]> git.saurik.com Git - bison.git/blame - doc/bison.texi
lalr1.cc: no longer require %defines.
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f9b86351 113* Index of Terms:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
93c150b6 229* Printer Decl:: Declaring how symbol values are displayed.
d6328241 230* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
231* Start Decl:: Specifying the start symbol.
232* Pure Decl:: Requesting a reentrant parser.
9987d1b3 233* Push Decl:: Requesting a push parser.
bfa74976 234* Decl Summary:: Table of all Bison declarations.
35c1e5f0 235* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 236* %code Summary:: Inserting code into the parser source.
bfa74976
RS
237
238Parser C-Language Interface
239
f5f419de
DJ
240* Parser Function:: How to call @code{yyparse} and what it returns.
241* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
242* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
243* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
244* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
245* Lexical:: You must supply a function @code{yylex}
246 which reads tokens.
247* Error Reporting:: You must supply a function @code{yyerror}.
248* Action Features:: Special features for use in actions.
249* Internationalization:: How to let the parser speak in the user's
250 native language.
bfa74976
RS
251
252The Lexical Analyzer Function @code{yylex}
253
254* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
255* Token Values:: How @code{yylex} must return the semantic value
256 of the token it has read.
257* Token Locations:: How @code{yylex} must return the text location
258 (line number, etc.) of the token, if the
259 actions want that.
260* Pure Calling:: How the calling convention differs in a pure parser
261 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 262
13863333 263The Bison Parser Algorithm
bfa74976 264
742e4900 265* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
266* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
267* Precedence:: Operator precedence works by resolving conflicts.
268* Contextual Precedence:: When an operator's precedence depends on context.
269* Parser States:: The parser is a finite-state-machine with stack.
270* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 271* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 272* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 273* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 274* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
275
276Operator Precedence
277
278* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
279* Using Precedence:: How to specify precedence and associativity.
280* Precedence Only:: How to specify precedence only.
bfa74976
RS
281* Precedence Examples:: How these features are used in the previous example.
282* How Precedence:: How they work.
283
7fceb615
JD
284Tuning LR
285
286* LR Table Construction:: Choose a different construction algorithm.
287* Default Reductions:: Disable default reductions.
288* LAC:: Correct lookahead sets in the parser states.
289* Unreachable States:: Keep unreachable parser states for debugging.
290
bfa74976
RS
291Handling Context Dependencies
292
293* Semantic Tokens:: Token parsing can depend on the semantic context.
294* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
295* Tie-in Recovery:: Lexical tie-ins have implications for how
296 error recovery rules must be written.
297
93dd49ab 298Debugging Your Parser
ec3bc396
AD
299
300* Understanding:: Understanding the structure of your parser.
301* Tracing:: Tracing the execution of your parser.
302
93c150b6
AD
303Tracing Your Parser
304
305* Enabling Traces:: Activating run-time trace support
306* Mfcalc Traces:: Extending @code{mfcalc} to support traces
307* The YYPRINT Macro:: Obsolete interface for semantic value reports
308
bfa74976
RS
309Invoking Bison
310
13863333 311* Bison Options:: All the options described in detail,
c827f760 312 in alphabetical order by short options.
bfa74976 313* Option Cross Key:: Alphabetical list of long options.
93dd49ab 314* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 315
8405b70c 316Parsers Written In Other Languages
12545799
AD
317
318* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 319* Java Parsers:: The interface to generate Java parser classes
12545799
AD
320
321C++ Parsers
322
323* C++ Bison Interface:: Asking for C++ parser generation
324* C++ Semantic Values:: %union vs. C++
325* C++ Location Values:: The position and location classes
326* C++ Parser Interface:: Instantiating and running the parser
327* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 328* A Complete C++ Example:: Demonstrating their use
12545799 329
936c88d1
AD
330C++ Location Values
331
332* C++ position:: One point in the source file
333* C++ location:: Two points in the source file
334
12545799
AD
335A Complete C++ Example
336
337* Calc++ --- C++ Calculator:: The specifications
338* Calc++ Parsing Driver:: An active parsing context
339* Calc++ Parser:: A parser class
340* Calc++ Scanner:: A pure C++ Flex scanner
341* Calc++ Top Level:: Conducting the band
342
8405b70c
PB
343Java Parsers
344
f5f419de
DJ
345* Java Bison Interface:: Asking for Java parser generation
346* Java Semantic Values:: %type and %token vs. Java
347* Java Location Values:: The position and location classes
348* Java Parser Interface:: Instantiating and running the parser
349* Java Scanner Interface:: Specifying the scanner for the parser
350* Java Action Features:: Special features for use in actions
351* Java Differences:: Differences between C/C++ and Java Grammars
352* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 353
d1a1114f
AD
354Frequently Asked Questions
355
f5f419de
DJ
356* Memory Exhausted:: Breaking the Stack Limits
357* How Can I Reset the Parser:: @code{yyparse} Keeps some State
358* Strings are Destroyed:: @code{yylval} Loses Track of Strings
359* Implementing Gotos/Loops:: Control Flow in the Calculator
360* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 361* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
362* I can't build Bison:: Troubleshooting
363* Where can I find help?:: Troubleshouting
364* Bug Reports:: Troublereporting
365* More Languages:: Parsers in C++, Java, and so on
366* Beta Testing:: Experimenting development versions
367* Mailing Lists:: Meeting other Bison users
d1a1114f 368
f2b5126e
PB
369Copying This Manual
370
f5f419de 371* Copying This Manual:: License for copying this manual.
f2b5126e 372
342b8b6e 373@end detailmenu
bfa74976
RS
374@end menu
375
342b8b6e 376@node Introduction
bfa74976
RS
377@unnumbered Introduction
378@cindex introduction
379
6077da58 380@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
381annotated context-free grammar into a deterministic LR or generalized
382LR (GLR) parser employing LALR(1) parser tables. As an experimental
383feature, Bison can also generate IELR(1) or canonical LR(1) parser
384tables. Once you are proficient with Bison, you can use it to develop
385a wide range of language parsers, from those used in simple desk
386calculators to complex programming languages.
387
388Bison is upward compatible with Yacc: all properly-written Yacc
389grammars ought to work with Bison with no change. Anyone familiar
390with Yacc should be able to use Bison with little trouble. You need
391to be fluent in C or C++ programming in order to use Bison or to
392understand this manual. Java is also supported as an experimental
393feature.
394
395We begin with tutorial chapters that explain the basic concepts of
396using Bison and show three explained examples, each building on the
397last. If you don't know Bison or Yacc, start by reading these
398chapters. Reference chapters follow, which describe specific aspects
399of Bison in detail.
bfa74976 400
679e9935
JD
401Bison was written originally by Robert Corbett. Richard Stallman made
402it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
403added multi-character string literals and other features. Since then,
404Bison has grown more robust and evolved many other new features thanks
405to the hard work of a long list of volunteers. For details, see the
406@file{THANKS} and @file{ChangeLog} files included in the Bison
407distribution.
931c7513 408
df1af54c 409This edition corresponds to version @value{VERSION} of Bison.
bfa74976 410
342b8b6e 411@node Conditions
bfa74976
RS
412@unnumbered Conditions for Using Bison
413
193d7c70
PE
414The distribution terms for Bison-generated parsers permit using the
415parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 416permissions applied only when Bison was generating LALR(1)
193d7c70 417parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 418parsers could be used only in programs that were free software.
a31239f1 419
8a4281b9 420The other GNU programming tools, such as the GNU C
c827f760 421compiler, have never
9ecbd125 422had such a requirement. They could always be used for nonfree
a31239f1
RS
423software. The reason Bison was different was not due to a special
424policy decision; it resulted from applying the usual General Public
425License to all of the Bison source code.
426
ff7571c0
JD
427The main output of the Bison utility---the Bison parser implementation
428file---contains a verbatim copy of a sizable piece of Bison, which is
429the code for the parser's implementation. (The actions from your
430grammar are inserted into this implementation at one point, but most
431of the rest of the implementation is not changed.) When we applied
432the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
433the effect was to restrict the use of Bison output to free software.
434
435We didn't change the terms because of sympathy for people who want to
436make software proprietary. @strong{Software should be free.} But we
437concluded that limiting Bison's use to free software was doing little to
438encourage people to make other software free. So we decided to make the
439practical conditions for using Bison match the practical conditions for
8a4281b9 440using the other GNU tools.
bfa74976 441
193d7c70
PE
442This exception applies when Bison is generating code for a parser.
443You can tell whether the exception applies to a Bison output file by
444inspecting the file for text beginning with ``As a special
445exception@dots{}''. The text spells out the exact terms of the
446exception.
262aa8dd 447
f16b0819
PE
448@node Copying
449@unnumbered GNU GENERAL PUBLIC LICENSE
450@include gpl-3.0.texi
bfa74976 451
342b8b6e 452@node Concepts
bfa74976
RS
453@chapter The Concepts of Bison
454
455This chapter introduces many of the basic concepts without which the
456details of Bison will not make sense. If you do not already know how to
457use Bison or Yacc, we suggest you start by reading this chapter carefully.
458
459@menu
f5f419de
DJ
460* Language and Grammar:: Languages and context-free grammars,
461 as mathematical ideas.
462* Grammar in Bison:: How we represent grammars for Bison's sake.
463* Semantic Values:: Each token or syntactic grouping can have
464 a semantic value (the value of an integer,
465 the name of an identifier, etc.).
466* Semantic Actions:: Each rule can have an action containing C code.
467* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 468* Locations:: Overview of location tracking.
f5f419de
DJ
469* Bison Parser:: What are Bison's input and output,
470 how is the output used?
471* Stages:: Stages in writing and running Bison grammars.
472* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
473@end menu
474
342b8b6e 475@node Language and Grammar
bfa74976
RS
476@section Languages and Context-Free Grammars
477
bfa74976
RS
478@cindex context-free grammar
479@cindex grammar, context-free
480In order for Bison to parse a language, it must be described by a
481@dfn{context-free grammar}. This means that you specify one or more
482@dfn{syntactic groupings} and give rules for constructing them from their
483parts. For example, in the C language, one kind of grouping is called an
484`expression'. One rule for making an expression might be, ``An expression
485can be made of a minus sign and another expression''. Another would be,
486``An expression can be an integer''. As you can see, rules are often
487recursive, but there must be at least one rule which leads out of the
488recursion.
489
8a4281b9 490@cindex BNF
bfa74976
RS
491@cindex Backus-Naur form
492The most common formal system for presenting such rules for humans to read
8a4281b9 493is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 494order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
495BNF is a context-free grammar. The input to Bison is
496essentially machine-readable BNF.
bfa74976 497
7fceb615
JD
498@cindex LALR grammars
499@cindex IELR grammars
500@cindex LR grammars
501There are various important subclasses of context-free grammars. Although
502it can handle almost all context-free grammars, Bison is optimized for what
503are called LR(1) grammars. In brief, in these grammars, it must be possible
504to tell how to parse any portion of an input string with just a single token
505of lookahead. For historical reasons, Bison by default is limited by the
506additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
507@xref{Mysterious Conflicts}, for more information on this. As an
508experimental feature, you can escape these additional restrictions by
509requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
510Construction}, to learn how.
bfa74976 511
8a4281b9
JD
512@cindex GLR parsing
513@cindex generalized LR (GLR) parsing
676385e2 514@cindex ambiguous grammars
9d9b8b70 515@cindex nondeterministic parsing
9501dc6e 516
8a4281b9 517Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
518roughly that the next grammar rule to apply at any point in the input is
519uniquely determined by the preceding input and a fixed, finite portion
742e4900 520(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 521grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 522apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 523grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 524lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 525With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
526general context-free grammars, using a technique known as GLR
527parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
528are able to handle any context-free grammar for which the number of
529possible parses of any given string is finite.
676385e2 530
bfa74976
RS
531@cindex symbols (abstract)
532@cindex token
533@cindex syntactic grouping
534@cindex grouping, syntactic
9501dc6e
AD
535In the formal grammatical rules for a language, each kind of syntactic
536unit or grouping is named by a @dfn{symbol}. Those which are built by
537grouping smaller constructs according to grammatical rules are called
bfa74976
RS
538@dfn{nonterminal symbols}; those which can't be subdivided are called
539@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
540corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 541corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
542
543We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
544nonterminal, mean. The tokens of C are identifiers, constants (numeric
545and string), and the various keywords, arithmetic operators and
546punctuation marks. So the terminal symbols of a grammar for C include
547`identifier', `number', `string', plus one symbol for each keyword,
548operator or punctuation mark: `if', `return', `const', `static', `int',
549`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
550(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
551lexicography, not grammar.)
552
553Here is a simple C function subdivided into tokens:
554
9edcd895
AD
555@example
556int /* @r{keyword `int'} */
14d4662b 557square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
558 @r{identifier, close-paren} */
559@{ /* @r{open-brace} */
aa08666d
AD
560 return x * x; /* @r{keyword `return', identifier, asterisk,}
561 @r{identifier, semicolon} */
9edcd895
AD
562@} /* @r{close-brace} */
563@end example
bfa74976
RS
564
565The syntactic groupings of C include the expression, the statement, the
566declaration, and the function definition. These are represented in the
567grammar of C by nonterminal symbols `expression', `statement',
568`declaration' and `function definition'. The full grammar uses dozens of
569additional language constructs, each with its own nonterminal symbol, in
570order to express the meanings of these four. The example above is a
571function definition; it contains one declaration, and one statement. In
572the statement, each @samp{x} is an expression and so is @samp{x * x}.
573
574Each nonterminal symbol must have grammatical rules showing how it is made
575out of simpler constructs. For example, one kind of C statement is the
576@code{return} statement; this would be described with a grammar rule which
577reads informally as follows:
578
579@quotation
580A `statement' can be made of a `return' keyword, an `expression' and a
581`semicolon'.
582@end quotation
583
584@noindent
585There would be many other rules for `statement', one for each kind of
586statement in C.
587
588@cindex start symbol
589One nonterminal symbol must be distinguished as the special one which
590defines a complete utterance in the language. It is called the @dfn{start
591symbol}. In a compiler, this means a complete input program. In the C
592language, the nonterminal symbol `sequence of definitions and declarations'
593plays this role.
594
595For example, @samp{1 + 2} is a valid C expression---a valid part of a C
596program---but it is not valid as an @emph{entire} C program. In the
597context-free grammar of C, this follows from the fact that `expression' is
598not the start symbol.
599
600The Bison parser reads a sequence of tokens as its input, and groups the
601tokens using the grammar rules. If the input is valid, the end result is
602that the entire token sequence reduces to a single grouping whose symbol is
603the grammar's start symbol. If we use a grammar for C, the entire input
604must be a `sequence of definitions and declarations'. If not, the parser
605reports a syntax error.
606
342b8b6e 607@node Grammar in Bison
bfa74976
RS
608@section From Formal Rules to Bison Input
609@cindex Bison grammar
610@cindex grammar, Bison
611@cindex formal grammar
612
613A formal grammar is a mathematical construct. To define the language
614for Bison, you must write a file expressing the grammar in Bison syntax:
615a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
616
617A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 618as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
619in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
620
621The Bison representation for a terminal symbol is also called a @dfn{token
622type}. Token types as well can be represented as C-like identifiers. By
623convention, these identifiers should be upper case to distinguish them from
624nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
625@code{RETURN}. A terminal symbol that stands for a particular keyword in
626the language should be named after that keyword converted to upper case.
627The terminal symbol @code{error} is reserved for error recovery.
931c7513 628@xref{Symbols}.
bfa74976
RS
629
630A terminal symbol can also be represented as a character literal, just like
631a C character constant. You should do this whenever a token is just a
632single character (parenthesis, plus-sign, etc.): use that same character in
633a literal as the terminal symbol for that token.
634
931c7513
RS
635A third way to represent a terminal symbol is with a C string constant
636containing several characters. @xref{Symbols}, for more information.
637
bfa74976
RS
638The grammar rules also have an expression in Bison syntax. For example,
639here is the Bison rule for a C @code{return} statement. The semicolon in
640quotes is a literal character token, representing part of the C syntax for
641the statement; the naked semicolon, and the colon, are Bison punctuation
642used in every rule.
643
644@example
5e9b6624 645stmt: RETURN expr ';' ;
bfa74976
RS
646@end example
647
648@noindent
649@xref{Rules, ,Syntax of Grammar Rules}.
650
342b8b6e 651@node Semantic Values
bfa74976
RS
652@section Semantic Values
653@cindex semantic value
654@cindex value, semantic
655
656A formal grammar selects tokens only by their classifications: for example,
657if a rule mentions the terminal symbol `integer constant', it means that
658@emph{any} integer constant is grammatically valid in that position. The
659precise value of the constant is irrelevant to how to parse the input: if
660@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 661grammatical.
bfa74976
RS
662
663But the precise value is very important for what the input means once it is
664parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6653989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
666has both a token type and a @dfn{semantic value}. @xref{Semantics,
667,Defining Language Semantics},
bfa74976
RS
668for details.
669
670The token type is a terminal symbol defined in the grammar, such as
671@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
672you need to know to decide where the token may validly appear and how to
673group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 674except their types.
bfa74976
RS
675
676The semantic value has all the rest of the information about the
677meaning of the token, such as the value of an integer, or the name of an
678identifier. (A token such as @code{','} which is just punctuation doesn't
679need to have any semantic value.)
680
681For example, an input token might be classified as token type
682@code{INTEGER} and have the semantic value 4. Another input token might
683have the same token type @code{INTEGER} but value 3989. When a grammar
684rule says that @code{INTEGER} is allowed, either of these tokens is
685acceptable because each is an @code{INTEGER}. When the parser accepts the
686token, it keeps track of the token's semantic value.
687
688Each grouping can also have a semantic value as well as its nonterminal
689symbol. For example, in a calculator, an expression typically has a
690semantic value that is a number. In a compiler for a programming
691language, an expression typically has a semantic value that is a tree
692structure describing the meaning of the expression.
693
342b8b6e 694@node Semantic Actions
bfa74976
RS
695@section Semantic Actions
696@cindex semantic actions
697@cindex actions, semantic
698
699In order to be useful, a program must do more than parse input; it must
700also produce some output based on the input. In a Bison grammar, a grammar
701rule can have an @dfn{action} made up of C statements. Each time the
702parser recognizes a match for that rule, the action is executed.
703@xref{Actions}.
13863333 704
bfa74976
RS
705Most of the time, the purpose of an action is to compute the semantic value
706of the whole construct from the semantic values of its parts. For example,
707suppose we have a rule which says an expression can be the sum of two
708expressions. When the parser recognizes such a sum, each of the
709subexpressions has a semantic value which describes how it was built up.
710The action for this rule should create a similar sort of value for the
711newly recognized larger expression.
712
713For example, here is a rule that says an expression can be the sum of
714two subexpressions:
715
716@example
5e9b6624 717expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
718@end example
719
720@noindent
721The action says how to produce the semantic value of the sum expression
722from the values of the two subexpressions.
723
676385e2 724@node GLR Parsers
8a4281b9
JD
725@section Writing GLR Parsers
726@cindex GLR parsing
727@cindex generalized LR (GLR) parsing
676385e2
PH
728@findex %glr-parser
729@cindex conflicts
730@cindex shift/reduce conflicts
fa7e68c3 731@cindex reduce/reduce conflicts
676385e2 732
eb45ef3b 733In some grammars, Bison's deterministic
8a4281b9 734LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
735certain grammar rule at a given point. That is, it may not be able to
736decide (on the basis of the input read so far) which of two possible
737reductions (applications of a grammar rule) applies, or whether to apply
738a reduction or read more of the input and apply a reduction later in the
739input. These are known respectively as @dfn{reduce/reduce} conflicts
740(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
741(@pxref{Shift/Reduce}).
742
8a4281b9 743To use a grammar that is not easily modified to be LR(1), a
9501dc6e 744more general parsing algorithm is sometimes necessary. If you include
676385e2 745@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
746(@pxref{Grammar Outline}), the result is a Generalized LR
747(GLR) parser. These parsers handle Bison grammars that
9501dc6e 748contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 749declarations) identically to deterministic parsers. However, when
9501dc6e 750faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 751GLR parsers use the simple expedient of doing both,
9501dc6e
AD
752effectively cloning the parser to follow both possibilities. Each of
753the resulting parsers can again split, so that at any given time, there
754can be any number of possible parses being explored. The parsers
676385e2
PH
755proceed in lockstep; that is, all of them consume (shift) a given input
756symbol before any of them proceed to the next. Each of the cloned
757parsers eventually meets one of two possible fates: either it runs into
758a parsing error, in which case it simply vanishes, or it merges with
759another parser, because the two of them have reduced the input to an
760identical set of symbols.
761
762During the time that there are multiple parsers, semantic actions are
763recorded, but not performed. When a parser disappears, its recorded
764semantic actions disappear as well, and are never performed. When a
765reduction makes two parsers identical, causing them to merge, Bison
766records both sets of semantic actions. Whenever the last two parsers
767merge, reverting to the single-parser case, Bison resolves all the
768outstanding actions either by precedences given to the grammar rules
769involved, or by performing both actions, and then calling a designated
770user-defined function on the resulting values to produce an arbitrary
771merged result.
772
fa7e68c3 773@menu
8a4281b9
JD
774* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
775* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 776* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 777* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 778* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
779@end menu
780
781@node Simple GLR Parsers
8a4281b9
JD
782@subsection Using GLR on Unambiguous Grammars
783@cindex GLR parsing, unambiguous grammars
784@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
785@findex %glr-parser
786@findex %expect-rr
787@cindex conflicts
788@cindex reduce/reduce conflicts
789@cindex shift/reduce conflicts
790
8a4281b9
JD
791In the simplest cases, you can use the GLR algorithm
792to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 793Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
794
795Consider a problem that
796arises in the declaration of enumerated and subrange types in the
797programming language Pascal. Here are some examples:
798
799@example
800type subrange = lo .. hi;
801type enum = (a, b, c);
802@end example
803
804@noindent
805The original language standard allows only numeric
806literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 807and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80810206) and many other
809Pascal implementations allow arbitrary expressions there. This gives
810rise to the following situation, containing a superfluous pair of
811parentheses:
812
813@example
814type subrange = (a) .. b;
815@end example
816
817@noindent
818Compare this to the following declaration of an enumerated
819type with only one value:
820
821@example
822type enum = (a);
823@end example
824
825@noindent
826(These declarations are contrived, but they are syntactically
827valid, and more-complicated cases can come up in practical programs.)
828
829These two declarations look identical until the @samp{..} token.
8a4281b9 830With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
831possible to decide between the two forms when the identifier
832@samp{a} is parsed. It is, however, desirable
833for a parser to decide this, since in the latter case
834@samp{a} must become a new identifier to represent the enumeration
835value, while in the former case @samp{a} must be evaluated with its
836current meaning, which may be a constant or even a function call.
837
838You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
839to be resolved later, but this typically requires substantial
840contortions in both semantic actions and large parts of the
841grammar, where the parentheses are nested in the recursive rules for
842expressions.
843
844You might think of using the lexer to distinguish between the two
845forms by returning different tokens for currently defined and
846undefined identifiers. But if these declarations occur in a local
847scope, and @samp{a} is defined in an outer scope, then both forms
848are possible---either locally redefining @samp{a}, or using the
849value of @samp{a} from the outer scope. So this approach cannot
850work.
851
e757bb10 852A simple solution to this problem is to declare the parser to
8a4281b9
JD
853use the GLR algorithm.
854When the GLR parser reaches the critical state, it
fa7e68c3
PE
855merely splits into two branches and pursues both syntax rules
856simultaneously. Sooner or later, one of them runs into a parsing
857error. If there is a @samp{..} token before the next
858@samp{;}, the rule for enumerated types fails since it cannot
859accept @samp{..} anywhere; otherwise, the subrange type rule
860fails since it requires a @samp{..} token. So one of the branches
861fails silently, and the other one continues normally, performing
862all the intermediate actions that were postponed during the split.
863
864If the input is syntactically incorrect, both branches fail and the parser
865reports a syntax error as usual.
866
867The effect of all this is that the parser seems to ``guess'' the
868correct branch to take, or in other words, it seems to use more
8a4281b9
JD
869lookahead than the underlying LR(1) algorithm actually allows
870for. In this example, LR(2) would suffice, but also some cases
871that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 872
8a4281b9 873In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
874and the current Bison parser even takes exponential time and space
875for some grammars. In practice, this rarely happens, and for many
876grammars it is possible to prove that it cannot happen.
877The present example contains only one conflict between two
878rules, and the type-declaration context containing the conflict
879cannot be nested. So the number of
880branches that can exist at any time is limited by the constant 2,
881and the parsing time is still linear.
882
883Here is a Bison grammar corresponding to the example above. It
884parses a vastly simplified form of Pascal type declarations.
885
886@example
887%token TYPE DOTDOT ID
888
889@group
890%left '+' '-'
891%left '*' '/'
892@end group
893
894%%
895
896@group
5e9b6624 897type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
898@end group
899
900@group
5e9b6624
AD
901type:
902 '(' id_list ')'
903| expr DOTDOT expr
904;
fa7e68c3
PE
905@end group
906
907@group
5e9b6624
AD
908id_list:
909 ID
910| id_list ',' ID
911;
fa7e68c3
PE
912@end group
913
914@group
5e9b6624
AD
915expr:
916 '(' expr ')'
917| expr '+' expr
918| expr '-' expr
919| expr '*' expr
920| expr '/' expr
921| ID
922;
fa7e68c3
PE
923@end group
924@end example
925
8a4281b9 926When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
927about one reduce/reduce conflict. In the conflicting situation the
928parser chooses one of the alternatives, arbitrarily the one
929declared first. Therefore the following correct input is not
930recognized:
931
932@example
933type t = (a) .. b;
934@end example
935
8a4281b9 936The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
937to be silent about the one known reduce/reduce conflict, by adding
938these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
939@samp{%%}):
940
941@example
942%glr-parser
943%expect-rr 1
944@end example
945
946@noindent
947No change in the grammar itself is required. Now the
948parser recognizes all valid declarations, according to the
949limited syntax above, transparently. In fact, the user does not even
950notice when the parser splits.
951
8a4281b9 952So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
953almost without disadvantages. Even in simple cases like this, however,
954there are at least two potential problems to beware. First, always
8a4281b9
JD
955analyze the conflicts reported by Bison to make sure that GLR
956splitting is only done where it is intended. A GLR parser
f8e1c9e5 957splitting inadvertently may cause problems less obvious than an
8a4281b9 958LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
959conflict. Second, consider interactions with the lexer (@pxref{Semantic
960Tokens}) with great care. Since a split parser consumes tokens without
961performing any actions during the split, the lexer cannot obtain
962information via parser actions. Some cases of lexer interactions can be
8a4281b9 963eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
964lexer to the parser. You must check the remaining cases for
965correctness.
966
967In our example, it would be safe for the lexer to return tokens based on
968their current meanings in some symbol table, because no new symbols are
969defined in the middle of a type declaration. Though it is possible for
970a parser to define the enumeration constants as they are parsed, before
971the type declaration is completed, it actually makes no difference since
972they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
973
974@node Merging GLR Parses
8a4281b9
JD
975@subsection Using GLR to Resolve Ambiguities
976@cindex GLR parsing, ambiguous grammars
977@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
978@findex %dprec
979@findex %merge
980@cindex conflicts
981@cindex reduce/reduce conflicts
982
2a8d363a 983Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
984
985@example
986%@{
38a92d50
PE
987 #include <stdio.h>
988 #define YYSTYPE char const *
989 int yylex (void);
990 void yyerror (char const *);
676385e2
PH
991%@}
992
993%token TYPENAME ID
994
995%right '='
996%left '+'
997
998%glr-parser
999
1000%%
1001
5e9b6624
AD
1002prog:
1003 /* Nothing. */
1004| prog stmt @{ printf ("\n"); @}
1005;
676385e2 1006
5e9b6624
AD
1007stmt:
1008 expr ';' %dprec 1
1009| decl %dprec 2
1010;
676385e2 1011
5e9b6624
AD
1012expr:
1013 ID @{ printf ("%s ", $$); @}
1014| TYPENAME '(' expr ')'
1015 @{ printf ("%s <cast> ", $1); @}
1016| expr '+' expr @{ printf ("+ "); @}
1017| expr '=' expr @{ printf ("= "); @}
1018;
676385e2 1019
5e9b6624
AD
1020decl:
1021 TYPENAME declarator ';'
1022 @{ printf ("%s <declare> ", $1); @}
1023| TYPENAME declarator '=' expr ';'
1024 @{ printf ("%s <init-declare> ", $1); @}
1025;
676385e2 1026
5e9b6624
AD
1027declarator:
1028 ID @{ printf ("\"%s\" ", $1); @}
1029| '(' declarator ')'
1030;
676385e2
PH
1031@end example
1032
1033@noindent
1034This models a problematic part of the C++ grammar---the ambiguity between
1035certain declarations and statements. For example,
1036
1037@example
1038T (x) = y+z;
1039@end example
1040
1041@noindent
1042parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1043(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1044@samp{x} as an @code{ID}).
676385e2 1045Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1046@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1047time it encounters @code{x} in the example above. Since this is a
8a4281b9 1048GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1049each choice of resolving the reduce/reduce conflict.
1050Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1051however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1052ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1053the other reduces @code{stmt : decl}, after which both parsers are in an
1054identical state: they've seen @samp{prog stmt} and have the same unprocessed
1055input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1056
8a4281b9 1057At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1058grammar of how to choose between the competing parses.
1059In the example above, the two @code{%dprec}
e757bb10 1060declarations specify that Bison is to give precedence
fa7e68c3 1061to the parse that interprets the example as a
676385e2
PH
1062@code{decl}, which implies that @code{x} is a declarator.
1063The parser therefore prints
1064
1065@example
fae437e8 1066"x" y z + T <init-declare>
676385e2
PH
1067@end example
1068
fa7e68c3
PE
1069The @code{%dprec} declarations only come into play when more than one
1070parse survives. Consider a different input string for this parser:
676385e2
PH
1071
1072@example
1073T (x) + y;
1074@end example
1075
1076@noindent
8a4281b9 1077This is another example of using GLR to parse an unambiguous
fa7e68c3 1078construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1079Here, there is no ambiguity (this cannot be parsed as a declaration).
1080However, at the time the Bison parser encounters @code{x}, it does not
1081have enough information to resolve the reduce/reduce conflict (again,
1082between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1083case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1084into two, one assuming that @code{x} is an @code{expr}, and the other
1085assuming @code{x} is a @code{declarator}. The second of these parsers
1086then vanishes when it sees @code{+}, and the parser prints
1087
1088@example
fae437e8 1089x T <cast> y +
676385e2
PH
1090@end example
1091
1092Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1093the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1094actions of the two possible parsers, rather than choosing one over the
1095other. To do so, you could change the declaration of @code{stmt} as
1096follows:
1097
1098@example
5e9b6624
AD
1099stmt:
1100 expr ';' %merge <stmtMerge>
1101| decl %merge <stmtMerge>
1102;
676385e2
PH
1103@end example
1104
1105@noindent
676385e2
PH
1106and define the @code{stmtMerge} function as:
1107
1108@example
38a92d50
PE
1109static YYSTYPE
1110stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1111@{
1112 printf ("<OR> ");
1113 return "";
1114@}
1115@end example
1116
1117@noindent
1118with an accompanying forward declaration
1119in the C declarations at the beginning of the file:
1120
1121@example
1122%@{
38a92d50 1123 #define YYSTYPE char const *
676385e2
PH
1124 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1125%@}
1126@end example
1127
1128@noindent
fa7e68c3
PE
1129With these declarations, the resulting parser parses the first example
1130as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1131
1132@example
fae437e8 1133"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1134@end example
1135
fa7e68c3 1136Bison requires that all of the
e757bb10 1137productions that participate in any particular merge have identical
fa7e68c3
PE
1138@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1139and the parser will report an error during any parse that results in
1140the offending merge.
9501dc6e 1141
32c29292
JD
1142@node GLR Semantic Actions
1143@subsection GLR Semantic Actions
1144
8a4281b9 1145The nature of GLR parsing and the structure of the generated
20be2f92
PH
1146parsers give rise to certain restrictions on semantic values and actions.
1147
1148@subsubsection Deferred semantic actions
32c29292
JD
1149@cindex deferred semantic actions
1150By definition, a deferred semantic action is not performed at the same time as
1151the associated reduction.
1152This raises caveats for several Bison features you might use in a semantic
8a4281b9 1153action in a GLR parser.
32c29292
JD
1154
1155@vindex yychar
8a4281b9 1156@cindex GLR parsers and @code{yychar}
32c29292 1157@vindex yylval
8a4281b9 1158@cindex GLR parsers and @code{yylval}
32c29292 1159@vindex yylloc
8a4281b9 1160@cindex GLR parsers and @code{yylloc}
32c29292 1161In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1162the lookahead token present at the time of the associated reduction.
32c29292
JD
1163After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1164you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1165lookahead token's semantic value and location, if any.
32c29292
JD
1166In a nondeferred semantic action, you can also modify any of these variables to
1167influence syntax analysis.
742e4900 1168@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1169
1170@findex yyclearin
8a4281b9 1171@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1172In a deferred semantic action, it's too late to influence syntax analysis.
1173In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1174shallow copies of the values they had at the time of the associated reduction.
1175For this reason alone, modifying them is dangerous.
1176Moreover, the result of modifying them is undefined and subject to change with
1177future versions of Bison.
1178For example, if a semantic action might be deferred, you should never write it
1179to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1180memory referenced by @code{yylval}.
1181
20be2f92 1182@subsubsection YYERROR
32c29292 1183@findex YYERROR
8a4281b9 1184@cindex GLR parsers and @code{YYERROR}
32c29292 1185Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1186(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1187initiate error recovery.
8a4281b9 1188During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1189the same as its effect in a deterministic parser.
411614fa
JM
1190The effect in a deferred action is similar, but the precise point of the
1191error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1192selecting an unspecified stack on which to continue with a syntax error.
1193In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1194parsing, @code{YYERROR} silently prunes
1195the parse that invoked the test.
1196
1197@subsubsection Restrictions on semantic values and locations
8a4281b9 1198GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1199semantic values and location types when using the generated parsers as
1200C++ code.
8710fc41 1201
ca2a6d15
PH
1202@node Semantic Predicates
1203@subsection Controlling a Parse with Arbitrary Predicates
1204@findex %?
8a4281b9 1205@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1206
1207In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1208GLR parsers
ca2a6d15
PH
1209allow you to reject parses on the basis of arbitrary computations executed
1210in user code, without having Bison treat this rejection as an error
1211if there are alternative parses. (This feature is experimental and may
1212evolve. We welcome user feedback.) For example,
1213
c93f22fc
AD
1214@example
1215widget:
5e9b6624
AD
1216 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1217| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1218;
c93f22fc 1219@end example
ca2a6d15
PH
1220
1221@noindent
411614fa 1222is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1223widgets. The clause preceded by @code{%?} is treated like an ordinary
1224action, except that its text is treated as an expression and is always
411614fa 1225evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1226expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1227which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1228to die. In a deterministic parser, it acts like YYERROR.
1229
1230As the example shows, predicates otherwise look like semantic actions, and
1231therefore you must be take them into account when determining the numbers
1232to use for denoting the semantic values of right-hand side symbols.
1233Predicate actions, however, have no defined value, and may not be given
1234labels.
1235
1236There is a subtle difference between semantic predicates and ordinary
1237actions in nondeterministic mode, since the latter are deferred.
411614fa 1238For example, we could try to rewrite the previous example as
ca2a6d15 1239
c93f22fc
AD
1240@example
1241widget:
5e9b6624
AD
1242 @{ if (!new_syntax) YYERROR; @}
1243 "widget" id new_args @{ $$ = f($3, $4); @}
1244| @{ if (new_syntax) YYERROR; @}
1245 "widget" id old_args @{ $$ = f($3, $4); @}
1246;
c93f22fc 1247@end example
ca2a6d15
PH
1248
1249@noindent
1250(reversing the sense of the predicate tests to cause an error when they are
1251false). However, this
1252does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1253have overlapping syntax.
411614fa 1254Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1255a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1256for cases where @code{new_args} and @code{old_args} recognize the same string
1257@emph{before} performing the tests of @code{new_syntax}. It therefore
1258reports an error.
1259
1260Finally, be careful in writing predicates: deferred actions have not been
1261evaluated, so that using them in a predicate will have undefined effects.
1262
fa7e68c3 1263@node Compiler Requirements
8a4281b9 1264@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1265@cindex @code{inline}
8a4281b9 1266@cindex GLR parsers and @code{inline}
fa7e68c3 1267
8a4281b9 1268The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1269later. In addition, they use the @code{inline} keyword, which is not
1270C89, but is C99 and is a common extension in pre-C99 compilers. It is
1271up to the user of these parsers to handle
9501dc6e
AD
1272portability issues. For instance, if using Autoconf and the Autoconf
1273macro @code{AC_C_INLINE}, a mere
1274
1275@example
1276%@{
38a92d50 1277 #include <config.h>
9501dc6e
AD
1278%@}
1279@end example
1280
1281@noindent
1282will suffice. Otherwise, we suggest
1283
1284@example
1285%@{
aaaa2aae
AD
1286 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1287 && ! defined inline)
1288 # define inline
38a92d50 1289 #endif
9501dc6e
AD
1290%@}
1291@end example
676385e2 1292
1769eb30 1293@node Locations
847bf1f5
AD
1294@section Locations
1295@cindex location
95923bd6
AD
1296@cindex textual location
1297@cindex location, textual
847bf1f5
AD
1298
1299Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1300and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1301the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1302Bison provides a mechanism for handling these locations.
1303
72d2299c 1304Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1305associated location, but the type of locations is the same for all tokens
1306and groupings. Moreover, the output parser is equipped with a default data
1307structure for storing locations (@pxref{Tracking Locations}, for more
1308details).
847bf1f5
AD
1309
1310Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1311set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1312is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1313@code{@@3}.
1314
1315When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1316of its left hand side (@pxref{Actions}). In the same way, another default
1317action is used for locations. However, the action for locations is general
847bf1f5 1318enough for most cases, meaning there is usually no need to describe for each
72d2299c 1319rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1320grouping, the default behavior of the output parser is to take the beginning
1321of the first symbol, and the end of the last symbol.
1322
342b8b6e 1323@node Bison Parser
ff7571c0 1324@section Bison Output: the Parser Implementation File
bfa74976
RS
1325@cindex Bison parser
1326@cindex Bison utility
1327@cindex lexical analyzer, purpose
1328@cindex parser
1329
ff7571c0
JD
1330When you run Bison, you give it a Bison grammar file as input. The
1331most important output is a C source file that implements a parser for
1332the language described by the grammar. This parser is called a
1333@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1334implementation file}. Keep in mind that the Bison utility and the
1335Bison parser are two distinct programs: the Bison utility is a program
1336whose output is the Bison parser implementation file that becomes part
1337of your program.
bfa74976
RS
1338
1339The job of the Bison parser is to group tokens into groupings according to
1340the grammar rules---for example, to build identifiers and operators into
1341expressions. As it does this, it runs the actions for the grammar rules it
1342uses.
1343
704a47c4
AD
1344The tokens come from a function called the @dfn{lexical analyzer} that
1345you must supply in some fashion (such as by writing it in C). The Bison
1346parser calls the lexical analyzer each time it wants a new token. It
1347doesn't know what is ``inside'' the tokens (though their semantic values
1348may reflect this). Typically the lexical analyzer makes the tokens by
1349parsing characters of text, but Bison does not depend on this.
1350@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1351
ff7571c0
JD
1352The Bison parser implementation file is C code which defines a
1353function named @code{yyparse} which implements that grammar. This
1354function does not make a complete C program: you must supply some
1355additional functions. One is the lexical analyzer. Another is an
1356error-reporting function which the parser calls to report an error.
1357In addition, a complete C program must start with a function called
1358@code{main}; you have to provide this, and arrange for it to call
1359@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1360C-Language Interface}.
bfa74976 1361
f7ab6a50 1362Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1363write, all symbols defined in the Bison parser implementation file
1364itself begin with @samp{yy} or @samp{YY}. This includes interface
1365functions such as the lexical analyzer function @code{yylex}, the
1366error reporting function @code{yyerror} and the parser function
1367@code{yyparse} itself. This also includes numerous identifiers used
1368for internal purposes. Therefore, you should avoid using C
1369identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1370file except for the ones defined in this manual. Also, you should
1371avoid using the C identifiers @samp{malloc} and @samp{free} for
1372anything other than their usual meanings.
1373
1374In some cases the Bison parser implementation file includes system
1375headers, and in those cases your code should respect the identifiers
1376reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1377@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1378included as needed to declare memory allocators and related types.
1379@code{<libintl.h>} is included if message translation is in use
1380(@pxref{Internationalization}). Other system headers may be included
1381if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1382,Tracing Your Parser}).
7093d0f5 1383
342b8b6e 1384@node Stages
bfa74976
RS
1385@section Stages in Using Bison
1386@cindex stages in using Bison
1387@cindex using Bison
1388
1389The actual language-design process using Bison, from grammar specification
1390to a working compiler or interpreter, has these parts:
1391
1392@enumerate
1393@item
1394Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1395(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1396in the language, describe the action that is to be taken when an
1397instance of that rule is recognized. The action is described by a
1398sequence of C statements.
bfa74976
RS
1399
1400@item
704a47c4
AD
1401Write a lexical analyzer to process input and pass tokens to the parser.
1402The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1403Lexical Analyzer Function @code{yylex}}). It could also be produced
1404using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1405
1406@item
1407Write a controlling function that calls the Bison-produced parser.
1408
1409@item
1410Write error-reporting routines.
1411@end enumerate
1412
1413To turn this source code as written into a runnable program, you
1414must follow these steps:
1415
1416@enumerate
1417@item
1418Run Bison on the grammar to produce the parser.
1419
1420@item
1421Compile the code output by Bison, as well as any other source files.
1422
1423@item
1424Link the object files to produce the finished product.
1425@end enumerate
1426
342b8b6e 1427@node Grammar Layout
bfa74976
RS
1428@section The Overall Layout of a Bison Grammar
1429@cindex grammar file
1430@cindex file format
1431@cindex format of grammar file
1432@cindex layout of Bison grammar
1433
1434The input file for the Bison utility is a @dfn{Bison grammar file}. The
1435general form of a Bison grammar file is as follows:
1436
1437@example
1438%@{
08e49d20 1439@var{Prologue}
bfa74976
RS
1440%@}
1441
1442@var{Bison declarations}
1443
1444%%
1445@var{Grammar rules}
1446%%
08e49d20 1447@var{Epilogue}
bfa74976
RS
1448@end example
1449
1450@noindent
1451The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1452in every Bison grammar file to separate the sections.
1453
72d2299c 1454The prologue may define types and variables used in the actions. You can
342b8b6e 1455also use preprocessor commands to define macros used there, and use
bfa74976 1456@code{#include} to include header files that do any of these things.
38a92d50
PE
1457You need to declare the lexical analyzer @code{yylex} and the error
1458printer @code{yyerror} here, along with any other global identifiers
1459used by the actions in the grammar rules.
bfa74976
RS
1460
1461The Bison declarations declare the names of the terminal and nonterminal
1462symbols, and may also describe operator precedence and the data types of
1463semantic values of various symbols.
1464
1465The grammar rules define how to construct each nonterminal symbol from its
1466parts.
1467
38a92d50
PE
1468The epilogue can contain any code you want to use. Often the
1469definitions of functions declared in the prologue go here. In a
1470simple program, all the rest of the program can go here.
bfa74976 1471
342b8b6e 1472@node Examples
bfa74976
RS
1473@chapter Examples
1474@cindex simple examples
1475@cindex examples, simple
1476
aaaa2aae 1477Now we show and explain several sample programs written using Bison: a
bfa74976 1478reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1479calculator --- later extended to track ``locations'' ---
1480and a multi-function calculator. All
1481produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1482
1483These examples are simple, but Bison grammars for real programming
aa08666d
AD
1484languages are written the same way. You can copy these examples into a
1485source file to try them.
bfa74976
RS
1486
1487@menu
f5f419de
DJ
1488* RPN Calc:: Reverse polish notation calculator;
1489 a first example with no operator precedence.
1490* Infix Calc:: Infix (algebraic) notation calculator.
1491 Operator precedence is introduced.
bfa74976 1492* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1493* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1494* Multi-function Calc:: Calculator with memory and trig functions.
1495 It uses multiple data-types for semantic values.
1496* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1497@end menu
1498
342b8b6e 1499@node RPN Calc
bfa74976
RS
1500@section Reverse Polish Notation Calculator
1501@cindex reverse polish notation
1502@cindex polish notation calculator
1503@cindex @code{rpcalc}
1504@cindex calculator, simple
1505
1506The first example is that of a simple double-precision @dfn{reverse polish
1507notation} calculator (a calculator using postfix operators). This example
1508provides a good starting point, since operator precedence is not an issue.
1509The second example will illustrate how operator precedence is handled.
1510
1511The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1512@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1513
1514@menu
f5f419de
DJ
1515* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1516* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1517* Rpcalc Lexer:: The lexical analyzer.
1518* Rpcalc Main:: The controlling function.
1519* Rpcalc Error:: The error reporting function.
1520* Rpcalc Generate:: Running Bison on the grammar file.
1521* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1522@end menu
1523
f5f419de 1524@node Rpcalc Declarations
bfa74976
RS
1525@subsection Declarations for @code{rpcalc}
1526
1527Here are the C and Bison declarations for the reverse polish notation
1528calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1529
24ec0837 1530@comment file: rpcalc.y
bfa74976 1531@example
72d2299c 1532/* Reverse polish notation calculator. */
bfa74976
RS
1533
1534%@{
38a92d50 1535 #define YYSTYPE double
24ec0837 1536 #include <stdio.h>
38a92d50
PE
1537 #include <math.h>
1538 int yylex (void);
1539 void yyerror (char const *);
bfa74976
RS
1540%@}
1541
1542%token NUM
1543
72d2299c 1544%% /* Grammar rules and actions follow. */
bfa74976
RS
1545@end example
1546
75f5aaea 1547The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1548preprocessor directives and two forward declarations.
bfa74976
RS
1549
1550The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1551specifying the C data type for semantic values of both tokens and
1552groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1553Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1554don't define it, @code{int} is the default. Because we specify
1555@code{double}, each token and each expression has an associated value,
1556which is a floating point number.
bfa74976
RS
1557
1558The @code{#include} directive is used to declare the exponentiation
1559function @code{pow}.
1560
38a92d50
PE
1561The forward declarations for @code{yylex} and @code{yyerror} are
1562needed because the C language requires that functions be declared
1563before they are used. These functions will be defined in the
1564epilogue, but the parser calls them so they must be declared in the
1565prologue.
1566
704a47c4
AD
1567The second section, Bison declarations, provides information to Bison
1568about the token types (@pxref{Bison Declarations, ,The Bison
1569Declarations Section}). Each terminal symbol that is not a
1570single-character literal must be declared here. (Single-character
bfa74976
RS
1571literals normally don't need to be declared.) In this example, all the
1572arithmetic operators are designated by single-character literals, so the
1573only terminal symbol that needs to be declared is @code{NUM}, the token
1574type for numeric constants.
1575
342b8b6e 1576@node Rpcalc Rules
bfa74976
RS
1577@subsection Grammar Rules for @code{rpcalc}
1578
1579Here are the grammar rules for the reverse polish notation calculator.
1580
24ec0837 1581@comment file: rpcalc.y
bfa74976 1582@example
aaaa2aae 1583@group
5e9b6624
AD
1584input:
1585 /* empty */
1586| input line
bfa74976 1587;
aaaa2aae 1588@end group
bfa74976 1589
aaaa2aae 1590@group
5e9b6624
AD
1591line:
1592 '\n'
1593| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1594;
aaaa2aae 1595@end group
bfa74976 1596
aaaa2aae 1597@group
5e9b6624
AD
1598exp:
1599 NUM @{ $$ = $1; @}
1600| exp exp '+' @{ $$ = $1 + $2; @}
1601| exp exp '-' @{ $$ = $1 - $2; @}
1602| exp exp '*' @{ $$ = $1 * $2; @}
1603| exp exp '/' @{ $$ = $1 / $2; @}
1604| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1605| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1606;
aaaa2aae 1607@end group
bfa74976
RS
1608%%
1609@end example
1610
1611The groupings of the rpcalc ``language'' defined here are the expression
1612(given the name @code{exp}), the line of input (@code{line}), and the
1613complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1614symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1615which is read as ``or''. The following sections explain what these rules
1616mean.
1617
1618The semantics of the language is determined by the actions taken when a
1619grouping is recognized. The actions are the C code that appears inside
1620braces. @xref{Actions}.
1621
1622You must specify these actions in C, but Bison provides the means for
1623passing semantic values between the rules. In each action, the
1624pseudo-variable @code{$$} stands for the semantic value for the grouping
1625that the rule is going to construct. Assigning a value to @code{$$} is the
1626main job of most actions. The semantic values of the components of the
1627rule are referred to as @code{$1}, @code{$2}, and so on.
1628
1629@menu
24ec0837
AD
1630* Rpcalc Input:: Explanation of the @code{input} nonterminal
1631* Rpcalc Line:: Explanation of the @code{line} nonterminal
1632* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1633@end menu
1634
342b8b6e 1635@node Rpcalc Input
bfa74976
RS
1636@subsubsection Explanation of @code{input}
1637
1638Consider the definition of @code{input}:
1639
1640@example
5e9b6624
AD
1641input:
1642 /* empty */
1643| input line
bfa74976
RS
1644;
1645@end example
1646
1647This definition reads as follows: ``A complete input is either an empty
1648string, or a complete input followed by an input line''. Notice that
1649``complete input'' is defined in terms of itself. This definition is said
1650to be @dfn{left recursive} since @code{input} appears always as the
1651leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1652
1653The first alternative is empty because there are no symbols between the
1654colon and the first @samp{|}; this means that @code{input} can match an
1655empty string of input (no tokens). We write the rules this way because it
1656is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1657It's conventional to put an empty alternative first and write the comment
1658@samp{/* empty */} in it.
1659
1660The second alternate rule (@code{input line}) handles all nontrivial input.
1661It means, ``After reading any number of lines, read one more line if
1662possible.'' The left recursion makes this rule into a loop. Since the
1663first alternative matches empty input, the loop can be executed zero or
1664more times.
1665
1666The parser function @code{yyparse} continues to process input until a
1667grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1668input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1669
342b8b6e 1670@node Rpcalc Line
bfa74976
RS
1671@subsubsection Explanation of @code{line}
1672
1673Now consider the definition of @code{line}:
1674
1675@example
5e9b6624
AD
1676line:
1677 '\n'
1678| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1679;
1680@end example
1681
1682The first alternative is a token which is a newline character; this means
1683that rpcalc accepts a blank line (and ignores it, since there is no
1684action). The second alternative is an expression followed by a newline.
1685This is the alternative that makes rpcalc useful. The semantic value of
1686the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1687question is the first symbol in the alternative. The action prints this
1688value, which is the result of the computation the user asked for.
1689
1690This action is unusual because it does not assign a value to @code{$$}. As
1691a consequence, the semantic value associated with the @code{line} is
1692uninitialized (its value will be unpredictable). This would be a bug if
1693that value were ever used, but we don't use it: once rpcalc has printed the
1694value of the user's input line, that value is no longer needed.
1695
342b8b6e 1696@node Rpcalc Expr
bfa74976
RS
1697@subsubsection Explanation of @code{expr}
1698
1699The @code{exp} grouping has several rules, one for each kind of expression.
1700The first rule handles the simplest expressions: those that are just numbers.
1701The second handles an addition-expression, which looks like two expressions
1702followed by a plus-sign. The third handles subtraction, and so on.
1703
1704@example
5e9b6624
AD
1705exp:
1706 NUM
1707| exp exp '+' @{ $$ = $1 + $2; @}
1708| exp exp '-' @{ $$ = $1 - $2; @}
1709@dots{}
1710;
bfa74976
RS
1711@end example
1712
1713We have used @samp{|} to join all the rules for @code{exp}, but we could
1714equally well have written them separately:
1715
1716@example
5e9b6624
AD
1717exp: NUM ;
1718exp: exp exp '+' @{ $$ = $1 + $2; @};
1719exp: exp exp '-' @{ $$ = $1 - $2; @};
1720@dots{}
bfa74976
RS
1721@end example
1722
1723Most of the rules have actions that compute the value of the expression in
1724terms of the value of its parts. For example, in the rule for addition,
1725@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1726the second one. The third component, @code{'+'}, has no meaningful
1727associated semantic value, but if it had one you could refer to it as
1728@code{$3}. When @code{yyparse} recognizes a sum expression using this
1729rule, the sum of the two subexpressions' values is produced as the value of
1730the entire expression. @xref{Actions}.
1731
1732You don't have to give an action for every rule. When a rule has no
1733action, Bison by default copies the value of @code{$1} into @code{$$}.
1734This is what happens in the first rule (the one that uses @code{NUM}).
1735
1736The formatting shown here is the recommended convention, but Bison does
72d2299c 1737not require it. You can add or change white space as much as you wish.
bfa74976
RS
1738For example, this:
1739
1740@example
5e9b6624 1741exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1742@end example
1743
1744@noindent
1745means the same thing as this:
1746
1747@example
5e9b6624
AD
1748exp:
1749 NUM
1750| exp exp '+' @{ $$ = $1 + $2; @}
1751| @dots{}
99a9344e 1752;
bfa74976
RS
1753@end example
1754
1755@noindent
1756The latter, however, is much more readable.
1757
342b8b6e 1758@node Rpcalc Lexer
bfa74976
RS
1759@subsection The @code{rpcalc} Lexical Analyzer
1760@cindex writing a lexical analyzer
1761@cindex lexical analyzer, writing
1762
704a47c4
AD
1763The lexical analyzer's job is low-level parsing: converting characters
1764or sequences of characters into tokens. The Bison parser gets its
1765tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1766Analyzer Function @code{yylex}}.
bfa74976 1767
8a4281b9 1768Only a simple lexical analyzer is needed for the RPN
c827f760 1769calculator. This
bfa74976
RS
1770lexical analyzer skips blanks and tabs, then reads in numbers as
1771@code{double} and returns them as @code{NUM} tokens. Any other character
1772that isn't part of a number is a separate token. Note that the token-code
1773for such a single-character token is the character itself.
1774
1775The return value of the lexical analyzer function is a numeric code which
1776represents a token type. The same text used in Bison rules to stand for
1777this token type is also a C expression for the numeric code for the type.
1778This works in two ways. If the token type is a character literal, then its
e966383b 1779numeric code is that of the character; you can use the same
bfa74976
RS
1780character literal in the lexical analyzer to express the number. If the
1781token type is an identifier, that identifier is defined by Bison as a C
1782macro whose definition is the appropriate number. In this example,
1783therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1784
1964ad8c
AD
1785The semantic value of the token (if it has one) is stored into the
1786global variable @code{yylval}, which is where the Bison parser will look
1787for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1788defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1789,Declarations for @code{rpcalc}}.)
bfa74976 1790
72d2299c
PE
1791A token type code of zero is returned if the end-of-input is encountered.
1792(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1793
1794Here is the code for the lexical analyzer:
1795
24ec0837 1796@comment file: rpcalc.y
bfa74976
RS
1797@example
1798@group
72d2299c 1799/* The lexical analyzer returns a double floating point
e966383b 1800 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1801 of the character read if not a number. It skips all blanks
1802 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1803
1804#include <ctype.h>
1805@end group
1806
1807@group
13863333
AD
1808int
1809yylex (void)
bfa74976
RS
1810@{
1811 int c;
1812
72d2299c 1813 /* Skip white space. */
13863333 1814 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1815 continue;
bfa74976
RS
1816@end group
1817@group
72d2299c 1818 /* Process numbers. */
13863333 1819 if (c == '.' || isdigit (c))
bfa74976
RS
1820 @{
1821 ungetc (c, stdin);
1822 scanf ("%lf", &yylval);
1823 return NUM;
1824 @}
1825@end group
1826@group
72d2299c 1827 /* Return end-of-input. */
13863333 1828 if (c == EOF)
bfa74976 1829 return 0;
72d2299c 1830 /* Return a single char. */
13863333 1831 return c;
bfa74976
RS
1832@}
1833@end group
1834@end example
1835
342b8b6e 1836@node Rpcalc Main
bfa74976
RS
1837@subsection The Controlling Function
1838@cindex controlling function
1839@cindex main function in simple example
1840
1841In keeping with the spirit of this example, the controlling function is
1842kept to the bare minimum. The only requirement is that it call
1843@code{yyparse} to start the process of parsing.
1844
24ec0837 1845@comment file: rpcalc.y
bfa74976
RS
1846@example
1847@group
13863333
AD
1848int
1849main (void)
bfa74976 1850@{
13863333 1851 return yyparse ();
bfa74976
RS
1852@}
1853@end group
1854@end example
1855
342b8b6e 1856@node Rpcalc Error
bfa74976
RS
1857@subsection The Error Reporting Routine
1858@cindex error reporting routine
1859
1860When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1861function @code{yyerror} to print an error message (usually but not
6e649e65 1862always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1863@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1864here is the definition we will use:
bfa74976 1865
24ec0837 1866@comment file: rpcalc.y
bfa74976
RS
1867@example
1868@group
1869#include <stdio.h>
aaaa2aae 1870@end group
bfa74976 1871
aaaa2aae 1872@group
38a92d50 1873/* Called by yyparse on error. */
13863333 1874void
38a92d50 1875yyerror (char const *s)
bfa74976 1876@{
4e03e201 1877 fprintf (stderr, "%s\n", s);
bfa74976
RS
1878@}
1879@end group
1880@end example
1881
1882After @code{yyerror} returns, the Bison parser may recover from the error
1883and continue parsing if the grammar contains a suitable error rule
1884(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1885have not written any error rules in this example, so any invalid input will
1886cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1887real calculator, but it is adequate for the first example.
bfa74976 1888
f5f419de 1889@node Rpcalc Generate
bfa74976
RS
1890@subsection Running Bison to Make the Parser
1891@cindex running Bison (introduction)
1892
ceed8467
AD
1893Before running Bison to produce a parser, we need to decide how to
1894arrange all the source code in one or more source files. For such a
ff7571c0
JD
1895simple example, the easiest thing is to put everything in one file,
1896the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1897@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1898(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1899
1900For a large project, you would probably have several source files, and use
1901@code{make} to arrange to recompile them.
1902
ff7571c0
JD
1903With all the source in the grammar file, you use the following command
1904to convert it into a parser implementation file:
bfa74976
RS
1905
1906@example
fa4d969f 1907bison @var{file}.y
bfa74976
RS
1908@end example
1909
1910@noindent
ff7571c0
JD
1911In this example, the grammar file is called @file{rpcalc.y} (for
1912``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1913implementation file named @file{@var{file}.tab.c}, removing the
1914@samp{.y} from the grammar file name. The parser implementation file
1915contains the source code for @code{yyparse}. The additional functions
1916in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1917copied verbatim to the parser implementation file.
bfa74976 1918
342b8b6e 1919@node Rpcalc Compile
ff7571c0 1920@subsection Compiling the Parser Implementation File
bfa74976
RS
1921@cindex compiling the parser
1922
ff7571c0 1923Here is how to compile and run the parser implementation file:
bfa74976
RS
1924
1925@example
1926@group
1927# @r{List files in current directory.}
9edcd895 1928$ @kbd{ls}
bfa74976
RS
1929rpcalc.tab.c rpcalc.y
1930@end group
1931
1932@group
1933# @r{Compile the Bison parser.}
1934# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1935$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1936@end group
1937
1938@group
1939# @r{List files again.}
9edcd895 1940$ @kbd{ls}
bfa74976
RS
1941rpcalc rpcalc.tab.c rpcalc.y
1942@end group
1943@end example
1944
1945The file @file{rpcalc} now contains the executable code. Here is an
1946example session using @code{rpcalc}.
1947
1948@example
9edcd895
AD
1949$ @kbd{rpcalc}
1950@kbd{4 9 +}
24ec0837 1951@result{} 13
9edcd895 1952@kbd{3 7 + 3 4 5 *+-}
24ec0837 1953@result{} -13
9edcd895 1954@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1955@result{} 13
9edcd895 1956@kbd{5 6 / 4 n +}
24ec0837 1957@result{} -3.166666667
9edcd895 1958@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1959@result{} 81
9edcd895
AD
1960@kbd{^D} @r{End-of-file indicator}
1961$
bfa74976
RS
1962@end example
1963
342b8b6e 1964@node Infix Calc
bfa74976
RS
1965@section Infix Notation Calculator: @code{calc}
1966@cindex infix notation calculator
1967@cindex @code{calc}
1968@cindex calculator, infix notation
1969
1970We now modify rpcalc to handle infix operators instead of postfix. Infix
1971notation involves the concept of operator precedence and the need for
1972parentheses nested to arbitrary depth. Here is the Bison code for
1973@file{calc.y}, an infix desk-top calculator.
1974
1975@example
38a92d50 1976/* Infix notation calculator. */
bfa74976 1977
aaaa2aae 1978@group
bfa74976 1979%@{
38a92d50
PE
1980 #define YYSTYPE double
1981 #include <math.h>
1982 #include <stdio.h>
1983 int yylex (void);
1984 void yyerror (char const *);
bfa74976 1985%@}
aaaa2aae 1986@end group
bfa74976 1987
aaaa2aae 1988@group
38a92d50 1989/* Bison declarations. */
bfa74976
RS
1990%token NUM
1991%left '-' '+'
1992%left '*' '/'
d78f0ac9
AD
1993%precedence NEG /* negation--unary minus */
1994%right '^' /* exponentiation */
aaaa2aae 1995@end group
bfa74976 1996
38a92d50 1997%% /* The grammar follows. */
aaaa2aae 1998@group
5e9b6624
AD
1999input:
2000 /* empty */
2001| input line
bfa74976 2002;
aaaa2aae 2003@end group
bfa74976 2004
aaaa2aae 2005@group
5e9b6624
AD
2006line:
2007 '\n'
2008| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2009;
aaaa2aae 2010@end group
bfa74976 2011
aaaa2aae 2012@group
5e9b6624
AD
2013exp:
2014 NUM @{ $$ = $1; @}
2015| exp '+' exp @{ $$ = $1 + $3; @}
2016| exp '-' exp @{ $$ = $1 - $3; @}
2017| exp '*' exp @{ $$ = $1 * $3; @}
2018| exp '/' exp @{ $$ = $1 / $3; @}
2019| '-' exp %prec NEG @{ $$ = -$2; @}
2020| exp '^' exp @{ $$ = pow ($1, $3); @}
2021| '(' exp ')' @{ $$ = $2; @}
bfa74976 2022;
aaaa2aae 2023@end group
bfa74976
RS
2024%%
2025@end example
2026
2027@noindent
ceed8467
AD
2028The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2029same as before.
bfa74976
RS
2030
2031There are two important new features shown in this code.
2032
2033In the second section (Bison declarations), @code{%left} declares token
2034types and says they are left-associative operators. The declarations
2035@code{%left} and @code{%right} (right associativity) take the place of
2036@code{%token} which is used to declare a token type name without
d78f0ac9 2037associativity/precedence. (These tokens are single-character literals, which
bfa74976 2038ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2039the associativity/precedence.)
bfa74976
RS
2040
2041Operator precedence is determined by the line ordering of the
2042declarations; the higher the line number of the declaration (lower on
2043the page or screen), the higher the precedence. Hence, exponentiation
2044has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2045by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2046only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2047Precedence}.
bfa74976 2048
704a47c4
AD
2049The other important new feature is the @code{%prec} in the grammar
2050section for the unary minus operator. The @code{%prec} simply instructs
2051Bison that the rule @samp{| '-' exp} has the same precedence as
2052@code{NEG}---in this case the next-to-highest. @xref{Contextual
2053Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2054
2055Here is a sample run of @file{calc.y}:
2056
2057@need 500
2058@example
9edcd895
AD
2059$ @kbd{calc}
2060@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20616.880952381
9edcd895 2062@kbd{-56 + 2}
bfa74976 2063-54
9edcd895 2064@kbd{3 ^ 2}
bfa74976
RS
20659
2066@end example
2067
342b8b6e 2068@node Simple Error Recovery
bfa74976
RS
2069@section Simple Error Recovery
2070@cindex error recovery, simple
2071
2072Up to this point, this manual has not addressed the issue of @dfn{error
2073recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2074error. All we have handled is error reporting with @code{yyerror}.
2075Recall that by default @code{yyparse} returns after calling
2076@code{yyerror}. This means that an erroneous input line causes the
2077calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2078
2079The Bison language itself includes the reserved word @code{error}, which
2080may be included in the grammar rules. In the example below it has
2081been added to one of the alternatives for @code{line}:
2082
2083@example
2084@group
5e9b6624
AD
2085line:
2086 '\n'
2087| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2088| error '\n' @{ yyerrok; @}
bfa74976
RS
2089;
2090@end group
2091@end example
2092
ceed8467 2093This addition to the grammar allows for simple error recovery in the
6e649e65 2094event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2095read, the error will be recognized by the third rule for @code{line},
2096and parsing will continue. (The @code{yyerror} function is still called
2097upon to print its message as well.) The action executes the statement
2098@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2099that error recovery is complete (@pxref{Error Recovery}). Note the
2100difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2101misprint.
bfa74976
RS
2102
2103This form of error recovery deals with syntax errors. There are other
2104kinds of errors; for example, division by zero, which raises an exception
2105signal that is normally fatal. A real calculator program must handle this
2106signal and use @code{longjmp} to return to @code{main} and resume parsing
2107input lines; it would also have to discard the rest of the current line of
2108input. We won't discuss this issue further because it is not specific to
2109Bison programs.
2110
342b8b6e
AD
2111@node Location Tracking Calc
2112@section Location Tracking Calculator: @code{ltcalc}
2113@cindex location tracking calculator
2114@cindex @code{ltcalc}
2115@cindex calculator, location tracking
2116
9edcd895
AD
2117This example extends the infix notation calculator with location
2118tracking. This feature will be used to improve the error messages. For
2119the sake of clarity, this example is a simple integer calculator, since
2120most of the work needed to use locations will be done in the lexical
72d2299c 2121analyzer.
342b8b6e
AD
2122
2123@menu
f5f419de
DJ
2124* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2125* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2126* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2127@end menu
2128
f5f419de 2129@node Ltcalc Declarations
342b8b6e
AD
2130@subsection Declarations for @code{ltcalc}
2131
9edcd895
AD
2132The C and Bison declarations for the location tracking calculator are
2133the same as the declarations for the infix notation calculator.
342b8b6e
AD
2134
2135@example
2136/* Location tracking calculator. */
2137
2138%@{
38a92d50
PE
2139 #define YYSTYPE int
2140 #include <math.h>
2141 int yylex (void);
2142 void yyerror (char const *);
342b8b6e
AD
2143%@}
2144
2145/* Bison declarations. */
2146%token NUM
2147
2148%left '-' '+'
2149%left '*' '/'
d78f0ac9 2150%precedence NEG
342b8b6e
AD
2151%right '^'
2152
38a92d50 2153%% /* The grammar follows. */
342b8b6e
AD
2154@end example
2155
9edcd895
AD
2156@noindent
2157Note there are no declarations specific to locations. Defining a data
2158type for storing locations is not needed: we will use the type provided
2159by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2160four member structure with the following integer fields:
2161@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2162@code{last_column}. By conventions, and in accordance with the GNU
2163Coding Standards and common practice, the line and column count both
2164start at 1.
342b8b6e
AD
2165
2166@node Ltcalc Rules
2167@subsection Grammar Rules for @code{ltcalc}
2168
9edcd895
AD
2169Whether handling locations or not has no effect on the syntax of your
2170language. Therefore, grammar rules for this example will be very close
2171to those of the previous example: we will only modify them to benefit
2172from the new information.
342b8b6e 2173
9edcd895
AD
2174Here, we will use locations to report divisions by zero, and locate the
2175wrong expressions or subexpressions.
342b8b6e
AD
2176
2177@example
2178@group
5e9b6624
AD
2179input:
2180 /* empty */
2181| input line
342b8b6e
AD
2182;
2183@end group
2184
2185@group
5e9b6624
AD
2186line:
2187 '\n'
2188| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2189;
2190@end group
2191
2192@group
5e9b6624
AD
2193exp:
2194 NUM @{ $$ = $1; @}
2195| exp '+' exp @{ $$ = $1 + $3; @}
2196| exp '-' exp @{ $$ = $1 - $3; @}
2197| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2198@end group
342b8b6e 2199@group
5e9b6624
AD
2200| exp '/' exp
2201 @{
2202 if ($3)
2203 $$ = $1 / $3;
2204 else
2205 @{
2206 $$ = 1;
2207 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2208 @@3.first_line, @@3.first_column,
2209 @@3.last_line, @@3.last_column);
2210 @}
2211 @}
342b8b6e
AD
2212@end group
2213@group
5e9b6624
AD
2214| '-' exp %prec NEG @{ $$ = -$2; @}
2215| exp '^' exp @{ $$ = pow ($1, $3); @}
2216| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2217@end group
2218@end example
2219
2220This code shows how to reach locations inside of semantic actions, by
2221using the pseudo-variables @code{@@@var{n}} for rule components, and the
2222pseudo-variable @code{@@$} for groupings.
2223
9edcd895
AD
2224We don't need to assign a value to @code{@@$}: the output parser does it
2225automatically. By default, before executing the C code of each action,
2226@code{@@$} is set to range from the beginning of @code{@@1} to the end
2227of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2228can be redefined (@pxref{Location Default Action, , Default Action for
2229Locations}), and for very specific rules, @code{@@$} can be computed by
2230hand.
342b8b6e
AD
2231
2232@node Ltcalc Lexer
2233@subsection The @code{ltcalc} Lexical Analyzer.
2234
9edcd895 2235Until now, we relied on Bison's defaults to enable location
72d2299c 2236tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2237able to feed the parser with the token locations, as it already does for
2238semantic values.
342b8b6e 2239
9edcd895
AD
2240To this end, we must take into account every single character of the
2241input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2242
2243@example
2244@group
2245int
2246yylex (void)
2247@{
2248 int c;
18b519c0 2249@end group
342b8b6e 2250
18b519c0 2251@group
72d2299c 2252 /* Skip white space. */
342b8b6e
AD
2253 while ((c = getchar ()) == ' ' || c == '\t')
2254 ++yylloc.last_column;
18b519c0 2255@end group
342b8b6e 2256
18b519c0 2257@group
72d2299c 2258 /* Step. */
342b8b6e
AD
2259 yylloc.first_line = yylloc.last_line;
2260 yylloc.first_column = yylloc.last_column;
2261@end group
2262
2263@group
72d2299c 2264 /* Process numbers. */
342b8b6e
AD
2265 if (isdigit (c))
2266 @{
2267 yylval = c - '0';
2268 ++yylloc.last_column;
2269 while (isdigit (c = getchar ()))
2270 @{
2271 ++yylloc.last_column;
2272 yylval = yylval * 10 + c - '0';
2273 @}
2274 ungetc (c, stdin);
2275 return NUM;
2276 @}
2277@end group
2278
72d2299c 2279 /* Return end-of-input. */
342b8b6e
AD
2280 if (c == EOF)
2281 return 0;
2282
d4fca427 2283@group
72d2299c 2284 /* Return a single char, and update location. */
342b8b6e
AD
2285 if (c == '\n')
2286 @{
2287 ++yylloc.last_line;
2288 yylloc.last_column = 0;
2289 @}
2290 else
2291 ++yylloc.last_column;
2292 return c;
2293@}
d4fca427 2294@end group
342b8b6e
AD
2295@end example
2296
9edcd895
AD
2297Basically, the lexical analyzer performs the same processing as before:
2298it skips blanks and tabs, and reads numbers or single-character tokens.
2299In addition, it updates @code{yylloc}, the global variable (of type
2300@code{YYLTYPE}) containing the token's location.
342b8b6e 2301
9edcd895 2302Now, each time this function returns a token, the parser has its number
72d2299c 2303as well as its semantic value, and its location in the text. The last
9edcd895
AD
2304needed change is to initialize @code{yylloc}, for example in the
2305controlling function:
342b8b6e
AD
2306
2307@example
9edcd895 2308@group
342b8b6e
AD
2309int
2310main (void)
2311@{
2312 yylloc.first_line = yylloc.last_line = 1;
2313 yylloc.first_column = yylloc.last_column = 0;
2314 return yyparse ();
2315@}
9edcd895 2316@end group
342b8b6e
AD
2317@end example
2318
9edcd895
AD
2319Remember that computing locations is not a matter of syntax. Every
2320character must be associated to a location update, whether it is in
2321valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2322
2323@node Multi-function Calc
bfa74976
RS
2324@section Multi-Function Calculator: @code{mfcalc}
2325@cindex multi-function calculator
2326@cindex @code{mfcalc}
2327@cindex calculator, multi-function
2328
2329Now that the basics of Bison have been discussed, it is time to move on to
2330a more advanced problem. The above calculators provided only five
2331functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2332be nice to have a calculator that provides other mathematical functions such
2333as @code{sin}, @code{cos}, etc.
2334
2335It is easy to add new operators to the infix calculator as long as they are
2336only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2337back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2338adding a new operator. But we want something more flexible: built-in
2339functions whose syntax has this form:
2340
2341@example
2342@var{function_name} (@var{argument})
2343@end example
2344
2345@noindent
2346At the same time, we will add memory to the calculator, by allowing you
2347to create named variables, store values in them, and use them later.
2348Here is a sample session with the multi-function calculator:
2349
2350@example
d4fca427 2351@group
9edcd895
AD
2352$ @kbd{mfcalc}
2353@kbd{pi = 3.141592653589}
f9c75dd0 2354@result{} 3.1415926536
d4fca427
AD
2355@end group
2356@group
9edcd895 2357@kbd{sin(pi)}
f9c75dd0 2358@result{} 0.0000000000
d4fca427 2359@end group
9edcd895 2360@kbd{alpha = beta1 = 2.3}
f9c75dd0 2361@result{} 2.3000000000
9edcd895 2362@kbd{alpha}
f9c75dd0 2363@result{} 2.3000000000
9edcd895 2364@kbd{ln(alpha)}
f9c75dd0 2365@result{} 0.8329091229
9edcd895 2366@kbd{exp(ln(beta1))}
f9c75dd0 2367@result{} 2.3000000000
9edcd895 2368$
bfa74976
RS
2369@end example
2370
2371Note that multiple assignment and nested function calls are permitted.
2372
2373@menu
f5f419de
DJ
2374* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2375* Mfcalc Rules:: Grammar rules for the calculator.
2376* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2377* Mfcalc Lexer:: The lexical analyzer.
2378* Mfcalc Main:: The controlling function.
bfa74976
RS
2379@end menu
2380
f5f419de 2381@node Mfcalc Declarations
bfa74976
RS
2382@subsection Declarations for @code{mfcalc}
2383
2384Here are the C and Bison declarations for the multi-function calculator.
2385
93c150b6 2386@comment file: mfcalc.y: 1
c93f22fc 2387@example
18b519c0 2388@group
bfa74976 2389%@{
f9c75dd0 2390 #include <stdio.h> /* For printf, etc. */
578e3413 2391 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2392 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2393 int yylex (void);
2394 void yyerror (char const *);
bfa74976 2395%@}
18b519c0 2396@end group
93c150b6 2397
18b519c0 2398@group
bfa74976 2399%union @{
38a92d50
PE
2400 double val; /* For returning numbers. */
2401 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2402@}
18b519c0 2403@end group
38a92d50 2404%token <val> NUM /* Simple double precision number. */
93c150b6 2405%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2406%type <val> exp
2407
18b519c0 2408@group
bfa74976
RS
2409%right '='
2410%left '-' '+'
2411%left '*' '/'
d78f0ac9
AD
2412%precedence NEG /* negation--unary minus */
2413%right '^' /* exponentiation */
18b519c0 2414@end group
c93f22fc 2415@end example
bfa74976
RS
2416
2417The above grammar introduces only two new features of the Bison language.
2418These features allow semantic values to have various data types
2419(@pxref{Multiple Types, ,More Than One Value Type}).
2420
2421The @code{%union} declaration specifies the entire list of possible types;
2422this is instead of defining @code{YYSTYPE}. The allowable types are now
2423double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2424the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2425
2426Since values can now have various types, it is necessary to associate a
2427type with each grammar symbol whose semantic value is used. These symbols
2428are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2429declarations are augmented with information about their data type (placed
2430between angle brackets).
2431
704a47c4
AD
2432The Bison construct @code{%type} is used for declaring nonterminal
2433symbols, just as @code{%token} is used for declaring token types. We
2434have not used @code{%type} before because nonterminal symbols are
2435normally declared implicitly by the rules that define them. But
2436@code{exp} must be declared explicitly so we can specify its value type.
2437@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2438
342b8b6e 2439@node Mfcalc Rules
bfa74976
RS
2440@subsection Grammar Rules for @code{mfcalc}
2441
2442Here are the grammar rules for the multi-function calculator.
2443Most of them are copied directly from @code{calc}; three rules,
2444those which mention @code{VAR} or @code{FNCT}, are new.
2445
93c150b6 2446@comment file: mfcalc.y: 3
c93f22fc 2447@example
93c150b6 2448%% /* The grammar follows. */
18b519c0 2449@group
5e9b6624
AD
2450input:
2451 /* empty */
2452| input line
bfa74976 2453;
18b519c0 2454@end group
bfa74976 2455
18b519c0 2456@group
bfa74976 2457line:
5e9b6624
AD
2458 '\n'
2459| exp '\n' @{ printf ("%.10g\n", $1); @}
2460| error '\n' @{ yyerrok; @}
bfa74976 2461;
18b519c0 2462@end group
bfa74976 2463
18b519c0 2464@group
5e9b6624
AD
2465exp:
2466 NUM @{ $$ = $1; @}
2467| VAR @{ $$ = $1->value.var; @}
2468| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2469| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2470| exp '+' exp @{ $$ = $1 + $3; @}
2471| exp '-' exp @{ $$ = $1 - $3; @}
2472| exp '*' exp @{ $$ = $1 * $3; @}
2473| exp '/' exp @{ $$ = $1 / $3; @}
2474| '-' exp %prec NEG @{ $$ = -$2; @}
2475| exp '^' exp @{ $$ = pow ($1, $3); @}
2476| '(' exp ')' @{ $$ = $2; @}
bfa74976 2477;
18b519c0 2478@end group
38a92d50 2479/* End of grammar. */
bfa74976 2480%%
c93f22fc 2481@end example
bfa74976 2482
f5f419de 2483@node Mfcalc Symbol Table
bfa74976
RS
2484@subsection The @code{mfcalc} Symbol Table
2485@cindex symbol table example
2486
2487The multi-function calculator requires a symbol table to keep track of the
2488names and meanings of variables and functions. This doesn't affect the
2489grammar rules (except for the actions) or the Bison declarations, but it
2490requires some additional C functions for support.
2491
2492The symbol table itself consists of a linked list of records. Its
2493definition, which is kept in the header @file{calc.h}, is as follows. It
2494provides for either functions or variables to be placed in the table.
2495
f9c75dd0 2496@comment file: calc.h
c93f22fc 2497@example
bfa74976 2498@group
38a92d50 2499/* Function type. */
32dfccf8 2500typedef double (*func_t) (double);
72f889cc 2501@end group
32dfccf8 2502
72f889cc 2503@group
38a92d50 2504/* Data type for links in the chain of symbols. */
bfa74976
RS
2505struct symrec
2506@{
38a92d50 2507 char *name; /* name of symbol */
bfa74976 2508 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2509 union
2510 @{
38a92d50
PE
2511 double var; /* value of a VAR */
2512 func_t fnctptr; /* value of a FNCT */
bfa74976 2513 @} value;
38a92d50 2514 struct symrec *next; /* link field */
bfa74976
RS
2515@};
2516@end group
2517
2518@group
2519typedef struct symrec symrec;
2520
38a92d50 2521/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2522extern symrec *sym_table;
2523
a730d142 2524symrec *putsym (char const *, int);
38a92d50 2525symrec *getsym (char const *);
bfa74976 2526@end group
c93f22fc 2527@end example
bfa74976 2528
aeb57fb6
AD
2529The new version of @code{main} will call @code{init_table} to initialize
2530the symbol table:
bfa74976 2531
93c150b6 2532@comment file: mfcalc.y: 3
c93f22fc 2533@example
18b519c0 2534@group
bfa74976
RS
2535struct init
2536@{
38a92d50
PE
2537 char const *fname;
2538 double (*fnct) (double);
bfa74976
RS
2539@};
2540@end group
2541
2542@group
38a92d50 2543struct init const arith_fncts[] =
13863333 2544@{
f9c75dd0
AD
2545 @{ "atan", atan @},
2546 @{ "cos", cos @},
2547 @{ "exp", exp @},
2548 @{ "ln", log @},
2549 @{ "sin", sin @},
2550 @{ "sqrt", sqrt @},
2551 @{ 0, 0 @},
13863333 2552@};
18b519c0 2553@end group
bfa74976 2554
18b519c0 2555@group
bfa74976 2556/* The symbol table: a chain of `struct symrec'. */
38a92d50 2557symrec *sym_table;
bfa74976
RS
2558@end group
2559
2560@group
72d2299c 2561/* Put arithmetic functions in table. */
f9c75dd0 2562static
13863333
AD
2563void
2564init_table (void)
bfa74976
RS
2565@{
2566 int i;
bfa74976
RS
2567 for (i = 0; arith_fncts[i].fname != 0; i++)
2568 @{
aaaa2aae 2569 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2570 ptr->value.fnctptr = arith_fncts[i].fnct;
2571 @}
2572@}
2573@end group
c93f22fc 2574@end example
bfa74976
RS
2575
2576By simply editing the initialization list and adding the necessary include
2577files, you can add additional functions to the calculator.
2578
2579Two important functions allow look-up and installation of symbols in the
2580symbol table. The function @code{putsym} is passed a name and the type
2581(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2582linked to the front of the list, and a pointer to the object is returned.
2583The function @code{getsym} is passed the name of the symbol to look up. If
2584found, a pointer to that symbol is returned; otherwise zero is returned.
2585
93c150b6 2586@comment file: mfcalc.y: 3
c93f22fc 2587@example
f9c75dd0
AD
2588#include <stdlib.h> /* malloc. */
2589#include <string.h> /* strlen. */
2590
d4fca427 2591@group
bfa74976 2592symrec *
38a92d50 2593putsym (char const *sym_name, int sym_type)
bfa74976 2594@{
aaaa2aae 2595 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2596 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2597 strcpy (ptr->name,sym_name);
2598 ptr->type = sym_type;
72d2299c 2599 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2600 ptr->next = (struct symrec *)sym_table;
2601 sym_table = ptr;
2602 return ptr;
2603@}
d4fca427 2604@end group
bfa74976 2605
d4fca427 2606@group
bfa74976 2607symrec *
38a92d50 2608getsym (char const *sym_name)
bfa74976
RS
2609@{
2610 symrec *ptr;
2611 for (ptr = sym_table; ptr != (symrec *) 0;
2612 ptr = (symrec *)ptr->next)
f518dbaf 2613 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2614 return ptr;
2615 return 0;
2616@}
d4fca427 2617@end group
c93f22fc 2618@end example
bfa74976 2619
aeb57fb6
AD
2620@node Mfcalc Lexer
2621@subsection The @code{mfcalc} Lexer
2622
bfa74976
RS
2623The function @code{yylex} must now recognize variables, numeric values, and
2624the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2625characters with a leading letter are recognized as either variables or
bfa74976
RS
2626functions depending on what the symbol table says about them.
2627
2628The string is passed to @code{getsym} for look up in the symbol table. If
2629the name appears in the table, a pointer to its location and its type
2630(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2631already in the table, then it is installed as a @code{VAR} using
2632@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2633returned to @code{yyparse}.
bfa74976
RS
2634
2635No change is needed in the handling of numeric values and arithmetic
2636operators in @code{yylex}.
2637
93c150b6 2638@comment file: mfcalc.y: 3
c93f22fc 2639@example
bfa74976
RS
2640@group
2641#include <ctype.h>
18b519c0 2642@end group
13863333 2643
18b519c0 2644@group
13863333
AD
2645int
2646yylex (void)
bfa74976
RS
2647@{
2648 int c;
2649
72d2299c 2650 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2651 while ((c = getchar ()) == ' ' || c == '\t')
2652 continue;
bfa74976
RS
2653
2654 if (c == EOF)
2655 return 0;
2656@end group
2657
2658@group
2659 /* Char starts a number => parse the number. */
2660 if (c == '.' || isdigit (c))
2661 @{
2662 ungetc (c, stdin);
2663 scanf ("%lf", &yylval.val);
2664 return NUM;
2665 @}
2666@end group
2667
2668@group
2669 /* Char starts an identifier => read the name. */
2670 if (isalpha (c))
2671 @{
aaaa2aae
AD
2672 /* Initially make the buffer long enough
2673 for a 40-character symbol name. */
2674 static size_t length = 40;
bfa74976 2675 static char *symbuf = 0;
aaaa2aae 2676 symrec *s;
bfa74976
RS
2677 int i;
2678@end group
aaaa2aae
AD
2679 if (!symbuf)
2680 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2681
2682 i = 0;
2683 do
bfa74976
RS
2684@group
2685 @{
2686 /* If buffer is full, make it bigger. */
2687 if (i == length)
2688 @{
2689 length *= 2;
18b519c0 2690 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2691 @}
2692 /* Add this character to the buffer. */
2693 symbuf[i++] = c;
2694 /* Get another character. */
2695 c = getchar ();
2696 @}
2697@end group
2698@group
72d2299c 2699 while (isalnum (c));
bfa74976
RS
2700
2701 ungetc (c, stdin);
2702 symbuf[i] = '\0';
2703@end group
2704
2705@group
2706 s = getsym (symbuf);
2707 if (s == 0)
2708 s = putsym (symbuf, VAR);
2709 yylval.tptr = s;
2710 return s->type;
2711 @}
2712
2713 /* Any other character is a token by itself. */
2714 return c;
2715@}
2716@end group
c93f22fc 2717@end example
bfa74976 2718
aeb57fb6
AD
2719@node Mfcalc Main
2720@subsection The @code{mfcalc} Main
2721
2722The error reporting function is unchanged, and the new version of
93c150b6
AD
2723@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2724on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2725
93c150b6 2726@comment file: mfcalc.y: 3
c93f22fc 2727@example
aeb57fb6
AD
2728@group
2729/* Called by yyparse on error. */
2730void
2731yyerror (char const *s)
2732@{
2733 fprintf (stderr, "%s\n", s);
2734@}
2735@end group
2736
aaaa2aae 2737@group
aeb57fb6
AD
2738int
2739main (int argc, char const* argv[])
2740@{
93c150b6
AD
2741 int i;
2742 /* Enable parse traces on option -p. */
2743 for (i = 1; i < argc; ++i)
2744 if (!strcmp(argv[i], "-p"))
2745 yydebug = 1;
aeb57fb6
AD
2746 init_table ();
2747 return yyparse ();
2748@}
2749@end group
c93f22fc 2750@end example
aeb57fb6 2751
72d2299c 2752This program is both powerful and flexible. You may easily add new
704a47c4
AD
2753functions, and it is a simple job to modify this code to install
2754predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2755
342b8b6e 2756@node Exercises
bfa74976
RS
2757@section Exercises
2758@cindex exercises
2759
2760@enumerate
2761@item
2762Add some new functions from @file{math.h} to the initialization list.
2763
2764@item
2765Add another array that contains constants and their values. Then
2766modify @code{init_table} to add these constants to the symbol table.
2767It will be easiest to give the constants type @code{VAR}.
2768
2769@item
2770Make the program report an error if the user refers to an
2771uninitialized variable in any way except to store a value in it.
2772@end enumerate
2773
342b8b6e 2774@node Grammar File
bfa74976
RS
2775@chapter Bison Grammar Files
2776
2777Bison takes as input a context-free grammar specification and produces a
2778C-language function that recognizes correct instances of the grammar.
2779
ff7571c0 2780The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2781@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2782
2783@menu
303834cc
JD
2784* Grammar Outline:: Overall layout of the grammar file.
2785* Symbols:: Terminal and nonterminal symbols.
2786* Rules:: How to write grammar rules.
2787* Recursion:: Writing recursive rules.
2788* Semantics:: Semantic values and actions.
2789* Tracking Locations:: Locations and actions.
2790* Named References:: Using named references in actions.
2791* Declarations:: All kinds of Bison declarations are described here.
2792* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2793@end menu
2794
342b8b6e 2795@node Grammar Outline
bfa74976
RS
2796@section Outline of a Bison Grammar
2797
2798A Bison grammar file has four main sections, shown here with the
2799appropriate delimiters:
2800
2801@example
2802%@{
38a92d50 2803 @var{Prologue}
bfa74976
RS
2804%@}
2805
2806@var{Bison declarations}
2807
2808%%
2809@var{Grammar rules}
2810%%
2811
75f5aaea 2812@var{Epilogue}
bfa74976
RS
2813@end example
2814
2815Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2816As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2817continues until end of line.
bfa74976
RS
2818
2819@menu
f5f419de 2820* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2821* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2822* Bison Declarations:: Syntax and usage of the Bison declarations section.
2823* Grammar Rules:: Syntax and usage of the grammar rules section.
2824* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2825@end menu
2826
38a92d50 2827@node Prologue
75f5aaea
MA
2828@subsection The prologue
2829@cindex declarations section
2830@cindex Prologue
2831@cindex declarations
bfa74976 2832
f8e1c9e5
AD
2833The @var{Prologue} section contains macro definitions and declarations
2834of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2835rules. These are copied to the beginning of the parser implementation
2836file so that they precede the definition of @code{yyparse}. You can
2837use @samp{#include} to get the declarations from a header file. If
2838you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2839@samp{%@}} delimiters that bracket this section.
bfa74976 2840
9c437126 2841The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2842of @samp{%@}} that is outside a comment, a string literal, or a
2843character constant.
2844
c732d2c6
AD
2845You may have more than one @var{Prologue} section, intermixed with the
2846@var{Bison declarations}. This allows you to have C and Bison
2847declarations that refer to each other. For example, the @code{%union}
2848declaration may use types defined in a header file, and you may wish to
2849prototype functions that take arguments of type @code{YYSTYPE}. This
2850can be done with two @var{Prologue} blocks, one before and one after the
2851@code{%union} declaration.
2852
c93f22fc 2853@example
c732d2c6 2854%@{
aef3da86 2855 #define _GNU_SOURCE
38a92d50
PE
2856 #include <stdio.h>
2857 #include "ptypes.h"
c732d2c6
AD
2858%@}
2859
2860%union @{
779e7ceb 2861 long int n;
c732d2c6
AD
2862 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2863@}
2864
2865%@{
38a92d50
PE
2866 static void print_token_value (FILE *, int, YYSTYPE);
2867 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2868%@}
2869
2870@dots{}
c93f22fc 2871@end example
c732d2c6 2872
aef3da86
PE
2873When in doubt, it is usually safer to put prologue code before all
2874Bison declarations, rather than after. For example, any definitions
2875of feature test macros like @code{_GNU_SOURCE} or
2876@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2877feature test macros can affect the behavior of Bison-generated
2878@code{#include} directives.
2879
2cbe6b7f
JD
2880@node Prologue Alternatives
2881@subsection Prologue Alternatives
2882@cindex Prologue Alternatives
2883
136a0f76 2884@findex %code
16dc6a9e
JD
2885@findex %code requires
2886@findex %code provides
2887@findex %code top
85894313 2888
2cbe6b7f 2889The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2890inflexible. As an alternative, Bison provides a @code{%code}
2891directive with an explicit qualifier field, which identifies the
2892purpose of the code and thus the location(s) where Bison should
2893generate it. For C/C++, the qualifier can be omitted for the default
2894location, or it can be one of @code{requires}, @code{provides},
e0c07222 2895@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2896
2897Look again at the example of the previous section:
2898
c93f22fc 2899@example
2cbe6b7f
JD
2900%@{
2901 #define _GNU_SOURCE
2902 #include <stdio.h>
2903 #include "ptypes.h"
2904%@}
2905
2906%union @{
2907 long int n;
2908 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2909@}
2910
2911%@{
2912 static void print_token_value (FILE *, int, YYSTYPE);
2913 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2914%@}
2915
2916@dots{}
c93f22fc 2917@end example
2cbe6b7f
JD
2918
2919@noindent
ff7571c0
JD
2920Notice that there are two @var{Prologue} sections here, but there's a
2921subtle distinction between their functionality. For example, if you
2922decide to override Bison's default definition for @code{YYLTYPE}, in
2923which @var{Prologue} section should you write your new definition?
2924You should write it in the first since Bison will insert that code
2925into the parser implementation file @emph{before} the default
2926@code{YYLTYPE} definition. In which @var{Prologue} section should you
2927prototype an internal function, @code{trace_token}, that accepts
2928@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2929prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2930@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2931
2932This distinction in functionality between the two @var{Prologue} sections is
2933established by the appearance of the @code{%union} between them.
a501eca9 2934This behavior raises a few questions.
2cbe6b7f
JD
2935First, why should the position of a @code{%union} affect definitions related to
2936@code{YYLTYPE} and @code{yytokentype}?
2937Second, what if there is no @code{%union}?
2938In that case, the second kind of @var{Prologue} section is not available.
2939This behavior is not intuitive.
2940
8e0a5e9e 2941To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2942@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2943Let's go ahead and add the new @code{YYLTYPE} definition and the
2944@code{trace_token} prototype at the same time:
2945
c93f22fc 2946@example
16dc6a9e 2947%code top @{
2cbe6b7f
JD
2948 #define _GNU_SOURCE
2949 #include <stdio.h>
8e0a5e9e
JD
2950
2951 /* WARNING: The following code really belongs
16dc6a9e 2952 * in a `%code requires'; see below. */
8e0a5e9e 2953
2cbe6b7f
JD
2954 #include "ptypes.h"
2955 #define YYLTYPE YYLTYPE
2956 typedef struct YYLTYPE
2957 @{
2958 int first_line;
2959 int first_column;
2960 int last_line;
2961 int last_column;
2962 char *filename;
2963 @} YYLTYPE;
2964@}
2965
2966%union @{
2967 long int n;
2968 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2969@}
2970
2971%code @{
2972 static void print_token_value (FILE *, int, YYSTYPE);
2973 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2974 static void trace_token (enum yytokentype token, YYLTYPE loc);
2975@}
2976
2977@dots{}
c93f22fc 2978@end example
2cbe6b7f
JD
2979
2980@noindent
16dc6a9e
JD
2981In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2982functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2983explicit which kind you intend.
2cbe6b7f
JD
2984Moreover, both kinds are always available even in the absence of @code{%union}.
2985
ff7571c0
JD
2986The @code{%code top} block above logically contains two parts. The
2987first two lines before the warning need to appear near the top of the
2988parser implementation file. The first line after the warning is
2989required by @code{YYSTYPE} and thus also needs to appear in the parser
2990implementation file. However, if you've instructed Bison to generate
2991a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2992want that line to appear before the @code{YYSTYPE} definition in that
2993header file as well. The @code{YYLTYPE} definition should also appear
2994in the parser header file to override the default @code{YYLTYPE}
2995definition there.
2cbe6b7f 2996
16dc6a9e 2997In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2998lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2999definitions.
16dc6a9e 3000Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3001
c93f22fc 3002@example
d4fca427 3003@group
16dc6a9e 3004%code top @{
2cbe6b7f
JD
3005 #define _GNU_SOURCE
3006 #include <stdio.h>
3007@}
d4fca427 3008@end group
2cbe6b7f 3009
d4fca427 3010@group
16dc6a9e 3011%code requires @{
9bc0dd67
JD
3012 #include "ptypes.h"
3013@}
d4fca427
AD
3014@end group
3015@group
9bc0dd67
JD
3016%union @{
3017 long int n;
3018 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3019@}
d4fca427 3020@end group
9bc0dd67 3021
d4fca427 3022@group
16dc6a9e 3023%code requires @{
2cbe6b7f
JD
3024 #define YYLTYPE YYLTYPE
3025 typedef struct YYLTYPE
3026 @{
3027 int first_line;
3028 int first_column;
3029 int last_line;
3030 int last_column;
3031 char *filename;
3032 @} YYLTYPE;
3033@}
d4fca427 3034@end group
2cbe6b7f 3035
d4fca427 3036@group
136a0f76 3037%code @{
2cbe6b7f
JD
3038 static void print_token_value (FILE *, int, YYSTYPE);
3039 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3040 static void trace_token (enum yytokentype token, YYLTYPE loc);
3041@}
d4fca427 3042@end group
2cbe6b7f
JD
3043
3044@dots{}
c93f22fc 3045@end example
2cbe6b7f
JD
3046
3047@noindent
ff7571c0
JD
3048Now Bison will insert @code{#include "ptypes.h"} and the new
3049@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3050and @code{YYLTYPE} definitions in both the parser implementation file
3051and the parser header file. (By the same reasoning, @code{%code
3052requires} would also be the appropriate place to write your own
3053definition for @code{YYSTYPE}.)
3054
3055When you are writing dependency code for @code{YYSTYPE} and
3056@code{YYLTYPE}, you should prefer @code{%code requires} over
3057@code{%code top} regardless of whether you instruct Bison to generate
3058a parser header file. When you are writing code that you need Bison
3059to insert only into the parser implementation file and that has no
3060special need to appear at the top of that file, you should prefer the
3061unqualified @code{%code} over @code{%code top}. These practices will
3062make the purpose of each block of your code explicit to Bison and to
3063other developers reading your grammar file. Following these
3064practices, we expect the unqualified @code{%code} and @code{%code
3065requires} to be the most important of the four @var{Prologue}
16dc6a9e 3066alternatives.
a501eca9 3067
ff7571c0
JD
3068At some point while developing your parser, you might decide to
3069provide @code{trace_token} to modules that are external to your
3070parser. Thus, you might wish for Bison to insert the prototype into
3071both the parser header file and the parser implementation file. Since
3072this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3073@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3074@code{%code requires}. More importantly, since it depends upon
3075@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3076sufficient. Instead, move its prototype from the unqualified
3077@code{%code} to a @code{%code provides}:
2cbe6b7f 3078
c93f22fc 3079@example
d4fca427 3080@group
16dc6a9e 3081%code top @{
2cbe6b7f 3082 #define _GNU_SOURCE
136a0f76 3083 #include <stdio.h>
2cbe6b7f 3084@}
d4fca427 3085@end group
136a0f76 3086
d4fca427 3087@group
16dc6a9e 3088%code requires @{
2cbe6b7f
JD
3089 #include "ptypes.h"
3090@}
d4fca427
AD
3091@end group
3092@group
2cbe6b7f
JD
3093%union @{
3094 long int n;
3095 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3096@}
d4fca427 3097@end group
2cbe6b7f 3098
d4fca427 3099@group
16dc6a9e 3100%code requires @{
2cbe6b7f
JD
3101 #define YYLTYPE YYLTYPE
3102 typedef struct YYLTYPE
3103 @{
3104 int first_line;
3105 int first_column;
3106 int last_line;
3107 int last_column;
3108 char *filename;
3109 @} YYLTYPE;
3110@}
d4fca427 3111@end group
2cbe6b7f 3112
d4fca427 3113@group
16dc6a9e 3114%code provides @{
2cbe6b7f
JD
3115 void trace_token (enum yytokentype token, YYLTYPE loc);
3116@}
d4fca427 3117@end group
2cbe6b7f 3118
d4fca427 3119@group
2cbe6b7f 3120%code @{
9bc0dd67
JD
3121 static void print_token_value (FILE *, int, YYSTYPE);
3122 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3123@}
d4fca427 3124@end group
9bc0dd67
JD
3125
3126@dots{}
c93f22fc 3127@end example
9bc0dd67 3128
2cbe6b7f 3129@noindent
ff7571c0
JD
3130Bison will insert the @code{trace_token} prototype into both the
3131parser header file and the parser implementation file after the
3132definitions for @code{yytokentype}, @code{YYLTYPE}, and
3133@code{YYSTYPE}.
2cbe6b7f 3134
ff7571c0
JD
3135The above examples are careful to write directives in an order that
3136reflects the layout of the generated parser implementation and header
3137files: @code{%code top}, @code{%code requires}, @code{%code provides},
3138and then @code{%code}. While your grammar files may generally be
3139easier to read if you also follow this order, Bison does not require
3140it. Instead, Bison lets you choose an organization that makes sense
3141to you.
2cbe6b7f 3142
a501eca9 3143You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3144In that case, Bison concatenates the contained code in declaration order.
3145This is the only way in which the position of one of these directives within
3146the grammar file affects its functionality.
3147
3148The result of the previous two properties is greater flexibility in how you may
3149organize your grammar file.
3150For example, you may organize semantic-type-related directives by semantic
3151type:
3152
c93f22fc 3153@example
d4fca427 3154@group
16dc6a9e 3155%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3156%union @{ type1 field1; @}
3157%destructor @{ type1_free ($$); @} <field1>
c5026327 3158%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3159@end group
2cbe6b7f 3160
d4fca427 3161@group
16dc6a9e 3162%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3163%union @{ type2 field2; @}
3164%destructor @{ type2_free ($$); @} <field2>
c5026327 3165%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3166@end group
c93f22fc 3167@end example
2cbe6b7f
JD
3168
3169@noindent
3170You could even place each of the above directive groups in the rules section of
3171the grammar file next to the set of rules that uses the associated semantic
3172type.
61fee93e
JD
3173(In the rules section, you must terminate each of those directives with a
3174semicolon.)
2cbe6b7f
JD
3175And you don't have to worry that some directive (like a @code{%union}) in the
3176definitions section is going to adversely affect their functionality in some
3177counter-intuitive manner just because it comes first.
3178Such an organization is not possible using @var{Prologue} sections.
3179
a501eca9 3180This section has been concerned with explaining the advantages of the four
8e0a5e9e 3181@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3182However, in most cases when using these directives, you shouldn't need to
3183think about all the low-level ordering issues discussed here.
3184Instead, you should simply use these directives to label each block of your
3185code according to its purpose and let Bison handle the ordering.
3186@code{%code} is the most generic label.
16dc6a9e
JD
3187Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3188as needed.
a501eca9 3189
342b8b6e 3190@node Bison Declarations
bfa74976
RS
3191@subsection The Bison Declarations Section
3192@cindex Bison declarations (introduction)
3193@cindex declarations, Bison (introduction)
3194
3195The @var{Bison declarations} section contains declarations that define
3196terminal and nonterminal symbols, specify precedence, and so on.
3197In some simple grammars you may not need any declarations.
3198@xref{Declarations, ,Bison Declarations}.
3199
342b8b6e 3200@node Grammar Rules
bfa74976
RS
3201@subsection The Grammar Rules Section
3202@cindex grammar rules section
3203@cindex rules section for grammar
3204
3205The @dfn{grammar rules} section contains one or more Bison grammar
3206rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3207
3208There must always be at least one grammar rule, and the first
3209@samp{%%} (which precedes the grammar rules) may never be omitted even
3210if it is the first thing in the file.
3211
38a92d50 3212@node Epilogue
75f5aaea 3213@subsection The epilogue
bfa74976 3214@cindex additional C code section
75f5aaea 3215@cindex epilogue
bfa74976
RS
3216@cindex C code, section for additional
3217
ff7571c0
JD
3218The @var{Epilogue} is copied verbatim to the end of the parser
3219implementation file, just as the @var{Prologue} is copied to the
3220beginning. This is the most convenient place to put anything that you
3221want to have in the parser implementation file but which need not come
3222before the definition of @code{yyparse}. For example, the definitions
3223of @code{yylex} and @code{yyerror} often go here. Because C requires
3224functions to be declared before being used, you often need to declare
3225functions like @code{yylex} and @code{yyerror} in the Prologue, even
3226if you define them in the Epilogue. @xref{Interface, ,Parser
3227C-Language Interface}.
bfa74976
RS
3228
3229If the last section is empty, you may omit the @samp{%%} that separates it
3230from the grammar rules.
3231
f8e1c9e5
AD
3232The Bison parser itself contains many macros and identifiers whose names
3233start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3234any such names (except those documented in this manual) in the epilogue
3235of the grammar file.
bfa74976 3236
342b8b6e 3237@node Symbols
bfa74976
RS
3238@section Symbols, Terminal and Nonterminal
3239@cindex nonterminal symbol
3240@cindex terminal symbol
3241@cindex token type
3242@cindex symbol
3243
3244@dfn{Symbols} in Bison grammars represent the grammatical classifications
3245of the language.
3246
3247A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3248class of syntactically equivalent tokens. You use the symbol in grammar
3249rules to mean that a token in that class is allowed. The symbol is
3250represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3251function returns a token type code to indicate what kind of token has
3252been read. You don't need to know what the code value is; you can use
3253the symbol to stand for it.
bfa74976 3254
f8e1c9e5
AD
3255A @dfn{nonterminal symbol} stands for a class of syntactically
3256equivalent groupings. The symbol name is used in writing grammar rules.
3257By convention, it should be all lower case.
bfa74976 3258
82f3355e
JD
3259Symbol names can contain letters, underscores, periods, and non-initial
3260digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3261with POSIX Yacc. Periods and dashes make symbol names less convenient to
3262use with named references, which require brackets around such names
3263(@pxref{Named References}). Terminal symbols that contain periods or dashes
3264make little sense: since they are not valid symbols (in most programming
3265languages) they are not exported as token names.
bfa74976 3266
931c7513 3267There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3268
3269@itemize @bullet
3270@item
3271A @dfn{named token type} is written with an identifier, like an
c827f760 3272identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3273such name must be defined with a Bison declaration such as
3274@code{%token}. @xref{Token Decl, ,Token Type Names}.
3275
3276@item
3277@cindex character token
3278@cindex literal token
3279@cindex single-character literal
931c7513
RS
3280A @dfn{character token type} (or @dfn{literal character token}) is
3281written in the grammar using the same syntax used in C for character
3282constants; for example, @code{'+'} is a character token type. A
3283character token type doesn't need to be declared unless you need to
3284specify its semantic value data type (@pxref{Value Type, ,Data Types of
3285Semantic Values}), associativity, or precedence (@pxref{Precedence,
3286,Operator Precedence}).
bfa74976
RS
3287
3288By convention, a character token type is used only to represent a
3289token that consists of that particular character. Thus, the token
3290type @code{'+'} is used to represent the character @samp{+} as a
3291token. Nothing enforces this convention, but if you depart from it,
3292your program will confuse other readers.
3293
3294All the usual escape sequences used in character literals in C can be
3295used in Bison as well, but you must not use the null character as a
72d2299c
PE
3296character literal because its numeric code, zero, signifies
3297end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3298for @code{yylex}}). Also, unlike standard C, trigraphs have no
3299special meaning in Bison character literals, nor is backslash-newline
3300allowed.
931c7513
RS
3301
3302@item
3303@cindex string token
3304@cindex literal string token
9ecbd125 3305@cindex multicharacter literal
931c7513
RS
3306A @dfn{literal string token} is written like a C string constant; for
3307example, @code{"<="} is a literal string token. A literal string token
3308doesn't need to be declared unless you need to specify its semantic
14ded682 3309value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3310(@pxref{Precedence}).
3311
3312You can associate the literal string token with a symbolic name as an
3313alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3314Declarations}). If you don't do that, the lexical analyzer has to
3315retrieve the token number for the literal string token from the
3316@code{yytname} table (@pxref{Calling Convention}).
3317
c827f760 3318@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3319
3320By convention, a literal string token is used only to represent a token
3321that consists of that particular string. Thus, you should use the token
3322type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3323does not enforce this convention, but if you depart from it, people who
931c7513
RS
3324read your program will be confused.
3325
3326All the escape sequences used in string literals in C can be used in
92ac3705
PE
3327Bison as well, except that you must not use a null character within a
3328string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3329meaning in Bison string literals, nor is backslash-newline allowed. A
3330literal string token must contain two or more characters; for a token
3331containing just one character, use a character token (see above).
bfa74976
RS
3332@end itemize
3333
3334How you choose to write a terminal symbol has no effect on its
3335grammatical meaning. That depends only on where it appears in rules and
3336on when the parser function returns that symbol.
3337
72d2299c
PE
3338The value returned by @code{yylex} is always one of the terminal
3339symbols, except that a zero or negative value signifies end-of-input.
3340Whichever way you write the token type in the grammar rules, you write
3341it the same way in the definition of @code{yylex}. The numeric code
3342for a character token type is simply the positive numeric code of the
3343character, so @code{yylex} can use the identical value to generate the
3344requisite code, though you may need to convert it to @code{unsigned
3345char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3346Each named token type becomes a C macro in the parser implementation
3347file, so @code{yylex} can use the name to stand for the code. (This
3348is why periods don't make sense in terminal symbols.) @xref{Calling
3349Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3350
3351If @code{yylex} is defined in a separate file, you need to arrange for the
3352token-type macro definitions to be available there. Use the @samp{-d}
3353option when you run Bison, so that it will write these macro definitions
3354into a separate header file @file{@var{name}.tab.h} which you can include
3355in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3356
72d2299c 3357If you want to write a grammar that is portable to any Standard C
9d9b8b70 3358host, you must use only nonnull character tokens taken from the basic
c827f760 3359execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3360digits, the 52 lower- and upper-case English letters, and the
3361characters in the following C-language string:
3362
3363@example
3364"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3365@end example
3366
f8e1c9e5
AD
3367The @code{yylex} function and Bison must use a consistent character set
3368and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3369ASCII environment, but then compile and run the resulting
f8e1c9e5 3370program in an environment that uses an incompatible character set like
8a4281b9
JD
3371EBCDIC, the resulting program may not work because the tables
3372generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3373character tokens. It is standard practice for software distributions to
3374contain C source files that were generated by Bison in an
8a4281b9
JD
3375ASCII environment, so installers on platforms that are
3376incompatible with ASCII must rebuild those files before
f8e1c9e5 3377compiling them.
e966383b 3378
bfa74976
RS
3379The symbol @code{error} is a terminal symbol reserved for error recovery
3380(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3381In particular, @code{yylex} should never return this value. The default
3382value of the error token is 256, unless you explicitly assigned 256 to
3383one of your tokens with a @code{%token} declaration.
bfa74976 3384
342b8b6e 3385@node Rules
bfa74976
RS
3386@section Syntax of Grammar Rules
3387@cindex rule syntax
3388@cindex grammar rule syntax
3389@cindex syntax of grammar rules
3390
3391A Bison grammar rule has the following general form:
3392
3393@example
e425e872 3394@group
5e9b6624 3395@var{result}: @var{components}@dots{};
e425e872 3396@end group
bfa74976
RS
3397@end example
3398
3399@noindent
9ecbd125 3400where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3401and @var{components} are various terminal and nonterminal symbols that
13863333 3402are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3403
3404For example,
3405
3406@example
3407@group
5e9b6624 3408exp: exp '+' exp;
bfa74976
RS
3409@end group
3410@end example
3411
3412@noindent
3413says that two groupings of type @code{exp}, with a @samp{+} token in between,
3414can be combined into a larger grouping of type @code{exp}.
3415
72d2299c
PE
3416White space in rules is significant only to separate symbols. You can add
3417extra white space as you wish.
bfa74976
RS
3418
3419Scattered among the components can be @var{actions} that determine
3420the semantics of the rule. An action looks like this:
3421
3422@example
3423@{@var{C statements}@}
3424@end example
3425
3426@noindent
287c78f6
PE
3427@cindex braced code
3428This is an example of @dfn{braced code}, that is, C code surrounded by
3429braces, much like a compound statement in C@. Braced code can contain
3430any sequence of C tokens, so long as its braces are balanced. Bison
3431does not check the braced code for correctness directly; it merely
ff7571c0
JD
3432copies the code to the parser implementation file, where the C
3433compiler can check it.
287c78f6
PE
3434
3435Within braced code, the balanced-brace count is not affected by braces
3436within comments, string literals, or character constants, but it is
3437affected by the C digraphs @samp{<%} and @samp{%>} that represent
3438braces. At the top level braced code must be terminated by @samp{@}}
3439and not by a digraph. Bison does not look for trigraphs, so if braced
3440code uses trigraphs you should ensure that they do not affect the
3441nesting of braces or the boundaries of comments, string literals, or
3442character constants.
3443
bfa74976
RS
3444Usually there is only one action and it follows the components.
3445@xref{Actions}.
3446
3447@findex |
3448Multiple rules for the same @var{result} can be written separately or can
3449be joined with the vertical-bar character @samp{|} as follows:
3450
bfa74976
RS
3451@example
3452@group
5e9b6624
AD
3453@var{result}:
3454 @var{rule1-components}@dots{}
3455| @var{rule2-components}@dots{}
3456@dots{}
3457;
bfa74976
RS
3458@end group
3459@end example
bfa74976
RS
3460
3461@noindent
3462They are still considered distinct rules even when joined in this way.
3463
3464If @var{components} in a rule is empty, it means that @var{result} can
3465match the empty string. For example, here is how to define a
3466comma-separated sequence of zero or more @code{exp} groupings:
3467
3468@example
3469@group
5e9b6624
AD
3470expseq:
3471 /* empty */
3472| expseq1
3473;
bfa74976
RS
3474@end group
3475
3476@group
5e9b6624
AD
3477expseq1:
3478 exp
3479| expseq1 ',' exp
3480;
bfa74976
RS
3481@end group
3482@end example
3483
3484@noindent
3485It is customary to write a comment @samp{/* empty */} in each rule
3486with no components.
3487
342b8b6e 3488@node Recursion
bfa74976
RS
3489@section Recursive Rules
3490@cindex recursive rule
3491
f8e1c9e5
AD
3492A rule is called @dfn{recursive} when its @var{result} nonterminal
3493appears also on its right hand side. Nearly all Bison grammars need to
3494use recursion, because that is the only way to define a sequence of any
3495number of a particular thing. Consider this recursive definition of a
9ecbd125 3496comma-separated sequence of one or more expressions:
bfa74976
RS
3497
3498@example
3499@group
5e9b6624
AD
3500expseq1:
3501 exp
3502| expseq1 ',' exp
3503;
bfa74976
RS
3504@end group
3505@end example
3506
3507@cindex left recursion
3508@cindex right recursion
3509@noindent
3510Since the recursive use of @code{expseq1} is the leftmost symbol in the
3511right hand side, we call this @dfn{left recursion}. By contrast, here
3512the same construct is defined using @dfn{right recursion}:
3513
3514@example
3515@group
5e9b6624
AD
3516expseq1:
3517 exp
3518| exp ',' expseq1
3519;
bfa74976
RS
3520@end group
3521@end example
3522
3523@noindent
ec3bc396
AD
3524Any kind of sequence can be defined using either left recursion or right
3525recursion, but you should always use left recursion, because it can
3526parse a sequence of any number of elements with bounded stack space.
3527Right recursion uses up space on the Bison stack in proportion to the
3528number of elements in the sequence, because all the elements must be
3529shifted onto the stack before the rule can be applied even once.
3530@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3531of this.
bfa74976
RS
3532
3533@cindex mutual recursion
3534@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3535rule does not appear directly on its right hand side, but does appear
3536in rules for other nonterminals which do appear on its right hand
13863333 3537side.
bfa74976
RS
3538
3539For example:
3540
3541@example
3542@group
5e9b6624
AD
3543expr:
3544 primary
3545| primary '+' primary
3546;
bfa74976
RS
3547@end group
3548
3549@group
5e9b6624
AD
3550primary:
3551 constant
3552| '(' expr ')'
3553;
bfa74976
RS
3554@end group
3555@end example
3556
3557@noindent
3558defines two mutually-recursive nonterminals, since each refers to the
3559other.
3560
342b8b6e 3561@node Semantics
bfa74976
RS
3562@section Defining Language Semantics
3563@cindex defining language semantics
13863333 3564@cindex language semantics, defining
bfa74976
RS
3565
3566The grammar rules for a language determine only the syntax. The semantics
3567are determined by the semantic values associated with various tokens and
3568groupings, and by the actions taken when various groupings are recognized.
3569
3570For example, the calculator calculates properly because the value
3571associated with each expression is the proper number; it adds properly
3572because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3573the numbers associated with @var{x} and @var{y}.
3574
3575@menu
3576* Value Type:: Specifying one data type for all semantic values.
3577* Multiple Types:: Specifying several alternative data types.
3578* Actions:: An action is the semantic definition of a grammar rule.
3579* Action Types:: Specifying data types for actions to operate on.
3580* Mid-Rule Actions:: Most actions go at the end of a rule.
3581 This says when, why and how to use the exceptional
3582 action in the middle of a rule.
3583@end menu
3584
342b8b6e 3585@node Value Type
bfa74976
RS
3586@subsection Data Types of Semantic Values
3587@cindex semantic value type
3588@cindex value type, semantic
3589@cindex data types of semantic values
3590@cindex default data type
3591
3592In a simple program it may be sufficient to use the same data type for
3593the semantic values of all language constructs. This was true in the
8a4281b9 3594RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3595Notation Calculator}).
bfa74976 3596
ddc8ede1
PE
3597Bison normally uses the type @code{int} for semantic values if your
3598program uses the same data type for all language constructs. To
bfa74976
RS
3599specify some other type, define @code{YYSTYPE} as a macro, like this:
3600
3601@example
3602#define YYSTYPE double
3603@end example
3604
3605@noindent
50cce58e
PE
3606@code{YYSTYPE}'s replacement list should be a type name
3607that does not contain parentheses or square brackets.
342b8b6e 3608This macro definition must go in the prologue of the grammar file
75f5aaea 3609(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3610
342b8b6e 3611@node Multiple Types
bfa74976
RS
3612@subsection More Than One Value Type
3613
3614In most programs, you will need different data types for different kinds
3615of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3616@code{int} or @code{long int}, while a string constant needs type
3617@code{char *}, and an identifier might need a pointer to an entry in the
3618symbol table.
bfa74976
RS
3619
3620To use more than one data type for semantic values in one parser, Bison
3621requires you to do two things:
3622
3623@itemize @bullet
3624@item
ddc8ede1 3625Specify the entire collection of possible data types, either by using the
704a47c4 3626@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3627Value Types}), or by using a @code{typedef} or a @code{#define} to
3628define @code{YYSTYPE} to be a union type whose member names are
3629the type tags.
bfa74976
RS
3630
3631@item
14ded682
AD
3632Choose one of those types for each symbol (terminal or nonterminal) for
3633which semantic values are used. This is done for tokens with the
3634@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3635and for groupings with the @code{%type} Bison declaration (@pxref{Type
3636Decl, ,Nonterminal Symbols}).
bfa74976
RS
3637@end itemize
3638
342b8b6e 3639@node Actions
bfa74976
RS
3640@subsection Actions
3641@cindex action
3642@vindex $$
3643@vindex $@var{n}
d013372c
AR
3644@vindex $@var{name}
3645@vindex $[@var{name}]
bfa74976
RS
3646
3647An action accompanies a syntactic rule and contains C code to be executed
3648each time an instance of that rule is recognized. The task of most actions
3649is to compute a semantic value for the grouping built by the rule from the
3650semantic values associated with tokens or smaller groupings.
3651
287c78f6
PE
3652An action consists of braced code containing C statements, and can be
3653placed at any position in the rule;
704a47c4
AD
3654it is executed at that position. Most rules have just one action at the
3655end of the rule, following all the components. Actions in the middle of
3656a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3657Actions, ,Actions in Mid-Rule}).
bfa74976 3658
ff7571c0
JD
3659The C code in an action can refer to the semantic values of the
3660components matched by the rule with the construct @code{$@var{n}},
3661which stands for the value of the @var{n}th component. The semantic
3662value for the grouping being constructed is @code{$$}. In addition,
3663the semantic values of symbols can be accessed with the named
3664references construct @code{$@var{name}} or @code{$[@var{name}]}.
3665Bison translates both of these constructs into expressions of the
3666appropriate type when it copies the actions into the parser
3667implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3668for the current grouping) is translated to a modifiable lvalue, so it
3669can be assigned to.
bfa74976
RS
3670
3671Here is a typical example:
3672
3673@example
3674@group
5e9b6624
AD
3675exp:
3676@dots{}
3677| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3678@end group
3679@end example
3680
d013372c
AR
3681Or, in terms of named references:
3682
3683@example
3684@group
5e9b6624
AD
3685exp[result]:
3686@dots{}
3687| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3688@end group
3689@end example
3690
bfa74976
RS
3691@noindent
3692This rule constructs an @code{exp} from two smaller @code{exp} groupings
3693connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3694(@code{$left} and @code{$right})
bfa74976
RS
3695refer to the semantic values of the two component @code{exp} groupings,
3696which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3697The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3698semantic value of
bfa74976
RS
3699the addition-expression just recognized by the rule. If there were a
3700useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3701referred to as @code{$2}.
bfa74976 3702
a7b15ab9
JD
3703@xref{Named References}, for more information about using the named
3704references construct.
d013372c 3705
3ded9a63
AD
3706Note that the vertical-bar character @samp{|} is really a rule
3707separator, and actions are attached to a single rule. This is a
3708difference with tools like Flex, for which @samp{|} stands for either
3709``or'', or ``the same action as that of the next rule''. In the
3710following example, the action is triggered only when @samp{b} is found:
3711
3712@example
3713@group
3714a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3715@end group
3716@end example
3717
bfa74976
RS
3718@cindex default action
3719If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3720@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3721becomes the value of the whole rule. Of course, the default action is
3722valid only if the two data types match. There is no meaningful default
3723action for an empty rule; every empty rule must have an explicit action
3724unless the rule's value does not matter.
bfa74976
RS
3725
3726@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3727to tokens and groupings on the stack @emph{before} those that match the
3728current rule. This is a very risky practice, and to use it reliably
3729you must be certain of the context in which the rule is applied. Here
3730is a case in which you can use this reliably:
3731
3732@example
3733@group
5e9b6624
AD
3734foo:
3735 expr bar '+' expr @{ @dots{} @}
3736| expr bar '-' expr @{ @dots{} @}
3737;
bfa74976
RS
3738@end group
3739
3740@group
5e9b6624
AD
3741bar:
3742 /* empty */ @{ previous_expr = $0; @}
3743;
bfa74976
RS
3744@end group
3745@end example
3746
3747As long as @code{bar} is used only in the fashion shown here, @code{$0}
3748always refers to the @code{expr} which precedes @code{bar} in the
3749definition of @code{foo}.
3750
32c29292 3751@vindex yylval
742e4900 3752It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3753any, from a semantic action.
3754This semantic value is stored in @code{yylval}.
3755@xref{Action Features, ,Special Features for Use in Actions}.
3756
342b8b6e 3757@node Action Types
bfa74976
RS
3758@subsection Data Types of Values in Actions
3759@cindex action data types
3760@cindex data types in actions
3761
3762If you have chosen a single data type for semantic values, the @code{$$}
3763and @code{$@var{n}} constructs always have that data type.
3764
3765If you have used @code{%union} to specify a variety of data types, then you
3766must declare a choice among these types for each terminal or nonterminal
3767symbol that can have a semantic value. Then each time you use @code{$$} or
3768@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3769in the rule. In this example,
bfa74976
RS
3770
3771@example
3772@group
5e9b6624
AD
3773exp:
3774 @dots{}
3775| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3776@end group
3777@end example
3778
3779@noindent
3780@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3781have the data type declared for the nonterminal symbol @code{exp}. If
3782@code{$2} were used, it would have the data type declared for the
e0c471a9 3783terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3784
3785Alternatively, you can specify the data type when you refer to the value,
3786by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3787reference. For example, if you have defined types as shown here:
3788
3789@example
3790@group
3791%union @{
3792 int itype;
3793 double dtype;
3794@}
3795@end group
3796@end example
3797
3798@noindent
3799then you can write @code{$<itype>1} to refer to the first subunit of the
3800rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3801
342b8b6e 3802@node Mid-Rule Actions
bfa74976
RS
3803@subsection Actions in Mid-Rule
3804@cindex actions in mid-rule
3805@cindex mid-rule actions
3806
3807Occasionally it is useful to put an action in the middle of a rule.
3808These actions are written just like usual end-of-rule actions, but they
3809are executed before the parser even recognizes the following components.
3810
3811A mid-rule action may refer to the components preceding it using
3812@code{$@var{n}}, but it may not refer to subsequent components because
3813it is run before they are parsed.
3814
3815The mid-rule action itself counts as one of the components of the rule.
3816This makes a difference when there is another action later in the same rule
3817(and usually there is another at the end): you have to count the actions
3818along with the symbols when working out which number @var{n} to use in
3819@code{$@var{n}}.
3820
3821The mid-rule action can also have a semantic value. The action can set
3822its value with an assignment to @code{$$}, and actions later in the rule
3823can refer to the value using @code{$@var{n}}. Since there is no symbol
3824to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3825in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3826specify a data type each time you refer to this value.
bfa74976
RS
3827
3828There is no way to set the value of the entire rule with a mid-rule
3829action, because assignments to @code{$$} do not have that effect. The
3830only way to set the value for the entire rule is with an ordinary action
3831at the end of the rule.
3832
3833Here is an example from a hypothetical compiler, handling a @code{let}
3834statement that looks like @samp{let (@var{variable}) @var{statement}} and
3835serves to create a variable named @var{variable} temporarily for the
3836duration of @var{statement}. To parse this construct, we must put
3837@var{variable} into the symbol table while @var{statement} is parsed, then
3838remove it afterward. Here is how it is done:
3839
3840@example
3841@group
5e9b6624
AD
3842stmt:
3843 LET '(' var ')'
3844 @{ $<context>$ = push_context (); declare_variable ($3); @}
3845 stmt
3846 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3847@end group
3848@end example
3849
3850@noindent
3851As soon as @samp{let (@var{variable})} has been recognized, the first
3852action is run. It saves a copy of the current semantic context (the
3853list of accessible variables) as its semantic value, using alternative
3854@code{context} in the data-type union. Then it calls
3855@code{declare_variable} to add the new variable to that list. Once the
3856first action is finished, the embedded statement @code{stmt} can be
3857parsed. Note that the mid-rule action is component number 5, so the
3858@samp{stmt} is component number 6.
3859
3860After the embedded statement is parsed, its semantic value becomes the
3861value of the entire @code{let}-statement. Then the semantic value from the
3862earlier action is used to restore the prior list of variables. This
3863removes the temporary @code{let}-variable from the list so that it won't
3864appear to exist while the rest of the program is parsed.
3865
841a7737
JD
3866@findex %destructor
3867@cindex discarded symbols, mid-rule actions
3868@cindex error recovery, mid-rule actions
3869In the above example, if the parser initiates error recovery (@pxref{Error
3870Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3871it might discard the previous semantic context @code{$<context>5} without
3872restoring it.
3873Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3874Discarded Symbols}).
ec5479ce
JD
3875However, Bison currently provides no means to declare a destructor specific to
3876a particular mid-rule action's semantic value.
841a7737
JD
3877
3878One solution is to bury the mid-rule action inside a nonterminal symbol and to
3879declare a destructor for that symbol:
3880
3881@example
3882@group
3883%type <context> let
3884%destructor @{ pop_context ($$); @} let
3885
3886%%
3887
5e9b6624
AD
3888stmt:
3889 let stmt
3890 @{
3891 $$ = $2;
3892 pop_context ($1);
3893 @};
841a7737 3894
5e9b6624
AD
3895let:
3896 LET '(' var ')'
3897 @{
3898 $$ = push_context ();
3899 declare_variable ($3);
3900 @};
841a7737
JD
3901
3902@end group
3903@end example
3904
3905@noindent
3906Note that the action is now at the end of its rule.
3907Any mid-rule action can be converted to an end-of-rule action in this way, and
3908this is what Bison actually does to implement mid-rule actions.
3909
bfa74976
RS
3910Taking action before a rule is completely recognized often leads to
3911conflicts since the parser must commit to a parse in order to execute the
3912action. For example, the following two rules, without mid-rule actions,
3913can coexist in a working parser because the parser can shift the open-brace
3914token and look at what follows before deciding whether there is a
3915declaration or not:
3916
3917@example
3918@group
5e9b6624
AD
3919compound:
3920 '@{' declarations statements '@}'
3921| '@{' statements '@}'
3922;
bfa74976
RS
3923@end group
3924@end example
3925
3926@noindent
3927But when we add a mid-rule action as follows, the rules become nonfunctional:
3928
3929@example
3930@group
5e9b6624
AD
3931compound:
3932 @{ prepare_for_local_variables (); @}
3933 '@{' declarations statements '@}'
bfa74976
RS
3934@end group
3935@group
5e9b6624
AD
3936| '@{' statements '@}'
3937;
bfa74976
RS
3938@end group
3939@end example
3940
3941@noindent
3942Now the parser is forced to decide whether to run the mid-rule action
3943when it has read no farther than the open-brace. In other words, it
3944must commit to using one rule or the other, without sufficient
3945information to do it correctly. (The open-brace token is what is called
742e4900
JD
3946the @dfn{lookahead} token at this time, since the parser is still
3947deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3948
3949You might think that you could correct the problem by putting identical
3950actions into the two rules, like this:
3951
3952@example
3953@group
5e9b6624
AD
3954compound:
3955 @{ prepare_for_local_variables (); @}
3956 '@{' declarations statements '@}'
3957| @{ prepare_for_local_variables (); @}
3958 '@{' statements '@}'
3959;
bfa74976
RS
3960@end group
3961@end example
3962
3963@noindent
3964But this does not help, because Bison does not realize that the two actions
3965are identical. (Bison never tries to understand the C code in an action.)
3966
3967If the grammar is such that a declaration can be distinguished from a
3968statement by the first token (which is true in C), then one solution which
3969does work is to put the action after the open-brace, like this:
3970
3971@example
3972@group
5e9b6624
AD
3973compound:
3974 '@{' @{ prepare_for_local_variables (); @}
3975 declarations statements '@}'
3976| '@{' statements '@}'
3977;
bfa74976
RS
3978@end group
3979@end example
3980
3981@noindent
3982Now the first token of the following declaration or statement,
3983which would in any case tell Bison which rule to use, can still do so.
3984
3985Another solution is to bury the action inside a nonterminal symbol which
3986serves as a subroutine:
3987
3988@example
3989@group
5e9b6624
AD
3990subroutine:
3991 /* empty */ @{ prepare_for_local_variables (); @}
3992;
bfa74976
RS
3993@end group
3994
3995@group
5e9b6624
AD
3996compound:
3997 subroutine '@{' declarations statements '@}'
3998| subroutine '@{' statements '@}'
3999;
bfa74976
RS
4000@end group
4001@end example
4002
4003@noindent
4004Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4005deciding which rule for @code{compound} it will eventually use.
bfa74976 4006
303834cc 4007@node Tracking Locations
847bf1f5
AD
4008@section Tracking Locations
4009@cindex location
95923bd6
AD
4010@cindex textual location
4011@cindex location, textual
847bf1f5
AD
4012
4013Though grammar rules and semantic actions are enough to write a fully
72d2299c 4014functional parser, it can be useful to process some additional information,
3e259915
MA
4015especially symbol locations.
4016
704a47c4
AD
4017The way locations are handled is defined by providing a data type, and
4018actions to take when rules are matched.
847bf1f5
AD
4019
4020@menu
4021* Location Type:: Specifying a data type for locations.
4022* Actions and Locations:: Using locations in actions.
4023* Location Default Action:: Defining a general way to compute locations.
4024@end menu
4025
342b8b6e 4026@node Location Type
847bf1f5
AD
4027@subsection Data Type of Locations
4028@cindex data type of locations
4029@cindex default location type
4030
4031Defining a data type for locations is much simpler than for semantic values,
4032since all tokens and groupings always use the same type.
4033
50cce58e
PE
4034You can specify the type of locations by defining a macro called
4035@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4036defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4037When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4038four members:
4039
4040@example
6273355b 4041typedef struct YYLTYPE
847bf1f5
AD
4042@{
4043 int first_line;
4044 int first_column;
4045 int last_line;
4046 int last_column;
6273355b 4047@} YYLTYPE;
847bf1f5
AD
4048@end example
4049
d59e456d
AD
4050When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4051initializes all these fields to 1 for @code{yylloc}. To initialize
4052@code{yylloc} with a custom location type (or to chose a different
4053initialization), use the @code{%initial-action} directive. @xref{Initial
4054Action Decl, , Performing Actions before Parsing}.
cd48d21d 4055
342b8b6e 4056@node Actions and Locations
847bf1f5
AD
4057@subsection Actions and Locations
4058@cindex location actions
4059@cindex actions, location
4060@vindex @@$
4061@vindex @@@var{n}
d013372c
AR
4062@vindex @@@var{name}
4063@vindex @@[@var{name}]
847bf1f5
AD
4064
4065Actions are not only useful for defining language semantics, but also for
4066describing the behavior of the output parser with locations.
4067
4068The most obvious way for building locations of syntactic groupings is very
72d2299c 4069similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4070constructs can be used to access the locations of the elements being matched.
4071The location of the @var{n}th component of the right hand side is
4072@code{@@@var{n}}, while the location of the left hand side grouping is
4073@code{@@$}.
4074
d013372c
AR
4075In addition, the named references construct @code{@@@var{name}} and
4076@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4077@xref{Named References}, for more information about using the named
4078references construct.
d013372c 4079
3e259915 4080Here is a basic example using the default data type for locations:
847bf1f5
AD
4081
4082@example
4083@group
5e9b6624
AD
4084exp:
4085 @dots{}
4086| exp '/' exp
4087 @{
4088 @@$.first_column = @@1.first_column;
4089 @@$.first_line = @@1.first_line;
4090 @@$.last_column = @@3.last_column;
4091 @@$.last_line = @@3.last_line;
4092 if ($3)
4093 $$ = $1 / $3;
4094 else
4095 @{
4096 $$ = 1;
4097 fprintf (stderr,
4098 "Division by zero, l%d,c%d-l%d,c%d",
4099 @@3.first_line, @@3.first_column,
4100 @@3.last_line, @@3.last_column);
4101 @}
4102 @}
847bf1f5
AD
4103@end group
4104@end example
4105
3e259915 4106As for semantic values, there is a default action for locations that is
72d2299c 4107run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4108beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4109last symbol.
3e259915 4110
72d2299c 4111With this default action, the location tracking can be fully automatic. The
3e259915
MA
4112example above simply rewrites this way:
4113
4114@example
4115@group
5e9b6624
AD
4116exp:
4117 @dots{}
4118| exp '/' exp
4119 @{
4120 if ($3)
4121 $$ = $1 / $3;
4122 else
4123 @{
4124 $$ = 1;
4125 fprintf (stderr,
4126 "Division by zero, l%d,c%d-l%d,c%d",
4127 @@3.first_line, @@3.first_column,
4128 @@3.last_line, @@3.last_column);
4129 @}
4130 @}
3e259915
MA
4131@end group
4132@end example
847bf1f5 4133
32c29292 4134@vindex yylloc
742e4900 4135It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4136from a semantic action.
4137This location is stored in @code{yylloc}.
4138@xref{Action Features, ,Special Features for Use in Actions}.
4139
342b8b6e 4140@node Location Default Action
847bf1f5
AD
4141@subsection Default Action for Locations
4142@vindex YYLLOC_DEFAULT
8a4281b9 4143@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4144
72d2299c 4145Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4146locations are much more general than semantic values, there is room in
4147the output parser to redefine the default action to take for each
72d2299c 4148rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4149matched, before the associated action is run. It is also invoked
4150while processing a syntax error, to compute the error's location.
8a4281b9 4151Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4152parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4153of that ambiguity.
847bf1f5 4154
3e259915 4155Most of the time, this macro is general enough to suppress location
79282c6c 4156dedicated code from semantic actions.
847bf1f5 4157
72d2299c 4158The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4159the location of the grouping (the result of the computation). When a
766de5eb 4160rule is matched, the second parameter identifies locations of
96b93a3d 4161all right hand side elements of the rule being matched, and the third
8710fc41 4162parameter is the size of the rule's right hand side.
8a4281b9 4163When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4164right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4165When processing a syntax error, the second parameter identifies locations
4166of the symbols that were discarded during error processing, and the third
96b93a3d 4167parameter is the number of discarded symbols.
847bf1f5 4168
766de5eb 4169By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4170
c93f22fc
AD
4171@example
4172@group
4173# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4174do \
4175 if (N) \
4176 @{ \
4177 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4178 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4179 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4180 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4181 @} \
4182 else \
4183 @{ \
4184 (Cur).first_line = (Cur).last_line = \
4185 YYRHSLOC(Rhs, 0).last_line; \
4186 (Cur).first_column = (Cur).last_column = \
4187 YYRHSLOC(Rhs, 0).last_column; \
4188 @} \
4189while (0)
4190@end group
4191@end example
676385e2 4192
aaaa2aae 4193@noindent
766de5eb
PE
4194where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4195in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4196just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4197
3e259915 4198When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4199
3e259915 4200@itemize @bullet
79282c6c 4201@item
72d2299c 4202All arguments are free of side-effects. However, only the first one (the
3e259915 4203result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4204
3e259915 4205@item
766de5eb
PE
4206For consistency with semantic actions, valid indexes within the
4207right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4208valid index, and it refers to the symbol just before the reduction.
4209During error processing @var{n} is always positive.
0ae99356
PE
4210
4211@item
4212Your macro should parenthesize its arguments, if need be, since the
4213actual arguments may not be surrounded by parentheses. Also, your
4214macro should expand to something that can be used as a single
4215statement when it is followed by a semicolon.
3e259915 4216@end itemize
847bf1f5 4217
378e917c 4218@node Named References
a7b15ab9 4219@section Named References
378e917c
JD
4220@cindex named references
4221
a40e77eb
JD
4222As described in the preceding sections, the traditional way to refer to any
4223semantic value or location is a @dfn{positional reference}, which takes the
4224form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4225such a reference is not very descriptive. Moreover, if you later decide to
4226insert or remove symbols in the right-hand side of a grammar rule, the need
4227to renumber such references can be tedious and error-prone.
4228
4229To avoid these issues, you can also refer to a semantic value or location
4230using a @dfn{named reference}. First of all, original symbol names may be
4231used as named references. For example:
378e917c
JD
4232
4233@example
4234@group
4235invocation: op '(' args ')'
4236 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4237@end group
4238@end example
4239
4240@noindent
a40e77eb 4241Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4242
4243@example
4244@group
4245invocation: op '(' args ')'
4246 @{ $$ = new_invocation ($op, $args, @@$); @}
4247@end group
4248@end example
4249
4250@noindent
4251However, sometimes regular symbol names are not sufficient due to
4252ambiguities:
4253
4254@example
4255@group
4256exp: exp '/' exp
4257 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4258
4259exp: exp '/' exp
4260 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4261
4262exp: exp '/' exp
4263 @{ $$ = $1 / $3; @} // No error.
4264@end group
4265@end example
4266
4267@noindent
4268When ambiguity occurs, explicitly declared names may be used for values and
4269locations. Explicit names are declared as a bracketed name after a symbol
4270appearance in rule definitions. For example:
4271@example
4272@group
4273exp[result]: exp[left] '/' exp[right]
4274 @{ $result = $left / $right; @}
4275@end group
4276@end example
4277
4278@noindent
a7b15ab9
JD
4279In order to access a semantic value generated by a mid-rule action, an
4280explicit name may also be declared by putting a bracketed name after the
4281closing brace of the mid-rule action code:
378e917c
JD
4282@example
4283@group
4284exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4285 @{ $res = $left + $right; @}
4286@end group
4287@end example
4288
4289@noindent
4290
4291In references, in order to specify names containing dots and dashes, an explicit
4292bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4293@example
4294@group
762caaf6 4295if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4296 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4297@end group
4298@end example
4299
4300It often happens that named references are followed by a dot, dash or other
4301C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4302@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4303@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4304value. In order to force Bison to recognize @samp{name.suffix} in its
4305entirety as the name of a semantic value, the bracketed syntax
4306@samp{$[name.suffix]} must be used.
4307
4308The named references feature is experimental. More user feedback will help
4309to stabilize it.
378e917c 4310
342b8b6e 4311@node Declarations
bfa74976
RS
4312@section Bison Declarations
4313@cindex declarations, Bison
4314@cindex Bison declarations
4315
4316The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4317used in formulating the grammar and the data types of semantic values.
4318@xref{Symbols}.
4319
4320All token type names (but not single-character literal tokens such as
4321@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4322declared if you need to specify which data type to use for the semantic
4323value (@pxref{Multiple Types, ,More Than One Value Type}).
4324
ff7571c0
JD
4325The first rule in the grammar file also specifies the start symbol, by
4326default. If you want some other symbol to be the start symbol, you
4327must declare it explicitly (@pxref{Language and Grammar, ,Languages
4328and Context-Free Grammars}).
bfa74976
RS
4329
4330@menu
b50d2359 4331* Require Decl:: Requiring a Bison version.
bfa74976
RS
4332* Token Decl:: Declaring terminal symbols.
4333* Precedence Decl:: Declaring terminals with precedence and associativity.
4334* Union Decl:: Declaring the set of all semantic value types.
4335* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4336* Initial Action Decl:: Code run before parsing starts.
72f889cc 4337* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4338* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4339* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4340* Start Decl:: Specifying the start symbol.
4341* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4342* Push Decl:: Requesting a push parser.
bfa74976 4343* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4344* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4345* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4346@end menu
4347
b50d2359
AD
4348@node Require Decl
4349@subsection Require a Version of Bison
4350@cindex version requirement
4351@cindex requiring a version of Bison
4352@findex %require
4353
4354You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4355the requirement is not met, @command{bison} exits with an error (exit
4356status 63).
b50d2359
AD
4357
4358@example
4359%require "@var{version}"
4360@end example
4361
342b8b6e 4362@node Token Decl
bfa74976
RS
4363@subsection Token Type Names
4364@cindex declaring token type names
4365@cindex token type names, declaring
931c7513 4366@cindex declaring literal string tokens
bfa74976
RS
4367@findex %token
4368
4369The basic way to declare a token type name (terminal symbol) is as follows:
4370
4371@example
4372%token @var{name}
4373@end example
4374
4375Bison will convert this into a @code{#define} directive in
4376the parser, so that the function @code{yylex} (if it is in this file)
4377can use the name @var{name} to stand for this token type's code.
4378
d78f0ac9
AD
4379Alternatively, you can use @code{%left}, @code{%right},
4380@code{%precedence}, or
14ded682
AD
4381@code{%nonassoc} instead of @code{%token}, if you wish to specify
4382associativity and precedence. @xref{Precedence Decl, ,Operator
4383Precedence}.
bfa74976
RS
4384
4385You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4386a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4387following the token name:
bfa74976
RS
4388
4389@example
4390%token NUM 300
1452af69 4391%token XNUM 0x12d // a GNU extension
bfa74976
RS
4392@end example
4393
4394@noindent
4395It is generally best, however, to let Bison choose the numeric codes for
4396all token types. Bison will automatically select codes that don't conflict
e966383b 4397with each other or with normal characters.
bfa74976
RS
4398
4399In the event that the stack type is a union, you must augment the
4400@code{%token} or other token declaration to include the data type
704a47c4
AD
4401alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4402Than One Value Type}).
bfa74976
RS
4403
4404For example:
4405
4406@example
4407@group
4408%union @{ /* define stack type */
4409 double val;
4410 symrec *tptr;
4411@}
4412%token <val> NUM /* define token NUM and its type */
4413@end group
4414@end example
4415
931c7513
RS
4416You can associate a literal string token with a token type name by
4417writing the literal string at the end of a @code{%token}
4418declaration which declares the name. For example:
4419
4420@example
4421%token arrow "=>"
4422@end example
4423
4424@noindent
4425For example, a grammar for the C language might specify these names with
4426equivalent literal string tokens:
4427
4428@example
4429%token <operator> OR "||"
4430%token <operator> LE 134 "<="
4431%left OR "<="
4432@end example
4433
4434@noindent
4435Once you equate the literal string and the token name, you can use them
4436interchangeably in further declarations or the grammar rules. The
4437@code{yylex} function can use the token name or the literal string to
4438obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4439Syntax error messages passed to @code{yyerror} from the parser will reference
4440the literal string instead of the token name.
4441
4442The token numbered as 0 corresponds to end of file; the following line
4443allows for nicer error messages referring to ``end of file'' instead
4444of ``$end'':
4445
4446@example
4447%token END 0 "end of file"
4448@end example
931c7513 4449
342b8b6e 4450@node Precedence Decl
bfa74976
RS
4451@subsection Operator Precedence
4452@cindex precedence declarations
4453@cindex declaring operator precedence
4454@cindex operator precedence, declaring
4455
d78f0ac9
AD
4456Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4457@code{%precedence} declaration to
bfa74976
RS
4458declare a token and specify its precedence and associativity, all at
4459once. These are called @dfn{precedence declarations}.
704a47c4
AD
4460@xref{Precedence, ,Operator Precedence}, for general information on
4461operator precedence.
bfa74976 4462
ab7f29f8 4463The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4464@code{%token}: either
4465
4466@example
4467%left @var{symbols}@dots{}
4468@end example
4469
4470@noindent
4471or
4472
4473@example
4474%left <@var{type}> @var{symbols}@dots{}
4475@end example
4476
4477And indeed any of these declarations serves the purposes of @code{%token}.
4478But in addition, they specify the associativity and relative precedence for
4479all the @var{symbols}:
4480
4481@itemize @bullet
4482@item
4483The associativity of an operator @var{op} determines how repeated uses
4484of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4485@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4486grouping @var{y} with @var{z} first. @code{%left} specifies
4487left-associativity (grouping @var{x} with @var{y} first) and
4488@code{%right} specifies right-associativity (grouping @var{y} with
4489@var{z} first). @code{%nonassoc} specifies no associativity, which
4490means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4491considered a syntax error.
4492
d78f0ac9
AD
4493@code{%precedence} gives only precedence to the @var{symbols}, and
4494defines no associativity at all. Use this to define precedence only,
4495and leave any potential conflict due to associativity enabled.
4496
bfa74976
RS
4497@item
4498The precedence of an operator determines how it nests with other operators.
4499All the tokens declared in a single precedence declaration have equal
4500precedence and nest together according to their associativity.
4501When two tokens declared in different precedence declarations associate,
4502the one declared later has the higher precedence and is grouped first.
4503@end itemize
4504
ab7f29f8
JD
4505For backward compatibility, there is a confusing difference between the
4506argument lists of @code{%token} and precedence declarations.
4507Only a @code{%token} can associate a literal string with a token type name.
4508A precedence declaration always interprets a literal string as a reference to a
4509separate token.
4510For example:
4511
4512@example
4513%left OR "<=" // Does not declare an alias.
4514%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4515@end example
4516
342b8b6e 4517@node Union Decl
bfa74976
RS
4518@subsection The Collection of Value Types
4519@cindex declaring value types
4520@cindex value types, declaring
4521@findex %union
4522
287c78f6
PE
4523The @code{%union} declaration specifies the entire collection of
4524possible data types for semantic values. The keyword @code{%union} is
4525followed by braced code containing the same thing that goes inside a
4526@code{union} in C@.
bfa74976
RS
4527
4528For example:
4529
4530@example
4531@group
4532%union @{
4533 double val;
4534 symrec *tptr;
4535@}
4536@end group
4537@end example
4538
4539@noindent
4540This says that the two alternative types are @code{double} and @code{symrec
4541*}. They are given names @code{val} and @code{tptr}; these names are used
4542in the @code{%token} and @code{%type} declarations to pick one of the types
4543for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4544
8a4281b9 4545As an extension to POSIX, a tag is allowed after the
6273355b
PE
4546@code{union}. For example:
4547
4548@example
4549@group
4550%union value @{
4551 double val;
4552 symrec *tptr;
4553@}
4554@end group
4555@end example
4556
d6ca7905 4557@noindent
6273355b
PE
4558specifies the union tag @code{value}, so the corresponding C type is
4559@code{union value}. If you do not specify a tag, it defaults to
4560@code{YYSTYPE}.
4561
8a4281b9 4562As another extension to POSIX, you may specify multiple
d6ca7905
PE
4563@code{%union} declarations; their contents are concatenated. However,
4564only the first @code{%union} declaration can specify a tag.
4565
6273355b 4566Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4567a semicolon after the closing brace.
4568
ddc8ede1
PE
4569Instead of @code{%union}, you can define and use your own union type
4570@code{YYSTYPE} if your grammar contains at least one
4571@samp{<@var{type}>} tag. For example, you can put the following into
4572a header file @file{parser.h}:
4573
4574@example
4575@group
4576union YYSTYPE @{
4577 double val;
4578 symrec *tptr;
4579@};
4580typedef union YYSTYPE YYSTYPE;
4581@end group
4582@end example
4583
4584@noindent
4585and then your grammar can use the following
4586instead of @code{%union}:
4587
4588@example
4589@group
4590%@{
4591#include "parser.h"
4592%@}
4593%type <val> expr
4594%token <tptr> ID
4595@end group
4596@end example
4597
342b8b6e 4598@node Type Decl
bfa74976
RS
4599@subsection Nonterminal Symbols
4600@cindex declaring value types, nonterminals
4601@cindex value types, nonterminals, declaring
4602@findex %type
4603
4604@noindent
4605When you use @code{%union} to specify multiple value types, you must
4606declare the value type of each nonterminal symbol for which values are
4607used. This is done with a @code{%type} declaration, like this:
4608
4609@example
4610%type <@var{type}> @var{nonterminal}@dots{}
4611@end example
4612
4613@noindent
704a47c4
AD
4614Here @var{nonterminal} is the name of a nonterminal symbol, and
4615@var{type} is the name given in the @code{%union} to the alternative
4616that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4617can give any number of nonterminal symbols in the same @code{%type}
4618declaration, if they have the same value type. Use spaces to separate
4619the symbol names.
bfa74976 4620
931c7513
RS
4621You can also declare the value type of a terminal symbol. To do this,
4622use the same @code{<@var{type}>} construction in a declaration for the
4623terminal symbol. All kinds of token declarations allow
4624@code{<@var{type}>}.
4625
18d192f0
AD
4626@node Initial Action Decl
4627@subsection Performing Actions before Parsing
4628@findex %initial-action
4629
4630Sometimes your parser needs to perform some initializations before
4631parsing. The @code{%initial-action} directive allows for such arbitrary
4632code.
4633
4634@deffn {Directive} %initial-action @{ @var{code} @}
4635@findex %initial-action
287c78f6 4636Declare that the braced @var{code} must be invoked before parsing each time
cd735a8c
AD
4637@code{yyparse} is called. The @var{code} may use @code{$$} (or
4638@code{$<@var{tag}>$}) and @code{@@$} --- initial value and location of the
4639lookahead --- and the @code{%parse-param}.
18d192f0
AD
4640@end deffn
4641
451364ed
AD
4642For instance, if your locations use a file name, you may use
4643
4644@example
48b16bbc 4645%parse-param @{ char const *file_name @};
451364ed
AD
4646%initial-action
4647@{
4626a15d 4648 @@$.initialize (file_name);
451364ed
AD
4649@};
4650@end example
4651
18d192f0 4652
72f889cc
AD
4653@node Destructor Decl
4654@subsection Freeing Discarded Symbols
4655@cindex freeing discarded symbols
4656@findex %destructor
12e35840 4657@findex <*>
3ebecc24 4658@findex <>
a85284cf
AD
4659During error recovery (@pxref{Error Recovery}), symbols already pushed
4660on the stack and tokens coming from the rest of the file are discarded
4661until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4662or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4663symbols on the stack must be discarded. Even if the parser succeeds, it
4664must discard the start symbol.
258b75ca
PE
4665
4666When discarded symbols convey heap based information, this memory is
4667lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4668in traditional compilers, it is unacceptable for programs like shells or
4669protocol implementations that may parse and execute indefinitely.
258b75ca 4670
a85284cf
AD
4671The @code{%destructor} directive defines code that is called when a
4672symbol is automatically discarded.
72f889cc
AD
4673
4674@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4675@findex %destructor
287c78f6 4676Invoke the braced @var{code} whenever the parser discards one of the
4982f078
AD
4677@var{symbols}. Within @var{code}, @code{$$} (or @code{$<@var{tag}>$})
4678designates the semantic value associated with the discarded symbol, and
4679@code{@@$} designates its location. The additional parser parameters are
4680also available (@pxref{Parser Function, , The Parser Function
4681@code{yyparse}}).
ec5479ce 4682
b2a0b7ca
JD
4683When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4684per-symbol @code{%destructor}.
4685You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4686tag among @var{symbols}.
b2a0b7ca 4687In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4688grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4689per-symbol @code{%destructor}.
4690
12e35840 4691Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4692(These default forms are experimental.
4693More user feedback will help to determine whether they should become permanent
4694features.)
3ebecc24 4695You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4696exactly one @code{%destructor} declaration in your grammar file.
4697The parser will invoke the @var{code} associated with one of these whenever it
4698discards any user-defined grammar symbol that has no per-symbol and no per-type
4699@code{%destructor}.
4700The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4701symbol for which you have formally declared a semantic type tag (@code{%type}
4702counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4703The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4704symbol that has no declared semantic type tag.
72f889cc
AD
4705@end deffn
4706
b2a0b7ca 4707@noindent
12e35840 4708For example:
72f889cc 4709
c93f22fc 4710@example
ec5479ce
JD
4711%union @{ char *string; @}
4712%token <string> STRING1
4713%token <string> STRING2
4714%type <string> string1
4715%type <string> string2
b2a0b7ca
JD
4716%union @{ char character; @}
4717%token <character> CHR
4718%type <character> chr
12e35840
JD
4719%token TAGLESS
4720
b2a0b7ca 4721%destructor @{ @} <character>
12e35840
JD
4722%destructor @{ free ($$); @} <*>
4723%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4724%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4725@end example
72f889cc
AD
4726
4727@noindent
b2a0b7ca
JD
4728guarantees that, when the parser discards any user-defined symbol that has a
4729semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4730to @code{free} by default.
ec5479ce
JD
4731However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4732prints its line number to @code{stdout}.
4733It performs only the second @code{%destructor} in this case, so it invokes
4734@code{free} only once.
12e35840
JD
4735Finally, the parser merely prints a message whenever it discards any symbol,
4736such as @code{TAGLESS}, that has no semantic type tag.
4737
4738A Bison-generated parser invokes the default @code{%destructor}s only for
4739user-defined as opposed to Bison-defined symbols.
4740For example, the parser will not invoke either kind of default
4741@code{%destructor} for the special Bison-defined symbols @code{$accept},
4742@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4743none of which you can reference in your grammar.
4744It also will not invoke either for the @code{error} token (@pxref{Table of
4745Symbols, ,error}), which is always defined by Bison regardless of whether you
4746reference it in your grammar.
4747However, it may invoke one of them for the end token (token 0) if you
4748redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4749
c93f22fc 4750@example
3508ce36 4751%token END 0
c93f22fc 4752@end example
3508ce36 4753
12e35840
JD
4754@cindex actions in mid-rule
4755@cindex mid-rule actions
4756Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4757mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4758That is, Bison does not consider a mid-rule to have a semantic value if you
4759do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4760(where @var{n} is the right-hand side symbol position of the mid-rule) in
4761any later action in that rule. However, if you do reference either, the
4762Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4763it discards the mid-rule symbol.
12e35840 4764
3508ce36
JD
4765@ignore
4766@noindent
4767In the future, it may be possible to redefine the @code{error} token as a
4768nonterminal that captures the discarded symbols.
4769In that case, the parser will invoke the default destructor for it as well.
4770@end ignore
4771
e757bb10
AD
4772@sp 1
4773
4774@cindex discarded symbols
4775@dfn{Discarded symbols} are the following:
4776
4777@itemize
4778@item
4779stacked symbols popped during the first phase of error recovery,
4780@item
4781incoming terminals during the second phase of error recovery,
4782@item
742e4900 4783the current lookahead and the entire stack (except the current
9d9b8b70 4784right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4785@item
4786the start symbol, when the parser succeeds.
e757bb10
AD
4787@end itemize
4788
9d9b8b70
PE
4789The parser can @dfn{return immediately} because of an explicit call to
4790@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4791exhaustion.
4792
29553547 4793Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4794error via @code{YYERROR} are not discarded automatically. As a rule
4795of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4796the memory.
e757bb10 4797
93c150b6
AD
4798@node Printer Decl
4799@subsection Printing Semantic Values
4800@cindex printing semantic values
4801@findex %printer
4802@findex <*>
4803@findex <>
4804When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4805the parser reports its actions, such as reductions. When a symbol involved
4806in an action is reported, only its kind is displayed, as the parser cannot
4807know how semantic values should be formatted.
4808
4809The @code{%printer} directive defines code that is called when a symbol is
4810reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4811Decl, , Freeing Discarded Symbols}).
4812
4813@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4814@findex %printer
4815@vindex yyoutput
4816@c This is the same text as for %destructor.
4817Invoke the braced @var{code} whenever the parser displays one of the
4818@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4982f078
AD
4819(a @code{FILE*} in C, and an @code{std::ostream&} in C++), @code{$$} (or
4820@code{$<@var{tag}>$}) designates the semantic value associated with the
4821symbol, and @code{@@$} its location. The additional parser parameters are
4822also available (@pxref{Parser Function, , The Parser Function
4823@code{yyparse}}).
93c150b6
AD
4824
4825The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4826Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4827@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4828typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4829@samp{<>}).
4830@end deffn
4831
4832@noindent
4833For example:
4834
4835@example
4836%union @{ char *string; @}
4837%token <string> STRING1
4838%token <string> STRING2
4839%type <string> string1
4840%type <string> string2
4841%union @{ char character; @}
4842%token <character> CHR
4843%type <character> chr
4844%token TAGLESS
4845
4846%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4847%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4848%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4849%printer @{ fprintf (yyoutput, "<>"); @} <>
4850@end example
4851
4852@noindent
4853guarantees that, when the parser print any symbol that has a semantic type
4854tag other than @code{<character>}, it display the address of the semantic
4855value by default. However, when the parser displays a @code{STRING1} or a
4856@code{string1}, it formats it as a string in double quotes. It performs
4857only the second @code{%printer} in this case, so it prints only once.
4858Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4859that has no semantic type tag. See also
4860
4861
342b8b6e 4862@node Expect Decl
bfa74976
RS
4863@subsection Suppressing Conflict Warnings
4864@cindex suppressing conflict warnings
4865@cindex preventing warnings about conflicts
4866@cindex warnings, preventing
4867@cindex conflicts, suppressing warnings of
4868@findex %expect
d6328241 4869@findex %expect-rr
bfa74976
RS
4870
4871Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4872(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4873have harmless shift/reduce conflicts which are resolved in a predictable
4874way and would be difficult to eliminate. It is desirable to suppress
4875the warning about these conflicts unless the number of conflicts
4876changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4877
4878The declaration looks like this:
4879
4880@example
4881%expect @var{n}
4882@end example
4883
035aa4a0
PE
4884Here @var{n} is a decimal integer. The declaration says there should
4885be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4886Bison reports an error if the number of shift/reduce conflicts differs
4887from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4888
eb45ef3b 4889For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4890serious, and should be eliminated entirely. Bison will always report
8a4281b9 4891reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4892parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4893there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4894also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4895in GLR parsers, using the declaration:
d6328241
PH
4896
4897@example
4898%expect-rr @var{n}
4899@end example
4900
bfa74976
RS
4901In general, using @code{%expect} involves these steps:
4902
4903@itemize @bullet
4904@item
4905Compile your grammar without @code{%expect}. Use the @samp{-v} option
4906to get a verbose list of where the conflicts occur. Bison will also
4907print the number of conflicts.
4908
4909@item
4910Check each of the conflicts to make sure that Bison's default
4911resolution is what you really want. If not, rewrite the grammar and
4912go back to the beginning.
4913
4914@item
4915Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4916number which Bison printed. With GLR parsers, add an
035aa4a0 4917@code{%expect-rr} declaration as well.
bfa74976
RS
4918@end itemize
4919
93d7dde9
JD
4920Now Bison will report an error if you introduce an unexpected conflict,
4921but will keep silent otherwise.
bfa74976 4922
342b8b6e 4923@node Start Decl
bfa74976
RS
4924@subsection The Start-Symbol
4925@cindex declaring the start symbol
4926@cindex start symbol, declaring
4927@cindex default start symbol
4928@findex %start
4929
4930Bison assumes by default that the start symbol for the grammar is the first
4931nonterminal specified in the grammar specification section. The programmer
4932may override this restriction with the @code{%start} declaration as follows:
4933
4934@example
4935%start @var{symbol}
4936@end example
4937
342b8b6e 4938@node Pure Decl
bfa74976
RS
4939@subsection A Pure (Reentrant) Parser
4940@cindex reentrant parser
4941@cindex pure parser
d9df47b6 4942@findex %define api.pure
bfa74976
RS
4943
4944A @dfn{reentrant} program is one which does not alter in the course of
4945execution; in other words, it consists entirely of @dfn{pure} (read-only)
4946code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4947for example, a nonreentrant program may not be safe to call from a signal
4948handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4949program must be called only within interlocks.
4950
70811b85 4951Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4952suitable for most uses, and it permits compatibility with Yacc. (The
4953standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4954statically allocated variables for communication with @code{yylex},
4955including @code{yylval} and @code{yylloc}.)
bfa74976 4956
70811b85 4957Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4958declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4959reentrant. It looks like this:
bfa74976
RS
4960
4961@example
d9df47b6 4962%define api.pure
bfa74976
RS
4963@end example
4964
70811b85
RS
4965The result is that the communication variables @code{yylval} and
4966@code{yylloc} become local variables in @code{yyparse}, and a different
4967calling convention is used for the lexical analyzer function
4968@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4969Parsers}, for the details of this. The variable @code{yynerrs}
4970becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4971of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4972Reporting Function @code{yyerror}}). The convention for calling
4973@code{yyparse} itself is unchanged.
4974
4975Whether the parser is pure has nothing to do with the grammar rules.
4976You can generate either a pure parser or a nonreentrant parser from any
4977valid grammar.
bfa74976 4978
9987d1b3
JD
4979@node Push Decl
4980@subsection A Push Parser
4981@cindex push parser
4982@cindex push parser
67212941 4983@findex %define api.push-pull
9987d1b3 4984
59da312b
JD
4985(The current push parsing interface is experimental and may evolve.
4986More user feedback will help to stabilize it.)
4987
f4101aa6
AD
4988A pull parser is called once and it takes control until all its input
4989is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4990each time a new token is made available.
4991
f4101aa6 4992A push parser is typically useful when the parser is part of a
9987d1b3 4993main event loop in the client's application. This is typically
f4101aa6
AD
4994a requirement of a GUI, when the main event loop needs to be triggered
4995within a certain time period.
9987d1b3 4996
d782395d
JD
4997Normally, Bison generates a pull parser.
4998The following Bison declaration says that you want the parser to be a push
35c1e5f0 4999parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
5000
5001@example
cf499cff 5002%define api.push-pull push
9987d1b3
JD
5003@end example
5004
5005In almost all cases, you want to ensure that your push parser is also
5006a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5007time you should create an impure push parser is to have backwards
9987d1b3
JD
5008compatibility with the impure Yacc pull mode interface. Unless you know
5009what you are doing, your declarations should look like this:
5010
5011@example
d9df47b6 5012%define api.pure
cf499cff 5013%define api.push-pull push
9987d1b3
JD
5014@end example
5015
f4101aa6
AD
5016There is a major notable functional difference between the pure push parser
5017and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5018many parser instances, of the same type of parser, in memory at the same time.
5019An impure push parser should only use one parser at a time.
5020
5021When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5022the generated parser. @code{yypstate} is a structure that the generated
5023parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5024function that will create a new parser instance. @code{yypstate_delete}
5025will free the resources associated with the corresponding parser instance.
f4101aa6 5026Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5027token is available to provide the parser. A trivial example
5028of using a pure push parser would look like this:
5029
5030@example
5031int status;
5032yypstate *ps = yypstate_new ();
5033do @{
5034 status = yypush_parse (ps, yylex (), NULL);
5035@} while (status == YYPUSH_MORE);
5036yypstate_delete (ps);
5037@end example
5038
5039If the user decided to use an impure push parser, a few things about
f4101aa6 5040the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5041a global variable instead of a variable in the @code{yypush_parse} function.
5042For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5043changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5044example would thus look like this:
5045
5046@example
5047extern int yychar;
5048int status;
5049yypstate *ps = yypstate_new ();
5050do @{
5051 yychar = yylex ();
5052 status = yypush_parse (ps);
5053@} while (status == YYPUSH_MORE);
5054yypstate_delete (ps);
5055@end example
5056
f4101aa6 5057That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5058for use by the next invocation of the @code{yypush_parse} function.
5059
f4101aa6 5060Bison also supports both the push parser interface along with the pull parser
9987d1b3 5061interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5062you should replace the @samp{%define api.push-pull push} declaration with the
5063@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5064the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5065and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5066would be used. However, the user should note that it is implemented in the
d782395d
JD
5067generated parser by calling @code{yypull_parse}.
5068This makes the @code{yyparse} function that is generated with the
cf499cff 5069@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5070@code{yyparse} function. If the user
5071calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5072stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5073and then @code{yypull_parse} the rest of the input stream. If you would like
5074to switch back and forth between between parsing styles, you would have to
5075write your own @code{yypull_parse} function that knows when to quit looking
5076for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5077like this:
5078
5079@example
5080yypstate *ps = yypstate_new ();
5081yypull_parse (ps); /* Will call the lexer */
5082yypstate_delete (ps);
5083@end example
5084
67501061 5085Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5086the generated parser with @samp{%define api.push-pull both} as it did for
5087@samp{%define api.push-pull push}.
9987d1b3 5088
342b8b6e 5089@node Decl Summary
bfa74976
RS
5090@subsection Bison Declaration Summary
5091@cindex Bison declaration summary
5092@cindex declaration summary
5093@cindex summary, Bison declaration
5094
d8988b2f 5095Here is a summary of the declarations used to define a grammar:
bfa74976 5096
18b519c0 5097@deffn {Directive} %union
bfa74976
RS
5098Declare the collection of data types that semantic values may have
5099(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5100@end deffn
bfa74976 5101
18b519c0 5102@deffn {Directive} %token
bfa74976
RS
5103Declare a terminal symbol (token type name) with no precedence
5104or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5105@end deffn
bfa74976 5106
18b519c0 5107@deffn {Directive} %right
bfa74976
RS
5108Declare a terminal symbol (token type name) that is right-associative
5109(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5110@end deffn
bfa74976 5111
18b519c0 5112@deffn {Directive} %left
bfa74976
RS
5113Declare a terminal symbol (token type name) that is left-associative
5114(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5115@end deffn
bfa74976 5116
18b519c0 5117@deffn {Directive} %nonassoc
bfa74976 5118Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5119(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5120Using it in a way that would be associative is a syntax error.
5121@end deffn
5122
91d2c560 5123@ifset defaultprec
39a06c25 5124@deffn {Directive} %default-prec
22fccf95 5125Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5126(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5127@end deffn
91d2c560 5128@end ifset
bfa74976 5129
18b519c0 5130@deffn {Directive} %type
bfa74976
RS
5131Declare the type of semantic values for a nonterminal symbol
5132(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5133@end deffn
bfa74976 5134
18b519c0 5135@deffn {Directive} %start
89cab50d
AD
5136Specify the grammar's start symbol (@pxref{Start Decl, ,The
5137Start-Symbol}).
18b519c0 5138@end deffn
bfa74976 5139
18b519c0 5140@deffn {Directive} %expect
bfa74976
RS
5141Declare the expected number of shift-reduce conflicts
5142(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5143@end deffn
5144
bfa74976 5145
d8988b2f
AD
5146@sp 1
5147@noindent
5148In order to change the behavior of @command{bison}, use the following
5149directives:
5150
148d66d8 5151@deffn {Directive} %code @{@var{code}@}
e0c07222 5152@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5153@findex %code
e0c07222
JD
5154Insert @var{code} verbatim into the output parser source at the
5155default location or at the location specified by @var{qualifier}.
5156@xref{%code Summary}.
148d66d8
JD
5157@end deffn
5158
18b519c0 5159@deffn {Directive} %debug
60aa04a2 5160Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5161parse.trace}.
ec3bc396 5162@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5163@end deffn
d8988b2f 5164
35c1e5f0
JD
5165@deffn {Directive} %define @var{variable}
5166@deffnx {Directive} %define @var{variable} @var{value}
5167@deffnx {Directive} %define @var{variable} "@var{value}"
5168Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5169@end deffn
5170
5171@deffn {Directive} %defines
5172Write a parser header file containing macro definitions for the token
5173type names defined in the grammar as well as a few other declarations.
5174If the parser implementation file is named @file{@var{name}.c} then
5175the parser header file is named @file{@var{name}.h}.
5176
5177For C parsers, the parser header file declares @code{YYSTYPE} unless
5178@code{YYSTYPE} is already defined as a macro or you have used a
5179@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5180you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5181Value Type}) with components that require other definitions, or if you
5182have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5183Type, ,Data Types of Semantic Values}), you need to arrange for these
5184definitions to be propagated to all modules, e.g., by putting them in
5185a prerequisite header that is included both by your parser and by any
5186other module that needs @code{YYSTYPE}.
5187
5188Unless your parser is pure, the parser header file declares
5189@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5190(Reentrant) Parser}.
5191
5192If you have also used locations, the parser header file declares
303834cc
JD
5193@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5194@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5195
5196This parser header file is normally essential if you wish to put the
5197definition of @code{yylex} in a separate source file, because
5198@code{yylex} typically needs to be able to refer to the
5199above-mentioned declarations and to the token type codes. @xref{Token
5200Values, ,Semantic Values of Tokens}.
5201
5202@findex %code requires
5203@findex %code provides
5204If you have declared @code{%code requires} or @code{%code provides}, the output
5205header also contains their code.
5206@xref{%code Summary}.
5207@end deffn
5208
5209@deffn {Directive} %defines @var{defines-file}
5210Same as above, but save in the file @var{defines-file}.
5211@end deffn
5212
5213@deffn {Directive} %destructor
5214Specify how the parser should reclaim the memory associated to
5215discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5216@end deffn
5217
5218@deffn {Directive} %file-prefix "@var{prefix}"
5219Specify a prefix to use for all Bison output file names. The names
5220are chosen as if the grammar file were named @file{@var{prefix}.y}.
5221@end deffn
5222
5223@deffn {Directive} %language "@var{language}"
5224Specify the programming language for the generated parser. Currently
5225supported languages include C, C++, and Java.
5226@var{language} is case-insensitive.
5227
5228This directive is experimental and its effect may be modified in future
5229releases.
5230@end deffn
5231
5232@deffn {Directive} %locations
5233Generate the code processing the locations (@pxref{Action Features,
5234,Special Features for Use in Actions}). This mode is enabled as soon as
5235the grammar uses the special @samp{@@@var{n}} tokens, but if your
5236grammar does not use it, using @samp{%locations} allows for more
5237accurate syntax error messages.
5238@end deffn
5239
5240@deffn {Directive} %name-prefix "@var{prefix}"
5241Rename the external symbols used in the parser so that they start with
5242@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5243in C parsers
5244is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5245@code{yylval}, @code{yychar}, @code{yydebug}, and
5246(if locations are used) @code{yylloc}. If you use a push parser,
5247@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5248@code{yypstate_new} and @code{yypstate_delete} will
5249also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5250names become @code{c_parse}, @code{c_lex}, and so on.
5251For C++ parsers, see the @samp{%define api.namespace} documentation in this
5252section.
5253@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5254@end deffn
5255
5256@ifset defaultprec
5257@deffn {Directive} %no-default-prec
5258Do not assign a precedence to rules lacking an explicit @code{%prec}
5259modifier (@pxref{Contextual Precedence, ,Context-Dependent
5260Precedence}).
5261@end deffn
5262@end ifset
5263
5264@deffn {Directive} %no-lines
5265Don't generate any @code{#line} preprocessor commands in the parser
5266implementation file. Ordinarily Bison writes these commands in the
5267parser implementation file so that the C compiler and debuggers will
5268associate errors and object code with your source file (the grammar
5269file). This directive causes them to associate errors with the parser
5270implementation file, treating it as an independent source file in its
5271own right.
5272@end deffn
5273
5274@deffn {Directive} %output "@var{file}"
5275Specify @var{file} for the parser implementation file.
5276@end deffn
5277
5278@deffn {Directive} %pure-parser
5279Deprecated version of @samp{%define api.pure} (@pxref{%define
5280Summary,,api.pure}), for which Bison is more careful to warn about
5281unreasonable usage.
5282@end deffn
5283
5284@deffn {Directive} %require "@var{version}"
5285Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5286Require a Version of Bison}.
5287@end deffn
5288
5289@deffn {Directive} %skeleton "@var{file}"
5290Specify the skeleton to use.
5291
5292@c You probably don't need this option unless you are developing Bison.
5293@c You should use @code{%language} if you want to specify the skeleton for a
5294@c different language, because it is clearer and because it will always choose the
5295@c correct skeleton for non-deterministic or push parsers.
5296
5297If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5298file in the Bison installation directory.
5299If it does, @var{file} is an absolute file name or a file name relative to the
5300directory of the grammar file.
5301This is similar to how most shells resolve commands.
5302@end deffn
5303
5304@deffn {Directive} %token-table
5305Generate an array of token names in the parser implementation file.
5306The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5307the name of the token whose internal Bison token code number is
5308@var{i}. The first three elements of @code{yytname} correspond to the
5309predefined tokens @code{"$end"}, @code{"error"}, and
5310@code{"$undefined"}; after these come the symbols defined in the
5311grammar file.
5312
5313The name in the table includes all the characters needed to represent
5314the token in Bison. For single-character literals and literal
5315strings, this includes the surrounding quoting characters and any
5316escape sequences. For example, the Bison single-character literal
5317@code{'+'} corresponds to a three-character name, represented in C as
5318@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5319corresponds to a five-character name, represented in C as
5320@code{"\"\\\\/\""}.
5321
5322When you specify @code{%token-table}, Bison also generates macro
5323definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5324@code{YYNRULES}, and @code{YYNSTATES}:
5325
5326@table @code
5327@item YYNTOKENS
5328The highest token number, plus one.
5329@item YYNNTS
5330The number of nonterminal symbols.
5331@item YYNRULES
5332The number of grammar rules,
5333@item YYNSTATES
5334The number of parser states (@pxref{Parser States}).
5335@end table
5336@end deffn
5337
5338@deffn {Directive} %verbose
5339Write an extra output file containing verbose descriptions of the
5340parser states and what is done for each type of lookahead token in
5341that state. @xref{Understanding, , Understanding Your Parser}, for more
5342information.
5343@end deffn
5344
5345@deffn {Directive} %yacc
5346Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5347including its naming conventions. @xref{Bison Options}, for more.
5348@end deffn
5349
5350
5351@node %define Summary
5352@subsection %define Summary
51151d91
JD
5353
5354There are many features of Bison's behavior that can be controlled by
5355assigning the feature a single value. For historical reasons, some
5356such features are assigned values by dedicated directives, such as
5357@code{%start}, which assigns the start symbol. However, newer such
5358features are associated with variables, which are assigned by the
5359@code{%define} directive:
5360
c1d19e10 5361@deffn {Directive} %define @var{variable}
cf499cff 5362@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5363@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5364Define @var{variable} to @var{value}.
9611cfa2 5365
51151d91
JD
5366@var{value} must be placed in quotation marks if it contains any
5367character other than a letter, underscore, period, or non-initial dash
5368or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5369to specifying @code{""}.
9611cfa2 5370
51151d91
JD
5371It is an error if a @var{variable} is defined by @code{%define}
5372multiple times, but see @ref{Bison Options,,-D
5373@var{name}[=@var{value}]}.
5374@end deffn
cf499cff 5375
51151d91
JD
5376The rest of this section summarizes variables and values that
5377@code{%define} accepts.
9611cfa2 5378
51151d91
JD
5379Some @var{variable}s take Boolean values. In this case, Bison will
5380complain if the variable definition does not meet one of the following
5381four conditions:
9611cfa2
JD
5382
5383@enumerate
cf499cff 5384@item @code{@var{value}} is @code{true}
9611cfa2 5385
cf499cff
JD
5386@item @code{@var{value}} is omitted (or @code{""} is specified).
5387This is equivalent to @code{true}.
9611cfa2 5388
cf499cff 5389@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5390
5391@item @var{variable} is never defined.
c6abeab1 5392In this case, Bison selects a default value.
9611cfa2 5393@end enumerate
148d66d8 5394
c6abeab1
JD
5395What @var{variable}s are accepted, as well as their meanings and default
5396values, depend on the selected target language and/or the parser
5397skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5398Summary,,%skeleton}).
5399Unaccepted @var{variable}s produce an error.
793fbca5
JD
5400Some of the accepted @var{variable}s are:
5401
fa819509 5402@table @code
6b5a0de9 5403@c ================================================== api.namespace
67501061
AD
5404@item api.namespace
5405@findex %define api.namespace
5406@itemize
5407@item Languages(s): C++
5408
f1b238df 5409@item Purpose: Specify the namespace for the parser class.
67501061
AD
5410For example, if you specify:
5411
c93f22fc 5412@example
67501061 5413%define api.namespace "foo::bar"
c93f22fc 5414@end example
67501061
AD
5415
5416Bison uses @code{foo::bar} verbatim in references such as:
5417
c93f22fc 5418@example
67501061 5419foo::bar::parser::semantic_type
c93f22fc 5420@end example
67501061
AD
5421
5422However, to open a namespace, Bison removes any leading @code{::} and then
5423splits on any remaining occurrences:
5424
c93f22fc 5425@example
67501061
AD
5426namespace foo @{ namespace bar @{
5427 class position;
5428 class location;
5429@} @}
c93f22fc 5430@end example
67501061
AD
5431
5432@item Accepted Values:
5433Any absolute or relative C++ namespace reference without a trailing
5434@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5435
5436@item Default Value:
5437The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5438This usage of @code{%name-prefix} is for backward compatibility and can
5439be confusing since @code{%name-prefix} also specifies the textual prefix
5440for the lexical analyzer function. Thus, if you specify
5441@code{%name-prefix}, it is best to also specify @samp{%define
5442api.namespace} so that @code{%name-prefix} @emph{only} affects the
5443lexical analyzer function. For example, if you specify:
5444
c93f22fc 5445@example
67501061
AD
5446%define api.namespace "foo"
5447%name-prefix "bar::"
c93f22fc 5448@end example
67501061
AD
5449
5450The parser namespace is @code{foo} and @code{yylex} is referenced as
5451@code{bar::lex}.
5452@end itemize
5453@c namespace
5454
5455
4b3847c3 5456@c ================================================== api.prefix
5458913a 5457@item api.prefix
4b3847c3
AD
5458@findex %define api.prefix
5459
5460@itemize @bullet
5461@item Language(s): All
5462
5463@item Purpose: Rename exported symbols
5464@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5465
5466@item Accepted Values: String
5467
5468@item Default Value: @code{yy}
e358222b
AD
5469
5470@item History: introduced in Bison 2.6
4b3847c3 5471@end itemize
67501061
AD
5472
5473@c ================================================== api.pure
d9df47b6
JD
5474@item api.pure
5475@findex %define api.pure
5476
5477@itemize @bullet
5478@item Language(s): C
5479
5480@item Purpose: Request a pure (reentrant) parser program.
5481@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5482
5483@item Accepted Values: Boolean
5484
cf499cff 5485@item Default Value: @code{false}
d9df47b6 5486@end itemize
71b00ed8 5487@c api.pure
d9df47b6 5488
67501061
AD
5489
5490
5491@c ================================================== api.push-pull
67212941
JD
5492@item api.push-pull
5493@findex %define api.push-pull
793fbca5
JD
5494
5495@itemize @bullet
eb45ef3b 5496@item Language(s): C (deterministic parsers only)
793fbca5 5497
f1b238df 5498@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5499@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5500(The current push parsing interface is experimental and may evolve.
5501More user feedback will help to stabilize it.)
793fbca5 5502
cf499cff 5503@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5504
cf499cff 5505@item Default Value: @code{pull}
793fbca5 5506@end itemize
67212941 5507@c api.push-pull
71b00ed8 5508
6b5a0de9
AD
5509
5510
5511@c ================================================== api.tokens.prefix
4c6622c2
AD
5512@item api.tokens.prefix
5513@findex %define api.tokens.prefix
5514
5515@itemize
5516@item Languages(s): all
5517
5518@item Purpose:
5519Add a prefix to the token names when generating their definition in the
5520target language. For instance
5521
5522@example
5523%token FILE for ERROR
5524%define api.tokens.prefix "TOK_"
5525%%
5526start: FILE for ERROR;
5527@end example
5528
5529@noindent
5530generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5531and @code{TOK_ERROR} in the generated source files. In particular, the
5532scanner must use these prefixed token names, while the grammar itself
5533may still use the short names (as in the sample rule given above). The
5534generated informational files (@file{*.output}, @file{*.xml},
5535@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5536and @ref{Calc++ Scanner}, for a complete example.
5537
5538@item Accepted Values:
5539Any string. Should be a valid identifier prefix in the target language,
5540in other words, it should typically be an identifier itself (sequence of
5541letters, underscores, and ---not at the beginning--- digits).
5542
5543@item Default Value:
5544empty
5545@end itemize
5546@c api.tokens.prefix
5547
5548
3cdc21cf 5549@c ================================================== lex_symbol
84072495 5550@item lex_symbol
3cdc21cf
AD
5551@findex %define lex_symbol
5552
5553@itemize @bullet
5554@item Language(s):
5555C++
5556
5557@item Purpose:
5558When variant-based semantic values are enabled (@pxref{C++ Variants}),
5559request that symbols be handled as a whole (type, value, and possibly
5560location) in the scanner. @xref{Complete Symbols}, for details.
5561
5562@item Accepted Values:
5563Boolean.
5564
5565@item Default Value:
5566@code{false}
5567@end itemize
5568@c lex_symbol
5569
5570
6b5a0de9
AD
5571@c ================================================== lr.default-reductions
5572
5bab9d08 5573@item lr.default-reductions
5bab9d08 5574@findex %define lr.default-reductions
eb45ef3b
JD
5575
5576@itemize @bullet
5577@item Language(s): all
5578
fcf834f9 5579@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5580contain default reductions. @xref{Default Reductions}. (The ability to
5581specify where default reductions should be used is experimental. More user
5582feedback will help to stabilize it.)
eb45ef3b 5583
f0ad1b2f 5584@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5585@item Default Value:
5586@itemize
cf499cff 5587@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5588@item @code{most} otherwise.
eb45ef3b
JD
5589@end itemize
5590@end itemize
5591
6b5a0de9
AD
5592@c ============================================ lr.keep-unreachable-states
5593
67212941
JD
5594@item lr.keep-unreachable-states
5595@findex %define lr.keep-unreachable-states
31984206
JD
5596
5597@itemize @bullet
5598@item Language(s): all
f1b238df 5599@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5600remain in the parser tables. @xref{Unreachable States}.
31984206 5601@item Accepted Values: Boolean
cf499cff 5602@item Default Value: @code{false}
31984206 5603@end itemize
67212941 5604@c lr.keep-unreachable-states
31984206 5605
6b5a0de9
AD
5606@c ================================================== lr.type
5607
eb45ef3b
JD
5608@item lr.type
5609@findex %define lr.type
eb45ef3b
JD
5610
5611@itemize @bullet
5612@item Language(s): all
5613
f1b238df 5614@item Purpose: Specify the type of parser tables within the
7fceb615 5615LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5616More user feedback will help to stabilize it.)
5617
7fceb615 5618@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5619
cf499cff 5620@item Default Value: @code{lalr}
eb45ef3b
JD
5621@end itemize
5622
67501061
AD
5623
5624@c ================================================== namespace
793fbca5
JD
5625@item namespace
5626@findex %define namespace
67501061 5627Obsoleted by @code{api.namespace}
fa819509
AD
5628@c namespace
5629
31b850d2
AD
5630
5631@c ================================================== parse.assert
0c90a1f5
AD
5632@item parse.assert
5633@findex %define parse.assert
5634
5635@itemize
5636@item Languages(s): C++
5637
5638@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5639In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5640constructed and
0c90a1f5
AD
5641destroyed properly. This option checks these constraints.
5642
5643@item Accepted Values: Boolean
5644
5645@item Default Value: @code{false}
5646@end itemize
5647@c parse.assert
5648
31b850d2
AD
5649
5650@c ================================================== parse.error
5651@item parse.error
5652@findex %define parse.error
5653@itemize
5654@item Languages(s):
fcf834f9 5655all
31b850d2
AD
5656@item Purpose:
5657Control the kind of error messages passed to the error reporting
5658function. @xref{Error Reporting, ,The Error Reporting Function
5659@code{yyerror}}.
5660@item Accepted Values:
5661@itemize
cf499cff 5662@item @code{simple}
31b850d2
AD
5663Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5664error"}}.
cf499cff 5665@item @code{verbose}
7fceb615
JD
5666Error messages report the unexpected token, and possibly the expected ones.
5667However, this report can often be incorrect when LAC is not enabled
5668(@pxref{LAC}).
31b850d2
AD
5669@end itemize
5670
5671@item Default Value:
5672@code{simple}
5673@end itemize
5674@c parse.error
5675
5676
fcf834f9
JD
5677@c ================================================== parse.lac
5678@item parse.lac
5679@findex %define parse.lac
fcf834f9
JD
5680
5681@itemize
7fceb615 5682@item Languages(s): C (deterministic parsers only)
fcf834f9 5683
8a4281b9 5684@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5685syntax error handling. @xref{LAC}.
fcf834f9 5686@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5687@item Default Value: @code{none}
5688@end itemize
5689@c parse.lac
5690
31b850d2 5691@c ================================================== parse.trace
fa819509
AD
5692@item parse.trace
5693@findex %define parse.trace
5694
5695@itemize
60aa04a2 5696@item Languages(s): C, C++, Java
fa819509
AD
5697
5698@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
5699@xref{Tracing, ,Tracing Your Parser}.
5700
5701In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
5702@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
5703,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 5704file if it is not already defined, so that the debugging facilities are
60aa04a2 5705compiled.
793fbca5 5706
fa819509
AD
5707@item Accepted Values: Boolean
5708
5709@item Default Value: @code{false}
5710@end itemize
fa819509 5711@c parse.trace
99c08fb6 5712
3cdc21cf
AD
5713@c ================================================== variant
5714@item variant
5715@findex %define variant
5716
5717@itemize @bullet
5718@item Language(s):
5719C++
5720
5721@item Purpose:
f1b238df 5722Request variant-based semantic values.
3cdc21cf
AD
5723@xref{C++ Variants}.
5724
5725@item Accepted Values:
5726Boolean.
5727
5728@item Default Value:
5729@code{false}
5730@end itemize
5731@c variant
99c08fb6 5732@end table
592d0b1e 5733
d8988b2f 5734
e0c07222
JD
5735@node %code Summary
5736@subsection %code Summary
e0c07222 5737@findex %code
e0c07222 5738@cindex Prologue
51151d91
JD
5739
5740The @code{%code} directive inserts code verbatim into the output
5741parser source at any of a predefined set of locations. It thus serves
5742as a flexible and user-friendly alternative to the traditional Yacc
5743prologue, @code{%@{@var{code}%@}}. This section summarizes the
5744functionality of @code{%code} for the various target languages
5745supported by Bison. For a detailed discussion of how to use
5746@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5747is advantageous to do so, @pxref{Prologue Alternatives}.
5748
5749@deffn {Directive} %code @{@var{code}@}
5750This is the unqualified form of the @code{%code} directive. It
5751inserts @var{code} verbatim at a language-dependent default location
5752in the parser implementation.
5753
e0c07222 5754For C/C++, the default location is the parser implementation file
51151d91
JD
5755after the usual contents of the parser header file. Thus, the
5756unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5757
5758For Java, the default location is inside the parser class.
5759@end deffn
5760
5761@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5762This is the qualified form of the @code{%code} directive.
51151d91
JD
5763@var{qualifier} identifies the purpose of @var{code} and thus the
5764location(s) where Bison should insert it. That is, if you need to
5765specify location-sensitive @var{code} that does not belong at the
5766default location selected by the unqualified @code{%code} form, use
5767this form instead.
5768@end deffn
5769
5770For any particular qualifier or for the unqualified form, if there are
5771multiple occurrences of the @code{%code} directive, Bison concatenates
5772the specified code in the order in which it appears in the grammar
5773file.
e0c07222 5774
51151d91
JD
5775Not all qualifiers are accepted for all target languages. Unaccepted
5776qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5777
84072495 5778@table @code
e0c07222
JD
5779@item requires
5780@findex %code requires
5781
5782@itemize @bullet
5783@item Language(s): C, C++
5784
5785@item Purpose: This is the best place to write dependency code required for
5786@code{YYSTYPE} and @code{YYLTYPE}.
5787In other words, it's the best place to define types referenced in @code{%union}
5788directives, and it's the best place to override Bison's default @code{YYSTYPE}
5789and @code{YYLTYPE} definitions.
5790
5791@item Location(s): The parser header file and the parser implementation file
5792before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5793definitions.
5794@end itemize
5795
5796@item provides
5797@findex %code provides
5798
5799@itemize @bullet
5800@item Language(s): C, C++
5801
5802@item Purpose: This is the best place to write additional definitions and
5803declarations that should be provided to other modules.
5804
5805@item Location(s): The parser header file and the parser implementation
5806file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5807token definitions.
5808@end itemize
5809
5810@item top
5811@findex %code top
5812
5813@itemize @bullet
5814@item Language(s): C, C++
5815
5816@item Purpose: The unqualified @code{%code} or @code{%code requires}
5817should usually be more appropriate than @code{%code top}. However,
5818occasionally it is necessary to insert code much nearer the top of the
5819parser implementation file. For example:
5820
c93f22fc 5821@example
e0c07222
JD
5822%code top @{
5823 #define _GNU_SOURCE
5824 #include <stdio.h>
5825@}
c93f22fc 5826@end example
e0c07222
JD
5827
5828@item Location(s): Near the top of the parser implementation file.
5829@end itemize
5830
5831@item imports
5832@findex %code imports
5833
5834@itemize @bullet
5835@item Language(s): Java
5836
5837@item Purpose: This is the best place to write Java import directives.
5838
5839@item Location(s): The parser Java file after any Java package directive and
5840before any class definitions.
5841@end itemize
84072495 5842@end table
e0c07222 5843
51151d91
JD
5844Though we say the insertion locations are language-dependent, they are
5845technically skeleton-dependent. Writers of non-standard skeletons
5846however should choose their locations consistently with the behavior
5847of the standard Bison skeletons.
e0c07222 5848
d8988b2f 5849
342b8b6e 5850@node Multiple Parsers
bfa74976
RS
5851@section Multiple Parsers in the Same Program
5852
5853Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
5854only one Bison parser. But what if you want to parse more than one language
5855with the same program? Then you need to avoid name conflicts between
5856different definitions of functions and variables such as @code{yyparse},
5857@code{yylval}. To use different parsers from the same compilation unit, you
5858also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
5859exported in the generated header.
5860
5861The easy way to do this is to define the @code{%define} variable
e358222b
AD
5862@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
5863headers do not conflict when included together, and that compiled objects
5864can be linked together too. Specifying @samp{%define api.prefix
5865@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
5866@ref{Invocation, ,Invoking Bison}) renames the interface functions and
5867variables of the Bison parser to start with @var{prefix} instead of
5868@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
5869upper-cased) instead of @samp{YY}.
4b3847c3
AD
5870
5871The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
5872@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
5873@code{yydebug}. If you use a push parser, @code{yypush_parse},
5874@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
5875@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
5876@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
5877specifically --- more about this below.
4b3847c3
AD
5878
5879For example, if you use @samp{%define api.prefix c}, the names become
5880@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
5881on.
5882
5883The @code{%define} variable @code{api.prefix} works in two different ways.
5884In the implementation file, it works by adding macro definitions to the
5885beginning of the parser implementation file, defining @code{yyparse} as
5886@code{@var{prefix}parse}, and so on:
5887
5888@example
5889#define YYSTYPE CTYPE
5890#define yyparse cparse
5891#define yylval clval
5892...
5893YYSTYPE yylval;
5894int yyparse (void);
5895@end example
5896
5897This effectively substitutes one name for the other in the entire parser
5898implementation file, thus the ``original'' names (@code{yylex},
5899@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
5900
5901However, in the parser header file, the symbols are defined renamed, for
5902instance:
bfa74976 5903
4b3847c3
AD
5904@example
5905extern CSTYPE clval;
5906int cparse (void);
5907@end example
bfa74976 5908
e358222b
AD
5909The macro @code{YYDEBUG} is commonly used to enable the tracing support in
5910parsers. To comply with this tradition, when @code{api.prefix} is used,
5911@code{YYDEBUG} (not renamed) is used as a default value:
5912
5913@example
5914/* Enabling traces. */
5915#ifndef CDEBUG
5916# if defined YYDEBUG
5917# if YYDEBUG
5918# define CDEBUG 1
5919# else
5920# define CDEBUG 0
5921# endif
5922# else
5923# define CDEBUG 0
5924# endif
5925#endif
5926#if CDEBUG
5927extern int cdebug;
5928#endif
5929@end example
5930
5931@sp 2
5932
5933Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
5934the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
5935Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 5936
342b8b6e 5937@node Interface
bfa74976
RS
5938@chapter Parser C-Language Interface
5939@cindex C-language interface
5940@cindex interface
5941
5942The Bison parser is actually a C function named @code{yyparse}. Here we
5943describe the interface conventions of @code{yyparse} and the other
5944functions that it needs to use.
5945
5946Keep in mind that the parser uses many C identifiers starting with
5947@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5948identifier (aside from those in this manual) in an action or in epilogue
5949in the grammar file, you are likely to run into trouble.
bfa74976
RS
5950
5951@menu
f5f419de
DJ
5952* Parser Function:: How to call @code{yyparse} and what it returns.
5953* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5954* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5955* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5956* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5957* Lexical:: You must supply a function @code{yylex}
5958 which reads tokens.
5959* Error Reporting:: You must supply a function @code{yyerror}.
5960* Action Features:: Special features for use in actions.
5961* Internationalization:: How to let the parser speak in the user's
5962 native language.
bfa74976
RS
5963@end menu
5964
342b8b6e 5965@node Parser Function
bfa74976
RS
5966@section The Parser Function @code{yyparse}
5967@findex yyparse
5968
5969You call the function @code{yyparse} to cause parsing to occur. This
5970function reads tokens, executes actions, and ultimately returns when it
5971encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5972write an action which directs @code{yyparse} to return immediately
5973without reading further.
bfa74976 5974
2a8d363a
AD
5975
5976@deftypefun int yyparse (void)
bfa74976
RS
5977The value returned by @code{yyparse} is 0 if parsing was successful (return
5978is due to end-of-input).
5979
b47dbebe
PE
5980The value is 1 if parsing failed because of invalid input, i.e., input
5981that contains a syntax error or that causes @code{YYABORT} to be
5982invoked.
5983
5984The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5985@end deftypefun
bfa74976
RS
5986
5987In an action, you can cause immediate return from @code{yyparse} by using
5988these macros:
5989
2a8d363a 5990@defmac YYACCEPT
bfa74976
RS
5991@findex YYACCEPT
5992Return immediately with value 0 (to report success).
2a8d363a 5993@end defmac
bfa74976 5994
2a8d363a 5995@defmac YYABORT
bfa74976
RS
5996@findex YYABORT
5997Return immediately with value 1 (to report failure).
2a8d363a
AD
5998@end defmac
5999
6000If you use a reentrant parser, you can optionally pass additional
6001parameter information to it in a reentrant way. To do so, use the
6002declaration @code{%parse-param}:
6003
2055a44e 6004@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6005@findex %parse-param
2055a44e
AD
6006Declare that one or more
6007@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6008The @var{argument-declaration} is used when declaring
feeb0eda
PE
6009functions or prototypes. The last identifier in
6010@var{argument-declaration} must be the argument name.
2a8d363a
AD
6011@end deffn
6012
6013Here's an example. Write this in the parser:
6014
6015@example
2055a44e 6016%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6017@end example
6018
6019@noindent
6020Then call the parser like this:
6021
6022@example
6023@{
6024 int nastiness, randomness;
6025 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6026 value = yyparse (&nastiness, &randomness);
6027 @dots{}
6028@}
6029@end example
6030
6031@noindent
6032In the grammar actions, use expressions like this to refer to the data:
6033
6034@example
6035exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6036@end example
6037
9987d1b3
JD
6038@node Push Parser Function
6039@section The Push Parser Function @code{yypush_parse}
6040@findex yypush_parse
6041
59da312b
JD
6042(The current push parsing interface is experimental and may evolve.
6043More user feedback will help to stabilize it.)
6044
f4101aa6 6045You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6046function is available if either the @samp{%define api.push-pull push} or
6047@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6048@xref{Push Decl, ,A Push Parser}.
6049
6050@deftypefun int yypush_parse (yypstate *yyps)
ad60e80f
AD
6051The value returned by @code{yypush_parse} is the same as for yyparse with
6052the following exception: it returns @code{YYPUSH_MORE} if more input is
6053required to finish parsing the grammar.
9987d1b3
JD
6054@end deftypefun
6055
6056@node Pull Parser Function
6057@section The Pull Parser Function @code{yypull_parse}
6058@findex yypull_parse
6059
59da312b
JD
6060(The current push parsing interface is experimental and may evolve.
6061More user feedback will help to stabilize it.)
6062
f4101aa6 6063You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6064stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6065declaration is used.
9987d1b3
JD
6066@xref{Push Decl, ,A Push Parser}.
6067
6068@deftypefun int yypull_parse (yypstate *yyps)
6069The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6070@end deftypefun
6071
6072@node Parser Create Function
6073@section The Parser Create Function @code{yystate_new}
6074@findex yypstate_new
6075
59da312b
JD
6076(The current push parsing interface is experimental and may evolve.
6077More user feedback will help to stabilize it.)
6078
f4101aa6 6079You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6080This function is available if either the @samp{%define api.push-pull push} or
6081@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6082@xref{Push Decl, ,A Push Parser}.
6083
34a41a93 6084@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6085The function will return a valid parser instance if there was memory available
333e670c
JD
6086or 0 if no memory was available.
6087In impure mode, it will also return 0 if a parser instance is currently
6088allocated.
9987d1b3
JD
6089@end deftypefun
6090
6091@node Parser Delete Function
6092@section The Parser Delete Function @code{yystate_delete}
6093@findex yypstate_delete
6094
59da312b
JD
6095(The current push parsing interface is experimental and may evolve.
6096More user feedback will help to stabilize it.)
6097
9987d1b3 6098You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6099function is available if either the @samp{%define api.push-pull push} or
6100@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6101@xref{Push Decl, ,A Push Parser}.
6102
6103@deftypefun void yypstate_delete (yypstate *yyps)
6104This function will reclaim the memory associated with a parser instance.
6105After this call, you should no longer attempt to use the parser instance.
6106@end deftypefun
bfa74976 6107
342b8b6e 6108@node Lexical
bfa74976
RS
6109@section The Lexical Analyzer Function @code{yylex}
6110@findex yylex
6111@cindex lexical analyzer
6112
6113The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6114the input stream and returns them to the parser. Bison does not create
6115this function automatically; you must write it so that @code{yyparse} can
6116call it. The function is sometimes referred to as a lexical scanner.
6117
ff7571c0
JD
6118In simple programs, @code{yylex} is often defined at the end of the
6119Bison grammar file. If @code{yylex} is defined in a separate source
6120file, you need to arrange for the token-type macro definitions to be
6121available there. To do this, use the @samp{-d} option when you run
6122Bison, so that it will write these macro definitions into the separate
6123parser header file, @file{@var{name}.tab.h}, which you can include in
6124the other source files that need it. @xref{Invocation, ,Invoking
6125Bison}.
bfa74976
RS
6126
6127@menu
6128* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6129* Token Values:: How @code{yylex} must return the semantic value
6130 of the token it has read.
6131* Token Locations:: How @code{yylex} must return the text location
6132 (line number, etc.) of the token, if the
6133 actions want that.
6134* Pure Calling:: How the calling convention differs in a pure parser
6135 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6136@end menu
6137
342b8b6e 6138@node Calling Convention
bfa74976
RS
6139@subsection Calling Convention for @code{yylex}
6140
72d2299c
PE
6141The value that @code{yylex} returns must be the positive numeric code
6142for the type of token it has just found; a zero or negative value
6143signifies end-of-input.
bfa74976
RS
6144
6145When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6146in the parser implementation file becomes a C macro whose definition
6147is the proper numeric code for that token type. So @code{yylex} can
6148use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6149
6150When a token is referred to in the grammar rules by a character literal,
6151the numeric code for that character is also the code for the token type.
72d2299c
PE
6152So @code{yylex} can simply return that character code, possibly converted
6153to @code{unsigned char} to avoid sign-extension. The null character
6154must not be used this way, because its code is zero and that
bfa74976
RS
6155signifies end-of-input.
6156
6157Here is an example showing these things:
6158
6159@example
13863333
AD
6160int
6161yylex (void)
bfa74976
RS
6162@{
6163 @dots{}
72d2299c 6164 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6165 return 0;
6166 @dots{}
6167 if (c == '+' || c == '-')
72d2299c 6168 return c; /* Assume token type for `+' is '+'. */
bfa74976 6169 @dots{}
72d2299c 6170 return INT; /* Return the type of the token. */
bfa74976
RS
6171 @dots{}
6172@}
6173@end example
6174
6175@noindent
6176This interface has been designed so that the output from the @code{lex}
6177utility can be used without change as the definition of @code{yylex}.
6178
931c7513
RS
6179If the grammar uses literal string tokens, there are two ways that
6180@code{yylex} can determine the token type codes for them:
6181
6182@itemize @bullet
6183@item
6184If the grammar defines symbolic token names as aliases for the
6185literal string tokens, @code{yylex} can use these symbolic names like
6186all others. In this case, the use of the literal string tokens in
6187the grammar file has no effect on @code{yylex}.
6188
6189@item
9ecbd125 6190@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6191table. The index of the token in the table is the token type's code.
9ecbd125 6192The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6193double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6194token's characters are escaped as necessary to be suitable as input
6195to Bison.
931c7513 6196
9e0876fb
PE
6197Here's code for looking up a multicharacter token in @code{yytname},
6198assuming that the characters of the token are stored in
6199@code{token_buffer}, and assuming that the token does not contain any
6200characters like @samp{"} that require escaping.
931c7513 6201
c93f22fc 6202@example
931c7513
RS
6203for (i = 0; i < YYNTOKENS; i++)
6204 @{
6205 if (yytname[i] != 0
6206 && yytname[i][0] == '"'
68449b3a
PE
6207 && ! strncmp (yytname[i] + 1, token_buffer,
6208 strlen (token_buffer))
931c7513
RS
6209 && yytname[i][strlen (token_buffer) + 1] == '"'
6210 && yytname[i][strlen (token_buffer) + 2] == 0)
6211 break;
6212 @}
c93f22fc 6213@end example
931c7513
RS
6214
6215The @code{yytname} table is generated only if you use the
8c9a50be 6216@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6217@end itemize
6218
342b8b6e 6219@node Token Values
bfa74976
RS
6220@subsection Semantic Values of Tokens
6221
6222@vindex yylval
9d9b8b70 6223In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6224be stored into the global variable @code{yylval}. When you are using
6225just one data type for semantic values, @code{yylval} has that type.
6226Thus, if the type is @code{int} (the default), you might write this in
6227@code{yylex}:
6228
6229@example
6230@group
6231 @dots{}
72d2299c
PE
6232 yylval = value; /* Put value onto Bison stack. */
6233 return INT; /* Return the type of the token. */
bfa74976
RS
6234 @dots{}
6235@end group
6236@end example
6237
6238When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6239made from the @code{%union} declaration (@pxref{Union Decl, ,The
6240Collection of Value Types}). So when you store a token's value, you
6241must use the proper member of the union. If the @code{%union}
6242declaration looks like this:
bfa74976
RS
6243
6244@example
6245@group
6246%union @{
6247 int intval;
6248 double val;
6249 symrec *tptr;
6250@}
6251@end group
6252@end example
6253
6254@noindent
6255then the code in @code{yylex} might look like this:
6256
6257@example
6258@group
6259 @dots{}
72d2299c
PE
6260 yylval.intval = value; /* Put value onto Bison stack. */
6261 return INT; /* Return the type of the token. */
bfa74976
RS
6262 @dots{}
6263@end group
6264@end example
6265
95923bd6
AD
6266@node Token Locations
6267@subsection Textual Locations of Tokens
bfa74976
RS
6268
6269@vindex yylloc
303834cc
JD
6270If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6271in actions to keep track of the textual locations of tokens and groupings,
6272then you must provide this information in @code{yylex}. The function
6273@code{yyparse} expects to find the textual location of a token just parsed
6274in the global variable @code{yylloc}. So @code{yylex} must store the proper
6275data in that variable.
847bf1f5
AD
6276
6277By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6278initialize the members that are going to be used by the actions. The
6279four members are called @code{first_line}, @code{first_column},
6280@code{last_line} and @code{last_column}. Note that the use of this
6281feature makes the parser noticeably slower.
bfa74976
RS
6282
6283@tindex YYLTYPE
6284The data type of @code{yylloc} has the name @code{YYLTYPE}.
6285
342b8b6e 6286@node Pure Calling
c656404a 6287@subsection Calling Conventions for Pure Parsers
bfa74976 6288
67501061 6289When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6290pure, reentrant parser, the global communication variables @code{yylval}
6291and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6292Parser}.) In such parsers the two global variables are replaced by
6293pointers passed as arguments to @code{yylex}. You must declare them as
6294shown here, and pass the information back by storing it through those
6295pointers.
bfa74976
RS
6296
6297@example
13863333
AD
6298int
6299yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6300@{
6301 @dots{}
6302 *lvalp = value; /* Put value onto Bison stack. */
6303 return INT; /* Return the type of the token. */
6304 @dots{}
6305@}
6306@end example
6307
6308If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6309textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6310this case, omit the second argument; @code{yylex} will be called with
6311only one argument.
6312
2055a44e 6313If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6314@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6315Function}). To pass additional arguments to both @code{yylex} and
6316@code{yyparse}, use @code{%param}.
e425e872 6317
2055a44e 6318@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6319@findex %lex-param
2055a44e
AD
6320Specify that @var{argument-declaration} are additional @code{yylex} argument
6321declarations. You may pass one or more such declarations, which is
6322equivalent to repeating @code{%lex-param}.
6323@end deffn
6324
6325@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6326@findex %param
6327Specify that @var{argument-declaration} are additional
6328@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6329@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6330@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6331declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6332@end deffn
e425e872 6333
2a8d363a 6334For instance:
e425e872
RS
6335
6336@example
2055a44e
AD
6337%lex-param @{scanner_mode *mode@}
6338%parse-param @{parser_mode *mode@}
6339%param @{environment_type *env@}
e425e872
RS
6340@end example
6341
6342@noindent
18ad57b3 6343results in the following signatures:
e425e872
RS
6344
6345@example
2055a44e
AD
6346int yylex (scanner_mode *mode, environment_type *env);
6347int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6348@end example
6349
67501061 6350If @samp{%define api.pure} is added:
c656404a
RS
6351
6352@example
2055a44e
AD
6353int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6354int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6355@end example
6356
2a8d363a 6357@noindent
67501061 6358and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6359
2a8d363a 6360@example
2055a44e
AD
6361int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6362 scanner_mode *mode, environment_type *env);
6363int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6364@end example
931c7513 6365
342b8b6e 6366@node Error Reporting
bfa74976
RS
6367@section The Error Reporting Function @code{yyerror}
6368@cindex error reporting function
6369@findex yyerror
6370@cindex parse error
6371@cindex syntax error
6372
31b850d2 6373The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6374whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6375action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6376macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6377in Actions}).
bfa74976
RS
6378
6379The Bison parser expects to report the error by calling an error
6380reporting function named @code{yyerror}, which you must supply. It is
6381called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6382receives one argument. For a syntax error, the string is normally
6383@w{@code{"syntax error"}}.
bfa74976 6384
31b850d2 6385@findex %define parse.error
7fceb615
JD
6386If you invoke @samp{%define parse.error verbose} in the Bison declarations
6387section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6388Bison provides a more verbose and specific error message string instead of
6389just plain @w{@code{"syntax error"}}. However, that message sometimes
6390contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6391
1a059451
PE
6392The parser can detect one other kind of error: memory exhaustion. This
6393can happen when the input contains constructions that are very deeply
bfa74976 6394nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6395parser normally extends its stack automatically up to a very large limit. But
6396if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6397fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6398
6399In some cases diagnostics like @w{@code{"syntax error"}} are
6400translated automatically from English to some other language before
6401they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6402
6403The following definition suffices in simple programs:
6404
6405@example
6406@group
13863333 6407void
38a92d50 6408yyerror (char const *s)
bfa74976
RS
6409@{
6410@end group
6411@group
6412 fprintf (stderr, "%s\n", s);
6413@}
6414@end group
6415@end example
6416
6417After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6418error recovery if you have written suitable error recovery grammar rules
6419(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6420immediately return 1.
6421
93724f13 6422Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6423an access to the current location.
8a4281b9 6424This is indeed the case for the GLR
2a8d363a 6425parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6426@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6427@code{yyerror} are:
6428
6429@example
38a92d50
PE
6430void yyerror (char const *msg); /* Yacc parsers. */
6431void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6432@end example
6433
feeb0eda 6434If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6435
6436@example
b317297e
PE
6437void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6438void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6439@end example
6440
8a4281b9 6441Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6442convention for absolutely pure parsers, i.e., when the calling
6443convention of @code{yylex} @emph{and} the calling convention of
67501061 6444@samp{%define api.pure} are pure.
d9df47b6 6445I.e.:
2a8d363a
AD
6446
6447@example
6448/* Location tracking. */
6449%locations
6450/* Pure yylex. */
d9df47b6 6451%define api.pure
feeb0eda 6452%lex-param @{int *nastiness@}
2a8d363a 6453/* Pure yyparse. */
feeb0eda
PE
6454%parse-param @{int *nastiness@}
6455%parse-param @{int *randomness@}
2a8d363a
AD
6456@end example
6457
6458@noindent
6459results in the following signatures for all the parser kinds:
6460
6461@example
6462int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6463int yyparse (int *nastiness, int *randomness);
93724f13
AD
6464void yyerror (YYLTYPE *locp,
6465 int *nastiness, int *randomness,
38a92d50 6466 char const *msg);
2a8d363a
AD
6467@end example
6468
1c0c3e95 6469@noindent
38a92d50
PE
6470The prototypes are only indications of how the code produced by Bison
6471uses @code{yyerror}. Bison-generated code always ignores the returned
6472value, so @code{yyerror} can return any type, including @code{void}.
6473Also, @code{yyerror} can be a variadic function; that is why the
6474message is always passed last.
6475
6476Traditionally @code{yyerror} returns an @code{int} that is always
6477ignored, but this is purely for historical reasons, and @code{void} is
6478preferable since it more accurately describes the return type for
6479@code{yyerror}.
93724f13 6480
bfa74976
RS
6481@vindex yynerrs
6482The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6483reported so far. Normally this variable is global; but if you
704a47c4
AD
6484request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6485then it is a local variable which only the actions can access.
bfa74976 6486
342b8b6e 6487@node Action Features
bfa74976
RS
6488@section Special Features for Use in Actions
6489@cindex summary, action features
6490@cindex action features summary
6491
6492Here is a table of Bison constructs, variables and macros that
6493are useful in actions.
6494
18b519c0 6495@deffn {Variable} $$
bfa74976
RS
6496Acts like a variable that contains the semantic value for the
6497grouping made by the current rule. @xref{Actions}.
18b519c0 6498@end deffn
bfa74976 6499
18b519c0 6500@deffn {Variable} $@var{n}
bfa74976
RS
6501Acts like a variable that contains the semantic value for the
6502@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6503@end deffn
bfa74976 6504
18b519c0 6505@deffn {Variable} $<@var{typealt}>$
bfa74976 6506Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6507specified by the @code{%union} declaration. @xref{Action Types, ,Data
6508Types of Values in Actions}.
18b519c0 6509@end deffn
bfa74976 6510
18b519c0 6511@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6512Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6513union specified by the @code{%union} declaration.
e0c471a9 6514@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6515@end deffn
bfa74976 6516
34a41a93 6517@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6518Return immediately from @code{yyparse}, indicating failure.
6519@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6520@end deffn
bfa74976 6521
34a41a93 6522@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6523Return immediately from @code{yyparse}, indicating success.
6524@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6525@end deffn
bfa74976 6526
34a41a93 6527@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6528@findex YYBACKUP
6529Unshift a token. This macro is allowed only for rules that reduce
742e4900 6530a single value, and only when there is no lookahead token.
8a4281b9 6531It is also disallowed in GLR parsers.
742e4900 6532It installs a lookahead token with token type @var{token} and
bfa74976
RS
6533semantic value @var{value}; then it discards the value that was
6534going to be reduced by this rule.
6535
6536If the macro is used when it is not valid, such as when there is
742e4900 6537a lookahead token already, then it reports a syntax error with
bfa74976
RS
6538a message @samp{cannot back up} and performs ordinary error
6539recovery.
6540
6541In either case, the rest of the action is not executed.
18b519c0 6542@end deffn
bfa74976 6543
18b519c0 6544@deffn {Macro} YYEMPTY
742e4900 6545Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6546@end deffn
bfa74976 6547
32c29292 6548@deffn {Macro} YYEOF
742e4900 6549Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6550stream.
6551@end deffn
6552
34a41a93 6553@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6554Cause an immediate syntax error. This statement initiates error
6555recovery just as if the parser itself had detected an error; however, it
6556does not call @code{yyerror}, and does not print any message. If you
6557want to print an error message, call @code{yyerror} explicitly before
6558the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6559@end deffn
bfa74976 6560
18b519c0 6561@deffn {Macro} YYRECOVERING
02103984
PE
6562@findex YYRECOVERING
6563The expression @code{YYRECOVERING ()} yields 1 when the parser
6564is recovering from a syntax error, and 0 otherwise.
bfa74976 6565@xref{Error Recovery}.
18b519c0 6566@end deffn
bfa74976 6567
18b519c0 6568@deffn {Variable} yychar
742e4900
JD
6569Variable containing either the lookahead token, or @code{YYEOF} when the
6570lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6571has been performed so the next token is not yet known.
6572Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6573Actions}).
742e4900 6574@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6575@end deffn
bfa74976 6576
34a41a93 6577@deffn {Macro} yyclearin @code{;}
742e4900 6578Discard the current lookahead token. This is useful primarily in
32c29292
JD
6579error rules.
6580Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6581Semantic Actions}).
6582@xref{Error Recovery}.
18b519c0 6583@end deffn
bfa74976 6584
34a41a93 6585@deffn {Macro} yyerrok @code{;}
bfa74976 6586Resume generating error messages immediately for subsequent syntax
13863333 6587errors. This is useful primarily in error rules.
bfa74976 6588@xref{Error Recovery}.
18b519c0 6589@end deffn
bfa74976 6590
32c29292 6591@deffn {Variable} yylloc
742e4900 6592Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6593to @code{YYEMPTY} or @code{YYEOF}.
6594Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6595Actions}).
6596@xref{Actions and Locations, ,Actions and Locations}.
6597@end deffn
6598
6599@deffn {Variable} yylval
742e4900 6600Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6601not set to @code{YYEMPTY} or @code{YYEOF}.
6602Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6603Actions}).
6604@xref{Actions, ,Actions}.
6605@end deffn
6606
18b519c0 6607@deffn {Value} @@$
847bf1f5 6608@findex @@$
303834cc
JD
6609Acts like a structure variable containing information on the textual
6610location of the grouping made by the current rule. @xref{Tracking
6611Locations}.
bfa74976 6612
847bf1f5
AD
6613@c Check if those paragraphs are still useful or not.
6614
6615@c @example
6616@c struct @{
6617@c int first_line, last_line;
6618@c int first_column, last_column;
6619@c @};
6620@c @end example
6621
6622@c Thus, to get the starting line number of the third component, you would
6623@c use @samp{@@3.first_line}.
bfa74976 6624
847bf1f5
AD
6625@c In order for the members of this structure to contain valid information,
6626@c you must make @code{yylex} supply this information about each token.
6627@c If you need only certain members, then @code{yylex} need only fill in
6628@c those members.
bfa74976 6629
847bf1f5 6630@c The use of this feature makes the parser noticeably slower.
18b519c0 6631@end deffn
847bf1f5 6632
18b519c0 6633@deffn {Value} @@@var{n}
847bf1f5 6634@findex @@@var{n}
303834cc
JD
6635Acts like a structure variable containing information on the textual
6636location of the @var{n}th component of the current rule. @xref{Tracking
6637Locations}.
18b519c0 6638@end deffn
bfa74976 6639
f7ab6a50
PE
6640@node Internationalization
6641@section Parser Internationalization
6642@cindex internationalization
6643@cindex i18n
6644@cindex NLS
6645@cindex gettext
6646@cindex bison-po
6647
6648A Bison-generated parser can print diagnostics, including error and
6649tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6650also supports outputting diagnostics in the user's native language. To
6651make this work, the user should set the usual environment variables.
6652@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6653For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6654set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6655encoding. The exact set of available locales depends on the user's
6656installation.
6657
6658The maintainer of a package that uses a Bison-generated parser enables
6659the internationalization of the parser's output through the following
8a4281b9
JD
6660steps. Here we assume a package that uses GNU Autoconf and
6661GNU Automake.
f7ab6a50
PE
6662
6663@enumerate
6664@item
30757c8c 6665@cindex bison-i18n.m4
8a4281b9 6666Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6667by the package---often called @file{m4}---copy the
6668@file{bison-i18n.m4} file installed by Bison under
6669@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6670For example:
6671
6672@example
6673cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6674@end example
6675
6676@item
30757c8c
PE
6677@findex BISON_I18N
6678@vindex BISON_LOCALEDIR
6679@vindex YYENABLE_NLS
f7ab6a50
PE
6680In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6681invocation, add an invocation of @code{BISON_I18N}. This macro is
6682defined in the file @file{bison-i18n.m4} that you copied earlier. It
6683causes @samp{configure} to find the value of the
30757c8c
PE
6684@code{BISON_LOCALEDIR} variable, and it defines the source-language
6685symbol @code{YYENABLE_NLS} to enable translations in the
6686Bison-generated parser.
f7ab6a50
PE
6687
6688@item
6689In the @code{main} function of your program, designate the directory
6690containing Bison's runtime message catalog, through a call to
6691@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6692For example:
6693
6694@example
6695bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6696@end example
6697
6698Typically this appears after any other call @code{bindtextdomain
6699(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6700@samp{BISON_LOCALEDIR} to be defined as a string through the
6701@file{Makefile}.
6702
6703@item
6704In the @file{Makefile.am} that controls the compilation of the @code{main}
6705function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6706either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6707
6708@example
6709DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6710@end example
6711
6712or:
6713
6714@example
6715AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6716@end example
6717
6718@item
6719Finally, invoke the command @command{autoreconf} to generate the build
6720infrastructure.
6721@end enumerate
6722
bfa74976 6723
342b8b6e 6724@node Algorithm
13863333
AD
6725@chapter The Bison Parser Algorithm
6726@cindex Bison parser algorithm
bfa74976
RS
6727@cindex algorithm of parser
6728@cindex shifting
6729@cindex reduction
6730@cindex parser stack
6731@cindex stack, parser
6732
6733As Bison reads tokens, it pushes them onto a stack along with their
6734semantic values. The stack is called the @dfn{parser stack}. Pushing a
6735token is traditionally called @dfn{shifting}.
6736
6737For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6738@samp{3} to come. The stack will have four elements, one for each token
6739that was shifted.
6740
6741But the stack does not always have an element for each token read. When
6742the last @var{n} tokens and groupings shifted match the components of a
6743grammar rule, they can be combined according to that rule. This is called
6744@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6745single grouping whose symbol is the result (left hand side) of that rule.
6746Running the rule's action is part of the process of reduction, because this
6747is what computes the semantic value of the resulting grouping.
6748
6749For example, if the infix calculator's parser stack contains this:
6750
6751@example
67521 + 5 * 3
6753@end example
6754
6755@noindent
6756and the next input token is a newline character, then the last three
6757elements can be reduced to 15 via the rule:
6758
6759@example
6760expr: expr '*' expr;
6761@end example
6762
6763@noindent
6764Then the stack contains just these three elements:
6765
6766@example
67671 + 15
6768@end example
6769
6770@noindent
6771At this point, another reduction can be made, resulting in the single value
677216. Then the newline token can be shifted.
6773
6774The parser tries, by shifts and reductions, to reduce the entire input down
6775to a single grouping whose symbol is the grammar's start-symbol
6776(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6777
6778This kind of parser is known in the literature as a bottom-up parser.
6779
6780@menu
742e4900 6781* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6782* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6783* Precedence:: Operator precedence works by resolving conflicts.
6784* Contextual Precedence:: When an operator's precedence depends on context.
6785* Parser States:: The parser is a finite-state-machine with stack.
6786* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6787* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6788* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6789* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6790* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6791@end menu
6792
742e4900
JD
6793@node Lookahead
6794@section Lookahead Tokens
6795@cindex lookahead token
bfa74976
RS
6796
6797The Bison parser does @emph{not} always reduce immediately as soon as the
6798last @var{n} tokens and groupings match a rule. This is because such a
6799simple strategy is inadequate to handle most languages. Instead, when a
6800reduction is possible, the parser sometimes ``looks ahead'' at the next
6801token in order to decide what to do.
6802
6803When a token is read, it is not immediately shifted; first it becomes the
742e4900 6804@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6805perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6806the lookahead token remains off to the side. When no more reductions
6807should take place, the lookahead token is shifted onto the stack. This
bfa74976 6808does not mean that all possible reductions have been done; depending on the
742e4900 6809token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6810application.
6811
742e4900 6812Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6813expressions which contain binary addition operators and postfix unary
6814factorial operators (@samp{!}), and allow parentheses for grouping.
6815
6816@example
6817@group
5e9b6624
AD
6818expr:
6819 term '+' expr
6820| term
6821;
bfa74976
RS
6822@end group
6823
6824@group
5e9b6624
AD
6825term:
6826 '(' expr ')'
6827| term '!'
6828| NUMBER
6829;
bfa74976
RS
6830@end group
6831@end example
6832
6833Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6834should be done? If the following token is @samp{)}, then the first three
6835tokens must be reduced to form an @code{expr}. This is the only valid
6836course, because shifting the @samp{)} would produce a sequence of symbols
6837@w{@code{term ')'}}, and no rule allows this.
6838
6839If the following token is @samp{!}, then it must be shifted immediately so
6840that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6841parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6842@code{expr}. It would then be impossible to shift the @samp{!} because
6843doing so would produce on the stack the sequence of symbols @code{expr
6844'!'}. No rule allows that sequence.
6845
6846@vindex yychar
32c29292
JD
6847@vindex yylval
6848@vindex yylloc
742e4900 6849The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6850Its semantic value and location, if any, are stored in the variables
6851@code{yylval} and @code{yylloc}.
bfa74976
RS
6852@xref{Action Features, ,Special Features for Use in Actions}.
6853
342b8b6e 6854@node Shift/Reduce
bfa74976
RS
6855@section Shift/Reduce Conflicts
6856@cindex conflicts
6857@cindex shift/reduce conflicts
6858@cindex dangling @code{else}
6859@cindex @code{else}, dangling
6860
6861Suppose we are parsing a language which has if-then and if-then-else
6862statements, with a pair of rules like this:
6863
6864@example
6865@group
6866if_stmt:
5e9b6624
AD
6867 IF expr THEN stmt
6868| IF expr THEN stmt ELSE stmt
6869;
bfa74976
RS
6870@end group
6871@end example
6872
6873@noindent
6874Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6875terminal symbols for specific keyword tokens.
6876
742e4900 6877When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6878contents of the stack (assuming the input is valid) are just right for
6879reduction by the first rule. But it is also legitimate to shift the
6880@code{ELSE}, because that would lead to eventual reduction by the second
6881rule.
6882
6883This situation, where either a shift or a reduction would be valid, is
6884called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6885these conflicts by choosing to shift, unless otherwise directed by
6886operator precedence declarations. To see the reason for this, let's
6887contrast it with the other alternative.
6888
6889Since the parser prefers to shift the @code{ELSE}, the result is to attach
6890the else-clause to the innermost if-statement, making these two inputs
6891equivalent:
6892
6893@example
6894if x then if y then win (); else lose;
6895
6896if x then do; if y then win (); else lose; end;
6897@end example
6898
6899But if the parser chose to reduce when possible rather than shift, the
6900result would be to attach the else-clause to the outermost if-statement,
6901making these two inputs equivalent:
6902
6903@example
6904if x then if y then win (); else lose;
6905
6906if x then do; if y then win (); end; else lose;
6907@end example
6908
6909The conflict exists because the grammar as written is ambiguous: either
6910parsing of the simple nested if-statement is legitimate. The established
6911convention is that these ambiguities are resolved by attaching the
6912else-clause to the innermost if-statement; this is what Bison accomplishes
6913by choosing to shift rather than reduce. (It would ideally be cleaner to
6914write an unambiguous grammar, but that is very hard to do in this case.)
6915This particular ambiguity was first encountered in the specifications of
6916Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6917
6918To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6919conflicts, use the @code{%expect @var{n}} declaration.
6920There will be no warning as long as the number of shift/reduce conflicts
6921is exactly @var{n}, and Bison will report an error if there is a
6922different number.
bfa74976
RS
6923@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6924
6925The definition of @code{if_stmt} above is solely to blame for the
6926conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6927rules. Here is a complete Bison grammar file that actually manifests
6928the conflict:
bfa74976
RS
6929
6930@example
6931@group
6932%token IF THEN ELSE variable
6933%%
6934@end group
6935@group
5e9b6624
AD
6936stmt:
6937 expr
6938| if_stmt
6939;
bfa74976
RS
6940@end group
6941
6942@group
6943if_stmt:
5e9b6624
AD
6944 IF expr THEN stmt
6945| IF expr THEN stmt ELSE stmt
6946;
bfa74976
RS
6947@end group
6948
5e9b6624
AD
6949expr:
6950 variable
6951;
bfa74976
RS
6952@end example
6953
342b8b6e 6954@node Precedence
bfa74976
RS
6955@section Operator Precedence
6956@cindex operator precedence
6957@cindex precedence of operators
6958
6959Another situation where shift/reduce conflicts appear is in arithmetic
6960expressions. Here shifting is not always the preferred resolution; the
6961Bison declarations for operator precedence allow you to specify when to
6962shift and when to reduce.
6963
6964@menu
6965* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6966* Using Precedence:: How to specify precedence and associativity.
6967* Precedence Only:: How to specify precedence only.
bfa74976
RS
6968* Precedence Examples:: How these features are used in the previous example.
6969* How Precedence:: How they work.
6970@end menu
6971
342b8b6e 6972@node Why Precedence
bfa74976
RS
6973@subsection When Precedence is Needed
6974
6975Consider the following ambiguous grammar fragment (ambiguous because the
6976input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6977
6978@example
6979@group
5e9b6624
AD
6980expr:
6981 expr '-' expr
6982| expr '*' expr
6983| expr '<' expr
6984| '(' expr ')'
6985@dots{}
6986;
bfa74976
RS
6987@end group
6988@end example
6989
6990@noindent
6991Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6992should it reduce them via the rule for the subtraction operator? It
6993depends on the next token. Of course, if the next token is @samp{)}, we
6994must reduce; shifting is invalid because no single rule can reduce the
6995token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6996the next token is @samp{*} or @samp{<}, we have a choice: either
6997shifting or reduction would allow the parse to complete, but with
6998different results.
6999
7000To decide which one Bison should do, we must consider the results. If
7001the next operator token @var{op} is shifted, then it must be reduced
7002first in order to permit another opportunity to reduce the difference.
7003The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7004hand, if the subtraction is reduced before shifting @var{op}, the result
7005is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7006reduce should depend on the relative precedence of the operators
7007@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7008@samp{<}.
bfa74976
RS
7009
7010@cindex associativity
7011What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7012@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7013operators we prefer the former, which is called @dfn{left association}.
7014The latter alternative, @dfn{right association}, is desirable for
7015assignment operators. The choice of left or right association is a
7016matter of whether the parser chooses to shift or reduce when the stack
742e4900 7017contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7018makes right-associativity.
bfa74976 7019
342b8b6e 7020@node Using Precedence
bfa74976
RS
7021@subsection Specifying Operator Precedence
7022@findex %left
bfa74976 7023@findex %nonassoc
d78f0ac9
AD
7024@findex %precedence
7025@findex %right
bfa74976
RS
7026
7027Bison allows you to specify these choices with the operator precedence
7028declarations @code{%left} and @code{%right}. Each such declaration
7029contains a list of tokens, which are operators whose precedence and
7030associativity is being declared. The @code{%left} declaration makes all
7031those operators left-associative and the @code{%right} declaration makes
7032them right-associative. A third alternative is @code{%nonassoc}, which
7033declares that it is a syntax error to find the same operator twice ``in a
7034row''.
d78f0ac9
AD
7035The last alternative, @code{%precedence}, allows to define only
7036precedence and no associativity at all. As a result, any
7037associativity-related conflict that remains will be reported as an
7038compile-time error. The directive @code{%nonassoc} creates run-time
7039error: using the operator in a associative way is a syntax error. The
7040directive @code{%precedence} creates compile-time errors: an operator
7041@emph{can} be involved in an associativity-related conflict, contrary to
7042what expected the grammar author.
bfa74976
RS
7043
7044The relative precedence of different operators is controlled by the
d78f0ac9
AD
7045order in which they are declared. The first precedence/associativity
7046declaration in the file declares the operators whose
bfa74976
RS
7047precedence is lowest, the next such declaration declares the operators
7048whose precedence is a little higher, and so on.
7049
d78f0ac9
AD
7050@node Precedence Only
7051@subsection Specifying Precedence Only
7052@findex %precedence
7053
8a4281b9 7054Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7055@code{%nonassoc}, which all defines precedence and associativity, little
7056attention is paid to the fact that precedence cannot be defined without
7057defining associativity. Yet, sometimes, when trying to solve a
7058conflict, precedence suffices. In such a case, using @code{%left},
7059@code{%right}, or @code{%nonassoc} might hide future (associativity
7060related) conflicts that would remain hidden.
7061
7062The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7063Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7064in the following situation, where the period denotes the current parsing
7065state:
7066
7067@example
7068if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7069@end example
7070
7071The conflict involves the reduction of the rule @samp{IF expr THEN
7072stmt}, which precedence is by default that of its last token
7073(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7074disambiguation (attach the @code{else} to the closest @code{if}),
7075shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7076higher than that of @code{THEN}. But neither is expected to be involved
7077in an associativity related conflict, which can be specified as follows.
7078
7079@example
7080%precedence THEN
7081%precedence ELSE
7082@end example
7083
7084The unary-minus is another typical example where associativity is
7085usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7086Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7087used to declare the precedence of @code{NEG}, which is more than needed
7088since it also defines its associativity. While this is harmless in the
7089traditional example, who knows how @code{NEG} might be used in future
7090evolutions of the grammar@dots{}
7091
342b8b6e 7092@node Precedence Examples
bfa74976
RS
7093@subsection Precedence Examples
7094
7095In our example, we would want the following declarations:
7096
7097@example
7098%left '<'
7099%left '-'
7100%left '*'
7101@end example
7102
7103In a more complete example, which supports other operators as well, we
7104would declare them in groups of equal precedence. For example, @code{'+'} is
7105declared with @code{'-'}:
7106
7107@example
7108%left '<' '>' '=' NE LE GE
7109%left '+' '-'
7110%left '*' '/'
7111@end example
7112
7113@noindent
7114(Here @code{NE} and so on stand for the operators for ``not equal''
7115and so on. We assume that these tokens are more than one character long
7116and therefore are represented by names, not character literals.)
7117
342b8b6e 7118@node How Precedence
bfa74976
RS
7119@subsection How Precedence Works
7120
7121The first effect of the precedence declarations is to assign precedence
7122levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7123precedence levels to certain rules: each rule gets its precedence from
7124the last terminal symbol mentioned in the components. (You can also
7125specify explicitly the precedence of a rule. @xref{Contextual
7126Precedence, ,Context-Dependent Precedence}.)
7127
7128Finally, the resolution of conflicts works by comparing the precedence
742e4900 7129of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7130token's precedence is higher, the choice is to shift. If the rule's
7131precedence is higher, the choice is to reduce. If they have equal
7132precedence, the choice is made based on the associativity of that
7133precedence level. The verbose output file made by @samp{-v}
7134(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7135resolved.
bfa74976
RS
7136
7137Not all rules and not all tokens have precedence. If either the rule or
742e4900 7138the lookahead token has no precedence, then the default is to shift.
bfa74976 7139
342b8b6e 7140@node Contextual Precedence
bfa74976
RS
7141@section Context-Dependent Precedence
7142@cindex context-dependent precedence
7143@cindex unary operator precedence
7144@cindex precedence, context-dependent
7145@cindex precedence, unary operator
7146@findex %prec
7147
7148Often the precedence of an operator depends on the context. This sounds
7149outlandish at first, but it is really very common. For example, a minus
7150sign typically has a very high precedence as a unary operator, and a
7151somewhat lower precedence (lower than multiplication) as a binary operator.
7152
d78f0ac9
AD
7153The Bison precedence declarations
7154can only be used once for a given token; so a token has
bfa74976
RS
7155only one precedence declared in this way. For context-dependent
7156precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7157modifier for rules.
bfa74976
RS
7158
7159The @code{%prec} modifier declares the precedence of a particular rule by
7160specifying a terminal symbol whose precedence should be used for that rule.
7161It's not necessary for that symbol to appear otherwise in the rule. The
7162modifier's syntax is:
7163
7164@example
7165%prec @var{terminal-symbol}
7166@end example
7167
7168@noindent
7169and it is written after the components of the rule. Its effect is to
7170assign the rule the precedence of @var{terminal-symbol}, overriding
7171the precedence that would be deduced for it in the ordinary way. The
7172altered rule precedence then affects how conflicts involving that rule
7173are resolved (@pxref{Precedence, ,Operator Precedence}).
7174
7175Here is how @code{%prec} solves the problem of unary minus. First, declare
7176a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7177are no tokens of this type, but the symbol serves to stand for its
7178precedence:
7179
7180@example
7181@dots{}
7182%left '+' '-'
7183%left '*'
7184%left UMINUS
7185@end example
7186
7187Now the precedence of @code{UMINUS} can be used in specific rules:
7188
7189@example
7190@group
5e9b6624
AD
7191exp:
7192 @dots{}
7193| exp '-' exp
7194 @dots{}
7195| '-' exp %prec UMINUS
bfa74976
RS
7196@end group
7197@end example
7198
91d2c560 7199@ifset defaultprec
39a06c25
PE
7200If you forget to append @code{%prec UMINUS} to the rule for unary
7201minus, Bison silently assumes that minus has its usual precedence.
7202This kind of problem can be tricky to debug, since one typically
7203discovers the mistake only by testing the code.
7204
22fccf95 7205The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7206this kind of problem systematically. It causes rules that lack a
7207@code{%prec} modifier to have no precedence, even if the last terminal
7208symbol mentioned in their components has a declared precedence.
7209
22fccf95 7210If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7211for all rules that participate in precedence conflict resolution.
7212Then you will see any shift/reduce conflict until you tell Bison how
7213to resolve it, either by changing your grammar or by adding an
7214explicit precedence. This will probably add declarations to the
7215grammar, but it helps to protect against incorrect rule precedences.
7216
22fccf95
PE
7217The effect of @code{%no-default-prec;} can be reversed by giving
7218@code{%default-prec;}, which is the default.
91d2c560 7219@end ifset
39a06c25 7220
342b8b6e 7221@node Parser States
bfa74976
RS
7222@section Parser States
7223@cindex finite-state machine
7224@cindex parser state
7225@cindex state (of parser)
7226
7227The function @code{yyparse} is implemented using a finite-state machine.
7228The values pushed on the parser stack are not simply token type codes; they
7229represent the entire sequence of terminal and nonterminal symbols at or
7230near the top of the stack. The current state collects all the information
7231about previous input which is relevant to deciding what to do next.
7232
742e4900
JD
7233Each time a lookahead token is read, the current parser state together
7234with the type of lookahead token are looked up in a table. This table
7235entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7236specifies the new parser state, which is pushed onto the top of the
7237parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7238This means that a certain number of tokens or groupings are taken off
7239the top of the stack, and replaced by one grouping. In other words,
7240that number of states are popped from the stack, and one new state is
7241pushed.
7242
742e4900 7243There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7244is erroneous in the current state. This causes error processing to begin
7245(@pxref{Error Recovery}).
7246
342b8b6e 7247@node Reduce/Reduce
bfa74976
RS
7248@section Reduce/Reduce Conflicts
7249@cindex reduce/reduce conflict
7250@cindex conflicts, reduce/reduce
7251
7252A reduce/reduce conflict occurs if there are two or more rules that apply
7253to the same sequence of input. This usually indicates a serious error
7254in the grammar.
7255
7256For example, here is an erroneous attempt to define a sequence
7257of zero or more @code{word} groupings.
7258
7259@example
d4fca427 7260@group
5e9b6624
AD
7261sequence:
7262 /* empty */ @{ printf ("empty sequence\n"); @}
7263| maybeword
7264| sequence word @{ printf ("added word %s\n", $2); @}
7265;
d4fca427 7266@end group
bfa74976 7267
d4fca427 7268@group
5e9b6624
AD
7269maybeword:
7270 /* empty */ @{ printf ("empty maybeword\n"); @}
7271| word @{ printf ("single word %s\n", $1); @}
7272;
d4fca427 7273@end group
bfa74976
RS
7274@end example
7275
7276@noindent
7277The error is an ambiguity: there is more than one way to parse a single
7278@code{word} into a @code{sequence}. It could be reduced to a
7279@code{maybeword} and then into a @code{sequence} via the second rule.
7280Alternatively, nothing-at-all could be reduced into a @code{sequence}
7281via the first rule, and this could be combined with the @code{word}
7282using the third rule for @code{sequence}.
7283
7284There is also more than one way to reduce nothing-at-all into a
7285@code{sequence}. This can be done directly via the first rule,
7286or indirectly via @code{maybeword} and then the second rule.
7287
7288You might think that this is a distinction without a difference, because it
7289does not change whether any particular input is valid or not. But it does
7290affect which actions are run. One parsing order runs the second rule's
7291action; the other runs the first rule's action and the third rule's action.
7292In this example, the output of the program changes.
7293
7294Bison resolves a reduce/reduce conflict by choosing to use the rule that
7295appears first in the grammar, but it is very risky to rely on this. Every
7296reduce/reduce conflict must be studied and usually eliminated. Here is the
7297proper way to define @code{sequence}:
7298
7299@example
5e9b6624
AD
7300sequence:
7301 /* empty */ @{ printf ("empty sequence\n"); @}
7302| sequence word @{ printf ("added word %s\n", $2); @}
7303;
bfa74976
RS
7304@end example
7305
7306Here is another common error that yields a reduce/reduce conflict:
7307
7308@example
5e9b6624
AD
7309sequence:
7310 /* empty */
7311| sequence words
7312| sequence redirects
7313;
bfa74976 7314
5e9b6624
AD
7315words:
7316 /* empty */
7317| words word
7318;
bfa74976 7319
5e9b6624
AD
7320redirects:
7321 /* empty */
7322| redirects redirect
7323;
bfa74976
RS
7324@end example
7325
7326@noindent
7327The intention here is to define a sequence which can contain either
7328@code{word} or @code{redirect} groupings. The individual definitions of
7329@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7330three together make a subtle ambiguity: even an empty input can be parsed
7331in infinitely many ways!
7332
7333Consider: nothing-at-all could be a @code{words}. Or it could be two
7334@code{words} in a row, or three, or any number. It could equally well be a
7335@code{redirects}, or two, or any number. Or it could be a @code{words}
7336followed by three @code{redirects} and another @code{words}. And so on.
7337
7338Here are two ways to correct these rules. First, to make it a single level
7339of sequence:
7340
7341@example
5e9b6624
AD
7342sequence:
7343 /* empty */
7344| sequence word
7345| sequence redirect
7346;
bfa74976
RS
7347@end example
7348
7349Second, to prevent either a @code{words} or a @code{redirects}
7350from being empty:
7351
7352@example
d4fca427 7353@group
5e9b6624
AD
7354sequence:
7355 /* empty */
7356| sequence words
7357| sequence redirects
7358;
d4fca427 7359@end group
bfa74976 7360
d4fca427 7361@group
5e9b6624
AD
7362words:
7363 word
7364| words word
7365;
d4fca427 7366@end group
bfa74976 7367
d4fca427 7368@group
5e9b6624
AD
7369redirects:
7370 redirect
7371| redirects redirect
7372;
d4fca427 7373@end group
bfa74976
RS
7374@end example
7375
cc09e5be
JD
7376@node Mysterious Conflicts
7377@section Mysterious Conflicts
7fceb615 7378@cindex Mysterious Conflicts
bfa74976
RS
7379
7380Sometimes reduce/reduce conflicts can occur that don't look warranted.
7381Here is an example:
7382
7383@example
7384@group
7385%token ID
7386
7387%%
5e9b6624 7388def: param_spec return_spec ',';
bfa74976 7389param_spec:
5e9b6624
AD
7390 type
7391| name_list ':' type
7392;
bfa74976
RS
7393@end group
7394@group
7395return_spec:
5e9b6624
AD
7396 type
7397| name ':' type
7398;
bfa74976
RS
7399@end group
7400@group
5e9b6624 7401type: ID;
bfa74976
RS
7402@end group
7403@group
5e9b6624 7404name: ID;
bfa74976 7405name_list:
5e9b6624
AD
7406 name
7407| name ',' name_list
7408;
bfa74976
RS
7409@end group
7410@end example
7411
7412It would seem that this grammar can be parsed with only a single token
742e4900 7413of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7414a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7415@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7416
7fceb615
JD
7417@cindex LR
7418@cindex LALR
eb45ef3b 7419However, for historical reasons, Bison cannot by default handle all
8a4281b9 7420LR(1) grammars.
eb45ef3b
JD
7421In this grammar, two contexts, that after an @code{ID} at the beginning
7422of a @code{param_spec} and likewise at the beginning of a
7423@code{return_spec}, are similar enough that Bison assumes they are the
7424same.
7425They appear similar because the same set of rules would be
bfa74976
RS
7426active---the rule for reducing to a @code{name} and that for reducing to
7427a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7428that the rules would require different lookahead tokens in the two
bfa74976
RS
7429contexts, so it makes a single parser state for them both. Combining
7430the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7431occurrence means that the grammar is not LALR(1).
bfa74976 7432
7fceb615
JD
7433@cindex IELR
7434@cindex canonical LR
7435For many practical grammars (specifically those that fall into the non-LR(1)
7436class), the limitations of LALR(1) result in difficulties beyond just
7437mysterious reduce/reduce conflicts. The best way to fix all these problems
7438is to select a different parser table construction algorithm. Either
7439IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7440and easier to debug during development. @xref{LR Table Construction}, for
7441details. (Bison's IELR(1) and canonical LR(1) implementations are
7442experimental. More user feedback will help to stabilize them.)
eb45ef3b 7443
8a4281b9 7444If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7445can often fix a mysterious conflict by identifying the two parser states
7446that are being confused, and adding something to make them look
7447distinct. In the above example, adding one rule to
bfa74976
RS
7448@code{return_spec} as follows makes the problem go away:
7449
7450@example
7451@group
7452%token BOGUS
7453@dots{}
7454%%
7455@dots{}
7456return_spec:
5e9b6624
AD
7457 type
7458| name ':' type
7459| ID BOGUS /* This rule is never used. */
7460;
bfa74976
RS
7461@end group
7462@end example
7463
7464This corrects the problem because it introduces the possibility of an
7465additional active rule in the context after the @code{ID} at the beginning of
7466@code{return_spec}. This rule is not active in the corresponding context
7467in a @code{param_spec}, so the two contexts receive distinct parser states.
7468As long as the token @code{BOGUS} is never generated by @code{yylex},
7469the added rule cannot alter the way actual input is parsed.
7470
7471In this particular example, there is another way to solve the problem:
7472rewrite the rule for @code{return_spec} to use @code{ID} directly
7473instead of via @code{name}. This also causes the two confusing
7474contexts to have different sets of active rules, because the one for
7475@code{return_spec} activates the altered rule for @code{return_spec}
7476rather than the one for @code{name}.
7477
7478@example
7479param_spec:
5e9b6624
AD
7480 type
7481| name_list ':' type
7482;
bfa74976 7483return_spec:
5e9b6624
AD
7484 type
7485| ID ':' type
7486;
bfa74976
RS
7487@end example
7488
8a4281b9 7489For a more detailed exposition of LALR(1) parsers and parser
5e528941 7490generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7491
7fceb615
JD
7492@node Tuning LR
7493@section Tuning LR
7494
7495The default behavior of Bison's LR-based parsers is chosen mostly for
7496historical reasons, but that behavior is often not robust. For example, in
7497the previous section, we discussed the mysterious conflicts that can be
7498produced by LALR(1), Bison's default parser table construction algorithm.
7499Another example is Bison's @code{%define parse.error verbose} directive,
7500which instructs the generated parser to produce verbose syntax error
7501messages, which can sometimes contain incorrect information.
7502
7503In this section, we explore several modern features of Bison that allow you
7504to tune fundamental aspects of the generated LR-based parsers. Some of
7505these features easily eliminate shortcomings like those mentioned above.
7506Others can be helpful purely for understanding your parser.
7507
7508Most of the features discussed in this section are still experimental. More
7509user feedback will help to stabilize them.
7510
7511@menu
7512* LR Table Construction:: Choose a different construction algorithm.
7513* Default Reductions:: Disable default reductions.
7514* LAC:: Correct lookahead sets in the parser states.
7515* Unreachable States:: Keep unreachable parser states for debugging.
7516@end menu
7517
7518@node LR Table Construction
7519@subsection LR Table Construction
7520@cindex Mysterious Conflict
7521@cindex LALR
7522@cindex IELR
7523@cindex canonical LR
7524@findex %define lr.type
7525
7526For historical reasons, Bison constructs LALR(1) parser tables by default.
7527However, LALR does not possess the full language-recognition power of LR.
7528As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7529mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7530Conflicts}.
7531
7532As we also demonstrated in that example, the traditional approach to
7533eliminating such mysterious behavior is to restructure the grammar.
7534Unfortunately, doing so correctly is often difficult. Moreover, merely
7535discovering that LALR causes mysterious behavior in your parser can be
7536difficult as well.
7537
7538Fortunately, Bison provides an easy way to eliminate the possibility of such
7539mysterious behavior altogether. You simply need to activate a more powerful
7540parser table construction algorithm by using the @code{%define lr.type}
7541directive.
7542
7543@deffn {Directive} {%define lr.type @var{TYPE}}
7544Specify the type of parser tables within the LR(1) family. The accepted
7545values for @var{TYPE} are:
7546
7547@itemize
7548@item @code{lalr} (default)
7549@item @code{ielr}
7550@item @code{canonical-lr}
7551@end itemize
7552
7553(This feature is experimental. More user feedback will help to stabilize
7554it.)
7555@end deffn
7556
7557For example, to activate IELR, you might add the following directive to you
7558grammar file:
7559
7560@example
7561%define lr.type ielr
7562@end example
7563
cc09e5be 7564@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7565conflict is then eliminated, so there is no need to invest time in
7566comprehending the conflict or restructuring the grammar to fix it. If,
7567during future development, the grammar evolves such that all mysterious
7568behavior would have disappeared using just LALR, you need not fear that
7569continuing to use IELR will result in unnecessarily large parser tables.
7570That is, IELR generates LALR tables when LALR (using a deterministic parsing
7571algorithm) is sufficient to support the full language-recognition power of
7572LR. Thus, by enabling IELR at the start of grammar development, you can
7573safely and completely eliminate the need to consider LALR's shortcomings.
7574
7575While IELR is almost always preferable, there are circumstances where LALR
7576or the canonical LR parser tables described by Knuth
7577(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7578relative advantages of each parser table construction algorithm within
7579Bison:
7580
7581@itemize
7582@item LALR
7583
7584There are at least two scenarios where LALR can be worthwhile:
7585
7586@itemize
7587@item GLR without static conflict resolution.
7588
7589@cindex GLR with LALR
7590When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7591conflicts statically (for example, with @code{%left} or @code{%prec}), then
7592the parser explores all potential parses of any given input. In this case,
7593the choice of parser table construction algorithm is guaranteed not to alter
7594the language accepted by the parser. LALR parser tables are the smallest
7595parser tables Bison can currently construct, so they may then be preferable.
7596Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7597more like a deterministic parser in the syntactic contexts where those
7598conflicts appear, and so either IELR or canonical LR can then be helpful to
7599avoid LALR's mysterious behavior.
7600
7601@item Malformed grammars.
7602
7603Occasionally during development, an especially malformed grammar with a
7604major recurring flaw may severely impede the IELR or canonical LR parser
7605table construction algorithm. LALR can be a quick way to construct parser
7606tables in order to investigate such problems while ignoring the more subtle
7607differences from IELR and canonical LR.
7608@end itemize
7609
7610@item IELR
7611
7612IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7613any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7614always accept exactly the same set of sentences. However, like LALR, IELR
7615merges parser states during parser table construction so that the number of
7616parser states is often an order of magnitude less than for canonical LR.
7617More importantly, because canonical LR's extra parser states may contain
7618duplicate conflicts in the case of non-LR grammars, the number of conflicts
7619for IELR is often an order of magnitude less as well. This effect can
7620significantly reduce the complexity of developing a grammar.
7621
7622@item Canonical LR
7623
7624@cindex delayed syntax error detection
7625@cindex LAC
7626@findex %nonassoc
7627While inefficient, canonical LR parser tables can be an interesting means to
7628explore a grammar because they possess a property that IELR and LALR tables
7629do not. That is, if @code{%nonassoc} is not used and default reductions are
7630left disabled (@pxref{Default Reductions}), then, for every left context of
7631every canonical LR state, the set of tokens accepted by that state is
7632guaranteed to be the exact set of tokens that is syntactically acceptable in
7633that left context. It might then seem that an advantage of canonical LR
7634parsers in production is that, under the above constraints, they are
7635guaranteed to detect a syntax error as soon as possible without performing
7636any unnecessary reductions. However, IELR parsers that use LAC are also
7637able to achieve this behavior without sacrificing @code{%nonassoc} or
7638default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7639@end itemize
7640
7641For a more detailed exposition of the mysterious behavior in LALR parsers
7642and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7643@ref{Bibliography,,Denny 2010 November}.
7644
7645@node Default Reductions
7646@subsection Default Reductions
7647@cindex default reductions
7648@findex %define lr.default-reductions
7649@findex %nonassoc
7650
7651After parser table construction, Bison identifies the reduction with the
7652largest lookahead set in each parser state. To reduce the size of the
7653parser state, traditional Bison behavior is to remove that lookahead set and
7654to assign that reduction to be the default parser action. Such a reduction
7655is known as a @dfn{default reduction}.
7656
7657Default reductions affect more than the size of the parser tables. They
7658also affect the behavior of the parser:
7659
7660@itemize
7661@item Delayed @code{yylex} invocations.
7662
7663@cindex delayed yylex invocations
7664@cindex consistent states
7665@cindex defaulted states
7666A @dfn{consistent state} is a state that has only one possible parser
7667action. If that action is a reduction and is encoded as a default
7668reduction, then that consistent state is called a @dfn{defaulted state}.
7669Upon reaching a defaulted state, a Bison-generated parser does not bother to
7670invoke @code{yylex} to fetch the next token before performing the reduction.
7671In other words, whether default reductions are enabled in consistent states
7672determines how soon a Bison-generated parser invokes @code{yylex} for a
7673token: immediately when it @emph{reaches} that token in the input or when it
7674eventually @emph{needs} that token as a lookahead to determine the next
7675parser action. Traditionally, default reductions are enabled, and so the
7676parser exhibits the latter behavior.
7677
7678The presence of defaulted states is an important consideration when
7679designing @code{yylex} and the grammar file. That is, if the behavior of
7680@code{yylex} can influence or be influenced by the semantic actions
7681associated with the reductions in defaulted states, then the delay of the
7682next @code{yylex} invocation until after those reductions is significant.
7683For example, the semantic actions might pop a scope stack that @code{yylex}
7684uses to determine what token to return. Thus, the delay might be necessary
7685to ensure that @code{yylex} does not look up the next token in a scope that
7686should already be considered closed.
7687
7688@item Delayed syntax error detection.
7689
7690@cindex delayed syntax error detection
7691When the parser fetches a new token by invoking @code{yylex}, it checks
7692whether there is an action for that token in the current parser state. The
7693parser detects a syntax error if and only if either (1) there is no action
7694for that token or (2) the action for that token is the error action (due to
7695the use of @code{%nonassoc}). However, if there is a default reduction in
7696that state (which might or might not be a defaulted state), then it is
7697impossible for condition 1 to exist. That is, all tokens have an action.
7698Thus, the parser sometimes fails to detect the syntax error until it reaches
7699a later state.
7700
7701@cindex LAC
7702@c If there's an infinite loop, default reductions can prevent an incorrect
7703@c sentence from being rejected.
7704While default reductions never cause the parser to accept syntactically
7705incorrect sentences, the delay of syntax error detection can have unexpected
7706effects on the behavior of the parser. However, the delay can be caused
7707anyway by parser state merging and the use of @code{%nonassoc}, and it can
7708be fixed by another Bison feature, LAC. We discuss the effects of delayed
7709syntax error detection and LAC more in the next section (@pxref{LAC}).
7710@end itemize
7711
7712For canonical LR, the only default reduction that Bison enables by default
7713is the accept action, which appears only in the accepting state, which has
7714no other action and is thus a defaulted state. However, the default accept
7715action does not delay any @code{yylex} invocation or syntax error detection
7716because the accept action ends the parse.
7717
7718For LALR and IELR, Bison enables default reductions in nearly all states by
7719default. There are only two exceptions. First, states that have a shift
7720action on the @code{error} token do not have default reductions because
7721delayed syntax error detection could then prevent the @code{error} token
7722from ever being shifted in that state. However, parser state merging can
7723cause the same effect anyway, and LAC fixes it in both cases, so future
7724versions of Bison might drop this exception when LAC is activated. Second,
7725GLR parsers do not record the default reduction as the action on a lookahead
7726token for which there is a conflict. The correct action in this case is to
7727split the parse instead.
7728
7729To adjust which states have default reductions enabled, use the
7730@code{%define lr.default-reductions} directive.
7731
7732@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7733Specify the kind of states that are permitted to contain default reductions.
7734The accepted values of @var{WHERE} are:
7735@itemize
f0ad1b2f 7736@item @code{most} (default for LALR and IELR)
7fceb615
JD
7737@item @code{consistent}
7738@item @code{accepting} (default for canonical LR)
7739@end itemize
7740
7741(The ability to specify where default reductions are permitted is
7742experimental. More user feedback will help to stabilize it.)
7743@end deffn
7744
7fceb615
JD
7745@node LAC
7746@subsection LAC
7747@findex %define parse.lac
7748@cindex LAC
7749@cindex lookahead correction
7750
7751Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7752encountering a syntax error. First, the parser might perform additional
7753parser stack reductions before discovering the syntax error. Such
7754reductions can perform user semantic actions that are unexpected because
7755they are based on an invalid token, and they cause error recovery to begin
7756in a different syntactic context than the one in which the invalid token was
7757encountered. Second, when verbose error messages are enabled (@pxref{Error
7758Reporting}), the expected token list in the syntax error message can both
7759contain invalid tokens and omit valid tokens.
7760
7761The culprits for the above problems are @code{%nonassoc}, default reductions
7762in inconsistent states (@pxref{Default Reductions}), and parser state
7763merging. Because IELR and LALR merge parser states, they suffer the most.
7764Canonical LR can suffer only if @code{%nonassoc} is used or if default
7765reductions are enabled for inconsistent states.
7766
7767LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7768that solves these problems for canonical LR, IELR, and LALR without
7769sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7770enable LAC with the @code{%define parse.lac} directive.
7771
7772@deffn {Directive} {%define parse.lac @var{VALUE}}
7773Enable LAC to improve syntax error handling.
7774@itemize
7775@item @code{none} (default)
7776@item @code{full}
7777@end itemize
7778(This feature is experimental. More user feedback will help to stabilize
7779it. Moreover, it is currently only available for deterministic parsers in
7780C.)
7781@end deffn
7782
7783Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7784fetches a new token from the scanner so that it can determine the next
7785parser action, it immediately suspends normal parsing and performs an
7786exploratory parse using a temporary copy of the normal parser state stack.
7787During this exploratory parse, the parser does not perform user semantic
7788actions. If the exploratory parse reaches a shift action, normal parsing
7789then resumes on the normal parser stacks. If the exploratory parse reaches
7790an error instead, the parser reports a syntax error. If verbose syntax
7791error messages are enabled, the parser must then discover the list of
7792expected tokens, so it performs a separate exploratory parse for each token
7793in the grammar.
7794
7795There is one subtlety about the use of LAC. That is, when in a consistent
7796parser state with a default reduction, the parser will not attempt to fetch
7797a token from the scanner because no lookahead is needed to determine the
7798next parser action. Thus, whether default reductions are enabled in
7799consistent states (@pxref{Default Reductions}) affects how soon the parser
7800detects a syntax error: immediately when it @emph{reaches} an erroneous
7801token or when it eventually @emph{needs} that token as a lookahead to
7802determine the next parser action. The latter behavior is probably more
7803intuitive, so Bison currently provides no way to achieve the former behavior
7804while default reductions are enabled in consistent states.
7805
7806Thus, when LAC is in use, for some fixed decision of whether to enable
7807default reductions in consistent states, canonical LR and IELR behave almost
7808exactly the same for both syntactically acceptable and syntactically
7809unacceptable input. While LALR still does not support the full
7810language-recognition power of canonical LR and IELR, LAC at least enables
7811LALR's syntax error handling to correctly reflect LALR's
7812language-recognition power.
7813
7814There are a few caveats to consider when using LAC:
7815
7816@itemize
7817@item Infinite parsing loops.
7818
7819IELR plus LAC does have one shortcoming relative to canonical LR. Some
7820parsers generated by Bison can loop infinitely. LAC does not fix infinite
7821parsing loops that occur between encountering a syntax error and detecting
7822it, but enabling canonical LR or disabling default reductions sometimes
7823does.
7824
7825@item Verbose error message limitations.
7826
7827Because of internationalization considerations, Bison-generated parsers
7828limit the size of the expected token list they are willing to report in a
7829verbose syntax error message. If the number of expected tokens exceeds that
7830limit, the list is simply dropped from the message. Enabling LAC can
7831increase the size of the list and thus cause the parser to drop it. Of
7832course, dropping the list is better than reporting an incorrect list.
7833
7834@item Performance.
7835
7836Because LAC requires many parse actions to be performed twice, it can have a
7837performance penalty. However, not all parse actions must be performed
7838twice. Specifically, during a series of default reductions in consistent
7839states and shift actions, the parser never has to initiate an exploratory
7840parse. Moreover, the most time-consuming tasks in a parse are often the
7841file I/O, the lexical analysis performed by the scanner, and the user's
7842semantic actions, but none of these are performed during the exploratory
7843parse. Finally, the base of the temporary stack used during an exploratory
7844parse is a pointer into the normal parser state stack so that the stack is
7845never physically copied. In our experience, the performance penalty of LAC
5a321748 7846has proved insignificant for practical grammars.
7fceb615
JD
7847@end itemize
7848
709c7d11
JD
7849While the LAC algorithm shares techniques that have been recognized in the
7850parser community for years, for the publication that introduces LAC,
7851@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7852
7fceb615
JD
7853@node Unreachable States
7854@subsection Unreachable States
7855@findex %define lr.keep-unreachable-states
7856@cindex unreachable states
7857
7858If there exists no sequence of transitions from the parser's start state to
7859some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7860state}. A state can become unreachable during conflict resolution if Bison
7861disables a shift action leading to it from a predecessor state.
7862
7863By default, Bison removes unreachable states from the parser after conflict
7864resolution because they are useless in the generated parser. However,
7865keeping unreachable states is sometimes useful when trying to understand the
7866relationship between the parser and the grammar.
7867
7868@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7869Request that Bison allow unreachable states to remain in the parser tables.
7870@var{VALUE} must be a Boolean. The default is @code{false}.
7871@end deffn
7872
7873There are a few caveats to consider:
7874
7875@itemize @bullet
7876@item Missing or extraneous warnings.
7877
7878Unreachable states may contain conflicts and may use rules not used in any
7879other state. Thus, keeping unreachable states may induce warnings that are
7880irrelevant to your parser's behavior, and it may eliminate warnings that are
7881relevant. Of course, the change in warnings may actually be relevant to a
7882parser table analysis that wants to keep unreachable states, so this
7883behavior will likely remain in future Bison releases.
7884
7885@item Other useless states.
7886
7887While Bison is able to remove unreachable states, it is not guaranteed to
7888remove other kinds of useless states. Specifically, when Bison disables
7889reduce actions during conflict resolution, some goto actions may become
7890useless, and thus some additional states may become useless. If Bison were
7891to compute which goto actions were useless and then disable those actions,
7892it could identify such states as unreachable and then remove those states.
7893However, Bison does not compute which goto actions are useless.
7894@end itemize
7895
fae437e8 7896@node Generalized LR Parsing
8a4281b9
JD
7897@section Generalized LR (GLR) Parsing
7898@cindex GLR parsing
7899@cindex generalized LR (GLR) parsing
676385e2 7900@cindex ambiguous grammars
9d9b8b70 7901@cindex nondeterministic parsing
676385e2 7902
fae437e8
AD
7903Bison produces @emph{deterministic} parsers that choose uniquely
7904when to reduce and which reduction to apply
742e4900 7905based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7906As a result, normal Bison handles a proper subset of the family of
7907context-free languages.
fae437e8 7908Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7909sequence of reductions cannot have deterministic parsers in this sense.
7910The same is true of languages that require more than one symbol of
742e4900 7911lookahead, since the parser lacks the information necessary to make a
676385e2 7912decision at the point it must be made in a shift-reduce parser.
cc09e5be 7913Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7914there are languages where Bison's default choice of how to
676385e2
PH
7915summarize the input seen so far loses necessary information.
7916
7917When you use the @samp{%glr-parser} declaration in your grammar file,
7918Bison generates a parser that uses a different algorithm, called
8a4281b9 7919Generalized LR (or GLR). A Bison GLR
c827f760 7920parser uses the same basic
676385e2
PH
7921algorithm for parsing as an ordinary Bison parser, but behaves
7922differently in cases where there is a shift-reduce conflict that has not
fae437e8 7923been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7924reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7925situation, it
fae437e8 7926effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7927shift or reduction. These parsers then proceed as usual, consuming
7928tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7929and split further, with the result that instead of a sequence of states,
8a4281b9 7930a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7931
7932In effect, each stack represents a guess as to what the proper parse
7933is. Additional input may indicate that a guess was wrong, in which case
7934the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7935actions generated in each stack are saved, rather than being executed
676385e2 7936immediately. When a stack disappears, its saved semantic actions never
fae437e8 7937get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7938their sets of semantic actions are both saved with the state that
7939results from the reduction. We say that two stacks are equivalent
fae437e8 7940when they both represent the same sequence of states,
676385e2
PH
7941and each pair of corresponding states represents a
7942grammar symbol that produces the same segment of the input token
7943stream.
7944
7945Whenever the parser makes a transition from having multiple
eb45ef3b 7946states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7947algorithm, after resolving and executing the saved-up actions.
7948At this transition, some of the states on the stack will have semantic
7949values that are sets (actually multisets) of possible actions. The
7950parser tries to pick one of the actions by first finding one whose rule
7951has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7952declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7953precedence, but there the same merging function is declared for both
fae437e8 7954rules by the @samp{%merge} declaration,
676385e2
PH
7955Bison resolves and evaluates both and then calls the merge function on
7956the result. Otherwise, it reports an ambiguity.
7957
8a4281b9
JD
7958It is possible to use a data structure for the GLR parsing tree that
7959permits the processing of any LR(1) grammar in linear time (in the
c827f760 7960size of the input), any unambiguous (not necessarily
8a4281b9 7961LR(1)) grammar in
fae437e8 7962quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7963context-free grammar in cubic worst-case time. However, Bison currently
7964uses a simpler data structure that requires time proportional to the
7965length of the input times the maximum number of stacks required for any
9d9b8b70 7966prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7967grammars can require exponential time and space to process. Such badly
7968behaving examples, however, are not generally of practical interest.
9d9b8b70 7969Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7970doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7971structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7972grammar, in particular, it is only slightly slower than with the
8a4281b9 7973deterministic LR(1) Bison parser.
676385e2 7974
5e528941
JD
7975For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
79762000}.
f6481e2f 7977
1a059451
PE
7978@node Memory Management
7979@section Memory Management, and How to Avoid Memory Exhaustion
7980@cindex memory exhaustion
7981@cindex memory management
bfa74976
RS
7982@cindex stack overflow
7983@cindex parser stack overflow
7984@cindex overflow of parser stack
7985
1a059451 7986The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7987not reduced. When this happens, the parser function @code{yyparse}
1a059451 7988calls @code{yyerror} and then returns 2.
bfa74976 7989
c827f760 7990Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 7991usually results from using a right recursion instead of a left
188867ac 7992recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 7993
bfa74976
RS
7994@vindex YYMAXDEPTH
7995By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7996parser stack can become before memory is exhausted. Define the
bfa74976
RS
7997macro with a value that is an integer. This value is the maximum number
7998of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7999
8000The stack space allowed is not necessarily allocated. If you specify a
1a059451 8001large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8002stack at first, and then makes it bigger by stages as needed. This
8003increasing allocation happens automatically and silently. Therefore,
8004you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8005space for ordinary inputs that do not need much stack.
8006
d7e14fc0
PE
8007However, do not allow @code{YYMAXDEPTH} to be a value so large that
8008arithmetic overflow could occur when calculating the size of the stack
8009space. Also, do not allow @code{YYMAXDEPTH} to be less than
8010@code{YYINITDEPTH}.
8011
bfa74976
RS
8012@cindex default stack limit
8013The default value of @code{YYMAXDEPTH}, if you do not define it, is
801410000.
8015
8016@vindex YYINITDEPTH
8017You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8018macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8019parser in C, this value must be a compile-time constant
d7e14fc0
PE
8020unless you are assuming C99 or some other target language or compiler
8021that allows variable-length arrays. The default is 200.
8022
1a059451 8023Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8024
20be2f92 8025You can generate a deterministic parser containing C++ user code from
411614fa 8026the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8027(@pxref{C++ Parsers}). However, if you do use the default skeleton
8028and want to allow the parsing stack to grow,
8029be careful not to use semantic types or location types that require
8030non-trivial copy constructors.
8031The C skeleton bypasses these constructors when copying data to
8032new, larger stacks.
d1a1114f 8033
342b8b6e 8034@node Error Recovery
bfa74976
RS
8035@chapter Error Recovery
8036@cindex error recovery
8037@cindex recovery from errors
8038
6e649e65 8039It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8040error. For example, a compiler should recover sufficiently to parse the
8041rest of the input file and check it for errors; a calculator should accept
8042another expression.
8043
8044In a simple interactive command parser where each input is one line, it may
8045be sufficient to allow @code{yyparse} to return 1 on error and have the
8046caller ignore the rest of the input line when that happens (and then call
8047@code{yyparse} again). But this is inadequate for a compiler, because it
8048forgets all the syntactic context leading up to the error. A syntax error
8049deep within a function in the compiler input should not cause the compiler
8050to treat the following line like the beginning of a source file.
8051
8052@findex error
8053You can define how to recover from a syntax error by writing rules to
8054recognize the special token @code{error}. This is a terminal symbol that
8055is always defined (you need not declare it) and reserved for error
8056handling. The Bison parser generates an @code{error} token whenever a
8057syntax error happens; if you have provided a rule to recognize this token
13863333 8058in the current context, the parse can continue.
bfa74976
RS
8059
8060For example:
8061
8062@example
0860e383 8063stmts:
5e9b6624 8064 /* empty string */
0860e383
AD
8065| stmts '\n'
8066| stmts exp '\n'
8067| stmts error '\n'
bfa74976
RS
8068@end example
8069
8070The fourth rule in this example says that an error followed by a newline
0860e383 8071makes a valid addition to any @code{stmts}.
bfa74976
RS
8072
8073What happens if a syntax error occurs in the middle of an @code{exp}? The
8074error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8075of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8076the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8077and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8078will be tokens to read before the next newline. So the rule is not
8079applicable in the ordinary way.
8080
8081But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8082the semantic context and part of the input. First it discards states
8083and objects from the stack until it gets back to a state in which the
bfa74976 8084@code{error} token is acceptable. (This means that the subexpressions
0860e383 8085already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8086At this point the @code{error} token can be shifted. Then, if the old
742e4900 8087lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8088tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8089this example, Bison reads and discards input until the next newline so
8090that the fourth rule can apply. Note that discarded symbols are
8091possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8092Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8093
8094The choice of error rules in the grammar is a choice of strategies for
8095error recovery. A simple and useful strategy is simply to skip the rest of
8096the current input line or current statement if an error is detected:
8097
8098@example
0860e383 8099stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8100@end example
8101
8102It is also useful to recover to the matching close-delimiter of an
8103opening-delimiter that has already been parsed. Otherwise the
8104close-delimiter will probably appear to be unmatched, and generate another,
8105spurious error message:
8106
8107@example
5e9b6624
AD
8108primary:
8109 '(' expr ')'
8110| '(' error ')'
8111@dots{}
8112;
bfa74976
RS
8113@end example
8114
8115Error recovery strategies are necessarily guesses. When they guess wrong,
8116one syntax error often leads to another. In the above example, the error
8117recovery rule guesses that an error is due to bad input within one
0860e383
AD
8118@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8119middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8120from the first error, another syntax error will be found straightaway,
8121since the text following the spurious semicolon is also an invalid
0860e383 8122@code{stmt}.
bfa74976
RS
8123
8124To prevent an outpouring of error messages, the parser will output no error
8125message for another syntax error that happens shortly after the first; only
8126after three consecutive input tokens have been successfully shifted will
8127error messages resume.
8128
8129Note that rules which accept the @code{error} token may have actions, just
8130as any other rules can.
8131
8132@findex yyerrok
8133You can make error messages resume immediately by using the macro
8134@code{yyerrok} in an action. If you do this in the error rule's action, no
8135error messages will be suppressed. This macro requires no arguments;
8136@samp{yyerrok;} is a valid C statement.
8137
8138@findex yyclearin
742e4900 8139The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8140this is unacceptable, then the macro @code{yyclearin} may be used to clear
8141this token. Write the statement @samp{yyclearin;} in the error rule's
8142action.
32c29292 8143@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8144
6e649e65 8145For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8146called that advances the input stream to some point where parsing should
8147once again commence. The next symbol returned by the lexical scanner is
742e4900 8148probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8149with @samp{yyclearin;}.
8150
8151@vindex YYRECOVERING
02103984
PE
8152The expression @code{YYRECOVERING ()} yields 1 when the parser
8153is recovering from a syntax error, and 0 otherwise.
8154Syntax error diagnostics are suppressed while recovering from a syntax
8155error.
bfa74976 8156
342b8b6e 8157@node Context Dependency
bfa74976
RS
8158@chapter Handling Context Dependencies
8159
8160The Bison paradigm is to parse tokens first, then group them into larger
8161syntactic units. In many languages, the meaning of a token is affected by
8162its context. Although this violates the Bison paradigm, certain techniques
8163(known as @dfn{kludges}) may enable you to write Bison parsers for such
8164languages.
8165
8166@menu
8167* Semantic Tokens:: Token parsing can depend on the semantic context.
8168* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8169* Tie-in Recovery:: Lexical tie-ins have implications for how
8170 error recovery rules must be written.
8171@end menu
8172
8173(Actually, ``kludge'' means any technique that gets its job done but is
8174neither clean nor robust.)
8175
342b8b6e 8176@node Semantic Tokens
bfa74976
RS
8177@section Semantic Info in Token Types
8178
8179The C language has a context dependency: the way an identifier is used
8180depends on what its current meaning is. For example, consider this:
8181
8182@example
8183foo (x);
8184@end example
8185
8186This looks like a function call statement, but if @code{foo} is a typedef
8187name, then this is actually a declaration of @code{x}. How can a Bison
8188parser for C decide how to parse this input?
8189
8a4281b9 8190The method used in GNU C is to have two different token types,
bfa74976
RS
8191@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8192identifier, it looks up the current declaration of the identifier in order
8193to decide which token type to return: @code{TYPENAME} if the identifier is
8194declared as a typedef, @code{IDENTIFIER} otherwise.
8195
8196The grammar rules can then express the context dependency by the choice of
8197token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8198but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8199@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8200is @emph{not} significant, such as in declarations that can shadow a
8201typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8202accepted---there is one rule for each of the two token types.
8203
8204This technique is simple to use if the decision of which kinds of
8205identifiers to allow is made at a place close to where the identifier is
8206parsed. But in C this is not always so: C allows a declaration to
8207redeclare a typedef name provided an explicit type has been specified
8208earlier:
8209
8210@example
3a4f411f
PE
8211typedef int foo, bar;
8212int baz (void)
d4fca427 8213@group
3a4f411f
PE
8214@{
8215 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8216 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8217 return foo (bar);
8218@}
d4fca427 8219@end group
bfa74976
RS
8220@end example
8221
8222Unfortunately, the name being declared is separated from the declaration
8223construct itself by a complicated syntactic structure---the ``declarator''.
8224
9ecbd125 8225As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8226all the nonterminal names changed: once for parsing a declaration in
8227which a typedef name can be redefined, and once for parsing a
8228declaration in which that can't be done. Here is a part of the
8229duplication, with actions omitted for brevity:
bfa74976
RS
8230
8231@example
d4fca427 8232@group
bfa74976 8233initdcl:
5e9b6624
AD
8234 declarator maybeasm '=' init
8235| declarator maybeasm
8236;
d4fca427 8237@end group
bfa74976 8238
d4fca427 8239@group
bfa74976 8240notype_initdcl:
5e9b6624
AD
8241 notype_declarator maybeasm '=' init
8242| notype_declarator maybeasm
8243;
d4fca427 8244@end group
bfa74976
RS
8245@end example
8246
8247@noindent
8248Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8249cannot. The distinction between @code{declarator} and
8250@code{notype_declarator} is the same sort of thing.
8251
8252There is some similarity between this technique and a lexical tie-in
8253(described next), in that information which alters the lexical analysis is
8254changed during parsing by other parts of the program. The difference is
8255here the information is global, and is used for other purposes in the
8256program. A true lexical tie-in has a special-purpose flag controlled by
8257the syntactic context.
8258
342b8b6e 8259@node Lexical Tie-ins
bfa74976
RS
8260@section Lexical Tie-ins
8261@cindex lexical tie-in
8262
8263One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8264which is set by Bison actions, whose purpose is to alter the way tokens are
8265parsed.
8266
8267For example, suppose we have a language vaguely like C, but with a special
8268construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8269an expression in parentheses in which all integers are hexadecimal. In
8270particular, the token @samp{a1b} must be treated as an integer rather than
8271as an identifier if it appears in that context. Here is how you can do it:
8272
8273@example
8274@group
8275%@{
38a92d50
PE
8276 int hexflag;
8277 int yylex (void);
8278 void yyerror (char const *);
bfa74976
RS
8279%@}
8280%%
8281@dots{}
8282@end group
8283@group
5e9b6624
AD
8284expr:
8285 IDENTIFIER
8286| constant
8287| HEX '(' @{ hexflag = 1; @}
8288 expr ')' @{ hexflag = 0; $$ = $4; @}
8289| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8290@dots{}
8291;
bfa74976
RS
8292@end group
8293
8294@group
8295constant:
5e9b6624
AD
8296 INTEGER
8297| STRING
8298;
bfa74976
RS
8299@end group
8300@end example
8301
8302@noindent
8303Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8304it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8305with letters are parsed as integers if possible.
8306
ff7571c0
JD
8307The declaration of @code{hexflag} shown in the prologue of the grammar
8308file is needed to make it accessible to the actions (@pxref{Prologue,
8309,The Prologue}). You must also write the code in @code{yylex} to obey
8310the flag.
bfa74976 8311
342b8b6e 8312@node Tie-in Recovery
bfa74976
RS
8313@section Lexical Tie-ins and Error Recovery
8314
8315Lexical tie-ins make strict demands on any error recovery rules you have.
8316@xref{Error Recovery}.
8317
8318The reason for this is that the purpose of an error recovery rule is to
8319abort the parsing of one construct and resume in some larger construct.
8320For example, in C-like languages, a typical error recovery rule is to skip
8321tokens until the next semicolon, and then start a new statement, like this:
8322
8323@example
5e9b6624
AD
8324stmt:
8325 expr ';'
8326| IF '(' expr ')' stmt @{ @dots{} @}
8327@dots{}
8328| error ';' @{ hexflag = 0; @}
8329;
bfa74976
RS
8330@end example
8331
8332If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8333construct, this error rule will apply, and then the action for the
8334completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8335remain set for the entire rest of the input, or until the next @code{hex}
8336keyword, causing identifiers to be misinterpreted as integers.
8337
8338To avoid this problem the error recovery rule itself clears @code{hexflag}.
8339
8340There may also be an error recovery rule that works within expressions.
8341For example, there could be a rule which applies within parentheses
8342and skips to the close-parenthesis:
8343
8344@example
8345@group
5e9b6624
AD
8346expr:
8347 @dots{}
8348| '(' expr ')' @{ $$ = $2; @}
8349| '(' error ')'
8350@dots{}
bfa74976
RS
8351@end group
8352@end example
8353
8354If this rule acts within the @code{hex} construct, it is not going to abort
8355that construct (since it applies to an inner level of parentheses within
8356the construct). Therefore, it should not clear the flag: the rest of
8357the @code{hex} construct should be parsed with the flag still in effect.
8358
8359What if there is an error recovery rule which might abort out of the
8360@code{hex} construct or might not, depending on circumstances? There is no
8361way you can write the action to determine whether a @code{hex} construct is
8362being aborted or not. So if you are using a lexical tie-in, you had better
8363make sure your error recovery rules are not of this kind. Each rule must
8364be such that you can be sure that it always will, or always won't, have to
8365clear the flag.
8366
ec3bc396
AD
8367@c ================================================== Debugging Your Parser
8368
342b8b6e 8369@node Debugging
bfa74976 8370@chapter Debugging Your Parser
ec3bc396 8371
93c150b6
AD
8372Developing a parser can be a challenge, especially if you don't understand
8373the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8374chapter explains how to generate and read the detailed description of the
8375automaton, and how to enable and understand the parser run-time traces.
ec3bc396
AD
8376
8377@menu
8378* Understanding:: Understanding the structure of your parser.
8379* Tracing:: Tracing the execution of your parser.
8380@end menu
8381
8382@node Understanding
8383@section Understanding Your Parser
8384
8385As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8386Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8387frequent than one would hope), looking at this automaton is required to
8388tune or simply fix a parser. Bison provides two different
35fe0834 8389representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8390
8391The textual file is generated when the options @option{--report} or
e3fd1dcb 8392@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8393Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8394the parser implementation file name, and adding @samp{.output}
8395instead. Therefore, if the grammar file is @file{foo.y}, then the
8396parser implementation file is called @file{foo.tab.c} by default. As
8397a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8398
8399The following grammar file, @file{calc.y}, will be used in the sequel:
8400
8401@example
8402%token NUM STR
8403%left '+' '-'
8404%left '*'
8405%%
5e9b6624
AD
8406exp:
8407 exp '+' exp
8408| exp '-' exp
8409| exp '*' exp
8410| exp '/' exp
8411| NUM
8412;
ec3bc396
AD
8413useless: STR;
8414%%
8415@end example
8416
88bce5a2
AD
8417@command{bison} reports:
8418
8419@example
8f0d265e
JD
8420calc.y: warning: 1 nonterminal useless in grammar
8421calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8422calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8423calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8424calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8425@end example
8426
8427When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8428creates a file @file{calc.output} with contents detailed below. The
8429order of the output and the exact presentation might vary, but the
8430interpretation is the same.
ec3bc396 8431
ec3bc396
AD
8432@noindent
8433@cindex token, useless
8434@cindex useless token
8435@cindex nonterminal, useless
8436@cindex useless nonterminal
8437@cindex rule, useless
8438@cindex useless rule
62243aa5 8439The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8440nonterminals and rules are removed in order to produce a smaller parser, but
8441useless tokens are preserved, since they might be used by the scanner (note
8442the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8443
8444@example
29e20e22 8445Nonterminals useless in grammar
ec3bc396
AD
8446 useless
8447
29e20e22 8448Terminals unused in grammar
ec3bc396
AD
8449 STR
8450
29e20e22
AD
8451Rules useless in grammar
8452 6 useless: STR
ec3bc396
AD
8453@end example
8454
8455@noindent
29e20e22
AD
8456The next section lists states that still have conflicts.
8457
8458@example
8459State 8 conflicts: 1 shift/reduce
8460State 9 conflicts: 1 shift/reduce
8461State 10 conflicts: 1 shift/reduce
8462State 11 conflicts: 4 shift/reduce
8463@end example
8464
8465@noindent
8466Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8467
8468@example
8469Grammar
8470
29e20e22
AD
8471 0 $accept: exp $end
8472
8473 1 exp: exp '+' exp
8474 2 | exp '-' exp
8475 3 | exp '*' exp
8476 4 | exp '/' exp
8477 5 | NUM
ec3bc396
AD
8478@end example
8479
8480@noindent
8481and reports the uses of the symbols:
8482
8483@example
d4fca427 8484@group
ec3bc396
AD
8485Terminals, with rules where they appear
8486
88bce5a2 8487$end (0) 0
ec3bc396
AD
8488'*' (42) 3
8489'+' (43) 1
8490'-' (45) 2
8491'/' (47) 4
8492error (256)
8493NUM (258) 5
29e20e22 8494STR (259)
d4fca427 8495@end group
ec3bc396 8496
d4fca427 8497@group
ec3bc396
AD
8498Nonterminals, with rules where they appear
8499
29e20e22 8500$accept (9)
ec3bc396 8501 on left: 0
29e20e22 8502exp (10)
ec3bc396 8503 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8504@end group
ec3bc396
AD
8505@end example
8506
8507@noindent
8508@cindex item
8509@cindex pointed rule
8510@cindex rule, pointed
8511Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8512with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8513item is a production rule together with a point (@samp{.}) marking
8514the location of the input cursor.
ec3bc396
AD
8515
8516@example
8517state 0
8518
29e20e22 8519 0 $accept: . exp $end
ec3bc396 8520
29e20e22 8521 NUM shift, and go to state 1
ec3bc396 8522
29e20e22 8523 exp go to state 2
ec3bc396
AD
8524@end example
8525
8526This reads as follows: ``state 0 corresponds to being at the very
8527beginning of the parsing, in the initial rule, right before the start
8528symbol (here, @code{exp}). When the parser returns to this state right
8529after having reduced a rule that produced an @code{exp}, the control
8530flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8531symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8532the parse stack, and the control flow jumps to state 1. Any other
742e4900 8533lookahead triggers a syntax error.''
ec3bc396
AD
8534
8535@cindex core, item set
8536@cindex item set core
8537@cindex kernel, item set
8538@cindex item set core
8539Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8540report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8541at the beginning of any rule deriving an @code{exp}. By default Bison
8542reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8543you want to see more detail you can invoke @command{bison} with
35880c82 8544@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8545
8546@example
8547state 0
8548
29e20e22
AD
8549 0 $accept: . exp $end
8550 1 exp: . exp '+' exp
8551 2 | . exp '-' exp
8552 3 | . exp '*' exp
8553 4 | . exp '/' exp
8554 5 | . NUM
ec3bc396 8555
29e20e22 8556 NUM shift, and go to state 1
ec3bc396 8557
29e20e22 8558 exp go to state 2
ec3bc396
AD
8559@end example
8560
8561@noindent
29e20e22 8562In the state 1@dots{}
ec3bc396
AD
8563
8564@example
8565state 1
8566
29e20e22 8567 5 exp: NUM .
ec3bc396 8568
29e20e22 8569 $default reduce using rule 5 (exp)
ec3bc396
AD
8570@end example
8571
8572@noindent
742e4900 8573the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8574(@samp{$default}), the parser will reduce it. If it was coming from
8575state 0, then, after this reduction it will return to state 0, and will
8576jump to state 2 (@samp{exp: go to state 2}).
8577
8578@example
8579state 2
8580
29e20e22
AD
8581 0 $accept: exp . $end
8582 1 exp: exp . '+' exp
8583 2 | exp . '-' exp
8584 3 | exp . '*' exp
8585 4 | exp . '/' exp
ec3bc396 8586
29e20e22
AD
8587 $end shift, and go to state 3
8588 '+' shift, and go to state 4
8589 '-' shift, and go to state 5
8590 '*' shift, and go to state 6
8591 '/' shift, and go to state 7
ec3bc396
AD
8592@end example
8593
8594@noindent
8595In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8596because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8597@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8598jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8599Since there is no default action, any lookahead not listed triggers a syntax
8600error.
ec3bc396 8601
eb45ef3b 8602@cindex accepting state
ec3bc396
AD
8603The state 3 is named the @dfn{final state}, or the @dfn{accepting
8604state}:
8605
8606@example
8607state 3
8608
29e20e22 8609 0 $accept: exp $end .
ec3bc396 8610
29e20e22 8611 $default accept
ec3bc396
AD
8612@end example
8613
8614@noindent
29e20e22
AD
8615the initial rule is completed (the start symbol and the end-of-input were
8616read), the parsing exits successfully.
ec3bc396
AD
8617
8618The interpretation of states 4 to 7 is straightforward, and is left to
8619the reader.
8620
8621@example
8622state 4
8623
29e20e22 8624 1 exp: exp '+' . exp
ec3bc396 8625
29e20e22
AD
8626 NUM shift, and go to state 1
8627
8628 exp go to state 8
ec3bc396 8629
ec3bc396
AD
8630
8631state 5
8632
29e20e22
AD
8633 2 exp: exp '-' . exp
8634
8635 NUM shift, and go to state 1
ec3bc396 8636
29e20e22 8637 exp go to state 9
ec3bc396 8638
ec3bc396
AD
8639
8640state 6
8641
29e20e22 8642 3 exp: exp '*' . exp
ec3bc396 8643
29e20e22
AD
8644 NUM shift, and go to state 1
8645
8646 exp go to state 10
ec3bc396 8647
ec3bc396
AD
8648
8649state 7
8650
29e20e22 8651 4 exp: exp '/' . exp
ec3bc396 8652
29e20e22 8653 NUM shift, and go to state 1
ec3bc396 8654
29e20e22 8655 exp go to state 11
ec3bc396
AD
8656@end example
8657
5a99098d
PE
8658As was announced in beginning of the report, @samp{State 8 conflicts:
86591 shift/reduce}:
ec3bc396
AD
8660
8661@example
8662state 8
8663
29e20e22
AD
8664 1 exp: exp . '+' exp
8665 1 | exp '+' exp .
8666 2 | exp . '-' exp
8667 3 | exp . '*' exp
8668 4 | exp . '/' exp
ec3bc396 8669
29e20e22
AD
8670 '*' shift, and go to state 6
8671 '/' shift, and go to state 7
ec3bc396 8672
29e20e22
AD
8673 '/' [reduce using rule 1 (exp)]
8674 $default reduce using rule 1 (exp)
ec3bc396
AD
8675@end example
8676
742e4900 8677Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8678either shifting (and going to state 7), or reducing rule 1. The
8679conflict means that either the grammar is ambiguous, or the parser lacks
8680information to make the right decision. Indeed the grammar is
8681ambiguous, as, since we did not specify the precedence of @samp{/}, the
8682sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8683NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8684NUM}, which corresponds to reducing rule 1.
8685
eb45ef3b 8686Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8687arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 8688Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8689square brackets.
8690
8691Note that all the previous states had a single possible action: either
8692shifting the next token and going to the corresponding state, or
8693reducing a single rule. In the other cases, i.e., when shifting
8694@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8695possible, the lookahead is required to select the action. State 8 is
8696one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8697is shifting, otherwise the action is reducing rule 1. In other words,
8698the first two items, corresponding to rule 1, are not eligible when the
742e4900 8699lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8700precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8701with some set of possible lookahead tokens. When run with
8702@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8703
8704@example
8705state 8
8706
29e20e22
AD
8707 1 exp: exp . '+' exp
8708 1 | exp '+' exp . [$end, '+', '-', '/']
8709 2 | exp . '-' exp
8710 3 | exp . '*' exp
8711 4 | exp . '/' exp
8712
8713 '*' shift, and go to state 6
8714 '/' shift, and go to state 7
ec3bc396 8715
29e20e22
AD
8716 '/' [reduce using rule 1 (exp)]
8717 $default reduce using rule 1 (exp)
8718@end example
8719
8720Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8721the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8722solved thanks to associativity and precedence directives. If invoked with
8723@option{--report=solved}, Bison includes information about the solved
8724conflicts in the report:
ec3bc396 8725
29e20e22
AD
8726@example
8727Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8728Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8729Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8730@end example
8731
29e20e22 8732
ec3bc396
AD
8733The remaining states are similar:
8734
8735@example
d4fca427 8736@group
ec3bc396
AD
8737state 9
8738
29e20e22
AD
8739 1 exp: exp . '+' exp
8740 2 | exp . '-' exp
8741 2 | exp '-' exp .
8742 3 | exp . '*' exp
8743 4 | exp . '/' exp
ec3bc396 8744
29e20e22
AD
8745 '*' shift, and go to state 6
8746 '/' shift, and go to state 7
ec3bc396 8747
29e20e22
AD
8748 '/' [reduce using rule 2 (exp)]
8749 $default reduce using rule 2 (exp)
d4fca427 8750@end group
ec3bc396 8751
d4fca427 8752@group
ec3bc396
AD
8753state 10
8754
29e20e22
AD
8755 1 exp: exp . '+' exp
8756 2 | exp . '-' exp
8757 3 | exp . '*' exp
8758 3 | exp '*' exp .
8759 4 | exp . '/' exp
ec3bc396 8760
29e20e22 8761 '/' shift, and go to state 7
ec3bc396 8762
29e20e22
AD
8763 '/' [reduce using rule 3 (exp)]
8764 $default reduce using rule 3 (exp)
d4fca427 8765@end group
ec3bc396 8766
d4fca427 8767@group
ec3bc396
AD
8768state 11
8769
29e20e22
AD
8770 1 exp: exp . '+' exp
8771 2 | exp . '-' exp
8772 3 | exp . '*' exp
8773 4 | exp . '/' exp
8774 4 | exp '/' exp .
8775
8776 '+' shift, and go to state 4
8777 '-' shift, and go to state 5
8778 '*' shift, and go to state 6
8779 '/' shift, and go to state 7
8780
8781 '+' [reduce using rule 4 (exp)]
8782 '-' [reduce using rule 4 (exp)]
8783 '*' [reduce using rule 4 (exp)]
8784 '/' [reduce using rule 4 (exp)]
8785 $default reduce using rule 4 (exp)
d4fca427 8786@end group
ec3bc396
AD
8787@end example
8788
8789@noindent
fa7e68c3
PE
8790Observe that state 11 contains conflicts not only due to the lack of
8791precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8792@samp{*}, but also because the
ec3bc396
AD
8793associativity of @samp{/} is not specified.
8794
8795
8796@node Tracing
8797@section Tracing Your Parser
bfa74976
RS
8798@findex yydebug
8799@cindex debugging
8800@cindex tracing the parser
8801
93c150b6
AD
8802When a Bison grammar compiles properly but parses ``incorrectly'', the
8803@code{yydebug} parser-trace feature helps figuring out why.
8804
8805@menu
8806* Enabling Traces:: Activating run-time trace support
8807* Mfcalc Traces:: Extending @code{mfcalc} to support traces
8808* The YYPRINT Macro:: Obsolete interface for semantic value reports
8809@end menu
bfa74976 8810
93c150b6
AD
8811@node Enabling Traces
8812@subsection Enabling Traces
3ded9a63
AD
8813There are several means to enable compilation of trace facilities:
8814
8815@table @asis
8816@item the macro @code{YYDEBUG}
8817@findex YYDEBUG
8818Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8819parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8820@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8821YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8822Prologue}).
8823
e6ae99fe 8824If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
8825Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
8826api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
8827tracing feature (enabled iff nonzero); otherwise tracing is enabled iff
8828@code{YYDEBUG} is nonzero.
8829
8830@item the option @option{-t} (POSIX Yacc compliant)
8831@itemx the option @option{--debug} (Bison extension)
8832Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
8833Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
8834otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
8835
8836@item the directive @samp{%debug}
8837@findex %debug
fa819509
AD
8838Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8839Summary}). This Bison extension is maintained for backward
8840compatibility with previous versions of Bison.
8841
8842@item the variable @samp{parse.trace}
8843@findex %define parse.trace
35c1e5f0
JD
8844Add the @samp{%define parse.trace} directive (@pxref{%define
8845Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8846(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8847useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8848portability matter to you, this is the preferred solution.
3ded9a63
AD
8849@end table
8850
fa819509 8851We suggest that you always enable the trace option so that debugging is
3ded9a63 8852always possible.
bfa74976 8853
93c150b6 8854@findex YYFPRINTF
02a81e05 8855The trace facility outputs messages with macro calls of the form
e2742e46 8856@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8857@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8858arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8859define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8860and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8861
8862Once you have compiled the program with trace facilities, the way to
8863request a trace is to store a nonzero value in the variable @code{yydebug}.
8864You can do this by making the C code do it (in @code{main}, perhaps), or
8865you can alter the value with a C debugger.
8866
8867Each step taken by the parser when @code{yydebug} is nonzero produces a
8868line or two of trace information, written on @code{stderr}. The trace
8869messages tell you these things:
8870
8871@itemize @bullet
8872@item
8873Each time the parser calls @code{yylex}, what kind of token was read.
8874
8875@item
8876Each time a token is shifted, the depth and complete contents of the
8877state stack (@pxref{Parser States}).
8878
8879@item
8880Each time a rule is reduced, which rule it is, and the complete contents
8881of the state stack afterward.
8882@end itemize
8883
93c150b6
AD
8884To make sense of this information, it helps to refer to the automaton
8885description file (@pxref{Understanding, ,Understanding Your Parser}).
8886This file shows the meaning of each state in terms of
704a47c4
AD
8887positions in various rules, and also what each state will do with each
8888possible input token. As you read the successive trace messages, you
8889can see that the parser is functioning according to its specification in
8890the listing file. Eventually you will arrive at the place where
8891something undesirable happens, and you will see which parts of the
8892grammar are to blame.
bfa74976 8893
93c150b6 8894The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
8895debuggers on it, but it's not easy to interpret what it is doing. The
8896parser function is a finite-state machine interpreter, and aside from
8897the actions it executes the same code over and over. Only the values
8898of variables show where in the grammar it is working.
bfa74976 8899
93c150b6
AD
8900@node Mfcalc Traces
8901@subsection Enabling Debug Traces for @code{mfcalc}
8902
8903The debugging information normally gives the token type of each token read,
8904but not its semantic value. The @code{%printer} directive allows specify
8905how semantic values are reported, see @ref{Printer Decl, , Printing
8906Semantic Values}. For backward compatibility, Yacc like C parsers may also
8907use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
8908Macro}), but its use is discouraged.
8909
8910As a demonstration of @code{%printer}, consider the multi-function
8911calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
8912traces, and semantic value reports, insert the following directives in its
8913prologue:
8914
8915@comment file: mfcalc.y: 2
8916@example
8917/* Generate the parser description file. */
8918%verbose
8919/* Enable run-time traces (yydebug). */
8920%define parse.trace
8921
8922/* Formatting semantic values. */
8923%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
8924%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
8925%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
8926@end example
8927
8928The @code{%define} directive instructs Bison to generate run-time trace
8929support. Then, activation of these traces is controlled at run-time by the
8930@code{yydebug} variable, which is disabled by default. Because these traces
8931will refer to the ``states'' of the parser, it is helpful to ask for the
8932creation of a description of that parser; this is the purpose of (admittedly
8933ill-named) @code{%verbose} directive.
8934
8935The set of @code{%printer} directives demonstrates how to format the
8936semantic value in the traces. Note that the specification can be done
8937either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
8938tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
8939printer will be used for them.
8940
8941Here is a sample of the information provided by run-time traces. The traces
8942are sent onto standard error.
8943
8944@example
8945$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
8946Starting parse
8947Entering state 0
8948Reducing stack by rule 1 (line 34):
8949-> $$ = nterm input ()
8950Stack now 0
8951Entering state 1
8952@end example
8953
8954@noindent
8955This first batch shows a specific feature of this grammar: the first rule
8956(which is in line 34 of @file{mfcalc.y} can be reduced without even having
8957to look for the first token. The resulting left-hand symbol (@code{$$}) is
8958a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
8959
8960Then the parser calls the scanner.
8961@example
8962Reading a token: Next token is token FNCT (sin())
8963Shifting token FNCT (sin())
8964Entering state 6
8965@end example
8966
8967@noindent
8968That token (@code{token}) is a function (@code{FNCT}) whose value is
8969@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
8970The parser stores (@code{Shifting}) that token, and others, until it can do
8971something about it.
8972
8973@example
8974Reading a token: Next token is token '(' ()
8975Shifting token '(' ()
8976Entering state 14
8977Reading a token: Next token is token NUM (1.000000)
8978Shifting token NUM (1.000000)
8979Entering state 4
8980Reducing stack by rule 6 (line 44):
8981 $1 = token NUM (1.000000)
8982-> $$ = nterm exp (1.000000)
8983Stack now 0 1 6 14
8984Entering state 24
8985@end example
8986
8987@noindent
8988The previous reduction demonstrates the @code{%printer} directive for
8989@code{<val>}: both the token @code{NUM} and the resulting non-terminal
8990@code{exp} have @samp{1} as value.
8991
8992@example
8993Reading a token: Next token is token '-' ()
8994Shifting token '-' ()
8995Entering state 17
8996Reading a token: Next token is token NUM (1.000000)
8997Shifting token NUM (1.000000)
8998Entering state 4
8999Reducing stack by rule 6 (line 44):
9000 $1 = token NUM (1.000000)
9001-> $$ = nterm exp (1.000000)
9002Stack now 0 1 6 14 24 17
9003Entering state 26
9004Reading a token: Next token is token ')' ()
9005Reducing stack by rule 11 (line 49):
9006 $1 = nterm exp (1.000000)
9007 $2 = token '-' ()
9008 $3 = nterm exp (1.000000)
9009-> $$ = nterm exp (0.000000)
9010Stack now 0 1 6 14
9011Entering state 24
9012@end example
9013
9014@noindent
9015The rule for the subtraction was just reduced. The parser is about to
9016discover the end of the call to @code{sin}.
9017
9018@example
9019Next token is token ')' ()
9020Shifting token ')' ()
9021Entering state 31
9022Reducing stack by rule 9 (line 47):
9023 $1 = token FNCT (sin())
9024 $2 = token '(' ()
9025 $3 = nterm exp (0.000000)
9026 $4 = token ')' ()
9027-> $$ = nterm exp (0.000000)
9028Stack now 0 1
9029Entering state 11
9030@end example
9031
9032@noindent
9033Finally, the end-of-line allow the parser to complete the computation, and
9034display its result.
9035
9036@example
9037Reading a token: Next token is token '\n' ()
9038Shifting token '\n' ()
9039Entering state 22
9040Reducing stack by rule 4 (line 40):
9041 $1 = nterm exp (0.000000)
9042 $2 = token '\n' ()
9043@result{} 0
9044-> $$ = nterm line ()
9045Stack now 0 1
9046Entering state 10
9047Reducing stack by rule 2 (line 35):
9048 $1 = nterm input ()
9049 $2 = nterm line ()
9050-> $$ = nterm input ()
9051Stack now 0
9052Entering state 1
9053@end example
9054
9055The parser has returned into state 1, in which it is waiting for the next
9056expression to evaluate, or for the end-of-file token, which causes the
9057completion of the parsing.
9058
9059@example
9060Reading a token: Now at end of input.
9061Shifting token $end ()
9062Entering state 2
9063Stack now 0 1 2
9064Cleanup: popping token $end ()
9065Cleanup: popping nterm input ()
9066@end example
9067
9068
9069@node The YYPRINT Macro
9070@subsection The @code{YYPRINT} Macro
9071
bfa74976 9072@findex YYPRINT
93c150b6
AD
9073Before @code{%printer} support, semantic values could be displayed using the
9074@code{YYPRINT} macro, which works only for terminal symbols and only with
9075the @file{yacc.c} skeleton.
9076
9077@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9078@findex YYPRINT
9079If you define @code{YYPRINT}, it should take three arguments. The parser
9080will pass a standard I/O stream, the numeric code for the token type, and
9081the token value (from @code{yylval}).
9082
9083For @file{yacc.c} only. Obsoleted by @code{%printer}.
9084@end deffn
bfa74976
RS
9085
9086Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9087calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9088
c93f22fc 9089@example
38a92d50
PE
9090%@{
9091 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9092 #define YYPRINT(File, Type, Value) \
9093 print_token_value (File, Type, Value)
38a92d50
PE
9094%@}
9095
9096@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9097
9098static void
831d3c99 9099print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9100@{
9101 if (type == VAR)
d3c4e709 9102 fprintf (file, "%s", value.tptr->name);
bfa74976 9103 else if (type == NUM)
d3c4e709 9104 fprintf (file, "%d", value.val);
bfa74976 9105@}
c93f22fc 9106@end example
bfa74976 9107
ec3bc396
AD
9108@c ================================================= Invoking Bison
9109
342b8b6e 9110@node Invocation
bfa74976
RS
9111@chapter Invoking Bison
9112@cindex invoking Bison
9113@cindex Bison invocation
9114@cindex options for invoking Bison
9115
9116The usual way to invoke Bison is as follows:
9117
9118@example
9119bison @var{infile}
9120@end example
9121
9122Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9123@samp{.y}. The parser implementation file's name is made by replacing
9124the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9125Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9126the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9127also possible, in case you are writing C++ code instead of C in your
9128grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9129output files will take an extension like the given one as input
9130(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9131feature takes effect with all options that manipulate file names like
234a3be3
AD
9132@samp{-o} or @samp{-d}.
9133
9134For example :
9135
9136@example
9137bison -d @var{infile.yxx}
9138@end example
84163231 9139@noindent
72d2299c 9140will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9141
9142@example
b56471a6 9143bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9144@end example
84163231 9145@noindent
234a3be3
AD
9146will produce @file{output.c++} and @file{outfile.h++}.
9147
8a4281b9 9148For compatibility with POSIX, the standard Bison
397ec073
PE
9149distribution also contains a shell script called @command{yacc} that
9150invokes Bison with the @option{-y} option.
9151
bfa74976 9152@menu
13863333 9153* Bison Options:: All the options described in detail,
c827f760 9154 in alphabetical order by short options.
bfa74976 9155* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9156* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9157@end menu
9158
342b8b6e 9159@node Bison Options
bfa74976
RS
9160@section Bison Options
9161
9162Bison supports both traditional single-letter options and mnemonic long
9163option names. Long option names are indicated with @samp{--} instead of
9164@samp{-}. Abbreviations for option names are allowed as long as they
9165are unique. When a long option takes an argument, like
9166@samp{--file-prefix}, connect the option name and the argument with
9167@samp{=}.
9168
9169Here is a list of options that can be used with Bison, alphabetized by
9170short option. It is followed by a cross key alphabetized by long
9171option.
9172
89cab50d
AD
9173@c Please, keep this ordered as in `bison --help'.
9174@noindent
9175Operations modes:
9176@table @option
9177@item -h
9178@itemx --help
9179Print a summary of the command-line options to Bison and exit.
bfa74976 9180
89cab50d
AD
9181@item -V
9182@itemx --version
9183Print the version number of Bison and exit.
bfa74976 9184
f7ab6a50
PE
9185@item --print-localedir
9186Print the name of the directory containing locale-dependent data.
9187
a0de5091
JD
9188@item --print-datadir
9189Print the name of the directory containing skeletons and XSLT.
9190
89cab50d
AD
9191@item -y
9192@itemx --yacc
ff7571c0
JD
9193Act more like the traditional Yacc command. This can cause different
9194diagnostics to be generated, and may change behavior in other minor
9195ways. Most importantly, imitate Yacc's output file name conventions,
9196so that the parser implementation file is called @file{y.tab.c}, and
9197the other outputs are called @file{y.output} and @file{y.tab.h}.
9198Also, if generating a deterministic parser in C, generate
9199@code{#define} statements in addition to an @code{enum} to associate
9200token numbers with token names. Thus, the following shell script can
9201substitute for Yacc, and the Bison distribution contains such a script
9202for compatibility with POSIX:
bfa74976 9203
89cab50d 9204@example
397ec073 9205#! /bin/sh
26e06a21 9206bison -y "$@@"
89cab50d 9207@end example
54662697
PE
9208
9209The @option{-y}/@option{--yacc} option is intended for use with
9210traditional Yacc grammars. If your grammar uses a Bison extension
9211like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9212this option is specified.
9213
1d5b3c08
JD
9214@item -W [@var{category}]
9215@itemx --warnings[=@var{category}]
118d4978
AD
9216Output warnings falling in @var{category}. @var{category} can be one
9217of:
9218@table @code
9219@item midrule-values
8e55b3aa
JD
9220Warn about mid-rule values that are set but not used within any of the actions
9221of the parent rule.
9222For example, warn about unused @code{$2} in:
118d4978
AD
9223
9224@example
9225exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9226@end example
9227
8e55b3aa
JD
9228Also warn about mid-rule values that are used but not set.
9229For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9230
9231@example
5e9b6624 9232exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9233@end example
9234
9235These warnings are not enabled by default since they sometimes prove to
9236be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9237@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9238
118d4978 9239@item yacc
8a4281b9 9240Incompatibilities with POSIX Yacc.
118d4978 9241
786743d5
JD
9242@item conflicts-sr
9243@itemx conflicts-rr
9244S/R and R/R conflicts. These warnings are enabled by default. However, if
9245the @code{%expect} or @code{%expect-rr} directive is specified, an
9246unexpected number of conflicts is an error, and an expected number of
9247conflicts is not reported, so @option{-W} and @option{--warning} then have
9248no effect on the conflict report.
9249
c39014ae
JD
9250@item other
9251All warnings not categorized above. These warnings are enabled by default.
9252
9253This category is provided merely for the sake of completeness. Future
9254releases of Bison may move warnings from this category to new, more specific
9255categories.
9256
118d4978 9257@item all
8e55b3aa 9258All the warnings.
118d4978 9259@item none
8e55b3aa 9260Turn off all the warnings.
118d4978 9261@item error
8e55b3aa 9262Treat warnings as errors.
118d4978
AD
9263@end table
9264
9265A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9266instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9267POSIX Yacc incompatibilities.
89cab50d
AD
9268@end table
9269
9270@noindent
9271Tuning the parser:
9272
9273@table @option
9274@item -t
9275@itemx --debug
ff7571c0
JD
9276In the parser implementation file, define the macro @code{YYDEBUG} to
92771 if it is not already defined, so that the debugging facilities are
9278compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9279
58697c6d
AD
9280@item -D @var{name}[=@var{value}]
9281@itemx --define=@var{name}[=@var{value}]
17aed602 9282@itemx -F @var{name}[=@var{value}]
de5ab940
JD
9283@itemx --force-define=@var{name}[=@var{value}]
9284Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 9285(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
9286definitions for the same @var{name} as follows:
9287
9288@itemize
9289@item
0b6d43c5
JD
9290Bison quietly ignores all command-line definitions for @var{name} except
9291the last.
de5ab940 9292@item
0b6d43c5
JD
9293If that command-line definition is specified by a @code{-D} or
9294@code{--define}, Bison reports an error for any @code{%define}
9295definition for @var{name}.
de5ab940 9296@item
0b6d43c5
JD
9297If that command-line definition is specified by a @code{-F} or
9298@code{--force-define} instead, Bison quietly ignores all @code{%define}
9299definitions for @var{name}.
9300@item
9301Otherwise, Bison reports an error if there are multiple @code{%define}
9302definitions for @var{name}.
de5ab940
JD
9303@end itemize
9304
9305You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
9306make files unless you are confident that it is safe to quietly ignore
9307any conflicting @code{%define} that may be added to the grammar file.
58697c6d 9308
0e021770
PE
9309@item -L @var{language}
9310@itemx --language=@var{language}
9311Specify the programming language for the generated parser, as if
9312@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9313Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9314@var{language} is case-insensitive.
0e021770 9315
ed4d67dc
JD
9316This option is experimental and its effect may be modified in future
9317releases.
9318
89cab50d 9319@item --locations
d8988b2f 9320Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9321
9322@item -p @var{prefix}
9323@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9324Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9325Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9326Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9327
9328@item -l
9329@itemx --no-lines
ff7571c0
JD
9330Don't put any @code{#line} preprocessor commands in the parser
9331implementation file. Ordinarily Bison puts them in the parser
9332implementation file so that the C compiler and debuggers will
9333associate errors with your source file, the grammar file. This option
9334causes them to associate errors with the parser implementation file,
9335treating it as an independent source file in its own right.
bfa74976 9336
e6e704dc
JD
9337@item -S @var{file}
9338@itemx --skeleton=@var{file}
a7867f53 9339Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9340(@pxref{Decl Summary, , Bison Declaration Summary}).
9341
ed4d67dc
JD
9342@c You probably don't need this option unless you are developing Bison.
9343@c You should use @option{--language} if you want to specify the skeleton for a
9344@c different language, because it is clearer and because it will always
9345@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9346
a7867f53
JD
9347If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9348file in the Bison installation directory.
9349If it does, @var{file} is an absolute file name or a file name relative to the
9350current working directory.
9351This is similar to how most shells resolve commands.
9352
89cab50d
AD
9353@item -k
9354@itemx --token-table
d8988b2f 9355Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9356@end table
bfa74976 9357
89cab50d
AD
9358@noindent
9359Adjust the output:
bfa74976 9360
89cab50d 9361@table @option
8e55b3aa 9362@item --defines[=@var{file}]
d8988b2f 9363Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9364file containing macro definitions for the token type names defined in
4bfd5e4e 9365the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9366
8e55b3aa
JD
9367@item -d
9368This is the same as @code{--defines} except @code{-d} does not accept a
9369@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9370with other short options.
342b8b6e 9371
89cab50d
AD
9372@item -b @var{file-prefix}
9373@itemx --file-prefix=@var{prefix}
9c437126 9374Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9375for all Bison output file names. @xref{Decl Summary}.
bfa74976 9376
ec3bc396
AD
9377@item -r @var{things}
9378@itemx --report=@var{things}
9379Write an extra output file containing verbose description of the comma
9380separated list of @var{things} among:
9381
9382@table @code
9383@item state
9384Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9385parser's automaton.
ec3bc396 9386
742e4900 9387@item lookahead
ec3bc396 9388Implies @code{state} and augments the description of the automaton with
742e4900 9389each rule's lookahead set.
ec3bc396
AD
9390
9391@item itemset
9392Implies @code{state} and augments the description of the automaton with
9393the full set of items for each state, instead of its core only.
9394@end table
9395
1bb2bd75
JD
9396@item --report-file=@var{file}
9397Specify the @var{file} for the verbose description.
9398
bfa74976
RS
9399@item -v
9400@itemx --verbose
9c437126 9401Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9402file containing verbose descriptions of the grammar and
72d2299c 9403parser. @xref{Decl Summary}.
bfa74976 9404
fa4d969f
PE
9405@item -o @var{file}
9406@itemx --output=@var{file}
ff7571c0 9407Specify the @var{file} for the parser implementation file.
bfa74976 9408
fa4d969f 9409The other output files' names are constructed from @var{file} as
d8988b2f 9410described under the @samp{-v} and @samp{-d} options.
342b8b6e 9411
a7c09cba 9412@item -g [@var{file}]
8e55b3aa 9413@itemx --graph[=@var{file}]
eb45ef3b 9414Output a graphical representation of the parser's
35fe0834 9415automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9416@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9417@code{@var{file}} is optional.
9418If omitted and the grammar file is @file{foo.y}, the output file will be
9419@file{foo.dot}.
59da312b 9420
a7c09cba 9421@item -x [@var{file}]
8e55b3aa 9422@itemx --xml[=@var{file}]
eb45ef3b 9423Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9424@code{@var{file}} is optional.
59da312b
JD
9425If omitted and the grammar file is @file{foo.y}, the output file will be
9426@file{foo.xml}.
9427(The current XML schema is experimental and may evolve.
9428More user feedback will help to stabilize it.)
bfa74976
RS
9429@end table
9430
342b8b6e 9431@node Option Cross Key
bfa74976
RS
9432@section Option Cross Key
9433
9434Here is a list of options, alphabetized by long option, to help you find
de5ab940 9435the corresponding short option and directive.
bfa74976 9436
de5ab940 9437@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9438@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9439@include cross-options.texi
aa08666d 9440@end multitable
bfa74976 9441
93dd49ab
PE
9442@node Yacc Library
9443@section Yacc Library
9444
9445The Yacc library contains default implementations of the
9446@code{yyerror} and @code{main} functions. These default
8a4281b9 9447implementations are normally not useful, but POSIX requires
93dd49ab
PE
9448them. To use the Yacc library, link your program with the
9449@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9450library is distributed under the terms of the GNU General
93dd49ab
PE
9451Public License (@pxref{Copying}).
9452
9453If you use the Yacc library's @code{yyerror} function, you should
9454declare @code{yyerror} as follows:
9455
9456@example
9457int yyerror (char const *);
9458@end example
9459
9460Bison ignores the @code{int} value returned by this @code{yyerror}.
9461If you use the Yacc library's @code{main} function, your
9462@code{yyparse} function should have the following type signature:
9463
9464@example
9465int yyparse (void);
9466@end example
9467
12545799
AD
9468@c ================================================= C++ Bison
9469
8405b70c
PB
9470@node Other Languages
9471@chapter Parsers Written In Other Languages
12545799
AD
9472
9473@menu
9474* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9475* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9476@end menu
9477
9478@node C++ Parsers
9479@section C++ Parsers
9480
9481@menu
9482* C++ Bison Interface:: Asking for C++ parser generation
9483* C++ Semantic Values:: %union vs. C++
9484* C++ Location Values:: The position and location classes
9485* C++ Parser Interface:: Instantiating and running the parser
9486* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9487* A Complete C++ Example:: Demonstrating their use
12545799
AD
9488@end menu
9489
9490@node C++ Bison Interface
9491@subsection C++ Bison Interface
ed4d67dc 9492@c - %skeleton "lalr1.cc"
12545799
AD
9493@c - Always pure
9494@c - initial action
9495
eb45ef3b 9496The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9497@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9498@option{--skeleton=lalr1.cc}.
e6e704dc 9499@xref{Decl Summary}.
0e021770 9500
793fbca5
JD
9501When run, @command{bison} will create several entities in the @samp{yy}
9502namespace.
67501061 9503@findex %define api.namespace
35c1e5f0
JD
9504Use the @samp{%define api.namespace} directive to change the namespace name,
9505see @ref{%define Summary,,api.namespace}. The various classes are generated
9506in the following files:
aa08666d 9507
12545799
AD
9508@table @file
9509@item position.hh
9510@itemx location.hh
9511The definition of the classes @code{position} and @code{location},
3cdc21cf 9512used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9513
9514@item stack.hh
9515An auxiliary class @code{stack} used by the parser.
9516
fa4d969f
PE
9517@item @var{file}.hh
9518@itemx @var{file}.cc
ff7571c0 9519(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9520declaration and implementation of the C++ parser class. The basename
9521and extension of these two files follow the same rules as with regular C
9522parsers (@pxref{Invocation}).
12545799 9523
cd8b5791
AD
9524The header is @emph{mandatory}; you must either pass
9525@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9526@samp{%defines} directive.
9527@end table
9528
9529All these files are documented using Doxygen; run @command{doxygen}
9530for a complete and accurate documentation.
9531
9532@node C++ Semantic Values
9533@subsection C++ Semantic Values
9534@c - No objects in unions
178e123e 9535@c - YYSTYPE
12545799
AD
9536@c - Printer and destructor
9537
3cdc21cf
AD
9538Bison supports two different means to handle semantic values in C++. One is
9539alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9540practitioners know, unions are inconvenient in C++, therefore another
9541approach is provided, based on variants (@pxref{C++ Variants}).
9542
9543@menu
9544* C++ Unions:: Semantic values cannot be objects
9545* C++ Variants:: Using objects as semantic values
9546@end menu
9547
9548@node C++ Unions
9549@subsubsection C++ Unions
9550
12545799
AD
9551The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9552Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9553@code{union}, which have a few specific features in C++.
12545799
AD
9554@itemize @minus
9555@item
fb9712a9
AD
9556The type @code{YYSTYPE} is defined but its use is discouraged: rather
9557you should refer to the parser's encapsulated type
9558@code{yy::parser::semantic_type}.
12545799
AD
9559@item
9560Non POD (Plain Old Data) types cannot be used. C++ forbids any
9561instance of classes with constructors in unions: only @emph{pointers}
9562to such objects are allowed.
9563@end itemize
9564
9565Because objects have to be stored via pointers, memory is not
9566reclaimed automatically: using the @code{%destructor} directive is the
9567only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9568Symbols}.
9569
3cdc21cf
AD
9570@node C++ Variants
9571@subsubsection C++ Variants
9572
9573Starting with version 2.6, Bison provides a @emph{variant} based
9574implementation of semantic values for C++. This alleviates all the
9575limitations reported in the previous section, and in particular, object
9576types can be used without pointers.
9577
9578To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9579@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9580@code{%union} is ignored, and instead of using the name of the fields of the
9581@code{%union} to ``type'' the symbols, use genuine types.
9582
9583For instance, instead of
9584
9585@example
9586%union
9587@{
9588 int ival;
9589 std::string* sval;
9590@}
9591%token <ival> NUMBER;
9592%token <sval> STRING;
9593@end example
9594
9595@noindent
9596write
9597
9598@example
9599%token <int> NUMBER;
9600%token <std::string> STRING;
9601@end example
9602
9603@code{STRING} is no longer a pointer, which should fairly simplify the user
9604actions in the grammar and in the scanner (in particular the memory
9605management).
9606
9607Since C++ features destructors, and since it is customary to specialize
9608@code{operator<<} to support uniform printing of values, variants also
9609typically simplify Bison printers and destructors.
9610
9611Variants are stricter than unions. When based on unions, you may play any
9612dirty game with @code{yylval}, say storing an @code{int}, reading a
9613@code{char*}, and then storing a @code{double} in it. This is no longer
9614possible with variants: they must be initialized, then assigned to, and
9615eventually, destroyed.
9616
9617@deftypemethod {semantic_type} {T&} build<T> ()
9618Initialize, but leave empty. Returns the address where the actual value may
9619be stored. Requires that the variant was not initialized yet.
9620@end deftypemethod
9621
9622@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9623Initialize, and copy-construct from @var{t}.
9624@end deftypemethod
9625
9626
9627@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9628appeared unacceptable to require Boost on the user's machine (i.e., the
9629machine on which the generated parser will be compiled, not the machine on
9630which @command{bison} was run). Second, for each possible semantic value,
9631Boost.Variant not only stores the value, but also a tag specifying its
9632type. But the parser already ``knows'' the type of the semantic value, so
9633that would be duplicating the information.
9634
9635Therefore we developed light-weight variants whose type tag is external (so
9636they are really like @code{unions} for C++ actually). But our code is much
9637less mature that Boost.Variant. So there is a number of limitations in
9638(the current implementation of) variants:
9639@itemize
9640@item
9641Alignment must be enforced: values should be aligned in memory according to
9642the most demanding type. Computing the smallest alignment possible requires
9643meta-programming techniques that are not currently implemented in Bison, and
9644therefore, since, as far as we know, @code{double} is the most demanding
9645type on all platforms, alignments are enforced for @code{double} whatever
9646types are actually used. This may waste space in some cases.
9647
9648@item
9649Our implementation is not conforming with strict aliasing rules. Alias
9650analysis is a technique used in optimizing compilers to detect when two
9651pointers are disjoint (they cannot ``meet''). Our implementation breaks
9652some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9653alias analysis must be disabled}. Use the option
9654@option{-fno-strict-aliasing} to compile the generated parser.
9655
9656@item
9657There might be portability issues we are not aware of.
9658@end itemize
9659
a6ca4ce2 9660As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9661is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9662
9663@node C++ Location Values
9664@subsection C++ Location Values
9665@c - %locations
9666@c - class Position
9667@c - class Location
16dc6a9e 9668@c - %define filename_type "const symbol::Symbol"
12545799
AD
9669
9670When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9671location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9672define a @code{position}, a single point in a file, and a @code{location}, a
9673range composed of a pair of @code{position}s (possibly spanning several
9674files).
12545799 9675
936c88d1
AD
9676@tindex uint
9677In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9678genuine code only the latter is used.
9679
9680@menu
9681* C++ position:: One point in the source file
9682* C++ location:: Two points in the source file
9683@end menu
9684
9685@node C++ position
9686@subsubsection C++ @code{position}
9687
9688@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9689Create a @code{position} denoting a given point. Note that @code{file} is
9690not reclaimed when the @code{position} is destroyed: memory managed must be
9691handled elsewhere.
9692@end deftypeop
9693
9694@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9695Reset the position to the given values.
9696@end deftypemethod
9697
9698@deftypeivar {position} {std::string*} file
12545799
AD
9699The name of the file. It will always be handled as a pointer, the
9700parser will never duplicate nor deallocate it. As an experimental
9701feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9702filename_type "@var{type}"}.
936c88d1 9703@end deftypeivar
12545799 9704
936c88d1 9705@deftypeivar {position} {uint} line
12545799 9706The line, starting at 1.
936c88d1 9707@end deftypeivar
12545799 9708
936c88d1 9709@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
9710Advance by @var{height} lines, resetting the column number.
9711@end deftypemethod
9712
936c88d1
AD
9713@deftypeivar {position} {uint} column
9714The column, starting at 1.
9715@end deftypeivar
12545799 9716
936c88d1 9717@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
9718Advance by @var{width} columns, without changing the line number.
9719@end deftypemethod
9720
936c88d1
AD
9721@deftypemethod {position} {position&} operator+= (int @var{width})
9722@deftypemethodx {position} {position} operator+ (int @var{width})
9723@deftypemethodx {position} {position&} operator-= (int @var{width})
9724@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
9725Various forms of syntactic sugar for @code{columns}.
9726@end deftypemethod
9727
936c88d1
AD
9728@deftypemethod {position} {bool} operator== (const position& @var{that})
9729@deftypemethodx {position} {bool} operator!= (const position& @var{that})
9730Whether @code{*this} and @code{that} denote equal/different positions.
9731@end deftypemethod
9732
9733@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 9734Report @var{p} on @var{o} like this:
fa4d969f
PE
9735@samp{@var{file}:@var{line}.@var{column}}, or
9736@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
9737@end deftypefun
9738
9739@node C++ location
9740@subsubsection C++ @code{location}
9741
9742@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9743Create a @code{Location} from the endpoints of the range.
9744@end deftypeop
9745
9746@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9747@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9748Create a @code{Location} denoting an empty range located at a given point.
9749@end deftypeop
9750
9751@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9752Reset the location to an empty range at the given values.
12545799
AD
9753@end deftypemethod
9754
936c88d1
AD
9755@deftypeivar {location} {position} begin
9756@deftypeivarx {location} {position} end
12545799 9757The first, inclusive, position of the range, and the first beyond.
936c88d1 9758@end deftypeivar
12545799 9759
936c88d1
AD
9760@deftypemethod {location} {uint} columns (int @var{width} = 1)
9761@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
9762Advance the @code{end} position.
9763@end deftypemethod
9764
936c88d1
AD
9765@deftypemethod {location} {location} operator+ (const location& @var{end})
9766@deftypemethodx {location} {location} operator+ (int @var{width})
9767@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
9768Various forms of syntactic sugar.
9769@end deftypemethod
9770
9771@deftypemethod {location} {void} step ()
9772Move @code{begin} onto @code{end}.
9773@end deftypemethod
9774
936c88d1
AD
9775@deftypemethod {location} {bool} operator== (const location& @var{that})
9776@deftypemethodx {location} {bool} operator!= (const location& @var{that})
9777Whether @code{*this} and @code{that} denote equal/different ranges of
9778positions.
9779@end deftypemethod
9780
9781@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9782Report @var{p} on @var{o}, taking care of special cases such as: no
9783@code{filename} defined, or equal filename/line or column.
9784@end deftypefun
12545799
AD
9785
9786@node C++ Parser Interface
9787@subsection C++ Parser Interface
9788@c - define parser_class_name
9789@c - Ctor
9790@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9791@c debug_stream.
9792@c - Reporting errors
9793
9794The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9795declare and define the parser class in the namespace @code{yy}. The
9796class name defaults to @code{parser}, but may be changed using
16dc6a9e 9797@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9798this class is detailed below. It can be extended using the
12545799
AD
9799@code{%parse-param} feature: its semantics is slightly changed since
9800it describes an additional member of the parser class, and an
9801additional argument for its constructor.
9802
3cdc21cf
AD
9803@defcv {Type} {parser} {semantic_type}
9804@defcvx {Type} {parser} {location_type}
9805The types for semantic values and locations (if enabled).
9806@end defcv
9807
86e5b440 9808@defcv {Type} {parser} {token}
aaaa2aae
AD
9809A structure that contains (only) the @code{yytokentype} enumeration, which
9810defines the tokens. To refer to the token @code{FOO},
9811use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
9812@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9813(@pxref{Calc++ Scanner}).
9814@end defcv
9815
3cdc21cf
AD
9816@defcv {Type} {parser} {syntax_error}
9817This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9818from the scanner or from the user actions to raise parse errors. This is
9819equivalent with first
3cdc21cf
AD
9820invoking @code{error} to report the location and message of the syntax
9821error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9822But contrary to @code{YYERROR} which can only be invoked from user actions
9823(i.e., written in the action itself), the exception can be thrown from
9824function invoked from the user action.
8a0adb01 9825@end defcv
12545799
AD
9826
9827@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9828Build a new parser object. There are no arguments by default, unless
9829@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9830@end deftypemethod
9831
3cdc21cf
AD
9832@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9833@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9834Instantiate a syntax-error exception.
9835@end deftypemethod
9836
12545799
AD
9837@deftypemethod {parser} {int} parse ()
9838Run the syntactic analysis, and return 0 on success, 1 otherwise.
9839@end deftypemethod
9840
9841@deftypemethod {parser} {std::ostream&} debug_stream ()
9842@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9843Get or set the stream used for tracing the parsing. It defaults to
9844@code{std::cerr}.
9845@end deftypemethod
9846
9847@deftypemethod {parser} {debug_level_type} debug_level ()
9848@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9849Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9850or nonzero, full tracing.
12545799
AD
9851@end deftypemethod
9852
9853@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9854@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9855The definition for this member function must be supplied by the user:
9856the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9857described by @var{m}. If location tracking is not enabled, the second
9858signature is used.
12545799
AD
9859@end deftypemethod
9860
9861
9862@node C++ Scanner Interface
9863@subsection C++ Scanner Interface
9864@c - prefix for yylex.
9865@c - Pure interface to yylex
9866@c - %lex-param
9867
9868The parser invokes the scanner by calling @code{yylex}. Contrary to C
9869parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9870@samp{%define api.pure} directive. The actual interface with @code{yylex}
9871depends whether you use unions, or variants.
12545799 9872
3cdc21cf
AD
9873@menu
9874* Split Symbols:: Passing symbols as two/three components
9875* Complete Symbols:: Making symbols a whole
9876@end menu
9877
9878@node Split Symbols
9879@subsubsection Split Symbols
9880
9881Therefore the interface is as follows.
9882
86e5b440
AD
9883@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9884@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9885Return the next token. Its type is the return value, its semantic value and
9886location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9887@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9888@end deftypemethod
9889
3cdc21cf
AD
9890Note that when using variants, the interface for @code{yylex} is the same,
9891but @code{yylval} is handled differently.
9892
9893Regular union-based code in Lex scanner typically look like:
9894
9895@example
9896[0-9]+ @{
9897 yylval.ival = text_to_int (yytext);
9898 return yy::parser::INTEGER;
9899 @}
9900[a-z]+ @{
9901 yylval.sval = new std::string (yytext);
9902 return yy::parser::IDENTIFIER;
9903 @}
9904@end example
9905
9906Using variants, @code{yylval} is already constructed, but it is not
9907initialized. So the code would look like:
9908
9909@example
9910[0-9]+ @{
9911 yylval.build<int>() = text_to_int (yytext);
9912 return yy::parser::INTEGER;
9913 @}
9914[a-z]+ @{
9915 yylval.build<std::string> = yytext;
9916 return yy::parser::IDENTIFIER;
9917 @}
9918@end example
9919
9920@noindent
9921or
9922
9923@example
9924[0-9]+ @{
9925 yylval.build(text_to_int (yytext));
9926 return yy::parser::INTEGER;
9927 @}
9928[a-z]+ @{
9929 yylval.build(yytext);
9930 return yy::parser::IDENTIFIER;
9931 @}
9932@end example
9933
9934
9935@node Complete Symbols
9936@subsubsection Complete Symbols
9937
9938If you specified both @code{%define variant} and @code{%define lex_symbol},
9939the @code{parser} class also defines the class @code{parser::symbol_type}
9940which defines a @emph{complete} symbol, aggregating its type (i.e., the
9941traditional value returned by @code{yylex}), its semantic value (i.e., the
9942value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9943
9944@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9945Build a complete terminal symbol which token type is @var{type}, and which
9946semantic value is @var{value}. If location tracking is enabled, also pass
9947the @var{location}.
9948@end deftypemethod
9949
9950This interface is low-level and should not be used for two reasons. First,
9951it is inconvenient, as you still have to build the semantic value, which is
9952a variant, and second, because consistency is not enforced: as with unions,
9953it is still possible to give an integer as semantic value for a string.
9954
9955So for each token type, Bison generates named constructors as follows.
9956
9957@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9958@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9959Build a complete terminal symbol for the token type @var{token} (not
9960including the @code{api.tokens.prefix}) whose possible semantic value is
9961@var{value} of adequate @var{value_type}. If location tracking is enabled,
9962also pass the @var{location}.
9963@end deftypemethod
9964
9965For instance, given the following declarations:
9966
9967@example
9968%define api.tokens.prefix "TOK_"
9969%token <std::string> IDENTIFIER;
9970%token <int> INTEGER;
9971%token COLON;
9972@end example
9973
9974@noindent
9975Bison generates the following functions:
9976
9977@example
9978symbol_type make_IDENTIFIER(const std::string& v,
9979 const location_type& l);
9980symbol_type make_INTEGER(const int& v,
9981 const location_type& loc);
9982symbol_type make_COLON(const location_type& loc);
9983@end example
9984
9985@noindent
9986which should be used in a Lex-scanner as follows.
9987
9988@example
9989[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9990[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9991":" return yy::parser::make_COLON(loc);
9992@end example
9993
9994Tokens that do not have an identifier are not accessible: you cannot simply
9995use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9996
9997@node A Complete C++ Example
8405b70c 9998@subsection A Complete C++ Example
12545799
AD
9999
10000This section demonstrates the use of a C++ parser with a simple but
10001complete example. This example should be available on your system,
3cdc21cf 10002ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10003focuses on the use of Bison, therefore the design of the various C++
10004classes is very naive: no accessors, no encapsulation of members etc.
10005We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10006demonstrate the various interactions. A hand-written scanner is
12545799
AD
10007actually easier to interface with.
10008
10009@menu
10010* Calc++ --- C++ Calculator:: The specifications
10011* Calc++ Parsing Driver:: An active parsing context
10012* Calc++ Parser:: A parser class
10013* Calc++ Scanner:: A pure C++ Flex scanner
10014* Calc++ Top Level:: Conducting the band
10015@end menu
10016
10017@node Calc++ --- C++ Calculator
8405b70c 10018@subsubsection Calc++ --- C++ Calculator
12545799
AD
10019
10020Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10021expression, possibly preceded by variable assignments. An
12545799
AD
10022environment containing possibly predefined variables such as
10023@code{one} and @code{two}, is exchanged with the parser. An example
10024of valid input follows.
10025
10026@example
10027three := 3
10028seven := one + two * three
10029seven * seven
10030@end example
10031
10032@node Calc++ Parsing Driver
8405b70c 10033@subsubsection Calc++ Parsing Driver
12545799
AD
10034@c - An env
10035@c - A place to store error messages
10036@c - A place for the result
10037
10038To support a pure interface with the parser (and the scanner) the
10039technique of the ``parsing context'' is convenient: a structure
10040containing all the data to exchange. Since, in addition to simply
10041launch the parsing, there are several auxiliary tasks to execute (open
10042the file for parsing, instantiate the parser etc.), we recommend
10043transforming the simple parsing context structure into a fully blown
10044@dfn{parsing driver} class.
10045
10046The declaration of this driver class, @file{calc++-driver.hh}, is as
10047follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10048required standard library components, and the declaration of the parser
10049class.
12545799 10050
1c59e0a1 10051@comment file: calc++-driver.hh
12545799
AD
10052@example
10053#ifndef CALCXX_DRIVER_HH
10054# define CALCXX_DRIVER_HH
10055# include <string>
10056# include <map>
fb9712a9 10057# include "calc++-parser.hh"
12545799
AD
10058@end example
10059
12545799
AD
10060
10061@noindent
10062Then comes the declaration of the scanning function. Flex expects
10063the signature of @code{yylex} to be defined in the macro
10064@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10065factor both as follows.
1c59e0a1
AD
10066
10067@comment file: calc++-driver.hh
12545799 10068@example
3dc5e96b 10069// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10070# define YY_DECL \
10071 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10072// ... and declare it for the parser's sake.
10073YY_DECL;
10074@end example
10075
10076@noindent
10077The @code{calcxx_driver} class is then declared with its most obvious
10078members.
10079
1c59e0a1 10080@comment file: calc++-driver.hh
12545799
AD
10081@example
10082// Conducting the whole scanning and parsing of Calc++.
10083class calcxx_driver
10084@{
10085public:
10086 calcxx_driver ();
10087 virtual ~calcxx_driver ();
10088
10089 std::map<std::string, int> variables;
10090
10091 int result;
10092@end example
10093
10094@noindent
3cdc21cf
AD
10095To encapsulate the coordination with the Flex scanner, it is useful to have
10096member functions to open and close the scanning phase.
12545799 10097
1c59e0a1 10098@comment file: calc++-driver.hh
12545799
AD
10099@example
10100 // Handling the scanner.
10101 void scan_begin ();
10102 void scan_end ();
10103 bool trace_scanning;
10104@end example
10105
10106@noindent
10107Similarly for the parser itself.
10108
1c59e0a1 10109@comment file: calc++-driver.hh
12545799 10110@example
3cdc21cf
AD
10111 // Run the parser on file F.
10112 // Return 0 on success.
bb32f4f2 10113 int parse (const std::string& f);
3cdc21cf
AD
10114 // The name of the file being parsed.
10115 // Used later to pass the file name to the location tracker.
12545799 10116 std::string file;
3cdc21cf 10117 // Whether parser traces should be generated.
12545799
AD
10118 bool trace_parsing;
10119@end example
10120
10121@noindent
10122To demonstrate pure handling of parse errors, instead of simply
10123dumping them on the standard error output, we will pass them to the
10124compiler driver using the following two member functions. Finally, we
10125close the class declaration and CPP guard.
10126
1c59e0a1 10127@comment file: calc++-driver.hh
12545799
AD
10128@example
10129 // Error handling.
10130 void error (const yy::location& l, const std::string& m);
10131 void error (const std::string& m);
10132@};
10133#endif // ! CALCXX_DRIVER_HH
10134@end example
10135
10136The implementation of the driver is straightforward. The @code{parse}
10137member function deserves some attention. The @code{error} functions
10138are simple stubs, they should actually register the located error
10139messages and set error state.
10140
1c59e0a1 10141@comment file: calc++-driver.cc
12545799
AD
10142@example
10143#include "calc++-driver.hh"
10144#include "calc++-parser.hh"
10145
10146calcxx_driver::calcxx_driver ()
10147 : trace_scanning (false), trace_parsing (false)
10148@{
10149 variables["one"] = 1;
10150 variables["two"] = 2;
10151@}
10152
10153calcxx_driver::~calcxx_driver ()
10154@{
10155@}
10156
bb32f4f2 10157int
12545799
AD
10158calcxx_driver::parse (const std::string &f)
10159@{
10160 file = f;
10161 scan_begin ();
10162 yy::calcxx_parser parser (*this);
10163 parser.set_debug_level (trace_parsing);
bb32f4f2 10164 int res = parser.parse ();
12545799 10165 scan_end ();
bb32f4f2 10166 return res;
12545799
AD
10167@}
10168
10169void
10170calcxx_driver::error (const yy::location& l, const std::string& m)
10171@{
10172 std::cerr << l << ": " << m << std::endl;
10173@}
10174
10175void
10176calcxx_driver::error (const std::string& m)
10177@{
10178 std::cerr << m << std::endl;
10179@}
10180@end example
10181
10182@node Calc++ Parser
8405b70c 10183@subsubsection Calc++ Parser
12545799 10184
ff7571c0
JD
10185The grammar file @file{calc++-parser.yy} starts by asking for the C++
10186deterministic parser skeleton, the creation of the parser header file,
10187and specifies the name of the parser class. Because the C++ skeleton
10188changed several times, it is safer to require the version you designed
10189the grammar for.
1c59e0a1
AD
10190
10191@comment file: calc++-parser.yy
12545799 10192@example
c93f22fc 10193%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10194%require "@value{VERSION}"
12545799 10195%defines
16dc6a9e 10196%define parser_class_name "calcxx_parser"
fb9712a9
AD
10197@end example
10198
3cdc21cf
AD
10199@noindent
10200@findex %define variant
10201@findex %define lex_symbol
10202This example will use genuine C++ objects as semantic values, therefore, we
10203require the variant-based interface. To make sure we properly use it, we
10204enable assertions. To fully benefit from type-safety and more natural
10205definition of ``symbol'', we enable @code{lex_symbol}.
10206
10207@comment file: calc++-parser.yy
10208@example
10209%define variant
10210%define parse.assert
10211%define lex_symbol
10212@end example
10213
fb9712a9 10214@noindent
16dc6a9e 10215@findex %code requires
3cdc21cf
AD
10216Then come the declarations/inclusions needed by the semantic values.
10217Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 10218to include the header of the other, which is, of course, insane. This
3cdc21cf 10219mutual dependency will be broken using forward declarations. Because the
fb9712a9 10220driver's header needs detailed knowledge about the parser class (in
3cdc21cf 10221particular its inner types), it is the parser's header which will use a
e0c07222 10222forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
10223
10224@comment file: calc++-parser.yy
10225@example
3cdc21cf
AD
10226%code requires
10227@{
12545799 10228# include <string>
fb9712a9 10229class calcxx_driver;
9bc0dd67 10230@}
12545799
AD
10231@end example
10232
10233@noindent
10234The driver is passed by reference to the parser and to the scanner.
10235This provides a simple but effective pure interface, not relying on
10236global variables.
10237
1c59e0a1 10238@comment file: calc++-parser.yy
12545799
AD
10239@example
10240// The parsing context.
2055a44e 10241%param @{ calcxx_driver& driver @}
12545799
AD
10242@end example
10243
10244@noindent
2055a44e 10245Then we request location tracking, and initialize the
f50bfcd6 10246first location's file name. Afterward new locations are computed
12545799 10247relatively to the previous locations: the file name will be
2055a44e 10248propagated.
12545799 10249
1c59e0a1 10250@comment file: calc++-parser.yy
12545799
AD
10251@example
10252%locations
10253%initial-action
10254@{
10255 // Initialize the initial location.
b47dbebe 10256 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
10257@};
10258@end example
10259
10260@noindent
7fceb615
JD
10261Use the following two directives to enable parser tracing and verbose error
10262messages. However, verbose error messages can contain incorrect information
10263(@pxref{LAC}).
12545799 10264
1c59e0a1 10265@comment file: calc++-parser.yy
12545799 10266@example
fa819509 10267%define parse.trace
cf499cff 10268%define parse.error verbose
12545799
AD
10269@end example
10270
fb9712a9 10271@noindent
136a0f76
PB
10272@findex %code
10273The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 10274@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
10275
10276@comment file: calc++-parser.yy
10277@example
3cdc21cf
AD
10278%code
10279@{
fb9712a9 10280# include "calc++-driver.hh"
34f98f46 10281@}
fb9712a9
AD
10282@end example
10283
10284
12545799
AD
10285@noindent
10286The token numbered as 0 corresponds to end of file; the following line
99c08fb6 10287allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
10288``$end''. Similarly user friendly names are provided for each symbol. To
10289avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
10290tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 10291
1c59e0a1 10292@comment file: calc++-parser.yy
12545799 10293@example
4c6622c2 10294%define api.tokens.prefix "TOK_"
3cdc21cf
AD
10295%token
10296 END 0 "end of file"
10297 ASSIGN ":="
10298 MINUS "-"
10299 PLUS "+"
10300 STAR "*"
10301 SLASH "/"
10302 LPAREN "("
10303 RPAREN ")"
10304;
12545799
AD
10305@end example
10306
10307@noindent
3cdc21cf
AD
10308Since we use variant-based semantic values, @code{%union} is not used, and
10309both @code{%type} and @code{%token} expect genuine types, as opposed to type
10310tags.
12545799 10311
1c59e0a1 10312@comment file: calc++-parser.yy
12545799 10313@example
3cdc21cf
AD
10314%token <std::string> IDENTIFIER "identifier"
10315%token <int> NUMBER "number"
10316%type <int> exp
10317@end example
10318
10319@noindent
10320No @code{%destructor} is needed to enable memory deallocation during error
10321recovery; the memory, for strings for instance, will be reclaimed by the
10322regular destructors. All the values are printed using their
10323@code{operator<<}.
12545799 10324
3cdc21cf
AD
10325@c FIXME: Document %printer, and mention that it takes a braced-code operand.
10326@comment file: calc++-parser.yy
10327@example
c5026327 10328%printer @{ yyoutput << $$; @} <*>;
12545799
AD
10329@end example
10330
10331@noindent
3cdc21cf
AD
10332The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
10333Location Tracking Calculator: @code{ltcalc}}).
12545799 10334
1c59e0a1 10335@comment file: calc++-parser.yy
12545799
AD
10336@example
10337%%
10338%start unit;
10339unit: assignments exp @{ driver.result = $2; @};
10340
99c08fb6 10341assignments:
5e9b6624
AD
10342 /* Nothing. */ @{@}
10343| assignments assignment @{@};
12545799 10344
3dc5e96b 10345assignment:
3cdc21cf 10346 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 10347
3cdc21cf
AD
10348%left "+" "-";
10349%left "*" "/";
99c08fb6 10350exp:
3cdc21cf
AD
10351 exp "+" exp @{ $$ = $1 + $3; @}
10352| exp "-" exp @{ $$ = $1 - $3; @}
10353| exp "*" exp @{ $$ = $1 * $3; @}
10354| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 10355| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 10356| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 10357| "number" @{ std::swap ($$, $1); @};
12545799
AD
10358%%
10359@end example
10360
10361@noindent
10362Finally the @code{error} member function registers the errors to the
10363driver.
10364
1c59e0a1 10365@comment file: calc++-parser.yy
12545799
AD
10366@example
10367void
3cdc21cf 10368yy::calcxx_parser::error (const location_type& l,
1c59e0a1 10369 const std::string& m)
12545799
AD
10370@{
10371 driver.error (l, m);
10372@}
10373@end example
10374
10375@node Calc++ Scanner
8405b70c 10376@subsubsection Calc++ Scanner
12545799
AD
10377
10378The Flex scanner first includes the driver declaration, then the
10379parser's to get the set of defined tokens.
10380
1c59e0a1 10381@comment file: calc++-scanner.ll
12545799 10382@example
c93f22fc 10383%@{ /* -*- C++ -*- */
3c248d70
AD
10384# include <cerrno>
10385# include <climits>
3cdc21cf 10386# include <cstdlib>
12545799
AD
10387# include <string>
10388# include "calc++-driver.hh"
10389# include "calc++-parser.hh"
eaea13f5 10390
3cdc21cf
AD
10391// Work around an incompatibility in flex (at least versions
10392// 2.5.31 through 2.5.33): it generates code that does
10393// not conform to C89. See Debian bug 333231
10394// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
10395# undef yywrap
10396# define yywrap() 1
eaea13f5 10397
3cdc21cf
AD
10398// The location of the current token.
10399static yy::location loc;
12545799
AD
10400%@}
10401@end example
10402
10403@noindent
10404Because there is no @code{#include}-like feature we don't need
10405@code{yywrap}, we don't need @code{unput} either, and we parse an
10406actual file, this is not an interactive session with the user.
3cdc21cf 10407Finally, we enable scanner tracing.
12545799 10408
1c59e0a1 10409@comment file: calc++-scanner.ll
12545799
AD
10410@example
10411%option noyywrap nounput batch debug
10412@end example
10413
10414@noindent
10415Abbreviations allow for more readable rules.
10416
1c59e0a1 10417@comment file: calc++-scanner.ll
12545799
AD
10418@example
10419id [a-zA-Z][a-zA-Z_0-9]*
10420int [0-9]+
10421blank [ \t]
10422@end example
10423
10424@noindent
9d9b8b70 10425The following paragraph suffices to track locations accurately. Each
12545799 10426time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
10427position. Then when a pattern is matched, its width is added to the end
10428column. When matching ends of lines, the end
12545799
AD
10429cursor is adjusted, and each time blanks are matched, the begin cursor
10430is moved onto the end cursor to effectively ignore the blanks
10431preceding tokens. Comments would be treated equally.
10432
1c59e0a1 10433@comment file: calc++-scanner.ll
12545799 10434@example
d4fca427 10435@group
828c373b 10436%@{
3cdc21cf
AD
10437 // Code run each time a pattern is matched.
10438 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 10439%@}
d4fca427 10440@end group
12545799 10441%%
d4fca427 10442@group
12545799 10443%@{
3cdc21cf
AD
10444 // Code run each time yylex is called.
10445 loc.step ();
12545799 10446%@}
d4fca427 10447@end group
3cdc21cf
AD
10448@{blank@}+ loc.step ();
10449[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10450@end example
10451
10452@noindent
3cdc21cf 10453The rules are simple. The driver is used to report errors.
12545799 10454
1c59e0a1 10455@comment file: calc++-scanner.ll
12545799 10456@example
3cdc21cf
AD
10457"-" return yy::calcxx_parser::make_MINUS(loc);
10458"+" return yy::calcxx_parser::make_PLUS(loc);
10459"*" return yy::calcxx_parser::make_STAR(loc);
10460"/" return yy::calcxx_parser::make_SLASH(loc);
10461"(" return yy::calcxx_parser::make_LPAREN(loc);
10462")" return yy::calcxx_parser::make_RPAREN(loc);
10463":=" return yy::calcxx_parser::make_ASSIGN(loc);
10464
d4fca427 10465@group
04098407
PE
10466@{int@} @{
10467 errno = 0;
10468 long n = strtol (yytext, NULL, 10);
10469 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10470 driver.error (loc, "integer is out of range");
10471 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10472@}
d4fca427 10473@end group
3cdc21cf
AD
10474@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10475. driver.error (loc, "invalid character");
10476<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10477%%
10478@end example
10479
10480@noindent
3cdc21cf 10481Finally, because the scanner-related driver's member-functions depend
12545799
AD
10482on the scanner's data, it is simpler to implement them in this file.
10483
1c59e0a1 10484@comment file: calc++-scanner.ll
12545799 10485@example
d4fca427 10486@group
12545799
AD
10487void
10488calcxx_driver::scan_begin ()
10489@{
10490 yy_flex_debug = trace_scanning;
93c150b6 10491 if (file.empty () || file == "-")
bb32f4f2
AD
10492 yyin = stdin;
10493 else if (!(yyin = fopen (file.c_str (), "r")))
10494 @{
aaaa2aae 10495 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10496 exit (EXIT_FAILURE);
bb32f4f2 10497 @}
12545799 10498@}
d4fca427 10499@end group
12545799 10500
d4fca427 10501@group
12545799
AD
10502void
10503calcxx_driver::scan_end ()
10504@{
10505 fclose (yyin);
10506@}
d4fca427 10507@end group
12545799
AD
10508@end example
10509
10510@node Calc++ Top Level
8405b70c 10511@subsubsection Calc++ Top Level
12545799
AD
10512
10513The top level file, @file{calc++.cc}, poses no problem.
10514
1c59e0a1 10515@comment file: calc++.cc
12545799
AD
10516@example
10517#include <iostream>
10518#include "calc++-driver.hh"
10519
d4fca427 10520@group
12545799 10521int
fa4d969f 10522main (int argc, char *argv[])
12545799 10523@{
414c76a4 10524 int res = 0;
12545799 10525 calcxx_driver driver;
93c150b6
AD
10526 for (int i = 1; i < argc; ++i)
10527 if (argv[i] == std::string ("-p"))
12545799 10528 driver.trace_parsing = true;
93c150b6 10529 else if (argv[i] == std::string ("-s"))
12545799 10530 driver.trace_scanning = true;
93c150b6 10531 else if (!driver.parse (argv[i]))
bb32f4f2 10532 std::cout << driver.result << std::endl;
414c76a4
AD
10533 else
10534 res = 1;
10535 return res;
12545799 10536@}
d4fca427 10537@end group
12545799
AD
10538@end example
10539
8405b70c
PB
10540@node Java Parsers
10541@section Java Parsers
10542
10543@menu
f5f419de
DJ
10544* Java Bison Interface:: Asking for Java parser generation
10545* Java Semantic Values:: %type and %token vs. Java
10546* Java Location Values:: The position and location classes
10547* Java Parser Interface:: Instantiating and running the parser
10548* Java Scanner Interface:: Specifying the scanner for the parser
10549* Java Action Features:: Special features for use in actions
10550* Java Differences:: Differences between C/C++ and Java Grammars
10551* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10552@end menu
10553
10554@node Java Bison Interface
10555@subsection Java Bison Interface
10556@c - %language "Java"
8405b70c 10557
59da312b
JD
10558(The current Java interface is experimental and may evolve.
10559More user feedback will help to stabilize it.)
10560
e254a580
DJ
10561The Java parser skeletons are selected using the @code{%language "Java"}
10562directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10563
e254a580 10564@c FIXME: Documented bug.
ff7571c0
JD
10565When generating a Java parser, @code{bison @var{basename}.y} will
10566create a single Java source file named @file{@var{basename}.java}
10567containing the parser implementation. Using a grammar file without a
10568@file{.y} suffix is currently broken. The basename of the parser
10569implementation file can be changed by the @code{%file-prefix}
10570directive or the @option{-p}/@option{--name-prefix} option. The
10571entire parser implementation file name can be changed by the
10572@code{%output} directive or the @option{-o}/@option{--output} option.
10573The parser implementation file contains a single class for the parser.
8405b70c 10574
e254a580 10575You can create documentation for generated parsers using Javadoc.
8405b70c 10576
e254a580
DJ
10577Contrary to C parsers, Java parsers do not use global variables; the
10578state of the parser is always local to an instance of the parser class.
10579Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10580and @samp{%define api.pure} directives does not do anything when used in
e254a580 10581Java.
8405b70c 10582
e254a580 10583Push parsers are currently unsupported in Java and @code{%define
67212941 10584api.push-pull} have no effect.
01b477c6 10585
8a4281b9 10586GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10587@code{glr-parser} directive.
10588
10589No header file can be generated for Java parsers. Do not use the
10590@code{%defines} directive or the @option{-d}/@option{--defines} options.
10591
10592@c FIXME: Possible code change.
fa819509
AD
10593Currently, support for tracing is always compiled
10594in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10595directives and the
e254a580
DJ
10596@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10597options have no effect. This may change in the future to eliminate
fa819509
AD
10598unused code in the generated parser, so use @samp{%define parse.trace}
10599explicitly
1979121c 10600if needed. Also, in the future the
e254a580
DJ
10601@code{%token-table} directive might enable a public interface to
10602access the token names and codes.
8405b70c 10603
09ccae9b 10604Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10605hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10606Try reducing the amount of code in actions and static initializers;
10607otherwise, report a bug so that the parser skeleton will be improved.
10608
10609
8405b70c
PB
10610@node Java Semantic Values
10611@subsection Java Semantic Values
10612@c - No %union, specify type in %type/%token.
10613@c - YYSTYPE
10614@c - Printer and destructor
10615
10616There is no @code{%union} directive in Java parsers. Instead, the
10617semantic values' types (class names) should be specified in the
10618@code{%type} or @code{%token} directive:
10619
10620@example
10621%type <Expression> expr assignment_expr term factor
10622%type <Integer> number
10623@end example
10624
10625By default, the semantic stack is declared to have @code{Object} members,
10626which means that the class types you specify can be of any class.
10627To improve the type safety of the parser, you can declare the common
67501061 10628superclass of all the semantic values using the @samp{%define stype}
e254a580 10629directive. For example, after the following declaration:
8405b70c
PB
10630
10631@example
e254a580 10632%define stype "ASTNode"
8405b70c
PB
10633@end example
10634
10635@noindent
10636any @code{%type} or @code{%token} specifying a semantic type which
10637is not a subclass of ASTNode, will cause a compile-time error.
10638
e254a580 10639@c FIXME: Documented bug.
8405b70c
PB
10640Types used in the directives may be qualified with a package name.
10641Primitive data types are accepted for Java version 1.5 or later. Note
10642that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10643Generic types may not be used; this is due to a limitation in the
10644implementation of Bison, and may change in future releases.
8405b70c
PB
10645
10646Java parsers do not support @code{%destructor}, since the language
10647adopts garbage collection. The parser will try to hold references
10648to semantic values for as little time as needed.
10649
10650Java parsers do not support @code{%printer}, as @code{toString()}
10651can be used to print the semantic values. This however may change
10652(in a backwards-compatible way) in future versions of Bison.
10653
10654
10655@node Java Location Values
10656@subsection Java Location Values
10657@c - %locations
10658@c - class Position
10659@c - class Location
10660
303834cc
JD
10661When the directive @code{%locations} is used, the Java parser supports
10662location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10663class defines a @dfn{position}, a single point in a file; Bison itself
10664defines a class representing a @dfn{location}, a range composed of a pair of
10665positions (possibly spanning several files). The location class is an inner
10666class of the parser; the name is @code{Location} by default, and may also be
10667renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10668
10669The location class treats the position as a completely opaque value.
10670By default, the class name is @code{Position}, but this can be changed
67501061 10671with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10672be supplied by the user.
8405b70c
PB
10673
10674
e254a580
DJ
10675@deftypeivar {Location} {Position} begin
10676@deftypeivarx {Location} {Position} end
8405b70c 10677The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10678@end deftypeivar
10679
10680@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10681Create a @code{Location} denoting an empty range located at a given point.
e254a580 10682@end deftypeop
8405b70c 10683
e254a580
DJ
10684@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10685Create a @code{Location} from the endpoints of the range.
10686@end deftypeop
10687
10688@deftypemethod {Location} {String} toString ()
8405b70c
PB
10689Prints the range represented by the location. For this to work
10690properly, the position class should override the @code{equals} and
10691@code{toString} methods appropriately.
10692@end deftypemethod
10693
10694
10695@node Java Parser Interface
10696@subsection Java Parser Interface
10697@c - define parser_class_name
10698@c - Ctor
10699@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10700@c debug_stream.
10701@c - Reporting errors
10702
e254a580
DJ
10703The name of the generated parser class defaults to @code{YYParser}. The
10704@code{YY} prefix may be changed using the @code{%name-prefix} directive
10705or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10706@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10707the class. The interface of this class is detailed below.
8405b70c 10708
e254a580 10709By default, the parser class has package visibility. A declaration
67501061 10710@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10711according to the Java language specification, the name of the @file{.java}
10712file should match the name of the class in this case. Similarly, you can
10713use @code{abstract}, @code{final} and @code{strictfp} with the
10714@code{%define} declaration to add other modifiers to the parser class.
67501061 10715A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10716be used to add any number of annotations to the parser class.
e254a580
DJ
10717
10718The Java package name of the parser class can be specified using the
67501061 10719@samp{%define package} directive. The superclass and the implemented
e254a580 10720interfaces of the parser class can be specified with the @code{%define
67501061 10721extends} and @samp{%define implements} directives.
e254a580
DJ
10722
10723The parser class defines an inner class, @code{Location}, that is used
10724for location tracking (see @ref{Java Location Values}), and a inner
10725interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10726these inner class/interface, and the members described in the interface
10727below, all the other members and fields are preceded with a @code{yy} or
10728@code{YY} prefix to avoid clashes with user code.
10729
e254a580
DJ
10730The parser class can be extended using the @code{%parse-param}
10731directive. Each occurrence of the directive will add a @code{protected
10732final} field to the parser class, and an argument to its constructor,
10733which initialize them automatically.
10734
e254a580
DJ
10735@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10736Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10737no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10738@code{%lex-param}s are used.
1979121c
DJ
10739
10740Use @code{%code init} for code added to the start of the constructor
10741body. This is especially useful to initialize superclasses. Use
f50bfcd6 10742@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10743@end deftypeop
10744
10745@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10746Build a new parser object using the specified scanner. There are no
2055a44e
AD
10747additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10748used.
e254a580
DJ
10749
10750If the scanner is defined by @code{%code lexer}, this constructor is
10751declared @code{protected} and is called automatically with a scanner
2055a44e 10752created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10753
10754Use @code{%code init} for code added to the start of the constructor
10755body. This is especially useful to initialize superclasses. Use
5a321748 10756@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 10757@end deftypeop
8405b70c
PB
10758
10759@deftypemethod {YYParser} {boolean} parse ()
10760Run the syntactic analysis, and return @code{true} on success,
10761@code{false} otherwise.
10762@end deftypemethod
10763
1979121c
DJ
10764@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10765@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10766Get or set the option to produce verbose error messages. These are only
cf499cff 10767available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10768verbose error messages.
10769@end deftypemethod
10770
10771@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10772@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10773@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10774Print an error message using the @code{yyerror} method of the scanner
10775instance in use. The @code{Location} and @code{Position} parameters are
10776available only if location tracking is active.
10777@end deftypemethod
10778
01b477c6 10779@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10780During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10781from a syntax error.
10782@xref{Error Recovery}.
8405b70c
PB
10783@end deftypemethod
10784
10785@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10786@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10787Get or set the stream used for tracing the parsing. It defaults to
10788@code{System.err}.
10789@end deftypemethod
10790
10791@deftypemethod {YYParser} {int} getDebugLevel ()
10792@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10793Get or set the tracing level. Currently its value is either 0, no trace,
10794or nonzero, full tracing.
10795@end deftypemethod
10796
1979121c
DJ
10797@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10798@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10799Identify the Bison version and skeleton used to generate this parser.
10800@end deftypecv
10801
8405b70c
PB
10802
10803@node Java Scanner Interface
10804@subsection Java Scanner Interface
01b477c6 10805@c - %code lexer
8405b70c 10806@c - %lex-param
01b477c6 10807@c - Lexer interface
8405b70c 10808
e254a580
DJ
10809There are two possible ways to interface a Bison-generated Java parser
10810with a scanner: the scanner may be defined by @code{%code lexer}, or
10811defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10812@code{Lexer} inner interface of the parser class. This interface also
10813contain constants for all user-defined token names and the predefined
10814@code{EOF} token.
e254a580
DJ
10815
10816In the first case, the body of the scanner class is placed in
10817@code{%code lexer} blocks. If you want to pass parameters from the
10818parser constructor to the scanner constructor, specify them with
10819@code{%lex-param}; they are passed before @code{%parse-param}s to the
10820constructor.
01b477c6 10821
59c5ac72 10822In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10823which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10824The constructor of the parser object will then accept an object
10825implementing the interface; @code{%lex-param} is not used in this
10826case.
10827
10828In both cases, the scanner has to implement the following methods.
10829
e254a580
DJ
10830@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10831This method is defined by the user to emit an error message. The first
10832parameter is omitted if location tracking is not active. Its type can be
67501061 10833changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10834@end deftypemethod
10835
e254a580 10836@deftypemethod {Lexer} {int} yylex ()
8405b70c 10837Return the next token. Its type is the return value, its semantic
f50bfcd6 10838value and location are saved and returned by the their methods in the
e254a580
DJ
10839interface.
10840
67501061 10841Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10842Default is @code{java.io.IOException}.
8405b70c
PB
10843@end deftypemethod
10844
10845@deftypemethod {Lexer} {Position} getStartPos ()
10846@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10847Return respectively the first position of the last token that
10848@code{yylex} returned, and the first position beyond it. These
10849methods are not needed unless location tracking is active.
8405b70c 10850
67501061 10851The return type can be changed using @samp{%define position_type
8405b70c
PB
10852"@var{class-name}".}
10853@end deftypemethod
10854
10855@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10856Return the semantic value of the last token that yylex returned.
8405b70c 10857
67501061 10858The return type can be changed using @samp{%define stype
8405b70c
PB
10859"@var{class-name}".}
10860@end deftypemethod
10861
10862
e254a580
DJ
10863@node Java Action Features
10864@subsection Special Features for Use in Java Actions
10865
10866The following special constructs can be uses in Java actions.
10867Other analogous C action features are currently unavailable for Java.
10868
67501061 10869Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10870actions, and initial actions specified by @code{%initial-action}.
10871
10872@defvar $@var{n}
10873The semantic value for the @var{n}th component of the current rule.
10874This may not be assigned to.
10875@xref{Java Semantic Values}.
10876@end defvar
10877
10878@defvar $<@var{typealt}>@var{n}
10879Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10880@xref{Java Semantic Values}.
10881@end defvar
10882
10883@defvar $$
10884The semantic value for the grouping made by the current rule. As a
10885value, this is in the base type (@code{Object} or as specified by
67501061 10886@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10887casts are not allowed on the left-hand side of Java assignments.
10888Use an explicit Java cast if the correct subtype is needed.
10889@xref{Java Semantic Values}.
10890@end defvar
10891
10892@defvar $<@var{typealt}>$
10893Same as @code{$$} since Java always allow assigning to the base type.
10894Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10895for setting the value but there is currently no easy way to distinguish
10896these constructs.
10897@xref{Java Semantic Values}.
10898@end defvar
10899
10900@defvar @@@var{n}
10901The location information of the @var{n}th component of the current rule.
10902This may not be assigned to.
10903@xref{Java Location Values}.
10904@end defvar
10905
10906@defvar @@$
10907The location information of the grouping made by the current rule.
10908@xref{Java Location Values}.
10909@end defvar
10910
34a41a93 10911@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
10912Return immediately from the parser, indicating failure.
10913@xref{Java Parser Interface}.
34a41a93 10914@end deftypefn
8405b70c 10915
34a41a93 10916@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
10917Return immediately from the parser, indicating success.
10918@xref{Java Parser Interface}.
34a41a93 10919@end deftypefn
8405b70c 10920
34a41a93 10921@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 10922Start error recovery (without printing an error message).
e254a580 10923@xref{Error Recovery}.
34a41a93 10924@end deftypefn
8405b70c 10925
e254a580
DJ
10926@deftypefn {Function} {boolean} recovering ()
10927Return whether error recovery is being done. In this state, the parser
10928reads token until it reaches a known state, and then restarts normal
10929operation.
10930@xref{Error Recovery}.
10931@end deftypefn
8405b70c 10932
1979121c
DJ
10933@deftypefn {Function} {void} yyerror (String @var{msg})
10934@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10935@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10936Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10937instance in use. The @code{Location} and @code{Position} parameters are
10938available only if location tracking is active.
e254a580 10939@end deftypefn
8405b70c 10940
8405b70c 10941
8405b70c
PB
10942@node Java Differences
10943@subsection Differences between C/C++ and Java Grammars
10944
10945The different structure of the Java language forces several differences
10946between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10947section summarizes these differences.
8405b70c
PB
10948
10949@itemize
10950@item
01b477c6 10951Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10952@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10953macros. Instead, they should be preceded by @code{return} when they
10954appear in an action. The actual definition of these symbols is
8405b70c
PB
10955opaque to the Bison grammar, and it might change in the future. The
10956only meaningful operation that you can do, is to return them.
e3fd1dcb 10957@xref{Java Action Features}.
8405b70c
PB
10958
10959Note that of these three symbols, only @code{YYACCEPT} and
10960@code{YYABORT} will cause a return from the @code{yyparse}
10961method@footnote{Java parsers include the actions in a separate
10962method than @code{yyparse} in order to have an intuitive syntax that
10963corresponds to these C macros.}.
10964
e254a580
DJ
10965@item
10966Java lacks unions, so @code{%union} has no effect. Instead, semantic
10967values have a common base type: @code{Object} or as specified by
f50bfcd6 10968@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10969@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10970an union. The type of @code{$$}, even with angle brackets, is the base
10971type since Java casts are not allow on the left-hand side of assignments.
10972Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 10973left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 10974@ref{Java Action Features}.
e254a580 10975
8405b70c 10976@item
f50bfcd6 10977The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10978@table @asis
10979@item @code{%code imports}
10980blocks are placed at the beginning of the Java source code. They may
10981include copyright notices. For a @code{package} declarations, it is
67501061 10982suggested to use @samp{%define package} instead.
8405b70c 10983
01b477c6
PB
10984@item unqualified @code{%code}
10985blocks are placed inside the parser class.
10986
10987@item @code{%code lexer}
10988blocks, if specified, should include the implementation of the
10989scanner. If there is no such block, the scanner can be any class
e3fd1dcb 10990that implements the appropriate interface (@pxref{Java Scanner
01b477c6 10991Interface}).
29553547 10992@end table
8405b70c
PB
10993
10994Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10995In particular, @code{%@{ @dots{} %@}} blocks should not be used
10996and may give an error in future versions of Bison.
10997
01b477c6 10998The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10999be used to define other classes used by the parser @emph{outside}
11000the parser class.
8405b70c
PB
11001@end itemize
11002
e254a580
DJ
11003
11004@node Java Declarations Summary
11005@subsection Java Declarations Summary
11006
11007This summary only include declarations specific to Java or have special
11008meaning when used in a Java parser.
11009
11010@deffn {Directive} {%language "Java"}
11011Generate a Java class for the parser.
11012@end deffn
11013
11014@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11015A parameter for the lexer class defined by @code{%code lexer}
11016@emph{only}, added as parameters to the lexer constructor and the parser
11017constructor that @emph{creates} a lexer. Default is none.
11018@xref{Java Scanner Interface}.
11019@end deffn
11020
11021@deffn {Directive} %name-prefix "@var{prefix}"
11022The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11023@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11024@xref{Java Bison Interface}.
11025@end deffn
11026
11027@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11028A parameter for the parser class added as parameters to constructor(s)
11029and as fields initialized by the constructor(s). Default is none.
11030@xref{Java Parser Interface}.
11031@end deffn
11032
11033@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11034Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11035@xref{Java Semantic Values}.
11036@end deffn
11037
11038@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11039Declare the type of nonterminals. Note that the angle brackets enclose
11040a Java @emph{type}.
11041@xref{Java Semantic Values}.
11042@end deffn
11043
11044@deffn {Directive} %code @{ @var{code} @dots{} @}
11045Code appended to the inside of the parser class.
11046@xref{Java Differences}.
11047@end deffn
11048
11049@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11050Code inserted just after the @code{package} declaration.
11051@xref{Java Differences}.
11052@end deffn
11053
1979121c
DJ
11054@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11055Code inserted at the beginning of the parser constructor body.
11056@xref{Java Parser Interface}.
11057@end deffn
11058
e254a580
DJ
11059@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11060Code added to the body of a inner lexer class within the parser class.
11061@xref{Java Scanner Interface}.
11062@end deffn
11063
11064@deffn {Directive} %% @var{code} @dots{}
11065Code (after the second @code{%%}) appended to the end of the file,
11066@emph{outside} the parser class.
11067@xref{Java Differences}.
11068@end deffn
11069
11070@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11071Not supported. Use @code{%code imports} instead.
e254a580
DJ
11072@xref{Java Differences}.
11073@end deffn
11074
11075@deffn {Directive} {%define abstract}
11076Whether the parser class is declared @code{abstract}. Default is false.
11077@xref{Java Bison Interface}.
11078@end deffn
11079
1979121c
DJ
11080@deffn {Directive} {%define annotations} "@var{annotations}"
11081The Java annotations for the parser class. Default is none.
11082@xref{Java Bison Interface}.
11083@end deffn
11084
e254a580
DJ
11085@deffn {Directive} {%define extends} "@var{superclass}"
11086The superclass of the parser class. Default is none.
11087@xref{Java Bison Interface}.
11088@end deffn
11089
11090@deffn {Directive} {%define final}
11091Whether the parser class is declared @code{final}. Default is false.
11092@xref{Java Bison Interface}.
11093@end deffn
11094
11095@deffn {Directive} {%define implements} "@var{interfaces}"
11096The implemented interfaces of the parser class, a comma-separated list.
11097Default is none.
11098@xref{Java Bison Interface}.
11099@end deffn
11100
1979121c
DJ
11101@deffn {Directive} {%define init_throws} "@var{exceptions}"
11102The exceptions thrown by @code{%code init} from the parser class
11103constructor. Default is none.
11104@xref{Java Parser Interface}.
11105@end deffn
11106
e254a580
DJ
11107@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11108The exceptions thrown by the @code{yylex} method of the lexer, a
11109comma-separated list. Default is @code{java.io.IOException}.
11110@xref{Java Scanner Interface}.
11111@end deffn
11112
11113@deffn {Directive} {%define location_type} "@var{class}"
11114The name of the class used for locations (a range between two
11115positions). This class is generated as an inner class of the parser
11116class by @command{bison}. Default is @code{Location}.
11117@xref{Java Location Values}.
11118@end deffn
11119
11120@deffn {Directive} {%define package} "@var{package}"
11121The package to put the parser class in. Default is none.
11122@xref{Java Bison Interface}.
11123@end deffn
11124
11125@deffn {Directive} {%define parser_class_name} "@var{name}"
11126The name of the parser class. Default is @code{YYParser} or
11127@code{@var{name-prefix}Parser}.
11128@xref{Java Bison Interface}.
11129@end deffn
11130
11131@deffn {Directive} {%define position_type} "@var{class}"
11132The name of the class used for positions. This class must be supplied by
11133the user. Default is @code{Position}.
11134@xref{Java Location Values}.
11135@end deffn
11136
11137@deffn {Directive} {%define public}
11138Whether the parser class is declared @code{public}. Default is false.
11139@xref{Java Bison Interface}.
11140@end deffn
11141
11142@deffn {Directive} {%define stype} "@var{class}"
11143The base type of semantic values. Default is @code{Object}.
11144@xref{Java Semantic Values}.
11145@end deffn
11146
11147@deffn {Directive} {%define strictfp}
11148Whether the parser class is declared @code{strictfp}. Default is false.
11149@xref{Java Bison Interface}.
11150@end deffn
11151
11152@deffn {Directive} {%define throws} "@var{exceptions}"
11153The exceptions thrown by user-supplied parser actions and
11154@code{%initial-action}, a comma-separated list. Default is none.
11155@xref{Java Parser Interface}.
11156@end deffn
11157
11158
12545799 11159@c ================================================= FAQ
d1a1114f
AD
11160
11161@node FAQ
11162@chapter Frequently Asked Questions
11163@cindex frequently asked questions
11164@cindex questions
11165
11166Several questions about Bison come up occasionally. Here some of them
11167are addressed.
11168
11169@menu
55ba27be
AD
11170* Memory Exhausted:: Breaking the Stack Limits
11171* How Can I Reset the Parser:: @code{yyparse} Keeps some State
11172* Strings are Destroyed:: @code{yylval} Loses Track of Strings
11173* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 11174* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 11175* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
11176* I can't build Bison:: Troubleshooting
11177* Where can I find help?:: Troubleshouting
11178* Bug Reports:: Troublereporting
8405b70c 11179* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
11180* Beta Testing:: Experimenting development versions
11181* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
11182@end menu
11183
1a059451
PE
11184@node Memory Exhausted
11185@section Memory Exhausted
d1a1114f 11186
71b52b13 11187@quotation
1a059451 11188My parser returns with error with a @samp{memory exhausted}
d1a1114f 11189message. What can I do?
71b52b13 11190@end quotation
d1a1114f 11191
188867ac
AD
11192This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
11193Rules}.
d1a1114f 11194
e64fec0a
PE
11195@node How Can I Reset the Parser
11196@section How Can I Reset the Parser
5b066063 11197
0e14ad77
PE
11198The following phenomenon has several symptoms, resulting in the
11199following typical questions:
5b066063 11200
71b52b13 11201@quotation
5b066063
AD
11202I invoke @code{yyparse} several times, and on correct input it works
11203properly; but when a parse error is found, all the other calls fail
0e14ad77 11204too. How can I reset the error flag of @code{yyparse}?
71b52b13 11205@end quotation
5b066063
AD
11206
11207@noindent
11208or
11209
71b52b13 11210@quotation
0e14ad77 11211My parser includes support for an @samp{#include}-like feature, in
5b066063 11212which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 11213although I did specify @samp{%define api.pure}.
71b52b13 11214@end quotation
5b066063 11215
0e14ad77
PE
11216These problems typically come not from Bison itself, but from
11217Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
11218speed, they might not notice a change of input file. As a
11219demonstration, consider the following source file,
11220@file{first-line.l}:
11221
d4fca427
AD
11222@example
11223@group
11224%@{
5b066063
AD
11225#include <stdio.h>
11226#include <stdlib.h>
d4fca427
AD
11227%@}
11228@end group
5b066063
AD
11229%%
11230.*\n ECHO; return 1;
11231%%
d4fca427 11232@group
5b066063 11233int
0e14ad77 11234yyparse (char const *file)
d4fca427 11235@{
5b066063
AD
11236 yyin = fopen (file, "r");
11237 if (!yyin)
d4fca427
AD
11238 @{
11239 perror ("fopen");
11240 exit (EXIT_FAILURE);
11241 @}
11242@end group
11243@group
fa7e68c3 11244 /* One token only. */
5b066063 11245 yylex ();
0e14ad77 11246 if (fclose (yyin) != 0)
d4fca427
AD
11247 @{
11248 perror ("fclose");
11249 exit (EXIT_FAILURE);
11250 @}
5b066063 11251 return 0;
d4fca427
AD
11252@}
11253@end group
5b066063 11254
d4fca427 11255@group
5b066063 11256int
0e14ad77 11257main (void)
d4fca427 11258@{
5b066063
AD
11259 yyparse ("input");
11260 yyparse ("input");
11261 return 0;
d4fca427
AD
11262@}
11263@end group
11264@end example
5b066063
AD
11265
11266@noindent
11267If the file @file{input} contains
11268
71b52b13 11269@example
5b066063
AD
11270input:1: Hello,
11271input:2: World!
71b52b13 11272@end example
5b066063
AD
11273
11274@noindent
0e14ad77 11275then instead of getting the first line twice, you get:
5b066063
AD
11276
11277@example
11278$ @kbd{flex -ofirst-line.c first-line.l}
11279$ @kbd{gcc -ofirst-line first-line.c -ll}
11280$ @kbd{./first-line}
11281input:1: Hello,
11282input:2: World!
11283@end example
11284
0e14ad77
PE
11285Therefore, whenever you change @code{yyin}, you must tell the
11286Lex-generated scanner to discard its current buffer and switch to the
11287new one. This depends upon your implementation of Lex; see its
11288documentation for more. For Flex, it suffices to call
11289@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
11290Flex-generated scanner needs to read from several input streams to
11291handle features like include files, you might consider using Flex
11292functions like @samp{yy_switch_to_buffer} that manipulate multiple
11293input buffers.
5b066063 11294
b165c324
AD
11295If your Flex-generated scanner uses start conditions (@pxref{Start
11296conditions, , Start conditions, flex, The Flex Manual}), you might
11297also want to reset the scanner's state, i.e., go back to the initial
11298start condition, through a call to @samp{BEGIN (0)}.
11299
fef4cb51
AD
11300@node Strings are Destroyed
11301@section Strings are Destroyed
11302
71b52b13 11303@quotation
c7e441b4 11304My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
11305them. Instead of reporting @samp{"foo", "bar"}, it reports
11306@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 11307@end quotation
fef4cb51
AD
11308
11309This error is probably the single most frequent ``bug report'' sent to
11310Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 11311of the scanner. Consider the following Lex code:
fef4cb51 11312
71b52b13 11313@example
d4fca427 11314@group
71b52b13 11315%@{
fef4cb51
AD
11316#include <stdio.h>
11317char *yylval = NULL;
71b52b13 11318%@}
d4fca427
AD
11319@end group
11320@group
fef4cb51
AD
11321%%
11322.* yylval = yytext; return 1;
11323\n /* IGNORE */
11324%%
d4fca427
AD
11325@end group
11326@group
fef4cb51
AD
11327int
11328main ()
71b52b13 11329@{
fa7e68c3 11330 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
11331 char *fst = (yylex (), yylval);
11332 char *snd = (yylex (), yylval);
11333 printf ("\"%s\", \"%s\"\n", fst, snd);
11334 return 0;
71b52b13 11335@}
d4fca427 11336@end group
71b52b13 11337@end example
fef4cb51
AD
11338
11339If you compile and run this code, you get:
11340
11341@example
11342$ @kbd{flex -osplit-lines.c split-lines.l}
11343$ @kbd{gcc -osplit-lines split-lines.c -ll}
11344$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11345"one
11346two", "two"
11347@end example
11348
11349@noindent
11350this is because @code{yytext} is a buffer provided for @emph{reading}
11351in the action, but if you want to keep it, you have to duplicate it
11352(e.g., using @code{strdup}). Note that the output may depend on how
11353your implementation of Lex handles @code{yytext}. For instance, when
11354given the Lex compatibility option @option{-l} (which triggers the
11355option @samp{%array}) Flex generates a different behavior:
11356
11357@example
11358$ @kbd{flex -l -osplit-lines.c split-lines.l}
11359$ @kbd{gcc -osplit-lines split-lines.c -ll}
11360$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11361"two", "two"
11362@end example
11363
11364
2fa09258
AD
11365@node Implementing Gotos/Loops
11366@section Implementing Gotos/Loops
a06ea4aa 11367
71b52b13 11368@quotation
a06ea4aa 11369My simple calculator supports variables, assignments, and functions,
2fa09258 11370but how can I implement gotos, or loops?
71b52b13 11371@end quotation
a06ea4aa
AD
11372
11373Although very pedagogical, the examples included in the document blur
a1c84f45 11374the distinction to make between the parser---whose job is to recover
a06ea4aa 11375the structure of a text and to transmit it to subsequent modules of
a1c84f45 11376the program---and the processing (such as the execution) of this
a06ea4aa
AD
11377structure. This works well with so called straight line programs,
11378i.e., precisely those that have a straightforward execution model:
11379execute simple instructions one after the others.
11380
11381@cindex abstract syntax tree
8a4281b9 11382@cindex AST
a06ea4aa
AD
11383If you want a richer model, you will probably need to use the parser
11384to construct a tree that does represent the structure it has
11385recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 11386or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11387traversing it in various ways, will enable treatments such as its
11388execution or its translation, which will result in an interpreter or a
11389compiler.
11390
11391This topic is way beyond the scope of this manual, and the reader is
11392invited to consult the dedicated literature.
11393
11394
ed2e6384
AD
11395@node Multiple start-symbols
11396@section Multiple start-symbols
11397
71b52b13 11398@quotation
ed2e6384
AD
11399I have several closely related grammars, and I would like to share their
11400implementations. In fact, I could use a single grammar but with
11401multiple entry points.
71b52b13 11402@end quotation
ed2e6384
AD
11403
11404Bison does not support multiple start-symbols, but there is a very
11405simple means to simulate them. If @code{foo} and @code{bar} are the two
11406pseudo start-symbols, then introduce two new tokens, say
11407@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11408real start-symbol:
11409
11410@example
11411%token START_FOO START_BAR;
11412%start start;
5e9b6624
AD
11413start:
11414 START_FOO foo
11415| START_BAR bar;
ed2e6384
AD
11416@end example
11417
11418These tokens prevents the introduction of new conflicts. As far as the
11419parser goes, that is all that is needed.
11420
11421Now the difficult part is ensuring that the scanner will send these
11422tokens first. If your scanner is hand-written, that should be
11423straightforward. If your scanner is generated by Lex, them there is
11424simple means to do it: recall that anything between @samp{%@{ ... %@}}
11425after the first @code{%%} is copied verbatim in the top of the generated
11426@code{yylex} function. Make sure a variable @code{start_token} is
11427available in the scanner (e.g., a global variable or using
11428@code{%lex-param} etc.), and use the following:
11429
11430@example
11431 /* @r{Prologue.} */
11432%%
11433%@{
11434 if (start_token)
11435 @{
11436 int t = start_token;
11437 start_token = 0;
11438 return t;
11439 @}
11440%@}
11441 /* @r{The rules.} */
11442@end example
11443
11444
55ba27be
AD
11445@node Secure? Conform?
11446@section Secure? Conform?
11447
71b52b13 11448@quotation
55ba27be 11449Is Bison secure? Does it conform to POSIX?
71b52b13 11450@end quotation
55ba27be
AD
11451
11452If you're looking for a guarantee or certification, we don't provide it.
11453However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11454POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11455please send us a bug report.
11456
11457@node I can't build Bison
11458@section I can't build Bison
11459
71b52b13 11460@quotation
8c5b881d
PE
11461I can't build Bison because @command{make} complains that
11462@code{msgfmt} is not found.
55ba27be 11463What should I do?
71b52b13 11464@end quotation
55ba27be
AD
11465
11466Like most GNU packages with internationalization support, that feature
11467is turned on by default. If you have problems building in the @file{po}
11468subdirectory, it indicates that your system's internationalization
11469support is lacking. You can re-configure Bison with
11470@option{--disable-nls} to turn off this support, or you can install GNU
11471gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11472Bison. See the file @file{ABOUT-NLS} for more information.
11473
11474
11475@node Where can I find help?
11476@section Where can I find help?
11477
71b52b13 11478@quotation
55ba27be 11479I'm having trouble using Bison. Where can I find help?
71b52b13 11480@end quotation
55ba27be
AD
11481
11482First, read this fine manual. Beyond that, you can send mail to
11483@email{help-bison@@gnu.org}. This mailing list is intended to be
11484populated with people who are willing to answer questions about using
11485and installing Bison. Please keep in mind that (most of) the people on
11486the list have aspects of their lives which are not related to Bison (!),
11487so you may not receive an answer to your question right away. This can
11488be frustrating, but please try not to honk them off; remember that any
11489help they provide is purely voluntary and out of the kindness of their
11490hearts.
11491
11492@node Bug Reports
11493@section Bug Reports
11494
71b52b13 11495@quotation
55ba27be 11496I found a bug. What should I include in the bug report?
71b52b13 11497@end quotation
55ba27be
AD
11498
11499Before you send a bug report, make sure you are using the latest
11500version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11501mirrors. Be sure to include the version number in your bug report. If
11502the bug is present in the latest version but not in a previous version,
11503try to determine the most recent version which did not contain the bug.
11504
11505If the bug is parser-related, you should include the smallest grammar
11506you can which demonstrates the bug. The grammar file should also be
11507complete (i.e., I should be able to run it through Bison without having
11508to edit or add anything). The smaller and simpler the grammar, the
11509easier it will be to fix the bug.
11510
11511Include information about your compilation environment, including your
11512operating system's name and version and your compiler's name and
11513version. If you have trouble compiling, you should also include a
11514transcript of the build session, starting with the invocation of
11515`configure'. Depending on the nature of the bug, you may be asked to
11516send additional files as well (such as `config.h' or `config.cache').
11517
11518Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11519send a bug report just because you cannot provide a fix.
55ba27be
AD
11520
11521Send bug reports to @email{bug-bison@@gnu.org}.
11522
8405b70c
PB
11523@node More Languages
11524@section More Languages
55ba27be 11525
71b52b13 11526@quotation
8405b70c 11527Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11528favorite language here}?
71b52b13 11529@end quotation
55ba27be 11530
8405b70c 11531C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11532languages; contributions are welcome.
11533
11534@node Beta Testing
11535@section Beta Testing
11536
71b52b13 11537@quotation
55ba27be 11538What is involved in being a beta tester?
71b52b13 11539@end quotation
55ba27be
AD
11540
11541It's not terribly involved. Basically, you would download a test
11542release, compile it, and use it to build and run a parser or two. After
11543that, you would submit either a bug report or a message saying that
11544everything is okay. It is important to report successes as well as
11545failures because test releases eventually become mainstream releases,
11546but only if they are adequately tested. If no one tests, development is
11547essentially halted.
11548
11549Beta testers are particularly needed for operating systems to which the
11550developers do not have easy access. They currently have easy access to
11551recent GNU/Linux and Solaris versions. Reports about other operating
11552systems are especially welcome.
11553
11554@node Mailing Lists
11555@section Mailing Lists
11556
71b52b13 11557@quotation
55ba27be 11558How do I join the help-bison and bug-bison mailing lists?
71b52b13 11559@end quotation
55ba27be
AD
11560
11561See @url{http://lists.gnu.org/}.
a06ea4aa 11562
d1a1114f
AD
11563@c ================================================= Table of Symbols
11564
342b8b6e 11565@node Table of Symbols
bfa74976
RS
11566@appendix Bison Symbols
11567@cindex Bison symbols, table of
11568@cindex symbols in Bison, table of
11569
18b519c0 11570@deffn {Variable} @@$
3ded9a63 11571In an action, the location of the left-hand side of the rule.
303834cc 11572@xref{Tracking Locations}.
18b519c0 11573@end deffn
3ded9a63 11574
18b519c0 11575@deffn {Variable} @@@var{n}
303834cc
JD
11576In an action, the location of the @var{n}-th symbol of the right-hand side
11577of the rule. @xref{Tracking Locations}.
18b519c0 11578@end deffn
3ded9a63 11579
d013372c 11580@deffn {Variable} @@@var{name}
303834cc
JD
11581In an action, the location of a symbol addressed by name. @xref{Tracking
11582Locations}.
d013372c
AR
11583@end deffn
11584
11585@deffn {Variable} @@[@var{name}]
303834cc
JD
11586In an action, the location of a symbol addressed by name. @xref{Tracking
11587Locations}.
d013372c
AR
11588@end deffn
11589
18b519c0 11590@deffn {Variable} $$
3ded9a63
AD
11591In an action, the semantic value of the left-hand side of the rule.
11592@xref{Actions}.
18b519c0 11593@end deffn
3ded9a63 11594
18b519c0 11595@deffn {Variable} $@var{n}
3ded9a63
AD
11596In an action, the semantic value of the @var{n}-th symbol of the
11597right-hand side of the rule. @xref{Actions}.
18b519c0 11598@end deffn
3ded9a63 11599
d013372c
AR
11600@deffn {Variable} $@var{name}
11601In an action, the semantic value of a symbol addressed by name.
11602@xref{Actions}.
11603@end deffn
11604
11605@deffn {Variable} $[@var{name}]
11606In an action, the semantic value of a symbol addressed by name.
11607@xref{Actions}.
11608@end deffn
11609
dd8d9022
AD
11610@deffn {Delimiter} %%
11611Delimiter used to separate the grammar rule section from the
11612Bison declarations section or the epilogue.
11613@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11614@end deffn
bfa74976 11615
dd8d9022
AD
11616@c Don't insert spaces, or check the DVI output.
11617@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11618All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11619to the parser implementation file. Such code forms the prologue of
11620the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11621Grammar}.
18b519c0 11622@end deffn
bfa74976 11623
ca2a6d15
PH
11624@deffn {Directive} %?@{@var{expression}@}
11625Predicate actions. This is a type of action clause that may appear in
11626rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11627GLR parsers during nondeterministic operation,
ca2a6d15
PH
11628this silently causes an alternative parse to die. During deterministic
11629operation, it is the same as the effect of YYERROR.
11630@xref{Semantic Predicates}.
11631
11632This feature is experimental.
11633More user feedback will help to determine whether it should become a permanent
11634feature.
11635@end deffn
11636
dd8d9022
AD
11637@deffn {Construct} /*@dots{}*/
11638Comment delimiters, as in C.
18b519c0 11639@end deffn
bfa74976 11640
dd8d9022
AD
11641@deffn {Delimiter} :
11642Separates a rule's result from its components. @xref{Rules, ,Syntax of
11643Grammar Rules}.
18b519c0 11644@end deffn
bfa74976 11645
dd8d9022
AD
11646@deffn {Delimiter} ;
11647Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11648@end deffn
bfa74976 11649
dd8d9022
AD
11650@deffn {Delimiter} |
11651Separates alternate rules for the same result nonterminal.
11652@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11653@end deffn
bfa74976 11654
12e35840
JD
11655@deffn {Directive} <*>
11656Used to define a default tagged @code{%destructor} or default tagged
11657@code{%printer}.
85894313
JD
11658
11659This feature is experimental.
11660More user feedback will help to determine whether it should become a permanent
11661feature.
11662
12e35840
JD
11663@xref{Destructor Decl, , Freeing Discarded Symbols}.
11664@end deffn
11665
3ebecc24 11666@deffn {Directive} <>
12e35840
JD
11667Used to define a default tagless @code{%destructor} or default tagless
11668@code{%printer}.
85894313
JD
11669
11670This feature is experimental.
11671More user feedback will help to determine whether it should become a permanent
11672feature.
11673
12e35840
JD
11674@xref{Destructor Decl, , Freeing Discarded Symbols}.
11675@end deffn
11676
dd8d9022
AD
11677@deffn {Symbol} $accept
11678The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11679$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11680Start-Symbol}. It cannot be used in the grammar.
18b519c0 11681@end deffn
bfa74976 11682
136a0f76 11683@deffn {Directive} %code @{@var{code}@}
148d66d8 11684@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11685Insert @var{code} verbatim into the output parser source at the
11686default location or at the location specified by @var{qualifier}.
e0c07222 11687@xref{%code Summary}.
9bc0dd67
JD
11688@end deffn
11689
11690@deffn {Directive} %debug
11691Equip the parser for debugging. @xref{Decl Summary}.
11692@end deffn
11693
91d2c560 11694@ifset defaultprec
22fccf95
PE
11695@deffn {Directive} %default-prec
11696Assign a precedence to rules that lack an explicit @samp{%prec}
11697modifier. @xref{Contextual Precedence, ,Context-Dependent
11698Precedence}.
39a06c25 11699@end deffn
91d2c560 11700@end ifset
39a06c25 11701
7fceb615
JD
11702@deffn {Directive} %define @var{variable}
11703@deffnx {Directive} %define @var{variable} @var{value}
11704@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11705Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11706@end deffn
11707
18b519c0 11708@deffn {Directive} %defines
ff7571c0
JD
11709Bison declaration to create a parser header file, which is usually
11710meant for the scanner. @xref{Decl Summary}.
18b519c0 11711@end deffn
6deb4447 11712
02975b9a
JD
11713@deffn {Directive} %defines @var{defines-file}
11714Same as above, but save in the file @var{defines-file}.
11715@xref{Decl Summary}.
11716@end deffn
11717
18b519c0 11718@deffn {Directive} %destructor
258b75ca 11719Specify how the parser should reclaim the memory associated to
fa7e68c3 11720discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11721@end deffn
72f889cc 11722
18b519c0 11723@deffn {Directive} %dprec
676385e2 11724Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11725time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11726GLR Parsers}.
18b519c0 11727@end deffn
676385e2 11728
dd8d9022
AD
11729@deffn {Symbol} $end
11730The predefined token marking the end of the token stream. It cannot be
11731used in the grammar.
11732@end deffn
11733
11734@deffn {Symbol} error
11735A token name reserved for error recovery. This token may be used in
11736grammar rules so as to allow the Bison parser to recognize an error in
11737the grammar without halting the process. In effect, a sentence
11738containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11739token @code{error} becomes the current lookahead token. Actions
11740corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11741token is reset to the token that originally caused the violation.
11742@xref{Error Recovery}.
18d192f0
AD
11743@end deffn
11744
18b519c0 11745@deffn {Directive} %error-verbose
7fceb615
JD
11746An obsolete directive standing for @samp{%define parse.error verbose}
11747(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11748@end deffn
2a8d363a 11749
02975b9a 11750@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11751Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11752Summary}.
18b519c0 11753@end deffn
d8988b2f 11754
18b519c0 11755@deffn {Directive} %glr-parser
8a4281b9
JD
11756Bison declaration to produce a GLR parser. @xref{GLR
11757Parsers, ,Writing GLR Parsers}.
18b519c0 11758@end deffn
676385e2 11759
dd8d9022
AD
11760@deffn {Directive} %initial-action
11761Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11762@end deffn
11763
e6e704dc
JD
11764@deffn {Directive} %language
11765Specify the programming language for the generated parser.
11766@xref{Decl Summary}.
11767@end deffn
11768
18b519c0 11769@deffn {Directive} %left
d78f0ac9 11770Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11771@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11772@end deffn
bfa74976 11773
2055a44e
AD
11774@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11775Bison declaration to specifying additional arguments that
2a8d363a
AD
11776@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11777for Pure Parsers}.
18b519c0 11778@end deffn
2a8d363a 11779
18b519c0 11780@deffn {Directive} %merge
676385e2 11781Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11782reduce/reduce conflict with a rule having the same merging function, the
676385e2 11783function is applied to the two semantic values to get a single result.
8a4281b9 11784@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11785@end deffn
676385e2 11786
02975b9a 11787@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
11788Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
11789Parsers, ,Multiple Parsers in the Same Program}).
11790
11791Rename the external symbols (variables and functions) used in the parser so
11792that they start with @var{prefix} instead of @samp{yy}. Contrary to
11793@code{api.prefix}, do no rename types and macros.
11794
11795The precise list of symbols renamed in C parsers is @code{yyparse},
11796@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
11797@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
11798push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
11799@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
11800example, if you use @samp{%name-prefix "c_"}, the names become
11801@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
11802@code{%define namespace} documentation in this section.
18b519c0 11803@end deffn
d8988b2f 11804
4b3847c3 11805
91d2c560 11806@ifset defaultprec
22fccf95
PE
11807@deffn {Directive} %no-default-prec
11808Do not assign a precedence to rules that lack an explicit @samp{%prec}
11809modifier. @xref{Contextual Precedence, ,Context-Dependent
11810Precedence}.
11811@end deffn
91d2c560 11812@end ifset
22fccf95 11813
18b519c0 11814@deffn {Directive} %no-lines
931c7513 11815Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11816parser implementation file. @xref{Decl Summary}.
18b519c0 11817@end deffn
931c7513 11818
18b519c0 11819@deffn {Directive} %nonassoc
d78f0ac9 11820Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11821@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11822@end deffn
bfa74976 11823
02975b9a 11824@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11825Bison declaration to set the name of the parser implementation file.
11826@xref{Decl Summary}.
18b519c0 11827@end deffn
d8988b2f 11828
2055a44e
AD
11829@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11830Bison declaration to specify additional arguments that both
11831@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11832Parser Function @code{yyparse}}.
11833@end deffn
11834
11835@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11836Bison declaration to specify additional arguments that @code{yyparse}
11837should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11838@end deffn
2a8d363a 11839
18b519c0 11840@deffn {Directive} %prec
bfa74976
RS
11841Bison declaration to assign a precedence to a specific rule.
11842@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11843@end deffn
bfa74976 11844
d78f0ac9
AD
11845@deffn {Directive} %precedence
11846Bison declaration to assign precedence to token(s), but no associativity
11847@xref{Precedence Decl, ,Operator Precedence}.
11848@end deffn
11849
18b519c0 11850@deffn {Directive} %pure-parser
35c1e5f0
JD
11851Deprecated version of @samp{%define api.pure} (@pxref{%define
11852Summary,,api.pure}), for which Bison is more careful to warn about
11853unreasonable usage.
18b519c0 11854@end deffn
bfa74976 11855
b50d2359 11856@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11857Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11858Require a Version of Bison}.
b50d2359
AD
11859@end deffn
11860
18b519c0 11861@deffn {Directive} %right
d78f0ac9 11862Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11863@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11864@end deffn
bfa74976 11865
e6e704dc
JD
11866@deffn {Directive} %skeleton
11867Specify the skeleton to use; usually for development.
11868@xref{Decl Summary}.
11869@end deffn
11870
18b519c0 11871@deffn {Directive} %start
704a47c4
AD
11872Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11873Start-Symbol}.
18b519c0 11874@end deffn
bfa74976 11875
18b519c0 11876@deffn {Directive} %token
bfa74976
RS
11877Bison declaration to declare token(s) without specifying precedence.
11878@xref{Token Decl, ,Token Type Names}.
18b519c0 11879@end deffn
bfa74976 11880
18b519c0 11881@deffn {Directive} %token-table
ff7571c0
JD
11882Bison declaration to include a token name table in the parser
11883implementation file. @xref{Decl Summary}.
18b519c0 11884@end deffn
931c7513 11885
18b519c0 11886@deffn {Directive} %type
704a47c4
AD
11887Bison declaration to declare nonterminals. @xref{Type Decl,
11888,Nonterminal Symbols}.
18b519c0 11889@end deffn
bfa74976 11890
dd8d9022
AD
11891@deffn {Symbol} $undefined
11892The predefined token onto which all undefined values returned by
11893@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11894@code{error}.
11895@end deffn
11896
18b519c0 11897@deffn {Directive} %union
bfa74976
RS
11898Bison declaration to specify several possible data types for semantic
11899values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11900@end deffn
bfa74976 11901
dd8d9022
AD
11902@deffn {Macro} YYABORT
11903Macro to pretend that an unrecoverable syntax error has occurred, by
11904making @code{yyparse} return 1 immediately. The error reporting
11905function @code{yyerror} is not called. @xref{Parser Function, ,The
11906Parser Function @code{yyparse}}.
8405b70c
PB
11907
11908For Java parsers, this functionality is invoked using @code{return YYABORT;}
11909instead.
dd8d9022 11910@end deffn
3ded9a63 11911
dd8d9022
AD
11912@deffn {Macro} YYACCEPT
11913Macro to pretend that a complete utterance of the language has been
11914read, by making @code{yyparse} return 0 immediately.
11915@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11916
11917For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11918instead.
dd8d9022 11919@end deffn
bfa74976 11920
dd8d9022 11921@deffn {Macro} YYBACKUP
742e4900 11922Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11923token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11924@end deffn
bfa74976 11925
dd8d9022 11926@deffn {Variable} yychar
32c29292 11927External integer variable that contains the integer value of the
742e4900 11928lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11929@code{yyparse}.) Error-recovery rule actions may examine this variable.
11930@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11931@end deffn
bfa74976 11932
dd8d9022
AD
11933@deffn {Variable} yyclearin
11934Macro used in error-recovery rule actions. It clears the previous
742e4900 11935lookahead token. @xref{Error Recovery}.
18b519c0 11936@end deffn
bfa74976 11937
dd8d9022
AD
11938@deffn {Macro} YYDEBUG
11939Macro to define to equip the parser with tracing code. @xref{Tracing,
11940,Tracing Your Parser}.
18b519c0 11941@end deffn
bfa74976 11942
dd8d9022
AD
11943@deffn {Variable} yydebug
11944External integer variable set to zero by default. If @code{yydebug}
11945is given a nonzero value, the parser will output information on input
11946symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11947@end deffn
bfa74976 11948
dd8d9022
AD
11949@deffn {Macro} yyerrok
11950Macro to cause parser to recover immediately to its normal mode
11951after a syntax error. @xref{Error Recovery}.
11952@end deffn
11953
11954@deffn {Macro} YYERROR
4a11b852
AD
11955Cause an immediate syntax error. This statement initiates error
11956recovery just as if the parser itself had detected an error; however, it
11957does not call @code{yyerror}, and does not print any message. If you
11958want to print an error message, call @code{yyerror} explicitly before
11959the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
11960
11961For Java parsers, this functionality is invoked using @code{return YYERROR;}
11962instead.
dd8d9022
AD
11963@end deffn
11964
11965@deffn {Function} yyerror
11966User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11967@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11968@end deffn
11969
11970@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11971An obsolete macro used in the @file{yacc.c} skeleton, that you define
11972with @code{#define} in the prologue to request verbose, specific error
11973message strings when @code{yyerror} is called. It doesn't matter what
11974definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11975it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11976(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11977@end deffn
11978
93c150b6
AD
11979@deffn {Macro} YYFPRINTF
11980Macro used to output run-time traces.
11981@xref{Enabling Traces}.
11982@end deffn
11983
dd8d9022
AD
11984@deffn {Macro} YYINITDEPTH
11985Macro for specifying the initial size of the parser stack.
1a059451 11986@xref{Memory Management}.
dd8d9022
AD
11987@end deffn
11988
11989@deffn {Function} yylex
11990User-supplied lexical analyzer function, called with no arguments to get
11991the next token. @xref{Lexical, ,The Lexical Analyzer Function
11992@code{yylex}}.
11993@end deffn
11994
11995@deffn {Macro} YYLEX_PARAM
11996An obsolete macro for specifying an extra argument (or list of extra
32c29292 11997arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11998macro is deprecated, and is supported only for Yacc like parsers.
11999@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
12000@end deffn
12001
12002@deffn {Variable} yylloc
12003External variable in which @code{yylex} should place the line and column
12004numbers associated with a token. (In a pure parser, it is a local
12005variable within @code{yyparse}, and its address is passed to
32c29292
JD
12006@code{yylex}.)
12007You can ignore this variable if you don't use the @samp{@@} feature in the
12008grammar actions.
12009@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12010In semantic actions, it stores the location of the lookahead token.
32c29292 12011@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12012@end deffn
12013
12014@deffn {Type} YYLTYPE
12015Data type of @code{yylloc}; by default, a structure with four
12016members. @xref{Location Type, , Data Types of Locations}.
12017@end deffn
12018
12019@deffn {Variable} yylval
12020External variable in which @code{yylex} should place the semantic
12021value associated with a token. (In a pure parser, it is a local
12022variable within @code{yyparse}, and its address is passed to
32c29292
JD
12023@code{yylex}.)
12024@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12025In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12026@xref{Actions, ,Actions}.
dd8d9022
AD
12027@end deffn
12028
12029@deffn {Macro} YYMAXDEPTH
1a059451
PE
12030Macro for specifying the maximum size of the parser stack. @xref{Memory
12031Management}.
dd8d9022
AD
12032@end deffn
12033
12034@deffn {Variable} yynerrs
8a2800e7 12035Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12036(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 12037pure push parser, it is a member of yypstate.)
dd8d9022
AD
12038@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12039@end deffn
12040
12041@deffn {Function} yyparse
12042The parser function produced by Bison; call this function to start
12043parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12044@end deffn
12045
93c150b6
AD
12046@deffn {Macro} YYPRINT
12047Macro used to output token semantic values. For @file{yacc.c} only.
12048Obsoleted by @code{%printer}.
12049@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12050@end deffn
12051
9987d1b3 12052@deffn {Function} yypstate_delete
f4101aa6 12053The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12054call this function to delete the memory associated with a parser.
f4101aa6 12055@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12056@code{yypstate_delete}}.
59da312b
JD
12057(The current push parsing interface is experimental and may evolve.
12058More user feedback will help to stabilize it.)
9987d1b3
JD
12059@end deffn
12060
12061@deffn {Function} yypstate_new
f4101aa6 12062The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12063call this function to create a new parser.
f4101aa6 12064@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12065@code{yypstate_new}}.
59da312b
JD
12066(The current push parsing interface is experimental and may evolve.
12067More user feedback will help to stabilize it.)
9987d1b3
JD
12068@end deffn
12069
12070@deffn {Function} yypull_parse
f4101aa6
AD
12071The parser function produced by Bison in push mode; call this function to
12072parse the rest of the input stream.
12073@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12074@code{yypull_parse}}.
59da312b
JD
12075(The current push parsing interface is experimental and may evolve.
12076More user feedback will help to stabilize it.)
9987d1b3
JD
12077@end deffn
12078
12079@deffn {Function} yypush_parse
f4101aa6
AD
12080The parser function produced by Bison in push mode; call this function to
12081parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12082@code{yypush_parse}}.
59da312b
JD
12083(The current push parsing interface is experimental and may evolve.
12084More user feedback will help to stabilize it.)
9987d1b3
JD
12085@end deffn
12086
dd8d9022
AD
12087@deffn {Macro} YYPARSE_PARAM
12088An obsolete macro for specifying the name of a parameter that
12089@code{yyparse} should accept. The use of this macro is deprecated, and
12090is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
12091Conventions for Pure Parsers}.
12092@end deffn
12093
12094@deffn {Macro} YYRECOVERING
02103984
PE
12095The expression @code{YYRECOVERING ()} yields 1 when the parser
12096is recovering from a syntax error, and 0 otherwise.
12097@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12098@end deffn
12099
12100@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12101Macro used to control the use of @code{alloca} when the
12102deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12103the parser will use @code{malloc} to extend its stacks. If defined to
121041, the parser will use @code{alloca}. Values other than 0 and 1 are
12105reserved for future Bison extensions. If not defined,
12106@code{YYSTACK_USE_ALLOCA} defaults to 0.
12107
55289366 12108In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12109limited stack and with unreliable stack-overflow checking, you should
12110set @code{YYMAXDEPTH} to a value that cannot possibly result in
12111unchecked stack overflow on any of your target hosts when
12112@code{alloca} is called. You can inspect the code that Bison
12113generates in order to determine the proper numeric values. This will
12114require some expertise in low-level implementation details.
dd8d9022
AD
12115@end deffn
12116
12117@deffn {Type} YYSTYPE
12118Data type of semantic values; @code{int} by default.
12119@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12120@end deffn
bfa74976 12121
342b8b6e 12122@node Glossary
bfa74976
RS
12123@appendix Glossary
12124@cindex glossary
12125
12126@table @asis
7fceb615 12127@item Accepting state
eb45ef3b
JD
12128A state whose only action is the accept action.
12129The accepting state is thus a consistent state.
12130@xref{Understanding,,}.
12131
8a4281b9 12132@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12133Formal method of specifying context-free grammars originally proposed
12134by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12135committee document contributing to what became the Algol 60 report.
12136@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12137
7fceb615
JD
12138@item Consistent state
12139A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12140
bfa74976
RS
12141@item Context-free grammars
12142Grammars specified as rules that can be applied regardless of context.
12143Thus, if there is a rule which says that an integer can be used as an
12144expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12145permitted. @xref{Language and Grammar, ,Languages and Context-Free
12146Grammars}.
bfa74976 12147
7fceb615 12148@item Default reduction
110ef36a 12149The reduction that a parser should perform if the current parser state
35c1e5f0 12150contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12151states, Bison declares the reduction with the largest lookahead set to be
12152the default reduction and removes that lookahead set. @xref{Default
12153Reductions}.
12154
12155@item Defaulted state
12156A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12157
bfa74976
RS
12158@item Dynamic allocation
12159Allocation of memory that occurs during execution, rather than at
12160compile time or on entry to a function.
12161
12162@item Empty string
12163Analogous to the empty set in set theory, the empty string is a
12164character string of length zero.
12165
12166@item Finite-state stack machine
12167A ``machine'' that has discrete states in which it is said to exist at
12168each instant in time. As input to the machine is processed, the
12169machine moves from state to state as specified by the logic of the
12170machine. In the case of the parser, the input is the language being
12171parsed, and the states correspond to various stages in the grammar
c827f760 12172rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12173
8a4281b9 12174@item Generalized LR (GLR)
676385e2 12175A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12176that are not LR(1). It resolves situations that Bison's
eb45ef3b 12177deterministic parsing
676385e2
PH
12178algorithm cannot by effectively splitting off multiple parsers, trying all
12179possible parsers, and discarding those that fail in the light of additional
c827f760 12180right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 12181LR Parsing}.
676385e2 12182
bfa74976
RS
12183@item Grouping
12184A language construct that is (in general) grammatically divisible;
c827f760 12185for example, `expression' or `declaration' in C@.
bfa74976
RS
12186@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12187
7fceb615
JD
12188@item IELR(1) (Inadequacy Elimination LR(1))
12189A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 12190context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
12191language-recognition power of canonical LR(1) but with nearly the same
12192number of parser states as LALR(1). This reduction in parser states is
12193often an order of magnitude. More importantly, because canonical LR(1)'s
12194extra parser states may contain duplicate conflicts in the case of non-LR(1)
12195grammars, the number of conflicts for IELR(1) is often an order of magnitude
12196less as well. This can significantly reduce the complexity of developing a
12197grammar. @xref{LR Table Construction}.
eb45ef3b 12198
bfa74976
RS
12199@item Infix operator
12200An arithmetic operator that is placed between the operands on which it
12201performs some operation.
12202
12203@item Input stream
12204A continuous flow of data between devices or programs.
12205
8a4281b9 12206@item LAC (Lookahead Correction)
fcf834f9 12207A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
12208detection, which is caused by LR state merging, default reductions, and the
12209use of @code{%nonassoc}. Delayed syntax error detection results in
12210unexpected semantic actions, initiation of error recovery in the wrong
12211syntactic context, and an incorrect list of expected tokens in a verbose
12212syntax error message. @xref{LAC}.
fcf834f9 12213
bfa74976
RS
12214@item Language construct
12215One of the typical usage schemas of the language. For example, one of
12216the constructs of the C language is the @code{if} statement.
12217@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12218
12219@item Left associativity
12220Operators having left associativity are analyzed from left to right:
12221@samp{a+b+c} first computes @samp{a+b} and then combines with
12222@samp{c}. @xref{Precedence, ,Operator Precedence}.
12223
12224@item Left recursion
89cab50d
AD
12225A rule whose result symbol is also its first component symbol; for
12226example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
12227Rules}.
bfa74976
RS
12228
12229@item Left-to-right parsing
12230Parsing a sentence of a language by analyzing it token by token from
c827f760 12231left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12232
12233@item Lexical analyzer (scanner)
12234A function that reads an input stream and returns tokens one by one.
12235@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
12236
12237@item Lexical tie-in
12238A flag, set by actions in the grammar rules, which alters the way
12239tokens are parsed. @xref{Lexical Tie-ins}.
12240
931c7513 12241@item Literal string token
14ded682 12242A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 12243
742e4900
JD
12244@item Lookahead token
12245A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 12246Tokens}.
bfa74976 12247
8a4281b9 12248@item LALR(1)
bfa74976 12249The class of context-free grammars that Bison (like most other parser
8a4281b9 12250generators) can handle by default; a subset of LR(1).
cc09e5be 12251@xref{Mysterious Conflicts}.
bfa74976 12252
8a4281b9 12253@item LR(1)
bfa74976 12254The class of context-free grammars in which at most one token of
742e4900 12255lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
12256
12257@item Nonterminal symbol
12258A grammar symbol standing for a grammatical construct that can
12259be expressed through rules in terms of smaller constructs; in other
12260words, a construct that is not a token. @xref{Symbols}.
12261
bfa74976
RS
12262@item Parser
12263A function that recognizes valid sentences of a language by analyzing
12264the syntax structure of a set of tokens passed to it from a lexical
12265analyzer.
12266
12267@item Postfix operator
12268An arithmetic operator that is placed after the operands upon which it
12269performs some operation.
12270
12271@item Reduction
12272Replacing a string of nonterminals and/or terminals with a single
89cab50d 12273nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 12274Parser Algorithm}.
bfa74976
RS
12275
12276@item Reentrant
12277A reentrant subprogram is a subprogram which can be in invoked any
12278number of times in parallel, without interference between the various
12279invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
12280
12281@item Reverse polish notation
12282A language in which all operators are postfix operators.
12283
12284@item Right recursion
89cab50d
AD
12285A rule whose result symbol is also its last component symbol; for
12286example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
12287Rules}.
bfa74976
RS
12288
12289@item Semantics
12290In computer languages, the semantics are specified by the actions
12291taken for each instance of the language, i.e., the meaning of
12292each statement. @xref{Semantics, ,Defining Language Semantics}.
12293
12294@item Shift
12295A parser is said to shift when it makes the choice of analyzing
12296further input from the stream rather than reducing immediately some
c827f760 12297already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12298
12299@item Single-character literal
12300A single character that is recognized and interpreted as is.
12301@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
12302
12303@item Start symbol
12304The nonterminal symbol that stands for a complete valid utterance in
12305the language being parsed. The start symbol is usually listed as the
13863333 12306first nonterminal symbol in a language specification.
bfa74976
RS
12307@xref{Start Decl, ,The Start-Symbol}.
12308
12309@item Symbol table
12310A data structure where symbol names and associated data are stored
12311during parsing to allow for recognition and use of existing
12312information in repeated uses of a symbol. @xref{Multi-function Calc}.
12313
6e649e65
PE
12314@item Syntax error
12315An error encountered during parsing of an input stream due to invalid
12316syntax. @xref{Error Recovery}.
12317
bfa74976
RS
12318@item Token
12319A basic, grammatically indivisible unit of a language. The symbol
12320that describes a token in the grammar is a terminal symbol.
12321The input of the Bison parser is a stream of tokens which comes from
12322the lexical analyzer. @xref{Symbols}.
12323
12324@item Terminal symbol
89cab50d
AD
12325A grammar symbol that has no rules in the grammar and therefore is
12326grammatically indivisible. The piece of text it represents is a token.
12327@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
12328
12329@item Unreachable state
12330A parser state to which there does not exist a sequence of transitions from
12331the parser's start state. A state can become unreachable during conflict
12332resolution. @xref{Unreachable States}.
bfa74976
RS
12333@end table
12334
342b8b6e 12335@node Copying This Manual
f2b5126e 12336@appendix Copying This Manual
f2b5126e
PB
12337@include fdl.texi
12338
5e528941
JD
12339@node Bibliography
12340@unnumbered Bibliography
12341
12342@table @asis
12343@item [Denny 2008]
12344Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
12345for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
123462008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
12347pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
12348
12349@item [Denny 2010 May]
12350Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
12351Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
12352University, Clemson, SC, USA (May 2010).
12353@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
12354
12355@item [Denny 2010 November]
12356Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
12357Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
12358in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
123592010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
12360
12361@item [DeRemer 1982]
12362Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
12363Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
12364Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
12365615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
12366
12367@item [Knuth 1965]
12368Donald E. Knuth, On the Translation of Languages from Left to Right, in
12369@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
12370607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
12371
12372@item [Scott 2000]
12373Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
12374@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
12375London, Department of Computer Science, TR-00-12 (December 2000).
12376@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
12377@end table
12378
f9b86351
AD
12379@node Index of Terms
12380@unnumbered Index of Terms
bfa74976
RS
12381
12382@printindex cp
12383
bfa74976 12384@bye
a06ea4aa 12385
6b5a0de9
AD
12386@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
12387@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
12388@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
12389@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12390@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12391@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12392@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12393@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12394@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12395@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12396@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12397@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12398@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 12399@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
12400@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12401@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
12402@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
12403@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
12404@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
12405@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
12406@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
12407@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
12408@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 12409@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
12410@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
12411@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
12412@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
12413@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
12414@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 12415@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
12416@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
12417@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 12418@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 12419@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
12420@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
12421@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
12422@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 12423@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 12424@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 12425@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
12426@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12427@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12428@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12429@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 12430@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
12431@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12432@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12433@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12434@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
12435@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
5a321748
AD
12436@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
12437@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy
12438@c LocalWords: Scannerless ispell american
e944aaff
AD
12439
12440@c Local Variables:
12441@c ispell-dictionary: "american"
12442@c fill-column: 76
12443@c End: