]> git.saurik.com Git - bison.git/blame - doc/bison.texi
Merge remote-tracking branch 'origin/maint'
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
93c150b6 229* Printer Decl:: Declaring how symbol values are displayed.
d6328241 230* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
231* Start Decl:: Specifying the start symbol.
232* Pure Decl:: Requesting a reentrant parser.
9987d1b3 233* Push Decl:: Requesting a push parser.
bfa74976 234* Decl Summary:: Table of all Bison declarations.
35c1e5f0 235* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 236* %code Summary:: Inserting code into the parser source.
bfa74976
RS
237
238Parser C-Language Interface
239
f5f419de
DJ
240* Parser Function:: How to call @code{yyparse} and what it returns.
241* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
242* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
243* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
244* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
245* Lexical:: You must supply a function @code{yylex}
246 which reads tokens.
247* Error Reporting:: You must supply a function @code{yyerror}.
248* Action Features:: Special features for use in actions.
249* Internationalization:: How to let the parser speak in the user's
250 native language.
bfa74976
RS
251
252The Lexical Analyzer Function @code{yylex}
253
254* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
255* Token Values:: How @code{yylex} must return the semantic value
256 of the token it has read.
257* Token Locations:: How @code{yylex} must return the text location
258 (line number, etc.) of the token, if the
259 actions want that.
260* Pure Calling:: How the calling convention differs in a pure parser
261 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 262
13863333 263The Bison Parser Algorithm
bfa74976 264
742e4900 265* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
266* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
267* Precedence:: Operator precedence works by resolving conflicts.
268* Contextual Precedence:: When an operator's precedence depends on context.
269* Parser States:: The parser is a finite-state-machine with stack.
270* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 271* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 272* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 273* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 274* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
275
276Operator Precedence
277
278* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
279* Using Precedence:: How to specify precedence and associativity.
280* Precedence Only:: How to specify precedence only.
bfa74976
RS
281* Precedence Examples:: How these features are used in the previous example.
282* How Precedence:: How they work.
283
7fceb615
JD
284Tuning LR
285
286* LR Table Construction:: Choose a different construction algorithm.
287* Default Reductions:: Disable default reductions.
288* LAC:: Correct lookahead sets in the parser states.
289* Unreachable States:: Keep unreachable parser states for debugging.
290
bfa74976
RS
291Handling Context Dependencies
292
293* Semantic Tokens:: Token parsing can depend on the semantic context.
294* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
295* Tie-in Recovery:: Lexical tie-ins have implications for how
296 error recovery rules must be written.
297
93dd49ab 298Debugging Your Parser
ec3bc396
AD
299
300* Understanding:: Understanding the structure of your parser.
301* Tracing:: Tracing the execution of your parser.
302
93c150b6
AD
303Tracing Your Parser
304
305* Enabling Traces:: Activating run-time trace support
306* Mfcalc Traces:: Extending @code{mfcalc} to support traces
307* The YYPRINT Macro:: Obsolete interface for semantic value reports
308
bfa74976
RS
309Invoking Bison
310
13863333 311* Bison Options:: All the options described in detail,
c827f760 312 in alphabetical order by short options.
bfa74976 313* Option Cross Key:: Alphabetical list of long options.
93dd49ab 314* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 315
8405b70c 316Parsers Written In Other Languages
12545799
AD
317
318* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 319* Java Parsers:: The interface to generate Java parser classes
12545799
AD
320
321C++ Parsers
322
323* C++ Bison Interface:: Asking for C++ parser generation
324* C++ Semantic Values:: %union vs. C++
325* C++ Location Values:: The position and location classes
326* C++ Parser Interface:: Instantiating and running the parser
327* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 328* A Complete C++ Example:: Demonstrating their use
12545799 329
936c88d1
AD
330C++ Location Values
331
332* C++ position:: One point in the source file
333* C++ location:: Two points in the source file
334
12545799
AD
335A Complete C++ Example
336
337* Calc++ --- C++ Calculator:: The specifications
338* Calc++ Parsing Driver:: An active parsing context
339* Calc++ Parser:: A parser class
340* Calc++ Scanner:: A pure C++ Flex scanner
341* Calc++ Top Level:: Conducting the band
342
8405b70c
PB
343Java Parsers
344
f5f419de
DJ
345* Java Bison Interface:: Asking for Java parser generation
346* Java Semantic Values:: %type and %token vs. Java
347* Java Location Values:: The position and location classes
348* Java Parser Interface:: Instantiating and running the parser
349* Java Scanner Interface:: Specifying the scanner for the parser
350* Java Action Features:: Special features for use in actions
351* Java Differences:: Differences between C/C++ and Java Grammars
352* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 353
d1a1114f
AD
354Frequently Asked Questions
355
f5f419de
DJ
356* Memory Exhausted:: Breaking the Stack Limits
357* How Can I Reset the Parser:: @code{yyparse} Keeps some State
358* Strings are Destroyed:: @code{yylval} Loses Track of Strings
359* Implementing Gotos/Loops:: Control Flow in the Calculator
360* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 361* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
362* I can't build Bison:: Troubleshooting
363* Where can I find help?:: Troubleshouting
364* Bug Reports:: Troublereporting
365* More Languages:: Parsers in C++, Java, and so on
366* Beta Testing:: Experimenting development versions
367* Mailing Lists:: Meeting other Bison users
d1a1114f 368
f2b5126e
PB
369Copying This Manual
370
f5f419de 371* Copying This Manual:: License for copying this manual.
f2b5126e 372
342b8b6e 373@end detailmenu
bfa74976
RS
374@end menu
375
342b8b6e 376@node Introduction
bfa74976
RS
377@unnumbered Introduction
378@cindex introduction
379
6077da58 380@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
381annotated context-free grammar into a deterministic LR or generalized
382LR (GLR) parser employing LALR(1) parser tables. As an experimental
383feature, Bison can also generate IELR(1) or canonical LR(1) parser
384tables. Once you are proficient with Bison, you can use it to develop
385a wide range of language parsers, from those used in simple desk
386calculators to complex programming languages.
387
388Bison is upward compatible with Yacc: all properly-written Yacc
389grammars ought to work with Bison with no change. Anyone familiar
390with Yacc should be able to use Bison with little trouble. You need
391to be fluent in C or C++ programming in order to use Bison or to
392understand this manual. Java is also supported as an experimental
393feature.
394
395We begin with tutorial chapters that explain the basic concepts of
396using Bison and show three explained examples, each building on the
397last. If you don't know Bison or Yacc, start by reading these
398chapters. Reference chapters follow, which describe specific aspects
399of Bison in detail.
bfa74976 400
679e9935
JD
401Bison was written originally by Robert Corbett. Richard Stallman made
402it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
403added multi-character string literals and other features. Since then,
404Bison has grown more robust and evolved many other new features thanks
405to the hard work of a long list of volunteers. For details, see the
406@file{THANKS} and @file{ChangeLog} files included in the Bison
407distribution.
931c7513 408
df1af54c 409This edition corresponds to version @value{VERSION} of Bison.
bfa74976 410
342b8b6e 411@node Conditions
bfa74976
RS
412@unnumbered Conditions for Using Bison
413
193d7c70
PE
414The distribution terms for Bison-generated parsers permit using the
415parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 416permissions applied only when Bison was generating LALR(1)
193d7c70 417parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 418parsers could be used only in programs that were free software.
a31239f1 419
8a4281b9 420The other GNU programming tools, such as the GNU C
c827f760 421compiler, have never
9ecbd125 422had such a requirement. They could always be used for nonfree
a31239f1
RS
423software. The reason Bison was different was not due to a special
424policy decision; it resulted from applying the usual General Public
425License to all of the Bison source code.
426
ff7571c0
JD
427The main output of the Bison utility---the Bison parser implementation
428file---contains a verbatim copy of a sizable piece of Bison, which is
429the code for the parser's implementation. (The actions from your
430grammar are inserted into this implementation at one point, but most
431of the rest of the implementation is not changed.) When we applied
432the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
433the effect was to restrict the use of Bison output to free software.
434
435We didn't change the terms because of sympathy for people who want to
436make software proprietary. @strong{Software should be free.} But we
437concluded that limiting Bison's use to free software was doing little to
438encourage people to make other software free. So we decided to make the
439practical conditions for using Bison match the practical conditions for
8a4281b9 440using the other GNU tools.
bfa74976 441
193d7c70
PE
442This exception applies when Bison is generating code for a parser.
443You can tell whether the exception applies to a Bison output file by
444inspecting the file for text beginning with ``As a special
445exception@dots{}''. The text spells out the exact terms of the
446exception.
262aa8dd 447
f16b0819
PE
448@node Copying
449@unnumbered GNU GENERAL PUBLIC LICENSE
450@include gpl-3.0.texi
bfa74976 451
342b8b6e 452@node Concepts
bfa74976
RS
453@chapter The Concepts of Bison
454
455This chapter introduces many of the basic concepts without which the
456details of Bison will not make sense. If you do not already know how to
457use Bison or Yacc, we suggest you start by reading this chapter carefully.
458
459@menu
f5f419de
DJ
460* Language and Grammar:: Languages and context-free grammars,
461 as mathematical ideas.
462* Grammar in Bison:: How we represent grammars for Bison's sake.
463* Semantic Values:: Each token or syntactic grouping can have
464 a semantic value (the value of an integer,
465 the name of an identifier, etc.).
466* Semantic Actions:: Each rule can have an action containing C code.
467* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 468* Locations:: Overview of location tracking.
f5f419de
DJ
469* Bison Parser:: What are Bison's input and output,
470 how is the output used?
471* Stages:: Stages in writing and running Bison grammars.
472* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
473@end menu
474
342b8b6e 475@node Language and Grammar
bfa74976
RS
476@section Languages and Context-Free Grammars
477
bfa74976
RS
478@cindex context-free grammar
479@cindex grammar, context-free
480In order for Bison to parse a language, it must be described by a
481@dfn{context-free grammar}. This means that you specify one or more
482@dfn{syntactic groupings} and give rules for constructing them from their
483parts. For example, in the C language, one kind of grouping is called an
484`expression'. One rule for making an expression might be, ``An expression
485can be made of a minus sign and another expression''. Another would be,
486``An expression can be an integer''. As you can see, rules are often
487recursive, but there must be at least one rule which leads out of the
488recursion.
489
8a4281b9 490@cindex BNF
bfa74976
RS
491@cindex Backus-Naur form
492The most common formal system for presenting such rules for humans to read
8a4281b9 493is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 494order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
495BNF is a context-free grammar. The input to Bison is
496essentially machine-readable BNF.
bfa74976 497
7fceb615
JD
498@cindex LALR grammars
499@cindex IELR grammars
500@cindex LR grammars
501There are various important subclasses of context-free grammars. Although
502it can handle almost all context-free grammars, Bison is optimized for what
503are called LR(1) grammars. In brief, in these grammars, it must be possible
504to tell how to parse any portion of an input string with just a single token
505of lookahead. For historical reasons, Bison by default is limited by the
506additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
507@xref{Mysterious Conflicts}, for more information on this. As an
508experimental feature, you can escape these additional restrictions by
509requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
510Construction}, to learn how.
bfa74976 511
8a4281b9
JD
512@cindex GLR parsing
513@cindex generalized LR (GLR) parsing
676385e2 514@cindex ambiguous grammars
9d9b8b70 515@cindex nondeterministic parsing
9501dc6e 516
8a4281b9 517Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
518roughly that the next grammar rule to apply at any point in the input is
519uniquely determined by the preceding input and a fixed, finite portion
742e4900 520(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 521grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 522apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 523grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 524lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 525With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
526general context-free grammars, using a technique known as GLR
527parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
528are able to handle any context-free grammar for which the number of
529possible parses of any given string is finite.
676385e2 530
bfa74976
RS
531@cindex symbols (abstract)
532@cindex token
533@cindex syntactic grouping
534@cindex grouping, syntactic
9501dc6e
AD
535In the formal grammatical rules for a language, each kind of syntactic
536unit or grouping is named by a @dfn{symbol}. Those which are built by
537grouping smaller constructs according to grammatical rules are called
bfa74976
RS
538@dfn{nonterminal symbols}; those which can't be subdivided are called
539@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
540corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 541corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
542
543We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
544nonterminal, mean. The tokens of C are identifiers, constants (numeric
545and string), and the various keywords, arithmetic operators and
546punctuation marks. So the terminal symbols of a grammar for C include
547`identifier', `number', `string', plus one symbol for each keyword,
548operator or punctuation mark: `if', `return', `const', `static', `int',
549`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
550(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
551lexicography, not grammar.)
552
553Here is a simple C function subdivided into tokens:
554
9edcd895
AD
555@example
556int /* @r{keyword `int'} */
14d4662b 557square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
558 @r{identifier, close-paren} */
559@{ /* @r{open-brace} */
aa08666d
AD
560 return x * x; /* @r{keyword `return', identifier, asterisk,}
561 @r{identifier, semicolon} */
9edcd895
AD
562@} /* @r{close-brace} */
563@end example
bfa74976
RS
564
565The syntactic groupings of C include the expression, the statement, the
566declaration, and the function definition. These are represented in the
567grammar of C by nonterminal symbols `expression', `statement',
568`declaration' and `function definition'. The full grammar uses dozens of
569additional language constructs, each with its own nonterminal symbol, in
570order to express the meanings of these four. The example above is a
571function definition; it contains one declaration, and one statement. In
572the statement, each @samp{x} is an expression and so is @samp{x * x}.
573
574Each nonterminal symbol must have grammatical rules showing how it is made
575out of simpler constructs. For example, one kind of C statement is the
576@code{return} statement; this would be described with a grammar rule which
577reads informally as follows:
578
579@quotation
580A `statement' can be made of a `return' keyword, an `expression' and a
581`semicolon'.
582@end quotation
583
584@noindent
585There would be many other rules for `statement', one for each kind of
586statement in C.
587
588@cindex start symbol
589One nonterminal symbol must be distinguished as the special one which
590defines a complete utterance in the language. It is called the @dfn{start
591symbol}. In a compiler, this means a complete input program. In the C
592language, the nonterminal symbol `sequence of definitions and declarations'
593plays this role.
594
595For example, @samp{1 + 2} is a valid C expression---a valid part of a C
596program---but it is not valid as an @emph{entire} C program. In the
597context-free grammar of C, this follows from the fact that `expression' is
598not the start symbol.
599
600The Bison parser reads a sequence of tokens as its input, and groups the
601tokens using the grammar rules. If the input is valid, the end result is
602that the entire token sequence reduces to a single grouping whose symbol is
603the grammar's start symbol. If we use a grammar for C, the entire input
604must be a `sequence of definitions and declarations'. If not, the parser
605reports a syntax error.
606
342b8b6e 607@node Grammar in Bison
bfa74976
RS
608@section From Formal Rules to Bison Input
609@cindex Bison grammar
610@cindex grammar, Bison
611@cindex formal grammar
612
613A formal grammar is a mathematical construct. To define the language
614for Bison, you must write a file expressing the grammar in Bison syntax:
615a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
616
617A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 618as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
619in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
620
621The Bison representation for a terminal symbol is also called a @dfn{token
622type}. Token types as well can be represented as C-like identifiers. By
623convention, these identifiers should be upper case to distinguish them from
624nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
625@code{RETURN}. A terminal symbol that stands for a particular keyword in
626the language should be named after that keyword converted to upper case.
627The terminal symbol @code{error} is reserved for error recovery.
931c7513 628@xref{Symbols}.
bfa74976
RS
629
630A terminal symbol can also be represented as a character literal, just like
631a C character constant. You should do this whenever a token is just a
632single character (parenthesis, plus-sign, etc.): use that same character in
633a literal as the terminal symbol for that token.
634
931c7513
RS
635A third way to represent a terminal symbol is with a C string constant
636containing several characters. @xref{Symbols}, for more information.
637
bfa74976
RS
638The grammar rules also have an expression in Bison syntax. For example,
639here is the Bison rule for a C @code{return} statement. The semicolon in
640quotes is a literal character token, representing part of the C syntax for
641the statement; the naked semicolon, and the colon, are Bison punctuation
642used in every rule.
643
644@example
5e9b6624 645stmt: RETURN expr ';' ;
bfa74976
RS
646@end example
647
648@noindent
649@xref{Rules, ,Syntax of Grammar Rules}.
650
342b8b6e 651@node Semantic Values
bfa74976
RS
652@section Semantic Values
653@cindex semantic value
654@cindex value, semantic
655
656A formal grammar selects tokens only by their classifications: for example,
657if a rule mentions the terminal symbol `integer constant', it means that
658@emph{any} integer constant is grammatically valid in that position. The
659precise value of the constant is irrelevant to how to parse the input: if
660@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 661grammatical.
bfa74976
RS
662
663But the precise value is very important for what the input means once it is
664parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6653989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
666has both a token type and a @dfn{semantic value}. @xref{Semantics,
667,Defining Language Semantics},
bfa74976
RS
668for details.
669
670The token type is a terminal symbol defined in the grammar, such as
671@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
672you need to know to decide where the token may validly appear and how to
673group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 674except their types.
bfa74976
RS
675
676The semantic value has all the rest of the information about the
677meaning of the token, such as the value of an integer, or the name of an
678identifier. (A token such as @code{','} which is just punctuation doesn't
679need to have any semantic value.)
680
681For example, an input token might be classified as token type
682@code{INTEGER} and have the semantic value 4. Another input token might
683have the same token type @code{INTEGER} but value 3989. When a grammar
684rule says that @code{INTEGER} is allowed, either of these tokens is
685acceptable because each is an @code{INTEGER}. When the parser accepts the
686token, it keeps track of the token's semantic value.
687
688Each grouping can also have a semantic value as well as its nonterminal
689symbol. For example, in a calculator, an expression typically has a
690semantic value that is a number. In a compiler for a programming
691language, an expression typically has a semantic value that is a tree
692structure describing the meaning of the expression.
693
342b8b6e 694@node Semantic Actions
bfa74976
RS
695@section Semantic Actions
696@cindex semantic actions
697@cindex actions, semantic
698
699In order to be useful, a program must do more than parse input; it must
700also produce some output based on the input. In a Bison grammar, a grammar
701rule can have an @dfn{action} made up of C statements. Each time the
702parser recognizes a match for that rule, the action is executed.
703@xref{Actions}.
13863333 704
bfa74976
RS
705Most of the time, the purpose of an action is to compute the semantic value
706of the whole construct from the semantic values of its parts. For example,
707suppose we have a rule which says an expression can be the sum of two
708expressions. When the parser recognizes such a sum, each of the
709subexpressions has a semantic value which describes how it was built up.
710The action for this rule should create a similar sort of value for the
711newly recognized larger expression.
712
713For example, here is a rule that says an expression can be the sum of
714two subexpressions:
715
716@example
5e9b6624 717expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
718@end example
719
720@noindent
721The action says how to produce the semantic value of the sum expression
722from the values of the two subexpressions.
723
676385e2 724@node GLR Parsers
8a4281b9
JD
725@section Writing GLR Parsers
726@cindex GLR parsing
727@cindex generalized LR (GLR) parsing
676385e2
PH
728@findex %glr-parser
729@cindex conflicts
730@cindex shift/reduce conflicts
fa7e68c3 731@cindex reduce/reduce conflicts
676385e2 732
eb45ef3b 733In some grammars, Bison's deterministic
8a4281b9 734LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
735certain grammar rule at a given point. That is, it may not be able to
736decide (on the basis of the input read so far) which of two possible
737reductions (applications of a grammar rule) applies, or whether to apply
738a reduction or read more of the input and apply a reduction later in the
739input. These are known respectively as @dfn{reduce/reduce} conflicts
740(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
741(@pxref{Shift/Reduce}).
742
8a4281b9 743To use a grammar that is not easily modified to be LR(1), a
9501dc6e 744more general parsing algorithm is sometimes necessary. If you include
676385e2 745@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
746(@pxref{Grammar Outline}), the result is a Generalized LR
747(GLR) parser. These parsers handle Bison grammars that
9501dc6e 748contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 749declarations) identically to deterministic parsers. However, when
9501dc6e 750faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 751GLR parsers use the simple expedient of doing both,
9501dc6e
AD
752effectively cloning the parser to follow both possibilities. Each of
753the resulting parsers can again split, so that at any given time, there
754can be any number of possible parses being explored. The parsers
676385e2
PH
755proceed in lockstep; that is, all of them consume (shift) a given input
756symbol before any of them proceed to the next. Each of the cloned
757parsers eventually meets one of two possible fates: either it runs into
758a parsing error, in which case it simply vanishes, or it merges with
759another parser, because the two of them have reduced the input to an
760identical set of symbols.
761
762During the time that there are multiple parsers, semantic actions are
763recorded, but not performed. When a parser disappears, its recorded
764semantic actions disappear as well, and are never performed. When a
765reduction makes two parsers identical, causing them to merge, Bison
766records both sets of semantic actions. Whenever the last two parsers
767merge, reverting to the single-parser case, Bison resolves all the
768outstanding actions either by precedences given to the grammar rules
769involved, or by performing both actions, and then calling a designated
770user-defined function on the resulting values to produce an arbitrary
771merged result.
772
fa7e68c3 773@menu
8a4281b9
JD
774* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
775* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 776* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 777* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 778* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
779@end menu
780
781@node Simple GLR Parsers
8a4281b9
JD
782@subsection Using GLR on Unambiguous Grammars
783@cindex GLR parsing, unambiguous grammars
784@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
785@findex %glr-parser
786@findex %expect-rr
787@cindex conflicts
788@cindex reduce/reduce conflicts
789@cindex shift/reduce conflicts
790
8a4281b9
JD
791In the simplest cases, you can use the GLR algorithm
792to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 793Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
794
795Consider a problem that
796arises in the declaration of enumerated and subrange types in the
797programming language Pascal. Here are some examples:
798
799@example
800type subrange = lo .. hi;
801type enum = (a, b, c);
802@end example
803
804@noindent
805The original language standard allows only numeric
806literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 807and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80810206) and many other
809Pascal implementations allow arbitrary expressions there. This gives
810rise to the following situation, containing a superfluous pair of
811parentheses:
812
813@example
814type subrange = (a) .. b;
815@end example
816
817@noindent
818Compare this to the following declaration of an enumerated
819type with only one value:
820
821@example
822type enum = (a);
823@end example
824
825@noindent
826(These declarations are contrived, but they are syntactically
827valid, and more-complicated cases can come up in practical programs.)
828
829These two declarations look identical until the @samp{..} token.
8a4281b9 830With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
831possible to decide between the two forms when the identifier
832@samp{a} is parsed. It is, however, desirable
833for a parser to decide this, since in the latter case
834@samp{a} must become a new identifier to represent the enumeration
835value, while in the former case @samp{a} must be evaluated with its
836current meaning, which may be a constant or even a function call.
837
838You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
839to be resolved later, but this typically requires substantial
840contortions in both semantic actions and large parts of the
841grammar, where the parentheses are nested in the recursive rules for
842expressions.
843
844You might think of using the lexer to distinguish between the two
845forms by returning different tokens for currently defined and
846undefined identifiers. But if these declarations occur in a local
847scope, and @samp{a} is defined in an outer scope, then both forms
848are possible---either locally redefining @samp{a}, or using the
849value of @samp{a} from the outer scope. So this approach cannot
850work.
851
e757bb10 852A simple solution to this problem is to declare the parser to
8a4281b9
JD
853use the GLR algorithm.
854When the GLR parser reaches the critical state, it
fa7e68c3
PE
855merely splits into two branches and pursues both syntax rules
856simultaneously. Sooner or later, one of them runs into a parsing
857error. If there is a @samp{..} token before the next
858@samp{;}, the rule for enumerated types fails since it cannot
859accept @samp{..} anywhere; otherwise, the subrange type rule
860fails since it requires a @samp{..} token. So one of the branches
861fails silently, and the other one continues normally, performing
862all the intermediate actions that were postponed during the split.
863
864If the input is syntactically incorrect, both branches fail and the parser
865reports a syntax error as usual.
866
867The effect of all this is that the parser seems to ``guess'' the
868correct branch to take, or in other words, it seems to use more
8a4281b9
JD
869lookahead than the underlying LR(1) algorithm actually allows
870for. In this example, LR(2) would suffice, but also some cases
871that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 872
8a4281b9 873In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
874and the current Bison parser even takes exponential time and space
875for some grammars. In practice, this rarely happens, and for many
876grammars it is possible to prove that it cannot happen.
877The present example contains only one conflict between two
878rules, and the type-declaration context containing the conflict
879cannot be nested. So the number of
880branches that can exist at any time is limited by the constant 2,
881and the parsing time is still linear.
882
883Here is a Bison grammar corresponding to the example above. It
884parses a vastly simplified form of Pascal type declarations.
885
886@example
887%token TYPE DOTDOT ID
888
889@group
890%left '+' '-'
891%left '*' '/'
892@end group
893
894%%
895
896@group
5e9b6624 897type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
898@end group
899
900@group
5e9b6624
AD
901type:
902 '(' id_list ')'
903| expr DOTDOT expr
904;
fa7e68c3
PE
905@end group
906
907@group
5e9b6624
AD
908id_list:
909 ID
910| id_list ',' ID
911;
fa7e68c3
PE
912@end group
913
914@group
5e9b6624
AD
915expr:
916 '(' expr ')'
917| expr '+' expr
918| expr '-' expr
919| expr '*' expr
920| expr '/' expr
921| ID
922;
fa7e68c3
PE
923@end group
924@end example
925
8a4281b9 926When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
927about one reduce/reduce conflict. In the conflicting situation the
928parser chooses one of the alternatives, arbitrarily the one
929declared first. Therefore the following correct input is not
930recognized:
931
932@example
933type t = (a) .. b;
934@end example
935
8a4281b9 936The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
937to be silent about the one known reduce/reduce conflict, by adding
938these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
939@samp{%%}):
940
941@example
942%glr-parser
943%expect-rr 1
944@end example
945
946@noindent
947No change in the grammar itself is required. Now the
948parser recognizes all valid declarations, according to the
949limited syntax above, transparently. In fact, the user does not even
950notice when the parser splits.
951
8a4281b9 952So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
953almost without disadvantages. Even in simple cases like this, however,
954there are at least two potential problems to beware. First, always
8a4281b9
JD
955analyze the conflicts reported by Bison to make sure that GLR
956splitting is only done where it is intended. A GLR parser
f8e1c9e5 957splitting inadvertently may cause problems less obvious than an
8a4281b9 958LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
959conflict. Second, consider interactions with the lexer (@pxref{Semantic
960Tokens}) with great care. Since a split parser consumes tokens without
961performing any actions during the split, the lexer cannot obtain
962information via parser actions. Some cases of lexer interactions can be
8a4281b9 963eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
964lexer to the parser. You must check the remaining cases for
965correctness.
966
967In our example, it would be safe for the lexer to return tokens based on
968their current meanings in some symbol table, because no new symbols are
969defined in the middle of a type declaration. Though it is possible for
970a parser to define the enumeration constants as they are parsed, before
971the type declaration is completed, it actually makes no difference since
972they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
973
974@node Merging GLR Parses
8a4281b9
JD
975@subsection Using GLR to Resolve Ambiguities
976@cindex GLR parsing, ambiguous grammars
977@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
978@findex %dprec
979@findex %merge
980@cindex conflicts
981@cindex reduce/reduce conflicts
982
2a8d363a 983Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
984
985@example
986%@{
38a92d50
PE
987 #include <stdio.h>
988 #define YYSTYPE char const *
989 int yylex (void);
990 void yyerror (char const *);
676385e2
PH
991%@}
992
993%token TYPENAME ID
994
995%right '='
996%left '+'
997
998%glr-parser
999
1000%%
1001
5e9b6624
AD
1002prog:
1003 /* Nothing. */
1004| prog stmt @{ printf ("\n"); @}
1005;
676385e2 1006
5e9b6624
AD
1007stmt:
1008 expr ';' %dprec 1
1009| decl %dprec 2
1010;
676385e2 1011
5e9b6624
AD
1012expr:
1013 ID @{ printf ("%s ", $$); @}
1014| TYPENAME '(' expr ')'
1015 @{ printf ("%s <cast> ", $1); @}
1016| expr '+' expr @{ printf ("+ "); @}
1017| expr '=' expr @{ printf ("= "); @}
1018;
676385e2 1019
5e9b6624
AD
1020decl:
1021 TYPENAME declarator ';'
1022 @{ printf ("%s <declare> ", $1); @}
1023| TYPENAME declarator '=' expr ';'
1024 @{ printf ("%s <init-declare> ", $1); @}
1025;
676385e2 1026
5e9b6624
AD
1027declarator:
1028 ID @{ printf ("\"%s\" ", $1); @}
1029| '(' declarator ')'
1030;
676385e2
PH
1031@end example
1032
1033@noindent
1034This models a problematic part of the C++ grammar---the ambiguity between
1035certain declarations and statements. For example,
1036
1037@example
1038T (x) = y+z;
1039@end example
1040
1041@noindent
1042parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1043(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1044@samp{x} as an @code{ID}).
676385e2 1045Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1046@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1047time it encounters @code{x} in the example above. Since this is a
8a4281b9 1048GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1049each choice of resolving the reduce/reduce conflict.
1050Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1051however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1052ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1053the other reduces @code{stmt : decl}, after which both parsers are in an
1054identical state: they've seen @samp{prog stmt} and have the same unprocessed
1055input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1056
8a4281b9 1057At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1058grammar of how to choose between the competing parses.
1059In the example above, the two @code{%dprec}
e757bb10 1060declarations specify that Bison is to give precedence
fa7e68c3 1061to the parse that interprets the example as a
676385e2
PH
1062@code{decl}, which implies that @code{x} is a declarator.
1063The parser therefore prints
1064
1065@example
fae437e8 1066"x" y z + T <init-declare>
676385e2
PH
1067@end example
1068
fa7e68c3
PE
1069The @code{%dprec} declarations only come into play when more than one
1070parse survives. Consider a different input string for this parser:
676385e2
PH
1071
1072@example
1073T (x) + y;
1074@end example
1075
1076@noindent
8a4281b9 1077This is another example of using GLR to parse an unambiguous
fa7e68c3 1078construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1079Here, there is no ambiguity (this cannot be parsed as a declaration).
1080However, at the time the Bison parser encounters @code{x}, it does not
1081have enough information to resolve the reduce/reduce conflict (again,
1082between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1083case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1084into two, one assuming that @code{x} is an @code{expr}, and the other
1085assuming @code{x} is a @code{declarator}. The second of these parsers
1086then vanishes when it sees @code{+}, and the parser prints
1087
1088@example
fae437e8 1089x T <cast> y +
676385e2
PH
1090@end example
1091
1092Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1093the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1094actions of the two possible parsers, rather than choosing one over the
1095other. To do so, you could change the declaration of @code{stmt} as
1096follows:
1097
1098@example
5e9b6624
AD
1099stmt:
1100 expr ';' %merge <stmtMerge>
1101| decl %merge <stmtMerge>
1102;
676385e2
PH
1103@end example
1104
1105@noindent
676385e2
PH
1106and define the @code{stmtMerge} function as:
1107
1108@example
38a92d50
PE
1109static YYSTYPE
1110stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1111@{
1112 printf ("<OR> ");
1113 return "";
1114@}
1115@end example
1116
1117@noindent
1118with an accompanying forward declaration
1119in the C declarations at the beginning of the file:
1120
1121@example
1122%@{
38a92d50 1123 #define YYSTYPE char const *
676385e2
PH
1124 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1125%@}
1126@end example
1127
1128@noindent
fa7e68c3
PE
1129With these declarations, the resulting parser parses the first example
1130as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1131
1132@example
fae437e8 1133"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1134@end example
1135
fa7e68c3 1136Bison requires that all of the
e757bb10 1137productions that participate in any particular merge have identical
fa7e68c3
PE
1138@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1139and the parser will report an error during any parse that results in
1140the offending merge.
9501dc6e 1141
32c29292
JD
1142@node GLR Semantic Actions
1143@subsection GLR Semantic Actions
1144
8a4281b9 1145The nature of GLR parsing and the structure of the generated
20be2f92
PH
1146parsers give rise to certain restrictions on semantic values and actions.
1147
1148@subsubsection Deferred semantic actions
32c29292
JD
1149@cindex deferred semantic actions
1150By definition, a deferred semantic action is not performed at the same time as
1151the associated reduction.
1152This raises caveats for several Bison features you might use in a semantic
8a4281b9 1153action in a GLR parser.
32c29292
JD
1154
1155@vindex yychar
8a4281b9 1156@cindex GLR parsers and @code{yychar}
32c29292 1157@vindex yylval
8a4281b9 1158@cindex GLR parsers and @code{yylval}
32c29292 1159@vindex yylloc
8a4281b9 1160@cindex GLR parsers and @code{yylloc}
32c29292 1161In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1162the lookahead token present at the time of the associated reduction.
32c29292
JD
1163After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1164you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1165lookahead token's semantic value and location, if any.
32c29292
JD
1166In a nondeferred semantic action, you can also modify any of these variables to
1167influence syntax analysis.
742e4900 1168@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1169
1170@findex yyclearin
8a4281b9 1171@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1172In a deferred semantic action, it's too late to influence syntax analysis.
1173In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1174shallow copies of the values they had at the time of the associated reduction.
1175For this reason alone, modifying them is dangerous.
1176Moreover, the result of modifying them is undefined and subject to change with
1177future versions of Bison.
1178For example, if a semantic action might be deferred, you should never write it
1179to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1180memory referenced by @code{yylval}.
1181
20be2f92 1182@subsubsection YYERROR
32c29292 1183@findex YYERROR
8a4281b9 1184@cindex GLR parsers and @code{YYERROR}
32c29292 1185Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1186(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1187initiate error recovery.
8a4281b9 1188During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1189the same as its effect in a deterministic parser.
411614fa
JM
1190The effect in a deferred action is similar, but the precise point of the
1191error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1192selecting an unspecified stack on which to continue with a syntax error.
1193In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1194parsing, @code{YYERROR} silently prunes
1195the parse that invoked the test.
1196
1197@subsubsection Restrictions on semantic values and locations
8a4281b9 1198GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1199semantic values and location types when using the generated parsers as
1200C++ code.
8710fc41 1201
ca2a6d15
PH
1202@node Semantic Predicates
1203@subsection Controlling a Parse with Arbitrary Predicates
1204@findex %?
8a4281b9 1205@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1206
1207In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1208GLR parsers
ca2a6d15
PH
1209allow you to reject parses on the basis of arbitrary computations executed
1210in user code, without having Bison treat this rejection as an error
1211if there are alternative parses. (This feature is experimental and may
1212evolve. We welcome user feedback.) For example,
1213
c93f22fc
AD
1214@example
1215widget:
5e9b6624
AD
1216 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1217| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1218;
c93f22fc 1219@end example
ca2a6d15
PH
1220
1221@noindent
411614fa 1222is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1223widgets. The clause preceded by @code{%?} is treated like an ordinary
1224action, except that its text is treated as an expression and is always
411614fa 1225evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1226expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1227which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1228to die. In a deterministic parser, it acts like YYERROR.
1229
1230As the example shows, predicates otherwise look like semantic actions, and
1231therefore you must be take them into account when determining the numbers
1232to use for denoting the semantic values of right-hand side symbols.
1233Predicate actions, however, have no defined value, and may not be given
1234labels.
1235
1236There is a subtle difference between semantic predicates and ordinary
1237actions in nondeterministic mode, since the latter are deferred.
411614fa 1238For example, we could try to rewrite the previous example as
ca2a6d15 1239
c93f22fc
AD
1240@example
1241widget:
5e9b6624
AD
1242 @{ if (!new_syntax) YYERROR; @}
1243 "widget" id new_args @{ $$ = f($3, $4); @}
1244| @{ if (new_syntax) YYERROR; @}
1245 "widget" id old_args @{ $$ = f($3, $4); @}
1246;
c93f22fc 1247@end example
ca2a6d15
PH
1248
1249@noindent
1250(reversing the sense of the predicate tests to cause an error when they are
1251false). However, this
1252does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1253have overlapping syntax.
411614fa 1254Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1255a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1256for cases where @code{new_args} and @code{old_args} recognize the same string
1257@emph{before} performing the tests of @code{new_syntax}. It therefore
1258reports an error.
1259
1260Finally, be careful in writing predicates: deferred actions have not been
1261evaluated, so that using them in a predicate will have undefined effects.
1262
fa7e68c3 1263@node Compiler Requirements
8a4281b9 1264@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1265@cindex @code{inline}
8a4281b9 1266@cindex GLR parsers and @code{inline}
fa7e68c3 1267
8a4281b9 1268The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1269later. In addition, they use the @code{inline} keyword, which is not
1270C89, but is C99 and is a common extension in pre-C99 compilers. It is
1271up to the user of these parsers to handle
9501dc6e
AD
1272portability issues. For instance, if using Autoconf and the Autoconf
1273macro @code{AC_C_INLINE}, a mere
1274
1275@example
1276%@{
38a92d50 1277 #include <config.h>
9501dc6e
AD
1278%@}
1279@end example
1280
1281@noindent
1282will suffice. Otherwise, we suggest
1283
1284@example
1285%@{
aaaa2aae
AD
1286 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1287 && ! defined inline)
1288 # define inline
38a92d50 1289 #endif
9501dc6e
AD
1290%@}
1291@end example
676385e2 1292
1769eb30 1293@node Locations
847bf1f5
AD
1294@section Locations
1295@cindex location
95923bd6
AD
1296@cindex textual location
1297@cindex location, textual
847bf1f5
AD
1298
1299Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1300and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1301the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1302Bison provides a mechanism for handling these locations.
1303
72d2299c 1304Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1305associated location, but the type of locations is the same for all tokens
1306and groupings. Moreover, the output parser is equipped with a default data
1307structure for storing locations (@pxref{Tracking Locations}, for more
1308details).
847bf1f5
AD
1309
1310Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1311set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1312is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1313@code{@@3}.
1314
1315When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1316of its left hand side (@pxref{Actions}). In the same way, another default
1317action is used for locations. However, the action for locations is general
847bf1f5 1318enough for most cases, meaning there is usually no need to describe for each
72d2299c 1319rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1320grouping, the default behavior of the output parser is to take the beginning
1321of the first symbol, and the end of the last symbol.
1322
342b8b6e 1323@node Bison Parser
ff7571c0 1324@section Bison Output: the Parser Implementation File
bfa74976
RS
1325@cindex Bison parser
1326@cindex Bison utility
1327@cindex lexical analyzer, purpose
1328@cindex parser
1329
ff7571c0
JD
1330When you run Bison, you give it a Bison grammar file as input. The
1331most important output is a C source file that implements a parser for
1332the language described by the grammar. This parser is called a
1333@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1334implementation file}. Keep in mind that the Bison utility and the
1335Bison parser are two distinct programs: the Bison utility is a program
1336whose output is the Bison parser implementation file that becomes part
1337of your program.
bfa74976
RS
1338
1339The job of the Bison parser is to group tokens into groupings according to
1340the grammar rules---for example, to build identifiers and operators into
1341expressions. As it does this, it runs the actions for the grammar rules it
1342uses.
1343
704a47c4
AD
1344The tokens come from a function called the @dfn{lexical analyzer} that
1345you must supply in some fashion (such as by writing it in C). The Bison
1346parser calls the lexical analyzer each time it wants a new token. It
1347doesn't know what is ``inside'' the tokens (though their semantic values
1348may reflect this). Typically the lexical analyzer makes the tokens by
1349parsing characters of text, but Bison does not depend on this.
1350@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1351
ff7571c0
JD
1352The Bison parser implementation file is C code which defines a
1353function named @code{yyparse} which implements that grammar. This
1354function does not make a complete C program: you must supply some
1355additional functions. One is the lexical analyzer. Another is an
1356error-reporting function which the parser calls to report an error.
1357In addition, a complete C program must start with a function called
1358@code{main}; you have to provide this, and arrange for it to call
1359@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1360C-Language Interface}.
bfa74976 1361
f7ab6a50 1362Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1363write, all symbols defined in the Bison parser implementation file
1364itself begin with @samp{yy} or @samp{YY}. This includes interface
1365functions such as the lexical analyzer function @code{yylex}, the
1366error reporting function @code{yyerror} and the parser function
1367@code{yyparse} itself. This also includes numerous identifiers used
1368for internal purposes. Therefore, you should avoid using C
1369identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1370file except for the ones defined in this manual. Also, you should
1371avoid using the C identifiers @samp{malloc} and @samp{free} for
1372anything other than their usual meanings.
1373
1374In some cases the Bison parser implementation file includes system
1375headers, and in those cases your code should respect the identifiers
1376reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1377@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1378included as needed to declare memory allocators and related types.
1379@code{<libintl.h>} is included if message translation is in use
1380(@pxref{Internationalization}). Other system headers may be included
1381if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1382,Tracing Your Parser}).
7093d0f5 1383
342b8b6e 1384@node Stages
bfa74976
RS
1385@section Stages in Using Bison
1386@cindex stages in using Bison
1387@cindex using Bison
1388
1389The actual language-design process using Bison, from grammar specification
1390to a working compiler or interpreter, has these parts:
1391
1392@enumerate
1393@item
1394Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1395(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1396in the language, describe the action that is to be taken when an
1397instance of that rule is recognized. The action is described by a
1398sequence of C statements.
bfa74976
RS
1399
1400@item
704a47c4
AD
1401Write a lexical analyzer to process input and pass tokens to the parser.
1402The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1403Lexical Analyzer Function @code{yylex}}). It could also be produced
1404using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1405
1406@item
1407Write a controlling function that calls the Bison-produced parser.
1408
1409@item
1410Write error-reporting routines.
1411@end enumerate
1412
1413To turn this source code as written into a runnable program, you
1414must follow these steps:
1415
1416@enumerate
1417@item
1418Run Bison on the grammar to produce the parser.
1419
1420@item
1421Compile the code output by Bison, as well as any other source files.
1422
1423@item
1424Link the object files to produce the finished product.
1425@end enumerate
1426
342b8b6e 1427@node Grammar Layout
bfa74976
RS
1428@section The Overall Layout of a Bison Grammar
1429@cindex grammar file
1430@cindex file format
1431@cindex format of grammar file
1432@cindex layout of Bison grammar
1433
1434The input file for the Bison utility is a @dfn{Bison grammar file}. The
1435general form of a Bison grammar file is as follows:
1436
1437@example
1438%@{
08e49d20 1439@var{Prologue}
bfa74976
RS
1440%@}
1441
1442@var{Bison declarations}
1443
1444%%
1445@var{Grammar rules}
1446%%
08e49d20 1447@var{Epilogue}
bfa74976
RS
1448@end example
1449
1450@noindent
1451The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1452in every Bison grammar file to separate the sections.
1453
72d2299c 1454The prologue may define types and variables used in the actions. You can
342b8b6e 1455also use preprocessor commands to define macros used there, and use
bfa74976 1456@code{#include} to include header files that do any of these things.
38a92d50
PE
1457You need to declare the lexical analyzer @code{yylex} and the error
1458printer @code{yyerror} here, along with any other global identifiers
1459used by the actions in the grammar rules.
bfa74976
RS
1460
1461The Bison declarations declare the names of the terminal and nonterminal
1462symbols, and may also describe operator precedence and the data types of
1463semantic values of various symbols.
1464
1465The grammar rules define how to construct each nonterminal symbol from its
1466parts.
1467
38a92d50
PE
1468The epilogue can contain any code you want to use. Often the
1469definitions of functions declared in the prologue go here. In a
1470simple program, all the rest of the program can go here.
bfa74976 1471
342b8b6e 1472@node Examples
bfa74976
RS
1473@chapter Examples
1474@cindex simple examples
1475@cindex examples, simple
1476
aaaa2aae 1477Now we show and explain several sample programs written using Bison: a
bfa74976 1478reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1479calculator --- later extended to track ``locations'' ---
1480and a multi-function calculator. All
1481produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1482
1483These examples are simple, but Bison grammars for real programming
aa08666d
AD
1484languages are written the same way. You can copy these examples into a
1485source file to try them.
bfa74976
RS
1486
1487@menu
f5f419de
DJ
1488* RPN Calc:: Reverse polish notation calculator;
1489 a first example with no operator precedence.
1490* Infix Calc:: Infix (algebraic) notation calculator.
1491 Operator precedence is introduced.
bfa74976 1492* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1493* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1494* Multi-function Calc:: Calculator with memory and trig functions.
1495 It uses multiple data-types for semantic values.
1496* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1497@end menu
1498
342b8b6e 1499@node RPN Calc
bfa74976
RS
1500@section Reverse Polish Notation Calculator
1501@cindex reverse polish notation
1502@cindex polish notation calculator
1503@cindex @code{rpcalc}
1504@cindex calculator, simple
1505
1506The first example is that of a simple double-precision @dfn{reverse polish
1507notation} calculator (a calculator using postfix operators). This example
1508provides a good starting point, since operator precedence is not an issue.
1509The second example will illustrate how operator precedence is handled.
1510
1511The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1512@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1513
1514@menu
f5f419de
DJ
1515* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1516* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1517* Rpcalc Lexer:: The lexical analyzer.
1518* Rpcalc Main:: The controlling function.
1519* Rpcalc Error:: The error reporting function.
1520* Rpcalc Generate:: Running Bison on the grammar file.
1521* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1522@end menu
1523
f5f419de 1524@node Rpcalc Declarations
bfa74976
RS
1525@subsection Declarations for @code{rpcalc}
1526
1527Here are the C and Bison declarations for the reverse polish notation
1528calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1529
24ec0837 1530@comment file: rpcalc.y
bfa74976 1531@example
72d2299c 1532/* Reverse polish notation calculator. */
bfa74976
RS
1533
1534%@{
38a92d50 1535 #define YYSTYPE double
24ec0837 1536 #include <stdio.h>
38a92d50
PE
1537 #include <math.h>
1538 int yylex (void);
1539 void yyerror (char const *);
bfa74976
RS
1540%@}
1541
1542%token NUM
1543
72d2299c 1544%% /* Grammar rules and actions follow. */
bfa74976
RS
1545@end example
1546
75f5aaea 1547The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1548preprocessor directives and two forward declarations.
bfa74976
RS
1549
1550The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1551specifying the C data type for semantic values of both tokens and
1552groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1553Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1554don't define it, @code{int} is the default. Because we specify
1555@code{double}, each token and each expression has an associated value,
1556which is a floating point number.
bfa74976
RS
1557
1558The @code{#include} directive is used to declare the exponentiation
1559function @code{pow}.
1560
38a92d50
PE
1561The forward declarations for @code{yylex} and @code{yyerror} are
1562needed because the C language requires that functions be declared
1563before they are used. These functions will be defined in the
1564epilogue, but the parser calls them so they must be declared in the
1565prologue.
1566
704a47c4
AD
1567The second section, Bison declarations, provides information to Bison
1568about the token types (@pxref{Bison Declarations, ,The Bison
1569Declarations Section}). Each terminal symbol that is not a
1570single-character literal must be declared here. (Single-character
bfa74976
RS
1571literals normally don't need to be declared.) In this example, all the
1572arithmetic operators are designated by single-character literals, so the
1573only terminal symbol that needs to be declared is @code{NUM}, the token
1574type for numeric constants.
1575
342b8b6e 1576@node Rpcalc Rules
bfa74976
RS
1577@subsection Grammar Rules for @code{rpcalc}
1578
1579Here are the grammar rules for the reverse polish notation calculator.
1580
24ec0837 1581@comment file: rpcalc.y
bfa74976 1582@example
aaaa2aae 1583@group
5e9b6624
AD
1584input:
1585 /* empty */
1586| input line
bfa74976 1587;
aaaa2aae 1588@end group
bfa74976 1589
aaaa2aae 1590@group
5e9b6624
AD
1591line:
1592 '\n'
1593| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1594;
aaaa2aae 1595@end group
bfa74976 1596
aaaa2aae 1597@group
5e9b6624
AD
1598exp:
1599 NUM @{ $$ = $1; @}
1600| exp exp '+' @{ $$ = $1 + $2; @}
1601| exp exp '-' @{ $$ = $1 - $2; @}
1602| exp exp '*' @{ $$ = $1 * $2; @}
1603| exp exp '/' @{ $$ = $1 / $2; @}
1604| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1605| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1606;
aaaa2aae 1607@end group
bfa74976
RS
1608%%
1609@end example
1610
1611The groupings of the rpcalc ``language'' defined here are the expression
1612(given the name @code{exp}), the line of input (@code{line}), and the
1613complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1614symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1615which is read as ``or''. The following sections explain what these rules
1616mean.
1617
1618The semantics of the language is determined by the actions taken when a
1619grouping is recognized. The actions are the C code that appears inside
1620braces. @xref{Actions}.
1621
1622You must specify these actions in C, but Bison provides the means for
1623passing semantic values between the rules. In each action, the
1624pseudo-variable @code{$$} stands for the semantic value for the grouping
1625that the rule is going to construct. Assigning a value to @code{$$} is the
1626main job of most actions. The semantic values of the components of the
1627rule are referred to as @code{$1}, @code{$2}, and so on.
1628
1629@menu
24ec0837
AD
1630* Rpcalc Input:: Explanation of the @code{input} nonterminal
1631* Rpcalc Line:: Explanation of the @code{line} nonterminal
1632* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1633@end menu
1634
342b8b6e 1635@node Rpcalc Input
bfa74976
RS
1636@subsubsection Explanation of @code{input}
1637
1638Consider the definition of @code{input}:
1639
1640@example
5e9b6624
AD
1641input:
1642 /* empty */
1643| input line
bfa74976
RS
1644;
1645@end example
1646
1647This definition reads as follows: ``A complete input is either an empty
1648string, or a complete input followed by an input line''. Notice that
1649``complete input'' is defined in terms of itself. This definition is said
1650to be @dfn{left recursive} since @code{input} appears always as the
1651leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1652
1653The first alternative is empty because there are no symbols between the
1654colon and the first @samp{|}; this means that @code{input} can match an
1655empty string of input (no tokens). We write the rules this way because it
1656is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1657It's conventional to put an empty alternative first and write the comment
1658@samp{/* empty */} in it.
1659
1660The second alternate rule (@code{input line}) handles all nontrivial input.
1661It means, ``After reading any number of lines, read one more line if
1662possible.'' The left recursion makes this rule into a loop. Since the
1663first alternative matches empty input, the loop can be executed zero or
1664more times.
1665
1666The parser function @code{yyparse} continues to process input until a
1667grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1668input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1669
342b8b6e 1670@node Rpcalc Line
bfa74976
RS
1671@subsubsection Explanation of @code{line}
1672
1673Now consider the definition of @code{line}:
1674
1675@example
5e9b6624
AD
1676line:
1677 '\n'
1678| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1679;
1680@end example
1681
1682The first alternative is a token which is a newline character; this means
1683that rpcalc accepts a blank line (and ignores it, since there is no
1684action). The second alternative is an expression followed by a newline.
1685This is the alternative that makes rpcalc useful. The semantic value of
1686the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1687question is the first symbol in the alternative. The action prints this
1688value, which is the result of the computation the user asked for.
1689
1690This action is unusual because it does not assign a value to @code{$$}. As
1691a consequence, the semantic value associated with the @code{line} is
1692uninitialized (its value will be unpredictable). This would be a bug if
1693that value were ever used, but we don't use it: once rpcalc has printed the
1694value of the user's input line, that value is no longer needed.
1695
342b8b6e 1696@node Rpcalc Expr
bfa74976
RS
1697@subsubsection Explanation of @code{expr}
1698
1699The @code{exp} grouping has several rules, one for each kind of expression.
1700The first rule handles the simplest expressions: those that are just numbers.
1701The second handles an addition-expression, which looks like two expressions
1702followed by a plus-sign. The third handles subtraction, and so on.
1703
1704@example
5e9b6624
AD
1705exp:
1706 NUM
1707| exp exp '+' @{ $$ = $1 + $2; @}
1708| exp exp '-' @{ $$ = $1 - $2; @}
1709@dots{}
1710;
bfa74976
RS
1711@end example
1712
1713We have used @samp{|} to join all the rules for @code{exp}, but we could
1714equally well have written them separately:
1715
1716@example
5e9b6624
AD
1717exp: NUM ;
1718exp: exp exp '+' @{ $$ = $1 + $2; @};
1719exp: exp exp '-' @{ $$ = $1 - $2; @};
1720@dots{}
bfa74976
RS
1721@end example
1722
1723Most of the rules have actions that compute the value of the expression in
1724terms of the value of its parts. For example, in the rule for addition,
1725@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1726the second one. The third component, @code{'+'}, has no meaningful
1727associated semantic value, but if it had one you could refer to it as
1728@code{$3}. When @code{yyparse} recognizes a sum expression using this
1729rule, the sum of the two subexpressions' values is produced as the value of
1730the entire expression. @xref{Actions}.
1731
1732You don't have to give an action for every rule. When a rule has no
1733action, Bison by default copies the value of @code{$1} into @code{$$}.
1734This is what happens in the first rule (the one that uses @code{NUM}).
1735
1736The formatting shown here is the recommended convention, but Bison does
72d2299c 1737not require it. You can add or change white space as much as you wish.
bfa74976
RS
1738For example, this:
1739
1740@example
5e9b6624 1741exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1742@end example
1743
1744@noindent
1745means the same thing as this:
1746
1747@example
5e9b6624
AD
1748exp:
1749 NUM
1750| exp exp '+' @{ $$ = $1 + $2; @}
1751| @dots{}
99a9344e 1752;
bfa74976
RS
1753@end example
1754
1755@noindent
1756The latter, however, is much more readable.
1757
342b8b6e 1758@node Rpcalc Lexer
bfa74976
RS
1759@subsection The @code{rpcalc} Lexical Analyzer
1760@cindex writing a lexical analyzer
1761@cindex lexical analyzer, writing
1762
704a47c4
AD
1763The lexical analyzer's job is low-level parsing: converting characters
1764or sequences of characters into tokens. The Bison parser gets its
1765tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1766Analyzer Function @code{yylex}}.
bfa74976 1767
8a4281b9 1768Only a simple lexical analyzer is needed for the RPN
c827f760 1769calculator. This
bfa74976
RS
1770lexical analyzer skips blanks and tabs, then reads in numbers as
1771@code{double} and returns them as @code{NUM} tokens. Any other character
1772that isn't part of a number is a separate token. Note that the token-code
1773for such a single-character token is the character itself.
1774
1775The return value of the lexical analyzer function is a numeric code which
1776represents a token type. The same text used in Bison rules to stand for
1777this token type is also a C expression for the numeric code for the type.
1778This works in two ways. If the token type is a character literal, then its
e966383b 1779numeric code is that of the character; you can use the same
bfa74976
RS
1780character literal in the lexical analyzer to express the number. If the
1781token type is an identifier, that identifier is defined by Bison as a C
1782macro whose definition is the appropriate number. In this example,
1783therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1784
1964ad8c
AD
1785The semantic value of the token (if it has one) is stored into the
1786global variable @code{yylval}, which is where the Bison parser will look
1787for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1788defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1789,Declarations for @code{rpcalc}}.)
bfa74976 1790
72d2299c
PE
1791A token type code of zero is returned if the end-of-input is encountered.
1792(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1793
1794Here is the code for the lexical analyzer:
1795
24ec0837 1796@comment file: rpcalc.y
bfa74976
RS
1797@example
1798@group
72d2299c 1799/* The lexical analyzer returns a double floating point
e966383b 1800 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1801 of the character read if not a number. It skips all blanks
1802 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1803
1804#include <ctype.h>
1805@end group
1806
1807@group
13863333
AD
1808int
1809yylex (void)
bfa74976
RS
1810@{
1811 int c;
1812
72d2299c 1813 /* Skip white space. */
13863333 1814 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1815 continue;
bfa74976
RS
1816@end group
1817@group
72d2299c 1818 /* Process numbers. */
13863333 1819 if (c == '.' || isdigit (c))
bfa74976
RS
1820 @{
1821 ungetc (c, stdin);
1822 scanf ("%lf", &yylval);
1823 return NUM;
1824 @}
1825@end group
1826@group
72d2299c 1827 /* Return end-of-input. */
13863333 1828 if (c == EOF)
bfa74976 1829 return 0;
72d2299c 1830 /* Return a single char. */
13863333 1831 return c;
bfa74976
RS
1832@}
1833@end group
1834@end example
1835
342b8b6e 1836@node Rpcalc Main
bfa74976
RS
1837@subsection The Controlling Function
1838@cindex controlling function
1839@cindex main function in simple example
1840
1841In keeping with the spirit of this example, the controlling function is
1842kept to the bare minimum. The only requirement is that it call
1843@code{yyparse} to start the process of parsing.
1844
24ec0837 1845@comment file: rpcalc.y
bfa74976
RS
1846@example
1847@group
13863333
AD
1848int
1849main (void)
bfa74976 1850@{
13863333 1851 return yyparse ();
bfa74976
RS
1852@}
1853@end group
1854@end example
1855
342b8b6e 1856@node Rpcalc Error
bfa74976
RS
1857@subsection The Error Reporting Routine
1858@cindex error reporting routine
1859
1860When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1861function @code{yyerror} to print an error message (usually but not
6e649e65 1862always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1863@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1864here is the definition we will use:
bfa74976 1865
24ec0837 1866@comment file: rpcalc.y
bfa74976
RS
1867@example
1868@group
1869#include <stdio.h>
aaaa2aae 1870@end group
bfa74976 1871
aaaa2aae 1872@group
38a92d50 1873/* Called by yyparse on error. */
13863333 1874void
38a92d50 1875yyerror (char const *s)
bfa74976 1876@{
4e03e201 1877 fprintf (stderr, "%s\n", s);
bfa74976
RS
1878@}
1879@end group
1880@end example
1881
1882After @code{yyerror} returns, the Bison parser may recover from the error
1883and continue parsing if the grammar contains a suitable error rule
1884(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1885have not written any error rules in this example, so any invalid input will
1886cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1887real calculator, but it is adequate for the first example.
bfa74976 1888
f5f419de 1889@node Rpcalc Generate
bfa74976
RS
1890@subsection Running Bison to Make the Parser
1891@cindex running Bison (introduction)
1892
ceed8467
AD
1893Before running Bison to produce a parser, we need to decide how to
1894arrange all the source code in one or more source files. For such a
ff7571c0
JD
1895simple example, the easiest thing is to put everything in one file,
1896the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1897@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1898(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1899
1900For a large project, you would probably have several source files, and use
1901@code{make} to arrange to recompile them.
1902
ff7571c0
JD
1903With all the source in the grammar file, you use the following command
1904to convert it into a parser implementation file:
bfa74976
RS
1905
1906@example
fa4d969f 1907bison @var{file}.y
bfa74976
RS
1908@end example
1909
1910@noindent
ff7571c0
JD
1911In this example, the grammar file is called @file{rpcalc.y} (for
1912``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1913implementation file named @file{@var{file}.tab.c}, removing the
1914@samp{.y} from the grammar file name. The parser implementation file
1915contains the source code for @code{yyparse}. The additional functions
1916in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1917copied verbatim to the parser implementation file.
bfa74976 1918
342b8b6e 1919@node Rpcalc Compile
ff7571c0 1920@subsection Compiling the Parser Implementation File
bfa74976
RS
1921@cindex compiling the parser
1922
ff7571c0 1923Here is how to compile and run the parser implementation file:
bfa74976
RS
1924
1925@example
1926@group
1927# @r{List files in current directory.}
9edcd895 1928$ @kbd{ls}
bfa74976
RS
1929rpcalc.tab.c rpcalc.y
1930@end group
1931
1932@group
1933# @r{Compile the Bison parser.}
1934# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1935$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1936@end group
1937
1938@group
1939# @r{List files again.}
9edcd895 1940$ @kbd{ls}
bfa74976
RS
1941rpcalc rpcalc.tab.c rpcalc.y
1942@end group
1943@end example
1944
1945The file @file{rpcalc} now contains the executable code. Here is an
1946example session using @code{rpcalc}.
1947
1948@example
9edcd895
AD
1949$ @kbd{rpcalc}
1950@kbd{4 9 +}
24ec0837 1951@result{} 13
9edcd895 1952@kbd{3 7 + 3 4 5 *+-}
24ec0837 1953@result{} -13
9edcd895 1954@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1955@result{} 13
9edcd895 1956@kbd{5 6 / 4 n +}
24ec0837 1957@result{} -3.166666667
9edcd895 1958@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1959@result{} 81
9edcd895
AD
1960@kbd{^D} @r{End-of-file indicator}
1961$
bfa74976
RS
1962@end example
1963
342b8b6e 1964@node Infix Calc
bfa74976
RS
1965@section Infix Notation Calculator: @code{calc}
1966@cindex infix notation calculator
1967@cindex @code{calc}
1968@cindex calculator, infix notation
1969
1970We now modify rpcalc to handle infix operators instead of postfix. Infix
1971notation involves the concept of operator precedence and the need for
1972parentheses nested to arbitrary depth. Here is the Bison code for
1973@file{calc.y}, an infix desk-top calculator.
1974
1975@example
38a92d50 1976/* Infix notation calculator. */
bfa74976 1977
aaaa2aae 1978@group
bfa74976 1979%@{
38a92d50
PE
1980 #define YYSTYPE double
1981 #include <math.h>
1982 #include <stdio.h>
1983 int yylex (void);
1984 void yyerror (char const *);
bfa74976 1985%@}
aaaa2aae 1986@end group
bfa74976 1987
aaaa2aae 1988@group
38a92d50 1989/* Bison declarations. */
bfa74976
RS
1990%token NUM
1991%left '-' '+'
1992%left '*' '/'
d78f0ac9
AD
1993%precedence NEG /* negation--unary minus */
1994%right '^' /* exponentiation */
aaaa2aae 1995@end group
bfa74976 1996
38a92d50 1997%% /* The grammar follows. */
aaaa2aae 1998@group
5e9b6624
AD
1999input:
2000 /* empty */
2001| input line
bfa74976 2002;
aaaa2aae 2003@end group
bfa74976 2004
aaaa2aae 2005@group
5e9b6624
AD
2006line:
2007 '\n'
2008| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2009;
aaaa2aae 2010@end group
bfa74976 2011
aaaa2aae 2012@group
5e9b6624
AD
2013exp:
2014 NUM @{ $$ = $1; @}
2015| exp '+' exp @{ $$ = $1 + $3; @}
2016| exp '-' exp @{ $$ = $1 - $3; @}
2017| exp '*' exp @{ $$ = $1 * $3; @}
2018| exp '/' exp @{ $$ = $1 / $3; @}
2019| '-' exp %prec NEG @{ $$ = -$2; @}
2020| exp '^' exp @{ $$ = pow ($1, $3); @}
2021| '(' exp ')' @{ $$ = $2; @}
bfa74976 2022;
aaaa2aae 2023@end group
bfa74976
RS
2024%%
2025@end example
2026
2027@noindent
ceed8467
AD
2028The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2029same as before.
bfa74976
RS
2030
2031There are two important new features shown in this code.
2032
2033In the second section (Bison declarations), @code{%left} declares token
2034types and says they are left-associative operators. The declarations
2035@code{%left} and @code{%right} (right associativity) take the place of
2036@code{%token} which is used to declare a token type name without
d78f0ac9 2037associativity/precedence. (These tokens are single-character literals, which
bfa74976 2038ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2039the associativity/precedence.)
bfa74976
RS
2040
2041Operator precedence is determined by the line ordering of the
2042declarations; the higher the line number of the declaration (lower on
2043the page or screen), the higher the precedence. Hence, exponentiation
2044has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2045by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2046only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2047Precedence}.
bfa74976 2048
704a47c4
AD
2049The other important new feature is the @code{%prec} in the grammar
2050section for the unary minus operator. The @code{%prec} simply instructs
2051Bison that the rule @samp{| '-' exp} has the same precedence as
2052@code{NEG}---in this case the next-to-highest. @xref{Contextual
2053Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2054
2055Here is a sample run of @file{calc.y}:
2056
2057@need 500
2058@example
9edcd895
AD
2059$ @kbd{calc}
2060@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20616.880952381
9edcd895 2062@kbd{-56 + 2}
bfa74976 2063-54
9edcd895 2064@kbd{3 ^ 2}
bfa74976
RS
20659
2066@end example
2067
342b8b6e 2068@node Simple Error Recovery
bfa74976
RS
2069@section Simple Error Recovery
2070@cindex error recovery, simple
2071
2072Up to this point, this manual has not addressed the issue of @dfn{error
2073recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2074error. All we have handled is error reporting with @code{yyerror}.
2075Recall that by default @code{yyparse} returns after calling
2076@code{yyerror}. This means that an erroneous input line causes the
2077calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2078
2079The Bison language itself includes the reserved word @code{error}, which
2080may be included in the grammar rules. In the example below it has
2081been added to one of the alternatives for @code{line}:
2082
2083@example
2084@group
5e9b6624
AD
2085line:
2086 '\n'
2087| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2088| error '\n' @{ yyerrok; @}
bfa74976
RS
2089;
2090@end group
2091@end example
2092
ceed8467 2093This addition to the grammar allows for simple error recovery in the
6e649e65 2094event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2095read, the error will be recognized by the third rule for @code{line},
2096and parsing will continue. (The @code{yyerror} function is still called
2097upon to print its message as well.) The action executes the statement
2098@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2099that error recovery is complete (@pxref{Error Recovery}). Note the
2100difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2101misprint.
bfa74976
RS
2102
2103This form of error recovery deals with syntax errors. There are other
2104kinds of errors; for example, division by zero, which raises an exception
2105signal that is normally fatal. A real calculator program must handle this
2106signal and use @code{longjmp} to return to @code{main} and resume parsing
2107input lines; it would also have to discard the rest of the current line of
2108input. We won't discuss this issue further because it is not specific to
2109Bison programs.
2110
342b8b6e
AD
2111@node Location Tracking Calc
2112@section Location Tracking Calculator: @code{ltcalc}
2113@cindex location tracking calculator
2114@cindex @code{ltcalc}
2115@cindex calculator, location tracking
2116
9edcd895
AD
2117This example extends the infix notation calculator with location
2118tracking. This feature will be used to improve the error messages. For
2119the sake of clarity, this example is a simple integer calculator, since
2120most of the work needed to use locations will be done in the lexical
72d2299c 2121analyzer.
342b8b6e
AD
2122
2123@menu
f5f419de
DJ
2124* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2125* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2126* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2127@end menu
2128
f5f419de 2129@node Ltcalc Declarations
342b8b6e
AD
2130@subsection Declarations for @code{ltcalc}
2131
9edcd895
AD
2132The C and Bison declarations for the location tracking calculator are
2133the same as the declarations for the infix notation calculator.
342b8b6e
AD
2134
2135@example
2136/* Location tracking calculator. */
2137
2138%@{
38a92d50
PE
2139 #define YYSTYPE int
2140 #include <math.h>
2141 int yylex (void);
2142 void yyerror (char const *);
342b8b6e
AD
2143%@}
2144
2145/* Bison declarations. */
2146%token NUM
2147
2148%left '-' '+'
2149%left '*' '/'
d78f0ac9 2150%precedence NEG
342b8b6e
AD
2151%right '^'
2152
38a92d50 2153%% /* The grammar follows. */
342b8b6e
AD
2154@end example
2155
9edcd895
AD
2156@noindent
2157Note there are no declarations specific to locations. Defining a data
2158type for storing locations is not needed: we will use the type provided
2159by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2160four member structure with the following integer fields:
2161@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2162@code{last_column}. By conventions, and in accordance with the GNU
2163Coding Standards and common practice, the line and column count both
2164start at 1.
342b8b6e
AD
2165
2166@node Ltcalc Rules
2167@subsection Grammar Rules for @code{ltcalc}
2168
9edcd895
AD
2169Whether handling locations or not has no effect on the syntax of your
2170language. Therefore, grammar rules for this example will be very close
2171to those of the previous example: we will only modify them to benefit
2172from the new information.
342b8b6e 2173
9edcd895
AD
2174Here, we will use locations to report divisions by zero, and locate the
2175wrong expressions or subexpressions.
342b8b6e
AD
2176
2177@example
2178@group
5e9b6624
AD
2179input:
2180 /* empty */
2181| input line
342b8b6e
AD
2182;
2183@end group
2184
2185@group
5e9b6624
AD
2186line:
2187 '\n'
2188| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2189;
2190@end group
2191
2192@group
5e9b6624
AD
2193exp:
2194 NUM @{ $$ = $1; @}
2195| exp '+' exp @{ $$ = $1 + $3; @}
2196| exp '-' exp @{ $$ = $1 - $3; @}
2197| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2198@end group
342b8b6e 2199@group
5e9b6624
AD
2200| exp '/' exp
2201 @{
2202 if ($3)
2203 $$ = $1 / $3;
2204 else
2205 @{
2206 $$ = 1;
2207 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2208 @@3.first_line, @@3.first_column,
2209 @@3.last_line, @@3.last_column);
2210 @}
2211 @}
342b8b6e
AD
2212@end group
2213@group
5e9b6624
AD
2214| '-' exp %prec NEG @{ $$ = -$2; @}
2215| exp '^' exp @{ $$ = pow ($1, $3); @}
2216| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2217@end group
2218@end example
2219
2220This code shows how to reach locations inside of semantic actions, by
2221using the pseudo-variables @code{@@@var{n}} for rule components, and the
2222pseudo-variable @code{@@$} for groupings.
2223
9edcd895
AD
2224We don't need to assign a value to @code{@@$}: the output parser does it
2225automatically. By default, before executing the C code of each action,
2226@code{@@$} is set to range from the beginning of @code{@@1} to the end
2227of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2228can be redefined (@pxref{Location Default Action, , Default Action for
2229Locations}), and for very specific rules, @code{@@$} can be computed by
2230hand.
342b8b6e
AD
2231
2232@node Ltcalc Lexer
2233@subsection The @code{ltcalc} Lexical Analyzer.
2234
9edcd895 2235Until now, we relied on Bison's defaults to enable location
72d2299c 2236tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2237able to feed the parser with the token locations, as it already does for
2238semantic values.
342b8b6e 2239
9edcd895
AD
2240To this end, we must take into account every single character of the
2241input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2242
2243@example
2244@group
2245int
2246yylex (void)
2247@{
2248 int c;
18b519c0 2249@end group
342b8b6e 2250
18b519c0 2251@group
72d2299c 2252 /* Skip white space. */
342b8b6e
AD
2253 while ((c = getchar ()) == ' ' || c == '\t')
2254 ++yylloc.last_column;
18b519c0 2255@end group
342b8b6e 2256
18b519c0 2257@group
72d2299c 2258 /* Step. */
342b8b6e
AD
2259 yylloc.first_line = yylloc.last_line;
2260 yylloc.first_column = yylloc.last_column;
2261@end group
2262
2263@group
72d2299c 2264 /* Process numbers. */
342b8b6e
AD
2265 if (isdigit (c))
2266 @{
2267 yylval = c - '0';
2268 ++yylloc.last_column;
2269 while (isdigit (c = getchar ()))
2270 @{
2271 ++yylloc.last_column;
2272 yylval = yylval * 10 + c - '0';
2273 @}
2274 ungetc (c, stdin);
2275 return NUM;
2276 @}
2277@end group
2278
72d2299c 2279 /* Return end-of-input. */
342b8b6e
AD
2280 if (c == EOF)
2281 return 0;
2282
d4fca427 2283@group
72d2299c 2284 /* Return a single char, and update location. */
342b8b6e
AD
2285 if (c == '\n')
2286 @{
2287 ++yylloc.last_line;
2288 yylloc.last_column = 0;
2289 @}
2290 else
2291 ++yylloc.last_column;
2292 return c;
2293@}
d4fca427 2294@end group
342b8b6e
AD
2295@end example
2296
9edcd895
AD
2297Basically, the lexical analyzer performs the same processing as before:
2298it skips blanks and tabs, and reads numbers or single-character tokens.
2299In addition, it updates @code{yylloc}, the global variable (of type
2300@code{YYLTYPE}) containing the token's location.
342b8b6e 2301
9edcd895 2302Now, each time this function returns a token, the parser has its number
72d2299c 2303as well as its semantic value, and its location in the text. The last
9edcd895
AD
2304needed change is to initialize @code{yylloc}, for example in the
2305controlling function:
342b8b6e
AD
2306
2307@example
9edcd895 2308@group
342b8b6e
AD
2309int
2310main (void)
2311@{
2312 yylloc.first_line = yylloc.last_line = 1;
2313 yylloc.first_column = yylloc.last_column = 0;
2314 return yyparse ();
2315@}
9edcd895 2316@end group
342b8b6e
AD
2317@end example
2318
9edcd895
AD
2319Remember that computing locations is not a matter of syntax. Every
2320character must be associated to a location update, whether it is in
2321valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2322
2323@node Multi-function Calc
bfa74976
RS
2324@section Multi-Function Calculator: @code{mfcalc}
2325@cindex multi-function calculator
2326@cindex @code{mfcalc}
2327@cindex calculator, multi-function
2328
2329Now that the basics of Bison have been discussed, it is time to move on to
2330a more advanced problem. The above calculators provided only five
2331functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2332be nice to have a calculator that provides other mathematical functions such
2333as @code{sin}, @code{cos}, etc.
2334
2335It is easy to add new operators to the infix calculator as long as they are
2336only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2337back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2338adding a new operator. But we want something more flexible: built-in
2339functions whose syntax has this form:
2340
2341@example
2342@var{function_name} (@var{argument})
2343@end example
2344
2345@noindent
2346At the same time, we will add memory to the calculator, by allowing you
2347to create named variables, store values in them, and use them later.
2348Here is a sample session with the multi-function calculator:
2349
2350@example
d4fca427 2351@group
9edcd895
AD
2352$ @kbd{mfcalc}
2353@kbd{pi = 3.141592653589}
f9c75dd0 2354@result{} 3.1415926536
d4fca427
AD
2355@end group
2356@group
9edcd895 2357@kbd{sin(pi)}
f9c75dd0 2358@result{} 0.0000000000
d4fca427 2359@end group
9edcd895 2360@kbd{alpha = beta1 = 2.3}
f9c75dd0 2361@result{} 2.3000000000
9edcd895 2362@kbd{alpha}
f9c75dd0 2363@result{} 2.3000000000
9edcd895 2364@kbd{ln(alpha)}
f9c75dd0 2365@result{} 0.8329091229
9edcd895 2366@kbd{exp(ln(beta1))}
f9c75dd0 2367@result{} 2.3000000000
9edcd895 2368$
bfa74976
RS
2369@end example
2370
2371Note that multiple assignment and nested function calls are permitted.
2372
2373@menu
f5f419de
DJ
2374* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2375* Mfcalc Rules:: Grammar rules for the calculator.
2376* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2377* Mfcalc Lexer:: The lexical analyzer.
2378* Mfcalc Main:: The controlling function.
bfa74976
RS
2379@end menu
2380
f5f419de 2381@node Mfcalc Declarations
bfa74976
RS
2382@subsection Declarations for @code{mfcalc}
2383
2384Here are the C and Bison declarations for the multi-function calculator.
2385
93c150b6 2386@comment file: mfcalc.y: 1
c93f22fc 2387@example
18b519c0 2388@group
bfa74976 2389%@{
f9c75dd0 2390 #include <stdio.h> /* For printf, etc. */
578e3413 2391 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2392 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2393 int yylex (void);
2394 void yyerror (char const *);
bfa74976 2395%@}
18b519c0 2396@end group
93c150b6 2397
18b519c0 2398@group
bfa74976 2399%union @{
38a92d50
PE
2400 double val; /* For returning numbers. */
2401 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2402@}
18b519c0 2403@end group
38a92d50 2404%token <val> NUM /* Simple double precision number. */
93c150b6 2405%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2406%type <val> exp
2407
18b519c0 2408@group
bfa74976
RS
2409%right '='
2410%left '-' '+'
2411%left '*' '/'
d78f0ac9
AD
2412%precedence NEG /* negation--unary minus */
2413%right '^' /* exponentiation */
18b519c0 2414@end group
c93f22fc 2415@end example
bfa74976
RS
2416
2417The above grammar introduces only two new features of the Bison language.
2418These features allow semantic values to have various data types
2419(@pxref{Multiple Types, ,More Than One Value Type}).
2420
2421The @code{%union} declaration specifies the entire list of possible types;
2422this is instead of defining @code{YYSTYPE}. The allowable types are now
2423double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2424the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2425
2426Since values can now have various types, it is necessary to associate a
2427type with each grammar symbol whose semantic value is used. These symbols
2428are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2429declarations are augmented with information about their data type (placed
2430between angle brackets).
2431
704a47c4
AD
2432The Bison construct @code{%type} is used for declaring nonterminal
2433symbols, just as @code{%token} is used for declaring token types. We
2434have not used @code{%type} before because nonterminal symbols are
2435normally declared implicitly by the rules that define them. But
2436@code{exp} must be declared explicitly so we can specify its value type.
2437@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2438
342b8b6e 2439@node Mfcalc Rules
bfa74976
RS
2440@subsection Grammar Rules for @code{mfcalc}
2441
2442Here are the grammar rules for the multi-function calculator.
2443Most of them are copied directly from @code{calc}; three rules,
2444those which mention @code{VAR} or @code{FNCT}, are new.
2445
93c150b6 2446@comment file: mfcalc.y: 3
c93f22fc 2447@example
93c150b6 2448%% /* The grammar follows. */
18b519c0 2449@group
5e9b6624
AD
2450input:
2451 /* empty */
2452| input line
bfa74976 2453;
18b519c0 2454@end group
bfa74976 2455
18b519c0 2456@group
bfa74976 2457line:
5e9b6624
AD
2458 '\n'
2459| exp '\n' @{ printf ("%.10g\n", $1); @}
2460| error '\n' @{ yyerrok; @}
bfa74976 2461;
18b519c0 2462@end group
bfa74976 2463
18b519c0 2464@group
5e9b6624
AD
2465exp:
2466 NUM @{ $$ = $1; @}
2467| VAR @{ $$ = $1->value.var; @}
2468| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2469| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2470| exp '+' exp @{ $$ = $1 + $3; @}
2471| exp '-' exp @{ $$ = $1 - $3; @}
2472| exp '*' exp @{ $$ = $1 * $3; @}
2473| exp '/' exp @{ $$ = $1 / $3; @}
2474| '-' exp %prec NEG @{ $$ = -$2; @}
2475| exp '^' exp @{ $$ = pow ($1, $3); @}
2476| '(' exp ')' @{ $$ = $2; @}
bfa74976 2477;
18b519c0 2478@end group
38a92d50 2479/* End of grammar. */
bfa74976 2480%%
c93f22fc 2481@end example
bfa74976 2482
f5f419de 2483@node Mfcalc Symbol Table
bfa74976
RS
2484@subsection The @code{mfcalc} Symbol Table
2485@cindex symbol table example
2486
2487The multi-function calculator requires a symbol table to keep track of the
2488names and meanings of variables and functions. This doesn't affect the
2489grammar rules (except for the actions) or the Bison declarations, but it
2490requires some additional C functions for support.
2491
2492The symbol table itself consists of a linked list of records. Its
2493definition, which is kept in the header @file{calc.h}, is as follows. It
2494provides for either functions or variables to be placed in the table.
2495
f9c75dd0 2496@comment file: calc.h
c93f22fc 2497@example
bfa74976 2498@group
38a92d50 2499/* Function type. */
32dfccf8 2500typedef double (*func_t) (double);
72f889cc 2501@end group
32dfccf8 2502
72f889cc 2503@group
38a92d50 2504/* Data type for links in the chain of symbols. */
bfa74976
RS
2505struct symrec
2506@{
38a92d50 2507 char *name; /* name of symbol */
bfa74976 2508 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2509 union
2510 @{
38a92d50
PE
2511 double var; /* value of a VAR */
2512 func_t fnctptr; /* value of a FNCT */
bfa74976 2513 @} value;
38a92d50 2514 struct symrec *next; /* link field */
bfa74976
RS
2515@};
2516@end group
2517
2518@group
2519typedef struct symrec symrec;
2520
38a92d50 2521/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2522extern symrec *sym_table;
2523
a730d142 2524symrec *putsym (char const *, int);
38a92d50 2525symrec *getsym (char const *);
bfa74976 2526@end group
c93f22fc 2527@end example
bfa74976 2528
aeb57fb6
AD
2529The new version of @code{main} will call @code{init_table} to initialize
2530the symbol table:
bfa74976 2531
93c150b6 2532@comment file: mfcalc.y: 3
c93f22fc 2533@example
18b519c0 2534@group
bfa74976
RS
2535struct init
2536@{
38a92d50
PE
2537 char const *fname;
2538 double (*fnct) (double);
bfa74976
RS
2539@};
2540@end group
2541
2542@group
38a92d50 2543struct init const arith_fncts[] =
13863333 2544@{
f9c75dd0
AD
2545 @{ "atan", atan @},
2546 @{ "cos", cos @},
2547 @{ "exp", exp @},
2548 @{ "ln", log @},
2549 @{ "sin", sin @},
2550 @{ "sqrt", sqrt @},
2551 @{ 0, 0 @},
13863333 2552@};
18b519c0 2553@end group
bfa74976 2554
18b519c0 2555@group
bfa74976 2556/* The symbol table: a chain of `struct symrec'. */
38a92d50 2557symrec *sym_table;
bfa74976
RS
2558@end group
2559
2560@group
72d2299c 2561/* Put arithmetic functions in table. */
f9c75dd0 2562static
13863333
AD
2563void
2564init_table (void)
bfa74976
RS
2565@{
2566 int i;
bfa74976
RS
2567 for (i = 0; arith_fncts[i].fname != 0; i++)
2568 @{
aaaa2aae 2569 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2570 ptr->value.fnctptr = arith_fncts[i].fnct;
2571 @}
2572@}
2573@end group
c93f22fc 2574@end example
bfa74976
RS
2575
2576By simply editing the initialization list and adding the necessary include
2577files, you can add additional functions to the calculator.
2578
2579Two important functions allow look-up and installation of symbols in the
2580symbol table. The function @code{putsym} is passed a name and the type
2581(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2582linked to the front of the list, and a pointer to the object is returned.
2583The function @code{getsym} is passed the name of the symbol to look up. If
2584found, a pointer to that symbol is returned; otherwise zero is returned.
2585
93c150b6 2586@comment file: mfcalc.y: 3
c93f22fc 2587@example
f9c75dd0
AD
2588#include <stdlib.h> /* malloc. */
2589#include <string.h> /* strlen. */
2590
d4fca427 2591@group
bfa74976 2592symrec *
38a92d50 2593putsym (char const *sym_name, int sym_type)
bfa74976 2594@{
aaaa2aae 2595 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2596 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2597 strcpy (ptr->name,sym_name);
2598 ptr->type = sym_type;
72d2299c 2599 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2600 ptr->next = (struct symrec *)sym_table;
2601 sym_table = ptr;
2602 return ptr;
2603@}
d4fca427 2604@end group
bfa74976 2605
d4fca427 2606@group
bfa74976 2607symrec *
38a92d50 2608getsym (char const *sym_name)
bfa74976
RS
2609@{
2610 symrec *ptr;
2611 for (ptr = sym_table; ptr != (symrec *) 0;
2612 ptr = (symrec *)ptr->next)
f518dbaf 2613 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2614 return ptr;
2615 return 0;
2616@}
d4fca427 2617@end group
c93f22fc 2618@end example
bfa74976 2619
aeb57fb6
AD
2620@node Mfcalc Lexer
2621@subsection The @code{mfcalc} Lexer
2622
bfa74976
RS
2623The function @code{yylex} must now recognize variables, numeric values, and
2624the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2625characters with a leading letter are recognized as either variables or
bfa74976
RS
2626functions depending on what the symbol table says about them.
2627
2628The string is passed to @code{getsym} for look up in the symbol table. If
2629the name appears in the table, a pointer to its location and its type
2630(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2631already in the table, then it is installed as a @code{VAR} using
2632@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2633returned to @code{yyparse}.
bfa74976
RS
2634
2635No change is needed in the handling of numeric values and arithmetic
2636operators in @code{yylex}.
2637
93c150b6 2638@comment file: mfcalc.y: 3
c93f22fc 2639@example
bfa74976
RS
2640@group
2641#include <ctype.h>
18b519c0 2642@end group
13863333 2643
18b519c0 2644@group
13863333
AD
2645int
2646yylex (void)
bfa74976
RS
2647@{
2648 int c;
2649
72d2299c 2650 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2651 while ((c = getchar ()) == ' ' || c == '\t')
2652 continue;
bfa74976
RS
2653
2654 if (c == EOF)
2655 return 0;
2656@end group
2657
2658@group
2659 /* Char starts a number => parse the number. */
2660 if (c == '.' || isdigit (c))
2661 @{
2662 ungetc (c, stdin);
2663 scanf ("%lf", &yylval.val);
2664 return NUM;
2665 @}
2666@end group
2667
2668@group
2669 /* Char starts an identifier => read the name. */
2670 if (isalpha (c))
2671 @{
aaaa2aae
AD
2672 /* Initially make the buffer long enough
2673 for a 40-character symbol name. */
2674 static size_t length = 40;
bfa74976 2675 static char *symbuf = 0;
aaaa2aae 2676 symrec *s;
bfa74976
RS
2677 int i;
2678@end group
aaaa2aae
AD
2679 if (!symbuf)
2680 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2681
2682 i = 0;
2683 do
bfa74976
RS
2684@group
2685 @{
2686 /* If buffer is full, make it bigger. */
2687 if (i == length)
2688 @{
2689 length *= 2;
18b519c0 2690 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2691 @}
2692 /* Add this character to the buffer. */
2693 symbuf[i++] = c;
2694 /* Get another character. */
2695 c = getchar ();
2696 @}
2697@end group
2698@group
72d2299c 2699 while (isalnum (c));
bfa74976
RS
2700
2701 ungetc (c, stdin);
2702 symbuf[i] = '\0';
2703@end group
2704
2705@group
2706 s = getsym (symbuf);
2707 if (s == 0)
2708 s = putsym (symbuf, VAR);
2709 yylval.tptr = s;
2710 return s->type;
2711 @}
2712
2713 /* Any other character is a token by itself. */
2714 return c;
2715@}
2716@end group
c93f22fc 2717@end example
bfa74976 2718
aeb57fb6
AD
2719@node Mfcalc Main
2720@subsection The @code{mfcalc} Main
2721
2722The error reporting function is unchanged, and the new version of
93c150b6
AD
2723@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2724on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2725
93c150b6 2726@comment file: mfcalc.y: 3
c93f22fc 2727@example
aeb57fb6
AD
2728@group
2729/* Called by yyparse on error. */
2730void
2731yyerror (char const *s)
2732@{
2733 fprintf (stderr, "%s\n", s);
2734@}
2735@end group
2736
aaaa2aae 2737@group
aeb57fb6
AD
2738int
2739main (int argc, char const* argv[])
2740@{
93c150b6
AD
2741 int i;
2742 /* Enable parse traces on option -p. */
2743 for (i = 1; i < argc; ++i)
2744 if (!strcmp(argv[i], "-p"))
2745 yydebug = 1;
aeb57fb6
AD
2746 init_table ();
2747 return yyparse ();
2748@}
2749@end group
c93f22fc 2750@end example
aeb57fb6 2751
72d2299c 2752This program is both powerful and flexible. You may easily add new
704a47c4
AD
2753functions, and it is a simple job to modify this code to install
2754predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2755
342b8b6e 2756@node Exercises
bfa74976
RS
2757@section Exercises
2758@cindex exercises
2759
2760@enumerate
2761@item
2762Add some new functions from @file{math.h} to the initialization list.
2763
2764@item
2765Add another array that contains constants and their values. Then
2766modify @code{init_table} to add these constants to the symbol table.
2767It will be easiest to give the constants type @code{VAR}.
2768
2769@item
2770Make the program report an error if the user refers to an
2771uninitialized variable in any way except to store a value in it.
2772@end enumerate
2773
342b8b6e 2774@node Grammar File
bfa74976
RS
2775@chapter Bison Grammar Files
2776
2777Bison takes as input a context-free grammar specification and produces a
2778C-language function that recognizes correct instances of the grammar.
2779
ff7571c0 2780The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2781@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2782
2783@menu
303834cc
JD
2784* Grammar Outline:: Overall layout of the grammar file.
2785* Symbols:: Terminal and nonterminal symbols.
2786* Rules:: How to write grammar rules.
2787* Recursion:: Writing recursive rules.
2788* Semantics:: Semantic values and actions.
2789* Tracking Locations:: Locations and actions.
2790* Named References:: Using named references in actions.
2791* Declarations:: All kinds of Bison declarations are described here.
2792* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2793@end menu
2794
342b8b6e 2795@node Grammar Outline
bfa74976
RS
2796@section Outline of a Bison Grammar
2797
2798A Bison grammar file has four main sections, shown here with the
2799appropriate delimiters:
2800
2801@example
2802%@{
38a92d50 2803 @var{Prologue}
bfa74976
RS
2804%@}
2805
2806@var{Bison declarations}
2807
2808%%
2809@var{Grammar rules}
2810%%
2811
75f5aaea 2812@var{Epilogue}
bfa74976
RS
2813@end example
2814
2815Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2816As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2817continues until end of line.
bfa74976
RS
2818
2819@menu
f5f419de 2820* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2821* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2822* Bison Declarations:: Syntax and usage of the Bison declarations section.
2823* Grammar Rules:: Syntax and usage of the grammar rules section.
2824* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2825@end menu
2826
38a92d50 2827@node Prologue
75f5aaea
MA
2828@subsection The prologue
2829@cindex declarations section
2830@cindex Prologue
2831@cindex declarations
bfa74976 2832
f8e1c9e5
AD
2833The @var{Prologue} section contains macro definitions and declarations
2834of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2835rules. These are copied to the beginning of the parser implementation
2836file so that they precede the definition of @code{yyparse}. You can
2837use @samp{#include} to get the declarations from a header file. If
2838you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2839@samp{%@}} delimiters that bracket this section.
bfa74976 2840
9c437126 2841The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2842of @samp{%@}} that is outside a comment, a string literal, or a
2843character constant.
2844
c732d2c6
AD
2845You may have more than one @var{Prologue} section, intermixed with the
2846@var{Bison declarations}. This allows you to have C and Bison
2847declarations that refer to each other. For example, the @code{%union}
2848declaration may use types defined in a header file, and you may wish to
2849prototype functions that take arguments of type @code{YYSTYPE}. This
2850can be done with two @var{Prologue} blocks, one before and one after the
2851@code{%union} declaration.
2852
c93f22fc 2853@example
c732d2c6 2854%@{
aef3da86 2855 #define _GNU_SOURCE
38a92d50
PE
2856 #include <stdio.h>
2857 #include "ptypes.h"
c732d2c6
AD
2858%@}
2859
2860%union @{
779e7ceb 2861 long int n;
c732d2c6
AD
2862 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2863@}
2864
2865%@{
38a92d50
PE
2866 static void print_token_value (FILE *, int, YYSTYPE);
2867 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2868%@}
2869
2870@dots{}
c93f22fc 2871@end example
c732d2c6 2872
aef3da86
PE
2873When in doubt, it is usually safer to put prologue code before all
2874Bison declarations, rather than after. For example, any definitions
2875of feature test macros like @code{_GNU_SOURCE} or
2876@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2877feature test macros can affect the behavior of Bison-generated
2878@code{#include} directives.
2879
2cbe6b7f
JD
2880@node Prologue Alternatives
2881@subsection Prologue Alternatives
2882@cindex Prologue Alternatives
2883
136a0f76 2884@findex %code
16dc6a9e
JD
2885@findex %code requires
2886@findex %code provides
2887@findex %code top
85894313 2888
2cbe6b7f 2889The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2890inflexible. As an alternative, Bison provides a @code{%code}
2891directive with an explicit qualifier field, which identifies the
2892purpose of the code and thus the location(s) where Bison should
2893generate it. For C/C++, the qualifier can be omitted for the default
2894location, or it can be one of @code{requires}, @code{provides},
e0c07222 2895@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2896
2897Look again at the example of the previous section:
2898
c93f22fc 2899@example
2cbe6b7f
JD
2900%@{
2901 #define _GNU_SOURCE
2902 #include <stdio.h>
2903 #include "ptypes.h"
2904%@}
2905
2906%union @{
2907 long int n;
2908 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2909@}
2910
2911%@{
2912 static void print_token_value (FILE *, int, YYSTYPE);
2913 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2914%@}
2915
2916@dots{}
c93f22fc 2917@end example
2cbe6b7f
JD
2918
2919@noindent
ff7571c0
JD
2920Notice that there are two @var{Prologue} sections here, but there's a
2921subtle distinction between their functionality. For example, if you
2922decide to override Bison's default definition for @code{YYLTYPE}, in
2923which @var{Prologue} section should you write your new definition?
2924You should write it in the first since Bison will insert that code
2925into the parser implementation file @emph{before} the default
2926@code{YYLTYPE} definition. In which @var{Prologue} section should you
2927prototype an internal function, @code{trace_token}, that accepts
2928@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2929prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2930@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2931
2932This distinction in functionality between the two @var{Prologue} sections is
2933established by the appearance of the @code{%union} between them.
a501eca9 2934This behavior raises a few questions.
2cbe6b7f
JD
2935First, why should the position of a @code{%union} affect definitions related to
2936@code{YYLTYPE} and @code{yytokentype}?
2937Second, what if there is no @code{%union}?
2938In that case, the second kind of @var{Prologue} section is not available.
2939This behavior is not intuitive.
2940
8e0a5e9e 2941To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2942@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2943Let's go ahead and add the new @code{YYLTYPE} definition and the
2944@code{trace_token} prototype at the same time:
2945
c93f22fc 2946@example
16dc6a9e 2947%code top @{
2cbe6b7f
JD
2948 #define _GNU_SOURCE
2949 #include <stdio.h>
8e0a5e9e
JD
2950
2951 /* WARNING: The following code really belongs
16dc6a9e 2952 * in a `%code requires'; see below. */
8e0a5e9e 2953
2cbe6b7f
JD
2954 #include "ptypes.h"
2955 #define YYLTYPE YYLTYPE
2956 typedef struct YYLTYPE
2957 @{
2958 int first_line;
2959 int first_column;
2960 int last_line;
2961 int last_column;
2962 char *filename;
2963 @} YYLTYPE;
2964@}
2965
2966%union @{
2967 long int n;
2968 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2969@}
2970
2971%code @{
2972 static void print_token_value (FILE *, int, YYSTYPE);
2973 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2974 static void trace_token (enum yytokentype token, YYLTYPE loc);
2975@}
2976
2977@dots{}
c93f22fc 2978@end example
2cbe6b7f
JD
2979
2980@noindent
16dc6a9e
JD
2981In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2982functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2983explicit which kind you intend.
2cbe6b7f
JD
2984Moreover, both kinds are always available even in the absence of @code{%union}.
2985
ff7571c0
JD
2986The @code{%code top} block above logically contains two parts. The
2987first two lines before the warning need to appear near the top of the
2988parser implementation file. The first line after the warning is
2989required by @code{YYSTYPE} and thus also needs to appear in the parser
2990implementation file. However, if you've instructed Bison to generate
2991a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2992want that line to appear before the @code{YYSTYPE} definition in that
2993header file as well. The @code{YYLTYPE} definition should also appear
2994in the parser header file to override the default @code{YYLTYPE}
2995definition there.
2cbe6b7f 2996
16dc6a9e 2997In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2998lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2999definitions.
16dc6a9e 3000Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3001
c93f22fc 3002@example
d4fca427 3003@group
16dc6a9e 3004%code top @{
2cbe6b7f
JD
3005 #define _GNU_SOURCE
3006 #include <stdio.h>
3007@}
d4fca427 3008@end group
2cbe6b7f 3009
d4fca427 3010@group
16dc6a9e 3011%code requires @{
9bc0dd67
JD
3012 #include "ptypes.h"
3013@}
d4fca427
AD
3014@end group
3015@group
9bc0dd67
JD
3016%union @{
3017 long int n;
3018 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3019@}
d4fca427 3020@end group
9bc0dd67 3021
d4fca427 3022@group
16dc6a9e 3023%code requires @{
2cbe6b7f
JD
3024 #define YYLTYPE YYLTYPE
3025 typedef struct YYLTYPE
3026 @{
3027 int first_line;
3028 int first_column;
3029 int last_line;
3030 int last_column;
3031 char *filename;
3032 @} YYLTYPE;
3033@}
d4fca427 3034@end group
2cbe6b7f 3035
d4fca427 3036@group
136a0f76 3037%code @{
2cbe6b7f
JD
3038 static void print_token_value (FILE *, int, YYSTYPE);
3039 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3040 static void trace_token (enum yytokentype token, YYLTYPE loc);
3041@}
d4fca427 3042@end group
2cbe6b7f
JD
3043
3044@dots{}
c93f22fc 3045@end example
2cbe6b7f
JD
3046
3047@noindent
ff7571c0
JD
3048Now Bison will insert @code{#include "ptypes.h"} and the new
3049@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3050and @code{YYLTYPE} definitions in both the parser implementation file
3051and the parser header file. (By the same reasoning, @code{%code
3052requires} would also be the appropriate place to write your own
3053definition for @code{YYSTYPE}.)
3054
3055When you are writing dependency code for @code{YYSTYPE} and
3056@code{YYLTYPE}, you should prefer @code{%code requires} over
3057@code{%code top} regardless of whether you instruct Bison to generate
3058a parser header file. When you are writing code that you need Bison
3059to insert only into the parser implementation file and that has no
3060special need to appear at the top of that file, you should prefer the
3061unqualified @code{%code} over @code{%code top}. These practices will
3062make the purpose of each block of your code explicit to Bison and to
3063other developers reading your grammar file. Following these
3064practices, we expect the unqualified @code{%code} and @code{%code
3065requires} to be the most important of the four @var{Prologue}
16dc6a9e 3066alternatives.
a501eca9 3067
ff7571c0
JD
3068At some point while developing your parser, you might decide to
3069provide @code{trace_token} to modules that are external to your
3070parser. Thus, you might wish for Bison to insert the prototype into
3071both the parser header file and the parser implementation file. Since
3072this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3073@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3074@code{%code requires}. More importantly, since it depends upon
3075@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3076sufficient. Instead, move its prototype from the unqualified
3077@code{%code} to a @code{%code provides}:
2cbe6b7f 3078
c93f22fc 3079@example
d4fca427 3080@group
16dc6a9e 3081%code top @{
2cbe6b7f 3082 #define _GNU_SOURCE
136a0f76 3083 #include <stdio.h>
2cbe6b7f 3084@}
d4fca427 3085@end group
136a0f76 3086
d4fca427 3087@group
16dc6a9e 3088%code requires @{
2cbe6b7f
JD
3089 #include "ptypes.h"
3090@}
d4fca427
AD
3091@end group
3092@group
2cbe6b7f
JD
3093%union @{
3094 long int n;
3095 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3096@}
d4fca427 3097@end group
2cbe6b7f 3098
d4fca427 3099@group
16dc6a9e 3100%code requires @{
2cbe6b7f
JD
3101 #define YYLTYPE YYLTYPE
3102 typedef struct YYLTYPE
3103 @{
3104 int first_line;
3105 int first_column;
3106 int last_line;
3107 int last_column;
3108 char *filename;
3109 @} YYLTYPE;
3110@}
d4fca427 3111@end group
2cbe6b7f 3112
d4fca427 3113@group
16dc6a9e 3114%code provides @{
2cbe6b7f
JD
3115 void trace_token (enum yytokentype token, YYLTYPE loc);
3116@}
d4fca427 3117@end group
2cbe6b7f 3118
d4fca427 3119@group
2cbe6b7f 3120%code @{
9bc0dd67
JD
3121 static void print_token_value (FILE *, int, YYSTYPE);
3122 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3123@}
d4fca427 3124@end group
9bc0dd67
JD
3125
3126@dots{}
c93f22fc 3127@end example
9bc0dd67 3128
2cbe6b7f 3129@noindent
ff7571c0
JD
3130Bison will insert the @code{trace_token} prototype into both the
3131parser header file and the parser implementation file after the
3132definitions for @code{yytokentype}, @code{YYLTYPE}, and
3133@code{YYSTYPE}.
2cbe6b7f 3134
ff7571c0
JD
3135The above examples are careful to write directives in an order that
3136reflects the layout of the generated parser implementation and header
3137files: @code{%code top}, @code{%code requires}, @code{%code provides},
3138and then @code{%code}. While your grammar files may generally be
3139easier to read if you also follow this order, Bison does not require
3140it. Instead, Bison lets you choose an organization that makes sense
3141to you.
2cbe6b7f 3142
a501eca9 3143You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3144In that case, Bison concatenates the contained code in declaration order.
3145This is the only way in which the position of one of these directives within
3146the grammar file affects its functionality.
3147
3148The result of the previous two properties is greater flexibility in how you may
3149organize your grammar file.
3150For example, you may organize semantic-type-related directives by semantic
3151type:
3152
c93f22fc 3153@example
d4fca427 3154@group
16dc6a9e 3155%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3156%union @{ type1 field1; @}
3157%destructor @{ type1_free ($$); @} <field1>
c5026327 3158%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3159@end group
2cbe6b7f 3160
d4fca427 3161@group
16dc6a9e 3162%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3163%union @{ type2 field2; @}
3164%destructor @{ type2_free ($$); @} <field2>
c5026327 3165%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3166@end group
c93f22fc 3167@end example
2cbe6b7f
JD
3168
3169@noindent
3170You could even place each of the above directive groups in the rules section of
3171the grammar file next to the set of rules that uses the associated semantic
3172type.
61fee93e
JD
3173(In the rules section, you must terminate each of those directives with a
3174semicolon.)
2cbe6b7f
JD
3175And you don't have to worry that some directive (like a @code{%union}) in the
3176definitions section is going to adversely affect their functionality in some
3177counter-intuitive manner just because it comes first.
3178Such an organization is not possible using @var{Prologue} sections.
3179
a501eca9 3180This section has been concerned with explaining the advantages of the four
8e0a5e9e 3181@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3182However, in most cases when using these directives, you shouldn't need to
3183think about all the low-level ordering issues discussed here.
3184Instead, you should simply use these directives to label each block of your
3185code according to its purpose and let Bison handle the ordering.
3186@code{%code} is the most generic label.
16dc6a9e
JD
3187Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3188as needed.
a501eca9 3189
342b8b6e 3190@node Bison Declarations
bfa74976
RS
3191@subsection The Bison Declarations Section
3192@cindex Bison declarations (introduction)
3193@cindex declarations, Bison (introduction)
3194
3195The @var{Bison declarations} section contains declarations that define
3196terminal and nonterminal symbols, specify precedence, and so on.
3197In some simple grammars you may not need any declarations.
3198@xref{Declarations, ,Bison Declarations}.
3199
342b8b6e 3200@node Grammar Rules
bfa74976
RS
3201@subsection The Grammar Rules Section
3202@cindex grammar rules section
3203@cindex rules section for grammar
3204
3205The @dfn{grammar rules} section contains one or more Bison grammar
3206rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3207
3208There must always be at least one grammar rule, and the first
3209@samp{%%} (which precedes the grammar rules) may never be omitted even
3210if it is the first thing in the file.
3211
38a92d50 3212@node Epilogue
75f5aaea 3213@subsection The epilogue
bfa74976 3214@cindex additional C code section
75f5aaea 3215@cindex epilogue
bfa74976
RS
3216@cindex C code, section for additional
3217
ff7571c0
JD
3218The @var{Epilogue} is copied verbatim to the end of the parser
3219implementation file, just as the @var{Prologue} is copied to the
3220beginning. This is the most convenient place to put anything that you
3221want to have in the parser implementation file but which need not come
3222before the definition of @code{yyparse}. For example, the definitions
3223of @code{yylex} and @code{yyerror} often go here. Because C requires
3224functions to be declared before being used, you often need to declare
3225functions like @code{yylex} and @code{yyerror} in the Prologue, even
3226if you define them in the Epilogue. @xref{Interface, ,Parser
3227C-Language Interface}.
bfa74976
RS
3228
3229If the last section is empty, you may omit the @samp{%%} that separates it
3230from the grammar rules.
3231
f8e1c9e5
AD
3232The Bison parser itself contains many macros and identifiers whose names
3233start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3234any such names (except those documented in this manual) in the epilogue
3235of the grammar file.
bfa74976 3236
342b8b6e 3237@node Symbols
bfa74976
RS
3238@section Symbols, Terminal and Nonterminal
3239@cindex nonterminal symbol
3240@cindex terminal symbol
3241@cindex token type
3242@cindex symbol
3243
3244@dfn{Symbols} in Bison grammars represent the grammatical classifications
3245of the language.
3246
3247A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3248class of syntactically equivalent tokens. You use the symbol in grammar
3249rules to mean that a token in that class is allowed. The symbol is
3250represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3251function returns a token type code to indicate what kind of token has
3252been read. You don't need to know what the code value is; you can use
3253the symbol to stand for it.
bfa74976 3254
f8e1c9e5
AD
3255A @dfn{nonterminal symbol} stands for a class of syntactically
3256equivalent groupings. The symbol name is used in writing grammar rules.
3257By convention, it should be all lower case.
bfa74976 3258
82f3355e
JD
3259Symbol names can contain letters, underscores, periods, and non-initial
3260digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3261with POSIX Yacc. Periods and dashes make symbol names less convenient to
3262use with named references, which require brackets around such names
3263(@pxref{Named References}). Terminal symbols that contain periods or dashes
3264make little sense: since they are not valid symbols (in most programming
3265languages) they are not exported as token names.
bfa74976 3266
931c7513 3267There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3268
3269@itemize @bullet
3270@item
3271A @dfn{named token type} is written with an identifier, like an
c827f760 3272identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3273such name must be defined with a Bison declaration such as
3274@code{%token}. @xref{Token Decl, ,Token Type Names}.
3275
3276@item
3277@cindex character token
3278@cindex literal token
3279@cindex single-character literal
931c7513
RS
3280A @dfn{character token type} (or @dfn{literal character token}) is
3281written in the grammar using the same syntax used in C for character
3282constants; for example, @code{'+'} is a character token type. A
3283character token type doesn't need to be declared unless you need to
3284specify its semantic value data type (@pxref{Value Type, ,Data Types of
3285Semantic Values}), associativity, or precedence (@pxref{Precedence,
3286,Operator Precedence}).
bfa74976
RS
3287
3288By convention, a character token type is used only to represent a
3289token that consists of that particular character. Thus, the token
3290type @code{'+'} is used to represent the character @samp{+} as a
3291token. Nothing enforces this convention, but if you depart from it,
3292your program will confuse other readers.
3293
3294All the usual escape sequences used in character literals in C can be
3295used in Bison as well, but you must not use the null character as a
72d2299c
PE
3296character literal because its numeric code, zero, signifies
3297end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3298for @code{yylex}}). Also, unlike standard C, trigraphs have no
3299special meaning in Bison character literals, nor is backslash-newline
3300allowed.
931c7513
RS
3301
3302@item
3303@cindex string token
3304@cindex literal string token
9ecbd125 3305@cindex multicharacter literal
931c7513
RS
3306A @dfn{literal string token} is written like a C string constant; for
3307example, @code{"<="} is a literal string token. A literal string token
3308doesn't need to be declared unless you need to specify its semantic
14ded682 3309value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3310(@pxref{Precedence}).
3311
3312You can associate the literal string token with a symbolic name as an
3313alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3314Declarations}). If you don't do that, the lexical analyzer has to
3315retrieve the token number for the literal string token from the
3316@code{yytname} table (@pxref{Calling Convention}).
3317
c827f760 3318@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3319
3320By convention, a literal string token is used only to represent a token
3321that consists of that particular string. Thus, you should use the token
3322type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3323does not enforce this convention, but if you depart from it, people who
931c7513
RS
3324read your program will be confused.
3325
3326All the escape sequences used in string literals in C can be used in
92ac3705
PE
3327Bison as well, except that you must not use a null character within a
3328string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3329meaning in Bison string literals, nor is backslash-newline allowed. A
3330literal string token must contain two or more characters; for a token
3331containing just one character, use a character token (see above).
bfa74976
RS
3332@end itemize
3333
3334How you choose to write a terminal symbol has no effect on its
3335grammatical meaning. That depends only on where it appears in rules and
3336on when the parser function returns that symbol.
3337
72d2299c
PE
3338The value returned by @code{yylex} is always one of the terminal
3339symbols, except that a zero or negative value signifies end-of-input.
3340Whichever way you write the token type in the grammar rules, you write
3341it the same way in the definition of @code{yylex}. The numeric code
3342for a character token type is simply the positive numeric code of the
3343character, so @code{yylex} can use the identical value to generate the
3344requisite code, though you may need to convert it to @code{unsigned
3345char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3346Each named token type becomes a C macro in the parser implementation
3347file, so @code{yylex} can use the name to stand for the code. (This
3348is why periods don't make sense in terminal symbols.) @xref{Calling
3349Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3350
3351If @code{yylex} is defined in a separate file, you need to arrange for the
3352token-type macro definitions to be available there. Use the @samp{-d}
3353option when you run Bison, so that it will write these macro definitions
3354into a separate header file @file{@var{name}.tab.h} which you can include
3355in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3356
72d2299c 3357If you want to write a grammar that is portable to any Standard C
9d9b8b70 3358host, you must use only nonnull character tokens taken from the basic
c827f760 3359execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3360digits, the 52 lower- and upper-case English letters, and the
3361characters in the following C-language string:
3362
3363@example
3364"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3365@end example
3366
f8e1c9e5
AD
3367The @code{yylex} function and Bison must use a consistent character set
3368and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3369ASCII environment, but then compile and run the resulting
f8e1c9e5 3370program in an environment that uses an incompatible character set like
8a4281b9
JD
3371EBCDIC, the resulting program may not work because the tables
3372generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3373character tokens. It is standard practice for software distributions to
3374contain C source files that were generated by Bison in an
8a4281b9
JD
3375ASCII environment, so installers on platforms that are
3376incompatible with ASCII must rebuild those files before
f8e1c9e5 3377compiling them.
e966383b 3378
bfa74976
RS
3379The symbol @code{error} is a terminal symbol reserved for error recovery
3380(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3381In particular, @code{yylex} should never return this value. The default
3382value of the error token is 256, unless you explicitly assigned 256 to
3383one of your tokens with a @code{%token} declaration.
bfa74976 3384
342b8b6e 3385@node Rules
bfa74976
RS
3386@section Syntax of Grammar Rules
3387@cindex rule syntax
3388@cindex grammar rule syntax
3389@cindex syntax of grammar rules
3390
3391A Bison grammar rule has the following general form:
3392
3393@example
e425e872 3394@group
5e9b6624 3395@var{result}: @var{components}@dots{};
e425e872 3396@end group
bfa74976
RS
3397@end example
3398
3399@noindent
9ecbd125 3400where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3401and @var{components} are various terminal and nonterminal symbols that
13863333 3402are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3403
3404For example,
3405
3406@example
3407@group
5e9b6624 3408exp: exp '+' exp;
bfa74976
RS
3409@end group
3410@end example
3411
3412@noindent
3413says that two groupings of type @code{exp}, with a @samp{+} token in between,
3414can be combined into a larger grouping of type @code{exp}.
3415
72d2299c
PE
3416White space in rules is significant only to separate symbols. You can add
3417extra white space as you wish.
bfa74976
RS
3418
3419Scattered among the components can be @var{actions} that determine
3420the semantics of the rule. An action looks like this:
3421
3422@example
3423@{@var{C statements}@}
3424@end example
3425
3426@noindent
287c78f6
PE
3427@cindex braced code
3428This is an example of @dfn{braced code}, that is, C code surrounded by
3429braces, much like a compound statement in C@. Braced code can contain
3430any sequence of C tokens, so long as its braces are balanced. Bison
3431does not check the braced code for correctness directly; it merely
ff7571c0
JD
3432copies the code to the parser implementation file, where the C
3433compiler can check it.
287c78f6
PE
3434
3435Within braced code, the balanced-brace count is not affected by braces
3436within comments, string literals, or character constants, but it is
3437affected by the C digraphs @samp{<%} and @samp{%>} that represent
3438braces. At the top level braced code must be terminated by @samp{@}}
3439and not by a digraph. Bison does not look for trigraphs, so if braced
3440code uses trigraphs you should ensure that they do not affect the
3441nesting of braces or the boundaries of comments, string literals, or
3442character constants.
3443
bfa74976
RS
3444Usually there is only one action and it follows the components.
3445@xref{Actions}.
3446
3447@findex |
3448Multiple rules for the same @var{result} can be written separately or can
3449be joined with the vertical-bar character @samp{|} as follows:
3450
bfa74976
RS
3451@example
3452@group
5e9b6624
AD
3453@var{result}:
3454 @var{rule1-components}@dots{}
3455| @var{rule2-components}@dots{}
3456@dots{}
3457;
bfa74976
RS
3458@end group
3459@end example
bfa74976
RS
3460
3461@noindent
3462They are still considered distinct rules even when joined in this way.
3463
3464If @var{components} in a rule is empty, it means that @var{result} can
3465match the empty string. For example, here is how to define a
3466comma-separated sequence of zero or more @code{exp} groupings:
3467
3468@example
3469@group
5e9b6624
AD
3470expseq:
3471 /* empty */
3472| expseq1
3473;
bfa74976
RS
3474@end group
3475
3476@group
5e9b6624
AD
3477expseq1:
3478 exp
3479| expseq1 ',' exp
3480;
bfa74976
RS
3481@end group
3482@end example
3483
3484@noindent
3485It is customary to write a comment @samp{/* empty */} in each rule
3486with no components.
3487
342b8b6e 3488@node Recursion
bfa74976
RS
3489@section Recursive Rules
3490@cindex recursive rule
3491
f8e1c9e5
AD
3492A rule is called @dfn{recursive} when its @var{result} nonterminal
3493appears also on its right hand side. Nearly all Bison grammars need to
3494use recursion, because that is the only way to define a sequence of any
3495number of a particular thing. Consider this recursive definition of a
9ecbd125 3496comma-separated sequence of one or more expressions:
bfa74976
RS
3497
3498@example
3499@group
5e9b6624
AD
3500expseq1:
3501 exp
3502| expseq1 ',' exp
3503;
bfa74976
RS
3504@end group
3505@end example
3506
3507@cindex left recursion
3508@cindex right recursion
3509@noindent
3510Since the recursive use of @code{expseq1} is the leftmost symbol in the
3511right hand side, we call this @dfn{left recursion}. By contrast, here
3512the same construct is defined using @dfn{right recursion}:
3513
3514@example
3515@group
5e9b6624
AD
3516expseq1:
3517 exp
3518| exp ',' expseq1
3519;
bfa74976
RS
3520@end group
3521@end example
3522
3523@noindent
ec3bc396
AD
3524Any kind of sequence can be defined using either left recursion or right
3525recursion, but you should always use left recursion, because it can
3526parse a sequence of any number of elements with bounded stack space.
3527Right recursion uses up space on the Bison stack in proportion to the
3528number of elements in the sequence, because all the elements must be
3529shifted onto the stack before the rule can be applied even once.
3530@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3531of this.
bfa74976
RS
3532
3533@cindex mutual recursion
3534@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3535rule does not appear directly on its right hand side, but does appear
3536in rules for other nonterminals which do appear on its right hand
13863333 3537side.
bfa74976
RS
3538
3539For example:
3540
3541@example
3542@group
5e9b6624
AD
3543expr:
3544 primary
3545| primary '+' primary
3546;
bfa74976
RS
3547@end group
3548
3549@group
5e9b6624
AD
3550primary:
3551 constant
3552| '(' expr ')'
3553;
bfa74976
RS
3554@end group
3555@end example
3556
3557@noindent
3558defines two mutually-recursive nonterminals, since each refers to the
3559other.
3560
342b8b6e 3561@node Semantics
bfa74976
RS
3562@section Defining Language Semantics
3563@cindex defining language semantics
13863333 3564@cindex language semantics, defining
bfa74976
RS
3565
3566The grammar rules for a language determine only the syntax. The semantics
3567are determined by the semantic values associated with various tokens and
3568groupings, and by the actions taken when various groupings are recognized.
3569
3570For example, the calculator calculates properly because the value
3571associated with each expression is the proper number; it adds properly
3572because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3573the numbers associated with @var{x} and @var{y}.
3574
3575@menu
3576* Value Type:: Specifying one data type for all semantic values.
3577* Multiple Types:: Specifying several alternative data types.
3578* Actions:: An action is the semantic definition of a grammar rule.
3579* Action Types:: Specifying data types for actions to operate on.
3580* Mid-Rule Actions:: Most actions go at the end of a rule.
3581 This says when, why and how to use the exceptional
3582 action in the middle of a rule.
3583@end menu
3584
342b8b6e 3585@node Value Type
bfa74976
RS
3586@subsection Data Types of Semantic Values
3587@cindex semantic value type
3588@cindex value type, semantic
3589@cindex data types of semantic values
3590@cindex default data type
3591
3592In a simple program it may be sufficient to use the same data type for
3593the semantic values of all language constructs. This was true in the
8a4281b9 3594RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3595Notation Calculator}).
bfa74976 3596
ddc8ede1
PE
3597Bison normally uses the type @code{int} for semantic values if your
3598program uses the same data type for all language constructs. To
bfa74976
RS
3599specify some other type, define @code{YYSTYPE} as a macro, like this:
3600
3601@example
3602#define YYSTYPE double
3603@end example
3604
3605@noindent
50cce58e
PE
3606@code{YYSTYPE}'s replacement list should be a type name
3607that does not contain parentheses or square brackets.
342b8b6e 3608This macro definition must go in the prologue of the grammar file
75f5aaea 3609(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3610
342b8b6e 3611@node Multiple Types
bfa74976
RS
3612@subsection More Than One Value Type
3613
3614In most programs, you will need different data types for different kinds
3615of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3616@code{int} or @code{long int}, while a string constant needs type
3617@code{char *}, and an identifier might need a pointer to an entry in the
3618symbol table.
bfa74976
RS
3619
3620To use more than one data type for semantic values in one parser, Bison
3621requires you to do two things:
3622
3623@itemize @bullet
3624@item
ddc8ede1 3625Specify the entire collection of possible data types, either by using the
704a47c4 3626@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3627Value Types}), or by using a @code{typedef} or a @code{#define} to
3628define @code{YYSTYPE} to be a union type whose member names are
3629the type tags.
bfa74976
RS
3630
3631@item
14ded682
AD
3632Choose one of those types for each symbol (terminal or nonterminal) for
3633which semantic values are used. This is done for tokens with the
3634@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3635and for groupings with the @code{%type} Bison declaration (@pxref{Type
3636Decl, ,Nonterminal Symbols}).
bfa74976
RS
3637@end itemize
3638
342b8b6e 3639@node Actions
bfa74976
RS
3640@subsection Actions
3641@cindex action
3642@vindex $$
3643@vindex $@var{n}
d013372c
AR
3644@vindex $@var{name}
3645@vindex $[@var{name}]
bfa74976
RS
3646
3647An action accompanies a syntactic rule and contains C code to be executed
3648each time an instance of that rule is recognized. The task of most actions
3649is to compute a semantic value for the grouping built by the rule from the
3650semantic values associated with tokens or smaller groupings.
3651
287c78f6
PE
3652An action consists of braced code containing C statements, and can be
3653placed at any position in the rule;
704a47c4
AD
3654it is executed at that position. Most rules have just one action at the
3655end of the rule, following all the components. Actions in the middle of
3656a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3657Actions, ,Actions in Mid-Rule}).
bfa74976 3658
ff7571c0
JD
3659The C code in an action can refer to the semantic values of the
3660components matched by the rule with the construct @code{$@var{n}},
3661which stands for the value of the @var{n}th component. The semantic
3662value for the grouping being constructed is @code{$$}. In addition,
3663the semantic values of symbols can be accessed with the named
3664references construct @code{$@var{name}} or @code{$[@var{name}]}.
3665Bison translates both of these constructs into expressions of the
3666appropriate type when it copies the actions into the parser
3667implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3668for the current grouping) is translated to a modifiable lvalue, so it
3669can be assigned to.
bfa74976
RS
3670
3671Here is a typical example:
3672
3673@example
3674@group
5e9b6624
AD
3675exp:
3676@dots{}
3677| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3678@end group
3679@end example
3680
d013372c
AR
3681Or, in terms of named references:
3682
3683@example
3684@group
5e9b6624
AD
3685exp[result]:
3686@dots{}
3687| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3688@end group
3689@end example
3690
bfa74976
RS
3691@noindent
3692This rule constructs an @code{exp} from two smaller @code{exp} groupings
3693connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3694(@code{$left} and @code{$right})
bfa74976
RS
3695refer to the semantic values of the two component @code{exp} groupings,
3696which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3697The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3698semantic value of
bfa74976
RS
3699the addition-expression just recognized by the rule. If there were a
3700useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3701referred to as @code{$2}.
bfa74976 3702
a7b15ab9
JD
3703@xref{Named References}, for more information about using the named
3704references construct.
d013372c 3705
3ded9a63
AD
3706Note that the vertical-bar character @samp{|} is really a rule
3707separator, and actions are attached to a single rule. This is a
3708difference with tools like Flex, for which @samp{|} stands for either
3709``or'', or ``the same action as that of the next rule''. In the
3710following example, the action is triggered only when @samp{b} is found:
3711
3712@example
3713@group
3714a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3715@end group
3716@end example
3717
bfa74976
RS
3718@cindex default action
3719If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3720@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3721becomes the value of the whole rule. Of course, the default action is
3722valid only if the two data types match. There is no meaningful default
3723action for an empty rule; every empty rule must have an explicit action
3724unless the rule's value does not matter.
bfa74976
RS
3725
3726@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3727to tokens and groupings on the stack @emph{before} those that match the
3728current rule. This is a very risky practice, and to use it reliably
3729you must be certain of the context in which the rule is applied. Here
3730is a case in which you can use this reliably:
3731
3732@example
3733@group
5e9b6624
AD
3734foo:
3735 expr bar '+' expr @{ @dots{} @}
3736| expr bar '-' expr @{ @dots{} @}
3737;
bfa74976
RS
3738@end group
3739
3740@group
5e9b6624
AD
3741bar:
3742 /* empty */ @{ previous_expr = $0; @}
3743;
bfa74976
RS
3744@end group
3745@end example
3746
3747As long as @code{bar} is used only in the fashion shown here, @code{$0}
3748always refers to the @code{expr} which precedes @code{bar} in the
3749definition of @code{foo}.
3750
32c29292 3751@vindex yylval
742e4900 3752It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3753any, from a semantic action.
3754This semantic value is stored in @code{yylval}.
3755@xref{Action Features, ,Special Features for Use in Actions}.
3756
342b8b6e 3757@node Action Types
bfa74976
RS
3758@subsection Data Types of Values in Actions
3759@cindex action data types
3760@cindex data types in actions
3761
3762If you have chosen a single data type for semantic values, the @code{$$}
3763and @code{$@var{n}} constructs always have that data type.
3764
3765If you have used @code{%union} to specify a variety of data types, then you
3766must declare a choice among these types for each terminal or nonterminal
3767symbol that can have a semantic value. Then each time you use @code{$$} or
3768@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3769in the rule. In this example,
bfa74976
RS
3770
3771@example
3772@group
5e9b6624
AD
3773exp:
3774 @dots{}
3775| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3776@end group
3777@end example
3778
3779@noindent
3780@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3781have the data type declared for the nonterminal symbol @code{exp}. If
3782@code{$2} were used, it would have the data type declared for the
e0c471a9 3783terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3784
3785Alternatively, you can specify the data type when you refer to the value,
3786by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3787reference. For example, if you have defined types as shown here:
3788
3789@example
3790@group
3791%union @{
3792 int itype;
3793 double dtype;
3794@}
3795@end group
3796@end example
3797
3798@noindent
3799then you can write @code{$<itype>1} to refer to the first subunit of the
3800rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3801
342b8b6e 3802@node Mid-Rule Actions
bfa74976
RS
3803@subsection Actions in Mid-Rule
3804@cindex actions in mid-rule
3805@cindex mid-rule actions
3806
3807Occasionally it is useful to put an action in the middle of a rule.
3808These actions are written just like usual end-of-rule actions, but they
3809are executed before the parser even recognizes the following components.
3810
3811A mid-rule action may refer to the components preceding it using
3812@code{$@var{n}}, but it may not refer to subsequent components because
3813it is run before they are parsed.
3814
3815The mid-rule action itself counts as one of the components of the rule.
3816This makes a difference when there is another action later in the same rule
3817(and usually there is another at the end): you have to count the actions
3818along with the symbols when working out which number @var{n} to use in
3819@code{$@var{n}}.
3820
3821The mid-rule action can also have a semantic value. The action can set
3822its value with an assignment to @code{$$}, and actions later in the rule
3823can refer to the value using @code{$@var{n}}. Since there is no symbol
3824to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3825in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3826specify a data type each time you refer to this value.
bfa74976
RS
3827
3828There is no way to set the value of the entire rule with a mid-rule
3829action, because assignments to @code{$$} do not have that effect. The
3830only way to set the value for the entire rule is with an ordinary action
3831at the end of the rule.
3832
3833Here is an example from a hypothetical compiler, handling a @code{let}
3834statement that looks like @samp{let (@var{variable}) @var{statement}} and
3835serves to create a variable named @var{variable} temporarily for the
3836duration of @var{statement}. To parse this construct, we must put
3837@var{variable} into the symbol table while @var{statement} is parsed, then
3838remove it afterward. Here is how it is done:
3839
3840@example
3841@group
5e9b6624
AD
3842stmt:
3843 LET '(' var ')'
3844 @{ $<context>$ = push_context (); declare_variable ($3); @}
3845 stmt
3846 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3847@end group
3848@end example
3849
3850@noindent
3851As soon as @samp{let (@var{variable})} has been recognized, the first
3852action is run. It saves a copy of the current semantic context (the
3853list of accessible variables) as its semantic value, using alternative
3854@code{context} in the data-type union. Then it calls
3855@code{declare_variable} to add the new variable to that list. Once the
3856first action is finished, the embedded statement @code{stmt} can be
3857parsed. Note that the mid-rule action is component number 5, so the
3858@samp{stmt} is component number 6.
3859
3860After the embedded statement is parsed, its semantic value becomes the
3861value of the entire @code{let}-statement. Then the semantic value from the
3862earlier action is used to restore the prior list of variables. This
3863removes the temporary @code{let}-variable from the list so that it won't
3864appear to exist while the rest of the program is parsed.
3865
841a7737
JD
3866@findex %destructor
3867@cindex discarded symbols, mid-rule actions
3868@cindex error recovery, mid-rule actions
3869In the above example, if the parser initiates error recovery (@pxref{Error
3870Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3871it might discard the previous semantic context @code{$<context>5} without
3872restoring it.
3873Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3874Discarded Symbols}).
ec5479ce
JD
3875However, Bison currently provides no means to declare a destructor specific to
3876a particular mid-rule action's semantic value.
841a7737
JD
3877
3878One solution is to bury the mid-rule action inside a nonterminal symbol and to
3879declare a destructor for that symbol:
3880
3881@example
3882@group
3883%type <context> let
3884%destructor @{ pop_context ($$); @} let
3885
3886%%
3887
5e9b6624
AD
3888stmt:
3889 let stmt
3890 @{
3891 $$ = $2;
3892 pop_context ($1);
3893 @};
841a7737 3894
5e9b6624
AD
3895let:
3896 LET '(' var ')'
3897 @{
3898 $$ = push_context ();
3899 declare_variable ($3);
3900 @};
841a7737
JD
3901
3902@end group
3903@end example
3904
3905@noindent
3906Note that the action is now at the end of its rule.
3907Any mid-rule action can be converted to an end-of-rule action in this way, and
3908this is what Bison actually does to implement mid-rule actions.
3909
bfa74976
RS
3910Taking action before a rule is completely recognized often leads to
3911conflicts since the parser must commit to a parse in order to execute the
3912action. For example, the following two rules, without mid-rule actions,
3913can coexist in a working parser because the parser can shift the open-brace
3914token and look at what follows before deciding whether there is a
3915declaration or not:
3916
3917@example
3918@group
5e9b6624
AD
3919compound:
3920 '@{' declarations statements '@}'
3921| '@{' statements '@}'
3922;
bfa74976
RS
3923@end group
3924@end example
3925
3926@noindent
3927But when we add a mid-rule action as follows, the rules become nonfunctional:
3928
3929@example
3930@group
5e9b6624
AD
3931compound:
3932 @{ prepare_for_local_variables (); @}
3933 '@{' declarations statements '@}'
bfa74976
RS
3934@end group
3935@group
5e9b6624
AD
3936| '@{' statements '@}'
3937;
bfa74976
RS
3938@end group
3939@end example
3940
3941@noindent
3942Now the parser is forced to decide whether to run the mid-rule action
3943when it has read no farther than the open-brace. In other words, it
3944must commit to using one rule or the other, without sufficient
3945information to do it correctly. (The open-brace token is what is called
742e4900
JD
3946the @dfn{lookahead} token at this time, since the parser is still
3947deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3948
3949You might think that you could correct the problem by putting identical
3950actions into the two rules, like this:
3951
3952@example
3953@group
5e9b6624
AD
3954compound:
3955 @{ prepare_for_local_variables (); @}
3956 '@{' declarations statements '@}'
3957| @{ prepare_for_local_variables (); @}
3958 '@{' statements '@}'
3959;
bfa74976
RS
3960@end group
3961@end example
3962
3963@noindent
3964But this does not help, because Bison does not realize that the two actions
3965are identical. (Bison never tries to understand the C code in an action.)
3966
3967If the grammar is such that a declaration can be distinguished from a
3968statement by the first token (which is true in C), then one solution which
3969does work is to put the action after the open-brace, like this:
3970
3971@example
3972@group
5e9b6624
AD
3973compound:
3974 '@{' @{ prepare_for_local_variables (); @}
3975 declarations statements '@}'
3976| '@{' statements '@}'
3977;
bfa74976
RS
3978@end group
3979@end example
3980
3981@noindent
3982Now the first token of the following declaration or statement,
3983which would in any case tell Bison which rule to use, can still do so.
3984
3985Another solution is to bury the action inside a nonterminal symbol which
3986serves as a subroutine:
3987
3988@example
3989@group
5e9b6624
AD
3990subroutine:
3991 /* empty */ @{ prepare_for_local_variables (); @}
3992;
bfa74976
RS
3993@end group
3994
3995@group
5e9b6624
AD
3996compound:
3997 subroutine '@{' declarations statements '@}'
3998| subroutine '@{' statements '@}'
3999;
bfa74976
RS
4000@end group
4001@end example
4002
4003@noindent
4004Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4005deciding which rule for @code{compound} it will eventually use.
bfa74976 4006
303834cc 4007@node Tracking Locations
847bf1f5
AD
4008@section Tracking Locations
4009@cindex location
95923bd6
AD
4010@cindex textual location
4011@cindex location, textual
847bf1f5
AD
4012
4013Though grammar rules and semantic actions are enough to write a fully
72d2299c 4014functional parser, it can be useful to process some additional information,
3e259915
MA
4015especially symbol locations.
4016
704a47c4
AD
4017The way locations are handled is defined by providing a data type, and
4018actions to take when rules are matched.
847bf1f5
AD
4019
4020@menu
4021* Location Type:: Specifying a data type for locations.
4022* Actions and Locations:: Using locations in actions.
4023* Location Default Action:: Defining a general way to compute locations.
4024@end menu
4025
342b8b6e 4026@node Location Type
847bf1f5
AD
4027@subsection Data Type of Locations
4028@cindex data type of locations
4029@cindex default location type
4030
4031Defining a data type for locations is much simpler than for semantic values,
4032since all tokens and groupings always use the same type.
4033
50cce58e
PE
4034You can specify the type of locations by defining a macro called
4035@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4036defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4037When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4038four members:
4039
4040@example
6273355b 4041typedef struct YYLTYPE
847bf1f5
AD
4042@{
4043 int first_line;
4044 int first_column;
4045 int last_line;
4046 int last_column;
6273355b 4047@} YYLTYPE;
847bf1f5
AD
4048@end example
4049
d59e456d
AD
4050When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4051initializes all these fields to 1 for @code{yylloc}. To initialize
4052@code{yylloc} with a custom location type (or to chose a different
4053initialization), use the @code{%initial-action} directive. @xref{Initial
4054Action Decl, , Performing Actions before Parsing}.
cd48d21d 4055
342b8b6e 4056@node Actions and Locations
847bf1f5
AD
4057@subsection Actions and Locations
4058@cindex location actions
4059@cindex actions, location
4060@vindex @@$
4061@vindex @@@var{n}
d013372c
AR
4062@vindex @@@var{name}
4063@vindex @@[@var{name}]
847bf1f5
AD
4064
4065Actions are not only useful for defining language semantics, but also for
4066describing the behavior of the output parser with locations.
4067
4068The most obvious way for building locations of syntactic groupings is very
72d2299c 4069similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4070constructs can be used to access the locations of the elements being matched.
4071The location of the @var{n}th component of the right hand side is
4072@code{@@@var{n}}, while the location of the left hand side grouping is
4073@code{@@$}.
4074
d013372c
AR
4075In addition, the named references construct @code{@@@var{name}} and
4076@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4077@xref{Named References}, for more information about using the named
4078references construct.
d013372c 4079
3e259915 4080Here is a basic example using the default data type for locations:
847bf1f5
AD
4081
4082@example
4083@group
5e9b6624
AD
4084exp:
4085 @dots{}
4086| exp '/' exp
4087 @{
4088 @@$.first_column = @@1.first_column;
4089 @@$.first_line = @@1.first_line;
4090 @@$.last_column = @@3.last_column;
4091 @@$.last_line = @@3.last_line;
4092 if ($3)
4093 $$ = $1 / $3;
4094 else
4095 @{
4096 $$ = 1;
4097 fprintf (stderr,
4098 "Division by zero, l%d,c%d-l%d,c%d",
4099 @@3.first_line, @@3.first_column,
4100 @@3.last_line, @@3.last_column);
4101 @}
4102 @}
847bf1f5
AD
4103@end group
4104@end example
4105
3e259915 4106As for semantic values, there is a default action for locations that is
72d2299c 4107run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4108beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4109last symbol.
3e259915 4110
72d2299c 4111With this default action, the location tracking can be fully automatic. The
3e259915
MA
4112example above simply rewrites this way:
4113
4114@example
4115@group
5e9b6624
AD
4116exp:
4117 @dots{}
4118| exp '/' exp
4119 @{
4120 if ($3)
4121 $$ = $1 / $3;
4122 else
4123 @{
4124 $$ = 1;
4125 fprintf (stderr,
4126 "Division by zero, l%d,c%d-l%d,c%d",
4127 @@3.first_line, @@3.first_column,
4128 @@3.last_line, @@3.last_column);
4129 @}
4130 @}
3e259915
MA
4131@end group
4132@end example
847bf1f5 4133
32c29292 4134@vindex yylloc
742e4900 4135It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4136from a semantic action.
4137This location is stored in @code{yylloc}.
4138@xref{Action Features, ,Special Features for Use in Actions}.
4139
342b8b6e 4140@node Location Default Action
847bf1f5
AD
4141@subsection Default Action for Locations
4142@vindex YYLLOC_DEFAULT
8a4281b9 4143@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4144
72d2299c 4145Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4146locations are much more general than semantic values, there is room in
4147the output parser to redefine the default action to take for each
72d2299c 4148rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4149matched, before the associated action is run. It is also invoked
4150while processing a syntax error, to compute the error's location.
8a4281b9 4151Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4152parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4153of that ambiguity.
847bf1f5 4154
3e259915 4155Most of the time, this macro is general enough to suppress location
79282c6c 4156dedicated code from semantic actions.
847bf1f5 4157
72d2299c 4158The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4159the location of the grouping (the result of the computation). When a
766de5eb 4160rule is matched, the second parameter identifies locations of
96b93a3d 4161all right hand side elements of the rule being matched, and the third
8710fc41 4162parameter is the size of the rule's right hand side.
8a4281b9 4163When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4164right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4165When processing a syntax error, the second parameter identifies locations
4166of the symbols that were discarded during error processing, and the third
96b93a3d 4167parameter is the number of discarded symbols.
847bf1f5 4168
766de5eb 4169By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4170
c93f22fc
AD
4171@example
4172@group
4173# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4174do \
4175 if (N) \
4176 @{ \
4177 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4178 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4179 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4180 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4181 @} \
4182 else \
4183 @{ \
4184 (Cur).first_line = (Cur).last_line = \
4185 YYRHSLOC(Rhs, 0).last_line; \
4186 (Cur).first_column = (Cur).last_column = \
4187 YYRHSLOC(Rhs, 0).last_column; \
4188 @} \
4189while (0)
4190@end group
4191@end example
676385e2 4192
aaaa2aae 4193@noindent
766de5eb
PE
4194where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4195in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4196just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4197
3e259915 4198When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4199
3e259915 4200@itemize @bullet
79282c6c 4201@item
72d2299c 4202All arguments are free of side-effects. However, only the first one (the
3e259915 4203result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4204
3e259915 4205@item
766de5eb
PE
4206For consistency with semantic actions, valid indexes within the
4207right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4208valid index, and it refers to the symbol just before the reduction.
4209During error processing @var{n} is always positive.
0ae99356
PE
4210
4211@item
4212Your macro should parenthesize its arguments, if need be, since the
4213actual arguments may not be surrounded by parentheses. Also, your
4214macro should expand to something that can be used as a single
4215statement when it is followed by a semicolon.
3e259915 4216@end itemize
847bf1f5 4217
378e917c 4218@node Named References
a7b15ab9 4219@section Named References
378e917c
JD
4220@cindex named references
4221
a40e77eb
JD
4222As described in the preceding sections, the traditional way to refer to any
4223semantic value or location is a @dfn{positional reference}, which takes the
4224form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4225such a reference is not very descriptive. Moreover, if you later decide to
4226insert or remove symbols in the right-hand side of a grammar rule, the need
4227to renumber such references can be tedious and error-prone.
4228
4229To avoid these issues, you can also refer to a semantic value or location
4230using a @dfn{named reference}. First of all, original symbol names may be
4231used as named references. For example:
378e917c
JD
4232
4233@example
4234@group
4235invocation: op '(' args ')'
4236 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4237@end group
4238@end example
4239
4240@noindent
a40e77eb 4241Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4242
4243@example
4244@group
4245invocation: op '(' args ')'
4246 @{ $$ = new_invocation ($op, $args, @@$); @}
4247@end group
4248@end example
4249
4250@noindent
4251However, sometimes regular symbol names are not sufficient due to
4252ambiguities:
4253
4254@example
4255@group
4256exp: exp '/' exp
4257 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4258
4259exp: exp '/' exp
4260 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4261
4262exp: exp '/' exp
4263 @{ $$ = $1 / $3; @} // No error.
4264@end group
4265@end example
4266
4267@noindent
4268When ambiguity occurs, explicitly declared names may be used for values and
4269locations. Explicit names are declared as a bracketed name after a symbol
4270appearance in rule definitions. For example:
4271@example
4272@group
4273exp[result]: exp[left] '/' exp[right]
4274 @{ $result = $left / $right; @}
4275@end group
4276@end example
4277
4278@noindent
a7b15ab9
JD
4279In order to access a semantic value generated by a mid-rule action, an
4280explicit name may also be declared by putting a bracketed name after the
4281closing brace of the mid-rule action code:
378e917c
JD
4282@example
4283@group
4284exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4285 @{ $res = $left + $right; @}
4286@end group
4287@end example
4288
4289@noindent
4290
4291In references, in order to specify names containing dots and dashes, an explicit
4292bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4293@example
4294@group
762caaf6 4295if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4296 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4297@end group
4298@end example
4299
4300It often happens that named references are followed by a dot, dash or other
4301C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4302@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4303@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4304value. In order to force Bison to recognize @samp{name.suffix} in its
4305entirety as the name of a semantic value, the bracketed syntax
4306@samp{$[name.suffix]} must be used.
4307
4308The named references feature is experimental. More user feedback will help
4309to stabilize it.
378e917c 4310
342b8b6e 4311@node Declarations
bfa74976
RS
4312@section Bison Declarations
4313@cindex declarations, Bison
4314@cindex Bison declarations
4315
4316The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4317used in formulating the grammar and the data types of semantic values.
4318@xref{Symbols}.
4319
4320All token type names (but not single-character literal tokens such as
4321@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4322declared if you need to specify which data type to use for the semantic
4323value (@pxref{Multiple Types, ,More Than One Value Type}).
4324
ff7571c0
JD
4325The first rule in the grammar file also specifies the start symbol, by
4326default. If you want some other symbol to be the start symbol, you
4327must declare it explicitly (@pxref{Language and Grammar, ,Languages
4328and Context-Free Grammars}).
bfa74976
RS
4329
4330@menu
b50d2359 4331* Require Decl:: Requiring a Bison version.
bfa74976
RS
4332* Token Decl:: Declaring terminal symbols.
4333* Precedence Decl:: Declaring terminals with precedence and associativity.
4334* Union Decl:: Declaring the set of all semantic value types.
4335* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4336* Initial Action Decl:: Code run before parsing starts.
72f889cc 4337* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4338* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4339* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4340* Start Decl:: Specifying the start symbol.
4341* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4342* Push Decl:: Requesting a push parser.
bfa74976 4343* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4344* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4345* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4346@end menu
4347
b50d2359
AD
4348@node Require Decl
4349@subsection Require a Version of Bison
4350@cindex version requirement
4351@cindex requiring a version of Bison
4352@findex %require
4353
4354You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4355the requirement is not met, @command{bison} exits with an error (exit
4356status 63).
b50d2359
AD
4357
4358@example
4359%require "@var{version}"
4360@end example
4361
342b8b6e 4362@node Token Decl
bfa74976
RS
4363@subsection Token Type Names
4364@cindex declaring token type names
4365@cindex token type names, declaring
931c7513 4366@cindex declaring literal string tokens
bfa74976
RS
4367@findex %token
4368
4369The basic way to declare a token type name (terminal symbol) is as follows:
4370
4371@example
4372%token @var{name}
4373@end example
4374
4375Bison will convert this into a @code{#define} directive in
4376the parser, so that the function @code{yylex} (if it is in this file)
4377can use the name @var{name} to stand for this token type's code.
4378
d78f0ac9
AD
4379Alternatively, you can use @code{%left}, @code{%right},
4380@code{%precedence}, or
14ded682
AD
4381@code{%nonassoc} instead of @code{%token}, if you wish to specify
4382associativity and precedence. @xref{Precedence Decl, ,Operator
4383Precedence}.
bfa74976
RS
4384
4385You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4386a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4387following the token name:
bfa74976
RS
4388
4389@example
4390%token NUM 300
1452af69 4391%token XNUM 0x12d // a GNU extension
bfa74976
RS
4392@end example
4393
4394@noindent
4395It is generally best, however, to let Bison choose the numeric codes for
4396all token types. Bison will automatically select codes that don't conflict
e966383b 4397with each other or with normal characters.
bfa74976
RS
4398
4399In the event that the stack type is a union, you must augment the
4400@code{%token} or other token declaration to include the data type
704a47c4
AD
4401alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4402Than One Value Type}).
bfa74976
RS
4403
4404For example:
4405
4406@example
4407@group
4408%union @{ /* define stack type */
4409 double val;
4410 symrec *tptr;
4411@}
4412%token <val> NUM /* define token NUM and its type */
4413@end group
4414@end example
4415
931c7513
RS
4416You can associate a literal string token with a token type name by
4417writing the literal string at the end of a @code{%token}
4418declaration which declares the name. For example:
4419
4420@example
4421%token arrow "=>"
4422@end example
4423
4424@noindent
4425For example, a grammar for the C language might specify these names with
4426equivalent literal string tokens:
4427
4428@example
4429%token <operator> OR "||"
4430%token <operator> LE 134 "<="
4431%left OR "<="
4432@end example
4433
4434@noindent
4435Once you equate the literal string and the token name, you can use them
4436interchangeably in further declarations or the grammar rules. The
4437@code{yylex} function can use the token name or the literal string to
4438obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4439Syntax error messages passed to @code{yyerror} from the parser will reference
4440the literal string instead of the token name.
4441
4442The token numbered as 0 corresponds to end of file; the following line
4443allows for nicer error messages referring to ``end of file'' instead
4444of ``$end'':
4445
4446@example
4447%token END 0 "end of file"
4448@end example
931c7513 4449
342b8b6e 4450@node Precedence Decl
bfa74976
RS
4451@subsection Operator Precedence
4452@cindex precedence declarations
4453@cindex declaring operator precedence
4454@cindex operator precedence, declaring
4455
d78f0ac9
AD
4456Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4457@code{%precedence} declaration to
bfa74976
RS
4458declare a token and specify its precedence and associativity, all at
4459once. These are called @dfn{precedence declarations}.
704a47c4
AD
4460@xref{Precedence, ,Operator Precedence}, for general information on
4461operator precedence.
bfa74976 4462
ab7f29f8 4463The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4464@code{%token}: either
4465
4466@example
4467%left @var{symbols}@dots{}
4468@end example
4469
4470@noindent
4471or
4472
4473@example
4474%left <@var{type}> @var{symbols}@dots{}
4475@end example
4476
4477And indeed any of these declarations serves the purposes of @code{%token}.
4478But in addition, they specify the associativity and relative precedence for
4479all the @var{symbols}:
4480
4481@itemize @bullet
4482@item
4483The associativity of an operator @var{op} determines how repeated uses
4484of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4485@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4486grouping @var{y} with @var{z} first. @code{%left} specifies
4487left-associativity (grouping @var{x} with @var{y} first) and
4488@code{%right} specifies right-associativity (grouping @var{y} with
4489@var{z} first). @code{%nonassoc} specifies no associativity, which
4490means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4491considered a syntax error.
4492
d78f0ac9
AD
4493@code{%precedence} gives only precedence to the @var{symbols}, and
4494defines no associativity at all. Use this to define precedence only,
4495and leave any potential conflict due to associativity enabled.
4496
bfa74976
RS
4497@item
4498The precedence of an operator determines how it nests with other operators.
4499All the tokens declared in a single precedence declaration have equal
4500precedence and nest together according to their associativity.
4501When two tokens declared in different precedence declarations associate,
4502the one declared later has the higher precedence and is grouped first.
4503@end itemize
4504
ab7f29f8
JD
4505For backward compatibility, there is a confusing difference between the
4506argument lists of @code{%token} and precedence declarations.
4507Only a @code{%token} can associate a literal string with a token type name.
4508A precedence declaration always interprets a literal string as a reference to a
4509separate token.
4510For example:
4511
4512@example
4513%left OR "<=" // Does not declare an alias.
4514%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4515@end example
4516
342b8b6e 4517@node Union Decl
bfa74976
RS
4518@subsection The Collection of Value Types
4519@cindex declaring value types
4520@cindex value types, declaring
4521@findex %union
4522
287c78f6
PE
4523The @code{%union} declaration specifies the entire collection of
4524possible data types for semantic values. The keyword @code{%union} is
4525followed by braced code containing the same thing that goes inside a
4526@code{union} in C@.
bfa74976
RS
4527
4528For example:
4529
4530@example
4531@group
4532%union @{
4533 double val;
4534 symrec *tptr;
4535@}
4536@end group
4537@end example
4538
4539@noindent
4540This says that the two alternative types are @code{double} and @code{symrec
4541*}. They are given names @code{val} and @code{tptr}; these names are used
4542in the @code{%token} and @code{%type} declarations to pick one of the types
4543for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4544
8a4281b9 4545As an extension to POSIX, a tag is allowed after the
6273355b
PE
4546@code{union}. For example:
4547
4548@example
4549@group
4550%union value @{
4551 double val;
4552 symrec *tptr;
4553@}
4554@end group
4555@end example
4556
d6ca7905 4557@noindent
6273355b
PE
4558specifies the union tag @code{value}, so the corresponding C type is
4559@code{union value}. If you do not specify a tag, it defaults to
4560@code{YYSTYPE}.
4561
8a4281b9 4562As another extension to POSIX, you may specify multiple
d6ca7905
PE
4563@code{%union} declarations; their contents are concatenated. However,
4564only the first @code{%union} declaration can specify a tag.
4565
6273355b 4566Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4567a semicolon after the closing brace.
4568
ddc8ede1
PE
4569Instead of @code{%union}, you can define and use your own union type
4570@code{YYSTYPE} if your grammar contains at least one
4571@samp{<@var{type}>} tag. For example, you can put the following into
4572a header file @file{parser.h}:
4573
4574@example
4575@group
4576union YYSTYPE @{
4577 double val;
4578 symrec *tptr;
4579@};
4580typedef union YYSTYPE YYSTYPE;
4581@end group
4582@end example
4583
4584@noindent
4585and then your grammar can use the following
4586instead of @code{%union}:
4587
4588@example
4589@group
4590%@{
4591#include "parser.h"
4592%@}
4593%type <val> expr
4594%token <tptr> ID
4595@end group
4596@end example
4597
342b8b6e 4598@node Type Decl
bfa74976
RS
4599@subsection Nonterminal Symbols
4600@cindex declaring value types, nonterminals
4601@cindex value types, nonterminals, declaring
4602@findex %type
4603
4604@noindent
4605When you use @code{%union} to specify multiple value types, you must
4606declare the value type of each nonterminal symbol for which values are
4607used. This is done with a @code{%type} declaration, like this:
4608
4609@example
4610%type <@var{type}> @var{nonterminal}@dots{}
4611@end example
4612
4613@noindent
704a47c4
AD
4614Here @var{nonterminal} is the name of a nonterminal symbol, and
4615@var{type} is the name given in the @code{%union} to the alternative
4616that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4617can give any number of nonterminal symbols in the same @code{%type}
4618declaration, if they have the same value type. Use spaces to separate
4619the symbol names.
bfa74976 4620
931c7513
RS
4621You can also declare the value type of a terminal symbol. To do this,
4622use the same @code{<@var{type}>} construction in a declaration for the
4623terminal symbol. All kinds of token declarations allow
4624@code{<@var{type}>}.
4625
18d192f0
AD
4626@node Initial Action Decl
4627@subsection Performing Actions before Parsing
4628@findex %initial-action
4629
4630Sometimes your parser needs to perform some initializations before
4631parsing. The @code{%initial-action} directive allows for such arbitrary
4632code.
4633
4634@deffn {Directive} %initial-action @{ @var{code} @}
4635@findex %initial-action
287c78f6 4636Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4637@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4638@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4639@code{%parse-param}.
18d192f0
AD
4640@end deffn
4641
451364ed
AD
4642For instance, if your locations use a file name, you may use
4643
4644@example
48b16bbc 4645%parse-param @{ char const *file_name @};
451364ed
AD
4646%initial-action
4647@{
4626a15d 4648 @@$.initialize (file_name);
451364ed
AD
4649@};
4650@end example
4651
18d192f0 4652
72f889cc
AD
4653@node Destructor Decl
4654@subsection Freeing Discarded Symbols
4655@cindex freeing discarded symbols
4656@findex %destructor
12e35840 4657@findex <*>
3ebecc24 4658@findex <>
a85284cf
AD
4659During error recovery (@pxref{Error Recovery}), symbols already pushed
4660on the stack and tokens coming from the rest of the file are discarded
4661until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4662or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4663symbols on the stack must be discarded. Even if the parser succeeds, it
4664must discard the start symbol.
258b75ca
PE
4665
4666When discarded symbols convey heap based information, this memory is
4667lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4668in traditional compilers, it is unacceptable for programs like shells or
4669protocol implementations that may parse and execute indefinitely.
258b75ca 4670
a85284cf
AD
4671The @code{%destructor} directive defines code that is called when a
4672symbol is automatically discarded.
72f889cc
AD
4673
4674@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4675@findex %destructor
287c78f6
PE
4676Invoke the braced @var{code} whenever the parser discards one of the
4677@var{symbols}.
4b367315 4678Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4679with the discarded symbol, and @code{@@$} designates its location.
4680The additional parser parameters are also available (@pxref{Parser Function, ,
4681The Parser Function @code{yyparse}}).
ec5479ce 4682
b2a0b7ca
JD
4683When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4684per-symbol @code{%destructor}.
4685You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4686tag among @var{symbols}.
b2a0b7ca 4687In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4688grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4689per-symbol @code{%destructor}.
4690
12e35840 4691Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4692(These default forms are experimental.
4693More user feedback will help to determine whether they should become permanent
4694features.)
3ebecc24 4695You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4696exactly one @code{%destructor} declaration in your grammar file.
4697The parser will invoke the @var{code} associated with one of these whenever it
4698discards any user-defined grammar symbol that has no per-symbol and no per-type
4699@code{%destructor}.
4700The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4701symbol for which you have formally declared a semantic type tag (@code{%type}
4702counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4703The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4704symbol that has no declared semantic type tag.
72f889cc
AD
4705@end deffn
4706
b2a0b7ca 4707@noindent
12e35840 4708For example:
72f889cc 4709
c93f22fc 4710@example
ec5479ce
JD
4711%union @{ char *string; @}
4712%token <string> STRING1
4713%token <string> STRING2
4714%type <string> string1
4715%type <string> string2
b2a0b7ca
JD
4716%union @{ char character; @}
4717%token <character> CHR
4718%type <character> chr
12e35840
JD
4719%token TAGLESS
4720
b2a0b7ca 4721%destructor @{ @} <character>
12e35840
JD
4722%destructor @{ free ($$); @} <*>
4723%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4724%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4725@end example
72f889cc
AD
4726
4727@noindent
b2a0b7ca
JD
4728guarantees that, when the parser discards any user-defined symbol that has a
4729semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4730to @code{free} by default.
ec5479ce
JD
4731However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4732prints its line number to @code{stdout}.
4733It performs only the second @code{%destructor} in this case, so it invokes
4734@code{free} only once.
12e35840
JD
4735Finally, the parser merely prints a message whenever it discards any symbol,
4736such as @code{TAGLESS}, that has no semantic type tag.
4737
4738A Bison-generated parser invokes the default @code{%destructor}s only for
4739user-defined as opposed to Bison-defined symbols.
4740For example, the parser will not invoke either kind of default
4741@code{%destructor} for the special Bison-defined symbols @code{$accept},
4742@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4743none of which you can reference in your grammar.
4744It also will not invoke either for the @code{error} token (@pxref{Table of
4745Symbols, ,error}), which is always defined by Bison regardless of whether you
4746reference it in your grammar.
4747However, it may invoke one of them for the end token (token 0) if you
4748redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4749
c93f22fc 4750@example
3508ce36 4751%token END 0
c93f22fc 4752@end example
3508ce36 4753
12e35840
JD
4754@cindex actions in mid-rule
4755@cindex mid-rule actions
4756Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4757mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4758That is, Bison does not consider a mid-rule to have a semantic value if you
4759do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4760(where @var{n} is the right-hand side symbol position of the mid-rule) in
4761any later action in that rule. However, if you do reference either, the
4762Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4763it discards the mid-rule symbol.
12e35840 4764
3508ce36
JD
4765@ignore
4766@noindent
4767In the future, it may be possible to redefine the @code{error} token as a
4768nonterminal that captures the discarded symbols.
4769In that case, the parser will invoke the default destructor for it as well.
4770@end ignore
4771
e757bb10
AD
4772@sp 1
4773
4774@cindex discarded symbols
4775@dfn{Discarded symbols} are the following:
4776
4777@itemize
4778@item
4779stacked symbols popped during the first phase of error recovery,
4780@item
4781incoming terminals during the second phase of error recovery,
4782@item
742e4900 4783the current lookahead and the entire stack (except the current
9d9b8b70 4784right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4785@item
4786the start symbol, when the parser succeeds.
e757bb10
AD
4787@end itemize
4788
9d9b8b70
PE
4789The parser can @dfn{return immediately} because of an explicit call to
4790@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4791exhaustion.
4792
29553547 4793Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4794error via @code{YYERROR} are not discarded automatically. As a rule
4795of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4796the memory.
e757bb10 4797
93c150b6
AD
4798@node Printer Decl
4799@subsection Printing Semantic Values
4800@cindex printing semantic values
4801@findex %printer
4802@findex <*>
4803@findex <>
4804When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4805the parser reports its actions, such as reductions. When a symbol involved
4806in an action is reported, only its kind is displayed, as the parser cannot
4807know how semantic values should be formatted.
4808
4809The @code{%printer} directive defines code that is called when a symbol is
4810reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4811Decl, , Freeing Discarded Symbols}).
4812
4813@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4814@findex %printer
4815@vindex yyoutput
4816@c This is the same text as for %destructor.
4817Invoke the braced @var{code} whenever the parser displays one of the
4818@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4819(a @code{FILE*} in C, and an @code{std::ostream&} in C++),
4820@code{$$} designates the semantic value associated with the symbol, and
4821@code{@@$} its location. The additional parser parameters are also
4822available (@pxref{Parser Function, , The Parser Function @code{yyparse}}).
4823
4824The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4825Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4826@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4827typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4828@samp{<>}).
4829@end deffn
4830
4831@noindent
4832For example:
4833
4834@example
4835%union @{ char *string; @}
4836%token <string> STRING1
4837%token <string> STRING2
4838%type <string> string1
4839%type <string> string2
4840%union @{ char character; @}
4841%token <character> CHR
4842%type <character> chr
4843%token TAGLESS
4844
4845%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4846%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4847%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4848%printer @{ fprintf (yyoutput, "<>"); @} <>
4849@end example
4850
4851@noindent
4852guarantees that, when the parser print any symbol that has a semantic type
4853tag other than @code{<character>}, it display the address of the semantic
4854value by default. However, when the parser displays a @code{STRING1} or a
4855@code{string1}, it formats it as a string in double quotes. It performs
4856only the second @code{%printer} in this case, so it prints only once.
4857Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4858that has no semantic type tag. See also
4859
4860
342b8b6e 4861@node Expect Decl
bfa74976
RS
4862@subsection Suppressing Conflict Warnings
4863@cindex suppressing conflict warnings
4864@cindex preventing warnings about conflicts
4865@cindex warnings, preventing
4866@cindex conflicts, suppressing warnings of
4867@findex %expect
d6328241 4868@findex %expect-rr
bfa74976
RS
4869
4870Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4871(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4872have harmless shift/reduce conflicts which are resolved in a predictable
4873way and would be difficult to eliminate. It is desirable to suppress
4874the warning about these conflicts unless the number of conflicts
4875changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4876
4877The declaration looks like this:
4878
4879@example
4880%expect @var{n}
4881@end example
4882
035aa4a0
PE
4883Here @var{n} is a decimal integer. The declaration says there should
4884be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4885Bison reports an error if the number of shift/reduce conflicts differs
4886from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4887
eb45ef3b 4888For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4889serious, and should be eliminated entirely. Bison will always report
8a4281b9 4890reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4891parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4892there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4893also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4894in GLR parsers, using the declaration:
d6328241
PH
4895
4896@example
4897%expect-rr @var{n}
4898@end example
4899
bfa74976
RS
4900In general, using @code{%expect} involves these steps:
4901
4902@itemize @bullet
4903@item
4904Compile your grammar without @code{%expect}. Use the @samp{-v} option
4905to get a verbose list of where the conflicts occur. Bison will also
4906print the number of conflicts.
4907
4908@item
4909Check each of the conflicts to make sure that Bison's default
4910resolution is what you really want. If not, rewrite the grammar and
4911go back to the beginning.
4912
4913@item
4914Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4915number which Bison printed. With GLR parsers, add an
035aa4a0 4916@code{%expect-rr} declaration as well.
bfa74976
RS
4917@end itemize
4918
93d7dde9
JD
4919Now Bison will report an error if you introduce an unexpected conflict,
4920but will keep silent otherwise.
bfa74976 4921
342b8b6e 4922@node Start Decl
bfa74976
RS
4923@subsection The Start-Symbol
4924@cindex declaring the start symbol
4925@cindex start symbol, declaring
4926@cindex default start symbol
4927@findex %start
4928
4929Bison assumes by default that the start symbol for the grammar is the first
4930nonterminal specified in the grammar specification section. The programmer
4931may override this restriction with the @code{%start} declaration as follows:
4932
4933@example
4934%start @var{symbol}
4935@end example
4936
342b8b6e 4937@node Pure Decl
bfa74976
RS
4938@subsection A Pure (Reentrant) Parser
4939@cindex reentrant parser
4940@cindex pure parser
d9df47b6 4941@findex %define api.pure
bfa74976
RS
4942
4943A @dfn{reentrant} program is one which does not alter in the course of
4944execution; in other words, it consists entirely of @dfn{pure} (read-only)
4945code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4946for example, a nonreentrant program may not be safe to call from a signal
4947handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4948program must be called only within interlocks.
4949
70811b85 4950Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4951suitable for most uses, and it permits compatibility with Yacc. (The
4952standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4953statically allocated variables for communication with @code{yylex},
4954including @code{yylval} and @code{yylloc}.)
bfa74976 4955
70811b85 4956Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4957declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4958reentrant. It looks like this:
bfa74976
RS
4959
4960@example
d9df47b6 4961%define api.pure
bfa74976
RS
4962@end example
4963
70811b85
RS
4964The result is that the communication variables @code{yylval} and
4965@code{yylloc} become local variables in @code{yyparse}, and a different
4966calling convention is used for the lexical analyzer function
4967@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4968Parsers}, for the details of this. The variable @code{yynerrs}
4969becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4970of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4971Reporting Function @code{yyerror}}). The convention for calling
4972@code{yyparse} itself is unchanged.
4973
4974Whether the parser is pure has nothing to do with the grammar rules.
4975You can generate either a pure parser or a nonreentrant parser from any
4976valid grammar.
bfa74976 4977
9987d1b3
JD
4978@node Push Decl
4979@subsection A Push Parser
4980@cindex push parser
4981@cindex push parser
67212941 4982@findex %define api.push-pull
9987d1b3 4983
59da312b
JD
4984(The current push parsing interface is experimental and may evolve.
4985More user feedback will help to stabilize it.)
4986
f4101aa6
AD
4987A pull parser is called once and it takes control until all its input
4988is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4989each time a new token is made available.
4990
f4101aa6 4991A push parser is typically useful when the parser is part of a
9987d1b3 4992main event loop in the client's application. This is typically
f4101aa6
AD
4993a requirement of a GUI, when the main event loop needs to be triggered
4994within a certain time period.
9987d1b3 4995
d782395d
JD
4996Normally, Bison generates a pull parser.
4997The following Bison declaration says that you want the parser to be a push
35c1e5f0 4998parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4999
5000@example
cf499cff 5001%define api.push-pull push
9987d1b3
JD
5002@end example
5003
5004In almost all cases, you want to ensure that your push parser is also
5005a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5006time you should create an impure push parser is to have backwards
9987d1b3
JD
5007compatibility with the impure Yacc pull mode interface. Unless you know
5008what you are doing, your declarations should look like this:
5009
5010@example
d9df47b6 5011%define api.pure
cf499cff 5012%define api.push-pull push
9987d1b3
JD
5013@end example
5014
f4101aa6
AD
5015There is a major notable functional difference between the pure push parser
5016and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5017many parser instances, of the same type of parser, in memory at the same time.
5018An impure push parser should only use one parser at a time.
5019
5020When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5021the generated parser. @code{yypstate} is a structure that the generated
5022parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5023function that will create a new parser instance. @code{yypstate_delete}
5024will free the resources associated with the corresponding parser instance.
f4101aa6 5025Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5026token is available to provide the parser. A trivial example
5027of using a pure push parser would look like this:
5028
5029@example
5030int status;
5031yypstate *ps = yypstate_new ();
5032do @{
5033 status = yypush_parse (ps, yylex (), NULL);
5034@} while (status == YYPUSH_MORE);
5035yypstate_delete (ps);
5036@end example
5037
5038If the user decided to use an impure push parser, a few things about
f4101aa6 5039the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5040a global variable instead of a variable in the @code{yypush_parse} function.
5041For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5042changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5043example would thus look like this:
5044
5045@example
5046extern int yychar;
5047int status;
5048yypstate *ps = yypstate_new ();
5049do @{
5050 yychar = yylex ();
5051 status = yypush_parse (ps);
5052@} while (status == YYPUSH_MORE);
5053yypstate_delete (ps);
5054@end example
5055
f4101aa6 5056That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5057for use by the next invocation of the @code{yypush_parse} function.
5058
f4101aa6 5059Bison also supports both the push parser interface along with the pull parser
9987d1b3 5060interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5061you should replace the @samp{%define api.push-pull push} declaration with the
5062@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5063the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5064and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5065would be used. However, the user should note that it is implemented in the
d782395d
JD
5066generated parser by calling @code{yypull_parse}.
5067This makes the @code{yyparse} function that is generated with the
cf499cff 5068@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5069@code{yyparse} function. If the user
5070calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5071stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5072and then @code{yypull_parse} the rest of the input stream. If you would like
5073to switch back and forth between between parsing styles, you would have to
5074write your own @code{yypull_parse} function that knows when to quit looking
5075for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5076like this:
5077
5078@example
5079yypstate *ps = yypstate_new ();
5080yypull_parse (ps); /* Will call the lexer */
5081yypstate_delete (ps);
5082@end example
5083
67501061 5084Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5085the generated parser with @samp{%define api.push-pull both} as it did for
5086@samp{%define api.push-pull push}.
9987d1b3 5087
342b8b6e 5088@node Decl Summary
bfa74976
RS
5089@subsection Bison Declaration Summary
5090@cindex Bison declaration summary
5091@cindex declaration summary
5092@cindex summary, Bison declaration
5093
d8988b2f 5094Here is a summary of the declarations used to define a grammar:
bfa74976 5095
18b519c0 5096@deffn {Directive} %union
bfa74976
RS
5097Declare the collection of data types that semantic values may have
5098(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5099@end deffn
bfa74976 5100
18b519c0 5101@deffn {Directive} %token
bfa74976
RS
5102Declare a terminal symbol (token type name) with no precedence
5103or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5104@end deffn
bfa74976 5105
18b519c0 5106@deffn {Directive} %right
bfa74976
RS
5107Declare a terminal symbol (token type name) that is right-associative
5108(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5109@end deffn
bfa74976 5110
18b519c0 5111@deffn {Directive} %left
bfa74976
RS
5112Declare a terminal symbol (token type name) that is left-associative
5113(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5114@end deffn
bfa74976 5115
18b519c0 5116@deffn {Directive} %nonassoc
bfa74976 5117Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5118(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5119Using it in a way that would be associative is a syntax error.
5120@end deffn
5121
91d2c560 5122@ifset defaultprec
39a06c25 5123@deffn {Directive} %default-prec
22fccf95 5124Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5125(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5126@end deffn
91d2c560 5127@end ifset
bfa74976 5128
18b519c0 5129@deffn {Directive} %type
bfa74976
RS
5130Declare the type of semantic values for a nonterminal symbol
5131(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5132@end deffn
bfa74976 5133
18b519c0 5134@deffn {Directive} %start
89cab50d
AD
5135Specify the grammar's start symbol (@pxref{Start Decl, ,The
5136Start-Symbol}).
18b519c0 5137@end deffn
bfa74976 5138
18b519c0 5139@deffn {Directive} %expect
bfa74976
RS
5140Declare the expected number of shift-reduce conflicts
5141(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5142@end deffn
5143
bfa74976 5144
d8988b2f
AD
5145@sp 1
5146@noindent
5147In order to change the behavior of @command{bison}, use the following
5148directives:
5149
148d66d8 5150@deffn {Directive} %code @{@var{code}@}
e0c07222 5151@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5152@findex %code
e0c07222
JD
5153Insert @var{code} verbatim into the output parser source at the
5154default location or at the location specified by @var{qualifier}.
5155@xref{%code Summary}.
148d66d8
JD
5156@end deffn
5157
18b519c0 5158@deffn {Directive} %debug
fa819509
AD
5159Instrument the output parser for traces. Obsoleted by @samp{%define
5160parse.trace}.
ec3bc396 5161@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5162@end deffn
d8988b2f 5163
35c1e5f0
JD
5164@deffn {Directive} %define @var{variable}
5165@deffnx {Directive} %define @var{variable} @var{value}
5166@deffnx {Directive} %define @var{variable} "@var{value}"
5167Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5168@end deffn
5169
5170@deffn {Directive} %defines
5171Write a parser header file containing macro definitions for the token
5172type names defined in the grammar as well as a few other declarations.
5173If the parser implementation file is named @file{@var{name}.c} then
5174the parser header file is named @file{@var{name}.h}.
5175
5176For C parsers, the parser header file declares @code{YYSTYPE} unless
5177@code{YYSTYPE} is already defined as a macro or you have used a
5178@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5179you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5180Value Type}) with components that require other definitions, or if you
5181have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5182Type, ,Data Types of Semantic Values}), you need to arrange for these
5183definitions to be propagated to all modules, e.g., by putting them in
5184a prerequisite header that is included both by your parser and by any
5185other module that needs @code{YYSTYPE}.
5186
5187Unless your parser is pure, the parser header file declares
5188@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5189(Reentrant) Parser}.
5190
5191If you have also used locations, the parser header file declares
303834cc
JD
5192@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5193@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5194
5195This parser header file is normally essential if you wish to put the
5196definition of @code{yylex} in a separate source file, because
5197@code{yylex} typically needs to be able to refer to the
5198above-mentioned declarations and to the token type codes. @xref{Token
5199Values, ,Semantic Values of Tokens}.
5200
5201@findex %code requires
5202@findex %code provides
5203If you have declared @code{%code requires} or @code{%code provides}, the output
5204header also contains their code.
5205@xref{%code Summary}.
5206@end deffn
5207
5208@deffn {Directive} %defines @var{defines-file}
5209Same as above, but save in the file @var{defines-file}.
5210@end deffn
5211
5212@deffn {Directive} %destructor
5213Specify how the parser should reclaim the memory associated to
5214discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5215@end deffn
5216
5217@deffn {Directive} %file-prefix "@var{prefix}"
5218Specify a prefix to use for all Bison output file names. The names
5219are chosen as if the grammar file were named @file{@var{prefix}.y}.
5220@end deffn
5221
5222@deffn {Directive} %language "@var{language}"
5223Specify the programming language for the generated parser. Currently
5224supported languages include C, C++, and Java.
5225@var{language} is case-insensitive.
5226
5227This directive is experimental and its effect may be modified in future
5228releases.
5229@end deffn
5230
5231@deffn {Directive} %locations
5232Generate the code processing the locations (@pxref{Action Features,
5233,Special Features for Use in Actions}). This mode is enabled as soon as
5234the grammar uses the special @samp{@@@var{n}} tokens, but if your
5235grammar does not use it, using @samp{%locations} allows for more
5236accurate syntax error messages.
5237@end deffn
5238
5239@deffn {Directive} %name-prefix "@var{prefix}"
5240Rename the external symbols used in the parser so that they start with
5241@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5242in C parsers
5243is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5244@code{yylval}, @code{yychar}, @code{yydebug}, and
5245(if locations are used) @code{yylloc}. If you use a push parser,
5246@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5247@code{yypstate_new} and @code{yypstate_delete} will
5248also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5249names become @code{c_parse}, @code{c_lex}, and so on.
5250For C++ parsers, see the @samp{%define api.namespace} documentation in this
5251section.
5252@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5253@end deffn
5254
5255@ifset defaultprec
5256@deffn {Directive} %no-default-prec
5257Do not assign a precedence to rules lacking an explicit @code{%prec}
5258modifier (@pxref{Contextual Precedence, ,Context-Dependent
5259Precedence}).
5260@end deffn
5261@end ifset
5262
5263@deffn {Directive} %no-lines
5264Don't generate any @code{#line} preprocessor commands in the parser
5265implementation file. Ordinarily Bison writes these commands in the
5266parser implementation file so that the C compiler and debuggers will
5267associate errors and object code with your source file (the grammar
5268file). This directive causes them to associate errors with the parser
5269implementation file, treating it as an independent source file in its
5270own right.
5271@end deffn
5272
5273@deffn {Directive} %output "@var{file}"
5274Specify @var{file} for the parser implementation file.
5275@end deffn
5276
5277@deffn {Directive} %pure-parser
5278Deprecated version of @samp{%define api.pure} (@pxref{%define
5279Summary,,api.pure}), for which Bison is more careful to warn about
5280unreasonable usage.
5281@end deffn
5282
5283@deffn {Directive} %require "@var{version}"
5284Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5285Require a Version of Bison}.
5286@end deffn
5287
5288@deffn {Directive} %skeleton "@var{file}"
5289Specify the skeleton to use.
5290
5291@c You probably don't need this option unless you are developing Bison.
5292@c You should use @code{%language} if you want to specify the skeleton for a
5293@c different language, because it is clearer and because it will always choose the
5294@c correct skeleton for non-deterministic or push parsers.
5295
5296If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5297file in the Bison installation directory.
5298If it does, @var{file} is an absolute file name or a file name relative to the
5299directory of the grammar file.
5300This is similar to how most shells resolve commands.
5301@end deffn
5302
5303@deffn {Directive} %token-table
5304Generate an array of token names in the parser implementation file.
5305The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5306the name of the token whose internal Bison token code number is
5307@var{i}. The first three elements of @code{yytname} correspond to the
5308predefined tokens @code{"$end"}, @code{"error"}, and
5309@code{"$undefined"}; after these come the symbols defined in the
5310grammar file.
5311
5312The name in the table includes all the characters needed to represent
5313the token in Bison. For single-character literals and literal
5314strings, this includes the surrounding quoting characters and any
5315escape sequences. For example, the Bison single-character literal
5316@code{'+'} corresponds to a three-character name, represented in C as
5317@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5318corresponds to a five-character name, represented in C as
5319@code{"\"\\\\/\""}.
5320
5321When you specify @code{%token-table}, Bison also generates macro
5322definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5323@code{YYNRULES}, and @code{YYNSTATES}:
5324
5325@table @code
5326@item YYNTOKENS
5327The highest token number, plus one.
5328@item YYNNTS
5329The number of nonterminal symbols.
5330@item YYNRULES
5331The number of grammar rules,
5332@item YYNSTATES
5333The number of parser states (@pxref{Parser States}).
5334@end table
5335@end deffn
5336
5337@deffn {Directive} %verbose
5338Write an extra output file containing verbose descriptions of the
5339parser states and what is done for each type of lookahead token in
5340that state. @xref{Understanding, , Understanding Your Parser}, for more
5341information.
5342@end deffn
5343
5344@deffn {Directive} %yacc
5345Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5346including its naming conventions. @xref{Bison Options}, for more.
5347@end deffn
5348
5349
5350@node %define Summary
5351@subsection %define Summary
51151d91
JD
5352
5353There are many features of Bison's behavior that can be controlled by
5354assigning the feature a single value. For historical reasons, some
5355such features are assigned values by dedicated directives, such as
5356@code{%start}, which assigns the start symbol. However, newer such
5357features are associated with variables, which are assigned by the
5358@code{%define} directive:
5359
c1d19e10 5360@deffn {Directive} %define @var{variable}
cf499cff 5361@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5362@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5363Define @var{variable} to @var{value}.
9611cfa2 5364
51151d91
JD
5365@var{value} must be placed in quotation marks if it contains any
5366character other than a letter, underscore, period, or non-initial dash
5367or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5368to specifying @code{""}.
9611cfa2 5369
51151d91
JD
5370It is an error if a @var{variable} is defined by @code{%define}
5371multiple times, but see @ref{Bison Options,,-D
5372@var{name}[=@var{value}]}.
5373@end deffn
cf499cff 5374
51151d91
JD
5375The rest of this section summarizes variables and values that
5376@code{%define} accepts.
9611cfa2 5377
51151d91
JD
5378Some @var{variable}s take Boolean values. In this case, Bison will
5379complain if the variable definition does not meet one of the following
5380four conditions:
9611cfa2
JD
5381
5382@enumerate
cf499cff 5383@item @code{@var{value}} is @code{true}
9611cfa2 5384
cf499cff
JD
5385@item @code{@var{value}} is omitted (or @code{""} is specified).
5386This is equivalent to @code{true}.
9611cfa2 5387
cf499cff 5388@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5389
5390@item @var{variable} is never defined.
c6abeab1 5391In this case, Bison selects a default value.
9611cfa2 5392@end enumerate
148d66d8 5393
c6abeab1
JD
5394What @var{variable}s are accepted, as well as their meanings and default
5395values, depend on the selected target language and/or the parser
5396skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5397Summary,,%skeleton}).
5398Unaccepted @var{variable}s produce an error.
793fbca5
JD
5399Some of the accepted @var{variable}s are:
5400
fa819509 5401@table @code
6b5a0de9 5402@c ================================================== api.namespace
67501061
AD
5403@item api.namespace
5404@findex %define api.namespace
5405@itemize
5406@item Languages(s): C++
5407
f1b238df 5408@item Purpose: Specify the namespace for the parser class.
67501061
AD
5409For example, if you specify:
5410
c93f22fc 5411@example
67501061 5412%define api.namespace "foo::bar"
c93f22fc 5413@end example
67501061
AD
5414
5415Bison uses @code{foo::bar} verbatim in references such as:
5416
c93f22fc 5417@example
67501061 5418foo::bar::parser::semantic_type
c93f22fc 5419@end example
67501061
AD
5420
5421However, to open a namespace, Bison removes any leading @code{::} and then
5422splits on any remaining occurrences:
5423
c93f22fc 5424@example
67501061
AD
5425namespace foo @{ namespace bar @{
5426 class position;
5427 class location;
5428@} @}
c93f22fc 5429@end example
67501061
AD
5430
5431@item Accepted Values:
5432Any absolute or relative C++ namespace reference without a trailing
5433@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5434
5435@item Default Value:
5436The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5437This usage of @code{%name-prefix} is for backward compatibility and can
5438be confusing since @code{%name-prefix} also specifies the textual prefix
5439for the lexical analyzer function. Thus, if you specify
5440@code{%name-prefix}, it is best to also specify @samp{%define
5441api.namespace} so that @code{%name-prefix} @emph{only} affects the
5442lexical analyzer function. For example, if you specify:
5443
c93f22fc 5444@example
67501061
AD
5445%define api.namespace "foo"
5446%name-prefix "bar::"
c93f22fc 5447@end example
67501061
AD
5448
5449The parser namespace is @code{foo} and @code{yylex} is referenced as
5450@code{bar::lex}.
5451@end itemize
5452@c namespace
5453
5454
5455
5456@c ================================================== api.pure
d9df47b6
JD
5457@item api.pure
5458@findex %define api.pure
5459
5460@itemize @bullet
5461@item Language(s): C
5462
5463@item Purpose: Request a pure (reentrant) parser program.
5464@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5465
5466@item Accepted Values: Boolean
5467
cf499cff 5468@item Default Value: @code{false}
d9df47b6 5469@end itemize
71b00ed8 5470@c api.pure
d9df47b6 5471
67501061
AD
5472
5473
5474@c ================================================== api.push-pull
67212941
JD
5475@item api.push-pull
5476@findex %define api.push-pull
793fbca5
JD
5477
5478@itemize @bullet
eb45ef3b 5479@item Language(s): C (deterministic parsers only)
793fbca5 5480
f1b238df 5481@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5482@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5483(The current push parsing interface is experimental and may evolve.
5484More user feedback will help to stabilize it.)
793fbca5 5485
cf499cff 5486@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5487
cf499cff 5488@item Default Value: @code{pull}
793fbca5 5489@end itemize
67212941 5490@c api.push-pull
71b00ed8 5491
6b5a0de9
AD
5492
5493
5494@c ================================================== api.tokens.prefix
4c6622c2
AD
5495@item api.tokens.prefix
5496@findex %define api.tokens.prefix
5497
5498@itemize
5499@item Languages(s): all
5500
5501@item Purpose:
5502Add a prefix to the token names when generating their definition in the
5503target language. For instance
5504
5505@example
5506%token FILE for ERROR
5507%define api.tokens.prefix "TOK_"
5508%%
5509start: FILE for ERROR;
5510@end example
5511
5512@noindent
5513generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5514and @code{TOK_ERROR} in the generated source files. In particular, the
5515scanner must use these prefixed token names, while the grammar itself
5516may still use the short names (as in the sample rule given above). The
5517generated informational files (@file{*.output}, @file{*.xml},
5518@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5519and @ref{Calc++ Scanner}, for a complete example.
5520
5521@item Accepted Values:
5522Any string. Should be a valid identifier prefix in the target language,
5523in other words, it should typically be an identifier itself (sequence of
5524letters, underscores, and ---not at the beginning--- digits).
5525
5526@item Default Value:
5527empty
5528@end itemize
5529@c api.tokens.prefix
5530
5531
3cdc21cf 5532@c ================================================== lex_symbol
84072495 5533@item lex_symbol
3cdc21cf
AD
5534@findex %define lex_symbol
5535
5536@itemize @bullet
5537@item Language(s):
5538C++
5539
5540@item Purpose:
5541When variant-based semantic values are enabled (@pxref{C++ Variants}),
5542request that symbols be handled as a whole (type, value, and possibly
5543location) in the scanner. @xref{Complete Symbols}, for details.
5544
5545@item Accepted Values:
5546Boolean.
5547
5548@item Default Value:
5549@code{false}
5550@end itemize
5551@c lex_symbol
5552
5553
6b5a0de9
AD
5554@c ================================================== lr.default-reductions
5555
5bab9d08 5556@item lr.default-reductions
5bab9d08 5557@findex %define lr.default-reductions
eb45ef3b
JD
5558
5559@itemize @bullet
5560@item Language(s): all
5561
fcf834f9 5562@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5563contain default reductions. @xref{Default Reductions}. (The ability to
5564specify where default reductions should be used is experimental. More user
5565feedback will help to stabilize it.)
eb45ef3b 5566
f0ad1b2f 5567@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5568@item Default Value:
5569@itemize
cf499cff 5570@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5571@item @code{most} otherwise.
eb45ef3b
JD
5572@end itemize
5573@end itemize
5574
6b5a0de9
AD
5575@c ============================================ lr.keep-unreachable-states
5576
67212941
JD
5577@item lr.keep-unreachable-states
5578@findex %define lr.keep-unreachable-states
31984206
JD
5579
5580@itemize @bullet
5581@item Language(s): all
f1b238df 5582@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5583remain in the parser tables. @xref{Unreachable States}.
31984206 5584@item Accepted Values: Boolean
cf499cff 5585@item Default Value: @code{false}
31984206 5586@end itemize
67212941 5587@c lr.keep-unreachable-states
31984206 5588
6b5a0de9
AD
5589@c ================================================== lr.type
5590
eb45ef3b
JD
5591@item lr.type
5592@findex %define lr.type
eb45ef3b
JD
5593
5594@itemize @bullet
5595@item Language(s): all
5596
f1b238df 5597@item Purpose: Specify the type of parser tables within the
7fceb615 5598LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5599More user feedback will help to stabilize it.)
5600
7fceb615 5601@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5602
cf499cff 5603@item Default Value: @code{lalr}
eb45ef3b
JD
5604@end itemize
5605
67501061
AD
5606
5607@c ================================================== namespace
793fbca5
JD
5608@item namespace
5609@findex %define namespace
67501061 5610Obsoleted by @code{api.namespace}
fa819509
AD
5611@c namespace
5612
31b850d2
AD
5613
5614@c ================================================== parse.assert
0c90a1f5
AD
5615@item parse.assert
5616@findex %define parse.assert
5617
5618@itemize
5619@item Languages(s): C++
5620
5621@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5622In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5623constructed and
0c90a1f5
AD
5624destroyed properly. This option checks these constraints.
5625
5626@item Accepted Values: Boolean
5627
5628@item Default Value: @code{false}
5629@end itemize
5630@c parse.assert
5631
31b850d2
AD
5632
5633@c ================================================== parse.error
5634@item parse.error
5635@findex %define parse.error
5636@itemize
5637@item Languages(s):
fcf834f9 5638all
31b850d2
AD
5639@item Purpose:
5640Control the kind of error messages passed to the error reporting
5641function. @xref{Error Reporting, ,The Error Reporting Function
5642@code{yyerror}}.
5643@item Accepted Values:
5644@itemize
cf499cff 5645@item @code{simple}
31b850d2
AD
5646Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5647error"}}.
cf499cff 5648@item @code{verbose}
7fceb615
JD
5649Error messages report the unexpected token, and possibly the expected ones.
5650However, this report can often be incorrect when LAC is not enabled
5651(@pxref{LAC}).
31b850d2
AD
5652@end itemize
5653
5654@item Default Value:
5655@code{simple}
5656@end itemize
5657@c parse.error
5658
5659
fcf834f9
JD
5660@c ================================================== parse.lac
5661@item parse.lac
5662@findex %define parse.lac
fcf834f9
JD
5663
5664@itemize
7fceb615 5665@item Languages(s): C (deterministic parsers only)
fcf834f9 5666
8a4281b9 5667@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5668syntax error handling. @xref{LAC}.
fcf834f9 5669@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5670@item Default Value: @code{none}
5671@end itemize
5672@c parse.lac
5673
31b850d2 5674@c ================================================== parse.trace
fa819509
AD
5675@item parse.trace
5676@findex %define parse.trace
5677
5678@itemize
5679@item Languages(s): C, C++
5680
5681@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5682In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5683file if it is not already defined, so that the debugging facilities are
5684compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5685
fa819509
AD
5686@item Accepted Values: Boolean
5687
5688@item Default Value: @code{false}
5689@end itemize
fa819509 5690@c parse.trace
99c08fb6 5691
3cdc21cf
AD
5692@c ================================================== variant
5693@item variant
5694@findex %define variant
5695
5696@itemize @bullet
5697@item Language(s):
5698C++
5699
5700@item Purpose:
f1b238df 5701Request variant-based semantic values.
3cdc21cf
AD
5702@xref{C++ Variants}.
5703
5704@item Accepted Values:
5705Boolean.
5706
5707@item Default Value:
5708@code{false}
5709@end itemize
5710@c variant
99c08fb6 5711@end table
592d0b1e 5712
d8988b2f 5713
e0c07222
JD
5714@node %code Summary
5715@subsection %code Summary
e0c07222 5716@findex %code
e0c07222 5717@cindex Prologue
51151d91
JD
5718
5719The @code{%code} directive inserts code verbatim into the output
5720parser source at any of a predefined set of locations. It thus serves
5721as a flexible and user-friendly alternative to the traditional Yacc
5722prologue, @code{%@{@var{code}%@}}. This section summarizes the
5723functionality of @code{%code} for the various target languages
5724supported by Bison. For a detailed discussion of how to use
5725@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5726is advantageous to do so, @pxref{Prologue Alternatives}.
5727
5728@deffn {Directive} %code @{@var{code}@}
5729This is the unqualified form of the @code{%code} directive. It
5730inserts @var{code} verbatim at a language-dependent default location
5731in the parser implementation.
5732
e0c07222 5733For C/C++, the default location is the parser implementation file
51151d91
JD
5734after the usual contents of the parser header file. Thus, the
5735unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5736
5737For Java, the default location is inside the parser class.
5738@end deffn
5739
5740@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5741This is the qualified form of the @code{%code} directive.
51151d91
JD
5742@var{qualifier} identifies the purpose of @var{code} and thus the
5743location(s) where Bison should insert it. That is, if you need to
5744specify location-sensitive @var{code} that does not belong at the
5745default location selected by the unqualified @code{%code} form, use
5746this form instead.
5747@end deffn
5748
5749For any particular qualifier or for the unqualified form, if there are
5750multiple occurrences of the @code{%code} directive, Bison concatenates
5751the specified code in the order in which it appears in the grammar
5752file.
e0c07222 5753
51151d91
JD
5754Not all qualifiers are accepted for all target languages. Unaccepted
5755qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5756
84072495 5757@table @code
e0c07222
JD
5758@item requires
5759@findex %code requires
5760
5761@itemize @bullet
5762@item Language(s): C, C++
5763
5764@item Purpose: This is the best place to write dependency code required for
5765@code{YYSTYPE} and @code{YYLTYPE}.
5766In other words, it's the best place to define types referenced in @code{%union}
5767directives, and it's the best place to override Bison's default @code{YYSTYPE}
5768and @code{YYLTYPE} definitions.
5769
5770@item Location(s): The parser header file and the parser implementation file
5771before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5772definitions.
5773@end itemize
5774
5775@item provides
5776@findex %code provides
5777
5778@itemize @bullet
5779@item Language(s): C, C++
5780
5781@item Purpose: This is the best place to write additional definitions and
5782declarations that should be provided to other modules.
5783
5784@item Location(s): The parser header file and the parser implementation
5785file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5786token definitions.
5787@end itemize
5788
5789@item top
5790@findex %code top
5791
5792@itemize @bullet
5793@item Language(s): C, C++
5794
5795@item Purpose: The unqualified @code{%code} or @code{%code requires}
5796should usually be more appropriate than @code{%code top}. However,
5797occasionally it is necessary to insert code much nearer the top of the
5798parser implementation file. For example:
5799
c93f22fc 5800@example
e0c07222
JD
5801%code top @{
5802 #define _GNU_SOURCE
5803 #include <stdio.h>
5804@}
c93f22fc 5805@end example
e0c07222
JD
5806
5807@item Location(s): Near the top of the parser implementation file.
5808@end itemize
5809
5810@item imports
5811@findex %code imports
5812
5813@itemize @bullet
5814@item Language(s): Java
5815
5816@item Purpose: This is the best place to write Java import directives.
5817
5818@item Location(s): The parser Java file after any Java package directive and
5819before any class definitions.
5820@end itemize
84072495 5821@end table
e0c07222 5822
51151d91
JD
5823Though we say the insertion locations are language-dependent, they are
5824technically skeleton-dependent. Writers of non-standard skeletons
5825however should choose their locations consistently with the behavior
5826of the standard Bison skeletons.
e0c07222 5827
d8988b2f 5828
342b8b6e 5829@node Multiple Parsers
bfa74976
RS
5830@section Multiple Parsers in the Same Program
5831
5832Most programs that use Bison parse only one language and therefore contain
5833only one Bison parser. But what if you want to parse more than one
5834language with the same program? Then you need to avoid a name conflict
5835between different definitions of @code{yyparse}, @code{yylval}, and so on.
5836
5837The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5838(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5839functions and variables of the Bison parser to start with @var{prefix}
5840instead of @samp{yy}. You can use this to give each parser distinct
5841names that do not conflict.
bfa74976
RS
5842
5843The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5844@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5845@code{yychar} and @code{yydebug}. If you use a push parser,
5846@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5847@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5848For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5849@code{clex}, and so on.
bfa74976
RS
5850
5851@strong{All the other variables and macros associated with Bison are not
5852renamed.} These others are not global; there is no conflict if the same
5853name is used in different parsers. For example, @code{YYSTYPE} is not
5854renamed, but defining this in different ways in different parsers causes
5855no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5856
ff7571c0
JD
5857The @samp{-p} option works by adding macro definitions to the
5858beginning of the parser implementation file, defining @code{yyparse}
5859as @code{@var{prefix}parse}, and so on. This effectively substitutes
5860one name for the other in the entire parser implementation file.
bfa74976 5861
342b8b6e 5862@node Interface
bfa74976
RS
5863@chapter Parser C-Language Interface
5864@cindex C-language interface
5865@cindex interface
5866
5867The Bison parser is actually a C function named @code{yyparse}. Here we
5868describe the interface conventions of @code{yyparse} and the other
5869functions that it needs to use.
5870
5871Keep in mind that the parser uses many C identifiers starting with
5872@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5873identifier (aside from those in this manual) in an action or in epilogue
5874in the grammar file, you are likely to run into trouble.
bfa74976
RS
5875
5876@menu
f5f419de
DJ
5877* Parser Function:: How to call @code{yyparse} and what it returns.
5878* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5879* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5880* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5881* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5882* Lexical:: You must supply a function @code{yylex}
5883 which reads tokens.
5884* Error Reporting:: You must supply a function @code{yyerror}.
5885* Action Features:: Special features for use in actions.
5886* Internationalization:: How to let the parser speak in the user's
5887 native language.
bfa74976
RS
5888@end menu
5889
342b8b6e 5890@node Parser Function
bfa74976
RS
5891@section The Parser Function @code{yyparse}
5892@findex yyparse
5893
5894You call the function @code{yyparse} to cause parsing to occur. This
5895function reads tokens, executes actions, and ultimately returns when it
5896encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5897write an action which directs @code{yyparse} to return immediately
5898without reading further.
bfa74976 5899
2a8d363a
AD
5900
5901@deftypefun int yyparse (void)
bfa74976
RS
5902The value returned by @code{yyparse} is 0 if parsing was successful (return
5903is due to end-of-input).
5904
b47dbebe
PE
5905The value is 1 if parsing failed because of invalid input, i.e., input
5906that contains a syntax error or that causes @code{YYABORT} to be
5907invoked.
5908
5909The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5910@end deftypefun
bfa74976
RS
5911
5912In an action, you can cause immediate return from @code{yyparse} by using
5913these macros:
5914
2a8d363a 5915@defmac YYACCEPT
bfa74976
RS
5916@findex YYACCEPT
5917Return immediately with value 0 (to report success).
2a8d363a 5918@end defmac
bfa74976 5919
2a8d363a 5920@defmac YYABORT
bfa74976
RS
5921@findex YYABORT
5922Return immediately with value 1 (to report failure).
2a8d363a
AD
5923@end defmac
5924
5925If you use a reentrant parser, you can optionally pass additional
5926parameter information to it in a reentrant way. To do so, use the
5927declaration @code{%parse-param}:
5928
2055a44e 5929@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5930@findex %parse-param
2055a44e
AD
5931Declare that one or more
5932@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5933The @var{argument-declaration} is used when declaring
feeb0eda
PE
5934functions or prototypes. The last identifier in
5935@var{argument-declaration} must be the argument name.
2a8d363a
AD
5936@end deffn
5937
5938Here's an example. Write this in the parser:
5939
5940@example
2055a44e 5941%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5942@end example
5943
5944@noindent
5945Then call the parser like this:
5946
5947@example
5948@{
5949 int nastiness, randomness;
5950 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5951 value = yyparse (&nastiness, &randomness);
5952 @dots{}
5953@}
5954@end example
5955
5956@noindent
5957In the grammar actions, use expressions like this to refer to the data:
5958
5959@example
5960exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5961@end example
5962
9987d1b3
JD
5963@node Push Parser Function
5964@section The Push Parser Function @code{yypush_parse}
5965@findex yypush_parse
5966
59da312b
JD
5967(The current push parsing interface is experimental and may evolve.
5968More user feedback will help to stabilize it.)
5969
f4101aa6 5970You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5971function is available if either the @samp{%define api.push-pull push} or
5972@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5973@xref{Push Decl, ,A Push Parser}.
5974
5975@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5976The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5977following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5978is required to finish parsing the grammar.
5979@end deftypefun
5980
5981@node Pull Parser Function
5982@section The Pull Parser Function @code{yypull_parse}
5983@findex yypull_parse
5984
59da312b
JD
5985(The current push parsing interface is experimental and may evolve.
5986More user feedback will help to stabilize it.)
5987
f4101aa6 5988You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5989stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5990declaration is used.
9987d1b3
JD
5991@xref{Push Decl, ,A Push Parser}.
5992
5993@deftypefun int yypull_parse (yypstate *yyps)
5994The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5995@end deftypefun
5996
5997@node Parser Create Function
5998@section The Parser Create Function @code{yystate_new}
5999@findex yypstate_new
6000
59da312b
JD
6001(The current push parsing interface is experimental and may evolve.
6002More user feedback will help to stabilize it.)
6003
f4101aa6 6004You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6005This function is available if either the @samp{%define api.push-pull push} or
6006@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6007@xref{Push Decl, ,A Push Parser}.
6008
34a41a93 6009@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6010The function will return a valid parser instance if there was memory available
333e670c
JD
6011or 0 if no memory was available.
6012In impure mode, it will also return 0 if a parser instance is currently
6013allocated.
9987d1b3
JD
6014@end deftypefun
6015
6016@node Parser Delete Function
6017@section The Parser Delete Function @code{yystate_delete}
6018@findex yypstate_delete
6019
59da312b
JD
6020(The current push parsing interface is experimental and may evolve.
6021More user feedback will help to stabilize it.)
6022
9987d1b3 6023You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6024function is available if either the @samp{%define api.push-pull push} or
6025@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6026@xref{Push Decl, ,A Push Parser}.
6027
6028@deftypefun void yypstate_delete (yypstate *yyps)
6029This function will reclaim the memory associated with a parser instance.
6030After this call, you should no longer attempt to use the parser instance.
6031@end deftypefun
bfa74976 6032
342b8b6e 6033@node Lexical
bfa74976
RS
6034@section The Lexical Analyzer Function @code{yylex}
6035@findex yylex
6036@cindex lexical analyzer
6037
6038The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6039the input stream and returns them to the parser. Bison does not create
6040this function automatically; you must write it so that @code{yyparse} can
6041call it. The function is sometimes referred to as a lexical scanner.
6042
ff7571c0
JD
6043In simple programs, @code{yylex} is often defined at the end of the
6044Bison grammar file. If @code{yylex} is defined in a separate source
6045file, you need to arrange for the token-type macro definitions to be
6046available there. To do this, use the @samp{-d} option when you run
6047Bison, so that it will write these macro definitions into the separate
6048parser header file, @file{@var{name}.tab.h}, which you can include in
6049the other source files that need it. @xref{Invocation, ,Invoking
6050Bison}.
bfa74976
RS
6051
6052@menu
6053* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6054* Token Values:: How @code{yylex} must return the semantic value
6055 of the token it has read.
6056* Token Locations:: How @code{yylex} must return the text location
6057 (line number, etc.) of the token, if the
6058 actions want that.
6059* Pure Calling:: How the calling convention differs in a pure parser
6060 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6061@end menu
6062
342b8b6e 6063@node Calling Convention
bfa74976
RS
6064@subsection Calling Convention for @code{yylex}
6065
72d2299c
PE
6066The value that @code{yylex} returns must be the positive numeric code
6067for the type of token it has just found; a zero or negative value
6068signifies end-of-input.
bfa74976
RS
6069
6070When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6071in the parser implementation file becomes a C macro whose definition
6072is the proper numeric code for that token type. So @code{yylex} can
6073use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6074
6075When a token is referred to in the grammar rules by a character literal,
6076the numeric code for that character is also the code for the token type.
72d2299c
PE
6077So @code{yylex} can simply return that character code, possibly converted
6078to @code{unsigned char} to avoid sign-extension. The null character
6079must not be used this way, because its code is zero and that
bfa74976
RS
6080signifies end-of-input.
6081
6082Here is an example showing these things:
6083
6084@example
13863333
AD
6085int
6086yylex (void)
bfa74976
RS
6087@{
6088 @dots{}
72d2299c 6089 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6090 return 0;
6091 @dots{}
6092 if (c == '+' || c == '-')
72d2299c 6093 return c; /* Assume token type for `+' is '+'. */
bfa74976 6094 @dots{}
72d2299c 6095 return INT; /* Return the type of the token. */
bfa74976
RS
6096 @dots{}
6097@}
6098@end example
6099
6100@noindent
6101This interface has been designed so that the output from the @code{lex}
6102utility can be used without change as the definition of @code{yylex}.
6103
931c7513
RS
6104If the grammar uses literal string tokens, there are two ways that
6105@code{yylex} can determine the token type codes for them:
6106
6107@itemize @bullet
6108@item
6109If the grammar defines symbolic token names as aliases for the
6110literal string tokens, @code{yylex} can use these symbolic names like
6111all others. In this case, the use of the literal string tokens in
6112the grammar file has no effect on @code{yylex}.
6113
6114@item
9ecbd125 6115@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6116table. The index of the token in the table is the token type's code.
9ecbd125 6117The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6118double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6119token's characters are escaped as necessary to be suitable as input
6120to Bison.
931c7513 6121
9e0876fb
PE
6122Here's code for looking up a multicharacter token in @code{yytname},
6123assuming that the characters of the token are stored in
6124@code{token_buffer}, and assuming that the token does not contain any
6125characters like @samp{"} that require escaping.
931c7513 6126
c93f22fc 6127@example
931c7513
RS
6128for (i = 0; i < YYNTOKENS; i++)
6129 @{
6130 if (yytname[i] != 0
6131 && yytname[i][0] == '"'
68449b3a
PE
6132 && ! strncmp (yytname[i] + 1, token_buffer,
6133 strlen (token_buffer))
931c7513
RS
6134 && yytname[i][strlen (token_buffer) + 1] == '"'
6135 && yytname[i][strlen (token_buffer) + 2] == 0)
6136 break;
6137 @}
c93f22fc 6138@end example
931c7513
RS
6139
6140The @code{yytname} table is generated only if you use the
8c9a50be 6141@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6142@end itemize
6143
342b8b6e 6144@node Token Values
bfa74976
RS
6145@subsection Semantic Values of Tokens
6146
6147@vindex yylval
9d9b8b70 6148In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6149be stored into the global variable @code{yylval}. When you are using
6150just one data type for semantic values, @code{yylval} has that type.
6151Thus, if the type is @code{int} (the default), you might write this in
6152@code{yylex}:
6153
6154@example
6155@group
6156 @dots{}
72d2299c
PE
6157 yylval = value; /* Put value onto Bison stack. */
6158 return INT; /* Return the type of the token. */
bfa74976
RS
6159 @dots{}
6160@end group
6161@end example
6162
6163When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6164made from the @code{%union} declaration (@pxref{Union Decl, ,The
6165Collection of Value Types}). So when you store a token's value, you
6166must use the proper member of the union. If the @code{%union}
6167declaration looks like this:
bfa74976
RS
6168
6169@example
6170@group
6171%union @{
6172 int intval;
6173 double val;
6174 symrec *tptr;
6175@}
6176@end group
6177@end example
6178
6179@noindent
6180then the code in @code{yylex} might look like this:
6181
6182@example
6183@group
6184 @dots{}
72d2299c
PE
6185 yylval.intval = value; /* Put value onto Bison stack. */
6186 return INT; /* Return the type of the token. */
bfa74976
RS
6187 @dots{}
6188@end group
6189@end example
6190
95923bd6
AD
6191@node Token Locations
6192@subsection Textual Locations of Tokens
bfa74976
RS
6193
6194@vindex yylloc
303834cc
JD
6195If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6196in actions to keep track of the textual locations of tokens and groupings,
6197then you must provide this information in @code{yylex}. The function
6198@code{yyparse} expects to find the textual location of a token just parsed
6199in the global variable @code{yylloc}. So @code{yylex} must store the proper
6200data in that variable.
847bf1f5
AD
6201
6202By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6203initialize the members that are going to be used by the actions. The
6204four members are called @code{first_line}, @code{first_column},
6205@code{last_line} and @code{last_column}. Note that the use of this
6206feature makes the parser noticeably slower.
bfa74976
RS
6207
6208@tindex YYLTYPE
6209The data type of @code{yylloc} has the name @code{YYLTYPE}.
6210
342b8b6e 6211@node Pure Calling
c656404a 6212@subsection Calling Conventions for Pure Parsers
bfa74976 6213
67501061 6214When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6215pure, reentrant parser, the global communication variables @code{yylval}
6216and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6217Parser}.) In such parsers the two global variables are replaced by
6218pointers passed as arguments to @code{yylex}. You must declare them as
6219shown here, and pass the information back by storing it through those
6220pointers.
bfa74976
RS
6221
6222@example
13863333
AD
6223int
6224yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6225@{
6226 @dots{}
6227 *lvalp = value; /* Put value onto Bison stack. */
6228 return INT; /* Return the type of the token. */
6229 @dots{}
6230@}
6231@end example
6232
6233If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6234textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6235this case, omit the second argument; @code{yylex} will be called with
6236only one argument.
6237
2055a44e 6238If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6239@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6240Function}). To pass additional arguments to both @code{yylex} and
6241@code{yyparse}, use @code{%param}.
e425e872 6242
2055a44e 6243@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6244@findex %lex-param
2055a44e
AD
6245Specify that @var{argument-declaration} are additional @code{yylex} argument
6246declarations. You may pass one or more such declarations, which is
6247equivalent to repeating @code{%lex-param}.
6248@end deffn
6249
6250@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6251@findex %param
6252Specify that @var{argument-declaration} are additional
6253@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6254@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6255@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6256declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6257@end deffn
e425e872 6258
2a8d363a 6259For instance:
e425e872
RS
6260
6261@example
2055a44e
AD
6262%lex-param @{scanner_mode *mode@}
6263%parse-param @{parser_mode *mode@}
6264%param @{environment_type *env@}
e425e872
RS
6265@end example
6266
6267@noindent
18ad57b3 6268results in the following signatures:
e425e872
RS
6269
6270@example
2055a44e
AD
6271int yylex (scanner_mode *mode, environment_type *env);
6272int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6273@end example
6274
67501061 6275If @samp{%define api.pure} is added:
c656404a
RS
6276
6277@example
2055a44e
AD
6278int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6279int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6280@end example
6281
2a8d363a 6282@noindent
67501061 6283and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6284
2a8d363a 6285@example
2055a44e
AD
6286int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6287 scanner_mode *mode, environment_type *env);
6288int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6289@end example
931c7513 6290
342b8b6e 6291@node Error Reporting
bfa74976
RS
6292@section The Error Reporting Function @code{yyerror}
6293@cindex error reporting function
6294@findex yyerror
6295@cindex parse error
6296@cindex syntax error
6297
31b850d2 6298The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6299whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6300action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6301macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6302in Actions}).
bfa74976
RS
6303
6304The Bison parser expects to report the error by calling an error
6305reporting function named @code{yyerror}, which you must supply. It is
6306called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6307receives one argument. For a syntax error, the string is normally
6308@w{@code{"syntax error"}}.
bfa74976 6309
31b850d2 6310@findex %define parse.error
7fceb615
JD
6311If you invoke @samp{%define parse.error verbose} in the Bison declarations
6312section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6313Bison provides a more verbose and specific error message string instead of
6314just plain @w{@code{"syntax error"}}. However, that message sometimes
6315contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6316
1a059451
PE
6317The parser can detect one other kind of error: memory exhaustion. This
6318can happen when the input contains constructions that are very deeply
bfa74976 6319nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6320parser normally extends its stack automatically up to a very large limit. But
6321if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6322fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6323
6324In some cases diagnostics like @w{@code{"syntax error"}} are
6325translated automatically from English to some other language before
6326they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6327
6328The following definition suffices in simple programs:
6329
6330@example
6331@group
13863333 6332void
38a92d50 6333yyerror (char const *s)
bfa74976
RS
6334@{
6335@end group
6336@group
6337 fprintf (stderr, "%s\n", s);
6338@}
6339@end group
6340@end example
6341
6342After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6343error recovery if you have written suitable error recovery grammar rules
6344(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6345immediately return 1.
6346
93724f13 6347Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6348an access to the current location.
8a4281b9 6349This is indeed the case for the GLR
2a8d363a 6350parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6351@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6352@code{yyerror} are:
6353
6354@example
38a92d50
PE
6355void yyerror (char const *msg); /* Yacc parsers. */
6356void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6357@end example
6358
feeb0eda 6359If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6360
6361@example
b317297e
PE
6362void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6363void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6364@end example
6365
8a4281b9 6366Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6367convention for absolutely pure parsers, i.e., when the calling
6368convention of @code{yylex} @emph{and} the calling convention of
67501061 6369@samp{%define api.pure} are pure.
d9df47b6 6370I.e.:
2a8d363a
AD
6371
6372@example
6373/* Location tracking. */
6374%locations
6375/* Pure yylex. */
d9df47b6 6376%define api.pure
feeb0eda 6377%lex-param @{int *nastiness@}
2a8d363a 6378/* Pure yyparse. */
feeb0eda
PE
6379%parse-param @{int *nastiness@}
6380%parse-param @{int *randomness@}
2a8d363a
AD
6381@end example
6382
6383@noindent
6384results in the following signatures for all the parser kinds:
6385
6386@example
6387int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6388int yyparse (int *nastiness, int *randomness);
93724f13
AD
6389void yyerror (YYLTYPE *locp,
6390 int *nastiness, int *randomness,
38a92d50 6391 char const *msg);
2a8d363a
AD
6392@end example
6393
1c0c3e95 6394@noindent
38a92d50
PE
6395The prototypes are only indications of how the code produced by Bison
6396uses @code{yyerror}. Bison-generated code always ignores the returned
6397value, so @code{yyerror} can return any type, including @code{void}.
6398Also, @code{yyerror} can be a variadic function; that is why the
6399message is always passed last.
6400
6401Traditionally @code{yyerror} returns an @code{int} that is always
6402ignored, but this is purely for historical reasons, and @code{void} is
6403preferable since it more accurately describes the return type for
6404@code{yyerror}.
93724f13 6405
bfa74976
RS
6406@vindex yynerrs
6407The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6408reported so far. Normally this variable is global; but if you
704a47c4
AD
6409request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6410then it is a local variable which only the actions can access.
bfa74976 6411
342b8b6e 6412@node Action Features
bfa74976
RS
6413@section Special Features for Use in Actions
6414@cindex summary, action features
6415@cindex action features summary
6416
6417Here is a table of Bison constructs, variables and macros that
6418are useful in actions.
6419
18b519c0 6420@deffn {Variable} $$
bfa74976
RS
6421Acts like a variable that contains the semantic value for the
6422grouping made by the current rule. @xref{Actions}.
18b519c0 6423@end deffn
bfa74976 6424
18b519c0 6425@deffn {Variable} $@var{n}
bfa74976
RS
6426Acts like a variable that contains the semantic value for the
6427@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6428@end deffn
bfa74976 6429
18b519c0 6430@deffn {Variable} $<@var{typealt}>$
bfa74976 6431Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6432specified by the @code{%union} declaration. @xref{Action Types, ,Data
6433Types of Values in Actions}.
18b519c0 6434@end deffn
bfa74976 6435
18b519c0 6436@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6437Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6438union specified by the @code{%union} declaration.
e0c471a9 6439@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6440@end deffn
bfa74976 6441
34a41a93 6442@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6443Return immediately from @code{yyparse}, indicating failure.
6444@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6445@end deffn
bfa74976 6446
34a41a93 6447@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6448Return immediately from @code{yyparse}, indicating success.
6449@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6450@end deffn
bfa74976 6451
34a41a93 6452@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6453@findex YYBACKUP
6454Unshift a token. This macro is allowed only for rules that reduce
742e4900 6455a single value, and only when there is no lookahead token.
8a4281b9 6456It is also disallowed in GLR parsers.
742e4900 6457It installs a lookahead token with token type @var{token} and
bfa74976
RS
6458semantic value @var{value}; then it discards the value that was
6459going to be reduced by this rule.
6460
6461If the macro is used when it is not valid, such as when there is
742e4900 6462a lookahead token already, then it reports a syntax error with
bfa74976
RS
6463a message @samp{cannot back up} and performs ordinary error
6464recovery.
6465
6466In either case, the rest of the action is not executed.
18b519c0 6467@end deffn
bfa74976 6468
18b519c0 6469@deffn {Macro} YYEMPTY
742e4900 6470Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6471@end deffn
bfa74976 6472
32c29292 6473@deffn {Macro} YYEOF
742e4900 6474Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6475stream.
6476@end deffn
6477
34a41a93 6478@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6479Cause an immediate syntax error. This statement initiates error
6480recovery just as if the parser itself had detected an error; however, it
6481does not call @code{yyerror}, and does not print any message. If you
6482want to print an error message, call @code{yyerror} explicitly before
6483the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6484@end deffn
bfa74976 6485
18b519c0 6486@deffn {Macro} YYRECOVERING
02103984
PE
6487@findex YYRECOVERING
6488The expression @code{YYRECOVERING ()} yields 1 when the parser
6489is recovering from a syntax error, and 0 otherwise.
bfa74976 6490@xref{Error Recovery}.
18b519c0 6491@end deffn
bfa74976 6492
18b519c0 6493@deffn {Variable} yychar
742e4900
JD
6494Variable containing either the lookahead token, or @code{YYEOF} when the
6495lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6496has been performed so the next token is not yet known.
6497Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6498Actions}).
742e4900 6499@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6500@end deffn
bfa74976 6501
34a41a93 6502@deffn {Macro} yyclearin @code{;}
742e4900 6503Discard the current lookahead token. This is useful primarily in
32c29292
JD
6504error rules.
6505Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6506Semantic Actions}).
6507@xref{Error Recovery}.
18b519c0 6508@end deffn
bfa74976 6509
34a41a93 6510@deffn {Macro} yyerrok @code{;}
bfa74976 6511Resume generating error messages immediately for subsequent syntax
13863333 6512errors. This is useful primarily in error rules.
bfa74976 6513@xref{Error Recovery}.
18b519c0 6514@end deffn
bfa74976 6515
32c29292 6516@deffn {Variable} yylloc
742e4900 6517Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6518to @code{YYEMPTY} or @code{YYEOF}.
6519Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6520Actions}).
6521@xref{Actions and Locations, ,Actions and Locations}.
6522@end deffn
6523
6524@deffn {Variable} yylval
742e4900 6525Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6526not set to @code{YYEMPTY} or @code{YYEOF}.
6527Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6528Actions}).
6529@xref{Actions, ,Actions}.
6530@end deffn
6531
18b519c0 6532@deffn {Value} @@$
847bf1f5 6533@findex @@$
303834cc
JD
6534Acts like a structure variable containing information on the textual
6535location of the grouping made by the current rule. @xref{Tracking
6536Locations}.
bfa74976 6537
847bf1f5
AD
6538@c Check if those paragraphs are still useful or not.
6539
6540@c @example
6541@c struct @{
6542@c int first_line, last_line;
6543@c int first_column, last_column;
6544@c @};
6545@c @end example
6546
6547@c Thus, to get the starting line number of the third component, you would
6548@c use @samp{@@3.first_line}.
bfa74976 6549
847bf1f5
AD
6550@c In order for the members of this structure to contain valid information,
6551@c you must make @code{yylex} supply this information about each token.
6552@c If you need only certain members, then @code{yylex} need only fill in
6553@c those members.
bfa74976 6554
847bf1f5 6555@c The use of this feature makes the parser noticeably slower.
18b519c0 6556@end deffn
847bf1f5 6557
18b519c0 6558@deffn {Value} @@@var{n}
847bf1f5 6559@findex @@@var{n}
303834cc
JD
6560Acts like a structure variable containing information on the textual
6561location of the @var{n}th component of the current rule. @xref{Tracking
6562Locations}.
18b519c0 6563@end deffn
bfa74976 6564
f7ab6a50
PE
6565@node Internationalization
6566@section Parser Internationalization
6567@cindex internationalization
6568@cindex i18n
6569@cindex NLS
6570@cindex gettext
6571@cindex bison-po
6572
6573A Bison-generated parser can print diagnostics, including error and
6574tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6575also supports outputting diagnostics in the user's native language. To
6576make this work, the user should set the usual environment variables.
6577@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6578For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6579set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6580encoding. The exact set of available locales depends on the user's
6581installation.
6582
6583The maintainer of a package that uses a Bison-generated parser enables
6584the internationalization of the parser's output through the following
8a4281b9
JD
6585steps. Here we assume a package that uses GNU Autoconf and
6586GNU Automake.
f7ab6a50
PE
6587
6588@enumerate
6589@item
30757c8c 6590@cindex bison-i18n.m4
8a4281b9 6591Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6592by the package---often called @file{m4}---copy the
6593@file{bison-i18n.m4} file installed by Bison under
6594@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6595For example:
6596
6597@example
6598cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6599@end example
6600
6601@item
30757c8c
PE
6602@findex BISON_I18N
6603@vindex BISON_LOCALEDIR
6604@vindex YYENABLE_NLS
f7ab6a50
PE
6605In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6606invocation, add an invocation of @code{BISON_I18N}. This macro is
6607defined in the file @file{bison-i18n.m4} that you copied earlier. It
6608causes @samp{configure} to find the value of the
30757c8c
PE
6609@code{BISON_LOCALEDIR} variable, and it defines the source-language
6610symbol @code{YYENABLE_NLS} to enable translations in the
6611Bison-generated parser.
f7ab6a50
PE
6612
6613@item
6614In the @code{main} function of your program, designate the directory
6615containing Bison's runtime message catalog, through a call to
6616@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6617For example:
6618
6619@example
6620bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6621@end example
6622
6623Typically this appears after any other call @code{bindtextdomain
6624(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6625@samp{BISON_LOCALEDIR} to be defined as a string through the
6626@file{Makefile}.
6627
6628@item
6629In the @file{Makefile.am} that controls the compilation of the @code{main}
6630function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6631either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6632
6633@example
6634DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6635@end example
6636
6637or:
6638
6639@example
6640AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6641@end example
6642
6643@item
6644Finally, invoke the command @command{autoreconf} to generate the build
6645infrastructure.
6646@end enumerate
6647
bfa74976 6648
342b8b6e 6649@node Algorithm
13863333
AD
6650@chapter The Bison Parser Algorithm
6651@cindex Bison parser algorithm
bfa74976
RS
6652@cindex algorithm of parser
6653@cindex shifting
6654@cindex reduction
6655@cindex parser stack
6656@cindex stack, parser
6657
6658As Bison reads tokens, it pushes them onto a stack along with their
6659semantic values. The stack is called the @dfn{parser stack}. Pushing a
6660token is traditionally called @dfn{shifting}.
6661
6662For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6663@samp{3} to come. The stack will have four elements, one for each token
6664that was shifted.
6665
6666But the stack does not always have an element for each token read. When
6667the last @var{n} tokens and groupings shifted match the components of a
6668grammar rule, they can be combined according to that rule. This is called
6669@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6670single grouping whose symbol is the result (left hand side) of that rule.
6671Running the rule's action is part of the process of reduction, because this
6672is what computes the semantic value of the resulting grouping.
6673
6674For example, if the infix calculator's parser stack contains this:
6675
6676@example
66771 + 5 * 3
6678@end example
6679
6680@noindent
6681and the next input token is a newline character, then the last three
6682elements can be reduced to 15 via the rule:
6683
6684@example
6685expr: expr '*' expr;
6686@end example
6687
6688@noindent
6689Then the stack contains just these three elements:
6690
6691@example
66921 + 15
6693@end example
6694
6695@noindent
6696At this point, another reduction can be made, resulting in the single value
669716. Then the newline token can be shifted.
6698
6699The parser tries, by shifts and reductions, to reduce the entire input down
6700to a single grouping whose symbol is the grammar's start-symbol
6701(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6702
6703This kind of parser is known in the literature as a bottom-up parser.
6704
6705@menu
742e4900 6706* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6707* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6708* Precedence:: Operator precedence works by resolving conflicts.
6709* Contextual Precedence:: When an operator's precedence depends on context.
6710* Parser States:: The parser is a finite-state-machine with stack.
6711* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6712* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6713* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6714* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6715* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6716@end menu
6717
742e4900
JD
6718@node Lookahead
6719@section Lookahead Tokens
6720@cindex lookahead token
bfa74976
RS
6721
6722The Bison parser does @emph{not} always reduce immediately as soon as the
6723last @var{n} tokens and groupings match a rule. This is because such a
6724simple strategy is inadequate to handle most languages. Instead, when a
6725reduction is possible, the parser sometimes ``looks ahead'' at the next
6726token in order to decide what to do.
6727
6728When a token is read, it is not immediately shifted; first it becomes the
742e4900 6729@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6730perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6731the lookahead token remains off to the side. When no more reductions
6732should take place, the lookahead token is shifted onto the stack. This
bfa74976 6733does not mean that all possible reductions have been done; depending on the
742e4900 6734token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6735application.
6736
742e4900 6737Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6738expressions which contain binary addition operators and postfix unary
6739factorial operators (@samp{!}), and allow parentheses for grouping.
6740
6741@example
6742@group
5e9b6624
AD
6743expr:
6744 term '+' expr
6745| term
6746;
bfa74976
RS
6747@end group
6748
6749@group
5e9b6624
AD
6750term:
6751 '(' expr ')'
6752| term '!'
6753| NUMBER
6754;
bfa74976
RS
6755@end group
6756@end example
6757
6758Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6759should be done? If the following token is @samp{)}, then the first three
6760tokens must be reduced to form an @code{expr}. This is the only valid
6761course, because shifting the @samp{)} would produce a sequence of symbols
6762@w{@code{term ')'}}, and no rule allows this.
6763
6764If the following token is @samp{!}, then it must be shifted immediately so
6765that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6766parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6767@code{expr}. It would then be impossible to shift the @samp{!} because
6768doing so would produce on the stack the sequence of symbols @code{expr
6769'!'}. No rule allows that sequence.
6770
6771@vindex yychar
32c29292
JD
6772@vindex yylval
6773@vindex yylloc
742e4900 6774The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6775Its semantic value and location, if any, are stored in the variables
6776@code{yylval} and @code{yylloc}.
bfa74976
RS
6777@xref{Action Features, ,Special Features for Use in Actions}.
6778
342b8b6e 6779@node Shift/Reduce
bfa74976
RS
6780@section Shift/Reduce Conflicts
6781@cindex conflicts
6782@cindex shift/reduce conflicts
6783@cindex dangling @code{else}
6784@cindex @code{else}, dangling
6785
6786Suppose we are parsing a language which has if-then and if-then-else
6787statements, with a pair of rules like this:
6788
6789@example
6790@group
6791if_stmt:
5e9b6624
AD
6792 IF expr THEN stmt
6793| IF expr THEN stmt ELSE stmt
6794;
bfa74976
RS
6795@end group
6796@end example
6797
6798@noindent
6799Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6800terminal symbols for specific keyword tokens.
6801
742e4900 6802When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6803contents of the stack (assuming the input is valid) are just right for
6804reduction by the first rule. But it is also legitimate to shift the
6805@code{ELSE}, because that would lead to eventual reduction by the second
6806rule.
6807
6808This situation, where either a shift or a reduction would be valid, is
6809called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6810these conflicts by choosing to shift, unless otherwise directed by
6811operator precedence declarations. To see the reason for this, let's
6812contrast it with the other alternative.
6813
6814Since the parser prefers to shift the @code{ELSE}, the result is to attach
6815the else-clause to the innermost if-statement, making these two inputs
6816equivalent:
6817
6818@example
6819if x then if y then win (); else lose;
6820
6821if x then do; if y then win (); else lose; end;
6822@end example
6823
6824But if the parser chose to reduce when possible rather than shift, the
6825result would be to attach the else-clause to the outermost if-statement,
6826making these two inputs equivalent:
6827
6828@example
6829if x then if y then win (); else lose;
6830
6831if x then do; if y then win (); end; else lose;
6832@end example
6833
6834The conflict exists because the grammar as written is ambiguous: either
6835parsing of the simple nested if-statement is legitimate. The established
6836convention is that these ambiguities are resolved by attaching the
6837else-clause to the innermost if-statement; this is what Bison accomplishes
6838by choosing to shift rather than reduce. (It would ideally be cleaner to
6839write an unambiguous grammar, but that is very hard to do in this case.)
6840This particular ambiguity was first encountered in the specifications of
6841Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6842
6843To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6844conflicts, use the @code{%expect @var{n}} declaration.
6845There will be no warning as long as the number of shift/reduce conflicts
6846is exactly @var{n}, and Bison will report an error if there is a
6847different number.
bfa74976
RS
6848@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6849
6850The definition of @code{if_stmt} above is solely to blame for the
6851conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6852rules. Here is a complete Bison grammar file that actually manifests
6853the conflict:
bfa74976
RS
6854
6855@example
6856@group
6857%token IF THEN ELSE variable
6858%%
6859@end group
6860@group
5e9b6624
AD
6861stmt:
6862 expr
6863| if_stmt
6864;
bfa74976
RS
6865@end group
6866
6867@group
6868if_stmt:
5e9b6624
AD
6869 IF expr THEN stmt
6870| IF expr THEN stmt ELSE stmt
6871;
bfa74976
RS
6872@end group
6873
5e9b6624
AD
6874expr:
6875 variable
6876;
bfa74976
RS
6877@end example
6878
342b8b6e 6879@node Precedence
bfa74976
RS
6880@section Operator Precedence
6881@cindex operator precedence
6882@cindex precedence of operators
6883
6884Another situation where shift/reduce conflicts appear is in arithmetic
6885expressions. Here shifting is not always the preferred resolution; the
6886Bison declarations for operator precedence allow you to specify when to
6887shift and when to reduce.
6888
6889@menu
6890* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6891* Using Precedence:: How to specify precedence and associativity.
6892* Precedence Only:: How to specify precedence only.
bfa74976
RS
6893* Precedence Examples:: How these features are used in the previous example.
6894* How Precedence:: How they work.
6895@end menu
6896
342b8b6e 6897@node Why Precedence
bfa74976
RS
6898@subsection When Precedence is Needed
6899
6900Consider the following ambiguous grammar fragment (ambiguous because the
6901input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6902
6903@example
6904@group
5e9b6624
AD
6905expr:
6906 expr '-' expr
6907| expr '*' expr
6908| expr '<' expr
6909| '(' expr ')'
6910@dots{}
6911;
bfa74976
RS
6912@end group
6913@end example
6914
6915@noindent
6916Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6917should it reduce them via the rule for the subtraction operator? It
6918depends on the next token. Of course, if the next token is @samp{)}, we
6919must reduce; shifting is invalid because no single rule can reduce the
6920token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6921the next token is @samp{*} or @samp{<}, we have a choice: either
6922shifting or reduction would allow the parse to complete, but with
6923different results.
6924
6925To decide which one Bison should do, we must consider the results. If
6926the next operator token @var{op} is shifted, then it must be reduced
6927first in order to permit another opportunity to reduce the difference.
6928The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6929hand, if the subtraction is reduced before shifting @var{op}, the result
6930is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6931reduce should depend on the relative precedence of the operators
6932@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6933@samp{<}.
bfa74976
RS
6934
6935@cindex associativity
6936What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6937@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6938operators we prefer the former, which is called @dfn{left association}.
6939The latter alternative, @dfn{right association}, is desirable for
6940assignment operators. The choice of left or right association is a
6941matter of whether the parser chooses to shift or reduce when the stack
742e4900 6942contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6943makes right-associativity.
bfa74976 6944
342b8b6e 6945@node Using Precedence
bfa74976
RS
6946@subsection Specifying Operator Precedence
6947@findex %left
bfa74976 6948@findex %nonassoc
d78f0ac9
AD
6949@findex %precedence
6950@findex %right
bfa74976
RS
6951
6952Bison allows you to specify these choices with the operator precedence
6953declarations @code{%left} and @code{%right}. Each such declaration
6954contains a list of tokens, which are operators whose precedence and
6955associativity is being declared. The @code{%left} declaration makes all
6956those operators left-associative and the @code{%right} declaration makes
6957them right-associative. A third alternative is @code{%nonassoc}, which
6958declares that it is a syntax error to find the same operator twice ``in a
6959row''.
d78f0ac9
AD
6960The last alternative, @code{%precedence}, allows to define only
6961precedence and no associativity at all. As a result, any
6962associativity-related conflict that remains will be reported as an
6963compile-time error. The directive @code{%nonassoc} creates run-time
6964error: using the operator in a associative way is a syntax error. The
6965directive @code{%precedence} creates compile-time errors: an operator
6966@emph{can} be involved in an associativity-related conflict, contrary to
6967what expected the grammar author.
bfa74976
RS
6968
6969The relative precedence of different operators is controlled by the
d78f0ac9
AD
6970order in which they are declared. The first precedence/associativity
6971declaration in the file declares the operators whose
bfa74976
RS
6972precedence is lowest, the next such declaration declares the operators
6973whose precedence is a little higher, and so on.
6974
d78f0ac9
AD
6975@node Precedence Only
6976@subsection Specifying Precedence Only
6977@findex %precedence
6978
8a4281b9 6979Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6980@code{%nonassoc}, which all defines precedence and associativity, little
6981attention is paid to the fact that precedence cannot be defined without
6982defining associativity. Yet, sometimes, when trying to solve a
6983conflict, precedence suffices. In such a case, using @code{%left},
6984@code{%right}, or @code{%nonassoc} might hide future (associativity
6985related) conflicts that would remain hidden.
6986
6987The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6988Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6989in the following situation, where the period denotes the current parsing
6990state:
6991
6992@example
6993if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6994@end example
6995
6996The conflict involves the reduction of the rule @samp{IF expr THEN
6997stmt}, which precedence is by default that of its last token
6998(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6999disambiguation (attach the @code{else} to the closest @code{if}),
7000shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7001higher than that of @code{THEN}. But neither is expected to be involved
7002in an associativity related conflict, which can be specified as follows.
7003
7004@example
7005%precedence THEN
7006%precedence ELSE
7007@end example
7008
7009The unary-minus is another typical example where associativity is
7010usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7011Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7012used to declare the precedence of @code{NEG}, which is more than needed
7013since it also defines its associativity. While this is harmless in the
7014traditional example, who knows how @code{NEG} might be used in future
7015evolutions of the grammar@dots{}
7016
342b8b6e 7017@node Precedence Examples
bfa74976
RS
7018@subsection Precedence Examples
7019
7020In our example, we would want the following declarations:
7021
7022@example
7023%left '<'
7024%left '-'
7025%left '*'
7026@end example
7027
7028In a more complete example, which supports other operators as well, we
7029would declare them in groups of equal precedence. For example, @code{'+'} is
7030declared with @code{'-'}:
7031
7032@example
7033%left '<' '>' '=' NE LE GE
7034%left '+' '-'
7035%left '*' '/'
7036@end example
7037
7038@noindent
7039(Here @code{NE} and so on stand for the operators for ``not equal''
7040and so on. We assume that these tokens are more than one character long
7041and therefore are represented by names, not character literals.)
7042
342b8b6e 7043@node How Precedence
bfa74976
RS
7044@subsection How Precedence Works
7045
7046The first effect of the precedence declarations is to assign precedence
7047levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7048precedence levels to certain rules: each rule gets its precedence from
7049the last terminal symbol mentioned in the components. (You can also
7050specify explicitly the precedence of a rule. @xref{Contextual
7051Precedence, ,Context-Dependent Precedence}.)
7052
7053Finally, the resolution of conflicts works by comparing the precedence
742e4900 7054of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7055token's precedence is higher, the choice is to shift. If the rule's
7056precedence is higher, the choice is to reduce. If they have equal
7057precedence, the choice is made based on the associativity of that
7058precedence level. The verbose output file made by @samp{-v}
7059(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7060resolved.
bfa74976
RS
7061
7062Not all rules and not all tokens have precedence. If either the rule or
742e4900 7063the lookahead token has no precedence, then the default is to shift.
bfa74976 7064
342b8b6e 7065@node Contextual Precedence
bfa74976
RS
7066@section Context-Dependent Precedence
7067@cindex context-dependent precedence
7068@cindex unary operator precedence
7069@cindex precedence, context-dependent
7070@cindex precedence, unary operator
7071@findex %prec
7072
7073Often the precedence of an operator depends on the context. This sounds
7074outlandish at first, but it is really very common. For example, a minus
7075sign typically has a very high precedence as a unary operator, and a
7076somewhat lower precedence (lower than multiplication) as a binary operator.
7077
d78f0ac9
AD
7078The Bison precedence declarations
7079can only be used once for a given token; so a token has
bfa74976
RS
7080only one precedence declared in this way. For context-dependent
7081precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7082modifier for rules.
bfa74976
RS
7083
7084The @code{%prec} modifier declares the precedence of a particular rule by
7085specifying a terminal symbol whose precedence should be used for that rule.
7086It's not necessary for that symbol to appear otherwise in the rule. The
7087modifier's syntax is:
7088
7089@example
7090%prec @var{terminal-symbol}
7091@end example
7092
7093@noindent
7094and it is written after the components of the rule. Its effect is to
7095assign the rule the precedence of @var{terminal-symbol}, overriding
7096the precedence that would be deduced for it in the ordinary way. The
7097altered rule precedence then affects how conflicts involving that rule
7098are resolved (@pxref{Precedence, ,Operator Precedence}).
7099
7100Here is how @code{%prec} solves the problem of unary minus. First, declare
7101a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7102are no tokens of this type, but the symbol serves to stand for its
7103precedence:
7104
7105@example
7106@dots{}
7107%left '+' '-'
7108%left '*'
7109%left UMINUS
7110@end example
7111
7112Now the precedence of @code{UMINUS} can be used in specific rules:
7113
7114@example
7115@group
5e9b6624
AD
7116exp:
7117 @dots{}
7118| exp '-' exp
7119 @dots{}
7120| '-' exp %prec UMINUS
bfa74976
RS
7121@end group
7122@end example
7123
91d2c560 7124@ifset defaultprec
39a06c25
PE
7125If you forget to append @code{%prec UMINUS} to the rule for unary
7126minus, Bison silently assumes that minus has its usual precedence.
7127This kind of problem can be tricky to debug, since one typically
7128discovers the mistake only by testing the code.
7129
22fccf95 7130The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7131this kind of problem systematically. It causes rules that lack a
7132@code{%prec} modifier to have no precedence, even if the last terminal
7133symbol mentioned in their components has a declared precedence.
7134
22fccf95 7135If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7136for all rules that participate in precedence conflict resolution.
7137Then you will see any shift/reduce conflict until you tell Bison how
7138to resolve it, either by changing your grammar or by adding an
7139explicit precedence. This will probably add declarations to the
7140grammar, but it helps to protect against incorrect rule precedences.
7141
22fccf95
PE
7142The effect of @code{%no-default-prec;} can be reversed by giving
7143@code{%default-prec;}, which is the default.
91d2c560 7144@end ifset
39a06c25 7145
342b8b6e 7146@node Parser States
bfa74976
RS
7147@section Parser States
7148@cindex finite-state machine
7149@cindex parser state
7150@cindex state (of parser)
7151
7152The function @code{yyparse} is implemented using a finite-state machine.
7153The values pushed on the parser stack are not simply token type codes; they
7154represent the entire sequence of terminal and nonterminal symbols at or
7155near the top of the stack. The current state collects all the information
7156about previous input which is relevant to deciding what to do next.
7157
742e4900
JD
7158Each time a lookahead token is read, the current parser state together
7159with the type of lookahead token are looked up in a table. This table
7160entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7161specifies the new parser state, which is pushed onto the top of the
7162parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7163This means that a certain number of tokens or groupings are taken off
7164the top of the stack, and replaced by one grouping. In other words,
7165that number of states are popped from the stack, and one new state is
7166pushed.
7167
742e4900 7168There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7169is erroneous in the current state. This causes error processing to begin
7170(@pxref{Error Recovery}).
7171
342b8b6e 7172@node Reduce/Reduce
bfa74976
RS
7173@section Reduce/Reduce Conflicts
7174@cindex reduce/reduce conflict
7175@cindex conflicts, reduce/reduce
7176
7177A reduce/reduce conflict occurs if there are two or more rules that apply
7178to the same sequence of input. This usually indicates a serious error
7179in the grammar.
7180
7181For example, here is an erroneous attempt to define a sequence
7182of zero or more @code{word} groupings.
7183
7184@example
d4fca427 7185@group
5e9b6624
AD
7186sequence:
7187 /* empty */ @{ printf ("empty sequence\n"); @}
7188| maybeword
7189| sequence word @{ printf ("added word %s\n", $2); @}
7190;
d4fca427 7191@end group
bfa74976 7192
d4fca427 7193@group
5e9b6624
AD
7194maybeword:
7195 /* empty */ @{ printf ("empty maybeword\n"); @}
7196| word @{ printf ("single word %s\n", $1); @}
7197;
d4fca427 7198@end group
bfa74976
RS
7199@end example
7200
7201@noindent
7202The error is an ambiguity: there is more than one way to parse a single
7203@code{word} into a @code{sequence}. It could be reduced to a
7204@code{maybeword} and then into a @code{sequence} via the second rule.
7205Alternatively, nothing-at-all could be reduced into a @code{sequence}
7206via the first rule, and this could be combined with the @code{word}
7207using the third rule for @code{sequence}.
7208
7209There is also more than one way to reduce nothing-at-all into a
7210@code{sequence}. This can be done directly via the first rule,
7211or indirectly via @code{maybeword} and then the second rule.
7212
7213You might think that this is a distinction without a difference, because it
7214does not change whether any particular input is valid or not. But it does
7215affect which actions are run. One parsing order runs the second rule's
7216action; the other runs the first rule's action and the third rule's action.
7217In this example, the output of the program changes.
7218
7219Bison resolves a reduce/reduce conflict by choosing to use the rule that
7220appears first in the grammar, but it is very risky to rely on this. Every
7221reduce/reduce conflict must be studied and usually eliminated. Here is the
7222proper way to define @code{sequence}:
7223
7224@example
5e9b6624
AD
7225sequence:
7226 /* empty */ @{ printf ("empty sequence\n"); @}
7227| sequence word @{ printf ("added word %s\n", $2); @}
7228;
bfa74976
RS
7229@end example
7230
7231Here is another common error that yields a reduce/reduce conflict:
7232
7233@example
5e9b6624
AD
7234sequence:
7235 /* empty */
7236| sequence words
7237| sequence redirects
7238;
bfa74976 7239
5e9b6624
AD
7240words:
7241 /* empty */
7242| words word
7243;
bfa74976 7244
5e9b6624
AD
7245redirects:
7246 /* empty */
7247| redirects redirect
7248;
bfa74976
RS
7249@end example
7250
7251@noindent
7252The intention here is to define a sequence which can contain either
7253@code{word} or @code{redirect} groupings. The individual definitions of
7254@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7255three together make a subtle ambiguity: even an empty input can be parsed
7256in infinitely many ways!
7257
7258Consider: nothing-at-all could be a @code{words}. Or it could be two
7259@code{words} in a row, or three, or any number. It could equally well be a
7260@code{redirects}, or two, or any number. Or it could be a @code{words}
7261followed by three @code{redirects} and another @code{words}. And so on.
7262
7263Here are two ways to correct these rules. First, to make it a single level
7264of sequence:
7265
7266@example
5e9b6624
AD
7267sequence:
7268 /* empty */
7269| sequence word
7270| sequence redirect
7271;
bfa74976
RS
7272@end example
7273
7274Second, to prevent either a @code{words} or a @code{redirects}
7275from being empty:
7276
7277@example
d4fca427 7278@group
5e9b6624
AD
7279sequence:
7280 /* empty */
7281| sequence words
7282| sequence redirects
7283;
d4fca427 7284@end group
bfa74976 7285
d4fca427 7286@group
5e9b6624
AD
7287words:
7288 word
7289| words word
7290;
d4fca427 7291@end group
bfa74976 7292
d4fca427 7293@group
5e9b6624
AD
7294redirects:
7295 redirect
7296| redirects redirect
7297;
d4fca427 7298@end group
bfa74976
RS
7299@end example
7300
cc09e5be
JD
7301@node Mysterious Conflicts
7302@section Mysterious Conflicts
7fceb615 7303@cindex Mysterious Conflicts
bfa74976
RS
7304
7305Sometimes reduce/reduce conflicts can occur that don't look warranted.
7306Here is an example:
7307
7308@example
7309@group
7310%token ID
7311
7312%%
5e9b6624 7313def: param_spec return_spec ',';
bfa74976 7314param_spec:
5e9b6624
AD
7315 type
7316| name_list ':' type
7317;
bfa74976
RS
7318@end group
7319@group
7320return_spec:
5e9b6624
AD
7321 type
7322| name ':' type
7323;
bfa74976
RS
7324@end group
7325@group
5e9b6624 7326type: ID;
bfa74976
RS
7327@end group
7328@group
5e9b6624 7329name: ID;
bfa74976 7330name_list:
5e9b6624
AD
7331 name
7332| name ',' name_list
7333;
bfa74976
RS
7334@end group
7335@end example
7336
7337It would seem that this grammar can be parsed with only a single token
742e4900 7338of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7339a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7340@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7341
7fceb615
JD
7342@cindex LR
7343@cindex LALR
eb45ef3b 7344However, for historical reasons, Bison cannot by default handle all
8a4281b9 7345LR(1) grammars.
eb45ef3b
JD
7346In this grammar, two contexts, that after an @code{ID} at the beginning
7347of a @code{param_spec} and likewise at the beginning of a
7348@code{return_spec}, are similar enough that Bison assumes they are the
7349same.
7350They appear similar because the same set of rules would be
bfa74976
RS
7351active---the rule for reducing to a @code{name} and that for reducing to
7352a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7353that the rules would require different lookahead tokens in the two
bfa74976
RS
7354contexts, so it makes a single parser state for them both. Combining
7355the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7356occurrence means that the grammar is not LALR(1).
bfa74976 7357
7fceb615
JD
7358@cindex IELR
7359@cindex canonical LR
7360For many practical grammars (specifically those that fall into the non-LR(1)
7361class), the limitations of LALR(1) result in difficulties beyond just
7362mysterious reduce/reduce conflicts. The best way to fix all these problems
7363is to select a different parser table construction algorithm. Either
7364IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7365and easier to debug during development. @xref{LR Table Construction}, for
7366details. (Bison's IELR(1) and canonical LR(1) implementations are
7367experimental. More user feedback will help to stabilize them.)
eb45ef3b 7368
8a4281b9 7369If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7370can often fix a mysterious conflict by identifying the two parser states
7371that are being confused, and adding something to make them look
7372distinct. In the above example, adding one rule to
bfa74976
RS
7373@code{return_spec} as follows makes the problem go away:
7374
7375@example
7376@group
7377%token BOGUS
7378@dots{}
7379%%
7380@dots{}
7381return_spec:
5e9b6624
AD
7382 type
7383| name ':' type
7384| ID BOGUS /* This rule is never used. */
7385;
bfa74976
RS
7386@end group
7387@end example
7388
7389This corrects the problem because it introduces the possibility of an
7390additional active rule in the context after the @code{ID} at the beginning of
7391@code{return_spec}. This rule is not active in the corresponding context
7392in a @code{param_spec}, so the two contexts receive distinct parser states.
7393As long as the token @code{BOGUS} is never generated by @code{yylex},
7394the added rule cannot alter the way actual input is parsed.
7395
7396In this particular example, there is another way to solve the problem:
7397rewrite the rule for @code{return_spec} to use @code{ID} directly
7398instead of via @code{name}. This also causes the two confusing
7399contexts to have different sets of active rules, because the one for
7400@code{return_spec} activates the altered rule for @code{return_spec}
7401rather than the one for @code{name}.
7402
7403@example
7404param_spec:
5e9b6624
AD
7405 type
7406| name_list ':' type
7407;
bfa74976 7408return_spec:
5e9b6624
AD
7409 type
7410| ID ':' type
7411;
bfa74976
RS
7412@end example
7413
8a4281b9 7414For a more detailed exposition of LALR(1) parsers and parser
5e528941 7415generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7416
7fceb615
JD
7417@node Tuning LR
7418@section Tuning LR
7419
7420The default behavior of Bison's LR-based parsers is chosen mostly for
7421historical reasons, but that behavior is often not robust. For example, in
7422the previous section, we discussed the mysterious conflicts that can be
7423produced by LALR(1), Bison's default parser table construction algorithm.
7424Another example is Bison's @code{%define parse.error verbose} directive,
7425which instructs the generated parser to produce verbose syntax error
7426messages, which can sometimes contain incorrect information.
7427
7428In this section, we explore several modern features of Bison that allow you
7429to tune fundamental aspects of the generated LR-based parsers. Some of
7430these features easily eliminate shortcomings like those mentioned above.
7431Others can be helpful purely for understanding your parser.
7432
7433Most of the features discussed in this section are still experimental. More
7434user feedback will help to stabilize them.
7435
7436@menu
7437* LR Table Construction:: Choose a different construction algorithm.
7438* Default Reductions:: Disable default reductions.
7439* LAC:: Correct lookahead sets in the parser states.
7440* Unreachable States:: Keep unreachable parser states for debugging.
7441@end menu
7442
7443@node LR Table Construction
7444@subsection LR Table Construction
7445@cindex Mysterious Conflict
7446@cindex LALR
7447@cindex IELR
7448@cindex canonical LR
7449@findex %define lr.type
7450
7451For historical reasons, Bison constructs LALR(1) parser tables by default.
7452However, LALR does not possess the full language-recognition power of LR.
7453As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7454mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7455Conflicts}.
7456
7457As we also demonstrated in that example, the traditional approach to
7458eliminating such mysterious behavior is to restructure the grammar.
7459Unfortunately, doing so correctly is often difficult. Moreover, merely
7460discovering that LALR causes mysterious behavior in your parser can be
7461difficult as well.
7462
7463Fortunately, Bison provides an easy way to eliminate the possibility of such
7464mysterious behavior altogether. You simply need to activate a more powerful
7465parser table construction algorithm by using the @code{%define lr.type}
7466directive.
7467
7468@deffn {Directive} {%define lr.type @var{TYPE}}
7469Specify the type of parser tables within the LR(1) family. The accepted
7470values for @var{TYPE} are:
7471
7472@itemize
7473@item @code{lalr} (default)
7474@item @code{ielr}
7475@item @code{canonical-lr}
7476@end itemize
7477
7478(This feature is experimental. More user feedback will help to stabilize
7479it.)
7480@end deffn
7481
7482For example, to activate IELR, you might add the following directive to you
7483grammar file:
7484
7485@example
7486%define lr.type ielr
7487@end example
7488
cc09e5be 7489@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7490conflict is then eliminated, so there is no need to invest time in
7491comprehending the conflict or restructuring the grammar to fix it. If,
7492during future development, the grammar evolves such that all mysterious
7493behavior would have disappeared using just LALR, you need not fear that
7494continuing to use IELR will result in unnecessarily large parser tables.
7495That is, IELR generates LALR tables when LALR (using a deterministic parsing
7496algorithm) is sufficient to support the full language-recognition power of
7497LR. Thus, by enabling IELR at the start of grammar development, you can
7498safely and completely eliminate the need to consider LALR's shortcomings.
7499
7500While IELR is almost always preferable, there are circumstances where LALR
7501or the canonical LR parser tables described by Knuth
7502(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7503relative advantages of each parser table construction algorithm within
7504Bison:
7505
7506@itemize
7507@item LALR
7508
7509There are at least two scenarios where LALR can be worthwhile:
7510
7511@itemize
7512@item GLR without static conflict resolution.
7513
7514@cindex GLR with LALR
7515When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7516conflicts statically (for example, with @code{%left} or @code{%prec}), then
7517the parser explores all potential parses of any given input. In this case,
7518the choice of parser table construction algorithm is guaranteed not to alter
7519the language accepted by the parser. LALR parser tables are the smallest
7520parser tables Bison can currently construct, so they may then be preferable.
7521Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7522more like a deterministic parser in the syntactic contexts where those
7523conflicts appear, and so either IELR or canonical LR can then be helpful to
7524avoid LALR's mysterious behavior.
7525
7526@item Malformed grammars.
7527
7528Occasionally during development, an especially malformed grammar with a
7529major recurring flaw may severely impede the IELR or canonical LR parser
7530table construction algorithm. LALR can be a quick way to construct parser
7531tables in order to investigate such problems while ignoring the more subtle
7532differences from IELR and canonical LR.
7533@end itemize
7534
7535@item IELR
7536
7537IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7538any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7539always accept exactly the same set of sentences. However, like LALR, IELR
7540merges parser states during parser table construction so that the number of
7541parser states is often an order of magnitude less than for canonical LR.
7542More importantly, because canonical LR's extra parser states may contain
7543duplicate conflicts in the case of non-LR grammars, the number of conflicts
7544for IELR is often an order of magnitude less as well. This effect can
7545significantly reduce the complexity of developing a grammar.
7546
7547@item Canonical LR
7548
7549@cindex delayed syntax error detection
7550@cindex LAC
7551@findex %nonassoc
7552While inefficient, canonical LR parser tables can be an interesting means to
7553explore a grammar because they possess a property that IELR and LALR tables
7554do not. That is, if @code{%nonassoc} is not used and default reductions are
7555left disabled (@pxref{Default Reductions}), then, for every left context of
7556every canonical LR state, the set of tokens accepted by that state is
7557guaranteed to be the exact set of tokens that is syntactically acceptable in
7558that left context. It might then seem that an advantage of canonical LR
7559parsers in production is that, under the above constraints, they are
7560guaranteed to detect a syntax error as soon as possible without performing
7561any unnecessary reductions. However, IELR parsers that use LAC are also
7562able to achieve this behavior without sacrificing @code{%nonassoc} or
7563default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7564@end itemize
7565
7566For a more detailed exposition of the mysterious behavior in LALR parsers
7567and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7568@ref{Bibliography,,Denny 2010 November}.
7569
7570@node Default Reductions
7571@subsection Default Reductions
7572@cindex default reductions
7573@findex %define lr.default-reductions
7574@findex %nonassoc
7575
7576After parser table construction, Bison identifies the reduction with the
7577largest lookahead set in each parser state. To reduce the size of the
7578parser state, traditional Bison behavior is to remove that lookahead set and
7579to assign that reduction to be the default parser action. Such a reduction
7580is known as a @dfn{default reduction}.
7581
7582Default reductions affect more than the size of the parser tables. They
7583also affect the behavior of the parser:
7584
7585@itemize
7586@item Delayed @code{yylex} invocations.
7587
7588@cindex delayed yylex invocations
7589@cindex consistent states
7590@cindex defaulted states
7591A @dfn{consistent state} is a state that has only one possible parser
7592action. If that action is a reduction and is encoded as a default
7593reduction, then that consistent state is called a @dfn{defaulted state}.
7594Upon reaching a defaulted state, a Bison-generated parser does not bother to
7595invoke @code{yylex} to fetch the next token before performing the reduction.
7596In other words, whether default reductions are enabled in consistent states
7597determines how soon a Bison-generated parser invokes @code{yylex} for a
7598token: immediately when it @emph{reaches} that token in the input or when it
7599eventually @emph{needs} that token as a lookahead to determine the next
7600parser action. Traditionally, default reductions are enabled, and so the
7601parser exhibits the latter behavior.
7602
7603The presence of defaulted states is an important consideration when
7604designing @code{yylex} and the grammar file. That is, if the behavior of
7605@code{yylex} can influence or be influenced by the semantic actions
7606associated with the reductions in defaulted states, then the delay of the
7607next @code{yylex} invocation until after those reductions is significant.
7608For example, the semantic actions might pop a scope stack that @code{yylex}
7609uses to determine what token to return. Thus, the delay might be necessary
7610to ensure that @code{yylex} does not look up the next token in a scope that
7611should already be considered closed.
7612
7613@item Delayed syntax error detection.
7614
7615@cindex delayed syntax error detection
7616When the parser fetches a new token by invoking @code{yylex}, it checks
7617whether there is an action for that token in the current parser state. The
7618parser detects a syntax error if and only if either (1) there is no action
7619for that token or (2) the action for that token is the error action (due to
7620the use of @code{%nonassoc}). However, if there is a default reduction in
7621that state (which might or might not be a defaulted state), then it is
7622impossible for condition 1 to exist. That is, all tokens have an action.
7623Thus, the parser sometimes fails to detect the syntax error until it reaches
7624a later state.
7625
7626@cindex LAC
7627@c If there's an infinite loop, default reductions can prevent an incorrect
7628@c sentence from being rejected.
7629While default reductions never cause the parser to accept syntactically
7630incorrect sentences, the delay of syntax error detection can have unexpected
7631effects on the behavior of the parser. However, the delay can be caused
7632anyway by parser state merging and the use of @code{%nonassoc}, and it can
7633be fixed by another Bison feature, LAC. We discuss the effects of delayed
7634syntax error detection and LAC more in the next section (@pxref{LAC}).
7635@end itemize
7636
7637For canonical LR, the only default reduction that Bison enables by default
7638is the accept action, which appears only in the accepting state, which has
7639no other action and is thus a defaulted state. However, the default accept
7640action does not delay any @code{yylex} invocation or syntax error detection
7641because the accept action ends the parse.
7642
7643For LALR and IELR, Bison enables default reductions in nearly all states by
7644default. There are only two exceptions. First, states that have a shift
7645action on the @code{error} token do not have default reductions because
7646delayed syntax error detection could then prevent the @code{error} token
7647from ever being shifted in that state. However, parser state merging can
7648cause the same effect anyway, and LAC fixes it in both cases, so future
7649versions of Bison might drop this exception when LAC is activated. Second,
7650GLR parsers do not record the default reduction as the action on a lookahead
7651token for which there is a conflict. The correct action in this case is to
7652split the parse instead.
7653
7654To adjust which states have default reductions enabled, use the
7655@code{%define lr.default-reductions} directive.
7656
7657@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7658Specify the kind of states that are permitted to contain default reductions.
7659The accepted values of @var{WHERE} are:
7660@itemize
f0ad1b2f 7661@item @code{most} (default for LALR and IELR)
7fceb615
JD
7662@item @code{consistent}
7663@item @code{accepting} (default for canonical LR)
7664@end itemize
7665
7666(The ability to specify where default reductions are permitted is
7667experimental. More user feedback will help to stabilize it.)
7668@end deffn
7669
7fceb615
JD
7670@node LAC
7671@subsection LAC
7672@findex %define parse.lac
7673@cindex LAC
7674@cindex lookahead correction
7675
7676Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7677encountering a syntax error. First, the parser might perform additional
7678parser stack reductions before discovering the syntax error. Such
7679reductions can perform user semantic actions that are unexpected because
7680they are based on an invalid token, and they cause error recovery to begin
7681in a different syntactic context than the one in which the invalid token was
7682encountered. Second, when verbose error messages are enabled (@pxref{Error
7683Reporting}), the expected token list in the syntax error message can both
7684contain invalid tokens and omit valid tokens.
7685
7686The culprits for the above problems are @code{%nonassoc}, default reductions
7687in inconsistent states (@pxref{Default Reductions}), and parser state
7688merging. Because IELR and LALR merge parser states, they suffer the most.
7689Canonical LR can suffer only if @code{%nonassoc} is used or if default
7690reductions are enabled for inconsistent states.
7691
7692LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7693that solves these problems for canonical LR, IELR, and LALR without
7694sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7695enable LAC with the @code{%define parse.lac} directive.
7696
7697@deffn {Directive} {%define parse.lac @var{VALUE}}
7698Enable LAC to improve syntax error handling.
7699@itemize
7700@item @code{none} (default)
7701@item @code{full}
7702@end itemize
7703(This feature is experimental. More user feedback will help to stabilize
7704it. Moreover, it is currently only available for deterministic parsers in
7705C.)
7706@end deffn
7707
7708Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7709fetches a new token from the scanner so that it can determine the next
7710parser action, it immediately suspends normal parsing and performs an
7711exploratory parse using a temporary copy of the normal parser state stack.
7712During this exploratory parse, the parser does not perform user semantic
7713actions. If the exploratory parse reaches a shift action, normal parsing
7714then resumes on the normal parser stacks. If the exploratory parse reaches
7715an error instead, the parser reports a syntax error. If verbose syntax
7716error messages are enabled, the parser must then discover the list of
7717expected tokens, so it performs a separate exploratory parse for each token
7718in the grammar.
7719
7720There is one subtlety about the use of LAC. That is, when in a consistent
7721parser state with a default reduction, the parser will not attempt to fetch
7722a token from the scanner because no lookahead is needed to determine the
7723next parser action. Thus, whether default reductions are enabled in
7724consistent states (@pxref{Default Reductions}) affects how soon the parser
7725detects a syntax error: immediately when it @emph{reaches} an erroneous
7726token or when it eventually @emph{needs} that token as a lookahead to
7727determine the next parser action. The latter behavior is probably more
7728intuitive, so Bison currently provides no way to achieve the former behavior
7729while default reductions are enabled in consistent states.
7730
7731Thus, when LAC is in use, for some fixed decision of whether to enable
7732default reductions in consistent states, canonical LR and IELR behave almost
7733exactly the same for both syntactically acceptable and syntactically
7734unacceptable input. While LALR still does not support the full
7735language-recognition power of canonical LR and IELR, LAC at least enables
7736LALR's syntax error handling to correctly reflect LALR's
7737language-recognition power.
7738
7739There are a few caveats to consider when using LAC:
7740
7741@itemize
7742@item Infinite parsing loops.
7743
7744IELR plus LAC does have one shortcoming relative to canonical LR. Some
7745parsers generated by Bison can loop infinitely. LAC does not fix infinite
7746parsing loops that occur between encountering a syntax error and detecting
7747it, but enabling canonical LR or disabling default reductions sometimes
7748does.
7749
7750@item Verbose error message limitations.
7751
7752Because of internationalization considerations, Bison-generated parsers
7753limit the size of the expected token list they are willing to report in a
7754verbose syntax error message. If the number of expected tokens exceeds that
7755limit, the list is simply dropped from the message. Enabling LAC can
7756increase the size of the list and thus cause the parser to drop it. Of
7757course, dropping the list is better than reporting an incorrect list.
7758
7759@item Performance.
7760
7761Because LAC requires many parse actions to be performed twice, it can have a
7762performance penalty. However, not all parse actions must be performed
7763twice. Specifically, during a series of default reductions in consistent
7764states and shift actions, the parser never has to initiate an exploratory
7765parse. Moreover, the most time-consuming tasks in a parse are often the
7766file I/O, the lexical analysis performed by the scanner, and the user's
7767semantic actions, but none of these are performed during the exploratory
7768parse. Finally, the base of the temporary stack used during an exploratory
7769parse is a pointer into the normal parser state stack so that the stack is
7770never physically copied. In our experience, the performance penalty of LAC
5a321748 7771has proved insignificant for practical grammars.
7fceb615
JD
7772@end itemize
7773
709c7d11
JD
7774While the LAC algorithm shares techniques that have been recognized in the
7775parser community for years, for the publication that introduces LAC,
7776@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7777
7fceb615
JD
7778@node Unreachable States
7779@subsection Unreachable States
7780@findex %define lr.keep-unreachable-states
7781@cindex unreachable states
7782
7783If there exists no sequence of transitions from the parser's start state to
7784some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7785state}. A state can become unreachable during conflict resolution if Bison
7786disables a shift action leading to it from a predecessor state.
7787
7788By default, Bison removes unreachable states from the parser after conflict
7789resolution because they are useless in the generated parser. However,
7790keeping unreachable states is sometimes useful when trying to understand the
7791relationship between the parser and the grammar.
7792
7793@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7794Request that Bison allow unreachable states to remain in the parser tables.
7795@var{VALUE} must be a Boolean. The default is @code{false}.
7796@end deffn
7797
7798There are a few caveats to consider:
7799
7800@itemize @bullet
7801@item Missing or extraneous warnings.
7802
7803Unreachable states may contain conflicts and may use rules not used in any
7804other state. Thus, keeping unreachable states may induce warnings that are
7805irrelevant to your parser's behavior, and it may eliminate warnings that are
7806relevant. Of course, the change in warnings may actually be relevant to a
7807parser table analysis that wants to keep unreachable states, so this
7808behavior will likely remain in future Bison releases.
7809
7810@item Other useless states.
7811
7812While Bison is able to remove unreachable states, it is not guaranteed to
7813remove other kinds of useless states. Specifically, when Bison disables
7814reduce actions during conflict resolution, some goto actions may become
7815useless, and thus some additional states may become useless. If Bison were
7816to compute which goto actions were useless and then disable those actions,
7817it could identify such states as unreachable and then remove those states.
7818However, Bison does not compute which goto actions are useless.
7819@end itemize
7820
fae437e8 7821@node Generalized LR Parsing
8a4281b9
JD
7822@section Generalized LR (GLR) Parsing
7823@cindex GLR parsing
7824@cindex generalized LR (GLR) parsing
676385e2 7825@cindex ambiguous grammars
9d9b8b70 7826@cindex nondeterministic parsing
676385e2 7827
fae437e8
AD
7828Bison produces @emph{deterministic} parsers that choose uniquely
7829when to reduce and which reduction to apply
742e4900 7830based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7831As a result, normal Bison handles a proper subset of the family of
7832context-free languages.
fae437e8 7833Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7834sequence of reductions cannot have deterministic parsers in this sense.
7835The same is true of languages that require more than one symbol of
742e4900 7836lookahead, since the parser lacks the information necessary to make a
676385e2 7837decision at the point it must be made in a shift-reduce parser.
cc09e5be 7838Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7839there are languages where Bison's default choice of how to
676385e2
PH
7840summarize the input seen so far loses necessary information.
7841
7842When you use the @samp{%glr-parser} declaration in your grammar file,
7843Bison generates a parser that uses a different algorithm, called
8a4281b9 7844Generalized LR (or GLR). A Bison GLR
c827f760 7845parser uses the same basic
676385e2
PH
7846algorithm for parsing as an ordinary Bison parser, but behaves
7847differently in cases where there is a shift-reduce conflict that has not
fae437e8 7848been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7849reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7850situation, it
fae437e8 7851effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7852shift or reduction. These parsers then proceed as usual, consuming
7853tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7854and split further, with the result that instead of a sequence of states,
8a4281b9 7855a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7856
7857In effect, each stack represents a guess as to what the proper parse
7858is. Additional input may indicate that a guess was wrong, in which case
7859the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7860actions generated in each stack are saved, rather than being executed
676385e2 7861immediately. When a stack disappears, its saved semantic actions never
fae437e8 7862get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7863their sets of semantic actions are both saved with the state that
7864results from the reduction. We say that two stacks are equivalent
fae437e8 7865when they both represent the same sequence of states,
676385e2
PH
7866and each pair of corresponding states represents a
7867grammar symbol that produces the same segment of the input token
7868stream.
7869
7870Whenever the parser makes a transition from having multiple
eb45ef3b 7871states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7872algorithm, after resolving and executing the saved-up actions.
7873At this transition, some of the states on the stack will have semantic
7874values that are sets (actually multisets) of possible actions. The
7875parser tries to pick one of the actions by first finding one whose rule
7876has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7877declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7878precedence, but there the same merging function is declared for both
fae437e8 7879rules by the @samp{%merge} declaration,
676385e2
PH
7880Bison resolves and evaluates both and then calls the merge function on
7881the result. Otherwise, it reports an ambiguity.
7882
8a4281b9
JD
7883It is possible to use a data structure for the GLR parsing tree that
7884permits the processing of any LR(1) grammar in linear time (in the
c827f760 7885size of the input), any unambiguous (not necessarily
8a4281b9 7886LR(1)) grammar in
fae437e8 7887quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7888context-free grammar in cubic worst-case time. However, Bison currently
7889uses a simpler data structure that requires time proportional to the
7890length of the input times the maximum number of stacks required for any
9d9b8b70 7891prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7892grammars can require exponential time and space to process. Such badly
7893behaving examples, however, are not generally of practical interest.
9d9b8b70 7894Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7895doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7896structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7897grammar, in particular, it is only slightly slower than with the
8a4281b9 7898deterministic LR(1) Bison parser.
676385e2 7899
5e528941
JD
7900For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
79012000}.
f6481e2f 7902
1a059451
PE
7903@node Memory Management
7904@section Memory Management, and How to Avoid Memory Exhaustion
7905@cindex memory exhaustion
7906@cindex memory management
bfa74976
RS
7907@cindex stack overflow
7908@cindex parser stack overflow
7909@cindex overflow of parser stack
7910
1a059451 7911The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7912not reduced. When this happens, the parser function @code{yyparse}
1a059451 7913calls @code{yyerror} and then returns 2.
bfa74976 7914
c827f760 7915Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 7916usually results from using a right recursion instead of a left
188867ac 7917recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 7918
bfa74976
RS
7919@vindex YYMAXDEPTH
7920By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7921parser stack can become before memory is exhausted. Define the
bfa74976
RS
7922macro with a value that is an integer. This value is the maximum number
7923of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7924
7925The stack space allowed is not necessarily allocated. If you specify a
1a059451 7926large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7927stack at first, and then makes it bigger by stages as needed. This
7928increasing allocation happens automatically and silently. Therefore,
7929you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7930space for ordinary inputs that do not need much stack.
7931
d7e14fc0
PE
7932However, do not allow @code{YYMAXDEPTH} to be a value so large that
7933arithmetic overflow could occur when calculating the size of the stack
7934space. Also, do not allow @code{YYMAXDEPTH} to be less than
7935@code{YYINITDEPTH}.
7936
bfa74976
RS
7937@cindex default stack limit
7938The default value of @code{YYMAXDEPTH}, if you do not define it, is
793910000.
7940
7941@vindex YYINITDEPTH
7942You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7943macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7944parser in C, this value must be a compile-time constant
d7e14fc0
PE
7945unless you are assuming C99 or some other target language or compiler
7946that allows variable-length arrays. The default is 200.
7947
1a059451 7948Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7949
20be2f92 7950You can generate a deterministic parser containing C++ user code from
411614fa 7951the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
7952(@pxref{C++ Parsers}). However, if you do use the default skeleton
7953and want to allow the parsing stack to grow,
7954be careful not to use semantic types or location types that require
7955non-trivial copy constructors.
7956The C skeleton bypasses these constructors when copying data to
7957new, larger stacks.
d1a1114f 7958
342b8b6e 7959@node Error Recovery
bfa74976
RS
7960@chapter Error Recovery
7961@cindex error recovery
7962@cindex recovery from errors
7963
6e649e65 7964It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7965error. For example, a compiler should recover sufficiently to parse the
7966rest of the input file and check it for errors; a calculator should accept
7967another expression.
7968
7969In a simple interactive command parser where each input is one line, it may
7970be sufficient to allow @code{yyparse} to return 1 on error and have the
7971caller ignore the rest of the input line when that happens (and then call
7972@code{yyparse} again). But this is inadequate for a compiler, because it
7973forgets all the syntactic context leading up to the error. A syntax error
7974deep within a function in the compiler input should not cause the compiler
7975to treat the following line like the beginning of a source file.
7976
7977@findex error
7978You can define how to recover from a syntax error by writing rules to
7979recognize the special token @code{error}. This is a terminal symbol that
7980is always defined (you need not declare it) and reserved for error
7981handling. The Bison parser generates an @code{error} token whenever a
7982syntax error happens; if you have provided a rule to recognize this token
13863333 7983in the current context, the parse can continue.
bfa74976
RS
7984
7985For example:
7986
7987@example
0860e383 7988stmts:
5e9b6624 7989 /* empty string */
0860e383
AD
7990| stmts '\n'
7991| stmts exp '\n'
7992| stmts error '\n'
bfa74976
RS
7993@end example
7994
7995The fourth rule in this example says that an error followed by a newline
0860e383 7996makes a valid addition to any @code{stmts}.
bfa74976
RS
7997
7998What happens if a syntax error occurs in the middle of an @code{exp}? The
7999error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8000of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8001the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8002and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8003will be tokens to read before the next newline. So the rule is not
8004applicable in the ordinary way.
8005
8006But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8007the semantic context and part of the input. First it discards states
8008and objects from the stack until it gets back to a state in which the
bfa74976 8009@code{error} token is acceptable. (This means that the subexpressions
0860e383 8010already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8011At this point the @code{error} token can be shifted. Then, if the old
742e4900 8012lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8013tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8014this example, Bison reads and discards input until the next newline so
8015that the fourth rule can apply. Note that discarded symbols are
8016possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8017Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8018
8019The choice of error rules in the grammar is a choice of strategies for
8020error recovery. A simple and useful strategy is simply to skip the rest of
8021the current input line or current statement if an error is detected:
8022
8023@example
0860e383 8024stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8025@end example
8026
8027It is also useful to recover to the matching close-delimiter of an
8028opening-delimiter that has already been parsed. Otherwise the
8029close-delimiter will probably appear to be unmatched, and generate another,
8030spurious error message:
8031
8032@example
5e9b6624
AD
8033primary:
8034 '(' expr ')'
8035| '(' error ')'
8036@dots{}
8037;
bfa74976
RS
8038@end example
8039
8040Error recovery strategies are necessarily guesses. When they guess wrong,
8041one syntax error often leads to another. In the above example, the error
8042recovery rule guesses that an error is due to bad input within one
0860e383
AD
8043@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8044middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8045from the first error, another syntax error will be found straightaway,
8046since the text following the spurious semicolon is also an invalid
0860e383 8047@code{stmt}.
bfa74976
RS
8048
8049To prevent an outpouring of error messages, the parser will output no error
8050message for another syntax error that happens shortly after the first; only
8051after three consecutive input tokens have been successfully shifted will
8052error messages resume.
8053
8054Note that rules which accept the @code{error} token may have actions, just
8055as any other rules can.
8056
8057@findex yyerrok
8058You can make error messages resume immediately by using the macro
8059@code{yyerrok} in an action. If you do this in the error rule's action, no
8060error messages will be suppressed. This macro requires no arguments;
8061@samp{yyerrok;} is a valid C statement.
8062
8063@findex yyclearin
742e4900 8064The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8065this is unacceptable, then the macro @code{yyclearin} may be used to clear
8066this token. Write the statement @samp{yyclearin;} in the error rule's
8067action.
32c29292 8068@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8069
6e649e65 8070For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8071called that advances the input stream to some point where parsing should
8072once again commence. The next symbol returned by the lexical scanner is
742e4900 8073probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8074with @samp{yyclearin;}.
8075
8076@vindex YYRECOVERING
02103984
PE
8077The expression @code{YYRECOVERING ()} yields 1 when the parser
8078is recovering from a syntax error, and 0 otherwise.
8079Syntax error diagnostics are suppressed while recovering from a syntax
8080error.
bfa74976 8081
342b8b6e 8082@node Context Dependency
bfa74976
RS
8083@chapter Handling Context Dependencies
8084
8085The Bison paradigm is to parse tokens first, then group them into larger
8086syntactic units. In many languages, the meaning of a token is affected by
8087its context. Although this violates the Bison paradigm, certain techniques
8088(known as @dfn{kludges}) may enable you to write Bison parsers for such
8089languages.
8090
8091@menu
8092* Semantic Tokens:: Token parsing can depend on the semantic context.
8093* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8094* Tie-in Recovery:: Lexical tie-ins have implications for how
8095 error recovery rules must be written.
8096@end menu
8097
8098(Actually, ``kludge'' means any technique that gets its job done but is
8099neither clean nor robust.)
8100
342b8b6e 8101@node Semantic Tokens
bfa74976
RS
8102@section Semantic Info in Token Types
8103
8104The C language has a context dependency: the way an identifier is used
8105depends on what its current meaning is. For example, consider this:
8106
8107@example
8108foo (x);
8109@end example
8110
8111This looks like a function call statement, but if @code{foo} is a typedef
8112name, then this is actually a declaration of @code{x}. How can a Bison
8113parser for C decide how to parse this input?
8114
8a4281b9 8115The method used in GNU C is to have two different token types,
bfa74976
RS
8116@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8117identifier, it looks up the current declaration of the identifier in order
8118to decide which token type to return: @code{TYPENAME} if the identifier is
8119declared as a typedef, @code{IDENTIFIER} otherwise.
8120
8121The grammar rules can then express the context dependency by the choice of
8122token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8123but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8124@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8125is @emph{not} significant, such as in declarations that can shadow a
8126typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8127accepted---there is one rule for each of the two token types.
8128
8129This technique is simple to use if the decision of which kinds of
8130identifiers to allow is made at a place close to where the identifier is
8131parsed. But in C this is not always so: C allows a declaration to
8132redeclare a typedef name provided an explicit type has been specified
8133earlier:
8134
8135@example
3a4f411f
PE
8136typedef int foo, bar;
8137int baz (void)
d4fca427 8138@group
3a4f411f
PE
8139@{
8140 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8141 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8142 return foo (bar);
8143@}
d4fca427 8144@end group
bfa74976
RS
8145@end example
8146
8147Unfortunately, the name being declared is separated from the declaration
8148construct itself by a complicated syntactic structure---the ``declarator''.
8149
9ecbd125 8150As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8151all the nonterminal names changed: once for parsing a declaration in
8152which a typedef name can be redefined, and once for parsing a
8153declaration in which that can't be done. Here is a part of the
8154duplication, with actions omitted for brevity:
bfa74976
RS
8155
8156@example
d4fca427 8157@group
bfa74976 8158initdcl:
5e9b6624
AD
8159 declarator maybeasm '=' init
8160| declarator maybeasm
8161;
d4fca427 8162@end group
bfa74976 8163
d4fca427 8164@group
bfa74976 8165notype_initdcl:
5e9b6624
AD
8166 notype_declarator maybeasm '=' init
8167| notype_declarator maybeasm
8168;
d4fca427 8169@end group
bfa74976
RS
8170@end example
8171
8172@noindent
8173Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8174cannot. The distinction between @code{declarator} and
8175@code{notype_declarator} is the same sort of thing.
8176
8177There is some similarity between this technique and a lexical tie-in
8178(described next), in that information which alters the lexical analysis is
8179changed during parsing by other parts of the program. The difference is
8180here the information is global, and is used for other purposes in the
8181program. A true lexical tie-in has a special-purpose flag controlled by
8182the syntactic context.
8183
342b8b6e 8184@node Lexical Tie-ins
bfa74976
RS
8185@section Lexical Tie-ins
8186@cindex lexical tie-in
8187
8188One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8189which is set by Bison actions, whose purpose is to alter the way tokens are
8190parsed.
8191
8192For example, suppose we have a language vaguely like C, but with a special
8193construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8194an expression in parentheses in which all integers are hexadecimal. In
8195particular, the token @samp{a1b} must be treated as an integer rather than
8196as an identifier if it appears in that context. Here is how you can do it:
8197
8198@example
8199@group
8200%@{
38a92d50
PE
8201 int hexflag;
8202 int yylex (void);
8203 void yyerror (char const *);
bfa74976
RS
8204%@}
8205%%
8206@dots{}
8207@end group
8208@group
5e9b6624
AD
8209expr:
8210 IDENTIFIER
8211| constant
8212| HEX '(' @{ hexflag = 1; @}
8213 expr ')' @{ hexflag = 0; $$ = $4; @}
8214| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8215@dots{}
8216;
bfa74976
RS
8217@end group
8218
8219@group
8220constant:
5e9b6624
AD
8221 INTEGER
8222| STRING
8223;
bfa74976
RS
8224@end group
8225@end example
8226
8227@noindent
8228Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8229it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8230with letters are parsed as integers if possible.
8231
ff7571c0
JD
8232The declaration of @code{hexflag} shown in the prologue of the grammar
8233file is needed to make it accessible to the actions (@pxref{Prologue,
8234,The Prologue}). You must also write the code in @code{yylex} to obey
8235the flag.
bfa74976 8236
342b8b6e 8237@node Tie-in Recovery
bfa74976
RS
8238@section Lexical Tie-ins and Error Recovery
8239
8240Lexical tie-ins make strict demands on any error recovery rules you have.
8241@xref{Error Recovery}.
8242
8243The reason for this is that the purpose of an error recovery rule is to
8244abort the parsing of one construct and resume in some larger construct.
8245For example, in C-like languages, a typical error recovery rule is to skip
8246tokens until the next semicolon, and then start a new statement, like this:
8247
8248@example
5e9b6624
AD
8249stmt:
8250 expr ';'
8251| IF '(' expr ')' stmt @{ @dots{} @}
8252@dots{}
8253| error ';' @{ hexflag = 0; @}
8254;
bfa74976
RS
8255@end example
8256
8257If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8258construct, this error rule will apply, and then the action for the
8259completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8260remain set for the entire rest of the input, or until the next @code{hex}
8261keyword, causing identifiers to be misinterpreted as integers.
8262
8263To avoid this problem the error recovery rule itself clears @code{hexflag}.
8264
8265There may also be an error recovery rule that works within expressions.
8266For example, there could be a rule which applies within parentheses
8267and skips to the close-parenthesis:
8268
8269@example
8270@group
5e9b6624
AD
8271expr:
8272 @dots{}
8273| '(' expr ')' @{ $$ = $2; @}
8274| '(' error ')'
8275@dots{}
bfa74976
RS
8276@end group
8277@end example
8278
8279If this rule acts within the @code{hex} construct, it is not going to abort
8280that construct (since it applies to an inner level of parentheses within
8281the construct). Therefore, it should not clear the flag: the rest of
8282the @code{hex} construct should be parsed with the flag still in effect.
8283
8284What if there is an error recovery rule which might abort out of the
8285@code{hex} construct or might not, depending on circumstances? There is no
8286way you can write the action to determine whether a @code{hex} construct is
8287being aborted or not. So if you are using a lexical tie-in, you had better
8288make sure your error recovery rules are not of this kind. Each rule must
8289be such that you can be sure that it always will, or always won't, have to
8290clear the flag.
8291
ec3bc396
AD
8292@c ================================================== Debugging Your Parser
8293
342b8b6e 8294@node Debugging
bfa74976 8295@chapter Debugging Your Parser
ec3bc396 8296
93c150b6
AD
8297Developing a parser can be a challenge, especially if you don't understand
8298the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8299chapter explains how to generate and read the detailed description of the
8300automaton, and how to enable and understand the parser run-time traces.
ec3bc396
AD
8301
8302@menu
8303* Understanding:: Understanding the structure of your parser.
8304* Tracing:: Tracing the execution of your parser.
8305@end menu
8306
8307@node Understanding
8308@section Understanding Your Parser
8309
8310As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8311Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8312frequent than one would hope), looking at this automaton is required to
8313tune or simply fix a parser. Bison provides two different
35fe0834 8314representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8315
8316The textual file is generated when the options @option{--report} or
e3fd1dcb 8317@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8318Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8319the parser implementation file name, and adding @samp{.output}
8320instead. Therefore, if the grammar file is @file{foo.y}, then the
8321parser implementation file is called @file{foo.tab.c} by default. As
8322a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8323
8324The following grammar file, @file{calc.y}, will be used in the sequel:
8325
8326@example
8327%token NUM STR
8328%left '+' '-'
8329%left '*'
8330%%
5e9b6624
AD
8331exp:
8332 exp '+' exp
8333| exp '-' exp
8334| exp '*' exp
8335| exp '/' exp
8336| NUM
8337;
ec3bc396
AD
8338useless: STR;
8339%%
8340@end example
8341
88bce5a2
AD
8342@command{bison} reports:
8343
8344@example
8f0d265e
JD
8345calc.y: warning: 1 nonterminal useless in grammar
8346calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8347calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8348calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8349calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8350@end example
8351
8352When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8353creates a file @file{calc.output} with contents detailed below. The
8354order of the output and the exact presentation might vary, but the
8355interpretation is the same.
ec3bc396 8356
ec3bc396
AD
8357@noindent
8358@cindex token, useless
8359@cindex useless token
8360@cindex nonterminal, useless
8361@cindex useless nonterminal
8362@cindex rule, useless
8363@cindex useless rule
62243aa5 8364The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8365nonterminals and rules are removed in order to produce a smaller parser, but
8366useless tokens are preserved, since they might be used by the scanner (note
8367the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8368
8369@example
29e20e22 8370Nonterminals useless in grammar
ec3bc396
AD
8371 useless
8372
29e20e22 8373Terminals unused in grammar
ec3bc396
AD
8374 STR
8375
29e20e22
AD
8376Rules useless in grammar
8377 6 useless: STR
ec3bc396
AD
8378@end example
8379
8380@noindent
29e20e22
AD
8381The next section lists states that still have conflicts.
8382
8383@example
8384State 8 conflicts: 1 shift/reduce
8385State 9 conflicts: 1 shift/reduce
8386State 10 conflicts: 1 shift/reduce
8387State 11 conflicts: 4 shift/reduce
8388@end example
8389
8390@noindent
8391Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8392
8393@example
8394Grammar
8395
29e20e22
AD
8396 0 $accept: exp $end
8397
8398 1 exp: exp '+' exp
8399 2 | exp '-' exp
8400 3 | exp '*' exp
8401 4 | exp '/' exp
8402 5 | NUM
ec3bc396
AD
8403@end example
8404
8405@noindent
8406and reports the uses of the symbols:
8407
8408@example
d4fca427 8409@group
ec3bc396
AD
8410Terminals, with rules where they appear
8411
88bce5a2 8412$end (0) 0
ec3bc396
AD
8413'*' (42) 3
8414'+' (43) 1
8415'-' (45) 2
8416'/' (47) 4
8417error (256)
8418NUM (258) 5
29e20e22 8419STR (259)
d4fca427 8420@end group
ec3bc396 8421
d4fca427 8422@group
ec3bc396
AD
8423Nonterminals, with rules where they appear
8424
29e20e22 8425$accept (9)
ec3bc396 8426 on left: 0
29e20e22 8427exp (10)
ec3bc396 8428 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8429@end group
ec3bc396
AD
8430@end example
8431
8432@noindent
8433@cindex item
8434@cindex pointed rule
8435@cindex rule, pointed
8436Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8437with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8438item is a production rule together with a point (@samp{.}) marking
8439the location of the input cursor.
ec3bc396
AD
8440
8441@example
8442state 0
8443
29e20e22 8444 0 $accept: . exp $end
ec3bc396 8445
29e20e22 8446 NUM shift, and go to state 1
ec3bc396 8447
29e20e22 8448 exp go to state 2
ec3bc396
AD
8449@end example
8450
8451This reads as follows: ``state 0 corresponds to being at the very
8452beginning of the parsing, in the initial rule, right before the start
8453symbol (here, @code{exp}). When the parser returns to this state right
8454after having reduced a rule that produced an @code{exp}, the control
8455flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8456symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8457the parse stack, and the control flow jumps to state 1. Any other
742e4900 8458lookahead triggers a syntax error.''
ec3bc396
AD
8459
8460@cindex core, item set
8461@cindex item set core
8462@cindex kernel, item set
8463@cindex item set core
8464Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8465report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8466at the beginning of any rule deriving an @code{exp}. By default Bison
8467reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8468you want to see more detail you can invoke @command{bison} with
35880c82 8469@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8470
8471@example
8472state 0
8473
29e20e22
AD
8474 0 $accept: . exp $end
8475 1 exp: . exp '+' exp
8476 2 | . exp '-' exp
8477 3 | . exp '*' exp
8478 4 | . exp '/' exp
8479 5 | . NUM
ec3bc396 8480
29e20e22 8481 NUM shift, and go to state 1
ec3bc396 8482
29e20e22 8483 exp go to state 2
ec3bc396
AD
8484@end example
8485
8486@noindent
29e20e22 8487In the state 1@dots{}
ec3bc396
AD
8488
8489@example
8490state 1
8491
29e20e22 8492 5 exp: NUM .
ec3bc396 8493
29e20e22 8494 $default reduce using rule 5 (exp)
ec3bc396
AD
8495@end example
8496
8497@noindent
742e4900 8498the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8499(@samp{$default}), the parser will reduce it. If it was coming from
8500state 0, then, after this reduction it will return to state 0, and will
8501jump to state 2 (@samp{exp: go to state 2}).
8502
8503@example
8504state 2
8505
29e20e22
AD
8506 0 $accept: exp . $end
8507 1 exp: exp . '+' exp
8508 2 | exp . '-' exp
8509 3 | exp . '*' exp
8510 4 | exp . '/' exp
ec3bc396 8511
29e20e22
AD
8512 $end shift, and go to state 3
8513 '+' shift, and go to state 4
8514 '-' shift, and go to state 5
8515 '*' shift, and go to state 6
8516 '/' shift, and go to state 7
ec3bc396
AD
8517@end example
8518
8519@noindent
8520In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8521because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8522@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8523jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8524Since there is no default action, any lookahead not listed triggers a syntax
8525error.
ec3bc396 8526
eb45ef3b 8527@cindex accepting state
ec3bc396
AD
8528The state 3 is named the @dfn{final state}, or the @dfn{accepting
8529state}:
8530
8531@example
8532state 3
8533
29e20e22 8534 0 $accept: exp $end .
ec3bc396 8535
29e20e22 8536 $default accept
ec3bc396
AD
8537@end example
8538
8539@noindent
29e20e22
AD
8540the initial rule is completed (the start symbol and the end-of-input were
8541read), the parsing exits successfully.
ec3bc396
AD
8542
8543The interpretation of states 4 to 7 is straightforward, and is left to
8544the reader.
8545
8546@example
8547state 4
8548
29e20e22 8549 1 exp: exp '+' . exp
ec3bc396 8550
29e20e22
AD
8551 NUM shift, and go to state 1
8552
8553 exp go to state 8
ec3bc396 8554
ec3bc396
AD
8555
8556state 5
8557
29e20e22
AD
8558 2 exp: exp '-' . exp
8559
8560 NUM shift, and go to state 1
ec3bc396 8561
29e20e22 8562 exp go to state 9
ec3bc396 8563
ec3bc396
AD
8564
8565state 6
8566
29e20e22 8567 3 exp: exp '*' . exp
ec3bc396 8568
29e20e22
AD
8569 NUM shift, and go to state 1
8570
8571 exp go to state 10
ec3bc396 8572
ec3bc396
AD
8573
8574state 7
8575
29e20e22 8576 4 exp: exp '/' . exp
ec3bc396 8577
29e20e22 8578 NUM shift, and go to state 1
ec3bc396 8579
29e20e22 8580 exp go to state 11
ec3bc396
AD
8581@end example
8582
5a99098d
PE
8583As was announced in beginning of the report, @samp{State 8 conflicts:
85841 shift/reduce}:
ec3bc396
AD
8585
8586@example
8587state 8
8588
29e20e22
AD
8589 1 exp: exp . '+' exp
8590 1 | exp '+' exp .
8591 2 | exp . '-' exp
8592 3 | exp . '*' exp
8593 4 | exp . '/' exp
ec3bc396 8594
29e20e22
AD
8595 '*' shift, and go to state 6
8596 '/' shift, and go to state 7
ec3bc396 8597
29e20e22
AD
8598 '/' [reduce using rule 1 (exp)]
8599 $default reduce using rule 1 (exp)
ec3bc396
AD
8600@end example
8601
742e4900 8602Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8603either shifting (and going to state 7), or reducing rule 1. The
8604conflict means that either the grammar is ambiguous, or the parser lacks
8605information to make the right decision. Indeed the grammar is
8606ambiguous, as, since we did not specify the precedence of @samp{/}, the
8607sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8608NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8609NUM}, which corresponds to reducing rule 1.
8610
eb45ef3b 8611Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8612arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 8613Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8614square brackets.
8615
8616Note that all the previous states had a single possible action: either
8617shifting the next token and going to the corresponding state, or
8618reducing a single rule. In the other cases, i.e., when shifting
8619@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8620possible, the lookahead is required to select the action. State 8 is
8621one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8622is shifting, otherwise the action is reducing rule 1. In other words,
8623the first two items, corresponding to rule 1, are not eligible when the
742e4900 8624lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8625precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8626with some set of possible lookahead tokens. When run with
8627@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8628
8629@example
8630state 8
8631
29e20e22
AD
8632 1 exp: exp . '+' exp
8633 1 | exp '+' exp . [$end, '+', '-', '/']
8634 2 | exp . '-' exp
8635 3 | exp . '*' exp
8636 4 | exp . '/' exp
8637
8638 '*' shift, and go to state 6
8639 '/' shift, and go to state 7
ec3bc396 8640
29e20e22
AD
8641 '/' [reduce using rule 1 (exp)]
8642 $default reduce using rule 1 (exp)
8643@end example
8644
8645Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8646the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8647solved thanks to associativity and precedence directives. If invoked with
8648@option{--report=solved}, Bison includes information about the solved
8649conflicts in the report:
ec3bc396 8650
29e20e22
AD
8651@example
8652Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8653Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8654Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8655@end example
8656
29e20e22 8657
ec3bc396
AD
8658The remaining states are similar:
8659
8660@example
d4fca427 8661@group
ec3bc396
AD
8662state 9
8663
29e20e22
AD
8664 1 exp: exp . '+' exp
8665 2 | exp . '-' exp
8666 2 | exp '-' exp .
8667 3 | exp . '*' exp
8668 4 | exp . '/' exp
ec3bc396 8669
29e20e22
AD
8670 '*' shift, and go to state 6
8671 '/' shift, and go to state 7
ec3bc396 8672
29e20e22
AD
8673 '/' [reduce using rule 2 (exp)]
8674 $default reduce using rule 2 (exp)
d4fca427 8675@end group
ec3bc396 8676
d4fca427 8677@group
ec3bc396
AD
8678state 10
8679
29e20e22
AD
8680 1 exp: exp . '+' exp
8681 2 | exp . '-' exp
8682 3 | exp . '*' exp
8683 3 | exp '*' exp .
8684 4 | exp . '/' exp
ec3bc396 8685
29e20e22 8686 '/' shift, and go to state 7
ec3bc396 8687
29e20e22
AD
8688 '/' [reduce using rule 3 (exp)]
8689 $default reduce using rule 3 (exp)
d4fca427 8690@end group
ec3bc396 8691
d4fca427 8692@group
ec3bc396
AD
8693state 11
8694
29e20e22
AD
8695 1 exp: exp . '+' exp
8696 2 | exp . '-' exp
8697 3 | exp . '*' exp
8698 4 | exp . '/' exp
8699 4 | exp '/' exp .
8700
8701 '+' shift, and go to state 4
8702 '-' shift, and go to state 5
8703 '*' shift, and go to state 6
8704 '/' shift, and go to state 7
8705
8706 '+' [reduce using rule 4 (exp)]
8707 '-' [reduce using rule 4 (exp)]
8708 '*' [reduce using rule 4 (exp)]
8709 '/' [reduce using rule 4 (exp)]
8710 $default reduce using rule 4 (exp)
d4fca427 8711@end group
ec3bc396
AD
8712@end example
8713
8714@noindent
fa7e68c3
PE
8715Observe that state 11 contains conflicts not only due to the lack of
8716precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8717@samp{*}, but also because the
ec3bc396
AD
8718associativity of @samp{/} is not specified.
8719
8720
8721@node Tracing
8722@section Tracing Your Parser
bfa74976
RS
8723@findex yydebug
8724@cindex debugging
8725@cindex tracing the parser
8726
93c150b6
AD
8727When a Bison grammar compiles properly but parses ``incorrectly'', the
8728@code{yydebug} parser-trace feature helps figuring out why.
8729
8730@menu
8731* Enabling Traces:: Activating run-time trace support
8732* Mfcalc Traces:: Extending @code{mfcalc} to support traces
8733* The YYPRINT Macro:: Obsolete interface for semantic value reports
8734@end menu
bfa74976 8735
93c150b6
AD
8736@node Enabling Traces
8737@subsection Enabling Traces
3ded9a63
AD
8738There are several means to enable compilation of trace facilities:
8739
8740@table @asis
8741@item the macro @code{YYDEBUG}
8742@findex YYDEBUG
8743Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8744parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8745@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8746YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8747Prologue}).
8748
8749@item the option @option{-t}, @option{--debug}
8750Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8751,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8752
8753@item the directive @samp{%debug}
8754@findex %debug
fa819509
AD
8755Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8756Summary}). This Bison extension is maintained for backward
8757compatibility with previous versions of Bison.
8758
8759@item the variable @samp{parse.trace}
8760@findex %define parse.trace
35c1e5f0
JD
8761Add the @samp{%define parse.trace} directive (@pxref{%define
8762Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8763(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8764useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8765portability matter to you, this is the preferred solution.
3ded9a63
AD
8766@end table
8767
fa819509 8768We suggest that you always enable the trace option so that debugging is
3ded9a63 8769always possible.
bfa74976 8770
93c150b6 8771@findex YYFPRINTF
02a81e05 8772The trace facility outputs messages with macro calls of the form
e2742e46 8773@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8774@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8775arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8776define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8777and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8778
8779Once you have compiled the program with trace facilities, the way to
8780request a trace is to store a nonzero value in the variable @code{yydebug}.
8781You can do this by making the C code do it (in @code{main}, perhaps), or
8782you can alter the value with a C debugger.
8783
8784Each step taken by the parser when @code{yydebug} is nonzero produces a
8785line or two of trace information, written on @code{stderr}. The trace
8786messages tell you these things:
8787
8788@itemize @bullet
8789@item
8790Each time the parser calls @code{yylex}, what kind of token was read.
8791
8792@item
8793Each time a token is shifted, the depth and complete contents of the
8794state stack (@pxref{Parser States}).
8795
8796@item
8797Each time a rule is reduced, which rule it is, and the complete contents
8798of the state stack afterward.
8799@end itemize
8800
93c150b6
AD
8801To make sense of this information, it helps to refer to the automaton
8802description file (@pxref{Understanding, ,Understanding Your Parser}).
8803This file shows the meaning of each state in terms of
704a47c4
AD
8804positions in various rules, and also what each state will do with each
8805possible input token. As you read the successive trace messages, you
8806can see that the parser is functioning according to its specification in
8807the listing file. Eventually you will arrive at the place where
8808something undesirable happens, and you will see which parts of the
8809grammar are to blame.
bfa74976 8810
93c150b6 8811The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
8812debuggers on it, but it's not easy to interpret what it is doing. The
8813parser function is a finite-state machine interpreter, and aside from
8814the actions it executes the same code over and over. Only the values
8815of variables show where in the grammar it is working.
bfa74976 8816
93c150b6
AD
8817@node Mfcalc Traces
8818@subsection Enabling Debug Traces for @code{mfcalc}
8819
8820The debugging information normally gives the token type of each token read,
8821but not its semantic value. The @code{%printer} directive allows specify
8822how semantic values are reported, see @ref{Printer Decl, , Printing
8823Semantic Values}. For backward compatibility, Yacc like C parsers may also
8824use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
8825Macro}), but its use is discouraged.
8826
8827As a demonstration of @code{%printer}, consider the multi-function
8828calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
8829traces, and semantic value reports, insert the following directives in its
8830prologue:
8831
8832@comment file: mfcalc.y: 2
8833@example
8834/* Generate the parser description file. */
8835%verbose
8836/* Enable run-time traces (yydebug). */
8837%define parse.trace
8838
8839/* Formatting semantic values. */
8840%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
8841%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
8842%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
8843@end example
8844
8845The @code{%define} directive instructs Bison to generate run-time trace
8846support. Then, activation of these traces is controlled at run-time by the
8847@code{yydebug} variable, which is disabled by default. Because these traces
8848will refer to the ``states'' of the parser, it is helpful to ask for the
8849creation of a description of that parser; this is the purpose of (admittedly
8850ill-named) @code{%verbose} directive.
8851
8852The set of @code{%printer} directives demonstrates how to format the
8853semantic value in the traces. Note that the specification can be done
8854either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
8855tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
8856printer will be used for them.
8857
8858Here is a sample of the information provided by run-time traces. The traces
8859are sent onto standard error.
8860
8861@example
8862$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
8863Starting parse
8864Entering state 0
8865Reducing stack by rule 1 (line 34):
8866-> $$ = nterm input ()
8867Stack now 0
8868Entering state 1
8869@end example
8870
8871@noindent
8872This first batch shows a specific feature of this grammar: the first rule
8873(which is in line 34 of @file{mfcalc.y} can be reduced without even having
8874to look for the first token. The resulting left-hand symbol (@code{$$}) is
8875a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
8876
8877Then the parser calls the scanner.
8878@example
8879Reading a token: Next token is token FNCT (sin())
8880Shifting token FNCT (sin())
8881Entering state 6
8882@end example
8883
8884@noindent
8885That token (@code{token}) is a function (@code{FNCT}) whose value is
8886@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
8887The parser stores (@code{Shifting}) that token, and others, until it can do
8888something about it.
8889
8890@example
8891Reading a token: Next token is token '(' ()
8892Shifting token '(' ()
8893Entering state 14
8894Reading a token: Next token is token NUM (1.000000)
8895Shifting token NUM (1.000000)
8896Entering state 4
8897Reducing stack by rule 6 (line 44):
8898 $1 = token NUM (1.000000)
8899-> $$ = nterm exp (1.000000)
8900Stack now 0 1 6 14
8901Entering state 24
8902@end example
8903
8904@noindent
8905The previous reduction demonstrates the @code{%printer} directive for
8906@code{<val>}: both the token @code{NUM} and the resulting non-terminal
8907@code{exp} have @samp{1} as value.
8908
8909@example
8910Reading a token: Next token is token '-' ()
8911Shifting token '-' ()
8912Entering state 17
8913Reading a token: Next token is token NUM (1.000000)
8914Shifting token NUM (1.000000)
8915Entering state 4
8916Reducing stack by rule 6 (line 44):
8917 $1 = token NUM (1.000000)
8918-> $$ = nterm exp (1.000000)
8919Stack now 0 1 6 14 24 17
8920Entering state 26
8921Reading a token: Next token is token ')' ()
8922Reducing stack by rule 11 (line 49):
8923 $1 = nterm exp (1.000000)
8924 $2 = token '-' ()
8925 $3 = nterm exp (1.000000)
8926-> $$ = nterm exp (0.000000)
8927Stack now 0 1 6 14
8928Entering state 24
8929@end example
8930
8931@noindent
8932The rule for the subtraction was just reduced. The parser is about to
8933discover the end of the call to @code{sin}.
8934
8935@example
8936Next token is token ')' ()
8937Shifting token ')' ()
8938Entering state 31
8939Reducing stack by rule 9 (line 47):
8940 $1 = token FNCT (sin())
8941 $2 = token '(' ()
8942 $3 = nterm exp (0.000000)
8943 $4 = token ')' ()
8944-> $$ = nterm exp (0.000000)
8945Stack now 0 1
8946Entering state 11
8947@end example
8948
8949@noindent
8950Finally, the end-of-line allow the parser to complete the computation, and
8951display its result.
8952
8953@example
8954Reading a token: Next token is token '\n' ()
8955Shifting token '\n' ()
8956Entering state 22
8957Reducing stack by rule 4 (line 40):
8958 $1 = nterm exp (0.000000)
8959 $2 = token '\n' ()
8960@result{} 0
8961-> $$ = nterm line ()
8962Stack now 0 1
8963Entering state 10
8964Reducing stack by rule 2 (line 35):
8965 $1 = nterm input ()
8966 $2 = nterm line ()
8967-> $$ = nterm input ()
8968Stack now 0
8969Entering state 1
8970@end example
8971
8972The parser has returned into state 1, in which it is waiting for the next
8973expression to evaluate, or for the end-of-file token, which causes the
8974completion of the parsing.
8975
8976@example
8977Reading a token: Now at end of input.
8978Shifting token $end ()
8979Entering state 2
8980Stack now 0 1 2
8981Cleanup: popping token $end ()
8982Cleanup: popping nterm input ()
8983@end example
8984
8985
8986@node The YYPRINT Macro
8987@subsection The @code{YYPRINT} Macro
8988
bfa74976 8989@findex YYPRINT
93c150b6
AD
8990Before @code{%printer} support, semantic values could be displayed using the
8991@code{YYPRINT} macro, which works only for terminal symbols and only with
8992the @file{yacc.c} skeleton.
8993
8994@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
8995@findex YYPRINT
8996If you define @code{YYPRINT}, it should take three arguments. The parser
8997will pass a standard I/O stream, the numeric code for the token type, and
8998the token value (from @code{yylval}).
8999
9000For @file{yacc.c} only. Obsoleted by @code{%printer}.
9001@end deffn
bfa74976
RS
9002
9003Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9004calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9005
c93f22fc 9006@example
38a92d50
PE
9007%@{
9008 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9009 #define YYPRINT(File, Type, Value) \
9010 print_token_value (File, Type, Value)
38a92d50
PE
9011%@}
9012
9013@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9014
9015static void
831d3c99 9016print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9017@{
9018 if (type == VAR)
d3c4e709 9019 fprintf (file, "%s", value.tptr->name);
bfa74976 9020 else if (type == NUM)
d3c4e709 9021 fprintf (file, "%d", value.val);
bfa74976 9022@}
c93f22fc 9023@end example
bfa74976 9024
ec3bc396
AD
9025@c ================================================= Invoking Bison
9026
342b8b6e 9027@node Invocation
bfa74976
RS
9028@chapter Invoking Bison
9029@cindex invoking Bison
9030@cindex Bison invocation
9031@cindex options for invoking Bison
9032
9033The usual way to invoke Bison is as follows:
9034
9035@example
9036bison @var{infile}
9037@end example
9038
9039Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9040@samp{.y}. The parser implementation file's name is made by replacing
9041the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9042Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9043the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9044also possible, in case you are writing C++ code instead of C in your
9045grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9046output files will take an extension like the given one as input
9047(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9048feature takes effect with all options that manipulate file names like
234a3be3
AD
9049@samp{-o} or @samp{-d}.
9050
9051For example :
9052
9053@example
9054bison -d @var{infile.yxx}
9055@end example
84163231 9056@noindent
72d2299c 9057will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9058
9059@example
b56471a6 9060bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9061@end example
84163231 9062@noindent
234a3be3
AD
9063will produce @file{output.c++} and @file{outfile.h++}.
9064
8a4281b9 9065For compatibility with POSIX, the standard Bison
397ec073
PE
9066distribution also contains a shell script called @command{yacc} that
9067invokes Bison with the @option{-y} option.
9068
bfa74976 9069@menu
13863333 9070* Bison Options:: All the options described in detail,
c827f760 9071 in alphabetical order by short options.
bfa74976 9072* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9073* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9074@end menu
9075
342b8b6e 9076@node Bison Options
bfa74976
RS
9077@section Bison Options
9078
9079Bison supports both traditional single-letter options and mnemonic long
9080option names. Long option names are indicated with @samp{--} instead of
9081@samp{-}. Abbreviations for option names are allowed as long as they
9082are unique. When a long option takes an argument, like
9083@samp{--file-prefix}, connect the option name and the argument with
9084@samp{=}.
9085
9086Here is a list of options that can be used with Bison, alphabetized by
9087short option. It is followed by a cross key alphabetized by long
9088option.
9089
89cab50d
AD
9090@c Please, keep this ordered as in `bison --help'.
9091@noindent
9092Operations modes:
9093@table @option
9094@item -h
9095@itemx --help
9096Print a summary of the command-line options to Bison and exit.
bfa74976 9097
89cab50d
AD
9098@item -V
9099@itemx --version
9100Print the version number of Bison and exit.
bfa74976 9101
f7ab6a50
PE
9102@item --print-localedir
9103Print the name of the directory containing locale-dependent data.
9104
a0de5091
JD
9105@item --print-datadir
9106Print the name of the directory containing skeletons and XSLT.
9107
89cab50d
AD
9108@item -y
9109@itemx --yacc
ff7571c0
JD
9110Act more like the traditional Yacc command. This can cause different
9111diagnostics to be generated, and may change behavior in other minor
9112ways. Most importantly, imitate Yacc's output file name conventions,
9113so that the parser implementation file is called @file{y.tab.c}, and
9114the other outputs are called @file{y.output} and @file{y.tab.h}.
9115Also, if generating a deterministic parser in C, generate
9116@code{#define} statements in addition to an @code{enum} to associate
9117token numbers with token names. Thus, the following shell script can
9118substitute for Yacc, and the Bison distribution contains such a script
9119for compatibility with POSIX:
bfa74976 9120
89cab50d 9121@example
397ec073 9122#! /bin/sh
26e06a21 9123bison -y "$@@"
89cab50d 9124@end example
54662697
PE
9125
9126The @option{-y}/@option{--yacc} option is intended for use with
9127traditional Yacc grammars. If your grammar uses a Bison extension
9128like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9129this option is specified.
9130
1d5b3c08
JD
9131@item -W [@var{category}]
9132@itemx --warnings[=@var{category}]
118d4978
AD
9133Output warnings falling in @var{category}. @var{category} can be one
9134of:
9135@table @code
9136@item midrule-values
8e55b3aa
JD
9137Warn about mid-rule values that are set but not used within any of the actions
9138of the parent rule.
9139For example, warn about unused @code{$2} in:
118d4978
AD
9140
9141@example
9142exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9143@end example
9144
8e55b3aa
JD
9145Also warn about mid-rule values that are used but not set.
9146For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9147
9148@example
5e9b6624 9149exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9150@end example
9151
9152These warnings are not enabled by default since they sometimes prove to
9153be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9154@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9155
118d4978 9156@item yacc
8a4281b9 9157Incompatibilities with POSIX Yacc.
118d4978 9158
786743d5
JD
9159@item conflicts-sr
9160@itemx conflicts-rr
9161S/R and R/R conflicts. These warnings are enabled by default. However, if
9162the @code{%expect} or @code{%expect-rr} directive is specified, an
9163unexpected number of conflicts is an error, and an expected number of
9164conflicts is not reported, so @option{-W} and @option{--warning} then have
9165no effect on the conflict report.
9166
c39014ae
JD
9167@item other
9168All warnings not categorized above. These warnings are enabled by default.
9169
9170This category is provided merely for the sake of completeness. Future
9171releases of Bison may move warnings from this category to new, more specific
9172categories.
9173
118d4978 9174@item all
8e55b3aa 9175All the warnings.
118d4978 9176@item none
8e55b3aa 9177Turn off all the warnings.
118d4978 9178@item error
8e55b3aa 9179Treat warnings as errors.
118d4978
AD
9180@end table
9181
9182A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9183instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9184POSIX Yacc incompatibilities.
89cab50d
AD
9185@end table
9186
9187@noindent
9188Tuning the parser:
9189
9190@table @option
9191@item -t
9192@itemx --debug
ff7571c0
JD
9193In the parser implementation file, define the macro @code{YYDEBUG} to
91941 if it is not already defined, so that the debugging facilities are
9195compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9196
58697c6d
AD
9197@item -D @var{name}[=@var{value}]
9198@itemx --define=@var{name}[=@var{value}]
17aed602 9199@itemx -F @var{name}[=@var{value}]
de5ab940
JD
9200@itemx --force-define=@var{name}[=@var{value}]
9201Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 9202(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
9203definitions for the same @var{name} as follows:
9204
9205@itemize
9206@item
0b6d43c5
JD
9207Bison quietly ignores all command-line definitions for @var{name} except
9208the last.
de5ab940 9209@item
0b6d43c5
JD
9210If that command-line definition is specified by a @code{-D} or
9211@code{--define}, Bison reports an error for any @code{%define}
9212definition for @var{name}.
de5ab940 9213@item
0b6d43c5
JD
9214If that command-line definition is specified by a @code{-F} or
9215@code{--force-define} instead, Bison quietly ignores all @code{%define}
9216definitions for @var{name}.
9217@item
9218Otherwise, Bison reports an error if there are multiple @code{%define}
9219definitions for @var{name}.
de5ab940
JD
9220@end itemize
9221
9222You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
9223make files unless you are confident that it is safe to quietly ignore
9224any conflicting @code{%define} that may be added to the grammar file.
58697c6d 9225
0e021770
PE
9226@item -L @var{language}
9227@itemx --language=@var{language}
9228Specify the programming language for the generated parser, as if
9229@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9230Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9231@var{language} is case-insensitive.
0e021770 9232
ed4d67dc
JD
9233This option is experimental and its effect may be modified in future
9234releases.
9235
89cab50d 9236@item --locations
d8988b2f 9237Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9238
9239@item -p @var{prefix}
9240@itemx --name-prefix=@var{prefix}
02975b9a 9241Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 9242@xref{Decl Summary}.
bfa74976
RS
9243
9244@item -l
9245@itemx --no-lines
ff7571c0
JD
9246Don't put any @code{#line} preprocessor commands in the parser
9247implementation file. Ordinarily Bison puts them in the parser
9248implementation file so that the C compiler and debuggers will
9249associate errors with your source file, the grammar file. This option
9250causes them to associate errors with the parser implementation file,
9251treating it as an independent source file in its own right.
bfa74976 9252
e6e704dc
JD
9253@item -S @var{file}
9254@itemx --skeleton=@var{file}
a7867f53 9255Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9256(@pxref{Decl Summary, , Bison Declaration Summary}).
9257
ed4d67dc
JD
9258@c You probably don't need this option unless you are developing Bison.
9259@c You should use @option{--language} if you want to specify the skeleton for a
9260@c different language, because it is clearer and because it will always
9261@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9262
a7867f53
JD
9263If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9264file in the Bison installation directory.
9265If it does, @var{file} is an absolute file name or a file name relative to the
9266current working directory.
9267This is similar to how most shells resolve commands.
9268
89cab50d
AD
9269@item -k
9270@itemx --token-table
d8988b2f 9271Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9272@end table
bfa74976 9273
89cab50d
AD
9274@noindent
9275Adjust the output:
bfa74976 9276
89cab50d 9277@table @option
8e55b3aa 9278@item --defines[=@var{file}]
d8988b2f 9279Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9280file containing macro definitions for the token type names defined in
4bfd5e4e 9281the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9282
8e55b3aa
JD
9283@item -d
9284This is the same as @code{--defines} except @code{-d} does not accept a
9285@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9286with other short options.
342b8b6e 9287
89cab50d
AD
9288@item -b @var{file-prefix}
9289@itemx --file-prefix=@var{prefix}
9c437126 9290Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9291for all Bison output file names. @xref{Decl Summary}.
bfa74976 9292
ec3bc396
AD
9293@item -r @var{things}
9294@itemx --report=@var{things}
9295Write an extra output file containing verbose description of the comma
9296separated list of @var{things} among:
9297
9298@table @code
9299@item state
9300Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9301parser's automaton.
ec3bc396 9302
742e4900 9303@item lookahead
ec3bc396 9304Implies @code{state} and augments the description of the automaton with
742e4900 9305each rule's lookahead set.
ec3bc396
AD
9306
9307@item itemset
9308Implies @code{state} and augments the description of the automaton with
9309the full set of items for each state, instead of its core only.
9310@end table
9311
1bb2bd75
JD
9312@item --report-file=@var{file}
9313Specify the @var{file} for the verbose description.
9314
bfa74976
RS
9315@item -v
9316@itemx --verbose
9c437126 9317Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9318file containing verbose descriptions of the grammar and
72d2299c 9319parser. @xref{Decl Summary}.
bfa74976 9320
fa4d969f
PE
9321@item -o @var{file}
9322@itemx --output=@var{file}
ff7571c0 9323Specify the @var{file} for the parser implementation file.
bfa74976 9324
fa4d969f 9325The other output files' names are constructed from @var{file} as
d8988b2f 9326described under the @samp{-v} and @samp{-d} options.
342b8b6e 9327
a7c09cba 9328@item -g [@var{file}]
8e55b3aa 9329@itemx --graph[=@var{file}]
eb45ef3b 9330Output a graphical representation of the parser's
35fe0834 9331automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9332@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9333@code{@var{file}} is optional.
9334If omitted and the grammar file is @file{foo.y}, the output file will be
9335@file{foo.dot}.
59da312b 9336
a7c09cba 9337@item -x [@var{file}]
8e55b3aa 9338@itemx --xml[=@var{file}]
eb45ef3b 9339Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9340@code{@var{file}} is optional.
59da312b
JD
9341If omitted and the grammar file is @file{foo.y}, the output file will be
9342@file{foo.xml}.
9343(The current XML schema is experimental and may evolve.
9344More user feedback will help to stabilize it.)
bfa74976
RS
9345@end table
9346
342b8b6e 9347@node Option Cross Key
bfa74976
RS
9348@section Option Cross Key
9349
9350Here is a list of options, alphabetized by long option, to help you find
de5ab940 9351the corresponding short option and directive.
bfa74976 9352
de5ab940 9353@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9354@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9355@include cross-options.texi
aa08666d 9356@end multitable
bfa74976 9357
93dd49ab
PE
9358@node Yacc Library
9359@section Yacc Library
9360
9361The Yacc library contains default implementations of the
9362@code{yyerror} and @code{main} functions. These default
8a4281b9 9363implementations are normally not useful, but POSIX requires
93dd49ab
PE
9364them. To use the Yacc library, link your program with the
9365@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9366library is distributed under the terms of the GNU General
93dd49ab
PE
9367Public License (@pxref{Copying}).
9368
9369If you use the Yacc library's @code{yyerror} function, you should
9370declare @code{yyerror} as follows:
9371
9372@example
9373int yyerror (char const *);
9374@end example
9375
9376Bison ignores the @code{int} value returned by this @code{yyerror}.
9377If you use the Yacc library's @code{main} function, your
9378@code{yyparse} function should have the following type signature:
9379
9380@example
9381int yyparse (void);
9382@end example
9383
12545799
AD
9384@c ================================================= C++ Bison
9385
8405b70c
PB
9386@node Other Languages
9387@chapter Parsers Written In Other Languages
12545799
AD
9388
9389@menu
9390* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9391* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9392@end menu
9393
9394@node C++ Parsers
9395@section C++ Parsers
9396
9397@menu
9398* C++ Bison Interface:: Asking for C++ parser generation
9399* C++ Semantic Values:: %union vs. C++
9400* C++ Location Values:: The position and location classes
9401* C++ Parser Interface:: Instantiating and running the parser
9402* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9403* A Complete C++ Example:: Demonstrating their use
12545799
AD
9404@end menu
9405
9406@node C++ Bison Interface
9407@subsection C++ Bison Interface
ed4d67dc 9408@c - %skeleton "lalr1.cc"
12545799
AD
9409@c - Always pure
9410@c - initial action
9411
eb45ef3b 9412The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9413@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9414@option{--skeleton=lalr1.cc}.
e6e704dc 9415@xref{Decl Summary}.
0e021770 9416
793fbca5
JD
9417When run, @command{bison} will create several entities in the @samp{yy}
9418namespace.
67501061 9419@findex %define api.namespace
35c1e5f0
JD
9420Use the @samp{%define api.namespace} directive to change the namespace name,
9421see @ref{%define Summary,,api.namespace}. The various classes are generated
9422in the following files:
aa08666d 9423
12545799
AD
9424@table @file
9425@item position.hh
9426@itemx location.hh
9427The definition of the classes @code{position} and @code{location},
3cdc21cf 9428used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9429
9430@item stack.hh
9431An auxiliary class @code{stack} used by the parser.
9432
fa4d969f
PE
9433@item @var{file}.hh
9434@itemx @var{file}.cc
ff7571c0 9435(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9436declaration and implementation of the C++ parser class. The basename
9437and extension of these two files follow the same rules as with regular C
9438parsers (@pxref{Invocation}).
12545799 9439
cd8b5791
AD
9440The header is @emph{mandatory}; you must either pass
9441@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9442@samp{%defines} directive.
9443@end table
9444
9445All these files are documented using Doxygen; run @command{doxygen}
9446for a complete and accurate documentation.
9447
9448@node C++ Semantic Values
9449@subsection C++ Semantic Values
9450@c - No objects in unions
178e123e 9451@c - YYSTYPE
12545799
AD
9452@c - Printer and destructor
9453
3cdc21cf
AD
9454Bison supports two different means to handle semantic values in C++. One is
9455alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9456practitioners know, unions are inconvenient in C++, therefore another
9457approach is provided, based on variants (@pxref{C++ Variants}).
9458
9459@menu
9460* C++ Unions:: Semantic values cannot be objects
9461* C++ Variants:: Using objects as semantic values
9462@end menu
9463
9464@node C++ Unions
9465@subsubsection C++ Unions
9466
12545799
AD
9467The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9468Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9469@code{union}, which have a few specific features in C++.
12545799
AD
9470@itemize @minus
9471@item
fb9712a9
AD
9472The type @code{YYSTYPE} is defined but its use is discouraged: rather
9473you should refer to the parser's encapsulated type
9474@code{yy::parser::semantic_type}.
12545799
AD
9475@item
9476Non POD (Plain Old Data) types cannot be used. C++ forbids any
9477instance of classes with constructors in unions: only @emph{pointers}
9478to such objects are allowed.
9479@end itemize
9480
9481Because objects have to be stored via pointers, memory is not
9482reclaimed automatically: using the @code{%destructor} directive is the
9483only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9484Symbols}.
9485
3cdc21cf
AD
9486@node C++ Variants
9487@subsubsection C++ Variants
9488
9489Starting with version 2.6, Bison provides a @emph{variant} based
9490implementation of semantic values for C++. This alleviates all the
9491limitations reported in the previous section, and in particular, object
9492types can be used without pointers.
9493
9494To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9495@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9496@code{%union} is ignored, and instead of using the name of the fields of the
9497@code{%union} to ``type'' the symbols, use genuine types.
9498
9499For instance, instead of
9500
9501@example
9502%union
9503@{
9504 int ival;
9505 std::string* sval;
9506@}
9507%token <ival> NUMBER;
9508%token <sval> STRING;
9509@end example
9510
9511@noindent
9512write
9513
9514@example
9515%token <int> NUMBER;
9516%token <std::string> STRING;
9517@end example
9518
9519@code{STRING} is no longer a pointer, which should fairly simplify the user
9520actions in the grammar and in the scanner (in particular the memory
9521management).
9522
9523Since C++ features destructors, and since it is customary to specialize
9524@code{operator<<} to support uniform printing of values, variants also
9525typically simplify Bison printers and destructors.
9526
9527Variants are stricter than unions. When based on unions, you may play any
9528dirty game with @code{yylval}, say storing an @code{int}, reading a
9529@code{char*}, and then storing a @code{double} in it. This is no longer
9530possible with variants: they must be initialized, then assigned to, and
9531eventually, destroyed.
9532
9533@deftypemethod {semantic_type} {T&} build<T> ()
9534Initialize, but leave empty. Returns the address where the actual value may
9535be stored. Requires that the variant was not initialized yet.
9536@end deftypemethod
9537
9538@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9539Initialize, and copy-construct from @var{t}.
9540@end deftypemethod
9541
9542
9543@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9544appeared unacceptable to require Boost on the user's machine (i.e., the
9545machine on which the generated parser will be compiled, not the machine on
9546which @command{bison} was run). Second, for each possible semantic value,
9547Boost.Variant not only stores the value, but also a tag specifying its
9548type. But the parser already ``knows'' the type of the semantic value, so
9549that would be duplicating the information.
9550
9551Therefore we developed light-weight variants whose type tag is external (so
9552they are really like @code{unions} for C++ actually). But our code is much
9553less mature that Boost.Variant. So there is a number of limitations in
9554(the current implementation of) variants:
9555@itemize
9556@item
9557Alignment must be enforced: values should be aligned in memory according to
9558the most demanding type. Computing the smallest alignment possible requires
9559meta-programming techniques that are not currently implemented in Bison, and
9560therefore, since, as far as we know, @code{double} is the most demanding
9561type on all platforms, alignments are enforced for @code{double} whatever
9562types are actually used. This may waste space in some cases.
9563
9564@item
9565Our implementation is not conforming with strict aliasing rules. Alias
9566analysis is a technique used in optimizing compilers to detect when two
9567pointers are disjoint (they cannot ``meet''). Our implementation breaks
9568some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9569alias analysis must be disabled}. Use the option
9570@option{-fno-strict-aliasing} to compile the generated parser.
9571
9572@item
9573There might be portability issues we are not aware of.
9574@end itemize
9575
a6ca4ce2 9576As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9577is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9578
9579@node C++ Location Values
9580@subsection C++ Location Values
9581@c - %locations
9582@c - class Position
9583@c - class Location
16dc6a9e 9584@c - %define filename_type "const symbol::Symbol"
12545799
AD
9585
9586When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9587location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9588define a @code{position}, a single point in a file, and a @code{location}, a
9589range composed of a pair of @code{position}s (possibly spanning several
9590files).
12545799 9591
936c88d1
AD
9592@tindex uint
9593In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9594genuine code only the latter is used.
9595
9596@menu
9597* C++ position:: One point in the source file
9598* C++ location:: Two points in the source file
9599@end menu
9600
9601@node C++ position
9602@subsubsection C++ @code{position}
9603
9604@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9605Create a @code{position} denoting a given point. Note that @code{file} is
9606not reclaimed when the @code{position} is destroyed: memory managed must be
9607handled elsewhere.
9608@end deftypeop
9609
9610@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9611Reset the position to the given values.
9612@end deftypemethod
9613
9614@deftypeivar {position} {std::string*} file
12545799
AD
9615The name of the file. It will always be handled as a pointer, the
9616parser will never duplicate nor deallocate it. As an experimental
9617feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9618filename_type "@var{type}"}.
936c88d1 9619@end deftypeivar
12545799 9620
936c88d1 9621@deftypeivar {position} {uint} line
12545799 9622The line, starting at 1.
936c88d1 9623@end deftypeivar
12545799 9624
936c88d1 9625@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
9626Advance by @var{height} lines, resetting the column number.
9627@end deftypemethod
9628
936c88d1
AD
9629@deftypeivar {position} {uint} column
9630The column, starting at 1.
9631@end deftypeivar
12545799 9632
936c88d1 9633@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
9634Advance by @var{width} columns, without changing the line number.
9635@end deftypemethod
9636
936c88d1
AD
9637@deftypemethod {position} {position&} operator+= (int @var{width})
9638@deftypemethodx {position} {position} operator+ (int @var{width})
9639@deftypemethodx {position} {position&} operator-= (int @var{width})
9640@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
9641Various forms of syntactic sugar for @code{columns}.
9642@end deftypemethod
9643
936c88d1
AD
9644@deftypemethod {position} {bool} operator== (const position& @var{that})
9645@deftypemethodx {position} {bool} operator!= (const position& @var{that})
9646Whether @code{*this} and @code{that} denote equal/different positions.
9647@end deftypemethod
9648
9649@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 9650Report @var{p} on @var{o} like this:
fa4d969f
PE
9651@samp{@var{file}:@var{line}.@var{column}}, or
9652@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
9653@end deftypefun
9654
9655@node C++ location
9656@subsubsection C++ @code{location}
9657
9658@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9659Create a @code{Location} from the endpoints of the range.
9660@end deftypeop
9661
9662@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9663@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9664Create a @code{Location} denoting an empty range located at a given point.
9665@end deftypeop
9666
9667@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9668Reset the location to an empty range at the given values.
12545799
AD
9669@end deftypemethod
9670
936c88d1
AD
9671@deftypeivar {location} {position} begin
9672@deftypeivarx {location} {position} end
12545799 9673The first, inclusive, position of the range, and the first beyond.
936c88d1 9674@end deftypeivar
12545799 9675
936c88d1
AD
9676@deftypemethod {location} {uint} columns (int @var{width} = 1)
9677@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
9678Advance the @code{end} position.
9679@end deftypemethod
9680
936c88d1
AD
9681@deftypemethod {location} {location} operator+ (const location& @var{end})
9682@deftypemethodx {location} {location} operator+ (int @var{width})
9683@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
9684Various forms of syntactic sugar.
9685@end deftypemethod
9686
9687@deftypemethod {location} {void} step ()
9688Move @code{begin} onto @code{end}.
9689@end deftypemethod
9690
936c88d1
AD
9691@deftypemethod {location} {bool} operator== (const location& @var{that})
9692@deftypemethodx {location} {bool} operator!= (const location& @var{that})
9693Whether @code{*this} and @code{that} denote equal/different ranges of
9694positions.
9695@end deftypemethod
9696
9697@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9698Report @var{p} on @var{o}, taking care of special cases such as: no
9699@code{filename} defined, or equal filename/line or column.
9700@end deftypefun
12545799
AD
9701
9702@node C++ Parser Interface
9703@subsection C++ Parser Interface
9704@c - define parser_class_name
9705@c - Ctor
9706@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9707@c debug_stream.
9708@c - Reporting errors
9709
9710The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9711declare and define the parser class in the namespace @code{yy}. The
9712class name defaults to @code{parser}, but may be changed using
16dc6a9e 9713@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9714this class is detailed below. It can be extended using the
12545799
AD
9715@code{%parse-param} feature: its semantics is slightly changed since
9716it describes an additional member of the parser class, and an
9717additional argument for its constructor.
9718
3cdc21cf
AD
9719@defcv {Type} {parser} {semantic_type}
9720@defcvx {Type} {parser} {location_type}
9721The types for semantic values and locations (if enabled).
9722@end defcv
9723
86e5b440 9724@defcv {Type} {parser} {token}
aaaa2aae
AD
9725A structure that contains (only) the @code{yytokentype} enumeration, which
9726defines the tokens. To refer to the token @code{FOO},
9727use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
9728@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9729(@pxref{Calc++ Scanner}).
9730@end defcv
9731
3cdc21cf
AD
9732@defcv {Type} {parser} {syntax_error}
9733This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9734from the scanner or from the user actions to raise parse errors. This is
9735equivalent with first
3cdc21cf
AD
9736invoking @code{error} to report the location and message of the syntax
9737error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9738But contrary to @code{YYERROR} which can only be invoked from user actions
9739(i.e., written in the action itself), the exception can be thrown from
9740function invoked from the user action.
8a0adb01 9741@end defcv
12545799
AD
9742
9743@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9744Build a new parser object. There are no arguments by default, unless
9745@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9746@end deftypemethod
9747
3cdc21cf
AD
9748@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9749@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9750Instantiate a syntax-error exception.
9751@end deftypemethod
9752
12545799
AD
9753@deftypemethod {parser} {int} parse ()
9754Run the syntactic analysis, and return 0 on success, 1 otherwise.
9755@end deftypemethod
9756
9757@deftypemethod {parser} {std::ostream&} debug_stream ()
9758@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9759Get or set the stream used for tracing the parsing. It defaults to
9760@code{std::cerr}.
9761@end deftypemethod
9762
9763@deftypemethod {parser} {debug_level_type} debug_level ()
9764@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9765Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9766or nonzero, full tracing.
12545799
AD
9767@end deftypemethod
9768
9769@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9770@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9771The definition for this member function must be supplied by the user:
9772the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9773described by @var{m}. If location tracking is not enabled, the second
9774signature is used.
12545799
AD
9775@end deftypemethod
9776
9777
9778@node C++ Scanner Interface
9779@subsection C++ Scanner Interface
9780@c - prefix for yylex.
9781@c - Pure interface to yylex
9782@c - %lex-param
9783
9784The parser invokes the scanner by calling @code{yylex}. Contrary to C
9785parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9786@samp{%define api.pure} directive. The actual interface with @code{yylex}
9787depends whether you use unions, or variants.
12545799 9788
3cdc21cf
AD
9789@menu
9790* Split Symbols:: Passing symbols as two/three components
9791* Complete Symbols:: Making symbols a whole
9792@end menu
9793
9794@node Split Symbols
9795@subsubsection Split Symbols
9796
9797Therefore the interface is as follows.
9798
86e5b440
AD
9799@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9800@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9801Return the next token. Its type is the return value, its semantic value and
9802location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9803@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9804@end deftypemethod
9805
3cdc21cf
AD
9806Note that when using variants, the interface for @code{yylex} is the same,
9807but @code{yylval} is handled differently.
9808
9809Regular union-based code in Lex scanner typically look like:
9810
9811@example
9812[0-9]+ @{
9813 yylval.ival = text_to_int (yytext);
9814 return yy::parser::INTEGER;
9815 @}
9816[a-z]+ @{
9817 yylval.sval = new std::string (yytext);
9818 return yy::parser::IDENTIFIER;
9819 @}
9820@end example
9821
9822Using variants, @code{yylval} is already constructed, but it is not
9823initialized. So the code would look like:
9824
9825@example
9826[0-9]+ @{
9827 yylval.build<int>() = text_to_int (yytext);
9828 return yy::parser::INTEGER;
9829 @}
9830[a-z]+ @{
9831 yylval.build<std::string> = yytext;
9832 return yy::parser::IDENTIFIER;
9833 @}
9834@end example
9835
9836@noindent
9837or
9838
9839@example
9840[0-9]+ @{
9841 yylval.build(text_to_int (yytext));
9842 return yy::parser::INTEGER;
9843 @}
9844[a-z]+ @{
9845 yylval.build(yytext);
9846 return yy::parser::IDENTIFIER;
9847 @}
9848@end example
9849
9850
9851@node Complete Symbols
9852@subsubsection Complete Symbols
9853
9854If you specified both @code{%define variant} and @code{%define lex_symbol},
9855the @code{parser} class also defines the class @code{parser::symbol_type}
9856which defines a @emph{complete} symbol, aggregating its type (i.e., the
9857traditional value returned by @code{yylex}), its semantic value (i.e., the
9858value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9859
9860@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9861Build a complete terminal symbol which token type is @var{type}, and which
9862semantic value is @var{value}. If location tracking is enabled, also pass
9863the @var{location}.
9864@end deftypemethod
9865
9866This interface is low-level and should not be used for two reasons. First,
9867it is inconvenient, as you still have to build the semantic value, which is
9868a variant, and second, because consistency is not enforced: as with unions,
9869it is still possible to give an integer as semantic value for a string.
9870
9871So for each token type, Bison generates named constructors as follows.
9872
9873@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9874@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9875Build a complete terminal symbol for the token type @var{token} (not
9876including the @code{api.tokens.prefix}) whose possible semantic value is
9877@var{value} of adequate @var{value_type}. If location tracking is enabled,
9878also pass the @var{location}.
9879@end deftypemethod
9880
9881For instance, given the following declarations:
9882
9883@example
9884%define api.tokens.prefix "TOK_"
9885%token <std::string> IDENTIFIER;
9886%token <int> INTEGER;
9887%token COLON;
9888@end example
9889
9890@noindent
9891Bison generates the following functions:
9892
9893@example
9894symbol_type make_IDENTIFIER(const std::string& v,
9895 const location_type& l);
9896symbol_type make_INTEGER(const int& v,
9897 const location_type& loc);
9898symbol_type make_COLON(const location_type& loc);
9899@end example
9900
9901@noindent
9902which should be used in a Lex-scanner as follows.
9903
9904@example
9905[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9906[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9907":" return yy::parser::make_COLON(loc);
9908@end example
9909
9910Tokens that do not have an identifier are not accessible: you cannot simply
9911use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9912
9913@node A Complete C++ Example
8405b70c 9914@subsection A Complete C++ Example
12545799
AD
9915
9916This section demonstrates the use of a C++ parser with a simple but
9917complete example. This example should be available on your system,
3cdc21cf 9918ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9919focuses on the use of Bison, therefore the design of the various C++
9920classes is very naive: no accessors, no encapsulation of members etc.
9921We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9922demonstrate the various interactions. A hand-written scanner is
12545799
AD
9923actually easier to interface with.
9924
9925@menu
9926* Calc++ --- C++ Calculator:: The specifications
9927* Calc++ Parsing Driver:: An active parsing context
9928* Calc++ Parser:: A parser class
9929* Calc++ Scanner:: A pure C++ Flex scanner
9930* Calc++ Top Level:: Conducting the band
9931@end menu
9932
9933@node Calc++ --- C++ Calculator
8405b70c 9934@subsubsection Calc++ --- C++ Calculator
12545799
AD
9935
9936Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9937expression, possibly preceded by variable assignments. An
12545799
AD
9938environment containing possibly predefined variables such as
9939@code{one} and @code{two}, is exchanged with the parser. An example
9940of valid input follows.
9941
9942@example
9943three := 3
9944seven := one + two * three
9945seven * seven
9946@end example
9947
9948@node Calc++ Parsing Driver
8405b70c 9949@subsubsection Calc++ Parsing Driver
12545799
AD
9950@c - An env
9951@c - A place to store error messages
9952@c - A place for the result
9953
9954To support a pure interface with the parser (and the scanner) the
9955technique of the ``parsing context'' is convenient: a structure
9956containing all the data to exchange. Since, in addition to simply
9957launch the parsing, there are several auxiliary tasks to execute (open
9958the file for parsing, instantiate the parser etc.), we recommend
9959transforming the simple parsing context structure into a fully blown
9960@dfn{parsing driver} class.
9961
9962The declaration of this driver class, @file{calc++-driver.hh}, is as
9963follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9964required standard library components, and the declaration of the parser
9965class.
12545799 9966
1c59e0a1 9967@comment file: calc++-driver.hh
12545799
AD
9968@example
9969#ifndef CALCXX_DRIVER_HH
9970# define CALCXX_DRIVER_HH
9971# include <string>
9972# include <map>
fb9712a9 9973# include "calc++-parser.hh"
12545799
AD
9974@end example
9975
12545799
AD
9976
9977@noindent
9978Then comes the declaration of the scanning function. Flex expects
9979the signature of @code{yylex} to be defined in the macro
9980@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9981factor both as follows.
1c59e0a1
AD
9982
9983@comment file: calc++-driver.hh
12545799 9984@example
3dc5e96b 9985// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9986# define YY_DECL \
9987 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9988// ... and declare it for the parser's sake.
9989YY_DECL;
9990@end example
9991
9992@noindent
9993The @code{calcxx_driver} class is then declared with its most obvious
9994members.
9995
1c59e0a1 9996@comment file: calc++-driver.hh
12545799
AD
9997@example
9998// Conducting the whole scanning and parsing of Calc++.
9999class calcxx_driver
10000@{
10001public:
10002 calcxx_driver ();
10003 virtual ~calcxx_driver ();
10004
10005 std::map<std::string, int> variables;
10006
10007 int result;
10008@end example
10009
10010@noindent
3cdc21cf
AD
10011To encapsulate the coordination with the Flex scanner, it is useful to have
10012member functions to open and close the scanning phase.
12545799 10013
1c59e0a1 10014@comment file: calc++-driver.hh
12545799
AD
10015@example
10016 // Handling the scanner.
10017 void scan_begin ();
10018 void scan_end ();
10019 bool trace_scanning;
10020@end example
10021
10022@noindent
10023Similarly for the parser itself.
10024
1c59e0a1 10025@comment file: calc++-driver.hh
12545799 10026@example
3cdc21cf
AD
10027 // Run the parser on file F.
10028 // Return 0 on success.
bb32f4f2 10029 int parse (const std::string& f);
3cdc21cf
AD
10030 // The name of the file being parsed.
10031 // Used later to pass the file name to the location tracker.
12545799 10032 std::string file;
3cdc21cf 10033 // Whether parser traces should be generated.
12545799
AD
10034 bool trace_parsing;
10035@end example
10036
10037@noindent
10038To demonstrate pure handling of parse errors, instead of simply
10039dumping them on the standard error output, we will pass them to the
10040compiler driver using the following two member functions. Finally, we
10041close the class declaration and CPP guard.
10042
1c59e0a1 10043@comment file: calc++-driver.hh
12545799
AD
10044@example
10045 // Error handling.
10046 void error (const yy::location& l, const std::string& m);
10047 void error (const std::string& m);
10048@};
10049#endif // ! CALCXX_DRIVER_HH
10050@end example
10051
10052The implementation of the driver is straightforward. The @code{parse}
10053member function deserves some attention. The @code{error} functions
10054are simple stubs, they should actually register the located error
10055messages and set error state.
10056
1c59e0a1 10057@comment file: calc++-driver.cc
12545799
AD
10058@example
10059#include "calc++-driver.hh"
10060#include "calc++-parser.hh"
10061
10062calcxx_driver::calcxx_driver ()
10063 : trace_scanning (false), trace_parsing (false)
10064@{
10065 variables["one"] = 1;
10066 variables["two"] = 2;
10067@}
10068
10069calcxx_driver::~calcxx_driver ()
10070@{
10071@}
10072
bb32f4f2 10073int
12545799
AD
10074calcxx_driver::parse (const std::string &f)
10075@{
10076 file = f;
10077 scan_begin ();
10078 yy::calcxx_parser parser (*this);
10079 parser.set_debug_level (trace_parsing);
bb32f4f2 10080 int res = parser.parse ();
12545799 10081 scan_end ();
bb32f4f2 10082 return res;
12545799
AD
10083@}
10084
10085void
10086calcxx_driver::error (const yy::location& l, const std::string& m)
10087@{
10088 std::cerr << l << ": " << m << std::endl;
10089@}
10090
10091void
10092calcxx_driver::error (const std::string& m)
10093@{
10094 std::cerr << m << std::endl;
10095@}
10096@end example
10097
10098@node Calc++ Parser
8405b70c 10099@subsubsection Calc++ Parser
12545799 10100
ff7571c0
JD
10101The grammar file @file{calc++-parser.yy} starts by asking for the C++
10102deterministic parser skeleton, the creation of the parser header file,
10103and specifies the name of the parser class. Because the C++ skeleton
10104changed several times, it is safer to require the version you designed
10105the grammar for.
1c59e0a1
AD
10106
10107@comment file: calc++-parser.yy
12545799 10108@example
c93f22fc 10109%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10110%require "@value{VERSION}"
12545799 10111%defines
16dc6a9e 10112%define parser_class_name "calcxx_parser"
fb9712a9
AD
10113@end example
10114
3cdc21cf
AD
10115@noindent
10116@findex %define variant
10117@findex %define lex_symbol
10118This example will use genuine C++ objects as semantic values, therefore, we
10119require the variant-based interface. To make sure we properly use it, we
10120enable assertions. To fully benefit from type-safety and more natural
10121definition of ``symbol'', we enable @code{lex_symbol}.
10122
10123@comment file: calc++-parser.yy
10124@example
10125%define variant
10126%define parse.assert
10127%define lex_symbol
10128@end example
10129
fb9712a9 10130@noindent
16dc6a9e 10131@findex %code requires
3cdc21cf
AD
10132Then come the declarations/inclusions needed by the semantic values.
10133Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 10134to include the header of the other, which is, of course, insane. This
3cdc21cf 10135mutual dependency will be broken using forward declarations. Because the
fb9712a9 10136driver's header needs detailed knowledge about the parser class (in
3cdc21cf 10137particular its inner types), it is the parser's header which will use a
e0c07222 10138forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
10139
10140@comment file: calc++-parser.yy
10141@example
3cdc21cf
AD
10142%code requires
10143@{
12545799 10144# include <string>
fb9712a9 10145class calcxx_driver;
9bc0dd67 10146@}
12545799
AD
10147@end example
10148
10149@noindent
10150The driver is passed by reference to the parser and to the scanner.
10151This provides a simple but effective pure interface, not relying on
10152global variables.
10153
1c59e0a1 10154@comment file: calc++-parser.yy
12545799
AD
10155@example
10156// The parsing context.
2055a44e 10157%param @{ calcxx_driver& driver @}
12545799
AD
10158@end example
10159
10160@noindent
2055a44e 10161Then we request location tracking, and initialize the
f50bfcd6 10162first location's file name. Afterward new locations are computed
12545799 10163relatively to the previous locations: the file name will be
2055a44e 10164propagated.
12545799 10165
1c59e0a1 10166@comment file: calc++-parser.yy
12545799
AD
10167@example
10168%locations
10169%initial-action
10170@{
10171 // Initialize the initial location.
b47dbebe 10172 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
10173@};
10174@end example
10175
10176@noindent
7fceb615
JD
10177Use the following two directives to enable parser tracing and verbose error
10178messages. However, verbose error messages can contain incorrect information
10179(@pxref{LAC}).
12545799 10180
1c59e0a1 10181@comment file: calc++-parser.yy
12545799 10182@example
fa819509 10183%define parse.trace
cf499cff 10184%define parse.error verbose
12545799
AD
10185@end example
10186
fb9712a9 10187@noindent
136a0f76
PB
10188@findex %code
10189The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 10190@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
10191
10192@comment file: calc++-parser.yy
10193@example
3cdc21cf
AD
10194%code
10195@{
fb9712a9 10196# include "calc++-driver.hh"
34f98f46 10197@}
fb9712a9
AD
10198@end example
10199
10200
12545799
AD
10201@noindent
10202The token numbered as 0 corresponds to end of file; the following line
99c08fb6 10203allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
10204``$end''. Similarly user friendly names are provided for each symbol. To
10205avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
10206tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 10207
1c59e0a1 10208@comment file: calc++-parser.yy
12545799 10209@example
4c6622c2 10210%define api.tokens.prefix "TOK_"
3cdc21cf
AD
10211%token
10212 END 0 "end of file"
10213 ASSIGN ":="
10214 MINUS "-"
10215 PLUS "+"
10216 STAR "*"
10217 SLASH "/"
10218 LPAREN "("
10219 RPAREN ")"
10220;
12545799
AD
10221@end example
10222
10223@noindent
3cdc21cf
AD
10224Since we use variant-based semantic values, @code{%union} is not used, and
10225both @code{%type} and @code{%token} expect genuine types, as opposed to type
10226tags.
12545799 10227
1c59e0a1 10228@comment file: calc++-parser.yy
12545799 10229@example
3cdc21cf
AD
10230%token <std::string> IDENTIFIER "identifier"
10231%token <int> NUMBER "number"
10232%type <int> exp
10233@end example
10234
10235@noindent
10236No @code{%destructor} is needed to enable memory deallocation during error
10237recovery; the memory, for strings for instance, will be reclaimed by the
10238regular destructors. All the values are printed using their
10239@code{operator<<}.
12545799 10240
3cdc21cf
AD
10241@c FIXME: Document %printer, and mention that it takes a braced-code operand.
10242@comment file: calc++-parser.yy
10243@example
c5026327 10244%printer @{ yyoutput << $$; @} <*>;
12545799
AD
10245@end example
10246
10247@noindent
3cdc21cf
AD
10248The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
10249Location Tracking Calculator: @code{ltcalc}}).
12545799 10250
1c59e0a1 10251@comment file: calc++-parser.yy
12545799
AD
10252@example
10253%%
10254%start unit;
10255unit: assignments exp @{ driver.result = $2; @};
10256
99c08fb6 10257assignments:
5e9b6624
AD
10258 /* Nothing. */ @{@}
10259| assignments assignment @{@};
12545799 10260
3dc5e96b 10261assignment:
3cdc21cf 10262 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 10263
3cdc21cf
AD
10264%left "+" "-";
10265%left "*" "/";
99c08fb6 10266exp:
3cdc21cf
AD
10267 exp "+" exp @{ $$ = $1 + $3; @}
10268| exp "-" exp @{ $$ = $1 - $3; @}
10269| exp "*" exp @{ $$ = $1 * $3; @}
10270| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 10271| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 10272| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 10273| "number" @{ std::swap ($$, $1); @};
12545799
AD
10274%%
10275@end example
10276
10277@noindent
10278Finally the @code{error} member function registers the errors to the
10279driver.
10280
1c59e0a1 10281@comment file: calc++-parser.yy
12545799
AD
10282@example
10283void
3cdc21cf 10284yy::calcxx_parser::error (const location_type& l,
1c59e0a1 10285 const std::string& m)
12545799
AD
10286@{
10287 driver.error (l, m);
10288@}
10289@end example
10290
10291@node Calc++ Scanner
8405b70c 10292@subsubsection Calc++ Scanner
12545799
AD
10293
10294The Flex scanner first includes the driver declaration, then the
10295parser's to get the set of defined tokens.
10296
1c59e0a1 10297@comment file: calc++-scanner.ll
12545799 10298@example
c93f22fc 10299%@{ /* -*- C++ -*- */
3c248d70
AD
10300# include <cerrno>
10301# include <climits>
3cdc21cf 10302# include <cstdlib>
12545799
AD
10303# include <string>
10304# include "calc++-driver.hh"
10305# include "calc++-parser.hh"
eaea13f5 10306
3cdc21cf
AD
10307// Work around an incompatibility in flex (at least versions
10308// 2.5.31 through 2.5.33): it generates code that does
10309// not conform to C89. See Debian bug 333231
10310// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
10311# undef yywrap
10312# define yywrap() 1
eaea13f5 10313
3cdc21cf
AD
10314// The location of the current token.
10315static yy::location loc;
12545799
AD
10316%@}
10317@end example
10318
10319@noindent
10320Because there is no @code{#include}-like feature we don't need
10321@code{yywrap}, we don't need @code{unput} either, and we parse an
10322actual file, this is not an interactive session with the user.
3cdc21cf 10323Finally, we enable scanner tracing.
12545799 10324
1c59e0a1 10325@comment file: calc++-scanner.ll
12545799
AD
10326@example
10327%option noyywrap nounput batch debug
10328@end example
10329
10330@noindent
10331Abbreviations allow for more readable rules.
10332
1c59e0a1 10333@comment file: calc++-scanner.ll
12545799
AD
10334@example
10335id [a-zA-Z][a-zA-Z_0-9]*
10336int [0-9]+
10337blank [ \t]
10338@end example
10339
10340@noindent
9d9b8b70 10341The following paragraph suffices to track locations accurately. Each
12545799 10342time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
10343position. Then when a pattern is matched, its width is added to the end
10344column. When matching ends of lines, the end
12545799
AD
10345cursor is adjusted, and each time blanks are matched, the begin cursor
10346is moved onto the end cursor to effectively ignore the blanks
10347preceding tokens. Comments would be treated equally.
10348
1c59e0a1 10349@comment file: calc++-scanner.ll
12545799 10350@example
d4fca427 10351@group
828c373b 10352%@{
3cdc21cf
AD
10353 // Code run each time a pattern is matched.
10354 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 10355%@}
d4fca427 10356@end group
12545799 10357%%
d4fca427 10358@group
12545799 10359%@{
3cdc21cf
AD
10360 // Code run each time yylex is called.
10361 loc.step ();
12545799 10362%@}
d4fca427 10363@end group
3cdc21cf
AD
10364@{blank@}+ loc.step ();
10365[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10366@end example
10367
10368@noindent
3cdc21cf 10369The rules are simple. The driver is used to report errors.
12545799 10370
1c59e0a1 10371@comment file: calc++-scanner.ll
12545799 10372@example
3cdc21cf
AD
10373"-" return yy::calcxx_parser::make_MINUS(loc);
10374"+" return yy::calcxx_parser::make_PLUS(loc);
10375"*" return yy::calcxx_parser::make_STAR(loc);
10376"/" return yy::calcxx_parser::make_SLASH(loc);
10377"(" return yy::calcxx_parser::make_LPAREN(loc);
10378")" return yy::calcxx_parser::make_RPAREN(loc);
10379":=" return yy::calcxx_parser::make_ASSIGN(loc);
10380
d4fca427 10381@group
04098407
PE
10382@{int@} @{
10383 errno = 0;
10384 long n = strtol (yytext, NULL, 10);
10385 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10386 driver.error (loc, "integer is out of range");
10387 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10388@}
d4fca427 10389@end group
3cdc21cf
AD
10390@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10391. driver.error (loc, "invalid character");
10392<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10393%%
10394@end example
10395
10396@noindent
3cdc21cf 10397Finally, because the scanner-related driver's member-functions depend
12545799
AD
10398on the scanner's data, it is simpler to implement them in this file.
10399
1c59e0a1 10400@comment file: calc++-scanner.ll
12545799 10401@example
d4fca427 10402@group
12545799
AD
10403void
10404calcxx_driver::scan_begin ()
10405@{
10406 yy_flex_debug = trace_scanning;
93c150b6 10407 if (file.empty () || file == "-")
bb32f4f2
AD
10408 yyin = stdin;
10409 else if (!(yyin = fopen (file.c_str (), "r")))
10410 @{
aaaa2aae 10411 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10412 exit (EXIT_FAILURE);
bb32f4f2 10413 @}
12545799 10414@}
d4fca427 10415@end group
12545799 10416
d4fca427 10417@group
12545799
AD
10418void
10419calcxx_driver::scan_end ()
10420@{
10421 fclose (yyin);
10422@}
d4fca427 10423@end group
12545799
AD
10424@end example
10425
10426@node Calc++ Top Level
8405b70c 10427@subsubsection Calc++ Top Level
12545799
AD
10428
10429The top level file, @file{calc++.cc}, poses no problem.
10430
1c59e0a1 10431@comment file: calc++.cc
12545799
AD
10432@example
10433#include <iostream>
10434#include "calc++-driver.hh"
10435
d4fca427 10436@group
12545799 10437int
fa4d969f 10438main (int argc, char *argv[])
12545799 10439@{
414c76a4 10440 int res = 0;
12545799 10441 calcxx_driver driver;
93c150b6
AD
10442 for (int i = 1; i < argc; ++i)
10443 if (argv[i] == std::string ("-p"))
12545799 10444 driver.trace_parsing = true;
93c150b6 10445 else if (argv[i] == std::string ("-s"))
12545799 10446 driver.trace_scanning = true;
93c150b6 10447 else if (!driver.parse (argv[i]))
bb32f4f2 10448 std::cout << driver.result << std::endl;
414c76a4
AD
10449 else
10450 res = 1;
10451 return res;
12545799 10452@}
d4fca427 10453@end group
12545799
AD
10454@end example
10455
8405b70c
PB
10456@node Java Parsers
10457@section Java Parsers
10458
10459@menu
f5f419de
DJ
10460* Java Bison Interface:: Asking for Java parser generation
10461* Java Semantic Values:: %type and %token vs. Java
10462* Java Location Values:: The position and location classes
10463* Java Parser Interface:: Instantiating and running the parser
10464* Java Scanner Interface:: Specifying the scanner for the parser
10465* Java Action Features:: Special features for use in actions
10466* Java Differences:: Differences between C/C++ and Java Grammars
10467* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10468@end menu
10469
10470@node Java Bison Interface
10471@subsection Java Bison Interface
10472@c - %language "Java"
8405b70c 10473
59da312b
JD
10474(The current Java interface is experimental and may evolve.
10475More user feedback will help to stabilize it.)
10476
e254a580
DJ
10477The Java parser skeletons are selected using the @code{%language "Java"}
10478directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10479
e254a580 10480@c FIXME: Documented bug.
ff7571c0
JD
10481When generating a Java parser, @code{bison @var{basename}.y} will
10482create a single Java source file named @file{@var{basename}.java}
10483containing the parser implementation. Using a grammar file without a
10484@file{.y} suffix is currently broken. The basename of the parser
10485implementation file can be changed by the @code{%file-prefix}
10486directive or the @option{-p}/@option{--name-prefix} option. The
10487entire parser implementation file name can be changed by the
10488@code{%output} directive or the @option{-o}/@option{--output} option.
10489The parser implementation file contains a single class for the parser.
8405b70c 10490
e254a580 10491You can create documentation for generated parsers using Javadoc.
8405b70c 10492
e254a580
DJ
10493Contrary to C parsers, Java parsers do not use global variables; the
10494state of the parser is always local to an instance of the parser class.
10495Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10496and @samp{%define api.pure} directives does not do anything when used in
e254a580 10497Java.
8405b70c 10498
e254a580 10499Push parsers are currently unsupported in Java and @code{%define
67212941 10500api.push-pull} have no effect.
01b477c6 10501
8a4281b9 10502GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10503@code{glr-parser} directive.
10504
10505No header file can be generated for Java parsers. Do not use the
10506@code{%defines} directive or the @option{-d}/@option{--defines} options.
10507
10508@c FIXME: Possible code change.
fa819509
AD
10509Currently, support for tracing is always compiled
10510in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10511directives and the
e254a580
DJ
10512@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10513options have no effect. This may change in the future to eliminate
fa819509
AD
10514unused code in the generated parser, so use @samp{%define parse.trace}
10515explicitly
1979121c 10516if needed. Also, in the future the
e254a580
DJ
10517@code{%token-table} directive might enable a public interface to
10518access the token names and codes.
8405b70c 10519
09ccae9b 10520Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10521hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10522Try reducing the amount of code in actions and static initializers;
10523otherwise, report a bug so that the parser skeleton will be improved.
10524
10525
8405b70c
PB
10526@node Java Semantic Values
10527@subsection Java Semantic Values
10528@c - No %union, specify type in %type/%token.
10529@c - YYSTYPE
10530@c - Printer and destructor
10531
10532There is no @code{%union} directive in Java parsers. Instead, the
10533semantic values' types (class names) should be specified in the
10534@code{%type} or @code{%token} directive:
10535
10536@example
10537%type <Expression> expr assignment_expr term factor
10538%type <Integer> number
10539@end example
10540
10541By default, the semantic stack is declared to have @code{Object} members,
10542which means that the class types you specify can be of any class.
10543To improve the type safety of the parser, you can declare the common
67501061 10544superclass of all the semantic values using the @samp{%define stype}
e254a580 10545directive. For example, after the following declaration:
8405b70c
PB
10546
10547@example
e254a580 10548%define stype "ASTNode"
8405b70c
PB
10549@end example
10550
10551@noindent
10552any @code{%type} or @code{%token} specifying a semantic type which
10553is not a subclass of ASTNode, will cause a compile-time error.
10554
e254a580 10555@c FIXME: Documented bug.
8405b70c
PB
10556Types used in the directives may be qualified with a package name.
10557Primitive data types are accepted for Java version 1.5 or later. Note
10558that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10559Generic types may not be used; this is due to a limitation in the
10560implementation of Bison, and may change in future releases.
8405b70c
PB
10561
10562Java parsers do not support @code{%destructor}, since the language
10563adopts garbage collection. The parser will try to hold references
10564to semantic values for as little time as needed.
10565
10566Java parsers do not support @code{%printer}, as @code{toString()}
10567can be used to print the semantic values. This however may change
10568(in a backwards-compatible way) in future versions of Bison.
10569
10570
10571@node Java Location Values
10572@subsection Java Location Values
10573@c - %locations
10574@c - class Position
10575@c - class Location
10576
303834cc
JD
10577When the directive @code{%locations} is used, the Java parser supports
10578location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10579class defines a @dfn{position}, a single point in a file; Bison itself
10580defines a class representing a @dfn{location}, a range composed of a pair of
10581positions (possibly spanning several files). The location class is an inner
10582class of the parser; the name is @code{Location} by default, and may also be
10583renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10584
10585The location class treats the position as a completely opaque value.
10586By default, the class name is @code{Position}, but this can be changed
67501061 10587with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10588be supplied by the user.
8405b70c
PB
10589
10590
e254a580
DJ
10591@deftypeivar {Location} {Position} begin
10592@deftypeivarx {Location} {Position} end
8405b70c 10593The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10594@end deftypeivar
10595
10596@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10597Create a @code{Location} denoting an empty range located at a given point.
e254a580 10598@end deftypeop
8405b70c 10599
e254a580
DJ
10600@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10601Create a @code{Location} from the endpoints of the range.
10602@end deftypeop
10603
10604@deftypemethod {Location} {String} toString ()
8405b70c
PB
10605Prints the range represented by the location. For this to work
10606properly, the position class should override the @code{equals} and
10607@code{toString} methods appropriately.
10608@end deftypemethod
10609
10610
10611@node Java Parser Interface
10612@subsection Java Parser Interface
10613@c - define parser_class_name
10614@c - Ctor
10615@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10616@c debug_stream.
10617@c - Reporting errors
10618
e254a580
DJ
10619The name of the generated parser class defaults to @code{YYParser}. The
10620@code{YY} prefix may be changed using the @code{%name-prefix} directive
10621or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10622@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10623the class. The interface of this class is detailed below.
8405b70c 10624
e254a580 10625By default, the parser class has package visibility. A declaration
67501061 10626@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10627according to the Java language specification, the name of the @file{.java}
10628file should match the name of the class in this case. Similarly, you can
10629use @code{abstract}, @code{final} and @code{strictfp} with the
10630@code{%define} declaration to add other modifiers to the parser class.
67501061 10631A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10632be used to add any number of annotations to the parser class.
e254a580
DJ
10633
10634The Java package name of the parser class can be specified using the
67501061 10635@samp{%define package} directive. The superclass and the implemented
e254a580 10636interfaces of the parser class can be specified with the @code{%define
67501061 10637extends} and @samp{%define implements} directives.
e254a580
DJ
10638
10639The parser class defines an inner class, @code{Location}, that is used
10640for location tracking (see @ref{Java Location Values}), and a inner
10641interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10642these inner class/interface, and the members described in the interface
10643below, all the other members and fields are preceded with a @code{yy} or
10644@code{YY} prefix to avoid clashes with user code.
10645
e254a580
DJ
10646The parser class can be extended using the @code{%parse-param}
10647directive. Each occurrence of the directive will add a @code{protected
10648final} field to the parser class, and an argument to its constructor,
10649which initialize them automatically.
10650
e254a580
DJ
10651@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10652Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10653no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10654@code{%lex-param}s are used.
1979121c
DJ
10655
10656Use @code{%code init} for code added to the start of the constructor
10657body. This is especially useful to initialize superclasses. Use
f50bfcd6 10658@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10659@end deftypeop
10660
10661@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10662Build a new parser object using the specified scanner. There are no
2055a44e
AD
10663additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10664used.
e254a580
DJ
10665
10666If the scanner is defined by @code{%code lexer}, this constructor is
10667declared @code{protected} and is called automatically with a scanner
2055a44e 10668created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10669
10670Use @code{%code init} for code added to the start of the constructor
10671body. This is especially useful to initialize superclasses. Use
5a321748 10672@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 10673@end deftypeop
8405b70c
PB
10674
10675@deftypemethod {YYParser} {boolean} parse ()
10676Run the syntactic analysis, and return @code{true} on success,
10677@code{false} otherwise.
10678@end deftypemethod
10679
1979121c
DJ
10680@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10681@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10682Get or set the option to produce verbose error messages. These are only
cf499cff 10683available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10684verbose error messages.
10685@end deftypemethod
10686
10687@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10688@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10689@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10690Print an error message using the @code{yyerror} method of the scanner
10691instance in use. The @code{Location} and @code{Position} parameters are
10692available only if location tracking is active.
10693@end deftypemethod
10694
01b477c6 10695@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10696During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10697from a syntax error.
10698@xref{Error Recovery}.
8405b70c
PB
10699@end deftypemethod
10700
10701@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10702@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10703Get or set the stream used for tracing the parsing. It defaults to
10704@code{System.err}.
10705@end deftypemethod
10706
10707@deftypemethod {YYParser} {int} getDebugLevel ()
10708@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10709Get or set the tracing level. Currently its value is either 0, no trace,
10710or nonzero, full tracing.
10711@end deftypemethod
10712
1979121c
DJ
10713@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10714@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10715Identify the Bison version and skeleton used to generate this parser.
10716@end deftypecv
10717
8405b70c
PB
10718
10719@node Java Scanner Interface
10720@subsection Java Scanner Interface
01b477c6 10721@c - %code lexer
8405b70c 10722@c - %lex-param
01b477c6 10723@c - Lexer interface
8405b70c 10724
e254a580
DJ
10725There are two possible ways to interface a Bison-generated Java parser
10726with a scanner: the scanner may be defined by @code{%code lexer}, or
10727defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10728@code{Lexer} inner interface of the parser class. This interface also
10729contain constants for all user-defined token names and the predefined
10730@code{EOF} token.
e254a580
DJ
10731
10732In the first case, the body of the scanner class is placed in
10733@code{%code lexer} blocks. If you want to pass parameters from the
10734parser constructor to the scanner constructor, specify them with
10735@code{%lex-param}; they are passed before @code{%parse-param}s to the
10736constructor.
01b477c6 10737
59c5ac72 10738In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10739which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10740The constructor of the parser object will then accept an object
10741implementing the interface; @code{%lex-param} is not used in this
10742case.
10743
10744In both cases, the scanner has to implement the following methods.
10745
e254a580
DJ
10746@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10747This method is defined by the user to emit an error message. The first
10748parameter is omitted if location tracking is not active. Its type can be
67501061 10749changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10750@end deftypemethod
10751
e254a580 10752@deftypemethod {Lexer} {int} yylex ()
8405b70c 10753Return the next token. Its type is the return value, its semantic
f50bfcd6 10754value and location are saved and returned by the their methods in the
e254a580
DJ
10755interface.
10756
67501061 10757Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10758Default is @code{java.io.IOException}.
8405b70c
PB
10759@end deftypemethod
10760
10761@deftypemethod {Lexer} {Position} getStartPos ()
10762@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10763Return respectively the first position of the last token that
10764@code{yylex} returned, and the first position beyond it. These
10765methods are not needed unless location tracking is active.
8405b70c 10766
67501061 10767The return type can be changed using @samp{%define position_type
8405b70c
PB
10768"@var{class-name}".}
10769@end deftypemethod
10770
10771@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10772Return the semantic value of the last token that yylex returned.
8405b70c 10773
67501061 10774The return type can be changed using @samp{%define stype
8405b70c
PB
10775"@var{class-name}".}
10776@end deftypemethod
10777
10778
e254a580
DJ
10779@node Java Action Features
10780@subsection Special Features for Use in Java Actions
10781
10782The following special constructs can be uses in Java actions.
10783Other analogous C action features are currently unavailable for Java.
10784
67501061 10785Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10786actions, and initial actions specified by @code{%initial-action}.
10787
10788@defvar $@var{n}
10789The semantic value for the @var{n}th component of the current rule.
10790This may not be assigned to.
10791@xref{Java Semantic Values}.
10792@end defvar
10793
10794@defvar $<@var{typealt}>@var{n}
10795Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10796@xref{Java Semantic Values}.
10797@end defvar
10798
10799@defvar $$
10800The semantic value for the grouping made by the current rule. As a
10801value, this is in the base type (@code{Object} or as specified by
67501061 10802@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10803casts are not allowed on the left-hand side of Java assignments.
10804Use an explicit Java cast if the correct subtype is needed.
10805@xref{Java Semantic Values}.
10806@end defvar
10807
10808@defvar $<@var{typealt}>$
10809Same as @code{$$} since Java always allow assigning to the base type.
10810Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10811for setting the value but there is currently no easy way to distinguish
10812these constructs.
10813@xref{Java Semantic Values}.
10814@end defvar
10815
10816@defvar @@@var{n}
10817The location information of the @var{n}th component of the current rule.
10818This may not be assigned to.
10819@xref{Java Location Values}.
10820@end defvar
10821
10822@defvar @@$
10823The location information of the grouping made by the current rule.
10824@xref{Java Location Values}.
10825@end defvar
10826
34a41a93 10827@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
10828Return immediately from the parser, indicating failure.
10829@xref{Java Parser Interface}.
34a41a93 10830@end deftypefn
8405b70c 10831
34a41a93 10832@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
10833Return immediately from the parser, indicating success.
10834@xref{Java Parser Interface}.
34a41a93 10835@end deftypefn
8405b70c 10836
34a41a93 10837@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 10838Start error recovery (without printing an error message).
e254a580 10839@xref{Error Recovery}.
34a41a93 10840@end deftypefn
8405b70c 10841
e254a580
DJ
10842@deftypefn {Function} {boolean} recovering ()
10843Return whether error recovery is being done. In this state, the parser
10844reads token until it reaches a known state, and then restarts normal
10845operation.
10846@xref{Error Recovery}.
10847@end deftypefn
8405b70c 10848
1979121c
DJ
10849@deftypefn {Function} {void} yyerror (String @var{msg})
10850@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10851@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10852Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10853instance in use. The @code{Location} and @code{Position} parameters are
10854available only if location tracking is active.
e254a580 10855@end deftypefn
8405b70c 10856
8405b70c 10857
8405b70c
PB
10858@node Java Differences
10859@subsection Differences between C/C++ and Java Grammars
10860
10861The different structure of the Java language forces several differences
10862between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10863section summarizes these differences.
8405b70c
PB
10864
10865@itemize
10866@item
01b477c6 10867Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10868@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10869macros. Instead, they should be preceded by @code{return} when they
10870appear in an action. The actual definition of these symbols is
8405b70c
PB
10871opaque to the Bison grammar, and it might change in the future. The
10872only meaningful operation that you can do, is to return them.
e3fd1dcb 10873@xref{Java Action Features}.
8405b70c
PB
10874
10875Note that of these three symbols, only @code{YYACCEPT} and
10876@code{YYABORT} will cause a return from the @code{yyparse}
10877method@footnote{Java parsers include the actions in a separate
10878method than @code{yyparse} in order to have an intuitive syntax that
10879corresponds to these C macros.}.
10880
e254a580
DJ
10881@item
10882Java lacks unions, so @code{%union} has no effect. Instead, semantic
10883values have a common base type: @code{Object} or as specified by
f50bfcd6 10884@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10885@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10886an union. The type of @code{$$}, even with angle brackets, is the base
10887type since Java casts are not allow on the left-hand side of assignments.
10888Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 10889left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 10890@ref{Java Action Features}.
e254a580 10891
8405b70c 10892@item
f50bfcd6 10893The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10894@table @asis
10895@item @code{%code imports}
10896blocks are placed at the beginning of the Java source code. They may
10897include copyright notices. For a @code{package} declarations, it is
67501061 10898suggested to use @samp{%define package} instead.
8405b70c 10899
01b477c6
PB
10900@item unqualified @code{%code}
10901blocks are placed inside the parser class.
10902
10903@item @code{%code lexer}
10904blocks, if specified, should include the implementation of the
10905scanner. If there is no such block, the scanner can be any class
e3fd1dcb 10906that implements the appropriate interface (@pxref{Java Scanner
01b477c6 10907Interface}).
29553547 10908@end table
8405b70c
PB
10909
10910Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10911In particular, @code{%@{ @dots{} %@}} blocks should not be used
10912and may give an error in future versions of Bison.
10913
01b477c6 10914The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10915be used to define other classes used by the parser @emph{outside}
10916the parser class.
8405b70c
PB
10917@end itemize
10918
e254a580
DJ
10919
10920@node Java Declarations Summary
10921@subsection Java Declarations Summary
10922
10923This summary only include declarations specific to Java or have special
10924meaning when used in a Java parser.
10925
10926@deffn {Directive} {%language "Java"}
10927Generate a Java class for the parser.
10928@end deffn
10929
10930@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10931A parameter for the lexer class defined by @code{%code lexer}
10932@emph{only}, added as parameters to the lexer constructor and the parser
10933constructor that @emph{creates} a lexer. Default is none.
10934@xref{Java Scanner Interface}.
10935@end deffn
10936
10937@deffn {Directive} %name-prefix "@var{prefix}"
10938The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10939@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10940@xref{Java Bison Interface}.
10941@end deffn
10942
10943@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10944A parameter for the parser class added as parameters to constructor(s)
10945and as fields initialized by the constructor(s). Default is none.
10946@xref{Java Parser Interface}.
10947@end deffn
10948
10949@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10950Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10951@xref{Java Semantic Values}.
10952@end deffn
10953
10954@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10955Declare the type of nonterminals. Note that the angle brackets enclose
10956a Java @emph{type}.
10957@xref{Java Semantic Values}.
10958@end deffn
10959
10960@deffn {Directive} %code @{ @var{code} @dots{} @}
10961Code appended to the inside of the parser class.
10962@xref{Java Differences}.
10963@end deffn
10964
10965@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10966Code inserted just after the @code{package} declaration.
10967@xref{Java Differences}.
10968@end deffn
10969
1979121c
DJ
10970@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10971Code inserted at the beginning of the parser constructor body.
10972@xref{Java Parser Interface}.
10973@end deffn
10974
e254a580
DJ
10975@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10976Code added to the body of a inner lexer class within the parser class.
10977@xref{Java Scanner Interface}.
10978@end deffn
10979
10980@deffn {Directive} %% @var{code} @dots{}
10981Code (after the second @code{%%}) appended to the end of the file,
10982@emph{outside} the parser class.
10983@xref{Java Differences}.
10984@end deffn
10985
10986@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10987Not supported. Use @code{%code imports} instead.
e254a580
DJ
10988@xref{Java Differences}.
10989@end deffn
10990
10991@deffn {Directive} {%define abstract}
10992Whether the parser class is declared @code{abstract}. Default is false.
10993@xref{Java Bison Interface}.
10994@end deffn
10995
1979121c
DJ
10996@deffn {Directive} {%define annotations} "@var{annotations}"
10997The Java annotations for the parser class. Default is none.
10998@xref{Java Bison Interface}.
10999@end deffn
11000
e254a580
DJ
11001@deffn {Directive} {%define extends} "@var{superclass}"
11002The superclass of the parser class. Default is none.
11003@xref{Java Bison Interface}.
11004@end deffn
11005
11006@deffn {Directive} {%define final}
11007Whether the parser class is declared @code{final}. Default is false.
11008@xref{Java Bison Interface}.
11009@end deffn
11010
11011@deffn {Directive} {%define implements} "@var{interfaces}"
11012The implemented interfaces of the parser class, a comma-separated list.
11013Default is none.
11014@xref{Java Bison Interface}.
11015@end deffn
11016
1979121c
DJ
11017@deffn {Directive} {%define init_throws} "@var{exceptions}"
11018The exceptions thrown by @code{%code init} from the parser class
11019constructor. Default is none.
11020@xref{Java Parser Interface}.
11021@end deffn
11022
e254a580
DJ
11023@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11024The exceptions thrown by the @code{yylex} method of the lexer, a
11025comma-separated list. Default is @code{java.io.IOException}.
11026@xref{Java Scanner Interface}.
11027@end deffn
11028
11029@deffn {Directive} {%define location_type} "@var{class}"
11030The name of the class used for locations (a range between two
11031positions). This class is generated as an inner class of the parser
11032class by @command{bison}. Default is @code{Location}.
11033@xref{Java Location Values}.
11034@end deffn
11035
11036@deffn {Directive} {%define package} "@var{package}"
11037The package to put the parser class in. Default is none.
11038@xref{Java Bison Interface}.
11039@end deffn
11040
11041@deffn {Directive} {%define parser_class_name} "@var{name}"
11042The name of the parser class. Default is @code{YYParser} or
11043@code{@var{name-prefix}Parser}.
11044@xref{Java Bison Interface}.
11045@end deffn
11046
11047@deffn {Directive} {%define position_type} "@var{class}"
11048The name of the class used for positions. This class must be supplied by
11049the user. Default is @code{Position}.
11050@xref{Java Location Values}.
11051@end deffn
11052
11053@deffn {Directive} {%define public}
11054Whether the parser class is declared @code{public}. Default is false.
11055@xref{Java Bison Interface}.
11056@end deffn
11057
11058@deffn {Directive} {%define stype} "@var{class}"
11059The base type of semantic values. Default is @code{Object}.
11060@xref{Java Semantic Values}.
11061@end deffn
11062
11063@deffn {Directive} {%define strictfp}
11064Whether the parser class is declared @code{strictfp}. Default is false.
11065@xref{Java Bison Interface}.
11066@end deffn
11067
11068@deffn {Directive} {%define throws} "@var{exceptions}"
11069The exceptions thrown by user-supplied parser actions and
11070@code{%initial-action}, a comma-separated list. Default is none.
11071@xref{Java Parser Interface}.
11072@end deffn
11073
11074
12545799 11075@c ================================================= FAQ
d1a1114f
AD
11076
11077@node FAQ
11078@chapter Frequently Asked Questions
11079@cindex frequently asked questions
11080@cindex questions
11081
11082Several questions about Bison come up occasionally. Here some of them
11083are addressed.
11084
11085@menu
55ba27be
AD
11086* Memory Exhausted:: Breaking the Stack Limits
11087* How Can I Reset the Parser:: @code{yyparse} Keeps some State
11088* Strings are Destroyed:: @code{yylval} Loses Track of Strings
11089* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 11090* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 11091* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
11092* I can't build Bison:: Troubleshooting
11093* Where can I find help?:: Troubleshouting
11094* Bug Reports:: Troublereporting
8405b70c 11095* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
11096* Beta Testing:: Experimenting development versions
11097* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
11098@end menu
11099
1a059451
PE
11100@node Memory Exhausted
11101@section Memory Exhausted
d1a1114f 11102
71b52b13 11103@quotation
1a059451 11104My parser returns with error with a @samp{memory exhausted}
d1a1114f 11105message. What can I do?
71b52b13 11106@end quotation
d1a1114f 11107
188867ac
AD
11108This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
11109Rules}.
d1a1114f 11110
e64fec0a
PE
11111@node How Can I Reset the Parser
11112@section How Can I Reset the Parser
5b066063 11113
0e14ad77
PE
11114The following phenomenon has several symptoms, resulting in the
11115following typical questions:
5b066063 11116
71b52b13 11117@quotation
5b066063
AD
11118I invoke @code{yyparse} several times, and on correct input it works
11119properly; but when a parse error is found, all the other calls fail
0e14ad77 11120too. How can I reset the error flag of @code{yyparse}?
71b52b13 11121@end quotation
5b066063
AD
11122
11123@noindent
11124or
11125
71b52b13 11126@quotation
0e14ad77 11127My parser includes support for an @samp{#include}-like feature, in
5b066063 11128which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 11129although I did specify @samp{%define api.pure}.
71b52b13 11130@end quotation
5b066063 11131
0e14ad77
PE
11132These problems typically come not from Bison itself, but from
11133Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
11134speed, they might not notice a change of input file. As a
11135demonstration, consider the following source file,
11136@file{first-line.l}:
11137
d4fca427
AD
11138@example
11139@group
11140%@{
5b066063
AD
11141#include <stdio.h>
11142#include <stdlib.h>
d4fca427
AD
11143%@}
11144@end group
5b066063
AD
11145%%
11146.*\n ECHO; return 1;
11147%%
d4fca427 11148@group
5b066063 11149int
0e14ad77 11150yyparse (char const *file)
d4fca427 11151@{
5b066063
AD
11152 yyin = fopen (file, "r");
11153 if (!yyin)
d4fca427
AD
11154 @{
11155 perror ("fopen");
11156 exit (EXIT_FAILURE);
11157 @}
11158@end group
11159@group
fa7e68c3 11160 /* One token only. */
5b066063 11161 yylex ();
0e14ad77 11162 if (fclose (yyin) != 0)
d4fca427
AD
11163 @{
11164 perror ("fclose");
11165 exit (EXIT_FAILURE);
11166 @}
5b066063 11167 return 0;
d4fca427
AD
11168@}
11169@end group
5b066063 11170
d4fca427 11171@group
5b066063 11172int
0e14ad77 11173main (void)
d4fca427 11174@{
5b066063
AD
11175 yyparse ("input");
11176 yyparse ("input");
11177 return 0;
d4fca427
AD
11178@}
11179@end group
11180@end example
5b066063
AD
11181
11182@noindent
11183If the file @file{input} contains
11184
71b52b13 11185@example
5b066063
AD
11186input:1: Hello,
11187input:2: World!
71b52b13 11188@end example
5b066063
AD
11189
11190@noindent
0e14ad77 11191then instead of getting the first line twice, you get:
5b066063
AD
11192
11193@example
11194$ @kbd{flex -ofirst-line.c first-line.l}
11195$ @kbd{gcc -ofirst-line first-line.c -ll}
11196$ @kbd{./first-line}
11197input:1: Hello,
11198input:2: World!
11199@end example
11200
0e14ad77
PE
11201Therefore, whenever you change @code{yyin}, you must tell the
11202Lex-generated scanner to discard its current buffer and switch to the
11203new one. This depends upon your implementation of Lex; see its
11204documentation for more. For Flex, it suffices to call
11205@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
11206Flex-generated scanner needs to read from several input streams to
11207handle features like include files, you might consider using Flex
11208functions like @samp{yy_switch_to_buffer} that manipulate multiple
11209input buffers.
5b066063 11210
b165c324
AD
11211If your Flex-generated scanner uses start conditions (@pxref{Start
11212conditions, , Start conditions, flex, The Flex Manual}), you might
11213also want to reset the scanner's state, i.e., go back to the initial
11214start condition, through a call to @samp{BEGIN (0)}.
11215
fef4cb51
AD
11216@node Strings are Destroyed
11217@section Strings are Destroyed
11218
71b52b13 11219@quotation
c7e441b4 11220My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
11221them. Instead of reporting @samp{"foo", "bar"}, it reports
11222@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 11223@end quotation
fef4cb51
AD
11224
11225This error is probably the single most frequent ``bug report'' sent to
11226Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 11227of the scanner. Consider the following Lex code:
fef4cb51 11228
71b52b13 11229@example
d4fca427 11230@group
71b52b13 11231%@{
fef4cb51
AD
11232#include <stdio.h>
11233char *yylval = NULL;
71b52b13 11234%@}
d4fca427
AD
11235@end group
11236@group
fef4cb51
AD
11237%%
11238.* yylval = yytext; return 1;
11239\n /* IGNORE */
11240%%
d4fca427
AD
11241@end group
11242@group
fef4cb51
AD
11243int
11244main ()
71b52b13 11245@{
fa7e68c3 11246 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
11247 char *fst = (yylex (), yylval);
11248 char *snd = (yylex (), yylval);
11249 printf ("\"%s\", \"%s\"\n", fst, snd);
11250 return 0;
71b52b13 11251@}
d4fca427 11252@end group
71b52b13 11253@end example
fef4cb51
AD
11254
11255If you compile and run this code, you get:
11256
11257@example
11258$ @kbd{flex -osplit-lines.c split-lines.l}
11259$ @kbd{gcc -osplit-lines split-lines.c -ll}
11260$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11261"one
11262two", "two"
11263@end example
11264
11265@noindent
11266this is because @code{yytext} is a buffer provided for @emph{reading}
11267in the action, but if you want to keep it, you have to duplicate it
11268(e.g., using @code{strdup}). Note that the output may depend on how
11269your implementation of Lex handles @code{yytext}. For instance, when
11270given the Lex compatibility option @option{-l} (which triggers the
11271option @samp{%array}) Flex generates a different behavior:
11272
11273@example
11274$ @kbd{flex -l -osplit-lines.c split-lines.l}
11275$ @kbd{gcc -osplit-lines split-lines.c -ll}
11276$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11277"two", "two"
11278@end example
11279
11280
2fa09258
AD
11281@node Implementing Gotos/Loops
11282@section Implementing Gotos/Loops
a06ea4aa 11283
71b52b13 11284@quotation
a06ea4aa 11285My simple calculator supports variables, assignments, and functions,
2fa09258 11286but how can I implement gotos, or loops?
71b52b13 11287@end quotation
a06ea4aa
AD
11288
11289Although very pedagogical, the examples included in the document blur
a1c84f45 11290the distinction to make between the parser---whose job is to recover
a06ea4aa 11291the structure of a text and to transmit it to subsequent modules of
a1c84f45 11292the program---and the processing (such as the execution) of this
a06ea4aa
AD
11293structure. This works well with so called straight line programs,
11294i.e., precisely those that have a straightforward execution model:
11295execute simple instructions one after the others.
11296
11297@cindex abstract syntax tree
8a4281b9 11298@cindex AST
a06ea4aa
AD
11299If you want a richer model, you will probably need to use the parser
11300to construct a tree that does represent the structure it has
11301recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 11302or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11303traversing it in various ways, will enable treatments such as its
11304execution or its translation, which will result in an interpreter or a
11305compiler.
11306
11307This topic is way beyond the scope of this manual, and the reader is
11308invited to consult the dedicated literature.
11309
11310
ed2e6384
AD
11311@node Multiple start-symbols
11312@section Multiple start-symbols
11313
71b52b13 11314@quotation
ed2e6384
AD
11315I have several closely related grammars, and I would like to share their
11316implementations. In fact, I could use a single grammar but with
11317multiple entry points.
71b52b13 11318@end quotation
ed2e6384
AD
11319
11320Bison does not support multiple start-symbols, but there is a very
11321simple means to simulate them. If @code{foo} and @code{bar} are the two
11322pseudo start-symbols, then introduce two new tokens, say
11323@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11324real start-symbol:
11325
11326@example
11327%token START_FOO START_BAR;
11328%start start;
5e9b6624
AD
11329start:
11330 START_FOO foo
11331| START_BAR bar;
ed2e6384
AD
11332@end example
11333
11334These tokens prevents the introduction of new conflicts. As far as the
11335parser goes, that is all that is needed.
11336
11337Now the difficult part is ensuring that the scanner will send these
11338tokens first. If your scanner is hand-written, that should be
11339straightforward. If your scanner is generated by Lex, them there is
11340simple means to do it: recall that anything between @samp{%@{ ... %@}}
11341after the first @code{%%} is copied verbatim in the top of the generated
11342@code{yylex} function. Make sure a variable @code{start_token} is
11343available in the scanner (e.g., a global variable or using
11344@code{%lex-param} etc.), and use the following:
11345
11346@example
11347 /* @r{Prologue.} */
11348%%
11349%@{
11350 if (start_token)
11351 @{
11352 int t = start_token;
11353 start_token = 0;
11354 return t;
11355 @}
11356%@}
11357 /* @r{The rules.} */
11358@end example
11359
11360
55ba27be
AD
11361@node Secure? Conform?
11362@section Secure? Conform?
11363
71b52b13 11364@quotation
55ba27be 11365Is Bison secure? Does it conform to POSIX?
71b52b13 11366@end quotation
55ba27be
AD
11367
11368If you're looking for a guarantee or certification, we don't provide it.
11369However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11370POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11371please send us a bug report.
11372
11373@node I can't build Bison
11374@section I can't build Bison
11375
71b52b13 11376@quotation
8c5b881d
PE
11377I can't build Bison because @command{make} complains that
11378@code{msgfmt} is not found.
55ba27be 11379What should I do?
71b52b13 11380@end quotation
55ba27be
AD
11381
11382Like most GNU packages with internationalization support, that feature
11383is turned on by default. If you have problems building in the @file{po}
11384subdirectory, it indicates that your system's internationalization
11385support is lacking. You can re-configure Bison with
11386@option{--disable-nls} to turn off this support, or you can install GNU
11387gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11388Bison. See the file @file{ABOUT-NLS} for more information.
11389
11390
11391@node Where can I find help?
11392@section Where can I find help?
11393
71b52b13 11394@quotation
55ba27be 11395I'm having trouble using Bison. Where can I find help?
71b52b13 11396@end quotation
55ba27be
AD
11397
11398First, read this fine manual. Beyond that, you can send mail to
11399@email{help-bison@@gnu.org}. This mailing list is intended to be
11400populated with people who are willing to answer questions about using
11401and installing Bison. Please keep in mind that (most of) the people on
11402the list have aspects of their lives which are not related to Bison (!),
11403so you may not receive an answer to your question right away. This can
11404be frustrating, but please try not to honk them off; remember that any
11405help they provide is purely voluntary and out of the kindness of their
11406hearts.
11407
11408@node Bug Reports
11409@section Bug Reports
11410
71b52b13 11411@quotation
55ba27be 11412I found a bug. What should I include in the bug report?
71b52b13 11413@end quotation
55ba27be
AD
11414
11415Before you send a bug report, make sure you are using the latest
11416version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11417mirrors. Be sure to include the version number in your bug report. If
11418the bug is present in the latest version but not in a previous version,
11419try to determine the most recent version which did not contain the bug.
11420
11421If the bug is parser-related, you should include the smallest grammar
11422you can which demonstrates the bug. The grammar file should also be
11423complete (i.e., I should be able to run it through Bison without having
11424to edit or add anything). The smaller and simpler the grammar, the
11425easier it will be to fix the bug.
11426
11427Include information about your compilation environment, including your
11428operating system's name and version and your compiler's name and
11429version. If you have trouble compiling, you should also include a
11430transcript of the build session, starting with the invocation of
11431`configure'. Depending on the nature of the bug, you may be asked to
11432send additional files as well (such as `config.h' or `config.cache').
11433
11434Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11435send a bug report just because you cannot provide a fix.
55ba27be
AD
11436
11437Send bug reports to @email{bug-bison@@gnu.org}.
11438
8405b70c
PB
11439@node More Languages
11440@section More Languages
55ba27be 11441
71b52b13 11442@quotation
8405b70c 11443Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11444favorite language here}?
71b52b13 11445@end quotation
55ba27be 11446
8405b70c 11447C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11448languages; contributions are welcome.
11449
11450@node Beta Testing
11451@section Beta Testing
11452
71b52b13 11453@quotation
55ba27be 11454What is involved in being a beta tester?
71b52b13 11455@end quotation
55ba27be
AD
11456
11457It's not terribly involved. Basically, you would download a test
11458release, compile it, and use it to build and run a parser or two. After
11459that, you would submit either a bug report or a message saying that
11460everything is okay. It is important to report successes as well as
11461failures because test releases eventually become mainstream releases,
11462but only if they are adequately tested. If no one tests, development is
11463essentially halted.
11464
11465Beta testers are particularly needed for operating systems to which the
11466developers do not have easy access. They currently have easy access to
11467recent GNU/Linux and Solaris versions. Reports about other operating
11468systems are especially welcome.
11469
11470@node Mailing Lists
11471@section Mailing Lists
11472
71b52b13 11473@quotation
55ba27be 11474How do I join the help-bison and bug-bison mailing lists?
71b52b13 11475@end quotation
55ba27be
AD
11476
11477See @url{http://lists.gnu.org/}.
a06ea4aa 11478
d1a1114f
AD
11479@c ================================================= Table of Symbols
11480
342b8b6e 11481@node Table of Symbols
bfa74976
RS
11482@appendix Bison Symbols
11483@cindex Bison symbols, table of
11484@cindex symbols in Bison, table of
11485
18b519c0 11486@deffn {Variable} @@$
3ded9a63 11487In an action, the location of the left-hand side of the rule.
303834cc 11488@xref{Tracking Locations}.
18b519c0 11489@end deffn
3ded9a63 11490
18b519c0 11491@deffn {Variable} @@@var{n}
303834cc
JD
11492In an action, the location of the @var{n}-th symbol of the right-hand side
11493of the rule. @xref{Tracking Locations}.
18b519c0 11494@end deffn
3ded9a63 11495
d013372c 11496@deffn {Variable} @@@var{name}
303834cc
JD
11497In an action, the location of a symbol addressed by name. @xref{Tracking
11498Locations}.
d013372c
AR
11499@end deffn
11500
11501@deffn {Variable} @@[@var{name}]
303834cc
JD
11502In an action, the location of a symbol addressed by name. @xref{Tracking
11503Locations}.
d013372c
AR
11504@end deffn
11505
18b519c0 11506@deffn {Variable} $$
3ded9a63
AD
11507In an action, the semantic value of the left-hand side of the rule.
11508@xref{Actions}.
18b519c0 11509@end deffn
3ded9a63 11510
18b519c0 11511@deffn {Variable} $@var{n}
3ded9a63
AD
11512In an action, the semantic value of the @var{n}-th symbol of the
11513right-hand side of the rule. @xref{Actions}.
18b519c0 11514@end deffn
3ded9a63 11515
d013372c
AR
11516@deffn {Variable} $@var{name}
11517In an action, the semantic value of a symbol addressed by name.
11518@xref{Actions}.
11519@end deffn
11520
11521@deffn {Variable} $[@var{name}]
11522In an action, the semantic value of a symbol addressed by name.
11523@xref{Actions}.
11524@end deffn
11525
dd8d9022
AD
11526@deffn {Delimiter} %%
11527Delimiter used to separate the grammar rule section from the
11528Bison declarations section or the epilogue.
11529@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11530@end deffn
bfa74976 11531
dd8d9022
AD
11532@c Don't insert spaces, or check the DVI output.
11533@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11534All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11535to the parser implementation file. Such code forms the prologue of
11536the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11537Grammar}.
18b519c0 11538@end deffn
bfa74976 11539
ca2a6d15
PH
11540@deffn {Directive} %?@{@var{expression}@}
11541Predicate actions. This is a type of action clause that may appear in
11542rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11543GLR parsers during nondeterministic operation,
ca2a6d15
PH
11544this silently causes an alternative parse to die. During deterministic
11545operation, it is the same as the effect of YYERROR.
11546@xref{Semantic Predicates}.
11547
11548This feature is experimental.
11549More user feedback will help to determine whether it should become a permanent
11550feature.
11551@end deffn
11552
dd8d9022
AD
11553@deffn {Construct} /*@dots{}*/
11554Comment delimiters, as in C.
18b519c0 11555@end deffn
bfa74976 11556
dd8d9022
AD
11557@deffn {Delimiter} :
11558Separates a rule's result from its components. @xref{Rules, ,Syntax of
11559Grammar Rules}.
18b519c0 11560@end deffn
bfa74976 11561
dd8d9022
AD
11562@deffn {Delimiter} ;
11563Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11564@end deffn
bfa74976 11565
dd8d9022
AD
11566@deffn {Delimiter} |
11567Separates alternate rules for the same result nonterminal.
11568@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11569@end deffn
bfa74976 11570
12e35840
JD
11571@deffn {Directive} <*>
11572Used to define a default tagged @code{%destructor} or default tagged
11573@code{%printer}.
85894313
JD
11574
11575This feature is experimental.
11576More user feedback will help to determine whether it should become a permanent
11577feature.
11578
12e35840
JD
11579@xref{Destructor Decl, , Freeing Discarded Symbols}.
11580@end deffn
11581
3ebecc24 11582@deffn {Directive} <>
12e35840
JD
11583Used to define a default tagless @code{%destructor} or default tagless
11584@code{%printer}.
85894313
JD
11585
11586This feature is experimental.
11587More user feedback will help to determine whether it should become a permanent
11588feature.
11589
12e35840
JD
11590@xref{Destructor Decl, , Freeing Discarded Symbols}.
11591@end deffn
11592
dd8d9022
AD
11593@deffn {Symbol} $accept
11594The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11595$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11596Start-Symbol}. It cannot be used in the grammar.
18b519c0 11597@end deffn
bfa74976 11598
136a0f76 11599@deffn {Directive} %code @{@var{code}@}
148d66d8 11600@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11601Insert @var{code} verbatim into the output parser source at the
11602default location or at the location specified by @var{qualifier}.
e0c07222 11603@xref{%code Summary}.
9bc0dd67
JD
11604@end deffn
11605
11606@deffn {Directive} %debug
11607Equip the parser for debugging. @xref{Decl Summary}.
11608@end deffn
11609
91d2c560 11610@ifset defaultprec
22fccf95
PE
11611@deffn {Directive} %default-prec
11612Assign a precedence to rules that lack an explicit @samp{%prec}
11613modifier. @xref{Contextual Precedence, ,Context-Dependent
11614Precedence}.
39a06c25 11615@end deffn
91d2c560 11616@end ifset
39a06c25 11617
7fceb615
JD
11618@deffn {Directive} %define @var{variable}
11619@deffnx {Directive} %define @var{variable} @var{value}
11620@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11621Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11622@end deffn
11623
18b519c0 11624@deffn {Directive} %defines
ff7571c0
JD
11625Bison declaration to create a parser header file, which is usually
11626meant for the scanner. @xref{Decl Summary}.
18b519c0 11627@end deffn
6deb4447 11628
02975b9a
JD
11629@deffn {Directive} %defines @var{defines-file}
11630Same as above, but save in the file @var{defines-file}.
11631@xref{Decl Summary}.
11632@end deffn
11633
18b519c0 11634@deffn {Directive} %destructor
258b75ca 11635Specify how the parser should reclaim the memory associated to
fa7e68c3 11636discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11637@end deffn
72f889cc 11638
18b519c0 11639@deffn {Directive} %dprec
676385e2 11640Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11641time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11642GLR Parsers}.
18b519c0 11643@end deffn
676385e2 11644
dd8d9022
AD
11645@deffn {Symbol} $end
11646The predefined token marking the end of the token stream. It cannot be
11647used in the grammar.
11648@end deffn
11649
11650@deffn {Symbol} error
11651A token name reserved for error recovery. This token may be used in
11652grammar rules so as to allow the Bison parser to recognize an error in
11653the grammar without halting the process. In effect, a sentence
11654containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11655token @code{error} becomes the current lookahead token. Actions
11656corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11657token is reset to the token that originally caused the violation.
11658@xref{Error Recovery}.
18d192f0
AD
11659@end deffn
11660
18b519c0 11661@deffn {Directive} %error-verbose
7fceb615
JD
11662An obsolete directive standing for @samp{%define parse.error verbose}
11663(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11664@end deffn
2a8d363a 11665
02975b9a 11666@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11667Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11668Summary}.
18b519c0 11669@end deffn
d8988b2f 11670
18b519c0 11671@deffn {Directive} %glr-parser
8a4281b9
JD
11672Bison declaration to produce a GLR parser. @xref{GLR
11673Parsers, ,Writing GLR Parsers}.
18b519c0 11674@end deffn
676385e2 11675
dd8d9022
AD
11676@deffn {Directive} %initial-action
11677Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11678@end deffn
11679
e6e704dc
JD
11680@deffn {Directive} %language
11681Specify the programming language for the generated parser.
11682@xref{Decl Summary}.
11683@end deffn
11684
18b519c0 11685@deffn {Directive} %left
d78f0ac9 11686Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11687@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11688@end deffn
bfa74976 11689
2055a44e
AD
11690@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11691Bison declaration to specifying additional arguments that
2a8d363a
AD
11692@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11693for Pure Parsers}.
18b519c0 11694@end deffn
2a8d363a 11695
18b519c0 11696@deffn {Directive} %merge
676385e2 11697Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11698reduce/reduce conflict with a rule having the same merging function, the
676385e2 11699function is applied to the two semantic values to get a single result.
8a4281b9 11700@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11701@end deffn
676385e2 11702
02975b9a 11703@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 11704Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 11705@end deffn
d8988b2f 11706
91d2c560 11707@ifset defaultprec
22fccf95
PE
11708@deffn {Directive} %no-default-prec
11709Do not assign a precedence to rules that lack an explicit @samp{%prec}
11710modifier. @xref{Contextual Precedence, ,Context-Dependent
11711Precedence}.
11712@end deffn
91d2c560 11713@end ifset
22fccf95 11714
18b519c0 11715@deffn {Directive} %no-lines
931c7513 11716Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11717parser implementation file. @xref{Decl Summary}.
18b519c0 11718@end deffn
931c7513 11719
18b519c0 11720@deffn {Directive} %nonassoc
d78f0ac9 11721Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11722@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11723@end deffn
bfa74976 11724
02975b9a 11725@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11726Bison declaration to set the name of the parser implementation file.
11727@xref{Decl Summary}.
18b519c0 11728@end deffn
d8988b2f 11729
2055a44e
AD
11730@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11731Bison declaration to specify additional arguments that both
11732@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11733Parser Function @code{yyparse}}.
11734@end deffn
11735
11736@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11737Bison declaration to specify additional arguments that @code{yyparse}
11738should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11739@end deffn
2a8d363a 11740
18b519c0 11741@deffn {Directive} %prec
bfa74976
RS
11742Bison declaration to assign a precedence to a specific rule.
11743@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11744@end deffn
bfa74976 11745
d78f0ac9
AD
11746@deffn {Directive} %precedence
11747Bison declaration to assign precedence to token(s), but no associativity
11748@xref{Precedence Decl, ,Operator Precedence}.
11749@end deffn
11750
18b519c0 11751@deffn {Directive} %pure-parser
35c1e5f0
JD
11752Deprecated version of @samp{%define api.pure} (@pxref{%define
11753Summary,,api.pure}), for which Bison is more careful to warn about
11754unreasonable usage.
18b519c0 11755@end deffn
bfa74976 11756
b50d2359 11757@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11758Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11759Require a Version of Bison}.
b50d2359
AD
11760@end deffn
11761
18b519c0 11762@deffn {Directive} %right
d78f0ac9 11763Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11764@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11765@end deffn
bfa74976 11766
e6e704dc
JD
11767@deffn {Directive} %skeleton
11768Specify the skeleton to use; usually for development.
11769@xref{Decl Summary}.
11770@end deffn
11771
18b519c0 11772@deffn {Directive} %start
704a47c4
AD
11773Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11774Start-Symbol}.
18b519c0 11775@end deffn
bfa74976 11776
18b519c0 11777@deffn {Directive} %token
bfa74976
RS
11778Bison declaration to declare token(s) without specifying precedence.
11779@xref{Token Decl, ,Token Type Names}.
18b519c0 11780@end deffn
bfa74976 11781
18b519c0 11782@deffn {Directive} %token-table
ff7571c0
JD
11783Bison declaration to include a token name table in the parser
11784implementation file. @xref{Decl Summary}.
18b519c0 11785@end deffn
931c7513 11786
18b519c0 11787@deffn {Directive} %type
704a47c4
AD
11788Bison declaration to declare nonterminals. @xref{Type Decl,
11789,Nonterminal Symbols}.
18b519c0 11790@end deffn
bfa74976 11791
dd8d9022
AD
11792@deffn {Symbol} $undefined
11793The predefined token onto which all undefined values returned by
11794@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11795@code{error}.
11796@end deffn
11797
18b519c0 11798@deffn {Directive} %union
bfa74976
RS
11799Bison declaration to specify several possible data types for semantic
11800values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11801@end deffn
bfa74976 11802
dd8d9022
AD
11803@deffn {Macro} YYABORT
11804Macro to pretend that an unrecoverable syntax error has occurred, by
11805making @code{yyparse} return 1 immediately. The error reporting
11806function @code{yyerror} is not called. @xref{Parser Function, ,The
11807Parser Function @code{yyparse}}.
8405b70c
PB
11808
11809For Java parsers, this functionality is invoked using @code{return YYABORT;}
11810instead.
dd8d9022 11811@end deffn
3ded9a63 11812
dd8d9022
AD
11813@deffn {Macro} YYACCEPT
11814Macro to pretend that a complete utterance of the language has been
11815read, by making @code{yyparse} return 0 immediately.
11816@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11817
11818For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11819instead.
dd8d9022 11820@end deffn
bfa74976 11821
dd8d9022 11822@deffn {Macro} YYBACKUP
742e4900 11823Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11824token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11825@end deffn
bfa74976 11826
dd8d9022 11827@deffn {Variable} yychar
32c29292 11828External integer variable that contains the integer value of the
742e4900 11829lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11830@code{yyparse}.) Error-recovery rule actions may examine this variable.
11831@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11832@end deffn
bfa74976 11833
dd8d9022
AD
11834@deffn {Variable} yyclearin
11835Macro used in error-recovery rule actions. It clears the previous
742e4900 11836lookahead token. @xref{Error Recovery}.
18b519c0 11837@end deffn
bfa74976 11838
dd8d9022
AD
11839@deffn {Macro} YYDEBUG
11840Macro to define to equip the parser with tracing code. @xref{Tracing,
11841,Tracing Your Parser}.
18b519c0 11842@end deffn
bfa74976 11843
dd8d9022
AD
11844@deffn {Variable} yydebug
11845External integer variable set to zero by default. If @code{yydebug}
11846is given a nonzero value, the parser will output information on input
11847symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11848@end deffn
bfa74976 11849
dd8d9022
AD
11850@deffn {Macro} yyerrok
11851Macro to cause parser to recover immediately to its normal mode
11852after a syntax error. @xref{Error Recovery}.
11853@end deffn
11854
11855@deffn {Macro} YYERROR
4a11b852
AD
11856Cause an immediate syntax error. This statement initiates error
11857recovery just as if the parser itself had detected an error; however, it
11858does not call @code{yyerror}, and does not print any message. If you
11859want to print an error message, call @code{yyerror} explicitly before
11860the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
11861
11862For Java parsers, this functionality is invoked using @code{return YYERROR;}
11863instead.
dd8d9022
AD
11864@end deffn
11865
11866@deffn {Function} yyerror
11867User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11868@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11869@end deffn
11870
11871@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11872An obsolete macro used in the @file{yacc.c} skeleton, that you define
11873with @code{#define} in the prologue to request verbose, specific error
11874message strings when @code{yyerror} is called. It doesn't matter what
11875definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11876it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11877(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11878@end deffn
11879
93c150b6
AD
11880@deffn {Macro} YYFPRINTF
11881Macro used to output run-time traces.
11882@xref{Enabling Traces}.
11883@end deffn
11884
dd8d9022
AD
11885@deffn {Macro} YYINITDEPTH
11886Macro for specifying the initial size of the parser stack.
1a059451 11887@xref{Memory Management}.
dd8d9022
AD
11888@end deffn
11889
11890@deffn {Function} yylex
11891User-supplied lexical analyzer function, called with no arguments to get
11892the next token. @xref{Lexical, ,The Lexical Analyzer Function
11893@code{yylex}}.
11894@end deffn
11895
11896@deffn {Macro} YYLEX_PARAM
11897An obsolete macro for specifying an extra argument (or list of extra
32c29292 11898arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11899macro is deprecated, and is supported only for Yacc like parsers.
11900@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11901@end deffn
11902
11903@deffn {Variable} yylloc
11904External variable in which @code{yylex} should place the line and column
11905numbers associated with a token. (In a pure parser, it is a local
11906variable within @code{yyparse}, and its address is passed to
32c29292
JD
11907@code{yylex}.)
11908You can ignore this variable if you don't use the @samp{@@} feature in the
11909grammar actions.
11910@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11911In semantic actions, it stores the location of the lookahead token.
32c29292 11912@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11913@end deffn
11914
11915@deffn {Type} YYLTYPE
11916Data type of @code{yylloc}; by default, a structure with four
11917members. @xref{Location Type, , Data Types of Locations}.
11918@end deffn
11919
11920@deffn {Variable} yylval
11921External variable in which @code{yylex} should place the semantic
11922value associated with a token. (In a pure parser, it is a local
11923variable within @code{yyparse}, and its address is passed to
32c29292
JD
11924@code{yylex}.)
11925@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11926In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11927@xref{Actions, ,Actions}.
dd8d9022
AD
11928@end deffn
11929
11930@deffn {Macro} YYMAXDEPTH
1a059451
PE
11931Macro for specifying the maximum size of the parser stack. @xref{Memory
11932Management}.
dd8d9022
AD
11933@end deffn
11934
11935@deffn {Variable} yynerrs
8a2800e7 11936Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11937(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11938pure push parser, it is a member of yypstate.)
dd8d9022
AD
11939@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11940@end deffn
11941
11942@deffn {Function} yyparse
11943The parser function produced by Bison; call this function to start
11944parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11945@end deffn
11946
93c150b6
AD
11947@deffn {Macro} YYPRINT
11948Macro used to output token semantic values. For @file{yacc.c} only.
11949Obsoleted by @code{%printer}.
11950@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
11951@end deffn
11952
9987d1b3 11953@deffn {Function} yypstate_delete
f4101aa6 11954The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11955call this function to delete the memory associated with a parser.
f4101aa6 11956@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11957@code{yypstate_delete}}.
59da312b
JD
11958(The current push parsing interface is experimental and may evolve.
11959More user feedback will help to stabilize it.)
9987d1b3
JD
11960@end deffn
11961
11962@deffn {Function} yypstate_new
f4101aa6 11963The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11964call this function to create a new parser.
f4101aa6 11965@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11966@code{yypstate_new}}.
59da312b
JD
11967(The current push parsing interface is experimental and may evolve.
11968More user feedback will help to stabilize it.)
9987d1b3
JD
11969@end deffn
11970
11971@deffn {Function} yypull_parse
f4101aa6
AD
11972The parser function produced by Bison in push mode; call this function to
11973parse the rest of the input stream.
11974@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11975@code{yypull_parse}}.
59da312b
JD
11976(The current push parsing interface is experimental and may evolve.
11977More user feedback will help to stabilize it.)
9987d1b3
JD
11978@end deffn
11979
11980@deffn {Function} yypush_parse
f4101aa6
AD
11981The parser function produced by Bison in push mode; call this function to
11982parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11983@code{yypush_parse}}.
59da312b
JD
11984(The current push parsing interface is experimental and may evolve.
11985More user feedback will help to stabilize it.)
9987d1b3
JD
11986@end deffn
11987
dd8d9022
AD
11988@deffn {Macro} YYPARSE_PARAM
11989An obsolete macro for specifying the name of a parameter that
11990@code{yyparse} should accept. The use of this macro is deprecated, and
11991is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11992Conventions for Pure Parsers}.
11993@end deffn
11994
11995@deffn {Macro} YYRECOVERING
02103984
PE
11996The expression @code{YYRECOVERING ()} yields 1 when the parser
11997is recovering from a syntax error, and 0 otherwise.
11998@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11999@end deffn
12000
12001@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12002Macro used to control the use of @code{alloca} when the
12003deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12004the parser will use @code{malloc} to extend its stacks. If defined to
120051, the parser will use @code{alloca}. Values other than 0 and 1 are
12006reserved for future Bison extensions. If not defined,
12007@code{YYSTACK_USE_ALLOCA} defaults to 0.
12008
55289366 12009In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12010limited stack and with unreliable stack-overflow checking, you should
12011set @code{YYMAXDEPTH} to a value that cannot possibly result in
12012unchecked stack overflow on any of your target hosts when
12013@code{alloca} is called. You can inspect the code that Bison
12014generates in order to determine the proper numeric values. This will
12015require some expertise in low-level implementation details.
dd8d9022
AD
12016@end deffn
12017
12018@deffn {Type} YYSTYPE
12019Data type of semantic values; @code{int} by default.
12020@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12021@end deffn
bfa74976 12022
342b8b6e 12023@node Glossary
bfa74976
RS
12024@appendix Glossary
12025@cindex glossary
12026
12027@table @asis
7fceb615 12028@item Accepting state
eb45ef3b
JD
12029A state whose only action is the accept action.
12030The accepting state is thus a consistent state.
12031@xref{Understanding,,}.
12032
8a4281b9 12033@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12034Formal method of specifying context-free grammars originally proposed
12035by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12036committee document contributing to what became the Algol 60 report.
12037@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12038
7fceb615
JD
12039@item Consistent state
12040A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12041
bfa74976
RS
12042@item Context-free grammars
12043Grammars specified as rules that can be applied regardless of context.
12044Thus, if there is a rule which says that an integer can be used as an
12045expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12046permitted. @xref{Language and Grammar, ,Languages and Context-Free
12047Grammars}.
bfa74976 12048
7fceb615 12049@item Default reduction
110ef36a 12050The reduction that a parser should perform if the current parser state
35c1e5f0 12051contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12052states, Bison declares the reduction with the largest lookahead set to be
12053the default reduction and removes that lookahead set. @xref{Default
12054Reductions}.
12055
12056@item Defaulted state
12057A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12058
bfa74976
RS
12059@item Dynamic allocation
12060Allocation of memory that occurs during execution, rather than at
12061compile time or on entry to a function.
12062
12063@item Empty string
12064Analogous to the empty set in set theory, the empty string is a
12065character string of length zero.
12066
12067@item Finite-state stack machine
12068A ``machine'' that has discrete states in which it is said to exist at
12069each instant in time. As input to the machine is processed, the
12070machine moves from state to state as specified by the logic of the
12071machine. In the case of the parser, the input is the language being
12072parsed, and the states correspond to various stages in the grammar
c827f760 12073rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12074
8a4281b9 12075@item Generalized LR (GLR)
676385e2 12076A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12077that are not LR(1). It resolves situations that Bison's
eb45ef3b 12078deterministic parsing
676385e2
PH
12079algorithm cannot by effectively splitting off multiple parsers, trying all
12080possible parsers, and discarding those that fail in the light of additional
c827f760 12081right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 12082LR Parsing}.
676385e2 12083
bfa74976
RS
12084@item Grouping
12085A language construct that is (in general) grammatically divisible;
c827f760 12086for example, `expression' or `declaration' in C@.
bfa74976
RS
12087@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12088
7fceb615
JD
12089@item IELR(1) (Inadequacy Elimination LR(1))
12090A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 12091context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
12092language-recognition power of canonical LR(1) but with nearly the same
12093number of parser states as LALR(1). This reduction in parser states is
12094often an order of magnitude. More importantly, because canonical LR(1)'s
12095extra parser states may contain duplicate conflicts in the case of non-LR(1)
12096grammars, the number of conflicts for IELR(1) is often an order of magnitude
12097less as well. This can significantly reduce the complexity of developing a
12098grammar. @xref{LR Table Construction}.
eb45ef3b 12099
bfa74976
RS
12100@item Infix operator
12101An arithmetic operator that is placed between the operands on which it
12102performs some operation.
12103
12104@item Input stream
12105A continuous flow of data between devices or programs.
12106
8a4281b9 12107@item LAC (Lookahead Correction)
fcf834f9 12108A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
12109detection, which is caused by LR state merging, default reductions, and the
12110use of @code{%nonassoc}. Delayed syntax error detection results in
12111unexpected semantic actions, initiation of error recovery in the wrong
12112syntactic context, and an incorrect list of expected tokens in a verbose
12113syntax error message. @xref{LAC}.
fcf834f9 12114
bfa74976
RS
12115@item Language construct
12116One of the typical usage schemas of the language. For example, one of
12117the constructs of the C language is the @code{if} statement.
12118@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12119
12120@item Left associativity
12121Operators having left associativity are analyzed from left to right:
12122@samp{a+b+c} first computes @samp{a+b} and then combines with
12123@samp{c}. @xref{Precedence, ,Operator Precedence}.
12124
12125@item Left recursion
89cab50d
AD
12126A rule whose result symbol is also its first component symbol; for
12127example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
12128Rules}.
bfa74976
RS
12129
12130@item Left-to-right parsing
12131Parsing a sentence of a language by analyzing it token by token from
c827f760 12132left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12133
12134@item Lexical analyzer (scanner)
12135A function that reads an input stream and returns tokens one by one.
12136@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
12137
12138@item Lexical tie-in
12139A flag, set by actions in the grammar rules, which alters the way
12140tokens are parsed. @xref{Lexical Tie-ins}.
12141
931c7513 12142@item Literal string token
14ded682 12143A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 12144
742e4900
JD
12145@item Lookahead token
12146A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 12147Tokens}.
bfa74976 12148
8a4281b9 12149@item LALR(1)
bfa74976 12150The class of context-free grammars that Bison (like most other parser
8a4281b9 12151generators) can handle by default; a subset of LR(1).
cc09e5be 12152@xref{Mysterious Conflicts}.
bfa74976 12153
8a4281b9 12154@item LR(1)
bfa74976 12155The class of context-free grammars in which at most one token of
742e4900 12156lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
12157
12158@item Nonterminal symbol
12159A grammar symbol standing for a grammatical construct that can
12160be expressed through rules in terms of smaller constructs; in other
12161words, a construct that is not a token. @xref{Symbols}.
12162
bfa74976
RS
12163@item Parser
12164A function that recognizes valid sentences of a language by analyzing
12165the syntax structure of a set of tokens passed to it from a lexical
12166analyzer.
12167
12168@item Postfix operator
12169An arithmetic operator that is placed after the operands upon which it
12170performs some operation.
12171
12172@item Reduction
12173Replacing a string of nonterminals and/or terminals with a single
89cab50d 12174nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 12175Parser Algorithm}.
bfa74976
RS
12176
12177@item Reentrant
12178A reentrant subprogram is a subprogram which can be in invoked any
12179number of times in parallel, without interference between the various
12180invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
12181
12182@item Reverse polish notation
12183A language in which all operators are postfix operators.
12184
12185@item Right recursion
89cab50d
AD
12186A rule whose result symbol is also its last component symbol; for
12187example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
12188Rules}.
bfa74976
RS
12189
12190@item Semantics
12191In computer languages, the semantics are specified by the actions
12192taken for each instance of the language, i.e., the meaning of
12193each statement. @xref{Semantics, ,Defining Language Semantics}.
12194
12195@item Shift
12196A parser is said to shift when it makes the choice of analyzing
12197further input from the stream rather than reducing immediately some
c827f760 12198already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12199
12200@item Single-character literal
12201A single character that is recognized and interpreted as is.
12202@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
12203
12204@item Start symbol
12205The nonterminal symbol that stands for a complete valid utterance in
12206the language being parsed. The start symbol is usually listed as the
13863333 12207first nonterminal symbol in a language specification.
bfa74976
RS
12208@xref{Start Decl, ,The Start-Symbol}.
12209
12210@item Symbol table
12211A data structure where symbol names and associated data are stored
12212during parsing to allow for recognition and use of existing
12213information in repeated uses of a symbol. @xref{Multi-function Calc}.
12214
6e649e65
PE
12215@item Syntax error
12216An error encountered during parsing of an input stream due to invalid
12217syntax. @xref{Error Recovery}.
12218
bfa74976
RS
12219@item Token
12220A basic, grammatically indivisible unit of a language. The symbol
12221that describes a token in the grammar is a terminal symbol.
12222The input of the Bison parser is a stream of tokens which comes from
12223the lexical analyzer. @xref{Symbols}.
12224
12225@item Terminal symbol
89cab50d
AD
12226A grammar symbol that has no rules in the grammar and therefore is
12227grammatically indivisible. The piece of text it represents is a token.
12228@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
12229
12230@item Unreachable state
12231A parser state to which there does not exist a sequence of transitions from
12232the parser's start state. A state can become unreachable during conflict
12233resolution. @xref{Unreachable States}.
bfa74976
RS
12234@end table
12235
342b8b6e 12236@node Copying This Manual
f2b5126e 12237@appendix Copying This Manual
f2b5126e
PB
12238@include fdl.texi
12239
5e528941
JD
12240@node Bibliography
12241@unnumbered Bibliography
12242
12243@table @asis
12244@item [Denny 2008]
12245Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
12246for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
122472008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
12248pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
12249
12250@item [Denny 2010 May]
12251Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
12252Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
12253University, Clemson, SC, USA (May 2010).
12254@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
12255
12256@item [Denny 2010 November]
12257Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
12258Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
12259in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
122602010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
12261
12262@item [DeRemer 1982]
12263Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
12264Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
12265Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
12266615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
12267
12268@item [Knuth 1965]
12269Donald E. Knuth, On the Translation of Languages from Left to Right, in
12270@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
12271607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
12272
12273@item [Scott 2000]
12274Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
12275@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
12276London, Department of Computer Science, TR-00-12 (December 2000).
12277@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
12278@end table
12279
342b8b6e 12280@node Index
bfa74976
RS
12281@unnumbered Index
12282
12283@printindex cp
12284
bfa74976 12285@bye
a06ea4aa 12286
6b5a0de9
AD
12287@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
12288@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
12289@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
12290@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12291@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12292@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12293@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12294@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12295@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12296@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12297@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12298@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12299@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 12300@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
12301@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12302@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
12303@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
12304@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
12305@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
12306@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
12307@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
12308@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
12309@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 12310@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
12311@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
12312@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
12313@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
12314@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
12315@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 12316@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
12317@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
12318@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 12319@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 12320@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
12321@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
12322@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
12323@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 12324@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 12325@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 12326@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
12327@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12328@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12329@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12330@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 12331@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
12332@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12333@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12334@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12335@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
12336@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
5a321748
AD
12337@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
12338@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy
12339@c LocalWords: Scannerless ispell american
e944aaff
AD
12340
12341@c Local Variables:
12342@c ispell-dictionary: "american"
12343@c fill-column: 76
12344@c End: