovery.
8a4281b9 1181During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1182the same as its effect in a deterministic parser.
411614fa
JM
1183The effect in a deferred action is similar, but the precise point of the
1184error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1185selecting an unspecified stack on which to continue with a syntax error.
1186In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1187parsing, @code{YYERROR} silently prunes
1188the parse that invoked the test.
1189
1190@subsubsection Restrictions on semantic values and locations
8a4281b9 1191GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1192semantic values and location types when using the generated parsers as
1193C++ code.
8710fc41 1194
ca2a6d15
PH
1195@node Semantic Predicates
1196@subsection Controlling a Parse with Arbitrary Predicates
1197@findex %?
8a4281b9 1198@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1199
1200In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1201GLR parsers
ca2a6d15
PH
1202allow you to reject parses on the basis of arbitrary computations executed
1203in user code, without having Bison treat this rejection as an error
1204if there are alternative parses. (This feature is experimental and may
1205evolve. We welcome user feedback.) For example,
1206
c93f22fc
AD
1207@example
1208widget:
5e9b6624
AD
1209 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1210| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1211;
c93f22fc 1212@end example
ca2a6d15
PH
1213
1214@noindent
411614fa 1215is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1216widgets. The clause preceded by @code{%?} is treated like an ordinary
1217action, except that its text is treated as an expression and is always
411614fa 1218evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1219expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1220which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1221to die. In a deterministic parser, it acts like YYERROR.
1222
1223As the example shows, predicates otherwise look like semantic actions, and
1224therefore you must be take them into account when determining the numbers
1225to use for denoting the semantic values of right-hand side symbols.
1226Predicate actions, however, have no defined value, and may not be given
1227labels.
1228
1229There is a subtle difference between semantic predicates and ordinary
1230actions in nondeterministic mode, since the latter are deferred.
411614fa 1231For example, we could try to rewrite the previous example as
ca2a6d15 1232
c93f22fc
AD
1233@example
1234widget:
5e9b6624
AD
1235 @{ if (!new_syntax) YYERROR; @}
1236 "widget" id new_args @{ $$ = f($3, $4); @}
1237| @{ if (new_syntax) YYERROR; @}
1238 "widget" id old_args @{ $$ = f($3, $4); @}
1239;
c93f22fc 1240@end example
ca2a6d15
PH
1241
1242@noindent
1243(reversing the sense of the predicate tests to cause an error when they are
1244false). However, this
1245does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1246have overlapping syntax.
411614fa 1247Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1248a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1249for cases where @code{new_args} and @code{old_args} recognize the same string
1250@emph{before} performing the tests of @code{new_syntax}. It therefore
1251reports an error.
1252
1253Finally, be careful in writing predicates: deferred actions have not been
1254evaluated, so that using them in a predicate will have undefined effects.
1255
fa7e68c3 1256@node Compiler Requirements
8a4281b9 1257@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1258@cindex @code{inline}
8a4281b9 1259@cindex GLR parsers and @code{inline}
fa7e68c3 1260
8a4281b9 1261The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1262later. In addition, they use the @code{inline} keyword, which is not
1263C89, but is C99 and is a common extension in pre-C99 compilers. It is
1264up to the user of these parsers to handle
9501dc6e
AD
1265portability issues. For instance, if using Autoconf and the Autoconf
1266macro @code{AC_C_INLINE}, a mere
1267
1268@example
1269%@{
38a92d50 1270 #include <config.h>
9501dc6e
AD
1271%@}
1272@end example
1273
1274@noindent
1275will suffice. Otherwise, we suggest
1276
1277@example
1278%@{
aaaa2aae
AD
1279 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1280 && ! defined inline)
1281 # define inline
38a92d50 1282 #endif
9501dc6e
AD
1283%@}
1284@end example
676385e2 1285
1769eb30 1286@node Locations
847bf1f5
AD
1287@section Locations
1288@cindex location
95923bd6
AD
1289@cindex textual location
1290@cindex location, textual
847bf1f5
AD
1291
1292Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1293and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1294the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1295Bison provides a mechanism for handling these locations.
1296
72d2299c 1297Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1298associated location, but the type of locations is the same for all tokens
1299and groupings. Moreover, the output parser is equipped with a default data
1300structure for storing locations (@pxref{Tracking Locations}, for more
1301details).
847bf1f5
AD
1302
1303Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1304set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1305is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1306@code{@@3}.
1307
1308When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1309of its left hand side (@pxref{Actions}). In the same way, another default
1310action is used for locations. However, the action for locations is general
847bf1f5 1311enough for most cases, meaning there is usually no need to describe for each
72d2299c 1312rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1313grouping, the default behavior of the output parser is to take the beginning
1314of the first symbol, and the end of the last symbol.
1315
342b8b6e 1316@node Bison Parser
ff7571c0 1317@section Bison Output: the Parser Implementation File
bfa74976
RS
1318@cindex Bison parser
1319@cindex Bison utility
1320@cindex lexical analyzer, purpose
1321@cindex parser
1322
ff7571c0
JD
1323When you run Bison, you give it a Bison grammar file as input. The
1324most important output is a C source file that implements a parser for
1325the language described by the grammar. This parser is called a
1326@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1327implementation file}. Keep in mind that the Bison utility and the
1328Bison parser are two distinct programs: the Bison utility is a program
1329whose output is the Bison parser implementation file that becomes part
1330of your program.
bfa74976
RS
1331
1332The job of the Bison parser is to group tokens into groupings according to
1333the grammar rules---for example, to build identifiers and operators into
1334expressions. As it does this, it runs the actions for the grammar rules it
1335uses.
1336
704a47c4
AD
1337The tokens come from a function called the @dfn{lexical analyzer} that
1338you must supply in some fashion (such as by writing it in C). The Bison
1339parser calls the lexical analyzer each time it wants a new token. It
1340doesn't know what is ``inside'' the tokens (though their semantic values
1341may reflect this). Typically the lexical analyzer makes the tokens by
1342parsing characters of text, but Bison does not depend on this.
1343@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1344
ff7571c0
JD
1345The Bison parser implementation file is C code which defines a
1346function named @code{yyparse} which implements that grammar. This
1347function does not make a complete C program: you must supply some
1348additional functions. One is the lexical analyzer. Another is an
1349error-reporting function which the parser calls to report an error.
1350In addition, a complete C program must start with a function called
1351@code{main}; you have to provide this, and arrange for it to call
1352@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1353C-Language Interface}.
bfa74976 1354
f7ab6a50 1355Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1356write, all symbols defined in the Bison parser implementation file
1357itself begin with @samp{yy} or @samp{YY}. This includes interface
1358functions such as the lexical analyzer function @code{yylex}, the
1359error reporting function @code{yyerror} and the parser function
1360@code{yyparse} itself. This also includes numerous identifiers used
1361for internal purposes. Therefore, you should avoid using C
1362identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1363file except for the ones defined in this manual. Also, you should
1364avoid using the C identifiers @samp{malloc} and @samp{free} for
1365anything other than their usual meanings.
1366
1367In some cases the Bison parser implementation file includes system
1368headers, and in those cases your code should respect the identifiers
1369reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1370@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1371included as needed to declare memory allocators and related types.
1372@code{<libintl.h>} is included if message translation is in use
1373(@pxref{Internationalization}). Other system headers may be included
1374if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1375,Tracing Your Parser}).
7093d0f5 1376
342b8b6e 1377@node Stages
bfa74976
RS
1378@section Stages in Using Bison
1379@cindex stages in using Bison
1380@cindex using Bison
1381
1382The actual language-design process using Bison, from grammar specification
1383to a working compiler or interpreter, has these parts:
1384
1385@enumerate
1386@item
1387Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1388(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1389in the language, describe the action that is to be taken when an
1390instance of that rule is recognized. The action is described by a
1391sequence of C statements.
bfa74976
RS
1392
1393@item
704a47c4
AD
1394Write a lexical analyzer to process input and pass tokens to the parser.
1395The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1396Lexical Analyzer Function @code{yylex}}). It could also be produced
1397using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1398
1399@item
1400Write a controlling function that calls the Bison-produced parser.
1401
1402@item
1403Write error-reporting routines.
1404@end enumerate
1405
1406To turn this source code as written into a runnable program, you
1407must follow these steps:
1408
1409@enumerate
1410@item
1411Run Bison on the grammar to produce the parser.
1412
1413@item
1414Compile the code output by Bison, as well as any other source files.
1415
1416@item
1417Link the object files to produce the finished product.
1418@end enumerate
1419
342b8b6e 1420@node Grammar Layout
bfa74976
RS
1421@section The Overall Layout of a Bison Grammar
1422@cindex grammar file
1423@cindex file format
1424@cindex format of grammar file
1425@cindex layout of Bison grammar
1426
1427The input file for the Bison utility is a @dfn{Bison grammar file}. The
1428general form of a Bison grammar file is as follows:
1429
1430@example
1431%@{
08e49d20 1432@var{Prologue}
bfa74976
RS
1433%@}
1434
1435@var{Bison declarations}
1436
1437%%
1438@var{Grammar rules}
1439%%
08e49d20 1440@var{Epilogue}
bfa74976
RS
1441@end example
1442
1443@noindent
1444The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1445in every Bison grammar file to separate the sections.
1446
72d2299c 1447The prologue may define types and variables used in the actions. You can
342b8b6e 1448also use preprocessor commands to define macros used there, and use
bfa74976 1449@code{#include} to include header files that do any of these things.
38a92d50
PE
1450You need to declare the lexical analyzer @code{yylex} and the error
1451printer @code{yyerror} here, along with any other global identifiers
1452used by the actions in the grammar rules.
bfa74976
RS
1453
1454The Bison declarations declare the names of the terminal and nonterminal
1455symbols, and may also describe operator precedence and the data types of
1456semantic values of various symbols.
1457
1458The grammar rules define how to construct each nonterminal symbol from its
1459parts.
1460
38a92d50
PE
1461The epilogue can contain any code you want to use. Often the
1462definitions of functions declared in the prologue go here. In a
1463simple program, all the rest of the program can go here.
bfa74976 1464
342b8b6e 1465@node Examples
bfa74976
RS
1466@chapter Examples
1467@cindex simple examples
1468@cindex examples, simple
1469
aaaa2aae 1470Now we show and explain several sample programs written using Bison: a
bfa74976 1471reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1472calculator --- later extended to track ``locations'' ---
1473and a multi-function calculator. All
1474produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1475
1476These examples are simple, but Bison grammars for real programming
aa08666d
AD
1477languages are written the same way. You can copy these examples into a
1478source file to try them.
bfa74976
RS
1479
1480@menu
f5f419de
DJ
1481* RPN Calc:: Reverse polish notation calculator;
1482 a first example with no operator precedence.
1483* Infix Calc:: Infix (algebraic) notation calculator.
1484 Operator precedence is introduced.
bfa74976 1485* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1486* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1487* Multi-function Calc:: Calculator with memory and trig functions.
1488 It uses multiple data-types for semantic values.
1489* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1490@end menu
1491
342b8b6e 1492@node RPN Calc
bfa74976
RS
1493@section Reverse Polish Notation Calculator
1494@cindex reverse polish notation
1495@cindex polish notation calculator
1496@cindex @code{rpcalc}
1497@cindex calculator, simple
1498
1499The first example is that of a simple double-precision @dfn{reverse polish
1500notation} calculator (a calculator using postfix operators). This example
1501provides a good starting point, since operator precedence is not an issue.
1502The second example will illustrate how operator precedence is handled.
1503
1504The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1505@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1506
1507@menu
f5f419de
DJ
1508* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1509* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1510* Rpcalc Lexer:: The lexical analyzer.
1511* Rpcalc Main:: The controlling function.
1512* Rpcalc Error:: The error reporting function.
1513* Rpcalc Generate:: Running Bison on the grammar file.
1514* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1515@end menu
1516
f5f419de 1517@node Rpcalc Declarations
bfa74976
RS
1518@subsection Declarations for @code{rpcalc}
1519
1520Here are the C and Bison declarations for the reverse polish notation
1521calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1522
24ec0837 1523@comment file: rpcalc.y
bfa74976 1524@example
72d2299c 1525/* Reverse polish notation calculator. */
bfa74976
RS
1526
1527%@{
38a92d50 1528 #define YYSTYPE double
24ec0837 1529 #include <stdio.h>
38a92d50
PE
1530 #include <math.h>
1531 int yylex (void);
1532 void yyerror (char const *);
bfa74976
RS
1533%@}
1534
1535%token NUM
1536
72d2299c 1537%% /* Grammar rules and actions follow. */
bfa74976
RS
1538@end example
1539
75f5aaea 1540The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1541preprocessor directives and two forward declarations.
bfa74976
RS
1542
1543The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1544specifying the C data type for semantic values of both tokens and
1545groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1546Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1547don't define it, @code{int} is the default. Because we specify
1548@code{double}, each token and each expression has an associated value,
1549which is a floating point number.
bfa74976
RS
1550
1551The @code{#include} directive is used to declare the exponentiation
1552function @code{pow}.
1553
38a92d50
PE
1554The forward declarations for @code{yylex} and @code{yyerror} are
1555needed because the C language requires that functions be declared
1556before they are used. These functions will be defined in the
1557epilogue, but the parser calls them so they must be declared in the
1558prologue.
1559
704a47c4
AD
1560The second section, Bison declarations, provides information to Bison
1561about the token types (@pxref{Bison Declarations, ,The Bison
1562Declarations Section}). Each terminal symbol that is not a
1563single-character literal must be declared here. (Single-character
bfa74976
RS
1564literals normally don't need to be declared.) In this example, all the
1565arithmetic operators are designated by single-character literals, so the
1566only terminal symbol that needs to be declared is @code{NUM}, the token
1567type for numeric constants.
1568
342b8b6e 1569@node Rpcalc Rules
bfa74976
RS
1570@subsection Grammar Rules for @code{rpcalc}
1571
1572Here are the grammar rules for the reverse polish notation calculator.
1573
24ec0837 1574@comment file: rpcalc.y
bfa74976 1575@example
aaaa2aae 1576@group
5e9b6624
AD
1577input:
1578 /* empty */
1579| input line
bfa74976 1580;
aaaa2aae 1581@end group
bfa74976 1582
aaaa2aae 1583@group
5e9b6624
AD
1584line:
1585 '\n'
1586| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1587;
aaaa2aae 1588@end group
bfa74976 1589
aaaa2aae 1590@group
5e9b6624
AD
1591exp:
1592 NUM @{ $$ = $1; @}
1593| exp exp '+' @{ $$ = $1 + $2; @}
1594| exp exp '-' @{ $$ = $1 - $2; @}
1595| exp exp '*' @{ $$ = $1 * $2; @}
1596| exp exp '/' @{ $$ = $1 / $2; @}
1597| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1598| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1599;
aaaa2aae 1600@end group
bfa74976
RS
1601%%
1602@end example
1603
1604The groupings of the rpcalc ``language'' defined here are the expression
1605(given the name @code{exp}), the line of input (@code{line}), and the
1606complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1607symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1608which is read as ``or''. The following sections explain what these rules
1609mean.
1610
1611The semantics of the language is determined by the actions taken when a
1612grouping is recognized. The actions are the C code that appears inside
1613braces. @xref{Actions}.
1614
1615You must specify these actions in C, but Bison provides the means for
1616passing semantic values between the rules. In each action, the
1617pseudo-variable @code{$$} stands for the semantic value for the grouping
1618that the rule is going to construct. Assigning a value to @code{$$} is the
1619main job of most actions. The semantic values of the components of the
1620rule are referred to as @code{$1}, @code{$2}, and so on.
1621
1622@menu
24ec0837
AD
1623* Rpcalc Input:: Explanation of the @code{input} nonterminal
1624* Rpcalc Line:: Explanation of the @code{line} nonterminal
1625* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1626@end menu
1627
342b8b6e 1628@node Rpcalc Input
bfa74976
RS
1629@subsubsection Explanation of @code{input}
1630
1631Consider the definition of @code{input}:
1632
1633@example
5e9b6624
AD
1634input:
1635 /* empty */
1636| input line
bfa74976
RS
1637;
1638@end example
1639
1640This definition reads as follows: ``A complete input is either an empty
1641string, or a complete input followed by an input line''. Notice that
1642``complete input'' is defined in terms of itself. This definition is said
1643to be @dfn{left recursive} since @code{input} appears always as the
1644leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1645
1646The first alternative is empty because there are no symbols between the
1647colon and the first @samp{|}; this means that @code{input} can match an
1648empty string of input (no tokens). We write the rules this way because it
1649is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1650It's conventional to put an empty alternative first and write the comment
1651@samp{/* empty */} in it.
1652
1653The second alternate rule (@code{input line}) handles all nontrivial input.
1654It means, ``After reading any number of lines, read one more line if
1655possible.'' The left recursion makes this rule into a loop. Since the
1656first alternative matches empty input, the loop can be executed zero or
1657more times.
1658
1659The parser function @code{yyparse} continues to process input until a
1660grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1661input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1662
342b8b6e 1663@node Rpcalc Line
bfa74976
RS
1664@subsubsection Explanation of @code{line}
1665
1666Now consider the definition of @code{line}:
1667
1668@example
5e9b6624
AD
1669line:
1670 '\n'
1671| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1672;
1673@end example
1674
1675The first alternative is a token which is a newline character; this means
1676that rpcalc accepts a blank line (and ignores it, since there is no
1677action). The second alternative is an expression followed by a newline.
1678This is the alternative that makes rpcalc useful. The semantic value of
1679the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1680question is the first symbol in the alternative. The action prints this
1681value, which is the result of the computation the user asked for.
1682
1683This action is unusual because it does not assign a value to @code{$$}. As
1684a consequence, the semantic value associated with the @code{line} is
1685uninitialized (its value will be unpredictable). This would be a bug if
1686that value were ever used, but we don't use it: once rpcalc has printed the
1687value of the user's input line, that value is no longer needed.
1688
342b8b6e 1689@node Rpcalc Expr
bfa74976
RS
1690@subsubsection Explanation of @code{expr}
1691
1692The @code{exp} grouping has several rules, one for each kind of expression.
1693The first rule handles the simplest expressions: those that are just numbers.
1694The second handles an addition-expression, which looks like two expressions
1695followed by a plus-sign. The third handles subtraction, and so on.
1696
1697@example
5e9b6624
AD
1698exp:
1699 NUM
1700| exp exp '+' @{ $$ = $1 + $2; @}
1701| exp exp '-' @{ $$ = $1 - $2; @}
1702@dots{}
1703;
bfa74976
RS
1704@end example
1705
1706We have used @samp{|} to join all the rules for @code{exp}, but we could
1707equally well have written them separately:
1708
1709@example
5e9b6624
AD
1710exp: NUM ;
1711exp: exp exp '+' @{ $$ = $1 + $2; @};
1712exp: exp exp '-' @{ $$ = $1 - $2; @};
1713@dots{}
bfa74976
RS
1714@end example
1715
1716Most of the rules have actions that compute the value of the expression in
1717terms of the value of its parts. For example, in the rule for addition,
1718@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1719the second one. The third component, @code{'+'}, has no meaningful
1720associated semantic value, but if it had one you could refer to it as
1721@code{$3}. When @code{yyparse} recognizes a sum expression using this
1722rule, the sum of the two subexpressions' values is produced as the value of
1723the entire expression. @xref{Actions}.
1724
1725You don't have to give an action for every rule. When a rule has no
1726action, Bison by default copies the value of @code{$1} into @code{$$}.
1727This is what happens in the first rule (the one that uses @code{NUM}).
1728
1729The formatting shown here is the recommended convention, but Bison does
72d2299c 1730not require it. You can add or change white space as much as you wish.
bfa74976
RS
1731For example, this:
1732
1733@example
5e9b6624 1734exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1735@end example
1736
1737@noindent
1738means the same thing as this:
1739
1740@example
5e9b6624
AD
1741exp:
1742 NUM
1743| exp exp '+' @{ $$ = $1 + $2; @}
1744| @dots{}
99a9344e 1745;
bfa74976
RS
1746@end example
1747
1748@noindent
1749The latter, however, is much more readable.
1750
342b8b6e 1751@node Rpcalc Lexer
bfa74976
RS
1752@subsection The @code{rpcalc} Lexical Analyzer
1753@cindex writing a lexical analyzer
1754@cindex lexical analyzer, writing
1755
704a47c4
AD
1756The lexical analyzer's job is low-level parsing: converting characters
1757or sequences of characters into tokens. The Bison parser gets its
1758tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1759Analyzer Function @code{yylex}}.
bfa74976 1760
8a4281b9 1761Only a simple lexical analyzer is needed for the RPN
c827f760 1762calculator. This
bfa74976
RS
1763lexical analyzer skips blanks and tabs, then reads in numbers as
1764@code{double} and returns them as @code{NUM} tokens. Any other character
1765that isn't part of a number is a separate token. Note that the token-code
1766for such a single-character token is the character itself.
1767
1768The return value of the lexical analyzer function is a numeric code which
1769represents a token type. The same text used in Bison rules to stand for
1770this token type is also a C expression for the numeric code for the type.
1771This works in two ways. If the token type is a character literal, then its
e966383b 1772numeric code is that of the character; you can use the same
bfa74976
RS
1773character literal in the lexical analyzer to express the number. If the
1774token type is an identifier, that identifier is defined by Bison as a C
1775macro whose definition is the appropriate number. In this example,
1776therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1777
1964ad8c
AD
1778The semantic value of the token (if it has one) is stored into the
1779global variable @code{yylval}, which is where the Bison parser will look
1780for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1781defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1782,Declarations for @code{rpcalc}}.)
bfa74976 1783
72d2299c
PE
1784A token type code of zero is returned if the end-of-input is encountered.
1785(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1786
1787Here is the code for the lexical analyzer:
1788
24ec0837 1789@comment file: rpcalc.y
bfa74976
RS
1790@example
1791@group
72d2299c 1792/* The lexical analyzer returns a double floating point
e966383b 1793 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1794 of the character read if not a number. It skips all blanks
1795 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1796
1797#include <ctype.h>
1798@end group
1799
1800@group
13863333
AD
1801int
1802yylex (void)
bfa74976
RS
1803@{
1804 int c;
1805
72d2299c 1806 /* Skip white space. */
13863333 1807 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1808 continue;
bfa74976
RS
1809@end group
1810@group
72d2299c 1811 /* Process numbers. */
13863333 1812 if (c == '.' || isdigit (c))
bfa74976
RS
1813 @{
1814 ungetc (c, stdin);
1815 scanf ("%lf", &yylval);
1816 return NUM;
1817 @}
1818@end group
1819@group
72d2299c 1820 /* Return end-of-input. */
13863333 1821 if (c == EOF)
bfa74976 1822 return 0;
72d2299c 1823 /* Return a single char. */
13863333 1824 return c;
bfa74976
RS
1825@}
1826@end group
1827@end example
1828
342b8b6e 1829@node Rpcalc Main
bfa74976
RS
1830@subsection The Controlling Function
1831@cindex controlling function
1832@cindex main function in simple example
1833
1834In keeping with the spirit of this example, the controlling function is
1835kept to the bare minimum. The only requirement is that it call
1836@code{yyparse} to start the process of parsing.
1837
24ec0837 1838@comment file: rpcalc.y
bfa74976
RS
1839@example
1840@group
13863333
AD
1841int
1842main (void)
bfa74976 1843@{
13863333 1844 return yyparse ();
bfa74976
RS
1845@}
1846@end group
1847@end example
1848
342b8b6e 1849@node Rpcalc Error
bfa74976
RS
1850@subsection The Error Reporting Routine
1851@cindex error reporting routine
1852
1853When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1854function @code{yyerror} to print an error message (usually but not
6e649e65 1855always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1856@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1857here is the definition we will use:
bfa74976 1858
24ec0837 1859@comment file: rpcalc.y
bfa74976
RS
1860@example
1861@group
1862#include <stdio.h>
aaaa2aae 1863@end group
bfa74976 1864
aaaa2aae 1865@group
38a92d50 1866/* Called by yyparse on error. */
13863333 1867void
38a92d50 1868yyerror (char const *s)
bfa74976 1869@{
4e03e201 1870 fprintf (stderr, "%s\n", s);
bfa74976
RS
1871@}
1872@end group
1873@end example
1874
1875After @code{yyerror} returns, the Bison parser may recover from the error
1876and continue parsing if the grammar contains a suitable error rule
1877(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1878have not written any error rules in this example, so any invalid input will
1879cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1880real calculator, but it is adequate for the first example.
bfa74976 1881
f5f419de 1882@node Rpcalc Generate
bfa74976
RS
1883@subsection Running Bison to Make the Parser
1884@cindex running Bison (introduction)
1885
ceed8467
AD
1886Before running Bison to produce a parser, we need to decide how to
1887arrange all the source code in one or more source files. For such a
ff7571c0
JD
1888simple example, the easiest thing is to put everything in one file,
1889the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1890@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1891(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1892
1893For a large project, you would probably have several source files, and use
1894@code{make} to arrange to recompile them.
1895
ff7571c0
JD
1896With all the source in the grammar file, you use the following command
1897to convert it into a parser implementation file:
bfa74976
RS
1898
1899@example
fa4d969f 1900bison @var{file}.y
bfa74976
RS
1901@end example
1902
1903@noindent
ff7571c0
JD
1904In this example, the grammar file is called @file{rpcalc.y} (for
1905``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1906implementation file named @file{@var{file}.tab.c}, removing the
1907@samp{.y} from the grammar file name. The parser implementation file
1908contains the source code for @code{yyparse}. The additional functions
1909in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1910copied verbatim to the parser implementation file.
bfa74976 1911
342b8b6e 1912@node Rpcalc Compile
ff7571c0 1913@subsection Compiling the Parser Implementation File
bfa74976
RS
1914@cindex compiling the parser
1915
ff7571c0 1916Here is how to compile and run the parser implementation file:
bfa74976
RS
1917
1918@example
1919@group
1920# @r{List files in current directory.}
9edcd895 1921$ @kbd{ls}
bfa74976
RS
1922rpcalc.tab.c rpcalc.y
1923@end group
1924
1925@group
1926# @r{Compile the Bison parser.}
1927# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1928$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1929@end group
1930
1931@group
1932# @r{List files again.}
9edcd895 1933$ @kbd{ls}
bfa74976
RS
1934rpcalc rpcalc.tab.c rpcalc.y
1935@end group
1936@end example
1937
1938The file @file{rpcalc} now contains the executable code. Here is an
1939example session using @code{rpcalc}.
1940
1941@example
9edcd895
AD
1942$ @kbd{rpcalc}
1943@kbd{4 9 +}
24ec0837 1944@result{} 13
9edcd895 1945@kbd{3 7 + 3 4 5 *+-}
24ec0837 1946@result{} -13
9edcd895 1947@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1948@result{} 13
9edcd895 1949@kbd{5 6 / 4 n +}
24ec0837 1950@result{} -3.166666667
9edcd895 1951@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1952@result{} 81
9edcd895
AD
1953@kbd{^D} @r{End-of-file indicator}
1954$
bfa74976
RS
1955@end example
1956
342b8b6e 1957@node Infix Calc
bfa74976
RS
1958@section Infix Notation Calculator: @code{calc}
1959@cindex infix notation calculator
1960@cindex @code{calc}
1961@cindex calculator, infix notation
1962
1963We now modify rpcalc to handle infix operators instead of postfix. Infix
1964notation involves the concept of operator precedence and the need for
1965parentheses nested to arbitrary depth. Here is the Bison code for
1966@file{calc.y}, an infix desk-top calculator.
1967
1968@example
38a92d50 1969/* Infix notation calculator. */
bfa74976 1970
aaaa2aae 1971@group
bfa74976 1972%@{
38a92d50
PE
1973 #define YYSTYPE double
1974 #include <math.h>
1975 #include <stdio.h>
1976 int yylex (void);
1977 void yyerror (char const *);
bfa74976 1978%@}
aaaa2aae 1979@end group
bfa74976 1980
aaaa2aae 1981@group
38a92d50 1982/* Bison declarations. */
bfa74976
RS
1983%token NUM
1984%left '-' '+'
1985%left '*' '/'
d78f0ac9
AD
1986%precedence NEG /* negation--unary minus */
1987%right '^' /* exponentiation */
aaaa2aae 1988@end group
bfa74976 1989
38a92d50 1990%% /* The grammar follows. */
aaaa2aae 1991@group
5e9b6624
AD
1992input:
1993 /* empty */
1994| input line
bfa74976 1995;
aaaa2aae 1996@end group
bfa74976 1997
aaaa2aae 1998@group
5e9b6624
AD
1999line:
2000 '\n'
2001| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2002;
aaaa2aae 2003@end group
bfa74976 2004
aaaa2aae 2005@group
5e9b6624
AD
2006exp:
2007 NUM @{ $$ = $1; @}
2008| exp '+' exp @{ $$ = $1 + $3; @}
2009| exp '-' exp @{ $$ = $1 - $3; @}
2010| exp '*' exp @{ $$ = $1 * $3; @}
2011| exp '/' exp @{ $$ = $1 / $3; @}
2012| '-' exp %prec NEG @{ $$ = -$2; @}
2013| exp '^' exp @{ $$ = pow ($1, $3); @}
2014| '(' exp ')' @{ $$ = $2; @}
bfa74976 2015;
aaaa2aae 2016@end group
bfa74976
RS
2017%%
2018@end example
2019
2020@noindent
ceed8467
AD
2021The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2022same as before.
bfa74976
RS
2023
2024There are two important new features shown in this code.
2025
2026In the second section (Bison declarations), @code{%left} declares token
2027types and says they are left-associative operators. The declarations
2028@code{%left} and @code{%right} (right associativity) take the place of
2029@code{%token} which is used to declare a token type name without
d78f0ac9 2030associativity/precedence. (These tokens are single-character literals, which
bfa74976 2031ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2032the associativity/precedence.)
bfa74976
RS
2033
2034Operator precedence is determined by the line ordering of the
2035declarations; the higher the line number of the declaration (lower on
2036the page or screen), the higher the precedence. Hence, exponentiation
2037has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2038by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2039only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2040Precedence}.
bfa74976 2041
704a47c4
AD
2042The other important new feature is the @code{%prec} in the grammar
2043section for the unary minus operator. The @code{%prec} simply instructs
2044Bison that the rule @samp{| '-' exp} has the same precedence as
2045@code{NEG}---in this case the next-to-highest. @xref{Contextual
2046Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2047
2048Here is a sample run of @file{calc.y}:
2049
2050@need 500
2051@example
9edcd895
AD
2052$ @kbd{calc}
2053@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20546.880952381
9edcd895 2055@kbd{-56 + 2}
bfa74976 2056-54
9edcd895 2057@kbd{3 ^ 2}
bfa74976
RS
20589
2059@end example
2060
342b8b6e 2061@node Simple Error Recovery
bfa74976
RS
2062@section Simple Error Recovery
2063@cindex error recovery, simple
2064
2065Up to this point, this manual has not addressed the issue of @dfn{error
2066recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2067error. All we have handled is error reporting with @code{yyerror}.
2068Recall that by default @code{yyparse} returns after calling
2069@code{yyerror}. This means that an erroneous input line causes the
2070calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2071
2072The Bison language itself includes the reserved word @code{error}, which
2073may be included in the grammar rules. In the example below it has
2074been added to one of the alternatives for @code{line}:
2075
2076@example
2077@group
5e9b6624
AD
2078line:
2079 '\n'
2080| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2081| error '\n' @{ yyerrok; @}
bfa74976
RS
2082;
2083@end group
2084@end example
2085
ceed8467 2086This addition to the grammar allows for simple error recovery in the
6e649e65 2087event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2088read, the error will be recognized by the third rule for @code{line},
2089and parsing will continue. (The @code{yyerror} function is still called
2090upon to print its message as well.) The action executes the statement
2091@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2092that error recovery is complete (@pxref{Error Recovery}). Note the
2093difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2094misprint.
bfa74976
RS
2095
2096This form of error recovery deals with syntax errors. There are other
2097kinds of errors; for example, division by zero, which raises an exception
2098signal that is normally fatal. A real calculator program must handle this
2099signal and use @code{longjmp} to return to @code{main} and resume parsing
2100input lines; it would also have to discard the rest of the current line of
2101input. We won't discuss this issue further because it is not specific to
2102Bison programs.
2103
342b8b6e
AD
2104@node Location Tracking Calc
2105@section Location Tracking Calculator: @code{ltcalc}
2106@cindex location tracking calculator
2107@cindex @code{ltcalc}
2108@cindex calculator, location tracking
2109
9edcd895
AD
2110This example extends the infix notation calculator with location
2111tracking. This feature will be used to improve the error messages. For
2112the sake of clarity, this example is a simple integer calculator, since
2113most of the work needed to use locations will be done in the lexical
72d2299c 2114analyzer.
342b8b6e
AD
2115
2116@menu
f5f419de
DJ
2117* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2118* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2119* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2120@end menu
2121
f5f419de 2122@node Ltcalc Declarations
342b8b6e
AD
2123@subsection Declarations for @code{ltcalc}
2124
9edcd895
AD
2125The C and Bison declarations for the location tracking calculator are
2126the same as the declarations for the infix notation calculator.
342b8b6e
AD
2127
2128@example
2129/* Location tracking calculator. */
2130
2131%@{
38a92d50
PE
2132 #define YYSTYPE int
2133 #include <math.h>
2134 int yylex (void);
2135 void yyerror (char const *);
342b8b6e
AD
2136%@}
2137
2138/* Bison declarations. */
2139%token NUM
2140
2141%left '-' '+'
2142%left '*' '/'
d78f0ac9 2143%precedence NEG
342b8b6e
AD
2144%right '^'
2145
38a92d50 2146%% /* The grammar follows. */
342b8b6e
AD
2147@end example
2148
9edcd895
AD
2149@noindent
2150Note there are no declarations specific to locations. Defining a data
2151type for storing locations is not needed: we will use the type provided
2152by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2153four member structure with the following integer fields:
2154@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2155@code{last_column}. By conventions, and in accordance with the GNU
2156Coding Standards and common practice, the line and column count both
2157start at 1.
342b8b6e
AD
2158
2159@node Ltcalc Rules
2160@subsection Grammar Rules for @code{ltcalc}
2161
9edcd895
AD
2162Whether handling locations or not has no effect on the syntax of your
2163language. Therefore, grammar rules for this example will be very close
2164to those of the previous example: we will only modify them to benefit
2165from the new information.
342b8b6e 2166
9edcd895
AD
2167Here, we will use locations to report divisions by zero, and locate the
2168wrong expressions or subexpressions.
342b8b6e
AD
2169
2170@example
2171@group
5e9b6624
AD
2172input:
2173 /* empty */
2174| input line
342b8b6e
AD
2175;
2176@end group
2177
2178@group
5e9b6624
AD
2179line:
2180 '\n'
2181| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2182;
2183@end group
2184
2185@group
5e9b6624
AD
2186exp:
2187 NUM @{ $$ = $1; @}
2188| exp '+' exp @{ $$ = $1 + $3; @}
2189| exp '-' exp @{ $$ = $1 - $3; @}
2190| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2191@end group
342b8b6e 2192@group
5e9b6624
AD
2193| exp '/' exp
2194 @{
2195 if ($3)
2196 $$ = $1 / $3;
2197 else
2198 @{
2199 $$ = 1;
2200 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2201 @@3.first_line, @@3.first_column,
2202 @@3.last_line, @@3.last_column);
2203 @}
2204 @}
342b8b6e
AD
2205@end group
2206@group
5e9b6624
AD
2207| '-' exp %prec NEG @{ $$ = -$2; @}
2208| exp '^' exp @{ $$ = pow ($1, $3); @}
2209| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2210@end group
2211@end example
2212
2213This code shows how to reach locations inside of semantic actions, by
2214using the pseudo-variables @code{@@@var{n}} for rule components, and the
2215pseudo-variable @code{@@$} for groupings.
2216
9edcd895
AD
2217We don't need to assign a value to @code{@@$}: the output parser does it
2218automatically. By default, before executing the C code of each action,
2219@code{@@$} is set to range from the beginning of @code{@@1} to the end
2220of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2221can be redefined (@pxref{Location Default Action, , Default Action for
2222Locations}), and for very specific rules, @code{@@$} can be computed by
2223hand.
342b8b6e
AD
2224
2225@node Ltcalc Lexer
2226@subsection The @code{ltcalc} Lexical Analyzer.
2227
9edcd895 2228Until now, we relied on Bison's defaults to enable location
72d2299c 2229tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2230able to feed the parser with the token locations, as it already does for
2231semantic values.
342b8b6e 2232
9edcd895
AD
2233To this end, we must take into account every single character of the
2234input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2235
2236@example
2237@group
2238int
2239yylex (void)
2240@{
2241 int c;
18b519c0 2242@end group
342b8b6e 2243
18b519c0 2244@group
72d2299c 2245 /* Skip white space. */
342b8b6e
AD
2246 while ((c = getchar ()) == ' ' || c == '\t')
2247 ++yylloc.last_column;
18b519c0 2248@end group
342b8b6e 2249
18b519c0 2250@group
72d2299c 2251 /* Step. */
342b8b6e
AD
2252 yylloc.first_line = yylloc.last_line;
2253 yylloc.first_column = yylloc.last_column;
2254@end group
2255
2256@group
72d2299c 2257 /* Process numbers. */
342b8b6e
AD
2258 if (isdigit (c))
2259 @{
2260 yylval = c - '0';
2261 ++yylloc.last_column;
2262 while (isdigit (c = getchar ()))
2263 @{
2264 ++yylloc.last_column;
2265 yylval = yylval * 10 + c - '0';
2266 @}
2267 ungetc (c, stdin);
2268 return NUM;
2269 @}
2270@end group
2271
72d2299c 2272 /* Return end-of-input. */
342b8b6e
AD
2273 if (c == EOF)
2274 return 0;
2275
d4fca427 2276@group
72d2299c 2277 /* Return a single char, and update location. */
342b8b6e
AD
2278 if (c == '\n')
2279 @{
2280 ++yylloc.last_line;
2281 yylloc.last_column = 0;
2282 @}
2283 else
2284 ++yylloc.last_column;
2285 return c;
2286@}
d4fca427 2287@end group
342b8b6e
AD
2288@end example
2289
9edcd895
AD
2290Basically, the lexical analyzer performs the same processing as before:
2291it skips blanks and tabs, and reads numbers or single-character tokens.
2292In addition, it updates @code{yylloc}, the global variable (of type
2293@code{YYLTYPE}) containing the token's location.
342b8b6e 2294
9edcd895 2295Now, each time this function returns a token, the parser has its number
72d2299c 2296as well as its semantic value, and its location in the text. The last
9edcd895
AD
2297needed change is to initialize @code{yylloc}, for example in the
2298controlling function:
342b8b6e
AD
2299
2300@example
9edcd895 2301@group
342b8b6e
AD
2302int
2303main (void)
2304@{
2305 yylloc.first_line = yylloc.last_line = 1;
2306 yylloc.first_column = yylloc.last_column = 0;
2307 return yyparse ();
2308@}
9edcd895 2309@end group
342b8b6e
AD
2310@end example
2311
9edcd895
AD
2312Remember that computing locations is not a matter of syntax. Every
2313character must be associated to a location update, whether it is in
2314valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2315
2316@node Multi-function Calc
bfa74976
RS
2317@section Multi-Function Calculator: @code{mfcalc}
2318@cindex multi-function calculator
2319@cindex @code{mfcalc}
2320@cindex calculator, multi-function
2321
2322Now that the basics of Bison have been discussed, it is time to move on to
2323a more advanced problem. The above calculators provided only five
2324functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2325be nice to have a calculator that provides other mathematical functions such
2326as @code{sin}, @code{cos}, etc.
2327
2328It is easy to add new operators to the infix calculator as long as they are
2329only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2330back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2331adding a new operator. But we want something more flexible: built-in
2332functions whose syntax has this form:
2333
2334@example
2335@var{function_name} (@var{argument})
2336@end example
2337
2338@noindent
2339At the same time, we will add memory to the calculator, by allowing you
2340to create named variables, store values in them, and use them later.
2341Here is a sample session with the multi-function calculator:
2342
2343@example
d4fca427 2344@group
9edcd895
AD
2345$ @kbd{mfcalc}
2346@kbd{pi = 3.141592653589}
f9c75dd0 2347@result{} 3.1415926536
d4fca427
AD
2348@end group
2349@group
9edcd895 2350@kbd{sin(pi)}
f9c75dd0 2351@result{} 0.0000000000
d4fca427 2352@end group
9edcd895 2353@kbd{alpha = beta1 = 2.3}
f9c75dd0 2354@result{} 2.3000000000
9edcd895 2355@kbd{alpha}
f9c75dd0 2356@result{} 2.3000000000
9edcd895 2357@kbd{ln(alpha)}
f9c75dd0 2358@result{} 0.8329091229
9edcd895 2359@kbd{exp(ln(beta1))}
f9c75dd0 2360@result{} 2.3000000000
9edcd895 2361$
bfa74976
RS
2362@end example
2363
2364Note that multiple assignment and nested function calls are permitted.
2365
2366@menu
f5f419de
DJ
2367* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2368* Mfcalc Rules:: Grammar rules for the calculator.
2369* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2370* Mfcalc Lexer:: The lexical analyzer.
2371* Mfcalc Main:: The controlling function.
bfa74976
RS
2372@end menu
2373
f5f419de 2374@node Mfcalc Declarations
bfa74976
RS
2375@subsection Declarations for @code{mfcalc}
2376
2377Here are the C and Bison declarations for the multi-function calculator.
2378
f9c75dd0 2379@comment file: mfcalc.y
c93f22fc 2380@example
18b519c0 2381@group
bfa74976 2382%@{
f9c75dd0 2383 #include <stdio.h> /* For printf, etc. */
578e3413 2384 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2385 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2386 int yylex (void);
2387 void yyerror (char const *);
bfa74976 2388%@}
18b519c0
AD
2389@end group
2390@group
bfa74976 2391%union @{
38a92d50
PE
2392 double val; /* For returning numbers. */
2393 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2394@}
18b519c0 2395@end group
38a92d50
PE
2396%token <val> NUM /* Simple double precision number. */
2397%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2398%type <val> exp
2399
18b519c0 2400@group
bfa74976
RS
2401%right '='
2402%left '-' '+'
2403%left '*' '/'
d78f0ac9
AD
2404%precedence NEG /* negation--unary minus */
2405%right '^' /* exponentiation */
18b519c0 2406@end group
38a92d50 2407%% /* The grammar follows. */
c93f22fc 2408@end example
bfa74976
RS
2409
2410The above grammar introduces only two new features of the Bison language.
2411These features allow semantic values to have various data types
2412(@pxref{Multiple Types, ,More Than One Value Type}).
2413
2414The @code{%union} declaration specifies the entire list of possible types;
2415this is instead of defining @code{YYSTYPE}. The allowable types are now
2416double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2417the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2418
2419Since values can now have various types, it is necessary to associate a
2420type with each grammar symbol whose semantic value is used. These symbols
2421are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2422declarations are augmented with information about their data type (placed
2423between angle brackets).
2424
704a47c4
AD
2425The Bison construct @code{%type} is used for declaring nonterminal
2426symbols, just as @code{%token} is used for declaring token types. We
2427have not used @code{%type} before because nonterminal symbols are
2428normally declared implicitly by the rules that define them. But
2429@code{exp} must be declared explicitly so we can specify its value type.
2430@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2431
342b8b6e 2432@node Mfcalc Rules
bfa74976
RS
2433@subsection Grammar Rules for @code{mfcalc}
2434
2435Here are the grammar rules for the multi-function calculator.
2436Most of them are copied directly from @code{calc}; three rules,
2437those which mention @code{VAR} or @code{FNCT}, are new.
2438
f9c75dd0 2439@comment file: mfcalc.y
c93f22fc 2440@example
18b519c0 2441@group
5e9b6624
AD
2442input:
2443 /* empty */
2444| input line
bfa74976 2445;
18b519c0 2446@end group
bfa74976 2447
18b519c0 2448@group
bfa74976 2449line:
5e9b6624
AD
2450 '\n'
2451| exp '\n' @{ printf ("%.10g\n", $1); @}
2452| error '\n' @{ yyerrok; @}
bfa74976 2453;
18b519c0 2454@end group
bfa74976 2455
18b519c0 2456@group
5e9b6624
AD
2457exp:
2458 NUM @{ $$ = $1; @}
2459| VAR @{ $$ = $1->value.var; @}
2460| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2461| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2462| exp '+' exp @{ $$ = $1 + $3; @}
2463| exp '-' exp @{ $$ = $1 - $3; @}
2464| exp '*' exp @{ $$ = $1 * $3; @}
2465| exp '/' exp @{ $$ = $1 / $3; @}
2466| '-' exp %prec NEG @{ $$ = -$2; @}
2467| exp '^' exp @{ $$ = pow ($1, $3); @}
2468| '(' exp ')' @{ $$ = $2; @}
bfa74976 2469;
18b519c0 2470@end group
38a92d50 2471/* End of grammar. */
bfa74976 2472%%
c93f22fc 2473@end example
bfa74976 2474
f5f419de 2475@node Mfcalc Symbol Table
bfa74976
RS
2476@subsection The @code{mfcalc} Symbol Table
2477@cindex symbol table example
2478
2479The multi-function calculator requires a symbol table to keep track of the
2480names and meanings of variables and functions. This doesn't affect the
2481grammar rules (except for the actions) or the Bison declarations, but it
2482requires some additional C functions for support.
2483
2484The symbol table itself consists of a linked list of records. Its
2485definition, which is kept in the header @file{calc.h}, is as follows. It
2486provides for either functions or variables to be placed in the table.
2487
f9c75dd0 2488@comment file: calc.h
c93f22fc 2489@example
bfa74976 2490@group
38a92d50 2491/* Function type. */
32dfccf8 2492typedef double (*func_t) (double);
72f889cc 2493@end group
32dfccf8 2494
72f889cc 2495@group
38a92d50 2496/* Data type for links in the chain of symbols. */
bfa74976
RS
2497struct symrec
2498@{
38a92d50 2499 char *name; /* name of symbol */
bfa74976 2500 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2501 union
2502 @{
38a92d50
PE
2503 double var; /* value of a VAR */
2504 func_t fnctptr; /* value of a FNCT */
bfa74976 2505 @} value;
38a92d50 2506 struct symrec *next; /* link field */
bfa74976
RS
2507@};
2508@end group
2509
2510@group
2511typedef struct symrec symrec;
2512
38a92d50 2513/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2514extern symrec *sym_table;
2515
a730d142 2516symrec *putsym (char const *, int);
38a92d50 2517symrec *getsym (char const *);
bfa74976 2518@end group
c93f22fc 2519@end example
bfa74976 2520
aeb57fb6
AD
2521The new version of @code{main} will call @code{init_table} to initialize
2522the symbol table:
bfa74976 2523
f9c75dd0 2524@comment file: mfcalc.y
c93f22fc 2525@example
18b519c0 2526@group
bfa74976
RS
2527struct init
2528@{
38a92d50
PE
2529 char const *fname;
2530 double (*fnct) (double);
bfa74976
RS
2531@};
2532@end group
2533
2534@group
38a92d50 2535struct init const arith_fncts[] =
13863333 2536@{
f9c75dd0
AD
2537 @{ "atan", atan @},
2538 @{ "cos", cos @},
2539 @{ "exp", exp @},
2540 @{ "ln", log @},
2541 @{ "sin", sin @},
2542 @{ "sqrt", sqrt @},
2543 @{ 0, 0 @},
13863333 2544@};
18b519c0 2545@end group
bfa74976 2546
18b519c0 2547@group
bfa74976 2548/* The symbol table: a chain of `struct symrec'. */
38a92d50 2549symrec *sym_table;
bfa74976
RS
2550@end group
2551
2552@group
72d2299c 2553/* Put arithmetic functions in table. */
f9c75dd0 2554static
13863333
AD
2555void
2556init_table (void)
bfa74976
RS
2557@{
2558 int i;
bfa74976
RS
2559 for (i = 0; arith_fncts[i].fname != 0; i++)
2560 @{
aaaa2aae 2561 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2562 ptr->value.fnctptr = arith_fncts[i].fnct;
2563 @}
2564@}
2565@end group
c93f22fc 2566@end example
bfa74976
RS
2567
2568By simply editing the initialization list and adding the necessary include
2569files, you can add additional functions to the calculator.
2570
2571Two important functions allow look-up and installation of symbols in the
2572symbol table. The function @code{putsym} is passed a name and the type
2573(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2574linked to the front of the list, and a pointer to the object is returned.
2575The function @code{getsym} is passed the name of the symbol to look up. If
2576found, a pointer to that symbol is returned; otherwise zero is returned.
2577
f9c75dd0 2578@comment file: mfcalc.y
c93f22fc 2579@example
f9c75dd0
AD
2580#include <stdlib.h> /* malloc. */
2581#include <string.h> /* strlen. */
2582
d4fca427 2583@group
bfa74976 2584symrec *
38a92d50 2585putsym (char const *sym_name, int sym_type)
bfa74976 2586@{
aaaa2aae 2587 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2588 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2589 strcpy (ptr->name,sym_name);
2590 ptr->type = sym_type;
72d2299c 2591 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2592 ptr->next = (struct symrec *)sym_table;
2593 sym_table = ptr;
2594 return ptr;
2595@}
d4fca427 2596@end group
bfa74976 2597
d4fca427 2598@group
bfa74976 2599symrec *
38a92d50 2600getsym (char const *sym_name)
bfa74976
RS
2601@{
2602 symrec *ptr;
2603 for (ptr = sym_table; ptr != (symrec *) 0;
2604 ptr = (symrec *)ptr->next)
f518dbaf 2605 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2606 return ptr;
2607 return 0;
2608@}
d4fca427 2609@end group
c93f22fc 2610@end example
bfa74976 2611
aeb57fb6
AD
2612@node Mfcalc Lexer
2613@subsection The @code{mfcalc} Lexer
2614
bfa74976
RS
2615The function @code{yylex} must now recognize variables, numeric values, and
2616the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2617characters with a leading letter are recognized as either variables or
bfa74976
RS
2618functions depending on what the symbol table says about them.
2619
2620The string is passed to @code{getsym} for look up in the symbol table. If
2621the name appears in the table, a pointer to its location and its type
2622(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2623already in the table, then it is installed as a @code{VAR} using
2624@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2625returned to @code{yyparse}.
bfa74976
RS
2626
2627No change is needed in the handling of numeric values and arithmetic
2628operators in @code{yylex}.
2629
f9c75dd0 2630@comment file: mfcalc.y
c93f22fc 2631@example
bfa74976
RS
2632@group
2633#include <ctype.h>
18b519c0 2634@end group
13863333 2635
18b519c0 2636@group
13863333
AD
2637int
2638yylex (void)
bfa74976
RS
2639@{
2640 int c;
2641
72d2299c 2642 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2643 while ((c = getchar ()) == ' ' || c == '\t')
2644 continue;
bfa74976
RS
2645
2646 if (c == EOF)
2647 return 0;
2648@end group
2649
2650@group
2651 /* Char starts a number => parse the number. */
2652 if (c == '.' || isdigit (c))
2653 @{
2654 ungetc (c, stdin);
2655 scanf ("%lf", &yylval.val);
2656 return NUM;
2657 @}
2658@end group
2659
2660@group
2661 /* Char starts an identifier => read the name. */
2662 if (isalpha (c))
2663 @{
aaaa2aae
AD
2664 /* Initially make the buffer long enough
2665 for a 40-character symbol name. */
2666 static size_t length = 40;
bfa74976 2667 static char *symbuf = 0;
aaaa2aae 2668 symrec *s;
bfa74976
RS
2669 int i;
2670@end group
aaaa2aae
AD
2671 if (!symbuf)
2672 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2673
2674 i = 0;
2675 do
bfa74976
RS
2676@group
2677 @{
2678 /* If buffer is full, make it bigger. */
2679 if (i == length)
2680 @{
2681 length *= 2;
18b519c0 2682 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2683 @}
2684 /* Add this character to the buffer. */
2685 symbuf[i++] = c;
2686 /* Get another character. */
2687 c = getchar ();
2688 @}
2689@end group
2690@group
72d2299c 2691 while (isalnum (c));
bfa74976
RS
2692
2693 ungetc (c, stdin);
2694 symbuf[i] = '\0';
2695@end group
2696
2697@group
2698 s = getsym (symbuf);
2699 if (s == 0)
2700 s = putsym (symbuf, VAR);
2701 yylval.tptr = s;
2702 return s->type;
2703 @}
2704
2705 /* Any other character is a token by itself. */
2706 return c;
2707@}
2708@end group
c93f22fc 2709@end example
bfa74976 2710
aeb57fb6
AD
2711@node Mfcalc Main
2712@subsection The @code{mfcalc} Main
2713
2714The error reporting function is unchanged, and the new version of
2715@code{main} includes a call to @code{init_table}:
2716
2717@comment file: mfcalc.y
c93f22fc 2718@example
aeb57fb6
AD
2719@group
2720/* Called by yyparse on error. */
2721void
2722yyerror (char const *s)
2723@{
2724 fprintf (stderr, "%s\n", s);
2725@}
2726@end group
2727
aaaa2aae 2728@group
aeb57fb6
AD
2729int
2730main (int argc, char const* argv[])
2731@{
2732 init_table ();
2733 return yyparse ();
2734@}
2735@end group
c93f22fc 2736@end example
aeb57fb6 2737
72d2299c 2738This program is both powerful and flexible. You may easily add new
704a47c4
AD
2739functions, and it is a simple job to modify this code to install
2740predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2741
342b8b6e 2742@node Exercises
bfa74976
RS
2743@section Exercises
2744@cindex exercises
2745
2746@enumerate
2747@item
2748Add some new functions from @file{math.h} to the initialization list.
2749
2750@item
2751Add another array that contains constants and their values. Then
2752modify @code{init_table} to add these constants to the symbol table.
2753It will be easiest to give the constants type @code{VAR}.
2754
2755@item
2756Make the program report an error if the user refers to an
2757uninitialized variable in any way except to store a value in it.
2758@end enumerate
2759
342b8b6e 2760@node Grammar File
bfa74976
RS
2761@chapter Bison Grammar Files
2762
2763Bison takes as input a context-free grammar specification and produces a
2764C-language function that recognizes correct instances of the grammar.
2765
ff7571c0 2766The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2767@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2768
2769@menu
303834cc
JD
2770* Grammar Outline:: Overall layout of the grammar file.
2771* Symbols:: Terminal and nonterminal symbols.
2772* Rules:: How to write grammar rules.
2773* Recursion:: Writing recursive rules.
2774* Semantics:: Semantic values and actions.
2775* Tracking Locations:: Locations and actions.
2776* Named References:: Using named references in actions.
2777* Declarations:: All kinds of Bison declarations are described here.
2778* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2779@end menu
2780
342b8b6e 2781@node Grammar Outline
bfa74976
RS
2782@section Outline of a Bison Grammar
2783
2784A Bison grammar file has four main sections, shown here with the
2785appropriate delimiters:
2786
2787@example
2788%@{
38a92d50 2789 @var{Prologue}
bfa74976
RS
2790%@}
2791
2792@var{Bison declarations}
2793
2794%%
2795@var{Grammar rules}
2796%%
2797
75f5aaea 2798@var{Epilogue}
bfa74976
RS
2799@end example
2800
2801Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2802As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2803continues until end of line.
bfa74976
RS
2804
2805@menu
f5f419de 2806* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2807* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2808* Bison Declarations:: Syntax and usage of the Bison declarations section.
2809* Grammar Rules:: Syntax and usage of the grammar rules section.
2810* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2811@end menu
2812
38a92d50 2813@node Prologue
75f5aaea
MA
2814@subsection The prologue
2815@cindex declarations section
2816@cindex Prologue
2817@cindex declarations
bfa74976 2818
f8e1c9e5
AD
2819The @var{Prologue} section contains macro definitions and declarations
2820of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2821rules. These are copied to the beginning of the parser implementation
2822file so that they precede the definition of @code{yyparse}. You can
2823use @samp{#include} to get the declarations from a header file. If
2824you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2825@samp{%@}} delimiters that bracket this section.
bfa74976 2826
9c437126 2827The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2828of @samp{%@}} that is outside a comment, a string literal, or a
2829character constant.
2830
c732d2c6
AD
2831You may have more than one @var{Prologue} section, intermixed with the
2832@var{Bison declarations}. This allows you to have C and Bison
2833declarations that refer to each other. For example, the @code{%union}
2834declaration may use types defined in a header file, and you may wish to
2835prototype functions that take arguments of type @code{YYSTYPE}. This
2836can be done with two @var{Prologue} blocks, one before and one after the
2837@code{%union} declaration.
2838
c93f22fc 2839@example
c732d2c6 2840%@{
aef3da86 2841 #define _GNU_SOURCE
38a92d50
PE
2842 #include <stdio.h>
2843 #include "ptypes.h"
c732d2c6
AD
2844%@}
2845
2846%union @{
779e7ceb 2847 long int n;
c732d2c6
AD
2848 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2849@}
2850
2851%@{
38a92d50
PE
2852 static void print_token_value (FILE *, int, YYSTYPE);
2853 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2854%@}
2855
2856@dots{}
c93f22fc 2857@end example
c732d2c6 2858
aef3da86
PE
2859When in doubt, it is usually safer to put prologue code before all
2860Bison declarations, rather than after. For example, any definitions
2861of feature test macros like @code{_GNU_SOURCE} or
2862@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2863feature test macros can affect the behavior of Bison-generated
2864@code{#include} directives.
2865
2cbe6b7f
JD
2866@node Prologue Alternatives
2867@subsection Prologue Alternatives
2868@cindex Prologue Alternatives
2869
136a0f76 2870@findex %code
16dc6a9e
JD
2871@findex %code requires
2872@findex %code provides
2873@findex %code top
85894313 2874
2cbe6b7f 2875The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2876inflexible. As an alternative, Bison provides a @code{%code}
2877directive with an explicit qualifier field, which identifies the
2878purpose of the code and thus the location(s) where Bison should
2879generate it. For C/C++, the qualifier can be omitted for the default
2880location, or it can be one of @code{requires}, @code{provides},
e0c07222 2881@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2882
2883Look again at the example of the previous section:
2884
c93f22fc 2885@example
2cbe6b7f
JD
2886%@{
2887 #define _GNU_SOURCE
2888 #include <stdio.h>
2889 #include "ptypes.h"
2890%@}
2891
2892%union @{
2893 long int n;
2894 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2895@}
2896
2897%@{
2898 static void print_token_value (FILE *, int, YYSTYPE);
2899 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2900%@}
2901
2902@dots{}
c93f22fc 2903@end example
2cbe6b7f
JD
2904
2905@noindent
ff7571c0
JD
2906Notice that there are two @var{Prologue} sections here, but there's a
2907subtle distinction between their functionality. For example, if you
2908decide to override Bison's default definition for @code{YYLTYPE}, in
2909which @var{Prologue} section should you write your new definition?
2910You should write it in the first since Bison will insert that code
2911into the parser implementation file @emph{before} the default
2912@code{YYLTYPE} definition. In which @var{Prologue} section should you
2913prototype an internal function, @code{trace_token}, that accepts
2914@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2915prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2916@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2917
2918This distinction in functionality between the two @var{Prologue} sections is
2919established by the appearance of the @code{%union} between them.
a501eca9 2920This behavior raises a few questions.
2cbe6b7f
JD
2921First, why should the position of a @code{%union} affect definitions related to
2922@code{YYLTYPE} and @code{yytokentype}?
2923Second, what if there is no @code{%union}?
2924In that case, the second kind of @var{Prologue} section is not available.
2925This behavior is not intuitive.
2926
8e0a5e9e 2927To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2928@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2929Let's go ahead and add the new @code{YYLTYPE} definition and the
2930@code{trace_token} prototype at the same time:
2931
c93f22fc 2932@example
16dc6a9e 2933%code top @{
2cbe6b7f
JD
2934 #define _GNU_SOURCE
2935 #include <stdio.h>
8e0a5e9e
JD
2936
2937 /* WARNING: The following code really belongs
16dc6a9e 2938 * in a `%code requires'; see below. */
8e0a5e9e 2939
2cbe6b7f
JD
2940 #include "ptypes.h"
2941 #define YYLTYPE YYLTYPE
2942 typedef struct YYLTYPE
2943 @{
2944 int first_line;
2945 int first_column;
2946 int last_line;
2947 int last_column;
2948 char *filename;
2949 @} YYLTYPE;
2950@}
2951
2952%union @{
2953 long int n;
2954 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2955@}
2956
2957%code @{
2958 static void print_token_value (FILE *, int, YYSTYPE);
2959 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2960 static void trace_token (enum yytokentype token, YYLTYPE loc);
2961@}
2962
2963@dots{}
c93f22fc 2964@end example
2cbe6b7f
JD
2965
2966@noindent
16dc6a9e
JD
2967In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2968functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2969explicit which kind you intend.
2cbe6b7f
JD
2970Moreover, both kinds are always available even in the absence of @code{%union}.
2971
ff7571c0
JD
2972The @code{%code top} block above logically contains two parts. The
2973first two lines before the warning need to appear near the top of the
2974parser implementation file. The first line after the warning is
2975required by @code{YYSTYPE} and thus also needs to appear in the parser
2976implementation file. However, if you've instructed Bison to generate
2977a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2978want that line to appear before the @code{YYSTYPE} definition in that
2979header file as well. The @code{YYLTYPE} definition should also appear
2980in the parser header file to override the default @code{YYLTYPE}
2981definition there.
2cbe6b7f 2982
16dc6a9e 2983In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2984lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2985definitions.
16dc6a9e 2986Thus, they belong in one or more @code{%code requires}:
9bc0dd67 2987
c93f22fc 2988@example
d4fca427 2989@group
16dc6a9e 2990%code top @{
2cbe6b7f
JD
2991 #define _GNU_SOURCE
2992 #include <stdio.h>
2993@}
d4fca427 2994@end group
2cbe6b7f 2995
d4fca427 2996@group
16dc6a9e 2997%code requires @{
9bc0dd67
JD
2998 #include "ptypes.h"
2999@}
d4fca427
AD
3000@end group
3001@group
9bc0dd67
JD
3002%union @{
3003 long int n;
3004 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3005@}
d4fca427 3006@end group
9bc0dd67 3007
d4fca427 3008@group
16dc6a9e 3009%code requires @{
2cbe6b7f
JD
3010 #define YYLTYPE YYLTYPE
3011 typedef struct YYLTYPE
3012 @{
3013 int first_line;
3014 int first_column;
3015 int last_line;
3016 int last_column;
3017 char *filename;
3018 @} YYLTYPE;
3019@}
d4fca427 3020@end group
2cbe6b7f 3021
d4fca427 3022@group
136a0f76 3023%code @{
2cbe6b7f
JD
3024 static void print_token_value (FILE *, int, YYSTYPE);
3025 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3026 static void trace_token (enum yytokentype token, YYLTYPE loc);
3027@}
d4fca427 3028@end group
2cbe6b7f
JD
3029
3030@dots{}
c93f22fc 3031@end example
2cbe6b7f
JD
3032
3033@noindent
ff7571c0
JD
3034Now Bison will insert @code{#include "ptypes.h"} and the new
3035@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3036and @code{YYLTYPE} definitions in both the parser implementation file
3037and the parser header file. (By the same reasoning, @code{%code
3038requires} would also be the appropriate place to write your own
3039definition for @code{YYSTYPE}.)
3040
3041When you are writing dependency code for @code{YYSTYPE} and
3042@code{YYLTYPE}, you should prefer @code{%code requires} over
3043@code{%code top} regardless of whether you instruct Bison to generate
3044a parser header file. When you are writing code that you need Bison
3045to insert only into the parser implementation file and that has no
3046special need to appear at the top of that file, you should prefer the
3047unqualified @code{%code} over @code{%code top}. These practices will
3048make the purpose of each block of your code explicit to Bison and to
3049other developers reading your grammar file. Following these
3050practices, we expect the unqualified @code{%code} and @code{%code
3051requires} to be the most important of the four @var{Prologue}
16dc6a9e 3052alternatives.
a501eca9 3053
ff7571c0
JD
3054At some point while developing your parser, you might decide to
3055provide @code{trace_token} to modules that are external to your
3056parser. Thus, you might wish for Bison to insert the prototype into
3057both the parser header file and the parser implementation file. Since
3058this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3059@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3060@code{%code requires}. More importantly, since it depends upon
3061@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3062sufficient. Instead, move its prototype from the unqualified
3063@code{%code} to a @code{%code provides}:
2cbe6b7f 3064
c93f22fc 3065@example
d4fca427 3066@group
16dc6a9e 3067%code top @{
2cbe6b7f 3068 #define _GNU_SOURCE
136a0f76 3069 #include <stdio.h>
2cbe6b7f 3070@}
d4fca427 3071@end group
136a0f76 3072
d4fca427 3073@group
16dc6a9e 3074%code requires @{
2cbe6b7f
JD
3075 #include "ptypes.h"
3076@}
d4fca427
AD
3077@end group
3078@group
2cbe6b7f
JD
3079%union @{
3080 long int n;
3081 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3082@}
d4fca427 3083@end group
2cbe6b7f 3084
d4fca427 3085@group
16dc6a9e 3086%code requires @{
2cbe6b7f
JD
3087 #define YYLTYPE YYLTYPE
3088 typedef struct YYLTYPE
3089 @{
3090 int first_line;
3091 int first_column;
3092 int last_line;
3093 int last_column;
3094 char *filename;
3095 @} YYLTYPE;
3096@}
d4fca427 3097@end group
2cbe6b7f 3098
d4fca427 3099@group
16dc6a9e 3100%code provides @{
2cbe6b7f
JD
3101 void trace_token (enum yytokentype token, YYLTYPE loc);
3102@}
d4fca427 3103@end group
2cbe6b7f 3104
d4fca427 3105@group
2cbe6b7f 3106%code @{
9bc0dd67
JD
3107 static void print_token_value (FILE *, int, YYSTYPE);
3108 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3109@}
d4fca427 3110@end group
9bc0dd67
JD
3111
3112@dots{}
c93f22fc 3113@end example
9bc0dd67 3114
2cbe6b7f 3115@noindent
ff7571c0
JD
3116Bison will insert the @code{trace_token} prototype into both the
3117parser header file and the parser implementation file after the
3118definitions for @code{yytokentype}, @code{YYLTYPE}, and
3119@code{YYSTYPE}.
2cbe6b7f 3120
ff7571c0
JD
3121The above examples are careful to write directives in an order that
3122reflects the layout of the generated parser implementation and header
3123files: @code{%code top}, @code{%code requires}, @code{%code provides},
3124and then @code{%code}. While your grammar files may generally be
3125easier to read if you also follow this order, Bison does not require
3126it. Instead, Bison lets you choose an organization that makes sense
3127to you.
2cbe6b7f 3128
a501eca9 3129You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3130In that case, Bison concatenates the contained code in declaration order.
3131This is the only way in which the position of one of these directives within
3132the grammar file affects its functionality.
3133
3134The result of the previous two properties is greater flexibility in how you may
3135organize your grammar file.
3136For example, you may organize semantic-type-related directives by semantic
3137type:
3138
c93f22fc 3139@example
d4fca427 3140@group
16dc6a9e 3141%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3142%union @{ type1 field1; @}
3143%destructor @{ type1_free ($$); @} <field1>
3144%printer @{ type1_print ($$); @} <field1>
d4fca427 3145@end group
2cbe6b7f 3146
d4fca427 3147@group
16dc6a9e 3148%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3149%union @{ type2 field2; @}
3150%destructor @{ type2_free ($$); @} <field2>
3151%printer @{ type2_print ($$); @} <field2>
d4fca427 3152@end group
c93f22fc 3153@end example
2cbe6b7f
JD
3154
3155@noindent
3156You could even place each of the above directive groups in the rules section of
3157the grammar file next to the set of rules that uses the associated semantic
3158type.
61fee93e
JD
3159(In the rules section, you must terminate each of those directives with a
3160semicolon.)
2cbe6b7f
JD
3161And you don't have to worry that some directive (like a @code{%union}) in the
3162definitions section is going to adversely affect their functionality in some
3163counter-intuitive manner just because it comes first.
3164Such an organization is not possible using @var{Prologue} sections.
3165
a501eca9 3166This section has been concerned with explaining the advantages of the four
8e0a5e9e 3167@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3168However, in most cases when using these directives, you shouldn't need to
3169think about all the low-level ordering issues discussed here.
3170Instead, you should simply use these directives to label each block of your
3171code according to its purpose and let Bison handle the ordering.
3172@code{%code} is the most generic label.
16dc6a9e
JD
3173Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3174as needed.
a501eca9 3175
342b8b6e 3176@node Bison Declarations
bfa74976
RS
3177@subsection The Bison Declarations Section
3178@cindex Bison declarations (introduction)
3179@cindex declarations, Bison (introduction)
3180
3181The @var{Bison declarations} section contains declarations that define
3182terminal and nonterminal symbols, specify precedence, and so on.
3183In some simple grammars you may not need any declarations.
3184@xref{Declarations, ,Bison Declarations}.
3185
342b8b6e 3186@node Grammar Rules
bfa74976
RS
3187@subsection The Grammar Rules Section
3188@cindex grammar rules section
3189@cindex rules section for grammar
3190
3191The @dfn{grammar rules} section contains one or more Bison grammar
3192rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3193
3194There must always be at least one grammar rule, and the first
3195@samp{%%} (which precedes the grammar rules) may never be omitted even
3196if it is the first thing in the file.
3197
38a92d50 3198@node Epilogue
75f5aaea 3199@subsection The epilogue
bfa74976 3200@cindex additional C code section
75f5aaea 3201@cindex epilogue
bfa74976
RS
3202@cindex C code, section for additional
3203
ff7571c0
JD
3204The @var{Epilogue} is copied verbatim to the end of the parser
3205implementation file, just as the @var{Prologue} is copied to the
3206beginning. This is the most convenient place to put anything that you
3207want to have in the parser implementation file but which need not come
3208before the definition of @code{yyparse}. For example, the definitions
3209of @code{yylex} and @code{yyerror} often go here. Because C requires
3210functions to be declared before being used, you often need to declare
3211functions like @code{yylex} and @code{yyerror} in the Prologue, even
3212if you define them in the Epilogue. @xref{Interface, ,Parser
3213C-Language Interface}.
bfa74976
RS
3214
3215If the last section is empty, you may omit the @samp{%%} that separates it
3216from the grammar rules.
3217
f8e1c9e5
AD
3218The Bison parser itself contains many macros and identifiers whose names
3219start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3220any such names (except those documented in this manual) in the epilogue
3221of the grammar file.
bfa74976 3222
342b8b6e 3223@node Symbols
bfa74976
RS
3224@section Symbols, Terminal and Nonterminal
3225@cindex nonterminal symbol
3226@cindex terminal symbol
3227@cindex token type
3228@cindex symbol
3229
3230@dfn{Symbols} in Bison grammars represent the grammatical classifications
3231of the language.
3232
3233A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3234class of syntactically equivalent tokens. You use the symbol in grammar
3235rules to mean that a token in that class is allowed. The symbol is
3236represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3237function returns a token type code to indicate what kind of token has
3238been read. You don't need to know what the code value is; you can use
3239the symbol to stand for it.
bfa74976 3240
f8e1c9e5
AD
3241A @dfn{nonterminal symbol} stands for a class of syntactically
3242equivalent groupings. The symbol name is used in writing grammar rules.
3243By convention, it should be all lower case.
bfa74976 3244
82f3355e
JD
3245Symbol names can contain letters, underscores, periods, and non-initial
3246digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3247with POSIX Yacc. Periods and dashes make symbol names less convenient to
3248use with named references, which require brackets around such names
3249(@pxref{Named References}). Terminal symbols that contain periods or dashes
3250make little sense: since they are not valid symbols (in most programming
3251languages) they are not exported as token names.
bfa74976 3252
931c7513 3253There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3254
3255@itemize @bullet
3256@item
3257A @dfn{named token type} is written with an identifier, like an
c827f760 3258identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3259such name must be defined with a Bison declaration such as
3260@code{%token}. @xref{Token Decl, ,Token Type Names}.
3261
3262@item
3263@cindex character token
3264@cindex literal token
3265@cindex single-character literal
931c7513
RS
3266A @dfn{character token type} (or @dfn{literal character token}) is
3267written in the grammar using the same syntax used in C for character
3268constants; for example, @code{'+'} is a character token type. A
3269character token type doesn't need to be declared unless you need to
3270specify its semantic value data type (@pxref{Value Type, ,Data Types of
3271Semantic Values}), associativity, or precedence (@pxref{Precedence,
3272,Operator Precedence}).
bfa74976
RS
3273
3274By convention, a character token type is used only to represent a
3275token that consists of that particular character. Thus, the token
3276type @code{'+'} is used to represent the character @samp{+} as a
3277token. Nothing enforces this convention, but if you depart from it,
3278your program will confuse other readers.
3279
3280All the usual escape sequences used in character literals in C can be
3281used in Bison as well, but you must not use the null character as a
72d2299c
PE
3282character literal because its numeric code, zero, signifies
3283end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3284for @code{yylex}}). Also, unlike standard C, trigraphs have no
3285special meaning in Bison character literals, nor is backslash-newline
3286allowed.
931c7513
RS
3287
3288@item
3289@cindex string token
3290@cindex literal string token
9ecbd125 3291@cindex multicharacter literal
931c7513
RS
3292A @dfn{literal string token} is written like a C string constant; for
3293example, @code{"<="} is a literal string token. A literal string token
3294doesn't need to be declared unless you need to specify its semantic
14ded682 3295value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3296(@pxref{Precedence}).
3297
3298You can associate the literal string token with a symbolic name as an
3299alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3300Declarations}). If you don't do that, the lexical analyzer has to
3301retrieve the token number for the literal string token from the
3302@code{yytname} table (@pxref{Calling Convention}).
3303
c827f760 3304@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3305
3306By convention, a literal string token is used only to represent a token
3307that consists of that particular string. Thus, you should use the token
3308type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3309does not enforce this convention, but if you depart from it, people who
931c7513
RS
3310read your program will be confused.
3311
3312All the escape sequences used in string literals in C can be used in
92ac3705
PE
3313Bison as well, except that you must not use a null character within a
3314string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3315meaning in Bison string literals, nor is backslash-newline allowed. A
3316literal string token must contain two or more characters; for a token
3317containing just one character, use a character token (see above).
bfa74976
RS
3318@end itemize
3319
3320How you choose to write a terminal symbol has no effect on its
3321grammatical meaning. That depends only on where it appears in rules and
3322on when the parser function returns that symbol.
3323
72d2299c
PE
3324The value returned by @code{yylex} is always one of the terminal
3325symbols, except that a zero or negative value signifies end-of-input.
3326Whichever way you write the token type in the grammar rules, you write
3327it the same way in the definition of @code{yylex}. The numeric code
3328for a character token type is simply the positive numeric code of the
3329character, so @code{yylex} can use the identical value to generate the
3330requisite code, though you may need to convert it to @code{unsigned
3331char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3332Each named token type becomes a C macro in the parser implementation
3333file, so @code{yylex} can use the name to stand for the code. (This
3334is why periods don't make sense in terminal symbols.) @xref{Calling
3335Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3336
3337If @code{yylex} is defined in a separate file, you need to arrange for the
3338token-type macro definitions to be available there. Use the @samp{-d}
3339option when you run Bison, so that it will write these macro definitions
3340into a separate header file @file{@var{name}.tab.h} which you can include
3341in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3342
72d2299c 3343If you want to write a grammar that is portable to any Standard C
9d9b8b70 3344host, you must use only nonnull character tokens taken from the basic
c827f760 3345execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3346digits, the 52 lower- and upper-case English letters, and the
3347characters in the following C-language string:
3348
3349@example
3350"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3351@end example
3352
f8e1c9e5
AD
3353The @code{yylex} function and Bison must use a consistent character set
3354and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3355ASCII environment, but then compile and run the resulting
f8e1c9e5 3356program in an environment that uses an incompatible character set like
8a4281b9
JD
3357EBCDIC, the resulting program may not work because the tables
3358generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3359character tokens. It is standard practice for software distributions to
3360contain C source files that were generated by Bison in an
8a4281b9
JD
3361ASCII environment, so installers on platforms that are
3362incompatible with ASCII must rebuild those files before
f8e1c9e5 3363compiling them.
e966383b 3364
bfa74976
RS
3365The symbol @code{error} is a terminal symbol reserved for error recovery
3366(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3367In particular, @code{yylex} should never return this value. The default
3368value of the error token is 256, unless you explicitly assigned 256 to
3369one of your tokens with a @code{%token} declaration.
bfa74976 3370
342b8b6e 3371@node Rules
bfa74976
RS
3372@section Syntax of Grammar Rules
3373@cindex rule syntax
3374@cindex grammar rule syntax
3375@cindex syntax of grammar rules
3376
3377A Bison grammar rule has the following general form:
3378
3379@example
e425e872 3380@group
5e9b6624 3381@var{result}: @var{components}@dots{};
e425e872 3382@end group
bfa74976
RS
3383@end example
3384
3385@noindent
9ecbd125 3386where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3387and @var{components} are various terminal and nonterminal symbols that
13863333 3388are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3389
3390For example,
3391
3392@example
3393@group
5e9b6624 3394exp: exp '+' exp;
bfa74976
RS
3395@end group
3396@end example
3397
3398@noindent
3399says that two groupings of type @code{exp}, with a @samp{+} token in between,
3400can be combined into a larger grouping of type @code{exp}.
3401
72d2299c
PE
3402White space in rules is significant only to separate symbols. You can add
3403extra white space as you wish.
bfa74976
RS
3404
3405Scattered among the components can be @var{actions} that determine
3406the semantics of the rule. An action looks like this:
3407
3408@example
3409@{@var{C statements}@}
3410@end example
3411
3412@noindent
287c78f6
PE
3413@cindex braced code
3414This is an example of @dfn{braced code}, that is, C code surrounded by
3415braces, much like a compound statement in C@. Braced code can contain
3416any sequence of C tokens, so long as its braces are balanced. Bison
3417does not check the braced code for correctness directly; it merely
ff7571c0
JD
3418copies the code to the parser implementation file, where the C
3419compiler can check it.
287c78f6
PE
3420
3421Within braced code, the balanced-brace count is not affected by braces
3422within comments, string literals, or character constants, but it is
3423affected by the C digraphs @samp{<%} and @samp{%>} that represent
3424braces. At the top level braced code must be terminated by @samp{@}}
3425and not by a digraph. Bison does not look for trigraphs, so if braced
3426code uses trigraphs you should ensure that they do not affect the
3427nesting of braces or the boundaries of comments, string literals, or
3428character constants.
3429
bfa74976
RS
3430Usually there is only one action and it follows the components.
3431@xref{Actions}.
3432
3433@findex |
3434Multiple rules for the same @var{result} can be written separately or can
3435be joined with the vertical-bar character @samp{|} as follows:
3436
bfa74976
RS
3437@example
3438@group
5e9b6624
AD
3439@var{result}:
3440 @var{rule1-components}@dots{}
3441| @var{rule2-components}@dots{}
3442@dots{}
3443;
bfa74976
RS
3444@end group
3445@end example
bfa74976
RS
3446
3447@noindent
3448They are still considered distinct rules even when joined in this way.
3449
3450If @var{components} in a rule is empty, it means that @var{result} can
3451match the empty string. For example, here is how to define a
3452comma-separated sequence of zero or more @code{exp} groupings:
3453
3454@example
3455@group
5e9b6624
AD
3456expseq:
3457 /* empty */
3458| expseq1
3459;
bfa74976
RS
3460@end group
3461
3462@group
5e9b6624
AD
3463expseq1:
3464 exp
3465| expseq1 ',' exp
3466;
bfa74976
RS
3467@end group
3468@end example
3469
3470@noindent
3471It is customary to write a comment @samp{/* empty */} in each rule
3472with no components.
3473
342b8b6e 3474@node Recursion
bfa74976
RS
3475@section Recursive Rules
3476@cindex recursive rule
3477
f8e1c9e5
AD
3478A rule is called @dfn{recursive} when its @var{result} nonterminal
3479appears also on its right hand side. Nearly all Bison grammars need to
3480use recursion, because that is the only way to define a sequence of any
3481number of a particular thing. Consider this recursive definition of a
9ecbd125 3482comma-separated sequence of one or more expressions:
bfa74976
RS
3483
3484@example
3485@group
5e9b6624
AD
3486expseq1:
3487 exp
3488| expseq1 ',' exp
3489;
bfa74976
RS
3490@end group
3491@end example
3492
3493@cindex left recursion
3494@cindex right recursion
3495@noindent
3496Since the recursive use of @code{expseq1} is the leftmost symbol in the
3497right hand side, we call this @dfn{left recursion}. By contrast, here
3498the same construct is defined using @dfn{right recursion}:
3499
3500@example
3501@group
5e9b6624
AD
3502expseq1:
3503 exp
3504| exp ',' expseq1
3505;
bfa74976
RS
3506@end group
3507@end example
3508
3509@noindent
ec3bc396
AD
3510Any kind of sequence can be defined using either left recursion or right
3511recursion, but you should always use left recursion, because it can
3512parse a sequence of any number of elements with bounded stack space.
3513Right recursion uses up space on the Bison stack in proportion to the
3514number of elements in the sequence, because all the elements must be
3515shifted onto the stack before the rule can be applied even once.
3516@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3517of this.
bfa74976
RS
3518
3519@cindex mutual recursion
3520@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3521rule does not appear directly on its right hand side, but does appear
3522in rules for other nonterminals which do appear on its right hand
13863333 3523side.
bfa74976
RS
3524
3525For example:
3526
3527@example
3528@group
5e9b6624
AD
3529expr:
3530 primary
3531| primary '+' primary
3532;
bfa74976
RS
3533@end group
3534
3535@group
5e9b6624
AD
3536primary:
3537 constant
3538| '(' expr ')'
3539;
bfa74976
RS
3540@end group
3541@end example
3542
3543@noindent
3544defines two mutually-recursive nonterminals, since each refers to the
3545other.
3546
342b8b6e 3547@node Semantics
bfa74976
RS
3548@section Defining Language Semantics
3549@cindex defining language semantics
13863333 3550@cindex language semantics, defining
bfa74976
RS
3551
3552The grammar rules for a language determine only the syntax. The semantics
3553are determined by the semantic values associated with various tokens and
3554groupings, and by the actions taken when various groupings are recognized.
3555
3556For example, the calculator calculates properly because the value
3557associated with each expression is the proper number; it adds properly
3558because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3559the numbers associated with @var{x} and @var{y}.
3560
3561@menu
3562* Value Type:: Specifying one data type for all semantic values.
3563* Multiple Types:: Specifying several alternative data types.
3564* Actions:: An action is the semantic definition of a grammar rule.
3565* Action Types:: Specifying data types for actions to operate on.
3566* Mid-Rule Actions:: Most actions go at the end of a rule.
3567 This says when, why and how to use the exceptional
3568 action in the middle of a rule.
3569@end menu
3570
342b8b6e 3571@node Value Type
bfa74976
RS
3572@subsection Data Types of Semantic Values
3573@cindex semantic value type
3574@cindex value type, semantic
3575@cindex data types of semantic values
3576@cindex default data type
3577
3578In a simple program it may be sufficient to use the same data type for
3579the semantic values of all language constructs. This was true in the
8a4281b9 3580RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3581Notation Calculator}).
bfa74976 3582
ddc8ede1
PE
3583Bison normally uses the type @code{int} for semantic values if your
3584program uses the same data type for all language constructs. To
bfa74976
RS
3585specify some other type, define @code{YYSTYPE} as a macro, like this:
3586
3587@example
3588#define YYSTYPE double
3589@end example
3590
3591@noindent
50cce58e
PE
3592@code{YYSTYPE}'s replacement list should be a type name
3593that does not contain parentheses or square brackets.
342b8b6e 3594This macro definition must go in the prologue of the grammar file
75f5aaea 3595(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3596
342b8b6e 3597@node Multiple Types
bfa74976
RS
3598@subsection More Than One Value Type
3599
3600In most programs, you will need different data types for different kinds
3601of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3602@code{int} or @code{long int}, while a string constant needs type
3603@code{char *}, and an identifier might need a pointer to an entry in the
3604symbol table.
bfa74976
RS
3605
3606To use more than one data type for semantic values in one parser, Bison
3607requires you to do two things:
3608
3609@itemize @bullet
3610@item
ddc8ede1 3611Specify the entire collection of possible data types, either by using the
704a47c4 3612@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3613Value Types}), or by using a @code{typedef} or a @code{#define} to
3614define @code{YYSTYPE} to be a union type whose member names are
3615the type tags.
bfa74976
RS
3616
3617@item
14ded682
AD
3618Choose one of those types for each symbol (terminal or nonterminal) for
3619which semantic values are used. This is done for tokens with the
3620@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3621and for groupings with the @code{%type} Bison declaration (@pxref{Type
3622Decl, ,Nonterminal Symbols}).
bfa74976
RS
3623@end itemize
3624
342b8b6e 3625@node Actions
bfa74976
RS
3626@subsection Actions
3627@cindex action
3628@vindex $$
3629@vindex $@var{n}
d013372c
AR
3630@vindex $@var{name}
3631@vindex $[@var{name}]
bfa74976
RS
3632
3633An action accompanies a syntactic rule and contains C code to be executed
3634each time an instance of that rule is recognized. The task of most actions
3635is to compute a semantic value for the grouping built by the rule from the
3636semantic values associated with tokens or smaller groupings.
3637
287c78f6
PE
3638An action consists of braced code containing C statements, and can be
3639placed at any position in the rule;
704a47c4
AD
3640it is executed at that position. Most rules have just one action at the
3641end of the rule, following all the components. Actions in the middle of
3642a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3643Actions, ,Actions in Mid-Rule}).
bfa74976 3644
ff7571c0
JD
3645The C code in an action can refer to the semantic values of the
3646components matched by the rule with the construct @code{$@var{n}},
3647which stands for the value of the @var{n}th component. The semantic
3648value for the grouping being constructed is @code{$$}. In addition,
3649the semantic values of symbols can be accessed with the named
3650references construct @code{$@var{name}} or @code{$[@var{name}]}.
3651Bison translates both of these constructs into expressions of the
3652appropriate type when it copies the actions into the parser
3653implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3654for the current grouping) is translated to a modifiable lvalue, so it
3655can be assigned to.
bfa74976
RS
3656
3657Here is a typical example:
3658
3659@example
3660@group
5e9b6624
AD
3661exp:
3662@dots{}
3663| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3664@end group
3665@end example
3666
d013372c
AR
3667Or, in terms of named references:
3668
3669@example
3670@group
5e9b6624
AD
3671exp[result]:
3672@dots{}
3673| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3674@end group
3675@end example
3676
bfa74976
RS
3677@noindent
3678This rule constructs an @code{exp} from two smaller @code{exp} groupings
3679connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3680(@code{$left} and @code{$right})
bfa74976
RS
3681refer to the semantic values of the two component @code{exp} groupings,
3682which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3683The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3684semantic value of
bfa74976
RS
3685the addition-expression just recognized by the rule. If there were a
3686useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3687referred to as @code{$2}.
bfa74976 3688
a7b15ab9
JD
3689@xref{Named References}, for more information about using the named
3690references construct.
d013372c 3691
3ded9a63
AD
3692Note that the vertical-bar character @samp{|} is really a rule
3693separator, and actions are attached to a single rule. This is a
3694difference with tools like Flex, for which @samp{|} stands for either
3695``or'', or ``the same action as that of the next rule''. In the
3696following example, the action is triggered only when @samp{b} is found:
3697
3698@example
3699@group
3700a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3701@end group
3702@end example
3703
bfa74976
RS
3704@cindex default action
3705If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3706@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3707becomes the value of the whole rule. Of course, the default action is
3708valid only if the two data types match. There is no meaningful default
3709action for an empty rule; every empty rule must have an explicit action
3710unless the rule's value does not matter.
bfa74976
RS
3711
3712@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3713to tokens and groupings on the stack @emph{before} those that match the
3714current rule. This is a very risky practice, and to use it reliably
3715you must be certain of the context in which the rule is applied. Here
3716is a case in which you can use this reliably:
3717
3718@example
3719@group
5e9b6624
AD
3720foo:
3721 expr bar '+' expr @{ @dots{} @}
3722| expr bar '-' expr @{ @dots{} @}
3723;
bfa74976
RS
3724@end group
3725
3726@group
5e9b6624
AD
3727bar:
3728 /* empty */ @{ previous_expr = $0; @}
3729;
bfa74976
RS
3730@end group
3731@end example
3732
3733As long as @code{bar} is used only in the fashion shown here, @code{$0}
3734always refers to the @code{expr} which precedes @code{bar} in the
3735definition of @code{foo}.
3736
32c29292 3737@vindex yylval
742e4900 3738It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3739any, from a semantic action.
3740This semantic value is stored in @code{yylval}.
3741@xref{Action Features, ,Special Features for Use in Actions}.
3742
342b8b6e 3743@node Action Types
bfa74976
RS
3744@subsection Data Types of Values in Actions
3745@cindex action data types
3746@cindex data types in actions
3747
3748If you have chosen a single data type for semantic values, the @code{$$}
3749and @code{$@var{n}} constructs always have that data type.
3750
3751If you have used @code{%union} to specify a variety of data types, then you
3752must declare a choice among these types for each terminal or nonterminal
3753symbol that can have a semantic value. Then each time you use @code{$$} or
3754@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3755in the rule. In this example,
bfa74976
RS
3756
3757@example
3758@group
5e9b6624
AD
3759exp:
3760 @dots{}
3761| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3762@end group
3763@end example
3764
3765@noindent
3766@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3767have the data type declared for the nonterminal symbol @code{exp}. If
3768@code{$2} were used, it would have the data type declared for the
e0c471a9 3769terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3770
3771Alternatively, you can specify the data type when you refer to the value,
3772by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3773reference. For example, if you have defined types as shown here:
3774
3775@example
3776@group
3777%union @{
3778 int itype;
3779 double dtype;
3780@}
3781@end group
3782@end example
3783
3784@noindent
3785then you can write @code{$<itype>1} to refer to the first subunit of the
3786rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3787
342b8b6e 3788@node Mid-Rule Actions
bfa74976
RS
3789@subsection Actions in Mid-Rule
3790@cindex actions in mid-rule
3791@cindex mid-rule actions
3792
3793Occasionally it is useful to put an action in the middle of a rule.
3794These actions are written just like usual end-of-rule actions, but they
3795are executed before the parser even recognizes the following components.
3796
3797A mid-rule action may refer to the components preceding it using
3798@code{$@var{n}}, but it may not refer to subsequent components because
3799it is run before they are parsed.
3800
3801The mid-rule action itself counts as one of the components of the rule.
3802This makes a difference when there is another action later in the same rule
3803(and usually there is another at the end): you have to count the actions
3804along with the symbols when working out which number @var{n} to use in
3805@code{$@var{n}}.
3806
3807The mid-rule action can also have a semantic value. The action can set
3808its value with an assignment to @code{$$}, and actions later in the rule
3809can refer to the value using @code{$@var{n}}. Since there is no symbol
3810to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3811in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3812specify a data type each time you refer to this value.
bfa74976
RS
3813
3814There is no way to set the value of the entire rule with a mid-rule
3815action, because assignments to @code{$$} do not have that effect. The
3816only way to set the value for the entire rule is with an ordinary action
3817at the end of the rule.
3818
3819Here is an example from a hypothetical compiler, handling a @code{let}
3820statement that looks like @samp{let (@var{variable}) @var{statement}} and
3821serves to create a variable named @var{variable} temporarily for the
3822duration of @var{statement}. To parse this construct, we must put
3823@var{variable} into the symbol table while @var{statement} is parsed, then
3824remove it afterward. Here is how it is done:
3825
3826@example
3827@group
5e9b6624
AD
3828stmt:
3829 LET '(' var ')'
3830 @{ $<context>$ = push_context (); declare_variable ($3); @}
3831 stmt
3832 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3833@end group
3834@end example
3835
3836@noindent
3837As soon as @samp{let (@var{variable})} has been recognized, the first
3838action is run. It saves a copy of the current semantic context (the
3839list of accessible variables) as its semantic value, using alternative
3840@code{context} in the data-type union. Then it calls
3841@code{declare_variable} to add the new variable to that list. Once the
3842first action is finished, the embedded statement @code{stmt} can be
3843parsed. Note that the mid-rule action is component number 5, so the
3844@samp{stmt} is component number 6.
3845
3846After the embedded statement is parsed, its semantic value becomes the
3847value of the entire @code{let}-statement. Then the semantic value from the
3848earlier action is used to restore the prior list of variables. This
3849removes the temporary @code{let}-variable from the list so that it won't
3850appear to exist while the rest of the program is parsed.
3851
841a7737
JD
3852@findex %destructor
3853@cindex discarded symbols, mid-rule actions
3854@cindex error recovery, mid-rule actions
3855In the above example, if the parser initiates error recovery (@pxref{Error
3856Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3857it might discard the previous semantic context @code{$<context>5} without
3858restoring it.
3859Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3860Discarded Symbols}).
ec5479ce
JD
3861However, Bison currently provides no means to declare a destructor specific to
3862a particular mid-rule action's semantic value.
841a7737
JD
3863
3864One solution is to bury the mid-rule action inside a nonterminal symbol and to
3865declare a destructor for that symbol:
3866
3867@example
3868@group
3869%type <context> let
3870%destructor @{ pop_context ($$); @} let
3871
3872%%
3873
5e9b6624
AD
3874stmt:
3875 let stmt
3876 @{
3877 $$ = $2;
3878 pop_context ($1);
3879 @};
841a7737 3880
5e9b6624
AD
3881let:
3882 LET '(' var ')'
3883 @{
3884 $$ = push_context ();
3885 declare_variable ($3);
3886 @};
841a7737
JD
3887
3888@end group
3889@end example
3890
3891@noindent
3892Note that the action is now at the end of its rule.
3893Any mid-rule action can be converted to an end-of-rule action in this way, and
3894this is what Bison actually does to implement mid-rule actions.
3895
bfa74976
RS
3896Taking action before a rule is completely recognized often leads to
3897conflicts since the parser must commit to a parse in order to execute the
3898action. For example, the following two rules, without mid-rule actions,
3899can coexist in a working parser because the parser can shift the open-brace
3900token and look at what follows before deciding whether there is a
3901declaration or not:
3902
3903@example
3904@group
5e9b6624
AD
3905compound:
3906 '@{' declarations statements '@}'
3907| '@{' statements '@}'
3908;
bfa74976
RS
3909@end group
3910@end example
3911
3912@noindent
3913But when we add a mid-rule action as follows, the rules become nonfunctional:
3914
3915@example
3916@group
5e9b6624
AD
3917compound:
3918 @{ prepare_for_local_variables (); @}
3919 '@{' declarations statements '@}'
bfa74976
RS
3920@end group
3921@group
5e9b6624
AD
3922| '@{' statements '@}'
3923;
bfa74976
RS
3924@end group
3925@end example
3926
3927@noindent
3928Now the parser is forced to decide whether to run the mid-rule action
3929when it has read no farther than the open-brace. In other words, it
3930must commit to using one rule or the other, without sufficient
3931information to do it correctly. (The open-brace token is what is called
742e4900
JD
3932the @dfn{lookahead} token at this time, since the parser is still
3933deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3934
3935You might think that you could correct the problem by putting identical
3936actions into the two rules, like this:
3937
3938@example
3939@group
5e9b6624
AD
3940compound:
3941 @{ prepare_for_local_variables (); @}
3942 '@{' declarations statements '@}'
3943| @{ prepare_for_local_variables (); @}
3944 '@{' statements '@}'
3945;
bfa74976
RS
3946@end group
3947@end example
3948
3949@noindent
3950But this does not help, because Bison does not realize that the two actions
3951are identical. (Bison never tries to understand the C code in an action.)
3952
3953If the grammar is such that a declaration can be distinguished from a
3954statement by the first token (which is true in C), then one solution which
3955does work is to put the action after the open-brace, like this:
3956
3957@example
3958@group
5e9b6624
AD
3959compound:
3960 '@{' @{ prepare_for_local_variables (); @}
3961 declarations statements '@}'
3962| '@{' statements '@}'
3963;
bfa74976
RS
3964@end group
3965@end example
3966
3967@noindent
3968Now the first token of the following declaration or statement,
3969which would in any case tell Bison which rule to use, can still do so.
3970
3971Another solution is to bury the action inside a nonterminal symbol which
3972serves as a subroutine:
3973
3974@example
3975@group
5e9b6624
AD
3976subroutine:
3977 /* empty */ @{ prepare_for_local_variables (); @}
3978;
bfa74976
RS
3979@end group
3980
3981@group
5e9b6624
AD
3982compound:
3983 subroutine '@{' declarations statements '@}'
3984| subroutine '@{' statements '@}'
3985;
bfa74976
RS
3986@end group
3987@end example
3988
3989@noindent
3990Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3991deciding which rule for @code{compound} it will eventually use.
bfa74976 3992
303834cc 3993@node Tracking Locations
847bf1f5
AD
3994@section Tracking Locations
3995@cindex location
95923bd6
AD
3996@cindex textual location
3997@cindex location, textual
847bf1f5
AD
3998
3999Though grammar rules and semantic actions are enough to write a fully
72d2299c 4000functional parser, it can be useful to process some additional information,
3e259915
MA
4001especially symbol locations.
4002
704a47c4
AD
4003The way locations are handled is defined by providing a data type, and
4004actions to take when rules are matched.
847bf1f5
AD
4005
4006@menu
4007* Location Type:: Specifying a data type for locations.
4008* Actions and Locations:: Using locations in actions.
4009* Location Default Action:: Defining a general way to compute locations.
4010@end menu
4011
342b8b6e 4012@node Location Type
847bf1f5
AD
4013@subsection Data Type of Locations
4014@cindex data type of locations
4015@cindex default location type
4016
4017Defining a data type for locations is much simpler than for semantic values,
4018since all tokens and groupings always use the same type.
4019
50cce58e
PE
4020You can specify the type of locations by defining a macro called
4021@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4022defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4023When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4024four members:
4025
4026@example
6273355b 4027typedef struct YYLTYPE
847bf1f5
AD
4028@{
4029 int first_line;
4030 int first_column;
4031 int last_line;
4032 int last_column;
6273355b 4033@} YYLTYPE;
847bf1f5
AD
4034@end example
4035
d59e456d
AD
4036When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4037initializes all these fields to 1 for @code{yylloc}. To initialize
4038@code{yylloc} with a custom location type (or to chose a different
4039initialization), use the @code{%initial-action} directive. @xref{Initial
4040Action Decl, , Performing Actions before Parsing}.
cd48d21d 4041
342b8b6e 4042@node Actions and Locations
847bf1f5
AD
4043@subsection Actions and Locations
4044@cindex location actions
4045@cindex actions, location
4046@vindex @@$
4047@vindex @@@var{n}
d013372c
AR
4048@vindex @@@var{name}
4049@vindex @@[@var{name}]
847bf1f5
AD
4050
4051Actions are not only useful for defining language semantics, but also for
4052describing the behavior of the output parser with locations.
4053
4054The most obvious way for building locations of syntactic groupings is very
72d2299c 4055similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4056constructs can be used to access the locations of the elements being matched.
4057The location of the @var{n}th component of the right hand side is
4058@code{@@@var{n}}, while the location of the left hand side grouping is
4059@code{@@$}.
4060
d013372c
AR
4061In addition, the named references construct @code{@@@var{name}} and
4062@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4063@xref{Named References}, for more information about using the named
4064references construct.
d013372c 4065
3e259915 4066Here is a basic example using the default data type for locations:
847bf1f5
AD
4067
4068@example
4069@group
5e9b6624
AD
4070exp:
4071 @dots{}
4072| exp '/' exp
4073 @{
4074 @@$.first_column = @@1.first_column;
4075 @@$.first_line = @@1.first_line;
4076 @@$.last_column = @@3.last_column;
4077 @@$.last_line = @@3.last_line;
4078 if ($3)
4079 $$ = $1 / $3;
4080 else
4081 @{
4082 $$ = 1;
4083 fprintf (stderr,
4084 "Division by zero, l%d,c%d-l%d,c%d",
4085 @@3.first_line, @@3.first_column,
4086 @@3.last_line, @@3.last_column);
4087 @}
4088 @}
847bf1f5
AD
4089@end group
4090@end example
4091
3e259915 4092As for semantic values, there is a default action for locations that is
72d2299c 4093run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4094beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4095last symbol.
3e259915 4096
72d2299c 4097With this default action, the location tracking can be fully automatic. The
3e259915
MA
4098example above simply rewrites this way:
4099
4100@example
4101@group
5e9b6624
AD
4102exp:
4103 @dots{}
4104| exp '/' exp
4105 @{
4106 if ($3)
4107 $$ = $1 / $3;
4108 else
4109 @{
4110 $$ = 1;
4111 fprintf (stderr,
4112 "Division by zero, l%d,c%d-l%d,c%d",
4113 @@3.first_line, @@3.first_column,
4114 @@3.last_line, @@3.last_column);
4115 @}
4116 @}
3e259915
MA
4117@end group
4118@end example
847bf1f5 4119
32c29292 4120@vindex yylloc
742e4900 4121It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4122from a semantic action.
4123This location is stored in @code{yylloc}.
4124@xref{Action Features, ,Special Features for Use in Actions}.
4125
342b8b6e 4126@node Location Default Action
847bf1f5
AD
4127@subsection Default Action for Locations
4128@vindex YYLLOC_DEFAULT
8a4281b9 4129@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4130
72d2299c 4131Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4132locations are much more general than semantic values, there is room in
4133the output parser to redefine the default action to take for each
72d2299c 4134rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4135matched, before the associated action is run. It is also invoked
4136while processing a syntax error, to compute the error's location.
8a4281b9 4137Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4138parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4139of that ambiguity.
847bf1f5 4140
3e259915 4141Most of the time, this macro is general enough to suppress location
79282c6c 4142dedicated code from semantic actions.
847bf1f5 4143
72d2299c 4144The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4145the location of the grouping (the result of the computation). When a
766de5eb 4146rule is matched, the second parameter identifies locations of
96b93a3d 4147all right hand side elements of the rule being matched, and the third
8710fc41 4148parameter is the size of the rule's right hand side.
8a4281b9 4149When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4150right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4151When processing a syntax error, the second parameter identifies locations
4152of the symbols that were discarded during error processing, and the third
96b93a3d 4153parameter is the number of discarded symbols.
847bf1f5 4154
766de5eb 4155By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4156
c93f22fc
AD
4157@example
4158@group
4159# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4160do \
4161 if (N) \
4162 @{ \
4163 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4164 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4165 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4166 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4167 @} \
4168 else \
4169 @{ \
4170 (Cur).first_line = (Cur).last_line = \
4171 YYRHSLOC(Rhs, 0).last_line; \
4172 (Cur).first_column = (Cur).last_column = \
4173 YYRHSLOC(Rhs, 0).last_column; \
4174 @} \
4175while (0)
4176@end group
4177@end example
676385e2 4178
aaaa2aae 4179@noindent
766de5eb
PE
4180where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4181in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4182just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4183
3e259915 4184When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4185
3e259915 4186@itemize @bullet
79282c6c 4187@item
72d2299c 4188All arguments are free of side-effects. However, only the first one (the
3e259915 4189result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4190
3e259915 4191@item
766de5eb
PE
4192For consistency with semantic actions, valid indexes within the
4193right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4194valid index, and it refers to the symbol just before the reduction.
4195During error processing @var{n} is always positive.
0ae99356
PE
4196
4197@item
4198Your macro should parenthesize its arguments, if need be, since the
4199actual arguments may not be surrounded by parentheses. Also, your
4200macro should expand to something that can be used as a single
4201statement when it is followed by a semicolon.
3e259915 4202@end itemize
847bf1f5 4203
378e917c 4204@node Named References
a7b15ab9 4205@section Named References
378e917c
JD
4206@cindex named references
4207
a40e77eb
JD
4208As described in the preceding sections, the traditional way to refer to any
4209semantic value or location is a @dfn{positional reference}, which takes the
4210form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4211such a reference is not very descriptive. Moreover, if you later decide to
4212insert or remove symbols in the right-hand side of a grammar rule, the need
4213to renumber such references can be tedious and error-prone.
4214
4215To avoid these issues, you can also refer to a semantic value or location
4216using a @dfn{named reference}. First of all, original symbol names may be
4217used as named references. For example:
378e917c
JD
4218
4219@example
4220@group
4221invocation: op '(' args ')'
4222 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4223@end group
4224@end example
4225
4226@noindent
a40e77eb 4227Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4228
4229@example
4230@group
4231invocation: op '(' args ')'
4232 @{ $$ = new_invocation ($op, $args, @@$); @}
4233@end group
4234@end example
4235
4236@noindent
4237However, sometimes regular symbol names are not sufficient due to
4238ambiguities:
4239
4240@example
4241@group
4242exp: exp '/' exp
4243 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4244
4245exp: exp '/' exp
4246 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4247
4248exp: exp '/' exp
4249 @{ $$ = $1 / $3; @} // No error.
4250@end group
4251@end example
4252
4253@noindent
4254When ambiguity occurs, explicitly declared names may be used for values and
4255locations. Explicit names are declared as a bracketed name after a symbol
4256appearance in rule definitions. For example:
4257@example
4258@group
4259exp[result]: exp[left] '/' exp[right]
4260 @{ $result = $left / $right; @}
4261@end group
4262@end example
4263
4264@noindent
a7b15ab9
JD
4265In order to access a semantic value generated by a mid-rule action, an
4266explicit name may also be declared by putting a bracketed name after the
4267closing brace of the mid-rule action code:
378e917c
JD
4268@example
4269@group
4270exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4271 @{ $res = $left + $right; @}
4272@end group
4273@end example
4274
4275@noindent
4276
4277In references, in order to specify names containing dots and dashes, an explicit
4278bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4279@example
4280@group
762caaf6 4281if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4282 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4283@end group
4284@end example
4285
4286It often happens that named references are followed by a dot, dash or other
4287C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4288@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4289@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4290value. In order to force Bison to recognize @samp{name.suffix} in its
4291entirety as the name of a semantic value, the bracketed syntax
4292@samp{$[name.suffix]} must be used.
4293
4294The named references feature is experimental. More user feedback will help
4295to stabilize it.
378e917c 4296
342b8b6e 4297@node Declarations
bfa74976
RS
4298@section Bison Declarations
4299@cindex declarations, Bison
4300@cindex Bison declarations
4301
4302The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4303used in formulating the grammar and the data types of semantic values.
4304@xref{Symbols}.
4305
4306All token type names (but not single-character literal tokens such as
4307@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4308declared if you need to specify which data type to use for the semantic
4309value (@pxref{Multiple Types, ,More Than One Value Type}).
4310
ff7571c0
JD
4311The first rule in the grammar file also specifies the start symbol, by
4312default. If you want some other symbol to be the start symbol, you
4313must declare it explicitly (@pxref{Language and Grammar, ,Languages
4314and Context-Free Grammars}).
bfa74976
RS
4315
4316@menu
b50d2359 4317* Require Decl:: Requiring a Bison version.
bfa74976
RS
4318* Token Decl:: Declaring terminal symbols.
4319* Precedence Decl:: Declaring terminals with precedence and associativity.
4320* Union Decl:: Declaring the set of all semantic value types.
4321* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4322* Initial Action Decl:: Code run before parsing starts.
72f889cc 4323* Destructor Decl:: Declaring how symbols are freed.
d6328241 4324* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4325* Start Decl:: Specifying the start symbol.
4326* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4327* Push Decl:: Requesting a push parser.
bfa74976 4328* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4329* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4330* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4331@end menu
4332
b50d2359
AD
4333@node Require Decl
4334@subsection Require a Version of Bison
4335@cindex version requirement
4336@cindex requiring a version of Bison
4337@findex %require
4338
4339You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4340the requirement is not met, @command{bison} exits with an error (exit
4341status 63).
b50d2359
AD
4342
4343@example
4344%require "@var{version}"
4345@end example
4346
342b8b6e 4347@node Token Decl
bfa74976
RS
4348@subsection Token Type Names
4349@cindex declaring token type names
4350@cindex token type names, declaring
931c7513 4351@cindex declaring literal string tokens
bfa74976
RS
4352@findex %token
4353
4354The basic way to declare a token type name (terminal symbol) is as follows:
4355
4356@example
4357%token @var{name}
4358@end example
4359
4360Bison will convert this into a @code{#define} directive in
4361the parser, so that the function @code{yylex} (if it is in this file)
4362can use the name @var{name} to stand for this token type's code.
4363
d78f0ac9
AD
4364Alternatively, you can use @code{%left}, @code{%right},
4365@code{%precedence}, or
14ded682
AD
4366@code{%nonassoc} instead of @code{%token}, if you wish to specify
4367associativity and precedence. @xref{Precedence Decl, ,Operator
4368Precedence}.
bfa74976
RS
4369
4370You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4371a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4372following the token name:
bfa74976
RS
4373
4374@example
4375%token NUM 300
1452af69 4376%token XNUM 0x12d // a GNU extension
bfa74976
RS
4377@end example
4378
4379@noindent
4380It is generally best, however, to let Bison choose the numeric codes for
4381all token types. Bison will automatically select codes that don't conflict
e966383b 4382with each other or with normal characters.
bfa74976
RS
4383
4384In the event that the stack type is a union, you must augment the
4385@code{%token} or other token declaration to include the data type
704a47c4
AD
4386alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4387Than One Value Type}).
bfa74976
RS
4388
4389For example:
4390
4391@example
4392@group
4393%union @{ /* define stack type */
4394 double val;
4395 symrec *tptr;
4396@}
4397%token <val> NUM /* define token NUM and its type */
4398@end group
4399@end example
4400
931c7513
RS
4401You can associate a literal string token with a token type name by
4402writing the literal string at the end of a @code{%token}
4403declaration which declares the name. For example:
4404
4405@example
4406%token arrow "=>"
4407@end example
4408
4409@noindent
4410For example, a grammar for the C language might specify these names with
4411equivalent literal string tokens:
4412
4413@example
4414%token <operator> OR "||"
4415%token <operator> LE 134 "<="
4416%left OR "<="
4417@end example
4418
4419@noindent
4420Once you equate the literal string and the token name, you can use them
4421interchangeably in further declarations or the grammar rules. The
4422@code{yylex} function can use the token name or the literal string to
4423obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4424Syntax error messages passed to @code{yyerror} from the parser will reference
4425the literal string instead of the token name.
4426
4427The token numbered as 0 corresponds to end of file; the following line
4428allows for nicer error messages referring to ``end of file'' instead
4429of ``$end'':
4430
4431@example
4432%token END 0 "end of file"
4433@end example
931c7513 4434
342b8b6e 4435@node Precedence Decl
bfa74976
RS
4436@subsection Operator Precedence
4437@cindex precedence declarations
4438@cindex declaring operator precedence
4439@cindex operator precedence, declaring
4440
d78f0ac9
AD
4441Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4442@code{%precedence} declaration to
bfa74976
RS
4443declare a token and specify its precedence and associativity, all at
4444once. These are called @dfn{precedence declarations}.
704a47c4
AD
4445@xref{Precedence, ,Operator Precedence}, for general information on
4446operator precedence.
bfa74976 4447
ab7f29f8 4448The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4449@code{%token}: either
4450
4451@example
4452%left @var{symbols}@dots{}
4453@end example
4454
4455@noindent
4456or
4457
4458@example
4459%left <@var{type}> @var{symbols}@dots{}
4460@end example
4461
4462And indeed any of these declarations serves the purposes of @code{%token}.
4463But in addition, they specify the associativity and relative precedence for
4464all the @var{symbols}:
4465
4466@itemize @bullet
4467@item
4468The associativity of an operator @var{op} determines how repeated uses
4469of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4470@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4471grouping @var{y} with @var{z} first. @code{%left} specifies
4472left-associativity (grouping @var{x} with @var{y} first) and
4473@code{%right} specifies right-associativity (grouping @var{y} with
4474@var{z} first). @code{%nonassoc} specifies no associativity, which
4475means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4476considered a syntax error.
4477
d78f0ac9
AD
4478@code{%precedence} gives only precedence to the @var{symbols}, and
4479defines no associativity at all. Use this to define precedence only,
4480and leave any potential conflict due to associativity enabled.
4481
bfa74976
RS
4482@item
4483The precedence of an operator determines how it nests with other operators.
4484All the tokens declared in a single precedence declaration have equal
4485precedence and nest together according to their associativity.
4486When two tokens declared in different precedence declarations associate,
4487the one declared later has the higher precedence and is grouped first.
4488@end itemize
4489
ab7f29f8
JD
4490For backward compatibility, there is a confusing difference between the
4491argument lists of @code{%token} and precedence declarations.
4492Only a @code{%token} can associate a literal string with a token type name.
4493A precedence declaration always interprets a literal string as a reference to a
4494separate token.
4495For example:
4496
4497@example
4498%left OR "<=" // Does not declare an alias.
4499%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4500@end example
4501
342b8b6e 4502@node Union Decl
bfa74976
RS
4503@subsection The Collection of Value Types
4504@cindex declaring value types
4505@cindex value types, declaring
4506@findex %union
4507
287c78f6
PE
4508The @code{%union} declaration specifies the entire collection of
4509possible data types for semantic values. The keyword @code{%union} is
4510followed by braced code containing the same thing that goes inside a
4511@code{union} in C@.
bfa74976
RS
4512
4513For example:
4514
4515@example
4516@group
4517%union @{
4518 double val;
4519 symrec *tptr;
4520@}
4521@end group
4522@end example
4523
4524@noindent
4525This says that the two alternative types are @code{double} and @code{symrec
4526*}. They are given names @code{val} and @code{tptr}; these names are used
4527in the @code{%token} and @code{%type} declarations to pick one of the types
4528for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4529
8a4281b9 4530As an extension to POSIX, a tag is allowed after the
6273355b
PE
4531@code{union}. For example:
4532
4533@example
4534@group
4535%union value @{
4536 double val;
4537 symrec *tptr;
4538@}
4539@end group
4540@end example
4541
d6ca7905 4542@noindent
6273355b
PE
4543specifies the union tag @code{value}, so the corresponding C type is
4544@code{union value}. If you do not specify a tag, it defaults to
4545@code{YYSTYPE}.
4546
8a4281b9 4547As another extension to POSIX, you may specify multiple
d6ca7905
PE
4548@code{%union} declarations; their contents are concatenated. However,
4549only the first @code{%union} declaration can specify a tag.
4550
6273355b 4551Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4552a semicolon after the closing brace.
4553
ddc8ede1
PE
4554Instead of @code{%union}, you can define and use your own union type
4555@code{YYSTYPE} if your grammar contains at least one
4556@samp{<@var{type}>} tag. For example, you can put the following into
4557a header file @file{parser.h}:
4558
4559@example
4560@group
4561union YYSTYPE @{
4562 double val;
4563 symrec *tptr;
4564@};
4565typedef union YYSTYPE YYSTYPE;
4566@end group
4567@end example
4568
4569@noindent
4570and then your grammar can use the following
4571instead of @code{%union}:
4572
4573@example
4574@group
4575%@{
4576#include "parser.h"
4577%@}
4578%type <val> expr
4579%token <tptr> ID
4580@end group
4581@end example
4582
342b8b6e 4583@node Type Decl
bfa74976
RS
4584@subsection Nonterminal Symbols
4585@cindex declaring value types, nonterminals
4586@cindex value types, nonterminals, declaring
4587@findex %type
4588
4589@noindent
4590When you use @code{%union} to specify multiple value types, you must
4591declare the value type of each nonterminal symbol for which values are
4592used. This is done with a @code{%type} declaration, like this:
4593
4594@example
4595%type <@var{type}> @var{nonterminal}@dots{}
4596@end example
4597
4598@noindent
704a47c4
AD
4599Here @var{nonterminal} is the name of a nonterminal symbol, and
4600@var{type} is the name given in the @code{%union} to the alternative
4601that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4602can give any number of nonterminal symbols in the same @code{%type}
4603declaration, if they have the same value type. Use spaces to separate
4604the symbol names.
bfa74976 4605
931c7513
RS
4606You can also declare the value type of a terminal symbol. To do this,
4607use the same @code{<@var{type}>} construction in a declaration for the
4608terminal symbol. All kinds of token declarations allow
4609@code{<@var{type}>}.
4610
18d192f0
AD
4611@node Initial Action Decl
4612@subsection Performing Actions before Parsing
4613@findex %initial-action
4614
4615Sometimes your parser needs to perform some initializations before
4616parsing. The @code{%initial-action} directive allows for such arbitrary
4617code.
4618
4619@deffn {Directive} %initial-action @{ @var{code} @}
4620@findex %initial-action
287c78f6 4621Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4622@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4623@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4624@code{%parse-param}.
18d192f0
AD
4625@end deffn
4626
451364ed
AD
4627For instance, if your locations use a file name, you may use
4628
4629@example
48b16bbc 4630%parse-param @{ char const *file_name @};
451364ed
AD
4631%initial-action
4632@{
4626a15d 4633 @@$.initialize (file_name);
451364ed
AD
4634@};
4635@end example
4636
18d192f0 4637
72f889cc
AD
4638@node Destructor Decl
4639@subsection Freeing Discarded Symbols
4640@cindex freeing discarded symbols
4641@findex %destructor
12e35840 4642@findex <*>
3ebecc24 4643@findex <>
a85284cf
AD
4644During error recovery (@pxref{Error Recovery}), symbols already pushed
4645on the stack and tokens coming from the rest of the file are discarded
4646until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4647or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4648symbols on the stack must be discarded. Even if the parser succeeds, it
4649must discard the start symbol.
258b75ca
PE
4650
4651When discarded symbols convey heap based information, this memory is
4652lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4653in traditional compilers, it is unacceptable for programs like shells or
4654protocol implementations that may parse and execute indefinitely.
258b75ca 4655
a85284cf
AD
4656The @code{%destructor} directive defines code that is called when a
4657symbol is automatically discarded.
72f889cc
AD
4658
4659@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4660@findex %destructor
287c78f6
PE
4661Invoke the braced @var{code} whenever the parser discards one of the
4662@var{symbols}.
4b367315 4663Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4664with the discarded symbol, and @code{@@$} designates its location.
4665The additional parser parameters are also available (@pxref{Parser Function, ,
4666The Parser Function @code{yyparse}}).
ec5479ce 4667
b2a0b7ca
JD
4668When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4669per-symbol @code{%destructor}.
4670You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4671tag among @var{symbols}.
b2a0b7ca 4672In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4673grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4674per-symbol @code{%destructor}.
4675
12e35840 4676Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4677(These default forms are experimental.
4678More user feedback will help to determine whether they should become permanent
4679features.)
3ebecc24 4680You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4681exactly one @code{%destructor} declaration in your grammar file.
4682The parser will invoke the @var{code} associated with one of these whenever it
4683discards any user-defined grammar symbol that has no per-symbol and no per-type
4684@code{%destructor}.
4685The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4686symbol for which you have formally declared a semantic type tag (@code{%type}
4687counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4688The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4689symbol that has no declared semantic type tag.
72f889cc
AD
4690@end deffn
4691
b2a0b7ca 4692@noindent
12e35840 4693For example:
72f889cc 4694
c93f22fc 4695@example
ec5479ce
JD
4696%union @{ char *string; @}
4697%token <string> STRING1
4698%token <string> STRING2
4699%type <string> string1
4700%type <string> string2
b2a0b7ca
JD
4701%union @{ char character; @}
4702%token <character> CHR
4703%type <character> chr
12e35840
JD
4704%token TAGLESS
4705
b2a0b7ca 4706%destructor @{ @} <character>
12e35840
JD
4707%destructor @{ free ($$); @} <*>
4708%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4709%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4710@end example
72f889cc
AD
4711
4712@noindent
b2a0b7ca
JD
4713guarantees that, when the parser discards any user-defined symbol that has a
4714semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4715to @code{free} by default.
ec5479ce
JD
4716However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4717prints its line number to @code{stdout}.
4718It performs only the second @code{%destructor} in this case, so it invokes
4719@code{free} only once.
12e35840
JD
4720Finally, the parser merely prints a message whenever it discards any symbol,
4721such as @code{TAGLESS}, that has no semantic type tag.
4722
4723A Bison-generated parser invokes the default @code{%destructor}s only for
4724user-defined as opposed to Bison-defined symbols.
4725For example, the parser will not invoke either kind of default
4726@code{%destructor} for the special Bison-defined symbols @code{$accept},
4727@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4728none of which you can reference in your grammar.
4729It also will not invoke either for the @code{error} token (@pxref{Table of
4730Symbols, ,error}), which is always defined by Bison regardless of whether you
4731reference it in your grammar.
4732However, it may invoke one of them for the end token (token 0) if you
4733redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4734
c93f22fc 4735@example
3508ce36 4736%token END 0
c93f22fc 4737@end example
3508ce36 4738
12e35840
JD
4739@cindex actions in mid-rule
4740@cindex mid-rule actions
4741Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4742mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4743That is, Bison does not consider a mid-rule to have a semantic value if you
4744do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4745(where @var{n} is the right-hand side symbol position of the mid-rule) in
4746any later action in that rule. However, if you do reference either, the
4747Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4748it discards the mid-rule symbol.
12e35840 4749
3508ce36
JD
4750@ignore
4751@noindent
4752In the future, it may be possible to redefine the @code{error} token as a
4753nonterminal that captures the discarded symbols.
4754In that case, the parser will invoke the default destructor for it as well.
4755@end ignore
4756
e757bb10
AD
4757@sp 1
4758
4759@cindex discarded symbols
4760@dfn{Discarded symbols} are the following:
4761
4762@itemize
4763@item
4764stacked symbols popped during the first phase of error recovery,
4765@item
4766incoming terminals during the second phase of error recovery,
4767@item
742e4900 4768the current lookahead and the entire stack (except the current
9d9b8b70 4769right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4770@item
4771the start symbol, when the parser succeeds.
e757bb10
AD
4772@end itemize
4773
9d9b8b70
PE
4774The parser can @dfn{return immediately} because of an explicit call to
4775@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4776exhaustion.
4777
29553547 4778Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4779error via @code{YYERROR} are not discarded automatically. As a rule
4780of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4781the memory.
e757bb10 4782
342b8b6e 4783@node Expect Decl
bfa74976
RS
4784@subsection Suppressing Conflict Warnings
4785@cindex suppressing conflict warnings
4786@cindex preventing warnings about conflicts
4787@cindex warnings, preventing
4788@cindex conflicts, suppressing warnings of
4789@findex %expect
d6328241 4790@findex %expect-rr
bfa74976
RS
4791
4792Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4793(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4794have harmless shift/reduce conflicts which are resolved in a predictable
4795way and would be difficult to eliminate. It is desirable to suppress
4796the warning about these conflicts unless the number of conflicts
4797changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4798
4799The declaration looks like this:
4800
4801@example
4802%expect @var{n}
4803@end example
4804
035aa4a0
PE
4805Here @var{n} is a decimal integer. The declaration says there should
4806be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4807Bison reports an error if the number of shift/reduce conflicts differs
4808from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4809
eb45ef3b 4810For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4811serious, and should be eliminated entirely. Bison will always report
8a4281b9 4812reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4813parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4814there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4815also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4816in GLR parsers, using the declaration:
d6328241
PH
4817
4818@example
4819%expect-rr @var{n}
4820@end example
4821
bfa74976
RS
4822In general, using @code{%expect} involves these steps:
4823
4824@itemize @bullet
4825@item
4826Compile your grammar without @code{%expect}. Use the @samp{-v} option
4827to get a verbose list of where the conflicts occur. Bison will also
4828print the number of conflicts.
4829
4830@item
4831Check each of the conflicts to make sure that Bison's default
4832resolution is what you really want. If not, rewrite the grammar and
4833go back to the beginning.
4834
4835@item
4836Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4837number which Bison printed. With GLR parsers, add an
035aa4a0 4838@code{%expect-rr} declaration as well.
bfa74976
RS
4839@end itemize
4840
93d7dde9
JD
4841Now Bison will report an error if you introduce an unexpected conflict,
4842but will keep silent otherwise.
bfa74976 4843
342b8b6e 4844@node Start Decl
bfa74976
RS
4845@subsection The Start-Symbol
4846@cindex declaring the start symbol
4847@cindex start symbol, declaring
4848@cindex default start symbol
4849@findex %start
4850
4851Bison assumes by default that the start symbol for the grammar is the first
4852nonterminal specified in the grammar specification section. The programmer
4853may override this restriction with the @code{%start} declaration as follows:
4854
4855@example
4856%start @var{symbol}
4857@end example
4858
342b8b6e 4859@node Pure Decl
bfa74976
RS
4860@subsection A Pure (Reentrant) Parser
4861@cindex reentrant parser
4862@cindex pure parser
d9df47b6 4863@findex %define api.pure
bfa74976
RS
4864
4865A @dfn{reentrant} program is one which does not alter in the course of
4866execution; in other words, it consists entirely of @dfn{pure} (read-only)
4867code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4868for example, a nonreentrant program may not be safe to call from a signal
4869handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4870program must be called only within interlocks.
4871
70811b85 4872Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4873suitable for most uses, and it permits compatibility with Yacc. (The
4874standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4875statically allocated variables for communication with @code{yylex},
4876including @code{yylval} and @code{yylloc}.)
bfa74976 4877
70811b85 4878Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4879declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4880reentrant. It looks like this:
bfa74976
RS
4881
4882@example
d9df47b6 4883%define api.pure
bfa74976
RS
4884@end example
4885
70811b85
RS
4886The result is that the communication variables @code{yylval} and
4887@code{yylloc} become local variables in @code{yyparse}, and a different
4888calling convention is used for the lexical analyzer function
4889@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4890Parsers}, for the details of this. The variable @code{yynerrs}
4891becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4892of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4893Reporting Function @code{yyerror}}). The convention for calling
4894@code{yyparse} itself is unchanged.
4895
4896Whether the parser is pure has nothing to do with the grammar rules.
4897You can generate either a pure parser or a nonreentrant parser from any
4898valid grammar.
bfa74976 4899
9987d1b3
JD
4900@node Push Decl
4901@subsection A Push Parser
4902@cindex push parser
4903@cindex push parser
67212941 4904@findex %define api.push-pull
9987d1b3 4905
59da312b
JD
4906(The current push parsing interface is experimental and may evolve.
4907More user feedback will help to stabilize it.)
4908
f4101aa6
AD
4909A pull parser is called once and it takes control until all its input
4910is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4911each time a new token is made available.
4912
f4101aa6 4913A push parser is typically useful when the parser is part of a
9987d1b3 4914main event loop in the client's application. This is typically
f4101aa6
AD
4915a requirement of a GUI, when the main event loop needs to be triggered
4916within a certain time period.
9987d1b3 4917
d782395d
JD
4918Normally, Bison generates a pull parser.
4919The following Bison declaration says that you want the parser to be a push
35c1e5f0 4920parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4921
4922@example
cf499cff 4923%define api.push-pull push
9987d1b3
JD
4924@end example
4925
4926In almost all cases, you want to ensure that your push parser is also
4927a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4928time you should create an impure push parser is to have backwards
9987d1b3
JD
4929compatibility with the impure Yacc pull mode interface. Unless you know
4930what you are doing, your declarations should look like this:
4931
4932@example
d9df47b6 4933%define api.pure
cf499cff 4934%define api.push-pull push
9987d1b3
JD
4935@end example
4936
f4101aa6
AD
4937There is a major notable functional difference between the pure push parser
4938and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4939many parser instances, of the same type of parser, in memory at the same time.
4940An impure push parser should only use one parser at a time.
4941
4942When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4943the generated parser. @code{yypstate} is a structure that the generated
4944parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4945function that will create a new parser instance. @code{yypstate_delete}
4946will free the resources associated with the corresponding parser instance.
f4101aa6 4947Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4948token is available to provide the parser. A trivial example
4949of using a pure push parser would look like this:
4950
4951@example
4952int status;
4953yypstate *ps = yypstate_new ();
4954do @{
4955 status = yypush_parse (ps, yylex (), NULL);
4956@} while (status == YYPUSH_MORE);
4957yypstate_delete (ps);
4958@end example
4959
4960If the user decided to use an impure push parser, a few things about
f4101aa6 4961the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4962a global variable instead of a variable in the @code{yypush_parse} function.
4963For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4964changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4965example would thus look like this:
4966
4967@example
4968extern int yychar;
4969int status;
4970yypstate *ps = yypstate_new ();
4971do @{
4972 yychar = yylex ();
4973 status = yypush_parse (ps);
4974@} while (status == YYPUSH_MORE);
4975yypstate_delete (ps);
4976@end example
4977
f4101aa6 4978That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4979for use by the next invocation of the @code{yypush_parse} function.
4980
f4101aa6 4981Bison also supports both the push parser interface along with the pull parser
9987d1b3 4982interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4983you should replace the @samp{%define api.push-pull push} declaration with the
4984@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4985the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4986and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4987would be used. However, the user should note that it is implemented in the
d782395d
JD
4988generated parser by calling @code{yypull_parse}.
4989This makes the @code{yyparse} function that is generated with the
cf499cff 4990@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4991@code{yyparse} function. If the user
4992calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4993stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4994and then @code{yypull_parse} the rest of the input stream. If you would like
4995to switch back and forth between between parsing styles, you would have to
4996write your own @code{yypull_parse} function that knows when to quit looking
4997for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4998like this:
4999
5000@example
5001yypstate *ps = yypstate_new ();
5002yypull_parse (ps); /* Will call the lexer */
5003yypstate_delete (ps);
5004@end example
5005
67501061 5006Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5007the generated parser with @samp{%define api.push-pull both} as it did for
5008@samp{%define api.push-pull push}.
9987d1b3 5009
342b8b6e 5010@node Decl Summary
bfa74976
RS
5011@subsection Bison Declaration Summary
5012@cindex Bison declaration summary
5013@cindex declaration summary
5014@cindex summary, Bison declaration
5015
d8988b2f 5016Here is a summary of the declarations used to define a grammar:
bfa74976 5017
18b519c0 5018@deffn {Directive} %union
bfa74976
RS
5019Declare the collection of data types that semantic values may have
5020(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5021@end deffn
bfa74976 5022
18b519c0 5023@deffn {Directive} %token
bfa74976
RS
5024Declare a terminal symbol (token type name) with no precedence
5025or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5026@end deffn
bfa74976 5027
18b519c0 5028@deffn {Directive} %right
bfa74976
RS
5029Declare a terminal symbol (token type name) that is right-associative
5030(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5031@end deffn
bfa74976 5032
18b519c0 5033@deffn {Directive} %left
bfa74976
RS
5034Declare a terminal symbol (token type name) that is left-associative
5035(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5036@end deffn
bfa74976 5037
18b519c0 5038@deffn {Directive} %nonassoc
bfa74976 5039Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5040(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5041Using it in a way that would be associative is a syntax error.
5042@end deffn
5043
91d2c560 5044@ifset defaultprec
39a06c25 5045@deffn {Directive} %default-prec
22fccf95 5046Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5047(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5048@end deffn
91d2c560 5049@end ifset
bfa74976 5050
18b519c0 5051@deffn {Directive} %type
bfa74976
RS
5052Declare the type of semantic values for a nonterminal symbol
5053(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5054@end deffn
bfa74976 5055
18b519c0 5056@deffn {Directive} %start
89cab50d
AD
5057Specify the grammar's start symbol (@pxref{Start Decl, ,The
5058Start-Symbol}).
18b519c0 5059@end deffn
bfa74976 5060
18b519c0 5061@deffn {Directive} %expect
bfa74976
RS
5062Declare the expected number of shift-reduce conflicts
5063(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5064@end deffn
5065
bfa74976 5066
d8988b2f
AD
5067@sp 1
5068@noindent
5069In order to change the behavior of @command{bison}, use the following
5070directives:
5071
148d66d8 5072@deffn {Directive} %code @{@var{code}@}
e0c07222 5073@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5074@findex %code
e0c07222
JD
5075Insert @var{code} verbatim into the output parser source at the
5076default location or at the location specified by @var{qualifier}.
5077@xref{%code Summary}.
148d66d8
JD
5078@end deffn
5079
18b519c0 5080@deffn {Directive} %debug
fa819509
AD
5081Instrument the output parser for traces. Obsoleted by @samp{%define
5082parse.trace}.
ec3bc396 5083@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5084@end deffn
d8988b2f 5085
35c1e5f0
JD
5086@deffn {Directive} %define @var{variable}
5087@deffnx {Directive} %define @var{variable} @var{value}
5088@deffnx {Directive} %define @var{variable} "@var{value}"
5089Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5090@end deffn
5091
5092@deffn {Directive} %defines
5093Write a parser header file containing macro definitions for the token
5094type names defined in the grammar as well as a few other declarations.
5095If the parser implementation file is named @file{@var{name}.c} then
5096the parser header file is named @file{@var{name}.h}.
5097
5098For C parsers, the parser header file declares @code{YYSTYPE} unless
5099@code{YYSTYPE} is already defined as a macro or you have used a
5100@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5101you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5102Value Type}) with components that require other definitions, or if you
5103have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5104Type, ,Data Types of Semantic Values}), you need to arrange for these
5105definitions to be propagated to all modules, e.g., by putting them in
5106a prerequisite header that is included both by your parser and by any
5107other module that needs @code{YYSTYPE}.
5108
5109Unless your parser is pure, the parser header file declares
5110@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5111(Reentrant) Parser}.
5112
5113If you have also used locations, the parser header file declares
303834cc
JD
5114@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5115@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5116
5117This parser header file is normally essential if you wish to put the
5118definition of @code{yylex} in a separate source file, because
5119@code{yylex} typically needs to be able to refer to the
5120above-mentioned declarations and to the token type codes. @xref{Token
5121Values, ,Semantic Values of Tokens}.
5122
5123@findex %code requires
5124@findex %code provides
5125If you have declared @code{%code requires} or @code{%code provides}, the output
5126header also contains their code.
5127@xref{%code Summary}.
5128@end deffn
5129
5130@deffn {Directive} %defines @var{defines-file}
5131Same as above, but save in the file @var{defines-file}.
5132@end deffn
5133
5134@deffn {Directive} %destructor
5135Specify how the parser should reclaim the memory associated to
5136discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5137@end deffn
5138
5139@deffn {Directive} %file-prefix "@var{prefix}"
5140Specify a prefix to use for all Bison output file names. The names
5141are chosen as if the grammar file were named @file{@var{prefix}.y}.
5142@end deffn
5143
5144@deffn {Directive} %language "@var{language}"
5145Specify the programming language for the generated parser. Currently
5146supported languages include C, C++, and Java.
5147@var{language} is case-insensitive.
5148
5149This directive is experimental and its effect may be modified in future
5150releases.
5151@end deffn
5152
5153@deffn {Directive} %locations
5154Generate the code processing the locations (@pxref{Action Features,
5155,Special Features for Use in Actions}). This mode is enabled as soon as
5156the grammar uses the special @samp{@@@var{n}} tokens, but if your
5157grammar does not use it, using @samp{%locations} allows for more
5158accurate syntax error messages.
5159@end deffn
5160
5161@deffn {Directive} %name-prefix "@var{prefix}"
5162Rename the external symbols used in the parser so that they start with
5163@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5164in C parsers
5165is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5166@code{yylval}, @code{yychar}, @code{yydebug}, and
5167(if locations are used) @code{yylloc}. If you use a push parser,
5168@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5169@code{yypstate_new} and @code{yypstate_delete} will
5170also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5171names become @code{c_parse}, @code{c_lex}, and so on.
5172For C++ parsers, see the @samp{%define api.namespace} documentation in this
5173section.
5174@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5175@end deffn
5176
5177@ifset defaultprec
5178@deffn {Directive} %no-default-prec
5179Do not assign a precedence to rules lacking an explicit @code{%prec}
5180modifier (@pxref{Contextual Precedence, ,Context-Dependent
5181Precedence}).
5182@end deffn
5183@end ifset
5184
5185@deffn {Directive} %no-lines
5186Don't generate any @code{#line} preprocessor commands in the parser
5187implementation file. Ordinarily Bison writes these commands in the
5188parser implementation file so that the C compiler and debuggers will
5189associate errors and object code with your source file (the grammar
5190file). This directive causes them to associate errors with the parser
5191implementation file, treating it as an independent source file in its
5192own right.
5193@end deffn
5194
5195@deffn {Directive} %output "@var{file}"
5196Specify @var{file} for the parser implementation file.
5197@end deffn
5198
5199@deffn {Directive} %pure-parser
5200Deprecated version of @samp{%define api.pure} (@pxref{%define
5201Summary,,api.pure}), for which Bison is more careful to warn about
5202unreasonable usage.
5203@end deffn
5204
5205@deffn {Directive} %require "@var{version}"
5206Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5207Require a Version of Bison}.
5208@end deffn
5209
5210@deffn {Directive} %skeleton "@var{file}"
5211Specify the skeleton to use.
5212
5213@c You probably don't need this option unless you are developing Bison.
5214@c You should use @code{%language} if you want to specify the skeleton for a
5215@c different language, because it is clearer and because it will always choose the
5216@c correct skeleton for non-deterministic or push parsers.
5217
5218If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5219file in the Bison installation directory.
5220If it does, @var{file} is an absolute file name or a file name relative to the
5221directory of the grammar file.
5222This is similar to how most shells resolve commands.
5223@end deffn
5224
5225@deffn {Directive} %token-table
5226Generate an array of token names in the parser implementation file.
5227The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5228the name of the token whose internal Bison token code number is
5229@var{i}. The first three elements of @code{yytname} correspond to the
5230predefined tokens @code{"$end"}, @code{"error"}, and
5231@code{"$undefined"}; after these come the symbols defined in the
5232grammar file.
5233
5234The name in the table includes all the characters needed to represent
5235the token in Bison. For single-character literals and literal
5236strings, this includes the surrounding quoting characters and any
5237escape sequences. For example, the Bison single-character literal
5238@code{'+'} corresponds to a three-character name, represented in C as
5239@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5240corresponds to a five-character name, represented in C as
5241@code{"\"\\\\/\""}.
5242
5243When you specify @code{%token-table}, Bison also generates macro
5244definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5245@code{YYNRULES}, and @code{YYNSTATES}:
5246
5247@table @code
5248@item YYNTOKENS
5249The highest token number, plus one.
5250@item YYNNTS
5251The number of nonterminal symbols.
5252@item YYNRULES
5253The number of grammar rules,
5254@item YYNSTATES
5255The number of parser states (@pxref{Parser States}).
5256@end table
5257@end deffn
5258
5259@deffn {Directive} %verbose
5260Write an extra output file containing verbose descriptions of the
5261parser states and what is done for each type of lookahead token in
5262that state. @xref{Understanding, , Understanding Your Parser}, for more
5263information.
5264@end deffn
5265
5266@deffn {Directive} %yacc
5267Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5268including its naming conventions. @xref{Bison Options}, for more.
5269@end deffn
5270
5271
5272@node %define Summary
5273@subsection %define Summary
51151d91
JD
5274
5275There are many features of Bison's behavior that can be controlled by
5276assigning the feature a single value. For historical reasons, some
5277such features are assigned values by dedicated directives, such as
5278@code{%start}, which assigns the start symbol. However, newer such
5279features are associated with variables, which are assigned by the
5280@code{%define} directive:
5281
c1d19e10 5282@deffn {Directive} %define @var{variable}
cf499cff 5283@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5284@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5285Define @var{variable} to @var{value}.
9611cfa2 5286
51151d91
JD
5287@var{value} must be placed in quotation marks if it contains any
5288character other than a letter, underscore, period, or non-initial dash
5289or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5290to specifying @code{""}.
9611cfa2 5291
51151d91
JD
5292It is an error if a @var{variable} is defined by @code{%define}
5293multiple times, but see @ref{Bison Options,,-D
5294@var{name}[=@var{value}]}.
5295@end deffn
cf499cff 5296
51151d91
JD
5297The rest of this section summarizes variables and values that
5298@code{%define} accepts.
9611cfa2 5299
51151d91
JD
5300Some @var{variable}s take Boolean values. In this case, Bison will
5301complain if the variable definition does not meet one of the following
5302four conditions:
9611cfa2
JD
5303
5304@enumerate
cf499cff 5305@item @code{@var{value}} is @code{true}
9611cfa2 5306
cf499cff
JD
5307@item @code{@var{value}} is omitted (or @code{""} is specified).
5308This is equivalent to @code{true}.
9611cfa2 5309
cf499cff 5310@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5311
5312@item @var{variable} is never defined.
c6abeab1 5313In this case, Bison selects a default value.
9611cfa2 5314@end enumerate
148d66d8 5315
c6abeab1
JD
5316What @var{variable}s are accepted, as well as their meanings and default
5317values, depend on the selected target language and/or the parser
5318skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5319Summary,,%skeleton}).
5320Unaccepted @var{variable}s produce an error.
793fbca5
JD
5321Some of the accepted @var{variable}s are:
5322
fa819509 5323@table @code
6b5a0de9 5324@c ================================================== api.namespace
67501061
AD
5325@item api.namespace
5326@findex %define api.namespace
5327@itemize
5328@item Languages(s): C++
5329
f1b238df 5330@item Purpose: Specify the namespace for the parser class.
67501061
AD
5331For example, if you specify:
5332
c93f22fc 5333@example
67501061 5334%define api.namespace "foo::bar"
c93f22fc 5335@end example
67501061
AD
5336
5337Bison uses @code{foo::bar} verbatim in references such as:
5338
c93f22fc 5339@example
67501061 5340foo::bar::parser::semantic_type
c93f22fc 5341@end example
67501061
AD
5342
5343However, to open a namespace, Bison removes any leading @code{::} and then
5344splits on any remaining occurrences:
5345
c93f22fc 5346@example
67501061
AD
5347namespace foo @{ namespace bar @{
5348 class position;
5349 class location;
5350@} @}
c93f22fc 5351@end example
67501061
AD
5352
5353@item Accepted Values:
5354Any absolute or relative C++ namespace reference without a trailing
5355@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5356
5357@item Default Value:
5358The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5359This usage of @code{%name-prefix} is for backward compatibility and can
5360be confusing since @code{%name-prefix} also specifies the textual prefix
5361for the lexical analyzer function. Thus, if you specify
5362@code{%name-prefix}, it is best to also specify @samp{%define
5363api.namespace} so that @code{%name-prefix} @emph{only} affects the
5364lexical analyzer function. For example, if you specify:
5365
c93f22fc 5366@example
67501061
AD
5367%define api.namespace "foo"
5368%name-prefix "bar::"
c93f22fc 5369@end example
67501061
AD
5370
5371The parser namespace is @code{foo} and @code{yylex} is referenced as
5372@code{bar::lex}.
5373@end itemize
5374@c namespace
5375
5376
5377
5378@c ================================================== api.pure
d9df47b6
JD
5379@item api.pure
5380@findex %define api.pure
5381
5382@itemize @bullet
5383@item Language(s): C
5384
5385@item Purpose: Request a pure (reentrant) parser program.
5386@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5387
5388@item Accepted Values: Boolean
5389
cf499cff 5390@item Default Value: @code{false}
d9df47b6 5391@end itemize
71b00ed8 5392@c api.pure
d9df47b6 5393
67501061
AD
5394
5395
5396@c ================================================== api.push-pull
67212941
JD
5397@item api.push-pull
5398@findex %define api.push-pull
793fbca5
JD
5399
5400@itemize @bullet
eb45ef3b 5401@item Language(s): C (deterministic parsers only)
793fbca5 5402
f1b238df 5403@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5404@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5405(The current push parsing interface is experimental and may evolve.
5406More user feedback will help to stabilize it.)
793fbca5 5407
cf499cff 5408@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5409
cf499cff 5410@item Default Value: @code{pull}
793fbca5 5411@end itemize
67212941 5412@c api.push-pull
71b00ed8 5413
6b5a0de9
AD
5414
5415
5416@c ================================================== api.tokens.prefix
4c6622c2
AD
5417@item api.tokens.prefix
5418@findex %define api.tokens.prefix
5419
5420@itemize
5421@item Languages(s): all
5422
5423@item Purpose:
5424Add a prefix to the token names when generating their definition in the
5425target language. For instance
5426
5427@example
5428%token FILE for ERROR
5429%define api.tokens.prefix "TOK_"
5430%%
5431start: FILE for ERROR;
5432@end example
5433
5434@noindent
5435generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5436and @code{TOK_ERROR} in the generated source files. In particular, the
5437scanner must use these prefixed token names, while the grammar itself
5438may still use the short names (as in the sample rule given above). The
5439generated informational files (@file{*.output}, @file{*.xml},
5440@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5441and @ref{Calc++ Scanner}, for a complete example.
5442
5443@item Accepted Values:
5444Any string. Should be a valid identifier prefix in the target language,
5445in other words, it should typically be an identifier itself (sequence of
5446letters, underscores, and ---not at the beginning--- digits).
5447
5448@item Default Value:
5449empty
5450@end itemize
5451@c api.tokens.prefix
5452
5453
3cdc21cf 5454@c ================================================== lex_symbol
84072495 5455@item lex_symbol
3cdc21cf
AD
5456@findex %define lex_symbol
5457
5458@itemize @bullet
5459@item Language(s):
5460C++
5461
5462@item Purpose:
5463When variant-based semantic values are enabled (@pxref{C++ Variants}),
5464request that symbols be handled as a whole (type, value, and possibly
5465location) in the scanner. @xref{Complete Symbols}, for details.
5466
5467@item Accepted Values:
5468Boolean.
5469
5470@item Default Value:
5471@code{false}
5472@end itemize
5473@c lex_symbol
5474
5475
6b5a0de9
AD
5476@c ================================================== lr.default-reductions
5477
5bab9d08 5478@item lr.default-reductions
5bab9d08 5479@findex %define lr.default-reductions
eb45ef3b
JD
5480
5481@itemize @bullet
5482@item Language(s): all
5483
fcf834f9 5484@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5485contain default reductions. @xref{Default Reductions}. (The ability to
5486specify where default reductions should be used is experimental. More user
5487feedback will help to stabilize it.)
eb45ef3b 5488
f0ad1b2f 5489@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5490@item Default Value:
5491@itemize
cf499cff 5492@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5493@item @code{most} otherwise.
eb45ef3b
JD
5494@end itemize
5495@end itemize
5496
6b5a0de9
AD
5497@c ============================================ lr.keep-unreachable-states
5498
67212941
JD
5499@item lr.keep-unreachable-states
5500@findex %define lr.keep-unreachable-states
31984206
JD
5501
5502@itemize @bullet
5503@item Language(s): all
f1b238df 5504@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5505remain in the parser tables. @xref{Unreachable States}.
31984206 5506@item Accepted Values: Boolean
cf499cff 5507@item Default Value: @code{false}
31984206 5508@end itemize
67212941 5509@c lr.keep-unreachable-states
31984206 5510
6b5a0de9
AD
5511@c ================================================== lr.type
5512
eb45ef3b
JD
5513@item lr.type
5514@findex %define lr.type
eb45ef3b
JD
5515
5516@itemize @bullet
5517@item Language(s): all
5518
f1b238df 5519@item Purpose: Specify the type of parser tables within the
7fceb615 5520LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5521More user feedback will help to stabilize it.)
5522
7fceb615 5523@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5524
cf499cff 5525@item Default Value: @code{lalr}
eb45ef3b
JD
5526@end itemize
5527
67501061
AD
5528
5529@c ================================================== namespace
793fbca5
JD
5530@item namespace
5531@findex %define namespace
67501061 5532Obsoleted by @code{api.namespace}
fa819509
AD
5533@c namespace
5534
31b850d2
AD
5535
5536@c ================================================== parse.assert
0c90a1f5
AD
5537@item parse.assert
5538@findex %define parse.assert
5539
5540@itemize
5541@item Languages(s): C++
5542
5543@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5544In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5545constructed and
0c90a1f5
AD
5546destroyed properly. This option checks these constraints.
5547
5548@item Accepted Values: Boolean
5549
5550@item Default Value: @code{false}
5551@end itemize
5552@c parse.assert
5553
31b850d2
AD
5554
5555@c ================================================== parse.error
5556@item parse.error
5557@findex %define parse.error
5558@itemize
5559@item Languages(s):
fcf834f9 5560all
31b850d2
AD
5561@item Purpose:
5562Control the kind of error messages passed to the error reporting
5563function. @xref{Error Reporting, ,The Error Reporting Function
5564@code{yyerror}}.
5565@item Accepted Values:
5566@itemize
cf499cff 5567@item @code{simple}
31b850d2
AD
5568Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5569error"}}.
cf499cff 5570@item @code{verbose}
7fceb615
JD
5571Error messages report the unexpected token, and possibly the expected ones.
5572However, this report can often be incorrect when LAC is not enabled
5573(@pxref{LAC}).
31b850d2
AD
5574@end itemize
5575
5576@item Default Value:
5577@code{simple}
5578@end itemize
5579@c parse.error
5580
5581
fcf834f9
JD
5582@c ================================================== parse.lac
5583@item parse.lac
5584@findex %define parse.lac
fcf834f9
JD
5585
5586@itemize
7fceb615 5587@item Languages(s): C (deterministic parsers only)
fcf834f9 5588
8a4281b9 5589@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5590syntax error handling. @xref{LAC}.
fcf834f9 5591@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5592@item Default Value: @code{none}
5593@end itemize
5594@c parse.lac
5595
31b850d2 5596@c ================================================== parse.trace
fa819509
AD
5597@item parse.trace
5598@findex %define parse.trace
5599
5600@itemize
5601@item Languages(s): C, C++
5602
5603@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5604In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5605file if it is not already defined, so that the debugging facilities are
5606compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5607
fa819509
AD
5608@item Accepted Values: Boolean
5609
5610@item Default Value: @code{false}
5611@end itemize
fa819509 5612@c parse.trace
99c08fb6 5613
3cdc21cf
AD
5614@c ================================================== variant
5615@item variant
5616@findex %define variant
5617
5618@itemize @bullet
5619@item Language(s):
5620C++
5621
5622@item Purpose:
f1b238df 5623Request variant-based semantic values.
3cdc21cf
AD
5624@xref{C++ Variants}.
5625
5626@item Accepted Values:
5627Boolean.
5628
5629@item Default Value:
5630@code{false}
5631@end itemize
5632@c variant
99c08fb6 5633@end table
592d0b1e 5634
d8988b2f 5635
e0c07222
JD
5636@node %code Summary
5637@subsection %code Summary
e0c07222 5638@findex %code
e0c07222 5639@cindex Prologue
51151d91
JD
5640
5641The @code{%code} directive inserts code verbatim into the output
5642parser source at any of a predefined set of locations. It thus serves
5643as a flexible and user-friendly alternative to the traditional Yacc
5644prologue, @code{%@{@var{code}%@}}. This section summarizes the
5645functionality of @code{%code} for the various target languages
5646supported by Bison. For a detailed discussion of how to use
5647@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5648is advantageous to do so, @pxref{Prologue Alternatives}.
5649
5650@deffn {Directive} %code @{@var{code}@}
5651This is the unqualified form of the @code{%code} directive. It
5652inserts @var{code} verbatim at a language-dependent default location
5653in the parser implementation.
5654
e0c07222 5655For C/C++, the default location is the parser implementation file
51151d91
JD
5656after the usual contents of the parser header file. Thus, the
5657unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5658
5659For Java, the default location is inside the parser class.
5660@end deffn
5661
5662@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5663This is the qualified form of the @code{%code} directive.
51151d91
JD
5664@var{qualifier} identifies the purpose of @var{code} and thus the
5665location(s) where Bison should insert it. That is, if you need to
5666specify location-sensitive @var{code} that does not belong at the
5667default location selected by the unqualified @code{%code} form, use
5668this form instead.
5669@end deffn
5670
5671For any particular qualifier or for the unqualified form, if there are
5672multiple occurrences of the @code{%code} directive, Bison concatenates
5673the specified code in the order in which it appears in the grammar
5674file.
e0c07222 5675
51151d91
JD
5676Not all qualifiers are accepted for all target languages. Unaccepted
5677qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5678
84072495 5679@table @code
e0c07222
JD
5680@item requires
5681@findex %code requires
5682
5683@itemize @bullet
5684@item Language(s): C, C++
5685
5686@item Purpose: This is the best place to write dependency code required for
5687@code{YYSTYPE} and @code{YYLTYPE}.
5688In other words, it's the best place to define types referenced in @code{%union}
5689directives, and it's the best place to override Bison's default @code{YYSTYPE}
5690and @code{YYLTYPE} definitions.
5691
5692@item Location(s): The parser header file and the parser implementation file
5693before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5694definitions.
5695@end itemize
5696
5697@item provides
5698@findex %code provides
5699
5700@itemize @bullet
5701@item Language(s): C, C++
5702
5703@item Purpose: This is the best place to write additional definitions and
5704declarations that should be provided to other modules.
5705
5706@item Location(s): The parser header file and the parser implementation
5707file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5708token definitions.
5709@end itemize
5710
5711@item top
5712@findex %code top
5713
5714@itemize @bullet
5715@item Language(s): C, C++
5716
5717@item Purpose: The unqualified @code{%code} or @code{%code requires}
5718should usually be more appropriate than @code{%code top}. However,
5719occasionally it is necessary to insert code much nearer the top of the
5720parser implementation file. For example:
5721
c93f22fc 5722@example
e0c07222
JD
5723%code top @{
5724 #define _GNU_SOURCE
5725 #include <stdio.h>
5726@}
c93f22fc 5727@end example
e0c07222
JD
5728
5729@item Location(s): Near the top of the parser implementation file.
5730@end itemize
5731
5732@item imports
5733@findex %code imports
5734
5735@itemize @bullet
5736@item Language(s): Java
5737
5738@item Purpose: This is the best place to write Java import directives.
5739
5740@item Location(s): The parser Java file after any Java package directive and
5741before any class definitions.
5742@end itemize
84072495 5743@end table
e0c07222 5744
51151d91
JD
5745Though we say the insertion locations are language-dependent, they are
5746technically skeleton-dependent. Writers of non-standard skeletons
5747however should choose their locations consistently with the behavior
5748of the standard Bison skeletons.
e0c07222 5749
d8988b2f 5750
342b8b6e 5751@node Multiple Parsers
bfa74976
RS
5752@section Multiple Parsers in the Same Program
5753
5754Most programs that use Bison parse only one language and therefore contain
5755only one Bison parser. But what if you want to parse more than one
5756language with the same program? Then you need to avoid a name conflict
5757between different definitions of @code{yyparse}, @code{yylval}, and so on.
5758
5759The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5760(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5761functions and variables of the Bison parser to start with @var{prefix}
5762instead of @samp{yy}. You can use this to give each parser distinct
5763names that do not conflict.
bfa74976
RS
5764
5765The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5766@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5767@code{yychar} and @code{yydebug}. If you use a push parser,
5768@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5769@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5770For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5771@code{clex}, and so on.
bfa74976
RS
5772
5773@strong{All the other variables and macros associated with Bison are not
5774renamed.} These others are not global; there is no conflict if the same
5775name is used in different parsers. For example, @code{YYSTYPE} is not
5776renamed, but defining this in different ways in different parsers causes
5777no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5778
ff7571c0
JD
5779The @samp{-p} option works by adding macro definitions to the
5780beginning of the parser implementation file, defining @code{yyparse}
5781as @code{@var{prefix}parse}, and so on. This effectively substitutes
5782one name for the other in the entire parser implementation file.
bfa74976 5783
342b8b6e 5784@node Interface
bfa74976
RS
5785@chapter Parser C-Language Interface
5786@cindex C-language interface
5787@cindex interface
5788
5789The Bison parser is actually a C function named @code{yyparse}. Here we
5790describe the interface conventions of @code{yyparse} and the other
5791functions that it needs to use.
5792
5793Keep in mind that the parser uses many C identifiers starting with
5794@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5795identifier (aside from those in this manual) in an action or in epilogue
5796in the grammar file, you are likely to run into trouble.
bfa74976
RS
5797
5798@menu
f5f419de
DJ
5799* Parser Function:: How to call @code{yyparse} and what it returns.
5800* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5801* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5802* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5803* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5804* Lexical:: You must supply a function @code{yylex}
5805 which reads tokens.
5806* Error Reporting:: You must supply a function @code{yyerror}.
5807* Action Features:: Special features for use in actions.
5808* Internationalization:: How to let the parser speak in the user's
5809 native language.
bfa74976
RS
5810@end menu
5811
342b8b6e 5812@node Parser Function
bfa74976
RS
5813@section The Parser Function @code{yyparse}
5814@findex yyparse
5815
5816You call the function @code{yyparse} to cause parsing to occur. This
5817function reads tokens, executes actions, and ultimately returns when it
5818encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5819write an action which directs @code{yyparse} to return immediately
5820without reading further.
bfa74976 5821
2a8d363a
AD
5822
5823@deftypefun int yyparse (void)
bfa74976
RS
5824The value returned by @code{yyparse} is 0 if parsing was successful (return
5825is due to end-of-input).
5826
b47dbebe
PE
5827The value is 1 if parsing failed because of invalid input, i.e., input
5828that contains a syntax error or that causes @code{YYABORT} to be
5829invoked.
5830
5831The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5832@end deftypefun
bfa74976
RS
5833
5834In an action, you can cause immediate return from @code{yyparse} by using
5835these macros:
5836
2a8d363a 5837@defmac YYACCEPT
bfa74976
RS
5838@findex YYACCEPT
5839Return immediately with value 0 (to report success).
2a8d363a 5840@end defmac
bfa74976 5841
2a8d363a 5842@defmac YYABORT
bfa74976
RS
5843@findex YYABORT
5844Return immediately with value 1 (to report failure).
2a8d363a
AD
5845@end defmac
5846
5847If you use a reentrant parser, you can optionally pass additional
5848parameter information to it in a reentrant way. To do so, use the
5849declaration @code{%parse-param}:
5850
2055a44e 5851@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5852@findex %parse-param
2055a44e
AD
5853Declare that one or more
5854@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5855The @var{argument-declaration} is used when declaring
feeb0eda
PE
5856functions or prototypes. The last identifier in
5857@var{argument-declaration} must be the argument name.
2a8d363a
AD
5858@end deffn
5859
5860Here's an example. Write this in the parser:
5861
5862@example
2055a44e 5863%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5864@end example
5865
5866@noindent
5867Then call the parser like this:
5868
5869@example
5870@{
5871 int nastiness, randomness;
5872 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5873 value = yyparse (&nastiness, &randomness);
5874 @dots{}
5875@}
5876@end example
5877
5878@noindent
5879In the grammar actions, use expressions like this to refer to the data:
5880
5881@example
5882exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5883@end example
5884
9987d1b3
JD
5885@node Push Parser Function
5886@section The Push Parser Function @code{yypush_parse}
5887@findex yypush_parse
5888
59da312b
JD
5889(The current push parsing interface is experimental and may evolve.
5890More user feedback will help to stabilize it.)
5891
f4101aa6 5892You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5893function is available if either the @samp{%define api.push-pull push} or
5894@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5895@xref{Push Decl, ,A Push Parser}.
5896
5897@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5898The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5899following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5900is required to finish parsing the grammar.
5901@end deftypefun
5902
5903@node Pull Parser Function
5904@section The Pull Parser Function @code{yypull_parse}
5905@findex yypull_parse
5906
59da312b
JD
5907(The current push parsing interface is experimental and may evolve.
5908More user feedback will help to stabilize it.)
5909
f4101aa6 5910You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5911stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5912declaration is used.
9987d1b3
JD
5913@xref{Push Decl, ,A Push Parser}.
5914
5915@deftypefun int yypull_parse (yypstate *yyps)
5916The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5917@end deftypefun
5918
5919@node Parser Create Function
5920@section The Parser Create Function @code{yystate_new}
5921@findex yypstate_new
5922
59da312b
JD
5923(The current push parsing interface is experimental and may evolve.
5924More user feedback will help to stabilize it.)
5925
f4101aa6 5926You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5927This function is available if either the @samp{%define api.push-pull push} or
5928@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5929@xref{Push Decl, ,A Push Parser}.
5930
5931@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5932The function will return a valid parser instance if there was memory available
333e670c
JD
5933or 0 if no memory was available.
5934In impure mode, it will also return 0 if a parser instance is currently
5935allocated.
9987d1b3
JD
5936@end deftypefun
5937
5938@node Parser Delete Function
5939@section The Parser Delete Function @code{yystate_delete}
5940@findex yypstate_delete
5941
59da312b
JD
5942(The current push parsing interface is experimental and may evolve.
5943More user feedback will help to stabilize it.)
5944
9987d1b3 5945You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5946function is available if either the @samp{%define api.push-pull push} or
5947@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5948@xref{Push Decl, ,A Push Parser}.
5949
5950@deftypefun void yypstate_delete (yypstate *yyps)
5951This function will reclaim the memory associated with a parser instance.
5952After this call, you should no longer attempt to use the parser instance.
5953@end deftypefun
bfa74976 5954
342b8b6e 5955@node Lexical
bfa74976
RS
5956@section The Lexical Analyzer Function @code{yylex}
5957@findex yylex
5958@cindex lexical analyzer
5959
5960The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5961the input stream and returns them to the parser. Bison does not create
5962this function automatically; you must write it so that @code{yyparse} can
5963call it. The function is sometimes referred to as a lexical scanner.
5964
ff7571c0
JD
5965In simple programs, @code{yylex} is often defined at the end of the
5966Bison grammar file. If @code{yylex} is defined in a separate source
5967file, you need to arrange for the token-type macro definitions to be
5968available there. To do this, use the @samp{-d} option when you run
5969Bison, so that it will write these macro definitions into the separate
5970parser header file, @file{@var{name}.tab.h}, which you can include in
5971the other source files that need it. @xref{Invocation, ,Invoking
5972Bison}.
bfa74976
RS
5973
5974@menu
5975* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5976* Token Values:: How @code{yylex} must return the semantic value
5977 of the token it has read.
5978* Token Locations:: How @code{yylex} must return the text location
5979 (line number, etc.) of the token, if the
5980 actions want that.
5981* Pure Calling:: How the calling convention differs in a pure parser
5982 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5983@end menu
5984
342b8b6e 5985@node Calling Convention
bfa74976
RS
5986@subsection Calling Convention for @code{yylex}
5987
72d2299c
PE
5988The value that @code{yylex} returns must be the positive numeric code
5989for the type of token it has just found; a zero or negative value
5990signifies end-of-input.
bfa74976
RS
5991
5992When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
5993in the parser implementation file becomes a C macro whose definition
5994is the proper numeric code for that token type. So @code{yylex} can
5995use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5996
5997When a token is referred to in the grammar rules by a character literal,
5998the numeric code for that character is also the code for the token type.
72d2299c
PE
5999So @code{yylex} can simply return that character code, possibly converted
6000to @code{unsigned char} to avoid sign-extension. The null character
6001must not be used this way, because its code is zero and that
bfa74976
RS
6002signifies end-of-input.
6003
6004Here is an example showing these things:
6005
6006@example
13863333
AD
6007int
6008yylex (void)
bfa74976
RS
6009@{
6010 @dots{}
72d2299c 6011 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6012 return 0;
6013 @dots{}
6014 if (c == '+' || c == '-')
72d2299c 6015 return c; /* Assume token type for `+' is '+'. */
bfa74976 6016 @dots{}
72d2299c 6017 return INT; /* Return the type of the token. */
bfa74976
RS
6018 @dots{}
6019@}
6020@end example
6021
6022@noindent
6023This interface has been designed so that the output from the @code{lex}
6024utility can be used without change as the definition of @code{yylex}.
6025
931c7513
RS
6026If the grammar uses literal string tokens, there are two ways that
6027@code{yylex} can determine the token type codes for them:
6028
6029@itemize @bullet
6030@item
6031If the grammar defines symbolic token names as aliases for the
6032literal string tokens, @code{yylex} can use these symbolic names like
6033all others. In this case, the use of the literal string tokens in
6034the grammar file has no effect on @code{yylex}.
6035
6036@item
9ecbd125 6037@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6038table. The index of the token in the table is the token type's code.
9ecbd125 6039The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6040double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6041token's characters are escaped as necessary to be suitable as input
6042to Bison.
931c7513 6043
9e0876fb
PE
6044Here's code for looking up a multicharacter token in @code{yytname},
6045assuming that the characters of the token are stored in
6046@code{token_buffer}, and assuming that the token does not contain any
6047characters like @samp{"} that require escaping.
931c7513 6048
c93f22fc 6049@example
931c7513
RS
6050for (i = 0; i < YYNTOKENS; i++)
6051 @{
6052 if (yytname[i] != 0
6053 && yytname[i][0] == '"'
68449b3a
PE
6054 && ! strncmp (yytname[i] + 1, token_buffer,
6055 strlen (token_buffer))
931c7513
RS
6056 && yytname[i][strlen (token_buffer) + 1] == '"'
6057 && yytname[i][strlen (token_buffer) + 2] == 0)
6058 break;
6059 @}
c93f22fc 6060@end example
931c7513
RS
6061
6062The @code{yytname} table is generated only if you use the
8c9a50be 6063@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6064@end itemize
6065
342b8b6e 6066@node Token Values
bfa74976
RS
6067@subsection Semantic Values of Tokens
6068
6069@vindex yylval
9d9b8b70 6070In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6071be stored into the global variable @code{yylval}. When you are using
6072just one data type for semantic values, @code{yylval} has that type.
6073Thus, if the type is @code{int} (the default), you might write this in
6074@code{yylex}:
6075
6076@example
6077@group
6078 @dots{}
72d2299c
PE
6079 yylval = value; /* Put value onto Bison stack. */
6080 return INT; /* Return the type of the token. */
bfa74976
RS
6081 @dots{}
6082@end group
6083@end example
6084
6085When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6086made from the @code{%union} declaration (@pxref{Union Decl, ,The
6087Collection of Value Types}). So when you store a token's value, you
6088must use the proper member of the union. If the @code{%union}
6089declaration looks like this:
bfa74976
RS
6090
6091@example
6092@group
6093%union @{
6094 int intval;
6095 double val;
6096 symrec *tptr;
6097@}
6098@end group
6099@end example
6100
6101@noindent
6102then the code in @code{yylex} might look like this:
6103
6104@example
6105@group
6106 @dots{}
72d2299c
PE
6107 yylval.intval = value; /* Put value onto Bison stack. */
6108 return INT; /* Return the type of the token. */
bfa74976
RS
6109 @dots{}
6110@end group
6111@end example
6112
95923bd6
AD
6113@node Token Locations
6114@subsection Textual Locations of Tokens
bfa74976
RS
6115
6116@vindex yylloc
303834cc
JD
6117If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6118in actions to keep track of the textual locations of tokens and groupings,
6119then you must provide this information in @code{yylex}. The function
6120@code{yyparse} expects to find the textual location of a token just parsed
6121in the global variable @code{yylloc}. So @code{yylex} must store the proper
6122data in that variable.
847bf1f5
AD
6123
6124By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6125initialize the members that are going to be used by the actions. The
6126four members are called @code{first_line}, @code{first_column},
6127@code{last_line} and @code{last_column}. Note that the use of this
6128feature makes the parser noticeably slower.
bfa74976
RS
6129
6130@tindex YYLTYPE
6131The data type of @code{yylloc} has the name @code{YYLTYPE}.
6132
342b8b6e 6133@node Pure Calling
c656404a 6134@subsection Calling Conventions for Pure Parsers
bfa74976 6135
67501061 6136When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6137pure, reentrant parser, the global communication variables @code{yylval}
6138and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6139Parser}.) In such parsers the two global variables are replaced by
6140pointers passed as arguments to @code{yylex}. You must declare them as
6141shown here, and pass the information back by storing it through those
6142pointers.
bfa74976
RS
6143
6144@example
13863333
AD
6145int
6146yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6147@{
6148 @dots{}
6149 *lvalp = value; /* Put value onto Bison stack. */
6150 return INT; /* Return the type of the token. */
6151 @dots{}
6152@}
6153@end example
6154
6155If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6156textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6157this case, omit the second argument; @code{yylex} will be called with
6158only one argument.
6159
2055a44e 6160If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6161@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6162Function}). To pass additional arguments to both @code{yylex} and
6163@code{yyparse}, use @code{%param}.
e425e872 6164
2055a44e 6165@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6166@findex %lex-param
2055a44e
AD
6167Specify that @var{argument-declaration} are additional @code{yylex} argument
6168declarations. You may pass one or more such declarations, which is
6169equivalent to repeating @code{%lex-param}.
6170@end deffn
6171
6172@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6173@findex %param
6174Specify that @var{argument-declaration} are additional
6175@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6176@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6177@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6178declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6179@end deffn
e425e872 6180
2a8d363a 6181For instance:
e425e872
RS
6182
6183@example
2055a44e
AD
6184%lex-param @{scanner_mode *mode@}
6185%parse-param @{parser_mode *mode@}
6186%param @{environment_type *env@}
e425e872
RS
6187@end example
6188
6189@noindent
2a8d363a 6190results in the following signature:
e425e872
RS
6191
6192@example
2055a44e
AD
6193int yylex (scanner_mode *mode, environment_type *env);
6194int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6195@end example
6196
67501061 6197If @samp{%define api.pure} is added:
c656404a
RS
6198
6199@example
2055a44e
AD
6200int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6201int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6202@end example
6203
2a8d363a 6204@noindent
67501061 6205and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6206
2a8d363a 6207@example
2055a44e
AD
6208int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6209 scanner_mode *mode, environment_type *env);
6210int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6211@end example
931c7513 6212
342b8b6e 6213@node Error Reporting
bfa74976
RS
6214@section The Error Reporting Function @code{yyerror}
6215@cindex error reporting function
6216@findex yyerror
6217@cindex parse error
6218@cindex syntax error
6219
31b850d2 6220The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6221whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6222action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6223macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6224in Actions}).
bfa74976
RS
6225
6226The Bison parser expects to report the error by calling an error
6227reporting function named @code{yyerror}, which you must supply. It is
6228called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6229receives one argument. For a syntax error, the string is normally
6230@w{@code{"syntax error"}}.
bfa74976 6231
31b850d2 6232@findex %define parse.error
7fceb615
JD
6233If you invoke @samp{%define parse.error verbose} in the Bison declarations
6234section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6235Bison provides a more verbose and specific error message string instead of
6236just plain @w{@code{"syntax error"}}. However, that message sometimes
6237contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6238
1a059451
PE
6239The parser can detect one other kind of error: memory exhaustion. This
6240can happen when the input contains constructions that are very deeply
bfa74976 6241nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6242parser normally extends its stack automatically up to a very large limit. But
6243if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6244fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6245
6246In some cases diagnostics like @w{@code{"syntax error"}} are
6247translated automatically from English to some other language before
6248they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6249
6250The following definition suffices in simple programs:
6251
6252@example
6253@group
13863333 6254void
38a92d50 6255yyerror (char const *s)
bfa74976
RS
6256@{
6257@end group
6258@group
6259 fprintf (stderr, "%s\n", s);
6260@}
6261@end group
6262@end example
6263
6264After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6265error recovery if you have written suitable error recovery grammar rules
6266(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6267immediately return 1.
6268
93724f13 6269Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6270an access to the current location.
8a4281b9 6271This is indeed the case for the GLR
2a8d363a 6272parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6273@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6274@code{yyerror} are:
6275
6276@example
38a92d50
PE
6277void yyerror (char const *msg); /* Yacc parsers. */
6278void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6279@end example
6280
feeb0eda 6281If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6282
6283@example
b317297e
PE
6284void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6285void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6286@end example
6287
8a4281b9 6288Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6289convention for absolutely pure parsers, i.e., when the calling
6290convention of @code{yylex} @emph{and} the calling convention of
67501061 6291@samp{%define api.pure} are pure.
d9df47b6 6292I.e.:
2a8d363a
AD
6293
6294@example
6295/* Location tracking. */
6296%locations
6297/* Pure yylex. */
d9df47b6 6298%define api.pure
feeb0eda 6299%lex-param @{int *nastiness@}
2a8d363a 6300/* Pure yyparse. */
feeb0eda
PE
6301%parse-param @{int *nastiness@}
6302%parse-param @{int *randomness@}
2a8d363a
AD
6303@end example
6304
6305@noindent
6306results in the following signatures for all the parser kinds:
6307
6308@example
6309int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6310int yyparse (int *nastiness, int *randomness);
93724f13
AD
6311void yyerror (YYLTYPE *locp,
6312 int *nastiness, int *randomness,
38a92d50 6313 char const *msg);
2a8d363a
AD
6314@end example
6315
1c0c3e95 6316@noindent
38a92d50
PE
6317The prototypes are only indications of how the code produced by Bison
6318uses @code{yyerror}. Bison-generated code always ignores the returned
6319value, so @code{yyerror} can return any type, including @code{void}.
6320Also, @code{yyerror} can be a variadic function; that is why the
6321message is always passed last.
6322
6323Traditionally @code{yyerror} returns an @code{int} that is always
6324ignored, but this is purely for historical reasons, and @code{void} is
6325preferable since it more accurately describes the return type for
6326@code{yyerror}.
93724f13 6327
bfa74976
RS
6328@vindex yynerrs
6329The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6330reported so far. Normally this variable is global; but if you
704a47c4
AD
6331request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6332then it is a local variable which only the actions can access.
bfa74976 6333
342b8b6e 6334@node Action Features
bfa74976
RS
6335@section Special Features for Use in Actions
6336@cindex summary, action features
6337@cindex action features summary
6338
6339Here is a table of Bison constructs, variables and macros that
6340are useful in actions.
6341
18b519c0 6342@deffn {Variable} $$
bfa74976
RS
6343Acts like a variable that contains the semantic value for the
6344grouping made by the current rule. @xref{Actions}.
18b519c0 6345@end deffn
bfa74976 6346
18b519c0 6347@deffn {Variable} $@var{n}
bfa74976
RS
6348Acts like a variable that contains the semantic value for the
6349@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6350@end deffn
bfa74976 6351
18b519c0 6352@deffn {Variable} $<@var{typealt}>$
bfa74976 6353Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6354specified by the @code{%union} declaration. @xref{Action Types, ,Data
6355Types of Values in Actions}.
18b519c0 6356@end deffn
bfa74976 6357
18b519c0 6358@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6359Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6360union specified by the @code{%union} declaration.
e0c471a9 6361@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6362@end deffn
bfa74976 6363
18b519c0 6364@deffn {Macro} YYABORT;
bfa74976
RS
6365Return immediately from @code{yyparse}, indicating failure.
6366@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6367@end deffn
bfa74976 6368
18b519c0 6369@deffn {Macro} YYACCEPT;
bfa74976
RS
6370Return immediately from @code{yyparse}, indicating success.
6371@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6372@end deffn
bfa74976 6373
18b519c0 6374@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6375@findex YYBACKUP
6376Unshift a token. This macro is allowed only for rules that reduce
742e4900 6377a single value, and only when there is no lookahead token.
8a4281b9 6378It is also disallowed in GLR parsers.
742e4900 6379It installs a lookahead token with token type @var{token} and
bfa74976
RS
6380semantic value @var{value}; then it discards the value that was
6381going to be reduced by this rule.
6382
6383If the macro is used when it is not valid, such as when there is
742e4900 6384a lookahead token already, then it reports a syntax error with
bfa74976
RS
6385a message @samp{cannot back up} and performs ordinary error
6386recovery.
6387
6388In either case, the rest of the action is not executed.
18b519c0 6389@end deffn
bfa74976 6390
18b519c0 6391@deffn {Macro} YYEMPTY
bfa74976 6392@vindex YYEMPTY
742e4900 6393Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6394@end deffn
bfa74976 6395
32c29292
JD
6396@deffn {Macro} YYEOF
6397@vindex YYEOF
742e4900 6398Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6399stream.
6400@end deffn
6401
18b519c0 6402@deffn {Macro} YYERROR;
bfa74976
RS
6403@findex YYERROR
6404Cause an immediate syntax error. This statement initiates error
6405recovery just as if the parser itself had detected an error; however, it
6406does not call @code{yyerror}, and does not print any message. If you
6407want to print an error message, call @code{yyerror} explicitly before
6408the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6409@end deffn
bfa74976 6410
18b519c0 6411@deffn {Macro} YYRECOVERING
02103984
PE
6412@findex YYRECOVERING
6413The expression @code{YYRECOVERING ()} yields 1 when the parser
6414is recovering from a syntax error, and 0 otherwise.
bfa74976 6415@xref{Error Recovery}.
18b519c0 6416@end deffn
bfa74976 6417
18b519c0 6418@deffn {Variable} yychar
742e4900
JD
6419Variable containing either the lookahead token, or @code{YYEOF} when the
6420lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6421has been performed so the next token is not yet known.
6422Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6423Actions}).
742e4900 6424@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6425@end deffn
bfa74976 6426
18b519c0 6427@deffn {Macro} yyclearin;
742e4900 6428Discard the current lookahead token. This is useful primarily in
32c29292
JD
6429error rules.
6430Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6431Semantic Actions}).
6432@xref{Error Recovery}.
18b519c0 6433@end deffn
bfa74976 6434
18b519c0 6435@deffn {Macro} yyerrok;
bfa74976 6436Resume generating error messages immediately for subsequent syntax
13863333 6437errors. This is useful primarily in error rules.
bfa74976 6438@xref{Error Recovery}.
18b519c0 6439@end deffn
bfa74976 6440
32c29292 6441@deffn {Variable} yylloc
742e4900 6442Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6443to @code{YYEMPTY} or @code{YYEOF}.
6444Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6445Actions}).
6446@xref{Actions and Locations, ,Actions and Locations}.
6447@end deffn
6448
6449@deffn {Variable} yylval
742e4900 6450Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6451not set to @code{YYEMPTY} or @code{YYEOF}.
6452Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6453Actions}).
6454@xref{Actions, ,Actions}.
6455@end deffn
6456
18b519c0 6457@deffn {Value} @@$
847bf1f5 6458@findex @@$
303834cc
JD
6459Acts like a structure variable containing information on the textual
6460location of the grouping made by the current rule. @xref{Tracking
6461Locations}.
bfa74976 6462
847bf1f5
AD
6463@c Check if those paragraphs are still useful or not.
6464
6465@c @example
6466@c struct @{
6467@c int first_line, last_line;
6468@c int first_column, last_column;
6469@c @};
6470@c @end example
6471
6472@c Thus, to get the starting line number of the third component, you would
6473@c use @samp{@@3.first_line}.
bfa74976 6474
847bf1f5
AD
6475@c In order for the members of this structure to contain valid information,
6476@c you must make @code{yylex} supply this information about each token.
6477@c If you need only certain members, then @code{yylex} need only fill in
6478@c those members.
bfa74976 6479
847bf1f5 6480@c The use of this feature makes the parser noticeably slower.
18b519c0 6481@end deffn
847bf1f5 6482
18b519c0 6483@deffn {Value} @@@var{n}
847bf1f5 6484@findex @@@var{n}
303834cc
JD
6485Acts like a structure variable containing information on the textual
6486location of the @var{n}th component of the current rule. @xref{Tracking
6487Locations}.
18b519c0 6488@end deffn
bfa74976 6489
f7ab6a50
PE
6490@node Internationalization
6491@section Parser Internationalization
6492@cindex internationalization
6493@cindex i18n
6494@cindex NLS
6495@cindex gettext
6496@cindex bison-po
6497
6498A Bison-generated parser can print diagnostics, including error and
6499tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6500also supports outputting diagnostics in the user's native language. To
6501make this work, the user should set the usual environment variables.
6502@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6503For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6504set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6505encoding. The exact set of available locales depends on the user's
6506installation.
6507
6508The maintainer of a package that uses a Bison-generated parser enables
6509the internationalization of the parser's output through the following
8a4281b9
JD
6510steps. Here we assume a package that uses GNU Autoconf and
6511GNU Automake.
f7ab6a50
PE
6512
6513@enumerate
6514@item
30757c8c 6515@cindex bison-i18n.m4
8a4281b9 6516Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6517by the package---often called @file{m4}---copy the
6518@file{bison-i18n.m4} file installed by Bison under
6519@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6520For example:
6521
6522@example
6523cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6524@end example
6525
6526@item
30757c8c
PE
6527@findex BISON_I18N
6528@vindex BISON_LOCALEDIR
6529@vindex YYENABLE_NLS
f7ab6a50
PE
6530In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6531invocation, add an invocation of @code{BISON_I18N}. This macro is
6532defined in the file @file{bison-i18n.m4} that you copied earlier. It
6533causes @samp{configure} to find the value of the
30757c8c
PE
6534@code{BISON_LOCALEDIR} variable, and it defines the source-language
6535symbol @code{YYENABLE_NLS} to enable translations in the
6536Bison-generated parser.
f7ab6a50
PE
6537
6538@item
6539In the @code{main} function of your program, designate the directory
6540containing Bison's runtime message catalog, through a call to
6541@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6542For example:
6543
6544@example
6545bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6546@end example
6547
6548Typically this appears after any other call @code{bindtextdomain
6549(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6550@samp{BISON_LOCALEDIR} to be defined as a string through the
6551@file{Makefile}.
6552
6553@item
6554In the @file{Makefile.am} that controls the compilation of the @code{main}
6555function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6556either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6557
6558@example
6559DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6560@end example
6561
6562or:
6563
6564@example
6565AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6566@end example
6567
6568@item
6569Finally, invoke the command @command{autoreconf} to generate the build
6570infrastructure.
6571@end enumerate
6572
bfa74976 6573
342b8b6e 6574@node Algorithm
13863333
AD
6575@chapter The Bison Parser Algorithm
6576@cindex Bison parser algorithm
bfa74976
RS
6577@cindex algorithm of parser
6578@cindex shifting
6579@cindex reduction
6580@cindex parser stack
6581@cindex stack, parser
6582
6583As Bison reads tokens, it pushes them onto a stack along with their
6584semantic values. The stack is called the @dfn{parser stack}. Pushing a
6585token is traditionally called @dfn{shifting}.
6586
6587For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6588@samp{3} to come. The stack will have four elements, one for each token
6589that was shifted.
6590
6591But the stack does not always have an element for each token read. When
6592the last @var{n} tokens and groupings shifted match the components of a
6593grammar rule, they can be combined according to that rule. This is called
6594@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6595single grouping whose symbol is the result (left hand side) of that rule.
6596Running the rule's action is part of the process of reduction, because this
6597is what computes the semantic value of the resulting grouping.
6598
6599For example, if the infix calculator's parser stack contains this:
6600
6601@example
66021 + 5 * 3
6603@end example
6604
6605@noindent
6606and the next input token is a newline character, then the last three
6607elements can be reduced to 15 via the rule:
6608
6609@example
6610expr: expr '*' expr;
6611@end example
6612
6613@noindent
6614Then the stack contains just these three elements:
6615
6616@example
66171 + 15
6618@end example
6619
6620@noindent
6621At this point, another reduction can be made, resulting in the single value
662216. Then the newline token can be shifted.
6623
6624The parser tries, by shifts and reductions, to reduce the entire input down
6625to a single grouping whose symbol is the grammar's start-symbol
6626(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6627
6628This kind of parser is known in the literature as a bottom-up parser.
6629
6630@menu
742e4900 6631* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6632* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6633* Precedence:: Operator precedence works by resolving conflicts.
6634* Contextual Precedence:: When an operator's precedence depends on context.
6635* Parser States:: The parser is a finite-state-machine with stack.
6636* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6637* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6638* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6639* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6640* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6641@end menu
6642
742e4900
JD
6643@node Lookahead
6644@section Lookahead Tokens
6645@cindex lookahead token
bfa74976
RS
6646
6647The Bison parser does @emph{not} always reduce immediately as soon as the
6648last @var{n} tokens and groupings match a rule. This is because such a
6649simple strategy is inadequate to handle most languages. Instead, when a
6650reduction is possible, the parser sometimes ``looks ahead'' at the next
6651token in order to decide what to do.
6652
6653When a token is read, it is not immediately shifted; first it becomes the
742e4900 6654@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6655perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6656the lookahead token remains off to the side. When no more reductions
6657should take place, the lookahead token is shifted onto the stack. This
bfa74976 6658does not mean that all possible reductions have been done; depending on the
742e4900 6659token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6660application.
6661
742e4900 6662Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6663expressions which contain binary addition operators and postfix unary
6664factorial operators (@samp{!}), and allow parentheses for grouping.
6665
6666@example
6667@group
5e9b6624
AD
6668expr:
6669 term '+' expr
6670| term
6671;
bfa74976
RS
6672@end group
6673
6674@group
5e9b6624
AD
6675term:
6676 '(' expr ')'
6677| term '!'
6678| NUMBER
6679;
bfa74976
RS
6680@end group
6681@end example
6682
6683Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6684should be done? If the following token is @samp{)}, then the first three
6685tokens must be reduced to form an @code{expr}. This is the only valid
6686course, because shifting the @samp{)} would produce a sequence of symbols
6687@w{@code{term ')'}}, and no rule allows this.
6688
6689If the following token is @samp{!}, then it must be shifted immediately so
6690that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6691parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6692@code{expr}. It would then be impossible to shift the @samp{!} because
6693doing so would produce on the stack the sequence of symbols @code{expr
6694'!'}. No rule allows that sequence.
6695
6696@vindex yychar
32c29292
JD
6697@vindex yylval
6698@vindex yylloc
742e4900 6699The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6700Its semantic value and location, if any, are stored in the variables
6701@code{yylval} and @code{yylloc}.
bfa74976
RS
6702@xref{Action Features, ,Special Features for Use in Actions}.
6703
342b8b6e 6704@node Shift/Reduce
bfa74976
RS
6705@section Shift/Reduce Conflicts
6706@cindex conflicts
6707@cindex shift/reduce conflicts
6708@cindex dangling @code{else}
6709@cindex @code{else}, dangling
6710
6711Suppose we are parsing a language which has if-then and if-then-else
6712statements, with a pair of rules like this:
6713
6714@example
6715@group
6716if_stmt:
5e9b6624
AD
6717 IF expr THEN stmt
6718| IF expr THEN stmt ELSE stmt
6719;
bfa74976
RS
6720@end group
6721@end example
6722
6723@noindent
6724Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6725terminal symbols for specific keyword tokens.
6726
742e4900 6727When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6728contents of the stack (assuming the input is valid) are just right for
6729reduction by the first rule. But it is also legitimate to shift the
6730@code{ELSE}, because that would lead to eventual reduction by the second
6731rule.
6732
6733This situation, where either a shift or a reduction would be valid, is
6734called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6735these conflicts by choosing to shift, unless otherwise directed by
6736operator precedence declarations. To see the reason for this, let's
6737contrast it with the other alternative.
6738
6739Since the parser prefers to shift the @code{ELSE}, the result is to attach
6740the else-clause to the innermost if-statement, making these two inputs
6741equivalent:
6742
6743@example
6744if x then if y then win (); else lose;
6745
6746if x then do; if y then win (); else lose; end;
6747@end example
6748
6749But if the parser chose to reduce when possible rather than shift, the
6750result would be to attach the else-clause to the outermost if-statement,
6751making these two inputs equivalent:
6752
6753@example
6754if x then if y then win (); else lose;
6755
6756if x then do; if y then win (); end; else lose;
6757@end example
6758
6759The conflict exists because the grammar as written is ambiguous: either
6760parsing of the simple nested if-statement is legitimate. The established
6761convention is that these ambiguities are resolved by attaching the
6762else-clause to the innermost if-statement; this is what Bison accomplishes
6763by choosing to shift rather than reduce. (It would ideally be cleaner to
6764write an unambiguous grammar, but that is very hard to do in this case.)
6765This particular ambiguity was first encountered in the specifications of
6766Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6767
6768To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6769conflicts, use the @code{%expect @var{n}} declaration.
6770There will be no warning as long as the number of shift/reduce conflicts
6771is exactly @var{n}, and Bison will report an error if there is a
6772different number.
bfa74976
RS
6773@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6774
6775The definition of @code{if_stmt} above is solely to blame for the
6776conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6777rules. Here is a complete Bison grammar file that actually manifests
6778the conflict:
bfa74976
RS
6779
6780@example
6781@group
6782%token IF THEN ELSE variable
6783%%
6784@end group
6785@group
5e9b6624
AD
6786stmt:
6787 expr
6788| if_stmt
6789;
bfa74976
RS
6790@end group
6791
6792@group
6793if_stmt:
5e9b6624
AD
6794 IF expr THEN stmt
6795| IF expr THEN stmt ELSE stmt
6796;
bfa74976
RS
6797@end group
6798
5e9b6624
AD
6799expr:
6800 variable
6801;
bfa74976
RS
6802@end example
6803
342b8b6e 6804@node Precedence
bfa74976
RS
6805@section Operator Precedence
6806@cindex operator precedence
6807@cindex precedence of operators
6808
6809Another situation where shift/reduce conflicts appear is in arithmetic
6810expressions. Here shifting is not always the preferred resolution; the
6811Bison declarations for operator precedence allow you to specify when to
6812shift and when to reduce.
6813
6814@menu
6815* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6816* Using Precedence:: How to specify precedence and associativity.
6817* Precedence Only:: How to specify precedence only.
bfa74976
RS
6818* Precedence Examples:: How these features are used in the previous example.
6819* How Precedence:: How they work.
6820@end menu
6821
342b8b6e 6822@node Why Precedence
bfa74976
RS
6823@subsection When Precedence is Needed
6824
6825Consider the following ambiguous grammar fragment (ambiguous because the
6826input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6827
6828@example
6829@group
5e9b6624
AD
6830expr:
6831 expr '-' expr
6832| expr '*' expr
6833| expr '<' expr
6834| '(' expr ')'
6835@dots{}
6836;
bfa74976
RS
6837@end group
6838@end example
6839
6840@noindent
6841Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6842should it reduce them via the rule for the subtraction operator? It
6843depends on the next token. Of course, if the next token is @samp{)}, we
6844must reduce; shifting is invalid because no single rule can reduce the
6845token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6846the next token is @samp{*} or @samp{<}, we have a choice: either
6847shifting or reduction would allow the parse to complete, but with
6848different results.
6849
6850To decide which one Bison should do, we must consider the results. If
6851the next operator token @var{op} is shifted, then it must be reduced
6852first in order to permit another opportunity to reduce the difference.
6853The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6854hand, if the subtraction is reduced before shifting @var{op}, the result
6855is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6856reduce should depend on the relative precedence of the operators
6857@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6858@samp{<}.
bfa74976
RS
6859
6860@cindex associativity
6861What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6862@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6863operators we prefer the former, which is called @dfn{left association}.
6864The latter alternative, @dfn{right association}, is desirable for
6865assignment operators. The choice of left or right association is a
6866matter of whether the parser chooses to shift or reduce when the stack
742e4900 6867contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6868makes right-associativity.
bfa74976 6869
342b8b6e 6870@node Using Precedence
bfa74976
RS
6871@subsection Specifying Operator Precedence
6872@findex %left
bfa74976 6873@findex %nonassoc
d78f0ac9
AD
6874@findex %precedence
6875@findex %right
bfa74976
RS
6876
6877Bison allows you to specify these choices with the operator precedence
6878declarations @code{%left} and @code{%right}. Each such declaration
6879contains a list of tokens, which are operators whose precedence and
6880associativity is being declared. The @code{%left} declaration makes all
6881those operators left-associative and the @code{%right} declaration makes
6882them right-associative. A third alternative is @code{%nonassoc}, which
6883declares that it is a syntax error to find the same operator twice ``in a
6884row''.
d78f0ac9
AD
6885The last alternative, @code{%precedence}, allows to define only
6886precedence and no associativity at all. As a result, any
6887associativity-related conflict that remains will be reported as an
6888compile-time error. The directive @code{%nonassoc} creates run-time
6889error: using the operator in a associative way is a syntax error. The
6890directive @code{%precedence} creates compile-time errors: an operator
6891@emph{can} be involved in an associativity-related conflict, contrary to
6892what expected the grammar author.
bfa74976
RS
6893
6894The relative precedence of different operators is controlled by the
d78f0ac9
AD
6895order in which they are declared. The first precedence/associativity
6896declaration in the file declares the operators whose
bfa74976
RS
6897precedence is lowest, the next such declaration declares the operators
6898whose precedence is a little higher, and so on.
6899
d78f0ac9
AD
6900@node Precedence Only
6901@subsection Specifying Precedence Only
6902@findex %precedence
6903
8a4281b9 6904Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6905@code{%nonassoc}, which all defines precedence and associativity, little
6906attention is paid to the fact that precedence cannot be defined without
6907defining associativity. Yet, sometimes, when trying to solve a
6908conflict, precedence suffices. In such a case, using @code{%left},
6909@code{%right}, or @code{%nonassoc} might hide future (associativity
6910related) conflicts that would remain hidden.
6911
6912The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6913Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6914in the following situation, where the period denotes the current parsing
6915state:
6916
6917@example
6918if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6919@end example
6920
6921The conflict involves the reduction of the rule @samp{IF expr THEN
6922stmt}, which precedence is by default that of its last token
6923(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6924disambiguation (attach the @code{else} to the closest @code{if}),
6925shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6926higher than that of @code{THEN}. But neither is expected to be involved
6927in an associativity related conflict, which can be specified as follows.
6928
6929@example
6930%precedence THEN
6931%precedence ELSE
6932@end example
6933
6934The unary-minus is another typical example where associativity is
6935usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6936Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6937used to declare the precedence of @code{NEG}, which is more than needed
6938since it also defines its associativity. While this is harmless in the
6939traditional example, who knows how @code{NEG} might be used in future
6940evolutions of the grammar@dots{}
6941
342b8b6e 6942@node Precedence Examples
bfa74976
RS
6943@subsection Precedence Examples
6944
6945In our example, we would want the following declarations:
6946
6947@example
6948%left '<'
6949%left '-'
6950%left '*'
6951@end example
6952
6953In a more complete example, which supports other operators as well, we
6954would declare them in groups of equal precedence. For example, @code{'+'} is
6955declared with @code{'-'}:
6956
6957@example
6958%left '<' '>' '=' NE LE GE
6959%left '+' '-'
6960%left '*' '/'
6961@end example
6962
6963@noindent
6964(Here @code{NE} and so on stand for the operators for ``not equal''
6965and so on. We assume that these tokens are more than one character long
6966and therefore are represented by names, not character literals.)
6967
342b8b6e 6968@node How Precedence
bfa74976
RS
6969@subsection How Precedence Works
6970
6971The first effect of the precedence declarations is to assign precedence
6972levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6973precedence levels to certain rules: each rule gets its precedence from
6974the last terminal symbol mentioned in the components. (You can also
6975specify explicitly the precedence of a rule. @xref{Contextual
6976Precedence, ,Context-Dependent Precedence}.)
6977
6978Finally, the resolution of conflicts works by comparing the precedence
742e4900 6979of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6980token's precedence is higher, the choice is to shift. If the rule's
6981precedence is higher, the choice is to reduce. If they have equal
6982precedence, the choice is made based on the associativity of that
6983precedence level. The verbose output file made by @samp{-v}
6984(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6985resolved.
bfa74976
RS
6986
6987Not all rules and not all tokens have precedence. If either the rule or
742e4900 6988the lookahead token has no precedence, then the default is to shift.
bfa74976 6989
342b8b6e 6990@node Contextual Precedence
bfa74976
RS
6991@section Context-Dependent Precedence
6992@cindex context-dependent precedence
6993@cindex unary operator precedence
6994@cindex precedence, context-dependent
6995@cindex precedence, unary operator
6996@findex %prec
6997
6998Often the precedence of an operator depends on the context. This sounds
6999outlandish at first, but it is really very common. For example, a minus
7000sign typically has a very high precedence as a unary operator, and a
7001somewhat lower precedence (lower than multiplication) as a binary operator.
7002
d78f0ac9
AD
7003The Bison precedence declarations
7004can only be used once for a given token; so a token has
bfa74976
RS
7005only one precedence declared in this way. For context-dependent
7006precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7007modifier for rules.
bfa74976
RS
7008
7009The @code{%prec} modifier declares the precedence of a particular rule by
7010specifying a terminal symbol whose precedence should be used for that rule.
7011It's not necessary for that symbol to appear otherwise in the rule. The
7012modifier's syntax is:
7013
7014@example
7015%prec @var{terminal-symbol}
7016@end example
7017
7018@noindent
7019and it is written after the components of the rule. Its effect is to
7020assign the rule the precedence of @var{terminal-symbol}, overriding
7021the precedence that would be deduced for it in the ordinary way. The
7022altered rule precedence then affects how conflicts involving that rule
7023are resolved (@pxref{Precedence, ,Operator Precedence}).
7024
7025Here is how @code{%prec} solves the problem of unary minus. First, declare
7026a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7027are no tokens of this type, but the symbol serves to stand for its
7028precedence:
7029
7030@example
7031@dots{}
7032%left '+' '-'
7033%left '*'
7034%left UMINUS
7035@end example
7036
7037Now the precedence of @code{UMINUS} can be used in specific rules:
7038
7039@example
7040@group
5e9b6624
AD
7041exp:
7042 @dots{}
7043| exp '-' exp
7044 @dots{}
7045| '-' exp %prec UMINUS
bfa74976
RS
7046@end group
7047@end example
7048
91d2c560 7049@ifset defaultprec
39a06c25
PE
7050If you forget to append @code{%prec UMINUS} to the rule for unary
7051minus, Bison silently assumes that minus has its usual precedence.
7052This kind of problem can be tricky to debug, since one typically
7053discovers the mistake only by testing the code.
7054
22fccf95 7055The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7056this kind of problem systematically. It causes rules that lack a
7057@code{%prec} modifier to have no precedence, even if the last terminal
7058symbol mentioned in their components has a declared precedence.
7059
22fccf95 7060If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7061for all rules that participate in precedence conflict resolution.
7062Then you will see any shift/reduce conflict until you tell Bison how
7063to resolve it, either by changing your grammar or by adding an
7064explicit precedence. This will probably add declarations to the
7065grammar, but it helps to protect against incorrect rule precedences.
7066
22fccf95
PE
7067The effect of @code{%no-default-prec;} can be reversed by giving
7068@code{%default-prec;}, which is the default.
91d2c560 7069@end ifset
39a06c25 7070
342b8b6e 7071@node Parser States
bfa74976
RS
7072@section Parser States
7073@cindex finite-state machine
7074@cindex parser state
7075@cindex state (of parser)
7076
7077The function @code{yyparse} is implemented using a finite-state machine.
7078The values pushed on the parser stack are not simply token type codes; they
7079represent the entire sequence of terminal and nonterminal symbols at or
7080near the top of the stack. The current state collects all the information
7081about previous input which is relevant to deciding what to do next.
7082
742e4900
JD
7083Each time a lookahead token is read, the current parser state together
7084with the type of lookahead token are looked up in a table. This table
7085entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7086specifies the new parser state, which is pushed onto the top of the
7087parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7088This means that a certain number of tokens or groupings are taken off
7089the top of the stack, and replaced by one grouping. In other words,
7090that number of states are popped from the stack, and one new state is
7091pushed.
7092
742e4900 7093There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7094is erroneous in the current state. This causes error processing to begin
7095(@pxref{Error Recovery}).
7096
342b8b6e 7097@node Reduce/Reduce
bfa74976
RS
7098@section Reduce/Reduce Conflicts
7099@cindex reduce/reduce conflict
7100@cindex conflicts, reduce/reduce
7101
7102A reduce/reduce conflict occurs if there are two or more rules that apply
7103to the same sequence of input. This usually indicates a serious error
7104in the grammar.
7105
7106For example, here is an erroneous attempt to define a sequence
7107of zero or more @code{word} groupings.
7108
7109@example
d4fca427 7110@group
5e9b6624
AD
7111sequence:
7112 /* empty */ @{ printf ("empty sequence\n"); @}
7113| maybeword
7114| sequence word @{ printf ("added word %s\n", $2); @}
7115;
d4fca427 7116@end group
bfa74976 7117
d4fca427 7118@group
5e9b6624
AD
7119maybeword:
7120 /* empty */ @{ printf ("empty maybeword\n"); @}
7121| word @{ printf ("single word %s\n", $1); @}
7122;
d4fca427 7123@end group
bfa74976
RS
7124@end example
7125
7126@noindent
7127The error is an ambiguity: there is more than one way to parse a single
7128@code{word} into a @code{sequence}. It could be reduced to a
7129@code{maybeword} and then into a @code{sequence} via the second rule.
7130Alternatively, nothing-at-all could be reduced into a @code{sequence}
7131via the first rule, and this could be combined with the @code{word}
7132using the third rule for @code{sequence}.
7133
7134There is also more than one way to reduce nothing-at-all into a
7135@code{sequence}. This can be done directly via the first rule,
7136or indirectly via @code{maybeword} and then the second rule.
7137
7138You might think that this is a distinction without a difference, because it
7139does not change whether any particular input is valid or not. But it does
7140affect which actions are run. One parsing order runs the second rule's
7141action; the other runs the first rule's action and the third rule's action.
7142In this example, the output of the program changes.
7143
7144Bison resolves a reduce/reduce conflict by choosing to use the rule that
7145appears first in the grammar, but it is very risky to rely on this. Every
7146reduce/reduce conflict must be studied and usually eliminated. Here is the
7147proper way to define @code{sequence}:
7148
7149@example
5e9b6624
AD
7150sequence:
7151 /* empty */ @{ printf ("empty sequence\n"); @}
7152| sequence word @{ printf ("added word %s\n", $2); @}
7153;
bfa74976
RS
7154@end example
7155
7156Here is another common error that yields a reduce/reduce conflict:
7157
7158@example
5e9b6624
AD
7159sequence:
7160 /* empty */
7161| sequence words
7162| sequence redirects
7163;
bfa74976 7164
5e9b6624
AD
7165words:
7166 /* empty */
7167| words word
7168;
bfa74976 7169
5e9b6624
AD
7170redirects:
7171 /* empty */
7172| redirects redirect
7173;
bfa74976
RS
7174@end example
7175
7176@noindent
7177The intention here is to define a sequence which can contain either
7178@code{word} or @code{redirect} groupings. The individual definitions of
7179@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7180three together make a subtle ambiguity: even an empty input can be parsed
7181in infinitely many ways!
7182
7183Consider: nothing-at-all could be a @code{words}. Or it could be two
7184@code{words} in a row, or three, or any number. It could equally well be a
7185@code{redirects}, or two, or any number. Or it could be a @code{words}
7186followed by three @code{redirects} and another @code{words}. And so on.
7187
7188Here are two ways to correct these rules. First, to make it a single level
7189of sequence:
7190
7191@example
5e9b6624
AD
7192sequence:
7193 /* empty */
7194| sequence word
7195| sequence redirect
7196;
bfa74976
RS
7197@end example
7198
7199Second, to prevent either a @code{words} or a @code{redirects}
7200from being empty:
7201
7202@example
d4fca427 7203@group
5e9b6624
AD
7204sequence:
7205 /* empty */
7206| sequence words
7207| sequence redirects
7208;
d4fca427 7209@end group
bfa74976 7210
d4fca427 7211@group
5e9b6624
AD
7212words:
7213 word
7214| words word
7215;
d4fca427 7216@end group
bfa74976 7217
d4fca427 7218@group
5e9b6624
AD
7219redirects:
7220 redirect
7221| redirects redirect
7222;
d4fca427 7223@end group
bfa74976
RS
7224@end example
7225
cc09e5be
JD
7226@node Mysterious Conflicts
7227@section Mysterious Conflicts
7fceb615 7228@cindex Mysterious Conflicts
bfa74976
RS
7229
7230Sometimes reduce/reduce conflicts can occur that don't look warranted.
7231Here is an example:
7232
7233@example
7234@group
7235%token ID
7236
7237%%
5e9b6624 7238def: param_spec return_spec ',';
bfa74976 7239param_spec:
5e9b6624
AD
7240 type
7241| name_list ':' type
7242;
bfa74976
RS
7243@end group
7244@group
7245return_spec:
5e9b6624
AD
7246 type
7247| name ':' type
7248;
bfa74976
RS
7249@end group
7250@group
5e9b6624 7251type: ID;
bfa74976
RS
7252@end group
7253@group
5e9b6624 7254name: ID;
bfa74976 7255name_list:
5e9b6624
AD
7256 name
7257| name ',' name_list
7258;
bfa74976
RS
7259@end group
7260@end example
7261
7262It would seem that this grammar can be parsed with only a single token
742e4900 7263of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7264a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7265@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7266
7fceb615
JD
7267@cindex LR
7268@cindex LALR
eb45ef3b 7269However, for historical reasons, Bison cannot by default handle all
8a4281b9 7270LR(1) grammars.
eb45ef3b
JD
7271In this grammar, two contexts, that after an @code{ID} at the beginning
7272of a @code{param_spec} and likewise at the beginning of a
7273@code{return_spec}, are similar enough that Bison assumes they are the
7274same.
7275They appear similar because the same set of rules would be
bfa74976
RS
7276active---the rule for reducing to a @code{name} and that for reducing to
7277a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7278that the rules would require different lookahead tokens in the two
bfa74976
RS
7279contexts, so it makes a single parser state for them both. Combining
7280the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7281occurrence means that the grammar is not LALR(1).
bfa74976 7282
7fceb615
JD
7283@cindex IELR
7284@cindex canonical LR
7285For many practical grammars (specifically those that fall into the non-LR(1)
7286class), the limitations of LALR(1) result in difficulties beyond just
7287mysterious reduce/reduce conflicts. The best way to fix all these problems
7288is to select a different parser table construction algorithm. Either
7289IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7290and easier to debug during development. @xref{LR Table Construction}, for
7291details. (Bison's IELR(1) and canonical LR(1) implementations are
7292experimental. More user feedback will help to stabilize them.)
eb45ef3b 7293
8a4281b9 7294If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7295can often fix a mysterious conflict by identifying the two parser states
7296that are being confused, and adding something to make them look
7297distinct. In the above example, adding one rule to
bfa74976
RS
7298@code{return_spec} as follows makes the problem go away:
7299
7300@example
7301@group
7302%token BOGUS
7303@dots{}
7304%%
7305@dots{}
7306return_spec:
5e9b6624
AD
7307 type
7308| name ':' type
7309| ID BOGUS /* This rule is never used. */
7310;
bfa74976
RS
7311@end group
7312@end example
7313
7314This corrects the problem because it introduces the possibility of an
7315additional active rule in the context after the @code{ID} at the beginning of
7316@code{return_spec}. This rule is not active in the corresponding context
7317in a @code{param_spec}, so the two contexts receive distinct parser states.
7318As long as the token @code{BOGUS} is never generated by @code{yylex},
7319the added rule cannot alter the way actual input is parsed.
7320
7321In this particular example, there is another way to solve the problem:
7322rewrite the rule for @code{return_spec} to use @code{ID} directly
7323instead of via @code{name}. This also causes the two confusing
7324contexts to have different sets of active rules, because the one for
7325@code{return_spec} activates the altered rule for @code{return_spec}
7326rather than the one for @code{name}.
7327
7328@example
7329param_spec:
5e9b6624
AD
7330 type
7331| name_list ':' type
7332;
bfa74976 7333return_spec:
5e9b6624
AD
7334 type
7335| ID ':' type
7336;
bfa74976
RS
7337@end example
7338
8a4281b9 7339For a more detailed exposition of LALR(1) parsers and parser
5e528941 7340generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7341
7fceb615
JD
7342@node Tuning LR
7343@section Tuning LR
7344
7345The default behavior of Bison's LR-based parsers is chosen mostly for
7346historical reasons, but that behavior is often not robust. For example, in
7347the previous section, we discussed the mysterious conflicts that can be
7348produced by LALR(1), Bison's default parser table construction algorithm.
7349Another example is Bison's @code{%define parse.error verbose} directive,
7350which instructs the generated parser to produce verbose syntax error
7351messages, which can sometimes contain incorrect information.
7352
7353In this section, we explore several modern features of Bison that allow you
7354to tune fundamental aspects of the generated LR-based parsers. Some of
7355these features easily eliminate shortcomings like those mentioned above.
7356Others can be helpful purely for understanding your parser.
7357
7358Most of the features discussed in this section are still experimental. More
7359user feedback will help to stabilize them.
7360
7361@menu
7362* LR Table Construction:: Choose a different construction algorithm.
7363* Default Reductions:: Disable default reductions.
7364* LAC:: Correct lookahead sets in the parser states.
7365* Unreachable States:: Keep unreachable parser states for debugging.
7366@end menu
7367
7368@node LR Table Construction
7369@subsection LR Table Construction
7370@cindex Mysterious Conflict
7371@cindex LALR
7372@cindex IELR
7373@cindex canonical LR
7374@findex %define lr.type
7375
7376For historical reasons, Bison constructs LALR(1) parser tables by default.
7377However, LALR does not possess the full language-recognition power of LR.
7378As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7379mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7380Conflicts}.
7381
7382As we also demonstrated in that example, the traditional approach to
7383eliminating such mysterious behavior is to restructure the grammar.
7384Unfortunately, doing so correctly is often difficult. Moreover, merely
7385discovering that LALR causes mysterious behavior in your parser can be
7386difficult as well.
7387
7388Fortunately, Bison provides an easy way to eliminate the possibility of such
7389mysterious behavior altogether. You simply need to activate a more powerful
7390parser table construction algorithm by using the @code{%define lr.type}
7391directive.
7392
7393@deffn {Directive} {%define lr.type @var{TYPE}}
7394Specify the type of parser tables within the LR(1) family. The accepted
7395values for @var{TYPE} are:
7396
7397@itemize
7398@item @code{lalr} (default)
7399@item @code{ielr}
7400@item @code{canonical-lr}
7401@end itemize
7402
7403(This feature is experimental. More user feedback will help to stabilize
7404it.)
7405@end deffn
7406
7407For example, to activate IELR, you might add the following directive to you
7408grammar file:
7409
7410@example
7411%define lr.type ielr
7412@end example
7413
cc09e5be 7414@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7415conflict is then eliminated, so there is no need to invest time in
7416comprehending the conflict or restructuring the grammar to fix it. If,
7417during future development, the grammar evolves such that all mysterious
7418behavior would have disappeared using just LALR, you need not fear that
7419continuing to use IELR will result in unnecessarily large parser tables.
7420That is, IELR generates LALR tables when LALR (using a deterministic parsing
7421algorithm) is sufficient to support the full language-recognition power of
7422LR. Thus, by enabling IELR at the start of grammar development, you can
7423safely and completely eliminate the need to consider LALR's shortcomings.
7424
7425While IELR is almost always preferable, there are circumstances where LALR
7426or the canonical LR parser tables described by Knuth
7427(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7428relative advantages of each parser table construction algorithm within
7429Bison:
7430
7431@itemize
7432@item LALR
7433
7434There are at least two scenarios where LALR can be worthwhile:
7435
7436@itemize
7437@item GLR without static conflict resolution.
7438
7439@cindex GLR with LALR
7440When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7441conflicts statically (for example, with @code{%left} or @code{%prec}), then
7442the parser explores all potential parses of any given input. In this case,
7443the choice of parser table construction algorithm is guaranteed not to alter
7444the language accepted by the parser. LALR parser tables are the smallest
7445parser tables Bison can currently construct, so they may then be preferable.
7446Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7447more like a deterministic parser in the syntactic contexts where those
7448conflicts appear, and so either IELR or canonical LR can then be helpful to
7449avoid LALR's mysterious behavior.
7450
7451@item Malformed grammars.
7452
7453Occasionally during development, an especially malformed grammar with a
7454major recurring flaw may severely impede the IELR or canonical LR parser
7455table construction algorithm. LALR can be a quick way to construct parser
7456tables in order to investigate such problems while ignoring the more subtle
7457differences from IELR and canonical LR.
7458@end itemize
7459
7460@item IELR
7461
7462IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7463any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7464always accept exactly the same set of sentences. However, like LALR, IELR
7465merges parser states during parser table construction so that the number of
7466parser states is often an order of magnitude less than for canonical LR.
7467More importantly, because canonical LR's extra parser states may contain
7468duplicate conflicts in the case of non-LR grammars, the number of conflicts
7469for IELR is often an order of magnitude less as well. This effect can
7470significantly reduce the complexity of developing a grammar.
7471
7472@item Canonical LR
7473
7474@cindex delayed syntax error detection
7475@cindex LAC
7476@findex %nonassoc
7477While inefficient, canonical LR parser tables can be an interesting means to
7478explore a grammar because they possess a property that IELR and LALR tables
7479do not. That is, if @code{%nonassoc} is not used and default reductions are
7480left disabled (@pxref{Default Reductions}), then, for every left context of
7481every canonical LR state, the set of tokens accepted by that state is
7482guaranteed to be the exact set of tokens that is syntactically acceptable in
7483that left context. It might then seem that an advantage of canonical LR
7484parsers in production is that, under the above constraints, they are
7485guaranteed to detect a syntax error as soon as possible without performing
7486any unnecessary reductions. However, IELR parsers that use LAC are also
7487able to achieve this behavior without sacrificing @code{%nonassoc} or
7488default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7489@end itemize
7490
7491For a more detailed exposition of the mysterious behavior in LALR parsers
7492and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7493@ref{Bibliography,,Denny 2010 November}.
7494
7495@node Default Reductions
7496@subsection Default Reductions
7497@cindex default reductions
7498@findex %define lr.default-reductions
7499@findex %nonassoc
7500
7501After parser table construction, Bison identifies the reduction with the
7502largest lookahead set in each parser state. To reduce the size of the
7503parser state, traditional Bison behavior is to remove that lookahead set and
7504to assign that reduction to be the default parser action. Such a reduction
7505is known as a @dfn{default reduction}.
7506
7507Default reductions affect more than the size of the parser tables. They
7508also affect the behavior of the parser:
7509
7510@itemize
7511@item Delayed @code{yylex} invocations.
7512
7513@cindex delayed yylex invocations
7514@cindex consistent states
7515@cindex defaulted states
7516A @dfn{consistent state} is a state that has only one possible parser
7517action. If that action is a reduction and is encoded as a default
7518reduction, then that consistent state is called a @dfn{defaulted state}.
7519Upon reaching a defaulted state, a Bison-generated parser does not bother to
7520invoke @code{yylex} to fetch the next token before performing the reduction.
7521In other words, whether default reductions are enabled in consistent states
7522determines how soon a Bison-generated parser invokes @code{yylex} for a
7523token: immediately when it @emph{reaches} that token in the input or when it
7524eventually @emph{needs} that token as a lookahead to determine the next
7525parser action. Traditionally, default reductions are enabled, and so the
7526parser exhibits the latter behavior.
7527
7528The presence of defaulted states is an important consideration when
7529designing @code{yylex} and the grammar file. That is, if the behavior of
7530@code{yylex} can influence or be influenced by the semantic actions
7531associated with the reductions in defaulted states, then the delay of the
7532next @code{yylex} invocation until after those reductions is significant.
7533For example, the semantic actions might pop a scope stack that @code{yylex}
7534uses to determine what token to return. Thus, the delay might be necessary
7535to ensure that @code{yylex} does not look up the next token in a scope that
7536should already be considered closed.
7537
7538@item Delayed syntax error detection.
7539
7540@cindex delayed syntax error detection
7541When the parser fetches a new token by invoking @code{yylex}, it checks
7542whether there is an action for that token in the current parser state. The
7543parser detects a syntax error if and only if either (1) there is no action
7544for that token or (2) the action for that token is the error action (due to
7545the use of @code{%nonassoc}). However, if there is a default reduction in
7546that state (which might or might not be a defaulted state), then it is
7547impossible for condition 1 to exist. That is, all tokens have an action.
7548Thus, the parser sometimes fails to detect the syntax error until it reaches
7549a later state.
7550
7551@cindex LAC
7552@c If there's an infinite loop, default reductions can prevent an incorrect
7553@c sentence from being rejected.
7554While default reductions never cause the parser to accept syntactically
7555incorrect sentences, the delay of syntax error detection can have unexpected
7556effects on the behavior of the parser. However, the delay can be caused
7557anyway by parser state merging and the use of @code{%nonassoc}, and it can
7558be fixed by another Bison feature, LAC. We discuss the effects of delayed
7559syntax error detection and LAC more in the next section (@pxref{LAC}).
7560@end itemize
7561
7562For canonical LR, the only default reduction that Bison enables by default
7563is the accept action, which appears only in the accepting state, which has
7564no other action and is thus a defaulted state. However, the default accept
7565action does not delay any @code{yylex} invocation or syntax error detection
7566because the accept action ends the parse.
7567
7568For LALR and IELR, Bison enables default reductions in nearly all states by
7569default. There are only two exceptions. First, states that have a shift
7570action on the @code{error} token do not have default reductions because
7571delayed syntax error detection could then prevent the @code{error} token
7572from ever being shifted in that state. However, parser state merging can
7573cause the same effect anyway, and LAC fixes it in both cases, so future
7574versions of Bison might drop this exception when LAC is activated. Second,
7575GLR parsers do not record the default reduction as the action on a lookahead
7576token for which there is a conflict. The correct action in this case is to
7577split the parse instead.
7578
7579To adjust which states have default reductions enabled, use the
7580@code{%define lr.default-reductions} directive.
7581
7582@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7583Specify the kind of states that are permitted to contain default reductions.
7584The accepted values of @var{WHERE} are:
7585@itemize
f0ad1b2f 7586@item @code{most} (default for LALR and IELR)
7fceb615
JD
7587@item @code{consistent}
7588@item @code{accepting} (default for canonical LR)
7589@end itemize
7590
7591(The ability to specify where default reductions are permitted is
7592experimental. More user feedback will help to stabilize it.)
7593@end deffn
7594
7fceb615
JD
7595@node LAC
7596@subsection LAC
7597@findex %define parse.lac
7598@cindex LAC
7599@cindex lookahead correction
7600
7601Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7602encountering a syntax error. First, the parser might perform additional
7603parser stack reductions before discovering the syntax error. Such
7604reductions can perform user semantic actions that are unexpected because
7605they are based on an invalid token, and they cause error recovery to begin
7606in a different syntactic context than the one in which the invalid token was
7607encountered. Second, when verbose error messages are enabled (@pxref{Error
7608Reporting}), the expected token list in the syntax error message can both
7609contain invalid tokens and omit valid tokens.
7610
7611The culprits for the above problems are @code{%nonassoc}, default reductions
7612in inconsistent states (@pxref{Default Reductions}), and parser state
7613merging. Because IELR and LALR merge parser states, they suffer the most.
7614Canonical LR can suffer only if @code{%nonassoc} is used or if default
7615reductions are enabled for inconsistent states.
7616
7617LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7618that solves these problems for canonical LR, IELR, and LALR without
7619sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7620enable LAC with the @code{%define parse.lac} directive.
7621
7622@deffn {Directive} {%define parse.lac @var{VALUE}}
7623Enable LAC to improve syntax error handling.
7624@itemize
7625@item @code{none} (default)
7626@item @code{full}
7627@end itemize
7628(This feature is experimental. More user feedback will help to stabilize
7629it. Moreover, it is currently only available for deterministic parsers in
7630C.)
7631@end deffn
7632
7633Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7634fetches a new token from the scanner so that it can determine the next
7635parser action, it immediately suspends normal parsing and performs an
7636exploratory parse using a temporary copy of the normal parser state stack.
7637During this exploratory parse, the parser does not perform user semantic
7638actions. If the exploratory parse reaches a shift action, normal parsing
7639then resumes on the normal parser stacks. If the exploratory parse reaches
7640an error instead, the parser reports a syntax error. If verbose syntax
7641error messages are enabled, the parser must then discover the list of
7642expected tokens, so it performs a separate exploratory parse for each token
7643in the grammar.
7644
7645There is one subtlety about the use of LAC. That is, when in a consistent
7646parser state with a default reduction, the parser will not attempt to fetch
7647a token from the scanner because no lookahead is needed to determine the
7648next parser action. Thus, whether default reductions are enabled in
7649consistent states (@pxref{Default Reductions}) affects how soon the parser
7650detects a syntax error: immediately when it @emph{reaches} an erroneous
7651token or when it eventually @emph{needs} that token as a lookahead to
7652determine the next parser action. The latter behavior is probably more
7653intuitive, so Bison currently provides no way to achieve the former behavior
7654while default reductions are enabled in consistent states.
7655
7656Thus, when LAC is in use, for some fixed decision of whether to enable
7657default reductions in consistent states, canonical LR and IELR behave almost
7658exactly the same for both syntactically acceptable and syntactically
7659unacceptable input. While LALR still does not support the full
7660language-recognition power of canonical LR and IELR, LAC at least enables
7661LALR's syntax error handling to correctly reflect LALR's
7662language-recognition power.
7663
7664There are a few caveats to consider when using LAC:
7665
7666@itemize
7667@item Infinite parsing loops.
7668
7669IELR plus LAC does have one shortcoming relative to canonical LR. Some
7670parsers generated by Bison can loop infinitely. LAC does not fix infinite
7671parsing loops that occur between encountering a syntax error and detecting
7672it, but enabling canonical LR or disabling default reductions sometimes
7673does.
7674
7675@item Verbose error message limitations.
7676
7677Because of internationalization considerations, Bison-generated parsers
7678limit the size of the expected token list they are willing to report in a
7679verbose syntax error message. If the number of expected tokens exceeds that
7680limit, the list is simply dropped from the message. Enabling LAC can
7681increase the size of the list and thus cause the parser to drop it. Of
7682course, dropping the list is better than reporting an incorrect list.
7683
7684@item Performance.
7685
7686Because LAC requires many parse actions to be performed twice, it can have a
7687performance penalty. However, not all parse actions must be performed
7688twice. Specifically, during a series of default reductions in consistent
7689states and shift actions, the parser never has to initiate an exploratory
7690parse. Moreover, the most time-consuming tasks in a parse are often the
7691file I/O, the lexical analysis performed by the scanner, and the user's
7692semantic actions, but none of these are performed during the exploratory
7693parse. Finally, the base of the temporary stack used during an exploratory
7694parse is a pointer into the normal parser state stack so that the stack is
7695never physically copied. In our experience, the performance penalty of LAC
5a321748 7696has proved insignificant for practical grammars.
7fceb615
JD
7697@end itemize
7698
709c7d11
JD
7699While the LAC algorithm shares techniques that have been recognized in the
7700parser community for years, for the publication that introduces LAC,
7701@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7702
7fceb615
JD
7703@node Unreachable States
7704@subsection Unreachable States
7705@findex %define lr.keep-unreachable-states
7706@cindex unreachable states
7707
7708If there exists no sequence of transitions from the parser's start state to
7709some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7710state}. A state can become unreachable during conflict resolution if Bison
7711disables a shift action leading to it from a predecessor state.
7712
7713By default, Bison removes unreachable states from the parser after conflict
7714resolution because they are useless in the generated parser. However,
7715keeping unreachable states is sometimes useful when trying to understand the
7716relationship between the parser and the grammar.
7717
7718@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7719Request that Bison allow unreachable states to remain in the parser tables.
7720@var{VALUE} must be a Boolean. The default is @code{false}.
7721@end deffn
7722
7723There are a few caveats to consider:
7724
7725@itemize @bullet
7726@item Missing or extraneous warnings.
7727
7728Unreachable states may contain conflicts and may use rules not used in any
7729other state. Thus, keeping unreachable states may induce warnings that are
7730irrelevant to your parser's behavior, and it may eliminate warnings that are
7731relevant. Of course, the change in warnings may actually be relevant to a
7732parser table analysis that wants to keep unreachable states, so this
7733behavior will likely remain in future Bison releases.
7734
7735@item Other useless states.
7736
7737While Bison is able to remove unreachable states, it is not guaranteed to
7738remove other kinds of useless states. Specifically, when Bison disables
7739reduce actions during conflict resolution, some goto actions may become
7740useless, and thus some additional states may become useless. If Bison were
7741to compute which goto actions were useless and then disable those actions,
7742it could identify such states as unreachable and then remove those states.
7743However, Bison does not compute which goto actions are useless.
7744@end itemize
7745
fae437e8 7746@node Generalized LR Parsing
8a4281b9
JD
7747@section Generalized LR (GLR) Parsing
7748@cindex GLR parsing
7749@cindex generalized LR (GLR) parsing
676385e2 7750@cindex ambiguous grammars
9d9b8b70 7751@cindex nondeterministic parsing
676385e2 7752
fae437e8
AD
7753Bison produces @emph{deterministic} parsers that choose uniquely
7754when to reduce and which reduction to apply
742e4900 7755based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7756As a result, normal Bison handles a proper subset of the family of
7757context-free languages.
fae437e8 7758Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7759sequence of reductions cannot have deterministic parsers in this sense.
7760The same is true of languages that require more than one symbol of
742e4900 7761lookahead, since the parser lacks the information necessary to make a
676385e2 7762decision at the point it must be made in a shift-reduce parser.
cc09e5be 7763Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7764there are languages where Bison's default choice of how to
676385e2
PH
7765summarize the input seen so far loses necessary information.
7766
7767When you use the @samp{%glr-parser} declaration in your grammar file,
7768Bison generates a parser that uses a different algorithm, called
8a4281b9 7769Generalized LR (or GLR). A Bison GLR
c827f760 7770parser uses the same basic
676385e2
PH
7771algorithm for parsing as an ordinary Bison parser, but behaves
7772differently in cases where there is a shift-reduce conflict that has not
fae437e8 7773been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7774reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7775situation, it
fae437e8 7776effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7777shift or reduction. These parsers then proceed as usual, consuming
7778tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7779and split further, with the result that instead of a sequence of states,
8a4281b9 7780a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7781
7782In effect, each stack represents a guess as to what the proper parse
7783is. Additional input may indicate that a guess was wrong, in which case
7784the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7785actions generated in each stack are saved, rather than being executed
676385e2 7786immediately. When a stack disappears, its saved semantic actions never
fae437e8 7787get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7788their sets of semantic actions are both saved with the state that
7789results from the reduction. We say that two stacks are equivalent
fae437e8 7790when they both represent the same sequence of states,
676385e2
PH
7791and each pair of corresponding states represents a
7792grammar symbol that produces the same segment of the input token
7793stream.
7794
7795Whenever the parser makes a transition from having multiple
eb45ef3b 7796states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7797algorithm, after resolving and executing the saved-up actions.
7798At this transition, some of the states on the stack will have semantic
7799values that are sets (actually multisets) of possible actions. The
7800parser tries to pick one of the actions by first finding one whose rule
7801has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7802declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7803precedence, but there the same merging function is declared for both
fae437e8 7804rules by the @samp{%merge} declaration,
676385e2
PH
7805Bison resolves and evaluates both and then calls the merge function on
7806the result. Otherwise, it reports an ambiguity.
7807
8a4281b9
JD
7808It is possible to use a data structure for the GLR parsing tree that
7809permits the processing of any LR(1) grammar in linear time (in the
c827f760 7810size of the input), any unambiguous (not necessarily
8a4281b9 7811LR(1)) grammar in
fae437e8 7812quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7813context-free grammar in cubic worst-case time. However, Bison currently
7814uses a simpler data structure that requires time proportional to the
7815length of the input times the maximum number of stacks required for any
9d9b8b70 7816prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7817grammars can require exponential time and space to process. Such badly
7818behaving examples, however, are not generally of practical interest.
9d9b8b70 7819Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7820doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7821structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7822grammar, in particular, it is only slightly slower than with the
8a4281b9 7823deterministic LR(1) Bison parser.
676385e2 7824
5e528941
JD
7825For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
78262000}.
f6481e2f 7827
1a059451
PE
7828@node Memory Management
7829@section Memory Management, and How to Avoid Memory Exhaustion
7830@cindex memory exhaustion
7831@cindex memory management
bfa74976
RS
7832@cindex stack overflow
7833@cindex parser stack overflow
7834@cindex overflow of parser stack
7835
1a059451 7836The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7837not reduced. When this happens, the parser function @code{yyparse}
1a059451 7838calls @code{yyerror} and then returns 2.
bfa74976 7839
c827f760 7840Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7841usually results from using a right recursion instead of a left
7842recursion, @xref{Recursion, ,Recursive Rules}.
7843
bfa74976
RS
7844@vindex YYMAXDEPTH
7845By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7846parser stack can become before memory is exhausted. Define the
bfa74976
RS
7847macro with a value that is an integer. This value is the maximum number
7848of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7849
7850The stack space allowed is not necessarily allocated. If you specify a
1a059451 7851large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7852stack at first, and then makes it bigger by stages as needed. This
7853increasing allocation happens automatically and silently. Therefore,
7854you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7855space for ordinary inputs that do not need much stack.
7856
d7e14fc0
PE
7857However, do not allow @code{YYMAXDEPTH} to be a value so large that
7858arithmetic overflow could occur when calculating the size of the stack
7859space. Also, do not allow @code{YYMAXDEPTH} to be less than
7860@code{YYINITDEPTH}.
7861
bfa74976
RS
7862@cindex default stack limit
7863The default value of @code{YYMAXDEPTH}, if you do not define it, is
786410000.
7865
7866@vindex YYINITDEPTH
7867You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7868macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7869parser in C, this value must be a compile-time constant
d7e14fc0
PE
7870unless you are assuming C99 or some other target language or compiler
7871that allows variable-length arrays. The default is 200.
7872
1a059451 7873Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7874
20be2f92 7875You can generate a deterministic parser containing C++ user code from
411614fa 7876the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
7877(@pxref{C++ Parsers}). However, if you do use the default skeleton
7878and want to allow the parsing stack to grow,
7879be careful not to use semantic types or location types that require
7880non-trivial copy constructors.
7881The C skeleton bypasses these constructors when copying data to
7882new, larger stacks.
d1a1114f 7883
342b8b6e 7884@node Error Recovery
bfa74976
RS
7885@chapter Error Recovery
7886@cindex error recovery
7887@cindex recovery from errors
7888
6e649e65 7889It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7890error. For example, a compiler should recover sufficiently to parse the
7891rest of the input file and check it for errors; a calculator should accept
7892another expression.
7893
7894In a simple interactive command parser where each input is one line, it may
7895be sufficient to allow @code{yyparse} to return 1 on error and have the
7896caller ignore the rest of the input line when that happens (and then call
7897@code{yyparse} again). But this is inadequate for a compiler, because it
7898forgets all the syntactic context leading up to the error. A syntax error
7899deep within a function in the compiler input should not cause the compiler
7900to treat the following line like the beginning of a source file.
7901
7902@findex error
7903You can define how to recover from a syntax error by writing rules to
7904recognize the special token @code{error}. This is a terminal symbol that
7905is always defined (you need not declare it) and reserved for error
7906handling. The Bison parser generates an @code{error} token whenever a
7907syntax error happens; if you have provided a rule to recognize this token
13863333 7908in the current context, the parse can continue.
bfa74976
RS
7909
7910For example:
7911
7912@example
0860e383 7913stmts:
5e9b6624 7914 /* empty string */
0860e383
AD
7915| stmts '\n'
7916| stmts exp '\n'
7917| stmts error '\n'
bfa74976
RS
7918@end example
7919
7920The fourth rule in this example says that an error followed by a newline
0860e383 7921makes a valid addition to any @code{stmts}.
bfa74976
RS
7922
7923What happens if a syntax error occurs in the middle of an @code{exp}? The
7924error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 7925of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 7926the middle of an @code{exp}, there will probably be some additional tokens
0860e383 7927and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
7928will be tokens to read before the next newline. So the rule is not
7929applicable in the ordinary way.
7930
7931But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7932the semantic context and part of the input. First it discards states
7933and objects from the stack until it gets back to a state in which the
bfa74976 7934@code{error} token is acceptable. (This means that the subexpressions
0860e383 7935already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 7936At this point the @code{error} token can be shifted. Then, if the old
742e4900 7937lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7938tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7939this example, Bison reads and discards input until the next newline so
7940that the fourth rule can apply. Note that discarded symbols are
7941possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7942Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7943
7944The choice of error rules in the grammar is a choice of strategies for
7945error recovery. A simple and useful strategy is simply to skip the rest of
7946the current input line or current statement if an error is detected:
7947
7948@example
0860e383 7949stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7950@end example
7951
7952It is also useful to recover to the matching close-delimiter of an
7953opening-delimiter that has already been parsed. Otherwise the
7954close-delimiter will probably appear to be unmatched, and generate another,
7955spurious error message:
7956
7957@example
5e9b6624
AD
7958primary:
7959 '(' expr ')'
7960| '(' error ')'
7961@dots{}
7962;
bfa74976
RS
7963@end example
7964
7965Error recovery strategies are necessarily guesses. When they guess wrong,
7966one syntax error often leads to another. In the above example, the error
7967recovery rule guesses that an error is due to bad input within one
0860e383
AD
7968@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
7969middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
7970from the first error, another syntax error will be found straightaway,
7971since the text following the spurious semicolon is also an invalid
0860e383 7972@code{stmt}.
bfa74976
RS
7973
7974To prevent an outpouring of error messages, the parser will output no error
7975message for another syntax error that happens shortly after the first; only
7976after three consecutive input tokens have been successfully shifted will
7977error messages resume.
7978
7979Note that rules which accept the @code{error} token may have actions, just
7980as any other rules can.
7981
7982@findex yyerrok
7983You can make error messages resume immediately by using the macro
7984@code{yyerrok} in an action. If you do this in the error rule's action, no
7985error messages will be suppressed. This macro requires no arguments;
7986@samp{yyerrok;} is a valid C statement.
7987
7988@findex yyclearin
742e4900 7989The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7990this is unacceptable, then the macro @code{yyclearin} may be used to clear
7991this token. Write the statement @samp{yyclearin;} in the error rule's
7992action.
32c29292 7993@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7994
6e649e65 7995For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7996called that advances the input stream to some point where parsing should
7997once again commence. The next symbol returned by the lexical scanner is
742e4900 7998probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7999with @samp{yyclearin;}.
8000
8001@vindex YYRECOVERING
02103984
PE
8002The expression @code{YYRECOVERING ()} yields 1 when the parser
8003is recovering from a syntax error, and 0 otherwise.
8004Syntax error diagnostics are suppressed while recovering from a syntax
8005error.
bfa74976 8006
342b8b6e 8007@node Context Dependency
bfa74976
RS
8008@chapter Handling Context Dependencies
8009
8010The Bison paradigm is to parse tokens first, then group them into larger
8011syntactic units. In many languages, the meaning of a token is affected by
8012its context. Although this violates the Bison paradigm, certain techniques
8013(known as @dfn{kludges}) may enable you to write Bison parsers for such
8014languages.
8015
8016@menu
8017* Semantic Tokens:: Token parsing can depend on the semantic context.
8018* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8019* Tie-in Recovery:: Lexical tie-ins have implications for how
8020 error recovery rules must be written.
8021@end menu
8022
8023(Actually, ``kludge'' means any technique that gets its job done but is
8024neither clean nor robust.)
8025
342b8b6e 8026@node Semantic Tokens
bfa74976
RS
8027@section Semantic Info in Token Types
8028
8029The C language has a context dependency: the way an identifier is used
8030depends on what its current meaning is. For example, consider this:
8031
8032@example
8033foo (x);
8034@end example
8035
8036This looks like a function call statement, but if @code{foo} is a typedef
8037name, then this is actually a declaration of @code{x}. How can a Bison
8038parser for C decide how to parse this input?
8039
8a4281b9 8040The method used in GNU C is to have two different token types,
bfa74976
RS
8041@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8042identifier, it looks up the current declaration of the identifier in order
8043to decide which token type to return: @code{TYPENAME} if the identifier is
8044declared as a typedef, @code{IDENTIFIER} otherwise.
8045
8046The grammar rules can then express the context dependency by the choice of
8047token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8048but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8049@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8050is @emph{not} significant, such as in declarations that can shadow a
8051typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8052accepted---there is one rule for each of the two token types.
8053
8054This technique is simple to use if the decision of which kinds of
8055identifiers to allow is made at a place close to where the identifier is
8056parsed. But in C this is not always so: C allows a declaration to
8057redeclare a typedef name provided an explicit type has been specified
8058earlier:
8059
8060@example
3a4f411f
PE
8061typedef int foo, bar;
8062int baz (void)
d4fca427 8063@group
3a4f411f
PE
8064@{
8065 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8066 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8067 return foo (bar);
8068@}
d4fca427 8069@end group
bfa74976
RS
8070@end example
8071
8072Unfortunately, the name being declared is separated from the declaration
8073construct itself by a complicated syntactic structure---the ``declarator''.
8074
9ecbd125 8075As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8076all the nonterminal names changed: once for parsing a declaration in
8077which a typedef name can be redefined, and once for parsing a
8078declaration in which that can't be done. Here is a part of the
8079duplication, with actions omitted for brevity:
bfa74976
RS
8080
8081@example
d4fca427 8082@group
bfa74976 8083initdcl:
5e9b6624
AD
8084 declarator maybeasm '=' init
8085| declarator maybeasm
8086;
d4fca427 8087@end group
bfa74976 8088
d4fca427 8089@group
bfa74976 8090notype_initdcl:
5e9b6624
AD
8091 notype_declarator maybeasm '=' init
8092| notype_declarator maybeasm
8093;
d4fca427 8094@end group
bfa74976
RS
8095@end example
8096
8097@noindent
8098Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8099cannot. The distinction between @code{declarator} and
8100@code{notype_declarator} is the same sort of thing.
8101
8102There is some similarity between this technique and a lexical tie-in
8103(described next), in that information which alters the lexical analysis is
8104changed during parsing by other parts of the program. The difference is
8105here the information is global, and is used for other purposes in the
8106program. A true lexical tie-in has a special-purpose flag controlled by
8107the syntactic context.
8108
342b8b6e 8109@node Lexical Tie-ins
bfa74976
RS
8110@section Lexical Tie-ins
8111@cindex lexical tie-in
8112
8113One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8114which is set by Bison actions, whose purpose is to alter the way tokens are
8115parsed.
8116
8117For example, suppose we have a language vaguely like C, but with a special
8118construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8119an expression in parentheses in which all integers are hexadecimal. In
8120particular, the token @samp{a1b} must be treated as an integer rather than
8121as an identifier if it appears in that context. Here is how you can do it:
8122
8123@example
8124@group
8125%@{
38a92d50
PE
8126 int hexflag;
8127 int yylex (void);
8128 void yyerror (char const *);
bfa74976
RS
8129%@}
8130%%
8131@dots{}
8132@end group
8133@group
5e9b6624
AD
8134expr:
8135 IDENTIFIER
8136| constant
8137| HEX '(' @{ hexflag = 1; @}
8138 expr ')' @{ hexflag = 0; $$ = $4; @}
8139| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8140@dots{}
8141;
bfa74976
RS
8142@end group
8143
8144@group
8145constant:
5e9b6624
AD
8146 INTEGER
8147| STRING
8148;
bfa74976
RS
8149@end group
8150@end example
8151
8152@noindent
8153Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8154it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8155with letters are parsed as integers if possible.
8156
ff7571c0
JD
8157The declaration of @code{hexflag} shown in the prologue of the grammar
8158file is needed to make it accessible to the actions (@pxref{Prologue,
8159,The Prologue}). You must also write the code in @code{yylex} to obey
8160the flag.
bfa74976 8161
342b8b6e 8162@node Tie-in Recovery
bfa74976
RS
8163@section Lexical Tie-ins and Error Recovery
8164
8165Lexical tie-ins make strict demands on any error recovery rules you have.
8166@xref{Error Recovery}.
8167
8168The reason for this is that the purpose of an error recovery rule is to
8169abort the parsing of one construct and resume in some larger construct.
8170For example, in C-like languages, a typical error recovery rule is to skip
8171tokens until the next semicolon, and then start a new statement, like this:
8172
8173@example
5e9b6624
AD
8174stmt:
8175 expr ';'
8176| IF '(' expr ')' stmt @{ @dots{} @}
8177@dots{}
8178| error ';' @{ hexflag = 0; @}
8179;
bfa74976
RS
8180@end example
8181
8182If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8183construct, this error rule will apply, and then the action for the
8184completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8185remain set for the entire rest of the input, or until the next @code{hex}
8186keyword, causing identifiers to be misinterpreted as integers.
8187
8188To avoid this problem the error recovery rule itself clears @code{hexflag}.
8189
8190There may also be an error recovery rule that works within expressions.
8191For example, there could be a rule which applies within parentheses
8192and skips to the close-parenthesis:
8193
8194@example
8195@group
5e9b6624
AD
8196expr:
8197 @dots{}
8198| '(' expr ')' @{ $$ = $2; @}
8199| '(' error ')'
8200@dots{}
bfa74976
RS
8201@end group
8202@end example
8203
8204If this rule acts within the @code{hex} construct, it is not going to abort
8205that construct (since it applies to an inner level of parentheses within
8206the construct). Therefore, it should not clear the flag: the rest of
8207the @code{hex} construct should be parsed with the flag still in effect.
8208
8209What if there is an error recovery rule which might abort out of the
8210@code{hex} construct or might not, depending on circumstances? There is no
8211way you can write the action to determine whether a @code{hex} construct is
8212being aborted or not. So if you are using a lexical tie-in, you had better
8213make sure your error recovery rules are not of this kind. Each rule must
8214be such that you can be sure that it always will, or always won't, have to
8215clear the flag.
8216
ec3bc396
AD
8217@c ================================================== Debugging Your Parser
8218
342b8b6e 8219@node Debugging
bfa74976 8220@chapter Debugging Your Parser
ec3bc396
AD
8221
8222Developing a parser can be a challenge, especially if you don't
8223understand the algorithm (@pxref{Algorithm, ,The Bison Parser
8224Algorithm}). Even so, sometimes a detailed description of the automaton
8225can help (@pxref{Understanding, , Understanding Your Parser}), or
8226tracing the execution of the parser can give some insight on why it
8227behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
8228
8229@menu
8230* Understanding:: Understanding the structure of your parser.
8231* Tracing:: Tracing the execution of your parser.
8232@end menu
8233
8234@node Understanding
8235@section Understanding Your Parser
8236
8237As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8238Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8239frequent than one would hope), looking at this automaton is required to
8240tune or simply fix a parser. Bison provides two different
35fe0834 8241representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8242
8243The textual file is generated when the options @option{--report} or
8244@option{--verbose} are specified, see @xref{Invocation, , Invoking
8245Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8246the parser implementation file name, and adding @samp{.output}
8247instead. Therefore, if the grammar file is @file{foo.y}, then the
8248parser implementation file is called @file{foo.tab.c} by default. As
8249a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8250
8251The following grammar file, @file{calc.y}, will be used in the sequel:
8252
8253@example
8254%token NUM STR
8255%left '+' '-'
8256%left '*'
8257%%
5e9b6624
AD
8258exp:
8259 exp '+' exp
8260| exp '-' exp
8261| exp '*' exp
8262| exp '/' exp
8263| NUM
8264;
ec3bc396
AD
8265useless: STR;
8266%%
8267@end example
8268
88bce5a2
AD
8269@command{bison} reports:
8270
8271@example
8f0d265e
JD
8272calc.y: warning: 1 nonterminal useless in grammar
8273calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8274calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8275calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8276calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8277@end example
8278
8279When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8280creates a file @file{calc.output} with contents detailed below. The
8281order of the output and the exact presentation might vary, but the
8282interpretation is the same.
ec3bc396 8283
ec3bc396
AD
8284@noindent
8285@cindex token, useless
8286@cindex useless token
8287@cindex nonterminal, useless
8288@cindex useless nonterminal
8289@cindex rule, useless
8290@cindex useless rule
62243aa5 8291The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8292nonterminals and rules are removed in order to produce a smaller parser, but
8293useless tokens are preserved, since they might be used by the scanner (note
8294the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8295
8296@example
29e20e22 8297Nonterminals useless in grammar
ec3bc396
AD
8298 useless
8299
29e20e22 8300Terminals unused in grammar
ec3bc396
AD
8301 STR
8302
29e20e22
AD
8303Rules useless in grammar
8304 6 useless: STR
ec3bc396
AD
8305@end example
8306
8307@noindent
29e20e22
AD
8308The next section lists states that still have conflicts.
8309
8310@example
8311State 8 conflicts: 1 shift/reduce
8312State 9 conflicts: 1 shift/reduce
8313State 10 conflicts: 1 shift/reduce
8314State 11 conflicts: 4 shift/reduce
8315@end example
8316
8317@noindent
8318Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8319
8320@example
8321Grammar
8322
29e20e22
AD
8323 0 $accept: exp $end
8324
8325 1 exp: exp '+' exp
8326 2 | exp '-' exp
8327 3 | exp '*' exp
8328 4 | exp '/' exp
8329 5 | NUM
ec3bc396
AD
8330@end example
8331
8332@noindent
8333and reports the uses of the symbols:
8334
8335@example
d4fca427 8336@group
ec3bc396
AD
8337Terminals, with rules where they appear
8338
88bce5a2 8339$end (0) 0
ec3bc396
AD
8340'*' (42) 3
8341'+' (43) 1
8342'-' (45) 2
8343'/' (47) 4
8344error (256)
8345NUM (258) 5
29e20e22 8346STR (259)
d4fca427 8347@end group
ec3bc396 8348
d4fca427 8349@group
ec3bc396
AD
8350Nonterminals, with rules where they appear
8351
29e20e22 8352$accept (9)
ec3bc396 8353 on left: 0
29e20e22 8354exp (10)
ec3bc396 8355 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8356@end group
ec3bc396
AD
8357@end example
8358
8359@noindent
8360@cindex item
8361@cindex pointed rule
8362@cindex rule, pointed
8363Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8364with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8365item is a production rule together with a point (@samp{.}) marking
8366the location of the input cursor.
ec3bc396
AD
8367
8368@example
8369state 0
8370
29e20e22 8371 0 $accept: . exp $end
ec3bc396 8372
29e20e22 8373 NUM shift, and go to state 1
ec3bc396 8374
29e20e22 8375 exp go to state 2
ec3bc396
AD
8376@end example
8377
8378This reads as follows: ``state 0 corresponds to being at the very
8379beginning of the parsing, in the initial rule, right before the start
8380symbol (here, @code{exp}). When the parser returns to this state right
8381after having reduced a rule that produced an @code{exp}, the control
8382flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8383symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8384the parse stack, and the control flow jumps to state 1. Any other
742e4900 8385lookahead triggers a syntax error.''
ec3bc396
AD
8386
8387@cindex core, item set
8388@cindex item set core
8389@cindex kernel, item set
8390@cindex item set core
8391Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8392report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8393at the beginning of any rule deriving an @code{exp}. By default Bison
8394reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8395you want to see more detail you can invoke @command{bison} with
35880c82 8396@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8397
8398@example
8399state 0
8400
29e20e22
AD
8401 0 $accept: . exp $end
8402 1 exp: . exp '+' exp
8403 2 | . exp '-' exp
8404 3 | . exp '*' exp
8405 4 | . exp '/' exp
8406 5 | . NUM
ec3bc396 8407
29e20e22 8408 NUM shift, and go to state 1
ec3bc396 8409
29e20e22 8410 exp go to state 2
ec3bc396
AD
8411@end example
8412
8413@noindent
29e20e22 8414In the state 1@dots{}
ec3bc396
AD
8415
8416@example
8417state 1
8418
29e20e22 8419 5 exp: NUM .
ec3bc396 8420
29e20e22 8421 $default reduce using rule 5 (exp)
ec3bc396
AD
8422@end example
8423
8424@noindent
742e4900 8425the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8426(@samp{$default}), the parser will reduce it. If it was coming from
8427state 0, then, after this reduction it will return to state 0, and will
8428jump to state 2 (@samp{exp: go to state 2}).
8429
8430@example
8431state 2
8432
29e20e22
AD
8433 0 $accept: exp . $end
8434 1 exp: exp . '+' exp
8435 2 | exp . '-' exp
8436 3 | exp . '*' exp
8437 4 | exp . '/' exp
ec3bc396 8438
29e20e22
AD
8439 $end shift, and go to state 3
8440 '+' shift, and go to state 4
8441 '-' shift, and go to state 5
8442 '*' shift, and go to state 6
8443 '/' shift, and go to state 7
ec3bc396
AD
8444@end example
8445
8446@noindent
8447In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8448because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8449@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8450jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8451Since there is no default action, any lookahead not listed triggers a syntax
8452error.
ec3bc396 8453
eb45ef3b 8454@cindex accepting state
ec3bc396
AD
8455The state 3 is named the @dfn{final state}, or the @dfn{accepting
8456state}:
8457
8458@example
8459state 3
8460
29e20e22 8461 0 $accept: exp $end .
ec3bc396 8462
29e20e22 8463 $default accept
ec3bc396
AD
8464@end example
8465
8466@noindent
29e20e22
AD
8467the initial rule is completed (the start symbol and the end-of-input were
8468read), the parsing exits successfully.
ec3bc396
AD
8469
8470The interpretation of states 4 to 7 is straightforward, and is left to
8471the reader.
8472
8473@example
8474state 4
8475
29e20e22 8476 1 exp: exp '+' . exp
ec3bc396 8477
29e20e22
AD
8478 NUM shift, and go to state 1
8479
8480 exp go to state 8
ec3bc396 8481
ec3bc396
AD
8482
8483state 5
8484
29e20e22
AD
8485 2 exp: exp '-' . exp
8486
8487 NUM shift, and go to state 1
ec3bc396 8488
29e20e22 8489 exp go to state 9
ec3bc396 8490
ec3bc396
AD
8491
8492state 6
8493
29e20e22 8494 3 exp: exp '*' . exp
ec3bc396 8495
29e20e22
AD
8496 NUM shift, and go to state 1
8497
8498 exp go to state 10
ec3bc396 8499
ec3bc396
AD
8500
8501state 7
8502
29e20e22 8503 4 exp: exp '/' . exp
ec3bc396 8504
29e20e22 8505 NUM shift, and go to state 1
ec3bc396 8506
29e20e22 8507 exp go to state 11
ec3bc396
AD
8508@end example
8509
5a99098d
PE
8510As was announced in beginning of the report, @samp{State 8 conflicts:
85111 shift/reduce}:
ec3bc396
AD
8512
8513@example
8514state 8
8515
29e20e22
AD
8516 1 exp: exp . '+' exp
8517 1 | exp '+' exp .
8518 2 | exp . '-' exp
8519 3 | exp . '*' exp
8520 4 | exp . '/' exp
ec3bc396 8521
29e20e22
AD
8522 '*' shift, and go to state 6
8523 '/' shift, and go to state 7
ec3bc396 8524
29e20e22
AD
8525 '/' [reduce using rule 1 (exp)]
8526 $default reduce using rule 1 (exp)
ec3bc396
AD
8527@end example
8528
742e4900 8529Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8530either shifting (and going to state 7), or reducing rule 1. The
8531conflict means that either the grammar is ambiguous, or the parser lacks
8532information to make the right decision. Indeed the grammar is
8533ambiguous, as, since we did not specify the precedence of @samp{/}, the
8534sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8535NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8536NUM}, which corresponds to reducing rule 1.
8537
eb45ef3b 8538Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8539arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 8540Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8541square brackets.
8542
8543Note that all the previous states had a single possible action: either
8544shifting the next token and going to the corresponding state, or
8545reducing a single rule. In the other cases, i.e., when shifting
8546@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8547possible, the lookahead is required to select the action. State 8 is
8548one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8549is shifting, otherwise the action is reducing rule 1. In other words,
8550the first two items, corresponding to rule 1, are not eligible when the
742e4900 8551lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8552precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8553with some set of possible lookahead tokens. When run with
8554@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8555
8556@example
8557state 8
8558
29e20e22
AD
8559 1 exp: exp . '+' exp
8560 1 | exp '+' exp . [$end, '+', '-', '/']
8561 2 | exp . '-' exp
8562 3 | exp . '*' exp
8563 4 | exp . '/' exp
8564
8565 '*' shift, and go to state 6
8566 '/' shift, and go to state 7
ec3bc396 8567
29e20e22
AD
8568 '/' [reduce using rule 1 (exp)]
8569 $default reduce using rule 1 (exp)
8570@end example
8571
8572Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8573the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8574solved thanks to associativity and precedence directives. If invoked with
8575@option{--report=solved}, Bison includes information about the solved
8576conflicts in the report:
ec3bc396 8577
29e20e22
AD
8578@example
8579Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8580Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8581Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8582@end example
8583
29e20e22 8584
ec3bc396
AD
8585The remaining states are similar:
8586
8587@example
d4fca427 8588@group
ec3bc396
AD
8589state 9
8590
29e20e22
AD
8591 1 exp: exp . '+' exp
8592 2 | exp . '-' exp
8593 2 | exp '-' exp .
8594 3 | exp . '*' exp
8595 4 | exp . '/' exp
ec3bc396 8596
29e20e22
AD
8597 '*' shift, and go to state 6
8598 '/' shift, and go to state 7
ec3bc396 8599
29e20e22
AD
8600 '/' [reduce using rule 2 (exp)]
8601 $default reduce using rule 2 (exp)
d4fca427 8602@end group
ec3bc396 8603
d4fca427 8604@group
ec3bc396
AD
8605state 10
8606
29e20e22
AD
8607 1 exp: exp . '+' exp
8608 2 | exp . '-' exp
8609 3 | exp . '*' exp
8610 3 | exp '*' exp .
8611 4 | exp . '/' exp
ec3bc396 8612
29e20e22 8613 '/' shift, and go to state 7
ec3bc396 8614
29e20e22
AD
8615 '/' [reduce using rule 3 (exp)]
8616 $default reduce using rule 3 (exp)
d4fca427 8617@end group
ec3bc396 8618
d4fca427 8619@group
ec3bc396
AD
8620state 11
8621
29e20e22
AD
8622 1 exp: exp . '+' exp
8623 2 | exp . '-' exp
8624 3 | exp . '*' exp
8625 4 | exp . '/' exp
8626 4 | exp '/' exp .
8627
8628 '+' shift, and go to state 4
8629 '-' shift, and go to state 5
8630 '*' shift, and go to state 6
8631 '/' shift, and go to state 7
8632
8633 '+' [reduce using rule 4 (exp)]
8634 '-' [reduce using rule 4 (exp)]
8635 '*' [reduce using rule 4 (exp)]
8636 '/' [reduce using rule 4 (exp)]
8637 $default reduce using rule 4 (exp)
d4fca427 8638@end group
ec3bc396
AD
8639@end example
8640
8641@noindent
fa7e68c3
PE
8642Observe that state 11 contains conflicts not only due to the lack of
8643precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8644@samp{*}, but also because the
ec3bc396
AD
8645associativity of @samp{/} is not specified.
8646
8647
8648@node Tracing
8649@section Tracing Your Parser
bfa74976
RS
8650@findex yydebug
8651@cindex debugging
8652@cindex tracing the parser
8653
8654If a Bison grammar compiles properly but doesn't do what you want when it
8655runs, the @code{yydebug} parser-trace feature can help you figure out why.
8656
3ded9a63
AD
8657There are several means to enable compilation of trace facilities:
8658
8659@table @asis
8660@item the macro @code{YYDEBUG}
8661@findex YYDEBUG
8662Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8663parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8664@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8665YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8666Prologue}).
8667
8668@item the option @option{-t}, @option{--debug}
8669Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8670,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8671
8672@item the directive @samp{%debug}
8673@findex %debug
fa819509
AD
8674Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8675Summary}). This Bison extension is maintained for backward
8676compatibility with previous versions of Bison.
8677
8678@item the variable @samp{parse.trace}
8679@findex %define parse.trace
35c1e5f0
JD
8680Add the @samp{%define parse.trace} directive (@pxref{%define
8681Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8682(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8683useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8684portability matter to you, this is the preferred solution.
3ded9a63
AD
8685@end table
8686
fa819509 8687We suggest that you always enable the trace option so that debugging is
3ded9a63 8688always possible.
bfa74976 8689
02a81e05 8690The trace facility outputs messages with macro calls of the form
e2742e46 8691@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8692@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8693arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8694define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8695and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8696
8697Once you have compiled the program with trace facilities, the way to
8698request a trace is to store a nonzero value in the variable @code{yydebug}.
8699You can do this by making the C code do it (in @code{main}, perhaps), or
8700you can alter the value with a C debugger.
8701
8702Each step taken by the parser when @code{yydebug} is nonzero produces a
8703line or two of trace information, written on @code{stderr}. The trace
8704messages tell you these things:
8705
8706@itemize @bullet
8707@item
8708Each time the parser calls @code{yylex}, what kind of token was read.
8709
8710@item
8711Each time a token is shifted, the depth and complete contents of the
8712state stack (@pxref{Parser States}).
8713
8714@item
8715Each time a rule is reduced, which rule it is, and the complete contents
8716of the state stack afterward.
8717@end itemize
8718
8719To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8720produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8721Bison}). This file shows the meaning of each state in terms of
8722positions in various rules, and also what each state will do with each
8723possible input token. As you read the successive trace messages, you
8724can see that the parser is functioning according to its specification in
8725the listing file. Eventually you will arrive at the place where
8726something undesirable happens, and you will see which parts of the
8727grammar are to blame.
bfa74976 8728
ff7571c0
JD
8729The parser implementation file is a C program and you can use C
8730debuggers on it, but it's not easy to interpret what it is doing. The
8731parser function is a finite-state machine interpreter, and aside from
8732the actions it executes the same code over and over. Only the values
8733of variables show where in the grammar it is working.
bfa74976
RS
8734
8735@findex YYPRINT
8736The debugging information normally gives the token type of each token
8737read, but not its semantic value. You can optionally define a macro
8738named @code{YYPRINT} to provide a way to print the value. If you define
8739@code{YYPRINT}, it should take three arguments. The parser will pass a
8740standard I/O stream, the numeric code for the token type, and the token
8741value (from @code{yylval}).
8742
8743Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8744calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 8745
c93f22fc 8746@example
38a92d50
PE
8747%@{
8748 static void print_token_value (FILE *, int, YYSTYPE);
c93f22fc
AD
8749 #define YYPRINT(file, type, value) \
8750 print_token_value (file, type, value)
38a92d50
PE
8751%@}
8752
8753@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8754
8755static void
831d3c99 8756print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8757@{
8758 if (type == VAR)
d3c4e709 8759 fprintf (file, "%s", value.tptr->name);
bfa74976 8760 else if (type == NUM)
d3c4e709 8761 fprintf (file, "%d", value.val);
bfa74976 8762@}
c93f22fc 8763@end example
bfa74976 8764
ec3bc396
AD
8765@c ================================================= Invoking Bison
8766
342b8b6e 8767@node Invocation
bfa74976
RS
8768@chapter Invoking Bison
8769@cindex invoking Bison
8770@cindex Bison invocation
8771@cindex options for invoking Bison
8772
8773The usual way to invoke Bison is as follows:
8774
8775@example
8776bison @var{infile}
8777@end example
8778
8779Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
8780@samp{.y}. The parser implementation file's name is made by replacing
8781the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8782Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8783the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8784also possible, in case you are writing C++ code instead of C in your
8785grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8786output files will take an extension like the given one as input
8787(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8788feature takes effect with all options that manipulate file names like
234a3be3
AD
8789@samp{-o} or @samp{-d}.
8790
8791For example :
8792
8793@example
8794bison -d @var{infile.yxx}
8795@end example
84163231 8796@noindent
72d2299c 8797will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8798
8799@example
b56471a6 8800bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8801@end example
84163231 8802@noindent
234a3be3
AD
8803will produce @file{output.c++} and @file{outfile.h++}.
8804
8a4281b9 8805For compatibility with POSIX, the standard Bison
397ec073
PE
8806distribution also contains a shell script called @command{yacc} that
8807invokes Bison with the @option{-y} option.
8808
bfa74976 8809@menu
13863333 8810* Bison Options:: All the options described in detail,
c827f760 8811 in alphabetical order by short options.
bfa74976 8812* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8813* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8814@end menu
8815
342b8b6e 8816@node Bison Options
bfa74976
RS
8817@section Bison Options
8818
8819Bison supports both traditional single-letter options and mnemonic long
8820option names. Long option names are indicated with @samp{--} instead of
8821@samp{-}. Abbreviations for option names are allowed as long as they
8822are unique. When a long option takes an argument, like
8823@samp{--file-prefix}, connect the option name and the argument with
8824@samp{=}.
8825
8826Here is a list of options that can be used with Bison, alphabetized by
8827short option. It is followed by a cross key alphabetized by long
8828option.
8829
89cab50d
AD
8830@c Please, keep this ordered as in `bison --help'.
8831@noindent
8832Operations modes:
8833@table @option
8834@item -h
8835@itemx --help
8836Print a summary of the command-line options to Bison and exit.
bfa74976 8837
89cab50d
AD
8838@item -V
8839@itemx --version
8840Print the version number of Bison and exit.
bfa74976 8841
f7ab6a50
PE
8842@item --print-localedir
8843Print the name of the directory containing locale-dependent data.
8844
a0de5091
JD
8845@item --print-datadir
8846Print the name of the directory containing skeletons and XSLT.
8847
89cab50d
AD
8848@item -y
8849@itemx --yacc
ff7571c0
JD
8850Act more like the traditional Yacc command. This can cause different
8851diagnostics to be generated, and may change behavior in other minor
8852ways. Most importantly, imitate Yacc's output file name conventions,
8853so that the parser implementation file is called @file{y.tab.c}, and
8854the other outputs are called @file{y.output} and @file{y.tab.h}.
8855Also, if generating a deterministic parser in C, generate
8856@code{#define} statements in addition to an @code{enum} to associate
8857token numbers with token names. Thus, the following shell script can
8858substitute for Yacc, and the Bison distribution contains such a script
8859for compatibility with POSIX:
bfa74976 8860
89cab50d 8861@example
397ec073 8862#! /bin/sh
26e06a21 8863bison -y "$@@"
89cab50d 8864@end example
54662697
PE
8865
8866The @option{-y}/@option{--yacc} option is intended for use with
8867traditional Yacc grammars. If your grammar uses a Bison extension
8868like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8869this option is specified.
8870
1d5b3c08
JD
8871@item -W [@var{category}]
8872@itemx --warnings[=@var{category}]
118d4978
AD
8873Output warnings falling in @var{category}. @var{category} can be one
8874of:
8875@table @code
8876@item midrule-values
8e55b3aa
JD
8877Warn about mid-rule values that are set but not used within any of the actions
8878of the parent rule.
8879For example, warn about unused @code{$2} in:
118d4978
AD
8880
8881@example
8882exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8883@end example
8884
8e55b3aa
JD
8885Also warn about mid-rule values that are used but not set.
8886For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8887
8888@example
5e9b6624 8889exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
8890@end example
8891
8892These warnings are not enabled by default since they sometimes prove to
8893be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8894@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8895
118d4978 8896@item yacc
8a4281b9 8897Incompatibilities with POSIX Yacc.
118d4978 8898
786743d5
JD
8899@item conflicts-sr
8900@itemx conflicts-rr
8901S/R and R/R conflicts. These warnings are enabled by default. However, if
8902the @code{%expect} or @code{%expect-rr} directive is specified, an
8903unexpected number of conflicts is an error, and an expected number of
8904conflicts is not reported, so @option{-W} and @option{--warning} then have
8905no effect on the conflict report.
8906
c39014ae
JD
8907@item other
8908All warnings not categorized above. These warnings are enabled by default.
8909
8910This category is provided merely for the sake of completeness. Future
8911releases of Bison may move warnings from this category to new, more specific
8912categories.
8913
118d4978 8914@item all
8e55b3aa 8915All the warnings.
118d4978 8916@item none
8e55b3aa 8917Turn off all the warnings.
118d4978 8918@item error
8e55b3aa 8919Treat warnings as errors.
118d4978
AD
8920@end table
8921
8922A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8923instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8924POSIX Yacc incompatibilities.
89cab50d
AD
8925@end table
8926
8927@noindent
8928Tuning the parser:
8929
8930@table @option
8931@item -t
8932@itemx --debug
ff7571c0
JD
8933In the parser implementation file, define the macro @code{YYDEBUG} to
89341 if it is not already defined, so that the debugging facilities are
8935compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8936
58697c6d
AD
8937@item -D @var{name}[=@var{value}]
8938@itemx --define=@var{name}[=@var{value}]
17aed602 8939@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8940@itemx --force-define=@var{name}[=@var{value}]
8941Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 8942(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
8943definitions for the same @var{name} as follows:
8944
8945@itemize
8946@item
0b6d43c5
JD
8947Bison quietly ignores all command-line definitions for @var{name} except
8948the last.
de5ab940 8949@item
0b6d43c5
JD
8950If that command-line definition is specified by a @code{-D} or
8951@code{--define}, Bison reports an error for any @code{%define}
8952definition for @var{name}.
de5ab940 8953@item
0b6d43c5
JD
8954If that command-line definition is specified by a @code{-F} or
8955@code{--force-define} instead, Bison quietly ignores all @code{%define}
8956definitions for @var{name}.
8957@item
8958Otherwise, Bison reports an error if there are multiple @code{%define}
8959definitions for @var{name}.
de5ab940
JD
8960@end itemize
8961
8962You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
8963make files unless you are confident that it is safe to quietly ignore
8964any conflicting @code{%define} that may be added to the grammar file.
58697c6d 8965
0e021770
PE
8966@item -L @var{language}
8967@itemx --language=@var{language}
8968Specify the programming language for the generated parser, as if
8969@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8970Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8971@var{language} is case-insensitive.
0e021770 8972
ed4d67dc
JD
8973This option is experimental and its effect may be modified in future
8974releases.
8975
89cab50d 8976@item --locations
d8988b2f 8977Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8978
8979@item -p @var{prefix}
8980@itemx --name-prefix=@var{prefix}
02975b9a 8981Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8982@xref{Decl Summary}.
bfa74976
RS
8983
8984@item -l
8985@itemx --no-lines
ff7571c0
JD
8986Don't put any @code{#line} preprocessor commands in the parser
8987implementation file. Ordinarily Bison puts them in the parser
8988implementation file so that the C compiler and debuggers will
8989associate errors with your source file, the grammar file. This option
8990causes them to associate errors with the parser implementation file,
8991treating it as an independent source file in its own right.
bfa74976 8992
e6e704dc
JD
8993@item -S @var{file}
8994@itemx --skeleton=@var{file}
a7867f53 8995Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8996(@pxref{Decl Summary, , Bison Declaration Summary}).
8997
ed4d67dc
JD
8998@c You probably don't need this option unless you are developing Bison.
8999@c You should use @option{--language} if you want to specify the skeleton for a
9000@c different language, because it is clearer and because it will always
9001@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9002
a7867f53
JD
9003If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9004file in the Bison installation directory.
9005If it does, @var{file} is an absolute file name or a file name relative to the
9006current working directory.
9007This is similar to how most shells resolve commands.
9008
89cab50d
AD
9009@item -k
9010@itemx --token-table
d8988b2f 9011Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9012@end table
bfa74976 9013
89cab50d
AD
9014@noindent
9015Adjust the output:
bfa74976 9016
89cab50d 9017@table @option
8e55b3aa 9018@item --defines[=@var{file}]
d8988b2f 9019Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9020file containing macro definitions for the token type names defined in
4bfd5e4e 9021the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9022
8e55b3aa
JD
9023@item -d
9024This is the same as @code{--defines} except @code{-d} does not accept a
9025@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9026with other short options.
342b8b6e 9027
89cab50d
AD
9028@item -b @var{file-prefix}
9029@itemx --file-prefix=@var{prefix}
9c437126 9030Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9031for all Bison output file names. @xref{Decl Summary}.
bfa74976 9032
ec3bc396
AD
9033@item -r @var{things}
9034@itemx --report=@var{things}
9035Write an extra output file containing verbose description of the comma
9036separated list of @var{things} among:
9037
9038@table @code
9039@item state
9040Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9041parser's automaton.
ec3bc396 9042
742e4900 9043@item lookahead
ec3bc396 9044Implies @code{state} and augments the description of the automaton with
742e4900 9045each rule's lookahead set.
ec3bc396
AD
9046
9047@item itemset
9048Implies @code{state} and augments the description of the automaton with
9049the full set of items for each state, instead of its core only.
9050@end table
9051
1bb2bd75
JD
9052@item --report-file=@var{file}
9053Specify the @var{file} for the verbose description.
9054
bfa74976
RS
9055@item -v
9056@itemx --verbose
9c437126 9057Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9058file containing verbose descriptions of the grammar and
72d2299c 9059parser. @xref{Decl Summary}.
bfa74976 9060
fa4d969f
PE
9061@item -o @var{file}
9062@itemx --output=@var{file}
ff7571c0 9063Specify the @var{file} for the parser implementation file.
bfa74976 9064
fa4d969f 9065The other output files' names are constructed from @var{file} as
d8988b2f 9066described under the @samp{-v} and @samp{-d} options.
342b8b6e 9067
a7c09cba 9068@item -g [@var{file}]
8e55b3aa 9069@itemx --graph[=@var{file}]
eb45ef3b 9070Output a graphical representation of the parser's
35fe0834 9071automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9072@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9073@code{@var{file}} is optional.
9074If omitted and the grammar file is @file{foo.y}, the output file will be
9075@file{foo.dot}.
59da312b 9076
a7c09cba 9077@item -x [@var{file}]
8e55b3aa 9078@itemx --xml[=@var{file}]
eb45ef3b 9079Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9080@code{@var{file}} is optional.
59da312b
JD
9081If omitted and the grammar file is @file{foo.y}, the output file will be
9082@file{foo.xml}.
9083(The current XML schema is experimental and may evolve.
9084More user feedback will help to stabilize it.)
bfa74976
RS
9085@end table
9086
342b8b6e 9087@node Option Cross Key
bfa74976
RS
9088@section Option Cross Key
9089
9090Here is a list of options, alphabetized by long option, to help you find
de5ab940 9091the corresponding short option and directive.
bfa74976 9092
de5ab940 9093@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9094@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9095@include cross-options.texi
aa08666d 9096@end multitable
bfa74976 9097
93dd49ab
PE
9098@node Yacc Library
9099@section Yacc Library
9100
9101The Yacc library contains default implementations of the
9102@code{yyerror} and @code{main} functions. These default
8a4281b9 9103implementations are normally not useful, but POSIX requires
93dd49ab
PE
9104them. To use the Yacc library, link your program with the
9105@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9106library is distributed under the terms of the GNU General
93dd49ab
PE
9107Public License (@pxref{Copying}).
9108
9109If you use the Yacc library's @code{yyerror} function, you should
9110declare @code{yyerror} as follows:
9111
9112@example
9113int yyerror (char const *);
9114@end example
9115
9116Bison ignores the @code{int} value returned by this @code{yyerror}.
9117If you use the Yacc library's @code{main} function, your
9118@code{yyparse} function should have the following type signature:
9119
9120@example
9121int yyparse (void);
9122@end example
9123
12545799
AD
9124@c ================================================= C++ Bison
9125
8405b70c
PB
9126@node Other Languages
9127@chapter Parsers Written In Other Languages
12545799
AD
9128
9129@menu
9130* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9131* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9132@end menu
9133
9134@node C++ Parsers
9135@section C++ Parsers
9136
9137@menu
9138* C++ Bison Interface:: Asking for C++ parser generation
9139* C++ Semantic Values:: %union vs. C++
9140* C++ Location Values:: The position and location classes
9141* C++ Parser Interface:: Instantiating and running the parser
9142* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9143* A Complete C++ Example:: Demonstrating their use
12545799
AD
9144@end menu
9145
9146@node C++ Bison Interface
9147@subsection C++ Bison Interface
ed4d67dc 9148@c - %skeleton "lalr1.cc"
12545799
AD
9149@c - Always pure
9150@c - initial action
9151
eb45ef3b 9152The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9153@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9154@option{--skeleton=lalr1.cc}.
e6e704dc 9155@xref{Decl Summary}.
0e021770 9156
793fbca5
JD
9157When run, @command{bison} will create several entities in the @samp{yy}
9158namespace.
67501061 9159@findex %define api.namespace
35c1e5f0
JD
9160Use the @samp{%define api.namespace} directive to change the namespace name,
9161see @ref{%define Summary,,api.namespace}. The various classes are generated
9162in the following files:
aa08666d 9163
12545799
AD
9164@table @file
9165@item position.hh
9166@itemx location.hh
9167The definition of the classes @code{position} and @code{location},
3cdc21cf 9168used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9169
9170@item stack.hh
9171An auxiliary class @code{stack} used by the parser.
9172
fa4d969f
PE
9173@item @var{file}.hh
9174@itemx @var{file}.cc
ff7571c0 9175(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9176declaration and implementation of the C++ parser class. The basename
9177and extension of these two files follow the same rules as with regular C
9178parsers (@pxref{Invocation}).
12545799 9179
cd8b5791
AD
9180The header is @emph{mandatory}; you must either pass
9181@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9182@samp{%defines} directive.
9183@end table
9184
9185All these files are documented using Doxygen; run @command{doxygen}
9186for a complete and accurate documentation.
9187
9188@node C++ Semantic Values
9189@subsection C++ Semantic Values
9190@c - No objects in unions
178e123e 9191@c - YYSTYPE
12545799
AD
9192@c - Printer and destructor
9193
3cdc21cf
AD
9194Bison supports two different means to handle semantic values in C++. One is
9195alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9196practitioners know, unions are inconvenient in C++, therefore another
9197approach is provided, based on variants (@pxref{C++ Variants}).
9198
9199@menu
9200* C++ Unions:: Semantic values cannot be objects
9201* C++ Variants:: Using objects as semantic values
9202@end menu
9203
9204@node C++ Unions
9205@subsubsection C++ Unions
9206
12545799
AD
9207The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9208Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9209@code{union}, which have a few specific features in C++.
12545799
AD
9210@itemize @minus
9211@item
fb9712a9
AD
9212The type @code{YYSTYPE} is defined but its use is discouraged: rather
9213you should refer to the parser's encapsulated type
9214@code{yy::parser::semantic_type}.
12545799
AD
9215@item
9216Non POD (Plain Old Data) types cannot be used. C++ forbids any
9217instance of classes with constructors in unions: only @emph{pointers}
9218to such objects are allowed.
9219@end itemize
9220
9221Because objects have to be stored via pointers, memory is not
9222reclaimed automatically: using the @code{%destructor} directive is the
9223only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9224Symbols}.
9225
3cdc21cf
AD
9226@node C++ Variants
9227@subsubsection C++ Variants
9228
9229Starting with version 2.6, Bison provides a @emph{variant} based
9230implementation of semantic values for C++. This alleviates all the
9231limitations reported in the previous section, and in particular, object
9232types can be used without pointers.
9233
9234To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9235@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9236@code{%union} is ignored, and instead of using the name of the fields of the
9237@code{%union} to ``type'' the symbols, use genuine types.
9238
9239For instance, instead of
9240
9241@example
9242%union
9243@{
9244 int ival;
9245 std::string* sval;
9246@}
9247%token <ival> NUMBER;
9248%token <sval> STRING;
9249@end example
9250
9251@noindent
9252write
9253
9254@example
9255%token <int> NUMBER;
9256%token <std::string> STRING;
9257@end example
9258
9259@code{STRING} is no longer a pointer, which should fairly simplify the user
9260actions in the grammar and in the scanner (in particular the memory
9261management).
9262
9263Since C++ features destructors, and since it is customary to specialize
9264@code{operator<<} to support uniform printing of values, variants also
9265typically simplify Bison printers and destructors.
9266
9267Variants are stricter than unions. When based on unions, you may play any
9268dirty game with @code{yylval}, say storing an @code{int}, reading a
9269@code{char*}, and then storing a @code{double} in it. This is no longer
9270possible with variants: they must be initialized, then assigned to, and
9271eventually, destroyed.
9272
9273@deftypemethod {semantic_type} {T&} build<T> ()
9274Initialize, but leave empty. Returns the address where the actual value may
9275be stored. Requires that the variant was not initialized yet.
9276@end deftypemethod
9277
9278@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9279Initialize, and copy-construct from @var{t}.
9280@end deftypemethod
9281
9282
9283@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9284appeared unacceptable to require Boost on the user's machine (i.e., the
9285machine on which the generated parser will be compiled, not the machine on
9286which @command{bison} was run). Second, for each possible semantic value,
9287Boost.Variant not only stores the value, but also a tag specifying its
9288type. But the parser already ``knows'' the type of the semantic value, so
9289that would be duplicating the information.
9290
9291Therefore we developed light-weight variants whose type tag is external (so
9292they are really like @code{unions} for C++ actually). But our code is much
9293less mature that Boost.Variant. So there is a number of limitations in
9294(the current implementation of) variants:
9295@itemize
9296@item
9297Alignment must be enforced: values should be aligned in memory according to
9298the most demanding type. Computing the smallest alignment possible requires
9299meta-programming techniques that are not currently implemented in Bison, and
9300therefore, since, as far as we know, @code{double} is the most demanding
9301type on all platforms, alignments are enforced for @code{double} whatever
9302types are actually used. This may waste space in some cases.
9303
9304@item
9305Our implementation is not conforming with strict aliasing rules. Alias
9306analysis is a technique used in optimizing compilers to detect when two
9307pointers are disjoint (they cannot ``meet''). Our implementation breaks
9308some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9309alias analysis must be disabled}. Use the option
9310@option{-fno-strict-aliasing} to compile the generated parser.
9311
9312@item
9313There might be portability issues we are not aware of.
9314@end itemize
9315
a6ca4ce2 9316As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9317is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9318
9319@node C++ Location Values
9320@subsection C++ Location Values
9321@c - %locations
9322@c - class Position
9323@c - class Location
16dc6a9e 9324@c - %define filename_type "const symbol::Symbol"
12545799
AD
9325
9326When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9327location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9328define a @code{position}, a single point in a file, and a @code{location}, a
9329range composed of a pair of @code{position}s (possibly spanning several
9330files).
12545799 9331
936c88d1
AD
9332@tindex uint
9333In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9334genuine code only the latter is used.
9335
9336@menu
9337* C++ position:: One point in the source file
9338* C++ location:: Two points in the source file
9339@end menu
9340
9341@node C++ position
9342@subsubsection C++ @code{position}
9343
9344@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9345Create a @code{position} denoting a given point. Note that @code{file} is
9346not reclaimed when the @code{position} is destroyed: memory managed must be
9347handled elsewhere.
9348@end deftypeop
9349
9350@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9351Reset the position to the given values.
9352@end deftypemethod
9353
9354@deftypeivar {position} {std::string*} file
12545799
AD
9355The name of the file. It will always be handled as a pointer, the
9356parser will never duplicate nor deallocate it. As an experimental
9357feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9358filename_type "@var{type}"}.
936c88d1 9359@end deftypeivar
12545799 9360
936c88d1 9361@deftypeivar {position} {uint} line
12545799 9362The line, starting at 1.
936c88d1 9363@end deftypeivar
12545799 9364
936c88d1 9365@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
9366Advance by @var{height} lines, resetting the column number.
9367@end deftypemethod
9368
936c88d1
AD
9369@deftypeivar {position} {uint} column
9370The column, starting at 1.
9371@end deftypeivar
12545799 9372
936c88d1 9373@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
9374Advance by @var{width} columns, without changing the line number.
9375@end deftypemethod
9376
936c88d1
AD
9377@deftypemethod {position} {position&} operator+= (int @var{width})
9378@deftypemethodx {position} {position} operator+ (int @var{width})
9379@deftypemethodx {position} {position&} operator-= (int @var{width})
9380@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
9381Various forms of syntactic sugar for @code{columns}.
9382@end deftypemethod
9383
936c88d1
AD
9384@deftypemethod {position} {bool} operator== (const position& @var{that})
9385@deftypemethodx {position} {bool} operator!= (const position& @var{that})
9386Whether @code{*this} and @code{that} denote equal/different positions.
9387@end deftypemethod
9388
9389@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 9390Report @var{p} on @var{o} like this:
fa4d969f
PE
9391@samp{@var{file}:@var{line}.@var{column}}, or
9392@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
9393@end deftypefun
9394
9395@node C++ location
9396@subsubsection C++ @code{location}
9397
9398@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9399Create a @code{Location} from the endpoints of the range.
9400@end deftypeop
9401
9402@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9403@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9404Create a @code{Location} denoting an empty range located at a given point.
9405@end deftypeop
9406
9407@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9408Reset the location to an empty range at the given values.
12545799
AD
9409@end deftypemethod
9410
936c88d1
AD
9411@deftypeivar {location} {position} begin
9412@deftypeivarx {location} {position} end
12545799 9413The first, inclusive, position of the range, and the first beyond.
936c88d1 9414@end deftypeivar
12545799 9415
936c88d1
AD
9416@deftypemethod {location} {uint} columns (int @var{width} = 1)
9417@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
9418Advance the @code{end} position.
9419@end deftypemethod
9420
936c88d1
AD
9421@deftypemethod {location} {location} operator+ (const location& @var{end})
9422@deftypemethodx {location} {location} operator+ (int @var{width})
9423@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
9424Various forms of syntactic sugar.
9425@end deftypemethod
9426
9427@deftypemethod {location} {void} step ()
9428Move @code{begin} onto @code{end}.
9429@end deftypemethod
9430
936c88d1
AD
9431@deftypemethod {location} {bool} operator== (const location& @var{that})
9432@deftypemethodx {location} {bool} operator!= (const location& @var{that})
9433Whether @code{*this} and @code{that} denote equal/different ranges of
9434positions.
9435@end deftypemethod
9436
9437@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9438Report @var{p} on @var{o}, taking care of special cases such as: no
9439@code{filename} defined, or equal filename/line or column.
9440@end deftypefun
12545799
AD
9441
9442@node C++ Parser Interface
9443@subsection C++ Parser Interface
9444@c - define parser_class_name
9445@c - Ctor
9446@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9447@c debug_stream.
9448@c - Reporting errors
9449
9450The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9451declare and define the parser class in the namespace @code{yy}. The
9452class name defaults to @code{parser}, but may be changed using
16dc6a9e 9453@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9454this class is detailed below. It can be extended using the
12545799
AD
9455@code{%parse-param} feature: its semantics is slightly changed since
9456it describes an additional member of the parser class, and an
9457additional argument for its constructor.
9458
3cdc21cf
AD
9459@defcv {Type} {parser} {semantic_type}
9460@defcvx {Type} {parser} {location_type}
9461The types for semantic values and locations (if enabled).
9462@end defcv
9463
86e5b440 9464@defcv {Type} {parser} {token}
aaaa2aae
AD
9465A structure that contains (only) the @code{yytokentype} enumeration, which
9466defines the tokens. To refer to the token @code{FOO},
9467use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
9468@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9469(@pxref{Calc++ Scanner}).
9470@end defcv
9471
3cdc21cf
AD
9472@defcv {Type} {parser} {syntax_error}
9473This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9474from the scanner or from the user actions to raise parse errors. This is
9475equivalent with first
3cdc21cf
AD
9476invoking @code{error} to report the location and message of the syntax
9477error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9478But contrary to @code{YYERROR} which can only be invoked from user actions
9479(i.e., written in the action itself), the exception can be thrown from
9480function invoked from the user action.
8a0adb01 9481@end defcv
12545799
AD
9482
9483@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9484Build a new parser object. There are no arguments by default, unless
9485@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9486@end deftypemethod
9487
3cdc21cf
AD
9488@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9489@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9490Instantiate a syntax-error exception.
9491@end deftypemethod
9492
12545799
AD
9493@deftypemethod {parser} {int} parse ()
9494Run the syntactic analysis, and return 0 on success, 1 otherwise.
9495@end deftypemethod
9496
9497@deftypemethod {parser} {std::ostream&} debug_stream ()
9498@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9499Get or set the stream used for tracing the parsing. It defaults to
9500@code{std::cerr}.
9501@end deftypemethod
9502
9503@deftypemethod {parser} {debug_level_type} debug_level ()
9504@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9505Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9506or nonzero, full tracing.
12545799
AD
9507@end deftypemethod
9508
9509@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9510@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9511The definition for this member function must be supplied by the user:
9512the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9513described by @var{m}. If location tracking is not enabled, the second
9514signature is used.
12545799
AD
9515@end deftypemethod
9516
9517
9518@node C++ Scanner Interface
9519@subsection C++ Scanner Interface
9520@c - prefix for yylex.
9521@c - Pure interface to yylex
9522@c - %lex-param
9523
9524The parser invokes the scanner by calling @code{yylex}. Contrary to C
9525parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9526@samp{%define api.pure} directive. The actual interface with @code{yylex}
9527depends whether you use unions, or variants.
12545799 9528
3cdc21cf
AD
9529@menu
9530* Split Symbols:: Passing symbols as two/three components
9531* Complete Symbols:: Making symbols a whole
9532@end menu
9533
9534@node Split Symbols
9535@subsubsection Split Symbols
9536
9537Therefore the interface is as follows.
9538
86e5b440
AD
9539@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9540@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9541Return the next token. Its type is the return value, its semantic value and
9542location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9543@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9544@end deftypemethod
9545
3cdc21cf
AD
9546Note that when using variants, the interface for @code{yylex} is the same,
9547but @code{yylval} is handled differently.
9548
9549Regular union-based code in Lex scanner typically look like:
9550
9551@example
9552[0-9]+ @{
9553 yylval.ival = text_to_int (yytext);
9554 return yy::parser::INTEGER;
9555 @}
9556[a-z]+ @{
9557 yylval.sval = new std::string (yytext);
9558 return yy::parser::IDENTIFIER;
9559 @}
9560@end example
9561
9562Using variants, @code{yylval} is already constructed, but it is not
9563initialized. So the code would look like:
9564
9565@example
9566[0-9]+ @{
9567 yylval.build<int>() = text_to_int (yytext);
9568 return yy::parser::INTEGER;
9569 @}
9570[a-z]+ @{
9571 yylval.build<std::string> = yytext;
9572 return yy::parser::IDENTIFIER;
9573 @}
9574@end example
9575
9576@noindent
9577or
9578
9579@example
9580[0-9]+ @{
9581 yylval.build(text_to_int (yytext));
9582 return yy::parser::INTEGER;
9583 @}
9584[a-z]+ @{
9585 yylval.build(yytext);
9586 return yy::parser::IDENTIFIER;
9587 @}
9588@end example
9589
9590
9591@node Complete Symbols
9592@subsubsection Complete Symbols
9593
9594If you specified both @code{%define variant} and @code{%define lex_symbol},
9595the @code{parser} class also defines the class @code{parser::symbol_type}
9596which defines a @emph{complete} symbol, aggregating its type (i.e., the
9597traditional value returned by @code{yylex}), its semantic value (i.e., the
9598value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9599
9600@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9601Build a complete terminal symbol which token type is @var{type}, and which
9602semantic value is @var{value}. If location tracking is enabled, also pass
9603the @var{location}.
9604@end deftypemethod
9605
9606This interface is low-level and should not be used for two reasons. First,
9607it is inconvenient, as you still have to build the semantic value, which is
9608a variant, and second, because consistency is not enforced: as with unions,
9609it is still possible to give an integer as semantic value for a string.
9610
9611So for each token type, Bison generates named constructors as follows.
9612
9613@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9614@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9615Build a complete terminal symbol for the token type @var{token} (not
9616including the @code{api.tokens.prefix}) whose possible semantic value is
9617@var{value} of adequate @var{value_type}. If location tracking is enabled,
9618also pass the @var{location}.
9619@end deftypemethod
9620
9621For instance, given the following declarations:
9622
9623@example
9624%define api.tokens.prefix "TOK_"
9625%token <std::string> IDENTIFIER;
9626%token <int> INTEGER;
9627%token COLON;
9628@end example
9629
9630@noindent
9631Bison generates the following functions:
9632
9633@example
9634symbol_type make_IDENTIFIER(const std::string& v,
9635 const location_type& l);
9636symbol_type make_INTEGER(const int& v,
9637 const location_type& loc);
9638symbol_type make_COLON(const location_type& loc);
9639@end example
9640
9641@noindent
9642which should be used in a Lex-scanner as follows.
9643
9644@example
9645[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9646[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9647":" return yy::parser::make_COLON(loc);
9648@end example
9649
9650Tokens that do not have an identifier are not accessible: you cannot simply
9651use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9652
9653@node A Complete C++ Example
8405b70c 9654@subsection A Complete C++ Example
12545799
AD
9655
9656This section demonstrates the use of a C++ parser with a simple but
9657complete example. This example should be available on your system,
3cdc21cf 9658ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9659focuses on the use of Bison, therefore the design of the various C++
9660classes is very naive: no accessors, no encapsulation of members etc.
9661We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9662demonstrate the various interactions. A hand-written scanner is
12545799
AD
9663actually easier to interface with.
9664
9665@menu
9666* Calc++ --- C++ Calculator:: The specifications
9667* Calc++ Parsing Driver:: An active parsing context
9668* Calc++ Parser:: A parser class
9669* Calc++ Scanner:: A pure C++ Flex scanner
9670* Calc++ Top Level:: Conducting the band
9671@end menu
9672
9673@node Calc++ --- C++ Calculator
8405b70c 9674@subsubsection Calc++ --- C++ Calculator
12545799
AD
9675
9676Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9677expression, possibly preceded by variable assignments. An
12545799
AD
9678environment containing possibly predefined variables such as
9679@code{one} and @code{two}, is exchanged with the parser. An example
9680of valid input follows.
9681
9682@example
9683three := 3
9684seven := one + two * three
9685seven * seven
9686@end example
9687
9688@node Calc++ Parsing Driver
8405b70c 9689@subsubsection Calc++ Parsing Driver
12545799
AD
9690@c - An env
9691@c - A place to store error messages
9692@c - A place for the result
9693
9694To support a pure interface with the parser (and the scanner) the
9695technique of the ``parsing context'' is convenient: a structure
9696containing all the data to exchange. Since, in addition to simply
9697launch the parsing, there are several auxiliary tasks to execute (open
9698the file for parsing, instantiate the parser etc.), we recommend
9699transforming the simple parsing context structure into a fully blown
9700@dfn{parsing driver} class.
9701
9702The declaration of this driver class, @file{calc++-driver.hh}, is as
9703follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9704required standard library components, and the declaration of the parser
9705class.
12545799 9706
1c59e0a1 9707@comment file: calc++-driver.hh
12545799
AD
9708@example
9709#ifndef CALCXX_DRIVER_HH
9710# define CALCXX_DRIVER_HH
9711# include <string>
9712# include <map>
fb9712a9 9713# include "calc++-parser.hh"
12545799
AD
9714@end example
9715
12545799
AD
9716
9717@noindent
9718Then comes the declaration of the scanning function. Flex expects
9719the signature of @code{yylex} to be defined in the macro
9720@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9721factor both as follows.
1c59e0a1
AD
9722
9723@comment file: calc++-driver.hh
12545799 9724@example
3dc5e96b 9725// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9726# define YY_DECL \
9727 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9728// ... and declare it for the parser's sake.
9729YY_DECL;
9730@end example
9731
9732@noindent
9733The @code{calcxx_driver} class is then declared with its most obvious
9734members.
9735
1c59e0a1 9736@comment file: calc++-driver.hh
12545799
AD
9737@example
9738// Conducting the whole scanning and parsing of Calc++.
9739class calcxx_driver
9740@{
9741public:
9742 calcxx_driver ();
9743 virtual ~calcxx_driver ();
9744
9745 std::map<std::string, int> variables;
9746
9747 int result;
9748@end example
9749
9750@noindent
3cdc21cf
AD
9751To encapsulate the coordination with the Flex scanner, it is useful to have
9752member functions to open and close the scanning phase.
12545799 9753
1c59e0a1 9754@comment file: calc++-driver.hh
12545799
AD
9755@example
9756 // Handling the scanner.
9757 void scan_begin ();
9758 void scan_end ();
9759 bool trace_scanning;
9760@end example
9761
9762@noindent
9763Similarly for the parser itself.
9764
1c59e0a1 9765@comment file: calc++-driver.hh
12545799 9766@example
3cdc21cf
AD
9767 // Run the parser on file F.
9768 // Return 0 on success.
bb32f4f2 9769 int parse (const std::string& f);
3cdc21cf
AD
9770 // The name of the file being parsed.
9771 // Used later to pass the file name to the location tracker.
12545799 9772 std::string file;
3cdc21cf 9773 // Whether parser traces should be generated.
12545799
AD
9774 bool trace_parsing;
9775@end example
9776
9777@noindent
9778To demonstrate pure handling of parse errors, instead of simply
9779dumping them on the standard error output, we will pass them to the
9780compiler driver using the following two member functions. Finally, we
9781close the class declaration and CPP guard.
9782
1c59e0a1 9783@comment file: calc++-driver.hh
12545799
AD
9784@example
9785 // Error handling.
9786 void error (const yy::location& l, const std::string& m);
9787 void error (const std::string& m);
9788@};
9789#endif // ! CALCXX_DRIVER_HH
9790@end example
9791
9792The implementation of the driver is straightforward. The @code{parse}
9793member function deserves some attention. The @code{error} functions
9794are simple stubs, they should actually register the located error
9795messages and set error state.
9796
1c59e0a1 9797@comment file: calc++-driver.cc
12545799
AD
9798@example
9799#include "calc++-driver.hh"
9800#include "calc++-parser.hh"
9801
9802calcxx_driver::calcxx_driver ()
9803 : trace_scanning (false), trace_parsing (false)
9804@{
9805 variables["one"] = 1;
9806 variables["two"] = 2;
9807@}
9808
9809calcxx_driver::~calcxx_driver ()
9810@{
9811@}
9812
bb32f4f2 9813int
12545799
AD
9814calcxx_driver::parse (const std::string &f)
9815@{
9816 file = f;
9817 scan_begin ();
9818 yy::calcxx_parser parser (*this);
9819 parser.set_debug_level (trace_parsing);
bb32f4f2 9820 int res = parser.parse ();
12545799 9821 scan_end ();
bb32f4f2 9822 return res;
12545799
AD
9823@}
9824
9825void
9826calcxx_driver::error (const yy::location& l, const std::string& m)
9827@{
9828 std::cerr << l << ": " << m << std::endl;
9829@}
9830
9831void
9832calcxx_driver::error (const std::string& m)
9833@{
9834 std::cerr << m << std::endl;
9835@}
9836@end example
9837
9838@node Calc++ Parser
8405b70c 9839@subsubsection Calc++ Parser
12545799 9840
ff7571c0
JD
9841The grammar file @file{calc++-parser.yy} starts by asking for the C++
9842deterministic parser skeleton, the creation of the parser header file,
9843and specifies the name of the parser class. Because the C++ skeleton
9844changed several times, it is safer to require the version you designed
9845the grammar for.
1c59e0a1
AD
9846
9847@comment file: calc++-parser.yy
12545799 9848@example
c93f22fc 9849%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9850%require "@value{VERSION}"
12545799 9851%defines
16dc6a9e 9852%define parser_class_name "calcxx_parser"
fb9712a9
AD
9853@end example
9854
3cdc21cf
AD
9855@noindent
9856@findex %define variant
9857@findex %define lex_symbol
9858This example will use genuine C++ objects as semantic values, therefore, we
9859require the variant-based interface. To make sure we properly use it, we
9860enable assertions. To fully benefit from type-safety and more natural
9861definition of ``symbol'', we enable @code{lex_symbol}.
9862
9863@comment file: calc++-parser.yy
9864@example
9865%define variant
9866%define parse.assert
9867%define lex_symbol
9868@end example
9869
fb9712a9 9870@noindent
16dc6a9e 9871@findex %code requires
3cdc21cf
AD
9872Then come the declarations/inclusions needed by the semantic values.
9873Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9874to include the header of the other, which is, of course, insane. This
3cdc21cf 9875mutual dependency will be broken using forward declarations. Because the
fb9712a9 9876driver's header needs detailed knowledge about the parser class (in
3cdc21cf 9877particular its inner types), it is the parser's header which will use a
e0c07222 9878forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
9879
9880@comment file: calc++-parser.yy
9881@example
3cdc21cf
AD
9882%code requires
9883@{
12545799 9884# include <string>
fb9712a9 9885class calcxx_driver;
9bc0dd67 9886@}
12545799
AD
9887@end example
9888
9889@noindent
9890The driver is passed by reference to the parser and to the scanner.
9891This provides a simple but effective pure interface, not relying on
9892global variables.
9893
1c59e0a1 9894@comment file: calc++-parser.yy
12545799
AD
9895@example
9896// The parsing context.
2055a44e 9897%param @{ calcxx_driver& driver @}
12545799
AD
9898@end example
9899
9900@noindent
2055a44e 9901Then we request location tracking, and initialize the
f50bfcd6 9902first location's file name. Afterward new locations are computed
12545799 9903relatively to the previous locations: the file name will be
2055a44e 9904propagated.
12545799 9905
1c59e0a1 9906@comment file: calc++-parser.yy
12545799
AD
9907@example
9908%locations
9909%initial-action
9910@{
9911 // Initialize the initial location.
b47dbebe 9912 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9913@};
9914@end example
9915
9916@noindent
7fceb615
JD
9917Use the following two directives to enable parser tracing and verbose error
9918messages. However, verbose error messages can contain incorrect information
9919(@pxref{LAC}).
12545799 9920
1c59e0a1 9921@comment file: calc++-parser.yy
12545799 9922@example
fa819509 9923%define parse.trace
cf499cff 9924%define parse.error verbose
12545799
AD
9925@end example
9926
fb9712a9 9927@noindent
136a0f76
PB
9928@findex %code
9929The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9930@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9931
9932@comment file: calc++-parser.yy
9933@example
3cdc21cf
AD
9934%code
9935@{
fb9712a9 9936# include "calc++-driver.hh"
34f98f46 9937@}
fb9712a9
AD
9938@end example
9939
9940
12545799
AD
9941@noindent
9942The token numbered as 0 corresponds to end of file; the following line
99c08fb6 9943allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
9944``$end''. Similarly user friendly names are provided for each symbol. To
9945avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
9946tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 9947
1c59e0a1 9948@comment file: calc++-parser.yy
12545799 9949@example
4c6622c2 9950%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9951%token
9952 END 0 "end of file"
9953 ASSIGN ":="
9954 MINUS "-"
9955 PLUS "+"
9956 STAR "*"
9957 SLASH "/"
9958 LPAREN "("
9959 RPAREN ")"
9960;
12545799
AD
9961@end example
9962
9963@noindent
3cdc21cf
AD
9964Since we use variant-based semantic values, @code{%union} is not used, and
9965both @code{%type} and @code{%token} expect genuine types, as opposed to type
9966tags.
12545799 9967
1c59e0a1 9968@comment file: calc++-parser.yy
12545799 9969@example
3cdc21cf
AD
9970%token <std::string> IDENTIFIER "identifier"
9971%token <int> NUMBER "number"
9972%type <int> exp
9973@end example
9974
9975@noindent
9976No @code{%destructor} is needed to enable memory deallocation during error
9977recovery; the memory, for strings for instance, will be reclaimed by the
9978regular destructors. All the values are printed using their
9979@code{operator<<}.
12545799 9980
3cdc21cf
AD
9981@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9982@comment file: calc++-parser.yy
9983@example
9984%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9985@end example
9986
9987@noindent
3cdc21cf
AD
9988The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9989Location Tracking Calculator: @code{ltcalc}}).
12545799 9990
1c59e0a1 9991@comment file: calc++-parser.yy
12545799
AD
9992@example
9993%%
9994%start unit;
9995unit: assignments exp @{ driver.result = $2; @};
9996
99c08fb6 9997assignments:
5e9b6624
AD
9998 /* Nothing. */ @{@}
9999| assignments assignment @{@};
12545799 10000
3dc5e96b 10001assignment:
3cdc21cf 10002 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 10003
3cdc21cf
AD
10004%left "+" "-";
10005%left "*" "/";
99c08fb6 10006exp:
3cdc21cf
AD
10007 exp "+" exp @{ $$ = $1 + $3; @}
10008| exp "-" exp @{ $$ = $1 - $3; @}
10009| exp "*" exp @{ $$ = $1 * $3; @}
10010| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 10011| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 10012| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 10013| "number" @{ std::swap ($$, $1); @};
12545799
AD
10014%%
10015@end example
10016
10017@noindent
10018Finally the @code{error} member function registers the errors to the
10019driver.
10020
1c59e0a1 10021@comment file: calc++-parser.yy
12545799
AD
10022@example
10023void
3cdc21cf 10024yy::calcxx_parser::error (const location_type& l,
1c59e0a1 10025 const std::string& m)
12545799
AD
10026@{
10027 driver.error (l, m);
10028@}
10029@end example
10030
10031@node Calc++ Scanner
8405b70c 10032@subsubsection Calc++ Scanner
12545799
AD
10033
10034The Flex scanner first includes the driver declaration, then the
10035parser's to get the set of defined tokens.
10036
1c59e0a1 10037@comment file: calc++-scanner.ll
12545799 10038@example
c93f22fc 10039%@{ /* -*- C++ -*- */
3c248d70
AD
10040# include <cerrno>
10041# include <climits>
3cdc21cf 10042# include <cstdlib>
12545799
AD
10043# include <string>
10044# include "calc++-driver.hh"
10045# include "calc++-parser.hh"
eaea13f5 10046
3cdc21cf
AD
10047// Work around an incompatibility in flex (at least versions
10048// 2.5.31 through 2.5.33): it generates code that does
10049// not conform to C89. See Debian bug 333231
10050// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
10051# undef yywrap
10052# define yywrap() 1
eaea13f5 10053
3cdc21cf
AD
10054// The location of the current token.
10055static yy::location loc;
12545799
AD
10056%@}
10057@end example
10058
10059@noindent
10060Because there is no @code{#include}-like feature we don't need
10061@code{yywrap}, we don't need @code{unput} either, and we parse an
10062actual file, this is not an interactive session with the user.
3cdc21cf 10063Finally, we enable scanner tracing.
12545799 10064
1c59e0a1 10065@comment file: calc++-scanner.ll
12545799
AD
10066@example
10067%option noyywrap nounput batch debug
10068@end example
10069
10070@noindent
10071Abbreviations allow for more readable rules.
10072
1c59e0a1 10073@comment file: calc++-scanner.ll
12545799
AD
10074@example
10075id [a-zA-Z][a-zA-Z_0-9]*
10076int [0-9]+
10077blank [ \t]
10078@end example
10079
10080@noindent
9d9b8b70 10081The following paragraph suffices to track locations accurately. Each
12545799 10082time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
10083position. Then when a pattern is matched, its width is added to the end
10084column. When matching ends of lines, the end
12545799
AD
10085cursor is adjusted, and each time blanks are matched, the begin cursor
10086is moved onto the end cursor to effectively ignore the blanks
10087preceding tokens. Comments would be treated equally.
10088
1c59e0a1 10089@comment file: calc++-scanner.ll
12545799 10090@example
d4fca427 10091@group
828c373b 10092%@{
3cdc21cf
AD
10093 // Code run each time a pattern is matched.
10094 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 10095%@}
d4fca427 10096@end group
12545799 10097%%
d4fca427 10098@group
12545799 10099%@{
3cdc21cf
AD
10100 // Code run each time yylex is called.
10101 loc.step ();
12545799 10102%@}
d4fca427 10103@end group
3cdc21cf
AD
10104@{blank@}+ loc.step ();
10105[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10106@end example
10107
10108@noindent
3cdc21cf 10109The rules are simple. The driver is used to report errors.
12545799 10110
1c59e0a1 10111@comment file: calc++-scanner.ll
12545799 10112@example
3cdc21cf
AD
10113"-" return yy::calcxx_parser::make_MINUS(loc);
10114"+" return yy::calcxx_parser::make_PLUS(loc);
10115"*" return yy::calcxx_parser::make_STAR(loc);
10116"/" return yy::calcxx_parser::make_SLASH(loc);
10117"(" return yy::calcxx_parser::make_LPAREN(loc);
10118")" return yy::calcxx_parser::make_RPAREN(loc);
10119":=" return yy::calcxx_parser::make_ASSIGN(loc);
10120
d4fca427 10121@group
04098407
PE
10122@{int@} @{
10123 errno = 0;
10124 long n = strtol (yytext, NULL, 10);
10125 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10126 driver.error (loc, "integer is out of range");
10127 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10128@}
d4fca427 10129@end group
3cdc21cf
AD
10130@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10131. driver.error (loc, "invalid character");
10132<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10133%%
10134@end example
10135
10136@noindent
3cdc21cf 10137Finally, because the scanner-related driver's member-functions depend
12545799
AD
10138on the scanner's data, it is simpler to implement them in this file.
10139
1c59e0a1 10140@comment file: calc++-scanner.ll
12545799 10141@example
d4fca427 10142@group
12545799
AD
10143void
10144calcxx_driver::scan_begin ()
10145@{
10146 yy_flex_debug = trace_scanning;
bb32f4f2
AD
10147 if (file == "-")
10148 yyin = stdin;
10149 else if (!(yyin = fopen (file.c_str (), "r")))
10150 @{
aaaa2aae 10151 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10152 exit (EXIT_FAILURE);
bb32f4f2 10153 @}
12545799 10154@}
d4fca427 10155@end group
12545799 10156
d4fca427 10157@group
12545799
AD
10158void
10159calcxx_driver::scan_end ()
10160@{
10161 fclose (yyin);
10162@}
d4fca427 10163@end group
12545799
AD
10164@end example
10165
10166@node Calc++ Top Level
8405b70c 10167@subsubsection Calc++ Top Level
12545799
AD
10168
10169The top level file, @file{calc++.cc}, poses no problem.
10170
1c59e0a1 10171@comment file: calc++.cc
12545799
AD
10172@example
10173#include <iostream>
10174#include "calc++-driver.hh"
10175
d4fca427 10176@group
12545799 10177int
fa4d969f 10178main (int argc, char *argv[])
12545799 10179@{
414c76a4 10180 int res = 0;
12545799
AD
10181 calcxx_driver driver;
10182 for (++argv; argv[0]; ++argv)
10183 if (*argv == std::string ("-p"))
10184 driver.trace_parsing = true;
10185 else if (*argv == std::string ("-s"))
10186 driver.trace_scanning = true;
bb32f4f2
AD
10187 else if (!driver.parse (*argv))
10188 std::cout << driver.result << std::endl;
414c76a4
AD
10189 else
10190 res = 1;
10191 return res;
12545799 10192@}
d4fca427 10193@end group
12545799
AD
10194@end example
10195
8405b70c
PB
10196@node Java Parsers
10197@section Java Parsers
10198
10199@menu
f5f419de
DJ
10200* Java Bison Interface:: Asking for Java parser generation
10201* Java Semantic Values:: %type and %token vs. Java
10202* Java Location Values:: The position and location classes
10203* Java Parser Interface:: Instantiating and running the parser
10204* Java Scanner Interface:: Specifying the scanner for the parser
10205* Java Action Features:: Special features for use in actions
10206* Java Differences:: Differences between C/C++ and Java Grammars
10207* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10208@end menu
10209
10210@node Java Bison Interface
10211@subsection Java Bison Interface
10212@c - %language "Java"
8405b70c 10213
59da312b
JD
10214(The current Java interface is experimental and may evolve.
10215More user feedback will help to stabilize it.)
10216
e254a580
DJ
10217The Java parser skeletons are selected using the @code{%language "Java"}
10218directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10219
e254a580 10220@c FIXME: Documented bug.
ff7571c0
JD
10221When generating a Java parser, @code{bison @var{basename}.y} will
10222create a single Java source file named @file{@var{basename}.java}
10223containing the parser implementation. Using a grammar file without a
10224@file{.y} suffix is currently broken. The basename of the parser
10225implementation file can be changed by the @code{%file-prefix}
10226directive or the @option{-p}/@option{--name-prefix} option. The
10227entire parser implementation file name can be changed by the
10228@code{%output} directive or the @option{-o}/@option{--output} option.
10229The parser implementation file contains a single class for the parser.
8405b70c 10230
e254a580 10231You can create documentation for generated parsers using Javadoc.
8405b70c 10232
e254a580
DJ
10233Contrary to C parsers, Java parsers do not use global variables; the
10234state of the parser is always local to an instance of the parser class.
10235Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10236and @samp{%define api.pure} directives does not do anything when used in
e254a580 10237Java.
8405b70c 10238
e254a580 10239Push parsers are currently unsupported in Java and @code{%define
67212941 10240api.push-pull} have no effect.
01b477c6 10241
8a4281b9 10242GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10243@code{glr-parser} directive.
10244
10245No header file can be generated for Java parsers. Do not use the
10246@code{%defines} directive or the @option{-d}/@option{--defines} options.
10247
10248@c FIXME: Possible code change.
fa819509
AD
10249Currently, support for tracing is always compiled
10250in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10251directives and the
e254a580
DJ
10252@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10253options have no effect. This may change in the future to eliminate
fa819509
AD
10254unused code in the generated parser, so use @samp{%define parse.trace}
10255explicitly
1979121c 10256if needed. Also, in the future the
e254a580
DJ
10257@code{%token-table} directive might enable a public interface to
10258access the token names and codes.
8405b70c 10259
09ccae9b 10260Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10261hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10262Try reducing the amount of code in actions and static initializers;
10263otherwise, report a bug so that the parser skeleton will be improved.
10264
10265
8405b70c
PB
10266@node Java Semantic Values
10267@subsection Java Semantic Values
10268@c - No %union, specify type in %type/%token.
10269@c - YYSTYPE
10270@c - Printer and destructor
10271
10272There is no @code{%union} directive in Java parsers. Instead, the
10273semantic values' types (class names) should be specified in the
10274@code{%type} or @code{%token} directive:
10275
10276@example
10277%type <Expression> expr assignment_expr term factor
10278%type <Integer> number
10279@end example
10280
10281By default, the semantic stack is declared to have @code{Object} members,
10282which means that the class types you specify can be of any class.
10283To improve the type safety of the parser, you can declare the common
67501061 10284superclass of all the semantic values using the @samp{%define stype}
e254a580 10285directive. For example, after the following declaration:
8405b70c
PB
10286
10287@example
e254a580 10288%define stype "ASTNode"
8405b70c
PB
10289@end example
10290
10291@noindent
10292any @code{%type} or @code{%token} specifying a semantic type which
10293is not a subclass of ASTNode, will cause a compile-time error.
10294
e254a580 10295@c FIXME: Documented bug.
8405b70c
PB
10296Types used in the directives may be qualified with a package name.
10297Primitive data types are accepted for Java version 1.5 or later. Note
10298that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10299Generic types may not be used; this is due to a limitation in the
10300implementation of Bison, and may change in future releases.
8405b70c
PB
10301
10302Java parsers do not support @code{%destructor}, since the language
10303adopts garbage collection. The parser will try to hold references
10304to semantic values for as little time as needed.
10305
10306Java parsers do not support @code{%printer}, as @code{toString()}
10307can be used to print the semantic values. This however may change
10308(in a backwards-compatible way) in future versions of Bison.
10309
10310
10311@node Java Location Values
10312@subsection Java Location Values
10313@c - %locations
10314@c - class Position
10315@c - class Location
10316
303834cc
JD
10317When the directive @code{%locations} is used, the Java parser supports
10318location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10319class defines a @dfn{position}, a single point in a file; Bison itself
10320defines a class representing a @dfn{location}, a range composed of a pair of
10321positions (possibly spanning several files). The location class is an inner
10322class of the parser; the name is @code{Location} by default, and may also be
10323renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10324
10325The location class treats the position as a completely opaque value.
10326By default, the class name is @code{Position}, but this can be changed
67501061 10327with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10328be supplied by the user.
8405b70c
PB
10329
10330
e254a580
DJ
10331@deftypeivar {Location} {Position} begin
10332@deftypeivarx {Location} {Position} end
8405b70c 10333The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10334@end deftypeivar
10335
10336@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10337Create a @code{Location} denoting an empty range located at a given point.
e254a580 10338@end deftypeop
8405b70c 10339
e254a580
DJ
10340@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10341Create a @code{Location} from the endpoints of the range.
10342@end deftypeop
10343
10344@deftypemethod {Location} {String} toString ()
8405b70c
PB
10345Prints the range represented by the location. For this to work
10346properly, the position class should override the @code{equals} and
10347@code{toString} methods appropriately.
10348@end deftypemethod
10349
10350
10351@node Java Parser Interface
10352@subsection Java Parser Interface
10353@c - define parser_class_name
10354@c - Ctor
10355@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10356@c debug_stream.
10357@c - Reporting errors
10358
e254a580
DJ
10359The name of the generated parser class defaults to @code{YYParser}. The
10360@code{YY} prefix may be changed using the @code{%name-prefix} directive
10361or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10362@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10363the class. The interface of this class is detailed below.
8405b70c 10364
e254a580 10365By default, the parser class has package visibility. A declaration
67501061 10366@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10367according to the Java language specification, the name of the @file{.java}
10368file should match the name of the class in this case. Similarly, you can
10369use @code{abstract}, @code{final} and @code{strictfp} with the
10370@code{%define} declaration to add other modifiers to the parser class.
67501061 10371A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10372be used to add any number of annotations to the parser class.
e254a580
DJ
10373
10374The Java package name of the parser class can be specified using the
67501061 10375@samp{%define package} directive. The superclass and the implemented
e254a580 10376interfaces of the parser class can be specified with the @code{%define
67501061 10377extends} and @samp{%define implements} directives.
e254a580
DJ
10378
10379The parser class defines an inner class, @code{Location}, that is used
10380for location tracking (see @ref{Java Location Values}), and a inner
10381interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10382these inner class/interface, and the members described in the interface
10383below, all the other members and fields are preceded with a @code{yy} or
10384@code{YY} prefix to avoid clashes with user code.
10385
e254a580
DJ
10386The parser class can be extended using the @code{%parse-param}
10387directive. Each occurrence of the directive will add a @code{protected
10388final} field to the parser class, and an argument to its constructor,
10389which initialize them automatically.
10390
e254a580
DJ
10391@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10392Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10393no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10394@code{%lex-param}s are used.
1979121c
DJ
10395
10396Use @code{%code init} for code added to the start of the constructor
10397body. This is especially useful to initialize superclasses. Use
f50bfcd6 10398@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10399@end deftypeop
10400
10401@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10402Build a new parser object using the specified scanner. There are no
2055a44e
AD
10403additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10404used.
e254a580
DJ
10405
10406If the scanner is defined by @code{%code lexer}, this constructor is
10407declared @code{protected} and is called automatically with a scanner
2055a44e 10408created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10409
10410Use @code{%code init} for code added to the start of the constructor
10411body. This is especially useful to initialize superclasses. Use
5a321748 10412@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 10413@end deftypeop
8405b70c
PB
10414
10415@deftypemethod {YYParser} {boolean} parse ()
10416Run the syntactic analysis, and return @code{true} on success,
10417@code{false} otherwise.
10418@end deftypemethod
10419
1979121c
DJ
10420@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10421@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10422Get or set the option to produce verbose error messages. These are only
cf499cff 10423available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10424verbose error messages.
10425@end deftypemethod
10426
10427@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10428@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10429@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10430Print an error message using the @code{yyerror} method of the scanner
10431instance in use. The @code{Location} and @code{Position} parameters are
10432available only if location tracking is active.
10433@end deftypemethod
10434
01b477c6 10435@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10436During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10437from a syntax error.
10438@xref{Error Recovery}.
8405b70c
PB
10439@end deftypemethod
10440
10441@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10442@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10443Get or set the stream used for tracing the parsing. It defaults to
10444@code{System.err}.
10445@end deftypemethod
10446
10447@deftypemethod {YYParser} {int} getDebugLevel ()
10448@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10449Get or set the tracing level. Currently its value is either 0, no trace,
10450or nonzero, full tracing.
10451@end deftypemethod
10452
1979121c
DJ
10453@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10454@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10455Identify the Bison version and skeleton used to generate this parser.
10456@end deftypecv
10457
8405b70c
PB
10458
10459@node Java Scanner Interface
10460@subsection Java Scanner Interface
01b477c6 10461@c - %code lexer
8405b70c 10462@c - %lex-param
01b477c6 10463@c - Lexer interface
8405b70c 10464
e254a580
DJ
10465There are two possible ways to interface a Bison-generated Java parser
10466with a scanner: the scanner may be defined by @code{%code lexer}, or
10467defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10468@code{Lexer} inner interface of the parser class. This interface also
10469contain constants for all user-defined token names and the predefined
10470@code{EOF} token.
e254a580
DJ
10471
10472In the first case, the body of the scanner class is placed in
10473@code{%code lexer} blocks. If you want to pass parameters from the
10474parser constructor to the scanner constructor, specify them with
10475@code{%lex-param}; they are passed before @code{%parse-param}s to the
10476constructor.
01b477c6 10477
59c5ac72 10478In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10479which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10480The constructor of the parser object will then accept an object
10481implementing the interface; @code{%lex-param} is not used in this
10482case.
10483
10484In both cases, the scanner has to implement the following methods.
10485
e254a580
DJ
10486@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10487This method is defined by the user to emit an error message. The first
10488parameter is omitted if location tracking is not active. Its type can be
67501061 10489changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10490@end deftypemethod
10491
e254a580 10492@deftypemethod {Lexer} {int} yylex ()
8405b70c 10493Return the next token. Its type is the return value, its semantic
f50bfcd6 10494value and location are saved and returned by the their methods in the
e254a580
DJ
10495interface.
10496
67501061 10497Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10498Default is @code{java.io.IOException}.
8405b70c
PB
10499@end deftypemethod
10500
10501@deftypemethod {Lexer} {Position} getStartPos ()
10502@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10503Return respectively the first position of the last token that
10504@code{yylex} returned, and the first position beyond it. These
10505methods are not needed unless location tracking is active.
8405b70c 10506
67501061 10507The return type can be changed using @samp{%define position_type
8405b70c
PB
10508"@var{class-name}".}
10509@end deftypemethod
10510
10511@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10512Return the semantic value of the last token that yylex returned.
8405b70c 10513
67501061 10514The return type can be changed using @samp{%define stype
8405b70c
PB
10515"@var{class-name}".}
10516@end deftypemethod
10517
10518
e254a580
DJ
10519@node Java Action Features
10520@subsection Special Features for Use in Java Actions
10521
10522The following special constructs can be uses in Java actions.
10523Other analogous C action features are currently unavailable for Java.
10524
67501061 10525Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10526actions, and initial actions specified by @code{%initial-action}.
10527
10528@defvar $@var{n}
10529The semantic value for the @var{n}th component of the current rule.
10530This may not be assigned to.
10531@xref{Java Semantic Values}.
10532@end defvar
10533
10534@defvar $<@var{typealt}>@var{n}
10535Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10536@xref{Java Semantic Values}.
10537@end defvar
10538
10539@defvar $$
10540The semantic value for the grouping made by the current rule. As a
10541value, this is in the base type (@code{Object} or as specified by
67501061 10542@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10543casts are not allowed on the left-hand side of Java assignments.
10544Use an explicit Java cast if the correct subtype is needed.
10545@xref{Java Semantic Values}.
10546@end defvar
10547
10548@defvar $<@var{typealt}>$
10549Same as @code{$$} since Java always allow assigning to the base type.
10550Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10551for setting the value but there is currently no easy way to distinguish
10552these constructs.
10553@xref{Java Semantic Values}.
10554@end defvar
10555
10556@defvar @@@var{n}
10557The location information of the @var{n}th component of the current rule.
10558This may not be assigned to.
10559@xref{Java Location Values}.
10560@end defvar
10561
10562@defvar @@$
10563The location information of the grouping made by the current rule.
10564@xref{Java Location Values}.
10565@end defvar
10566
10567@deffn {Statement} {return YYABORT;}
10568Return immediately from the parser, indicating failure.
10569@xref{Java Parser Interface}.
10570@end deffn
8405b70c 10571
e254a580
DJ
10572@deffn {Statement} {return YYACCEPT;}
10573Return immediately from the parser, indicating success.
10574@xref{Java Parser Interface}.
10575@end deffn
8405b70c 10576
e254a580 10577@deffn {Statement} {return YYERROR;}
c265fd6b 10578Start error recovery without printing an error message.
e254a580
DJ
10579@xref{Error Recovery}.
10580@end deffn
8405b70c 10581
e254a580
DJ
10582@deftypefn {Function} {boolean} recovering ()
10583Return whether error recovery is being done. In this state, the parser
10584reads token until it reaches a known state, and then restarts normal
10585operation.
10586@xref{Error Recovery}.
10587@end deftypefn
8405b70c 10588
1979121c
DJ
10589@deftypefn {Function} {void} yyerror (String @var{msg})
10590@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10591@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10592Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10593instance in use. The @code{Location} and @code{Position} parameters are
10594available only if location tracking is active.
e254a580 10595@end deftypefn
8405b70c 10596
8405b70c 10597
8405b70c
PB
10598@node Java Differences
10599@subsection Differences between C/C++ and Java Grammars
10600
10601The different structure of the Java language forces several differences
10602between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10603section summarizes these differences.
8405b70c
PB
10604
10605@itemize
10606@item
01b477c6 10607Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10608@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10609macros. Instead, they should be preceded by @code{return} when they
10610appear in an action. The actual definition of these symbols is
8405b70c
PB
10611opaque to the Bison grammar, and it might change in the future. The
10612only meaningful operation that you can do, is to return them.
e254a580 10613See @pxref{Java Action Features}.
8405b70c
PB
10614
10615Note that of these three symbols, only @code{YYACCEPT} and
10616@code{YYABORT} will cause a return from the @code{yyparse}
10617method@footnote{Java parsers include the actions in a separate
10618method than @code{yyparse} in order to have an intuitive syntax that
10619corresponds to these C macros.}.
10620
e254a580
DJ
10621@item
10622Java lacks unions, so @code{%union} has no effect. Instead, semantic
10623values have a common base type: @code{Object} or as specified by
f50bfcd6 10624@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10625@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10626an union. The type of @code{$$}, even with angle brackets, is the base
10627type since Java casts are not allow on the left-hand side of assignments.
10628Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10629left-hand side of assignments. See @pxref{Java Semantic Values} and
10630@pxref{Java Action Features}.
10631
8405b70c 10632@item
f50bfcd6 10633The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10634@table @asis
10635@item @code{%code imports}
10636blocks are placed at the beginning of the Java source code. They may
10637include copyright notices. For a @code{package} declarations, it is
67501061 10638suggested to use @samp{%define package} instead.
8405b70c 10639
01b477c6
PB
10640@item unqualified @code{%code}
10641blocks are placed inside the parser class.
10642
10643@item @code{%code lexer}
10644blocks, if specified, should include the implementation of the
10645scanner. If there is no such block, the scanner can be any class
10646that implements the appropriate interface (see @pxref{Java Scanner
10647Interface}).
29553547 10648@end table
8405b70c
PB
10649
10650Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10651In particular, @code{%@{ @dots{} %@}} blocks should not be used
10652and may give an error in future versions of Bison.
10653
01b477c6 10654The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10655be used to define other classes used by the parser @emph{outside}
10656the parser class.
8405b70c
PB
10657@end itemize
10658
e254a580
DJ
10659
10660@node Java Declarations Summary
10661@subsection Java Declarations Summary
10662
10663This summary only include declarations specific to Java or have special
10664meaning when used in a Java parser.
10665
10666@deffn {Directive} {%language "Java"}
10667Generate a Java class for the parser.
10668@end deffn
10669
10670@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10671A parameter for the lexer class defined by @code{%code lexer}
10672@emph{only}, added as parameters to the lexer constructor and the parser
10673constructor that @emph{creates} a lexer. Default is none.
10674@xref{Java Scanner Interface}.
10675@end deffn
10676
10677@deffn {Directive} %name-prefix "@var{prefix}"
10678The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10679@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10680@xref{Java Bison Interface}.
10681@end deffn
10682
10683@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10684A parameter for the parser class added as parameters to constructor(s)
10685and as fields initialized by the constructor(s). Default is none.
10686@xref{Java Parser Interface}.
10687@end deffn
10688
10689@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10690Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10691@xref{Java Semantic Values}.
10692@end deffn
10693
10694@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10695Declare the type of nonterminals. Note that the angle brackets enclose
10696a Java @emph{type}.
10697@xref{Java Semantic Values}.
10698@end deffn
10699
10700@deffn {Directive} %code @{ @var{code} @dots{} @}
10701Code appended to the inside of the parser class.
10702@xref{Java Differences}.
10703@end deffn
10704
10705@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10706Code inserted just after the @code{package} declaration.
10707@xref{Java Differences}.
10708@end deffn
10709
1979121c
DJ
10710@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10711Code inserted at the beginning of the parser constructor body.
10712@xref{Java Parser Interface}.
10713@end deffn
10714
e254a580
DJ
10715@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10716Code added to the body of a inner lexer class within the parser class.
10717@xref{Java Scanner Interface}.
10718@end deffn
10719
10720@deffn {Directive} %% @var{code} @dots{}
10721Code (after the second @code{%%}) appended to the end of the file,
10722@emph{outside} the parser class.
10723@xref{Java Differences}.
10724@end deffn
10725
10726@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10727Not supported. Use @code{%code imports} instead.
e254a580
DJ
10728@xref{Java Differences}.
10729@end deffn
10730
10731@deffn {Directive} {%define abstract}
10732Whether the parser class is declared @code{abstract}. Default is false.
10733@xref{Java Bison Interface}.
10734@end deffn
10735
1979121c
DJ
10736@deffn {Directive} {%define annotations} "@var{annotations}"
10737The Java annotations for the parser class. Default is none.
10738@xref{Java Bison Interface}.
10739@end deffn
10740
e254a580
DJ
10741@deffn {Directive} {%define extends} "@var{superclass}"
10742The superclass of the parser class. Default is none.
10743@xref{Java Bison Interface}.
10744@end deffn
10745
10746@deffn {Directive} {%define final}
10747Whether the parser class is declared @code{final}. Default is false.
10748@xref{Java Bison Interface}.
10749@end deffn
10750
10751@deffn {Directive} {%define implements} "@var{interfaces}"
10752The implemented interfaces of the parser class, a comma-separated list.
10753Default is none.
10754@xref{Java Bison Interface}.
10755@end deffn
10756
1979121c
DJ
10757@deffn {Directive} {%define init_throws} "@var{exceptions}"
10758The exceptions thrown by @code{%code init} from the parser class
10759constructor. Default is none.
10760@xref{Java Parser Interface}.
10761@end deffn
10762
e254a580
DJ
10763@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10764The exceptions thrown by the @code{yylex} method of the lexer, a
10765comma-separated list. Default is @code{java.io.IOException}.
10766@xref{Java Scanner Interface}.
10767@end deffn
10768
10769@deffn {Directive} {%define location_type} "@var{class}"
10770The name of the class used for locations (a range between two
10771positions). This class is generated as an inner class of the parser
10772class by @command{bison}. Default is @code{Location}.
10773@xref{Java Location Values}.
10774@end deffn
10775
10776@deffn {Directive} {%define package} "@var{package}"
10777The package to put the parser class in. Default is none.
10778@xref{Java Bison Interface}.
10779@end deffn
10780
10781@deffn {Directive} {%define parser_class_name} "@var{name}"
10782The name of the parser class. Default is @code{YYParser} or
10783@code{@var{name-prefix}Parser}.
10784@xref{Java Bison Interface}.
10785@end deffn
10786
10787@deffn {Directive} {%define position_type} "@var{class}"
10788The name of the class used for positions. This class must be supplied by
10789the user. Default is @code{Position}.
10790@xref{Java Location Values}.
10791@end deffn
10792
10793@deffn {Directive} {%define public}
10794Whether the parser class is declared @code{public}. Default is false.
10795@xref{Java Bison Interface}.
10796@end deffn
10797
10798@deffn {Directive} {%define stype} "@var{class}"
10799The base type of semantic values. Default is @code{Object}.
10800@xref{Java Semantic Values}.
10801@end deffn
10802
10803@deffn {Directive} {%define strictfp}
10804Whether the parser class is declared @code{strictfp}. Default is false.
10805@xref{Java Bison Interface}.
10806@end deffn
10807
10808@deffn {Directive} {%define throws} "@var{exceptions}"
10809The exceptions thrown by user-supplied parser actions and
10810@code{%initial-action}, a comma-separated list. Default is none.
10811@xref{Java Parser Interface}.
10812@end deffn
10813
10814
12545799 10815@c ================================================= FAQ
d1a1114f
AD
10816
10817@node FAQ
10818@chapter Frequently Asked Questions
10819@cindex frequently asked questions
10820@cindex questions
10821
10822Several questions about Bison come up occasionally. Here some of them
10823are addressed.
10824
10825@menu
55ba27be
AD
10826* Memory Exhausted:: Breaking the Stack Limits
10827* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10828* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10829* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10830* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10831* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10832* I can't build Bison:: Troubleshooting
10833* Where can I find help?:: Troubleshouting
10834* Bug Reports:: Troublereporting
8405b70c 10835* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10836* Beta Testing:: Experimenting development versions
10837* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10838@end menu
10839
1a059451
PE
10840@node Memory Exhausted
10841@section Memory Exhausted
d1a1114f 10842
71b52b13 10843@quotation
1a059451 10844My parser returns with error with a @samp{memory exhausted}
d1a1114f 10845message. What can I do?
71b52b13 10846@end quotation
d1a1114f
AD
10847
10848This question is already addressed elsewhere, @xref{Recursion,
10849,Recursive Rules}.
10850
e64fec0a
PE
10851@node How Can I Reset the Parser
10852@section How Can I Reset the Parser
5b066063 10853
0e14ad77
PE
10854The following phenomenon has several symptoms, resulting in the
10855following typical questions:
5b066063 10856
71b52b13 10857@quotation
5b066063
AD
10858I invoke @code{yyparse} several times, and on correct input it works
10859properly; but when a parse error is found, all the other calls fail
0e14ad77 10860too. How can I reset the error flag of @code{yyparse}?
71b52b13 10861@end quotation
5b066063
AD
10862
10863@noindent
10864or
10865
71b52b13 10866@quotation
0e14ad77 10867My parser includes support for an @samp{#include}-like feature, in
5b066063 10868which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10869although I did specify @samp{%define api.pure}.
71b52b13 10870@end quotation
5b066063 10871
0e14ad77
PE
10872These problems typically come not from Bison itself, but from
10873Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10874speed, they might not notice a change of input file. As a
10875demonstration, consider the following source file,
10876@file{first-line.l}:
10877
d4fca427
AD
10878@example
10879@group
10880%@{
5b066063
AD
10881#include <stdio.h>
10882#include <stdlib.h>
d4fca427
AD
10883%@}
10884@end group
5b066063
AD
10885%%
10886.*\n ECHO; return 1;
10887%%
d4fca427 10888@group
5b066063 10889int
0e14ad77 10890yyparse (char const *file)
d4fca427 10891@{
5b066063
AD
10892 yyin = fopen (file, "r");
10893 if (!yyin)
d4fca427
AD
10894 @{
10895 perror ("fopen");
10896 exit (EXIT_FAILURE);
10897 @}
10898@end group
10899@group
fa7e68c3 10900 /* One token only. */
5b066063 10901 yylex ();
0e14ad77 10902 if (fclose (yyin) != 0)
d4fca427
AD
10903 @{
10904 perror ("fclose");
10905 exit (EXIT_FAILURE);
10906 @}
5b066063 10907 return 0;
d4fca427
AD
10908@}
10909@end group
5b066063 10910
d4fca427 10911@group
5b066063 10912int
0e14ad77 10913main (void)
d4fca427 10914@{
5b066063
AD
10915 yyparse ("input");
10916 yyparse ("input");
10917 return 0;
d4fca427
AD
10918@}
10919@end group
10920@end example
5b066063
AD
10921
10922@noindent
10923If the file @file{input} contains
10924
71b52b13 10925@example
5b066063
AD
10926input:1: Hello,
10927input:2: World!
71b52b13 10928@end example
5b066063
AD
10929
10930@noindent
0e14ad77 10931then instead of getting the first line twice, you get:
5b066063
AD
10932
10933@example
10934$ @kbd{flex -ofirst-line.c first-line.l}
10935$ @kbd{gcc -ofirst-line first-line.c -ll}
10936$ @kbd{./first-line}
10937input:1: Hello,
10938input:2: World!
10939@end example
10940
0e14ad77
PE
10941Therefore, whenever you change @code{yyin}, you must tell the
10942Lex-generated scanner to discard its current buffer and switch to the
10943new one. This depends upon your implementation of Lex; see its
10944documentation for more. For Flex, it suffices to call
10945@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10946Flex-generated scanner needs to read from several input streams to
10947handle features like include files, you might consider using Flex
10948functions like @samp{yy_switch_to_buffer} that manipulate multiple
10949input buffers.
5b066063 10950
b165c324
AD
10951If your Flex-generated scanner uses start conditions (@pxref{Start
10952conditions, , Start conditions, flex, The Flex Manual}), you might
10953also want to reset the scanner's state, i.e., go back to the initial
10954start condition, through a call to @samp{BEGIN (0)}.
10955
fef4cb51
AD
10956@node Strings are Destroyed
10957@section Strings are Destroyed
10958
71b52b13 10959@quotation
c7e441b4 10960My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10961them. Instead of reporting @samp{"foo", "bar"}, it reports
10962@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 10963@end quotation
fef4cb51
AD
10964
10965This error is probably the single most frequent ``bug report'' sent to
10966Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10967of the scanner. Consider the following Lex code:
fef4cb51 10968
71b52b13 10969@example
d4fca427 10970@group
71b52b13 10971%@{
fef4cb51
AD
10972#include <stdio.h>
10973char *yylval = NULL;
71b52b13 10974%@}
d4fca427
AD
10975@end group
10976@group
fef4cb51
AD
10977%%
10978.* yylval = yytext; return 1;
10979\n /* IGNORE */
10980%%
d4fca427
AD
10981@end group
10982@group
fef4cb51
AD
10983int
10984main ()
71b52b13 10985@{
fa7e68c3 10986 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10987 char *fst = (yylex (), yylval);
10988 char *snd = (yylex (), yylval);
10989 printf ("\"%s\", \"%s\"\n", fst, snd);
10990 return 0;
71b52b13 10991@}
d4fca427 10992@end group
71b52b13 10993@end example
fef4cb51
AD
10994
10995If you compile and run this code, you get:
10996
10997@example
10998$ @kbd{flex -osplit-lines.c split-lines.l}
10999$ @kbd{gcc -osplit-lines split-lines.c -ll}
11000$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11001"one
11002two", "two"
11003@end example
11004
11005@noindent
11006this is because @code{yytext} is a buffer provided for @emph{reading}
11007in the action, but if you want to keep it, you have to duplicate it
11008(e.g., using @code{strdup}). Note that the output may depend on how
11009your implementation of Lex handles @code{yytext}. For instance, when
11010given the Lex compatibility option @option{-l} (which triggers the
11011option @samp{%array}) Flex generates a different behavior:
11012
11013@example
11014$ @kbd{flex -l -osplit-lines.c split-lines.l}
11015$ @kbd{gcc -osplit-lines split-lines.c -ll}
11016$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11017"two", "two"
11018@end example
11019
11020
2fa09258
AD
11021@node Implementing Gotos/Loops
11022@section Implementing Gotos/Loops
a06ea4aa 11023
71b52b13 11024@quotation
a06ea4aa 11025My simple calculator supports variables, assignments, and functions,
2fa09258 11026but how can I implement gotos, or loops?
71b52b13 11027@end quotation
a06ea4aa
AD
11028
11029Although very pedagogical, the examples included in the document blur
a1c84f45 11030the distinction to make between the parser---whose job is to recover
a06ea4aa 11031the structure of a text and to transmit it to subsequent modules of
a1c84f45 11032the program---and the processing (such as the execution) of this
a06ea4aa
AD
11033structure. This works well with so called straight line programs,
11034i.e., precisely those that have a straightforward execution model:
11035execute simple instructions one after the others.
11036
11037@cindex abstract syntax tree
8a4281b9 11038@cindex AST
a06ea4aa
AD
11039If you want a richer model, you will probably need to use the parser
11040to construct a tree that does represent the structure it has
11041recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 11042or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11043traversing it in various ways, will enable treatments such as its
11044execution or its translation, which will result in an interpreter or a
11045compiler.
11046
11047This topic is way beyond the scope of this manual, and the reader is
11048invited to consult the dedicated literature.
11049
11050
ed2e6384
AD
11051@node Multiple start-symbols
11052@section Multiple start-symbols
11053
71b52b13 11054@quotation
ed2e6384
AD
11055I have several closely related grammars, and I would like to share their
11056implementations. In fact, I could use a single grammar but with
11057multiple entry points.
71b52b13 11058@end quotation
ed2e6384
AD
11059
11060Bison does not support multiple start-symbols, but there is a very
11061simple means to simulate them. If @code{foo} and @code{bar} are the two
11062pseudo start-symbols, then introduce two new tokens, say
11063@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11064real start-symbol:
11065
11066@example
11067%token START_FOO START_BAR;
11068%start start;
5e9b6624
AD
11069start:
11070 START_FOO foo
11071| START_BAR bar;
ed2e6384
AD
11072@end example
11073
11074These tokens prevents the introduction of new conflicts. As far as the
11075parser goes, that is all that is needed.
11076
11077Now the difficult part is ensuring that the scanner will send these
11078tokens first. If your scanner is hand-written, that should be
11079straightforward. If your scanner is generated by Lex, them there is
11080simple means to do it: recall that anything between @samp{%@{ ... %@}}
11081after the first @code{%%} is copied verbatim in the top of the generated
11082@code{yylex} function. Make sure a variable @code{start_token} is
11083available in the scanner (e.g., a global variable or using
11084@code{%lex-param} etc.), and use the following:
11085
11086@example
11087 /* @r{Prologue.} */
11088%%
11089%@{
11090 if (start_token)
11091 @{
11092 int t = start_token;
11093 start_token = 0;
11094 return t;
11095 @}
11096%@}
11097 /* @r{The rules.} */
11098@end example
11099
11100
55ba27be
AD
11101@node Secure? Conform?
11102@section Secure? Conform?
11103
71b52b13 11104@quotation
55ba27be 11105Is Bison secure? Does it conform to POSIX?
71b52b13 11106@end quotation
55ba27be
AD
11107
11108If you're looking for a guarantee or certification, we don't provide it.
11109However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11110POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11111please send us a bug report.
11112
11113@node I can't build Bison
11114@section I can't build Bison
11115
71b52b13 11116@quotation
8c5b881d
PE
11117I can't build Bison because @command{make} complains that
11118@code{msgfmt} is not found.
55ba27be 11119What should I do?
71b52b13 11120@end quotation
55ba27be
AD
11121
11122Like most GNU packages with internationalization support, that feature
11123is turned on by default. If you have problems building in the @file{po}
11124subdirectory, it indicates that your system's internationalization
11125support is lacking. You can re-configure Bison with
11126@option{--disable-nls} to turn off this support, or you can install GNU
11127gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11128Bison. See the file @file{ABOUT-NLS} for more information.
11129
11130
11131@node Where can I find help?
11132@section Where can I find help?
11133
71b52b13 11134@quotation
55ba27be 11135I'm having trouble using Bison. Where can I find help?
71b52b13 11136@end quotation
55ba27be
AD
11137
11138First, read this fine manual. Beyond that, you can send mail to
11139@email{help-bison@@gnu.org}. This mailing list is intended to be
11140populated with people who are willing to answer questions about using
11141and installing Bison. Please keep in mind that (most of) the people on
11142the list have aspects of their lives which are not related to Bison (!),
11143so you may not receive an answer to your question right away. This can
11144be frustrating, but please try not to honk them off; remember that any
11145help they provide is purely voluntary and out of the kindness of their
11146hearts.
11147
11148@node Bug Reports
11149@section Bug Reports
11150
71b52b13 11151@quotation
55ba27be 11152I found a bug. What should I include in the bug report?
71b52b13 11153@end quotation
55ba27be
AD
11154
11155Before you send a bug report, make sure you are using the latest
11156version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11157mirrors. Be sure to include the version number in your bug report. If
11158the bug is present in the latest version but not in a previous version,
11159try to determine the most recent version which did not contain the bug.
11160
11161If the bug is parser-related, you should include the smallest grammar
11162you can which demonstrates the bug. The grammar file should also be
11163complete (i.e., I should be able to run it through Bison without having
11164to edit or add anything). The smaller and simpler the grammar, the
11165easier it will be to fix the bug.
11166
11167Include information about your compilation environment, including your
11168operating system's name and version and your compiler's name and
11169version. If you have trouble compiling, you should also include a
11170transcript of the build session, starting with the invocation of
11171`configure'. Depending on the nature of the bug, you may be asked to
11172send additional files as well (such as `config.h' or `config.cache').
11173
11174Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11175send a bug report just because you cannot provide a fix.
55ba27be
AD
11176
11177Send bug reports to @email{bug-bison@@gnu.org}.
11178
8405b70c
PB
11179@node More Languages
11180@section More Languages
55ba27be 11181
71b52b13 11182@quotation
8405b70c 11183Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11184favorite language here}?
71b52b13 11185@end quotation
55ba27be 11186
8405b70c 11187C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11188languages; contributions are welcome.
11189
11190@node Beta Testing
11191@section Beta Testing
11192
71b52b13 11193@quotation
55ba27be 11194What is involved in being a beta tester?
71b52b13 11195@end quotation
55ba27be
AD
11196
11197It's not terribly involved. Basically, you would download a test
11198release, compile it, and use it to build and run a parser or two. After
11199that, you would submit either a bug report or a message saying that
11200everything is okay. It is important to report successes as well as
11201failures because test releases eventually become mainstream releases,
11202but only if they are adequately tested. If no one tests, development is
11203essentially halted.
11204
11205Beta testers are particularly needed for operating systems to which the
11206developers do not have easy access. They currently have easy access to
11207recent GNU/Linux and Solaris versions. Reports about other operating
11208systems are especially welcome.
11209
11210@node Mailing Lists
11211@section Mailing Lists
11212
71b52b13 11213@quotation
55ba27be 11214How do I join the help-bison and bug-bison mailing lists?
71b52b13 11215@end quotation
55ba27be
AD
11216
11217See @url{http://lists.gnu.org/}.
a06ea4aa 11218
d1a1114f
AD
11219@c ================================================= Table of Symbols
11220
342b8b6e 11221@node Table of Symbols
bfa74976
RS
11222@appendix Bison Symbols
11223@cindex Bison symbols, table of
11224@cindex symbols in Bison, table of
11225
18b519c0 11226@deffn {Variable} @@$
3ded9a63 11227In an action, the location of the left-hand side of the rule.
303834cc 11228@xref{Tracking Locations}.
18b519c0 11229@end deffn
3ded9a63 11230
18b519c0 11231@deffn {Variable} @@@var{n}
303834cc
JD
11232In an action, the location of the @var{n}-th symbol of the right-hand side
11233of the rule. @xref{Tracking Locations}.
18b519c0 11234@end deffn
3ded9a63 11235
d013372c 11236@deffn {Variable} @@@var{name}
303834cc
JD
11237In an action, the location of a symbol addressed by name. @xref{Tracking
11238Locations}.
d013372c
AR
11239@end deffn
11240
11241@deffn {Variable} @@[@var{name}]
303834cc
JD
11242In an action, the location of a symbol addressed by name. @xref{Tracking
11243Locations}.
d013372c
AR
11244@end deffn
11245
18b519c0 11246@deffn {Variable} $$
3ded9a63
AD
11247In an action, the semantic value of the left-hand side of the rule.
11248@xref{Actions}.
18b519c0 11249@end deffn
3ded9a63 11250
18b519c0 11251@deffn {Variable} $@var{n}
3ded9a63
AD
11252In an action, the semantic value of the @var{n}-th symbol of the
11253right-hand side of the rule. @xref{Actions}.
18b519c0 11254@end deffn
3ded9a63 11255
d013372c
AR
11256@deffn {Variable} $@var{name}
11257In an action, the semantic value of a symbol addressed by name.
11258@xref{Actions}.
11259@end deffn
11260
11261@deffn {Variable} $[@var{name}]
11262In an action, the semantic value of a symbol addressed by name.
11263@xref{Actions}.
11264@end deffn
11265
dd8d9022
AD
11266@deffn {Delimiter} %%
11267Delimiter used to separate the grammar rule section from the
11268Bison declarations section or the epilogue.
11269@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11270@end deffn
bfa74976 11271
dd8d9022
AD
11272@c Don't insert spaces, or check the DVI output.
11273@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11274All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11275to the parser implementation file. Such code forms the prologue of
11276the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11277Grammar}.
18b519c0 11278@end deffn
bfa74976 11279
ca2a6d15
PH
11280@deffn {Directive} %?@{@var{expression}@}
11281Predicate actions. This is a type of action clause that may appear in
11282rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11283GLR parsers during nondeterministic operation,
ca2a6d15
PH
11284this silently causes an alternative parse to die. During deterministic
11285operation, it is the same as the effect of YYERROR.
11286@xref{Semantic Predicates}.
11287
11288This feature is experimental.
11289More user feedback will help to determine whether it should become a permanent
11290feature.
11291@end deffn
11292
dd8d9022
AD
11293@deffn {Construct} /*@dots{}*/
11294Comment delimiters, as in C.
18b519c0 11295@end deffn
bfa74976 11296
dd8d9022
AD
11297@deffn {Delimiter} :
11298Separates a rule's result from its components. @xref{Rules, ,Syntax of
11299Grammar Rules}.
18b519c0 11300@end deffn
bfa74976 11301
dd8d9022
AD
11302@deffn {Delimiter} ;
11303Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11304@end deffn
bfa74976 11305
dd8d9022
AD
11306@deffn {Delimiter} |
11307Separates alternate rules for the same result nonterminal.
11308@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11309@end deffn
bfa74976 11310
12e35840
JD
11311@deffn {Directive} <*>
11312Used to define a default tagged @code{%destructor} or default tagged
11313@code{%printer}.
85894313
JD
11314
11315This feature is experimental.
11316More user feedback will help to determine whether it should become a permanent
11317feature.
11318
12e35840
JD
11319@xref{Destructor Decl, , Freeing Discarded Symbols}.
11320@end deffn
11321
3ebecc24 11322@deffn {Directive} <>
12e35840
JD
11323Used to define a default tagless @code{%destructor} or default tagless
11324@code{%printer}.
85894313
JD
11325
11326This feature is experimental.
11327More user feedback will help to determine whether it should become a permanent
11328feature.
11329
12e35840
JD
11330@xref{Destructor Decl, , Freeing Discarded Symbols}.
11331@end deffn
11332
dd8d9022
AD
11333@deffn {Symbol} $accept
11334The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11335$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11336Start-Symbol}. It cannot be used in the grammar.
18b519c0 11337@end deffn
bfa74976 11338
136a0f76 11339@deffn {Directive} %code @{@var{code}@}
148d66d8 11340@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11341Insert @var{code} verbatim into the output parser source at the
11342default location or at the location specified by @var{qualifier}.
e0c07222 11343@xref{%code Summary}.
9bc0dd67
JD
11344@end deffn
11345
11346@deffn {Directive} %debug
11347Equip the parser for debugging. @xref{Decl Summary}.
11348@end deffn
11349
91d2c560 11350@ifset defaultprec
22fccf95
PE
11351@deffn {Directive} %default-prec
11352Assign a precedence to rules that lack an explicit @samp{%prec}
11353modifier. @xref{Contextual Precedence, ,Context-Dependent
11354Precedence}.
39a06c25 11355@end deffn
91d2c560 11356@end ifset
39a06c25 11357
7fceb615
JD
11358@deffn {Directive} %define @var{variable}
11359@deffnx {Directive} %define @var{variable} @var{value}
11360@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11361Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11362@end deffn
11363
18b519c0 11364@deffn {Directive} %defines
ff7571c0
JD
11365Bison declaration to create a parser header file, which is usually
11366meant for the scanner. @xref{Decl Summary}.
18b519c0 11367@end deffn
6deb4447 11368
02975b9a
JD
11369@deffn {Directive} %defines @var{defines-file}
11370Same as above, but save in the file @var{defines-file}.
11371@xref{Decl Summary}.
11372@end deffn
11373
18b519c0 11374@deffn {Directive} %destructor
258b75ca 11375Specify how the parser should reclaim the memory associated to
fa7e68c3 11376discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11377@end deffn
72f889cc 11378
18b519c0 11379@deffn {Directive} %dprec
676385e2 11380Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11381time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11382GLR Parsers}.
18b519c0 11383@end deffn
676385e2 11384
dd8d9022
AD
11385@deffn {Symbol} $end
11386The predefined token marking the end of the token stream. It cannot be
11387used in the grammar.
11388@end deffn
11389
11390@deffn {Symbol} error
11391A token name reserved for error recovery. This token may be used in
11392grammar rules so as to allow the Bison parser to recognize an error in
11393the grammar without halting the process. In effect, a sentence
11394containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11395token @code{error} becomes the current lookahead token. Actions
11396corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11397token is reset to the token that originally caused the violation.
11398@xref{Error Recovery}.
18d192f0
AD
11399@end deffn
11400
18b519c0 11401@deffn {Directive} %error-verbose
7fceb615
JD
11402An obsolete directive standing for @samp{%define parse.error verbose}
11403(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11404@end deffn
2a8d363a 11405
02975b9a 11406@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11407Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11408Summary}.
18b519c0 11409@end deffn
d8988b2f 11410
18b519c0 11411@deffn {Directive} %glr-parser
8a4281b9
JD
11412Bison declaration to produce a GLR parser. @xref{GLR
11413Parsers, ,Writing GLR Parsers}.
18b519c0 11414@end deffn
676385e2 11415
dd8d9022
AD
11416@deffn {Directive} %initial-action
11417Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11418@end deffn
11419
e6e704dc
JD
11420@deffn {Directive} %language
11421Specify the programming language for the generated parser.
11422@xref{Decl Summary}.
11423@end deffn
11424
18b519c0 11425@deffn {Directive} %left
d78f0ac9 11426Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11427@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11428@end deffn
bfa74976 11429
2055a44e
AD
11430@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11431Bison declaration to specifying additional arguments that
2a8d363a
AD
11432@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11433for Pure Parsers}.
18b519c0 11434@end deffn
2a8d363a 11435
18b519c0 11436@deffn {Directive} %merge
676385e2 11437Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11438reduce/reduce conflict with a rule having the same merging function, the
676385e2 11439function is applied to the two semantic values to get a single result.
8a4281b9 11440@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11441@end deffn
676385e2 11442
02975b9a 11443@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 11444Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 11445@end deffn
d8988b2f 11446
91d2c560 11447@ifset defaultprec
22fccf95
PE
11448@deffn {Directive} %no-default-prec
11449Do not assign a precedence to rules that lack an explicit @samp{%prec}
11450modifier. @xref{Contextual Precedence, ,Context-Dependent
11451Precedence}.
11452@end deffn
91d2c560 11453@end ifset
22fccf95 11454
18b519c0 11455@deffn {Directive} %no-lines
931c7513 11456Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11457parser implementation file. @xref{Decl Summary}.
18b519c0 11458@end deffn
931c7513 11459
18b519c0 11460@deffn {Directive} %nonassoc
d78f0ac9 11461Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11462@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11463@end deffn
bfa74976 11464
02975b9a 11465@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11466Bison declaration to set the name of the parser implementation file.
11467@xref{Decl Summary}.
18b519c0 11468@end deffn
d8988b2f 11469
2055a44e
AD
11470@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11471Bison declaration to specify additional arguments that both
11472@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11473Parser Function @code{yyparse}}.
11474@end deffn
11475
11476@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11477Bison declaration to specify additional arguments that @code{yyparse}
11478should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11479@end deffn
2a8d363a 11480
18b519c0 11481@deffn {Directive} %prec
bfa74976
RS
11482Bison declaration to assign a precedence to a specific rule.
11483@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11484@end deffn
bfa74976 11485
d78f0ac9
AD
11486@deffn {Directive} %precedence
11487Bison declaration to assign precedence to token(s), but no associativity
11488@xref{Precedence Decl, ,Operator Precedence}.
11489@end deffn
11490
18b519c0 11491@deffn {Directive} %pure-parser
35c1e5f0
JD
11492Deprecated version of @samp{%define api.pure} (@pxref{%define
11493Summary,,api.pure}), for which Bison is more careful to warn about
11494unreasonable usage.
18b519c0 11495@end deffn
bfa74976 11496
b50d2359 11497@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11498Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11499Require a Version of Bison}.
b50d2359
AD
11500@end deffn
11501
18b519c0 11502@deffn {Directive} %right
d78f0ac9 11503Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11504@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11505@end deffn
bfa74976 11506
e6e704dc
JD
11507@deffn {Directive} %skeleton
11508Specify the skeleton to use; usually for development.
11509@xref{Decl Summary}.
11510@end deffn
11511
18b519c0 11512@deffn {Directive} %start
704a47c4
AD
11513Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11514Start-Symbol}.
18b519c0 11515@end deffn
bfa74976 11516
18b519c0 11517@deffn {Directive} %token
bfa74976
RS
11518Bison declaration to declare token(s) without specifying precedence.
11519@xref{Token Decl, ,Token Type Names}.
18b519c0 11520@end deffn
bfa74976 11521
18b519c0 11522@deffn {Directive} %token-table
ff7571c0
JD
11523Bison declaration to include a token name table in the parser
11524implementation file. @xref{Decl Summary}.
18b519c0 11525@end deffn
931c7513 11526
18b519c0 11527@deffn {Directive} %type
704a47c4
AD
11528Bison declaration to declare nonterminals. @xref{Type Decl,
11529,Nonterminal Symbols}.
18b519c0 11530@end deffn
bfa74976 11531
dd8d9022
AD
11532@deffn {Symbol} $undefined
11533The predefined token onto which all undefined values returned by
11534@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11535@code{error}.
11536@end deffn
11537
18b519c0 11538@deffn {Directive} %union
bfa74976
RS
11539Bison declaration to specify several possible data types for semantic
11540values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11541@end deffn
bfa74976 11542
dd8d9022
AD
11543@deffn {Macro} YYABORT
11544Macro to pretend that an unrecoverable syntax error has occurred, by
11545making @code{yyparse} return 1 immediately. The error reporting
11546function @code{yyerror} is not called. @xref{Parser Function, ,The
11547Parser Function @code{yyparse}}.
8405b70c
PB
11548
11549For Java parsers, this functionality is invoked using @code{return YYABORT;}
11550instead.
dd8d9022 11551@end deffn
3ded9a63 11552
dd8d9022
AD
11553@deffn {Macro} YYACCEPT
11554Macro to pretend that a complete utterance of the language has been
11555read, by making @code{yyparse} return 0 immediately.
11556@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11557
11558For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11559instead.
dd8d9022 11560@end deffn
bfa74976 11561
dd8d9022 11562@deffn {Macro} YYBACKUP
742e4900 11563Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11564token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11565@end deffn
bfa74976 11566
dd8d9022 11567@deffn {Variable} yychar
32c29292 11568External integer variable that contains the integer value of the
742e4900 11569lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11570@code{yyparse}.) Error-recovery rule actions may examine this variable.
11571@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11572@end deffn
bfa74976 11573
dd8d9022
AD
11574@deffn {Variable} yyclearin
11575Macro used in error-recovery rule actions. It clears the previous
742e4900 11576lookahead token. @xref{Error Recovery}.
18b519c0 11577@end deffn
bfa74976 11578
dd8d9022
AD
11579@deffn {Macro} YYDEBUG
11580Macro to define to equip the parser with tracing code. @xref{Tracing,
11581,Tracing Your Parser}.
18b519c0 11582@end deffn
bfa74976 11583
dd8d9022
AD
11584@deffn {Variable} yydebug
11585External integer variable set to zero by default. If @code{yydebug}
11586is given a nonzero value, the parser will output information on input
11587symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11588@end deffn
bfa74976 11589
dd8d9022
AD
11590@deffn {Macro} yyerrok
11591Macro to cause parser to recover immediately to its normal mode
11592after a syntax error. @xref{Error Recovery}.
11593@end deffn
11594
11595@deffn {Macro} YYERROR
11596Macro to pretend that a syntax error has just been detected: call
11597@code{yyerror} and then perform normal error recovery if possible
11598(@pxref{Error Recovery}), or (if recovery is impossible) make
11599@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11600
11601For Java parsers, this functionality is invoked using @code{return YYERROR;}
11602instead.
dd8d9022
AD
11603@end deffn
11604
11605@deffn {Function} yyerror
11606User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11607@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11608@end deffn
11609
11610@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11611An obsolete macro used in the @file{yacc.c} skeleton, that you define
11612with @code{#define} in the prologue to request verbose, specific error
11613message strings when @code{yyerror} is called. It doesn't matter what
11614definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11615it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11616(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11617@end deffn
11618
11619@deffn {Macro} YYINITDEPTH
11620Macro for specifying the initial size of the parser stack.
1a059451 11621@xref{Memory Management}.
dd8d9022
AD
11622@end deffn
11623
11624@deffn {Function} yylex
11625User-supplied lexical analyzer function, called with no arguments to get
11626the next token. @xref{Lexical, ,The Lexical Analyzer Function
11627@code{yylex}}.
11628@end deffn
11629
11630@deffn {Macro} YYLEX_PARAM
11631An obsolete macro for specifying an extra argument (or list of extra
32c29292 11632arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11633macro is deprecated, and is supported only for Yacc like parsers.
11634@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11635@end deffn
11636
11637@deffn {Variable} yylloc
11638External variable in which @code{yylex} should place the line and column
11639numbers associated with a token. (In a pure parser, it is a local
11640variable within @code{yyparse}, and its address is passed to
32c29292
JD
11641@code{yylex}.)
11642You can ignore this variable if you don't use the @samp{@@} feature in the
11643grammar actions.
11644@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11645In semantic actions, it stores the location of the lookahead token.
32c29292 11646@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11647@end deffn
11648
11649@deffn {Type} YYLTYPE
11650Data type of @code{yylloc}; by default, a structure with four
11651members. @xref{Location Type, , Data Types of Locations}.
11652@end deffn
11653
11654@deffn {Variable} yylval
11655External variable in which @code{yylex} should place the semantic
11656value associated with a token. (In a pure parser, it is a local
11657variable within @code{yyparse}, and its address is passed to
32c29292
JD
11658@code{yylex}.)
11659@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11660In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11661@xref{Actions, ,Actions}.
dd8d9022
AD
11662@end deffn
11663
11664@deffn {Macro} YYMAXDEPTH
1a059451
PE
11665Macro for specifying the maximum size of the parser stack. @xref{Memory
11666Management}.
dd8d9022
AD
11667@end deffn
11668
11669@deffn {Variable} yynerrs
8a2800e7 11670Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11671(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11672pure push parser, it is a member of yypstate.)
dd8d9022
AD
11673@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11674@end deffn
11675
11676@deffn {Function} yyparse
11677The parser function produced by Bison; call this function to start
11678parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11679@end deffn
11680
9987d1b3 11681@deffn {Function} yypstate_delete
f4101aa6 11682The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11683call this function to delete the memory associated with a parser.
f4101aa6 11684@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11685@code{yypstate_delete}}.
59da312b
JD
11686(The current push parsing interface is experimental and may evolve.
11687More user feedback will help to stabilize it.)
9987d1b3
JD
11688@end deffn
11689
11690@deffn {Function} yypstate_new
f4101aa6 11691The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11692call this function to create a new parser.
f4101aa6 11693@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11694@code{yypstate_new}}.
59da312b
JD
11695(The current push parsing interface is experimental and may evolve.
11696More user feedback will help to stabilize it.)
9987d1b3
JD
11697@end deffn
11698
11699@deffn {Function} yypull_parse
f4101aa6
AD
11700The parser function produced by Bison in push mode; call this function to
11701parse the rest of the input stream.
11702@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11703@code{yypull_parse}}.
59da312b
JD
11704(The current push parsing interface is experimental and may evolve.
11705More user feedback will help to stabilize it.)
9987d1b3
JD
11706@end deffn
11707
11708@deffn {Function} yypush_parse
f4101aa6
AD
11709The parser function produced by Bison in push mode; call this function to
11710parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11711@code{yypush_parse}}.
59da312b
JD
11712(The current push parsing interface is experimental and may evolve.
11713More user feedback will help to stabilize it.)
9987d1b3
JD
11714@end deffn
11715
dd8d9022
AD
11716@deffn {Macro} YYPARSE_PARAM
11717An obsolete macro for specifying the name of a parameter that
11718@code{yyparse} should accept. The use of this macro is deprecated, and
11719is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11720Conventions for Pure Parsers}.
11721@end deffn
11722
11723@deffn {Macro} YYRECOVERING
02103984
PE
11724The expression @code{YYRECOVERING ()} yields 1 when the parser
11725is recovering from a syntax error, and 0 otherwise.
11726@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11727@end deffn
11728
11729@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11730Macro used to control the use of @code{alloca} when the
11731deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11732the parser will use @code{malloc} to extend its stacks. If defined to
117331, the parser will use @code{alloca}. Values other than 0 and 1 are
11734reserved for future Bison extensions. If not defined,
11735@code{YYSTACK_USE_ALLOCA} defaults to 0.
11736
55289366 11737In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11738limited stack and with unreliable stack-overflow checking, you should
11739set @code{YYMAXDEPTH} to a value that cannot possibly result in
11740unchecked stack overflow on any of your target hosts when
11741@code{alloca} is called. You can inspect the code that Bison
11742generates in order to determine the proper numeric values. This will
11743require some expertise in low-level implementation details.
dd8d9022
AD
11744@end deffn
11745
11746@deffn {Type} YYSTYPE
11747Data type of semantic values; @code{int} by default.
11748@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11749@end deffn
bfa74976 11750
342b8b6e 11751@node Glossary
bfa74976
RS
11752@appendix Glossary
11753@cindex glossary
11754
11755@table @asis
7fceb615 11756@item Accepting state
eb45ef3b
JD
11757A state whose only action is the accept action.
11758The accepting state is thus a consistent state.
11759@xref{Understanding,,}.
11760
8a4281b9 11761@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11762Formal method of specifying context-free grammars originally proposed
11763by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11764committee document contributing to what became the Algol 60 report.
11765@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11766
7fceb615
JD
11767@item Consistent state
11768A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 11769
bfa74976
RS
11770@item Context-free grammars
11771Grammars specified as rules that can be applied regardless of context.
11772Thus, if there is a rule which says that an integer can be used as an
11773expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11774permitted. @xref{Language and Grammar, ,Languages and Context-Free
11775Grammars}.
bfa74976 11776
7fceb615 11777@item Default reduction
110ef36a 11778The reduction that a parser should perform if the current parser state
35c1e5f0 11779contains no other action for the lookahead token. In permitted parser
7fceb615
JD
11780states, Bison declares the reduction with the largest lookahead set to be
11781the default reduction and removes that lookahead set. @xref{Default
11782Reductions}.
11783
11784@item Defaulted state
11785A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 11786
bfa74976
RS
11787@item Dynamic allocation
11788Allocation of memory that occurs during execution, rather than at
11789compile time or on entry to a function.
11790
11791@item Empty string
11792Analogous to the empty set in set theory, the empty string is a
11793character string of length zero.
11794
11795@item Finite-state stack machine
11796A ``machine'' that has discrete states in which it is said to exist at
11797each instant in time. As input to the machine is processed, the
11798machine moves from state to state as specified by the logic of the
11799machine. In the case of the parser, the input is the language being
11800parsed, and the states correspond to various stages in the grammar
c827f760 11801rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11802
8a4281b9 11803@item Generalized LR (GLR)
676385e2 11804A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11805that are not LR(1). It resolves situations that Bison's
eb45ef3b 11806deterministic parsing
676385e2
PH
11807algorithm cannot by effectively splitting off multiple parsers, trying all
11808possible parsers, and discarding those that fail in the light of additional
c827f760 11809right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11810LR Parsing}.
676385e2 11811
bfa74976
RS
11812@item Grouping
11813A language construct that is (in general) grammatically divisible;
c827f760 11814for example, `expression' or `declaration' in C@.
bfa74976
RS
11815@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11816
7fceb615
JD
11817@item IELR(1) (Inadequacy Elimination LR(1))
11818A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 11819context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
11820language-recognition power of canonical LR(1) but with nearly the same
11821number of parser states as LALR(1). This reduction in parser states is
11822often an order of magnitude. More importantly, because canonical LR(1)'s
11823extra parser states may contain duplicate conflicts in the case of non-LR(1)
11824grammars, the number of conflicts for IELR(1) is often an order of magnitude
11825less as well. This can significantly reduce the complexity of developing a
11826grammar. @xref{LR Table Construction}.
eb45ef3b 11827
bfa74976
RS
11828@item Infix operator
11829An arithmetic operator that is placed between the operands on which it
11830performs some operation.
11831
11832@item Input stream
11833A continuous flow of data between devices or programs.
11834
8a4281b9 11835@item LAC (Lookahead Correction)
fcf834f9 11836A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
11837detection, which is caused by LR state merging, default reductions, and the
11838use of @code{%nonassoc}. Delayed syntax error detection results in
11839unexpected semantic actions, initiation of error recovery in the wrong
11840syntactic context, and an incorrect list of expected tokens in a verbose
11841syntax error message. @xref{LAC}.
fcf834f9 11842
bfa74976
RS
11843@item Language construct
11844One of the typical usage schemas of the language. For example, one of
11845the constructs of the C language is the @code{if} statement.
11846@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11847
11848@item Left associativity
11849Operators having left associativity are analyzed from left to right:
11850@samp{a+b+c} first computes @samp{a+b} and then combines with
11851@samp{c}. @xref{Precedence, ,Operator Precedence}.
11852
11853@item Left recursion
89cab50d
AD
11854A rule whose result symbol is also its first component symbol; for
11855example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11856Rules}.
bfa74976
RS
11857
11858@item Left-to-right parsing
11859Parsing a sentence of a language by analyzing it token by token from
c827f760 11860left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11861
11862@item Lexical analyzer (scanner)
11863A function that reads an input stream and returns tokens one by one.
11864@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11865
11866@item Lexical tie-in
11867A flag, set by actions in the grammar rules, which alters the way
11868tokens are parsed. @xref{Lexical Tie-ins}.
11869
931c7513 11870@item Literal string token
14ded682 11871A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11872
742e4900
JD
11873@item Lookahead token
11874A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11875Tokens}.
bfa74976 11876
8a4281b9 11877@item LALR(1)
bfa74976 11878The class of context-free grammars that Bison (like most other parser
8a4281b9 11879generators) can handle by default; a subset of LR(1).
cc09e5be 11880@xref{Mysterious Conflicts}.
bfa74976 11881
8a4281b9 11882@item LR(1)
bfa74976 11883The class of context-free grammars in which at most one token of
742e4900 11884lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11885
11886@item Nonterminal symbol
11887A grammar symbol standing for a grammatical construct that can
11888be expressed through rules in terms of smaller constructs; in other
11889words, a construct that is not a token. @xref{Symbols}.
11890
bfa74976
RS
11891@item Parser
11892A function that recognizes valid sentences of a language by analyzing
11893the syntax structure of a set of tokens passed to it from a lexical
11894analyzer.
11895
11896@item Postfix operator
11897An arithmetic operator that is placed after the operands upon which it
11898performs some operation.
11899
11900@item Reduction
11901Replacing a string of nonterminals and/or terminals with a single
89cab50d 11902nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11903Parser Algorithm}.
bfa74976
RS
11904
11905@item Reentrant
11906A reentrant subprogram is a subprogram which can be in invoked any
11907number of times in parallel, without interference between the various
11908invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11909
11910@item Reverse polish notation
11911A language in which all operators are postfix operators.
11912
11913@item Right recursion
89cab50d
AD
11914A rule whose result symbol is also its last component symbol; for
11915example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11916Rules}.
bfa74976
RS
11917
11918@item Semantics
11919In computer languages, the semantics are specified by the actions
11920taken for each instance of the language, i.e., the meaning of
11921each statement. @xref{Semantics, ,Defining Language Semantics}.
11922
11923@item Shift
11924A parser is said to shift when it makes the choice of analyzing
11925further input from the stream rather than reducing immediately some
c827f760 11926already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11927
11928@item Single-character literal
11929A single character that is recognized and interpreted as is.
11930@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11931
11932@item Start symbol
11933The nonterminal symbol that stands for a complete valid utterance in
11934the language being parsed. The start symbol is usually listed as the
13863333 11935first nonterminal symbol in a language specification.
bfa74976
RS
11936@xref{Start Decl, ,The Start-Symbol}.
11937
11938@item Symbol table
11939A data structure where symbol names and associated data are stored
11940during parsing to allow for recognition and use of existing
11941information in repeated uses of a symbol. @xref{Multi-function Calc}.
11942
6e649e65
PE
11943@item Syntax error
11944An error encountered during parsing of an input stream due to invalid
11945syntax. @xref{Error Recovery}.
11946
bfa74976
RS
11947@item Token
11948A basic, grammatically indivisible unit of a language. The symbol
11949that describes a token in the grammar is a terminal symbol.
11950The input of the Bison parser is a stream of tokens which comes from
11951the lexical analyzer. @xref{Symbols}.
11952
11953@item Terminal symbol
89cab50d
AD
11954A grammar symbol that has no rules in the grammar and therefore is
11955grammatically indivisible. The piece of text it represents is a token.
11956@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
11957
11958@item Unreachable state
11959A parser state to which there does not exist a sequence of transitions from
11960the parser's start state. A state can become unreachable during conflict
11961resolution. @xref{Unreachable States}.
bfa74976
RS
11962@end table
11963
342b8b6e 11964@node Copying This Manual
f2b5126e 11965@appendix Copying This Manual
f2b5126e
PB
11966@include fdl.texi
11967
5e528941
JD
11968@node Bibliography
11969@unnumbered Bibliography
11970
11971@table @asis
11972@item [Denny 2008]
11973Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11974for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
119752008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11976pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11977
11978@item [Denny 2010 May]
11979Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11980Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11981University, Clemson, SC, USA (May 2010).
11982@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11983
11984@item [Denny 2010 November]
11985Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11986Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11987in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
119882010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11989
11990@item [DeRemer 1982]
11991Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11992Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11993Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11994615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11995
11996@item [Knuth 1965]
11997Donald E. Knuth, On the Translation of Languages from Left to Right, in
11998@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11999607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
12000
12001@item [Scott 2000]
12002Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
12003@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
12004London, Department of Computer Science, TR-00-12 (December 2000).
12005@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
12006@end table
12007
342b8b6e 12008@node Index
bfa74976
RS
12009@unnumbered Index
12010
12011@printindex cp
12012
bfa74976 12013@bye
a06ea4aa 12014
6b5a0de9
AD
12015@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
12016@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
12017@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
12018@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12019@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12020@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12021@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12022@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12023@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12024@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12025@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12026@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12027@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 12028@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
12029@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12030@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
12031@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
12032@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
12033@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
12034@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
12035@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
12036@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
12037@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 12038@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
12039@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
12040@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
12041@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
12042@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
12043@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 12044@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
12045@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
12046@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 12047@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 12048@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
12049@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
12050@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
12051@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 12052@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 12053@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 12054@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
12055@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12056@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12057@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12058@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 12059@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
12060@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12061@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12062@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12063@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
12064@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
5a321748
AD
12065@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
12066@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy
12067@c LocalWords: Scannerless ispell american
e944aaff
AD
12068
12069@c Local Variables:
12070@c ispell-dictionary: "american"
12071@c fill-column: 76
12072@c End: