]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: spell fix.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
d6328241 229* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
230* Start Decl:: Specifying the start symbol.
231* Pure Decl:: Requesting a reentrant parser.
9987d1b3 232* Push Decl:: Requesting a push parser.
bfa74976 233* Decl Summary:: Table of all Bison declarations.
35c1e5f0 234* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 235* %code Summary:: Inserting code into the parser source.
bfa74976
RS
236
237Parser C-Language Interface
238
f5f419de
DJ
239* Parser Function:: How to call @code{yyparse} and what it returns.
240* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
241* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
242* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
243* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
244* Lexical:: You must supply a function @code{yylex}
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
256* Token Locations:: How @code{yylex} must return the text location
257 (line number, etc.) of the token, if the
258 actions want that.
259* Pure Calling:: How the calling convention differs in a pure parser
260 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 261
13863333 262The Bison Parser Algorithm
bfa74976 263
742e4900 264* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 270* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 271* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 272* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 273* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
274
275Operator Precedence
276
277* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
278* Using Precedence:: How to specify precedence and associativity.
279* Precedence Only:: How to specify precedence only.
bfa74976
RS
280* Precedence Examples:: How these features are used in the previous example.
281* How Precedence:: How they work.
282
7fceb615
JD
283Tuning LR
284
285* LR Table Construction:: Choose a different construction algorithm.
286* Default Reductions:: Disable default reductions.
287* LAC:: Correct lookahead sets in the parser states.
288* Unreachable States:: Keep unreachable parser states for debugging.
289
bfa74976
RS
290Handling Context Dependencies
291
292* Semantic Tokens:: Token parsing can depend on the semantic context.
293* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
294* Tie-in Recovery:: Lexical tie-ins have implications for how
295 error recovery rules must be written.
296
93dd49ab 297Debugging Your Parser
ec3bc396
AD
298
299* Understanding:: Understanding the structure of your parser.
300* Tracing:: Tracing the execution of your parser.
301
bfa74976
RS
302Invoking Bison
303
13863333 304* Bison Options:: All the options described in detail,
c827f760 305 in alphabetical order by short options.
bfa74976 306* Option Cross Key:: Alphabetical list of long options.
93dd49ab 307* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 308
8405b70c 309Parsers Written In Other Languages
12545799
AD
310
311* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 312* Java Parsers:: The interface to generate Java parser classes
12545799
AD
313
314C++ Parsers
315
316* C++ Bison Interface:: Asking for C++ parser generation
317* C++ Semantic Values:: %union vs. C++
318* C++ Location Values:: The position and location classes
319* C++ Parser Interface:: Instantiating and running the parser
320* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 321* A Complete C++ Example:: Demonstrating their use
12545799
AD
322
323A Complete C++ Example
324
325* Calc++ --- C++ Calculator:: The specifications
326* Calc++ Parsing Driver:: An active parsing context
327* Calc++ Parser:: A parser class
328* Calc++ Scanner:: A pure C++ Flex scanner
329* Calc++ Top Level:: Conducting the band
330
8405b70c
PB
331Java Parsers
332
f5f419de
DJ
333* Java Bison Interface:: Asking for Java parser generation
334* Java Semantic Values:: %type and %token vs. Java
335* Java Location Values:: The position and location classes
336* Java Parser Interface:: Instantiating and running the parser
337* Java Scanner Interface:: Specifying the scanner for the parser
338* Java Action Features:: Special features for use in actions
339* Java Differences:: Differences between C/C++ and Java Grammars
340* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 341
d1a1114f
AD
342Frequently Asked Questions
343
f5f419de
DJ
344* Memory Exhausted:: Breaking the Stack Limits
345* How Can I Reset the Parser:: @code{yyparse} Keeps some State
346* Strings are Destroyed:: @code{yylval} Loses Track of Strings
347* Implementing Gotos/Loops:: Control Flow in the Calculator
348* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 349* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
350* I can't build Bison:: Troubleshooting
351* Where can I find help?:: Troubleshouting
352* Bug Reports:: Troublereporting
353* More Languages:: Parsers in C++, Java, and so on
354* Beta Testing:: Experimenting development versions
355* Mailing Lists:: Meeting other Bison users
d1a1114f 356
f2b5126e
PB
357Copying This Manual
358
f5f419de 359* Copying This Manual:: License for copying this manual.
f2b5126e 360
342b8b6e 361@end detailmenu
bfa74976
RS
362@end menu
363
342b8b6e 364@node Introduction
bfa74976
RS
365@unnumbered Introduction
366@cindex introduction
367
6077da58 368@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
369annotated context-free grammar into a deterministic LR or generalized
370LR (GLR) parser employing LALR(1) parser tables. As an experimental
371feature, Bison can also generate IELR(1) or canonical LR(1) parser
372tables. Once you are proficient with Bison, you can use it to develop
373a wide range of language parsers, from those used in simple desk
374calculators to complex programming languages.
375
376Bison is upward compatible with Yacc: all properly-written Yacc
377grammars ought to work with Bison with no change. Anyone familiar
378with Yacc should be able to use Bison with little trouble. You need
379to be fluent in C or C++ programming in order to use Bison or to
380understand this manual. Java is also supported as an experimental
381feature.
382
383We begin with tutorial chapters that explain the basic concepts of
384using Bison and show three explained examples, each building on the
385last. If you don't know Bison or Yacc, start by reading these
386chapters. Reference chapters follow, which describe specific aspects
387of Bison in detail.
bfa74976 388
679e9935
JD
389Bison was written originally by Robert Corbett. Richard Stallman made
390it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
391added multi-character string literals and other features. Since then,
392Bison has grown more robust and evolved many other new features thanks
393to the hard work of a long list of volunteers. For details, see the
394@file{THANKS} and @file{ChangeLog} files included in the Bison
395distribution.
931c7513 396
df1af54c 397This edition corresponds to version @value{VERSION} of Bison.
bfa74976 398
342b8b6e 399@node Conditions
bfa74976
RS
400@unnumbered Conditions for Using Bison
401
193d7c70
PE
402The distribution terms for Bison-generated parsers permit using the
403parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 404permissions applied only when Bison was generating LALR(1)
193d7c70 405parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 406parsers could be used only in programs that were free software.
a31239f1 407
8a4281b9 408The other GNU programming tools, such as the GNU C
c827f760 409compiler, have never
9ecbd125 410had such a requirement. They could always be used for nonfree
a31239f1
RS
411software. The reason Bison was different was not due to a special
412policy decision; it resulted from applying the usual General Public
413License to all of the Bison source code.
414
ff7571c0
JD
415The main output of the Bison utility---the Bison parser implementation
416file---contains a verbatim copy of a sizable piece of Bison, which is
417the code for the parser's implementation. (The actions from your
418grammar are inserted into this implementation at one point, but most
419of the rest of the implementation is not changed.) When we applied
420the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
421the effect was to restrict the use of Bison output to free software.
422
423We didn't change the terms because of sympathy for people who want to
424make software proprietary. @strong{Software should be free.} But we
425concluded that limiting Bison's use to free software was doing little to
426encourage people to make other software free. So we decided to make the
427practical conditions for using Bison match the practical conditions for
8a4281b9 428using the other GNU tools.
bfa74976 429
193d7c70
PE
430This exception applies when Bison is generating code for a parser.
431You can tell whether the exception applies to a Bison output file by
432inspecting the file for text beginning with ``As a special
433exception@dots{}''. The text spells out the exact terms of the
434exception.
262aa8dd 435
f16b0819
PE
436@node Copying
437@unnumbered GNU GENERAL PUBLIC LICENSE
438@include gpl-3.0.texi
bfa74976 439
342b8b6e 440@node Concepts
bfa74976
RS
441@chapter The Concepts of Bison
442
443This chapter introduces many of the basic concepts without which the
444details of Bison will not make sense. If you do not already know how to
445use Bison or Yacc, we suggest you start by reading this chapter carefully.
446
447@menu
f5f419de
DJ
448* Language and Grammar:: Languages and context-free grammars,
449 as mathematical ideas.
450* Grammar in Bison:: How we represent grammars for Bison's sake.
451* Semantic Values:: Each token or syntactic grouping can have
452 a semantic value (the value of an integer,
453 the name of an identifier, etc.).
454* Semantic Actions:: Each rule can have an action containing C code.
455* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 456* Locations:: Overview of location tracking.
f5f419de
DJ
457* Bison Parser:: What are Bison's input and output,
458 how is the output used?
459* Stages:: Stages in writing and running Bison grammars.
460* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
461@end menu
462
342b8b6e 463@node Language and Grammar
bfa74976
RS
464@section Languages and Context-Free Grammars
465
bfa74976
RS
466@cindex context-free grammar
467@cindex grammar, context-free
468In order for Bison to parse a language, it must be described by a
469@dfn{context-free grammar}. This means that you specify one or more
470@dfn{syntactic groupings} and give rules for constructing them from their
471parts. For example, in the C language, one kind of grouping is called an
472`expression'. One rule for making an expression might be, ``An expression
473can be made of a minus sign and another expression''. Another would be,
474``An expression can be an integer''. As you can see, rules are often
475recursive, but there must be at least one rule which leads out of the
476recursion.
477
8a4281b9 478@cindex BNF
bfa74976
RS
479@cindex Backus-Naur form
480The most common formal system for presenting such rules for humans to read
8a4281b9 481is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 482order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
483BNF is a context-free grammar. The input to Bison is
484essentially machine-readable BNF.
bfa74976 485
7fceb615
JD
486@cindex LALR grammars
487@cindex IELR grammars
488@cindex LR grammars
489There are various important subclasses of context-free grammars. Although
490it can handle almost all context-free grammars, Bison is optimized for what
491are called LR(1) grammars. In brief, in these grammars, it must be possible
492to tell how to parse any portion of an input string with just a single token
493of lookahead. For historical reasons, Bison by default is limited by the
494additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
495@xref{Mysterious Conflicts}, for more information on this. As an
496experimental feature, you can escape these additional restrictions by
497requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
498Construction}, to learn how.
bfa74976 499
8a4281b9
JD
500@cindex GLR parsing
501@cindex generalized LR (GLR) parsing
676385e2 502@cindex ambiguous grammars
9d9b8b70 503@cindex nondeterministic parsing
9501dc6e 504
8a4281b9 505Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
506roughly that the next grammar rule to apply at any point in the input is
507uniquely determined by the preceding input and a fixed, finite portion
742e4900 508(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 509grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 510apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 511grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 512lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 513With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
514general context-free grammars, using a technique known as GLR
515parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
516are able to handle any context-free grammar for which the number of
517possible parses of any given string is finite.
676385e2 518
bfa74976
RS
519@cindex symbols (abstract)
520@cindex token
521@cindex syntactic grouping
522@cindex grouping, syntactic
9501dc6e
AD
523In the formal grammatical rules for a language, each kind of syntactic
524unit or grouping is named by a @dfn{symbol}. Those which are built by
525grouping smaller constructs according to grammatical rules are called
bfa74976
RS
526@dfn{nonterminal symbols}; those which can't be subdivided are called
527@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
528corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 529corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
530
531We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
532nonterminal, mean. The tokens of C are identifiers, constants (numeric
533and string), and the various keywords, arithmetic operators and
534punctuation marks. So the terminal symbols of a grammar for C include
535`identifier', `number', `string', plus one symbol for each keyword,
536operator or punctuation mark: `if', `return', `const', `static', `int',
537`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
538(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
539lexicography, not grammar.)
540
541Here is a simple C function subdivided into tokens:
542
9edcd895
AD
543@example
544int /* @r{keyword `int'} */
14d4662b 545square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
546 @r{identifier, close-paren} */
547@{ /* @r{open-brace} */
aa08666d
AD
548 return x * x; /* @r{keyword `return', identifier, asterisk,}
549 @r{identifier, semicolon} */
9edcd895
AD
550@} /* @r{close-brace} */
551@end example
bfa74976
RS
552
553The syntactic groupings of C include the expression, the statement, the
554declaration, and the function definition. These are represented in the
555grammar of C by nonterminal symbols `expression', `statement',
556`declaration' and `function definition'. The full grammar uses dozens of
557additional language constructs, each with its own nonterminal symbol, in
558order to express the meanings of these four. The example above is a
559function definition; it contains one declaration, and one statement. In
560the statement, each @samp{x} is an expression and so is @samp{x * x}.
561
562Each nonterminal symbol must have grammatical rules showing how it is made
563out of simpler constructs. For example, one kind of C statement is the
564@code{return} statement; this would be described with a grammar rule which
565reads informally as follows:
566
567@quotation
568A `statement' can be made of a `return' keyword, an `expression' and a
569`semicolon'.
570@end quotation
571
572@noindent
573There would be many other rules for `statement', one for each kind of
574statement in C.
575
576@cindex start symbol
577One nonterminal symbol must be distinguished as the special one which
578defines a complete utterance in the language. It is called the @dfn{start
579symbol}. In a compiler, this means a complete input program. In the C
580language, the nonterminal symbol `sequence of definitions and declarations'
581plays this role.
582
583For example, @samp{1 + 2} is a valid C expression---a valid part of a C
584program---but it is not valid as an @emph{entire} C program. In the
585context-free grammar of C, this follows from the fact that `expression' is
586not the start symbol.
587
588The Bison parser reads a sequence of tokens as its input, and groups the
589tokens using the grammar rules. If the input is valid, the end result is
590that the entire token sequence reduces to a single grouping whose symbol is
591the grammar's start symbol. If we use a grammar for C, the entire input
592must be a `sequence of definitions and declarations'. If not, the parser
593reports a syntax error.
594
342b8b6e 595@node Grammar in Bison
bfa74976
RS
596@section From Formal Rules to Bison Input
597@cindex Bison grammar
598@cindex grammar, Bison
599@cindex formal grammar
600
601A formal grammar is a mathematical construct. To define the language
602for Bison, you must write a file expressing the grammar in Bison syntax:
603a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
604
605A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 606as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
607in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
608
609The Bison representation for a terminal symbol is also called a @dfn{token
610type}. Token types as well can be represented as C-like identifiers. By
611convention, these identifiers should be upper case to distinguish them from
612nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
613@code{RETURN}. A terminal symbol that stands for a particular keyword in
614the language should be named after that keyword converted to upper case.
615The terminal symbol @code{error} is reserved for error recovery.
931c7513 616@xref{Symbols}.
bfa74976
RS
617
618A terminal symbol can also be represented as a character literal, just like
619a C character constant. You should do this whenever a token is just a
620single character (parenthesis, plus-sign, etc.): use that same character in
621a literal as the terminal symbol for that token.
622
931c7513
RS
623A third way to represent a terminal symbol is with a C string constant
624containing several characters. @xref{Symbols}, for more information.
625
bfa74976
RS
626The grammar rules also have an expression in Bison syntax. For example,
627here is the Bison rule for a C @code{return} statement. The semicolon in
628quotes is a literal character token, representing part of the C syntax for
629the statement; the naked semicolon, and the colon, are Bison punctuation
630used in every rule.
631
632@example
5e9b6624 633stmt: RETURN expr ';' ;
bfa74976
RS
634@end example
635
636@noindent
637@xref{Rules, ,Syntax of Grammar Rules}.
638
342b8b6e 639@node Semantic Values
bfa74976
RS
640@section Semantic Values
641@cindex semantic value
642@cindex value, semantic
643
644A formal grammar selects tokens only by their classifications: for example,
645if a rule mentions the terminal symbol `integer constant', it means that
646@emph{any} integer constant is grammatically valid in that position. The
647precise value of the constant is irrelevant to how to parse the input: if
648@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 649grammatical.
bfa74976
RS
650
651But the precise value is very important for what the input means once it is
652parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6533989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
654has both a token type and a @dfn{semantic value}. @xref{Semantics,
655,Defining Language Semantics},
bfa74976
RS
656for details.
657
658The token type is a terminal symbol defined in the grammar, such as
659@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
660you need to know to decide where the token may validly appear and how to
661group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 662except their types.
bfa74976
RS
663
664The semantic value has all the rest of the information about the
665meaning of the token, such as the value of an integer, or the name of an
666identifier. (A token such as @code{','} which is just punctuation doesn't
667need to have any semantic value.)
668
669For example, an input token might be classified as token type
670@code{INTEGER} and have the semantic value 4. Another input token might
671have the same token type @code{INTEGER} but value 3989. When a grammar
672rule says that @code{INTEGER} is allowed, either of these tokens is
673acceptable because each is an @code{INTEGER}. When the parser accepts the
674token, it keeps track of the token's semantic value.
675
676Each grouping can also have a semantic value as well as its nonterminal
677symbol. For example, in a calculator, an expression typically has a
678semantic value that is a number. In a compiler for a programming
679language, an expression typically has a semantic value that is a tree
680structure describing the meaning of the expression.
681
342b8b6e 682@node Semantic Actions
bfa74976
RS
683@section Semantic Actions
684@cindex semantic actions
685@cindex actions, semantic
686
687In order to be useful, a program must do more than parse input; it must
688also produce some output based on the input. In a Bison grammar, a grammar
689rule can have an @dfn{action} made up of C statements. Each time the
690parser recognizes a match for that rule, the action is executed.
691@xref{Actions}.
13863333 692
bfa74976
RS
693Most of the time, the purpose of an action is to compute the semantic value
694of the whole construct from the semantic values of its parts. For example,
695suppose we have a rule which says an expression can be the sum of two
696expressions. When the parser recognizes such a sum, each of the
697subexpressions has a semantic value which describes how it was built up.
698The action for this rule should create a similar sort of value for the
699newly recognized larger expression.
700
701For example, here is a rule that says an expression can be the sum of
702two subexpressions:
703
704@example
5e9b6624 705expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
706@end example
707
708@noindent
709The action says how to produce the semantic value of the sum expression
710from the values of the two subexpressions.
711
676385e2 712@node GLR Parsers
8a4281b9
JD
713@section Writing GLR Parsers
714@cindex GLR parsing
715@cindex generalized LR (GLR) parsing
676385e2
PH
716@findex %glr-parser
717@cindex conflicts
718@cindex shift/reduce conflicts
fa7e68c3 719@cindex reduce/reduce conflicts
676385e2 720
eb45ef3b 721In some grammars, Bison's deterministic
8a4281b9 722LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
723certain grammar rule at a given point. That is, it may not be able to
724decide (on the basis of the input read so far) which of two possible
725reductions (applications of a grammar rule) applies, or whether to apply
726a reduction or read more of the input and apply a reduction later in the
727input. These are known respectively as @dfn{reduce/reduce} conflicts
728(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
729(@pxref{Shift/Reduce}).
730
8a4281b9 731To use a grammar that is not easily modified to be LR(1), a
9501dc6e 732more general parsing algorithm is sometimes necessary. If you include
676385e2 733@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
734(@pxref{Grammar Outline}), the result is a Generalized LR
735(GLR) parser. These parsers handle Bison grammars that
9501dc6e 736contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 737declarations) identically to deterministic parsers. However, when
9501dc6e 738faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 739GLR parsers use the simple expedient of doing both,
9501dc6e
AD
740effectively cloning the parser to follow both possibilities. Each of
741the resulting parsers can again split, so that at any given time, there
742can be any number of possible parses being explored. The parsers
676385e2
PH
743proceed in lockstep; that is, all of them consume (shift) a given input
744symbol before any of them proceed to the next. Each of the cloned
745parsers eventually meets one of two possible fates: either it runs into
746a parsing error, in which case it simply vanishes, or it merges with
747another parser, because the two of them have reduced the input to an
748identical set of symbols.
749
750During the time that there are multiple parsers, semantic actions are
751recorded, but not performed. When a parser disappears, its recorded
752semantic actions disappear as well, and are never performed. When a
753reduction makes two parsers identical, causing them to merge, Bison
754records both sets of semantic actions. Whenever the last two parsers
755merge, reverting to the single-parser case, Bison resolves all the
756outstanding actions either by precedences given to the grammar rules
757involved, or by performing both actions, and then calling a designated
758user-defined function on the resulting values to produce an arbitrary
759merged result.
760
fa7e68c3 761@menu
8a4281b9
JD
762* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
763* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 764* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 765* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 766* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
767@end menu
768
769@node Simple GLR Parsers
8a4281b9
JD
770@subsection Using GLR on Unambiguous Grammars
771@cindex GLR parsing, unambiguous grammars
772@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
773@findex %glr-parser
774@findex %expect-rr
775@cindex conflicts
776@cindex reduce/reduce conflicts
777@cindex shift/reduce conflicts
778
8a4281b9
JD
779In the simplest cases, you can use the GLR algorithm
780to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 781Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
782
783Consider a problem that
784arises in the declaration of enumerated and subrange types in the
785programming language Pascal. Here are some examples:
786
787@example
788type subrange = lo .. hi;
789type enum = (a, b, c);
790@end example
791
792@noindent
793The original language standard allows only numeric
794literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 795and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
79610206) and many other
797Pascal implementations allow arbitrary expressions there. This gives
798rise to the following situation, containing a superfluous pair of
799parentheses:
800
801@example
802type subrange = (a) .. b;
803@end example
804
805@noindent
806Compare this to the following declaration of an enumerated
807type with only one value:
808
809@example
810type enum = (a);
811@end example
812
813@noindent
814(These declarations are contrived, but they are syntactically
815valid, and more-complicated cases can come up in practical programs.)
816
817These two declarations look identical until the @samp{..} token.
8a4281b9 818With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
819possible to decide between the two forms when the identifier
820@samp{a} is parsed. It is, however, desirable
821for a parser to decide this, since in the latter case
822@samp{a} must become a new identifier to represent the enumeration
823value, while in the former case @samp{a} must be evaluated with its
824current meaning, which may be a constant or even a function call.
825
826You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
827to be resolved later, but this typically requires substantial
828contortions in both semantic actions and large parts of the
829grammar, where the parentheses are nested in the recursive rules for
830expressions.
831
832You might think of using the lexer to distinguish between the two
833forms by returning different tokens for currently defined and
834undefined identifiers. But if these declarations occur in a local
835scope, and @samp{a} is defined in an outer scope, then both forms
836are possible---either locally redefining @samp{a}, or using the
837value of @samp{a} from the outer scope. So this approach cannot
838work.
839
e757bb10 840A simple solution to this problem is to declare the parser to
8a4281b9
JD
841use the GLR algorithm.
842When the GLR parser reaches the critical state, it
fa7e68c3
PE
843merely splits into two branches and pursues both syntax rules
844simultaneously. Sooner or later, one of them runs into a parsing
845error. If there is a @samp{..} token before the next
846@samp{;}, the rule for enumerated types fails since it cannot
847accept @samp{..} anywhere; otherwise, the subrange type rule
848fails since it requires a @samp{..} token. So one of the branches
849fails silently, and the other one continues normally, performing
850all the intermediate actions that were postponed during the split.
851
852If the input is syntactically incorrect, both branches fail and the parser
853reports a syntax error as usual.
854
855The effect of all this is that the parser seems to ``guess'' the
856correct branch to take, or in other words, it seems to use more
8a4281b9
JD
857lookahead than the underlying LR(1) algorithm actually allows
858for. In this example, LR(2) would suffice, but also some cases
859that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 860
8a4281b9 861In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
862and the current Bison parser even takes exponential time and space
863for some grammars. In practice, this rarely happens, and for many
864grammars it is possible to prove that it cannot happen.
865The present example contains only one conflict between two
866rules, and the type-declaration context containing the conflict
867cannot be nested. So the number of
868branches that can exist at any time is limited by the constant 2,
869and the parsing time is still linear.
870
871Here is a Bison grammar corresponding to the example above. It
872parses a vastly simplified form of Pascal type declarations.
873
874@example
875%token TYPE DOTDOT ID
876
877@group
878%left '+' '-'
879%left '*' '/'
880@end group
881
882%%
883
884@group
5e9b6624 885type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
886@end group
887
888@group
5e9b6624
AD
889type:
890 '(' id_list ')'
891| expr DOTDOT expr
892;
fa7e68c3
PE
893@end group
894
895@group
5e9b6624
AD
896id_list:
897 ID
898| id_list ',' ID
899;
fa7e68c3
PE
900@end group
901
902@group
5e9b6624
AD
903expr:
904 '(' expr ')'
905| expr '+' expr
906| expr '-' expr
907| expr '*' expr
908| expr '/' expr
909| ID
910;
fa7e68c3
PE
911@end group
912@end example
913
8a4281b9 914When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
915about one reduce/reduce conflict. In the conflicting situation the
916parser chooses one of the alternatives, arbitrarily the one
917declared first. Therefore the following correct input is not
918recognized:
919
920@example
921type t = (a) .. b;
922@end example
923
8a4281b9 924The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
925to be silent about the one known reduce/reduce conflict, by adding
926these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
927@samp{%%}):
928
929@example
930%glr-parser
931%expect-rr 1
932@end example
933
934@noindent
935No change in the grammar itself is required. Now the
936parser recognizes all valid declarations, according to the
937limited syntax above, transparently. In fact, the user does not even
938notice when the parser splits.
939
8a4281b9 940So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
941almost without disadvantages. Even in simple cases like this, however,
942there are at least two potential problems to beware. First, always
8a4281b9
JD
943analyze the conflicts reported by Bison to make sure that GLR
944splitting is only done where it is intended. A GLR parser
f8e1c9e5 945splitting inadvertently may cause problems less obvious than an
8a4281b9 946LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
947conflict. Second, consider interactions with the lexer (@pxref{Semantic
948Tokens}) with great care. Since a split parser consumes tokens without
949performing any actions during the split, the lexer cannot obtain
950information via parser actions. Some cases of lexer interactions can be
8a4281b9 951eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
952lexer to the parser. You must check the remaining cases for
953correctness.
954
955In our example, it would be safe for the lexer to return tokens based on
956their current meanings in some symbol table, because no new symbols are
957defined in the middle of a type declaration. Though it is possible for
958a parser to define the enumeration constants as they are parsed, before
959the type declaration is completed, it actually makes no difference since
960they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
961
962@node Merging GLR Parses
8a4281b9
JD
963@subsection Using GLR to Resolve Ambiguities
964@cindex GLR parsing, ambiguous grammars
965@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
966@findex %dprec
967@findex %merge
968@cindex conflicts
969@cindex reduce/reduce conflicts
970
2a8d363a 971Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
972
973@example
974%@{
38a92d50
PE
975 #include <stdio.h>
976 #define YYSTYPE char const *
977 int yylex (void);
978 void yyerror (char const *);
676385e2
PH
979%@}
980
981%token TYPENAME ID
982
983%right '='
984%left '+'
985
986%glr-parser
987
988%%
989
5e9b6624
AD
990prog:
991 /* Nothing. */
992| prog stmt @{ printf ("\n"); @}
993;
676385e2 994
5e9b6624
AD
995stmt:
996 expr ';' %dprec 1
997| decl %dprec 2
998;
676385e2 999
5e9b6624
AD
1000expr:
1001 ID @{ printf ("%s ", $$); @}
1002| TYPENAME '(' expr ')'
1003 @{ printf ("%s <cast> ", $1); @}
1004| expr '+' expr @{ printf ("+ "); @}
1005| expr '=' expr @{ printf ("= "); @}
1006;
676385e2 1007
5e9b6624
AD
1008decl:
1009 TYPENAME declarator ';'
1010 @{ printf ("%s <declare> ", $1); @}
1011| TYPENAME declarator '=' expr ';'
1012 @{ printf ("%s <init-declare> ", $1); @}
1013;
676385e2 1014
5e9b6624
AD
1015declarator:
1016 ID @{ printf ("\"%s\" ", $1); @}
1017| '(' declarator ')'
1018;
676385e2
PH
1019@end example
1020
1021@noindent
1022This models a problematic part of the C++ grammar---the ambiguity between
1023certain declarations and statements. For example,
1024
1025@example
1026T (x) = y+z;
1027@end example
1028
1029@noindent
1030parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1031(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1032@samp{x} as an @code{ID}).
676385e2 1033Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1034@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1035time it encounters @code{x} in the example above. Since this is a
8a4281b9 1036GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1037each choice of resolving the reduce/reduce conflict.
1038Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1039however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1040ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1041the other reduces @code{stmt : decl}, after which both parsers are in an
1042identical state: they've seen @samp{prog stmt} and have the same unprocessed
1043input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1044
8a4281b9 1045At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1046grammar of how to choose between the competing parses.
1047In the example above, the two @code{%dprec}
e757bb10 1048declarations specify that Bison is to give precedence
fa7e68c3 1049to the parse that interprets the example as a
676385e2
PH
1050@code{decl}, which implies that @code{x} is a declarator.
1051The parser therefore prints
1052
1053@example
fae437e8 1054"x" y z + T <init-declare>
676385e2
PH
1055@end example
1056
fa7e68c3
PE
1057The @code{%dprec} declarations only come into play when more than one
1058parse survives. Consider a different input string for this parser:
676385e2
PH
1059
1060@example
1061T (x) + y;
1062@end example
1063
1064@noindent
8a4281b9 1065This is another example of using GLR to parse an unambiguous
fa7e68c3 1066construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1067Here, there is no ambiguity (this cannot be parsed as a declaration).
1068However, at the time the Bison parser encounters @code{x}, it does not
1069have enough information to resolve the reduce/reduce conflict (again,
1070between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1071case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1072into two, one assuming that @code{x} is an @code{expr}, and the other
1073assuming @code{x} is a @code{declarator}. The second of these parsers
1074then vanishes when it sees @code{+}, and the parser prints
1075
1076@example
fae437e8 1077x T <cast> y +
676385e2
PH
1078@end example
1079
1080Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1081the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1082actions of the two possible parsers, rather than choosing one over the
1083other. To do so, you could change the declaration of @code{stmt} as
1084follows:
1085
1086@example
5e9b6624
AD
1087stmt:
1088 expr ';' %merge <stmtMerge>
1089| decl %merge <stmtMerge>
1090;
676385e2
PH
1091@end example
1092
1093@noindent
676385e2
PH
1094and define the @code{stmtMerge} function as:
1095
1096@example
38a92d50
PE
1097static YYSTYPE
1098stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1099@{
1100 printf ("<OR> ");
1101 return "";
1102@}
1103@end example
1104
1105@noindent
1106with an accompanying forward declaration
1107in the C declarations at the beginning of the file:
1108
1109@example
1110%@{
38a92d50 1111 #define YYSTYPE char const *
676385e2
PH
1112 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1113%@}
1114@end example
1115
1116@noindent
fa7e68c3
PE
1117With these declarations, the resulting parser parses the first example
1118as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1119
1120@example
fae437e8 1121"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1122@end example
1123
fa7e68c3 1124Bison requires that all of the
e757bb10 1125productions that participate in any particular merge have identical
fa7e68c3
PE
1126@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1127and the parser will report an error during any parse that results in
1128the offending merge.
9501dc6e 1129
32c29292
JD
1130@node GLR Semantic Actions
1131@subsection GLR Semantic Actions
1132
8a4281b9 1133The nature of GLR parsing and the structure of the generated
20be2f92
PH
1134parsers give rise to certain restrictions on semantic values and actions.
1135
1136@subsubsection Deferred semantic actions
32c29292
JD
1137@cindex deferred semantic actions
1138By definition, a deferred semantic action is not performed at the same time as
1139the associated reduction.
1140This raises caveats for several Bison features you might use in a semantic
8a4281b9 1141action in a GLR parser.
32c29292
JD
1142
1143@vindex yychar
8a4281b9 1144@cindex GLR parsers and @code{yychar}
32c29292 1145@vindex yylval
8a4281b9 1146@cindex GLR parsers and @code{yylval}
32c29292 1147@vindex yylloc
8a4281b9 1148@cindex GLR parsers and @code{yylloc}
32c29292 1149In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1150the lookahead token present at the time of the associated reduction.
32c29292
JD
1151After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1152you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1153lookahead token's semantic value and location, if any.
32c29292
JD
1154In a nondeferred semantic action, you can also modify any of these variables to
1155influence syntax analysis.
742e4900 1156@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1157
1158@findex yyclearin
8a4281b9 1159@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1160In a deferred semantic action, it's too late to influence syntax analysis.
1161In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1162shallow copies of the values they had at the time of the associated reduction.
1163For this reason alone, modifying them is dangerous.
1164Moreover, the result of modifying them is undefined and subject to change with
1165future versions of Bison.
1166For example, if a semantic action might be deferred, you should never write it
1167to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1168memory referenced by @code{yylval}.
1169
20be2f92 1170@subsubsection YYERROR
32c29292 1171@findex YYERROR
8a4281b9 1172@cindex GLR parsers and @code{YYERROR}
32c29292 1173Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1174(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1175initiate error recovery.
8a4281b9 1176During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1177the same as its effect in a deterministic parser.
411614fa
JM
1178The effect in a deferred action is similar, but the precise point of the
1179error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1180selecting an unspecified stack on which to continue with a syntax error.
1181In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1182parsing, @code{YYERROR} silently prunes
1183the parse that invoked the test.
1184
1185@subsubsection Restrictions on semantic values and locations
8a4281b9 1186GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1187semantic values and location types when using the generated parsers as
1188C++ code.
8710fc41 1189
ca2a6d15
PH
1190@node Semantic Predicates
1191@subsection Controlling a Parse with Arbitrary Predicates
1192@findex %?
8a4281b9 1193@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1194
1195In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1196GLR parsers
ca2a6d15
PH
1197allow you to reject parses on the basis of arbitrary computations executed
1198in user code, without having Bison treat this rejection as an error
1199if there are alternative parses. (This feature is experimental and may
1200evolve. We welcome user feedback.) For example,
1201
c93f22fc
AD
1202@example
1203widget:
5e9b6624
AD
1204 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1205| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1206;
c93f22fc 1207@end example
ca2a6d15
PH
1208
1209@noindent
411614fa 1210is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1211widgets. The clause preceded by @code{%?} is treated like an ordinary
1212action, except that its text is treated as an expression and is always
411614fa 1213evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1214expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1215which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1216to die. In a deterministic parser, it acts like YYERROR.
1217
1218As the example shows, predicates otherwise look like semantic actions, and
1219therefore you must be take them into account when determining the numbers
1220to use for denoting the semantic values of right-hand side symbols.
1221Predicate actions, however, have no defined value, and may not be given
1222labels.
1223
1224There is a subtle difference between semantic predicates and ordinary
1225actions in nondeterministic mode, since the latter are deferred.
411614fa 1226For example, we could try to rewrite the previous example as
ca2a6d15 1227
c93f22fc
AD
1228@example
1229widget:
5e9b6624
AD
1230 @{ if (!new_syntax) YYERROR; @}
1231 "widget" id new_args @{ $$ = f($3, $4); @}
1232| @{ if (new_syntax) YYERROR; @}
1233 "widget" id old_args @{ $$ = f($3, $4); @}
1234;
c93f22fc 1235@end example
ca2a6d15
PH
1236
1237@noindent
1238(reversing the sense of the predicate tests to cause an error when they are
1239false). However, this
1240does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1241have overlapping syntax.
411614fa 1242Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1243a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1244for cases where @code{new_args} and @code{old_args} recognize the same string
1245@emph{before} performing the tests of @code{new_syntax}. It therefore
1246reports an error.
1247
1248Finally, be careful in writing predicates: deferred actions have not been
1249evaluated, so that using them in a predicate will have undefined effects.
1250
fa7e68c3 1251@node Compiler Requirements
8a4281b9 1252@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1253@cindex @code{inline}
8a4281b9 1254@cindex GLR parsers and @code{inline}
fa7e68c3 1255
8a4281b9 1256The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1257later. In addition, they use the @code{inline} keyword, which is not
1258C89, but is C99 and is a common extension in pre-C99 compilers. It is
1259up to the user of these parsers to handle
9501dc6e
AD
1260portability issues. For instance, if using Autoconf and the Autoconf
1261macro @code{AC_C_INLINE}, a mere
1262
1263@example
1264%@{
38a92d50 1265 #include <config.h>
9501dc6e
AD
1266%@}
1267@end example
1268
1269@noindent
1270will suffice. Otherwise, we suggest
1271
1272@example
1273%@{
aaaa2aae
AD
1274 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1275 && ! defined inline)
1276 # define inline
38a92d50 1277 #endif
9501dc6e
AD
1278%@}
1279@end example
676385e2 1280
1769eb30 1281@node Locations
847bf1f5
AD
1282@section Locations
1283@cindex location
95923bd6
AD
1284@cindex textual location
1285@cindex location, textual
847bf1f5
AD
1286
1287Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1288and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1289the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1290Bison provides a mechanism for handling these locations.
1291
72d2299c 1292Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1293associated location, but the type of locations is the same for all tokens
1294and groupings. Moreover, the output parser is equipped with a default data
1295structure for storing locations (@pxref{Tracking Locations}, for more
1296details).
847bf1f5
AD
1297
1298Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1299set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1300is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1301@code{@@3}.
1302
1303When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1304of its left hand side (@pxref{Actions}). In the same way, another default
1305action is used for locations. However, the action for locations is general
847bf1f5 1306enough for most cases, meaning there is usually no need to describe for each
72d2299c 1307rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1308grouping, the default behavior of the output parser is to take the beginning
1309of the first symbol, and the end of the last symbol.
1310
342b8b6e 1311@node Bison Parser
ff7571c0 1312@section Bison Output: the Parser Implementation File
bfa74976
RS
1313@cindex Bison parser
1314@cindex Bison utility
1315@cindex lexical analyzer, purpose
1316@cindex parser
1317
ff7571c0
JD
1318When you run Bison, you give it a Bison grammar file as input. The
1319most important output is a C source file that implements a parser for
1320the language described by the grammar. This parser is called a
1321@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1322implementation file}. Keep in mind that the Bison utility and the
1323Bison parser are two distinct programs: the Bison utility is a program
1324whose output is the Bison parser implementation file that becomes part
1325of your program.
bfa74976
RS
1326
1327The job of the Bison parser is to group tokens into groupings according to
1328the grammar rules---for example, to build identifiers and operators into
1329expressions. As it does this, it runs the actions for the grammar rules it
1330uses.
1331
704a47c4
AD
1332The tokens come from a function called the @dfn{lexical analyzer} that
1333you must supply in some fashion (such as by writing it in C). The Bison
1334parser calls the lexical analyzer each time it wants a new token. It
1335doesn't know what is ``inside'' the tokens (though their semantic values
1336may reflect this). Typically the lexical analyzer makes the tokens by
1337parsing characters of text, but Bison does not depend on this.
1338@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1339
ff7571c0
JD
1340The Bison parser implementation file is C code which defines a
1341function named @code{yyparse} which implements that grammar. This
1342function does not make a complete C program: you must supply some
1343additional functions. One is the lexical analyzer. Another is an
1344error-reporting function which the parser calls to report an error.
1345In addition, a complete C program must start with a function called
1346@code{main}; you have to provide this, and arrange for it to call
1347@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1348C-Language Interface}.
bfa74976 1349
f7ab6a50 1350Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1351write, all symbols defined in the Bison parser implementation file
1352itself begin with @samp{yy} or @samp{YY}. This includes interface
1353functions such as the lexical analyzer function @code{yylex}, the
1354error reporting function @code{yyerror} and the parser function
1355@code{yyparse} itself. This also includes numerous identifiers used
1356for internal purposes. Therefore, you should avoid using C
1357identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1358file except for the ones defined in this manual. Also, you should
1359avoid using the C identifiers @samp{malloc} and @samp{free} for
1360anything other than their usual meanings.
1361
1362In some cases the Bison parser implementation file includes system
1363headers, and in those cases your code should respect the identifiers
1364reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1365@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1366included as needed to declare memory allocators and related types.
1367@code{<libintl.h>} is included if message translation is in use
1368(@pxref{Internationalization}). Other system headers may be included
1369if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1370,Tracing Your Parser}).
7093d0f5 1371
342b8b6e 1372@node Stages
bfa74976
RS
1373@section Stages in Using Bison
1374@cindex stages in using Bison
1375@cindex using Bison
1376
1377The actual language-design process using Bison, from grammar specification
1378to a working compiler or interpreter, has these parts:
1379
1380@enumerate
1381@item
1382Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1383(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1384in the language, describe the action that is to be taken when an
1385instance of that rule is recognized. The action is described by a
1386sequence of C statements.
bfa74976
RS
1387
1388@item
704a47c4
AD
1389Write a lexical analyzer to process input and pass tokens to the parser.
1390The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1391Lexical Analyzer Function @code{yylex}}). It could also be produced
1392using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1393
1394@item
1395Write a controlling function that calls the Bison-produced parser.
1396
1397@item
1398Write error-reporting routines.
1399@end enumerate
1400
1401To turn this source code as written into a runnable program, you
1402must follow these steps:
1403
1404@enumerate
1405@item
1406Run Bison on the grammar to produce the parser.
1407
1408@item
1409Compile the code output by Bison, as well as any other source files.
1410
1411@item
1412Link the object files to produce the finished product.
1413@end enumerate
1414
342b8b6e 1415@node Grammar Layout
bfa74976
RS
1416@section The Overall Layout of a Bison Grammar
1417@cindex grammar file
1418@cindex file format
1419@cindex format of grammar file
1420@cindex layout of Bison grammar
1421
1422The input file for the Bison utility is a @dfn{Bison grammar file}. The
1423general form of a Bison grammar file is as follows:
1424
1425@example
1426%@{
08e49d20 1427@var{Prologue}
bfa74976
RS
1428%@}
1429
1430@var{Bison declarations}
1431
1432%%
1433@var{Grammar rules}
1434%%
08e49d20 1435@var{Epilogue}
bfa74976
RS
1436@end example
1437
1438@noindent
1439The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1440in every Bison grammar file to separate the sections.
1441
72d2299c 1442The prologue may define types and variables used in the actions. You can
342b8b6e 1443also use preprocessor commands to define macros used there, and use
bfa74976 1444@code{#include} to include header files that do any of these things.
38a92d50
PE
1445You need to declare the lexical analyzer @code{yylex} and the error
1446printer @code{yyerror} here, along with any other global identifiers
1447used by the actions in the grammar rules.
bfa74976
RS
1448
1449The Bison declarations declare the names of the terminal and nonterminal
1450symbols, and may also describe operator precedence and the data types of
1451semantic values of various symbols.
1452
1453The grammar rules define how to construct each nonterminal symbol from its
1454parts.
1455
38a92d50
PE
1456The epilogue can contain any code you want to use. Often the
1457definitions of functions declared in the prologue go here. In a
1458simple program, all the rest of the program can go here.
bfa74976 1459
342b8b6e 1460@node Examples
bfa74976
RS
1461@chapter Examples
1462@cindex simple examples
1463@cindex examples, simple
1464
aaaa2aae 1465Now we show and explain several sample programs written using Bison: a
bfa74976 1466reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1467calculator --- later extended to track ``locations'' ---
1468and a multi-function calculator. All
1469produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1470
1471These examples are simple, but Bison grammars for real programming
aa08666d
AD
1472languages are written the same way. You can copy these examples into a
1473source file to try them.
bfa74976
RS
1474
1475@menu
f5f419de
DJ
1476* RPN Calc:: Reverse polish notation calculator;
1477 a first example with no operator precedence.
1478* Infix Calc:: Infix (algebraic) notation calculator.
1479 Operator precedence is introduced.
bfa74976 1480* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1481* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1482* Multi-function Calc:: Calculator with memory and trig functions.
1483 It uses multiple data-types for semantic values.
1484* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1485@end menu
1486
342b8b6e 1487@node RPN Calc
bfa74976
RS
1488@section Reverse Polish Notation Calculator
1489@cindex reverse polish notation
1490@cindex polish notation calculator
1491@cindex @code{rpcalc}
1492@cindex calculator, simple
1493
1494The first example is that of a simple double-precision @dfn{reverse polish
1495notation} calculator (a calculator using postfix operators). This example
1496provides a good starting point, since operator precedence is not an issue.
1497The second example will illustrate how operator precedence is handled.
1498
1499The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1500@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1501
1502@menu
f5f419de
DJ
1503* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1504* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1505* Rpcalc Lexer:: The lexical analyzer.
1506* Rpcalc Main:: The controlling function.
1507* Rpcalc Error:: The error reporting function.
1508* Rpcalc Generate:: Running Bison on the grammar file.
1509* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1510@end menu
1511
f5f419de 1512@node Rpcalc Declarations
bfa74976
RS
1513@subsection Declarations for @code{rpcalc}
1514
1515Here are the C and Bison declarations for the reverse polish notation
1516calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1517
24ec0837 1518@comment file: rpcalc.y
bfa74976 1519@example
72d2299c 1520/* Reverse polish notation calculator. */
bfa74976
RS
1521
1522%@{
38a92d50 1523 #define YYSTYPE double
24ec0837 1524 #include <stdio.h>
38a92d50
PE
1525 #include <math.h>
1526 int yylex (void);
1527 void yyerror (char const *);
bfa74976
RS
1528%@}
1529
1530%token NUM
1531
72d2299c 1532%% /* Grammar rules and actions follow. */
bfa74976
RS
1533@end example
1534
75f5aaea 1535The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1536preprocessor directives and two forward declarations.
bfa74976
RS
1537
1538The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1539specifying the C data type for semantic values of both tokens and
1540groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1541Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1542don't define it, @code{int} is the default. Because we specify
1543@code{double}, each token and each expression has an associated value,
1544which is a floating point number.
bfa74976
RS
1545
1546The @code{#include} directive is used to declare the exponentiation
1547function @code{pow}.
1548
38a92d50
PE
1549The forward declarations for @code{yylex} and @code{yyerror} are
1550needed because the C language requires that functions be declared
1551before they are used. These functions will be defined in the
1552epilogue, but the parser calls them so they must be declared in the
1553prologue.
1554
704a47c4
AD
1555The second section, Bison declarations, provides information to Bison
1556about the token types (@pxref{Bison Declarations, ,The Bison
1557Declarations Section}). Each terminal symbol that is not a
1558single-character literal must be declared here. (Single-character
bfa74976
RS
1559literals normally don't need to be declared.) In this example, all the
1560arithmetic operators are designated by single-character literals, so the
1561only terminal symbol that needs to be declared is @code{NUM}, the token
1562type for numeric constants.
1563
342b8b6e 1564@node Rpcalc Rules
bfa74976
RS
1565@subsection Grammar Rules for @code{rpcalc}
1566
1567Here are the grammar rules for the reverse polish notation calculator.
1568
24ec0837 1569@comment file: rpcalc.y
bfa74976 1570@example
aaaa2aae 1571@group
5e9b6624
AD
1572input:
1573 /* empty */
1574| input line
bfa74976 1575;
aaaa2aae 1576@end group
bfa74976 1577
aaaa2aae 1578@group
5e9b6624
AD
1579line:
1580 '\n'
1581| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1582;
aaaa2aae 1583@end group
bfa74976 1584
aaaa2aae 1585@group
5e9b6624
AD
1586exp:
1587 NUM @{ $$ = $1; @}
1588| exp exp '+' @{ $$ = $1 + $2; @}
1589| exp exp '-' @{ $$ = $1 - $2; @}
1590| exp exp '*' @{ $$ = $1 * $2; @}
1591| exp exp '/' @{ $$ = $1 / $2; @}
1592| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1593| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1594;
aaaa2aae 1595@end group
bfa74976
RS
1596%%
1597@end example
1598
1599The groupings of the rpcalc ``language'' defined here are the expression
1600(given the name @code{exp}), the line of input (@code{line}), and the
1601complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1602symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1603which is read as ``or''. The following sections explain what these rules
1604mean.
1605
1606The semantics of the language is determined by the actions taken when a
1607grouping is recognized. The actions are the C code that appears inside
1608braces. @xref{Actions}.
1609
1610You must specify these actions in C, but Bison provides the means for
1611passing semantic values between the rules. In each action, the
1612pseudo-variable @code{$$} stands for the semantic value for the grouping
1613that the rule is going to construct. Assigning a value to @code{$$} is the
1614main job of most actions. The semantic values of the components of the
1615rule are referred to as @code{$1}, @code{$2}, and so on.
1616
1617@menu
24ec0837
AD
1618* Rpcalc Input:: Explanation of the @code{input} nonterminal
1619* Rpcalc Line:: Explanation of the @code{line} nonterminal
1620* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1621@end menu
1622
342b8b6e 1623@node Rpcalc Input
bfa74976
RS
1624@subsubsection Explanation of @code{input}
1625
1626Consider the definition of @code{input}:
1627
1628@example
5e9b6624
AD
1629input:
1630 /* empty */
1631| input line
bfa74976
RS
1632;
1633@end example
1634
1635This definition reads as follows: ``A complete input is either an empty
1636string, or a complete input followed by an input line''. Notice that
1637``complete input'' is defined in terms of itself. This definition is said
1638to be @dfn{left recursive} since @code{input} appears always as the
1639leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1640
1641The first alternative is empty because there are no symbols between the
1642colon and the first @samp{|}; this means that @code{input} can match an
1643empty string of input (no tokens). We write the rules this way because it
1644is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1645It's conventional to put an empty alternative first and write the comment
1646@samp{/* empty */} in it.
1647
1648The second alternate rule (@code{input line}) handles all nontrivial input.
1649It means, ``After reading any number of lines, read one more line if
1650possible.'' The left recursion makes this rule into a loop. Since the
1651first alternative matches empty input, the loop can be executed zero or
1652more times.
1653
1654The parser function @code{yyparse} continues to process input until a
1655grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1656input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1657
342b8b6e 1658@node Rpcalc Line
bfa74976
RS
1659@subsubsection Explanation of @code{line}
1660
1661Now consider the definition of @code{line}:
1662
1663@example
5e9b6624
AD
1664line:
1665 '\n'
1666| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1667;
1668@end example
1669
1670The first alternative is a token which is a newline character; this means
1671that rpcalc accepts a blank line (and ignores it, since there is no
1672action). The second alternative is an expression followed by a newline.
1673This is the alternative that makes rpcalc useful. The semantic value of
1674the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1675question is the first symbol in the alternative. The action prints this
1676value, which is the result of the computation the user asked for.
1677
1678This action is unusual because it does not assign a value to @code{$$}. As
1679a consequence, the semantic value associated with the @code{line} is
1680uninitialized (its value will be unpredictable). This would be a bug if
1681that value were ever used, but we don't use it: once rpcalc has printed the
1682value of the user's input line, that value is no longer needed.
1683
342b8b6e 1684@node Rpcalc Expr
bfa74976
RS
1685@subsubsection Explanation of @code{expr}
1686
1687The @code{exp} grouping has several rules, one for each kind of expression.
1688The first rule handles the simplest expressions: those that are just numbers.
1689The second handles an addition-expression, which looks like two expressions
1690followed by a plus-sign. The third handles subtraction, and so on.
1691
1692@example
5e9b6624
AD
1693exp:
1694 NUM
1695| exp exp '+' @{ $$ = $1 + $2; @}
1696| exp exp '-' @{ $$ = $1 - $2; @}
1697@dots{}
1698;
bfa74976
RS
1699@end example
1700
1701We have used @samp{|} to join all the rules for @code{exp}, but we could
1702equally well have written them separately:
1703
1704@example
5e9b6624
AD
1705exp: NUM ;
1706exp: exp exp '+' @{ $$ = $1 + $2; @};
1707exp: exp exp '-' @{ $$ = $1 - $2; @};
1708@dots{}
bfa74976
RS
1709@end example
1710
1711Most of the rules have actions that compute the value of the expression in
1712terms of the value of its parts. For example, in the rule for addition,
1713@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1714the second one. The third component, @code{'+'}, has no meaningful
1715associated semantic value, but if it had one you could refer to it as
1716@code{$3}. When @code{yyparse} recognizes a sum expression using this
1717rule, the sum of the two subexpressions' values is produced as the value of
1718the entire expression. @xref{Actions}.
1719
1720You don't have to give an action for every rule. When a rule has no
1721action, Bison by default copies the value of @code{$1} into @code{$$}.
1722This is what happens in the first rule (the one that uses @code{NUM}).
1723
1724The formatting shown here is the recommended convention, but Bison does
72d2299c 1725not require it. You can add or change white space as much as you wish.
bfa74976
RS
1726For example, this:
1727
1728@example
5e9b6624 1729exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1730@end example
1731
1732@noindent
1733means the same thing as this:
1734
1735@example
5e9b6624
AD
1736exp:
1737 NUM
1738| exp exp '+' @{ $$ = $1 + $2; @}
1739| @dots{}
99a9344e 1740;
bfa74976
RS
1741@end example
1742
1743@noindent
1744The latter, however, is much more readable.
1745
342b8b6e 1746@node Rpcalc Lexer
bfa74976
RS
1747@subsection The @code{rpcalc} Lexical Analyzer
1748@cindex writing a lexical analyzer
1749@cindex lexical analyzer, writing
1750
704a47c4
AD
1751The lexical analyzer's job is low-level parsing: converting characters
1752or sequences of characters into tokens. The Bison parser gets its
1753tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1754Analyzer Function @code{yylex}}.
bfa74976 1755
8a4281b9 1756Only a simple lexical analyzer is needed for the RPN
c827f760 1757calculator. This
bfa74976
RS
1758lexical analyzer skips blanks and tabs, then reads in numbers as
1759@code{double} and returns them as @code{NUM} tokens. Any other character
1760that isn't part of a number is a separate token. Note that the token-code
1761for such a single-character token is the character itself.
1762
1763The return value of the lexical analyzer function is a numeric code which
1764represents a token type. The same text used in Bison rules to stand for
1765this token type is also a C expression for the numeric code for the type.
1766This works in two ways. If the token type is a character literal, then its
e966383b 1767numeric code is that of the character; you can use the same
bfa74976
RS
1768character literal in the lexical analyzer to express the number. If the
1769token type is an identifier, that identifier is defined by Bison as a C
1770macro whose definition is the appropriate number. In this example,
1771therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1772
1964ad8c
AD
1773The semantic value of the token (if it has one) is stored into the
1774global variable @code{yylval}, which is where the Bison parser will look
1775for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1776defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1777,Declarations for @code{rpcalc}}.)
bfa74976 1778
72d2299c
PE
1779A token type code of zero is returned if the end-of-input is encountered.
1780(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1781
1782Here is the code for the lexical analyzer:
1783
24ec0837 1784@comment file: rpcalc.y
bfa74976
RS
1785@example
1786@group
72d2299c 1787/* The lexical analyzer returns a double floating point
e966383b 1788 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1789 of the character read if not a number. It skips all blanks
1790 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1791
1792#include <ctype.h>
1793@end group
1794
1795@group
13863333
AD
1796int
1797yylex (void)
bfa74976
RS
1798@{
1799 int c;
1800
72d2299c 1801 /* Skip white space. */
13863333 1802 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1803 continue;
bfa74976
RS
1804@end group
1805@group
72d2299c 1806 /* Process numbers. */
13863333 1807 if (c == '.' || isdigit (c))
bfa74976
RS
1808 @{
1809 ungetc (c, stdin);
1810 scanf ("%lf", &yylval);
1811 return NUM;
1812 @}
1813@end group
1814@group
72d2299c 1815 /* Return end-of-input. */
13863333 1816 if (c == EOF)
bfa74976 1817 return 0;
72d2299c 1818 /* Return a single char. */
13863333 1819 return c;
bfa74976
RS
1820@}
1821@end group
1822@end example
1823
342b8b6e 1824@node Rpcalc Main
bfa74976
RS
1825@subsection The Controlling Function
1826@cindex controlling function
1827@cindex main function in simple example
1828
1829In keeping with the spirit of this example, the controlling function is
1830kept to the bare minimum. The only requirement is that it call
1831@code{yyparse} to start the process of parsing.
1832
24ec0837 1833@comment file: rpcalc.y
bfa74976
RS
1834@example
1835@group
13863333
AD
1836int
1837main (void)
bfa74976 1838@{
13863333 1839 return yyparse ();
bfa74976
RS
1840@}
1841@end group
1842@end example
1843
342b8b6e 1844@node Rpcalc Error
bfa74976
RS
1845@subsection The Error Reporting Routine
1846@cindex error reporting routine
1847
1848When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1849function @code{yyerror} to print an error message (usually but not
6e649e65 1850always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1851@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1852here is the definition we will use:
bfa74976 1853
24ec0837 1854@comment file: rpcalc.y
bfa74976
RS
1855@example
1856@group
1857#include <stdio.h>
aaaa2aae 1858@end group
bfa74976 1859
aaaa2aae 1860@group
38a92d50 1861/* Called by yyparse on error. */
13863333 1862void
38a92d50 1863yyerror (char const *s)
bfa74976 1864@{
4e03e201 1865 fprintf (stderr, "%s\n", s);
bfa74976
RS
1866@}
1867@end group
1868@end example
1869
1870After @code{yyerror} returns, the Bison parser may recover from the error
1871and continue parsing if the grammar contains a suitable error rule
1872(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1873have not written any error rules in this example, so any invalid input will
1874cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1875real calculator, but it is adequate for the first example.
bfa74976 1876
f5f419de 1877@node Rpcalc Generate
bfa74976
RS
1878@subsection Running Bison to Make the Parser
1879@cindex running Bison (introduction)
1880
ceed8467
AD
1881Before running Bison to produce a parser, we need to decide how to
1882arrange all the source code in one or more source files. For such a
ff7571c0
JD
1883simple example, the easiest thing is to put everything in one file,
1884the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1885@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1886(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1887
1888For a large project, you would probably have several source files, and use
1889@code{make} to arrange to recompile them.
1890
ff7571c0
JD
1891With all the source in the grammar file, you use the following command
1892to convert it into a parser implementation file:
bfa74976
RS
1893
1894@example
fa4d969f 1895bison @var{file}.y
bfa74976
RS
1896@end example
1897
1898@noindent
ff7571c0
JD
1899In this example, the grammar file is called @file{rpcalc.y} (for
1900``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1901implementation file named @file{@var{file}.tab.c}, removing the
1902@samp{.y} from the grammar file name. The parser implementation file
1903contains the source code for @code{yyparse}. The additional functions
1904in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1905copied verbatim to the parser implementation file.
bfa74976 1906
342b8b6e 1907@node Rpcalc Compile
ff7571c0 1908@subsection Compiling the Parser Implementation File
bfa74976
RS
1909@cindex compiling the parser
1910
ff7571c0 1911Here is how to compile and run the parser implementation file:
bfa74976
RS
1912
1913@example
1914@group
1915# @r{List files in current directory.}
9edcd895 1916$ @kbd{ls}
bfa74976
RS
1917rpcalc.tab.c rpcalc.y
1918@end group
1919
1920@group
1921# @r{Compile the Bison parser.}
1922# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1923$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1924@end group
1925
1926@group
1927# @r{List files again.}
9edcd895 1928$ @kbd{ls}
bfa74976
RS
1929rpcalc rpcalc.tab.c rpcalc.y
1930@end group
1931@end example
1932
1933The file @file{rpcalc} now contains the executable code. Here is an
1934example session using @code{rpcalc}.
1935
1936@example
9edcd895
AD
1937$ @kbd{rpcalc}
1938@kbd{4 9 +}
24ec0837 1939@result{} 13
9edcd895 1940@kbd{3 7 + 3 4 5 *+-}
24ec0837 1941@result{} -13
9edcd895 1942@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1943@result{} 13
9edcd895 1944@kbd{5 6 / 4 n +}
24ec0837 1945@result{} -3.166666667
9edcd895 1946@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1947@result{} 81
9edcd895
AD
1948@kbd{^D} @r{End-of-file indicator}
1949$
bfa74976
RS
1950@end example
1951
342b8b6e 1952@node Infix Calc
bfa74976
RS
1953@section Infix Notation Calculator: @code{calc}
1954@cindex infix notation calculator
1955@cindex @code{calc}
1956@cindex calculator, infix notation
1957
1958We now modify rpcalc to handle infix operators instead of postfix. Infix
1959notation involves the concept of operator precedence and the need for
1960parentheses nested to arbitrary depth. Here is the Bison code for
1961@file{calc.y}, an infix desk-top calculator.
1962
1963@example
38a92d50 1964/* Infix notation calculator. */
bfa74976 1965
aaaa2aae 1966@group
bfa74976 1967%@{
38a92d50
PE
1968 #define YYSTYPE double
1969 #include <math.h>
1970 #include <stdio.h>
1971 int yylex (void);
1972 void yyerror (char const *);
bfa74976 1973%@}
aaaa2aae 1974@end group
bfa74976 1975
aaaa2aae 1976@group
38a92d50 1977/* Bison declarations. */
bfa74976
RS
1978%token NUM
1979%left '-' '+'
1980%left '*' '/'
d78f0ac9
AD
1981%precedence NEG /* negation--unary minus */
1982%right '^' /* exponentiation */
aaaa2aae 1983@end group
bfa74976 1984
38a92d50 1985%% /* The grammar follows. */
aaaa2aae 1986@group
5e9b6624
AD
1987input:
1988 /* empty */
1989| input line
bfa74976 1990;
aaaa2aae 1991@end group
bfa74976 1992
aaaa2aae 1993@group
5e9b6624
AD
1994line:
1995 '\n'
1996| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 1997;
aaaa2aae 1998@end group
bfa74976 1999
aaaa2aae 2000@group
5e9b6624
AD
2001exp:
2002 NUM @{ $$ = $1; @}
2003| exp '+' exp @{ $$ = $1 + $3; @}
2004| exp '-' exp @{ $$ = $1 - $3; @}
2005| exp '*' exp @{ $$ = $1 * $3; @}
2006| exp '/' exp @{ $$ = $1 / $3; @}
2007| '-' exp %prec NEG @{ $$ = -$2; @}
2008| exp '^' exp @{ $$ = pow ($1, $3); @}
2009| '(' exp ')' @{ $$ = $2; @}
bfa74976 2010;
aaaa2aae 2011@end group
bfa74976
RS
2012%%
2013@end example
2014
2015@noindent
ceed8467
AD
2016The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2017same as before.
bfa74976
RS
2018
2019There are two important new features shown in this code.
2020
2021In the second section (Bison declarations), @code{%left} declares token
2022types and says they are left-associative operators. The declarations
2023@code{%left} and @code{%right} (right associativity) take the place of
2024@code{%token} which is used to declare a token type name without
d78f0ac9 2025associativity/precedence. (These tokens are single-character literals, which
bfa74976 2026ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2027the associativity/precedence.)
bfa74976
RS
2028
2029Operator precedence is determined by the line ordering of the
2030declarations; the higher the line number of the declaration (lower on
2031the page or screen), the higher the precedence. Hence, exponentiation
2032has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2033by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2034only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2035Precedence}.
bfa74976 2036
704a47c4
AD
2037The other important new feature is the @code{%prec} in the grammar
2038section for the unary minus operator. The @code{%prec} simply instructs
2039Bison that the rule @samp{| '-' exp} has the same precedence as
2040@code{NEG}---in this case the next-to-highest. @xref{Contextual
2041Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2042
2043Here is a sample run of @file{calc.y}:
2044
2045@need 500
2046@example
9edcd895
AD
2047$ @kbd{calc}
2048@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20496.880952381
9edcd895 2050@kbd{-56 + 2}
bfa74976 2051-54
9edcd895 2052@kbd{3 ^ 2}
bfa74976
RS
20539
2054@end example
2055
342b8b6e 2056@node Simple Error Recovery
bfa74976
RS
2057@section Simple Error Recovery
2058@cindex error recovery, simple
2059
2060Up to this point, this manual has not addressed the issue of @dfn{error
2061recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2062error. All we have handled is error reporting with @code{yyerror}.
2063Recall that by default @code{yyparse} returns after calling
2064@code{yyerror}. This means that an erroneous input line causes the
2065calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2066
2067The Bison language itself includes the reserved word @code{error}, which
2068may be included in the grammar rules. In the example below it has
2069been added to one of the alternatives for @code{line}:
2070
2071@example
2072@group
5e9b6624
AD
2073line:
2074 '\n'
2075| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2076| error '\n' @{ yyerrok; @}
bfa74976
RS
2077;
2078@end group
2079@end example
2080
ceed8467 2081This addition to the grammar allows for simple error recovery in the
6e649e65 2082event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2083read, the error will be recognized by the third rule for @code{line},
2084and parsing will continue. (The @code{yyerror} function is still called
2085upon to print its message as well.) The action executes the statement
2086@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2087that error recovery is complete (@pxref{Error Recovery}). Note the
2088difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2089misprint.
bfa74976
RS
2090
2091This form of error recovery deals with syntax errors. There are other
2092kinds of errors; for example, division by zero, which raises an exception
2093signal that is normally fatal. A real calculator program must handle this
2094signal and use @code{longjmp} to return to @code{main} and resume parsing
2095input lines; it would also have to discard the rest of the current line of
2096input. We won't discuss this issue further because it is not specific to
2097Bison programs.
2098
342b8b6e
AD
2099@node Location Tracking Calc
2100@section Location Tracking Calculator: @code{ltcalc}
2101@cindex location tracking calculator
2102@cindex @code{ltcalc}
2103@cindex calculator, location tracking
2104
9edcd895
AD
2105This example extends the infix notation calculator with location
2106tracking. This feature will be used to improve the error messages. For
2107the sake of clarity, this example is a simple integer calculator, since
2108most of the work needed to use locations will be done in the lexical
72d2299c 2109analyzer.
342b8b6e
AD
2110
2111@menu
f5f419de
DJ
2112* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2113* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2114* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2115@end menu
2116
f5f419de 2117@node Ltcalc Declarations
342b8b6e
AD
2118@subsection Declarations for @code{ltcalc}
2119
9edcd895
AD
2120The C and Bison declarations for the location tracking calculator are
2121the same as the declarations for the infix notation calculator.
342b8b6e
AD
2122
2123@example
2124/* Location tracking calculator. */
2125
2126%@{
38a92d50
PE
2127 #define YYSTYPE int
2128 #include <math.h>
2129 int yylex (void);
2130 void yyerror (char const *);
342b8b6e
AD
2131%@}
2132
2133/* Bison declarations. */
2134%token NUM
2135
2136%left '-' '+'
2137%left '*' '/'
d78f0ac9 2138%precedence NEG
342b8b6e
AD
2139%right '^'
2140
38a92d50 2141%% /* The grammar follows. */
342b8b6e
AD
2142@end example
2143
9edcd895
AD
2144@noindent
2145Note there are no declarations specific to locations. Defining a data
2146type for storing locations is not needed: we will use the type provided
2147by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2148four member structure with the following integer fields:
2149@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2150@code{last_column}. By conventions, and in accordance with the GNU
2151Coding Standards and common practice, the line and column count both
2152start at 1.
342b8b6e
AD
2153
2154@node Ltcalc Rules
2155@subsection Grammar Rules for @code{ltcalc}
2156
9edcd895
AD
2157Whether handling locations or not has no effect on the syntax of your
2158language. Therefore, grammar rules for this example will be very close
2159to those of the previous example: we will only modify them to benefit
2160from the new information.
342b8b6e 2161
9edcd895
AD
2162Here, we will use locations to report divisions by zero, and locate the
2163wrong expressions or subexpressions.
342b8b6e
AD
2164
2165@example
2166@group
5e9b6624
AD
2167input:
2168 /* empty */
2169| input line
342b8b6e
AD
2170;
2171@end group
2172
2173@group
5e9b6624
AD
2174line:
2175 '\n'
2176| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2177;
2178@end group
2179
2180@group
5e9b6624
AD
2181exp:
2182 NUM @{ $$ = $1; @}
2183| exp '+' exp @{ $$ = $1 + $3; @}
2184| exp '-' exp @{ $$ = $1 - $3; @}
2185| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2186@end group
342b8b6e 2187@group
5e9b6624
AD
2188| exp '/' exp
2189 @{
2190 if ($3)
2191 $$ = $1 / $3;
2192 else
2193 @{
2194 $$ = 1;
2195 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2196 @@3.first_line, @@3.first_column,
2197 @@3.last_line, @@3.last_column);
2198 @}
2199 @}
342b8b6e
AD
2200@end group
2201@group
5e9b6624
AD
2202| '-' exp %prec NEG @{ $$ = -$2; @}
2203| exp '^' exp @{ $$ = pow ($1, $3); @}
2204| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2205@end group
2206@end example
2207
2208This code shows how to reach locations inside of semantic actions, by
2209using the pseudo-variables @code{@@@var{n}} for rule components, and the
2210pseudo-variable @code{@@$} for groupings.
2211
9edcd895
AD
2212We don't need to assign a value to @code{@@$}: the output parser does it
2213automatically. By default, before executing the C code of each action,
2214@code{@@$} is set to range from the beginning of @code{@@1} to the end
2215of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2216can be redefined (@pxref{Location Default Action, , Default Action for
2217Locations}), and for very specific rules, @code{@@$} can be computed by
2218hand.
342b8b6e
AD
2219
2220@node Ltcalc Lexer
2221@subsection The @code{ltcalc} Lexical Analyzer.
2222
9edcd895 2223Until now, we relied on Bison's defaults to enable location
72d2299c 2224tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2225able to feed the parser with the token locations, as it already does for
2226semantic values.
342b8b6e 2227
9edcd895
AD
2228To this end, we must take into account every single character of the
2229input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2230
2231@example
2232@group
2233int
2234yylex (void)
2235@{
2236 int c;
18b519c0 2237@end group
342b8b6e 2238
18b519c0 2239@group
72d2299c 2240 /* Skip white space. */
342b8b6e
AD
2241 while ((c = getchar ()) == ' ' || c == '\t')
2242 ++yylloc.last_column;
18b519c0 2243@end group
342b8b6e 2244
18b519c0 2245@group
72d2299c 2246 /* Step. */
342b8b6e
AD
2247 yylloc.first_line = yylloc.last_line;
2248 yylloc.first_column = yylloc.last_column;
2249@end group
2250
2251@group
72d2299c 2252 /* Process numbers. */
342b8b6e
AD
2253 if (isdigit (c))
2254 @{
2255 yylval = c - '0';
2256 ++yylloc.last_column;
2257 while (isdigit (c = getchar ()))
2258 @{
2259 ++yylloc.last_column;
2260 yylval = yylval * 10 + c - '0';
2261 @}
2262 ungetc (c, stdin);
2263 return NUM;
2264 @}
2265@end group
2266
72d2299c 2267 /* Return end-of-input. */
342b8b6e
AD
2268 if (c == EOF)
2269 return 0;
2270
d4fca427 2271@group
72d2299c 2272 /* Return a single char, and update location. */
342b8b6e
AD
2273 if (c == '\n')
2274 @{
2275 ++yylloc.last_line;
2276 yylloc.last_column = 0;
2277 @}
2278 else
2279 ++yylloc.last_column;
2280 return c;
2281@}
d4fca427 2282@end group
342b8b6e
AD
2283@end example
2284
9edcd895
AD
2285Basically, the lexical analyzer performs the same processing as before:
2286it skips blanks and tabs, and reads numbers or single-character tokens.
2287In addition, it updates @code{yylloc}, the global variable (of type
2288@code{YYLTYPE}) containing the token's location.
342b8b6e 2289
9edcd895 2290Now, each time this function returns a token, the parser has its number
72d2299c 2291as well as its semantic value, and its location in the text. The last
9edcd895
AD
2292needed change is to initialize @code{yylloc}, for example in the
2293controlling function:
342b8b6e
AD
2294
2295@example
9edcd895 2296@group
342b8b6e
AD
2297int
2298main (void)
2299@{
2300 yylloc.first_line = yylloc.last_line = 1;
2301 yylloc.first_column = yylloc.last_column = 0;
2302 return yyparse ();
2303@}
9edcd895 2304@end group
342b8b6e
AD
2305@end example
2306
9edcd895
AD
2307Remember that computing locations is not a matter of syntax. Every
2308character must be associated to a location update, whether it is in
2309valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2310
2311@node Multi-function Calc
bfa74976
RS
2312@section Multi-Function Calculator: @code{mfcalc}
2313@cindex multi-function calculator
2314@cindex @code{mfcalc}
2315@cindex calculator, multi-function
2316
2317Now that the basics of Bison have been discussed, it is time to move on to
2318a more advanced problem. The above calculators provided only five
2319functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2320be nice to have a calculator that provides other mathematical functions such
2321as @code{sin}, @code{cos}, etc.
2322
2323It is easy to add new operators to the infix calculator as long as they are
2324only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2325back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2326adding a new operator. But we want something more flexible: built-in
2327functions whose syntax has this form:
2328
2329@example
2330@var{function_name} (@var{argument})
2331@end example
2332
2333@noindent
2334At the same time, we will add memory to the calculator, by allowing you
2335to create named variables, store values in them, and use them later.
2336Here is a sample session with the multi-function calculator:
2337
2338@example
d4fca427 2339@group
9edcd895
AD
2340$ @kbd{mfcalc}
2341@kbd{pi = 3.141592653589}
f9c75dd0 2342@result{} 3.1415926536
d4fca427
AD
2343@end group
2344@group
9edcd895 2345@kbd{sin(pi)}
f9c75dd0 2346@result{} 0.0000000000
d4fca427 2347@end group
9edcd895 2348@kbd{alpha = beta1 = 2.3}
f9c75dd0 2349@result{} 2.3000000000
9edcd895 2350@kbd{alpha}
f9c75dd0 2351@result{} 2.3000000000
9edcd895 2352@kbd{ln(alpha)}
f9c75dd0 2353@result{} 0.8329091229
9edcd895 2354@kbd{exp(ln(beta1))}
f9c75dd0 2355@result{} 2.3000000000
9edcd895 2356$
bfa74976
RS
2357@end example
2358
2359Note that multiple assignment and nested function calls are permitted.
2360
2361@menu
f5f419de
DJ
2362* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2363* Mfcalc Rules:: Grammar rules for the calculator.
2364* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2365* Mfcalc Lexer:: The lexical analyzer.
2366* Mfcalc Main:: The controlling function.
bfa74976
RS
2367@end menu
2368
f5f419de 2369@node Mfcalc Declarations
bfa74976
RS
2370@subsection Declarations for @code{mfcalc}
2371
2372Here are the C and Bison declarations for the multi-function calculator.
2373
f9c75dd0 2374@comment file: mfcalc.y
c93f22fc 2375@example
18b519c0 2376@group
bfa74976 2377%@{
f9c75dd0 2378 #include <stdio.h> /* For printf, etc. */
578e3413 2379 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2380 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2381 int yylex (void);
2382 void yyerror (char const *);
bfa74976 2383%@}
18b519c0
AD
2384@end group
2385@group
bfa74976 2386%union @{
38a92d50
PE
2387 double val; /* For returning numbers. */
2388 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2389@}
18b519c0 2390@end group
38a92d50
PE
2391%token <val> NUM /* Simple double precision number. */
2392%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2393%type <val> exp
2394
18b519c0 2395@group
bfa74976
RS
2396%right '='
2397%left '-' '+'
2398%left '*' '/'
d78f0ac9
AD
2399%precedence NEG /* negation--unary minus */
2400%right '^' /* exponentiation */
18b519c0 2401@end group
38a92d50 2402%% /* The grammar follows. */
c93f22fc 2403@end example
bfa74976
RS
2404
2405The above grammar introduces only two new features of the Bison language.
2406These features allow semantic values to have various data types
2407(@pxref{Multiple Types, ,More Than One Value Type}).
2408
2409The @code{%union} declaration specifies the entire list of possible types;
2410this is instead of defining @code{YYSTYPE}. The allowable types are now
2411double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2412the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2413
2414Since values can now have various types, it is necessary to associate a
2415type with each grammar symbol whose semantic value is used. These symbols
2416are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2417declarations are augmented with information about their data type (placed
2418between angle brackets).
2419
704a47c4
AD
2420The Bison construct @code{%type} is used for declaring nonterminal
2421symbols, just as @code{%token} is used for declaring token types. We
2422have not used @code{%type} before because nonterminal symbols are
2423normally declared implicitly by the rules that define them. But
2424@code{exp} must be declared explicitly so we can specify its value type.
2425@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2426
342b8b6e 2427@node Mfcalc Rules
bfa74976
RS
2428@subsection Grammar Rules for @code{mfcalc}
2429
2430Here are the grammar rules for the multi-function calculator.
2431Most of them are copied directly from @code{calc}; three rules,
2432those which mention @code{VAR} or @code{FNCT}, are new.
2433
f9c75dd0 2434@comment file: mfcalc.y
c93f22fc 2435@example
18b519c0 2436@group
5e9b6624
AD
2437input:
2438 /* empty */
2439| input line
bfa74976 2440;
18b519c0 2441@end group
bfa74976 2442
18b519c0 2443@group
bfa74976 2444line:
5e9b6624
AD
2445 '\n'
2446| exp '\n' @{ printf ("%.10g\n", $1); @}
2447| error '\n' @{ yyerrok; @}
bfa74976 2448;
18b519c0 2449@end group
bfa74976 2450
18b519c0 2451@group
5e9b6624
AD
2452exp:
2453 NUM @{ $$ = $1; @}
2454| VAR @{ $$ = $1->value.var; @}
2455| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2456| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2457| exp '+' exp @{ $$ = $1 + $3; @}
2458| exp '-' exp @{ $$ = $1 - $3; @}
2459| exp '*' exp @{ $$ = $1 * $3; @}
2460| exp '/' exp @{ $$ = $1 / $3; @}
2461| '-' exp %prec NEG @{ $$ = -$2; @}
2462| exp '^' exp @{ $$ = pow ($1, $3); @}
2463| '(' exp ')' @{ $$ = $2; @}
bfa74976 2464;
18b519c0 2465@end group
38a92d50 2466/* End of grammar. */
bfa74976 2467%%
c93f22fc 2468@end example
bfa74976 2469
f5f419de 2470@node Mfcalc Symbol Table
bfa74976
RS
2471@subsection The @code{mfcalc} Symbol Table
2472@cindex symbol table example
2473
2474The multi-function calculator requires a symbol table to keep track of the
2475names and meanings of variables and functions. This doesn't affect the
2476grammar rules (except for the actions) or the Bison declarations, but it
2477requires some additional C functions for support.
2478
2479The symbol table itself consists of a linked list of records. Its
2480definition, which is kept in the header @file{calc.h}, is as follows. It
2481provides for either functions or variables to be placed in the table.
2482
f9c75dd0 2483@comment file: calc.h
c93f22fc 2484@example
bfa74976 2485@group
38a92d50 2486/* Function type. */
32dfccf8 2487typedef double (*func_t) (double);
72f889cc 2488@end group
32dfccf8 2489
72f889cc 2490@group
38a92d50 2491/* Data type for links in the chain of symbols. */
bfa74976
RS
2492struct symrec
2493@{
38a92d50 2494 char *name; /* name of symbol */
bfa74976 2495 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2496 union
2497 @{
38a92d50
PE
2498 double var; /* value of a VAR */
2499 func_t fnctptr; /* value of a FNCT */
bfa74976 2500 @} value;
38a92d50 2501 struct symrec *next; /* link field */
bfa74976
RS
2502@};
2503@end group
2504
2505@group
2506typedef struct symrec symrec;
2507
38a92d50 2508/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2509extern symrec *sym_table;
2510
a730d142 2511symrec *putsym (char const *, int);
38a92d50 2512symrec *getsym (char const *);
bfa74976 2513@end group
c93f22fc 2514@end example
bfa74976 2515
aeb57fb6
AD
2516The new version of @code{main} will call @code{init_table} to initialize
2517the symbol table:
bfa74976 2518
f9c75dd0 2519@comment file: mfcalc.y
c93f22fc 2520@example
18b519c0 2521@group
bfa74976
RS
2522struct init
2523@{
38a92d50
PE
2524 char const *fname;
2525 double (*fnct) (double);
bfa74976
RS
2526@};
2527@end group
2528
2529@group
38a92d50 2530struct init const arith_fncts[] =
13863333 2531@{
f9c75dd0
AD
2532 @{ "atan", atan @},
2533 @{ "cos", cos @},
2534 @{ "exp", exp @},
2535 @{ "ln", log @},
2536 @{ "sin", sin @},
2537 @{ "sqrt", sqrt @},
2538 @{ 0, 0 @},
13863333 2539@};
18b519c0 2540@end group
bfa74976 2541
18b519c0 2542@group
bfa74976 2543/* The symbol table: a chain of `struct symrec'. */
38a92d50 2544symrec *sym_table;
bfa74976
RS
2545@end group
2546
2547@group
72d2299c 2548/* Put arithmetic functions in table. */
f9c75dd0 2549static
13863333
AD
2550void
2551init_table (void)
bfa74976
RS
2552@{
2553 int i;
bfa74976
RS
2554 for (i = 0; arith_fncts[i].fname != 0; i++)
2555 @{
aaaa2aae 2556 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2557 ptr->value.fnctptr = arith_fncts[i].fnct;
2558 @}
2559@}
2560@end group
c93f22fc 2561@end example
bfa74976
RS
2562
2563By simply editing the initialization list and adding the necessary include
2564files, you can add additional functions to the calculator.
2565
2566Two important functions allow look-up and installation of symbols in the
2567symbol table. The function @code{putsym} is passed a name and the type
2568(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2569linked to the front of the list, and a pointer to the object is returned.
2570The function @code{getsym} is passed the name of the symbol to look up. If
2571found, a pointer to that symbol is returned; otherwise zero is returned.
2572
f9c75dd0 2573@comment file: mfcalc.y
c93f22fc 2574@example
f9c75dd0
AD
2575#include <stdlib.h> /* malloc. */
2576#include <string.h> /* strlen. */
2577
d4fca427 2578@group
bfa74976 2579symrec *
38a92d50 2580putsym (char const *sym_name, int sym_type)
bfa74976 2581@{
aaaa2aae 2582 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2583 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2584 strcpy (ptr->name,sym_name);
2585 ptr->type = sym_type;
72d2299c 2586 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2587 ptr->next = (struct symrec *)sym_table;
2588 sym_table = ptr;
2589 return ptr;
2590@}
d4fca427 2591@end group
bfa74976 2592
d4fca427 2593@group
bfa74976 2594symrec *
38a92d50 2595getsym (char const *sym_name)
bfa74976
RS
2596@{
2597 symrec *ptr;
2598 for (ptr = sym_table; ptr != (symrec *) 0;
2599 ptr = (symrec *)ptr->next)
f518dbaf 2600 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2601 return ptr;
2602 return 0;
2603@}
d4fca427 2604@end group
c93f22fc 2605@end example
bfa74976 2606
aeb57fb6
AD
2607@node Mfcalc Lexer
2608@subsection The @code{mfcalc} Lexer
2609
bfa74976
RS
2610The function @code{yylex} must now recognize variables, numeric values, and
2611the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2612characters with a leading letter are recognized as either variables or
bfa74976
RS
2613functions depending on what the symbol table says about them.
2614
2615The string is passed to @code{getsym} for look up in the symbol table. If
2616the name appears in the table, a pointer to its location and its type
2617(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2618already in the table, then it is installed as a @code{VAR} using
2619@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2620returned to @code{yyparse}.
bfa74976
RS
2621
2622No change is needed in the handling of numeric values and arithmetic
2623operators in @code{yylex}.
2624
f9c75dd0 2625@comment file: mfcalc.y
c93f22fc 2626@example
bfa74976
RS
2627@group
2628#include <ctype.h>
18b519c0 2629@end group
13863333 2630
18b519c0 2631@group
13863333
AD
2632int
2633yylex (void)
bfa74976
RS
2634@{
2635 int c;
2636
72d2299c 2637 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2638 while ((c = getchar ()) == ' ' || c == '\t')
2639 continue;
bfa74976
RS
2640
2641 if (c == EOF)
2642 return 0;
2643@end group
2644
2645@group
2646 /* Char starts a number => parse the number. */
2647 if (c == '.' || isdigit (c))
2648 @{
2649 ungetc (c, stdin);
2650 scanf ("%lf", &yylval.val);
2651 return NUM;
2652 @}
2653@end group
2654
2655@group
2656 /* Char starts an identifier => read the name. */
2657 if (isalpha (c))
2658 @{
aaaa2aae
AD
2659 /* Initially make the buffer long enough
2660 for a 40-character symbol name. */
2661 static size_t length = 40;
bfa74976 2662 static char *symbuf = 0;
aaaa2aae 2663 symrec *s;
bfa74976
RS
2664 int i;
2665@end group
aaaa2aae
AD
2666 if (!symbuf)
2667 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2668
2669 i = 0;
2670 do
bfa74976
RS
2671@group
2672 @{
2673 /* If buffer is full, make it bigger. */
2674 if (i == length)
2675 @{
2676 length *= 2;
18b519c0 2677 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2678 @}
2679 /* Add this character to the buffer. */
2680 symbuf[i++] = c;
2681 /* Get another character. */
2682 c = getchar ();
2683 @}
2684@end group
2685@group
72d2299c 2686 while (isalnum (c));
bfa74976
RS
2687
2688 ungetc (c, stdin);
2689 symbuf[i] = '\0';
2690@end group
2691
2692@group
2693 s = getsym (symbuf);
2694 if (s == 0)
2695 s = putsym (symbuf, VAR);
2696 yylval.tptr = s;
2697 return s->type;
2698 @}
2699
2700 /* Any other character is a token by itself. */
2701 return c;
2702@}
2703@end group
c93f22fc 2704@end example
bfa74976 2705
aeb57fb6
AD
2706@node Mfcalc Main
2707@subsection The @code{mfcalc} Main
2708
2709The error reporting function is unchanged, and the new version of
2710@code{main} includes a call to @code{init_table}:
2711
2712@comment file: mfcalc.y
c93f22fc 2713@example
aeb57fb6
AD
2714@group
2715/* Called by yyparse on error. */
2716void
2717yyerror (char const *s)
2718@{
2719 fprintf (stderr, "%s\n", s);
2720@}
2721@end group
2722
aaaa2aae 2723@group
aeb57fb6
AD
2724int
2725main (int argc, char const* argv[])
2726@{
2727 init_table ();
2728 return yyparse ();
2729@}
2730@end group
c93f22fc 2731@end example
aeb57fb6 2732
72d2299c 2733This program is both powerful and flexible. You may easily add new
704a47c4
AD
2734functions, and it is a simple job to modify this code to install
2735predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2736
342b8b6e 2737@node Exercises
bfa74976
RS
2738@section Exercises
2739@cindex exercises
2740
2741@enumerate
2742@item
2743Add some new functions from @file{math.h} to the initialization list.
2744
2745@item
2746Add another array that contains constants and their values. Then
2747modify @code{init_table} to add these constants to the symbol table.
2748It will be easiest to give the constants type @code{VAR}.
2749
2750@item
2751Make the program report an error if the user refers to an
2752uninitialized variable in any way except to store a value in it.
2753@end enumerate
2754
342b8b6e 2755@node Grammar File
bfa74976
RS
2756@chapter Bison Grammar Files
2757
2758Bison takes as input a context-free grammar specification and produces a
2759C-language function that recognizes correct instances of the grammar.
2760
ff7571c0 2761The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2762@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2763
2764@menu
303834cc
JD
2765* Grammar Outline:: Overall layout of the grammar file.
2766* Symbols:: Terminal and nonterminal symbols.
2767* Rules:: How to write grammar rules.
2768* Recursion:: Writing recursive rules.
2769* Semantics:: Semantic values and actions.
2770* Tracking Locations:: Locations and actions.
2771* Named References:: Using named references in actions.
2772* Declarations:: All kinds of Bison declarations are described here.
2773* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2774@end menu
2775
342b8b6e 2776@node Grammar Outline
bfa74976
RS
2777@section Outline of a Bison Grammar
2778
2779A Bison grammar file has four main sections, shown here with the
2780appropriate delimiters:
2781
2782@example
2783%@{
38a92d50 2784 @var{Prologue}
bfa74976
RS
2785%@}
2786
2787@var{Bison declarations}
2788
2789%%
2790@var{Grammar rules}
2791%%
2792
75f5aaea 2793@var{Epilogue}
bfa74976
RS
2794@end example
2795
2796Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2797As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2798continues until end of line.
bfa74976
RS
2799
2800@menu
f5f419de 2801* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2802* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2803* Bison Declarations:: Syntax and usage of the Bison declarations section.
2804* Grammar Rules:: Syntax and usage of the grammar rules section.
2805* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2806@end menu
2807
38a92d50 2808@node Prologue
75f5aaea
MA
2809@subsection The prologue
2810@cindex declarations section
2811@cindex Prologue
2812@cindex declarations
bfa74976 2813
f8e1c9e5
AD
2814The @var{Prologue} section contains macro definitions and declarations
2815of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2816rules. These are copied to the beginning of the parser implementation
2817file so that they precede the definition of @code{yyparse}. You can
2818use @samp{#include} to get the declarations from a header file. If
2819you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2820@samp{%@}} delimiters that bracket this section.
bfa74976 2821
9c437126 2822The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2823of @samp{%@}} that is outside a comment, a string literal, or a
2824character constant.
2825
c732d2c6
AD
2826You may have more than one @var{Prologue} section, intermixed with the
2827@var{Bison declarations}. This allows you to have C and Bison
2828declarations that refer to each other. For example, the @code{%union}
2829declaration may use types defined in a header file, and you may wish to
2830prototype functions that take arguments of type @code{YYSTYPE}. This
2831can be done with two @var{Prologue} blocks, one before and one after the
2832@code{%union} declaration.
2833
c93f22fc 2834@example
c732d2c6 2835%@{
aef3da86 2836 #define _GNU_SOURCE
38a92d50
PE
2837 #include <stdio.h>
2838 #include "ptypes.h"
c732d2c6
AD
2839%@}
2840
2841%union @{
779e7ceb 2842 long int n;
c732d2c6
AD
2843 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2844@}
2845
2846%@{
38a92d50
PE
2847 static void print_token_value (FILE *, int, YYSTYPE);
2848 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2849%@}
2850
2851@dots{}
c93f22fc 2852@end example
c732d2c6 2853
aef3da86
PE
2854When in doubt, it is usually safer to put prologue code before all
2855Bison declarations, rather than after. For example, any definitions
2856of feature test macros like @code{_GNU_SOURCE} or
2857@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2858feature test macros can affect the behavior of Bison-generated
2859@code{#include} directives.
2860
2cbe6b7f
JD
2861@node Prologue Alternatives
2862@subsection Prologue Alternatives
2863@cindex Prologue Alternatives
2864
136a0f76 2865@findex %code
16dc6a9e
JD
2866@findex %code requires
2867@findex %code provides
2868@findex %code top
85894313 2869
2cbe6b7f 2870The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2871inflexible. As an alternative, Bison provides a @code{%code}
2872directive with an explicit qualifier field, which identifies the
2873purpose of the code and thus the location(s) where Bison should
2874generate it. For C/C++, the qualifier can be omitted for the default
2875location, or it can be one of @code{requires}, @code{provides},
e0c07222 2876@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2877
2878Look again at the example of the previous section:
2879
c93f22fc 2880@example
2cbe6b7f
JD
2881%@{
2882 #define _GNU_SOURCE
2883 #include <stdio.h>
2884 #include "ptypes.h"
2885%@}
2886
2887%union @{
2888 long int n;
2889 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2890@}
2891
2892%@{
2893 static void print_token_value (FILE *, int, YYSTYPE);
2894 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2895%@}
2896
2897@dots{}
c93f22fc 2898@end example
2cbe6b7f
JD
2899
2900@noindent
ff7571c0
JD
2901Notice that there are two @var{Prologue} sections here, but there's a
2902subtle distinction between their functionality. For example, if you
2903decide to override Bison's default definition for @code{YYLTYPE}, in
2904which @var{Prologue} section should you write your new definition?
2905You should write it in the first since Bison will insert that code
2906into the parser implementation file @emph{before} the default
2907@code{YYLTYPE} definition. In which @var{Prologue} section should you
2908prototype an internal function, @code{trace_token}, that accepts
2909@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2910prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2911@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2912
2913This distinction in functionality between the two @var{Prologue} sections is
2914established by the appearance of the @code{%union} between them.
a501eca9 2915This behavior raises a few questions.
2cbe6b7f
JD
2916First, why should the position of a @code{%union} affect definitions related to
2917@code{YYLTYPE} and @code{yytokentype}?
2918Second, what if there is no @code{%union}?
2919In that case, the second kind of @var{Prologue} section is not available.
2920This behavior is not intuitive.
2921
8e0a5e9e 2922To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2923@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2924Let's go ahead and add the new @code{YYLTYPE} definition and the
2925@code{trace_token} prototype at the same time:
2926
c93f22fc 2927@example
16dc6a9e 2928%code top @{
2cbe6b7f
JD
2929 #define _GNU_SOURCE
2930 #include <stdio.h>
8e0a5e9e
JD
2931
2932 /* WARNING: The following code really belongs
16dc6a9e 2933 * in a `%code requires'; see below. */
8e0a5e9e 2934
2cbe6b7f
JD
2935 #include "ptypes.h"
2936 #define YYLTYPE YYLTYPE
2937 typedef struct YYLTYPE
2938 @{
2939 int first_line;
2940 int first_column;
2941 int last_line;
2942 int last_column;
2943 char *filename;
2944 @} YYLTYPE;
2945@}
2946
2947%union @{
2948 long int n;
2949 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2950@}
2951
2952%code @{
2953 static void print_token_value (FILE *, int, YYSTYPE);
2954 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2955 static void trace_token (enum yytokentype token, YYLTYPE loc);
2956@}
2957
2958@dots{}
c93f22fc 2959@end example
2cbe6b7f
JD
2960
2961@noindent
16dc6a9e
JD
2962In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2963functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2964explicit which kind you intend.
2cbe6b7f
JD
2965Moreover, both kinds are always available even in the absence of @code{%union}.
2966
ff7571c0
JD
2967The @code{%code top} block above logically contains two parts. The
2968first two lines before the warning need to appear near the top of the
2969parser implementation file. The first line after the warning is
2970required by @code{YYSTYPE} and thus also needs to appear in the parser
2971implementation file. However, if you've instructed Bison to generate
2972a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2973want that line to appear before the @code{YYSTYPE} definition in that
2974header file as well. The @code{YYLTYPE} definition should also appear
2975in the parser header file to override the default @code{YYLTYPE}
2976definition there.
2cbe6b7f 2977
16dc6a9e 2978In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2979lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2980definitions.
16dc6a9e 2981Thus, they belong in one or more @code{%code requires}:
9bc0dd67 2982
c93f22fc 2983@example
d4fca427 2984@group
16dc6a9e 2985%code top @{
2cbe6b7f
JD
2986 #define _GNU_SOURCE
2987 #include <stdio.h>
2988@}
d4fca427 2989@end group
2cbe6b7f 2990
d4fca427 2991@group
16dc6a9e 2992%code requires @{
9bc0dd67
JD
2993 #include "ptypes.h"
2994@}
d4fca427
AD
2995@end group
2996@group
9bc0dd67
JD
2997%union @{
2998 long int n;
2999 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3000@}
d4fca427 3001@end group
9bc0dd67 3002
d4fca427 3003@group
16dc6a9e 3004%code requires @{
2cbe6b7f
JD
3005 #define YYLTYPE YYLTYPE
3006 typedef struct YYLTYPE
3007 @{
3008 int first_line;
3009 int first_column;
3010 int last_line;
3011 int last_column;
3012 char *filename;
3013 @} YYLTYPE;
3014@}
d4fca427 3015@end group
2cbe6b7f 3016
d4fca427 3017@group
136a0f76 3018%code @{
2cbe6b7f
JD
3019 static void print_token_value (FILE *, int, YYSTYPE);
3020 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3021 static void trace_token (enum yytokentype token, YYLTYPE loc);
3022@}
d4fca427 3023@end group
2cbe6b7f
JD
3024
3025@dots{}
c93f22fc 3026@end example
2cbe6b7f
JD
3027
3028@noindent
ff7571c0
JD
3029Now Bison will insert @code{#include "ptypes.h"} and the new
3030@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3031and @code{YYLTYPE} definitions in both the parser implementation file
3032and the parser header file. (By the same reasoning, @code{%code
3033requires} would also be the appropriate place to write your own
3034definition for @code{YYSTYPE}.)
3035
3036When you are writing dependency code for @code{YYSTYPE} and
3037@code{YYLTYPE}, you should prefer @code{%code requires} over
3038@code{%code top} regardless of whether you instruct Bison to generate
3039a parser header file. When you are writing code that you need Bison
3040to insert only into the parser implementation file and that has no
3041special need to appear at the top of that file, you should prefer the
3042unqualified @code{%code} over @code{%code top}. These practices will
3043make the purpose of each block of your code explicit to Bison and to
3044other developers reading your grammar file. Following these
3045practices, we expect the unqualified @code{%code} and @code{%code
3046requires} to be the most important of the four @var{Prologue}
16dc6a9e 3047alternatives.
a501eca9 3048
ff7571c0
JD
3049At some point while developing your parser, you might decide to
3050provide @code{trace_token} to modules that are external to your
3051parser. Thus, you might wish for Bison to insert the prototype into
3052both the parser header file and the parser implementation file. Since
3053this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3054@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3055@code{%code requires}. More importantly, since it depends upon
3056@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3057sufficient. Instead, move its prototype from the unqualified
3058@code{%code} to a @code{%code provides}:
2cbe6b7f 3059
c93f22fc 3060@example
d4fca427 3061@group
16dc6a9e 3062%code top @{
2cbe6b7f 3063 #define _GNU_SOURCE
136a0f76 3064 #include <stdio.h>
2cbe6b7f 3065@}
d4fca427 3066@end group
136a0f76 3067
d4fca427 3068@group
16dc6a9e 3069%code requires @{
2cbe6b7f
JD
3070 #include "ptypes.h"
3071@}
d4fca427
AD
3072@end group
3073@group
2cbe6b7f
JD
3074%union @{
3075 long int n;
3076 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3077@}
d4fca427 3078@end group
2cbe6b7f 3079
d4fca427 3080@group
16dc6a9e 3081%code requires @{
2cbe6b7f
JD
3082 #define YYLTYPE YYLTYPE
3083 typedef struct YYLTYPE
3084 @{
3085 int first_line;
3086 int first_column;
3087 int last_line;
3088 int last_column;
3089 char *filename;
3090 @} YYLTYPE;
3091@}
d4fca427 3092@end group
2cbe6b7f 3093
d4fca427 3094@group
16dc6a9e 3095%code provides @{
2cbe6b7f
JD
3096 void trace_token (enum yytokentype token, YYLTYPE loc);
3097@}
d4fca427 3098@end group
2cbe6b7f 3099
d4fca427 3100@group
2cbe6b7f 3101%code @{
9bc0dd67
JD
3102 static void print_token_value (FILE *, int, YYSTYPE);
3103 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3104@}
d4fca427 3105@end group
9bc0dd67
JD
3106
3107@dots{}
c93f22fc 3108@end example
9bc0dd67 3109
2cbe6b7f 3110@noindent
ff7571c0
JD
3111Bison will insert the @code{trace_token} prototype into both the
3112parser header file and the parser implementation file after the
3113definitions for @code{yytokentype}, @code{YYLTYPE}, and
3114@code{YYSTYPE}.
2cbe6b7f 3115
ff7571c0
JD
3116The above examples are careful to write directives in an order that
3117reflects the layout of the generated parser implementation and header
3118files: @code{%code top}, @code{%code requires}, @code{%code provides},
3119and then @code{%code}. While your grammar files may generally be
3120easier to read if you also follow this order, Bison does not require
3121it. Instead, Bison lets you choose an organization that makes sense
3122to you.
2cbe6b7f 3123
a501eca9 3124You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3125In that case, Bison concatenates the contained code in declaration order.
3126This is the only way in which the position of one of these directives within
3127the grammar file affects its functionality.
3128
3129The result of the previous two properties is greater flexibility in how you may
3130organize your grammar file.
3131For example, you may organize semantic-type-related directives by semantic
3132type:
3133
c93f22fc 3134@example
d4fca427 3135@group
16dc6a9e 3136%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3137%union @{ type1 field1; @}
3138%destructor @{ type1_free ($$); @} <field1>
3139%printer @{ type1_print ($$); @} <field1>
d4fca427 3140@end group
2cbe6b7f 3141
d4fca427 3142@group
16dc6a9e 3143%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3144%union @{ type2 field2; @}
3145%destructor @{ type2_free ($$); @} <field2>
3146%printer @{ type2_print ($$); @} <field2>
d4fca427 3147@end group
c93f22fc 3148@end example
2cbe6b7f
JD
3149
3150@noindent
3151You could even place each of the above directive groups in the rules section of
3152the grammar file next to the set of rules that uses the associated semantic
3153type.
61fee93e
JD
3154(In the rules section, you must terminate each of those directives with a
3155semicolon.)
2cbe6b7f
JD
3156And you don't have to worry that some directive (like a @code{%union}) in the
3157definitions section is going to adversely affect their functionality in some
3158counter-intuitive manner just because it comes first.
3159Such an organization is not possible using @var{Prologue} sections.
3160
a501eca9 3161This section has been concerned with explaining the advantages of the four
8e0a5e9e 3162@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3163However, in most cases when using these directives, you shouldn't need to
3164think about all the low-level ordering issues discussed here.
3165Instead, you should simply use these directives to label each block of your
3166code according to its purpose and let Bison handle the ordering.
3167@code{%code} is the most generic label.
16dc6a9e
JD
3168Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3169as needed.
a501eca9 3170
342b8b6e 3171@node Bison Declarations
bfa74976
RS
3172@subsection The Bison Declarations Section
3173@cindex Bison declarations (introduction)
3174@cindex declarations, Bison (introduction)
3175
3176The @var{Bison declarations} section contains declarations that define
3177terminal and nonterminal symbols, specify precedence, and so on.
3178In some simple grammars you may not need any declarations.
3179@xref{Declarations, ,Bison Declarations}.
3180
342b8b6e 3181@node Grammar Rules
bfa74976
RS
3182@subsection The Grammar Rules Section
3183@cindex grammar rules section
3184@cindex rules section for grammar
3185
3186The @dfn{grammar rules} section contains one or more Bison grammar
3187rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3188
3189There must always be at least one grammar rule, and the first
3190@samp{%%} (which precedes the grammar rules) may never be omitted even
3191if it is the first thing in the file.
3192
38a92d50 3193@node Epilogue
75f5aaea 3194@subsection The epilogue
bfa74976 3195@cindex additional C code section
75f5aaea 3196@cindex epilogue
bfa74976
RS
3197@cindex C code, section for additional
3198
ff7571c0
JD
3199The @var{Epilogue} is copied verbatim to the end of the parser
3200implementation file, just as the @var{Prologue} is copied to the
3201beginning. This is the most convenient place to put anything that you
3202want to have in the parser implementation file but which need not come
3203before the definition of @code{yyparse}. For example, the definitions
3204of @code{yylex} and @code{yyerror} often go here. Because C requires
3205functions to be declared before being used, you often need to declare
3206functions like @code{yylex} and @code{yyerror} in the Prologue, even
3207if you define them in the Epilogue. @xref{Interface, ,Parser
3208C-Language Interface}.
bfa74976
RS
3209
3210If the last section is empty, you may omit the @samp{%%} that separates it
3211from the grammar rules.
3212
f8e1c9e5
AD
3213The Bison parser itself contains many macros and identifiers whose names
3214start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3215any such names (except those documented in this manual) in the epilogue
3216of the grammar file.
bfa74976 3217
342b8b6e 3218@node Symbols
bfa74976
RS
3219@section Symbols, Terminal and Nonterminal
3220@cindex nonterminal symbol
3221@cindex terminal symbol
3222@cindex token type
3223@cindex symbol
3224
3225@dfn{Symbols} in Bison grammars represent the grammatical classifications
3226of the language.
3227
3228A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3229class of syntactically equivalent tokens. You use the symbol in grammar
3230rules to mean that a token in that class is allowed. The symbol is
3231represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3232function returns a token type code to indicate what kind of token has
3233been read. You don't need to know what the code value is; you can use
3234the symbol to stand for it.
bfa74976 3235
f8e1c9e5
AD
3236A @dfn{nonterminal symbol} stands for a class of syntactically
3237equivalent groupings. The symbol name is used in writing grammar rules.
3238By convention, it should be all lower case.
bfa74976 3239
82f3355e
JD
3240Symbol names can contain letters, underscores, periods, and non-initial
3241digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3242with POSIX Yacc. Periods and dashes make symbol names less convenient to
3243use with named references, which require brackets around such names
3244(@pxref{Named References}). Terminal symbols that contain periods or dashes
3245make little sense: since they are not valid symbols (in most programming
3246languages) they are not exported as token names.
bfa74976 3247
931c7513 3248There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3249
3250@itemize @bullet
3251@item
3252A @dfn{named token type} is written with an identifier, like an
c827f760 3253identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3254such name must be defined with a Bison declaration such as
3255@code{%token}. @xref{Token Decl, ,Token Type Names}.
3256
3257@item
3258@cindex character token
3259@cindex literal token
3260@cindex single-character literal
931c7513
RS
3261A @dfn{character token type} (or @dfn{literal character token}) is
3262written in the grammar using the same syntax used in C for character
3263constants; for example, @code{'+'} is a character token type. A
3264character token type doesn't need to be declared unless you need to
3265specify its semantic value data type (@pxref{Value Type, ,Data Types of
3266Semantic Values}), associativity, or precedence (@pxref{Precedence,
3267,Operator Precedence}).
bfa74976
RS
3268
3269By convention, a character token type is used only to represent a
3270token that consists of that particular character. Thus, the token
3271type @code{'+'} is used to represent the character @samp{+} as a
3272token. Nothing enforces this convention, but if you depart from it,
3273your program will confuse other readers.
3274
3275All the usual escape sequences used in character literals in C can be
3276used in Bison as well, but you must not use the null character as a
72d2299c
PE
3277character literal because its numeric code, zero, signifies
3278end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3279for @code{yylex}}). Also, unlike standard C, trigraphs have no
3280special meaning in Bison character literals, nor is backslash-newline
3281allowed.
931c7513
RS
3282
3283@item
3284@cindex string token
3285@cindex literal string token
9ecbd125 3286@cindex multicharacter literal
931c7513
RS
3287A @dfn{literal string token} is written like a C string constant; for
3288example, @code{"<="} is a literal string token. A literal string token
3289doesn't need to be declared unless you need to specify its semantic
14ded682 3290value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3291(@pxref{Precedence}).
3292
3293You can associate the literal string token with a symbolic name as an
3294alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3295Declarations}). If you don't do that, the lexical analyzer has to
3296retrieve the token number for the literal string token from the
3297@code{yytname} table (@pxref{Calling Convention}).
3298
c827f760 3299@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3300
3301By convention, a literal string token is used only to represent a token
3302that consists of that particular string. Thus, you should use the token
3303type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3304does not enforce this convention, but if you depart from it, people who
931c7513
RS
3305read your program will be confused.
3306
3307All the escape sequences used in string literals in C can be used in
92ac3705
PE
3308Bison as well, except that you must not use a null character within a
3309string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3310meaning in Bison string literals, nor is backslash-newline allowed. A
3311literal string token must contain two or more characters; for a token
3312containing just one character, use a character token (see above).
bfa74976
RS
3313@end itemize
3314
3315How you choose to write a terminal symbol has no effect on its
3316grammatical meaning. That depends only on where it appears in rules and
3317on when the parser function returns that symbol.
3318
72d2299c
PE
3319The value returned by @code{yylex} is always one of the terminal
3320symbols, except that a zero or negative value signifies end-of-input.
3321Whichever way you write the token type in the grammar rules, you write
3322it the same way in the definition of @code{yylex}. The numeric code
3323for a character token type is simply the positive numeric code of the
3324character, so @code{yylex} can use the identical value to generate the
3325requisite code, though you may need to convert it to @code{unsigned
3326char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3327Each named token type becomes a C macro in the parser implementation
3328file, so @code{yylex} can use the name to stand for the code. (This
3329is why periods don't make sense in terminal symbols.) @xref{Calling
3330Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3331
3332If @code{yylex} is defined in a separate file, you need to arrange for the
3333token-type macro definitions to be available there. Use the @samp{-d}
3334option when you run Bison, so that it will write these macro definitions
3335into a separate header file @file{@var{name}.tab.h} which you can include
3336in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3337
72d2299c 3338If you want to write a grammar that is portable to any Standard C
9d9b8b70 3339host, you must use only nonnull character tokens taken from the basic
c827f760 3340execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3341digits, the 52 lower- and upper-case English letters, and the
3342characters in the following C-language string:
3343
3344@example
3345"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3346@end example
3347
f8e1c9e5
AD
3348The @code{yylex} function and Bison must use a consistent character set
3349and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3350ASCII environment, but then compile and run the resulting
f8e1c9e5 3351program in an environment that uses an incompatible character set like
8a4281b9
JD
3352EBCDIC, the resulting program may not work because the tables
3353generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3354character tokens. It is standard practice for software distributions to
3355contain C source files that were generated by Bison in an
8a4281b9
JD
3356ASCII environment, so installers on platforms that are
3357incompatible with ASCII must rebuild those files before
f8e1c9e5 3358compiling them.
e966383b 3359
bfa74976
RS
3360The symbol @code{error} is a terminal symbol reserved for error recovery
3361(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3362In particular, @code{yylex} should never return this value. The default
3363value of the error token is 256, unless you explicitly assigned 256 to
3364one of your tokens with a @code{%token} declaration.
bfa74976 3365
342b8b6e 3366@node Rules
bfa74976
RS
3367@section Syntax of Grammar Rules
3368@cindex rule syntax
3369@cindex grammar rule syntax
3370@cindex syntax of grammar rules
3371
3372A Bison grammar rule has the following general form:
3373
3374@example
e425e872 3375@group
5e9b6624 3376@var{result}: @var{components}@dots{};
e425e872 3377@end group
bfa74976
RS
3378@end example
3379
3380@noindent
9ecbd125 3381where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3382and @var{components} are various terminal and nonterminal symbols that
13863333 3383are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3384
3385For example,
3386
3387@example
3388@group
5e9b6624 3389exp: exp '+' exp;
bfa74976
RS
3390@end group
3391@end example
3392
3393@noindent
3394says that two groupings of type @code{exp}, with a @samp{+} token in between,
3395can be combined into a larger grouping of type @code{exp}.
3396
72d2299c
PE
3397White space in rules is significant only to separate symbols. You can add
3398extra white space as you wish.
bfa74976
RS
3399
3400Scattered among the components can be @var{actions} that determine
3401the semantics of the rule. An action looks like this:
3402
3403@example
3404@{@var{C statements}@}
3405@end example
3406
3407@noindent
287c78f6
PE
3408@cindex braced code
3409This is an example of @dfn{braced code}, that is, C code surrounded by
3410braces, much like a compound statement in C@. Braced code can contain
3411any sequence of C tokens, so long as its braces are balanced. Bison
3412does not check the braced code for correctness directly; it merely
ff7571c0
JD
3413copies the code to the parser implementation file, where the C
3414compiler can check it.
287c78f6
PE
3415
3416Within braced code, the balanced-brace count is not affected by braces
3417within comments, string literals, or character constants, but it is
3418affected by the C digraphs @samp{<%} and @samp{%>} that represent
3419braces. At the top level braced code must be terminated by @samp{@}}
3420and not by a digraph. Bison does not look for trigraphs, so if braced
3421code uses trigraphs you should ensure that they do not affect the
3422nesting of braces or the boundaries of comments, string literals, or
3423character constants.
3424
bfa74976
RS
3425Usually there is only one action and it follows the components.
3426@xref{Actions}.
3427
3428@findex |
3429Multiple rules for the same @var{result} can be written separately or can
3430be joined with the vertical-bar character @samp{|} as follows:
3431
bfa74976
RS
3432@example
3433@group
5e9b6624
AD
3434@var{result}:
3435 @var{rule1-components}@dots{}
3436| @var{rule2-components}@dots{}
3437@dots{}
3438;
bfa74976
RS
3439@end group
3440@end example
bfa74976
RS
3441
3442@noindent
3443They are still considered distinct rules even when joined in this way.
3444
3445If @var{components} in a rule is empty, it means that @var{result} can
3446match the empty string. For example, here is how to define a
3447comma-separated sequence of zero or more @code{exp} groupings:
3448
3449@example
3450@group
5e9b6624
AD
3451expseq:
3452 /* empty */
3453| expseq1
3454;
bfa74976
RS
3455@end group
3456
3457@group
5e9b6624
AD
3458expseq1:
3459 exp
3460| expseq1 ',' exp
3461;
bfa74976
RS
3462@end group
3463@end example
3464
3465@noindent
3466It is customary to write a comment @samp{/* empty */} in each rule
3467with no components.
3468
342b8b6e 3469@node Recursion
bfa74976
RS
3470@section Recursive Rules
3471@cindex recursive rule
3472
f8e1c9e5
AD
3473A rule is called @dfn{recursive} when its @var{result} nonterminal
3474appears also on its right hand side. Nearly all Bison grammars need to
3475use recursion, because that is the only way to define a sequence of any
3476number of a particular thing. Consider this recursive definition of a
9ecbd125 3477comma-separated sequence of one or more expressions:
bfa74976
RS
3478
3479@example
3480@group
5e9b6624
AD
3481expseq1:
3482 exp
3483| expseq1 ',' exp
3484;
bfa74976
RS
3485@end group
3486@end example
3487
3488@cindex left recursion
3489@cindex right recursion
3490@noindent
3491Since the recursive use of @code{expseq1} is the leftmost symbol in the
3492right hand side, we call this @dfn{left recursion}. By contrast, here
3493the same construct is defined using @dfn{right recursion}:
3494
3495@example
3496@group
5e9b6624
AD
3497expseq1:
3498 exp
3499| exp ',' expseq1
3500;
bfa74976
RS
3501@end group
3502@end example
3503
3504@noindent
ec3bc396
AD
3505Any kind of sequence can be defined using either left recursion or right
3506recursion, but you should always use left recursion, because it can
3507parse a sequence of any number of elements with bounded stack space.
3508Right recursion uses up space on the Bison stack in proportion to the
3509number of elements in the sequence, because all the elements must be
3510shifted onto the stack before the rule can be applied even once.
3511@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3512of this.
bfa74976
RS
3513
3514@cindex mutual recursion
3515@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3516rule does not appear directly on its right hand side, but does appear
3517in rules for other nonterminals which do appear on its right hand
13863333 3518side.
bfa74976
RS
3519
3520For example:
3521
3522@example
3523@group
5e9b6624
AD
3524expr:
3525 primary
3526| primary '+' primary
3527;
bfa74976
RS
3528@end group
3529
3530@group
5e9b6624
AD
3531primary:
3532 constant
3533| '(' expr ')'
3534;
bfa74976
RS
3535@end group
3536@end example
3537
3538@noindent
3539defines two mutually-recursive nonterminals, since each refers to the
3540other.
3541
342b8b6e 3542@node Semantics
bfa74976
RS
3543@section Defining Language Semantics
3544@cindex defining language semantics
13863333 3545@cindex language semantics, defining
bfa74976
RS
3546
3547The grammar rules for a language determine only the syntax. The semantics
3548are determined by the semantic values associated with various tokens and
3549groupings, and by the actions taken when various groupings are recognized.
3550
3551For example, the calculator calculates properly because the value
3552associated with each expression is the proper number; it adds properly
3553because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3554the numbers associated with @var{x} and @var{y}.
3555
3556@menu
3557* Value Type:: Specifying one data type for all semantic values.
3558* Multiple Types:: Specifying several alternative data types.
3559* Actions:: An action is the semantic definition of a grammar rule.
3560* Action Types:: Specifying data types for actions to operate on.
3561* Mid-Rule Actions:: Most actions go at the end of a rule.
3562 This says when, why and how to use the exceptional
3563 action in the middle of a rule.
3564@end menu
3565
342b8b6e 3566@node Value Type
bfa74976
RS
3567@subsection Data Types of Semantic Values
3568@cindex semantic value type
3569@cindex value type, semantic
3570@cindex data types of semantic values
3571@cindex default data type
3572
3573In a simple program it may be sufficient to use the same data type for
3574the semantic values of all language constructs. This was true in the
8a4281b9 3575RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3576Notation Calculator}).
bfa74976 3577
ddc8ede1
PE
3578Bison normally uses the type @code{int} for semantic values if your
3579program uses the same data type for all language constructs. To
bfa74976
RS
3580specify some other type, define @code{YYSTYPE} as a macro, like this:
3581
3582@example
3583#define YYSTYPE double
3584@end example
3585
3586@noindent
50cce58e
PE
3587@code{YYSTYPE}'s replacement list should be a type name
3588that does not contain parentheses or square brackets.
342b8b6e 3589This macro definition must go in the prologue of the grammar file
75f5aaea 3590(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3591
342b8b6e 3592@node Multiple Types
bfa74976
RS
3593@subsection More Than One Value Type
3594
3595In most programs, you will need different data types for different kinds
3596of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3597@code{int} or @code{long int}, while a string constant needs type
3598@code{char *}, and an identifier might need a pointer to an entry in the
3599symbol table.
bfa74976
RS
3600
3601To use more than one data type for semantic values in one parser, Bison
3602requires you to do two things:
3603
3604@itemize @bullet
3605@item
ddc8ede1 3606Specify the entire collection of possible data types, either by using the
704a47c4 3607@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3608Value Types}), or by using a @code{typedef} or a @code{#define} to
3609define @code{YYSTYPE} to be a union type whose member names are
3610the type tags.
bfa74976
RS
3611
3612@item
14ded682
AD
3613Choose one of those types for each symbol (terminal or nonterminal) for
3614which semantic values are used. This is done for tokens with the
3615@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3616and for groupings with the @code{%type} Bison declaration (@pxref{Type
3617Decl, ,Nonterminal Symbols}).
bfa74976
RS
3618@end itemize
3619
342b8b6e 3620@node Actions
bfa74976
RS
3621@subsection Actions
3622@cindex action
3623@vindex $$
3624@vindex $@var{n}
d013372c
AR
3625@vindex $@var{name}
3626@vindex $[@var{name}]
bfa74976
RS
3627
3628An action accompanies a syntactic rule and contains C code to be executed
3629each time an instance of that rule is recognized. The task of most actions
3630is to compute a semantic value for the grouping built by the rule from the
3631semantic values associated with tokens or smaller groupings.
3632
287c78f6
PE
3633An action consists of braced code containing C statements, and can be
3634placed at any position in the rule;
704a47c4
AD
3635it is executed at that position. Most rules have just one action at the
3636end of the rule, following all the components. Actions in the middle of
3637a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3638Actions, ,Actions in Mid-Rule}).
bfa74976 3639
ff7571c0
JD
3640The C code in an action can refer to the semantic values of the
3641components matched by the rule with the construct @code{$@var{n}},
3642which stands for the value of the @var{n}th component. The semantic
3643value for the grouping being constructed is @code{$$}. In addition,
3644the semantic values of symbols can be accessed with the named
3645references construct @code{$@var{name}} or @code{$[@var{name}]}.
3646Bison translates both of these constructs into expressions of the
3647appropriate type when it copies the actions into the parser
3648implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3649for the current grouping) is translated to a modifiable lvalue, so it
3650can be assigned to.
bfa74976
RS
3651
3652Here is a typical example:
3653
3654@example
3655@group
5e9b6624
AD
3656exp:
3657@dots{}
3658| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3659@end group
3660@end example
3661
d013372c
AR
3662Or, in terms of named references:
3663
3664@example
3665@group
5e9b6624
AD
3666exp[result]:
3667@dots{}
3668| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3669@end group
3670@end example
3671
bfa74976
RS
3672@noindent
3673This rule constructs an @code{exp} from two smaller @code{exp} groupings
3674connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3675(@code{$left} and @code{$right})
bfa74976
RS
3676refer to the semantic values of the two component @code{exp} groupings,
3677which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3678The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3679semantic value of
bfa74976
RS
3680the addition-expression just recognized by the rule. If there were a
3681useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3682referred to as @code{$2}.
bfa74976 3683
a7b15ab9
JD
3684@xref{Named References}, for more information about using the named
3685references construct.
d013372c 3686
3ded9a63
AD
3687Note that the vertical-bar character @samp{|} is really a rule
3688separator, and actions are attached to a single rule. This is a
3689difference with tools like Flex, for which @samp{|} stands for either
3690``or'', or ``the same action as that of the next rule''. In the
3691following example, the action is triggered only when @samp{b} is found:
3692
3693@example
3694@group
3695a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3696@end group
3697@end example
3698
bfa74976
RS
3699@cindex default action
3700If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3701@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3702becomes the value of the whole rule. Of course, the default action is
3703valid only if the two data types match. There is no meaningful default
3704action for an empty rule; every empty rule must have an explicit action
3705unless the rule's value does not matter.
bfa74976
RS
3706
3707@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3708to tokens and groupings on the stack @emph{before} those that match the
3709current rule. This is a very risky practice, and to use it reliably
3710you must be certain of the context in which the rule is applied. Here
3711is a case in which you can use this reliably:
3712
3713@example
3714@group
5e9b6624
AD
3715foo:
3716 expr bar '+' expr @{ @dots{} @}
3717| expr bar '-' expr @{ @dots{} @}
3718;
bfa74976
RS
3719@end group
3720
3721@group
5e9b6624
AD
3722bar:
3723 /* empty */ @{ previous_expr = $0; @}
3724;
bfa74976
RS
3725@end group
3726@end example
3727
3728As long as @code{bar} is used only in the fashion shown here, @code{$0}
3729always refers to the @code{expr} which precedes @code{bar} in the
3730definition of @code{foo}.
3731
32c29292 3732@vindex yylval
742e4900 3733It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3734any, from a semantic action.
3735This semantic value is stored in @code{yylval}.
3736@xref{Action Features, ,Special Features for Use in Actions}.
3737
342b8b6e 3738@node Action Types
bfa74976
RS
3739@subsection Data Types of Values in Actions
3740@cindex action data types
3741@cindex data types in actions
3742
3743If you have chosen a single data type for semantic values, the @code{$$}
3744and @code{$@var{n}} constructs always have that data type.
3745
3746If you have used @code{%union} to specify a variety of data types, then you
3747must declare a choice among these types for each terminal or nonterminal
3748symbol that can have a semantic value. Then each time you use @code{$$} or
3749@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3750in the rule. In this example,
bfa74976
RS
3751
3752@example
3753@group
5e9b6624
AD
3754exp:
3755 @dots{}
3756| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3757@end group
3758@end example
3759
3760@noindent
3761@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3762have the data type declared for the nonterminal symbol @code{exp}. If
3763@code{$2} were used, it would have the data type declared for the
e0c471a9 3764terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3765
3766Alternatively, you can specify the data type when you refer to the value,
3767by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3768reference. For example, if you have defined types as shown here:
3769
3770@example
3771@group
3772%union @{
3773 int itype;
3774 double dtype;
3775@}
3776@end group
3777@end example
3778
3779@noindent
3780then you can write @code{$<itype>1} to refer to the first subunit of the
3781rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3782
342b8b6e 3783@node Mid-Rule Actions
bfa74976
RS
3784@subsection Actions in Mid-Rule
3785@cindex actions in mid-rule
3786@cindex mid-rule actions
3787
3788Occasionally it is useful to put an action in the middle of a rule.
3789These actions are written just like usual end-of-rule actions, but they
3790are executed before the parser even recognizes the following components.
3791
3792A mid-rule action may refer to the components preceding it using
3793@code{$@var{n}}, but it may not refer to subsequent components because
3794it is run before they are parsed.
3795
3796The mid-rule action itself counts as one of the components of the rule.
3797This makes a difference when there is another action later in the same rule
3798(and usually there is another at the end): you have to count the actions
3799along with the symbols when working out which number @var{n} to use in
3800@code{$@var{n}}.
3801
3802The mid-rule action can also have a semantic value. The action can set
3803its value with an assignment to @code{$$}, and actions later in the rule
3804can refer to the value using @code{$@var{n}}. Since there is no symbol
3805to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3806in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3807specify a data type each time you refer to this value.
bfa74976
RS
3808
3809There is no way to set the value of the entire rule with a mid-rule
3810action, because assignments to @code{$$} do not have that effect. The
3811only way to set the value for the entire rule is with an ordinary action
3812at the end of the rule.
3813
3814Here is an example from a hypothetical compiler, handling a @code{let}
3815statement that looks like @samp{let (@var{variable}) @var{statement}} and
3816serves to create a variable named @var{variable} temporarily for the
3817duration of @var{statement}. To parse this construct, we must put
3818@var{variable} into the symbol table while @var{statement} is parsed, then
3819remove it afterward. Here is how it is done:
3820
3821@example
3822@group
5e9b6624
AD
3823stmt:
3824 LET '(' var ')'
3825 @{ $<context>$ = push_context (); declare_variable ($3); @}
3826 stmt
3827 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3828@end group
3829@end example
3830
3831@noindent
3832As soon as @samp{let (@var{variable})} has been recognized, the first
3833action is run. It saves a copy of the current semantic context (the
3834list of accessible variables) as its semantic value, using alternative
3835@code{context} in the data-type union. Then it calls
3836@code{declare_variable} to add the new variable to that list. Once the
3837first action is finished, the embedded statement @code{stmt} can be
3838parsed. Note that the mid-rule action is component number 5, so the
3839@samp{stmt} is component number 6.
3840
3841After the embedded statement is parsed, its semantic value becomes the
3842value of the entire @code{let}-statement. Then the semantic value from the
3843earlier action is used to restore the prior list of variables. This
3844removes the temporary @code{let}-variable from the list so that it won't
3845appear to exist while the rest of the program is parsed.
3846
841a7737
JD
3847@findex %destructor
3848@cindex discarded symbols, mid-rule actions
3849@cindex error recovery, mid-rule actions
3850In the above example, if the parser initiates error recovery (@pxref{Error
3851Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3852it might discard the previous semantic context @code{$<context>5} without
3853restoring it.
3854Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3855Discarded Symbols}).
ec5479ce
JD
3856However, Bison currently provides no means to declare a destructor specific to
3857a particular mid-rule action's semantic value.
841a7737
JD
3858
3859One solution is to bury the mid-rule action inside a nonterminal symbol and to
3860declare a destructor for that symbol:
3861
3862@example
3863@group
3864%type <context> let
3865%destructor @{ pop_context ($$); @} let
3866
3867%%
3868
5e9b6624
AD
3869stmt:
3870 let stmt
3871 @{
3872 $$ = $2;
3873 pop_context ($1);
3874 @};
841a7737 3875
5e9b6624
AD
3876let:
3877 LET '(' var ')'
3878 @{
3879 $$ = push_context ();
3880 declare_variable ($3);
3881 @};
841a7737
JD
3882
3883@end group
3884@end example
3885
3886@noindent
3887Note that the action is now at the end of its rule.
3888Any mid-rule action can be converted to an end-of-rule action in this way, and
3889this is what Bison actually does to implement mid-rule actions.
3890
bfa74976
RS
3891Taking action before a rule is completely recognized often leads to
3892conflicts since the parser must commit to a parse in order to execute the
3893action. For example, the following two rules, without mid-rule actions,
3894can coexist in a working parser because the parser can shift the open-brace
3895token and look at what follows before deciding whether there is a
3896declaration or not:
3897
3898@example
3899@group
5e9b6624
AD
3900compound:
3901 '@{' declarations statements '@}'
3902| '@{' statements '@}'
3903;
bfa74976
RS
3904@end group
3905@end example
3906
3907@noindent
3908But when we add a mid-rule action as follows, the rules become nonfunctional:
3909
3910@example
3911@group
5e9b6624
AD
3912compound:
3913 @{ prepare_for_local_variables (); @}
3914 '@{' declarations statements '@}'
bfa74976
RS
3915@end group
3916@group
5e9b6624
AD
3917| '@{' statements '@}'
3918;
bfa74976
RS
3919@end group
3920@end example
3921
3922@noindent
3923Now the parser is forced to decide whether to run the mid-rule action
3924when it has read no farther than the open-brace. In other words, it
3925must commit to using one rule or the other, without sufficient
3926information to do it correctly. (The open-brace token is what is called
742e4900
JD
3927the @dfn{lookahead} token at this time, since the parser is still
3928deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3929
3930You might think that you could correct the problem by putting identical
3931actions into the two rules, like this:
3932
3933@example
3934@group
5e9b6624
AD
3935compound:
3936 @{ prepare_for_local_variables (); @}
3937 '@{' declarations statements '@}'
3938| @{ prepare_for_local_variables (); @}
3939 '@{' statements '@}'
3940;
bfa74976
RS
3941@end group
3942@end example
3943
3944@noindent
3945But this does not help, because Bison does not realize that the two actions
3946are identical. (Bison never tries to understand the C code in an action.)
3947
3948If the grammar is such that a declaration can be distinguished from a
3949statement by the first token (which is true in C), then one solution which
3950does work is to put the action after the open-brace, like this:
3951
3952@example
3953@group
5e9b6624
AD
3954compound:
3955 '@{' @{ prepare_for_local_variables (); @}
3956 declarations statements '@}'
3957| '@{' statements '@}'
3958;
bfa74976
RS
3959@end group
3960@end example
3961
3962@noindent
3963Now the first token of the following declaration or statement,
3964which would in any case tell Bison which rule to use, can still do so.
3965
3966Another solution is to bury the action inside a nonterminal symbol which
3967serves as a subroutine:
3968
3969@example
3970@group
5e9b6624
AD
3971subroutine:
3972 /* empty */ @{ prepare_for_local_variables (); @}
3973;
bfa74976
RS
3974@end group
3975
3976@group
5e9b6624
AD
3977compound:
3978 subroutine '@{' declarations statements '@}'
3979| subroutine '@{' statements '@}'
3980;
bfa74976
RS
3981@end group
3982@end example
3983
3984@noindent
3985Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3986deciding which rule for @code{compound} it will eventually use.
bfa74976 3987
303834cc 3988@node Tracking Locations
847bf1f5
AD
3989@section Tracking Locations
3990@cindex location
95923bd6
AD
3991@cindex textual location
3992@cindex location, textual
847bf1f5
AD
3993
3994Though grammar rules and semantic actions are enough to write a fully
72d2299c 3995functional parser, it can be useful to process some additional information,
3e259915
MA
3996especially symbol locations.
3997
704a47c4
AD
3998The way locations are handled is defined by providing a data type, and
3999actions to take when rules are matched.
847bf1f5
AD
4000
4001@menu
4002* Location Type:: Specifying a data type for locations.
4003* Actions and Locations:: Using locations in actions.
4004* Location Default Action:: Defining a general way to compute locations.
4005@end menu
4006
342b8b6e 4007@node Location Type
847bf1f5
AD
4008@subsection Data Type of Locations
4009@cindex data type of locations
4010@cindex default location type
4011
4012Defining a data type for locations is much simpler than for semantic values,
4013since all tokens and groupings always use the same type.
4014
50cce58e
PE
4015You can specify the type of locations by defining a macro called
4016@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4017defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4018When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4019four members:
4020
4021@example
6273355b 4022typedef struct YYLTYPE
847bf1f5
AD
4023@{
4024 int first_line;
4025 int first_column;
4026 int last_line;
4027 int last_column;
6273355b 4028@} YYLTYPE;
847bf1f5
AD
4029@end example
4030
d59e456d
AD
4031When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4032initializes all these fields to 1 for @code{yylloc}. To initialize
4033@code{yylloc} with a custom location type (or to chose a different
4034initialization), use the @code{%initial-action} directive. @xref{Initial
4035Action Decl, , Performing Actions before Parsing}.
cd48d21d 4036
342b8b6e 4037@node Actions and Locations
847bf1f5
AD
4038@subsection Actions and Locations
4039@cindex location actions
4040@cindex actions, location
4041@vindex @@$
4042@vindex @@@var{n}
d013372c
AR
4043@vindex @@@var{name}
4044@vindex @@[@var{name}]
847bf1f5
AD
4045
4046Actions are not only useful for defining language semantics, but also for
4047describing the behavior of the output parser with locations.
4048
4049The most obvious way for building locations of syntactic groupings is very
72d2299c 4050similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4051constructs can be used to access the locations of the elements being matched.
4052The location of the @var{n}th component of the right hand side is
4053@code{@@@var{n}}, while the location of the left hand side grouping is
4054@code{@@$}.
4055
d013372c
AR
4056In addition, the named references construct @code{@@@var{name}} and
4057@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4058@xref{Named References}, for more information about using the named
4059references construct.
d013372c 4060
3e259915 4061Here is a basic example using the default data type for locations:
847bf1f5
AD
4062
4063@example
4064@group
5e9b6624
AD
4065exp:
4066 @dots{}
4067| exp '/' exp
4068 @{
4069 @@$.first_column = @@1.first_column;
4070 @@$.first_line = @@1.first_line;
4071 @@$.last_column = @@3.last_column;
4072 @@$.last_line = @@3.last_line;
4073 if ($3)
4074 $$ = $1 / $3;
4075 else
4076 @{
4077 $$ = 1;
4078 fprintf (stderr,
4079 "Division by zero, l%d,c%d-l%d,c%d",
4080 @@3.first_line, @@3.first_column,
4081 @@3.last_line, @@3.last_column);
4082 @}
4083 @}
847bf1f5
AD
4084@end group
4085@end example
4086
3e259915 4087As for semantic values, there is a default action for locations that is
72d2299c 4088run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4089beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4090last symbol.
3e259915 4091
72d2299c 4092With this default action, the location tracking can be fully automatic. The
3e259915
MA
4093example above simply rewrites this way:
4094
4095@example
4096@group
5e9b6624
AD
4097exp:
4098 @dots{}
4099| exp '/' exp
4100 @{
4101 if ($3)
4102 $$ = $1 / $3;
4103 else
4104 @{
4105 $$ = 1;
4106 fprintf (stderr,
4107 "Division by zero, l%d,c%d-l%d,c%d",
4108 @@3.first_line, @@3.first_column,
4109 @@3.last_line, @@3.last_column);
4110 @}
4111 @}
3e259915
MA
4112@end group
4113@end example
847bf1f5 4114
32c29292 4115@vindex yylloc
742e4900 4116It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4117from a semantic action.
4118This location is stored in @code{yylloc}.
4119@xref{Action Features, ,Special Features for Use in Actions}.
4120
342b8b6e 4121@node Location Default Action
847bf1f5
AD
4122@subsection Default Action for Locations
4123@vindex YYLLOC_DEFAULT
8a4281b9 4124@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4125
72d2299c 4126Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4127locations are much more general than semantic values, there is room in
4128the output parser to redefine the default action to take for each
72d2299c 4129rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4130matched, before the associated action is run. It is also invoked
4131while processing a syntax error, to compute the error's location.
8a4281b9 4132Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4133parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4134of that ambiguity.
847bf1f5 4135
3e259915 4136Most of the time, this macro is general enough to suppress location
79282c6c 4137dedicated code from semantic actions.
847bf1f5 4138
72d2299c 4139The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4140the location of the grouping (the result of the computation). When a
766de5eb 4141rule is matched, the second parameter identifies locations of
96b93a3d 4142all right hand side elements of the rule being matched, and the third
8710fc41 4143parameter is the size of the rule's right hand side.
8a4281b9 4144When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4145right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4146When processing a syntax error, the second parameter identifies locations
4147of the symbols that were discarded during error processing, and the third
96b93a3d 4148parameter is the number of discarded symbols.
847bf1f5 4149
766de5eb 4150By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4151
c93f22fc
AD
4152@example
4153@group
4154# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4155do \
4156 if (N) \
4157 @{ \
4158 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4159 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4160 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4161 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4162 @} \
4163 else \
4164 @{ \
4165 (Cur).first_line = (Cur).last_line = \
4166 YYRHSLOC(Rhs, 0).last_line; \
4167 (Cur).first_column = (Cur).last_column = \
4168 YYRHSLOC(Rhs, 0).last_column; \
4169 @} \
4170while (0)
4171@end group
4172@end example
676385e2 4173
aaaa2aae 4174@noindent
766de5eb
PE
4175where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4176in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4177just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4178
3e259915 4179When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4180
3e259915 4181@itemize @bullet
79282c6c 4182@item
72d2299c 4183All arguments are free of side-effects. However, only the first one (the
3e259915 4184result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4185
3e259915 4186@item
766de5eb
PE
4187For consistency with semantic actions, valid indexes within the
4188right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4189valid index, and it refers to the symbol just before the reduction.
4190During error processing @var{n} is always positive.
0ae99356
PE
4191
4192@item
4193Your macro should parenthesize its arguments, if need be, since the
4194actual arguments may not be surrounded by parentheses. Also, your
4195macro should expand to something that can be used as a single
4196statement when it is followed by a semicolon.
3e259915 4197@end itemize
847bf1f5 4198
378e917c 4199@node Named References
a7b15ab9 4200@section Named References
378e917c
JD
4201@cindex named references
4202
a40e77eb
JD
4203As described in the preceding sections, the traditional way to refer to any
4204semantic value or location is a @dfn{positional reference}, which takes the
4205form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4206such a reference is not very descriptive. Moreover, if you later decide to
4207insert or remove symbols in the right-hand side of a grammar rule, the need
4208to renumber such references can be tedious and error-prone.
4209
4210To avoid these issues, you can also refer to a semantic value or location
4211using a @dfn{named reference}. First of all, original symbol names may be
4212used as named references. For example:
378e917c
JD
4213
4214@example
4215@group
4216invocation: op '(' args ')'
4217 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4218@end group
4219@end example
4220
4221@noindent
a40e77eb 4222Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4223
4224@example
4225@group
4226invocation: op '(' args ')'
4227 @{ $$ = new_invocation ($op, $args, @@$); @}
4228@end group
4229@end example
4230
4231@noindent
4232However, sometimes regular symbol names are not sufficient due to
4233ambiguities:
4234
4235@example
4236@group
4237exp: exp '/' exp
4238 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4239
4240exp: exp '/' exp
4241 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4242
4243exp: exp '/' exp
4244 @{ $$ = $1 / $3; @} // No error.
4245@end group
4246@end example
4247
4248@noindent
4249When ambiguity occurs, explicitly declared names may be used for values and
4250locations. Explicit names are declared as a bracketed name after a symbol
4251appearance in rule definitions. For example:
4252@example
4253@group
4254exp[result]: exp[left] '/' exp[right]
4255 @{ $result = $left / $right; @}
4256@end group
4257@end example
4258
4259@noindent
a7b15ab9
JD
4260In order to access a semantic value generated by a mid-rule action, an
4261explicit name may also be declared by putting a bracketed name after the
4262closing brace of the mid-rule action code:
378e917c
JD
4263@example
4264@group
4265exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4266 @{ $res = $left + $right; @}
4267@end group
4268@end example
4269
4270@noindent
4271
4272In references, in order to specify names containing dots and dashes, an explicit
4273bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4274@example
4275@group
762caaf6 4276if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4277 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4278@end group
4279@end example
4280
4281It often happens that named references are followed by a dot, dash or other
4282C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4283@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4284@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4285value. In order to force Bison to recognize @samp{name.suffix} in its
4286entirety as the name of a semantic value, the bracketed syntax
4287@samp{$[name.suffix]} must be used.
4288
4289The named references feature is experimental. More user feedback will help
4290to stabilize it.
378e917c 4291
342b8b6e 4292@node Declarations
bfa74976
RS
4293@section Bison Declarations
4294@cindex declarations, Bison
4295@cindex Bison declarations
4296
4297The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4298used in formulating the grammar and the data types of semantic values.
4299@xref{Symbols}.
4300
4301All token type names (but not single-character literal tokens such as
4302@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4303declared if you need to specify which data type to use for the semantic
4304value (@pxref{Multiple Types, ,More Than One Value Type}).
4305
ff7571c0
JD
4306The first rule in the grammar file also specifies the start symbol, by
4307default. If you want some other symbol to be the start symbol, you
4308must declare it explicitly (@pxref{Language and Grammar, ,Languages
4309and Context-Free Grammars}).
bfa74976
RS
4310
4311@menu
b50d2359 4312* Require Decl:: Requiring a Bison version.
bfa74976
RS
4313* Token Decl:: Declaring terminal symbols.
4314* Precedence Decl:: Declaring terminals with precedence and associativity.
4315* Union Decl:: Declaring the set of all semantic value types.
4316* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4317* Initial Action Decl:: Code run before parsing starts.
72f889cc 4318* Destructor Decl:: Declaring how symbols are freed.
d6328241 4319* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4320* Start Decl:: Specifying the start symbol.
4321* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4322* Push Decl:: Requesting a push parser.
bfa74976 4323* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4324* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4325* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4326@end menu
4327
b50d2359
AD
4328@node Require Decl
4329@subsection Require a Version of Bison
4330@cindex version requirement
4331@cindex requiring a version of Bison
4332@findex %require
4333
4334You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4335the requirement is not met, @command{bison} exits with an error (exit
4336status 63).
b50d2359
AD
4337
4338@example
4339%require "@var{version}"
4340@end example
4341
342b8b6e 4342@node Token Decl
bfa74976
RS
4343@subsection Token Type Names
4344@cindex declaring token type names
4345@cindex token type names, declaring
931c7513 4346@cindex declaring literal string tokens
bfa74976
RS
4347@findex %token
4348
4349The basic way to declare a token type name (terminal symbol) is as follows:
4350
4351@example
4352%token @var{name}
4353@end example
4354
4355Bison will convert this into a @code{#define} directive in
4356the parser, so that the function @code{yylex} (if it is in this file)
4357can use the name @var{name} to stand for this token type's code.
4358
d78f0ac9
AD
4359Alternatively, you can use @code{%left}, @code{%right},
4360@code{%precedence}, or
14ded682
AD
4361@code{%nonassoc} instead of @code{%token}, if you wish to specify
4362associativity and precedence. @xref{Precedence Decl, ,Operator
4363Precedence}.
bfa74976
RS
4364
4365You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4366a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4367following the token name:
bfa74976
RS
4368
4369@example
4370%token NUM 300
1452af69 4371%token XNUM 0x12d // a GNU extension
bfa74976
RS
4372@end example
4373
4374@noindent
4375It is generally best, however, to let Bison choose the numeric codes for
4376all token types. Bison will automatically select codes that don't conflict
e966383b 4377with each other or with normal characters.
bfa74976
RS
4378
4379In the event that the stack type is a union, you must augment the
4380@code{%token} or other token declaration to include the data type
704a47c4
AD
4381alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4382Than One Value Type}).
bfa74976
RS
4383
4384For example:
4385
4386@example
4387@group
4388%union @{ /* define stack type */
4389 double val;
4390 symrec *tptr;
4391@}
4392%token <val> NUM /* define token NUM and its type */
4393@end group
4394@end example
4395
931c7513
RS
4396You can associate a literal string token with a token type name by
4397writing the literal string at the end of a @code{%token}
4398declaration which declares the name. For example:
4399
4400@example
4401%token arrow "=>"
4402@end example
4403
4404@noindent
4405For example, a grammar for the C language might specify these names with
4406equivalent literal string tokens:
4407
4408@example
4409%token <operator> OR "||"
4410%token <operator> LE 134 "<="
4411%left OR "<="
4412@end example
4413
4414@noindent
4415Once you equate the literal string and the token name, you can use them
4416interchangeably in further declarations or the grammar rules. The
4417@code{yylex} function can use the token name or the literal string to
4418obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4419Syntax error messages passed to @code{yyerror} from the parser will reference
4420the literal string instead of the token name.
4421
4422The token numbered as 0 corresponds to end of file; the following line
4423allows for nicer error messages referring to ``end of file'' instead
4424of ``$end'':
4425
4426@example
4427%token END 0 "end of file"
4428@end example
931c7513 4429
342b8b6e 4430@node Precedence Decl
bfa74976
RS
4431@subsection Operator Precedence
4432@cindex precedence declarations
4433@cindex declaring operator precedence
4434@cindex operator precedence, declaring
4435
d78f0ac9
AD
4436Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4437@code{%precedence} declaration to
bfa74976
RS
4438declare a token and specify its precedence and associativity, all at
4439once. These are called @dfn{precedence declarations}.
704a47c4
AD
4440@xref{Precedence, ,Operator Precedence}, for general information on
4441operator precedence.
bfa74976 4442
ab7f29f8 4443The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4444@code{%token}: either
4445
4446@example
4447%left @var{symbols}@dots{}
4448@end example
4449
4450@noindent
4451or
4452
4453@example
4454%left <@var{type}> @var{symbols}@dots{}
4455@end example
4456
4457And indeed any of these declarations serves the purposes of @code{%token}.
4458But in addition, they specify the associativity and relative precedence for
4459all the @var{symbols}:
4460
4461@itemize @bullet
4462@item
4463The associativity of an operator @var{op} determines how repeated uses
4464of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4465@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4466grouping @var{y} with @var{z} first. @code{%left} specifies
4467left-associativity (grouping @var{x} with @var{y} first) and
4468@code{%right} specifies right-associativity (grouping @var{y} with
4469@var{z} first). @code{%nonassoc} specifies no associativity, which
4470means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4471considered a syntax error.
4472
d78f0ac9
AD
4473@code{%precedence} gives only precedence to the @var{symbols}, and
4474defines no associativity at all. Use this to define precedence only,
4475and leave any potential conflict due to associativity enabled.
4476
bfa74976
RS
4477@item
4478The precedence of an operator determines how it nests with other operators.
4479All the tokens declared in a single precedence declaration have equal
4480precedence and nest together according to their associativity.
4481When two tokens declared in different precedence declarations associate,
4482the one declared later has the higher precedence and is grouped first.
4483@end itemize
4484
ab7f29f8
JD
4485For backward compatibility, there is a confusing difference between the
4486argument lists of @code{%token} and precedence declarations.
4487Only a @code{%token} can associate a literal string with a token type name.
4488A precedence declaration always interprets a literal string as a reference to a
4489separate token.
4490For example:
4491
4492@example
4493%left OR "<=" // Does not declare an alias.
4494%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4495@end example
4496
342b8b6e 4497@node Union Decl
bfa74976
RS
4498@subsection The Collection of Value Types
4499@cindex declaring value types
4500@cindex value types, declaring
4501@findex %union
4502
287c78f6
PE
4503The @code{%union} declaration specifies the entire collection of
4504possible data types for semantic values. The keyword @code{%union} is
4505followed by braced code containing the same thing that goes inside a
4506@code{union} in C@.
bfa74976
RS
4507
4508For example:
4509
4510@example
4511@group
4512%union @{
4513 double val;
4514 symrec *tptr;
4515@}
4516@end group
4517@end example
4518
4519@noindent
4520This says that the two alternative types are @code{double} and @code{symrec
4521*}. They are given names @code{val} and @code{tptr}; these names are used
4522in the @code{%token} and @code{%type} declarations to pick one of the types
4523for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4524
8a4281b9 4525As an extension to POSIX, a tag is allowed after the
6273355b
PE
4526@code{union}. For example:
4527
4528@example
4529@group
4530%union value @{
4531 double val;
4532 symrec *tptr;
4533@}
4534@end group
4535@end example
4536
d6ca7905 4537@noindent
6273355b
PE
4538specifies the union tag @code{value}, so the corresponding C type is
4539@code{union value}. If you do not specify a tag, it defaults to
4540@code{YYSTYPE}.
4541
8a4281b9 4542As another extension to POSIX, you may specify multiple
d6ca7905
PE
4543@code{%union} declarations; their contents are concatenated. However,
4544only the first @code{%union} declaration can specify a tag.
4545
6273355b 4546Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4547a semicolon after the closing brace.
4548
ddc8ede1
PE
4549Instead of @code{%union}, you can define and use your own union type
4550@code{YYSTYPE} if your grammar contains at least one
4551@samp{<@var{type}>} tag. For example, you can put the following into
4552a header file @file{parser.h}:
4553
4554@example
4555@group
4556union YYSTYPE @{
4557 double val;
4558 symrec *tptr;
4559@};
4560typedef union YYSTYPE YYSTYPE;
4561@end group
4562@end example
4563
4564@noindent
4565and then your grammar can use the following
4566instead of @code{%union}:
4567
4568@example
4569@group
4570%@{
4571#include "parser.h"
4572%@}
4573%type <val> expr
4574%token <tptr> ID
4575@end group
4576@end example
4577
342b8b6e 4578@node Type Decl
bfa74976
RS
4579@subsection Nonterminal Symbols
4580@cindex declaring value types, nonterminals
4581@cindex value types, nonterminals, declaring
4582@findex %type
4583
4584@noindent
4585When you use @code{%union} to specify multiple value types, you must
4586declare the value type of each nonterminal symbol for which values are
4587used. This is done with a @code{%type} declaration, like this:
4588
4589@example
4590%type <@var{type}> @var{nonterminal}@dots{}
4591@end example
4592
4593@noindent
704a47c4
AD
4594Here @var{nonterminal} is the name of a nonterminal symbol, and
4595@var{type} is the name given in the @code{%union} to the alternative
4596that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4597can give any number of nonterminal symbols in the same @code{%type}
4598declaration, if they have the same value type. Use spaces to separate
4599the symbol names.
bfa74976 4600
931c7513
RS
4601You can also declare the value type of a terminal symbol. To do this,
4602use the same @code{<@var{type}>} construction in a declaration for the
4603terminal symbol. All kinds of token declarations allow
4604@code{<@var{type}>}.
4605
18d192f0
AD
4606@node Initial Action Decl
4607@subsection Performing Actions before Parsing
4608@findex %initial-action
4609
4610Sometimes your parser needs to perform some initializations before
4611parsing. The @code{%initial-action} directive allows for such arbitrary
4612code.
4613
4614@deffn {Directive} %initial-action @{ @var{code} @}
4615@findex %initial-action
287c78f6 4616Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4617@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4618@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4619@code{%parse-param}.
18d192f0
AD
4620@end deffn
4621
451364ed
AD
4622For instance, if your locations use a file name, you may use
4623
4624@example
48b16bbc 4625%parse-param @{ char const *file_name @};
451364ed
AD
4626%initial-action
4627@{
4626a15d 4628 @@$.initialize (file_name);
451364ed
AD
4629@};
4630@end example
4631
18d192f0 4632
72f889cc
AD
4633@node Destructor Decl
4634@subsection Freeing Discarded Symbols
4635@cindex freeing discarded symbols
4636@findex %destructor
12e35840 4637@findex <*>
3ebecc24 4638@findex <>
a85284cf
AD
4639During error recovery (@pxref{Error Recovery}), symbols already pushed
4640on the stack and tokens coming from the rest of the file are discarded
4641until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4642or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4643symbols on the stack must be discarded. Even if the parser succeeds, it
4644must discard the start symbol.
258b75ca
PE
4645
4646When discarded symbols convey heap based information, this memory is
4647lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4648in traditional compilers, it is unacceptable for programs like shells or
4649protocol implementations that may parse and execute indefinitely.
258b75ca 4650
a85284cf
AD
4651The @code{%destructor} directive defines code that is called when a
4652symbol is automatically discarded.
72f889cc
AD
4653
4654@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4655@findex %destructor
287c78f6
PE
4656Invoke the braced @var{code} whenever the parser discards one of the
4657@var{symbols}.
4b367315 4658Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4659with the discarded symbol, and @code{@@$} designates its location.
4660The additional parser parameters are also available (@pxref{Parser Function, ,
4661The Parser Function @code{yyparse}}).
ec5479ce 4662
b2a0b7ca
JD
4663When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4664per-symbol @code{%destructor}.
4665You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4666tag among @var{symbols}.
b2a0b7ca 4667In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4668grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4669per-symbol @code{%destructor}.
4670
12e35840 4671Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4672(These default forms are experimental.
4673More user feedback will help to determine whether they should become permanent
4674features.)
3ebecc24 4675You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4676exactly one @code{%destructor} declaration in your grammar file.
4677The parser will invoke the @var{code} associated with one of these whenever it
4678discards any user-defined grammar symbol that has no per-symbol and no per-type
4679@code{%destructor}.
4680The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4681symbol for which you have formally declared a semantic type tag (@code{%type}
4682counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4683The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4684symbol that has no declared semantic type tag.
72f889cc
AD
4685@end deffn
4686
b2a0b7ca 4687@noindent
12e35840 4688For example:
72f889cc 4689
c93f22fc 4690@example
ec5479ce
JD
4691%union @{ char *string; @}
4692%token <string> STRING1
4693%token <string> STRING2
4694%type <string> string1
4695%type <string> string2
b2a0b7ca
JD
4696%union @{ char character; @}
4697%token <character> CHR
4698%type <character> chr
12e35840
JD
4699%token TAGLESS
4700
b2a0b7ca 4701%destructor @{ @} <character>
12e35840
JD
4702%destructor @{ free ($$); @} <*>
4703%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4704%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4705@end example
72f889cc
AD
4706
4707@noindent
b2a0b7ca
JD
4708guarantees that, when the parser discards any user-defined symbol that has a
4709semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4710to @code{free} by default.
ec5479ce
JD
4711However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4712prints its line number to @code{stdout}.
4713It performs only the second @code{%destructor} in this case, so it invokes
4714@code{free} only once.
12e35840
JD
4715Finally, the parser merely prints a message whenever it discards any symbol,
4716such as @code{TAGLESS}, that has no semantic type tag.
4717
4718A Bison-generated parser invokes the default @code{%destructor}s only for
4719user-defined as opposed to Bison-defined symbols.
4720For example, the parser will not invoke either kind of default
4721@code{%destructor} for the special Bison-defined symbols @code{$accept},
4722@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4723none of which you can reference in your grammar.
4724It also will not invoke either for the @code{error} token (@pxref{Table of
4725Symbols, ,error}), which is always defined by Bison regardless of whether you
4726reference it in your grammar.
4727However, it may invoke one of them for the end token (token 0) if you
4728redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4729
c93f22fc 4730@example
3508ce36 4731%token END 0
c93f22fc 4732@end example
3508ce36 4733
12e35840
JD
4734@cindex actions in mid-rule
4735@cindex mid-rule actions
4736Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4737mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4738That is, Bison does not consider a mid-rule to have a semantic value if you
4739do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4740(where @var{n} is the right-hand side symbol position of the mid-rule) in
4741any later action in that rule. However, if you do reference either, the
4742Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4743it discards the mid-rule symbol.
12e35840 4744
3508ce36
JD
4745@ignore
4746@noindent
4747In the future, it may be possible to redefine the @code{error} token as a
4748nonterminal that captures the discarded symbols.
4749In that case, the parser will invoke the default destructor for it as well.
4750@end ignore
4751
e757bb10
AD
4752@sp 1
4753
4754@cindex discarded symbols
4755@dfn{Discarded symbols} are the following:
4756
4757@itemize
4758@item
4759stacked symbols popped during the first phase of error recovery,
4760@item
4761incoming terminals during the second phase of error recovery,
4762@item
742e4900 4763the current lookahead and the entire stack (except the current
9d9b8b70 4764right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4765@item
4766the start symbol, when the parser succeeds.
e757bb10
AD
4767@end itemize
4768
9d9b8b70
PE
4769The parser can @dfn{return immediately} because of an explicit call to
4770@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4771exhaustion.
4772
29553547 4773Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4774error via @code{YYERROR} are not discarded automatically. As a rule
4775of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4776the memory.
e757bb10 4777
342b8b6e 4778@node Expect Decl
bfa74976
RS
4779@subsection Suppressing Conflict Warnings
4780@cindex suppressing conflict warnings
4781@cindex preventing warnings about conflicts
4782@cindex warnings, preventing
4783@cindex conflicts, suppressing warnings of
4784@findex %expect
d6328241 4785@findex %expect-rr
bfa74976
RS
4786
4787Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4788(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4789have harmless shift/reduce conflicts which are resolved in a predictable
4790way and would be difficult to eliminate. It is desirable to suppress
4791the warning about these conflicts unless the number of conflicts
4792changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4793
4794The declaration looks like this:
4795
4796@example
4797%expect @var{n}
4798@end example
4799
035aa4a0
PE
4800Here @var{n} is a decimal integer. The declaration says there should
4801be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4802Bison reports an error if the number of shift/reduce conflicts differs
4803from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4804
eb45ef3b 4805For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4806serious, and should be eliminated entirely. Bison will always report
8a4281b9 4807reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4808parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4809there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4810also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4811in GLR parsers, using the declaration:
d6328241
PH
4812
4813@example
4814%expect-rr @var{n}
4815@end example
4816
bfa74976
RS
4817In general, using @code{%expect} involves these steps:
4818
4819@itemize @bullet
4820@item
4821Compile your grammar without @code{%expect}. Use the @samp{-v} option
4822to get a verbose list of where the conflicts occur. Bison will also
4823print the number of conflicts.
4824
4825@item
4826Check each of the conflicts to make sure that Bison's default
4827resolution is what you really want. If not, rewrite the grammar and
4828go back to the beginning.
4829
4830@item
4831Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4832number which Bison printed. With GLR parsers, add an
035aa4a0 4833@code{%expect-rr} declaration as well.
bfa74976
RS
4834@end itemize
4835
93d7dde9
JD
4836Now Bison will report an error if you introduce an unexpected conflict,
4837but will keep silent otherwise.
bfa74976 4838
342b8b6e 4839@node Start Decl
bfa74976
RS
4840@subsection The Start-Symbol
4841@cindex declaring the start symbol
4842@cindex start symbol, declaring
4843@cindex default start symbol
4844@findex %start
4845
4846Bison assumes by default that the start symbol for the grammar is the first
4847nonterminal specified in the grammar specification section. The programmer
4848may override this restriction with the @code{%start} declaration as follows:
4849
4850@example
4851%start @var{symbol}
4852@end example
4853
342b8b6e 4854@node Pure Decl
bfa74976
RS
4855@subsection A Pure (Reentrant) Parser
4856@cindex reentrant parser
4857@cindex pure parser
d9df47b6 4858@findex %define api.pure
bfa74976
RS
4859
4860A @dfn{reentrant} program is one which does not alter in the course of
4861execution; in other words, it consists entirely of @dfn{pure} (read-only)
4862code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4863for example, a nonreentrant program may not be safe to call from a signal
4864handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4865program must be called only within interlocks.
4866
70811b85 4867Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4868suitable for most uses, and it permits compatibility with Yacc. (The
4869standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4870statically allocated variables for communication with @code{yylex},
4871including @code{yylval} and @code{yylloc}.)
bfa74976 4872
70811b85 4873Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4874declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4875reentrant. It looks like this:
bfa74976
RS
4876
4877@example
d9df47b6 4878%define api.pure
bfa74976
RS
4879@end example
4880
70811b85
RS
4881The result is that the communication variables @code{yylval} and
4882@code{yylloc} become local variables in @code{yyparse}, and a different
4883calling convention is used for the lexical analyzer function
4884@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4885Parsers}, for the details of this. The variable @code{yynerrs}
4886becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4887of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4888Reporting Function @code{yyerror}}). The convention for calling
4889@code{yyparse} itself is unchanged.
4890
4891Whether the parser is pure has nothing to do with the grammar rules.
4892You can generate either a pure parser or a nonreentrant parser from any
4893valid grammar.
bfa74976 4894
9987d1b3
JD
4895@node Push Decl
4896@subsection A Push Parser
4897@cindex push parser
4898@cindex push parser
67212941 4899@findex %define api.push-pull
9987d1b3 4900
59da312b
JD
4901(The current push parsing interface is experimental and may evolve.
4902More user feedback will help to stabilize it.)
4903
f4101aa6
AD
4904A pull parser is called once and it takes control until all its input
4905is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4906each time a new token is made available.
4907
f4101aa6 4908A push parser is typically useful when the parser is part of a
9987d1b3 4909main event loop in the client's application. This is typically
f4101aa6
AD
4910a requirement of a GUI, when the main event loop needs to be triggered
4911within a certain time period.
9987d1b3 4912
d782395d
JD
4913Normally, Bison generates a pull parser.
4914The following Bison declaration says that you want the parser to be a push
35c1e5f0 4915parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4916
4917@example
cf499cff 4918%define api.push-pull push
9987d1b3
JD
4919@end example
4920
4921In almost all cases, you want to ensure that your push parser is also
4922a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4923time you should create an impure push parser is to have backwards
9987d1b3
JD
4924compatibility with the impure Yacc pull mode interface. Unless you know
4925what you are doing, your declarations should look like this:
4926
4927@example
d9df47b6 4928%define api.pure
cf499cff 4929%define api.push-pull push
9987d1b3
JD
4930@end example
4931
f4101aa6
AD
4932There is a major notable functional difference between the pure push parser
4933and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4934many parser instances, of the same type of parser, in memory at the same time.
4935An impure push parser should only use one parser at a time.
4936
4937When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4938the generated parser. @code{yypstate} is a structure that the generated
4939parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4940function that will create a new parser instance. @code{yypstate_delete}
4941will free the resources associated with the corresponding parser instance.
f4101aa6 4942Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4943token is available to provide the parser. A trivial example
4944of using a pure push parser would look like this:
4945
4946@example
4947int status;
4948yypstate *ps = yypstate_new ();
4949do @{
4950 status = yypush_parse (ps, yylex (), NULL);
4951@} while (status == YYPUSH_MORE);
4952yypstate_delete (ps);
4953@end example
4954
4955If the user decided to use an impure push parser, a few things about
f4101aa6 4956the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4957a global variable instead of a variable in the @code{yypush_parse} function.
4958For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4959changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4960example would thus look like this:
4961
4962@example
4963extern int yychar;
4964int status;
4965yypstate *ps = yypstate_new ();
4966do @{
4967 yychar = yylex ();
4968 status = yypush_parse (ps);
4969@} while (status == YYPUSH_MORE);
4970yypstate_delete (ps);
4971@end example
4972
f4101aa6 4973That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4974for use by the next invocation of the @code{yypush_parse} function.
4975
f4101aa6 4976Bison also supports both the push parser interface along with the pull parser
9987d1b3 4977interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4978you should replace the @samp{%define api.push-pull push} declaration with the
4979@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4980the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4981and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4982would be used. However, the user should note that it is implemented in the
d782395d
JD
4983generated parser by calling @code{yypull_parse}.
4984This makes the @code{yyparse} function that is generated with the
cf499cff 4985@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4986@code{yyparse} function. If the user
4987calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4988stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4989and then @code{yypull_parse} the rest of the input stream. If you would like
4990to switch back and forth between between parsing styles, you would have to
4991write your own @code{yypull_parse} function that knows when to quit looking
4992for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4993like this:
4994
4995@example
4996yypstate *ps = yypstate_new ();
4997yypull_parse (ps); /* Will call the lexer */
4998yypstate_delete (ps);
4999@end example
5000
67501061 5001Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5002the generated parser with @samp{%define api.push-pull both} as it did for
5003@samp{%define api.push-pull push}.
9987d1b3 5004
342b8b6e 5005@node Decl Summary
bfa74976
RS
5006@subsection Bison Declaration Summary
5007@cindex Bison declaration summary
5008@cindex declaration summary
5009@cindex summary, Bison declaration
5010
d8988b2f 5011Here is a summary of the declarations used to define a grammar:
bfa74976 5012
18b519c0 5013@deffn {Directive} %union
bfa74976
RS
5014Declare the collection of data types that semantic values may have
5015(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5016@end deffn
bfa74976 5017
18b519c0 5018@deffn {Directive} %token
bfa74976
RS
5019Declare a terminal symbol (token type name) with no precedence
5020or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5021@end deffn
bfa74976 5022
18b519c0 5023@deffn {Directive} %right
bfa74976
RS
5024Declare a terminal symbol (token type name) that is right-associative
5025(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5026@end deffn
bfa74976 5027
18b519c0 5028@deffn {Directive} %left
bfa74976
RS
5029Declare a terminal symbol (token type name) that is left-associative
5030(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5031@end deffn
bfa74976 5032
18b519c0 5033@deffn {Directive} %nonassoc
bfa74976 5034Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5035(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5036Using it in a way that would be associative is a syntax error.
5037@end deffn
5038
91d2c560 5039@ifset defaultprec
39a06c25 5040@deffn {Directive} %default-prec
22fccf95 5041Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5042(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5043@end deffn
91d2c560 5044@end ifset
bfa74976 5045
18b519c0 5046@deffn {Directive} %type
bfa74976
RS
5047Declare the type of semantic values for a nonterminal symbol
5048(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5049@end deffn
bfa74976 5050
18b519c0 5051@deffn {Directive} %start
89cab50d
AD
5052Specify the grammar's start symbol (@pxref{Start Decl, ,The
5053Start-Symbol}).
18b519c0 5054@end deffn
bfa74976 5055
18b519c0 5056@deffn {Directive} %expect
bfa74976
RS
5057Declare the expected number of shift-reduce conflicts
5058(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5059@end deffn
5060
bfa74976 5061
d8988b2f
AD
5062@sp 1
5063@noindent
5064In order to change the behavior of @command{bison}, use the following
5065directives:
5066
148d66d8 5067@deffn {Directive} %code @{@var{code}@}
e0c07222 5068@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5069@findex %code
e0c07222
JD
5070Insert @var{code} verbatim into the output parser source at the
5071default location or at the location specified by @var{qualifier}.
5072@xref{%code Summary}.
148d66d8
JD
5073@end deffn
5074
18b519c0 5075@deffn {Directive} %debug
fa819509
AD
5076Instrument the output parser for traces. Obsoleted by @samp{%define
5077parse.trace}.
ec3bc396 5078@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5079@end deffn
d8988b2f 5080
35c1e5f0
JD
5081@deffn {Directive} %define @var{variable}
5082@deffnx {Directive} %define @var{variable} @var{value}
5083@deffnx {Directive} %define @var{variable} "@var{value}"
5084Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5085@end deffn
5086
5087@deffn {Directive} %defines
5088Write a parser header file containing macro definitions for the token
5089type names defined in the grammar as well as a few other declarations.
5090If the parser implementation file is named @file{@var{name}.c} then
5091the parser header file is named @file{@var{name}.h}.
5092
5093For C parsers, the parser header file declares @code{YYSTYPE} unless
5094@code{YYSTYPE} is already defined as a macro or you have used a
5095@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5096you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5097Value Type}) with components that require other definitions, or if you
5098have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5099Type, ,Data Types of Semantic Values}), you need to arrange for these
5100definitions to be propagated to all modules, e.g., by putting them in
5101a prerequisite header that is included both by your parser and by any
5102other module that needs @code{YYSTYPE}.
5103
5104Unless your parser is pure, the parser header file declares
5105@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5106(Reentrant) Parser}.
5107
5108If you have also used locations, the parser header file declares
303834cc
JD
5109@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5110@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5111
5112This parser header file is normally essential if you wish to put the
5113definition of @code{yylex} in a separate source file, because
5114@code{yylex} typically needs to be able to refer to the
5115above-mentioned declarations and to the token type codes. @xref{Token
5116Values, ,Semantic Values of Tokens}.
5117
5118@findex %code requires
5119@findex %code provides
5120If you have declared @code{%code requires} or @code{%code provides}, the output
5121header also contains their code.
5122@xref{%code Summary}.
5123@end deffn
5124
5125@deffn {Directive} %defines @var{defines-file}
5126Same as above, but save in the file @var{defines-file}.
5127@end deffn
5128
5129@deffn {Directive} %destructor
5130Specify how the parser should reclaim the memory associated to
5131discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5132@end deffn
5133
5134@deffn {Directive} %file-prefix "@var{prefix}"
5135Specify a prefix to use for all Bison output file names. The names
5136are chosen as if the grammar file were named @file{@var{prefix}.y}.
5137@end deffn
5138
5139@deffn {Directive} %language "@var{language}"
5140Specify the programming language for the generated parser. Currently
5141supported languages include C, C++, and Java.
5142@var{language} is case-insensitive.
5143
5144This directive is experimental and its effect may be modified in future
5145releases.
5146@end deffn
5147
5148@deffn {Directive} %locations
5149Generate the code processing the locations (@pxref{Action Features,
5150,Special Features for Use in Actions}). This mode is enabled as soon as
5151the grammar uses the special @samp{@@@var{n}} tokens, but if your
5152grammar does not use it, using @samp{%locations} allows for more
5153accurate syntax error messages.
5154@end deffn
5155
5156@deffn {Directive} %name-prefix "@var{prefix}"
5157Rename the external symbols used in the parser so that they start with
5158@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5159in C parsers
5160is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5161@code{yylval}, @code{yychar}, @code{yydebug}, and
5162(if locations are used) @code{yylloc}. If you use a push parser,
5163@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5164@code{yypstate_new} and @code{yypstate_delete} will
5165also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5166names become @code{c_parse}, @code{c_lex}, and so on.
5167For C++ parsers, see the @samp{%define api.namespace} documentation in this
5168section.
5169@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5170@end deffn
5171
5172@ifset defaultprec
5173@deffn {Directive} %no-default-prec
5174Do not assign a precedence to rules lacking an explicit @code{%prec}
5175modifier (@pxref{Contextual Precedence, ,Context-Dependent
5176Precedence}).
5177@end deffn
5178@end ifset
5179
5180@deffn {Directive} %no-lines
5181Don't generate any @code{#line} preprocessor commands in the parser
5182implementation file. Ordinarily Bison writes these commands in the
5183parser implementation file so that the C compiler and debuggers will
5184associate errors and object code with your source file (the grammar
5185file). This directive causes them to associate errors with the parser
5186implementation file, treating it as an independent source file in its
5187own right.
5188@end deffn
5189
5190@deffn {Directive} %output "@var{file}"
5191Specify @var{file} for the parser implementation file.
5192@end deffn
5193
5194@deffn {Directive} %pure-parser
5195Deprecated version of @samp{%define api.pure} (@pxref{%define
5196Summary,,api.pure}), for which Bison is more careful to warn about
5197unreasonable usage.
5198@end deffn
5199
5200@deffn {Directive} %require "@var{version}"
5201Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5202Require a Version of Bison}.
5203@end deffn
5204
5205@deffn {Directive} %skeleton "@var{file}"
5206Specify the skeleton to use.
5207
5208@c You probably don't need this option unless you are developing Bison.
5209@c You should use @code{%language} if you want to specify the skeleton for a
5210@c different language, because it is clearer and because it will always choose the
5211@c correct skeleton for non-deterministic or push parsers.
5212
5213If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5214file in the Bison installation directory.
5215If it does, @var{file} is an absolute file name or a file name relative to the
5216directory of the grammar file.
5217This is similar to how most shells resolve commands.
5218@end deffn
5219
5220@deffn {Directive} %token-table
5221Generate an array of token names in the parser implementation file.
5222The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5223the name of the token whose internal Bison token code number is
5224@var{i}. The first three elements of @code{yytname} correspond to the
5225predefined tokens @code{"$end"}, @code{"error"}, and
5226@code{"$undefined"}; after these come the symbols defined in the
5227grammar file.
5228
5229The name in the table includes all the characters needed to represent
5230the token in Bison. For single-character literals and literal
5231strings, this includes the surrounding quoting characters and any
5232escape sequences. For example, the Bison single-character literal
5233@code{'+'} corresponds to a three-character name, represented in C as
5234@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5235corresponds to a five-character name, represented in C as
5236@code{"\"\\\\/\""}.
5237
5238When you specify @code{%token-table}, Bison also generates macro
5239definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5240@code{YYNRULES}, and @code{YYNSTATES}:
5241
5242@table @code
5243@item YYNTOKENS
5244The highest token number, plus one.
5245@item YYNNTS
5246The number of nonterminal symbols.
5247@item YYNRULES
5248The number of grammar rules,
5249@item YYNSTATES
5250The number of parser states (@pxref{Parser States}).
5251@end table
5252@end deffn
5253
5254@deffn {Directive} %verbose
5255Write an extra output file containing verbose descriptions of the
5256parser states and what is done for each type of lookahead token in
5257that state. @xref{Understanding, , Understanding Your Parser}, for more
5258information.
5259@end deffn
5260
5261@deffn {Directive} %yacc
5262Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5263including its naming conventions. @xref{Bison Options}, for more.
5264@end deffn
5265
5266
5267@node %define Summary
5268@subsection %define Summary
51151d91
JD
5269
5270There are many features of Bison's behavior that can be controlled by
5271assigning the feature a single value. For historical reasons, some
5272such features are assigned values by dedicated directives, such as
5273@code{%start}, which assigns the start symbol. However, newer such
5274features are associated with variables, which are assigned by the
5275@code{%define} directive:
5276
c1d19e10 5277@deffn {Directive} %define @var{variable}
cf499cff 5278@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5279@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5280Define @var{variable} to @var{value}.
9611cfa2 5281
51151d91
JD
5282@var{value} must be placed in quotation marks if it contains any
5283character other than a letter, underscore, period, or non-initial dash
5284or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5285to specifying @code{""}.
9611cfa2 5286
51151d91
JD
5287It is an error if a @var{variable} is defined by @code{%define}
5288multiple times, but see @ref{Bison Options,,-D
5289@var{name}[=@var{value}]}.
5290@end deffn
cf499cff 5291
51151d91
JD
5292The rest of this section summarizes variables and values that
5293@code{%define} accepts.
9611cfa2 5294
51151d91
JD
5295Some @var{variable}s take Boolean values. In this case, Bison will
5296complain if the variable definition does not meet one of the following
5297four conditions:
9611cfa2
JD
5298
5299@enumerate
cf499cff 5300@item @code{@var{value}} is @code{true}
9611cfa2 5301
cf499cff
JD
5302@item @code{@var{value}} is omitted (or @code{""} is specified).
5303This is equivalent to @code{true}.
9611cfa2 5304
cf499cff 5305@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5306
5307@item @var{variable} is never defined.
c6abeab1 5308In this case, Bison selects a default value.
9611cfa2 5309@end enumerate
148d66d8 5310
c6abeab1
JD
5311What @var{variable}s are accepted, as well as their meanings and default
5312values, depend on the selected target language and/or the parser
5313skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5314Summary,,%skeleton}).
5315Unaccepted @var{variable}s produce an error.
793fbca5
JD
5316Some of the accepted @var{variable}s are:
5317
fa819509 5318@table @code
6b5a0de9 5319@c ================================================== api.namespace
67501061
AD
5320@item api.namespace
5321@findex %define api.namespace
5322@itemize
5323@item Languages(s): C++
5324
f1b238df 5325@item Purpose: Specify the namespace for the parser class.
67501061
AD
5326For example, if you specify:
5327
c93f22fc 5328@example
67501061 5329%define api.namespace "foo::bar"
c93f22fc 5330@end example
67501061
AD
5331
5332Bison uses @code{foo::bar} verbatim in references such as:
5333
c93f22fc 5334@example
67501061 5335foo::bar::parser::semantic_type
c93f22fc 5336@end example
67501061
AD
5337
5338However, to open a namespace, Bison removes any leading @code{::} and then
5339splits on any remaining occurrences:
5340
c93f22fc 5341@example
67501061
AD
5342namespace foo @{ namespace bar @{
5343 class position;
5344 class location;
5345@} @}
c93f22fc 5346@end example
67501061
AD
5347
5348@item Accepted Values:
5349Any absolute or relative C++ namespace reference without a trailing
5350@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5351
5352@item Default Value:
5353The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5354This usage of @code{%name-prefix} is for backward compatibility and can
5355be confusing since @code{%name-prefix} also specifies the textual prefix
5356for the lexical analyzer function. Thus, if you specify
5357@code{%name-prefix}, it is best to also specify @samp{%define
5358api.namespace} so that @code{%name-prefix} @emph{only} affects the
5359lexical analyzer function. For example, if you specify:
5360
c93f22fc 5361@example
67501061
AD
5362%define api.namespace "foo"
5363%name-prefix "bar::"
c93f22fc 5364@end example
67501061
AD
5365
5366The parser namespace is @code{foo} and @code{yylex} is referenced as
5367@code{bar::lex}.
5368@end itemize
5369@c namespace
5370
5371
5372
5373@c ================================================== api.pure
d9df47b6
JD
5374@item api.pure
5375@findex %define api.pure
5376
5377@itemize @bullet
5378@item Language(s): C
5379
5380@item Purpose: Request a pure (reentrant) parser program.
5381@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5382
5383@item Accepted Values: Boolean
5384
cf499cff 5385@item Default Value: @code{false}
d9df47b6 5386@end itemize
71b00ed8 5387@c api.pure
d9df47b6 5388
67501061
AD
5389
5390
5391@c ================================================== api.push-pull
67212941
JD
5392@item api.push-pull
5393@findex %define api.push-pull
793fbca5
JD
5394
5395@itemize @bullet
eb45ef3b 5396@item Language(s): C (deterministic parsers only)
793fbca5 5397
f1b238df 5398@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5399@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5400(The current push parsing interface is experimental and may evolve.
5401More user feedback will help to stabilize it.)
793fbca5 5402
cf499cff 5403@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5404
cf499cff 5405@item Default Value: @code{pull}
793fbca5 5406@end itemize
67212941 5407@c api.push-pull
71b00ed8 5408
6b5a0de9
AD
5409
5410
5411@c ================================================== api.tokens.prefix
4c6622c2
AD
5412@item api.tokens.prefix
5413@findex %define api.tokens.prefix
5414
5415@itemize
5416@item Languages(s): all
5417
5418@item Purpose:
5419Add a prefix to the token names when generating their definition in the
5420target language. For instance
5421
5422@example
5423%token FILE for ERROR
5424%define api.tokens.prefix "TOK_"
5425%%
5426start: FILE for ERROR;
5427@end example
5428
5429@noindent
5430generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5431and @code{TOK_ERROR} in the generated source files. In particular, the
5432scanner must use these prefixed token names, while the grammar itself
5433may still use the short names (as in the sample rule given above). The
5434generated informational files (@file{*.output}, @file{*.xml},
5435@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5436and @ref{Calc++ Scanner}, for a complete example.
5437
5438@item Accepted Values:
5439Any string. Should be a valid identifier prefix in the target language,
5440in other words, it should typically be an identifier itself (sequence of
5441letters, underscores, and ---not at the beginning--- digits).
5442
5443@item Default Value:
5444empty
5445@end itemize
5446@c api.tokens.prefix
5447
5448
3cdc21cf 5449@c ================================================== lex_symbol
84072495 5450@item lex_symbol
3cdc21cf
AD
5451@findex %define lex_symbol
5452
5453@itemize @bullet
5454@item Language(s):
5455C++
5456
5457@item Purpose:
5458When variant-based semantic values are enabled (@pxref{C++ Variants}),
5459request that symbols be handled as a whole (type, value, and possibly
5460location) in the scanner. @xref{Complete Symbols}, for details.
5461
5462@item Accepted Values:
5463Boolean.
5464
5465@item Default Value:
5466@code{false}
5467@end itemize
5468@c lex_symbol
5469
5470
6b5a0de9
AD
5471@c ================================================== lr.default-reductions
5472
5bab9d08 5473@item lr.default-reductions
5bab9d08 5474@findex %define lr.default-reductions
eb45ef3b
JD
5475
5476@itemize @bullet
5477@item Language(s): all
5478
fcf834f9 5479@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5480contain default reductions. @xref{Default Reductions}. (The ability to
5481specify where default reductions should be used is experimental. More user
5482feedback will help to stabilize it.)
eb45ef3b 5483
f0ad1b2f 5484@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5485@item Default Value:
5486@itemize
cf499cff 5487@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5488@item @code{most} otherwise.
eb45ef3b
JD
5489@end itemize
5490@end itemize
5491
6b5a0de9
AD
5492@c ============================================ lr.keep-unreachable-states
5493
67212941
JD
5494@item lr.keep-unreachable-states
5495@findex %define lr.keep-unreachable-states
31984206
JD
5496
5497@itemize @bullet
5498@item Language(s): all
f1b238df 5499@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5500remain in the parser tables. @xref{Unreachable States}.
31984206 5501@item Accepted Values: Boolean
cf499cff 5502@item Default Value: @code{false}
31984206 5503@end itemize
67212941 5504@c lr.keep-unreachable-states
31984206 5505
6b5a0de9
AD
5506@c ================================================== lr.type
5507
eb45ef3b
JD
5508@item lr.type
5509@findex %define lr.type
eb45ef3b
JD
5510
5511@itemize @bullet
5512@item Language(s): all
5513
f1b238df 5514@item Purpose: Specify the type of parser tables within the
7fceb615 5515LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5516More user feedback will help to stabilize it.)
5517
7fceb615 5518@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5519
cf499cff 5520@item Default Value: @code{lalr}
eb45ef3b
JD
5521@end itemize
5522
67501061
AD
5523
5524@c ================================================== namespace
793fbca5
JD
5525@item namespace
5526@findex %define namespace
67501061 5527Obsoleted by @code{api.namespace}
fa819509
AD
5528@c namespace
5529
31b850d2
AD
5530
5531@c ================================================== parse.assert
0c90a1f5
AD
5532@item parse.assert
5533@findex %define parse.assert
5534
5535@itemize
5536@item Languages(s): C++
5537
5538@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5539In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5540constructed and
0c90a1f5
AD
5541destroyed properly. This option checks these constraints.
5542
5543@item Accepted Values: Boolean
5544
5545@item Default Value: @code{false}
5546@end itemize
5547@c parse.assert
5548
31b850d2
AD
5549
5550@c ================================================== parse.error
5551@item parse.error
5552@findex %define parse.error
5553@itemize
5554@item Languages(s):
fcf834f9 5555all
31b850d2
AD
5556@item Purpose:
5557Control the kind of error messages passed to the error reporting
5558function. @xref{Error Reporting, ,The Error Reporting Function
5559@code{yyerror}}.
5560@item Accepted Values:
5561@itemize
cf499cff 5562@item @code{simple}
31b850d2
AD
5563Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5564error"}}.
cf499cff 5565@item @code{verbose}
7fceb615
JD
5566Error messages report the unexpected token, and possibly the expected ones.
5567However, this report can often be incorrect when LAC is not enabled
5568(@pxref{LAC}).
31b850d2
AD
5569@end itemize
5570
5571@item Default Value:
5572@code{simple}
5573@end itemize
5574@c parse.error
5575
5576
fcf834f9
JD
5577@c ================================================== parse.lac
5578@item parse.lac
5579@findex %define parse.lac
fcf834f9
JD
5580
5581@itemize
7fceb615 5582@item Languages(s): C (deterministic parsers only)
fcf834f9 5583
8a4281b9 5584@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5585syntax error handling. @xref{LAC}.
fcf834f9 5586@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5587@item Default Value: @code{none}
5588@end itemize
5589@c parse.lac
5590
31b850d2 5591@c ================================================== parse.trace
fa819509
AD
5592@item parse.trace
5593@findex %define parse.trace
5594
5595@itemize
5596@item Languages(s): C, C++
5597
5598@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5599In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5600file if it is not already defined, so that the debugging facilities are
5601compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5602
fa819509
AD
5603@item Accepted Values: Boolean
5604
5605@item Default Value: @code{false}
5606@end itemize
fa819509 5607@c parse.trace
99c08fb6 5608
3cdc21cf
AD
5609@c ================================================== variant
5610@item variant
5611@findex %define variant
5612
5613@itemize @bullet
5614@item Language(s):
5615C++
5616
5617@item Purpose:
f1b238df 5618Request variant-based semantic values.
3cdc21cf
AD
5619@xref{C++ Variants}.
5620
5621@item Accepted Values:
5622Boolean.
5623
5624@item Default Value:
5625@code{false}
5626@end itemize
5627@c variant
99c08fb6 5628@end table
592d0b1e 5629
d8988b2f 5630
e0c07222
JD
5631@node %code Summary
5632@subsection %code Summary
e0c07222 5633@findex %code
e0c07222 5634@cindex Prologue
51151d91
JD
5635
5636The @code{%code} directive inserts code verbatim into the output
5637parser source at any of a predefined set of locations. It thus serves
5638as a flexible and user-friendly alternative to the traditional Yacc
5639prologue, @code{%@{@var{code}%@}}. This section summarizes the
5640functionality of @code{%code} for the various target languages
5641supported by Bison. For a detailed discussion of how to use
5642@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5643is advantageous to do so, @pxref{Prologue Alternatives}.
5644
5645@deffn {Directive} %code @{@var{code}@}
5646This is the unqualified form of the @code{%code} directive. It
5647inserts @var{code} verbatim at a language-dependent default location
5648in the parser implementation.
5649
e0c07222 5650For C/C++, the default location is the parser implementation file
51151d91
JD
5651after the usual contents of the parser header file. Thus, the
5652unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5653
5654For Java, the default location is inside the parser class.
5655@end deffn
5656
5657@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5658This is the qualified form of the @code{%code} directive.
51151d91
JD
5659@var{qualifier} identifies the purpose of @var{code} and thus the
5660location(s) where Bison should insert it. That is, if you need to
5661specify location-sensitive @var{code} that does not belong at the
5662default location selected by the unqualified @code{%code} form, use
5663this form instead.
5664@end deffn
5665
5666For any particular qualifier or for the unqualified form, if there are
5667multiple occurrences of the @code{%code} directive, Bison concatenates
5668the specified code in the order in which it appears in the grammar
5669file.
e0c07222 5670
51151d91
JD
5671Not all qualifiers are accepted for all target languages. Unaccepted
5672qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5673
84072495 5674@table @code
e0c07222
JD
5675@item requires
5676@findex %code requires
5677
5678@itemize @bullet
5679@item Language(s): C, C++
5680
5681@item Purpose: This is the best place to write dependency code required for
5682@code{YYSTYPE} and @code{YYLTYPE}.
5683In other words, it's the best place to define types referenced in @code{%union}
5684directives, and it's the best place to override Bison's default @code{YYSTYPE}
5685and @code{YYLTYPE} definitions.
5686
5687@item Location(s): The parser header file and the parser implementation file
5688before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5689definitions.
5690@end itemize
5691
5692@item provides
5693@findex %code provides
5694
5695@itemize @bullet
5696@item Language(s): C, C++
5697
5698@item Purpose: This is the best place to write additional definitions and
5699declarations that should be provided to other modules.
5700
5701@item Location(s): The parser header file and the parser implementation
5702file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5703token definitions.
5704@end itemize
5705
5706@item top
5707@findex %code top
5708
5709@itemize @bullet
5710@item Language(s): C, C++
5711
5712@item Purpose: The unqualified @code{%code} or @code{%code requires}
5713should usually be more appropriate than @code{%code top}. However,
5714occasionally it is necessary to insert code much nearer the top of the
5715parser implementation file. For example:
5716
c93f22fc 5717@example
e0c07222
JD
5718%code top @{
5719 #define _GNU_SOURCE
5720 #include <stdio.h>
5721@}
c93f22fc 5722@end example
e0c07222
JD
5723
5724@item Location(s): Near the top of the parser implementation file.
5725@end itemize
5726
5727@item imports
5728@findex %code imports
5729
5730@itemize @bullet
5731@item Language(s): Java
5732
5733@item Purpose: This is the best place to write Java import directives.
5734
5735@item Location(s): The parser Java file after any Java package directive and
5736before any class definitions.
5737@end itemize
84072495 5738@end table
e0c07222 5739
51151d91
JD
5740Though we say the insertion locations are language-dependent, they are
5741technically skeleton-dependent. Writers of non-standard skeletons
5742however should choose their locations consistently with the behavior
5743of the standard Bison skeletons.
e0c07222 5744
d8988b2f 5745
342b8b6e 5746@node Multiple Parsers
bfa74976
RS
5747@section Multiple Parsers in the Same Program
5748
5749Most programs that use Bison parse only one language and therefore contain
5750only one Bison parser. But what if you want to parse more than one
5751language with the same program? Then you need to avoid a name conflict
5752between different definitions of @code{yyparse}, @code{yylval}, and so on.
5753
5754The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5755(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5756functions and variables of the Bison parser to start with @var{prefix}
5757instead of @samp{yy}. You can use this to give each parser distinct
5758names that do not conflict.
bfa74976
RS
5759
5760The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5761@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5762@code{yychar} and @code{yydebug}. If you use a push parser,
5763@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5764@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5765For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5766@code{clex}, and so on.
bfa74976
RS
5767
5768@strong{All the other variables and macros associated with Bison are not
5769renamed.} These others are not global; there is no conflict if the same
5770name is used in different parsers. For example, @code{YYSTYPE} is not
5771renamed, but defining this in different ways in different parsers causes
5772no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5773
ff7571c0
JD
5774The @samp{-p} option works by adding macro definitions to the
5775beginning of the parser implementation file, defining @code{yyparse}
5776as @code{@var{prefix}parse}, and so on. This effectively substitutes
5777one name for the other in the entire parser implementation file.
bfa74976 5778
342b8b6e 5779@node Interface
bfa74976
RS
5780@chapter Parser C-Language Interface
5781@cindex C-language interface
5782@cindex interface
5783
5784The Bison parser is actually a C function named @code{yyparse}. Here we
5785describe the interface conventions of @code{yyparse} and the other
5786functions that it needs to use.
5787
5788Keep in mind that the parser uses many C identifiers starting with
5789@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5790identifier (aside from those in this manual) in an action or in epilogue
5791in the grammar file, you are likely to run into trouble.
bfa74976
RS
5792
5793@menu
f5f419de
DJ
5794* Parser Function:: How to call @code{yyparse} and what it returns.
5795* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5796* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5797* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5798* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5799* Lexical:: You must supply a function @code{yylex}
5800 which reads tokens.
5801* Error Reporting:: You must supply a function @code{yyerror}.
5802* Action Features:: Special features for use in actions.
5803* Internationalization:: How to let the parser speak in the user's
5804 native language.
bfa74976
RS
5805@end menu
5806
342b8b6e 5807@node Parser Function
bfa74976
RS
5808@section The Parser Function @code{yyparse}
5809@findex yyparse
5810
5811You call the function @code{yyparse} to cause parsing to occur. This
5812function reads tokens, executes actions, and ultimately returns when it
5813encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5814write an action which directs @code{yyparse} to return immediately
5815without reading further.
bfa74976 5816
2a8d363a
AD
5817
5818@deftypefun int yyparse (void)
bfa74976
RS
5819The value returned by @code{yyparse} is 0 if parsing was successful (return
5820is due to end-of-input).
5821
b47dbebe
PE
5822The value is 1 if parsing failed because of invalid input, i.e., input
5823that contains a syntax error or that causes @code{YYABORT} to be
5824invoked.
5825
5826The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5827@end deftypefun
bfa74976
RS
5828
5829In an action, you can cause immediate return from @code{yyparse} by using
5830these macros:
5831
2a8d363a 5832@defmac YYACCEPT
bfa74976
RS
5833@findex YYACCEPT
5834Return immediately with value 0 (to report success).
2a8d363a 5835@end defmac
bfa74976 5836
2a8d363a 5837@defmac YYABORT
bfa74976
RS
5838@findex YYABORT
5839Return immediately with value 1 (to report failure).
2a8d363a
AD
5840@end defmac
5841
5842If you use a reentrant parser, you can optionally pass additional
5843parameter information to it in a reentrant way. To do so, use the
5844declaration @code{%parse-param}:
5845
2055a44e 5846@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5847@findex %parse-param
2055a44e
AD
5848Declare that one or more
5849@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5850The @var{argument-declaration} is used when declaring
feeb0eda
PE
5851functions or prototypes. The last identifier in
5852@var{argument-declaration} must be the argument name.
2a8d363a
AD
5853@end deffn
5854
5855Here's an example. Write this in the parser:
5856
5857@example
2055a44e 5858%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5859@end example
5860
5861@noindent
5862Then call the parser like this:
5863
5864@example
5865@{
5866 int nastiness, randomness;
5867 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5868 value = yyparse (&nastiness, &randomness);
5869 @dots{}
5870@}
5871@end example
5872
5873@noindent
5874In the grammar actions, use expressions like this to refer to the data:
5875
5876@example
5877exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5878@end example
5879
9987d1b3
JD
5880@node Push Parser Function
5881@section The Push Parser Function @code{yypush_parse}
5882@findex yypush_parse
5883
59da312b
JD
5884(The current push parsing interface is experimental and may evolve.
5885More user feedback will help to stabilize it.)
5886
f4101aa6 5887You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5888function is available if either the @samp{%define api.push-pull push} or
5889@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5890@xref{Push Decl, ,A Push Parser}.
5891
5892@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5893The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5894following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5895is required to finish parsing the grammar.
5896@end deftypefun
5897
5898@node Pull Parser Function
5899@section The Pull Parser Function @code{yypull_parse}
5900@findex yypull_parse
5901
59da312b
JD
5902(The current push parsing interface is experimental and may evolve.
5903More user feedback will help to stabilize it.)
5904
f4101aa6 5905You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5906stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5907declaration is used.
9987d1b3
JD
5908@xref{Push Decl, ,A Push Parser}.
5909
5910@deftypefun int yypull_parse (yypstate *yyps)
5911The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5912@end deftypefun
5913
5914@node Parser Create Function
5915@section The Parser Create Function @code{yystate_new}
5916@findex yypstate_new
5917
59da312b
JD
5918(The current push parsing interface is experimental and may evolve.
5919More user feedback will help to stabilize it.)
5920
f4101aa6 5921You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5922This function is available if either the @samp{%define api.push-pull push} or
5923@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5924@xref{Push Decl, ,A Push Parser}.
5925
5926@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5927The function will return a valid parser instance if there was memory available
333e670c
JD
5928or 0 if no memory was available.
5929In impure mode, it will also return 0 if a parser instance is currently
5930allocated.
9987d1b3
JD
5931@end deftypefun
5932
5933@node Parser Delete Function
5934@section The Parser Delete Function @code{yystate_delete}
5935@findex yypstate_delete
5936
59da312b
JD
5937(The current push parsing interface is experimental and may evolve.
5938More user feedback will help to stabilize it.)
5939
9987d1b3 5940You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5941function is available if either the @samp{%define api.push-pull push} or
5942@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5943@xref{Push Decl, ,A Push Parser}.
5944
5945@deftypefun void yypstate_delete (yypstate *yyps)
5946This function will reclaim the memory associated with a parser instance.
5947After this call, you should no longer attempt to use the parser instance.
5948@end deftypefun
bfa74976 5949
342b8b6e 5950@node Lexical
bfa74976
RS
5951@section The Lexical Analyzer Function @code{yylex}
5952@findex yylex
5953@cindex lexical analyzer
5954
5955The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5956the input stream and returns them to the parser. Bison does not create
5957this function automatically; you must write it so that @code{yyparse} can
5958call it. The function is sometimes referred to as a lexical scanner.
5959
ff7571c0
JD
5960In simple programs, @code{yylex} is often defined at the end of the
5961Bison grammar file. If @code{yylex} is defined in a separate source
5962file, you need to arrange for the token-type macro definitions to be
5963available there. To do this, use the @samp{-d} option when you run
5964Bison, so that it will write these macro definitions into the separate
5965parser header file, @file{@var{name}.tab.h}, which you can include in
5966the other source files that need it. @xref{Invocation, ,Invoking
5967Bison}.
bfa74976
RS
5968
5969@menu
5970* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5971* Token Values:: How @code{yylex} must return the semantic value
5972 of the token it has read.
5973* Token Locations:: How @code{yylex} must return the text location
5974 (line number, etc.) of the token, if the
5975 actions want that.
5976* Pure Calling:: How the calling convention differs in a pure parser
5977 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5978@end menu
5979
342b8b6e 5980@node Calling Convention
bfa74976
RS
5981@subsection Calling Convention for @code{yylex}
5982
72d2299c
PE
5983The value that @code{yylex} returns must be the positive numeric code
5984for the type of token it has just found; a zero or negative value
5985signifies end-of-input.
bfa74976
RS
5986
5987When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
5988in the parser implementation file becomes a C macro whose definition
5989is the proper numeric code for that token type. So @code{yylex} can
5990use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5991
5992When a token is referred to in the grammar rules by a character literal,
5993the numeric code for that character is also the code for the token type.
72d2299c
PE
5994So @code{yylex} can simply return that character code, possibly converted
5995to @code{unsigned char} to avoid sign-extension. The null character
5996must not be used this way, because its code is zero and that
bfa74976
RS
5997signifies end-of-input.
5998
5999Here is an example showing these things:
6000
6001@example
13863333
AD
6002int
6003yylex (void)
bfa74976
RS
6004@{
6005 @dots{}
72d2299c 6006 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6007 return 0;
6008 @dots{}
6009 if (c == '+' || c == '-')
72d2299c 6010 return c; /* Assume token type for `+' is '+'. */
bfa74976 6011 @dots{}
72d2299c 6012 return INT; /* Return the type of the token. */
bfa74976
RS
6013 @dots{}
6014@}
6015@end example
6016
6017@noindent
6018This interface has been designed so that the output from the @code{lex}
6019utility can be used without change as the definition of @code{yylex}.
6020
931c7513
RS
6021If the grammar uses literal string tokens, there are two ways that
6022@code{yylex} can determine the token type codes for them:
6023
6024@itemize @bullet
6025@item
6026If the grammar defines symbolic token names as aliases for the
6027literal string tokens, @code{yylex} can use these symbolic names like
6028all others. In this case, the use of the literal string tokens in
6029the grammar file has no effect on @code{yylex}.
6030
6031@item
9ecbd125 6032@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6033table. The index of the token in the table is the token type's code.
9ecbd125 6034The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6035double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6036token's characters are escaped as necessary to be suitable as input
6037to Bison.
931c7513 6038
9e0876fb
PE
6039Here's code for looking up a multicharacter token in @code{yytname},
6040assuming that the characters of the token are stored in
6041@code{token_buffer}, and assuming that the token does not contain any
6042characters like @samp{"} that require escaping.
931c7513 6043
c93f22fc 6044@example
931c7513
RS
6045for (i = 0; i < YYNTOKENS; i++)
6046 @{
6047 if (yytname[i] != 0
6048 && yytname[i][0] == '"'
68449b3a
PE
6049 && ! strncmp (yytname[i] + 1, token_buffer,
6050 strlen (token_buffer))
931c7513
RS
6051 && yytname[i][strlen (token_buffer) + 1] == '"'
6052 && yytname[i][strlen (token_buffer) + 2] == 0)
6053 break;
6054 @}
c93f22fc 6055@end example
931c7513
RS
6056
6057The @code{yytname} table is generated only if you use the
8c9a50be 6058@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6059@end itemize
6060
342b8b6e 6061@node Token Values
bfa74976
RS
6062@subsection Semantic Values of Tokens
6063
6064@vindex yylval
9d9b8b70 6065In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6066be stored into the global variable @code{yylval}. When you are using
6067just one data type for semantic values, @code{yylval} has that type.
6068Thus, if the type is @code{int} (the default), you might write this in
6069@code{yylex}:
6070
6071@example
6072@group
6073 @dots{}
72d2299c
PE
6074 yylval = value; /* Put value onto Bison stack. */
6075 return INT; /* Return the type of the token. */
bfa74976
RS
6076 @dots{}
6077@end group
6078@end example
6079
6080When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6081made from the @code{%union} declaration (@pxref{Union Decl, ,The
6082Collection of Value Types}). So when you store a token's value, you
6083must use the proper member of the union. If the @code{%union}
6084declaration looks like this:
bfa74976
RS
6085
6086@example
6087@group
6088%union @{
6089 int intval;
6090 double val;
6091 symrec *tptr;
6092@}
6093@end group
6094@end example
6095
6096@noindent
6097then the code in @code{yylex} might look like this:
6098
6099@example
6100@group
6101 @dots{}
72d2299c
PE
6102 yylval.intval = value; /* Put value onto Bison stack. */
6103 return INT; /* Return the type of the token. */
bfa74976
RS
6104 @dots{}
6105@end group
6106@end example
6107
95923bd6
AD
6108@node Token Locations
6109@subsection Textual Locations of Tokens
bfa74976
RS
6110
6111@vindex yylloc
303834cc
JD
6112If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6113in actions to keep track of the textual locations of tokens and groupings,
6114then you must provide this information in @code{yylex}. The function
6115@code{yyparse} expects to find the textual location of a token just parsed
6116in the global variable @code{yylloc}. So @code{yylex} must store the proper
6117data in that variable.
847bf1f5
AD
6118
6119By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6120initialize the members that are going to be used by the actions. The
6121four members are called @code{first_line}, @code{first_column},
6122@code{last_line} and @code{last_column}. Note that the use of this
6123feature makes the parser noticeably slower.
bfa74976
RS
6124
6125@tindex YYLTYPE
6126The data type of @code{yylloc} has the name @code{YYLTYPE}.
6127
342b8b6e 6128@node Pure Calling
c656404a 6129@subsection Calling Conventions for Pure Parsers
bfa74976 6130
67501061 6131When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6132pure, reentrant parser, the global communication variables @code{yylval}
6133and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6134Parser}.) In such parsers the two global variables are replaced by
6135pointers passed as arguments to @code{yylex}. You must declare them as
6136shown here, and pass the information back by storing it through those
6137pointers.
bfa74976
RS
6138
6139@example
13863333
AD
6140int
6141yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6142@{
6143 @dots{}
6144 *lvalp = value; /* Put value onto Bison stack. */
6145 return INT; /* Return the type of the token. */
6146 @dots{}
6147@}
6148@end example
6149
6150If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6151textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6152this case, omit the second argument; @code{yylex} will be called with
6153only one argument.
6154
2055a44e 6155If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6156@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6157Function}). To pass additional arguments to both @code{yylex} and
6158@code{yyparse}, use @code{%param}.
e425e872 6159
2055a44e 6160@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6161@findex %lex-param
2055a44e
AD
6162Specify that @var{argument-declaration} are additional @code{yylex} argument
6163declarations. You may pass one or more such declarations, which is
6164equivalent to repeating @code{%lex-param}.
6165@end deffn
6166
6167@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6168@findex %param
6169Specify that @var{argument-declaration} are additional
6170@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6171@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6172@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6173declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6174@end deffn
e425e872 6175
2a8d363a 6176For instance:
e425e872
RS
6177
6178@example
2055a44e
AD
6179%lex-param @{scanner_mode *mode@}
6180%parse-param @{parser_mode *mode@}
6181%param @{environment_type *env@}
e425e872
RS
6182@end example
6183
6184@noindent
2a8d363a 6185results in the following signature:
e425e872
RS
6186
6187@example
2055a44e
AD
6188int yylex (scanner_mode *mode, environment_type *env);
6189int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6190@end example
6191
67501061 6192If @samp{%define api.pure} is added:
c656404a
RS
6193
6194@example
2055a44e
AD
6195int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6196int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6197@end example
6198
2a8d363a 6199@noindent
67501061 6200and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6201
2a8d363a 6202@example
2055a44e
AD
6203int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6204 scanner_mode *mode, environment_type *env);
6205int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6206@end example
931c7513 6207
342b8b6e 6208@node Error Reporting
bfa74976
RS
6209@section The Error Reporting Function @code{yyerror}
6210@cindex error reporting function
6211@findex yyerror
6212@cindex parse error
6213@cindex syntax error
6214
31b850d2 6215The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6216whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6217action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6218macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6219in Actions}).
bfa74976
RS
6220
6221The Bison parser expects to report the error by calling an error
6222reporting function named @code{yyerror}, which you must supply. It is
6223called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6224receives one argument. For a syntax error, the string is normally
6225@w{@code{"syntax error"}}.
bfa74976 6226
31b850d2 6227@findex %define parse.error
7fceb615
JD
6228If you invoke @samp{%define parse.error verbose} in the Bison declarations
6229section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6230Bison provides a more verbose and specific error message string instead of
6231just plain @w{@code{"syntax error"}}. However, that message sometimes
6232contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6233
1a059451
PE
6234The parser can detect one other kind of error: memory exhaustion. This
6235can happen when the input contains constructions that are very deeply
bfa74976 6236nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6237parser normally extends its stack automatically up to a very large limit. But
6238if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6239fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6240
6241In some cases diagnostics like @w{@code{"syntax error"}} are
6242translated automatically from English to some other language before
6243they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6244
6245The following definition suffices in simple programs:
6246
6247@example
6248@group
13863333 6249void
38a92d50 6250yyerror (char const *s)
bfa74976
RS
6251@{
6252@end group
6253@group
6254 fprintf (stderr, "%s\n", s);
6255@}
6256@end group
6257@end example
6258
6259After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6260error recovery if you have written suitable error recovery grammar rules
6261(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6262immediately return 1.
6263
93724f13 6264Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6265an access to the current location.
8a4281b9 6266This is indeed the case for the GLR
2a8d363a 6267parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6268@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6269@code{yyerror} are:
6270
6271@example
38a92d50
PE
6272void yyerror (char const *msg); /* Yacc parsers. */
6273void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6274@end example
6275
feeb0eda 6276If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6277
6278@example
b317297e
PE
6279void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6280void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6281@end example
6282
8a4281b9 6283Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6284convention for absolutely pure parsers, i.e., when the calling
6285convention of @code{yylex} @emph{and} the calling convention of
67501061 6286@samp{%define api.pure} are pure.
d9df47b6 6287I.e.:
2a8d363a
AD
6288
6289@example
6290/* Location tracking. */
6291%locations
6292/* Pure yylex. */
d9df47b6 6293%define api.pure
feeb0eda 6294%lex-param @{int *nastiness@}
2a8d363a 6295/* Pure yyparse. */
feeb0eda
PE
6296%parse-param @{int *nastiness@}
6297%parse-param @{int *randomness@}
2a8d363a
AD
6298@end example
6299
6300@noindent
6301results in the following signatures for all the parser kinds:
6302
6303@example
6304int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6305int yyparse (int *nastiness, int *randomness);
93724f13
AD
6306void yyerror (YYLTYPE *locp,
6307 int *nastiness, int *randomness,
38a92d50 6308 char const *msg);
2a8d363a
AD
6309@end example
6310
1c0c3e95 6311@noindent
38a92d50
PE
6312The prototypes are only indications of how the code produced by Bison
6313uses @code{yyerror}. Bison-generated code always ignores the returned
6314value, so @code{yyerror} can return any type, including @code{void}.
6315Also, @code{yyerror} can be a variadic function; that is why the
6316message is always passed last.
6317
6318Traditionally @code{yyerror} returns an @code{int} that is always
6319ignored, but this is purely for historical reasons, and @code{void} is
6320preferable since it more accurately describes the return type for
6321@code{yyerror}.
93724f13 6322
bfa74976
RS
6323@vindex yynerrs
6324The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6325reported so far. Normally this variable is global; but if you
704a47c4
AD
6326request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6327then it is a local variable which only the actions can access.
bfa74976 6328
342b8b6e 6329@node Action Features
bfa74976
RS
6330@section Special Features for Use in Actions
6331@cindex summary, action features
6332@cindex action features summary
6333
6334Here is a table of Bison constructs, variables and macros that
6335are useful in actions.
6336
18b519c0 6337@deffn {Variable} $$
bfa74976
RS
6338Acts like a variable that contains the semantic value for the
6339grouping made by the current rule. @xref{Actions}.
18b519c0 6340@end deffn
bfa74976 6341
18b519c0 6342@deffn {Variable} $@var{n}
bfa74976
RS
6343Acts like a variable that contains the semantic value for the
6344@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6345@end deffn
bfa74976 6346
18b519c0 6347@deffn {Variable} $<@var{typealt}>$
bfa74976 6348Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6349specified by the @code{%union} declaration. @xref{Action Types, ,Data
6350Types of Values in Actions}.
18b519c0 6351@end deffn
bfa74976 6352
18b519c0 6353@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6354Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6355union specified by the @code{%union} declaration.
e0c471a9 6356@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6357@end deffn
bfa74976 6358
18b519c0 6359@deffn {Macro} YYABORT;
bfa74976
RS
6360Return immediately from @code{yyparse}, indicating failure.
6361@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6362@end deffn
bfa74976 6363
18b519c0 6364@deffn {Macro} YYACCEPT;
bfa74976
RS
6365Return immediately from @code{yyparse}, indicating success.
6366@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6367@end deffn
bfa74976 6368
18b519c0 6369@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6370@findex YYBACKUP
6371Unshift a token. This macro is allowed only for rules that reduce
742e4900 6372a single value, and only when there is no lookahead token.
8a4281b9 6373It is also disallowed in GLR parsers.
742e4900 6374It installs a lookahead token with token type @var{token} and
bfa74976
RS
6375semantic value @var{value}; then it discards the value that was
6376going to be reduced by this rule.
6377
6378If the macro is used when it is not valid, such as when there is
742e4900 6379a lookahead token already, then it reports a syntax error with
bfa74976
RS
6380a message @samp{cannot back up} and performs ordinary error
6381recovery.
6382
6383In either case, the rest of the action is not executed.
18b519c0 6384@end deffn
bfa74976 6385
18b519c0 6386@deffn {Macro} YYEMPTY
bfa74976 6387@vindex YYEMPTY
742e4900 6388Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6389@end deffn
bfa74976 6390
32c29292
JD
6391@deffn {Macro} YYEOF
6392@vindex YYEOF
742e4900 6393Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6394stream.
6395@end deffn
6396
18b519c0 6397@deffn {Macro} YYERROR;
bfa74976
RS
6398@findex YYERROR
6399Cause an immediate syntax error. This statement initiates error
6400recovery just as if the parser itself had detected an error; however, it
6401does not call @code{yyerror}, and does not print any message. If you
6402want to print an error message, call @code{yyerror} explicitly before
6403the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6404@end deffn
bfa74976 6405
18b519c0 6406@deffn {Macro} YYRECOVERING
02103984
PE
6407@findex YYRECOVERING
6408The expression @code{YYRECOVERING ()} yields 1 when the parser
6409is recovering from a syntax error, and 0 otherwise.
bfa74976 6410@xref{Error Recovery}.
18b519c0 6411@end deffn
bfa74976 6412
18b519c0 6413@deffn {Variable} yychar
742e4900
JD
6414Variable containing either the lookahead token, or @code{YYEOF} when the
6415lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6416has been performed so the next token is not yet known.
6417Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6418Actions}).
742e4900 6419@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6420@end deffn
bfa74976 6421
18b519c0 6422@deffn {Macro} yyclearin;
742e4900 6423Discard the current lookahead token. This is useful primarily in
32c29292
JD
6424error rules.
6425Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6426Semantic Actions}).
6427@xref{Error Recovery}.
18b519c0 6428@end deffn
bfa74976 6429
18b519c0 6430@deffn {Macro} yyerrok;
bfa74976 6431Resume generating error messages immediately for subsequent syntax
13863333 6432errors. This is useful primarily in error rules.
bfa74976 6433@xref{Error Recovery}.
18b519c0 6434@end deffn
bfa74976 6435
32c29292 6436@deffn {Variable} yylloc
742e4900 6437Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6438to @code{YYEMPTY} or @code{YYEOF}.
6439Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6440Actions}).
6441@xref{Actions and Locations, ,Actions and Locations}.
6442@end deffn
6443
6444@deffn {Variable} yylval
742e4900 6445Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6446not set to @code{YYEMPTY} or @code{YYEOF}.
6447Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6448Actions}).
6449@xref{Actions, ,Actions}.
6450@end deffn
6451
18b519c0 6452@deffn {Value} @@$
847bf1f5 6453@findex @@$
303834cc
JD
6454Acts like a structure variable containing information on the textual
6455location of the grouping made by the current rule. @xref{Tracking
6456Locations}.
bfa74976 6457
847bf1f5
AD
6458@c Check if those paragraphs are still useful or not.
6459
6460@c @example
6461@c struct @{
6462@c int first_line, last_line;
6463@c int first_column, last_column;
6464@c @};
6465@c @end example
6466
6467@c Thus, to get the starting line number of the third component, you would
6468@c use @samp{@@3.first_line}.
bfa74976 6469
847bf1f5
AD
6470@c In order for the members of this structure to contain valid information,
6471@c you must make @code{yylex} supply this information about each token.
6472@c If you need only certain members, then @code{yylex} need only fill in
6473@c those members.
bfa74976 6474
847bf1f5 6475@c The use of this feature makes the parser noticeably slower.
18b519c0 6476@end deffn
847bf1f5 6477
18b519c0 6478@deffn {Value} @@@var{n}
847bf1f5 6479@findex @@@var{n}
303834cc
JD
6480Acts like a structure variable containing information on the textual
6481location of the @var{n}th component of the current rule. @xref{Tracking
6482Locations}.
18b519c0 6483@end deffn
bfa74976 6484
f7ab6a50
PE
6485@node Internationalization
6486@section Parser Internationalization
6487@cindex internationalization
6488@cindex i18n
6489@cindex NLS
6490@cindex gettext
6491@cindex bison-po
6492
6493A Bison-generated parser can print diagnostics, including error and
6494tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6495also supports outputting diagnostics in the user's native language. To
6496make this work, the user should set the usual environment variables.
6497@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6498For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6499set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6500encoding. The exact set of available locales depends on the user's
6501installation.
6502
6503The maintainer of a package that uses a Bison-generated parser enables
6504the internationalization of the parser's output through the following
8a4281b9
JD
6505steps. Here we assume a package that uses GNU Autoconf and
6506GNU Automake.
f7ab6a50
PE
6507
6508@enumerate
6509@item
30757c8c 6510@cindex bison-i18n.m4
8a4281b9 6511Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6512by the package---often called @file{m4}---copy the
6513@file{bison-i18n.m4} file installed by Bison under
6514@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6515For example:
6516
6517@example
6518cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6519@end example
6520
6521@item
30757c8c
PE
6522@findex BISON_I18N
6523@vindex BISON_LOCALEDIR
6524@vindex YYENABLE_NLS
f7ab6a50
PE
6525In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6526invocation, add an invocation of @code{BISON_I18N}. This macro is
6527defined in the file @file{bison-i18n.m4} that you copied earlier. It
6528causes @samp{configure} to find the value of the
30757c8c
PE
6529@code{BISON_LOCALEDIR} variable, and it defines the source-language
6530symbol @code{YYENABLE_NLS} to enable translations in the
6531Bison-generated parser.
f7ab6a50
PE
6532
6533@item
6534In the @code{main} function of your program, designate the directory
6535containing Bison's runtime message catalog, through a call to
6536@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6537For example:
6538
6539@example
6540bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6541@end example
6542
6543Typically this appears after any other call @code{bindtextdomain
6544(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6545@samp{BISON_LOCALEDIR} to be defined as a string through the
6546@file{Makefile}.
6547
6548@item
6549In the @file{Makefile.am} that controls the compilation of the @code{main}
6550function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6551either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6552
6553@example
6554DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6555@end example
6556
6557or:
6558
6559@example
6560AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6561@end example
6562
6563@item
6564Finally, invoke the command @command{autoreconf} to generate the build
6565infrastructure.
6566@end enumerate
6567
bfa74976 6568
342b8b6e 6569@node Algorithm
13863333
AD
6570@chapter The Bison Parser Algorithm
6571@cindex Bison parser algorithm
bfa74976
RS
6572@cindex algorithm of parser
6573@cindex shifting
6574@cindex reduction
6575@cindex parser stack
6576@cindex stack, parser
6577
6578As Bison reads tokens, it pushes them onto a stack along with their
6579semantic values. The stack is called the @dfn{parser stack}. Pushing a
6580token is traditionally called @dfn{shifting}.
6581
6582For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6583@samp{3} to come. The stack will have four elements, one for each token
6584that was shifted.
6585
6586But the stack does not always have an element for each token read. When
6587the last @var{n} tokens and groupings shifted match the components of a
6588grammar rule, they can be combined according to that rule. This is called
6589@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6590single grouping whose symbol is the result (left hand side) of that rule.
6591Running the rule's action is part of the process of reduction, because this
6592is what computes the semantic value of the resulting grouping.
6593
6594For example, if the infix calculator's parser stack contains this:
6595
6596@example
65971 + 5 * 3
6598@end example
6599
6600@noindent
6601and the next input token is a newline character, then the last three
6602elements can be reduced to 15 via the rule:
6603
6604@example
6605expr: expr '*' expr;
6606@end example
6607
6608@noindent
6609Then the stack contains just these three elements:
6610
6611@example
66121 + 15
6613@end example
6614
6615@noindent
6616At this point, another reduction can be made, resulting in the single value
661716. Then the newline token can be shifted.
6618
6619The parser tries, by shifts and reductions, to reduce the entire input down
6620to a single grouping whose symbol is the grammar's start-symbol
6621(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6622
6623This kind of parser is known in the literature as a bottom-up parser.
6624
6625@menu
742e4900 6626* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6627* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6628* Precedence:: Operator precedence works by resolving conflicts.
6629* Contextual Precedence:: When an operator's precedence depends on context.
6630* Parser States:: The parser is a finite-state-machine with stack.
6631* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6632* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6633* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6634* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6635* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6636@end menu
6637
742e4900
JD
6638@node Lookahead
6639@section Lookahead Tokens
6640@cindex lookahead token
bfa74976
RS
6641
6642The Bison parser does @emph{not} always reduce immediately as soon as the
6643last @var{n} tokens and groupings match a rule. This is because such a
6644simple strategy is inadequate to handle most languages. Instead, when a
6645reduction is possible, the parser sometimes ``looks ahead'' at the next
6646token in order to decide what to do.
6647
6648When a token is read, it is not immediately shifted; first it becomes the
742e4900 6649@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6650perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6651the lookahead token remains off to the side. When no more reductions
6652should take place, the lookahead token is shifted onto the stack. This
bfa74976 6653does not mean that all possible reductions have been done; depending on the
742e4900 6654token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6655application.
6656
742e4900 6657Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6658expressions which contain binary addition operators and postfix unary
6659factorial operators (@samp{!}), and allow parentheses for grouping.
6660
6661@example
6662@group
5e9b6624
AD
6663expr:
6664 term '+' expr
6665| term
6666;
bfa74976
RS
6667@end group
6668
6669@group
5e9b6624
AD
6670term:
6671 '(' expr ')'
6672| term '!'
6673| NUMBER
6674;
bfa74976
RS
6675@end group
6676@end example
6677
6678Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6679should be done? If the following token is @samp{)}, then the first three
6680tokens must be reduced to form an @code{expr}. This is the only valid
6681course, because shifting the @samp{)} would produce a sequence of symbols
6682@w{@code{term ')'}}, and no rule allows this.
6683
6684If the following token is @samp{!}, then it must be shifted immediately so
6685that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6686parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6687@code{expr}. It would then be impossible to shift the @samp{!} because
6688doing so would produce on the stack the sequence of symbols @code{expr
6689'!'}. No rule allows that sequence.
6690
6691@vindex yychar
32c29292
JD
6692@vindex yylval
6693@vindex yylloc
742e4900 6694The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6695Its semantic value and location, if any, are stored in the variables
6696@code{yylval} and @code{yylloc}.
bfa74976
RS
6697@xref{Action Features, ,Special Features for Use in Actions}.
6698
342b8b6e 6699@node Shift/Reduce
bfa74976
RS
6700@section Shift/Reduce Conflicts
6701@cindex conflicts
6702@cindex shift/reduce conflicts
6703@cindex dangling @code{else}
6704@cindex @code{else}, dangling
6705
6706Suppose we are parsing a language which has if-then and if-then-else
6707statements, with a pair of rules like this:
6708
6709@example
6710@group
6711if_stmt:
5e9b6624
AD
6712 IF expr THEN stmt
6713| IF expr THEN stmt ELSE stmt
6714;
bfa74976
RS
6715@end group
6716@end example
6717
6718@noindent
6719Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6720terminal symbols for specific keyword tokens.
6721
742e4900 6722When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6723contents of the stack (assuming the input is valid) are just right for
6724reduction by the first rule. But it is also legitimate to shift the
6725@code{ELSE}, because that would lead to eventual reduction by the second
6726rule.
6727
6728This situation, where either a shift or a reduction would be valid, is
6729called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6730these conflicts by choosing to shift, unless otherwise directed by
6731operator precedence declarations. To see the reason for this, let's
6732contrast it with the other alternative.
6733
6734Since the parser prefers to shift the @code{ELSE}, the result is to attach
6735the else-clause to the innermost if-statement, making these two inputs
6736equivalent:
6737
6738@example
6739if x then if y then win (); else lose;
6740
6741if x then do; if y then win (); else lose; end;
6742@end example
6743
6744But if the parser chose to reduce when possible rather than shift, the
6745result would be to attach the else-clause to the outermost if-statement,
6746making these two inputs equivalent:
6747
6748@example
6749if x then if y then win (); else lose;
6750
6751if x then do; if y then win (); end; else lose;
6752@end example
6753
6754The conflict exists because the grammar as written is ambiguous: either
6755parsing of the simple nested if-statement is legitimate. The established
6756convention is that these ambiguities are resolved by attaching the
6757else-clause to the innermost if-statement; this is what Bison accomplishes
6758by choosing to shift rather than reduce. (It would ideally be cleaner to
6759write an unambiguous grammar, but that is very hard to do in this case.)
6760This particular ambiguity was first encountered in the specifications of
6761Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6762
6763To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6764conflicts, use the @code{%expect @var{n}} declaration.
6765There will be no warning as long as the number of shift/reduce conflicts
6766is exactly @var{n}, and Bison will report an error if there is a
6767different number.
bfa74976
RS
6768@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6769
6770The definition of @code{if_stmt} above is solely to blame for the
6771conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6772rules. Here is a complete Bison grammar file that actually manifests
6773the conflict:
bfa74976
RS
6774
6775@example
6776@group
6777%token IF THEN ELSE variable
6778%%
6779@end group
6780@group
5e9b6624
AD
6781stmt:
6782 expr
6783| if_stmt
6784;
bfa74976
RS
6785@end group
6786
6787@group
6788if_stmt:
5e9b6624
AD
6789 IF expr THEN stmt
6790| IF expr THEN stmt ELSE stmt
6791;
bfa74976
RS
6792@end group
6793
5e9b6624
AD
6794expr:
6795 variable
6796;
bfa74976
RS
6797@end example
6798
342b8b6e 6799@node Precedence
bfa74976
RS
6800@section Operator Precedence
6801@cindex operator precedence
6802@cindex precedence of operators
6803
6804Another situation where shift/reduce conflicts appear is in arithmetic
6805expressions. Here shifting is not always the preferred resolution; the
6806Bison declarations for operator precedence allow you to specify when to
6807shift and when to reduce.
6808
6809@menu
6810* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6811* Using Precedence:: How to specify precedence and associativity.
6812* Precedence Only:: How to specify precedence only.
bfa74976
RS
6813* Precedence Examples:: How these features are used in the previous example.
6814* How Precedence:: How they work.
6815@end menu
6816
342b8b6e 6817@node Why Precedence
bfa74976
RS
6818@subsection When Precedence is Needed
6819
6820Consider the following ambiguous grammar fragment (ambiguous because the
6821input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6822
6823@example
6824@group
5e9b6624
AD
6825expr:
6826 expr '-' expr
6827| expr '*' expr
6828| expr '<' expr
6829| '(' expr ')'
6830@dots{}
6831;
bfa74976
RS
6832@end group
6833@end example
6834
6835@noindent
6836Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6837should it reduce them via the rule for the subtraction operator? It
6838depends on the next token. Of course, if the next token is @samp{)}, we
6839must reduce; shifting is invalid because no single rule can reduce the
6840token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6841the next token is @samp{*} or @samp{<}, we have a choice: either
6842shifting or reduction would allow the parse to complete, but with
6843different results.
6844
6845To decide which one Bison should do, we must consider the results. If
6846the next operator token @var{op} is shifted, then it must be reduced
6847first in order to permit another opportunity to reduce the difference.
6848The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6849hand, if the subtraction is reduced before shifting @var{op}, the result
6850is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6851reduce should depend on the relative precedence of the operators
6852@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6853@samp{<}.
bfa74976
RS
6854
6855@cindex associativity
6856What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6857@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6858operators we prefer the former, which is called @dfn{left association}.
6859The latter alternative, @dfn{right association}, is desirable for
6860assignment operators. The choice of left or right association is a
6861matter of whether the parser chooses to shift or reduce when the stack
742e4900 6862contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6863makes right-associativity.
bfa74976 6864
342b8b6e 6865@node Using Precedence
bfa74976
RS
6866@subsection Specifying Operator Precedence
6867@findex %left
bfa74976 6868@findex %nonassoc
d78f0ac9
AD
6869@findex %precedence
6870@findex %right
bfa74976
RS
6871
6872Bison allows you to specify these choices with the operator precedence
6873declarations @code{%left} and @code{%right}. Each such declaration
6874contains a list of tokens, which are operators whose precedence and
6875associativity is being declared. The @code{%left} declaration makes all
6876those operators left-associative and the @code{%right} declaration makes
6877them right-associative. A third alternative is @code{%nonassoc}, which
6878declares that it is a syntax error to find the same operator twice ``in a
6879row''.
d78f0ac9
AD
6880The last alternative, @code{%precedence}, allows to define only
6881precedence and no associativity at all. As a result, any
6882associativity-related conflict that remains will be reported as an
6883compile-time error. The directive @code{%nonassoc} creates run-time
6884error: using the operator in a associative way is a syntax error. The
6885directive @code{%precedence} creates compile-time errors: an operator
6886@emph{can} be involved in an associativity-related conflict, contrary to
6887what expected the grammar author.
bfa74976
RS
6888
6889The relative precedence of different operators is controlled by the
d78f0ac9
AD
6890order in which they are declared. The first precedence/associativity
6891declaration in the file declares the operators whose
bfa74976
RS
6892precedence is lowest, the next such declaration declares the operators
6893whose precedence is a little higher, and so on.
6894
d78f0ac9
AD
6895@node Precedence Only
6896@subsection Specifying Precedence Only
6897@findex %precedence
6898
8a4281b9 6899Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6900@code{%nonassoc}, which all defines precedence and associativity, little
6901attention is paid to the fact that precedence cannot be defined without
6902defining associativity. Yet, sometimes, when trying to solve a
6903conflict, precedence suffices. In such a case, using @code{%left},
6904@code{%right}, or @code{%nonassoc} might hide future (associativity
6905related) conflicts that would remain hidden.
6906
6907The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6908Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6909in the following situation, where the period denotes the current parsing
6910state:
6911
6912@example
6913if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6914@end example
6915
6916The conflict involves the reduction of the rule @samp{IF expr THEN
6917stmt}, which precedence is by default that of its last token
6918(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6919disambiguation (attach the @code{else} to the closest @code{if}),
6920shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6921higher than that of @code{THEN}. But neither is expected to be involved
6922in an associativity related conflict, which can be specified as follows.
6923
6924@example
6925%precedence THEN
6926%precedence ELSE
6927@end example
6928
6929The unary-minus is another typical example where associativity is
6930usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6931Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6932used to declare the precedence of @code{NEG}, which is more than needed
6933since it also defines its associativity. While this is harmless in the
6934traditional example, who knows how @code{NEG} might be used in future
6935evolutions of the grammar@dots{}
6936
342b8b6e 6937@node Precedence Examples
bfa74976
RS
6938@subsection Precedence Examples
6939
6940In our example, we would want the following declarations:
6941
6942@example
6943%left '<'
6944%left '-'
6945%left '*'
6946@end example
6947
6948In a more complete example, which supports other operators as well, we
6949would declare them in groups of equal precedence. For example, @code{'+'} is
6950declared with @code{'-'}:
6951
6952@example
6953%left '<' '>' '=' NE LE GE
6954%left '+' '-'
6955%left '*' '/'
6956@end example
6957
6958@noindent
6959(Here @code{NE} and so on stand for the operators for ``not equal''
6960and so on. We assume that these tokens are more than one character long
6961and therefore are represented by names, not character literals.)
6962
342b8b6e 6963@node How Precedence
bfa74976
RS
6964@subsection How Precedence Works
6965
6966The first effect of the precedence declarations is to assign precedence
6967levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6968precedence levels to certain rules: each rule gets its precedence from
6969the last terminal symbol mentioned in the components. (You can also
6970specify explicitly the precedence of a rule. @xref{Contextual
6971Precedence, ,Context-Dependent Precedence}.)
6972
6973Finally, the resolution of conflicts works by comparing the precedence
742e4900 6974of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6975token's precedence is higher, the choice is to shift. If the rule's
6976precedence is higher, the choice is to reduce. If they have equal
6977precedence, the choice is made based on the associativity of that
6978precedence level. The verbose output file made by @samp{-v}
6979(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6980resolved.
bfa74976
RS
6981
6982Not all rules and not all tokens have precedence. If either the rule or
742e4900 6983the lookahead token has no precedence, then the default is to shift.
bfa74976 6984
342b8b6e 6985@node Contextual Precedence
bfa74976
RS
6986@section Context-Dependent Precedence
6987@cindex context-dependent precedence
6988@cindex unary operator precedence
6989@cindex precedence, context-dependent
6990@cindex precedence, unary operator
6991@findex %prec
6992
6993Often the precedence of an operator depends on the context. This sounds
6994outlandish at first, but it is really very common. For example, a minus
6995sign typically has a very high precedence as a unary operator, and a
6996somewhat lower precedence (lower than multiplication) as a binary operator.
6997
d78f0ac9
AD
6998The Bison precedence declarations
6999can only be used once for a given token; so a token has
bfa74976
RS
7000only one precedence declared in this way. For context-dependent
7001precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7002modifier for rules.
bfa74976
RS
7003
7004The @code{%prec} modifier declares the precedence of a particular rule by
7005specifying a terminal symbol whose precedence should be used for that rule.
7006It's not necessary for that symbol to appear otherwise in the rule. The
7007modifier's syntax is:
7008
7009@example
7010%prec @var{terminal-symbol}
7011@end example
7012
7013@noindent
7014and it is written after the components of the rule. Its effect is to
7015assign the rule the precedence of @var{terminal-symbol}, overriding
7016the precedence that would be deduced for it in the ordinary way. The
7017altered rule precedence then affects how conflicts involving that rule
7018are resolved (@pxref{Precedence, ,Operator Precedence}).
7019
7020Here is how @code{%prec} solves the problem of unary minus. First, declare
7021a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7022are no tokens of this type, but the symbol serves to stand for its
7023precedence:
7024
7025@example
7026@dots{}
7027%left '+' '-'
7028%left '*'
7029%left UMINUS
7030@end example
7031
7032Now the precedence of @code{UMINUS} can be used in specific rules:
7033
7034@example
7035@group
5e9b6624
AD
7036exp:
7037 @dots{}
7038| exp '-' exp
7039 @dots{}
7040| '-' exp %prec UMINUS
bfa74976
RS
7041@end group
7042@end example
7043
91d2c560 7044@ifset defaultprec
39a06c25
PE
7045If you forget to append @code{%prec UMINUS} to the rule for unary
7046minus, Bison silently assumes that minus has its usual precedence.
7047This kind of problem can be tricky to debug, since one typically
7048discovers the mistake only by testing the code.
7049
22fccf95 7050The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7051this kind of problem systematically. It causes rules that lack a
7052@code{%prec} modifier to have no precedence, even if the last terminal
7053symbol mentioned in their components has a declared precedence.
7054
22fccf95 7055If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7056for all rules that participate in precedence conflict resolution.
7057Then you will see any shift/reduce conflict until you tell Bison how
7058to resolve it, either by changing your grammar or by adding an
7059explicit precedence. This will probably add declarations to the
7060grammar, but it helps to protect against incorrect rule precedences.
7061
22fccf95
PE
7062The effect of @code{%no-default-prec;} can be reversed by giving
7063@code{%default-prec;}, which is the default.
91d2c560 7064@end ifset
39a06c25 7065
342b8b6e 7066@node Parser States
bfa74976
RS
7067@section Parser States
7068@cindex finite-state machine
7069@cindex parser state
7070@cindex state (of parser)
7071
7072The function @code{yyparse} is implemented using a finite-state machine.
7073The values pushed on the parser stack are not simply token type codes; they
7074represent the entire sequence of terminal and nonterminal symbols at or
7075near the top of the stack. The current state collects all the information
7076about previous input which is relevant to deciding what to do next.
7077
742e4900
JD
7078Each time a lookahead token is read, the current parser state together
7079with the type of lookahead token are looked up in a table. This table
7080entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7081specifies the new parser state, which is pushed onto the top of the
7082parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7083This means that a certain number of tokens or groupings are taken off
7084the top of the stack, and replaced by one grouping. In other words,
7085that number of states are popped from the stack, and one new state is
7086pushed.
7087
742e4900 7088There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7089is erroneous in the current state. This causes error processing to begin
7090(@pxref{Error Recovery}).
7091
342b8b6e 7092@node Reduce/Reduce
bfa74976
RS
7093@section Reduce/Reduce Conflicts
7094@cindex reduce/reduce conflict
7095@cindex conflicts, reduce/reduce
7096
7097A reduce/reduce conflict occurs if there are two or more rules that apply
7098to the same sequence of input. This usually indicates a serious error
7099in the grammar.
7100
7101For example, here is an erroneous attempt to define a sequence
7102of zero or more @code{word} groupings.
7103
7104@example
d4fca427 7105@group
5e9b6624
AD
7106sequence:
7107 /* empty */ @{ printf ("empty sequence\n"); @}
7108| maybeword
7109| sequence word @{ printf ("added word %s\n", $2); @}
7110;
d4fca427 7111@end group
bfa74976 7112
d4fca427 7113@group
5e9b6624
AD
7114maybeword:
7115 /* empty */ @{ printf ("empty maybeword\n"); @}
7116| word @{ printf ("single word %s\n", $1); @}
7117;
d4fca427 7118@end group
bfa74976
RS
7119@end example
7120
7121@noindent
7122The error is an ambiguity: there is more than one way to parse a single
7123@code{word} into a @code{sequence}. It could be reduced to a
7124@code{maybeword} and then into a @code{sequence} via the second rule.
7125Alternatively, nothing-at-all could be reduced into a @code{sequence}
7126via the first rule, and this could be combined with the @code{word}
7127using the third rule for @code{sequence}.
7128
7129There is also more than one way to reduce nothing-at-all into a
7130@code{sequence}. This can be done directly via the first rule,
7131or indirectly via @code{maybeword} and then the second rule.
7132
7133You might think that this is a distinction without a difference, because it
7134does not change whether any particular input is valid or not. But it does
7135affect which actions are run. One parsing order runs the second rule's
7136action; the other runs the first rule's action and the third rule's action.
7137In this example, the output of the program changes.
7138
7139Bison resolves a reduce/reduce conflict by choosing to use the rule that
7140appears first in the grammar, but it is very risky to rely on this. Every
7141reduce/reduce conflict must be studied and usually eliminated. Here is the
7142proper way to define @code{sequence}:
7143
7144@example
5e9b6624
AD
7145sequence:
7146 /* empty */ @{ printf ("empty sequence\n"); @}
7147| sequence word @{ printf ("added word %s\n", $2); @}
7148;
bfa74976
RS
7149@end example
7150
7151Here is another common error that yields a reduce/reduce conflict:
7152
7153@example
5e9b6624
AD
7154sequence:
7155 /* empty */
7156| sequence words
7157| sequence redirects
7158;
bfa74976 7159
5e9b6624
AD
7160words:
7161 /* empty */
7162| words word
7163;
bfa74976 7164
5e9b6624
AD
7165redirects:
7166 /* empty */
7167| redirects redirect
7168;
bfa74976
RS
7169@end example
7170
7171@noindent
7172The intention here is to define a sequence which can contain either
7173@code{word} or @code{redirect} groupings. The individual definitions of
7174@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7175three together make a subtle ambiguity: even an empty input can be parsed
7176in infinitely many ways!
7177
7178Consider: nothing-at-all could be a @code{words}. Or it could be two
7179@code{words} in a row, or three, or any number. It could equally well be a
7180@code{redirects}, or two, or any number. Or it could be a @code{words}
7181followed by three @code{redirects} and another @code{words}. And so on.
7182
7183Here are two ways to correct these rules. First, to make it a single level
7184of sequence:
7185
7186@example
5e9b6624
AD
7187sequence:
7188 /* empty */
7189| sequence word
7190| sequence redirect
7191;
bfa74976
RS
7192@end example
7193
7194Second, to prevent either a @code{words} or a @code{redirects}
7195from being empty:
7196
7197@example
d4fca427 7198@group
5e9b6624
AD
7199sequence:
7200 /* empty */
7201| sequence words
7202| sequence redirects
7203;
d4fca427 7204@end group
bfa74976 7205
d4fca427 7206@group
5e9b6624
AD
7207words:
7208 word
7209| words word
7210;
d4fca427 7211@end group
bfa74976 7212
d4fca427 7213@group
5e9b6624
AD
7214redirects:
7215 redirect
7216| redirects redirect
7217;
d4fca427 7218@end group
bfa74976
RS
7219@end example
7220
cc09e5be
JD
7221@node Mysterious Conflicts
7222@section Mysterious Conflicts
7fceb615 7223@cindex Mysterious Conflicts
bfa74976
RS
7224
7225Sometimes reduce/reduce conflicts can occur that don't look warranted.
7226Here is an example:
7227
7228@example
7229@group
7230%token ID
7231
7232%%
5e9b6624 7233def: param_spec return_spec ',';
bfa74976 7234param_spec:
5e9b6624
AD
7235 type
7236| name_list ':' type
7237;
bfa74976
RS
7238@end group
7239@group
7240return_spec:
5e9b6624
AD
7241 type
7242| name ':' type
7243;
bfa74976
RS
7244@end group
7245@group
5e9b6624 7246type: ID;
bfa74976
RS
7247@end group
7248@group
5e9b6624 7249name: ID;
bfa74976 7250name_list:
5e9b6624
AD
7251 name
7252| name ',' name_list
7253;
bfa74976
RS
7254@end group
7255@end example
7256
7257It would seem that this grammar can be parsed with only a single token
742e4900 7258of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7259a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7260@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7261
7fceb615
JD
7262@cindex LR
7263@cindex LALR
eb45ef3b 7264However, for historical reasons, Bison cannot by default handle all
8a4281b9 7265LR(1) grammars.
eb45ef3b
JD
7266In this grammar, two contexts, that after an @code{ID} at the beginning
7267of a @code{param_spec} and likewise at the beginning of a
7268@code{return_spec}, are similar enough that Bison assumes they are the
7269same.
7270They appear similar because the same set of rules would be
bfa74976
RS
7271active---the rule for reducing to a @code{name} and that for reducing to
7272a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7273that the rules would require different lookahead tokens in the two
bfa74976
RS
7274contexts, so it makes a single parser state for them both. Combining
7275the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7276occurrence means that the grammar is not LALR(1).
bfa74976 7277
7fceb615
JD
7278@cindex IELR
7279@cindex canonical LR
7280For many practical grammars (specifically those that fall into the non-LR(1)
7281class), the limitations of LALR(1) result in difficulties beyond just
7282mysterious reduce/reduce conflicts. The best way to fix all these problems
7283is to select a different parser table construction algorithm. Either
7284IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7285and easier to debug during development. @xref{LR Table Construction}, for
7286details. (Bison's IELR(1) and canonical LR(1) implementations are
7287experimental. More user feedback will help to stabilize them.)
eb45ef3b 7288
8a4281b9 7289If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7290can often fix a mysterious conflict by identifying the two parser states
7291that are being confused, and adding something to make them look
7292distinct. In the above example, adding one rule to
bfa74976
RS
7293@code{return_spec} as follows makes the problem go away:
7294
7295@example
7296@group
7297%token BOGUS
7298@dots{}
7299%%
7300@dots{}
7301return_spec:
5e9b6624
AD
7302 type
7303| name ':' type
7304| ID BOGUS /* This rule is never used. */
7305;
bfa74976
RS
7306@end group
7307@end example
7308
7309This corrects the problem because it introduces the possibility of an
7310additional active rule in the context after the @code{ID} at the beginning of
7311@code{return_spec}. This rule is not active in the corresponding context
7312in a @code{param_spec}, so the two contexts receive distinct parser states.
7313As long as the token @code{BOGUS} is never generated by @code{yylex},
7314the added rule cannot alter the way actual input is parsed.
7315
7316In this particular example, there is another way to solve the problem:
7317rewrite the rule for @code{return_spec} to use @code{ID} directly
7318instead of via @code{name}. This also causes the two confusing
7319contexts to have different sets of active rules, because the one for
7320@code{return_spec} activates the altered rule for @code{return_spec}
7321rather than the one for @code{name}.
7322
7323@example
7324param_spec:
5e9b6624
AD
7325 type
7326| name_list ':' type
7327;
bfa74976 7328return_spec:
5e9b6624
AD
7329 type
7330| ID ':' type
7331;
bfa74976
RS
7332@end example
7333
8a4281b9 7334For a more detailed exposition of LALR(1) parsers and parser
5e528941 7335generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7336
7fceb615
JD
7337@node Tuning LR
7338@section Tuning LR
7339
7340The default behavior of Bison's LR-based parsers is chosen mostly for
7341historical reasons, but that behavior is often not robust. For example, in
7342the previous section, we discussed the mysterious conflicts that can be
7343produced by LALR(1), Bison's default parser table construction algorithm.
7344Another example is Bison's @code{%define parse.error verbose} directive,
7345which instructs the generated parser to produce verbose syntax error
7346messages, which can sometimes contain incorrect information.
7347
7348In this section, we explore several modern features of Bison that allow you
7349to tune fundamental aspects of the generated LR-based parsers. Some of
7350these features easily eliminate shortcomings like those mentioned above.
7351Others can be helpful purely for understanding your parser.
7352
7353Most of the features discussed in this section are still experimental. More
7354user feedback will help to stabilize them.
7355
7356@menu
7357* LR Table Construction:: Choose a different construction algorithm.
7358* Default Reductions:: Disable default reductions.
7359* LAC:: Correct lookahead sets in the parser states.
7360* Unreachable States:: Keep unreachable parser states for debugging.
7361@end menu
7362
7363@node LR Table Construction
7364@subsection LR Table Construction
7365@cindex Mysterious Conflict
7366@cindex LALR
7367@cindex IELR
7368@cindex canonical LR
7369@findex %define lr.type
7370
7371For historical reasons, Bison constructs LALR(1) parser tables by default.
7372However, LALR does not possess the full language-recognition power of LR.
7373As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7374mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7375Conflicts}.
7376
7377As we also demonstrated in that example, the traditional approach to
7378eliminating such mysterious behavior is to restructure the grammar.
7379Unfortunately, doing so correctly is often difficult. Moreover, merely
7380discovering that LALR causes mysterious behavior in your parser can be
7381difficult as well.
7382
7383Fortunately, Bison provides an easy way to eliminate the possibility of such
7384mysterious behavior altogether. You simply need to activate a more powerful
7385parser table construction algorithm by using the @code{%define lr.type}
7386directive.
7387
7388@deffn {Directive} {%define lr.type @var{TYPE}}
7389Specify the type of parser tables within the LR(1) family. The accepted
7390values for @var{TYPE} are:
7391
7392@itemize
7393@item @code{lalr} (default)
7394@item @code{ielr}
7395@item @code{canonical-lr}
7396@end itemize
7397
7398(This feature is experimental. More user feedback will help to stabilize
7399it.)
7400@end deffn
7401
7402For example, to activate IELR, you might add the following directive to you
7403grammar file:
7404
7405@example
7406%define lr.type ielr
7407@end example
7408
cc09e5be 7409@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7410conflict is then eliminated, so there is no need to invest time in
7411comprehending the conflict or restructuring the grammar to fix it. If,
7412during future development, the grammar evolves such that all mysterious
7413behavior would have disappeared using just LALR, you need not fear that
7414continuing to use IELR will result in unnecessarily large parser tables.
7415That is, IELR generates LALR tables when LALR (using a deterministic parsing
7416algorithm) is sufficient to support the full language-recognition power of
7417LR. Thus, by enabling IELR at the start of grammar development, you can
7418safely and completely eliminate the need to consider LALR's shortcomings.
7419
7420While IELR is almost always preferable, there are circumstances where LALR
7421or the canonical LR parser tables described by Knuth
7422(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7423relative advantages of each parser table construction algorithm within
7424Bison:
7425
7426@itemize
7427@item LALR
7428
7429There are at least two scenarios where LALR can be worthwhile:
7430
7431@itemize
7432@item GLR without static conflict resolution.
7433
7434@cindex GLR with LALR
7435When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7436conflicts statically (for example, with @code{%left} or @code{%prec}), then
7437the parser explores all potential parses of any given input. In this case,
7438the choice of parser table construction algorithm is guaranteed not to alter
7439the language accepted by the parser. LALR parser tables are the smallest
7440parser tables Bison can currently construct, so they may then be preferable.
7441Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7442more like a deterministic parser in the syntactic contexts where those
7443conflicts appear, and so either IELR or canonical LR can then be helpful to
7444avoid LALR's mysterious behavior.
7445
7446@item Malformed grammars.
7447
7448Occasionally during development, an especially malformed grammar with a
7449major recurring flaw may severely impede the IELR or canonical LR parser
7450table construction algorithm. LALR can be a quick way to construct parser
7451tables in order to investigate such problems while ignoring the more subtle
7452differences from IELR and canonical LR.
7453@end itemize
7454
7455@item IELR
7456
7457IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7458any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7459always accept exactly the same set of sentences. However, like LALR, IELR
7460merges parser states during parser table construction so that the number of
7461parser states is often an order of magnitude less than for canonical LR.
7462More importantly, because canonical LR's extra parser states may contain
7463duplicate conflicts in the case of non-LR grammars, the number of conflicts
7464for IELR is often an order of magnitude less as well. This effect can
7465significantly reduce the complexity of developing a grammar.
7466
7467@item Canonical LR
7468
7469@cindex delayed syntax error detection
7470@cindex LAC
7471@findex %nonassoc
7472While inefficient, canonical LR parser tables can be an interesting means to
7473explore a grammar because they possess a property that IELR and LALR tables
7474do not. That is, if @code{%nonassoc} is not used and default reductions are
7475left disabled (@pxref{Default Reductions}), then, for every left context of
7476every canonical LR state, the set of tokens accepted by that state is
7477guaranteed to be the exact set of tokens that is syntactically acceptable in
7478that left context. It might then seem that an advantage of canonical LR
7479parsers in production is that, under the above constraints, they are
7480guaranteed to detect a syntax error as soon as possible without performing
7481any unnecessary reductions. However, IELR parsers that use LAC are also
7482able to achieve this behavior without sacrificing @code{%nonassoc} or
7483default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7484@end itemize
7485
7486For a more detailed exposition of the mysterious behavior in LALR parsers
7487and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7488@ref{Bibliography,,Denny 2010 November}.
7489
7490@node Default Reductions
7491@subsection Default Reductions
7492@cindex default reductions
7493@findex %define lr.default-reductions
7494@findex %nonassoc
7495
7496After parser table construction, Bison identifies the reduction with the
7497largest lookahead set in each parser state. To reduce the size of the
7498parser state, traditional Bison behavior is to remove that lookahead set and
7499to assign that reduction to be the default parser action. Such a reduction
7500is known as a @dfn{default reduction}.
7501
7502Default reductions affect more than the size of the parser tables. They
7503also affect the behavior of the parser:
7504
7505@itemize
7506@item Delayed @code{yylex} invocations.
7507
7508@cindex delayed yylex invocations
7509@cindex consistent states
7510@cindex defaulted states
7511A @dfn{consistent state} is a state that has only one possible parser
7512action. If that action is a reduction and is encoded as a default
7513reduction, then that consistent state is called a @dfn{defaulted state}.
7514Upon reaching a defaulted state, a Bison-generated parser does not bother to
7515invoke @code{yylex} to fetch the next token before performing the reduction.
7516In other words, whether default reductions are enabled in consistent states
7517determines how soon a Bison-generated parser invokes @code{yylex} for a
7518token: immediately when it @emph{reaches} that token in the input or when it
7519eventually @emph{needs} that token as a lookahead to determine the next
7520parser action. Traditionally, default reductions are enabled, and so the
7521parser exhibits the latter behavior.
7522
7523The presence of defaulted states is an important consideration when
7524designing @code{yylex} and the grammar file. That is, if the behavior of
7525@code{yylex} can influence or be influenced by the semantic actions
7526associated with the reductions in defaulted states, then the delay of the
7527next @code{yylex} invocation until after those reductions is significant.
7528For example, the semantic actions might pop a scope stack that @code{yylex}
7529uses to determine what token to return. Thus, the delay might be necessary
7530to ensure that @code{yylex} does not look up the next token in a scope that
7531should already be considered closed.
7532
7533@item Delayed syntax error detection.
7534
7535@cindex delayed syntax error detection
7536When the parser fetches a new token by invoking @code{yylex}, it checks
7537whether there is an action for that token in the current parser state. The
7538parser detects a syntax error if and only if either (1) there is no action
7539for that token or (2) the action for that token is the error action (due to
7540the use of @code{%nonassoc}). However, if there is a default reduction in
7541that state (which might or might not be a defaulted state), then it is
7542impossible for condition 1 to exist. That is, all tokens have an action.
7543Thus, the parser sometimes fails to detect the syntax error until it reaches
7544a later state.
7545
7546@cindex LAC
7547@c If there's an infinite loop, default reductions can prevent an incorrect
7548@c sentence from being rejected.
7549While default reductions never cause the parser to accept syntactically
7550incorrect sentences, the delay of syntax error detection can have unexpected
7551effects on the behavior of the parser. However, the delay can be caused
7552anyway by parser state merging and the use of @code{%nonassoc}, and it can
7553be fixed by another Bison feature, LAC. We discuss the effects of delayed
7554syntax error detection and LAC more in the next section (@pxref{LAC}).
7555@end itemize
7556
7557For canonical LR, the only default reduction that Bison enables by default
7558is the accept action, which appears only in the accepting state, which has
7559no other action and is thus a defaulted state. However, the default accept
7560action does not delay any @code{yylex} invocation or syntax error detection
7561because the accept action ends the parse.
7562
7563For LALR and IELR, Bison enables default reductions in nearly all states by
7564default. There are only two exceptions. First, states that have a shift
7565action on the @code{error} token do not have default reductions because
7566delayed syntax error detection could then prevent the @code{error} token
7567from ever being shifted in that state. However, parser state merging can
7568cause the same effect anyway, and LAC fixes it in both cases, so future
7569versions of Bison might drop this exception when LAC is activated. Second,
7570GLR parsers do not record the default reduction as the action on a lookahead
7571token for which there is a conflict. The correct action in this case is to
7572split the parse instead.
7573
7574To adjust which states have default reductions enabled, use the
7575@code{%define lr.default-reductions} directive.
7576
7577@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7578Specify the kind of states that are permitted to contain default reductions.
7579The accepted values of @var{WHERE} are:
7580@itemize
f0ad1b2f 7581@item @code{most} (default for LALR and IELR)
7fceb615
JD
7582@item @code{consistent}
7583@item @code{accepting} (default for canonical LR)
7584@end itemize
7585
7586(The ability to specify where default reductions are permitted is
7587experimental. More user feedback will help to stabilize it.)
7588@end deffn
7589
7fceb615
JD
7590@node LAC
7591@subsection LAC
7592@findex %define parse.lac
7593@cindex LAC
7594@cindex lookahead correction
7595
7596Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7597encountering a syntax error. First, the parser might perform additional
7598parser stack reductions before discovering the syntax error. Such
7599reductions can perform user semantic actions that are unexpected because
7600they are based on an invalid token, and they cause error recovery to begin
7601in a different syntactic context than the one in which the invalid token was
7602encountered. Second, when verbose error messages are enabled (@pxref{Error
7603Reporting}), the expected token list in the syntax error message can both
7604contain invalid tokens and omit valid tokens.
7605
7606The culprits for the above problems are @code{%nonassoc}, default reductions
7607in inconsistent states (@pxref{Default Reductions}), and parser state
7608merging. Because IELR and LALR merge parser states, they suffer the most.
7609Canonical LR can suffer only if @code{%nonassoc} is used or if default
7610reductions are enabled for inconsistent states.
7611
7612LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7613that solves these problems for canonical LR, IELR, and LALR without
7614sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7615enable LAC with the @code{%define parse.lac} directive.
7616
7617@deffn {Directive} {%define parse.lac @var{VALUE}}
7618Enable LAC to improve syntax error handling.
7619@itemize
7620@item @code{none} (default)
7621@item @code{full}
7622@end itemize
7623(This feature is experimental. More user feedback will help to stabilize
7624it. Moreover, it is currently only available for deterministic parsers in
7625C.)
7626@end deffn
7627
7628Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7629fetches a new token from the scanner so that it can determine the next
7630parser action, it immediately suspends normal parsing and performs an
7631exploratory parse using a temporary copy of the normal parser state stack.
7632During this exploratory parse, the parser does not perform user semantic
7633actions. If the exploratory parse reaches a shift action, normal parsing
7634then resumes on the normal parser stacks. If the exploratory parse reaches
7635an error instead, the parser reports a syntax error. If verbose syntax
7636error messages are enabled, the parser must then discover the list of
7637expected tokens, so it performs a separate exploratory parse for each token
7638in the grammar.
7639
7640There is one subtlety about the use of LAC. That is, when in a consistent
7641parser state with a default reduction, the parser will not attempt to fetch
7642a token from the scanner because no lookahead is needed to determine the
7643next parser action. Thus, whether default reductions are enabled in
7644consistent states (@pxref{Default Reductions}) affects how soon the parser
7645detects a syntax error: immediately when it @emph{reaches} an erroneous
7646token or when it eventually @emph{needs} that token as a lookahead to
7647determine the next parser action. The latter behavior is probably more
7648intuitive, so Bison currently provides no way to achieve the former behavior
7649while default reductions are enabled in consistent states.
7650
7651Thus, when LAC is in use, for some fixed decision of whether to enable
7652default reductions in consistent states, canonical LR and IELR behave almost
7653exactly the same for both syntactically acceptable and syntactically
7654unacceptable input. While LALR still does not support the full
7655language-recognition power of canonical LR and IELR, LAC at least enables
7656LALR's syntax error handling to correctly reflect LALR's
7657language-recognition power.
7658
7659There are a few caveats to consider when using LAC:
7660
7661@itemize
7662@item Infinite parsing loops.
7663
7664IELR plus LAC does have one shortcoming relative to canonical LR. Some
7665parsers generated by Bison can loop infinitely. LAC does not fix infinite
7666parsing loops that occur between encountering a syntax error and detecting
7667it, but enabling canonical LR or disabling default reductions sometimes
7668does.
7669
7670@item Verbose error message limitations.
7671
7672Because of internationalization considerations, Bison-generated parsers
7673limit the size of the expected token list they are willing to report in a
7674verbose syntax error message. If the number of expected tokens exceeds that
7675limit, the list is simply dropped from the message. Enabling LAC can
7676increase the size of the list and thus cause the parser to drop it. Of
7677course, dropping the list is better than reporting an incorrect list.
7678
7679@item Performance.
7680
7681Because LAC requires many parse actions to be performed twice, it can have a
7682performance penalty. However, not all parse actions must be performed
7683twice. Specifically, during a series of default reductions in consistent
7684states and shift actions, the parser never has to initiate an exploratory
7685parse. Moreover, the most time-consuming tasks in a parse are often the
7686file I/O, the lexical analysis performed by the scanner, and the user's
7687semantic actions, but none of these are performed during the exploratory
7688parse. Finally, the base of the temporary stack used during an exploratory
7689parse is a pointer into the normal parser state stack so that the stack is
7690never physically copied. In our experience, the performance penalty of LAC
5a321748 7691has proved insignificant for practical grammars.
7fceb615
JD
7692@end itemize
7693
709c7d11
JD
7694While the LAC algorithm shares techniques that have been recognized in the
7695parser community for years, for the publication that introduces LAC,
7696@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7697
7fceb615
JD
7698@node Unreachable States
7699@subsection Unreachable States
7700@findex %define lr.keep-unreachable-states
7701@cindex unreachable states
7702
7703If there exists no sequence of transitions from the parser's start state to
7704some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7705state}. A state can become unreachable during conflict resolution if Bison
7706disables a shift action leading to it from a predecessor state.
7707
7708By default, Bison removes unreachable states from the parser after conflict
7709resolution because they are useless in the generated parser. However,
7710keeping unreachable states is sometimes useful when trying to understand the
7711relationship between the parser and the grammar.
7712
7713@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7714Request that Bison allow unreachable states to remain in the parser tables.
7715@var{VALUE} must be a Boolean. The default is @code{false}.
7716@end deffn
7717
7718There are a few caveats to consider:
7719
7720@itemize @bullet
7721@item Missing or extraneous warnings.
7722
7723Unreachable states may contain conflicts and may use rules not used in any
7724other state. Thus, keeping unreachable states may induce warnings that are
7725irrelevant to your parser's behavior, and it may eliminate warnings that are
7726relevant. Of course, the change in warnings may actually be relevant to a
7727parser table analysis that wants to keep unreachable states, so this
7728behavior will likely remain in future Bison releases.
7729
7730@item Other useless states.
7731
7732While Bison is able to remove unreachable states, it is not guaranteed to
7733remove other kinds of useless states. Specifically, when Bison disables
7734reduce actions during conflict resolution, some goto actions may become
7735useless, and thus some additional states may become useless. If Bison were
7736to compute which goto actions were useless and then disable those actions,
7737it could identify such states as unreachable and then remove those states.
7738However, Bison does not compute which goto actions are useless.
7739@end itemize
7740
fae437e8 7741@node Generalized LR Parsing
8a4281b9
JD
7742@section Generalized LR (GLR) Parsing
7743@cindex GLR parsing
7744@cindex generalized LR (GLR) parsing
676385e2 7745@cindex ambiguous grammars
9d9b8b70 7746@cindex nondeterministic parsing
676385e2 7747
fae437e8
AD
7748Bison produces @emph{deterministic} parsers that choose uniquely
7749when to reduce and which reduction to apply
742e4900 7750based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7751As a result, normal Bison handles a proper subset of the family of
7752context-free languages.
fae437e8 7753Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7754sequence of reductions cannot have deterministic parsers in this sense.
7755The same is true of languages that require more than one symbol of
742e4900 7756lookahead, since the parser lacks the information necessary to make a
676385e2 7757decision at the point it must be made in a shift-reduce parser.
cc09e5be 7758Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7759there are languages where Bison's default choice of how to
676385e2
PH
7760summarize the input seen so far loses necessary information.
7761
7762When you use the @samp{%glr-parser} declaration in your grammar file,
7763Bison generates a parser that uses a different algorithm, called
8a4281b9 7764Generalized LR (or GLR). A Bison GLR
c827f760 7765parser uses the same basic
676385e2
PH
7766algorithm for parsing as an ordinary Bison parser, but behaves
7767differently in cases where there is a shift-reduce conflict that has not
fae437e8 7768been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7769reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7770situation, it
fae437e8 7771effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7772shift or reduction. These parsers then proceed as usual, consuming
7773tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7774and split further, with the result that instead of a sequence of states,
8a4281b9 7775a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7776
7777In effect, each stack represents a guess as to what the proper parse
7778is. Additional input may indicate that a guess was wrong, in which case
7779the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7780actions generated in each stack are saved, rather than being executed
676385e2 7781immediately. When a stack disappears, its saved semantic actions never
fae437e8 7782get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7783their sets of semantic actions are both saved with the state that
7784results from the reduction. We say that two stacks are equivalent
fae437e8 7785when they both represent the same sequence of states,
676385e2
PH
7786and each pair of corresponding states represents a
7787grammar symbol that produces the same segment of the input token
7788stream.
7789
7790Whenever the parser makes a transition from having multiple
eb45ef3b 7791states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7792algorithm, after resolving and executing the saved-up actions.
7793At this transition, some of the states on the stack will have semantic
7794values that are sets (actually multisets) of possible actions. The
7795parser tries to pick one of the actions by first finding one whose rule
7796has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7797declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7798precedence, but there the same merging function is declared for both
fae437e8 7799rules by the @samp{%merge} declaration,
676385e2
PH
7800Bison resolves and evaluates both and then calls the merge function on
7801the result. Otherwise, it reports an ambiguity.
7802
8a4281b9
JD
7803It is possible to use a data structure for the GLR parsing tree that
7804permits the processing of any LR(1) grammar in linear time (in the
c827f760 7805size of the input), any unambiguous (not necessarily
8a4281b9 7806LR(1)) grammar in
fae437e8 7807quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7808context-free grammar in cubic worst-case time. However, Bison currently
7809uses a simpler data structure that requires time proportional to the
7810length of the input times the maximum number of stacks required for any
9d9b8b70 7811prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7812grammars can require exponential time and space to process. Such badly
7813behaving examples, however, are not generally of practical interest.
9d9b8b70 7814Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7815doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7816structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7817grammar, in particular, it is only slightly slower than with the
8a4281b9 7818deterministic LR(1) Bison parser.
676385e2 7819
5e528941
JD
7820For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
78212000}.
f6481e2f 7822
1a059451
PE
7823@node Memory Management
7824@section Memory Management, and How to Avoid Memory Exhaustion
7825@cindex memory exhaustion
7826@cindex memory management
bfa74976
RS
7827@cindex stack overflow
7828@cindex parser stack overflow
7829@cindex overflow of parser stack
7830
1a059451 7831The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7832not reduced. When this happens, the parser function @code{yyparse}
1a059451 7833calls @code{yyerror} and then returns 2.
bfa74976 7834
c827f760 7835Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7836usually results from using a right recursion instead of a left
7837recursion, @xref{Recursion, ,Recursive Rules}.
7838
bfa74976
RS
7839@vindex YYMAXDEPTH
7840By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7841parser stack can become before memory is exhausted. Define the
bfa74976
RS
7842macro with a value that is an integer. This value is the maximum number
7843of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7844
7845The stack space allowed is not necessarily allocated. If you specify a
1a059451 7846large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7847stack at first, and then makes it bigger by stages as needed. This
7848increasing allocation happens automatically and silently. Therefore,
7849you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7850space for ordinary inputs that do not need much stack.
7851
d7e14fc0
PE
7852However, do not allow @code{YYMAXDEPTH} to be a value so large that
7853arithmetic overflow could occur when calculating the size of the stack
7854space. Also, do not allow @code{YYMAXDEPTH} to be less than
7855@code{YYINITDEPTH}.
7856
bfa74976
RS
7857@cindex default stack limit
7858The default value of @code{YYMAXDEPTH}, if you do not define it, is
785910000.
7860
7861@vindex YYINITDEPTH
7862You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7863macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7864parser in C, this value must be a compile-time constant
d7e14fc0
PE
7865unless you are assuming C99 or some other target language or compiler
7866that allows variable-length arrays. The default is 200.
7867
1a059451 7868Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7869
20be2f92 7870You can generate a deterministic parser containing C++ user code from
411614fa 7871the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
7872(@pxref{C++ Parsers}). However, if you do use the default skeleton
7873and want to allow the parsing stack to grow,
7874be careful not to use semantic types or location types that require
7875non-trivial copy constructors.
7876The C skeleton bypasses these constructors when copying data to
7877new, larger stacks.
d1a1114f 7878
342b8b6e 7879@node Error Recovery
bfa74976
RS
7880@chapter Error Recovery
7881@cindex error recovery
7882@cindex recovery from errors
7883
6e649e65 7884It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7885error. For example, a compiler should recover sufficiently to parse the
7886rest of the input file and check it for errors; a calculator should accept
7887another expression.
7888
7889In a simple interactive command parser where each input is one line, it may
7890be sufficient to allow @code{yyparse} to return 1 on error and have the
7891caller ignore the rest of the input line when that happens (and then call
7892@code{yyparse} again). But this is inadequate for a compiler, because it
7893forgets all the syntactic context leading up to the error. A syntax error
7894deep within a function in the compiler input should not cause the compiler
7895to treat the following line like the beginning of a source file.
7896
7897@findex error
7898You can define how to recover from a syntax error by writing rules to
7899recognize the special token @code{error}. This is a terminal symbol that
7900is always defined (you need not declare it) and reserved for error
7901handling. The Bison parser generates an @code{error} token whenever a
7902syntax error happens; if you have provided a rule to recognize this token
13863333 7903in the current context, the parse can continue.
bfa74976
RS
7904
7905For example:
7906
7907@example
0860e383 7908stmts:
5e9b6624 7909 /* empty string */
0860e383
AD
7910| stmts '\n'
7911| stmts exp '\n'
7912| stmts error '\n'
bfa74976
RS
7913@end example
7914
7915The fourth rule in this example says that an error followed by a newline
0860e383 7916makes a valid addition to any @code{stmts}.
bfa74976
RS
7917
7918What happens if a syntax error occurs in the middle of an @code{exp}? The
7919error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 7920of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 7921the middle of an @code{exp}, there will probably be some additional tokens
0860e383 7922and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
7923will be tokens to read before the next newline. So the rule is not
7924applicable in the ordinary way.
7925
7926But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7927the semantic context and part of the input. First it discards states
7928and objects from the stack until it gets back to a state in which the
bfa74976 7929@code{error} token is acceptable. (This means that the subexpressions
0860e383 7930already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 7931At this point the @code{error} token can be shifted. Then, if the old
742e4900 7932lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7933tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7934this example, Bison reads and discards input until the next newline so
7935that the fourth rule can apply. Note that discarded symbols are
7936possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7937Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7938
7939The choice of error rules in the grammar is a choice of strategies for
7940error recovery. A simple and useful strategy is simply to skip the rest of
7941the current input line or current statement if an error is detected:
7942
7943@example
0860e383 7944stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7945@end example
7946
7947It is also useful to recover to the matching close-delimiter of an
7948opening-delimiter that has already been parsed. Otherwise the
7949close-delimiter will probably appear to be unmatched, and generate another,
7950spurious error message:
7951
7952@example
5e9b6624
AD
7953primary:
7954 '(' expr ')'
7955| '(' error ')'
7956@dots{}
7957;
bfa74976
RS
7958@end example
7959
7960Error recovery strategies are necessarily guesses. When they guess wrong,
7961one syntax error often leads to another. In the above example, the error
7962recovery rule guesses that an error is due to bad input within one
0860e383
AD
7963@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
7964middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
7965from the first error, another syntax error will be found straightaway,
7966since the text following the spurious semicolon is also an invalid
0860e383 7967@code{stmt}.
bfa74976
RS
7968
7969To prevent an outpouring of error messages, the parser will output no error
7970message for another syntax error that happens shortly after the first; only
7971after three consecutive input tokens have been successfully shifted will
7972error messages resume.
7973
7974Note that rules which accept the @code{error} token may have actions, just
7975as any other rules can.
7976
7977@findex yyerrok
7978You can make error messages resume immediately by using the macro
7979@code{yyerrok} in an action. If you do this in the error rule's action, no
7980error messages will be suppressed. This macro requires no arguments;
7981@samp{yyerrok;} is a valid C statement.
7982
7983@findex yyclearin
742e4900 7984The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7985this is unacceptable, then the macro @code{yyclearin} may be used to clear
7986this token. Write the statement @samp{yyclearin;} in the error rule's
7987action.
32c29292 7988@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7989
6e649e65 7990For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7991called that advances the input stream to some point where parsing should
7992once again commence. The next symbol returned by the lexical scanner is
742e4900 7993probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7994with @samp{yyclearin;}.
7995
7996@vindex YYRECOVERING
02103984
PE
7997The expression @code{YYRECOVERING ()} yields 1 when the parser
7998is recovering from a syntax error, and 0 otherwise.
7999Syntax error diagnostics are suppressed while recovering from a syntax
8000error.
bfa74976 8001
342b8b6e 8002@node Context Dependency
bfa74976
RS
8003@chapter Handling Context Dependencies
8004
8005The Bison paradigm is to parse tokens first, then group them into larger
8006syntactic units. In many languages, the meaning of a token is affected by
8007its context. Although this violates the Bison paradigm, certain techniques
8008(known as @dfn{kludges}) may enable you to write Bison parsers for such
8009languages.
8010
8011@menu
8012* Semantic Tokens:: Token parsing can depend on the semantic context.
8013* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8014* Tie-in Recovery:: Lexical tie-ins have implications for how
8015 error recovery rules must be written.
8016@end menu
8017
8018(Actually, ``kludge'' means any technique that gets its job done but is
8019neither clean nor robust.)
8020
342b8b6e 8021@node Semantic Tokens
bfa74976
RS
8022@section Semantic Info in Token Types
8023
8024The C language has a context dependency: the way an identifier is used
8025depends on what its current meaning is. For example, consider this:
8026
8027@example
8028foo (x);
8029@end example
8030
8031This looks like a function call statement, but if @code{foo} is a typedef
8032name, then this is actually a declaration of @code{x}. How can a Bison
8033parser for C decide how to parse this input?
8034
8a4281b9 8035The method used in GNU C is to have two different token types,
bfa74976
RS
8036@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8037identifier, it looks up the current declaration of the identifier in order
8038to decide which token type to return: @code{TYPENAME} if the identifier is
8039declared as a typedef, @code{IDENTIFIER} otherwise.
8040
8041The grammar rules can then express the context dependency by the choice of
8042token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8043but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8044@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8045is @emph{not} significant, such as in declarations that can shadow a
8046typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8047accepted---there is one rule for each of the two token types.
8048
8049This technique is simple to use if the decision of which kinds of
8050identifiers to allow is made at a place close to where the identifier is
8051parsed. But in C this is not always so: C allows a declaration to
8052redeclare a typedef name provided an explicit type has been specified
8053earlier:
8054
8055@example
3a4f411f
PE
8056typedef int foo, bar;
8057int baz (void)
d4fca427 8058@group
3a4f411f
PE
8059@{
8060 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8061 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8062 return foo (bar);
8063@}
d4fca427 8064@end group
bfa74976
RS
8065@end example
8066
8067Unfortunately, the name being declared is separated from the declaration
8068construct itself by a complicated syntactic structure---the ``declarator''.
8069
9ecbd125 8070As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8071all the nonterminal names changed: once for parsing a declaration in
8072which a typedef name can be redefined, and once for parsing a
8073declaration in which that can't be done. Here is a part of the
8074duplication, with actions omitted for brevity:
bfa74976
RS
8075
8076@example
d4fca427 8077@group
bfa74976 8078initdcl:
5e9b6624
AD
8079 declarator maybeasm '=' init
8080| declarator maybeasm
8081;
d4fca427 8082@end group
bfa74976 8083
d4fca427 8084@group
bfa74976 8085notype_initdcl:
5e9b6624
AD
8086 notype_declarator maybeasm '=' init
8087| notype_declarator maybeasm
8088;
d4fca427 8089@end group
bfa74976
RS
8090@end example
8091
8092@noindent
8093Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8094cannot. The distinction between @code{declarator} and
8095@code{notype_declarator} is the same sort of thing.
8096
8097There is some similarity between this technique and a lexical tie-in
8098(described next), in that information which alters the lexical analysis is
8099changed during parsing by other parts of the program. The difference is
8100here the information is global, and is used for other purposes in the
8101program. A true lexical tie-in has a special-purpose flag controlled by
8102the syntactic context.
8103
342b8b6e 8104@node Lexical Tie-ins
bfa74976
RS
8105@section Lexical Tie-ins
8106@cindex lexical tie-in
8107
8108One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8109which is set by Bison actions, whose purpose is to alter the way tokens are
8110parsed.
8111
8112For example, suppose we have a language vaguely like C, but with a special
8113construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8114an expression in parentheses in which all integers are hexadecimal. In
8115particular, the token @samp{a1b} must be treated as an integer rather than
8116as an identifier if it appears in that context. Here is how you can do it:
8117
8118@example
8119@group
8120%@{
38a92d50
PE
8121 int hexflag;
8122 int yylex (void);
8123 void yyerror (char const *);
bfa74976
RS
8124%@}
8125%%
8126@dots{}
8127@end group
8128@group
5e9b6624
AD
8129expr:
8130 IDENTIFIER
8131| constant
8132| HEX '(' @{ hexflag = 1; @}
8133 expr ')' @{ hexflag = 0; $$ = $4; @}
8134| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8135@dots{}
8136;
bfa74976
RS
8137@end group
8138
8139@group
8140constant:
5e9b6624
AD
8141 INTEGER
8142| STRING
8143;
bfa74976
RS
8144@end group
8145@end example
8146
8147@noindent
8148Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8149it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8150with letters are parsed as integers if possible.
8151
ff7571c0
JD
8152The declaration of @code{hexflag} shown in the prologue of the grammar
8153file is needed to make it accessible to the actions (@pxref{Prologue,
8154,The Prologue}). You must also write the code in @code{yylex} to obey
8155the flag.
bfa74976 8156
342b8b6e 8157@node Tie-in Recovery
bfa74976
RS
8158@section Lexical Tie-ins and Error Recovery
8159
8160Lexical tie-ins make strict demands on any error recovery rules you have.
8161@xref{Error Recovery}.
8162
8163The reason for this is that the purpose of an error recovery rule is to
8164abort the parsing of one construct and resume in some larger construct.
8165For example, in C-like languages, a typical error recovery rule is to skip
8166tokens until the next semicolon, and then start a new statement, like this:
8167
8168@example
5e9b6624
AD
8169stmt:
8170 expr ';'
8171| IF '(' expr ')' stmt @{ @dots{} @}
8172@dots{}
8173| error ';' @{ hexflag = 0; @}
8174;
bfa74976
RS
8175@end example
8176
8177If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8178construct, this error rule will apply, and then the action for the
8179completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8180remain set for the entire rest of the input, or until the next @code{hex}
8181keyword, causing identifiers to be misinterpreted as integers.
8182
8183To avoid this problem the error recovery rule itself clears @code{hexflag}.
8184
8185There may also be an error recovery rule that works within expressions.
8186For example, there could be a rule which applies within parentheses
8187and skips to the close-parenthesis:
8188
8189@example
8190@group
5e9b6624
AD
8191expr:
8192 @dots{}
8193| '(' expr ')' @{ $$ = $2; @}
8194| '(' error ')'
8195@dots{}
bfa74976
RS
8196@end group
8197@end example
8198
8199If this rule acts within the @code{hex} construct, it is not going to abort
8200that construct (since it applies to an inner level of parentheses within
8201the construct). Therefore, it should not clear the flag: the rest of
8202the @code{hex} construct should be parsed with the flag still in effect.
8203
8204What if there is an error recovery rule which might abort out of the
8205@code{hex} construct or might not, depending on circumstances? There is no
8206way you can write the action to determine whether a @code{hex} construct is
8207being aborted or not. So if you are using a lexical tie-in, you had better
8208make sure your error recovery rules are not of this kind. Each rule must
8209be such that you can be sure that it always will, or always won't, have to
8210clear the flag.
8211
ec3bc396
AD
8212@c ================================================== Debugging Your Parser
8213
342b8b6e 8214@node Debugging
bfa74976 8215@chapter Debugging Your Parser
ec3bc396
AD
8216
8217Developing a parser can be a challenge, especially if you don't
8218understand the algorithm (@pxref{Algorithm, ,The Bison Parser
8219Algorithm}). Even so, sometimes a detailed description of the automaton
8220can help (@pxref{Understanding, , Understanding Your Parser}), or
8221tracing the execution of the parser can give some insight on why it
8222behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
8223
8224@menu
8225* Understanding:: Understanding the structure of your parser.
8226* Tracing:: Tracing the execution of your parser.
8227@end menu
8228
8229@node Understanding
8230@section Understanding Your Parser
8231
8232As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8233Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8234frequent than one would hope), looking at this automaton is required to
8235tune or simply fix a parser. Bison provides two different
35fe0834 8236representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8237
8238The textual file is generated when the options @option{--report} or
8239@option{--verbose} are specified, see @xref{Invocation, , Invoking
8240Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8241the parser implementation file name, and adding @samp{.output}
8242instead. Therefore, if the grammar file is @file{foo.y}, then the
8243parser implementation file is called @file{foo.tab.c} by default. As
8244a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8245
8246The following grammar file, @file{calc.y}, will be used in the sequel:
8247
8248@example
8249%token NUM STR
8250%left '+' '-'
8251%left '*'
8252%%
5e9b6624
AD
8253exp:
8254 exp '+' exp
8255| exp '-' exp
8256| exp '*' exp
8257| exp '/' exp
8258| NUM
8259;
ec3bc396
AD
8260useless: STR;
8261%%
8262@end example
8263
88bce5a2
AD
8264@command{bison} reports:
8265
8266@example
8f0d265e
JD
8267calc.y: warning: 1 nonterminal useless in grammar
8268calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8269calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8270calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8271calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8272@end example
8273
8274When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8275creates a file @file{calc.output} with contents detailed below. The
8276order of the output and the exact presentation might vary, but the
8277interpretation is the same.
ec3bc396 8278
ec3bc396
AD
8279@noindent
8280@cindex token, useless
8281@cindex useless token
8282@cindex nonterminal, useless
8283@cindex useless nonterminal
8284@cindex rule, useless
8285@cindex useless rule
62243aa5 8286The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8287nonterminals and rules are removed in order to produce a smaller parser, but
8288useless tokens are preserved, since they might be used by the scanner (note
8289the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8290
8291@example
29e20e22 8292Nonterminals useless in grammar
ec3bc396
AD
8293 useless
8294
29e20e22 8295Terminals unused in grammar
ec3bc396
AD
8296 STR
8297
29e20e22
AD
8298Rules useless in grammar
8299 6 useless: STR
ec3bc396
AD
8300@end example
8301
8302@noindent
29e20e22
AD
8303The next section lists states that still have conflicts.
8304
8305@example
8306State 8 conflicts: 1 shift/reduce
8307State 9 conflicts: 1 shift/reduce
8308State 10 conflicts: 1 shift/reduce
8309State 11 conflicts: 4 shift/reduce
8310@end example
8311
8312@noindent
8313Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8314
8315@example
8316Grammar
8317
29e20e22
AD
8318 0 $accept: exp $end
8319
8320 1 exp: exp '+' exp
8321 2 | exp '-' exp
8322 3 | exp '*' exp
8323 4 | exp '/' exp
8324 5 | NUM
ec3bc396
AD
8325@end example
8326
8327@noindent
8328and reports the uses of the symbols:
8329
8330@example
d4fca427 8331@group
ec3bc396
AD
8332Terminals, with rules where they appear
8333
88bce5a2 8334$end (0) 0
ec3bc396
AD
8335'*' (42) 3
8336'+' (43) 1
8337'-' (45) 2
8338'/' (47) 4
8339error (256)
8340NUM (258) 5
29e20e22 8341STR (259)
d4fca427 8342@end group
ec3bc396 8343
d4fca427 8344@group
ec3bc396
AD
8345Nonterminals, with rules where they appear
8346
29e20e22 8347$accept (9)
ec3bc396 8348 on left: 0
29e20e22 8349exp (10)
ec3bc396 8350 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8351@end group
ec3bc396
AD
8352@end example
8353
8354@noindent
8355@cindex item
8356@cindex pointed rule
8357@cindex rule, pointed
8358Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8359with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8360item is a production rule together with a point (@samp{.}) marking
8361the location of the input cursor.
ec3bc396
AD
8362
8363@example
8364state 0
8365
29e20e22 8366 0 $accept: . exp $end
ec3bc396 8367
29e20e22 8368 NUM shift, and go to state 1
ec3bc396 8369
29e20e22 8370 exp go to state 2
ec3bc396
AD
8371@end example
8372
8373This reads as follows: ``state 0 corresponds to being at the very
8374beginning of the parsing, in the initial rule, right before the start
8375symbol (here, @code{exp}). When the parser returns to this state right
8376after having reduced a rule that produced an @code{exp}, the control
8377flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8378symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8379the parse stack, and the control flow jumps to state 1. Any other
742e4900 8380lookahead triggers a syntax error.''
ec3bc396
AD
8381
8382@cindex core, item set
8383@cindex item set core
8384@cindex kernel, item set
8385@cindex item set core
8386Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8387report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8388at the beginning of any rule deriving an @code{exp}. By default Bison
8389reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8390you want to see more detail you can invoke @command{bison} with
35880c82 8391@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8392
8393@example
8394state 0
8395
29e20e22
AD
8396 0 $accept: . exp $end
8397 1 exp: . exp '+' exp
8398 2 | . exp '-' exp
8399 3 | . exp '*' exp
8400 4 | . exp '/' exp
8401 5 | . NUM
ec3bc396 8402
29e20e22 8403 NUM shift, and go to state 1
ec3bc396 8404
29e20e22 8405 exp go to state 2
ec3bc396
AD
8406@end example
8407
8408@noindent
29e20e22 8409In the state 1@dots{}
ec3bc396
AD
8410
8411@example
8412state 1
8413
29e20e22 8414 5 exp: NUM .
ec3bc396 8415
29e20e22 8416 $default reduce using rule 5 (exp)
ec3bc396
AD
8417@end example
8418
8419@noindent
742e4900 8420the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8421(@samp{$default}), the parser will reduce it. If it was coming from
8422state 0, then, after this reduction it will return to state 0, and will
8423jump to state 2 (@samp{exp: go to state 2}).
8424
8425@example
8426state 2
8427
29e20e22
AD
8428 0 $accept: exp . $end
8429 1 exp: exp . '+' exp
8430 2 | exp . '-' exp
8431 3 | exp . '*' exp
8432 4 | exp . '/' exp
ec3bc396 8433
29e20e22
AD
8434 $end shift, and go to state 3
8435 '+' shift, and go to state 4
8436 '-' shift, and go to state 5
8437 '*' shift, and go to state 6
8438 '/' shift, and go to state 7
ec3bc396
AD
8439@end example
8440
8441@noindent
8442In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8443because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8444@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8445jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8446Since there is no default action, any lookahead not listed triggers a syntax
8447error.
ec3bc396 8448
eb45ef3b 8449@cindex accepting state
ec3bc396
AD
8450The state 3 is named the @dfn{final state}, or the @dfn{accepting
8451state}:
8452
8453@example
8454state 3
8455
29e20e22 8456 0 $accept: exp $end .
ec3bc396 8457
29e20e22 8458 $default accept
ec3bc396
AD
8459@end example
8460
8461@noindent
29e20e22
AD
8462the initial rule is completed (the start symbol and the end-of-input were
8463read), the parsing exits successfully.
ec3bc396
AD
8464
8465The interpretation of states 4 to 7 is straightforward, and is left to
8466the reader.
8467
8468@example
8469state 4
8470
29e20e22 8471 1 exp: exp '+' . exp
ec3bc396 8472
29e20e22
AD
8473 NUM shift, and go to state 1
8474
8475 exp go to state 8
ec3bc396 8476
ec3bc396
AD
8477
8478state 5
8479
29e20e22
AD
8480 2 exp: exp '-' . exp
8481
8482 NUM shift, and go to state 1
ec3bc396 8483
29e20e22 8484 exp go to state 9
ec3bc396 8485
ec3bc396
AD
8486
8487state 6
8488
29e20e22 8489 3 exp: exp '*' . exp
ec3bc396 8490
29e20e22
AD
8491 NUM shift, and go to state 1
8492
8493 exp go to state 10
ec3bc396 8494
ec3bc396
AD
8495
8496state 7
8497
29e20e22 8498 4 exp: exp '/' . exp
ec3bc396 8499
29e20e22 8500 NUM shift, and go to state 1
ec3bc396 8501
29e20e22 8502 exp go to state 11
ec3bc396
AD
8503@end example
8504
5a99098d
PE
8505As was announced in beginning of the report, @samp{State 8 conflicts:
85061 shift/reduce}:
ec3bc396
AD
8507
8508@example
8509state 8
8510
29e20e22
AD
8511 1 exp: exp . '+' exp
8512 1 | exp '+' exp .
8513 2 | exp . '-' exp
8514 3 | exp . '*' exp
8515 4 | exp . '/' exp
ec3bc396 8516
29e20e22
AD
8517 '*' shift, and go to state 6
8518 '/' shift, and go to state 7
ec3bc396 8519
29e20e22
AD
8520 '/' [reduce using rule 1 (exp)]
8521 $default reduce using rule 1 (exp)
ec3bc396
AD
8522@end example
8523
742e4900 8524Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8525either shifting (and going to state 7), or reducing rule 1. The
8526conflict means that either the grammar is ambiguous, or the parser lacks
8527information to make the right decision. Indeed the grammar is
8528ambiguous, as, since we did not specify the precedence of @samp{/}, the
8529sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8530NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8531NUM}, which corresponds to reducing rule 1.
8532
eb45ef3b 8533Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8534arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 8535Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8536square brackets.
8537
8538Note that all the previous states had a single possible action: either
8539shifting the next token and going to the corresponding state, or
8540reducing a single rule. In the other cases, i.e., when shifting
8541@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8542possible, the lookahead is required to select the action. State 8 is
8543one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8544is shifting, otherwise the action is reducing rule 1. In other words,
8545the first two items, corresponding to rule 1, are not eligible when the
742e4900 8546lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8547precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8548with some set of possible lookahead tokens. When run with
8549@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8550
8551@example
8552state 8
8553
29e20e22
AD
8554 1 exp: exp . '+' exp
8555 1 | exp '+' exp . [$end, '+', '-', '/']
8556 2 | exp . '-' exp
8557 3 | exp . '*' exp
8558 4 | exp . '/' exp
8559
8560 '*' shift, and go to state 6
8561 '/' shift, and go to state 7
ec3bc396 8562
29e20e22
AD
8563 '/' [reduce using rule 1 (exp)]
8564 $default reduce using rule 1 (exp)
8565@end example
8566
8567Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8568the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8569solved thanks to associativity and precedence directives. If invoked with
8570@option{--report=solved}, Bison includes information about the solved
8571conflicts in the report:
ec3bc396 8572
29e20e22
AD
8573@example
8574Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8575Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8576Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8577@end example
8578
29e20e22 8579
ec3bc396
AD
8580The remaining states are similar:
8581
8582@example
d4fca427 8583@group
ec3bc396
AD
8584state 9
8585
29e20e22
AD
8586 1 exp: exp . '+' exp
8587 2 | exp . '-' exp
8588 2 | exp '-' exp .
8589 3 | exp . '*' exp
8590 4 | exp . '/' exp
ec3bc396 8591
29e20e22
AD
8592 '*' shift, and go to state 6
8593 '/' shift, and go to state 7
ec3bc396 8594
29e20e22
AD
8595 '/' [reduce using rule 2 (exp)]
8596 $default reduce using rule 2 (exp)
d4fca427 8597@end group
ec3bc396 8598
d4fca427 8599@group
ec3bc396
AD
8600state 10
8601
29e20e22
AD
8602 1 exp: exp . '+' exp
8603 2 | exp . '-' exp
8604 3 | exp . '*' exp
8605 3 | exp '*' exp .
8606 4 | exp . '/' exp
ec3bc396 8607
29e20e22 8608 '/' shift, and go to state 7
ec3bc396 8609
29e20e22
AD
8610 '/' [reduce using rule 3 (exp)]
8611 $default reduce using rule 3 (exp)
d4fca427 8612@end group
ec3bc396 8613
d4fca427 8614@group
ec3bc396
AD
8615state 11
8616
29e20e22
AD
8617 1 exp: exp . '+' exp
8618 2 | exp . '-' exp
8619 3 | exp . '*' exp
8620 4 | exp . '/' exp
8621 4 | exp '/' exp .
8622
8623 '+' shift, and go to state 4
8624 '-' shift, and go to state 5
8625 '*' shift, and go to state 6
8626 '/' shift, and go to state 7
8627
8628 '+' [reduce using rule 4 (exp)]
8629 '-' [reduce using rule 4 (exp)]
8630 '*' [reduce using rule 4 (exp)]
8631 '/' [reduce using rule 4 (exp)]
8632 $default reduce using rule 4 (exp)
d4fca427 8633@end group
ec3bc396
AD
8634@end example
8635
8636@noindent
fa7e68c3
PE
8637Observe that state 11 contains conflicts not only due to the lack of
8638precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8639@samp{*}, but also because the
ec3bc396
AD
8640associativity of @samp{/} is not specified.
8641
8642
8643@node Tracing
8644@section Tracing Your Parser
bfa74976
RS
8645@findex yydebug
8646@cindex debugging
8647@cindex tracing the parser
8648
8649If a Bison grammar compiles properly but doesn't do what you want when it
8650runs, the @code{yydebug} parser-trace feature can help you figure out why.
8651
3ded9a63
AD
8652There are several means to enable compilation of trace facilities:
8653
8654@table @asis
8655@item the macro @code{YYDEBUG}
8656@findex YYDEBUG
8657Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8658parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8659@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8660YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8661Prologue}).
8662
8663@item the option @option{-t}, @option{--debug}
8664Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8665,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8666
8667@item the directive @samp{%debug}
8668@findex %debug
fa819509
AD
8669Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8670Summary}). This Bison extension is maintained for backward
8671compatibility with previous versions of Bison.
8672
8673@item the variable @samp{parse.trace}
8674@findex %define parse.trace
35c1e5f0
JD
8675Add the @samp{%define parse.trace} directive (@pxref{%define
8676Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8677(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8678useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8679portability matter to you, this is the preferred solution.
3ded9a63
AD
8680@end table
8681
fa819509 8682We suggest that you always enable the trace option so that debugging is
3ded9a63 8683always possible.
bfa74976 8684
02a81e05 8685The trace facility outputs messages with macro calls of the form
e2742e46 8686@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8687@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8688arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8689define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8690and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8691
8692Once you have compiled the program with trace facilities, the way to
8693request a trace is to store a nonzero value in the variable @code{yydebug}.
8694You can do this by making the C code do it (in @code{main}, perhaps), or
8695you can alter the value with a C debugger.
8696
8697Each step taken by the parser when @code{yydebug} is nonzero produces a
8698line or two of trace information, written on @code{stderr}. The trace
8699messages tell you these things:
8700
8701@itemize @bullet
8702@item
8703Each time the parser calls @code{yylex}, what kind of token was read.
8704
8705@item
8706Each time a token is shifted, the depth and complete contents of the
8707state stack (@pxref{Parser States}).
8708
8709@item
8710Each time a rule is reduced, which rule it is, and the complete contents
8711of the state stack afterward.
8712@end itemize
8713
8714To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8715produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8716Bison}). This file shows the meaning of each state in terms of
8717positions in various rules, and also what each state will do with each
8718possible input token. As you read the successive trace messages, you
8719can see that the parser is functioning according to its specification in
8720the listing file. Eventually you will arrive at the place where
8721something undesirable happens, and you will see which parts of the
8722grammar are to blame.
bfa74976 8723
ff7571c0
JD
8724The parser implementation file is a C program and you can use C
8725debuggers on it, but it's not easy to interpret what it is doing. The
8726parser function is a finite-state machine interpreter, and aside from
8727the actions it executes the same code over and over. Only the values
8728of variables show where in the grammar it is working.
bfa74976
RS
8729
8730@findex YYPRINT
8731The debugging information normally gives the token type of each token
8732read, but not its semantic value. You can optionally define a macro
8733named @code{YYPRINT} to provide a way to print the value. If you define
8734@code{YYPRINT}, it should take three arguments. The parser will pass a
8735standard I/O stream, the numeric code for the token type, and the token
8736value (from @code{yylval}).
8737
8738Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8739calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 8740
c93f22fc 8741@example
38a92d50
PE
8742%@{
8743 static void print_token_value (FILE *, int, YYSTYPE);
c93f22fc
AD
8744 #define YYPRINT(file, type, value) \
8745 print_token_value (file, type, value)
38a92d50
PE
8746%@}
8747
8748@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8749
8750static void
831d3c99 8751print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8752@{
8753 if (type == VAR)
d3c4e709 8754 fprintf (file, "%s", value.tptr->name);
bfa74976 8755 else if (type == NUM)
d3c4e709 8756 fprintf (file, "%d", value.val);
bfa74976 8757@}
c93f22fc 8758@end example
bfa74976 8759
ec3bc396
AD
8760@c ================================================= Invoking Bison
8761
342b8b6e 8762@node Invocation
bfa74976
RS
8763@chapter Invoking Bison
8764@cindex invoking Bison
8765@cindex Bison invocation
8766@cindex options for invoking Bison
8767
8768The usual way to invoke Bison is as follows:
8769
8770@example
8771bison @var{infile}
8772@end example
8773
8774Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
8775@samp{.y}. The parser implementation file's name is made by replacing
8776the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8777Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8778the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8779also possible, in case you are writing C++ code instead of C in your
8780grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8781output files will take an extension like the given one as input
8782(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8783feature takes effect with all options that manipulate file names like
234a3be3
AD
8784@samp{-o} or @samp{-d}.
8785
8786For example :
8787
8788@example
8789bison -d @var{infile.yxx}
8790@end example
84163231 8791@noindent
72d2299c 8792will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8793
8794@example
b56471a6 8795bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8796@end example
84163231 8797@noindent
234a3be3
AD
8798will produce @file{output.c++} and @file{outfile.h++}.
8799
8a4281b9 8800For compatibility with POSIX, the standard Bison
397ec073
PE
8801distribution also contains a shell script called @command{yacc} that
8802invokes Bison with the @option{-y} option.
8803
bfa74976 8804@menu
13863333 8805* Bison Options:: All the options described in detail,
c827f760 8806 in alphabetical order by short options.
bfa74976 8807* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8808* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8809@end menu
8810
342b8b6e 8811@node Bison Options
bfa74976
RS
8812@section Bison Options
8813
8814Bison supports both traditional single-letter options and mnemonic long
8815option names. Long option names are indicated with @samp{--} instead of
8816@samp{-}. Abbreviations for option names are allowed as long as they
8817are unique. When a long option takes an argument, like
8818@samp{--file-prefix}, connect the option name and the argument with
8819@samp{=}.
8820
8821Here is a list of options that can be used with Bison, alphabetized by
8822short option. It is followed by a cross key alphabetized by long
8823option.
8824
89cab50d
AD
8825@c Please, keep this ordered as in `bison --help'.
8826@noindent
8827Operations modes:
8828@table @option
8829@item -h
8830@itemx --help
8831Print a summary of the command-line options to Bison and exit.
bfa74976 8832
89cab50d
AD
8833@item -V
8834@itemx --version
8835Print the version number of Bison and exit.
bfa74976 8836
f7ab6a50
PE
8837@item --print-localedir
8838Print the name of the directory containing locale-dependent data.
8839
a0de5091
JD
8840@item --print-datadir
8841Print the name of the directory containing skeletons and XSLT.
8842
89cab50d
AD
8843@item -y
8844@itemx --yacc
ff7571c0
JD
8845Act more like the traditional Yacc command. This can cause different
8846diagnostics to be generated, and may change behavior in other minor
8847ways. Most importantly, imitate Yacc's output file name conventions,
8848so that the parser implementation file is called @file{y.tab.c}, and
8849the other outputs are called @file{y.output} and @file{y.tab.h}.
8850Also, if generating a deterministic parser in C, generate
8851@code{#define} statements in addition to an @code{enum} to associate
8852token numbers with token names. Thus, the following shell script can
8853substitute for Yacc, and the Bison distribution contains such a script
8854for compatibility with POSIX:
bfa74976 8855
89cab50d 8856@example
397ec073 8857#! /bin/sh
26e06a21 8858bison -y "$@@"
89cab50d 8859@end example
54662697
PE
8860
8861The @option{-y}/@option{--yacc} option is intended for use with
8862traditional Yacc grammars. If your grammar uses a Bison extension
8863like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8864this option is specified.
8865
1d5b3c08
JD
8866@item -W [@var{category}]
8867@itemx --warnings[=@var{category}]
118d4978
AD
8868Output warnings falling in @var{category}. @var{category} can be one
8869of:
8870@table @code
8871@item midrule-values
8e55b3aa
JD
8872Warn about mid-rule values that are set but not used within any of the actions
8873of the parent rule.
8874For example, warn about unused @code{$2} in:
118d4978
AD
8875
8876@example
8877exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8878@end example
8879
8e55b3aa
JD
8880Also warn about mid-rule values that are used but not set.
8881For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8882
8883@example
5e9b6624 8884exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
8885@end example
8886
8887These warnings are not enabled by default since they sometimes prove to
8888be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8889@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8890
118d4978 8891@item yacc
8a4281b9 8892Incompatibilities with POSIX Yacc.
118d4978 8893
786743d5
JD
8894@item conflicts-sr
8895@itemx conflicts-rr
8896S/R and R/R conflicts. These warnings are enabled by default. However, if
8897the @code{%expect} or @code{%expect-rr} directive is specified, an
8898unexpected number of conflicts is an error, and an expected number of
8899conflicts is not reported, so @option{-W} and @option{--warning} then have
8900no effect on the conflict report.
8901
c39014ae
JD
8902@item other
8903All warnings not categorized above. These warnings are enabled by default.
8904
8905This category is provided merely for the sake of completeness. Future
8906releases of Bison may move warnings from this category to new, more specific
8907categories.
8908
118d4978 8909@item all
8e55b3aa 8910All the warnings.
118d4978 8911@item none
8e55b3aa 8912Turn off all the warnings.
118d4978 8913@item error
8e55b3aa 8914Treat warnings as errors.
118d4978
AD
8915@end table
8916
8917A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8918instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8919POSIX Yacc incompatibilities.
89cab50d
AD
8920@end table
8921
8922@noindent
8923Tuning the parser:
8924
8925@table @option
8926@item -t
8927@itemx --debug
ff7571c0
JD
8928In the parser implementation file, define the macro @code{YYDEBUG} to
89291 if it is not already defined, so that the debugging facilities are
8930compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8931
58697c6d
AD
8932@item -D @var{name}[=@var{value}]
8933@itemx --define=@var{name}[=@var{value}]
17aed602 8934@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8935@itemx --force-define=@var{name}[=@var{value}]
8936Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 8937(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
8938definitions for the same @var{name} as follows:
8939
8940@itemize
8941@item
0b6d43c5
JD
8942Bison quietly ignores all command-line definitions for @var{name} except
8943the last.
de5ab940 8944@item
0b6d43c5
JD
8945If that command-line definition is specified by a @code{-D} or
8946@code{--define}, Bison reports an error for any @code{%define}
8947definition for @var{name}.
de5ab940 8948@item
0b6d43c5
JD
8949If that command-line definition is specified by a @code{-F} or
8950@code{--force-define} instead, Bison quietly ignores all @code{%define}
8951definitions for @var{name}.
8952@item
8953Otherwise, Bison reports an error if there are multiple @code{%define}
8954definitions for @var{name}.
de5ab940
JD
8955@end itemize
8956
8957You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
8958make files unless you are confident that it is safe to quietly ignore
8959any conflicting @code{%define} that may be added to the grammar file.
58697c6d 8960
0e021770
PE
8961@item -L @var{language}
8962@itemx --language=@var{language}
8963Specify the programming language for the generated parser, as if
8964@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8965Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8966@var{language} is case-insensitive.
0e021770 8967
ed4d67dc
JD
8968This option is experimental and its effect may be modified in future
8969releases.
8970
89cab50d 8971@item --locations
d8988b2f 8972Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8973
8974@item -p @var{prefix}
8975@itemx --name-prefix=@var{prefix}
02975b9a 8976Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8977@xref{Decl Summary}.
bfa74976
RS
8978
8979@item -l
8980@itemx --no-lines
ff7571c0
JD
8981Don't put any @code{#line} preprocessor commands in the parser
8982implementation file. Ordinarily Bison puts them in the parser
8983implementation file so that the C compiler and debuggers will
8984associate errors with your source file, the grammar file. This option
8985causes them to associate errors with the parser implementation file,
8986treating it as an independent source file in its own right.
bfa74976 8987
e6e704dc
JD
8988@item -S @var{file}
8989@itemx --skeleton=@var{file}
a7867f53 8990Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8991(@pxref{Decl Summary, , Bison Declaration Summary}).
8992
ed4d67dc
JD
8993@c You probably don't need this option unless you are developing Bison.
8994@c You should use @option{--language} if you want to specify the skeleton for a
8995@c different language, because it is clearer and because it will always
8996@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8997
a7867f53
JD
8998If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8999file in the Bison installation directory.
9000If it does, @var{file} is an absolute file name or a file name relative to the
9001current working directory.
9002This is similar to how most shells resolve commands.
9003
89cab50d
AD
9004@item -k
9005@itemx --token-table
d8988b2f 9006Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9007@end table
bfa74976 9008
89cab50d
AD
9009@noindent
9010Adjust the output:
bfa74976 9011
89cab50d 9012@table @option
8e55b3aa 9013@item --defines[=@var{file}]
d8988b2f 9014Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9015file containing macro definitions for the token type names defined in
4bfd5e4e 9016the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9017
8e55b3aa
JD
9018@item -d
9019This is the same as @code{--defines} except @code{-d} does not accept a
9020@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9021with other short options.
342b8b6e 9022
89cab50d
AD
9023@item -b @var{file-prefix}
9024@itemx --file-prefix=@var{prefix}
9c437126 9025Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9026for all Bison output file names. @xref{Decl Summary}.
bfa74976 9027
ec3bc396
AD
9028@item -r @var{things}
9029@itemx --report=@var{things}
9030Write an extra output file containing verbose description of the comma
9031separated list of @var{things} among:
9032
9033@table @code
9034@item state
9035Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9036parser's automaton.
ec3bc396 9037
742e4900 9038@item lookahead
ec3bc396 9039Implies @code{state} and augments the description of the automaton with
742e4900 9040each rule's lookahead set.
ec3bc396
AD
9041
9042@item itemset
9043Implies @code{state} and augments the description of the automaton with
9044the full set of items for each state, instead of its core only.
9045@end table
9046
1bb2bd75
JD
9047@item --report-file=@var{file}
9048Specify the @var{file} for the verbose description.
9049
bfa74976
RS
9050@item -v
9051@itemx --verbose
9c437126 9052Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9053file containing verbose descriptions of the grammar and
72d2299c 9054parser. @xref{Decl Summary}.
bfa74976 9055
fa4d969f
PE
9056@item -o @var{file}
9057@itemx --output=@var{file}
ff7571c0 9058Specify the @var{file} for the parser implementation file.
bfa74976 9059
fa4d969f 9060The other output files' names are constructed from @var{file} as
d8988b2f 9061described under the @samp{-v} and @samp{-d} options.
342b8b6e 9062
a7c09cba 9063@item -g [@var{file}]
8e55b3aa 9064@itemx --graph[=@var{file}]
eb45ef3b 9065Output a graphical representation of the parser's
35fe0834 9066automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9067@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9068@code{@var{file}} is optional.
9069If omitted and the grammar file is @file{foo.y}, the output file will be
9070@file{foo.dot}.
59da312b 9071
a7c09cba 9072@item -x [@var{file}]
8e55b3aa 9073@itemx --xml[=@var{file}]
eb45ef3b 9074Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9075@code{@var{file}} is optional.
59da312b
JD
9076If omitted and the grammar file is @file{foo.y}, the output file will be
9077@file{foo.xml}.
9078(The current XML schema is experimental and may evolve.
9079More user feedback will help to stabilize it.)
bfa74976
RS
9080@end table
9081
342b8b6e 9082@node Option Cross Key
bfa74976
RS
9083@section Option Cross Key
9084
9085Here is a list of options, alphabetized by long option, to help you find
de5ab940 9086the corresponding short option and directive.
bfa74976 9087
de5ab940 9088@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9089@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9090@include cross-options.texi
aa08666d 9091@end multitable
bfa74976 9092
93dd49ab
PE
9093@node Yacc Library
9094@section Yacc Library
9095
9096The Yacc library contains default implementations of the
9097@code{yyerror} and @code{main} functions. These default
8a4281b9 9098implementations are normally not useful, but POSIX requires
93dd49ab
PE
9099them. To use the Yacc library, link your program with the
9100@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9101library is distributed under the terms of the GNU General
93dd49ab
PE
9102Public License (@pxref{Copying}).
9103
9104If you use the Yacc library's @code{yyerror} function, you should
9105declare @code{yyerror} as follows:
9106
9107@example
9108int yyerror (char const *);
9109@end example
9110
9111Bison ignores the @code{int} value returned by this @code{yyerror}.
9112If you use the Yacc library's @code{main} function, your
9113@code{yyparse} function should have the following type signature:
9114
9115@example
9116int yyparse (void);
9117@end example
9118
12545799
AD
9119@c ================================================= C++ Bison
9120
8405b70c
PB
9121@node Other Languages
9122@chapter Parsers Written In Other Languages
12545799
AD
9123
9124@menu
9125* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9126* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9127@end menu
9128
9129@node C++ Parsers
9130@section C++ Parsers
9131
9132@menu
9133* C++ Bison Interface:: Asking for C++ parser generation
9134* C++ Semantic Values:: %union vs. C++
9135* C++ Location Values:: The position and location classes
9136* C++ Parser Interface:: Instantiating and running the parser
9137* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9138* A Complete C++ Example:: Demonstrating their use
12545799
AD
9139@end menu
9140
9141@node C++ Bison Interface
9142@subsection C++ Bison Interface
ed4d67dc 9143@c - %skeleton "lalr1.cc"
12545799
AD
9144@c - Always pure
9145@c - initial action
9146
eb45ef3b 9147The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9148@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9149@option{--skeleton=lalr1.cc}.
e6e704dc 9150@xref{Decl Summary}.
0e021770 9151
793fbca5
JD
9152When run, @command{bison} will create several entities in the @samp{yy}
9153namespace.
67501061 9154@findex %define api.namespace
35c1e5f0
JD
9155Use the @samp{%define api.namespace} directive to change the namespace name,
9156see @ref{%define Summary,,api.namespace}. The various classes are generated
9157in the following files:
aa08666d 9158
12545799
AD
9159@table @file
9160@item position.hh
9161@itemx location.hh
9162The definition of the classes @code{position} and @code{location},
3cdc21cf 9163used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9164
9165@item stack.hh
9166An auxiliary class @code{stack} used by the parser.
9167
fa4d969f
PE
9168@item @var{file}.hh
9169@itemx @var{file}.cc
ff7571c0 9170(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9171declaration and implementation of the C++ parser class. The basename
9172and extension of these two files follow the same rules as with regular C
9173parsers (@pxref{Invocation}).
12545799 9174
cd8b5791
AD
9175The header is @emph{mandatory}; you must either pass
9176@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9177@samp{%defines} directive.
9178@end table
9179
9180All these files are documented using Doxygen; run @command{doxygen}
9181for a complete and accurate documentation.
9182
9183@node C++ Semantic Values
9184@subsection C++ Semantic Values
9185@c - No objects in unions
178e123e 9186@c - YYSTYPE
12545799
AD
9187@c - Printer and destructor
9188
3cdc21cf
AD
9189Bison supports two different means to handle semantic values in C++. One is
9190alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9191practitioners know, unions are inconvenient in C++, therefore another
9192approach is provided, based on variants (@pxref{C++ Variants}).
9193
9194@menu
9195* C++ Unions:: Semantic values cannot be objects
9196* C++ Variants:: Using objects as semantic values
9197@end menu
9198
9199@node C++ Unions
9200@subsubsection C++ Unions
9201
12545799
AD
9202The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9203Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9204@code{union}, which have a few specific features in C++.
12545799
AD
9205@itemize @minus
9206@item
fb9712a9
AD
9207The type @code{YYSTYPE} is defined but its use is discouraged: rather
9208you should refer to the parser's encapsulated type
9209@code{yy::parser::semantic_type}.
12545799
AD
9210@item
9211Non POD (Plain Old Data) types cannot be used. C++ forbids any
9212instance of classes with constructors in unions: only @emph{pointers}
9213to such objects are allowed.
9214@end itemize
9215
9216Because objects have to be stored via pointers, memory is not
9217reclaimed automatically: using the @code{%destructor} directive is the
9218only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9219Symbols}.
9220
3cdc21cf
AD
9221@node C++ Variants
9222@subsubsection C++ Variants
9223
9224Starting with version 2.6, Bison provides a @emph{variant} based
9225implementation of semantic values for C++. This alleviates all the
9226limitations reported in the previous section, and in particular, object
9227types can be used without pointers.
9228
9229To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9230@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9231@code{%union} is ignored, and instead of using the name of the fields of the
9232@code{%union} to ``type'' the symbols, use genuine types.
9233
9234For instance, instead of
9235
9236@example
9237%union
9238@{
9239 int ival;
9240 std::string* sval;
9241@}
9242%token <ival> NUMBER;
9243%token <sval> STRING;
9244@end example
9245
9246@noindent
9247write
9248
9249@example
9250%token <int> NUMBER;
9251%token <std::string> STRING;
9252@end example
9253
9254@code{STRING} is no longer a pointer, which should fairly simplify the user
9255actions in the grammar and in the scanner (in particular the memory
9256management).
9257
9258Since C++ features destructors, and since it is customary to specialize
9259@code{operator<<} to support uniform printing of values, variants also
9260typically simplify Bison printers and destructors.
9261
9262Variants are stricter than unions. When based on unions, you may play any
9263dirty game with @code{yylval}, say storing an @code{int}, reading a
9264@code{char*}, and then storing a @code{double} in it. This is no longer
9265possible with variants: they must be initialized, then assigned to, and
9266eventually, destroyed.
9267
9268@deftypemethod {semantic_type} {T&} build<T> ()
9269Initialize, but leave empty. Returns the address where the actual value may
9270be stored. Requires that the variant was not initialized yet.
9271@end deftypemethod
9272
9273@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9274Initialize, and copy-construct from @var{t}.
9275@end deftypemethod
9276
9277
9278@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9279appeared unacceptable to require Boost on the user's machine (i.e., the
9280machine on which the generated parser will be compiled, not the machine on
9281which @command{bison} was run). Second, for each possible semantic value,
9282Boost.Variant not only stores the value, but also a tag specifying its
9283type. But the parser already ``knows'' the type of the semantic value, so
9284that would be duplicating the information.
9285
9286Therefore we developed light-weight variants whose type tag is external (so
9287they are really like @code{unions} for C++ actually). But our code is much
9288less mature that Boost.Variant. So there is a number of limitations in
9289(the current implementation of) variants:
9290@itemize
9291@item
9292Alignment must be enforced: values should be aligned in memory according to
9293the most demanding type. Computing the smallest alignment possible requires
9294meta-programming techniques that are not currently implemented in Bison, and
9295therefore, since, as far as we know, @code{double} is the most demanding
9296type on all platforms, alignments are enforced for @code{double} whatever
9297types are actually used. This may waste space in some cases.
9298
9299@item
9300Our implementation is not conforming with strict aliasing rules. Alias
9301analysis is a technique used in optimizing compilers to detect when two
9302pointers are disjoint (they cannot ``meet''). Our implementation breaks
9303some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9304alias analysis must be disabled}. Use the option
9305@option{-fno-strict-aliasing} to compile the generated parser.
9306
9307@item
9308There might be portability issues we are not aware of.
9309@end itemize
9310
a6ca4ce2 9311As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9312is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9313
9314@node C++ Location Values
9315@subsection C++ Location Values
9316@c - %locations
9317@c - class Position
9318@c - class Location
16dc6a9e 9319@c - %define filename_type "const symbol::Symbol"
12545799
AD
9320
9321When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9322location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9323define a @code{position}, a single point in a file, and a @code{location}, a
9324range composed of a pair of @code{position}s (possibly spanning several
9325files).
12545799 9326
fa4d969f 9327@deftypemethod {position} {std::string*} file
12545799
AD
9328The name of the file. It will always be handled as a pointer, the
9329parser will never duplicate nor deallocate it. As an experimental
9330feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9331filename_type "@var{type}"}.
12545799
AD
9332@end deftypemethod
9333
9334@deftypemethod {position} {unsigned int} line
9335The line, starting at 1.
9336@end deftypemethod
9337
9338@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
9339Advance by @var{height} lines, resetting the column number.
9340@end deftypemethod
9341
9342@deftypemethod {position} {unsigned int} column
9343The column, starting at 0.
9344@end deftypemethod
9345
9346@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
9347Advance by @var{width} columns, without changing the line number.
9348@end deftypemethod
9349
9350@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
9351@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
9352@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
9353@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
9354Various forms of syntactic sugar for @code{columns}.
9355@end deftypemethod
9356
9357@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
9358Report @var{p} on @var{o} like this:
fa4d969f
PE
9359@samp{@var{file}:@var{line}.@var{column}}, or
9360@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
9361@end deftypemethod
9362
9363@deftypemethod {location} {position} begin
9364@deftypemethodx {location} {position} end
9365The first, inclusive, position of the range, and the first beyond.
9366@end deftypemethod
9367
9368@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
9369@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
9370Advance the @code{end} position.
9371@end deftypemethod
9372
9373@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
9374@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
9375@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
9376Various forms of syntactic sugar.
9377@end deftypemethod
9378
9379@deftypemethod {location} {void} step ()
9380Move @code{begin} onto @code{end}.
9381@end deftypemethod
9382
9383
9384@node C++ Parser Interface
9385@subsection C++ Parser Interface
9386@c - define parser_class_name
9387@c - Ctor
9388@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9389@c debug_stream.
9390@c - Reporting errors
9391
9392The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9393declare and define the parser class in the namespace @code{yy}. The
9394class name defaults to @code{parser}, but may be changed using
16dc6a9e 9395@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9396this class is detailed below. It can be extended using the
12545799
AD
9397@code{%parse-param} feature: its semantics is slightly changed since
9398it describes an additional member of the parser class, and an
9399additional argument for its constructor.
9400
3cdc21cf
AD
9401@defcv {Type} {parser} {semantic_type}
9402@defcvx {Type} {parser} {location_type}
9403The types for semantic values and locations (if enabled).
9404@end defcv
9405
86e5b440 9406@defcv {Type} {parser} {token}
aaaa2aae
AD
9407A structure that contains (only) the @code{yytokentype} enumeration, which
9408defines the tokens. To refer to the token @code{FOO},
9409use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
9410@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9411(@pxref{Calc++ Scanner}).
9412@end defcv
9413
3cdc21cf
AD
9414@defcv {Type} {parser} {syntax_error}
9415This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9416from the scanner or from the user actions to raise parse errors. This is
9417equivalent with first
3cdc21cf
AD
9418invoking @code{error} to report the location and message of the syntax
9419error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9420But contrary to @code{YYERROR} which can only be invoked from user actions
9421(i.e., written in the action itself), the exception can be thrown from
9422function invoked from the user action.
8a0adb01 9423@end defcv
12545799
AD
9424
9425@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9426Build a new parser object. There are no arguments by default, unless
9427@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9428@end deftypemethod
9429
3cdc21cf
AD
9430@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9431@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9432Instantiate a syntax-error exception.
9433@end deftypemethod
9434
12545799
AD
9435@deftypemethod {parser} {int} parse ()
9436Run the syntactic analysis, and return 0 on success, 1 otherwise.
9437@end deftypemethod
9438
9439@deftypemethod {parser} {std::ostream&} debug_stream ()
9440@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9441Get or set the stream used for tracing the parsing. It defaults to
9442@code{std::cerr}.
9443@end deftypemethod
9444
9445@deftypemethod {parser} {debug_level_type} debug_level ()
9446@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9447Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9448or nonzero, full tracing.
12545799
AD
9449@end deftypemethod
9450
9451@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9452@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9453The definition for this member function must be supplied by the user:
9454the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9455described by @var{m}. If location tracking is not enabled, the second
9456signature is used.
12545799
AD
9457@end deftypemethod
9458
9459
9460@node C++ Scanner Interface
9461@subsection C++ Scanner Interface
9462@c - prefix for yylex.
9463@c - Pure interface to yylex
9464@c - %lex-param
9465
9466The parser invokes the scanner by calling @code{yylex}. Contrary to C
9467parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9468@samp{%define api.pure} directive. The actual interface with @code{yylex}
9469depends whether you use unions, or variants.
12545799 9470
3cdc21cf
AD
9471@menu
9472* Split Symbols:: Passing symbols as two/three components
9473* Complete Symbols:: Making symbols a whole
9474@end menu
9475
9476@node Split Symbols
9477@subsubsection Split Symbols
9478
9479Therefore the interface is as follows.
9480
86e5b440
AD
9481@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9482@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9483Return the next token. Its type is the return value, its semantic value and
9484location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9485@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9486@end deftypemethod
9487
3cdc21cf
AD
9488Note that when using variants, the interface for @code{yylex} is the same,
9489but @code{yylval} is handled differently.
9490
9491Regular union-based code in Lex scanner typically look like:
9492
9493@example
9494[0-9]+ @{
9495 yylval.ival = text_to_int (yytext);
9496 return yy::parser::INTEGER;
9497 @}
9498[a-z]+ @{
9499 yylval.sval = new std::string (yytext);
9500 return yy::parser::IDENTIFIER;
9501 @}
9502@end example
9503
9504Using variants, @code{yylval} is already constructed, but it is not
9505initialized. So the code would look like:
9506
9507@example
9508[0-9]+ @{
9509 yylval.build<int>() = text_to_int (yytext);
9510 return yy::parser::INTEGER;
9511 @}
9512[a-z]+ @{
9513 yylval.build<std::string> = yytext;
9514 return yy::parser::IDENTIFIER;
9515 @}
9516@end example
9517
9518@noindent
9519or
9520
9521@example
9522[0-9]+ @{
9523 yylval.build(text_to_int (yytext));
9524 return yy::parser::INTEGER;
9525 @}
9526[a-z]+ @{
9527 yylval.build(yytext);
9528 return yy::parser::IDENTIFIER;
9529 @}
9530@end example
9531
9532
9533@node Complete Symbols
9534@subsubsection Complete Symbols
9535
9536If you specified both @code{%define variant} and @code{%define lex_symbol},
9537the @code{parser} class also defines the class @code{parser::symbol_type}
9538which defines a @emph{complete} symbol, aggregating its type (i.e., the
9539traditional value returned by @code{yylex}), its semantic value (i.e., the
9540value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9541
9542@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9543Build a complete terminal symbol which token type is @var{type}, and which
9544semantic value is @var{value}. If location tracking is enabled, also pass
9545the @var{location}.
9546@end deftypemethod
9547
9548This interface is low-level and should not be used for two reasons. First,
9549it is inconvenient, as you still have to build the semantic value, which is
9550a variant, and second, because consistency is not enforced: as with unions,
9551it is still possible to give an integer as semantic value for a string.
9552
9553So for each token type, Bison generates named constructors as follows.
9554
9555@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9556@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9557Build a complete terminal symbol for the token type @var{token} (not
9558including the @code{api.tokens.prefix}) whose possible semantic value is
9559@var{value} of adequate @var{value_type}. If location tracking is enabled,
9560also pass the @var{location}.
9561@end deftypemethod
9562
9563For instance, given the following declarations:
9564
9565@example
9566%define api.tokens.prefix "TOK_"
9567%token <std::string> IDENTIFIER;
9568%token <int> INTEGER;
9569%token COLON;
9570@end example
9571
9572@noindent
9573Bison generates the following functions:
9574
9575@example
9576symbol_type make_IDENTIFIER(const std::string& v,
9577 const location_type& l);
9578symbol_type make_INTEGER(const int& v,
9579 const location_type& loc);
9580symbol_type make_COLON(const location_type& loc);
9581@end example
9582
9583@noindent
9584which should be used in a Lex-scanner as follows.
9585
9586@example
9587[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9588[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9589":" return yy::parser::make_COLON(loc);
9590@end example
9591
9592Tokens that do not have an identifier are not accessible: you cannot simply
9593use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9594
9595@node A Complete C++ Example
8405b70c 9596@subsection A Complete C++ Example
12545799
AD
9597
9598This section demonstrates the use of a C++ parser with a simple but
9599complete example. This example should be available on your system,
3cdc21cf 9600ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9601focuses on the use of Bison, therefore the design of the various C++
9602classes is very naive: no accessors, no encapsulation of members etc.
9603We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9604demonstrate the various interactions. A hand-written scanner is
12545799
AD
9605actually easier to interface with.
9606
9607@menu
9608* Calc++ --- C++ Calculator:: The specifications
9609* Calc++ Parsing Driver:: An active parsing context
9610* Calc++ Parser:: A parser class
9611* Calc++ Scanner:: A pure C++ Flex scanner
9612* Calc++ Top Level:: Conducting the band
9613@end menu
9614
9615@node Calc++ --- C++ Calculator
8405b70c 9616@subsubsection Calc++ --- C++ Calculator
12545799
AD
9617
9618Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9619expression, possibly preceded by variable assignments. An
12545799
AD
9620environment containing possibly predefined variables such as
9621@code{one} and @code{two}, is exchanged with the parser. An example
9622of valid input follows.
9623
9624@example
9625three := 3
9626seven := one + two * three
9627seven * seven
9628@end example
9629
9630@node Calc++ Parsing Driver
8405b70c 9631@subsubsection Calc++ Parsing Driver
12545799
AD
9632@c - An env
9633@c - A place to store error messages
9634@c - A place for the result
9635
9636To support a pure interface with the parser (and the scanner) the
9637technique of the ``parsing context'' is convenient: a structure
9638containing all the data to exchange. Since, in addition to simply
9639launch the parsing, there are several auxiliary tasks to execute (open
9640the file for parsing, instantiate the parser etc.), we recommend
9641transforming the simple parsing context structure into a fully blown
9642@dfn{parsing driver} class.
9643
9644The declaration of this driver class, @file{calc++-driver.hh}, is as
9645follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9646required standard library components, and the declaration of the parser
9647class.
12545799 9648
1c59e0a1 9649@comment file: calc++-driver.hh
12545799
AD
9650@example
9651#ifndef CALCXX_DRIVER_HH
9652# define CALCXX_DRIVER_HH
9653# include <string>
9654# include <map>
fb9712a9 9655# include "calc++-parser.hh"
12545799
AD
9656@end example
9657
12545799
AD
9658
9659@noindent
9660Then comes the declaration of the scanning function. Flex expects
9661the signature of @code{yylex} to be defined in the macro
9662@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9663factor both as follows.
1c59e0a1
AD
9664
9665@comment file: calc++-driver.hh
12545799 9666@example
3dc5e96b 9667// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9668# define YY_DECL \
9669 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9670// ... and declare it for the parser's sake.
9671YY_DECL;
9672@end example
9673
9674@noindent
9675The @code{calcxx_driver} class is then declared with its most obvious
9676members.
9677
1c59e0a1 9678@comment file: calc++-driver.hh
12545799
AD
9679@example
9680// Conducting the whole scanning and parsing of Calc++.
9681class calcxx_driver
9682@{
9683public:
9684 calcxx_driver ();
9685 virtual ~calcxx_driver ();
9686
9687 std::map<std::string, int> variables;
9688
9689 int result;
9690@end example
9691
9692@noindent
3cdc21cf
AD
9693To encapsulate the coordination with the Flex scanner, it is useful to have
9694member functions to open and close the scanning phase.
12545799 9695
1c59e0a1 9696@comment file: calc++-driver.hh
12545799
AD
9697@example
9698 // Handling the scanner.
9699 void scan_begin ();
9700 void scan_end ();
9701 bool trace_scanning;
9702@end example
9703
9704@noindent
9705Similarly for the parser itself.
9706
1c59e0a1 9707@comment file: calc++-driver.hh
12545799 9708@example
3cdc21cf
AD
9709 // Run the parser on file F.
9710 // Return 0 on success.
bb32f4f2 9711 int parse (const std::string& f);
3cdc21cf
AD
9712 // The name of the file being parsed.
9713 // Used later to pass the file name to the location tracker.
12545799 9714 std::string file;
3cdc21cf 9715 // Whether parser traces should be generated.
12545799
AD
9716 bool trace_parsing;
9717@end example
9718
9719@noindent
9720To demonstrate pure handling of parse errors, instead of simply
9721dumping them on the standard error output, we will pass them to the
9722compiler driver using the following two member functions. Finally, we
9723close the class declaration and CPP guard.
9724
1c59e0a1 9725@comment file: calc++-driver.hh
12545799
AD
9726@example
9727 // Error handling.
9728 void error (const yy::location& l, const std::string& m);
9729 void error (const std::string& m);
9730@};
9731#endif // ! CALCXX_DRIVER_HH
9732@end example
9733
9734The implementation of the driver is straightforward. The @code{parse}
9735member function deserves some attention. The @code{error} functions
9736are simple stubs, they should actually register the located error
9737messages and set error state.
9738
1c59e0a1 9739@comment file: calc++-driver.cc
12545799
AD
9740@example
9741#include "calc++-driver.hh"
9742#include "calc++-parser.hh"
9743
9744calcxx_driver::calcxx_driver ()
9745 : trace_scanning (false), trace_parsing (false)
9746@{
9747 variables["one"] = 1;
9748 variables["two"] = 2;
9749@}
9750
9751calcxx_driver::~calcxx_driver ()
9752@{
9753@}
9754
bb32f4f2 9755int
12545799
AD
9756calcxx_driver::parse (const std::string &f)
9757@{
9758 file = f;
9759 scan_begin ();
9760 yy::calcxx_parser parser (*this);
9761 parser.set_debug_level (trace_parsing);
bb32f4f2 9762 int res = parser.parse ();
12545799 9763 scan_end ();
bb32f4f2 9764 return res;
12545799
AD
9765@}
9766
9767void
9768calcxx_driver::error (const yy::location& l, const std::string& m)
9769@{
9770 std::cerr << l << ": " << m << std::endl;
9771@}
9772
9773void
9774calcxx_driver::error (const std::string& m)
9775@{
9776 std::cerr << m << std::endl;
9777@}
9778@end example
9779
9780@node Calc++ Parser
8405b70c 9781@subsubsection Calc++ Parser
12545799 9782
ff7571c0
JD
9783The grammar file @file{calc++-parser.yy} starts by asking for the C++
9784deterministic parser skeleton, the creation of the parser header file,
9785and specifies the name of the parser class. Because the C++ skeleton
9786changed several times, it is safer to require the version you designed
9787the grammar for.
1c59e0a1
AD
9788
9789@comment file: calc++-parser.yy
12545799 9790@example
c93f22fc 9791%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9792%require "@value{VERSION}"
12545799 9793%defines
16dc6a9e 9794%define parser_class_name "calcxx_parser"
fb9712a9
AD
9795@end example
9796
3cdc21cf
AD
9797@noindent
9798@findex %define variant
9799@findex %define lex_symbol
9800This example will use genuine C++ objects as semantic values, therefore, we
9801require the variant-based interface. To make sure we properly use it, we
9802enable assertions. To fully benefit from type-safety and more natural
9803definition of ``symbol'', we enable @code{lex_symbol}.
9804
9805@comment file: calc++-parser.yy
9806@example
9807%define variant
9808%define parse.assert
9809%define lex_symbol
9810@end example
9811
fb9712a9 9812@noindent
16dc6a9e 9813@findex %code requires
3cdc21cf
AD
9814Then come the declarations/inclusions needed by the semantic values.
9815Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9816to include the header of the other, which is, of course, insane. This
3cdc21cf 9817mutual dependency will be broken using forward declarations. Because the
fb9712a9 9818driver's header needs detailed knowledge about the parser class (in
3cdc21cf 9819particular its inner types), it is the parser's header which will use a
e0c07222 9820forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
9821
9822@comment file: calc++-parser.yy
9823@example
3cdc21cf
AD
9824%code requires
9825@{
12545799 9826# include <string>
fb9712a9 9827class calcxx_driver;
9bc0dd67 9828@}
12545799
AD
9829@end example
9830
9831@noindent
9832The driver is passed by reference to the parser and to the scanner.
9833This provides a simple but effective pure interface, not relying on
9834global variables.
9835
1c59e0a1 9836@comment file: calc++-parser.yy
12545799
AD
9837@example
9838// The parsing context.
2055a44e 9839%param @{ calcxx_driver& driver @}
12545799
AD
9840@end example
9841
9842@noindent
2055a44e 9843Then we request location tracking, and initialize the
f50bfcd6 9844first location's file name. Afterward new locations are computed
12545799 9845relatively to the previous locations: the file name will be
2055a44e 9846propagated.
12545799 9847
1c59e0a1 9848@comment file: calc++-parser.yy
12545799
AD
9849@example
9850%locations
9851%initial-action
9852@{
9853 // Initialize the initial location.
b47dbebe 9854 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9855@};
9856@end example
9857
9858@noindent
7fceb615
JD
9859Use the following two directives to enable parser tracing and verbose error
9860messages. However, verbose error messages can contain incorrect information
9861(@pxref{LAC}).
12545799 9862
1c59e0a1 9863@comment file: calc++-parser.yy
12545799 9864@example
fa819509 9865%define parse.trace
cf499cff 9866%define parse.error verbose
12545799
AD
9867@end example
9868
fb9712a9 9869@noindent
136a0f76
PB
9870@findex %code
9871The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9872@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9873
9874@comment file: calc++-parser.yy
9875@example
3cdc21cf
AD
9876%code
9877@{
fb9712a9 9878# include "calc++-driver.hh"
34f98f46 9879@}
fb9712a9
AD
9880@end example
9881
9882
12545799
AD
9883@noindent
9884The token numbered as 0 corresponds to end of file; the following line
99c08fb6 9885allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
9886``$end''. Similarly user friendly names are provided for each symbol. To
9887avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
9888tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 9889
1c59e0a1 9890@comment file: calc++-parser.yy
12545799 9891@example
4c6622c2 9892%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9893%token
9894 END 0 "end of file"
9895 ASSIGN ":="
9896 MINUS "-"
9897 PLUS "+"
9898 STAR "*"
9899 SLASH "/"
9900 LPAREN "("
9901 RPAREN ")"
9902;
12545799
AD
9903@end example
9904
9905@noindent
3cdc21cf
AD
9906Since we use variant-based semantic values, @code{%union} is not used, and
9907both @code{%type} and @code{%token} expect genuine types, as opposed to type
9908tags.
12545799 9909
1c59e0a1 9910@comment file: calc++-parser.yy
12545799 9911@example
3cdc21cf
AD
9912%token <std::string> IDENTIFIER "identifier"
9913%token <int> NUMBER "number"
9914%type <int> exp
9915@end example
9916
9917@noindent
9918No @code{%destructor} is needed to enable memory deallocation during error
9919recovery; the memory, for strings for instance, will be reclaimed by the
9920regular destructors. All the values are printed using their
9921@code{operator<<}.
12545799 9922
3cdc21cf
AD
9923@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9924@comment file: calc++-parser.yy
9925@example
9926%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9927@end example
9928
9929@noindent
3cdc21cf
AD
9930The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9931Location Tracking Calculator: @code{ltcalc}}).
12545799 9932
1c59e0a1 9933@comment file: calc++-parser.yy
12545799
AD
9934@example
9935%%
9936%start unit;
9937unit: assignments exp @{ driver.result = $2; @};
9938
99c08fb6 9939assignments:
5e9b6624
AD
9940 /* Nothing. */ @{@}
9941| assignments assignment @{@};
12545799 9942
3dc5e96b 9943assignment:
3cdc21cf 9944 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9945
3cdc21cf
AD
9946%left "+" "-";
9947%left "*" "/";
99c08fb6 9948exp:
3cdc21cf
AD
9949 exp "+" exp @{ $$ = $1 + $3; @}
9950| exp "-" exp @{ $$ = $1 - $3; @}
9951| exp "*" exp @{ $$ = $1 * $3; @}
9952| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9953| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9954| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9955| "number" @{ std::swap ($$, $1); @};
12545799
AD
9956%%
9957@end example
9958
9959@noindent
9960Finally the @code{error} member function registers the errors to the
9961driver.
9962
1c59e0a1 9963@comment file: calc++-parser.yy
12545799
AD
9964@example
9965void
3cdc21cf 9966yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9967 const std::string& m)
12545799
AD
9968@{
9969 driver.error (l, m);
9970@}
9971@end example
9972
9973@node Calc++ Scanner
8405b70c 9974@subsubsection Calc++ Scanner
12545799
AD
9975
9976The Flex scanner first includes the driver declaration, then the
9977parser's to get the set of defined tokens.
9978
1c59e0a1 9979@comment file: calc++-scanner.ll
12545799 9980@example
c93f22fc 9981%@{ /* -*- C++ -*- */
3c248d70
AD
9982# include <cerrno>
9983# include <climits>
3cdc21cf 9984# include <cstdlib>
12545799
AD
9985# include <string>
9986# include "calc++-driver.hh"
9987# include "calc++-parser.hh"
eaea13f5 9988
3cdc21cf
AD
9989// Work around an incompatibility in flex (at least versions
9990// 2.5.31 through 2.5.33): it generates code that does
9991// not conform to C89. See Debian bug 333231
9992// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9993# undef yywrap
9994# define yywrap() 1
eaea13f5 9995
3cdc21cf
AD
9996// The location of the current token.
9997static yy::location loc;
12545799
AD
9998%@}
9999@end example
10000
10001@noindent
10002Because there is no @code{#include}-like feature we don't need
10003@code{yywrap}, we don't need @code{unput} either, and we parse an
10004actual file, this is not an interactive session with the user.
3cdc21cf 10005Finally, we enable scanner tracing.
12545799 10006
1c59e0a1 10007@comment file: calc++-scanner.ll
12545799
AD
10008@example
10009%option noyywrap nounput batch debug
10010@end example
10011
10012@noindent
10013Abbreviations allow for more readable rules.
10014
1c59e0a1 10015@comment file: calc++-scanner.ll
12545799
AD
10016@example
10017id [a-zA-Z][a-zA-Z_0-9]*
10018int [0-9]+
10019blank [ \t]
10020@end example
10021
10022@noindent
9d9b8b70 10023The following paragraph suffices to track locations accurately. Each
12545799 10024time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
10025position. Then when a pattern is matched, its width is added to the end
10026column. When matching ends of lines, the end
12545799
AD
10027cursor is adjusted, and each time blanks are matched, the begin cursor
10028is moved onto the end cursor to effectively ignore the blanks
10029preceding tokens. Comments would be treated equally.
10030
1c59e0a1 10031@comment file: calc++-scanner.ll
12545799 10032@example
d4fca427 10033@group
828c373b 10034%@{
3cdc21cf
AD
10035 // Code run each time a pattern is matched.
10036 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 10037%@}
d4fca427 10038@end group
12545799 10039%%
d4fca427 10040@group
12545799 10041%@{
3cdc21cf
AD
10042 // Code run each time yylex is called.
10043 loc.step ();
12545799 10044%@}
d4fca427 10045@end group
3cdc21cf
AD
10046@{blank@}+ loc.step ();
10047[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10048@end example
10049
10050@noindent
3cdc21cf 10051The rules are simple. The driver is used to report errors.
12545799 10052
1c59e0a1 10053@comment file: calc++-scanner.ll
12545799 10054@example
3cdc21cf
AD
10055"-" return yy::calcxx_parser::make_MINUS(loc);
10056"+" return yy::calcxx_parser::make_PLUS(loc);
10057"*" return yy::calcxx_parser::make_STAR(loc);
10058"/" return yy::calcxx_parser::make_SLASH(loc);
10059"(" return yy::calcxx_parser::make_LPAREN(loc);
10060")" return yy::calcxx_parser::make_RPAREN(loc);
10061":=" return yy::calcxx_parser::make_ASSIGN(loc);
10062
d4fca427 10063@group
04098407
PE
10064@{int@} @{
10065 errno = 0;
10066 long n = strtol (yytext, NULL, 10);
10067 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10068 driver.error (loc, "integer is out of range");
10069 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10070@}
d4fca427 10071@end group
3cdc21cf
AD
10072@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10073. driver.error (loc, "invalid character");
10074<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10075%%
10076@end example
10077
10078@noindent
3cdc21cf 10079Finally, because the scanner-related driver's member-functions depend
12545799
AD
10080on the scanner's data, it is simpler to implement them in this file.
10081
1c59e0a1 10082@comment file: calc++-scanner.ll
12545799 10083@example
d4fca427 10084@group
12545799
AD
10085void
10086calcxx_driver::scan_begin ()
10087@{
10088 yy_flex_debug = trace_scanning;
bb32f4f2
AD
10089 if (file == "-")
10090 yyin = stdin;
10091 else if (!(yyin = fopen (file.c_str (), "r")))
10092 @{
aaaa2aae 10093 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10094 exit (EXIT_FAILURE);
bb32f4f2 10095 @}
12545799 10096@}
d4fca427 10097@end group
12545799 10098
d4fca427 10099@group
12545799
AD
10100void
10101calcxx_driver::scan_end ()
10102@{
10103 fclose (yyin);
10104@}
d4fca427 10105@end group
12545799
AD
10106@end example
10107
10108@node Calc++ Top Level
8405b70c 10109@subsubsection Calc++ Top Level
12545799
AD
10110
10111The top level file, @file{calc++.cc}, poses no problem.
10112
1c59e0a1 10113@comment file: calc++.cc
12545799
AD
10114@example
10115#include <iostream>
10116#include "calc++-driver.hh"
10117
d4fca427 10118@group
12545799 10119int
fa4d969f 10120main (int argc, char *argv[])
12545799 10121@{
414c76a4 10122 int res = 0;
12545799
AD
10123 calcxx_driver driver;
10124 for (++argv; argv[0]; ++argv)
10125 if (*argv == std::string ("-p"))
10126 driver.trace_parsing = true;
10127 else if (*argv == std::string ("-s"))
10128 driver.trace_scanning = true;
bb32f4f2
AD
10129 else if (!driver.parse (*argv))
10130 std::cout << driver.result << std::endl;
414c76a4
AD
10131 else
10132 res = 1;
10133 return res;
12545799 10134@}
d4fca427 10135@end group
12545799
AD
10136@end example
10137
8405b70c
PB
10138@node Java Parsers
10139@section Java Parsers
10140
10141@menu
f5f419de
DJ
10142* Java Bison Interface:: Asking for Java parser generation
10143* Java Semantic Values:: %type and %token vs. Java
10144* Java Location Values:: The position and location classes
10145* Java Parser Interface:: Instantiating and running the parser
10146* Java Scanner Interface:: Specifying the scanner for the parser
10147* Java Action Features:: Special features for use in actions
10148* Java Differences:: Differences between C/C++ and Java Grammars
10149* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10150@end menu
10151
10152@node Java Bison Interface
10153@subsection Java Bison Interface
10154@c - %language "Java"
8405b70c 10155
59da312b
JD
10156(The current Java interface is experimental and may evolve.
10157More user feedback will help to stabilize it.)
10158
e254a580
DJ
10159The Java parser skeletons are selected using the @code{%language "Java"}
10160directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10161
e254a580 10162@c FIXME: Documented bug.
ff7571c0
JD
10163When generating a Java parser, @code{bison @var{basename}.y} will
10164create a single Java source file named @file{@var{basename}.java}
10165containing the parser implementation. Using a grammar file without a
10166@file{.y} suffix is currently broken. The basename of the parser
10167implementation file can be changed by the @code{%file-prefix}
10168directive or the @option{-p}/@option{--name-prefix} option. The
10169entire parser implementation file name can be changed by the
10170@code{%output} directive or the @option{-o}/@option{--output} option.
10171The parser implementation file contains a single class for the parser.
8405b70c 10172
e254a580 10173You can create documentation for generated parsers using Javadoc.
8405b70c 10174
e254a580
DJ
10175Contrary to C parsers, Java parsers do not use global variables; the
10176state of the parser is always local to an instance of the parser class.
10177Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10178and @samp{%define api.pure} directives does not do anything when used in
e254a580 10179Java.
8405b70c 10180
e254a580 10181Push parsers are currently unsupported in Java and @code{%define
67212941 10182api.push-pull} have no effect.
01b477c6 10183
8a4281b9 10184GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10185@code{glr-parser} directive.
10186
10187No header file can be generated for Java parsers. Do not use the
10188@code{%defines} directive or the @option{-d}/@option{--defines} options.
10189
10190@c FIXME: Possible code change.
fa819509
AD
10191Currently, support for tracing is always compiled
10192in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10193directives and the
e254a580
DJ
10194@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10195options have no effect. This may change in the future to eliminate
fa819509
AD
10196unused code in the generated parser, so use @samp{%define parse.trace}
10197explicitly
1979121c 10198if needed. Also, in the future the
e254a580
DJ
10199@code{%token-table} directive might enable a public interface to
10200access the token names and codes.
8405b70c 10201
09ccae9b 10202Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10203hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10204Try reducing the amount of code in actions and static initializers;
10205otherwise, report a bug so that the parser skeleton will be improved.
10206
10207
8405b70c
PB
10208@node Java Semantic Values
10209@subsection Java Semantic Values
10210@c - No %union, specify type in %type/%token.
10211@c - YYSTYPE
10212@c - Printer and destructor
10213
10214There is no @code{%union} directive in Java parsers. Instead, the
10215semantic values' types (class names) should be specified in the
10216@code{%type} or @code{%token} directive:
10217
10218@example
10219%type <Expression> expr assignment_expr term factor
10220%type <Integer> number
10221@end example
10222
10223By default, the semantic stack is declared to have @code{Object} members,
10224which means that the class types you specify can be of any class.
10225To improve the type safety of the parser, you can declare the common
67501061 10226superclass of all the semantic values using the @samp{%define stype}
e254a580 10227directive. For example, after the following declaration:
8405b70c
PB
10228
10229@example
e254a580 10230%define stype "ASTNode"
8405b70c
PB
10231@end example
10232
10233@noindent
10234any @code{%type} or @code{%token} specifying a semantic type which
10235is not a subclass of ASTNode, will cause a compile-time error.
10236
e254a580 10237@c FIXME: Documented bug.
8405b70c
PB
10238Types used in the directives may be qualified with a package name.
10239Primitive data types are accepted for Java version 1.5 or later. Note
10240that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10241Generic types may not be used; this is due to a limitation in the
10242implementation of Bison, and may change in future releases.
8405b70c
PB
10243
10244Java parsers do not support @code{%destructor}, since the language
10245adopts garbage collection. The parser will try to hold references
10246to semantic values for as little time as needed.
10247
10248Java parsers do not support @code{%printer}, as @code{toString()}
10249can be used to print the semantic values. This however may change
10250(in a backwards-compatible way) in future versions of Bison.
10251
10252
10253@node Java Location Values
10254@subsection Java Location Values
10255@c - %locations
10256@c - class Position
10257@c - class Location
10258
303834cc
JD
10259When the directive @code{%locations} is used, the Java parser supports
10260location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10261class defines a @dfn{position}, a single point in a file; Bison itself
10262defines a class representing a @dfn{location}, a range composed of a pair of
10263positions (possibly spanning several files). The location class is an inner
10264class of the parser; the name is @code{Location} by default, and may also be
10265renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10266
10267The location class treats the position as a completely opaque value.
10268By default, the class name is @code{Position}, but this can be changed
67501061 10269with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10270be supplied by the user.
8405b70c
PB
10271
10272
e254a580
DJ
10273@deftypeivar {Location} {Position} begin
10274@deftypeivarx {Location} {Position} end
8405b70c 10275The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10276@end deftypeivar
10277
10278@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10279Create a @code{Location} denoting an empty range located at a given point.
e254a580 10280@end deftypeop
8405b70c 10281
e254a580
DJ
10282@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10283Create a @code{Location} from the endpoints of the range.
10284@end deftypeop
10285
10286@deftypemethod {Location} {String} toString ()
8405b70c
PB
10287Prints the range represented by the location. For this to work
10288properly, the position class should override the @code{equals} and
10289@code{toString} methods appropriately.
10290@end deftypemethod
10291
10292
10293@node Java Parser Interface
10294@subsection Java Parser Interface
10295@c - define parser_class_name
10296@c - Ctor
10297@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10298@c debug_stream.
10299@c - Reporting errors
10300
e254a580
DJ
10301The name of the generated parser class defaults to @code{YYParser}. The
10302@code{YY} prefix may be changed using the @code{%name-prefix} directive
10303or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10304@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10305the class. The interface of this class is detailed below.
8405b70c 10306
e254a580 10307By default, the parser class has package visibility. A declaration
67501061 10308@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10309according to the Java language specification, the name of the @file{.java}
10310file should match the name of the class in this case. Similarly, you can
10311use @code{abstract}, @code{final} and @code{strictfp} with the
10312@code{%define} declaration to add other modifiers to the parser class.
67501061 10313A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10314be used to add any number of annotations to the parser class.
e254a580
DJ
10315
10316The Java package name of the parser class can be specified using the
67501061 10317@samp{%define package} directive. The superclass and the implemented
e254a580 10318interfaces of the parser class can be specified with the @code{%define
67501061 10319extends} and @samp{%define implements} directives.
e254a580
DJ
10320
10321The parser class defines an inner class, @code{Location}, that is used
10322for location tracking (see @ref{Java Location Values}), and a inner
10323interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10324these inner class/interface, and the members described in the interface
10325below, all the other members and fields are preceded with a @code{yy} or
10326@code{YY} prefix to avoid clashes with user code.
10327
e254a580
DJ
10328The parser class can be extended using the @code{%parse-param}
10329directive. Each occurrence of the directive will add a @code{protected
10330final} field to the parser class, and an argument to its constructor,
10331which initialize them automatically.
10332
e254a580
DJ
10333@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10334Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10335no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10336@code{%lex-param}s are used.
1979121c
DJ
10337
10338Use @code{%code init} for code added to the start of the constructor
10339body. This is especially useful to initialize superclasses. Use
f50bfcd6 10340@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10341@end deftypeop
10342
10343@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10344Build a new parser object using the specified scanner. There are no
2055a44e
AD
10345additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10346used.
e254a580
DJ
10347
10348If the scanner is defined by @code{%code lexer}, this constructor is
10349declared @code{protected} and is called automatically with a scanner
2055a44e 10350created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10351
10352Use @code{%code init} for code added to the start of the constructor
10353body. This is especially useful to initialize superclasses. Use
5a321748 10354@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 10355@end deftypeop
8405b70c
PB
10356
10357@deftypemethod {YYParser} {boolean} parse ()
10358Run the syntactic analysis, and return @code{true} on success,
10359@code{false} otherwise.
10360@end deftypemethod
10361
1979121c
DJ
10362@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10363@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10364Get or set the option to produce verbose error messages. These are only
cf499cff 10365available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10366verbose error messages.
10367@end deftypemethod
10368
10369@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10370@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10371@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10372Print an error message using the @code{yyerror} method of the scanner
10373instance in use. The @code{Location} and @code{Position} parameters are
10374available only if location tracking is active.
10375@end deftypemethod
10376
01b477c6 10377@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10378During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10379from a syntax error.
10380@xref{Error Recovery}.
8405b70c
PB
10381@end deftypemethod
10382
10383@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10384@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10385Get or set the stream used for tracing the parsing. It defaults to
10386@code{System.err}.
10387@end deftypemethod
10388
10389@deftypemethod {YYParser} {int} getDebugLevel ()
10390@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10391Get or set the tracing level. Currently its value is either 0, no trace,
10392or nonzero, full tracing.
10393@end deftypemethod
10394
1979121c
DJ
10395@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10396@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10397Identify the Bison version and skeleton used to generate this parser.
10398@end deftypecv
10399
8405b70c
PB
10400
10401@node Java Scanner Interface
10402@subsection Java Scanner Interface
01b477c6 10403@c - %code lexer
8405b70c 10404@c - %lex-param
01b477c6 10405@c - Lexer interface
8405b70c 10406
e254a580
DJ
10407There are two possible ways to interface a Bison-generated Java parser
10408with a scanner: the scanner may be defined by @code{%code lexer}, or
10409defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10410@code{Lexer} inner interface of the parser class. This interface also
10411contain constants for all user-defined token names and the predefined
10412@code{EOF} token.
e254a580
DJ
10413
10414In the first case, the body of the scanner class is placed in
10415@code{%code lexer} blocks. If you want to pass parameters from the
10416parser constructor to the scanner constructor, specify them with
10417@code{%lex-param}; they are passed before @code{%parse-param}s to the
10418constructor.
01b477c6 10419
59c5ac72 10420In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10421which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10422The constructor of the parser object will then accept an object
10423implementing the interface; @code{%lex-param} is not used in this
10424case.
10425
10426In both cases, the scanner has to implement the following methods.
10427
e254a580
DJ
10428@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10429This method is defined by the user to emit an error message. The first
10430parameter is omitted if location tracking is not active. Its type can be
67501061 10431changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10432@end deftypemethod
10433
e254a580 10434@deftypemethod {Lexer} {int} yylex ()
8405b70c 10435Return the next token. Its type is the return value, its semantic
f50bfcd6 10436value and location are saved and returned by the their methods in the
e254a580
DJ
10437interface.
10438
67501061 10439Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10440Default is @code{java.io.IOException}.
8405b70c
PB
10441@end deftypemethod
10442
10443@deftypemethod {Lexer} {Position} getStartPos ()
10444@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10445Return respectively the first position of the last token that
10446@code{yylex} returned, and the first position beyond it. These
10447methods are not needed unless location tracking is active.
8405b70c 10448
67501061 10449The return type can be changed using @samp{%define position_type
8405b70c
PB
10450"@var{class-name}".}
10451@end deftypemethod
10452
10453@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10454Return the semantic value of the last token that yylex returned.
8405b70c 10455
67501061 10456The return type can be changed using @samp{%define stype
8405b70c
PB
10457"@var{class-name}".}
10458@end deftypemethod
10459
10460
e254a580
DJ
10461@node Java Action Features
10462@subsection Special Features for Use in Java Actions
10463
10464The following special constructs can be uses in Java actions.
10465Other analogous C action features are currently unavailable for Java.
10466
67501061 10467Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10468actions, and initial actions specified by @code{%initial-action}.
10469
10470@defvar $@var{n}
10471The semantic value for the @var{n}th component of the current rule.
10472This may not be assigned to.
10473@xref{Java Semantic Values}.
10474@end defvar
10475
10476@defvar $<@var{typealt}>@var{n}
10477Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10478@xref{Java Semantic Values}.
10479@end defvar
10480
10481@defvar $$
10482The semantic value for the grouping made by the current rule. As a
10483value, this is in the base type (@code{Object} or as specified by
67501061 10484@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10485casts are not allowed on the left-hand side of Java assignments.
10486Use an explicit Java cast if the correct subtype is needed.
10487@xref{Java Semantic Values}.
10488@end defvar
10489
10490@defvar $<@var{typealt}>$
10491Same as @code{$$} since Java always allow assigning to the base type.
10492Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10493for setting the value but there is currently no easy way to distinguish
10494these constructs.
10495@xref{Java Semantic Values}.
10496@end defvar
10497
10498@defvar @@@var{n}
10499The location information of the @var{n}th component of the current rule.
10500This may not be assigned to.
10501@xref{Java Location Values}.
10502@end defvar
10503
10504@defvar @@$
10505The location information of the grouping made by the current rule.
10506@xref{Java Location Values}.
10507@end defvar
10508
10509@deffn {Statement} {return YYABORT;}
10510Return immediately from the parser, indicating failure.
10511@xref{Java Parser Interface}.
10512@end deffn
8405b70c 10513
e254a580
DJ
10514@deffn {Statement} {return YYACCEPT;}
10515Return immediately from the parser, indicating success.
10516@xref{Java Parser Interface}.
10517@end deffn
8405b70c 10518
e254a580 10519@deffn {Statement} {return YYERROR;}
c265fd6b 10520Start error recovery without printing an error message.
e254a580
DJ
10521@xref{Error Recovery}.
10522@end deffn
8405b70c 10523
e254a580
DJ
10524@deftypefn {Function} {boolean} recovering ()
10525Return whether error recovery is being done. In this state, the parser
10526reads token until it reaches a known state, and then restarts normal
10527operation.
10528@xref{Error Recovery}.
10529@end deftypefn
8405b70c 10530
1979121c
DJ
10531@deftypefn {Function} {void} yyerror (String @var{msg})
10532@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10533@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10534Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10535instance in use. The @code{Location} and @code{Position} parameters are
10536available only if location tracking is active.
e254a580 10537@end deftypefn
8405b70c 10538
8405b70c 10539
8405b70c
PB
10540@node Java Differences
10541@subsection Differences between C/C++ and Java Grammars
10542
10543The different structure of the Java language forces several differences
10544between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10545section summarizes these differences.
8405b70c
PB
10546
10547@itemize
10548@item
01b477c6 10549Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10550@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10551macros. Instead, they should be preceded by @code{return} when they
10552appear in an action. The actual definition of these symbols is
8405b70c
PB
10553opaque to the Bison grammar, and it might change in the future. The
10554only meaningful operation that you can do, is to return them.
e254a580 10555See @pxref{Java Action Features}.
8405b70c
PB
10556
10557Note that of these three symbols, only @code{YYACCEPT} and
10558@code{YYABORT} will cause a return from the @code{yyparse}
10559method@footnote{Java parsers include the actions in a separate
10560method than @code{yyparse} in order to have an intuitive syntax that
10561corresponds to these C macros.}.
10562
e254a580
DJ
10563@item
10564Java lacks unions, so @code{%union} has no effect. Instead, semantic
10565values have a common base type: @code{Object} or as specified by
f50bfcd6 10566@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10567@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10568an union. The type of @code{$$}, even with angle brackets, is the base
10569type since Java casts are not allow on the left-hand side of assignments.
10570Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10571left-hand side of assignments. See @pxref{Java Semantic Values} and
10572@pxref{Java Action Features}.
10573
8405b70c 10574@item
f50bfcd6 10575The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10576@table @asis
10577@item @code{%code imports}
10578blocks are placed at the beginning of the Java source code. They may
10579include copyright notices. For a @code{package} declarations, it is
67501061 10580suggested to use @samp{%define package} instead.
8405b70c 10581
01b477c6
PB
10582@item unqualified @code{%code}
10583blocks are placed inside the parser class.
10584
10585@item @code{%code lexer}
10586blocks, if specified, should include the implementation of the
10587scanner. If there is no such block, the scanner can be any class
10588that implements the appropriate interface (see @pxref{Java Scanner
10589Interface}).
29553547 10590@end table
8405b70c
PB
10591
10592Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10593In particular, @code{%@{ @dots{} %@}} blocks should not be used
10594and may give an error in future versions of Bison.
10595
01b477c6 10596The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10597be used to define other classes used by the parser @emph{outside}
10598the parser class.
8405b70c
PB
10599@end itemize
10600
e254a580
DJ
10601
10602@node Java Declarations Summary
10603@subsection Java Declarations Summary
10604
10605This summary only include declarations specific to Java or have special
10606meaning when used in a Java parser.
10607
10608@deffn {Directive} {%language "Java"}
10609Generate a Java class for the parser.
10610@end deffn
10611
10612@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10613A parameter for the lexer class defined by @code{%code lexer}
10614@emph{only}, added as parameters to the lexer constructor and the parser
10615constructor that @emph{creates} a lexer. Default is none.
10616@xref{Java Scanner Interface}.
10617@end deffn
10618
10619@deffn {Directive} %name-prefix "@var{prefix}"
10620The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10621@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10622@xref{Java Bison Interface}.
10623@end deffn
10624
10625@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10626A parameter for the parser class added as parameters to constructor(s)
10627and as fields initialized by the constructor(s). Default is none.
10628@xref{Java Parser Interface}.
10629@end deffn
10630
10631@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10632Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10633@xref{Java Semantic Values}.
10634@end deffn
10635
10636@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10637Declare the type of nonterminals. Note that the angle brackets enclose
10638a Java @emph{type}.
10639@xref{Java Semantic Values}.
10640@end deffn
10641
10642@deffn {Directive} %code @{ @var{code} @dots{} @}
10643Code appended to the inside of the parser class.
10644@xref{Java Differences}.
10645@end deffn
10646
10647@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10648Code inserted just after the @code{package} declaration.
10649@xref{Java Differences}.
10650@end deffn
10651
1979121c
DJ
10652@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10653Code inserted at the beginning of the parser constructor body.
10654@xref{Java Parser Interface}.
10655@end deffn
10656
e254a580
DJ
10657@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10658Code added to the body of a inner lexer class within the parser class.
10659@xref{Java Scanner Interface}.
10660@end deffn
10661
10662@deffn {Directive} %% @var{code} @dots{}
10663Code (after the second @code{%%}) appended to the end of the file,
10664@emph{outside} the parser class.
10665@xref{Java Differences}.
10666@end deffn
10667
10668@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10669Not supported. Use @code{%code imports} instead.
e254a580
DJ
10670@xref{Java Differences}.
10671@end deffn
10672
10673@deffn {Directive} {%define abstract}
10674Whether the parser class is declared @code{abstract}. Default is false.
10675@xref{Java Bison Interface}.
10676@end deffn
10677
1979121c
DJ
10678@deffn {Directive} {%define annotations} "@var{annotations}"
10679The Java annotations for the parser class. Default is none.
10680@xref{Java Bison Interface}.
10681@end deffn
10682
e254a580
DJ
10683@deffn {Directive} {%define extends} "@var{superclass}"
10684The superclass of the parser class. Default is none.
10685@xref{Java Bison Interface}.
10686@end deffn
10687
10688@deffn {Directive} {%define final}
10689Whether the parser class is declared @code{final}. Default is false.
10690@xref{Java Bison Interface}.
10691@end deffn
10692
10693@deffn {Directive} {%define implements} "@var{interfaces}"
10694The implemented interfaces of the parser class, a comma-separated list.
10695Default is none.
10696@xref{Java Bison Interface}.
10697@end deffn
10698
1979121c
DJ
10699@deffn {Directive} {%define init_throws} "@var{exceptions}"
10700The exceptions thrown by @code{%code init} from the parser class
10701constructor. Default is none.
10702@xref{Java Parser Interface}.
10703@end deffn
10704
e254a580
DJ
10705@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10706The exceptions thrown by the @code{yylex} method of the lexer, a
10707comma-separated list. Default is @code{java.io.IOException}.
10708@xref{Java Scanner Interface}.
10709@end deffn
10710
10711@deffn {Directive} {%define location_type} "@var{class}"
10712The name of the class used for locations (a range between two
10713positions). This class is generated as an inner class of the parser
10714class by @command{bison}. Default is @code{Location}.
10715@xref{Java Location Values}.
10716@end deffn
10717
10718@deffn {Directive} {%define package} "@var{package}"
10719The package to put the parser class in. Default is none.
10720@xref{Java Bison Interface}.
10721@end deffn
10722
10723@deffn {Directive} {%define parser_class_name} "@var{name}"
10724The name of the parser class. Default is @code{YYParser} or
10725@code{@var{name-prefix}Parser}.
10726@xref{Java Bison Interface}.
10727@end deffn
10728
10729@deffn {Directive} {%define position_type} "@var{class}"
10730The name of the class used for positions. This class must be supplied by
10731the user. Default is @code{Position}.
10732@xref{Java Location Values}.
10733@end deffn
10734
10735@deffn {Directive} {%define public}
10736Whether the parser class is declared @code{public}. Default is false.
10737@xref{Java Bison Interface}.
10738@end deffn
10739
10740@deffn {Directive} {%define stype} "@var{class}"
10741The base type of semantic values. Default is @code{Object}.
10742@xref{Java Semantic Values}.
10743@end deffn
10744
10745@deffn {Directive} {%define strictfp}
10746Whether the parser class is declared @code{strictfp}. Default is false.
10747@xref{Java Bison Interface}.
10748@end deffn
10749
10750@deffn {Directive} {%define throws} "@var{exceptions}"
10751The exceptions thrown by user-supplied parser actions and
10752@code{%initial-action}, a comma-separated list. Default is none.
10753@xref{Java Parser Interface}.
10754@end deffn
10755
10756
12545799 10757@c ================================================= FAQ
d1a1114f
AD
10758
10759@node FAQ
10760@chapter Frequently Asked Questions
10761@cindex frequently asked questions
10762@cindex questions
10763
10764Several questions about Bison come up occasionally. Here some of them
10765are addressed.
10766
10767@menu
55ba27be
AD
10768* Memory Exhausted:: Breaking the Stack Limits
10769* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10770* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10771* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10772* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10773* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10774* I can't build Bison:: Troubleshooting
10775* Where can I find help?:: Troubleshouting
10776* Bug Reports:: Troublereporting
8405b70c 10777* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10778* Beta Testing:: Experimenting development versions
10779* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10780@end menu
10781
1a059451
PE
10782@node Memory Exhausted
10783@section Memory Exhausted
d1a1114f 10784
71b52b13 10785@quotation
1a059451 10786My parser returns with error with a @samp{memory exhausted}
d1a1114f 10787message. What can I do?
71b52b13 10788@end quotation
d1a1114f
AD
10789
10790This question is already addressed elsewhere, @xref{Recursion,
10791,Recursive Rules}.
10792
e64fec0a
PE
10793@node How Can I Reset the Parser
10794@section How Can I Reset the Parser
5b066063 10795
0e14ad77
PE
10796The following phenomenon has several symptoms, resulting in the
10797following typical questions:
5b066063 10798
71b52b13 10799@quotation
5b066063
AD
10800I invoke @code{yyparse} several times, and on correct input it works
10801properly; but when a parse error is found, all the other calls fail
0e14ad77 10802too. How can I reset the error flag of @code{yyparse}?
71b52b13 10803@end quotation
5b066063
AD
10804
10805@noindent
10806or
10807
71b52b13 10808@quotation
0e14ad77 10809My parser includes support for an @samp{#include}-like feature, in
5b066063 10810which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10811although I did specify @samp{%define api.pure}.
71b52b13 10812@end quotation
5b066063 10813
0e14ad77
PE
10814These problems typically come not from Bison itself, but from
10815Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10816speed, they might not notice a change of input file. As a
10817demonstration, consider the following source file,
10818@file{first-line.l}:
10819
d4fca427
AD
10820@example
10821@group
10822%@{
5b066063
AD
10823#include <stdio.h>
10824#include <stdlib.h>
d4fca427
AD
10825%@}
10826@end group
5b066063
AD
10827%%
10828.*\n ECHO; return 1;
10829%%
d4fca427 10830@group
5b066063 10831int
0e14ad77 10832yyparse (char const *file)
d4fca427 10833@{
5b066063
AD
10834 yyin = fopen (file, "r");
10835 if (!yyin)
d4fca427
AD
10836 @{
10837 perror ("fopen");
10838 exit (EXIT_FAILURE);
10839 @}
10840@end group
10841@group
fa7e68c3 10842 /* One token only. */
5b066063 10843 yylex ();
0e14ad77 10844 if (fclose (yyin) != 0)
d4fca427
AD
10845 @{
10846 perror ("fclose");
10847 exit (EXIT_FAILURE);
10848 @}
5b066063 10849 return 0;
d4fca427
AD
10850@}
10851@end group
5b066063 10852
d4fca427 10853@group
5b066063 10854int
0e14ad77 10855main (void)
d4fca427 10856@{
5b066063
AD
10857 yyparse ("input");
10858 yyparse ("input");
10859 return 0;
d4fca427
AD
10860@}
10861@end group
10862@end example
5b066063
AD
10863
10864@noindent
10865If the file @file{input} contains
10866
71b52b13 10867@example
5b066063
AD
10868input:1: Hello,
10869input:2: World!
71b52b13 10870@end example
5b066063
AD
10871
10872@noindent
0e14ad77 10873then instead of getting the first line twice, you get:
5b066063
AD
10874
10875@example
10876$ @kbd{flex -ofirst-line.c first-line.l}
10877$ @kbd{gcc -ofirst-line first-line.c -ll}
10878$ @kbd{./first-line}
10879input:1: Hello,
10880input:2: World!
10881@end example
10882
0e14ad77
PE
10883Therefore, whenever you change @code{yyin}, you must tell the
10884Lex-generated scanner to discard its current buffer and switch to the
10885new one. This depends upon your implementation of Lex; see its
10886documentation for more. For Flex, it suffices to call
10887@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10888Flex-generated scanner needs to read from several input streams to
10889handle features like include files, you might consider using Flex
10890functions like @samp{yy_switch_to_buffer} that manipulate multiple
10891input buffers.
5b066063 10892
b165c324
AD
10893If your Flex-generated scanner uses start conditions (@pxref{Start
10894conditions, , Start conditions, flex, The Flex Manual}), you might
10895also want to reset the scanner's state, i.e., go back to the initial
10896start condition, through a call to @samp{BEGIN (0)}.
10897
fef4cb51
AD
10898@node Strings are Destroyed
10899@section Strings are Destroyed
10900
71b52b13 10901@quotation
c7e441b4 10902My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10903them. Instead of reporting @samp{"foo", "bar"}, it reports
10904@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 10905@end quotation
fef4cb51
AD
10906
10907This error is probably the single most frequent ``bug report'' sent to
10908Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10909of the scanner. Consider the following Lex code:
fef4cb51 10910
71b52b13 10911@example
d4fca427 10912@group
71b52b13 10913%@{
fef4cb51
AD
10914#include <stdio.h>
10915char *yylval = NULL;
71b52b13 10916%@}
d4fca427
AD
10917@end group
10918@group
fef4cb51
AD
10919%%
10920.* yylval = yytext; return 1;
10921\n /* IGNORE */
10922%%
d4fca427
AD
10923@end group
10924@group
fef4cb51
AD
10925int
10926main ()
71b52b13 10927@{
fa7e68c3 10928 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10929 char *fst = (yylex (), yylval);
10930 char *snd = (yylex (), yylval);
10931 printf ("\"%s\", \"%s\"\n", fst, snd);
10932 return 0;
71b52b13 10933@}
d4fca427 10934@end group
71b52b13 10935@end example
fef4cb51
AD
10936
10937If you compile and run this code, you get:
10938
10939@example
10940$ @kbd{flex -osplit-lines.c split-lines.l}
10941$ @kbd{gcc -osplit-lines split-lines.c -ll}
10942$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10943"one
10944two", "two"
10945@end example
10946
10947@noindent
10948this is because @code{yytext} is a buffer provided for @emph{reading}
10949in the action, but if you want to keep it, you have to duplicate it
10950(e.g., using @code{strdup}). Note that the output may depend on how
10951your implementation of Lex handles @code{yytext}. For instance, when
10952given the Lex compatibility option @option{-l} (which triggers the
10953option @samp{%array}) Flex generates a different behavior:
10954
10955@example
10956$ @kbd{flex -l -osplit-lines.c split-lines.l}
10957$ @kbd{gcc -osplit-lines split-lines.c -ll}
10958$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10959"two", "two"
10960@end example
10961
10962
2fa09258
AD
10963@node Implementing Gotos/Loops
10964@section Implementing Gotos/Loops
a06ea4aa 10965
71b52b13 10966@quotation
a06ea4aa 10967My simple calculator supports variables, assignments, and functions,
2fa09258 10968but how can I implement gotos, or loops?
71b52b13 10969@end quotation
a06ea4aa
AD
10970
10971Although very pedagogical, the examples included in the document blur
a1c84f45 10972the distinction to make between the parser---whose job is to recover
a06ea4aa 10973the structure of a text and to transmit it to subsequent modules of
a1c84f45 10974the program---and the processing (such as the execution) of this
a06ea4aa
AD
10975structure. This works well with so called straight line programs,
10976i.e., precisely those that have a straightforward execution model:
10977execute simple instructions one after the others.
10978
10979@cindex abstract syntax tree
8a4281b9 10980@cindex AST
a06ea4aa
AD
10981If you want a richer model, you will probably need to use the parser
10982to construct a tree that does represent the structure it has
10983recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10984or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10985traversing it in various ways, will enable treatments such as its
10986execution or its translation, which will result in an interpreter or a
10987compiler.
10988
10989This topic is way beyond the scope of this manual, and the reader is
10990invited to consult the dedicated literature.
10991
10992
ed2e6384
AD
10993@node Multiple start-symbols
10994@section Multiple start-symbols
10995
71b52b13 10996@quotation
ed2e6384
AD
10997I have several closely related grammars, and I would like to share their
10998implementations. In fact, I could use a single grammar but with
10999multiple entry points.
71b52b13 11000@end quotation
ed2e6384
AD
11001
11002Bison does not support multiple start-symbols, but there is a very
11003simple means to simulate them. If @code{foo} and @code{bar} are the two
11004pseudo start-symbols, then introduce two new tokens, say
11005@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11006real start-symbol:
11007
11008@example
11009%token START_FOO START_BAR;
11010%start start;
5e9b6624
AD
11011start:
11012 START_FOO foo
11013| START_BAR bar;
ed2e6384
AD
11014@end example
11015
11016These tokens prevents the introduction of new conflicts. As far as the
11017parser goes, that is all that is needed.
11018
11019Now the difficult part is ensuring that the scanner will send these
11020tokens first. If your scanner is hand-written, that should be
11021straightforward. If your scanner is generated by Lex, them there is
11022simple means to do it: recall that anything between @samp{%@{ ... %@}}
11023after the first @code{%%} is copied verbatim in the top of the generated
11024@code{yylex} function. Make sure a variable @code{start_token} is
11025available in the scanner (e.g., a global variable or using
11026@code{%lex-param} etc.), and use the following:
11027
11028@example
11029 /* @r{Prologue.} */
11030%%
11031%@{
11032 if (start_token)
11033 @{
11034 int t = start_token;
11035 start_token = 0;
11036 return t;
11037 @}
11038%@}
11039 /* @r{The rules.} */
11040@end example
11041
11042
55ba27be
AD
11043@node Secure? Conform?
11044@section Secure? Conform?
11045
71b52b13 11046@quotation
55ba27be 11047Is Bison secure? Does it conform to POSIX?
71b52b13 11048@end quotation
55ba27be
AD
11049
11050If you're looking for a guarantee or certification, we don't provide it.
11051However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11052POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11053please send us a bug report.
11054
11055@node I can't build Bison
11056@section I can't build Bison
11057
71b52b13 11058@quotation
8c5b881d
PE
11059I can't build Bison because @command{make} complains that
11060@code{msgfmt} is not found.
55ba27be 11061What should I do?
71b52b13 11062@end quotation
55ba27be
AD
11063
11064Like most GNU packages with internationalization support, that feature
11065is turned on by default. If you have problems building in the @file{po}
11066subdirectory, it indicates that your system's internationalization
11067support is lacking. You can re-configure Bison with
11068@option{--disable-nls} to turn off this support, or you can install GNU
11069gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11070Bison. See the file @file{ABOUT-NLS} for more information.
11071
11072
11073@node Where can I find help?
11074@section Where can I find help?
11075
71b52b13 11076@quotation
55ba27be 11077I'm having trouble using Bison. Where can I find help?
71b52b13 11078@end quotation
55ba27be
AD
11079
11080First, read this fine manual. Beyond that, you can send mail to
11081@email{help-bison@@gnu.org}. This mailing list is intended to be
11082populated with people who are willing to answer questions about using
11083and installing Bison. Please keep in mind that (most of) the people on
11084the list have aspects of their lives which are not related to Bison (!),
11085so you may not receive an answer to your question right away. This can
11086be frustrating, but please try not to honk them off; remember that any
11087help they provide is purely voluntary and out of the kindness of their
11088hearts.
11089
11090@node Bug Reports
11091@section Bug Reports
11092
71b52b13 11093@quotation
55ba27be 11094I found a bug. What should I include in the bug report?
71b52b13 11095@end quotation
55ba27be
AD
11096
11097Before you send a bug report, make sure you are using the latest
11098version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11099mirrors. Be sure to include the version number in your bug report. If
11100the bug is present in the latest version but not in a previous version,
11101try to determine the most recent version which did not contain the bug.
11102
11103If the bug is parser-related, you should include the smallest grammar
11104you can which demonstrates the bug. The grammar file should also be
11105complete (i.e., I should be able to run it through Bison without having
11106to edit or add anything). The smaller and simpler the grammar, the
11107easier it will be to fix the bug.
11108
11109Include information about your compilation environment, including your
11110operating system's name and version and your compiler's name and
11111version. If you have trouble compiling, you should also include a
11112transcript of the build session, starting with the invocation of
11113`configure'. Depending on the nature of the bug, you may be asked to
11114send additional files as well (such as `config.h' or `config.cache').
11115
11116Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11117send a bug report just because you cannot provide a fix.
55ba27be
AD
11118
11119Send bug reports to @email{bug-bison@@gnu.org}.
11120
8405b70c
PB
11121@node More Languages
11122@section More Languages
55ba27be 11123
71b52b13 11124@quotation
8405b70c 11125Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11126favorite language here}?
71b52b13 11127@end quotation
55ba27be 11128
8405b70c 11129C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11130languages; contributions are welcome.
11131
11132@node Beta Testing
11133@section Beta Testing
11134
71b52b13 11135@quotation
55ba27be 11136What is involved in being a beta tester?
71b52b13 11137@end quotation
55ba27be
AD
11138
11139It's not terribly involved. Basically, you would download a test
11140release, compile it, and use it to build and run a parser or two. After
11141that, you would submit either a bug report or a message saying that
11142everything is okay. It is important to report successes as well as
11143failures because test releases eventually become mainstream releases,
11144but only if they are adequately tested. If no one tests, development is
11145essentially halted.
11146
11147Beta testers are particularly needed for operating systems to which the
11148developers do not have easy access. They currently have easy access to
11149recent GNU/Linux and Solaris versions. Reports about other operating
11150systems are especially welcome.
11151
11152@node Mailing Lists
11153@section Mailing Lists
11154
71b52b13 11155@quotation
55ba27be 11156How do I join the help-bison and bug-bison mailing lists?
71b52b13 11157@end quotation
55ba27be
AD
11158
11159See @url{http://lists.gnu.org/}.
a06ea4aa 11160
d1a1114f
AD
11161@c ================================================= Table of Symbols
11162
342b8b6e 11163@node Table of Symbols
bfa74976
RS
11164@appendix Bison Symbols
11165@cindex Bison symbols, table of
11166@cindex symbols in Bison, table of
11167
18b519c0 11168@deffn {Variable} @@$
3ded9a63 11169In an action, the location of the left-hand side of the rule.
303834cc 11170@xref{Tracking Locations}.
18b519c0 11171@end deffn
3ded9a63 11172
18b519c0 11173@deffn {Variable} @@@var{n}
303834cc
JD
11174In an action, the location of the @var{n}-th symbol of the right-hand side
11175of the rule. @xref{Tracking Locations}.
18b519c0 11176@end deffn
3ded9a63 11177
d013372c 11178@deffn {Variable} @@@var{name}
303834cc
JD
11179In an action, the location of a symbol addressed by name. @xref{Tracking
11180Locations}.
d013372c
AR
11181@end deffn
11182
11183@deffn {Variable} @@[@var{name}]
303834cc
JD
11184In an action, the location of a symbol addressed by name. @xref{Tracking
11185Locations}.
d013372c
AR
11186@end deffn
11187
18b519c0 11188@deffn {Variable} $$
3ded9a63
AD
11189In an action, the semantic value of the left-hand side of the rule.
11190@xref{Actions}.
18b519c0 11191@end deffn
3ded9a63 11192
18b519c0 11193@deffn {Variable} $@var{n}
3ded9a63
AD
11194In an action, the semantic value of the @var{n}-th symbol of the
11195right-hand side of the rule. @xref{Actions}.
18b519c0 11196@end deffn
3ded9a63 11197
d013372c
AR
11198@deffn {Variable} $@var{name}
11199In an action, the semantic value of a symbol addressed by name.
11200@xref{Actions}.
11201@end deffn
11202
11203@deffn {Variable} $[@var{name}]
11204In an action, the semantic value of a symbol addressed by name.
11205@xref{Actions}.
11206@end deffn
11207
dd8d9022
AD
11208@deffn {Delimiter} %%
11209Delimiter used to separate the grammar rule section from the
11210Bison declarations section or the epilogue.
11211@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11212@end deffn
bfa74976 11213
dd8d9022
AD
11214@c Don't insert spaces, or check the DVI output.
11215@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11216All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11217to the parser implementation file. Such code forms the prologue of
11218the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11219Grammar}.
18b519c0 11220@end deffn
bfa74976 11221
ca2a6d15
PH
11222@deffn {Directive} %?@{@var{expression}@}
11223Predicate actions. This is a type of action clause that may appear in
11224rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11225GLR parsers during nondeterministic operation,
ca2a6d15
PH
11226this silently causes an alternative parse to die. During deterministic
11227operation, it is the same as the effect of YYERROR.
11228@xref{Semantic Predicates}.
11229
11230This feature is experimental.
11231More user feedback will help to determine whether it should become a permanent
11232feature.
11233@end deffn
11234
dd8d9022
AD
11235@deffn {Construct} /*@dots{}*/
11236Comment delimiters, as in C.
18b519c0 11237@end deffn
bfa74976 11238
dd8d9022
AD
11239@deffn {Delimiter} :
11240Separates a rule's result from its components. @xref{Rules, ,Syntax of
11241Grammar Rules}.
18b519c0 11242@end deffn
bfa74976 11243
dd8d9022
AD
11244@deffn {Delimiter} ;
11245Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11246@end deffn
bfa74976 11247
dd8d9022
AD
11248@deffn {Delimiter} |
11249Separates alternate rules for the same result nonterminal.
11250@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11251@end deffn
bfa74976 11252
12e35840
JD
11253@deffn {Directive} <*>
11254Used to define a default tagged @code{%destructor} or default tagged
11255@code{%printer}.
85894313
JD
11256
11257This feature is experimental.
11258More user feedback will help to determine whether it should become a permanent
11259feature.
11260
12e35840
JD
11261@xref{Destructor Decl, , Freeing Discarded Symbols}.
11262@end deffn
11263
3ebecc24 11264@deffn {Directive} <>
12e35840
JD
11265Used to define a default tagless @code{%destructor} or default tagless
11266@code{%printer}.
85894313
JD
11267
11268This feature is experimental.
11269More user feedback will help to determine whether it should become a permanent
11270feature.
11271
12e35840
JD
11272@xref{Destructor Decl, , Freeing Discarded Symbols}.
11273@end deffn
11274
dd8d9022
AD
11275@deffn {Symbol} $accept
11276The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11277$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11278Start-Symbol}. It cannot be used in the grammar.
18b519c0 11279@end deffn
bfa74976 11280
136a0f76 11281@deffn {Directive} %code @{@var{code}@}
148d66d8 11282@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11283Insert @var{code} verbatim into the output parser source at the
11284default location or at the location specified by @var{qualifier}.
e0c07222 11285@xref{%code Summary}.
9bc0dd67
JD
11286@end deffn
11287
11288@deffn {Directive} %debug
11289Equip the parser for debugging. @xref{Decl Summary}.
11290@end deffn
11291
91d2c560 11292@ifset defaultprec
22fccf95
PE
11293@deffn {Directive} %default-prec
11294Assign a precedence to rules that lack an explicit @samp{%prec}
11295modifier. @xref{Contextual Precedence, ,Context-Dependent
11296Precedence}.
39a06c25 11297@end deffn
91d2c560 11298@end ifset
39a06c25 11299
7fceb615
JD
11300@deffn {Directive} %define @var{variable}
11301@deffnx {Directive} %define @var{variable} @var{value}
11302@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11303Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11304@end deffn
11305
18b519c0 11306@deffn {Directive} %defines
ff7571c0
JD
11307Bison declaration to create a parser header file, which is usually
11308meant for the scanner. @xref{Decl Summary}.
18b519c0 11309@end deffn
6deb4447 11310
02975b9a
JD
11311@deffn {Directive} %defines @var{defines-file}
11312Same as above, but save in the file @var{defines-file}.
11313@xref{Decl Summary}.
11314@end deffn
11315
18b519c0 11316@deffn {Directive} %destructor
258b75ca 11317Specify how the parser should reclaim the memory associated to
fa7e68c3 11318discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11319@end deffn
72f889cc 11320
18b519c0 11321@deffn {Directive} %dprec
676385e2 11322Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11323time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11324GLR Parsers}.
18b519c0 11325@end deffn
676385e2 11326
dd8d9022
AD
11327@deffn {Symbol} $end
11328The predefined token marking the end of the token stream. It cannot be
11329used in the grammar.
11330@end deffn
11331
11332@deffn {Symbol} error
11333A token name reserved for error recovery. This token may be used in
11334grammar rules so as to allow the Bison parser to recognize an error in
11335the grammar without halting the process. In effect, a sentence
11336containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11337token @code{error} becomes the current lookahead token. Actions
11338corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11339token is reset to the token that originally caused the violation.
11340@xref{Error Recovery}.
18d192f0
AD
11341@end deffn
11342
18b519c0 11343@deffn {Directive} %error-verbose
7fceb615
JD
11344An obsolete directive standing for @samp{%define parse.error verbose}
11345(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11346@end deffn
2a8d363a 11347
02975b9a 11348@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11349Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11350Summary}.
18b519c0 11351@end deffn
d8988b2f 11352
18b519c0 11353@deffn {Directive} %glr-parser
8a4281b9
JD
11354Bison declaration to produce a GLR parser. @xref{GLR
11355Parsers, ,Writing GLR Parsers}.
18b519c0 11356@end deffn
676385e2 11357
dd8d9022
AD
11358@deffn {Directive} %initial-action
11359Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11360@end deffn
11361
e6e704dc
JD
11362@deffn {Directive} %language
11363Specify the programming language for the generated parser.
11364@xref{Decl Summary}.
11365@end deffn
11366
18b519c0 11367@deffn {Directive} %left
d78f0ac9 11368Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11369@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11370@end deffn
bfa74976 11371
2055a44e
AD
11372@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11373Bison declaration to specifying additional arguments that
2a8d363a
AD
11374@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11375for Pure Parsers}.
18b519c0 11376@end deffn
2a8d363a 11377
18b519c0 11378@deffn {Directive} %merge
676385e2 11379Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11380reduce/reduce conflict with a rule having the same merging function, the
676385e2 11381function is applied to the two semantic values to get a single result.
8a4281b9 11382@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11383@end deffn
676385e2 11384
02975b9a 11385@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 11386Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 11387@end deffn
d8988b2f 11388
91d2c560 11389@ifset defaultprec
22fccf95
PE
11390@deffn {Directive} %no-default-prec
11391Do not assign a precedence to rules that lack an explicit @samp{%prec}
11392modifier. @xref{Contextual Precedence, ,Context-Dependent
11393Precedence}.
11394@end deffn
91d2c560 11395@end ifset
22fccf95 11396
18b519c0 11397@deffn {Directive} %no-lines
931c7513 11398Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11399parser implementation file. @xref{Decl Summary}.
18b519c0 11400@end deffn
931c7513 11401
18b519c0 11402@deffn {Directive} %nonassoc
d78f0ac9 11403Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11404@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11405@end deffn
bfa74976 11406
02975b9a 11407@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11408Bison declaration to set the name of the parser implementation file.
11409@xref{Decl Summary}.
18b519c0 11410@end deffn
d8988b2f 11411
2055a44e
AD
11412@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11413Bison declaration to specify additional arguments that both
11414@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11415Parser Function @code{yyparse}}.
11416@end deffn
11417
11418@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11419Bison declaration to specify additional arguments that @code{yyparse}
11420should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11421@end deffn
2a8d363a 11422
18b519c0 11423@deffn {Directive} %prec
bfa74976
RS
11424Bison declaration to assign a precedence to a specific rule.
11425@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11426@end deffn
bfa74976 11427
d78f0ac9
AD
11428@deffn {Directive} %precedence
11429Bison declaration to assign precedence to token(s), but no associativity
11430@xref{Precedence Decl, ,Operator Precedence}.
11431@end deffn
11432
18b519c0 11433@deffn {Directive} %pure-parser
35c1e5f0
JD
11434Deprecated version of @samp{%define api.pure} (@pxref{%define
11435Summary,,api.pure}), for which Bison is more careful to warn about
11436unreasonable usage.
18b519c0 11437@end deffn
bfa74976 11438
b50d2359 11439@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11440Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11441Require a Version of Bison}.
b50d2359
AD
11442@end deffn
11443
18b519c0 11444@deffn {Directive} %right
d78f0ac9 11445Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11446@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11447@end deffn
bfa74976 11448
e6e704dc
JD
11449@deffn {Directive} %skeleton
11450Specify the skeleton to use; usually for development.
11451@xref{Decl Summary}.
11452@end deffn
11453
18b519c0 11454@deffn {Directive} %start
704a47c4
AD
11455Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11456Start-Symbol}.
18b519c0 11457@end deffn
bfa74976 11458
18b519c0 11459@deffn {Directive} %token
bfa74976
RS
11460Bison declaration to declare token(s) without specifying precedence.
11461@xref{Token Decl, ,Token Type Names}.
18b519c0 11462@end deffn
bfa74976 11463
18b519c0 11464@deffn {Directive} %token-table
ff7571c0
JD
11465Bison declaration to include a token name table in the parser
11466implementation file. @xref{Decl Summary}.
18b519c0 11467@end deffn
931c7513 11468
18b519c0 11469@deffn {Directive} %type
704a47c4
AD
11470Bison declaration to declare nonterminals. @xref{Type Decl,
11471,Nonterminal Symbols}.
18b519c0 11472@end deffn
bfa74976 11473
dd8d9022
AD
11474@deffn {Symbol} $undefined
11475The predefined token onto which all undefined values returned by
11476@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11477@code{error}.
11478@end deffn
11479
18b519c0 11480@deffn {Directive} %union
bfa74976
RS
11481Bison declaration to specify several possible data types for semantic
11482values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11483@end deffn
bfa74976 11484
dd8d9022
AD
11485@deffn {Macro} YYABORT
11486Macro to pretend that an unrecoverable syntax error has occurred, by
11487making @code{yyparse} return 1 immediately. The error reporting
11488function @code{yyerror} is not called. @xref{Parser Function, ,The
11489Parser Function @code{yyparse}}.
8405b70c
PB
11490
11491For Java parsers, this functionality is invoked using @code{return YYABORT;}
11492instead.
dd8d9022 11493@end deffn
3ded9a63 11494
dd8d9022
AD
11495@deffn {Macro} YYACCEPT
11496Macro to pretend that a complete utterance of the language has been
11497read, by making @code{yyparse} return 0 immediately.
11498@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11499
11500For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11501instead.
dd8d9022 11502@end deffn
bfa74976 11503
dd8d9022 11504@deffn {Macro} YYBACKUP
742e4900 11505Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11506token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11507@end deffn
bfa74976 11508
dd8d9022 11509@deffn {Variable} yychar
32c29292 11510External integer variable that contains the integer value of the
742e4900 11511lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11512@code{yyparse}.) Error-recovery rule actions may examine this variable.
11513@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11514@end deffn
bfa74976 11515
dd8d9022
AD
11516@deffn {Variable} yyclearin
11517Macro used in error-recovery rule actions. It clears the previous
742e4900 11518lookahead token. @xref{Error Recovery}.
18b519c0 11519@end deffn
bfa74976 11520
dd8d9022
AD
11521@deffn {Macro} YYDEBUG
11522Macro to define to equip the parser with tracing code. @xref{Tracing,
11523,Tracing Your Parser}.
18b519c0 11524@end deffn
bfa74976 11525
dd8d9022
AD
11526@deffn {Variable} yydebug
11527External integer variable set to zero by default. If @code{yydebug}
11528is given a nonzero value, the parser will output information on input
11529symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11530@end deffn
bfa74976 11531
dd8d9022
AD
11532@deffn {Macro} yyerrok
11533Macro to cause parser to recover immediately to its normal mode
11534after a syntax error. @xref{Error Recovery}.
11535@end deffn
11536
11537@deffn {Macro} YYERROR
11538Macro to pretend that a syntax error has just been detected: call
11539@code{yyerror} and then perform normal error recovery if possible
11540(@pxref{Error Recovery}), or (if recovery is impossible) make
11541@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11542
11543For Java parsers, this functionality is invoked using @code{return YYERROR;}
11544instead.
dd8d9022
AD
11545@end deffn
11546
11547@deffn {Function} yyerror
11548User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11549@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11550@end deffn
11551
11552@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11553An obsolete macro used in the @file{yacc.c} skeleton, that you define
11554with @code{#define} in the prologue to request verbose, specific error
11555message strings when @code{yyerror} is called. It doesn't matter what
11556definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11557it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11558(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11559@end deffn
11560
11561@deffn {Macro} YYINITDEPTH
11562Macro for specifying the initial size of the parser stack.
1a059451 11563@xref{Memory Management}.
dd8d9022
AD
11564@end deffn
11565
11566@deffn {Function} yylex
11567User-supplied lexical analyzer function, called with no arguments to get
11568the next token. @xref{Lexical, ,The Lexical Analyzer Function
11569@code{yylex}}.
11570@end deffn
11571
11572@deffn {Macro} YYLEX_PARAM
11573An obsolete macro for specifying an extra argument (or list of extra
32c29292 11574arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11575macro is deprecated, and is supported only for Yacc like parsers.
11576@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11577@end deffn
11578
11579@deffn {Variable} yylloc
11580External variable in which @code{yylex} should place the line and column
11581numbers associated with a token. (In a pure parser, it is a local
11582variable within @code{yyparse}, and its address is passed to
32c29292
JD
11583@code{yylex}.)
11584You can ignore this variable if you don't use the @samp{@@} feature in the
11585grammar actions.
11586@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11587In semantic actions, it stores the location of the lookahead token.
32c29292 11588@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11589@end deffn
11590
11591@deffn {Type} YYLTYPE
11592Data type of @code{yylloc}; by default, a structure with four
11593members. @xref{Location Type, , Data Types of Locations}.
11594@end deffn
11595
11596@deffn {Variable} yylval
11597External variable in which @code{yylex} should place the semantic
11598value associated with a token. (In a pure parser, it is a local
11599variable within @code{yyparse}, and its address is passed to
32c29292
JD
11600@code{yylex}.)
11601@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11602In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11603@xref{Actions, ,Actions}.
dd8d9022
AD
11604@end deffn
11605
11606@deffn {Macro} YYMAXDEPTH
1a059451
PE
11607Macro for specifying the maximum size of the parser stack. @xref{Memory
11608Management}.
dd8d9022
AD
11609@end deffn
11610
11611@deffn {Variable} yynerrs
8a2800e7 11612Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11613(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11614pure push parser, it is a member of yypstate.)
dd8d9022
AD
11615@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11616@end deffn
11617
11618@deffn {Function} yyparse
11619The parser function produced by Bison; call this function to start
11620parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11621@end deffn
11622
9987d1b3 11623@deffn {Function} yypstate_delete
f4101aa6 11624The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11625call this function to delete the memory associated with a parser.
f4101aa6 11626@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11627@code{yypstate_delete}}.
59da312b
JD
11628(The current push parsing interface is experimental and may evolve.
11629More user feedback will help to stabilize it.)
9987d1b3
JD
11630@end deffn
11631
11632@deffn {Function} yypstate_new
f4101aa6 11633The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11634call this function to create a new parser.
f4101aa6 11635@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11636@code{yypstate_new}}.
59da312b
JD
11637(The current push parsing interface is experimental and may evolve.
11638More user feedback will help to stabilize it.)
9987d1b3
JD
11639@end deffn
11640
11641@deffn {Function} yypull_parse
f4101aa6
AD
11642The parser function produced by Bison in push mode; call this function to
11643parse the rest of the input stream.
11644@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11645@code{yypull_parse}}.
59da312b
JD
11646(The current push parsing interface is experimental and may evolve.
11647More user feedback will help to stabilize it.)
9987d1b3
JD
11648@end deffn
11649
11650@deffn {Function} yypush_parse
f4101aa6
AD
11651The parser function produced by Bison in push mode; call this function to
11652parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11653@code{yypush_parse}}.
59da312b
JD
11654(The current push parsing interface is experimental and may evolve.
11655More user feedback will help to stabilize it.)
9987d1b3
JD
11656@end deffn
11657
dd8d9022
AD
11658@deffn {Macro} YYPARSE_PARAM
11659An obsolete macro for specifying the name of a parameter that
11660@code{yyparse} should accept. The use of this macro is deprecated, and
11661is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11662Conventions for Pure Parsers}.
11663@end deffn
11664
11665@deffn {Macro} YYRECOVERING
02103984
PE
11666The expression @code{YYRECOVERING ()} yields 1 when the parser
11667is recovering from a syntax error, and 0 otherwise.
11668@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11669@end deffn
11670
11671@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11672Macro used to control the use of @code{alloca} when the
11673deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11674the parser will use @code{malloc} to extend its stacks. If defined to
116751, the parser will use @code{alloca}. Values other than 0 and 1 are
11676reserved for future Bison extensions. If not defined,
11677@code{YYSTACK_USE_ALLOCA} defaults to 0.
11678
55289366 11679In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11680limited stack and with unreliable stack-overflow checking, you should
11681set @code{YYMAXDEPTH} to a value that cannot possibly result in
11682unchecked stack overflow on any of your target hosts when
11683@code{alloca} is called. You can inspect the code that Bison
11684generates in order to determine the proper numeric values. This will
11685require some expertise in low-level implementation details.
dd8d9022
AD
11686@end deffn
11687
11688@deffn {Type} YYSTYPE
11689Data type of semantic values; @code{int} by default.
11690@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11691@end deffn
bfa74976 11692
342b8b6e 11693@node Glossary
bfa74976
RS
11694@appendix Glossary
11695@cindex glossary
11696
11697@table @asis
7fceb615 11698@item Accepting state
eb45ef3b
JD
11699A state whose only action is the accept action.
11700The accepting state is thus a consistent state.
11701@xref{Understanding,,}.
11702
8a4281b9 11703@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11704Formal method of specifying context-free grammars originally proposed
11705by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11706committee document contributing to what became the Algol 60 report.
11707@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11708
7fceb615
JD
11709@item Consistent state
11710A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 11711
bfa74976
RS
11712@item Context-free grammars
11713Grammars specified as rules that can be applied regardless of context.
11714Thus, if there is a rule which says that an integer can be used as an
11715expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11716permitted. @xref{Language and Grammar, ,Languages and Context-Free
11717Grammars}.
bfa74976 11718
7fceb615 11719@item Default reduction
110ef36a 11720The reduction that a parser should perform if the current parser state
35c1e5f0 11721contains no other action for the lookahead token. In permitted parser
7fceb615
JD
11722states, Bison declares the reduction with the largest lookahead set to be
11723the default reduction and removes that lookahead set. @xref{Default
11724Reductions}.
11725
11726@item Defaulted state
11727A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 11728
bfa74976
RS
11729@item Dynamic allocation
11730Allocation of memory that occurs during execution, rather than at
11731compile time or on entry to a function.
11732
11733@item Empty string
11734Analogous to the empty set in set theory, the empty string is a
11735character string of length zero.
11736
11737@item Finite-state stack machine
11738A ``machine'' that has discrete states in which it is said to exist at
11739each instant in time. As input to the machine is processed, the
11740machine moves from state to state as specified by the logic of the
11741machine. In the case of the parser, the input is the language being
11742parsed, and the states correspond to various stages in the grammar
c827f760 11743rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11744
8a4281b9 11745@item Generalized LR (GLR)
676385e2 11746A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11747that are not LR(1). It resolves situations that Bison's
eb45ef3b 11748deterministic parsing
676385e2
PH
11749algorithm cannot by effectively splitting off multiple parsers, trying all
11750possible parsers, and discarding those that fail in the light of additional
c827f760 11751right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11752LR Parsing}.
676385e2 11753
bfa74976
RS
11754@item Grouping
11755A language construct that is (in general) grammatically divisible;
c827f760 11756for example, `expression' or `declaration' in C@.
bfa74976
RS
11757@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11758
7fceb615
JD
11759@item IELR(1) (Inadequacy Elimination LR(1))
11760A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 11761context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
11762language-recognition power of canonical LR(1) but with nearly the same
11763number of parser states as LALR(1). This reduction in parser states is
11764often an order of magnitude. More importantly, because canonical LR(1)'s
11765extra parser states may contain duplicate conflicts in the case of non-LR(1)
11766grammars, the number of conflicts for IELR(1) is often an order of magnitude
11767less as well. This can significantly reduce the complexity of developing a
11768grammar. @xref{LR Table Construction}.
eb45ef3b 11769
bfa74976
RS
11770@item Infix operator
11771An arithmetic operator that is placed between the operands on which it
11772performs some operation.
11773
11774@item Input stream
11775A continuous flow of data between devices or programs.
11776
8a4281b9 11777@item LAC (Lookahead Correction)
fcf834f9 11778A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
11779detection, which is caused by LR state merging, default reductions, and the
11780use of @code{%nonassoc}. Delayed syntax error detection results in
11781unexpected semantic actions, initiation of error recovery in the wrong
11782syntactic context, and an incorrect list of expected tokens in a verbose
11783syntax error message. @xref{LAC}.
fcf834f9 11784
bfa74976
RS
11785@item Language construct
11786One of the typical usage schemas of the language. For example, one of
11787the constructs of the C language is the @code{if} statement.
11788@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11789
11790@item Left associativity
11791Operators having left associativity are analyzed from left to right:
11792@samp{a+b+c} first computes @samp{a+b} and then combines with
11793@samp{c}. @xref{Precedence, ,Operator Precedence}.
11794
11795@item Left recursion
89cab50d
AD
11796A rule whose result symbol is also its first component symbol; for
11797example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11798Rules}.
bfa74976
RS
11799
11800@item Left-to-right parsing
11801Parsing a sentence of a language by analyzing it token by token from
c827f760 11802left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11803
11804@item Lexical analyzer (scanner)
11805A function that reads an input stream and returns tokens one by one.
11806@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11807
11808@item Lexical tie-in
11809A flag, set by actions in the grammar rules, which alters the way
11810tokens are parsed. @xref{Lexical Tie-ins}.
11811
931c7513 11812@item Literal string token
14ded682 11813A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11814
742e4900
JD
11815@item Lookahead token
11816A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11817Tokens}.
bfa74976 11818
8a4281b9 11819@item LALR(1)
bfa74976 11820The class of context-free grammars that Bison (like most other parser
8a4281b9 11821generators) can handle by default; a subset of LR(1).
cc09e5be 11822@xref{Mysterious Conflicts}.
bfa74976 11823
8a4281b9 11824@item LR(1)
bfa74976 11825The class of context-free grammars in which at most one token of
742e4900 11826lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11827
11828@item Nonterminal symbol
11829A grammar symbol standing for a grammatical construct that can
11830be expressed through rules in terms of smaller constructs; in other
11831words, a construct that is not a token. @xref{Symbols}.
11832
bfa74976
RS
11833@item Parser
11834A function that recognizes valid sentences of a language by analyzing
11835the syntax structure of a set of tokens passed to it from a lexical
11836analyzer.
11837
11838@item Postfix operator
11839An arithmetic operator that is placed after the operands upon which it
11840performs some operation.
11841
11842@item Reduction
11843Replacing a string of nonterminals and/or terminals with a single
89cab50d 11844nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11845Parser Algorithm}.
bfa74976
RS
11846
11847@item Reentrant
11848A reentrant subprogram is a subprogram which can be in invoked any
11849number of times in parallel, without interference between the various
11850invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11851
11852@item Reverse polish notation
11853A language in which all operators are postfix operators.
11854
11855@item Right recursion
89cab50d
AD
11856A rule whose result symbol is also its last component symbol; for
11857example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11858Rules}.
bfa74976
RS
11859
11860@item Semantics
11861In computer languages, the semantics are specified by the actions
11862taken for each instance of the language, i.e., the meaning of
11863each statement. @xref{Semantics, ,Defining Language Semantics}.
11864
11865@item Shift
11866A parser is said to shift when it makes the choice of analyzing
11867further input from the stream rather than reducing immediately some
c827f760 11868already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11869
11870@item Single-character literal
11871A single character that is recognized and interpreted as is.
11872@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11873
11874@item Start symbol
11875The nonterminal symbol that stands for a complete valid utterance in
11876the language being parsed. The start symbol is usually listed as the
13863333 11877first nonterminal symbol in a language specification.
bfa74976
RS
11878@xref{Start Decl, ,The Start-Symbol}.
11879
11880@item Symbol table
11881A data structure where symbol names and associated data are stored
11882during parsing to allow for recognition and use of existing
11883information in repeated uses of a symbol. @xref{Multi-function Calc}.
11884
6e649e65
PE
11885@item Syntax error
11886An error encountered during parsing of an input stream due to invalid
11887syntax. @xref{Error Recovery}.
11888
bfa74976
RS
11889@item Token
11890A basic, grammatically indivisible unit of a language. The symbol
11891that describes a token in the grammar is a terminal symbol.
11892The input of the Bison parser is a stream of tokens which comes from
11893the lexical analyzer. @xref{Symbols}.
11894
11895@item Terminal symbol
89cab50d
AD
11896A grammar symbol that has no rules in the grammar and therefore is
11897grammatically indivisible. The piece of text it represents is a token.
11898@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
11899
11900@item Unreachable state
11901A parser state to which there does not exist a sequence of transitions from
11902the parser's start state. A state can become unreachable during conflict
11903resolution. @xref{Unreachable States}.
bfa74976
RS
11904@end table
11905
342b8b6e 11906@node Copying This Manual
f2b5126e 11907@appendix Copying This Manual
f2b5126e
PB
11908@include fdl.texi
11909
5e528941
JD
11910@node Bibliography
11911@unnumbered Bibliography
11912
11913@table @asis
11914@item [Denny 2008]
11915Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11916for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
119172008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11918pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11919
11920@item [Denny 2010 May]
11921Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11922Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11923University, Clemson, SC, USA (May 2010).
11924@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11925
11926@item [Denny 2010 November]
11927Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11928Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11929in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
119302010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11931
11932@item [DeRemer 1982]
11933Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11934Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11935Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11936615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11937
11938@item [Knuth 1965]
11939Donald E. Knuth, On the Translation of Languages from Left to Right, in
11940@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11941607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11942
11943@item [Scott 2000]
11944Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11945@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11946London, Department of Computer Science, TR-00-12 (December 2000).
11947@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11948@end table
11949
342b8b6e 11950@node Index
bfa74976
RS
11951@unnumbered Index
11952
11953@printindex cp
11954
bfa74976 11955@bye
a06ea4aa 11956
6b5a0de9
AD
11957@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11958@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11959@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11960@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11961@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11962@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11963@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11964@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11965@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11966@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11967@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11968@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11969@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 11970@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
11971@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11972@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11973@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11974@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11975@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11976@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11977@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11978@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11979@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 11980@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
11981@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11982@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11983@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11984@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11985@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11986@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
11987@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
11988@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 11989@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 11990@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
11991@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11992@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11993@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 11994@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 11995@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 11996@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
11997@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11998@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11999@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12000@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 12001@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
12002@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12003@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12004@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12005@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
12006@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
5a321748
AD
12007@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
12008@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy
12009@c LocalWords: Scannerless ispell american
e944aaff
AD
12010
12011@c Local Variables:
12012@c ispell-dictionary: "american"
12013@c fill-column: 76
12014@c End: