]> git.saurik.com Git - bison.git/blame - doc/bison.texi
yystype, yyltype: remove.
[bison.git] / doc / bison.texi
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
93c150b6 229* Printer Decl:: Declaring how symbol values are displayed.
d6328241 230* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
231* Start Decl:: Specifying the start symbol.
232* Pure Decl:: Requesting a reentrant parser.
9987d1b3 233* Push Decl:: Requesting a push parser.
bfa74976 234* Decl Summary:: Table of all Bison declarations.
35c1e5f0 235* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 236* %code Summary:: Inserting code into the parser source.
bfa74976
RS
237
238Parser C-Language Interface
239
f5f419de
DJ
240* Parser Function:: How to call @code{yyparse} and what it returns.
241* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
242* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
243* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
244* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
245* Lexical:: You must supply a function @code{yylex}
246 which reads tokens.
247* Error Reporting:: You must supply a function @code{yyerror}.
248* Action Features:: Special features for use in actions.
249* Internationalization:: How to let the parser speak in the user's
250 native language.
bfa74976
RS
251
252The Lexical Analyzer Function @code{yylex}
253
254* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
255* Token Values:: How @code{yylex} must return the semantic value
256 of the token it has read.
257* Token Locations:: How @code{yylex} must return the text location
258 (line number, etc.) of the token, if the
259 actions want that.
260* Pure Calling:: How the calling convention differs in a pure parser
261 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 262
13863333 263The Bison Parser Algorithm
bfa74976 264
742e4900 265* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
266* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
267* Precedence:: Operator precedence works by resolving conflicts.
268* Contextual Precedence:: When an operator's precedence depends on context.
269* Parser States:: The parser is a finite-state-machine with stack.
270* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 271* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 272* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 273* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 274* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
275
276Operator Precedence
277
278* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
279* Using Precedence:: How to specify precedence and associativity.
280* Precedence Only:: How to specify precedence only.
bfa74976
RS
281* Precedence Examples:: How these features are used in the previous example.
282* How Precedence:: How they work.
283
7fceb615
JD
284Tuning LR
285
286* LR Table Construction:: Choose a different construction algorithm.
287* Default Reductions:: Disable default reductions.
288* LAC:: Correct lookahead sets in the parser states.
289* Unreachable States:: Keep unreachable parser states for debugging.
290
bfa74976
RS
291Handling Context Dependencies
292
293* Semantic Tokens:: Token parsing can depend on the semantic context.
294* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
295* Tie-in Recovery:: Lexical tie-ins have implications for how
296 error recovery rules must be written.
297
93dd49ab 298Debugging Your Parser
ec3bc396
AD
299
300* Understanding:: Understanding the structure of your parser.
301* Tracing:: Tracing the execution of your parser.
302
93c150b6
AD
303Tracing Your Parser
304
305* Enabling Traces:: Activating run-time trace support
306* Mfcalc Traces:: Extending @code{mfcalc} to support traces
307* The YYPRINT Macro:: Obsolete interface for semantic value reports
308
bfa74976
RS
309Invoking Bison
310
13863333 311* Bison Options:: All the options described in detail,
c827f760 312 in alphabetical order by short options.
bfa74976 313* Option Cross Key:: Alphabetical list of long options.
93dd49ab 314* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 315
8405b70c 316Parsers Written In Other Languages
12545799
AD
317
318* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 319* Java Parsers:: The interface to generate Java parser classes
12545799
AD
320
321C++ Parsers
322
323* C++ Bison Interface:: Asking for C++ parser generation
324* C++ Semantic Values:: %union vs. C++
325* C++ Location Values:: The position and location classes
326* C++ Parser Interface:: Instantiating and running the parser
327* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 328* A Complete C++ Example:: Demonstrating their use
12545799 329
936c88d1
AD
330C++ Location Values
331
332* C++ position:: One point in the source file
333* C++ location:: Two points in the source file
334
12545799
AD
335A Complete C++ Example
336
337* Calc++ --- C++ Calculator:: The specifications
338* Calc++ Parsing Driver:: An active parsing context
339* Calc++ Parser:: A parser class
340* Calc++ Scanner:: A pure C++ Flex scanner
341* Calc++ Top Level:: Conducting the band
342
8405b70c
PB
343Java Parsers
344
f5f419de
DJ
345* Java Bison Interface:: Asking for Java parser generation
346* Java Semantic Values:: %type and %token vs. Java
347* Java Location Values:: The position and location classes
348* Java Parser Interface:: Instantiating and running the parser
349* Java Scanner Interface:: Specifying the scanner for the parser
350* Java Action Features:: Special features for use in actions
351* Java Differences:: Differences between C/C++ and Java Grammars
352* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 353
d1a1114f
AD
354Frequently Asked Questions
355
f5f419de
DJ
356* Memory Exhausted:: Breaking the Stack Limits
357* How Can I Reset the Parser:: @code{yyparse} Keeps some State
358* Strings are Destroyed:: @code{yylval} Loses Track of Strings
359* Implementing Gotos/Loops:: Control Flow in the Calculator
360* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 361* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
362* I can't build Bison:: Troubleshooting
363* Where can I find help?:: Troubleshouting
364* Bug Reports:: Troublereporting
365* More Languages:: Parsers in C++, Java, and so on
366* Beta Testing:: Experimenting development versions
367* Mailing Lists:: Meeting other Bison users
d1a1114f 368
f2b5126e
PB
369Copying This Manual
370
f5f419de 371* Copying This Manual:: License for copying this manual.
f2b5126e 372
342b8b6e 373@end detailmenu
bfa74976
RS
374@end menu
375
342b8b6e 376@node Introduction
bfa74976
RS
377@unnumbered Introduction
378@cindex introduction
379
6077da58 380@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
381annotated context-free grammar into a deterministic LR or generalized
382LR (GLR) parser employing LALR(1) parser tables. As an experimental
383feature, Bison can also generate IELR(1) or canonical LR(1) parser
384tables. Once you are proficient with Bison, you can use it to develop
385a wide range of language parsers, from those used in simple desk
386calculators to complex programming languages.
387
388Bison is upward compatible with Yacc: all properly-written Yacc
389grammars ought to work with Bison with no change. Anyone familiar
390with Yacc should be able to use Bison with little trouble. You need
391to be fluent in C or C++ programming in order to use Bison or to
392understand this manual. Java is also supported as an experimental
393feature.
394
395We begin with tutorial chapters that explain the basic concepts of
396using Bison and show three explained examples, each building on the
397last. If you don't know Bison or Yacc, start by reading these
398chapters. Reference chapters follow, which describe specific aspects
399of Bison in detail.
bfa74976 400
679e9935
JD
401Bison was written originally by Robert Corbett. Richard Stallman made
402it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
403added multi-character string literals and other features. Since then,
404Bison has grown more robust and evolved many other new features thanks
405to the hard work of a long list of volunteers. For details, see the
406@file{THANKS} and @file{ChangeLog} files included in the Bison
407distribution.
931c7513 408
df1af54c 409This edition corresponds to version @value{VERSION} of Bison.
bfa74976 410
342b8b6e 411@node Conditions
bfa74976
RS
412@unnumbered Conditions for Using Bison
413
193d7c70
PE
414The distribution terms for Bison-generated parsers permit using the
415parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 416permissions applied only when Bison was generating LALR(1)
193d7c70 417parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 418parsers could be used only in programs that were free software.
a31239f1 419
8a4281b9 420The other GNU programming tools, such as the GNU C
c827f760 421compiler, have never
9ecbd125 422had such a requirement. They could always be used for nonfree
a31239f1
RS
423software. The reason Bison was different was not due to a special
424policy decision; it resulted from applying the usual General Public
425License to all of the Bison source code.
426
ff7571c0
JD
427The main output of the Bison utility---the Bison parser implementation
428file---contains a verbatim copy of a sizable piece of Bison, which is
429the code for the parser's implementation. (The actions from your
430grammar are inserted into this implementation at one point, but most
431of the rest of the implementation is not changed.) When we applied
432the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
433the effect was to restrict the use of Bison output to free software.
434
435We didn't change the terms because of sympathy for people who want to
436make software proprietary. @strong{Software should be free.} But we
437concluded that limiting Bison's use to free software was doing little to
438encourage people to make other software free. So we decided to make the
439practical conditions for using Bison match the practical conditions for
8a4281b9 440using the other GNU tools.
bfa74976 441
193d7c70
PE
442This exception applies when Bison is generating code for a parser.
443You can tell whether the exception applies to a Bison output file by
444inspecting the file for text beginning with ``As a special
445exception@dots{}''. The text spells out the exact terms of the
446exception.
262aa8dd 447
f16b0819
PE
448@node Copying
449@unnumbered GNU GENERAL PUBLIC LICENSE
450@include gpl-3.0.texi
bfa74976 451
342b8b6e 452@node Concepts
bfa74976
RS
453@chapter The Concepts of Bison
454
455This chapter introduces many of the basic concepts without which the
456details of Bison will not make sense. If you do not already know how to
457use Bison or Yacc, we suggest you start by reading this chapter carefully.
458
459@menu
f5f419de
DJ
460* Language and Grammar:: Languages and context-free grammars,
461 as mathematical ideas.
462* Grammar in Bison:: How we represent grammars for Bison's sake.
463* Semantic Values:: Each token or syntactic grouping can have
464 a semantic value (the value of an integer,
465 the name of an identifier, etc.).
466* Semantic Actions:: Each rule can have an action containing C code.
467* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 468* Locations:: Overview of location tracking.
f5f419de
DJ
469* Bison Parser:: What are Bison's input and output,
470 how is the output used?
471* Stages:: Stages in writing and running Bison grammars.
472* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
473@end menu
474
342b8b6e 475@node Language and Grammar
bfa74976
RS
476@section Languages and Context-Free Grammars
477
bfa74976
RS
478@cindex context-free grammar
479@cindex grammar, context-free
480In order for Bison to parse a language, it must be described by a
481@dfn{context-free grammar}. This means that you specify one or more
482@dfn{syntactic groupings} and give rules for constructing them from their
483parts. For example, in the C language, one kind of grouping is called an
484`expression'. One rule for making an expression might be, ``An expression
485can be made of a minus sign and another expression''. Another would be,
486``An expression can be an integer''. As you can see, rules are often
487recursive, but there must be at least one rule which leads out of the
488recursion.
489
8a4281b9 490@cindex BNF
bfa74976
RS
491@cindex Backus-Naur form
492The most common formal system for presenting such rules for humans to read
8a4281b9 493is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 494order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
495BNF is a context-free grammar. The input to Bison is
496essentially machine-readable BNF.
bfa74976 497
7fceb615
JD
498@cindex LALR grammars
499@cindex IELR grammars
500@cindex LR grammars
501There are various important subclasses of context-free grammars. Although
502it can handle almost all context-free grammars, Bison is optimized for what
503are called LR(1) grammars. In brief, in these grammars, it must be possible
504to tell how to parse any portion of an input string with just a single token
505of lookahead. For historical reasons, Bison by default is limited by the
506additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
507@xref{Mysterious Conflicts}, for more information on this. As an
508experimental feature, you can escape these additional restrictions by
509requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
510Construction}, to learn how.
bfa74976 511
8a4281b9
JD
512@cindex GLR parsing
513@cindex generalized LR (GLR) parsing
676385e2 514@cindex ambiguous grammars
9d9b8b70 515@cindex nondeterministic parsing
9501dc6e 516
8a4281b9 517Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
518roughly that the next grammar rule to apply at any point in the input is
519uniquely determined by the preceding input and a fixed, finite portion
742e4900 520(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 521grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 522apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 523grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 524lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 525With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
526general context-free grammars, using a technique known as GLR
527parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
528are able to handle any context-free grammar for which the number of
529possible parses of any given string is finite.
676385e2 530
bfa74976
RS
531@cindex symbols (abstract)
532@cindex token
533@cindex syntactic grouping
534@cindex grouping, syntactic
9501dc6e
AD
535In the formal grammatical rules for a language, each kind of syntactic
536unit or grouping is named by a @dfn{symbol}. Those which are built by
537grouping smaller constructs according to grammatical rules are called
bfa74976
RS
538@dfn{nonterminal symbols}; those which can't be subdivided are called
539@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
540corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 541corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
542
543We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
544nonterminal, mean. The tokens of C are identifiers, constants (numeric
545and string), and the various keywords, arithmetic operators and
546punctuation marks. So the terminal symbols of a grammar for C include
547`identifier', `number', `string', plus one symbol for each keyword,
548operator or punctuation mark: `if', `return', `const', `static', `int',
549`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
550(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
551lexicography, not grammar.)
552
553Here is a simple C function subdivided into tokens:
554
9edcd895
AD
555@example
556int /* @r{keyword `int'} */
14d4662b 557square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
558 @r{identifier, close-paren} */
559@{ /* @r{open-brace} */
aa08666d
AD
560 return x * x; /* @r{keyword `return', identifier, asterisk,}
561 @r{identifier, semicolon} */
9edcd895
AD
562@} /* @r{close-brace} */
563@end example
bfa74976
RS
564
565The syntactic groupings of C include the expression, the statement, the
566declaration, and the function definition. These are represented in the
567grammar of C by nonterminal symbols `expression', `statement',
568`declaration' and `function definition'. The full grammar uses dozens of
569additional language constructs, each with its own nonterminal symbol, in
570order to express the meanings of these four. The example above is a
571function definition; it contains one declaration, and one statement. In
572the statement, each @samp{x} is an expression and so is @samp{x * x}.
573
574Each nonterminal symbol must have grammatical rules showing how it is made
575out of simpler constructs. For example, one kind of C statement is the
576@code{return} statement; this would be described with a grammar rule which
577reads informally as follows:
578
579@quotation
580A `statement' can be made of a `return' keyword, an `expression' and a
581`semicolon'.
582@end quotation
583
584@noindent
585There would be many other rules for `statement', one for each kind of
586statement in C.
587
588@cindex start symbol
589One nonterminal symbol must be distinguished as the special one which
590defines a complete utterance in the language. It is called the @dfn{start
591symbol}. In a compiler, this means a complete input program. In the C
592language, the nonterminal symbol `sequence of definitions and declarations'
593plays this role.
594
595For example, @samp{1 + 2} is a valid C expression---a valid part of a C
596program---but it is not valid as an @emph{entire} C program. In the
597context-free grammar of C, this follows from the fact that `expression' is
598not the start symbol.
599
600The Bison parser reads a sequence of tokens as its input, and groups the
601tokens using the grammar rules. If the input is valid, the end result is
602that the entire token sequence reduces to a single grouping whose symbol is
603the grammar's start symbol. If we use a grammar for C, the entire input
604must be a `sequence of definitions and declarations'. If not, the parser
605reports a syntax error.
606
342b8b6e 607@node Grammar in Bison
bfa74976
RS
608@section From Formal Rules to Bison Input
609@cindex Bison grammar
610@cindex grammar, Bison
611@cindex formal grammar
612
613A formal grammar is a mathematical construct. To define the language
614for Bison, you must write a file expressing the grammar in Bison syntax:
615a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
616
617A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 618as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
619in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
620
621The Bison representation for a terminal symbol is also called a @dfn{token
622type}. Token types as well can be represented as C-like identifiers. By
623convention, these identifiers should be upper case to distinguish them from
624nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
625@code{RETURN}. A terminal symbol that stands for a particular keyword in
626the language should be named after that keyword converted to upper case.
627The terminal symbol @code{error} is reserved for error recovery.
931c7513 628@xref{Symbols}.
bfa74976
RS
629
630A terminal symbol can also be represented as a character literal, just like
631a C character constant. You should do this whenever a token is just a
632single character (parenthesis, plus-sign, etc.): use that same character in
633a literal as the terminal symbol for that token.
634
931c7513
RS
635A third way to represent a terminal symbol is with a C string constant
636containing several characters. @xref{Symbols}, for more information.
637
bfa74976
RS
638The grammar rules also have an expression in Bison syntax. For example,
639here is the Bison rule for a C @code{return} statement. The semicolon in
640quotes is a literal character token, representing part of the C syntax for
641the statement; the naked semicolon, and the colon, are Bison punctuation
642used in every rule.
643
644@example
5e9b6624 645stmt: RETURN expr ';' ;
bfa74976
RS
646@end example
647
648@noindent
649@xref{Rules, ,Syntax of Grammar Rules}.
650
342b8b6e 651@node Semantic Values
bfa74976
RS
652@section Semantic Values
653@cindex semantic value
654@cindex value, semantic
655
656A formal grammar selects tokens only by their classifications: for example,
657if a rule mentions the terminal symbol `integer constant', it means that
658@emph{any} integer constant is grammatically valid in that position. The
659precise value of the constant is irrelevant to how to parse the input: if
660@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 661grammatical.
bfa74976
RS
662
663But the precise value is very important for what the input means once it is
664parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6653989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
666has both a token type and a @dfn{semantic value}. @xref{Semantics,
667,Defining Language Semantics},
bfa74976
RS
668for details.
669
670The token type is a terminal symbol defined in the grammar, such as
671@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
672you need to know to decide where the token may validly appear and how to
673group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 674except their types.
bfa74976
RS
675
676The semantic value has all the rest of the information about the
677meaning of the token, such as the value of an integer, or the name of an
678identifier. (A token such as @code{','} which is just punctuation doesn't
679need to have any semantic value.)
680
681For example, an input token might be classified as token type
682@code{INTEGER} and have the semantic value 4. Another input token might
683have the same token type @code{INTEGER} but value 3989. When a grammar
684rule says that @code{INTEGER} is allowed, either of these tokens is
685acceptable because each is an @code{INTEGER}. When the parser accepts the
686token, it keeps track of the token's semantic value.
687
688Each grouping can also have a semantic value as well as its nonterminal
689symbol. For example, in a calculator, an expression typically has a
690semantic value that is a number. In a compiler for a programming
691language, an expression typically has a semantic value that is a tree
692structure describing the meaning of the expression.
693
342b8b6e 694@node Semantic Actions
bfa74976
RS
695@section Semantic Actions
696@cindex semantic actions
697@cindex actions, semantic
698
699In order to be useful, a program must do more than parse input; it must
700also produce some output based on the input. In a Bison grammar, a grammar
701rule can have an @dfn{action} made up of C statements. Each time the
702parser recognizes a match for that rule, the action is executed.
703@xref{Actions}.
13863333 704
bfa74976
RS
705Most of the time, the purpose of an action is to compute the semantic value
706of the whole construct from the semantic values of its parts. For example,
707suppose we have a rule which says an expression can be the sum of two
708expressions. When the parser recognizes such a sum, each of the
709subexpressions has a semantic value which describes how it was built up.
710The action for this rule should create a similar sort of value for the
711newly recognized larger expression.
712
713For example, here is a rule that says an expression can be the sum of
714two subexpressions:
715
716@example
5e9b6624 717expr: expr '+' expr @{ $$ = $1 + $3; @} ;
bfa74976
RS
718@end example
719
720@noindent
721The action says how to produce the semantic value of the sum expression
722from the values of the two subexpressions.
723
676385e2 724@node GLR Parsers
8a4281b9
JD
725@section Writing GLR Parsers
726@cindex GLR parsing
727@cindex generalized LR (GLR) parsing
676385e2
PH
728@findex %glr-parser
729@cindex conflicts
730@cindex shift/reduce conflicts
fa7e68c3 731@cindex reduce/reduce conflicts
676385e2 732
eb45ef3b 733In some grammars, Bison's deterministic
8a4281b9 734LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
735certain grammar rule at a given point. That is, it may not be able to
736decide (on the basis of the input read so far) which of two possible
737reductions (applications of a grammar rule) applies, or whether to apply
738a reduction or read more of the input and apply a reduction later in the
739input. These are known respectively as @dfn{reduce/reduce} conflicts
740(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
741(@pxref{Shift/Reduce}).
742
8a4281b9 743To use a grammar that is not easily modified to be LR(1), a
9501dc6e 744more general parsing algorithm is sometimes necessary. If you include
676385e2 745@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
746(@pxref{Grammar Outline}), the result is a Generalized LR
747(GLR) parser. These parsers handle Bison grammars that
9501dc6e 748contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 749declarations) identically to deterministic parsers. However, when
9501dc6e 750faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 751GLR parsers use the simple expedient of doing both,
9501dc6e
AD
752effectively cloning the parser to follow both possibilities. Each of
753the resulting parsers can again split, so that at any given time, there
754can be any number of possible parses being explored. The parsers
676385e2
PH
755proceed in lockstep; that is, all of them consume (shift) a given input
756symbol before any of them proceed to the next. Each of the cloned
757parsers eventually meets one of two possible fates: either it runs into
758a parsing error, in which case it simply vanishes, or it merges with
759another parser, because the two of them have reduced the input to an
760identical set of symbols.
761
762During the time that there are multiple parsers, semantic actions are
763recorded, but not performed. When a parser disappears, its recorded
764semantic actions disappear as well, and are never performed. When a
765reduction makes two parsers identical, causing them to merge, Bison
766records both sets of semantic actions. Whenever the last two parsers
767merge, reverting to the single-parser case, Bison resolves all the
768outstanding actions either by precedences given to the grammar rules
769involved, or by performing both actions, and then calling a designated
770user-defined function on the resulting values to produce an arbitrary
771merged result.
772
fa7e68c3 773@menu
8a4281b9
JD
774* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
775* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 776* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 777* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 778* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
779@end menu
780
781@node Simple GLR Parsers
8a4281b9
JD
782@subsection Using GLR on Unambiguous Grammars
783@cindex GLR parsing, unambiguous grammars
784@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
785@findex %glr-parser
786@findex %expect-rr
787@cindex conflicts
788@cindex reduce/reduce conflicts
789@cindex shift/reduce conflicts
790
8a4281b9
JD
791In the simplest cases, you can use the GLR algorithm
792to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 793Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
794
795Consider a problem that
796arises in the declaration of enumerated and subrange types in the
797programming language Pascal. Here are some examples:
798
799@example
800type subrange = lo .. hi;
801type enum = (a, b, c);
802@end example
803
804@noindent
805The original language standard allows only numeric
806literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 807and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80810206) and many other
809Pascal implementations allow arbitrary expressions there. This gives
810rise to the following situation, containing a superfluous pair of
811parentheses:
812
813@example
814type subrange = (a) .. b;
815@end example
816
817@noindent
818Compare this to the following declaration of an enumerated
819type with only one value:
820
821@example
822type enum = (a);
823@end example
824
825@noindent
826(These declarations are contrived, but they are syntactically
827valid, and more-complicated cases can come up in practical programs.)
828
829These two declarations look identical until the @samp{..} token.
8a4281b9 830With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
831possible to decide between the two forms when the identifier
832@samp{a} is parsed. It is, however, desirable
833for a parser to decide this, since in the latter case
834@samp{a} must become a new identifier to represent the enumeration
835value, while in the former case @samp{a} must be evaluated with its
836current meaning, which may be a constant or even a function call.
837
838You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
839to be resolved later, but this typically requires substantial
840contortions in both semantic actions and large parts of the
841grammar, where the parentheses are nested in the recursive rules for
842expressions.
843
844You might think of using the lexer to distinguish between the two
845forms by returning different tokens for currently defined and
846undefined identifiers. But if these declarations occur in a local
847scope, and @samp{a} is defined in an outer scope, then both forms
848are possible---either locally redefining @samp{a}, or using the
849value of @samp{a} from the outer scope. So this approach cannot
850work.
851
e757bb10 852A simple solution to this problem is to declare the parser to
8a4281b9
JD
853use the GLR algorithm.
854When the GLR parser reaches the critical state, it
fa7e68c3
PE
855merely splits into two branches and pursues both syntax rules
856simultaneously. Sooner or later, one of them runs into a parsing
857error. If there is a @samp{..} token before the next
858@samp{;}, the rule for enumerated types fails since it cannot
859accept @samp{..} anywhere; otherwise, the subrange type rule
860fails since it requires a @samp{..} token. So one of the branches
861fails silently, and the other one continues normally, performing
862all the intermediate actions that were postponed during the split.
863
864If the input is syntactically incorrect, both branches fail and the parser
865reports a syntax error as usual.
866
867The effect of all this is that the parser seems to ``guess'' the
868correct branch to take, or in other words, it seems to use more
8a4281b9
JD
869lookahead than the underlying LR(1) algorithm actually allows
870for. In this example, LR(2) would suffice, but also some cases
871that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 872
8a4281b9 873In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
874and the current Bison parser even takes exponential time and space
875for some grammars. In practice, this rarely happens, and for many
876grammars it is possible to prove that it cannot happen.
877The present example contains only one conflict between two
878rules, and the type-declaration context containing the conflict
879cannot be nested. So the number of
880branches that can exist at any time is limited by the constant 2,
881and the parsing time is still linear.
882
883Here is a Bison grammar corresponding to the example above. It
884parses a vastly simplified form of Pascal type declarations.
885
886@example
887%token TYPE DOTDOT ID
888
889@group
890%left '+' '-'
891%left '*' '/'
892@end group
893
894%%
895
896@group
5e9b6624 897type_decl: TYPE ID '=' type ';' ;
fa7e68c3
PE
898@end group
899
900@group
5e9b6624
AD
901type:
902 '(' id_list ')'
903| expr DOTDOT expr
904;
fa7e68c3
PE
905@end group
906
907@group
5e9b6624
AD
908id_list:
909 ID
910| id_list ',' ID
911;
fa7e68c3
PE
912@end group
913
914@group
5e9b6624
AD
915expr:
916 '(' expr ')'
917| expr '+' expr
918| expr '-' expr
919| expr '*' expr
920| expr '/' expr
921| ID
922;
fa7e68c3
PE
923@end group
924@end example
925
8a4281b9 926When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
927about one reduce/reduce conflict. In the conflicting situation the
928parser chooses one of the alternatives, arbitrarily the one
929declared first. Therefore the following correct input is not
930recognized:
931
932@example
933type t = (a) .. b;
934@end example
935
8a4281b9 936The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
937to be silent about the one known reduce/reduce conflict, by adding
938these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
939@samp{%%}):
940
941@example
942%glr-parser
943%expect-rr 1
944@end example
945
946@noindent
947No change in the grammar itself is required. Now the
948parser recognizes all valid declarations, according to the
949limited syntax above, transparently. In fact, the user does not even
950notice when the parser splits.
951
8a4281b9 952So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
953almost without disadvantages. Even in simple cases like this, however,
954there are at least two potential problems to beware. First, always
8a4281b9
JD
955analyze the conflicts reported by Bison to make sure that GLR
956splitting is only done where it is intended. A GLR parser
f8e1c9e5 957splitting inadvertently may cause problems less obvious than an
8a4281b9 958LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
959conflict. Second, consider interactions with the lexer (@pxref{Semantic
960Tokens}) with great care. Since a split parser consumes tokens without
961performing any actions during the split, the lexer cannot obtain
962information via parser actions. Some cases of lexer interactions can be
8a4281b9 963eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
964lexer to the parser. You must check the remaining cases for
965correctness.
966
967In our example, it would be safe for the lexer to return tokens based on
968their current meanings in some symbol table, because no new symbols are
969defined in the middle of a type declaration. Though it is possible for
970a parser to define the enumeration constants as they are parsed, before
971the type declaration is completed, it actually makes no difference since
972they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
973
974@node Merging GLR Parses
8a4281b9
JD
975@subsection Using GLR to Resolve Ambiguities
976@cindex GLR parsing, ambiguous grammars
977@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
978@findex %dprec
979@findex %merge
980@cindex conflicts
981@cindex reduce/reduce conflicts
982
2a8d363a 983Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
984
985@example
986%@{
38a92d50
PE
987 #include <stdio.h>
988 #define YYSTYPE char const *
989 int yylex (void);
990 void yyerror (char const *);
676385e2
PH
991%@}
992
993%token TYPENAME ID
994
995%right '='
996%left '+'
997
998%glr-parser
999
1000%%
1001
5e9b6624
AD
1002prog:
1003 /* Nothing. */
1004| prog stmt @{ printf ("\n"); @}
1005;
676385e2 1006
5e9b6624
AD
1007stmt:
1008 expr ';' %dprec 1
1009| decl %dprec 2
1010;
676385e2 1011
5e9b6624
AD
1012expr:
1013 ID @{ printf ("%s ", $$); @}
1014| TYPENAME '(' expr ')'
1015 @{ printf ("%s <cast> ", $1); @}
1016| expr '+' expr @{ printf ("+ "); @}
1017| expr '=' expr @{ printf ("= "); @}
1018;
676385e2 1019
5e9b6624
AD
1020decl:
1021 TYPENAME declarator ';'
1022 @{ printf ("%s <declare> ", $1); @}
1023| TYPENAME declarator '=' expr ';'
1024 @{ printf ("%s <init-declare> ", $1); @}
1025;
676385e2 1026
5e9b6624
AD
1027declarator:
1028 ID @{ printf ("\"%s\" ", $1); @}
1029| '(' declarator ')'
1030;
676385e2
PH
1031@end example
1032
1033@noindent
1034This models a problematic part of the C++ grammar---the ambiguity between
1035certain declarations and statements. For example,
1036
1037@example
1038T (x) = y+z;
1039@end example
1040
1041@noindent
1042parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1043(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1044@samp{x} as an @code{ID}).
676385e2 1045Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1046@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1047time it encounters @code{x} in the example above. Since this is a
8a4281b9 1048GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1049each choice of resolving the reduce/reduce conflict.
1050Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1051however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1052ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1053the other reduces @code{stmt : decl}, after which both parsers are in an
1054identical state: they've seen @samp{prog stmt} and have the same unprocessed
1055input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1056
8a4281b9 1057At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1058grammar of how to choose between the competing parses.
1059In the example above, the two @code{%dprec}
e757bb10 1060declarations specify that Bison is to give precedence
fa7e68c3 1061to the parse that interprets the example as a
676385e2
PH
1062@code{decl}, which implies that @code{x} is a declarator.
1063The parser therefore prints
1064
1065@example
fae437e8 1066"x" y z + T <init-declare>
676385e2
PH
1067@end example
1068
fa7e68c3
PE
1069The @code{%dprec} declarations only come into play when more than one
1070parse survives. Consider a different input string for this parser:
676385e2
PH
1071
1072@example
1073T (x) + y;
1074@end example
1075
1076@noindent
8a4281b9 1077This is another example of using GLR to parse an unambiguous
fa7e68c3 1078construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1079Here, there is no ambiguity (this cannot be parsed as a declaration).
1080However, at the time the Bison parser encounters @code{x}, it does not
1081have enough information to resolve the reduce/reduce conflict (again,
1082between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1083case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1084into two, one assuming that @code{x} is an @code{expr}, and the other
1085assuming @code{x} is a @code{declarator}. The second of these parsers
1086then vanishes when it sees @code{+}, and the parser prints
1087
1088@example
fae437e8 1089x T <cast> y +
676385e2
PH
1090@end example
1091
1092Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1093the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1094actions of the two possible parsers, rather than choosing one over the
1095other. To do so, you could change the declaration of @code{stmt} as
1096follows:
1097
1098@example
5e9b6624
AD
1099stmt:
1100 expr ';' %merge <stmtMerge>
1101| decl %merge <stmtMerge>
1102;
676385e2
PH
1103@end example
1104
1105@noindent
676385e2
PH
1106and define the @code{stmtMerge} function as:
1107
1108@example
38a92d50
PE
1109static YYSTYPE
1110stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1111@{
1112 printf ("<OR> ");
1113 return "";
1114@}
1115@end example
1116
1117@noindent
1118with an accompanying forward declaration
1119in the C declarations at the beginning of the file:
1120
1121@example
1122%@{
38a92d50 1123 #define YYSTYPE char const *
676385e2
PH
1124 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1125%@}
1126@end example
1127
1128@noindent
fa7e68c3
PE
1129With these declarations, the resulting parser parses the first example
1130as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1131
1132@example
fae437e8 1133"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1134@end example
1135
fa7e68c3 1136Bison requires that all of the
e757bb10 1137productions that participate in any particular merge have identical
fa7e68c3
PE
1138@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1139and the parser will report an error during any parse that results in
1140the offending merge.
9501dc6e 1141
32c29292
JD
1142@node GLR Semantic Actions
1143@subsection GLR Semantic Actions
1144
8a4281b9 1145The nature of GLR parsing and the structure of the generated
20be2f92
PH
1146parsers give rise to certain restrictions on semantic values and actions.
1147
1148@subsubsection Deferred semantic actions
32c29292
JD
1149@cindex deferred semantic actions
1150By definition, a deferred semantic action is not performed at the same time as
1151the associated reduction.
1152This raises caveats for several Bison features you might use in a semantic
8a4281b9 1153action in a GLR parser.
32c29292
JD
1154
1155@vindex yychar
8a4281b9 1156@cindex GLR parsers and @code{yychar}
32c29292 1157@vindex yylval
8a4281b9 1158@cindex GLR parsers and @code{yylval}
32c29292 1159@vindex yylloc
8a4281b9 1160@cindex GLR parsers and @code{yylloc}
32c29292 1161In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1162the lookahead token present at the time of the associated reduction.
32c29292
JD
1163After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1164you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1165lookahead token's semantic value and location, if any.
32c29292
JD
1166In a nondeferred semantic action, you can also modify any of these variables to
1167influence syntax analysis.
742e4900 1168@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1169
1170@findex yyclearin
8a4281b9 1171@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1172In a deferred semantic action, it's too late to influence syntax analysis.
1173In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1174shallow copies of the values they had at the time of the associated reduction.
1175For this reason alone, modifying them is dangerous.
1176Moreover, the result of modifying them is undefined and subject to change with
1177future versions of Bison.
1178For example, if a semantic action might be deferred, you should never write it
1179to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1180memory referenced by @code{yylval}.
1181
20be2f92 1182@subsubsection YYERROR
32c29292 1183@findex YYERROR
8a4281b9 1184@cindex GLR parsers and @code{YYERROR}
32c29292 1185Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1186(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1187initiate error recovery.
8a4281b9 1188During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1189the same as its effect in a deterministic parser.
411614fa
JM
1190The effect in a deferred action is similar, but the precise point of the
1191error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1192selecting an unspecified stack on which to continue with a syntax error.
1193In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1194parsing, @code{YYERROR} silently prunes
1195the parse that invoked the test.
1196
1197@subsubsection Restrictions on semantic values and locations
8a4281b9 1198GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1199semantic values and location types when using the generated parsers as
1200C++ code.
8710fc41 1201
ca2a6d15
PH
1202@node Semantic Predicates
1203@subsection Controlling a Parse with Arbitrary Predicates
1204@findex %?
8a4281b9 1205@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1206
1207In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1208GLR parsers
ca2a6d15
PH
1209allow you to reject parses on the basis of arbitrary computations executed
1210in user code, without having Bison treat this rejection as an error
1211if there are alternative parses. (This feature is experimental and may
1212evolve. We welcome user feedback.) For example,
1213
c93f22fc
AD
1214@example
1215widget:
5e9b6624
AD
1216 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1217| %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1218;
c93f22fc 1219@end example
ca2a6d15
PH
1220
1221@noindent
411614fa 1222is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1223widgets. The clause preceded by @code{%?} is treated like an ordinary
1224action, except that its text is treated as an expression and is always
411614fa 1225evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1226expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1227which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1228to die. In a deterministic parser, it acts like YYERROR.
1229
1230As the example shows, predicates otherwise look like semantic actions, and
1231therefore you must be take them into account when determining the numbers
1232to use for denoting the semantic values of right-hand side symbols.
1233Predicate actions, however, have no defined value, and may not be given
1234labels.
1235
1236There is a subtle difference between semantic predicates and ordinary
1237actions in nondeterministic mode, since the latter are deferred.
411614fa 1238For example, we could try to rewrite the previous example as
ca2a6d15 1239
c93f22fc
AD
1240@example
1241widget:
5e9b6624
AD
1242 @{ if (!new_syntax) YYERROR; @}
1243 "widget" id new_args @{ $$ = f($3, $4); @}
1244| @{ if (new_syntax) YYERROR; @}
1245 "widget" id old_args @{ $$ = f($3, $4); @}
1246;
c93f22fc 1247@end example
ca2a6d15
PH
1248
1249@noindent
1250(reversing the sense of the predicate tests to cause an error when they are
1251false). However, this
1252does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1253have overlapping syntax.
411614fa 1254Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1255a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1256for cases where @code{new_args} and @code{old_args} recognize the same string
1257@emph{before} performing the tests of @code{new_syntax}. It therefore
1258reports an error.
1259
1260Finally, be careful in writing predicates: deferred actions have not been
1261evaluated, so that using them in a predicate will have undefined effects.
1262
fa7e68c3 1263@node Compiler Requirements
8a4281b9 1264@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1265@cindex @code{inline}
8a4281b9 1266@cindex GLR parsers and @code{inline}
fa7e68c3 1267
8a4281b9 1268The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1269later. In addition, they use the @code{inline} keyword, which is not
1270C89, but is C99 and is a common extension in pre-C99 compilers. It is
1271up to the user of these parsers to handle
9501dc6e
AD
1272portability issues. For instance, if using Autoconf and the Autoconf
1273macro @code{AC_C_INLINE}, a mere
1274
1275@example
1276%@{
38a92d50 1277 #include <config.h>
9501dc6e
AD
1278%@}
1279@end example
1280
1281@noindent
1282will suffice. Otherwise, we suggest
1283
1284@example
1285%@{
aaaa2aae
AD
1286 #if (__STDC_VERSION__ < 199901 && ! defined __GNUC__ \
1287 && ! defined inline)
1288 # define inline
38a92d50 1289 #endif
9501dc6e
AD
1290%@}
1291@end example
676385e2 1292
1769eb30 1293@node Locations
847bf1f5
AD
1294@section Locations
1295@cindex location
95923bd6
AD
1296@cindex textual location
1297@cindex location, textual
847bf1f5
AD
1298
1299Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1300and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1301the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1302Bison provides a mechanism for handling these locations.
1303
72d2299c 1304Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1305associated location, but the type of locations is the same for all tokens
1306and groupings. Moreover, the output parser is equipped with a default data
1307structure for storing locations (@pxref{Tracking Locations}, for more
1308details).
847bf1f5
AD
1309
1310Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1311set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1312is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1313@code{@@3}.
1314
1315When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1316of its left hand side (@pxref{Actions}). In the same way, another default
1317action is used for locations. However, the action for locations is general
847bf1f5 1318enough for most cases, meaning there is usually no need to describe for each
72d2299c 1319rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1320grouping, the default behavior of the output parser is to take the beginning
1321of the first symbol, and the end of the last symbol.
1322
342b8b6e 1323@node Bison Parser
ff7571c0 1324@section Bison Output: the Parser Implementation File
bfa74976
RS
1325@cindex Bison parser
1326@cindex Bison utility
1327@cindex lexical analyzer, purpose
1328@cindex parser
1329
ff7571c0
JD
1330When you run Bison, you give it a Bison grammar file as input. The
1331most important output is a C source file that implements a parser for
1332the language described by the grammar. This parser is called a
1333@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1334implementation file}. Keep in mind that the Bison utility and the
1335Bison parser are two distinct programs: the Bison utility is a program
1336whose output is the Bison parser implementation file that becomes part
1337of your program.
bfa74976
RS
1338
1339The job of the Bison parser is to group tokens into groupings according to
1340the grammar rules---for example, to build identifiers and operators into
1341expressions. As it does this, it runs the actions for the grammar rules it
1342uses.
1343
704a47c4
AD
1344The tokens come from a function called the @dfn{lexical analyzer} that
1345you must supply in some fashion (such as by writing it in C). The Bison
1346parser calls the lexical analyzer each time it wants a new token. It
1347doesn't know what is ``inside'' the tokens (though their semantic values
1348may reflect this). Typically the lexical analyzer makes the tokens by
1349parsing characters of text, but Bison does not depend on this.
1350@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1351
ff7571c0
JD
1352The Bison parser implementation file is C code which defines a
1353function named @code{yyparse} which implements that grammar. This
1354function does not make a complete C program: you must supply some
1355additional functions. One is the lexical analyzer. Another is an
1356error-reporting function which the parser calls to report an error.
1357In addition, a complete C program must start with a function called
1358@code{main}; you have to provide this, and arrange for it to call
1359@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1360C-Language Interface}.
bfa74976 1361
f7ab6a50 1362Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1363write, all symbols defined in the Bison parser implementation file
1364itself begin with @samp{yy} or @samp{YY}. This includes interface
1365functions such as the lexical analyzer function @code{yylex}, the
1366error reporting function @code{yyerror} and the parser function
1367@code{yyparse} itself. This also includes numerous identifiers used
1368for internal purposes. Therefore, you should avoid using C
1369identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1370file except for the ones defined in this manual. Also, you should
1371avoid using the C identifiers @samp{malloc} and @samp{free} for
1372anything other than their usual meanings.
1373
1374In some cases the Bison parser implementation file includes system
1375headers, and in those cases your code should respect the identifiers
1376reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1377@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1378included as needed to declare memory allocators and related types.
1379@code{<libintl.h>} is included if message translation is in use
1380(@pxref{Internationalization}). Other system headers may be included
1381if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1382,Tracing Your Parser}).
7093d0f5 1383
342b8b6e 1384@node Stages
bfa74976
RS
1385@section Stages in Using Bison
1386@cindex stages in using Bison
1387@cindex using Bison
1388
1389The actual language-design process using Bison, from grammar specification
1390to a working compiler or interpreter, has these parts:
1391
1392@enumerate
1393@item
1394Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1395(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1396in the language, describe the action that is to be taken when an
1397instance of that rule is recognized. The action is described by a
1398sequence of C statements.
bfa74976
RS
1399
1400@item
704a47c4
AD
1401Write a lexical analyzer to process input and pass tokens to the parser.
1402The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1403Lexical Analyzer Function @code{yylex}}). It could also be produced
1404using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1405
1406@item
1407Write a controlling function that calls the Bison-produced parser.
1408
1409@item
1410Write error-reporting routines.
1411@end enumerate
1412
1413To turn this source code as written into a runnable program, you
1414must follow these steps:
1415
1416@enumerate
1417@item
1418Run Bison on the grammar to produce the parser.
1419
1420@item
1421Compile the code output by Bison, as well as any other source files.
1422
1423@item
1424Link the object files to produce the finished product.
1425@end enumerate
1426
342b8b6e 1427@node Grammar Layout
bfa74976
RS
1428@section The Overall Layout of a Bison Grammar
1429@cindex grammar file
1430@cindex file format
1431@cindex format of grammar file
1432@cindex layout of Bison grammar
1433
1434The input file for the Bison utility is a @dfn{Bison grammar file}. The
1435general form of a Bison grammar file is as follows:
1436
1437@example
1438%@{
08e49d20 1439@var{Prologue}
bfa74976
RS
1440%@}
1441
1442@var{Bison declarations}
1443
1444%%
1445@var{Grammar rules}
1446%%
08e49d20 1447@var{Epilogue}
bfa74976
RS
1448@end example
1449
1450@noindent
1451The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1452in every Bison grammar file to separate the sections.
1453
72d2299c 1454The prologue may define types and variables used in the actions. You can
342b8b6e 1455also use preprocessor commands to define macros used there, and use
bfa74976 1456@code{#include} to include header files that do any of these things.
38a92d50
PE
1457You need to declare the lexical analyzer @code{yylex} and the error
1458printer @code{yyerror} here, along with any other global identifiers
1459used by the actions in the grammar rules.
bfa74976
RS
1460
1461The Bison declarations declare the names of the terminal and nonterminal
1462symbols, and may also describe operator precedence and the data types of
1463semantic values of various symbols.
1464
1465The grammar rules define how to construct each nonterminal symbol from its
1466parts.
1467
38a92d50
PE
1468The epilogue can contain any code you want to use. Often the
1469definitions of functions declared in the prologue go here. In a
1470simple program, all the rest of the program can go here.
bfa74976 1471
342b8b6e 1472@node Examples
bfa74976
RS
1473@chapter Examples
1474@cindex simple examples
1475@cindex examples, simple
1476
aaaa2aae 1477Now we show and explain several sample programs written using Bison: a
bfa74976 1478reverse polish notation calculator, an algebraic (infix) notation
aaaa2aae
AD
1479calculator --- later extended to track ``locations'' ---
1480and a multi-function calculator. All
1481produce usable, though limited, interactive desk-top calculators.
bfa74976
RS
1482
1483These examples are simple, but Bison grammars for real programming
aa08666d
AD
1484languages are written the same way. You can copy these examples into a
1485source file to try them.
bfa74976
RS
1486
1487@menu
f5f419de
DJ
1488* RPN Calc:: Reverse polish notation calculator;
1489 a first example with no operator precedence.
1490* Infix Calc:: Infix (algebraic) notation calculator.
1491 Operator precedence is introduced.
bfa74976 1492* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1493* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1494* Multi-function Calc:: Calculator with memory and trig functions.
1495 It uses multiple data-types for semantic values.
1496* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1497@end menu
1498
342b8b6e 1499@node RPN Calc
bfa74976
RS
1500@section Reverse Polish Notation Calculator
1501@cindex reverse polish notation
1502@cindex polish notation calculator
1503@cindex @code{rpcalc}
1504@cindex calculator, simple
1505
1506The first example is that of a simple double-precision @dfn{reverse polish
1507notation} calculator (a calculator using postfix operators). This example
1508provides a good starting point, since operator precedence is not an issue.
1509The second example will illustrate how operator precedence is handled.
1510
1511The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1512@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1513
1514@menu
f5f419de
DJ
1515* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1516* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1517* Rpcalc Lexer:: The lexical analyzer.
1518* Rpcalc Main:: The controlling function.
1519* Rpcalc Error:: The error reporting function.
1520* Rpcalc Generate:: Running Bison on the grammar file.
1521* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1522@end menu
1523
f5f419de 1524@node Rpcalc Declarations
bfa74976
RS
1525@subsection Declarations for @code{rpcalc}
1526
1527Here are the C and Bison declarations for the reverse polish notation
1528calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1529
24ec0837 1530@comment file: rpcalc.y
bfa74976 1531@example
72d2299c 1532/* Reverse polish notation calculator. */
bfa74976
RS
1533
1534%@{
38a92d50 1535 #define YYSTYPE double
24ec0837 1536 #include <stdio.h>
38a92d50
PE
1537 #include <math.h>
1538 int yylex (void);
1539 void yyerror (char const *);
bfa74976
RS
1540%@}
1541
1542%token NUM
1543
72d2299c 1544%% /* Grammar rules and actions follow. */
bfa74976
RS
1545@end example
1546
75f5aaea 1547The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1548preprocessor directives and two forward declarations.
bfa74976
RS
1549
1550The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1551specifying the C data type for semantic values of both tokens and
1552groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1553Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1554don't define it, @code{int} is the default. Because we specify
1555@code{double}, each token and each expression has an associated value,
1556which is a floating point number.
bfa74976
RS
1557
1558The @code{#include} directive is used to declare the exponentiation
1559function @code{pow}.
1560
38a92d50
PE
1561The forward declarations for @code{yylex} and @code{yyerror} are
1562needed because the C language requires that functions be declared
1563before they are used. These functions will be defined in the
1564epilogue, but the parser calls them so they must be declared in the
1565prologue.
1566
704a47c4
AD
1567The second section, Bison declarations, provides information to Bison
1568about the token types (@pxref{Bison Declarations, ,The Bison
1569Declarations Section}). Each terminal symbol that is not a
1570single-character literal must be declared here. (Single-character
bfa74976
RS
1571literals normally don't need to be declared.) In this example, all the
1572arithmetic operators are designated by single-character literals, so the
1573only terminal symbol that needs to be declared is @code{NUM}, the token
1574type for numeric constants.
1575
342b8b6e 1576@node Rpcalc Rules
bfa74976
RS
1577@subsection Grammar Rules for @code{rpcalc}
1578
1579Here are the grammar rules for the reverse polish notation calculator.
1580
24ec0837 1581@comment file: rpcalc.y
bfa74976 1582@example
aaaa2aae 1583@group
5e9b6624
AD
1584input:
1585 /* empty */
1586| input line
bfa74976 1587;
aaaa2aae 1588@end group
bfa74976 1589
aaaa2aae 1590@group
5e9b6624
AD
1591line:
1592 '\n'
1593| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976 1594;
aaaa2aae 1595@end group
bfa74976 1596
aaaa2aae 1597@group
5e9b6624
AD
1598exp:
1599 NUM @{ $$ = $1; @}
1600| exp exp '+' @{ $$ = $1 + $2; @}
1601| exp exp '-' @{ $$ = $1 - $2; @}
1602| exp exp '*' @{ $$ = $1 * $2; @}
1603| exp exp '/' @{ $$ = $1 / $2; @}
1604| exp exp '^' @{ $$ = pow ($1, $2); @} /* Exponentiation */
1605| exp 'n' @{ $$ = -$1; @} /* Unary minus */
bfa74976 1606;
aaaa2aae 1607@end group
bfa74976
RS
1608%%
1609@end example
1610
1611The groupings of the rpcalc ``language'' defined here are the expression
1612(given the name @code{exp}), the line of input (@code{line}), and the
1613complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1614symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1615which is read as ``or''. The following sections explain what these rules
1616mean.
1617
1618The semantics of the language is determined by the actions taken when a
1619grouping is recognized. The actions are the C code that appears inside
1620braces. @xref{Actions}.
1621
1622You must specify these actions in C, but Bison provides the means for
1623passing semantic values between the rules. In each action, the
1624pseudo-variable @code{$$} stands for the semantic value for the grouping
1625that the rule is going to construct. Assigning a value to @code{$$} is the
1626main job of most actions. The semantic values of the components of the
1627rule are referred to as @code{$1}, @code{$2}, and so on.
1628
1629@menu
24ec0837
AD
1630* Rpcalc Input:: Explanation of the @code{input} nonterminal
1631* Rpcalc Line:: Explanation of the @code{line} nonterminal
1632* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1633@end menu
1634
342b8b6e 1635@node Rpcalc Input
bfa74976
RS
1636@subsubsection Explanation of @code{input}
1637
1638Consider the definition of @code{input}:
1639
1640@example
5e9b6624
AD
1641input:
1642 /* empty */
1643| input line
bfa74976
RS
1644;
1645@end example
1646
1647This definition reads as follows: ``A complete input is either an empty
1648string, or a complete input followed by an input line''. Notice that
1649``complete input'' is defined in terms of itself. This definition is said
1650to be @dfn{left recursive} since @code{input} appears always as the
1651leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1652
1653The first alternative is empty because there are no symbols between the
1654colon and the first @samp{|}; this means that @code{input} can match an
1655empty string of input (no tokens). We write the rules this way because it
1656is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1657It's conventional to put an empty alternative first and write the comment
1658@samp{/* empty */} in it.
1659
1660The second alternate rule (@code{input line}) handles all nontrivial input.
1661It means, ``After reading any number of lines, read one more line if
1662possible.'' The left recursion makes this rule into a loop. Since the
1663first alternative matches empty input, the loop can be executed zero or
1664more times.
1665
1666The parser function @code{yyparse} continues to process input until a
1667grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1668input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1669
342b8b6e 1670@node Rpcalc Line
bfa74976
RS
1671@subsubsection Explanation of @code{line}
1672
1673Now consider the definition of @code{line}:
1674
1675@example
5e9b6624
AD
1676line:
1677 '\n'
1678| exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1679;
1680@end example
1681
1682The first alternative is a token which is a newline character; this means
1683that rpcalc accepts a blank line (and ignores it, since there is no
1684action). The second alternative is an expression followed by a newline.
1685This is the alternative that makes rpcalc useful. The semantic value of
1686the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1687question is the first symbol in the alternative. The action prints this
1688value, which is the result of the computation the user asked for.
1689
1690This action is unusual because it does not assign a value to @code{$$}. As
1691a consequence, the semantic value associated with the @code{line} is
1692uninitialized (its value will be unpredictable). This would be a bug if
1693that value were ever used, but we don't use it: once rpcalc has printed the
1694value of the user's input line, that value is no longer needed.
1695
342b8b6e 1696@node Rpcalc Expr
bfa74976
RS
1697@subsubsection Explanation of @code{expr}
1698
1699The @code{exp} grouping has several rules, one for each kind of expression.
1700The first rule handles the simplest expressions: those that are just numbers.
1701The second handles an addition-expression, which looks like two expressions
1702followed by a plus-sign. The third handles subtraction, and so on.
1703
1704@example
5e9b6624
AD
1705exp:
1706 NUM
1707| exp exp '+' @{ $$ = $1 + $2; @}
1708| exp exp '-' @{ $$ = $1 - $2; @}
1709@dots{}
1710;
bfa74976
RS
1711@end example
1712
1713We have used @samp{|} to join all the rules for @code{exp}, but we could
1714equally well have written them separately:
1715
1716@example
5e9b6624
AD
1717exp: NUM ;
1718exp: exp exp '+' @{ $$ = $1 + $2; @};
1719exp: exp exp '-' @{ $$ = $1 - $2; @};
1720@dots{}
bfa74976
RS
1721@end example
1722
1723Most of the rules have actions that compute the value of the expression in
1724terms of the value of its parts. For example, in the rule for addition,
1725@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1726the second one. The third component, @code{'+'}, has no meaningful
1727associated semantic value, but if it had one you could refer to it as
1728@code{$3}. When @code{yyparse} recognizes a sum expression using this
1729rule, the sum of the two subexpressions' values is produced as the value of
1730the entire expression. @xref{Actions}.
1731
1732You don't have to give an action for every rule. When a rule has no
1733action, Bison by default copies the value of @code{$1} into @code{$$}.
1734This is what happens in the first rule (the one that uses @code{NUM}).
1735
1736The formatting shown here is the recommended convention, but Bison does
72d2299c 1737not require it. You can add or change white space as much as you wish.
bfa74976
RS
1738For example, this:
1739
1740@example
5e9b6624 1741exp: NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1742@end example
1743
1744@noindent
1745means the same thing as this:
1746
1747@example
5e9b6624
AD
1748exp:
1749 NUM
1750| exp exp '+' @{ $$ = $1 + $2; @}
1751| @dots{}
99a9344e 1752;
bfa74976
RS
1753@end example
1754
1755@noindent
1756The latter, however, is much more readable.
1757
342b8b6e 1758@node Rpcalc Lexer
bfa74976
RS
1759@subsection The @code{rpcalc} Lexical Analyzer
1760@cindex writing a lexical analyzer
1761@cindex lexical analyzer, writing
1762
704a47c4
AD
1763The lexical analyzer's job is low-level parsing: converting characters
1764or sequences of characters into tokens. The Bison parser gets its
1765tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1766Analyzer Function @code{yylex}}.
bfa74976 1767
8a4281b9 1768Only a simple lexical analyzer is needed for the RPN
c827f760 1769calculator. This
bfa74976
RS
1770lexical analyzer skips blanks and tabs, then reads in numbers as
1771@code{double} and returns them as @code{NUM} tokens. Any other character
1772that isn't part of a number is a separate token. Note that the token-code
1773for such a single-character token is the character itself.
1774
1775The return value of the lexical analyzer function is a numeric code which
1776represents a token type. The same text used in Bison rules to stand for
1777this token type is also a C expression for the numeric code for the type.
1778This works in two ways. If the token type is a character literal, then its
e966383b 1779numeric code is that of the character; you can use the same
bfa74976
RS
1780character literal in the lexical analyzer to express the number. If the
1781token type is an identifier, that identifier is defined by Bison as a C
1782macro whose definition is the appropriate number. In this example,
1783therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1784
1964ad8c
AD
1785The semantic value of the token (if it has one) is stored into the
1786global variable @code{yylval}, which is where the Bison parser will look
1787for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1788defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1789,Declarations for @code{rpcalc}}.)
bfa74976 1790
72d2299c
PE
1791A token type code of zero is returned if the end-of-input is encountered.
1792(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1793
1794Here is the code for the lexical analyzer:
1795
24ec0837 1796@comment file: rpcalc.y
bfa74976
RS
1797@example
1798@group
72d2299c 1799/* The lexical analyzer returns a double floating point
e966383b 1800 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1801 of the character read if not a number. It skips all blanks
1802 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1803
1804#include <ctype.h>
1805@end group
1806
1807@group
13863333
AD
1808int
1809yylex (void)
bfa74976
RS
1810@{
1811 int c;
1812
72d2299c 1813 /* Skip white space. */
13863333 1814 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1815 continue;
bfa74976
RS
1816@end group
1817@group
72d2299c 1818 /* Process numbers. */
13863333 1819 if (c == '.' || isdigit (c))
bfa74976
RS
1820 @{
1821 ungetc (c, stdin);
1822 scanf ("%lf", &yylval);
1823 return NUM;
1824 @}
1825@end group
1826@group
72d2299c 1827 /* Return end-of-input. */
13863333 1828 if (c == EOF)
bfa74976 1829 return 0;
72d2299c 1830 /* Return a single char. */
13863333 1831 return c;
bfa74976
RS
1832@}
1833@end group
1834@end example
1835
342b8b6e 1836@node Rpcalc Main
bfa74976
RS
1837@subsection The Controlling Function
1838@cindex controlling function
1839@cindex main function in simple example
1840
1841In keeping with the spirit of this example, the controlling function is
1842kept to the bare minimum. The only requirement is that it call
1843@code{yyparse} to start the process of parsing.
1844
24ec0837 1845@comment file: rpcalc.y
bfa74976
RS
1846@example
1847@group
13863333
AD
1848int
1849main (void)
bfa74976 1850@{
13863333 1851 return yyparse ();
bfa74976
RS
1852@}
1853@end group
1854@end example
1855
342b8b6e 1856@node Rpcalc Error
bfa74976
RS
1857@subsection The Error Reporting Routine
1858@cindex error reporting routine
1859
1860When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1861function @code{yyerror} to print an error message (usually but not
6e649e65 1862always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1863@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1864here is the definition we will use:
bfa74976 1865
24ec0837 1866@comment file: rpcalc.y
bfa74976
RS
1867@example
1868@group
1869#include <stdio.h>
aaaa2aae 1870@end group
bfa74976 1871
aaaa2aae 1872@group
38a92d50 1873/* Called by yyparse on error. */
13863333 1874void
38a92d50 1875yyerror (char const *s)
bfa74976 1876@{
4e03e201 1877 fprintf (stderr, "%s\n", s);
bfa74976
RS
1878@}
1879@end group
1880@end example
1881
1882After @code{yyerror} returns, the Bison parser may recover from the error
1883and continue parsing if the grammar contains a suitable error rule
1884(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1885have not written any error rules in this example, so any invalid input will
1886cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1887real calculator, but it is adequate for the first example.
bfa74976 1888
f5f419de 1889@node Rpcalc Generate
bfa74976
RS
1890@subsection Running Bison to Make the Parser
1891@cindex running Bison (introduction)
1892
ceed8467
AD
1893Before running Bison to produce a parser, we need to decide how to
1894arrange all the source code in one or more source files. For such a
ff7571c0
JD
1895simple example, the easiest thing is to put everything in one file,
1896the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1897@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1898(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1899
1900For a large project, you would probably have several source files, and use
1901@code{make} to arrange to recompile them.
1902
ff7571c0
JD
1903With all the source in the grammar file, you use the following command
1904to convert it into a parser implementation file:
bfa74976
RS
1905
1906@example
fa4d969f 1907bison @var{file}.y
bfa74976
RS
1908@end example
1909
1910@noindent
ff7571c0
JD
1911In this example, the grammar file is called @file{rpcalc.y} (for
1912``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1913implementation file named @file{@var{file}.tab.c}, removing the
1914@samp{.y} from the grammar file name. The parser implementation file
1915contains the source code for @code{yyparse}. The additional functions
1916in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1917copied verbatim to the parser implementation file.
bfa74976 1918
342b8b6e 1919@node Rpcalc Compile
ff7571c0 1920@subsection Compiling the Parser Implementation File
bfa74976
RS
1921@cindex compiling the parser
1922
ff7571c0 1923Here is how to compile and run the parser implementation file:
bfa74976
RS
1924
1925@example
1926@group
1927# @r{List files in current directory.}
9edcd895 1928$ @kbd{ls}
bfa74976
RS
1929rpcalc.tab.c rpcalc.y
1930@end group
1931
1932@group
1933# @r{Compile the Bison parser.}
1934# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1935$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1936@end group
1937
1938@group
1939# @r{List files again.}
9edcd895 1940$ @kbd{ls}
bfa74976
RS
1941rpcalc rpcalc.tab.c rpcalc.y
1942@end group
1943@end example
1944
1945The file @file{rpcalc} now contains the executable code. Here is an
1946example session using @code{rpcalc}.
1947
1948@example
9edcd895
AD
1949$ @kbd{rpcalc}
1950@kbd{4 9 +}
24ec0837 1951@result{} 13
9edcd895 1952@kbd{3 7 + 3 4 5 *+-}
24ec0837 1953@result{} -13
9edcd895 1954@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1955@result{} 13
9edcd895 1956@kbd{5 6 / 4 n +}
24ec0837 1957@result{} -3.166666667
9edcd895 1958@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1959@result{} 81
9edcd895
AD
1960@kbd{^D} @r{End-of-file indicator}
1961$
bfa74976
RS
1962@end example
1963
342b8b6e 1964@node Infix Calc
bfa74976
RS
1965@section Infix Notation Calculator: @code{calc}
1966@cindex infix notation calculator
1967@cindex @code{calc}
1968@cindex calculator, infix notation
1969
1970We now modify rpcalc to handle infix operators instead of postfix. Infix
1971notation involves the concept of operator precedence and the need for
1972parentheses nested to arbitrary depth. Here is the Bison code for
1973@file{calc.y}, an infix desk-top calculator.
1974
1975@example
38a92d50 1976/* Infix notation calculator. */
bfa74976 1977
aaaa2aae 1978@group
bfa74976 1979%@{
38a92d50
PE
1980 #define YYSTYPE double
1981 #include <math.h>
1982 #include <stdio.h>
1983 int yylex (void);
1984 void yyerror (char const *);
bfa74976 1985%@}
aaaa2aae 1986@end group
bfa74976 1987
aaaa2aae 1988@group
38a92d50 1989/* Bison declarations. */
bfa74976
RS
1990%token NUM
1991%left '-' '+'
1992%left '*' '/'
d78f0ac9
AD
1993%precedence NEG /* negation--unary minus */
1994%right '^' /* exponentiation */
aaaa2aae 1995@end group
bfa74976 1996
38a92d50 1997%% /* The grammar follows. */
aaaa2aae 1998@group
5e9b6624
AD
1999input:
2000 /* empty */
2001| input line
bfa74976 2002;
aaaa2aae 2003@end group
bfa74976 2004
aaaa2aae 2005@group
5e9b6624
AD
2006line:
2007 '\n'
2008| exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976 2009;
aaaa2aae 2010@end group
bfa74976 2011
aaaa2aae 2012@group
5e9b6624
AD
2013exp:
2014 NUM @{ $$ = $1; @}
2015| exp '+' exp @{ $$ = $1 + $3; @}
2016| exp '-' exp @{ $$ = $1 - $3; @}
2017| exp '*' exp @{ $$ = $1 * $3; @}
2018| exp '/' exp @{ $$ = $1 / $3; @}
2019| '-' exp %prec NEG @{ $$ = -$2; @}
2020| exp '^' exp @{ $$ = pow ($1, $3); @}
2021| '(' exp ')' @{ $$ = $2; @}
bfa74976 2022;
aaaa2aae 2023@end group
bfa74976
RS
2024%%
2025@end example
2026
2027@noindent
ceed8467
AD
2028The functions @code{yylex}, @code{yyerror} and @code{main} can be the
2029same as before.
bfa74976
RS
2030
2031There are two important new features shown in this code.
2032
2033In the second section (Bison declarations), @code{%left} declares token
2034types and says they are left-associative operators. The declarations
2035@code{%left} and @code{%right} (right associativity) take the place of
2036@code{%token} which is used to declare a token type name without
d78f0ac9 2037associativity/precedence. (These tokens are single-character literals, which
bfa74976 2038ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2039the associativity/precedence.)
bfa74976
RS
2040
2041Operator precedence is determined by the line ordering of the
2042declarations; the higher the line number of the declaration (lower on
2043the page or screen), the higher the precedence. Hence, exponentiation
2044has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2045by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2046only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2047Precedence}.
bfa74976 2048
704a47c4
AD
2049The other important new feature is the @code{%prec} in the grammar
2050section for the unary minus operator. The @code{%prec} simply instructs
2051Bison that the rule @samp{| '-' exp} has the same precedence as
2052@code{NEG}---in this case the next-to-highest. @xref{Contextual
2053Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2054
2055Here is a sample run of @file{calc.y}:
2056
2057@need 500
2058@example
9edcd895
AD
2059$ @kbd{calc}
2060@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20616.880952381
9edcd895 2062@kbd{-56 + 2}
bfa74976 2063-54
9edcd895 2064@kbd{3 ^ 2}
bfa74976
RS
20659
2066@end example
2067
342b8b6e 2068@node Simple Error Recovery
bfa74976
RS
2069@section Simple Error Recovery
2070@cindex error recovery, simple
2071
2072Up to this point, this manual has not addressed the issue of @dfn{error
2073recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2074error. All we have handled is error reporting with @code{yyerror}.
2075Recall that by default @code{yyparse} returns after calling
2076@code{yyerror}. This means that an erroneous input line causes the
2077calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2078
2079The Bison language itself includes the reserved word @code{error}, which
2080may be included in the grammar rules. In the example below it has
2081been added to one of the alternatives for @code{line}:
2082
2083@example
2084@group
5e9b6624
AD
2085line:
2086 '\n'
2087| exp '\n' @{ printf ("\t%.10g\n", $1); @}
2088| error '\n' @{ yyerrok; @}
bfa74976
RS
2089;
2090@end group
2091@end example
2092
ceed8467 2093This addition to the grammar allows for simple error recovery in the
6e649e65 2094event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2095read, the error will be recognized by the third rule for @code{line},
2096and parsing will continue. (The @code{yyerror} function is still called
2097upon to print its message as well.) The action executes the statement
2098@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2099that error recovery is complete (@pxref{Error Recovery}). Note the
2100difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2101misprint.
bfa74976
RS
2102
2103This form of error recovery deals with syntax errors. There are other
2104kinds of errors; for example, division by zero, which raises an exception
2105signal that is normally fatal. A real calculator program must handle this
2106signal and use @code{longjmp} to return to @code{main} and resume parsing
2107input lines; it would also have to discard the rest of the current line of
2108input. We won't discuss this issue further because it is not specific to
2109Bison programs.
2110
342b8b6e
AD
2111@node Location Tracking Calc
2112@section Location Tracking Calculator: @code{ltcalc}
2113@cindex location tracking calculator
2114@cindex @code{ltcalc}
2115@cindex calculator, location tracking
2116
9edcd895
AD
2117This example extends the infix notation calculator with location
2118tracking. This feature will be used to improve the error messages. For
2119the sake of clarity, this example is a simple integer calculator, since
2120most of the work needed to use locations will be done in the lexical
72d2299c 2121analyzer.
342b8b6e
AD
2122
2123@menu
f5f419de
DJ
2124* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2125* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2126* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2127@end menu
2128
f5f419de 2129@node Ltcalc Declarations
342b8b6e
AD
2130@subsection Declarations for @code{ltcalc}
2131
9edcd895
AD
2132The C and Bison declarations for the location tracking calculator are
2133the same as the declarations for the infix notation calculator.
342b8b6e
AD
2134
2135@example
2136/* Location tracking calculator. */
2137
2138%@{
38a92d50
PE
2139 #define YYSTYPE int
2140 #include <math.h>
2141 int yylex (void);
2142 void yyerror (char const *);
342b8b6e
AD
2143%@}
2144
2145/* Bison declarations. */
2146%token NUM
2147
2148%left '-' '+'
2149%left '*' '/'
d78f0ac9 2150%precedence NEG
342b8b6e
AD
2151%right '^'
2152
38a92d50 2153%% /* The grammar follows. */
342b8b6e
AD
2154@end example
2155
9edcd895
AD
2156@noindent
2157Note there are no declarations specific to locations. Defining a data
2158type for storing locations is not needed: we will use the type provided
2159by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2160four member structure with the following integer fields:
2161@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2162@code{last_column}. By conventions, and in accordance with the GNU
2163Coding Standards and common practice, the line and column count both
2164start at 1.
342b8b6e
AD
2165
2166@node Ltcalc Rules
2167@subsection Grammar Rules for @code{ltcalc}
2168
9edcd895
AD
2169Whether handling locations or not has no effect on the syntax of your
2170language. Therefore, grammar rules for this example will be very close
2171to those of the previous example: we will only modify them to benefit
2172from the new information.
342b8b6e 2173
9edcd895
AD
2174Here, we will use locations to report divisions by zero, and locate the
2175wrong expressions or subexpressions.
342b8b6e
AD
2176
2177@example
2178@group
5e9b6624
AD
2179input:
2180 /* empty */
2181| input line
342b8b6e
AD
2182;
2183@end group
2184
2185@group
5e9b6624
AD
2186line:
2187 '\n'
2188| exp '\n' @{ printf ("%d\n", $1); @}
342b8b6e
AD
2189;
2190@end group
2191
2192@group
5e9b6624
AD
2193exp:
2194 NUM @{ $$ = $1; @}
2195| exp '+' exp @{ $$ = $1 + $3; @}
2196| exp '-' exp @{ $$ = $1 - $3; @}
2197| exp '*' exp @{ $$ = $1 * $3; @}
342b8b6e 2198@end group
342b8b6e 2199@group
5e9b6624
AD
2200| exp '/' exp
2201 @{
2202 if ($3)
2203 $$ = $1 / $3;
2204 else
2205 @{
2206 $$ = 1;
2207 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2208 @@3.first_line, @@3.first_column,
2209 @@3.last_line, @@3.last_column);
2210 @}
2211 @}
342b8b6e
AD
2212@end group
2213@group
5e9b6624
AD
2214| '-' exp %prec NEG @{ $$ = -$2; @}
2215| exp '^' exp @{ $$ = pow ($1, $3); @}
2216| '(' exp ')' @{ $$ = $2; @}
342b8b6e
AD
2217@end group
2218@end example
2219
2220This code shows how to reach locations inside of semantic actions, by
2221using the pseudo-variables @code{@@@var{n}} for rule components, and the
2222pseudo-variable @code{@@$} for groupings.
2223
9edcd895
AD
2224We don't need to assign a value to @code{@@$}: the output parser does it
2225automatically. By default, before executing the C code of each action,
2226@code{@@$} is set to range from the beginning of @code{@@1} to the end
2227of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2228can be redefined (@pxref{Location Default Action, , Default Action for
2229Locations}), and for very specific rules, @code{@@$} can be computed by
2230hand.
342b8b6e
AD
2231
2232@node Ltcalc Lexer
2233@subsection The @code{ltcalc} Lexical Analyzer.
2234
9edcd895 2235Until now, we relied on Bison's defaults to enable location
72d2299c 2236tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2237able to feed the parser with the token locations, as it already does for
2238semantic values.
342b8b6e 2239
9edcd895
AD
2240To this end, we must take into account every single character of the
2241input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2242
2243@example
2244@group
2245int
2246yylex (void)
2247@{
2248 int c;
18b519c0 2249@end group
342b8b6e 2250
18b519c0 2251@group
72d2299c 2252 /* Skip white space. */
342b8b6e
AD
2253 while ((c = getchar ()) == ' ' || c == '\t')
2254 ++yylloc.last_column;
18b519c0 2255@end group
342b8b6e 2256
18b519c0 2257@group
72d2299c 2258 /* Step. */
342b8b6e
AD
2259 yylloc.first_line = yylloc.last_line;
2260 yylloc.first_column = yylloc.last_column;
2261@end group
2262
2263@group
72d2299c 2264 /* Process numbers. */
342b8b6e
AD
2265 if (isdigit (c))
2266 @{
2267 yylval = c - '0';
2268 ++yylloc.last_column;
2269 while (isdigit (c = getchar ()))
2270 @{
2271 ++yylloc.last_column;
2272 yylval = yylval * 10 + c - '0';
2273 @}
2274 ungetc (c, stdin);
2275 return NUM;
2276 @}
2277@end group
2278
72d2299c 2279 /* Return end-of-input. */
342b8b6e
AD
2280 if (c == EOF)
2281 return 0;
2282
d4fca427 2283@group
72d2299c 2284 /* Return a single char, and update location. */
342b8b6e
AD
2285 if (c == '\n')
2286 @{
2287 ++yylloc.last_line;
2288 yylloc.last_column = 0;
2289 @}
2290 else
2291 ++yylloc.last_column;
2292 return c;
2293@}
d4fca427 2294@end group
342b8b6e
AD
2295@end example
2296
9edcd895
AD
2297Basically, the lexical analyzer performs the same processing as before:
2298it skips blanks and tabs, and reads numbers or single-character tokens.
2299In addition, it updates @code{yylloc}, the global variable (of type
2300@code{YYLTYPE}) containing the token's location.
342b8b6e 2301
9edcd895 2302Now, each time this function returns a token, the parser has its number
72d2299c 2303as well as its semantic value, and its location in the text. The last
9edcd895
AD
2304needed change is to initialize @code{yylloc}, for example in the
2305controlling function:
342b8b6e
AD
2306
2307@example
9edcd895 2308@group
342b8b6e
AD
2309int
2310main (void)
2311@{
2312 yylloc.first_line = yylloc.last_line = 1;
2313 yylloc.first_column = yylloc.last_column = 0;
2314 return yyparse ();
2315@}
9edcd895 2316@end group
342b8b6e
AD
2317@end example
2318
9edcd895
AD
2319Remember that computing locations is not a matter of syntax. Every
2320character must be associated to a location update, whether it is in
2321valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2322
2323@node Multi-function Calc
bfa74976
RS
2324@section Multi-Function Calculator: @code{mfcalc}
2325@cindex multi-function calculator
2326@cindex @code{mfcalc}
2327@cindex calculator, multi-function
2328
2329Now that the basics of Bison have been discussed, it is time to move on to
2330a more advanced problem. The above calculators provided only five
2331functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2332be nice to have a calculator that provides other mathematical functions such
2333as @code{sin}, @code{cos}, etc.
2334
2335It is easy to add new operators to the infix calculator as long as they are
2336only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2337back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2338adding a new operator. But we want something more flexible: built-in
2339functions whose syntax has this form:
2340
2341@example
2342@var{function_name} (@var{argument})
2343@end example
2344
2345@noindent
2346At the same time, we will add memory to the calculator, by allowing you
2347to create named variables, store values in them, and use them later.
2348Here is a sample session with the multi-function calculator:
2349
2350@example
d4fca427 2351@group
9edcd895
AD
2352$ @kbd{mfcalc}
2353@kbd{pi = 3.141592653589}
f9c75dd0 2354@result{} 3.1415926536
d4fca427
AD
2355@end group
2356@group
9edcd895 2357@kbd{sin(pi)}
f9c75dd0 2358@result{} 0.0000000000
d4fca427 2359@end group
9edcd895 2360@kbd{alpha = beta1 = 2.3}
f9c75dd0 2361@result{} 2.3000000000
9edcd895 2362@kbd{alpha}
f9c75dd0 2363@result{} 2.3000000000
9edcd895 2364@kbd{ln(alpha)}
f9c75dd0 2365@result{} 0.8329091229
9edcd895 2366@kbd{exp(ln(beta1))}
f9c75dd0 2367@result{} 2.3000000000
9edcd895 2368$
bfa74976
RS
2369@end example
2370
2371Note that multiple assignment and nested function calls are permitted.
2372
2373@menu
f5f419de
DJ
2374* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2375* Mfcalc Rules:: Grammar rules for the calculator.
2376* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2377* Mfcalc Lexer:: The lexical analyzer.
2378* Mfcalc Main:: The controlling function.
bfa74976
RS
2379@end menu
2380
f5f419de 2381@node Mfcalc Declarations
bfa74976
RS
2382@subsection Declarations for @code{mfcalc}
2383
2384Here are the C and Bison declarations for the multi-function calculator.
2385
93c150b6 2386@comment file: mfcalc.y: 1
c93f22fc 2387@example
18b519c0 2388@group
bfa74976 2389%@{
f9c75dd0 2390 #include <stdio.h> /* For printf, etc. */
578e3413 2391 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2392 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2393 int yylex (void);
2394 void yyerror (char const *);
bfa74976 2395%@}
18b519c0 2396@end group
93c150b6 2397
18b519c0 2398@group
bfa74976 2399%union @{
38a92d50
PE
2400 double val; /* For returning numbers. */
2401 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2402@}
18b519c0 2403@end group
38a92d50 2404%token <val> NUM /* Simple double precision number. */
93c150b6 2405%token <tptr> VAR FNCT /* Variable and function. */
bfa74976
RS
2406%type <val> exp
2407
18b519c0 2408@group
bfa74976
RS
2409%right '='
2410%left '-' '+'
2411%left '*' '/'
d78f0ac9
AD
2412%precedence NEG /* negation--unary minus */
2413%right '^' /* exponentiation */
18b519c0 2414@end group
c93f22fc 2415@end example
bfa74976
RS
2416
2417The above grammar introduces only two new features of the Bison language.
2418These features allow semantic values to have various data types
2419(@pxref{Multiple Types, ,More Than One Value Type}).
2420
2421The @code{%union} declaration specifies the entire list of possible types;
2422this is instead of defining @code{YYSTYPE}. The allowable types are now
2423double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2424the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2425
2426Since values can now have various types, it is necessary to associate a
2427type with each grammar symbol whose semantic value is used. These symbols
2428are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2429declarations are augmented with information about their data type (placed
2430between angle brackets).
2431
704a47c4
AD
2432The Bison construct @code{%type} is used for declaring nonterminal
2433symbols, just as @code{%token} is used for declaring token types. We
2434have not used @code{%type} before because nonterminal symbols are
2435normally declared implicitly by the rules that define them. But
2436@code{exp} must be declared explicitly so we can specify its value type.
2437@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2438
342b8b6e 2439@node Mfcalc Rules
bfa74976
RS
2440@subsection Grammar Rules for @code{mfcalc}
2441
2442Here are the grammar rules for the multi-function calculator.
2443Most of them are copied directly from @code{calc}; three rules,
2444those which mention @code{VAR} or @code{FNCT}, are new.
2445
93c150b6 2446@comment file: mfcalc.y: 3
c93f22fc 2447@example
93c150b6 2448%% /* The grammar follows. */
18b519c0 2449@group
5e9b6624
AD
2450input:
2451 /* empty */
2452| input line
bfa74976 2453;
18b519c0 2454@end group
bfa74976 2455
18b519c0 2456@group
bfa74976 2457line:
5e9b6624
AD
2458 '\n'
2459| exp '\n' @{ printf ("%.10g\n", $1); @}
2460| error '\n' @{ yyerrok; @}
bfa74976 2461;
18b519c0 2462@end group
bfa74976 2463
18b519c0 2464@group
5e9b6624
AD
2465exp:
2466 NUM @{ $$ = $1; @}
2467| VAR @{ $$ = $1->value.var; @}
2468| VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2469| FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2470| exp '+' exp @{ $$ = $1 + $3; @}
2471| exp '-' exp @{ $$ = $1 - $3; @}
2472| exp '*' exp @{ $$ = $1 * $3; @}
2473| exp '/' exp @{ $$ = $1 / $3; @}
2474| '-' exp %prec NEG @{ $$ = -$2; @}
2475| exp '^' exp @{ $$ = pow ($1, $3); @}
2476| '(' exp ')' @{ $$ = $2; @}
bfa74976 2477;
18b519c0 2478@end group
38a92d50 2479/* End of grammar. */
bfa74976 2480%%
c93f22fc 2481@end example
bfa74976 2482
f5f419de 2483@node Mfcalc Symbol Table
bfa74976
RS
2484@subsection The @code{mfcalc} Symbol Table
2485@cindex symbol table example
2486
2487The multi-function calculator requires a symbol table to keep track of the
2488names and meanings of variables and functions. This doesn't affect the
2489grammar rules (except for the actions) or the Bison declarations, but it
2490requires some additional C functions for support.
2491
2492The symbol table itself consists of a linked list of records. Its
2493definition, which is kept in the header @file{calc.h}, is as follows. It
2494provides for either functions or variables to be placed in the table.
2495
f9c75dd0 2496@comment file: calc.h
c93f22fc 2497@example
bfa74976 2498@group
38a92d50 2499/* Function type. */
32dfccf8 2500typedef double (*func_t) (double);
72f889cc 2501@end group
32dfccf8 2502
72f889cc 2503@group
38a92d50 2504/* Data type for links in the chain of symbols. */
bfa74976
RS
2505struct symrec
2506@{
38a92d50 2507 char *name; /* name of symbol */
bfa74976 2508 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2509 union
2510 @{
38a92d50
PE
2511 double var; /* value of a VAR */
2512 func_t fnctptr; /* value of a FNCT */
bfa74976 2513 @} value;
38a92d50 2514 struct symrec *next; /* link field */
bfa74976
RS
2515@};
2516@end group
2517
2518@group
2519typedef struct symrec symrec;
2520
38a92d50 2521/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2522extern symrec *sym_table;
2523
a730d142 2524symrec *putsym (char const *, int);
38a92d50 2525symrec *getsym (char const *);
bfa74976 2526@end group
c93f22fc 2527@end example
bfa74976 2528
aeb57fb6
AD
2529The new version of @code{main} will call @code{init_table} to initialize
2530the symbol table:
bfa74976 2531
93c150b6 2532@comment file: mfcalc.y: 3
c93f22fc 2533@example
18b519c0 2534@group
bfa74976
RS
2535struct init
2536@{
38a92d50
PE
2537 char const *fname;
2538 double (*fnct) (double);
bfa74976
RS
2539@};
2540@end group
2541
2542@group
38a92d50 2543struct init const arith_fncts[] =
13863333 2544@{
f9c75dd0
AD
2545 @{ "atan", atan @},
2546 @{ "cos", cos @},
2547 @{ "exp", exp @},
2548 @{ "ln", log @},
2549 @{ "sin", sin @},
2550 @{ "sqrt", sqrt @},
2551 @{ 0, 0 @},
13863333 2552@};
18b519c0 2553@end group
bfa74976 2554
18b519c0 2555@group
bfa74976 2556/* The symbol table: a chain of `struct symrec'. */
38a92d50 2557symrec *sym_table;
bfa74976
RS
2558@end group
2559
2560@group
72d2299c 2561/* Put arithmetic functions in table. */
f9c75dd0 2562static
13863333
AD
2563void
2564init_table (void)
bfa74976
RS
2565@{
2566 int i;
bfa74976
RS
2567 for (i = 0; arith_fncts[i].fname != 0; i++)
2568 @{
aaaa2aae 2569 symrec *ptr = putsym (arith_fncts[i].fname, FNCT);
bfa74976
RS
2570 ptr->value.fnctptr = arith_fncts[i].fnct;
2571 @}
2572@}
2573@end group
c93f22fc 2574@end example
bfa74976
RS
2575
2576By simply editing the initialization list and adding the necessary include
2577files, you can add additional functions to the calculator.
2578
2579Two important functions allow look-up and installation of symbols in the
2580symbol table. The function @code{putsym} is passed a name and the type
2581(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2582linked to the front of the list, and a pointer to the object is returned.
2583The function @code{getsym} is passed the name of the symbol to look up. If
2584found, a pointer to that symbol is returned; otherwise zero is returned.
2585
93c150b6 2586@comment file: mfcalc.y: 3
c93f22fc 2587@example
f9c75dd0
AD
2588#include <stdlib.h> /* malloc. */
2589#include <string.h> /* strlen. */
2590
d4fca427 2591@group
bfa74976 2592symrec *
38a92d50 2593putsym (char const *sym_name, int sym_type)
bfa74976 2594@{
aaaa2aae 2595 symrec *ptr = (symrec *) malloc (sizeof (symrec));
bfa74976
RS
2596 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2597 strcpy (ptr->name,sym_name);
2598 ptr->type = sym_type;
72d2299c 2599 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2600 ptr->next = (struct symrec *)sym_table;
2601 sym_table = ptr;
2602 return ptr;
2603@}
d4fca427 2604@end group
bfa74976 2605
d4fca427 2606@group
bfa74976 2607symrec *
38a92d50 2608getsym (char const *sym_name)
bfa74976
RS
2609@{
2610 symrec *ptr;
2611 for (ptr = sym_table; ptr != (symrec *) 0;
2612 ptr = (symrec *)ptr->next)
f518dbaf 2613 if (strcmp (ptr->name, sym_name) == 0)
bfa74976
RS
2614 return ptr;
2615 return 0;
2616@}
d4fca427 2617@end group
c93f22fc 2618@end example
bfa74976 2619
aeb57fb6
AD
2620@node Mfcalc Lexer
2621@subsection The @code{mfcalc} Lexer
2622
bfa74976
RS
2623The function @code{yylex} must now recognize variables, numeric values, and
2624the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2625characters with a leading letter are recognized as either variables or
bfa74976
RS
2626functions depending on what the symbol table says about them.
2627
2628The string is passed to @code{getsym} for look up in the symbol table. If
2629the name appears in the table, a pointer to its location and its type
2630(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2631already in the table, then it is installed as a @code{VAR} using
2632@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2633returned to @code{yyparse}.
bfa74976
RS
2634
2635No change is needed in the handling of numeric values and arithmetic
2636operators in @code{yylex}.
2637
93c150b6 2638@comment file: mfcalc.y: 3
c93f22fc 2639@example
bfa74976
RS
2640@group
2641#include <ctype.h>
18b519c0 2642@end group
13863333 2643
18b519c0 2644@group
13863333
AD
2645int
2646yylex (void)
bfa74976
RS
2647@{
2648 int c;
2649
72d2299c 2650 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2651 while ((c = getchar ()) == ' ' || c == '\t')
2652 continue;
bfa74976
RS
2653
2654 if (c == EOF)
2655 return 0;
2656@end group
2657
2658@group
2659 /* Char starts a number => parse the number. */
2660 if (c == '.' || isdigit (c))
2661 @{
2662 ungetc (c, stdin);
2663 scanf ("%lf", &yylval.val);
2664 return NUM;
2665 @}
2666@end group
2667
2668@group
2669 /* Char starts an identifier => read the name. */
2670 if (isalpha (c))
2671 @{
aaaa2aae
AD
2672 /* Initially make the buffer long enough
2673 for a 40-character symbol name. */
2674 static size_t length = 40;
bfa74976 2675 static char *symbuf = 0;
aaaa2aae 2676 symrec *s;
bfa74976
RS
2677 int i;
2678@end group
aaaa2aae
AD
2679 if (!symbuf)
2680 symbuf = (char *) malloc (length + 1);
bfa74976
RS
2681
2682 i = 0;
2683 do
bfa74976
RS
2684@group
2685 @{
2686 /* If buffer is full, make it bigger. */
2687 if (i == length)
2688 @{
2689 length *= 2;
18b519c0 2690 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2691 @}
2692 /* Add this character to the buffer. */
2693 symbuf[i++] = c;
2694 /* Get another character. */
2695 c = getchar ();
2696 @}
2697@end group
2698@group
72d2299c 2699 while (isalnum (c));
bfa74976
RS
2700
2701 ungetc (c, stdin);
2702 symbuf[i] = '\0';
2703@end group
2704
2705@group
2706 s = getsym (symbuf);
2707 if (s == 0)
2708 s = putsym (symbuf, VAR);
2709 yylval.tptr = s;
2710 return s->type;
2711 @}
2712
2713 /* Any other character is a token by itself. */
2714 return c;
2715@}
2716@end group
c93f22fc 2717@end example
bfa74976 2718
aeb57fb6
AD
2719@node Mfcalc Main
2720@subsection The @code{mfcalc} Main
2721
2722The error reporting function is unchanged, and the new version of
93c150b6
AD
2723@code{main} includes a call to @code{init_table} and sets the @code{yydebug}
2724on user demand (@xref{Tracing, , Tracing Your Parser}, for details):
aeb57fb6 2725
93c150b6 2726@comment file: mfcalc.y: 3
c93f22fc 2727@example
aeb57fb6
AD
2728@group
2729/* Called by yyparse on error. */
2730void
2731yyerror (char const *s)
2732@{
2733 fprintf (stderr, "%s\n", s);
2734@}
2735@end group
2736
aaaa2aae 2737@group
aeb57fb6
AD
2738int
2739main (int argc, char const* argv[])
2740@{
93c150b6
AD
2741 int i;
2742 /* Enable parse traces on option -p. */
2743 for (i = 1; i < argc; ++i)
2744 if (!strcmp(argv[i], "-p"))
2745 yydebug = 1;
aeb57fb6
AD
2746 init_table ();
2747 return yyparse ();
2748@}
2749@end group
c93f22fc 2750@end example
aeb57fb6 2751
72d2299c 2752This program is both powerful and flexible. You may easily add new
704a47c4
AD
2753functions, and it is a simple job to modify this code to install
2754predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2755
342b8b6e 2756@node Exercises
bfa74976
RS
2757@section Exercises
2758@cindex exercises
2759
2760@enumerate
2761@item
2762Add some new functions from @file{math.h} to the initialization list.
2763
2764@item
2765Add another array that contains constants and their values. Then
2766modify @code{init_table} to add these constants to the symbol table.
2767It will be easiest to give the constants type @code{VAR}.
2768
2769@item
2770Make the program report an error if the user refers to an
2771uninitialized variable in any way except to store a value in it.
2772@end enumerate
2773
342b8b6e 2774@node Grammar File
bfa74976
RS
2775@chapter Bison Grammar Files
2776
2777Bison takes as input a context-free grammar specification and produces a
2778C-language function that recognizes correct instances of the grammar.
2779
ff7571c0 2780The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2781@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2782
2783@menu
303834cc
JD
2784* Grammar Outline:: Overall layout of the grammar file.
2785* Symbols:: Terminal and nonterminal symbols.
2786* Rules:: How to write grammar rules.
2787* Recursion:: Writing recursive rules.
2788* Semantics:: Semantic values and actions.
2789* Tracking Locations:: Locations and actions.
2790* Named References:: Using named references in actions.
2791* Declarations:: All kinds of Bison declarations are described here.
2792* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2793@end menu
2794
342b8b6e 2795@node Grammar Outline
bfa74976
RS
2796@section Outline of a Bison Grammar
2797
2798A Bison grammar file has four main sections, shown here with the
2799appropriate delimiters:
2800
2801@example
2802%@{
38a92d50 2803 @var{Prologue}
bfa74976
RS
2804%@}
2805
2806@var{Bison declarations}
2807
2808%%
2809@var{Grammar rules}
2810%%
2811
75f5aaea 2812@var{Epilogue}
bfa74976
RS
2813@end example
2814
2815Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2816As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2817continues until end of line.
bfa74976
RS
2818
2819@menu
f5f419de 2820* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2821* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2822* Bison Declarations:: Syntax and usage of the Bison declarations section.
2823* Grammar Rules:: Syntax and usage of the grammar rules section.
2824* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2825@end menu
2826
38a92d50 2827@node Prologue
75f5aaea
MA
2828@subsection The prologue
2829@cindex declarations section
2830@cindex Prologue
2831@cindex declarations
bfa74976 2832
f8e1c9e5
AD
2833The @var{Prologue} section contains macro definitions and declarations
2834of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2835rules. These are copied to the beginning of the parser implementation
2836file so that they precede the definition of @code{yyparse}. You can
2837use @samp{#include} to get the declarations from a header file. If
2838you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2839@samp{%@}} delimiters that bracket this section.
bfa74976 2840
9c437126 2841The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2842of @samp{%@}} that is outside a comment, a string literal, or a
2843character constant.
2844
c732d2c6
AD
2845You may have more than one @var{Prologue} section, intermixed with the
2846@var{Bison declarations}. This allows you to have C and Bison
2847declarations that refer to each other. For example, the @code{%union}
2848declaration may use types defined in a header file, and you may wish to
2849prototype functions that take arguments of type @code{YYSTYPE}. This
2850can be done with two @var{Prologue} blocks, one before and one after the
2851@code{%union} declaration.
2852
c93f22fc 2853@example
c732d2c6 2854%@{
aef3da86 2855 #define _GNU_SOURCE
38a92d50
PE
2856 #include <stdio.h>
2857 #include "ptypes.h"
c732d2c6
AD
2858%@}
2859
2860%union @{
779e7ceb 2861 long int n;
c732d2c6
AD
2862 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2863@}
2864
2865%@{
38a92d50
PE
2866 static void print_token_value (FILE *, int, YYSTYPE);
2867 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2868%@}
2869
2870@dots{}
c93f22fc 2871@end example
c732d2c6 2872
aef3da86
PE
2873When in doubt, it is usually safer to put prologue code before all
2874Bison declarations, rather than after. For example, any definitions
2875of feature test macros like @code{_GNU_SOURCE} or
2876@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2877feature test macros can affect the behavior of Bison-generated
2878@code{#include} directives.
2879
2cbe6b7f
JD
2880@node Prologue Alternatives
2881@subsection Prologue Alternatives
2882@cindex Prologue Alternatives
2883
136a0f76 2884@findex %code
16dc6a9e
JD
2885@findex %code requires
2886@findex %code provides
2887@findex %code top
85894313 2888
2cbe6b7f 2889The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2890inflexible. As an alternative, Bison provides a @code{%code}
2891directive with an explicit qualifier field, which identifies the
2892purpose of the code and thus the location(s) where Bison should
2893generate it. For C/C++, the qualifier can be omitted for the default
2894location, or it can be one of @code{requires}, @code{provides},
e0c07222 2895@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2896
2897Look again at the example of the previous section:
2898
c93f22fc 2899@example
2cbe6b7f
JD
2900%@{
2901 #define _GNU_SOURCE
2902 #include <stdio.h>
2903 #include "ptypes.h"
2904%@}
2905
2906%union @{
2907 long int n;
2908 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2909@}
2910
2911%@{
2912 static void print_token_value (FILE *, int, YYSTYPE);
2913 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2914%@}
2915
2916@dots{}
c93f22fc 2917@end example
2cbe6b7f
JD
2918
2919@noindent
ff7571c0
JD
2920Notice that there are two @var{Prologue} sections here, but there's a
2921subtle distinction between their functionality. For example, if you
2922decide to override Bison's default definition for @code{YYLTYPE}, in
2923which @var{Prologue} section should you write your new definition?
2924You should write it in the first since Bison will insert that code
2925into the parser implementation file @emph{before} the default
2926@code{YYLTYPE} definition. In which @var{Prologue} section should you
2927prototype an internal function, @code{trace_token}, that accepts
2928@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2929prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2930@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2931
2932This distinction in functionality between the two @var{Prologue} sections is
2933established by the appearance of the @code{%union} between them.
a501eca9 2934This behavior raises a few questions.
2cbe6b7f
JD
2935First, why should the position of a @code{%union} affect definitions related to
2936@code{YYLTYPE} and @code{yytokentype}?
2937Second, what if there is no @code{%union}?
2938In that case, the second kind of @var{Prologue} section is not available.
2939This behavior is not intuitive.
2940
8e0a5e9e 2941To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2942@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2943Let's go ahead and add the new @code{YYLTYPE} definition and the
2944@code{trace_token} prototype at the same time:
2945
c93f22fc 2946@example
16dc6a9e 2947%code top @{
2cbe6b7f
JD
2948 #define _GNU_SOURCE
2949 #include <stdio.h>
8e0a5e9e
JD
2950
2951 /* WARNING: The following code really belongs
16dc6a9e 2952 * in a `%code requires'; see below. */
8e0a5e9e 2953
2cbe6b7f
JD
2954 #include "ptypes.h"
2955 #define YYLTYPE YYLTYPE
2956 typedef struct YYLTYPE
2957 @{
2958 int first_line;
2959 int first_column;
2960 int last_line;
2961 int last_column;
2962 char *filename;
2963 @} YYLTYPE;
2964@}
2965
2966%union @{
2967 long int n;
2968 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2969@}
2970
2971%code @{
2972 static void print_token_value (FILE *, int, YYSTYPE);
2973 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2974 static void trace_token (enum yytokentype token, YYLTYPE loc);
2975@}
2976
2977@dots{}
c93f22fc 2978@end example
2cbe6b7f
JD
2979
2980@noindent
16dc6a9e
JD
2981In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2982functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2983explicit which kind you intend.
2cbe6b7f
JD
2984Moreover, both kinds are always available even in the absence of @code{%union}.
2985
ff7571c0
JD
2986The @code{%code top} block above logically contains two parts. The
2987first two lines before the warning need to appear near the top of the
2988parser implementation file. The first line after the warning is
2989required by @code{YYSTYPE} and thus also needs to appear in the parser
2990implementation file. However, if you've instructed Bison to generate
2991a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2992want that line to appear before the @code{YYSTYPE} definition in that
2993header file as well. The @code{YYLTYPE} definition should also appear
2994in the parser header file to override the default @code{YYLTYPE}
2995definition there.
2cbe6b7f 2996
16dc6a9e 2997In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2998lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2999definitions.
16dc6a9e 3000Thus, they belong in one or more @code{%code requires}:
9bc0dd67 3001
c93f22fc 3002@example
d4fca427 3003@group
16dc6a9e 3004%code top @{
2cbe6b7f
JD
3005 #define _GNU_SOURCE
3006 #include <stdio.h>
3007@}
d4fca427 3008@end group
2cbe6b7f 3009
d4fca427 3010@group
16dc6a9e 3011%code requires @{
9bc0dd67
JD
3012 #include "ptypes.h"
3013@}
d4fca427
AD
3014@end group
3015@group
9bc0dd67
JD
3016%union @{
3017 long int n;
3018 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3019@}
d4fca427 3020@end group
9bc0dd67 3021
d4fca427 3022@group
16dc6a9e 3023%code requires @{
2cbe6b7f
JD
3024 #define YYLTYPE YYLTYPE
3025 typedef struct YYLTYPE
3026 @{
3027 int first_line;
3028 int first_column;
3029 int last_line;
3030 int last_column;
3031 char *filename;
3032 @} YYLTYPE;
3033@}
d4fca427 3034@end group
2cbe6b7f 3035
d4fca427 3036@group
136a0f76 3037%code @{
2cbe6b7f
JD
3038 static void print_token_value (FILE *, int, YYSTYPE);
3039 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3040 static void trace_token (enum yytokentype token, YYLTYPE loc);
3041@}
d4fca427 3042@end group
2cbe6b7f
JD
3043
3044@dots{}
c93f22fc 3045@end example
2cbe6b7f
JD
3046
3047@noindent
ff7571c0
JD
3048Now Bison will insert @code{#include "ptypes.h"} and the new
3049@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3050and @code{YYLTYPE} definitions in both the parser implementation file
3051and the parser header file. (By the same reasoning, @code{%code
3052requires} would also be the appropriate place to write your own
3053definition for @code{YYSTYPE}.)
3054
3055When you are writing dependency code for @code{YYSTYPE} and
3056@code{YYLTYPE}, you should prefer @code{%code requires} over
3057@code{%code top} regardless of whether you instruct Bison to generate
3058a parser header file. When you are writing code that you need Bison
3059to insert only into the parser implementation file and that has no
3060special need to appear at the top of that file, you should prefer the
3061unqualified @code{%code} over @code{%code top}. These practices will
3062make the purpose of each block of your code explicit to Bison and to
3063other developers reading your grammar file. Following these
3064practices, we expect the unqualified @code{%code} and @code{%code
3065requires} to be the most important of the four @var{Prologue}
16dc6a9e 3066alternatives.
a501eca9 3067
ff7571c0
JD
3068At some point while developing your parser, you might decide to
3069provide @code{trace_token} to modules that are external to your
3070parser. Thus, you might wish for Bison to insert the prototype into
3071both the parser header file and the parser implementation file. Since
3072this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3073@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3074@code{%code requires}. More importantly, since it depends upon
3075@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3076sufficient. Instead, move its prototype from the unqualified
3077@code{%code} to a @code{%code provides}:
2cbe6b7f 3078
c93f22fc 3079@example
d4fca427 3080@group
16dc6a9e 3081%code top @{
2cbe6b7f 3082 #define _GNU_SOURCE
136a0f76 3083 #include <stdio.h>
2cbe6b7f 3084@}
d4fca427 3085@end group
136a0f76 3086
d4fca427 3087@group
16dc6a9e 3088%code requires @{
2cbe6b7f
JD
3089 #include "ptypes.h"
3090@}
d4fca427
AD
3091@end group
3092@group
2cbe6b7f
JD
3093%union @{
3094 long int n;
3095 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3096@}
d4fca427 3097@end group
2cbe6b7f 3098
d4fca427 3099@group
16dc6a9e 3100%code requires @{
2cbe6b7f
JD
3101 #define YYLTYPE YYLTYPE
3102 typedef struct YYLTYPE
3103 @{
3104 int first_line;
3105 int first_column;
3106 int last_line;
3107 int last_column;
3108 char *filename;
3109 @} YYLTYPE;
3110@}
d4fca427 3111@end group
2cbe6b7f 3112
d4fca427 3113@group
16dc6a9e 3114%code provides @{
2cbe6b7f
JD
3115 void trace_token (enum yytokentype token, YYLTYPE loc);
3116@}
d4fca427 3117@end group
2cbe6b7f 3118
d4fca427 3119@group
2cbe6b7f 3120%code @{
9bc0dd67
JD
3121 static void print_token_value (FILE *, int, YYSTYPE);
3122 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3123@}
d4fca427 3124@end group
9bc0dd67
JD
3125
3126@dots{}
c93f22fc 3127@end example
9bc0dd67 3128
2cbe6b7f 3129@noindent
ff7571c0
JD
3130Bison will insert the @code{trace_token} prototype into both the
3131parser header file and the parser implementation file after the
3132definitions for @code{yytokentype}, @code{YYLTYPE}, and
3133@code{YYSTYPE}.
2cbe6b7f 3134
ff7571c0
JD
3135The above examples are careful to write directives in an order that
3136reflects the layout of the generated parser implementation and header
3137files: @code{%code top}, @code{%code requires}, @code{%code provides},
3138and then @code{%code}. While your grammar files may generally be
3139easier to read if you also follow this order, Bison does not require
3140it. Instead, Bison lets you choose an organization that makes sense
3141to you.
2cbe6b7f 3142
a501eca9 3143You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3144In that case, Bison concatenates the contained code in declaration order.
3145This is the only way in which the position of one of these directives within
3146the grammar file affects its functionality.
3147
3148The result of the previous two properties is greater flexibility in how you may
3149organize your grammar file.
3150For example, you may organize semantic-type-related directives by semantic
3151type:
3152
c93f22fc 3153@example
d4fca427 3154@group
16dc6a9e 3155%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3156%union @{ type1 field1; @}
3157%destructor @{ type1_free ($$); @} <field1>
c5026327 3158%printer @{ type1_print (yyoutput, $$); @} <field1>
d4fca427 3159@end group
2cbe6b7f 3160
d4fca427 3161@group
16dc6a9e 3162%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3163%union @{ type2 field2; @}
3164%destructor @{ type2_free ($$); @} <field2>
c5026327 3165%printer @{ type2_print (yyoutput, $$); @} <field2>
d4fca427 3166@end group
c93f22fc 3167@end example
2cbe6b7f
JD
3168
3169@noindent
3170You could even place each of the above directive groups in the rules section of
3171the grammar file next to the set of rules that uses the associated semantic
3172type.
61fee93e
JD
3173(In the rules section, you must terminate each of those directives with a
3174semicolon.)
2cbe6b7f
JD
3175And you don't have to worry that some directive (like a @code{%union}) in the
3176definitions section is going to adversely affect their functionality in some
3177counter-intuitive manner just because it comes first.
3178Such an organization is not possible using @var{Prologue} sections.
3179
a501eca9 3180This section has been concerned with explaining the advantages of the four
8e0a5e9e 3181@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3182However, in most cases when using these directives, you shouldn't need to
3183think about all the low-level ordering issues discussed here.
3184Instead, you should simply use these directives to label each block of your
3185code according to its purpose and let Bison handle the ordering.
3186@code{%code} is the most generic label.
16dc6a9e
JD
3187Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3188as needed.
a501eca9 3189
342b8b6e 3190@node Bison Declarations
bfa74976
RS
3191@subsection The Bison Declarations Section
3192@cindex Bison declarations (introduction)
3193@cindex declarations, Bison (introduction)
3194
3195The @var{Bison declarations} section contains declarations that define
3196terminal and nonterminal symbols, specify precedence, and so on.
3197In some simple grammars you may not need any declarations.
3198@xref{Declarations, ,Bison Declarations}.
3199
342b8b6e 3200@node Grammar Rules
bfa74976
RS
3201@subsection The Grammar Rules Section
3202@cindex grammar rules section
3203@cindex rules section for grammar
3204
3205The @dfn{grammar rules} section contains one or more Bison grammar
3206rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3207
3208There must always be at least one grammar rule, and the first
3209@samp{%%} (which precedes the grammar rules) may never be omitted even
3210if it is the first thing in the file.
3211
38a92d50 3212@node Epilogue
75f5aaea 3213@subsection The epilogue
bfa74976 3214@cindex additional C code section
75f5aaea 3215@cindex epilogue
bfa74976
RS
3216@cindex C code, section for additional
3217
ff7571c0
JD
3218The @var{Epilogue} is copied verbatim to the end of the parser
3219implementation file, just as the @var{Prologue} is copied to the
3220beginning. This is the most convenient place to put anything that you
3221want to have in the parser implementation file but which need not come
3222before the definition of @code{yyparse}. For example, the definitions
3223of @code{yylex} and @code{yyerror} often go here. Because C requires
3224functions to be declared before being used, you often need to declare
3225functions like @code{yylex} and @code{yyerror} in the Prologue, even
3226if you define them in the Epilogue. @xref{Interface, ,Parser
3227C-Language Interface}.
bfa74976
RS
3228
3229If the last section is empty, you may omit the @samp{%%} that separates it
3230from the grammar rules.
3231
f8e1c9e5
AD
3232The Bison parser itself contains many macros and identifiers whose names
3233start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3234any such names (except those documented in this manual) in the epilogue
3235of the grammar file.
bfa74976 3236
342b8b6e 3237@node Symbols
bfa74976
RS
3238@section Symbols, Terminal and Nonterminal
3239@cindex nonterminal symbol
3240@cindex terminal symbol
3241@cindex token type
3242@cindex symbol
3243
3244@dfn{Symbols} in Bison grammars represent the grammatical classifications
3245of the language.
3246
3247A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3248class of syntactically equivalent tokens. You use the symbol in grammar
3249rules to mean that a token in that class is allowed. The symbol is
3250represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3251function returns a token type code to indicate what kind of token has
3252been read. You don't need to know what the code value is; you can use
3253the symbol to stand for it.
bfa74976 3254
f8e1c9e5
AD
3255A @dfn{nonterminal symbol} stands for a class of syntactically
3256equivalent groupings. The symbol name is used in writing grammar rules.
3257By convention, it should be all lower case.
bfa74976 3258
82f3355e
JD
3259Symbol names can contain letters, underscores, periods, and non-initial
3260digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3261with POSIX Yacc. Periods and dashes make symbol names less convenient to
3262use with named references, which require brackets around such names
3263(@pxref{Named References}). Terminal symbols that contain periods or dashes
3264make little sense: since they are not valid symbols (in most programming
3265languages) they are not exported as token names.
bfa74976 3266
931c7513 3267There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3268
3269@itemize @bullet
3270@item
3271A @dfn{named token type} is written with an identifier, like an
c827f760 3272identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3273such name must be defined with a Bison declaration such as
3274@code{%token}. @xref{Token Decl, ,Token Type Names}.
3275
3276@item
3277@cindex character token
3278@cindex literal token
3279@cindex single-character literal
931c7513
RS
3280A @dfn{character token type} (or @dfn{literal character token}) is
3281written in the grammar using the same syntax used in C for character
3282constants; for example, @code{'+'} is a character token type. A
3283character token type doesn't need to be declared unless you need to
3284specify its semantic value data type (@pxref{Value Type, ,Data Types of
3285Semantic Values}), associativity, or precedence (@pxref{Precedence,
3286,Operator Precedence}).
bfa74976
RS
3287
3288By convention, a character token type is used only to represent a
3289token that consists of that particular character. Thus, the token
3290type @code{'+'} is used to represent the character @samp{+} as a
3291token. Nothing enforces this convention, but if you depart from it,
3292your program will confuse other readers.
3293
3294All the usual escape sequences used in character literals in C can be
3295used in Bison as well, but you must not use the null character as a
72d2299c
PE
3296character literal because its numeric code, zero, signifies
3297end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3298for @code{yylex}}). Also, unlike standard C, trigraphs have no
3299special meaning in Bison character literals, nor is backslash-newline
3300allowed.
931c7513
RS
3301
3302@item
3303@cindex string token
3304@cindex literal string token
9ecbd125 3305@cindex multicharacter literal
931c7513
RS
3306A @dfn{literal string token} is written like a C string constant; for
3307example, @code{"<="} is a literal string token. A literal string token
3308doesn't need to be declared unless you need to specify its semantic
14ded682 3309value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3310(@pxref{Precedence}).
3311
3312You can associate the literal string token with a symbolic name as an
3313alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3314Declarations}). If you don't do that, the lexical analyzer has to
3315retrieve the token number for the literal string token from the
3316@code{yytname} table (@pxref{Calling Convention}).
3317
c827f760 3318@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3319
3320By convention, a literal string token is used only to represent a token
3321that consists of that particular string. Thus, you should use the token
3322type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3323does not enforce this convention, but if you depart from it, people who
931c7513
RS
3324read your program will be confused.
3325
3326All the escape sequences used in string literals in C can be used in
92ac3705
PE
3327Bison as well, except that you must not use a null character within a
3328string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3329meaning in Bison string literals, nor is backslash-newline allowed. A
3330literal string token must contain two or more characters; for a token
3331containing just one character, use a character token (see above).
bfa74976
RS
3332@end itemize
3333
3334How you choose to write a terminal symbol has no effect on its
3335grammatical meaning. That depends only on where it appears in rules and
3336on when the parser function returns that symbol.
3337
72d2299c
PE
3338The value returned by @code{yylex} is always one of the terminal
3339symbols, except that a zero or negative value signifies end-of-input.
3340Whichever way you write the token type in the grammar rules, you write
3341it the same way in the definition of @code{yylex}. The numeric code
3342for a character token type is simply the positive numeric code of the
3343character, so @code{yylex} can use the identical value to generate the
3344requisite code, though you may need to convert it to @code{unsigned
3345char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3346Each named token type becomes a C macro in the parser implementation
3347file, so @code{yylex} can use the name to stand for the code. (This
3348is why periods don't make sense in terminal symbols.) @xref{Calling
3349Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3350
3351If @code{yylex} is defined in a separate file, you need to arrange for the
3352token-type macro definitions to be available there. Use the @samp{-d}
3353option when you run Bison, so that it will write these macro definitions
3354into a separate header file @file{@var{name}.tab.h} which you can include
3355in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3356
72d2299c 3357If you want to write a grammar that is portable to any Standard C
9d9b8b70 3358host, you must use only nonnull character tokens taken from the basic
c827f760 3359execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3360digits, the 52 lower- and upper-case English letters, and the
3361characters in the following C-language string:
3362
3363@example
3364"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3365@end example
3366
f8e1c9e5
AD
3367The @code{yylex} function and Bison must use a consistent character set
3368and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3369ASCII environment, but then compile and run the resulting
f8e1c9e5 3370program in an environment that uses an incompatible character set like
8a4281b9
JD
3371EBCDIC, the resulting program may not work because the tables
3372generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3373character tokens. It is standard practice for software distributions to
3374contain C source files that were generated by Bison in an
8a4281b9
JD
3375ASCII environment, so installers on platforms that are
3376incompatible with ASCII must rebuild those files before
f8e1c9e5 3377compiling them.
e966383b 3378
bfa74976
RS
3379The symbol @code{error} is a terminal symbol reserved for error recovery
3380(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3381In particular, @code{yylex} should never return this value. The default
3382value of the error token is 256, unless you explicitly assigned 256 to
3383one of your tokens with a @code{%token} declaration.
bfa74976 3384
342b8b6e 3385@node Rules
bfa74976
RS
3386@section Syntax of Grammar Rules
3387@cindex rule syntax
3388@cindex grammar rule syntax
3389@cindex syntax of grammar rules
3390
3391A Bison grammar rule has the following general form:
3392
3393@example
e425e872 3394@group
5e9b6624 3395@var{result}: @var{components}@dots{};
e425e872 3396@end group
bfa74976
RS
3397@end example
3398
3399@noindent
9ecbd125 3400where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3401and @var{components} are various terminal and nonterminal symbols that
13863333 3402are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3403
3404For example,
3405
3406@example
3407@group
5e9b6624 3408exp: exp '+' exp;
bfa74976
RS
3409@end group
3410@end example
3411
3412@noindent
3413says that two groupings of type @code{exp}, with a @samp{+} token in between,
3414can be combined into a larger grouping of type @code{exp}.
3415
72d2299c
PE
3416White space in rules is significant only to separate symbols. You can add
3417extra white space as you wish.
bfa74976
RS
3418
3419Scattered among the components can be @var{actions} that determine
3420the semantics of the rule. An action looks like this:
3421
3422@example
3423@{@var{C statements}@}
3424@end example
3425
3426@noindent
287c78f6
PE
3427@cindex braced code
3428This is an example of @dfn{braced code}, that is, C code surrounded by
3429braces, much like a compound statement in C@. Braced code can contain
3430any sequence of C tokens, so long as its braces are balanced. Bison
3431does not check the braced code for correctness directly; it merely
ff7571c0
JD
3432copies the code to the parser implementation file, where the C
3433compiler can check it.
287c78f6
PE
3434
3435Within braced code, the balanced-brace count is not affected by braces
3436within comments, string literals, or character constants, but it is
3437affected by the C digraphs @samp{<%} and @samp{%>} that represent
3438braces. At the top level braced code must be terminated by @samp{@}}
3439and not by a digraph. Bison does not look for trigraphs, so if braced
3440code uses trigraphs you should ensure that they do not affect the
3441nesting of braces or the boundaries of comments, string literals, or
3442character constants.
3443
bfa74976
RS
3444Usually there is only one action and it follows the components.
3445@xref{Actions}.
3446
3447@findex |
3448Multiple rules for the same @var{result} can be written separately or can
3449be joined with the vertical-bar character @samp{|} as follows:
3450
bfa74976
RS
3451@example
3452@group
5e9b6624
AD
3453@var{result}:
3454 @var{rule1-components}@dots{}
3455| @var{rule2-components}@dots{}
3456@dots{}
3457;
bfa74976
RS
3458@end group
3459@end example
bfa74976
RS
3460
3461@noindent
3462They are still considered distinct rules even when joined in this way.
3463
3464If @var{components} in a rule is empty, it means that @var{result} can
3465match the empty string. For example, here is how to define a
3466comma-separated sequence of zero or more @code{exp} groupings:
3467
3468@example
3469@group
5e9b6624
AD
3470expseq:
3471 /* empty */
3472| expseq1
3473;
bfa74976
RS
3474@end group
3475
3476@group
5e9b6624
AD
3477expseq1:
3478 exp
3479| expseq1 ',' exp
3480;
bfa74976
RS
3481@end group
3482@end example
3483
3484@noindent
3485It is customary to write a comment @samp{/* empty */} in each rule
3486with no components.
3487
342b8b6e 3488@node Recursion
bfa74976
RS
3489@section Recursive Rules
3490@cindex recursive rule
3491
f8e1c9e5
AD
3492A rule is called @dfn{recursive} when its @var{result} nonterminal
3493appears also on its right hand side. Nearly all Bison grammars need to
3494use recursion, because that is the only way to define a sequence of any
3495number of a particular thing. Consider this recursive definition of a
9ecbd125 3496comma-separated sequence of one or more expressions:
bfa74976
RS
3497
3498@example
3499@group
5e9b6624
AD
3500expseq1:
3501 exp
3502| expseq1 ',' exp
3503;
bfa74976
RS
3504@end group
3505@end example
3506
3507@cindex left recursion
3508@cindex right recursion
3509@noindent
3510Since the recursive use of @code{expseq1} is the leftmost symbol in the
3511right hand side, we call this @dfn{left recursion}. By contrast, here
3512the same construct is defined using @dfn{right recursion}:
3513
3514@example
3515@group
5e9b6624
AD
3516expseq1:
3517 exp
3518| exp ',' expseq1
3519;
bfa74976
RS
3520@end group
3521@end example
3522
3523@noindent
ec3bc396
AD
3524Any kind of sequence can be defined using either left recursion or right
3525recursion, but you should always use left recursion, because it can
3526parse a sequence of any number of elements with bounded stack space.
3527Right recursion uses up space on the Bison stack in proportion to the
3528number of elements in the sequence, because all the elements must be
3529shifted onto the stack before the rule can be applied even once.
3530@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3531of this.
bfa74976
RS
3532
3533@cindex mutual recursion
3534@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3535rule does not appear directly on its right hand side, but does appear
3536in rules for other nonterminals which do appear on its right hand
13863333 3537side.
bfa74976
RS
3538
3539For example:
3540
3541@example
3542@group
5e9b6624
AD
3543expr:
3544 primary
3545| primary '+' primary
3546;
bfa74976
RS
3547@end group
3548
3549@group
5e9b6624
AD
3550primary:
3551 constant
3552| '(' expr ')'
3553;
bfa74976
RS
3554@end group
3555@end example
3556
3557@noindent
3558defines two mutually-recursive nonterminals, since each refers to the
3559other.
3560
342b8b6e 3561@node Semantics
bfa74976
RS
3562@section Defining Language Semantics
3563@cindex defining language semantics
13863333 3564@cindex language semantics, defining
bfa74976
RS
3565
3566The grammar rules for a language determine only the syntax. The semantics
3567are determined by the semantic values associated with various tokens and
3568groupings, and by the actions taken when various groupings are recognized.
3569
3570For example, the calculator calculates properly because the value
3571associated with each expression is the proper number; it adds properly
3572because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3573the numbers associated with @var{x} and @var{y}.
3574
3575@menu
3576* Value Type:: Specifying one data type for all semantic values.
3577* Multiple Types:: Specifying several alternative data types.
3578* Actions:: An action is the semantic definition of a grammar rule.
3579* Action Types:: Specifying data types for actions to operate on.
3580* Mid-Rule Actions:: Most actions go at the end of a rule.
3581 This says when, why and how to use the exceptional
3582 action in the middle of a rule.
3583@end menu
3584
342b8b6e 3585@node Value Type
bfa74976
RS
3586@subsection Data Types of Semantic Values
3587@cindex semantic value type
3588@cindex value type, semantic
3589@cindex data types of semantic values
3590@cindex default data type
3591
3592In a simple program it may be sufficient to use the same data type for
3593the semantic values of all language constructs. This was true in the
8a4281b9 3594RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3595Notation Calculator}).
bfa74976 3596
ddc8ede1
PE
3597Bison normally uses the type @code{int} for semantic values if your
3598program uses the same data type for all language constructs. To
bfa74976
RS
3599specify some other type, define @code{YYSTYPE} as a macro, like this:
3600
3601@example
3602#define YYSTYPE double
3603@end example
3604
3605@noindent
50cce58e
PE
3606@code{YYSTYPE}'s replacement list should be a type name
3607that does not contain parentheses or square brackets.
342b8b6e 3608This macro definition must go in the prologue of the grammar file
75f5aaea 3609(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3610
342b8b6e 3611@node Multiple Types
bfa74976
RS
3612@subsection More Than One Value Type
3613
3614In most programs, you will need different data types for different kinds
3615of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3616@code{int} or @code{long int}, while a string constant needs type
3617@code{char *}, and an identifier might need a pointer to an entry in the
3618symbol table.
bfa74976
RS
3619
3620To use more than one data type for semantic values in one parser, Bison
3621requires you to do two things:
3622
3623@itemize @bullet
3624@item
ddc8ede1 3625Specify the entire collection of possible data types, either by using the
704a47c4 3626@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3627Value Types}), or by using a @code{typedef} or a @code{#define} to
3628define @code{YYSTYPE} to be a union type whose member names are
3629the type tags.
bfa74976
RS
3630
3631@item
14ded682
AD
3632Choose one of those types for each symbol (terminal or nonterminal) for
3633which semantic values are used. This is done for tokens with the
3634@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3635and for groupings with the @code{%type} Bison declaration (@pxref{Type
3636Decl, ,Nonterminal Symbols}).
bfa74976
RS
3637@end itemize
3638
342b8b6e 3639@node Actions
bfa74976
RS
3640@subsection Actions
3641@cindex action
3642@vindex $$
3643@vindex $@var{n}
d013372c
AR
3644@vindex $@var{name}
3645@vindex $[@var{name}]
bfa74976
RS
3646
3647An action accompanies a syntactic rule and contains C code to be executed
3648each time an instance of that rule is recognized. The task of most actions
3649is to compute a semantic value for the grouping built by the rule from the
3650semantic values associated with tokens or smaller groupings.
3651
287c78f6
PE
3652An action consists of braced code containing C statements, and can be
3653placed at any position in the rule;
704a47c4
AD
3654it is executed at that position. Most rules have just one action at the
3655end of the rule, following all the components. Actions in the middle of
3656a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3657Actions, ,Actions in Mid-Rule}).
bfa74976 3658
ff7571c0
JD
3659The C code in an action can refer to the semantic values of the
3660components matched by the rule with the construct @code{$@var{n}},
3661which stands for the value of the @var{n}th component. The semantic
3662value for the grouping being constructed is @code{$$}. In addition,
3663the semantic values of symbols can be accessed with the named
3664references construct @code{$@var{name}} or @code{$[@var{name}]}.
3665Bison translates both of these constructs into expressions of the
3666appropriate type when it copies the actions into the parser
3667implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3668for the current grouping) is translated to a modifiable lvalue, so it
3669can be assigned to.
bfa74976
RS
3670
3671Here is a typical example:
3672
3673@example
3674@group
5e9b6624
AD
3675exp:
3676@dots{}
3677| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3678@end group
3679@end example
3680
d013372c
AR
3681Or, in terms of named references:
3682
3683@example
3684@group
5e9b6624
AD
3685exp[result]:
3686@dots{}
3687| exp[left] '+' exp[right] @{ $result = $left + $right; @}
d013372c
AR
3688@end group
3689@end example
3690
bfa74976
RS
3691@noindent
3692This rule constructs an @code{exp} from two smaller @code{exp} groupings
3693connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3694(@code{$left} and @code{$right})
bfa74976
RS
3695refer to the semantic values of the two component @code{exp} groupings,
3696which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3697The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3698semantic value of
bfa74976
RS
3699the addition-expression just recognized by the rule. If there were a
3700useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3701referred to as @code{$2}.
bfa74976 3702
a7b15ab9
JD
3703@xref{Named References}, for more information about using the named
3704references construct.
d013372c 3705
3ded9a63
AD
3706Note that the vertical-bar character @samp{|} is really a rule
3707separator, and actions are attached to a single rule. This is a
3708difference with tools like Flex, for which @samp{|} stands for either
3709``or'', or ``the same action as that of the next rule''. In the
3710following example, the action is triggered only when @samp{b} is found:
3711
3712@example
3713@group
3714a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3715@end group
3716@end example
3717
bfa74976
RS
3718@cindex default action
3719If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3720@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3721becomes the value of the whole rule. Of course, the default action is
3722valid only if the two data types match. There is no meaningful default
3723action for an empty rule; every empty rule must have an explicit action
3724unless the rule's value does not matter.
bfa74976
RS
3725
3726@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3727to tokens and groupings on the stack @emph{before} those that match the
3728current rule. This is a very risky practice, and to use it reliably
3729you must be certain of the context in which the rule is applied. Here
3730is a case in which you can use this reliably:
3731
3732@example
3733@group
5e9b6624
AD
3734foo:
3735 expr bar '+' expr @{ @dots{} @}
3736| expr bar '-' expr @{ @dots{} @}
3737;
bfa74976
RS
3738@end group
3739
3740@group
5e9b6624
AD
3741bar:
3742 /* empty */ @{ previous_expr = $0; @}
3743;
bfa74976
RS
3744@end group
3745@end example
3746
3747As long as @code{bar} is used only in the fashion shown here, @code{$0}
3748always refers to the @code{expr} which precedes @code{bar} in the
3749definition of @code{foo}.
3750
32c29292 3751@vindex yylval
742e4900 3752It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3753any, from a semantic action.
3754This semantic value is stored in @code{yylval}.
3755@xref{Action Features, ,Special Features for Use in Actions}.
3756
342b8b6e 3757@node Action Types
bfa74976
RS
3758@subsection Data Types of Values in Actions
3759@cindex action data types
3760@cindex data types in actions
3761
3762If you have chosen a single data type for semantic values, the @code{$$}
3763and @code{$@var{n}} constructs always have that data type.
3764
3765If you have used @code{%union} to specify a variety of data types, then you
3766must declare a choice among these types for each terminal or nonterminal
3767symbol that can have a semantic value. Then each time you use @code{$$} or
3768@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3769in the rule. In this example,
bfa74976
RS
3770
3771@example
3772@group
5e9b6624
AD
3773exp:
3774 @dots{}
3775| exp '+' exp @{ $$ = $1 + $3; @}
bfa74976
RS
3776@end group
3777@end example
3778
3779@noindent
3780@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3781have the data type declared for the nonterminal symbol @code{exp}. If
3782@code{$2} were used, it would have the data type declared for the
e0c471a9 3783terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3784
3785Alternatively, you can specify the data type when you refer to the value,
3786by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3787reference. For example, if you have defined types as shown here:
3788
3789@example
3790@group
3791%union @{
3792 int itype;
3793 double dtype;
3794@}
3795@end group
3796@end example
3797
3798@noindent
3799then you can write @code{$<itype>1} to refer to the first subunit of the
3800rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3801
342b8b6e 3802@node Mid-Rule Actions
bfa74976
RS
3803@subsection Actions in Mid-Rule
3804@cindex actions in mid-rule
3805@cindex mid-rule actions
3806
3807Occasionally it is useful to put an action in the middle of a rule.
3808These actions are written just like usual end-of-rule actions, but they
3809are executed before the parser even recognizes the following components.
3810
3811A mid-rule action may refer to the components preceding it using
3812@code{$@var{n}}, but it may not refer to subsequent components because
3813it is run before they are parsed.
3814
3815The mid-rule action itself counts as one of the components of the rule.
3816This makes a difference when there is another action later in the same rule
3817(and usually there is another at the end): you have to count the actions
3818along with the symbols when working out which number @var{n} to use in
3819@code{$@var{n}}.
3820
3821The mid-rule action can also have a semantic value. The action can set
3822its value with an assignment to @code{$$}, and actions later in the rule
3823can refer to the value using @code{$@var{n}}. Since there is no symbol
3824to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3825in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3826specify a data type each time you refer to this value.
bfa74976
RS
3827
3828There is no way to set the value of the entire rule with a mid-rule
3829action, because assignments to @code{$$} do not have that effect. The
3830only way to set the value for the entire rule is with an ordinary action
3831at the end of the rule.
3832
3833Here is an example from a hypothetical compiler, handling a @code{let}
3834statement that looks like @samp{let (@var{variable}) @var{statement}} and
3835serves to create a variable named @var{variable} temporarily for the
3836duration of @var{statement}. To parse this construct, we must put
3837@var{variable} into the symbol table while @var{statement} is parsed, then
3838remove it afterward. Here is how it is done:
3839
3840@example
3841@group
5e9b6624
AD
3842stmt:
3843 LET '(' var ')'
3844 @{ $<context>$ = push_context (); declare_variable ($3); @}
3845 stmt
3846 @{ $$ = $6; pop_context ($<context>5); @}
bfa74976
RS
3847@end group
3848@end example
3849
3850@noindent
3851As soon as @samp{let (@var{variable})} has been recognized, the first
3852action is run. It saves a copy of the current semantic context (the
3853list of accessible variables) as its semantic value, using alternative
3854@code{context} in the data-type union. Then it calls
3855@code{declare_variable} to add the new variable to that list. Once the
3856first action is finished, the embedded statement @code{stmt} can be
3857parsed. Note that the mid-rule action is component number 5, so the
3858@samp{stmt} is component number 6.
3859
3860After the embedded statement is parsed, its semantic value becomes the
3861value of the entire @code{let}-statement. Then the semantic value from the
3862earlier action is used to restore the prior list of variables. This
3863removes the temporary @code{let}-variable from the list so that it won't
3864appear to exist while the rest of the program is parsed.
3865
841a7737
JD
3866@findex %destructor
3867@cindex discarded symbols, mid-rule actions
3868@cindex error recovery, mid-rule actions
3869In the above example, if the parser initiates error recovery (@pxref{Error
3870Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3871it might discard the previous semantic context @code{$<context>5} without
3872restoring it.
3873Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3874Discarded Symbols}).
ec5479ce
JD
3875However, Bison currently provides no means to declare a destructor specific to
3876a particular mid-rule action's semantic value.
841a7737
JD
3877
3878One solution is to bury the mid-rule action inside a nonterminal symbol and to
3879declare a destructor for that symbol:
3880
3881@example
3882@group
3883%type <context> let
3884%destructor @{ pop_context ($$); @} let
3885
3886%%
3887
5e9b6624
AD
3888stmt:
3889 let stmt
3890 @{
3891 $$ = $2;
3892 pop_context ($1);
3893 @};
841a7737 3894
5e9b6624
AD
3895let:
3896 LET '(' var ')'
3897 @{
3898 $$ = push_context ();
3899 declare_variable ($3);
3900 @};
841a7737
JD
3901
3902@end group
3903@end example
3904
3905@noindent
3906Note that the action is now at the end of its rule.
3907Any mid-rule action can be converted to an end-of-rule action in this way, and
3908this is what Bison actually does to implement mid-rule actions.
3909
bfa74976
RS
3910Taking action before a rule is completely recognized often leads to
3911conflicts since the parser must commit to a parse in order to execute the
3912action. For example, the following two rules, without mid-rule actions,
3913can coexist in a working parser because the parser can shift the open-brace
3914token and look at what follows before deciding whether there is a
3915declaration or not:
3916
3917@example
3918@group
5e9b6624
AD
3919compound:
3920 '@{' declarations statements '@}'
3921| '@{' statements '@}'
3922;
bfa74976
RS
3923@end group
3924@end example
3925
3926@noindent
3927But when we add a mid-rule action as follows, the rules become nonfunctional:
3928
3929@example
3930@group
5e9b6624
AD
3931compound:
3932 @{ prepare_for_local_variables (); @}
3933 '@{' declarations statements '@}'
bfa74976
RS
3934@end group
3935@group
5e9b6624
AD
3936| '@{' statements '@}'
3937;
bfa74976
RS
3938@end group
3939@end example
3940
3941@noindent
3942Now the parser is forced to decide whether to run the mid-rule action
3943when it has read no farther than the open-brace. In other words, it
3944must commit to using one rule or the other, without sufficient
3945information to do it correctly. (The open-brace token is what is called
742e4900
JD
3946the @dfn{lookahead} token at this time, since the parser is still
3947deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3948
3949You might think that you could correct the problem by putting identical
3950actions into the two rules, like this:
3951
3952@example
3953@group
5e9b6624
AD
3954compound:
3955 @{ prepare_for_local_variables (); @}
3956 '@{' declarations statements '@}'
3957| @{ prepare_for_local_variables (); @}
3958 '@{' statements '@}'
3959;
bfa74976
RS
3960@end group
3961@end example
3962
3963@noindent
3964But this does not help, because Bison does not realize that the two actions
3965are identical. (Bison never tries to understand the C code in an action.)
3966
3967If the grammar is such that a declaration can be distinguished from a
3968statement by the first token (which is true in C), then one solution which
3969does work is to put the action after the open-brace, like this:
3970
3971@example
3972@group
5e9b6624
AD
3973compound:
3974 '@{' @{ prepare_for_local_variables (); @}
3975 declarations statements '@}'
3976| '@{' statements '@}'
3977;
bfa74976
RS
3978@end group
3979@end example
3980
3981@noindent
3982Now the first token of the following declaration or statement,
3983which would in any case tell Bison which rule to use, can still do so.
3984
3985Another solution is to bury the action inside a nonterminal symbol which
3986serves as a subroutine:
3987
3988@example
3989@group
5e9b6624
AD
3990subroutine:
3991 /* empty */ @{ prepare_for_local_variables (); @}
3992;
bfa74976
RS
3993@end group
3994
3995@group
5e9b6624
AD
3996compound:
3997 subroutine '@{' declarations statements '@}'
3998| subroutine '@{' statements '@}'
3999;
bfa74976
RS
4000@end group
4001@end example
4002
4003@noindent
4004Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 4005deciding which rule for @code{compound} it will eventually use.
bfa74976 4006
303834cc 4007@node Tracking Locations
847bf1f5
AD
4008@section Tracking Locations
4009@cindex location
95923bd6
AD
4010@cindex textual location
4011@cindex location, textual
847bf1f5
AD
4012
4013Though grammar rules and semantic actions are enough to write a fully
72d2299c 4014functional parser, it can be useful to process some additional information,
3e259915
MA
4015especially symbol locations.
4016
704a47c4
AD
4017The way locations are handled is defined by providing a data type, and
4018actions to take when rules are matched.
847bf1f5
AD
4019
4020@menu
4021* Location Type:: Specifying a data type for locations.
4022* Actions and Locations:: Using locations in actions.
4023* Location Default Action:: Defining a general way to compute locations.
4024@end menu
4025
342b8b6e 4026@node Location Type
847bf1f5
AD
4027@subsection Data Type of Locations
4028@cindex data type of locations
4029@cindex default location type
4030
4031Defining a data type for locations is much simpler than for semantic values,
4032since all tokens and groupings always use the same type.
4033
50cce58e
PE
4034You can specify the type of locations by defining a macro called
4035@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 4036defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4037When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4038four members:
4039
4040@example
6273355b 4041typedef struct YYLTYPE
847bf1f5
AD
4042@{
4043 int first_line;
4044 int first_column;
4045 int last_line;
4046 int last_column;
6273355b 4047@} YYLTYPE;
847bf1f5
AD
4048@end example
4049
d59e456d
AD
4050When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4051initializes all these fields to 1 for @code{yylloc}. To initialize
4052@code{yylloc} with a custom location type (or to chose a different
4053initialization), use the @code{%initial-action} directive. @xref{Initial
4054Action Decl, , Performing Actions before Parsing}.
cd48d21d 4055
342b8b6e 4056@node Actions and Locations
847bf1f5
AD
4057@subsection Actions and Locations
4058@cindex location actions
4059@cindex actions, location
4060@vindex @@$
4061@vindex @@@var{n}
d013372c
AR
4062@vindex @@@var{name}
4063@vindex @@[@var{name}]
847bf1f5
AD
4064
4065Actions are not only useful for defining language semantics, but also for
4066describing the behavior of the output parser with locations.
4067
4068The most obvious way for building locations of syntactic groupings is very
72d2299c 4069similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4070constructs can be used to access the locations of the elements being matched.
4071The location of the @var{n}th component of the right hand side is
4072@code{@@@var{n}}, while the location of the left hand side grouping is
4073@code{@@$}.
4074
d013372c
AR
4075In addition, the named references construct @code{@@@var{name}} and
4076@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4077@xref{Named References}, for more information about using the named
4078references construct.
d013372c 4079
3e259915 4080Here is a basic example using the default data type for locations:
847bf1f5
AD
4081
4082@example
4083@group
5e9b6624
AD
4084exp:
4085 @dots{}
4086| exp '/' exp
4087 @{
4088 @@$.first_column = @@1.first_column;
4089 @@$.first_line = @@1.first_line;
4090 @@$.last_column = @@3.last_column;
4091 @@$.last_line = @@3.last_line;
4092 if ($3)
4093 $$ = $1 / $3;
4094 else
4095 @{
4096 $$ = 1;
4097 fprintf (stderr,
4098 "Division by zero, l%d,c%d-l%d,c%d",
4099 @@3.first_line, @@3.first_column,
4100 @@3.last_line, @@3.last_column);
4101 @}
4102 @}
847bf1f5
AD
4103@end group
4104@end example
4105
3e259915 4106As for semantic values, there is a default action for locations that is
72d2299c 4107run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4108beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4109last symbol.
3e259915 4110
72d2299c 4111With this default action, the location tracking can be fully automatic. The
3e259915
MA
4112example above simply rewrites this way:
4113
4114@example
4115@group
5e9b6624
AD
4116exp:
4117 @dots{}
4118| exp '/' exp
4119 @{
4120 if ($3)
4121 $$ = $1 / $3;
4122 else
4123 @{
4124 $$ = 1;
4125 fprintf (stderr,
4126 "Division by zero, l%d,c%d-l%d,c%d",
4127 @@3.first_line, @@3.first_column,
4128 @@3.last_line, @@3.last_column);
4129 @}
4130 @}
3e259915
MA
4131@end group
4132@end example
847bf1f5 4133
32c29292 4134@vindex yylloc
742e4900 4135It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4136from a semantic action.
4137This location is stored in @code{yylloc}.
4138@xref{Action Features, ,Special Features for Use in Actions}.
4139
342b8b6e 4140@node Location Default Action
847bf1f5
AD
4141@subsection Default Action for Locations
4142@vindex YYLLOC_DEFAULT
8a4281b9 4143@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4144
72d2299c 4145Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4146locations are much more general than semantic values, there is room in
4147the output parser to redefine the default action to take for each
72d2299c 4148rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4149matched, before the associated action is run. It is also invoked
4150while processing a syntax error, to compute the error's location.
8a4281b9 4151Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4152parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4153of that ambiguity.
847bf1f5 4154
3e259915 4155Most of the time, this macro is general enough to suppress location
79282c6c 4156dedicated code from semantic actions.
847bf1f5 4157
72d2299c 4158The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4159the location of the grouping (the result of the computation). When a
766de5eb 4160rule is matched, the second parameter identifies locations of
96b93a3d 4161all right hand side elements of the rule being matched, and the third
8710fc41 4162parameter is the size of the rule's right hand side.
8a4281b9 4163When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4164right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4165When processing a syntax error, the second parameter identifies locations
4166of the symbols that were discarded during error processing, and the third
96b93a3d 4167parameter is the number of discarded symbols.
847bf1f5 4168
766de5eb 4169By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4170
c93f22fc
AD
4171@example
4172@group
4173# define YYLLOC_DEFAULT(Cur, Rhs, N) \
4174do \
4175 if (N) \
4176 @{ \
4177 (Cur).first_line = YYRHSLOC(Rhs, 1).first_line; \
4178 (Cur).first_column = YYRHSLOC(Rhs, 1).first_column; \
4179 (Cur).last_line = YYRHSLOC(Rhs, N).last_line; \
4180 (Cur).last_column = YYRHSLOC(Rhs, N).last_column; \
4181 @} \
4182 else \
4183 @{ \
4184 (Cur).first_line = (Cur).last_line = \
4185 YYRHSLOC(Rhs, 0).last_line; \
4186 (Cur).first_column = (Cur).last_column = \
4187 YYRHSLOC(Rhs, 0).last_column; \
4188 @} \
4189while (0)
4190@end group
4191@end example
676385e2 4192
aaaa2aae 4193@noindent
766de5eb
PE
4194where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4195in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4196just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4197
3e259915 4198When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4199
3e259915 4200@itemize @bullet
79282c6c 4201@item
72d2299c 4202All arguments are free of side-effects. However, only the first one (the
3e259915 4203result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4204
3e259915 4205@item
766de5eb
PE
4206For consistency with semantic actions, valid indexes within the
4207right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4208valid index, and it refers to the symbol just before the reduction.
4209During error processing @var{n} is always positive.
0ae99356
PE
4210
4211@item
4212Your macro should parenthesize its arguments, if need be, since the
4213actual arguments may not be surrounded by parentheses. Also, your
4214macro should expand to something that can be used as a single
4215statement when it is followed by a semicolon.
3e259915 4216@end itemize
847bf1f5 4217
378e917c 4218@node Named References
a7b15ab9 4219@section Named References
378e917c
JD
4220@cindex named references
4221
a40e77eb
JD
4222As described in the preceding sections, the traditional way to refer to any
4223semantic value or location is a @dfn{positional reference}, which takes the
4224form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4225such a reference is not very descriptive. Moreover, if you later decide to
4226insert or remove symbols in the right-hand side of a grammar rule, the need
4227to renumber such references can be tedious and error-prone.
4228
4229To avoid these issues, you can also refer to a semantic value or location
4230using a @dfn{named reference}. First of all, original symbol names may be
4231used as named references. For example:
378e917c
JD
4232
4233@example
4234@group
4235invocation: op '(' args ')'
4236 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4237@end group
4238@end example
4239
4240@noindent
a40e77eb 4241Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4242
4243@example
4244@group
4245invocation: op '(' args ')'
4246 @{ $$ = new_invocation ($op, $args, @@$); @}
4247@end group
4248@end example
4249
4250@noindent
4251However, sometimes regular symbol names are not sufficient due to
4252ambiguities:
4253
4254@example
4255@group
4256exp: exp '/' exp
4257 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4258
4259exp: exp '/' exp
4260 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4261
4262exp: exp '/' exp
4263 @{ $$ = $1 / $3; @} // No error.
4264@end group
4265@end example
4266
4267@noindent
4268When ambiguity occurs, explicitly declared names may be used for values and
4269locations. Explicit names are declared as a bracketed name after a symbol
4270appearance in rule definitions. For example:
4271@example
4272@group
4273exp[result]: exp[left] '/' exp[right]
4274 @{ $result = $left / $right; @}
4275@end group
4276@end example
4277
4278@noindent
a7b15ab9
JD
4279In order to access a semantic value generated by a mid-rule action, an
4280explicit name may also be declared by putting a bracketed name after the
4281closing brace of the mid-rule action code:
378e917c
JD
4282@example
4283@group
4284exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4285 @{ $res = $left + $right; @}
4286@end group
4287@end example
4288
4289@noindent
4290
4291In references, in order to specify names containing dots and dashes, an explicit
4292bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4293@example
4294@group
762caaf6 4295if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4296 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4297@end group
4298@end example
4299
4300It often happens that named references are followed by a dot, dash or other
4301C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4302@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4303@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4304value. In order to force Bison to recognize @samp{name.suffix} in its
4305entirety as the name of a semantic value, the bracketed syntax
4306@samp{$[name.suffix]} must be used.
4307
4308The named references feature is experimental. More user feedback will help
4309to stabilize it.
378e917c 4310
342b8b6e 4311@node Declarations
bfa74976
RS
4312@section Bison Declarations
4313@cindex declarations, Bison
4314@cindex Bison declarations
4315
4316The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4317used in formulating the grammar and the data types of semantic values.
4318@xref{Symbols}.
4319
4320All token type names (but not single-character literal tokens such as
4321@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4322declared if you need to specify which data type to use for the semantic
4323value (@pxref{Multiple Types, ,More Than One Value Type}).
4324
ff7571c0
JD
4325The first rule in the grammar file also specifies the start symbol, by
4326default. If you want some other symbol to be the start symbol, you
4327must declare it explicitly (@pxref{Language and Grammar, ,Languages
4328and Context-Free Grammars}).
bfa74976
RS
4329
4330@menu
b50d2359 4331* Require Decl:: Requiring a Bison version.
bfa74976
RS
4332* Token Decl:: Declaring terminal symbols.
4333* Precedence Decl:: Declaring terminals with precedence and associativity.
4334* Union Decl:: Declaring the set of all semantic value types.
4335* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4336* Initial Action Decl:: Code run before parsing starts.
72f889cc 4337* Destructor Decl:: Declaring how symbols are freed.
93c150b6 4338* Printer Decl:: Declaring how symbol values are displayed.
d6328241 4339* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4340* Start Decl:: Specifying the start symbol.
4341* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4342* Push Decl:: Requesting a push parser.
bfa74976 4343* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4344* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4345* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4346@end menu
4347
b50d2359
AD
4348@node Require Decl
4349@subsection Require a Version of Bison
4350@cindex version requirement
4351@cindex requiring a version of Bison
4352@findex %require
4353
4354You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4355the requirement is not met, @command{bison} exits with an error (exit
4356status 63).
b50d2359
AD
4357
4358@example
4359%require "@var{version}"
4360@end example
4361
342b8b6e 4362@node Token Decl
bfa74976
RS
4363@subsection Token Type Names
4364@cindex declaring token type names
4365@cindex token type names, declaring
931c7513 4366@cindex declaring literal string tokens
bfa74976
RS
4367@findex %token
4368
4369The basic way to declare a token type name (terminal symbol) is as follows:
4370
4371@example
4372%token @var{name}
4373@end example
4374
4375Bison will convert this into a @code{#define} directive in
4376the parser, so that the function @code{yylex} (if it is in this file)
4377can use the name @var{name} to stand for this token type's code.
4378
d78f0ac9
AD
4379Alternatively, you can use @code{%left}, @code{%right},
4380@code{%precedence}, or
14ded682
AD
4381@code{%nonassoc} instead of @code{%token}, if you wish to specify
4382associativity and precedence. @xref{Precedence Decl, ,Operator
4383Precedence}.
bfa74976
RS
4384
4385You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4386a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4387following the token name:
bfa74976
RS
4388
4389@example
4390%token NUM 300
1452af69 4391%token XNUM 0x12d // a GNU extension
bfa74976
RS
4392@end example
4393
4394@noindent
4395It is generally best, however, to let Bison choose the numeric codes for
4396all token types. Bison will automatically select codes that don't conflict
e966383b 4397with each other or with normal characters.
bfa74976
RS
4398
4399In the event that the stack type is a union, you must augment the
4400@code{%token} or other token declaration to include the data type
704a47c4
AD
4401alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4402Than One Value Type}).
bfa74976
RS
4403
4404For example:
4405
4406@example
4407@group
4408%union @{ /* define stack type */
4409 double val;
4410 symrec *tptr;
4411@}
4412%token <val> NUM /* define token NUM and its type */
4413@end group
4414@end example
4415
931c7513
RS
4416You can associate a literal string token with a token type name by
4417writing the literal string at the end of a @code{%token}
4418declaration which declares the name. For example:
4419
4420@example
4421%token arrow "=>"
4422@end example
4423
4424@noindent
4425For example, a grammar for the C language might specify these names with
4426equivalent literal string tokens:
4427
4428@example
4429%token <operator> OR "||"
4430%token <operator> LE 134 "<="
4431%left OR "<="
4432@end example
4433
4434@noindent
4435Once you equate the literal string and the token name, you can use them
4436interchangeably in further declarations or the grammar rules. The
4437@code{yylex} function can use the token name or the literal string to
4438obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4439Syntax error messages passed to @code{yyerror} from the parser will reference
4440the literal string instead of the token name.
4441
4442The token numbered as 0 corresponds to end of file; the following line
4443allows for nicer error messages referring to ``end of file'' instead
4444of ``$end'':
4445
4446@example
4447%token END 0 "end of file"
4448@end example
931c7513 4449
342b8b6e 4450@node Precedence Decl
bfa74976
RS
4451@subsection Operator Precedence
4452@cindex precedence declarations
4453@cindex declaring operator precedence
4454@cindex operator precedence, declaring
4455
d78f0ac9
AD
4456Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4457@code{%precedence} declaration to
bfa74976
RS
4458declare a token and specify its precedence and associativity, all at
4459once. These are called @dfn{precedence declarations}.
704a47c4
AD
4460@xref{Precedence, ,Operator Precedence}, for general information on
4461operator precedence.
bfa74976 4462
ab7f29f8 4463The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4464@code{%token}: either
4465
4466@example
4467%left @var{symbols}@dots{}
4468@end example
4469
4470@noindent
4471or
4472
4473@example
4474%left <@var{type}> @var{symbols}@dots{}
4475@end example
4476
4477And indeed any of these declarations serves the purposes of @code{%token}.
4478But in addition, they specify the associativity and relative precedence for
4479all the @var{symbols}:
4480
4481@itemize @bullet
4482@item
4483The associativity of an operator @var{op} determines how repeated uses
4484of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4485@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4486grouping @var{y} with @var{z} first. @code{%left} specifies
4487left-associativity (grouping @var{x} with @var{y} first) and
4488@code{%right} specifies right-associativity (grouping @var{y} with
4489@var{z} first). @code{%nonassoc} specifies no associativity, which
4490means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4491considered a syntax error.
4492
d78f0ac9
AD
4493@code{%precedence} gives only precedence to the @var{symbols}, and
4494defines no associativity at all. Use this to define precedence only,
4495and leave any potential conflict due to associativity enabled.
4496
bfa74976
RS
4497@item
4498The precedence of an operator determines how it nests with other operators.
4499All the tokens declared in a single precedence declaration have equal
4500precedence and nest together according to their associativity.
4501When two tokens declared in different precedence declarations associate,
4502the one declared later has the higher precedence and is grouped first.
4503@end itemize
4504
ab7f29f8
JD
4505For backward compatibility, there is a confusing difference between the
4506argument lists of @code{%token} and precedence declarations.
4507Only a @code{%token} can associate a literal string with a token type name.
4508A precedence declaration always interprets a literal string as a reference to a
4509separate token.
4510For example:
4511
4512@example
4513%left OR "<=" // Does not declare an alias.
4514%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4515@end example
4516
342b8b6e 4517@node Union Decl
bfa74976
RS
4518@subsection The Collection of Value Types
4519@cindex declaring value types
4520@cindex value types, declaring
4521@findex %union
4522
287c78f6
PE
4523The @code{%union} declaration specifies the entire collection of
4524possible data types for semantic values. The keyword @code{%union} is
4525followed by braced code containing the same thing that goes inside a
4526@code{union} in C@.
bfa74976
RS
4527
4528For example:
4529
4530@example
4531@group
4532%union @{
4533 double val;
4534 symrec *tptr;
4535@}
4536@end group
4537@end example
4538
4539@noindent
4540This says that the two alternative types are @code{double} and @code{symrec
4541*}. They are given names @code{val} and @code{tptr}; these names are used
4542in the @code{%token} and @code{%type} declarations to pick one of the types
4543for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4544
8a4281b9 4545As an extension to POSIX, a tag is allowed after the
6273355b
PE
4546@code{union}. For example:
4547
4548@example
4549@group
4550%union value @{
4551 double val;
4552 symrec *tptr;
4553@}
4554@end group
4555@end example
4556
d6ca7905 4557@noindent
6273355b
PE
4558specifies the union tag @code{value}, so the corresponding C type is
4559@code{union value}. If you do not specify a tag, it defaults to
4560@code{YYSTYPE}.
4561
8a4281b9 4562As another extension to POSIX, you may specify multiple
d6ca7905
PE
4563@code{%union} declarations; their contents are concatenated. However,
4564only the first @code{%union} declaration can specify a tag.
4565
6273355b 4566Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4567a semicolon after the closing brace.
4568
ddc8ede1
PE
4569Instead of @code{%union}, you can define and use your own union type
4570@code{YYSTYPE} if your grammar contains at least one
4571@samp{<@var{type}>} tag. For example, you can put the following into
4572a header file @file{parser.h}:
4573
4574@example
4575@group
4576union YYSTYPE @{
4577 double val;
4578 symrec *tptr;
4579@};
4580typedef union YYSTYPE YYSTYPE;
4581@end group
4582@end example
4583
4584@noindent
4585and then your grammar can use the following
4586instead of @code{%union}:
4587
4588@example
4589@group
4590%@{
4591#include "parser.h"
4592%@}
4593%type <val> expr
4594%token <tptr> ID
4595@end group
4596@end example
4597
342b8b6e 4598@node Type Decl
bfa74976
RS
4599@subsection Nonterminal Symbols
4600@cindex declaring value types, nonterminals
4601@cindex value types, nonterminals, declaring
4602@findex %type
4603
4604@noindent
4605When you use @code{%union} to specify multiple value types, you must
4606declare the value type of each nonterminal symbol for which values are
4607used. This is done with a @code{%type} declaration, like this:
4608
4609@example
4610%type <@var{type}> @var{nonterminal}@dots{}
4611@end example
4612
4613@noindent
704a47c4
AD
4614Here @var{nonterminal} is the name of a nonterminal symbol, and
4615@var{type} is the name given in the @code{%union} to the alternative
4616that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4617can give any number of nonterminal symbols in the same @code{%type}
4618declaration, if they have the same value type. Use spaces to separate
4619the symbol names.
bfa74976 4620
931c7513
RS
4621You can also declare the value type of a terminal symbol. To do this,
4622use the same @code{<@var{type}>} construction in a declaration for the
4623terminal symbol. All kinds of token declarations allow
4624@code{<@var{type}>}.
4625
18d192f0
AD
4626@node Initial Action Decl
4627@subsection Performing Actions before Parsing
4628@findex %initial-action
4629
4630Sometimes your parser needs to perform some initializations before
4631parsing. The @code{%initial-action} directive allows for such arbitrary
4632code.
4633
4634@deffn {Directive} %initial-action @{ @var{code} @}
4635@findex %initial-action
287c78f6 4636Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4637@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4638@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4639@code{%parse-param}.
18d192f0
AD
4640@end deffn
4641
451364ed
AD
4642For instance, if your locations use a file name, you may use
4643
4644@example
48b16bbc 4645%parse-param @{ char const *file_name @};
451364ed
AD
4646%initial-action
4647@{
4626a15d 4648 @@$.initialize (file_name);
451364ed
AD
4649@};
4650@end example
4651
18d192f0 4652
72f889cc
AD
4653@node Destructor Decl
4654@subsection Freeing Discarded Symbols
4655@cindex freeing discarded symbols
4656@findex %destructor
12e35840 4657@findex <*>
3ebecc24 4658@findex <>
a85284cf
AD
4659During error recovery (@pxref{Error Recovery}), symbols already pushed
4660on the stack and tokens coming from the rest of the file are discarded
4661until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4662or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4663symbols on the stack must be discarded. Even if the parser succeeds, it
4664must discard the start symbol.
258b75ca
PE
4665
4666When discarded symbols convey heap based information, this memory is
4667lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4668in traditional compilers, it is unacceptable for programs like shells or
4669protocol implementations that may parse and execute indefinitely.
258b75ca 4670
a85284cf
AD
4671The @code{%destructor} directive defines code that is called when a
4672symbol is automatically discarded.
72f889cc
AD
4673
4674@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4675@findex %destructor
287c78f6
PE
4676Invoke the braced @var{code} whenever the parser discards one of the
4677@var{symbols}.
4b367315 4678Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4679with the discarded symbol, and @code{@@$} designates its location.
4680The additional parser parameters are also available (@pxref{Parser Function, ,
4681The Parser Function @code{yyparse}}).
ec5479ce 4682
b2a0b7ca
JD
4683When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4684per-symbol @code{%destructor}.
4685You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4686tag among @var{symbols}.
b2a0b7ca 4687In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4688grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4689per-symbol @code{%destructor}.
4690
12e35840 4691Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4692(These default forms are experimental.
4693More user feedback will help to determine whether they should become permanent
4694features.)
3ebecc24 4695You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4696exactly one @code{%destructor} declaration in your grammar file.
4697The parser will invoke the @var{code} associated with one of these whenever it
4698discards any user-defined grammar symbol that has no per-symbol and no per-type
4699@code{%destructor}.
4700The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4701symbol for which you have formally declared a semantic type tag (@code{%type}
4702counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4703The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4704symbol that has no declared semantic type tag.
72f889cc
AD
4705@end deffn
4706
b2a0b7ca 4707@noindent
12e35840 4708For example:
72f889cc 4709
c93f22fc 4710@example
ec5479ce
JD
4711%union @{ char *string; @}
4712%token <string> STRING1
4713%token <string> STRING2
4714%type <string> string1
4715%type <string> string2
b2a0b7ca
JD
4716%union @{ char character; @}
4717%token <character> CHR
4718%type <character> chr
12e35840
JD
4719%token TAGLESS
4720
b2a0b7ca 4721%destructor @{ @} <character>
12e35840
JD
4722%destructor @{ free ($$); @} <*>
4723%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4724%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
c93f22fc 4725@end example
72f889cc
AD
4726
4727@noindent
b2a0b7ca
JD
4728guarantees that, when the parser discards any user-defined symbol that has a
4729semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4730to @code{free} by default.
ec5479ce
JD
4731However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4732prints its line number to @code{stdout}.
4733It performs only the second @code{%destructor} in this case, so it invokes
4734@code{free} only once.
12e35840
JD
4735Finally, the parser merely prints a message whenever it discards any symbol,
4736such as @code{TAGLESS}, that has no semantic type tag.
4737
4738A Bison-generated parser invokes the default @code{%destructor}s only for
4739user-defined as opposed to Bison-defined symbols.
4740For example, the parser will not invoke either kind of default
4741@code{%destructor} for the special Bison-defined symbols @code{$accept},
4742@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4743none of which you can reference in your grammar.
4744It also will not invoke either for the @code{error} token (@pxref{Table of
4745Symbols, ,error}), which is always defined by Bison regardless of whether you
4746reference it in your grammar.
4747However, it may invoke one of them for the end token (token 0) if you
4748redefine it from @code{$end} to, for example, @code{END}:
3508ce36 4749
c93f22fc 4750@example
3508ce36 4751%token END 0
c93f22fc 4752@end example
3508ce36 4753
12e35840
JD
4754@cindex actions in mid-rule
4755@cindex mid-rule actions
4756Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4757mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4758That is, Bison does not consider a mid-rule to have a semantic value if you
4759do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4760(where @var{n} is the right-hand side symbol position of the mid-rule) in
4761any later action in that rule. However, if you do reference either, the
4762Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4763it discards the mid-rule symbol.
12e35840 4764
3508ce36
JD
4765@ignore
4766@noindent
4767In the future, it may be possible to redefine the @code{error} token as a
4768nonterminal that captures the discarded symbols.
4769In that case, the parser will invoke the default destructor for it as well.
4770@end ignore
4771
e757bb10
AD
4772@sp 1
4773
4774@cindex discarded symbols
4775@dfn{Discarded symbols} are the following:
4776
4777@itemize
4778@item
4779stacked symbols popped during the first phase of error recovery,
4780@item
4781incoming terminals during the second phase of error recovery,
4782@item
742e4900 4783the current lookahead and the entire stack (except the current
9d9b8b70 4784right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4785@item
4786the start symbol, when the parser succeeds.
e757bb10
AD
4787@end itemize
4788
9d9b8b70
PE
4789The parser can @dfn{return immediately} because of an explicit call to
4790@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4791exhaustion.
4792
29553547 4793Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4794error via @code{YYERROR} are not discarded automatically. As a rule
4795of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4796the memory.
e757bb10 4797
93c150b6
AD
4798@node Printer Decl
4799@subsection Printing Semantic Values
4800@cindex printing semantic values
4801@findex %printer
4802@findex <*>
4803@findex <>
4804When run-time traces are enabled (@pxref{Tracing, ,Tracing Your Parser}),
4805the parser reports its actions, such as reductions. When a symbol involved
4806in an action is reported, only its kind is displayed, as the parser cannot
4807know how semantic values should be formatted.
4808
4809The @code{%printer} directive defines code that is called when a symbol is
4810reported. Its syntax is the same as @code{%destructor} (@pxref{Destructor
4811Decl, , Freeing Discarded Symbols}).
4812
4813@deffn {Directive} %printer @{ @var{code} @} @var{symbols}
4814@findex %printer
4815@vindex yyoutput
4816@c This is the same text as for %destructor.
4817Invoke the braced @var{code} whenever the parser displays one of the
4818@var{symbols}. Within @var{code}, @code{yyoutput} denotes the output stream
4819(a @code{FILE*} in C, and an @code{std::ostream&} in C++),
4820@code{$$} designates the semantic value associated with the symbol, and
4821@code{@@$} its location. The additional parser parameters are also
4822available (@pxref{Parser Function, , The Parser Function @code{yyparse}}).
4823
4824The @var{symbols} are defined as for @code{%destructor} (@pxref{Destructor
4825Decl, , Freeing Discarded Symbols}.): they can be per-type (e.g.,
4826@samp{<ival>}), per-symbol (e.g., @samp{exp}, @samp{NUM}, @samp{"float"}),
4827typed per-default (i.e., @samp{<*>}, or untyped per-default (i.e.,
4828@samp{<>}).
4829@end deffn
4830
4831@noindent
4832For example:
4833
4834@example
4835%union @{ char *string; @}
4836%token <string> STRING1
4837%token <string> STRING2
4838%type <string> string1
4839%type <string> string2
4840%union @{ char character; @}
4841%token <character> CHR
4842%type <character> chr
4843%token TAGLESS
4844
4845%printer @{ fprintf (yyoutput, "'%c'", $$); @} <character>
4846%printer @{ fprintf (yyoutput, "&%p", $$); @} <*>
4847%printer @{ fprintf (yyoutput, "\"%s\"", $$); @} STRING1 string1
4848%printer @{ fprintf (yyoutput, "<>"); @} <>
4849@end example
4850
4851@noindent
4852guarantees that, when the parser print any symbol that has a semantic type
4853tag other than @code{<character>}, it display the address of the semantic
4854value by default. However, when the parser displays a @code{STRING1} or a
4855@code{string1}, it formats it as a string in double quotes. It performs
4856only the second @code{%printer} in this case, so it prints only once.
4857Finally, the parser print @samp{<>} for any symbol, such as @code{TAGLESS},
4858that has no semantic type tag. See also
4859
4860
342b8b6e 4861@node Expect Decl
bfa74976
RS
4862@subsection Suppressing Conflict Warnings
4863@cindex suppressing conflict warnings
4864@cindex preventing warnings about conflicts
4865@cindex warnings, preventing
4866@cindex conflicts, suppressing warnings of
4867@findex %expect
d6328241 4868@findex %expect-rr
bfa74976
RS
4869
4870Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4871(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4872have harmless shift/reduce conflicts which are resolved in a predictable
4873way and would be difficult to eliminate. It is desirable to suppress
4874the warning about these conflicts unless the number of conflicts
4875changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4876
4877The declaration looks like this:
4878
4879@example
4880%expect @var{n}
4881@end example
4882
035aa4a0
PE
4883Here @var{n} is a decimal integer. The declaration says there should
4884be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4885Bison reports an error if the number of shift/reduce conflicts differs
4886from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4887
eb45ef3b 4888For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4889serious, and should be eliminated entirely. Bison will always report
8a4281b9 4890reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4891parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4892there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4893also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4894in GLR parsers, using the declaration:
d6328241
PH
4895
4896@example
4897%expect-rr @var{n}
4898@end example
4899
bfa74976
RS
4900In general, using @code{%expect} involves these steps:
4901
4902@itemize @bullet
4903@item
4904Compile your grammar without @code{%expect}. Use the @samp{-v} option
4905to get a verbose list of where the conflicts occur. Bison will also
4906print the number of conflicts.
4907
4908@item
4909Check each of the conflicts to make sure that Bison's default
4910resolution is what you really want. If not, rewrite the grammar and
4911go back to the beginning.
4912
4913@item
4914Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4915number which Bison printed. With GLR parsers, add an
035aa4a0 4916@code{%expect-rr} declaration as well.
bfa74976
RS
4917@end itemize
4918
93d7dde9
JD
4919Now Bison will report an error if you introduce an unexpected conflict,
4920but will keep silent otherwise.
bfa74976 4921
342b8b6e 4922@node Start Decl
bfa74976
RS
4923@subsection The Start-Symbol
4924@cindex declaring the start symbol
4925@cindex start symbol, declaring
4926@cindex default start symbol
4927@findex %start
4928
4929Bison assumes by default that the start symbol for the grammar is the first
4930nonterminal specified in the grammar specification section. The programmer
4931may override this restriction with the @code{%start} declaration as follows:
4932
4933@example
4934%start @var{symbol}
4935@end example
4936
342b8b6e 4937@node Pure Decl
bfa74976
RS
4938@subsection A Pure (Reentrant) Parser
4939@cindex reentrant parser
4940@cindex pure parser
d9df47b6 4941@findex %define api.pure
bfa74976
RS
4942
4943A @dfn{reentrant} program is one which does not alter in the course of
4944execution; in other words, it consists entirely of @dfn{pure} (read-only)
4945code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4946for example, a nonreentrant program may not be safe to call from a signal
4947handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4948program must be called only within interlocks.
4949
70811b85 4950Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4951suitable for most uses, and it permits compatibility with Yacc. (The
4952standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4953statically allocated variables for communication with @code{yylex},
4954including @code{yylval} and @code{yylloc}.)
bfa74976 4955
70811b85 4956Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4957declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4958reentrant. It looks like this:
bfa74976
RS
4959
4960@example
d9df47b6 4961%define api.pure
bfa74976
RS
4962@end example
4963
70811b85
RS
4964The result is that the communication variables @code{yylval} and
4965@code{yylloc} become local variables in @code{yyparse}, and a different
4966calling convention is used for the lexical analyzer function
4967@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4968Parsers}, for the details of this. The variable @code{yynerrs}
4969becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4970of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4971Reporting Function @code{yyerror}}). The convention for calling
4972@code{yyparse} itself is unchanged.
4973
4974Whether the parser is pure has nothing to do with the grammar rules.
4975You can generate either a pure parser or a nonreentrant parser from any
4976valid grammar.
bfa74976 4977
9987d1b3
JD
4978@node Push Decl
4979@subsection A Push Parser
4980@cindex push parser
4981@cindex push parser
67212941 4982@findex %define api.push-pull
9987d1b3 4983
59da312b
JD
4984(The current push parsing interface is experimental and may evolve.
4985More user feedback will help to stabilize it.)
4986
f4101aa6
AD
4987A pull parser is called once and it takes control until all its input
4988is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4989each time a new token is made available.
4990
f4101aa6 4991A push parser is typically useful when the parser is part of a
9987d1b3 4992main event loop in the client's application. This is typically
f4101aa6
AD
4993a requirement of a GUI, when the main event loop needs to be triggered
4994within a certain time period.
9987d1b3 4995
d782395d
JD
4996Normally, Bison generates a pull parser.
4997The following Bison declaration says that you want the parser to be a push
35c1e5f0 4998parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4999
5000@example
cf499cff 5001%define api.push-pull push
9987d1b3
JD
5002@end example
5003
5004In almost all cases, you want to ensure that your push parser is also
5005a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 5006time you should create an impure push parser is to have backwards
9987d1b3
JD
5007compatibility with the impure Yacc pull mode interface. Unless you know
5008what you are doing, your declarations should look like this:
5009
5010@example
d9df47b6 5011%define api.pure
cf499cff 5012%define api.push-pull push
9987d1b3
JD
5013@end example
5014
f4101aa6
AD
5015There is a major notable functional difference between the pure push parser
5016and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
5017many parser instances, of the same type of parser, in memory at the same time.
5018An impure push parser should only use one parser at a time.
5019
5020When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
5021the generated parser. @code{yypstate} is a structure that the generated
5022parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
5023function that will create a new parser instance. @code{yypstate_delete}
5024will free the resources associated with the corresponding parser instance.
f4101aa6 5025Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
5026token is available to provide the parser. A trivial example
5027of using a pure push parser would look like this:
5028
5029@example
5030int status;
5031yypstate *ps = yypstate_new ();
5032do @{
5033 status = yypush_parse (ps, yylex (), NULL);
5034@} while (status == YYPUSH_MORE);
5035yypstate_delete (ps);
5036@end example
5037
5038If the user decided to use an impure push parser, a few things about
f4101aa6 5039the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
5040a global variable instead of a variable in the @code{yypush_parse} function.
5041For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 5042changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
5043example would thus look like this:
5044
5045@example
5046extern int yychar;
5047int status;
5048yypstate *ps = yypstate_new ();
5049do @{
5050 yychar = yylex ();
5051 status = yypush_parse (ps);
5052@} while (status == YYPUSH_MORE);
5053yypstate_delete (ps);
5054@end example
5055
f4101aa6 5056That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
5057for use by the next invocation of the @code{yypush_parse} function.
5058
f4101aa6 5059Bison also supports both the push parser interface along with the pull parser
9987d1b3 5060interface in the same generated parser. In order to get this functionality,
cf499cff
JD
5061you should replace the @samp{%define api.push-pull push} declaration with the
5062@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 5063the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
5064and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
5065would be used. However, the user should note that it is implemented in the
d782395d
JD
5066generated parser by calling @code{yypull_parse}.
5067This makes the @code{yyparse} function that is generated with the
cf499cff 5068@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
5069@code{yyparse} function. If the user
5070calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
5071stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
5072and then @code{yypull_parse} the rest of the input stream. If you would like
5073to switch back and forth between between parsing styles, you would have to
5074write your own @code{yypull_parse} function that knows when to quit looking
5075for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
5076like this:
5077
5078@example
5079yypstate *ps = yypstate_new ();
5080yypull_parse (ps); /* Will call the lexer */
5081yypstate_delete (ps);
5082@end example
5083
67501061 5084Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
5085the generated parser with @samp{%define api.push-pull both} as it did for
5086@samp{%define api.push-pull push}.
9987d1b3 5087
342b8b6e 5088@node Decl Summary
bfa74976
RS
5089@subsection Bison Declaration Summary
5090@cindex Bison declaration summary
5091@cindex declaration summary
5092@cindex summary, Bison declaration
5093
d8988b2f 5094Here is a summary of the declarations used to define a grammar:
bfa74976 5095
18b519c0 5096@deffn {Directive} %union
bfa74976
RS
5097Declare the collection of data types that semantic values may have
5098(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 5099@end deffn
bfa74976 5100
18b519c0 5101@deffn {Directive} %token
bfa74976
RS
5102Declare a terminal symbol (token type name) with no precedence
5103or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 5104@end deffn
bfa74976 5105
18b519c0 5106@deffn {Directive} %right
bfa74976
RS
5107Declare a terminal symbol (token type name) that is right-associative
5108(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5109@end deffn
bfa74976 5110
18b519c0 5111@deffn {Directive} %left
bfa74976
RS
5112Declare a terminal symbol (token type name) that is left-associative
5113(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 5114@end deffn
bfa74976 5115
18b519c0 5116@deffn {Directive} %nonassoc
bfa74976 5117Declare a terminal symbol (token type name) that is nonassociative
bfa74976 5118(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5119Using it in a way that would be associative is a syntax error.
5120@end deffn
5121
91d2c560 5122@ifset defaultprec
39a06c25 5123@deffn {Directive} %default-prec
22fccf95 5124Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5125(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5126@end deffn
91d2c560 5127@end ifset
bfa74976 5128
18b519c0 5129@deffn {Directive} %type
bfa74976
RS
5130Declare the type of semantic values for a nonterminal symbol
5131(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5132@end deffn
bfa74976 5133
18b519c0 5134@deffn {Directive} %start
89cab50d
AD
5135Specify the grammar's start symbol (@pxref{Start Decl, ,The
5136Start-Symbol}).
18b519c0 5137@end deffn
bfa74976 5138
18b519c0 5139@deffn {Directive} %expect
bfa74976
RS
5140Declare the expected number of shift-reduce conflicts
5141(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5142@end deffn
5143
bfa74976 5144
d8988b2f
AD
5145@sp 1
5146@noindent
5147In order to change the behavior of @command{bison}, use the following
5148directives:
5149
148d66d8 5150@deffn {Directive} %code @{@var{code}@}
e0c07222 5151@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5152@findex %code
e0c07222
JD
5153Insert @var{code} verbatim into the output parser source at the
5154default location or at the location specified by @var{qualifier}.
5155@xref{%code Summary}.
148d66d8
JD
5156@end deffn
5157
18b519c0 5158@deffn {Directive} %debug
60aa04a2 5159Instrument the parser for traces. Obsoleted by @samp{%define
fa819509 5160parse.trace}.
ec3bc396 5161@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5162@end deffn
d8988b2f 5163
35c1e5f0
JD
5164@deffn {Directive} %define @var{variable}
5165@deffnx {Directive} %define @var{variable} @var{value}
5166@deffnx {Directive} %define @var{variable} "@var{value}"
5167Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5168@end deffn
5169
5170@deffn {Directive} %defines
5171Write a parser header file containing macro definitions for the token
5172type names defined in the grammar as well as a few other declarations.
5173If the parser implementation file is named @file{@var{name}.c} then
5174the parser header file is named @file{@var{name}.h}.
5175
5176For C parsers, the parser header file declares @code{YYSTYPE} unless
5177@code{YYSTYPE} is already defined as a macro or you have used a
5178@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5179you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5180Value Type}) with components that require other definitions, or if you
5181have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5182Type, ,Data Types of Semantic Values}), you need to arrange for these
5183definitions to be propagated to all modules, e.g., by putting them in
5184a prerequisite header that is included both by your parser and by any
5185other module that needs @code{YYSTYPE}.
5186
5187Unless your parser is pure, the parser header file declares
5188@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5189(Reentrant) Parser}.
5190
5191If you have also used locations, the parser header file declares
303834cc
JD
5192@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5193@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5194
5195This parser header file is normally essential if you wish to put the
5196definition of @code{yylex} in a separate source file, because
5197@code{yylex} typically needs to be able to refer to the
5198above-mentioned declarations and to the token type codes. @xref{Token
5199Values, ,Semantic Values of Tokens}.
5200
5201@findex %code requires
5202@findex %code provides
5203If you have declared @code{%code requires} or @code{%code provides}, the output
5204header also contains their code.
5205@xref{%code Summary}.
5206@end deffn
5207
5208@deffn {Directive} %defines @var{defines-file}
5209Same as above, but save in the file @var{defines-file}.
5210@end deffn
5211
5212@deffn {Directive} %destructor
5213Specify how the parser should reclaim the memory associated to
5214discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5215@end deffn
5216
5217@deffn {Directive} %file-prefix "@var{prefix}"
5218Specify a prefix to use for all Bison output file names. The names
5219are chosen as if the grammar file were named @file{@var{prefix}.y}.
5220@end deffn
5221
5222@deffn {Directive} %language "@var{language}"
5223Specify the programming language for the generated parser. Currently
5224supported languages include C, C++, and Java.
5225@var{language} is case-insensitive.
5226
5227This directive is experimental and its effect may be modified in future
5228releases.
5229@end deffn
5230
5231@deffn {Directive} %locations
5232Generate the code processing the locations (@pxref{Action Features,
5233,Special Features for Use in Actions}). This mode is enabled as soon as
5234the grammar uses the special @samp{@@@var{n}} tokens, but if your
5235grammar does not use it, using @samp{%locations} allows for more
5236accurate syntax error messages.
5237@end deffn
5238
5239@deffn {Directive} %name-prefix "@var{prefix}"
5240Rename the external symbols used in the parser so that they start with
5241@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5242in C parsers
5243is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5244@code{yylval}, @code{yychar}, @code{yydebug}, and
5245(if locations are used) @code{yylloc}. If you use a push parser,
5246@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5247@code{yypstate_new} and @code{yypstate_delete} will
5248also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5249names become @code{c_parse}, @code{c_lex}, and so on.
5250For C++ parsers, see the @samp{%define api.namespace} documentation in this
5251section.
5252@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5253@end deffn
5254
5255@ifset defaultprec
5256@deffn {Directive} %no-default-prec
5257Do not assign a precedence to rules lacking an explicit @code{%prec}
5258modifier (@pxref{Contextual Precedence, ,Context-Dependent
5259Precedence}).
5260@end deffn
5261@end ifset
5262
5263@deffn {Directive} %no-lines
5264Don't generate any @code{#line} preprocessor commands in the parser
5265implementation file. Ordinarily Bison writes these commands in the
5266parser implementation file so that the C compiler and debuggers will
5267associate errors and object code with your source file (the grammar
5268file). This directive causes them to associate errors with the parser
5269implementation file, treating it as an independent source file in its
5270own right.
5271@end deffn
5272
5273@deffn {Directive} %output "@var{file}"
5274Specify @var{file} for the parser implementation file.
5275@end deffn
5276
5277@deffn {Directive} %pure-parser
5278Deprecated version of @samp{%define api.pure} (@pxref{%define
5279Summary,,api.pure}), for which Bison is more careful to warn about
5280unreasonable usage.
5281@end deffn
5282
5283@deffn {Directive} %require "@var{version}"
5284Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5285Require a Version of Bison}.
5286@end deffn
5287
5288@deffn {Directive} %skeleton "@var{file}"
5289Specify the skeleton to use.
5290
5291@c You probably don't need this option unless you are developing Bison.
5292@c You should use @code{%language} if you want to specify the skeleton for a
5293@c different language, because it is clearer and because it will always choose the
5294@c correct skeleton for non-deterministic or push parsers.
5295
5296If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5297file in the Bison installation directory.
5298If it does, @var{file} is an absolute file name or a file name relative to the
5299directory of the grammar file.
5300This is similar to how most shells resolve commands.
5301@end deffn
5302
5303@deffn {Directive} %token-table
5304Generate an array of token names in the parser implementation file.
5305The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5306the name of the token whose internal Bison token code number is
5307@var{i}. The first three elements of @code{yytname} correspond to the
5308predefined tokens @code{"$end"}, @code{"error"}, and
5309@code{"$undefined"}; after these come the symbols defined in the
5310grammar file.
5311
5312The name in the table includes all the characters needed to represent
5313the token in Bison. For single-character literals and literal
5314strings, this includes the surrounding quoting characters and any
5315escape sequences. For example, the Bison single-character literal
5316@code{'+'} corresponds to a three-character name, represented in C as
5317@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5318corresponds to a five-character name, represented in C as
5319@code{"\"\\\\/\""}.
5320
5321When you specify @code{%token-table}, Bison also generates macro
5322definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5323@code{YYNRULES}, and @code{YYNSTATES}:
5324
5325@table @code
5326@item YYNTOKENS
5327The highest token number, plus one.
5328@item YYNNTS
5329The number of nonterminal symbols.
5330@item YYNRULES
5331The number of grammar rules,
5332@item YYNSTATES
5333The number of parser states (@pxref{Parser States}).
5334@end table
5335@end deffn
5336
5337@deffn {Directive} %verbose
5338Write an extra output file containing verbose descriptions of the
5339parser states and what is done for each type of lookahead token in
5340that state. @xref{Understanding, , Understanding Your Parser}, for more
5341information.
5342@end deffn
5343
5344@deffn {Directive} %yacc
5345Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5346including its naming conventions. @xref{Bison Options}, for more.
5347@end deffn
5348
5349
5350@node %define Summary
5351@subsection %define Summary
51151d91
JD
5352
5353There are many features of Bison's behavior that can be controlled by
5354assigning the feature a single value. For historical reasons, some
5355such features are assigned values by dedicated directives, such as
5356@code{%start}, which assigns the start symbol. However, newer such
5357features are associated with variables, which are assigned by the
5358@code{%define} directive:
5359
c1d19e10 5360@deffn {Directive} %define @var{variable}
cf499cff 5361@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5362@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5363Define @var{variable} to @var{value}.
9611cfa2 5364
51151d91
JD
5365@var{value} must be placed in quotation marks if it contains any
5366character other than a letter, underscore, period, or non-initial dash
5367or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5368to specifying @code{""}.
9611cfa2 5369
51151d91
JD
5370It is an error if a @var{variable} is defined by @code{%define}
5371multiple times, but see @ref{Bison Options,,-D
5372@var{name}[=@var{value}]}.
5373@end deffn
cf499cff 5374
51151d91
JD
5375The rest of this section summarizes variables and values that
5376@code{%define} accepts.
9611cfa2 5377
51151d91
JD
5378Some @var{variable}s take Boolean values. In this case, Bison will
5379complain if the variable definition does not meet one of the following
5380four conditions:
9611cfa2
JD
5381
5382@enumerate
cf499cff 5383@item @code{@var{value}} is @code{true}
9611cfa2 5384
cf499cff
JD
5385@item @code{@var{value}} is omitted (or @code{""} is specified).
5386This is equivalent to @code{true}.
9611cfa2 5387
cf499cff 5388@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5389
5390@item @var{variable} is never defined.
c6abeab1 5391In this case, Bison selects a default value.
9611cfa2 5392@end enumerate
148d66d8 5393
c6abeab1
JD
5394What @var{variable}s are accepted, as well as their meanings and default
5395values, depend on the selected target language and/or the parser
5396skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5397Summary,,%skeleton}).
5398Unaccepted @var{variable}s produce an error.
793fbca5
JD
5399Some of the accepted @var{variable}s are:
5400
fa819509 5401@table @code
6b5a0de9 5402@c ================================================== api.namespace
67501061
AD
5403@item api.namespace
5404@findex %define api.namespace
5405@itemize
5406@item Languages(s): C++
5407
f1b238df 5408@item Purpose: Specify the namespace for the parser class.
67501061
AD
5409For example, if you specify:
5410
c93f22fc 5411@example
67501061 5412%define api.namespace "foo::bar"
c93f22fc 5413@end example
67501061
AD
5414
5415Bison uses @code{foo::bar} verbatim in references such as:
5416
c93f22fc 5417@example
67501061 5418foo::bar::parser::semantic_type
c93f22fc 5419@end example
67501061
AD
5420
5421However, to open a namespace, Bison removes any leading @code{::} and then
5422splits on any remaining occurrences:
5423
c93f22fc 5424@example
67501061
AD
5425namespace foo @{ namespace bar @{
5426 class position;
5427 class location;
5428@} @}
c93f22fc 5429@end example
67501061
AD
5430
5431@item Accepted Values:
5432Any absolute or relative C++ namespace reference without a trailing
5433@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5434
5435@item Default Value:
5436The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5437This usage of @code{%name-prefix} is for backward compatibility and can
5438be confusing since @code{%name-prefix} also specifies the textual prefix
5439for the lexical analyzer function. Thus, if you specify
5440@code{%name-prefix}, it is best to also specify @samp{%define
5441api.namespace} so that @code{%name-prefix} @emph{only} affects the
5442lexical analyzer function. For example, if you specify:
5443
c93f22fc 5444@example
67501061
AD
5445%define api.namespace "foo"
5446%name-prefix "bar::"
c93f22fc 5447@end example
67501061
AD
5448
5449The parser namespace is @code{foo} and @code{yylex} is referenced as
5450@code{bar::lex}.
5451@end itemize
5452@c namespace
5453
5454
4b3847c3 5455@c ================================================== api.prefix
5458913a 5456@item api.prefix
4b3847c3
AD
5457@findex %define api.prefix
5458
5459@itemize @bullet
5460@item Language(s): All
5461
5462@item Purpose: Rename exported symbols
5463@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5464
5465@item Accepted Values: String
5466
5467@item Default Value: @code{yy}
e358222b
AD
5468
5469@item History: introduced in Bison 2.6
4b3847c3 5470@end itemize
67501061
AD
5471
5472@c ================================================== api.pure
d9df47b6
JD
5473@item api.pure
5474@findex %define api.pure
5475
5476@itemize @bullet
5477@item Language(s): C
5478
5479@item Purpose: Request a pure (reentrant) parser program.
5480@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5481
5482@item Accepted Values: Boolean
5483
cf499cff 5484@item Default Value: @code{false}
d9df47b6 5485@end itemize
71b00ed8 5486@c api.pure
d9df47b6 5487
67501061
AD
5488
5489
5490@c ================================================== api.push-pull
67212941
JD
5491@item api.push-pull
5492@findex %define api.push-pull
793fbca5
JD
5493
5494@itemize @bullet
eb45ef3b 5495@item Language(s): C (deterministic parsers only)
793fbca5 5496
f1b238df 5497@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5498@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5499(The current push parsing interface is experimental and may evolve.
5500More user feedback will help to stabilize it.)
793fbca5 5501
cf499cff 5502@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5503
cf499cff 5504@item Default Value: @code{pull}
793fbca5 5505@end itemize
67212941 5506@c api.push-pull
71b00ed8 5507
6b5a0de9
AD
5508
5509
5510@c ================================================== api.tokens.prefix
4c6622c2
AD
5511@item api.tokens.prefix
5512@findex %define api.tokens.prefix
5513
5514@itemize
5515@item Languages(s): all
5516
5517@item Purpose:
5518Add a prefix to the token names when generating their definition in the
5519target language. For instance
5520
5521@example
5522%token FILE for ERROR
5523%define api.tokens.prefix "TOK_"
5524%%
5525start: FILE for ERROR;
5526@end example
5527
5528@noindent
5529generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5530and @code{TOK_ERROR} in the generated source files. In particular, the
5531scanner must use these prefixed token names, while the grammar itself
5532may still use the short names (as in the sample rule given above). The
5533generated informational files (@file{*.output}, @file{*.xml},
5534@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5535and @ref{Calc++ Scanner}, for a complete example.
5536
5537@item Accepted Values:
5538Any string. Should be a valid identifier prefix in the target language,
5539in other words, it should typically be an identifier itself (sequence of
5540letters, underscores, and ---not at the beginning--- digits).
5541
5542@item Default Value:
5543empty
5544@end itemize
5545@c api.tokens.prefix
5546
5547
3cdc21cf 5548@c ================================================== lex_symbol
84072495 5549@item lex_symbol
3cdc21cf
AD
5550@findex %define lex_symbol
5551
5552@itemize @bullet
5553@item Language(s):
5554C++
5555
5556@item Purpose:
5557When variant-based semantic values are enabled (@pxref{C++ Variants}),
5558request that symbols be handled as a whole (type, value, and possibly
5559location) in the scanner. @xref{Complete Symbols}, for details.
5560
5561@item Accepted Values:
5562Boolean.
5563
5564@item Default Value:
5565@code{false}
5566@end itemize
5567@c lex_symbol
5568
5569
6b5a0de9
AD
5570@c ================================================== lr.default-reductions
5571
5bab9d08 5572@item lr.default-reductions
5bab9d08 5573@findex %define lr.default-reductions
eb45ef3b
JD
5574
5575@itemize @bullet
5576@item Language(s): all
5577
fcf834f9 5578@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5579contain default reductions. @xref{Default Reductions}. (The ability to
5580specify where default reductions should be used is experimental. More user
5581feedback will help to stabilize it.)
eb45ef3b 5582
f0ad1b2f 5583@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5584@item Default Value:
5585@itemize
cf499cff 5586@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5587@item @code{most} otherwise.
eb45ef3b
JD
5588@end itemize
5589@end itemize
5590
6b5a0de9
AD
5591@c ============================================ lr.keep-unreachable-states
5592
67212941
JD
5593@item lr.keep-unreachable-states
5594@findex %define lr.keep-unreachable-states
31984206
JD
5595
5596@itemize @bullet
5597@item Language(s): all
f1b238df 5598@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5599remain in the parser tables. @xref{Unreachable States}.
31984206 5600@item Accepted Values: Boolean
cf499cff 5601@item Default Value: @code{false}
31984206 5602@end itemize
67212941 5603@c lr.keep-unreachable-states
31984206 5604
6b5a0de9
AD
5605@c ================================================== lr.type
5606
eb45ef3b
JD
5607@item lr.type
5608@findex %define lr.type
eb45ef3b
JD
5609
5610@itemize @bullet
5611@item Language(s): all
5612
f1b238df 5613@item Purpose: Specify the type of parser tables within the
7fceb615 5614LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5615More user feedback will help to stabilize it.)
5616
7fceb615 5617@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5618
cf499cff 5619@item Default Value: @code{lalr}
eb45ef3b
JD
5620@end itemize
5621
67501061
AD
5622
5623@c ================================================== namespace
793fbca5
JD
5624@item namespace
5625@findex %define namespace
67501061 5626Obsoleted by @code{api.namespace}
fa819509
AD
5627@c namespace
5628
31b850d2
AD
5629
5630@c ================================================== parse.assert
0c90a1f5
AD
5631@item parse.assert
5632@findex %define parse.assert
5633
5634@itemize
5635@item Languages(s): C++
5636
5637@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5638In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5639constructed and
0c90a1f5
AD
5640destroyed properly. This option checks these constraints.
5641
5642@item Accepted Values: Boolean
5643
5644@item Default Value: @code{false}
5645@end itemize
5646@c parse.assert
5647
31b850d2
AD
5648
5649@c ================================================== parse.error
5650@item parse.error
5651@findex %define parse.error
5652@itemize
5653@item Languages(s):
fcf834f9 5654all
31b850d2
AD
5655@item Purpose:
5656Control the kind of error messages passed to the error reporting
5657function. @xref{Error Reporting, ,The Error Reporting Function
5658@code{yyerror}}.
5659@item Accepted Values:
5660@itemize
cf499cff 5661@item @code{simple}
31b850d2
AD
5662Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5663error"}}.
cf499cff 5664@item @code{verbose}
7fceb615
JD
5665Error messages report the unexpected token, and possibly the expected ones.
5666However, this report can often be incorrect when LAC is not enabled
5667(@pxref{LAC}).
31b850d2
AD
5668@end itemize
5669
5670@item Default Value:
5671@code{simple}
5672@end itemize
5673@c parse.error
5674
5675
fcf834f9
JD
5676@c ================================================== parse.lac
5677@item parse.lac
5678@findex %define parse.lac
fcf834f9
JD
5679
5680@itemize
7fceb615 5681@item Languages(s): C (deterministic parsers only)
fcf834f9 5682
8a4281b9 5683@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5684syntax error handling. @xref{LAC}.
fcf834f9 5685@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5686@item Default Value: @code{none}
5687@end itemize
5688@c parse.lac
5689
31b850d2 5690@c ================================================== parse.trace
fa819509
AD
5691@item parse.trace
5692@findex %define parse.trace
5693
5694@itemize
60aa04a2 5695@item Languages(s): C, C++, Java
fa819509
AD
5696
5697@item Purpose: Require parser instrumentation for tracing.
60aa04a2
AD
5698@xref{Tracing, ,Tracing Your Parser}.
5699
5700In C/C++, define the macro @code{YYDEBUG} (or @code{@var{prefix}DEBUG} with
5701@samp{%define api.prefix @var{prefix}}), see @ref{Multiple Parsers,
5702,Multiple Parsers in the Same Program}) to 1 in the parser implementation
ff7571c0 5703file if it is not already defined, so that the debugging facilities are
60aa04a2 5704compiled.
793fbca5 5705
fa819509
AD
5706@item Accepted Values: Boolean
5707
5708@item Default Value: @code{false}
5709@end itemize
fa819509 5710@c parse.trace
99c08fb6 5711
3cdc21cf
AD
5712@c ================================================== variant
5713@item variant
5714@findex %define variant
5715
5716@itemize @bullet
5717@item Language(s):
5718C++
5719
5720@item Purpose:
f1b238df 5721Request variant-based semantic values.
3cdc21cf
AD
5722@xref{C++ Variants}.
5723
5724@item Accepted Values:
5725Boolean.
5726
5727@item Default Value:
5728@code{false}
5729@end itemize
5730@c variant
99c08fb6 5731@end table
592d0b1e 5732
d8988b2f 5733
e0c07222
JD
5734@node %code Summary
5735@subsection %code Summary
e0c07222 5736@findex %code
e0c07222 5737@cindex Prologue
51151d91
JD
5738
5739The @code{%code} directive inserts code verbatim into the output
5740parser source at any of a predefined set of locations. It thus serves
5741as a flexible and user-friendly alternative to the traditional Yacc
5742prologue, @code{%@{@var{code}%@}}. This section summarizes the
5743functionality of @code{%code} for the various target languages
5744supported by Bison. For a detailed discussion of how to use
5745@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5746is advantageous to do so, @pxref{Prologue Alternatives}.
5747
5748@deffn {Directive} %code @{@var{code}@}
5749This is the unqualified form of the @code{%code} directive. It
5750inserts @var{code} verbatim at a language-dependent default location
5751in the parser implementation.
5752
e0c07222 5753For C/C++, the default location is the parser implementation file
51151d91
JD
5754after the usual contents of the parser header file. Thus, the
5755unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5756
5757For Java, the default location is inside the parser class.
5758@end deffn
5759
5760@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5761This is the qualified form of the @code{%code} directive.
51151d91
JD
5762@var{qualifier} identifies the purpose of @var{code} and thus the
5763location(s) where Bison should insert it. That is, if you need to
5764specify location-sensitive @var{code} that does not belong at the
5765default location selected by the unqualified @code{%code} form, use
5766this form instead.
5767@end deffn
5768
5769For any particular qualifier or for the unqualified form, if there are
5770multiple occurrences of the @code{%code} directive, Bison concatenates
5771the specified code in the order in which it appears in the grammar
5772file.
e0c07222 5773
51151d91
JD
5774Not all qualifiers are accepted for all target languages. Unaccepted
5775qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5776
84072495 5777@table @code
e0c07222
JD
5778@item requires
5779@findex %code requires
5780
5781@itemize @bullet
5782@item Language(s): C, C++
5783
5784@item Purpose: This is the best place to write dependency code required for
5785@code{YYSTYPE} and @code{YYLTYPE}.
5786In other words, it's the best place to define types referenced in @code{%union}
5787directives, and it's the best place to override Bison's default @code{YYSTYPE}
5788and @code{YYLTYPE} definitions.
5789
5790@item Location(s): The parser header file and the parser implementation file
5791before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5792definitions.
5793@end itemize
5794
5795@item provides
5796@findex %code provides
5797
5798@itemize @bullet
5799@item Language(s): C, C++
5800
5801@item Purpose: This is the best place to write additional definitions and
5802declarations that should be provided to other modules.
5803
5804@item Location(s): The parser header file and the parser implementation
5805file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5806token definitions.
5807@end itemize
5808
5809@item top
5810@findex %code top
5811
5812@itemize @bullet
5813@item Language(s): C, C++
5814
5815@item Purpose: The unqualified @code{%code} or @code{%code requires}
5816should usually be more appropriate than @code{%code top}. However,
5817occasionally it is necessary to insert code much nearer the top of the
5818parser implementation file. For example:
5819
c93f22fc 5820@example
e0c07222
JD
5821%code top @{
5822 #define _GNU_SOURCE
5823 #include <stdio.h>
5824@}
c93f22fc 5825@end example
e0c07222
JD
5826
5827@item Location(s): Near the top of the parser implementation file.
5828@end itemize
5829
5830@item imports
5831@findex %code imports
5832
5833@itemize @bullet
5834@item Language(s): Java
5835
5836@item Purpose: This is the best place to write Java import directives.
5837
5838@item Location(s): The parser Java file after any Java package directive and
5839before any class definitions.
5840@end itemize
84072495 5841@end table
e0c07222 5842
51151d91
JD
5843Though we say the insertion locations are language-dependent, they are
5844technically skeleton-dependent. Writers of non-standard skeletons
5845however should choose their locations consistently with the behavior
5846of the standard Bison skeletons.
e0c07222 5847
d8988b2f 5848
342b8b6e 5849@node Multiple Parsers
bfa74976
RS
5850@section Multiple Parsers in the Same Program
5851
5852Most programs that use Bison parse only one language and therefore contain
4b3847c3
AD
5853only one Bison parser. But what if you want to parse more than one language
5854with the same program? Then you need to avoid name conflicts between
5855different definitions of functions and variables such as @code{yyparse},
5856@code{yylval}. To use different parsers from the same compilation unit, you
5857also need to avoid conflicts on types and macros (e.g., @code{YYSTYPE})
5858exported in the generated header.
5859
5860The easy way to do this is to define the @code{%define} variable
e358222b
AD
5861@code{api.prefix}. With different @code{api.prefix}s it is guaranteed that
5862headers do not conflict when included together, and that compiled objects
5863can be linked together too. Specifying @samp{%define api.prefix
5864@var{prefix}} (or passing the option @samp{-Dapi.prefix=@var{prefix}}, see
5865@ref{Invocation, ,Invoking Bison}) renames the interface functions and
5866variables of the Bison parser to start with @var{prefix} instead of
5867@samp{yy}, and all the macros to start by @var{PREFIX} (i.e., @var{prefix}
5868upper-cased) instead of @samp{YY}.
4b3847c3
AD
5869
5870The renamed symbols include @code{yyparse}, @code{yylex}, @code{yyerror},
5871@code{yynerrs}, @code{yylval}, @code{yylloc}, @code{yychar} and
5872@code{yydebug}. If you use a push parser, @code{yypush_parse},
5873@code{yypull_parse}, @code{yypstate}, @code{yypstate_new} and
5874@code{yypstate_delete} will also be renamed. The renamed macros include
e358222b
AD
5875@code{YYSTYPE}, @code{YYLTYPE}, and @code{YYDEBUG}, which is treated
5876specifically --- more about this below.
4b3847c3
AD
5877
5878For example, if you use @samp{%define api.prefix c}, the names become
5879@code{cparse}, @code{clex}, @dots{}, @code{CSTYPE}, @code{CLTYPE}, and so
5880on.
5881
5882The @code{%define} variable @code{api.prefix} works in two different ways.
5883In the implementation file, it works by adding macro definitions to the
5884beginning of the parser implementation file, defining @code{yyparse} as
5885@code{@var{prefix}parse}, and so on:
5886
5887@example
5888#define YYSTYPE CTYPE
5889#define yyparse cparse
5890#define yylval clval
5891...
5892YYSTYPE yylval;
5893int yyparse (void);
5894@end example
5895
5896This effectively substitutes one name for the other in the entire parser
5897implementation file, thus the ``original'' names (@code{yylex},
5898@code{YYSTYPE}, @dots{}) are also usable in the parser implementation file.
5899
5900However, in the parser header file, the symbols are defined renamed, for
5901instance:
bfa74976 5902
4b3847c3
AD
5903@example
5904extern CSTYPE clval;
5905int cparse (void);
5906@end example
bfa74976 5907
e358222b
AD
5908The macro @code{YYDEBUG} is commonly used to enable the tracing support in
5909parsers. To comply with this tradition, when @code{api.prefix} is used,
5910@code{YYDEBUG} (not renamed) is used as a default value:
5911
5912@example
5913/* Enabling traces. */
5914#ifndef CDEBUG
5915# if defined YYDEBUG
5916# if YYDEBUG
5917# define CDEBUG 1
5918# else
5919# define CDEBUG 0
5920# endif
5921# else
5922# define CDEBUG 0
5923# endif
5924#endif
5925#if CDEBUG
5926extern int cdebug;
5927#endif
5928@end example
5929
5930@sp 2
5931
5932Prior to Bison 2.6, a feature similar to @code{api.prefix} was provided by
5933the obsolete directive @code{%name-prefix} (@pxref{Table of Symbols, ,Bison
5934Symbols}) and the option @code{--name-prefix} (@pxref{Bison Options}).
bfa74976 5935
342b8b6e 5936@node Interface
bfa74976
RS
5937@chapter Parser C-Language Interface
5938@cindex C-language interface
5939@cindex interface
5940
5941The Bison parser is actually a C function named @code{yyparse}. Here we
5942describe the interface conventions of @code{yyparse} and the other
5943functions that it needs to use.
5944
5945Keep in mind that the parser uses many C identifiers starting with
5946@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5947identifier (aside from those in this manual) in an action or in epilogue
5948in the grammar file, you are likely to run into trouble.
bfa74976
RS
5949
5950@menu
f5f419de
DJ
5951* Parser Function:: How to call @code{yyparse} and what it returns.
5952* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5953* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5954* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5955* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5956* Lexical:: You must supply a function @code{yylex}
5957 which reads tokens.
5958* Error Reporting:: You must supply a function @code{yyerror}.
5959* Action Features:: Special features for use in actions.
5960* Internationalization:: How to let the parser speak in the user's
5961 native language.
bfa74976
RS
5962@end menu
5963
342b8b6e 5964@node Parser Function
bfa74976
RS
5965@section The Parser Function @code{yyparse}
5966@findex yyparse
5967
5968You call the function @code{yyparse} to cause parsing to occur. This
5969function reads tokens, executes actions, and ultimately returns when it
5970encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5971write an action which directs @code{yyparse} to return immediately
5972without reading further.
bfa74976 5973
2a8d363a
AD
5974
5975@deftypefun int yyparse (void)
bfa74976
RS
5976The value returned by @code{yyparse} is 0 if parsing was successful (return
5977is due to end-of-input).
5978
b47dbebe
PE
5979The value is 1 if parsing failed because of invalid input, i.e., input
5980that contains a syntax error or that causes @code{YYABORT} to be
5981invoked.
5982
5983The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5984@end deftypefun
bfa74976
RS
5985
5986In an action, you can cause immediate return from @code{yyparse} by using
5987these macros:
5988
2a8d363a 5989@defmac YYACCEPT
bfa74976
RS
5990@findex YYACCEPT
5991Return immediately with value 0 (to report success).
2a8d363a 5992@end defmac
bfa74976 5993
2a8d363a 5994@defmac YYABORT
bfa74976
RS
5995@findex YYABORT
5996Return immediately with value 1 (to report failure).
2a8d363a
AD
5997@end defmac
5998
5999If you use a reentrant parser, you can optionally pass additional
6000parameter information to it in a reentrant way. To do so, use the
6001declaration @code{%parse-param}:
6002
2055a44e 6003@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6004@findex %parse-param
2055a44e
AD
6005Declare that one or more
6006@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 6007The @var{argument-declaration} is used when declaring
feeb0eda
PE
6008functions or prototypes. The last identifier in
6009@var{argument-declaration} must be the argument name.
2a8d363a
AD
6010@end deffn
6011
6012Here's an example. Write this in the parser:
6013
6014@example
2055a44e 6015%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
6016@end example
6017
6018@noindent
6019Then call the parser like this:
6020
6021@example
6022@{
6023 int nastiness, randomness;
6024 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
6025 value = yyparse (&nastiness, &randomness);
6026 @dots{}
6027@}
6028@end example
6029
6030@noindent
6031In the grammar actions, use expressions like this to refer to the data:
6032
6033@example
6034exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
6035@end example
6036
9987d1b3
JD
6037@node Push Parser Function
6038@section The Push Parser Function @code{yypush_parse}
6039@findex yypush_parse
6040
59da312b
JD
6041(The current push parsing interface is experimental and may evolve.
6042More user feedback will help to stabilize it.)
6043
f4101aa6 6044You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
6045function is available if either the @samp{%define api.push-pull push} or
6046@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6047@xref{Push Decl, ,A Push Parser}.
6048
6049@deftypefun int yypush_parse (yypstate *yyps)
ad60e80f
AD
6050The value returned by @code{yypush_parse} is the same as for yyparse with
6051the following exception: it returns @code{YYPUSH_MORE} if more input is
6052required to finish parsing the grammar.
9987d1b3
JD
6053@end deftypefun
6054
6055@node Pull Parser Function
6056@section The Pull Parser Function @code{yypull_parse}
6057@findex yypull_parse
6058
59da312b
JD
6059(The current push parsing interface is experimental and may evolve.
6060More user feedback will help to stabilize it.)
6061
f4101aa6 6062You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 6063stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 6064declaration is used.
9987d1b3
JD
6065@xref{Push Decl, ,A Push Parser}.
6066
6067@deftypefun int yypull_parse (yypstate *yyps)
6068The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
6069@end deftypefun
6070
6071@node Parser Create Function
6072@section The Parser Create Function @code{yystate_new}
6073@findex yypstate_new
6074
59da312b
JD
6075(The current push parsing interface is experimental and may evolve.
6076More user feedback will help to stabilize it.)
6077
f4101aa6 6078You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
6079This function is available if either the @samp{%define api.push-pull push} or
6080@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6081@xref{Push Decl, ,A Push Parser}.
6082
34a41a93 6083@deftypefun {yypstate*} yypstate_new (void)
f50bfcd6 6084The function will return a valid parser instance if there was memory available
333e670c
JD
6085or 0 if no memory was available.
6086In impure mode, it will also return 0 if a parser instance is currently
6087allocated.
9987d1b3
JD
6088@end deftypefun
6089
6090@node Parser Delete Function
6091@section The Parser Delete Function @code{yystate_delete}
6092@findex yypstate_delete
6093
59da312b
JD
6094(The current push parsing interface is experimental and may evolve.
6095More user feedback will help to stabilize it.)
6096
9987d1b3 6097You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
6098function is available if either the @samp{%define api.push-pull push} or
6099@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
6100@xref{Push Decl, ,A Push Parser}.
6101
6102@deftypefun void yypstate_delete (yypstate *yyps)
6103This function will reclaim the memory associated with a parser instance.
6104After this call, you should no longer attempt to use the parser instance.
6105@end deftypefun
bfa74976 6106
342b8b6e 6107@node Lexical
bfa74976
RS
6108@section The Lexical Analyzer Function @code{yylex}
6109@findex yylex
6110@cindex lexical analyzer
6111
6112The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
6113the input stream and returns them to the parser. Bison does not create
6114this function automatically; you must write it so that @code{yyparse} can
6115call it. The function is sometimes referred to as a lexical scanner.
6116
ff7571c0
JD
6117In simple programs, @code{yylex} is often defined at the end of the
6118Bison grammar file. If @code{yylex} is defined in a separate source
6119file, you need to arrange for the token-type macro definitions to be
6120available there. To do this, use the @samp{-d} option when you run
6121Bison, so that it will write these macro definitions into the separate
6122parser header file, @file{@var{name}.tab.h}, which you can include in
6123the other source files that need it. @xref{Invocation, ,Invoking
6124Bison}.
bfa74976
RS
6125
6126@menu
6127* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
6128* Token Values:: How @code{yylex} must return the semantic value
6129 of the token it has read.
6130* Token Locations:: How @code{yylex} must return the text location
6131 (line number, etc.) of the token, if the
6132 actions want that.
6133* Pure Calling:: How the calling convention differs in a pure parser
6134 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
6135@end menu
6136
342b8b6e 6137@node Calling Convention
bfa74976
RS
6138@subsection Calling Convention for @code{yylex}
6139
72d2299c
PE
6140The value that @code{yylex} returns must be the positive numeric code
6141for the type of token it has just found; a zero or negative value
6142signifies end-of-input.
bfa74976
RS
6143
6144When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
6145in the parser implementation file becomes a C macro whose definition
6146is the proper numeric code for that token type. So @code{yylex} can
6147use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
6148
6149When a token is referred to in the grammar rules by a character literal,
6150the numeric code for that character is also the code for the token type.
72d2299c
PE
6151So @code{yylex} can simply return that character code, possibly converted
6152to @code{unsigned char} to avoid sign-extension. The null character
6153must not be used this way, because its code is zero and that
bfa74976
RS
6154signifies end-of-input.
6155
6156Here is an example showing these things:
6157
6158@example
13863333
AD
6159int
6160yylex (void)
bfa74976
RS
6161@{
6162 @dots{}
72d2299c 6163 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
6164 return 0;
6165 @dots{}
6166 if (c == '+' || c == '-')
72d2299c 6167 return c; /* Assume token type for `+' is '+'. */
bfa74976 6168 @dots{}
72d2299c 6169 return INT; /* Return the type of the token. */
bfa74976
RS
6170 @dots{}
6171@}
6172@end example
6173
6174@noindent
6175This interface has been designed so that the output from the @code{lex}
6176utility can be used without change as the definition of @code{yylex}.
6177
931c7513
RS
6178If the grammar uses literal string tokens, there are two ways that
6179@code{yylex} can determine the token type codes for them:
6180
6181@itemize @bullet
6182@item
6183If the grammar defines symbolic token names as aliases for the
6184literal string tokens, @code{yylex} can use these symbolic names like
6185all others. In this case, the use of the literal string tokens in
6186the grammar file has no effect on @code{yylex}.
6187
6188@item
9ecbd125 6189@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 6190table. The index of the token in the table is the token type's code.
9ecbd125 6191The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 6192double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6193token's characters are escaped as necessary to be suitable as input
6194to Bison.
931c7513 6195
9e0876fb
PE
6196Here's code for looking up a multicharacter token in @code{yytname},
6197assuming that the characters of the token are stored in
6198@code{token_buffer}, and assuming that the token does not contain any
6199characters like @samp{"} that require escaping.
931c7513 6200
c93f22fc 6201@example
931c7513
RS
6202for (i = 0; i < YYNTOKENS; i++)
6203 @{
6204 if (yytname[i] != 0
6205 && yytname[i][0] == '"'
68449b3a
PE
6206 && ! strncmp (yytname[i] + 1, token_buffer,
6207 strlen (token_buffer))
931c7513
RS
6208 && yytname[i][strlen (token_buffer) + 1] == '"'
6209 && yytname[i][strlen (token_buffer) + 2] == 0)
6210 break;
6211 @}
c93f22fc 6212@end example
931c7513
RS
6213
6214The @code{yytname} table is generated only if you use the
8c9a50be 6215@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6216@end itemize
6217
342b8b6e 6218@node Token Values
bfa74976
RS
6219@subsection Semantic Values of Tokens
6220
6221@vindex yylval
9d9b8b70 6222In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6223be stored into the global variable @code{yylval}. When you are using
6224just one data type for semantic values, @code{yylval} has that type.
6225Thus, if the type is @code{int} (the default), you might write this in
6226@code{yylex}:
6227
6228@example
6229@group
6230 @dots{}
72d2299c
PE
6231 yylval = value; /* Put value onto Bison stack. */
6232 return INT; /* Return the type of the token. */
bfa74976
RS
6233 @dots{}
6234@end group
6235@end example
6236
6237When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6238made from the @code{%union} declaration (@pxref{Union Decl, ,The
6239Collection of Value Types}). So when you store a token's value, you
6240must use the proper member of the union. If the @code{%union}
6241declaration looks like this:
bfa74976
RS
6242
6243@example
6244@group
6245%union @{
6246 int intval;
6247 double val;
6248 symrec *tptr;
6249@}
6250@end group
6251@end example
6252
6253@noindent
6254then the code in @code{yylex} might look like this:
6255
6256@example
6257@group
6258 @dots{}
72d2299c
PE
6259 yylval.intval = value; /* Put value onto Bison stack. */
6260 return INT; /* Return the type of the token. */
bfa74976
RS
6261 @dots{}
6262@end group
6263@end example
6264
95923bd6
AD
6265@node Token Locations
6266@subsection Textual Locations of Tokens
bfa74976
RS
6267
6268@vindex yylloc
303834cc
JD
6269If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6270in actions to keep track of the textual locations of tokens and groupings,
6271then you must provide this information in @code{yylex}. The function
6272@code{yyparse} expects to find the textual location of a token just parsed
6273in the global variable @code{yylloc}. So @code{yylex} must store the proper
6274data in that variable.
847bf1f5
AD
6275
6276By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6277initialize the members that are going to be used by the actions. The
6278four members are called @code{first_line}, @code{first_column},
6279@code{last_line} and @code{last_column}. Note that the use of this
6280feature makes the parser noticeably slower.
bfa74976
RS
6281
6282@tindex YYLTYPE
6283The data type of @code{yylloc} has the name @code{YYLTYPE}.
6284
342b8b6e 6285@node Pure Calling
c656404a 6286@subsection Calling Conventions for Pure Parsers
bfa74976 6287
67501061 6288When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6289pure, reentrant parser, the global communication variables @code{yylval}
6290and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6291Parser}.) In such parsers the two global variables are replaced by
6292pointers passed as arguments to @code{yylex}. You must declare them as
6293shown here, and pass the information back by storing it through those
6294pointers.
bfa74976
RS
6295
6296@example
13863333
AD
6297int
6298yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6299@{
6300 @dots{}
6301 *lvalp = value; /* Put value onto Bison stack. */
6302 return INT; /* Return the type of the token. */
6303 @dots{}
6304@}
6305@end example
6306
6307If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6308textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6309this case, omit the second argument; @code{yylex} will be called with
6310only one argument.
6311
2055a44e 6312If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6313@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6314Function}). To pass additional arguments to both @code{yylex} and
6315@code{yyparse}, use @code{%param}.
e425e872 6316
2055a44e 6317@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6318@findex %lex-param
2055a44e
AD
6319Specify that @var{argument-declaration} are additional @code{yylex} argument
6320declarations. You may pass one or more such declarations, which is
6321equivalent to repeating @code{%lex-param}.
6322@end deffn
6323
6324@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6325@findex %param
6326Specify that @var{argument-declaration} are additional
6327@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6328@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6329@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6330declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6331@end deffn
e425e872 6332
2a8d363a 6333For instance:
e425e872
RS
6334
6335@example
2055a44e
AD
6336%lex-param @{scanner_mode *mode@}
6337%parse-param @{parser_mode *mode@}
6338%param @{environment_type *env@}
e425e872
RS
6339@end example
6340
6341@noindent
18ad57b3 6342results in the following signatures:
e425e872
RS
6343
6344@example
2055a44e
AD
6345int yylex (scanner_mode *mode, environment_type *env);
6346int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6347@end example
6348
67501061 6349If @samp{%define api.pure} is added:
c656404a
RS
6350
6351@example
2055a44e
AD
6352int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6353int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6354@end example
6355
2a8d363a 6356@noindent
67501061 6357and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6358
2a8d363a 6359@example
2055a44e
AD
6360int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6361 scanner_mode *mode, environment_type *env);
6362int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6363@end example
931c7513 6364
342b8b6e 6365@node Error Reporting
bfa74976
RS
6366@section The Error Reporting Function @code{yyerror}
6367@cindex error reporting function
6368@findex yyerror
6369@cindex parse error
6370@cindex syntax error
6371
31b850d2 6372The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6373whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6374action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6375macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6376in Actions}).
bfa74976
RS
6377
6378The Bison parser expects to report the error by calling an error
6379reporting function named @code{yyerror}, which you must supply. It is
6380called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6381receives one argument. For a syntax error, the string is normally
6382@w{@code{"syntax error"}}.
bfa74976 6383
31b850d2 6384@findex %define parse.error
7fceb615
JD
6385If you invoke @samp{%define parse.error verbose} in the Bison declarations
6386section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6387Bison provides a more verbose and specific error message string instead of
6388just plain @w{@code{"syntax error"}}. However, that message sometimes
6389contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6390
1a059451
PE
6391The parser can detect one other kind of error: memory exhaustion. This
6392can happen when the input contains constructions that are very deeply
bfa74976 6393nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6394parser normally extends its stack automatically up to a very large limit. But
6395if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6396fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6397
6398In some cases diagnostics like @w{@code{"syntax error"}} are
6399translated automatically from English to some other language before
6400they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6401
6402The following definition suffices in simple programs:
6403
6404@example
6405@group
13863333 6406void
38a92d50 6407yyerror (char const *s)
bfa74976
RS
6408@{
6409@end group
6410@group
6411 fprintf (stderr, "%s\n", s);
6412@}
6413@end group
6414@end example
6415
6416After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6417error recovery if you have written suitable error recovery grammar rules
6418(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6419immediately return 1.
6420
93724f13 6421Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6422an access to the current location.
8a4281b9 6423This is indeed the case for the GLR
2a8d363a 6424parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6425@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6426@code{yyerror} are:
6427
6428@example
38a92d50
PE
6429void yyerror (char const *msg); /* Yacc parsers. */
6430void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6431@end example
6432
feeb0eda 6433If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6434
6435@example
b317297e
PE
6436void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6437void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6438@end example
6439
8a4281b9 6440Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6441convention for absolutely pure parsers, i.e., when the calling
6442convention of @code{yylex} @emph{and} the calling convention of
67501061 6443@samp{%define api.pure} are pure.
d9df47b6 6444I.e.:
2a8d363a
AD
6445
6446@example
6447/* Location tracking. */
6448%locations
6449/* Pure yylex. */
d9df47b6 6450%define api.pure
feeb0eda 6451%lex-param @{int *nastiness@}
2a8d363a 6452/* Pure yyparse. */
feeb0eda
PE
6453%parse-param @{int *nastiness@}
6454%parse-param @{int *randomness@}
2a8d363a
AD
6455@end example
6456
6457@noindent
6458results in the following signatures for all the parser kinds:
6459
6460@example
6461int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6462int yyparse (int *nastiness, int *randomness);
93724f13
AD
6463void yyerror (YYLTYPE *locp,
6464 int *nastiness, int *randomness,
38a92d50 6465 char const *msg);
2a8d363a
AD
6466@end example
6467
1c0c3e95 6468@noindent
38a92d50
PE
6469The prototypes are only indications of how the code produced by Bison
6470uses @code{yyerror}. Bison-generated code always ignores the returned
6471value, so @code{yyerror} can return any type, including @code{void}.
6472Also, @code{yyerror} can be a variadic function; that is why the
6473message is always passed last.
6474
6475Traditionally @code{yyerror} returns an @code{int} that is always
6476ignored, but this is purely for historical reasons, and @code{void} is
6477preferable since it more accurately describes the return type for
6478@code{yyerror}.
93724f13 6479
bfa74976
RS
6480@vindex yynerrs
6481The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6482reported so far. Normally this variable is global; but if you
704a47c4
AD
6483request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6484then it is a local variable which only the actions can access.
bfa74976 6485
342b8b6e 6486@node Action Features
bfa74976
RS
6487@section Special Features for Use in Actions
6488@cindex summary, action features
6489@cindex action features summary
6490
6491Here is a table of Bison constructs, variables and macros that
6492are useful in actions.
6493
18b519c0 6494@deffn {Variable} $$
bfa74976
RS
6495Acts like a variable that contains the semantic value for the
6496grouping made by the current rule. @xref{Actions}.
18b519c0 6497@end deffn
bfa74976 6498
18b519c0 6499@deffn {Variable} $@var{n}
bfa74976
RS
6500Acts like a variable that contains the semantic value for the
6501@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6502@end deffn
bfa74976 6503
18b519c0 6504@deffn {Variable} $<@var{typealt}>$
bfa74976 6505Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6506specified by the @code{%union} declaration. @xref{Action Types, ,Data
6507Types of Values in Actions}.
18b519c0 6508@end deffn
bfa74976 6509
18b519c0 6510@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6511Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6512union specified by the @code{%union} declaration.
e0c471a9 6513@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6514@end deffn
bfa74976 6515
34a41a93 6516@deffn {Macro} YYABORT @code{;}
bfa74976
RS
6517Return immediately from @code{yyparse}, indicating failure.
6518@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6519@end deffn
bfa74976 6520
34a41a93 6521@deffn {Macro} YYACCEPT @code{;}
bfa74976
RS
6522Return immediately from @code{yyparse}, indicating success.
6523@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6524@end deffn
bfa74976 6525
34a41a93 6526@deffn {Macro} YYBACKUP (@var{token}, @var{value})@code{;}
bfa74976
RS
6527@findex YYBACKUP
6528Unshift a token. This macro is allowed only for rules that reduce
742e4900 6529a single value, and only when there is no lookahead token.
8a4281b9 6530It is also disallowed in GLR parsers.
742e4900 6531It installs a lookahead token with token type @var{token} and
bfa74976
RS
6532semantic value @var{value}; then it discards the value that was
6533going to be reduced by this rule.
6534
6535If the macro is used when it is not valid, such as when there is
742e4900 6536a lookahead token already, then it reports a syntax error with
bfa74976
RS
6537a message @samp{cannot back up} and performs ordinary error
6538recovery.
6539
6540In either case, the rest of the action is not executed.
18b519c0 6541@end deffn
bfa74976 6542
18b519c0 6543@deffn {Macro} YYEMPTY
742e4900 6544Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6545@end deffn
bfa74976 6546
32c29292 6547@deffn {Macro} YYEOF
742e4900 6548Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6549stream.
6550@end deffn
6551
34a41a93 6552@deffn {Macro} YYERROR @code{;}
bfa74976
RS
6553Cause an immediate syntax error. This statement initiates error
6554recovery just as if the parser itself had detected an error; however, it
6555does not call @code{yyerror}, and does not print any message. If you
6556want to print an error message, call @code{yyerror} explicitly before
6557the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6558@end deffn
bfa74976 6559
18b519c0 6560@deffn {Macro} YYRECOVERING
02103984
PE
6561@findex YYRECOVERING
6562The expression @code{YYRECOVERING ()} yields 1 when the parser
6563is recovering from a syntax error, and 0 otherwise.
bfa74976 6564@xref{Error Recovery}.
18b519c0 6565@end deffn
bfa74976 6566
18b519c0 6567@deffn {Variable} yychar
742e4900
JD
6568Variable containing either the lookahead token, or @code{YYEOF} when the
6569lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6570has been performed so the next token is not yet known.
6571Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6572Actions}).
742e4900 6573@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6574@end deffn
bfa74976 6575
34a41a93 6576@deffn {Macro} yyclearin @code{;}
742e4900 6577Discard the current lookahead token. This is useful primarily in
32c29292
JD
6578error rules.
6579Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6580Semantic Actions}).
6581@xref{Error Recovery}.
18b519c0 6582@end deffn
bfa74976 6583
34a41a93 6584@deffn {Macro} yyerrok @code{;}
bfa74976 6585Resume generating error messages immediately for subsequent syntax
13863333 6586errors. This is useful primarily in error rules.
bfa74976 6587@xref{Error Recovery}.
18b519c0 6588@end deffn
bfa74976 6589
32c29292 6590@deffn {Variable} yylloc
742e4900 6591Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6592to @code{YYEMPTY} or @code{YYEOF}.
6593Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6594Actions}).
6595@xref{Actions and Locations, ,Actions and Locations}.
6596@end deffn
6597
6598@deffn {Variable} yylval
742e4900 6599Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6600not set to @code{YYEMPTY} or @code{YYEOF}.
6601Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6602Actions}).
6603@xref{Actions, ,Actions}.
6604@end deffn
6605
18b519c0 6606@deffn {Value} @@$
847bf1f5 6607@findex @@$
303834cc
JD
6608Acts like a structure variable containing information on the textual
6609location of the grouping made by the current rule. @xref{Tracking
6610Locations}.
bfa74976 6611
847bf1f5
AD
6612@c Check if those paragraphs are still useful or not.
6613
6614@c @example
6615@c struct @{
6616@c int first_line, last_line;
6617@c int first_column, last_column;
6618@c @};
6619@c @end example
6620
6621@c Thus, to get the starting line number of the third component, you would
6622@c use @samp{@@3.first_line}.
bfa74976 6623
847bf1f5
AD
6624@c In order for the members of this structure to contain valid information,
6625@c you must make @code{yylex} supply this information about each token.
6626@c If you need only certain members, then @code{yylex} need only fill in
6627@c those members.
bfa74976 6628
847bf1f5 6629@c The use of this feature makes the parser noticeably slower.
18b519c0 6630@end deffn
847bf1f5 6631
18b519c0 6632@deffn {Value} @@@var{n}
847bf1f5 6633@findex @@@var{n}
303834cc
JD
6634Acts like a structure variable containing information on the textual
6635location of the @var{n}th component of the current rule. @xref{Tracking
6636Locations}.
18b519c0 6637@end deffn
bfa74976 6638
f7ab6a50
PE
6639@node Internationalization
6640@section Parser Internationalization
6641@cindex internationalization
6642@cindex i18n
6643@cindex NLS
6644@cindex gettext
6645@cindex bison-po
6646
6647A Bison-generated parser can print diagnostics, including error and
6648tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6649also supports outputting diagnostics in the user's native language. To
6650make this work, the user should set the usual environment variables.
6651@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6652For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6653set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6654encoding. The exact set of available locales depends on the user's
6655installation.
6656
6657The maintainer of a package that uses a Bison-generated parser enables
6658the internationalization of the parser's output through the following
8a4281b9
JD
6659steps. Here we assume a package that uses GNU Autoconf and
6660GNU Automake.
f7ab6a50
PE
6661
6662@enumerate
6663@item
30757c8c 6664@cindex bison-i18n.m4
8a4281b9 6665Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6666by the package---often called @file{m4}---copy the
6667@file{bison-i18n.m4} file installed by Bison under
6668@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6669For example:
6670
6671@example
6672cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6673@end example
6674
6675@item
30757c8c
PE
6676@findex BISON_I18N
6677@vindex BISON_LOCALEDIR
6678@vindex YYENABLE_NLS
f7ab6a50
PE
6679In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6680invocation, add an invocation of @code{BISON_I18N}. This macro is
6681defined in the file @file{bison-i18n.m4} that you copied earlier. It
6682causes @samp{configure} to find the value of the
30757c8c
PE
6683@code{BISON_LOCALEDIR} variable, and it defines the source-language
6684symbol @code{YYENABLE_NLS} to enable translations in the
6685Bison-generated parser.
f7ab6a50
PE
6686
6687@item
6688In the @code{main} function of your program, designate the directory
6689containing Bison's runtime message catalog, through a call to
6690@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6691For example:
6692
6693@example
6694bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6695@end example
6696
6697Typically this appears after any other call @code{bindtextdomain
6698(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6699@samp{BISON_LOCALEDIR} to be defined as a string through the
6700@file{Makefile}.
6701
6702@item
6703In the @file{Makefile.am} that controls the compilation of the @code{main}
6704function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6705either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6706
6707@example
6708DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6709@end example
6710
6711or:
6712
6713@example
6714AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6715@end example
6716
6717@item
6718Finally, invoke the command @command{autoreconf} to generate the build
6719infrastructure.
6720@end enumerate
6721
bfa74976 6722
342b8b6e 6723@node Algorithm
13863333
AD
6724@chapter The Bison Parser Algorithm
6725@cindex Bison parser algorithm
bfa74976
RS
6726@cindex algorithm of parser
6727@cindex shifting
6728@cindex reduction
6729@cindex parser stack
6730@cindex stack, parser
6731
6732As Bison reads tokens, it pushes them onto a stack along with their
6733semantic values. The stack is called the @dfn{parser stack}. Pushing a
6734token is traditionally called @dfn{shifting}.
6735
6736For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6737@samp{3} to come. The stack will have four elements, one for each token
6738that was shifted.
6739
6740But the stack does not always have an element for each token read. When
6741the last @var{n} tokens and groupings shifted match the components of a
6742grammar rule, they can be combined according to that rule. This is called
6743@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6744single grouping whose symbol is the result (left hand side) of that rule.
6745Running the rule's action is part of the process of reduction, because this
6746is what computes the semantic value of the resulting grouping.
6747
6748For example, if the infix calculator's parser stack contains this:
6749
6750@example
67511 + 5 * 3
6752@end example
6753
6754@noindent
6755and the next input token is a newline character, then the last three
6756elements can be reduced to 15 via the rule:
6757
6758@example
6759expr: expr '*' expr;
6760@end example
6761
6762@noindent
6763Then the stack contains just these three elements:
6764
6765@example
67661 + 15
6767@end example
6768
6769@noindent
6770At this point, another reduction can be made, resulting in the single value
677116. Then the newline token can be shifted.
6772
6773The parser tries, by shifts and reductions, to reduce the entire input down
6774to a single grouping whose symbol is the grammar's start-symbol
6775(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6776
6777This kind of parser is known in the literature as a bottom-up parser.
6778
6779@menu
742e4900 6780* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6781* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6782* Precedence:: Operator precedence works by resolving conflicts.
6783* Contextual Precedence:: When an operator's precedence depends on context.
6784* Parser States:: The parser is a finite-state-machine with stack.
6785* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6786* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6787* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6788* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6789* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6790@end menu
6791
742e4900
JD
6792@node Lookahead
6793@section Lookahead Tokens
6794@cindex lookahead token
bfa74976
RS
6795
6796The Bison parser does @emph{not} always reduce immediately as soon as the
6797last @var{n} tokens and groupings match a rule. This is because such a
6798simple strategy is inadequate to handle most languages. Instead, when a
6799reduction is possible, the parser sometimes ``looks ahead'' at the next
6800token in order to decide what to do.
6801
6802When a token is read, it is not immediately shifted; first it becomes the
742e4900 6803@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6804perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6805the lookahead token remains off to the side. When no more reductions
6806should take place, the lookahead token is shifted onto the stack. This
bfa74976 6807does not mean that all possible reductions have been done; depending on the
742e4900 6808token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6809application.
6810
742e4900 6811Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6812expressions which contain binary addition operators and postfix unary
6813factorial operators (@samp{!}), and allow parentheses for grouping.
6814
6815@example
6816@group
5e9b6624
AD
6817expr:
6818 term '+' expr
6819| term
6820;
bfa74976
RS
6821@end group
6822
6823@group
5e9b6624
AD
6824term:
6825 '(' expr ')'
6826| term '!'
6827| NUMBER
6828;
bfa74976
RS
6829@end group
6830@end example
6831
6832Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6833should be done? If the following token is @samp{)}, then the first three
6834tokens must be reduced to form an @code{expr}. This is the only valid
6835course, because shifting the @samp{)} would produce a sequence of symbols
6836@w{@code{term ')'}}, and no rule allows this.
6837
6838If the following token is @samp{!}, then it must be shifted immediately so
6839that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6840parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6841@code{expr}. It would then be impossible to shift the @samp{!} because
6842doing so would produce on the stack the sequence of symbols @code{expr
6843'!'}. No rule allows that sequence.
6844
6845@vindex yychar
32c29292
JD
6846@vindex yylval
6847@vindex yylloc
742e4900 6848The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6849Its semantic value and location, if any, are stored in the variables
6850@code{yylval} and @code{yylloc}.
bfa74976
RS
6851@xref{Action Features, ,Special Features for Use in Actions}.
6852
342b8b6e 6853@node Shift/Reduce
bfa74976
RS
6854@section Shift/Reduce Conflicts
6855@cindex conflicts
6856@cindex shift/reduce conflicts
6857@cindex dangling @code{else}
6858@cindex @code{else}, dangling
6859
6860Suppose we are parsing a language which has if-then and if-then-else
6861statements, with a pair of rules like this:
6862
6863@example
6864@group
6865if_stmt:
5e9b6624
AD
6866 IF expr THEN stmt
6867| IF expr THEN stmt ELSE stmt
6868;
bfa74976
RS
6869@end group
6870@end example
6871
6872@noindent
6873Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6874terminal symbols for specific keyword tokens.
6875
742e4900 6876When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6877contents of the stack (assuming the input is valid) are just right for
6878reduction by the first rule. But it is also legitimate to shift the
6879@code{ELSE}, because that would lead to eventual reduction by the second
6880rule.
6881
6882This situation, where either a shift or a reduction would be valid, is
6883called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6884these conflicts by choosing to shift, unless otherwise directed by
6885operator precedence declarations. To see the reason for this, let's
6886contrast it with the other alternative.
6887
6888Since the parser prefers to shift the @code{ELSE}, the result is to attach
6889the else-clause to the innermost if-statement, making these two inputs
6890equivalent:
6891
6892@example
6893if x then if y then win (); else lose;
6894
6895if x then do; if y then win (); else lose; end;
6896@end example
6897
6898But if the parser chose to reduce when possible rather than shift, the
6899result would be to attach the else-clause to the outermost if-statement,
6900making these two inputs equivalent:
6901
6902@example
6903if x then if y then win (); else lose;
6904
6905if x then do; if y then win (); end; else lose;
6906@end example
6907
6908The conflict exists because the grammar as written is ambiguous: either
6909parsing of the simple nested if-statement is legitimate. The established
6910convention is that these ambiguities are resolved by attaching the
6911else-clause to the innermost if-statement; this is what Bison accomplishes
6912by choosing to shift rather than reduce. (It would ideally be cleaner to
6913write an unambiguous grammar, but that is very hard to do in this case.)
6914This particular ambiguity was first encountered in the specifications of
6915Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6916
6917To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6918conflicts, use the @code{%expect @var{n}} declaration.
6919There will be no warning as long as the number of shift/reduce conflicts
6920is exactly @var{n}, and Bison will report an error if there is a
6921different number.
bfa74976
RS
6922@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6923
6924The definition of @code{if_stmt} above is solely to blame for the
6925conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6926rules. Here is a complete Bison grammar file that actually manifests
6927the conflict:
bfa74976
RS
6928
6929@example
6930@group
6931%token IF THEN ELSE variable
6932%%
6933@end group
6934@group
5e9b6624
AD
6935stmt:
6936 expr
6937| if_stmt
6938;
bfa74976
RS
6939@end group
6940
6941@group
6942if_stmt:
5e9b6624
AD
6943 IF expr THEN stmt
6944| IF expr THEN stmt ELSE stmt
6945;
bfa74976
RS
6946@end group
6947
5e9b6624
AD
6948expr:
6949 variable
6950;
bfa74976
RS
6951@end example
6952
342b8b6e 6953@node Precedence
bfa74976
RS
6954@section Operator Precedence
6955@cindex operator precedence
6956@cindex precedence of operators
6957
6958Another situation where shift/reduce conflicts appear is in arithmetic
6959expressions. Here shifting is not always the preferred resolution; the
6960Bison declarations for operator precedence allow you to specify when to
6961shift and when to reduce.
6962
6963@menu
6964* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6965* Using Precedence:: How to specify precedence and associativity.
6966* Precedence Only:: How to specify precedence only.
bfa74976
RS
6967* Precedence Examples:: How these features are used in the previous example.
6968* How Precedence:: How they work.
6969@end menu
6970
342b8b6e 6971@node Why Precedence
bfa74976
RS
6972@subsection When Precedence is Needed
6973
6974Consider the following ambiguous grammar fragment (ambiguous because the
6975input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6976
6977@example
6978@group
5e9b6624
AD
6979expr:
6980 expr '-' expr
6981| expr '*' expr
6982| expr '<' expr
6983| '(' expr ')'
6984@dots{}
6985;
bfa74976
RS
6986@end group
6987@end example
6988
6989@noindent
6990Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6991should it reduce them via the rule for the subtraction operator? It
6992depends on the next token. Of course, if the next token is @samp{)}, we
6993must reduce; shifting is invalid because no single rule can reduce the
6994token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6995the next token is @samp{*} or @samp{<}, we have a choice: either
6996shifting or reduction would allow the parse to complete, but with
6997different results.
6998
6999To decide which one Bison should do, we must consider the results. If
7000the next operator token @var{op} is shifted, then it must be reduced
7001first in order to permit another opportunity to reduce the difference.
7002The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
7003hand, if the subtraction is reduced before shifting @var{op}, the result
7004is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
7005reduce should depend on the relative precedence of the operators
7006@samp{-} and @var{op}: @samp{*} should be shifted first, but not
7007@samp{<}.
bfa74976
RS
7008
7009@cindex associativity
7010What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
7011@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
7012operators we prefer the former, which is called @dfn{left association}.
7013The latter alternative, @dfn{right association}, is desirable for
7014assignment operators. The choice of left or right association is a
7015matter of whether the parser chooses to shift or reduce when the stack
742e4900 7016contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 7017makes right-associativity.
bfa74976 7018
342b8b6e 7019@node Using Precedence
bfa74976
RS
7020@subsection Specifying Operator Precedence
7021@findex %left
bfa74976 7022@findex %nonassoc
d78f0ac9
AD
7023@findex %precedence
7024@findex %right
bfa74976
RS
7025
7026Bison allows you to specify these choices with the operator precedence
7027declarations @code{%left} and @code{%right}. Each such declaration
7028contains a list of tokens, which are operators whose precedence and
7029associativity is being declared. The @code{%left} declaration makes all
7030those operators left-associative and the @code{%right} declaration makes
7031them right-associative. A third alternative is @code{%nonassoc}, which
7032declares that it is a syntax error to find the same operator twice ``in a
7033row''.
d78f0ac9
AD
7034The last alternative, @code{%precedence}, allows to define only
7035precedence and no associativity at all. As a result, any
7036associativity-related conflict that remains will be reported as an
7037compile-time error. The directive @code{%nonassoc} creates run-time
7038error: using the operator in a associative way is a syntax error. The
7039directive @code{%precedence} creates compile-time errors: an operator
7040@emph{can} be involved in an associativity-related conflict, contrary to
7041what expected the grammar author.
bfa74976
RS
7042
7043The relative precedence of different operators is controlled by the
d78f0ac9
AD
7044order in which they are declared. The first precedence/associativity
7045declaration in the file declares the operators whose
bfa74976
RS
7046precedence is lowest, the next such declaration declares the operators
7047whose precedence is a little higher, and so on.
7048
d78f0ac9
AD
7049@node Precedence Only
7050@subsection Specifying Precedence Only
7051@findex %precedence
7052
8a4281b9 7053Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
7054@code{%nonassoc}, which all defines precedence and associativity, little
7055attention is paid to the fact that precedence cannot be defined without
7056defining associativity. Yet, sometimes, when trying to solve a
7057conflict, precedence suffices. In such a case, using @code{%left},
7058@code{%right}, or @code{%nonassoc} might hide future (associativity
7059related) conflicts that would remain hidden.
7060
7061The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 7062Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
7063in the following situation, where the period denotes the current parsing
7064state:
7065
7066@example
7067if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
7068@end example
7069
7070The conflict involves the reduction of the rule @samp{IF expr THEN
7071stmt}, which precedence is by default that of its last token
7072(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
7073disambiguation (attach the @code{else} to the closest @code{if}),
7074shifting must be preferred, i.e., the precedence of @code{ELSE} must be
7075higher than that of @code{THEN}. But neither is expected to be involved
7076in an associativity related conflict, which can be specified as follows.
7077
7078@example
7079%precedence THEN
7080%precedence ELSE
7081@end example
7082
7083The unary-minus is another typical example where associativity is
7084usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 7085Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
7086used to declare the precedence of @code{NEG}, which is more than needed
7087since it also defines its associativity. While this is harmless in the
7088traditional example, who knows how @code{NEG} might be used in future
7089evolutions of the grammar@dots{}
7090
342b8b6e 7091@node Precedence Examples
bfa74976
RS
7092@subsection Precedence Examples
7093
7094In our example, we would want the following declarations:
7095
7096@example
7097%left '<'
7098%left '-'
7099%left '*'
7100@end example
7101
7102In a more complete example, which supports other operators as well, we
7103would declare them in groups of equal precedence. For example, @code{'+'} is
7104declared with @code{'-'}:
7105
7106@example
7107%left '<' '>' '=' NE LE GE
7108%left '+' '-'
7109%left '*' '/'
7110@end example
7111
7112@noindent
7113(Here @code{NE} and so on stand for the operators for ``not equal''
7114and so on. We assume that these tokens are more than one character long
7115and therefore are represented by names, not character literals.)
7116
342b8b6e 7117@node How Precedence
bfa74976
RS
7118@subsection How Precedence Works
7119
7120The first effect of the precedence declarations is to assign precedence
7121levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
7122precedence levels to certain rules: each rule gets its precedence from
7123the last terminal symbol mentioned in the components. (You can also
7124specify explicitly the precedence of a rule. @xref{Contextual
7125Precedence, ,Context-Dependent Precedence}.)
7126
7127Finally, the resolution of conflicts works by comparing the precedence
742e4900 7128of the rule being considered with that of the lookahead token. If the
704a47c4
AD
7129token's precedence is higher, the choice is to shift. If the rule's
7130precedence is higher, the choice is to reduce. If they have equal
7131precedence, the choice is made based on the associativity of that
7132precedence level. The verbose output file made by @samp{-v}
7133(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
7134resolved.
bfa74976
RS
7135
7136Not all rules and not all tokens have precedence. If either the rule or
742e4900 7137the lookahead token has no precedence, then the default is to shift.
bfa74976 7138
342b8b6e 7139@node Contextual Precedence
bfa74976
RS
7140@section Context-Dependent Precedence
7141@cindex context-dependent precedence
7142@cindex unary operator precedence
7143@cindex precedence, context-dependent
7144@cindex precedence, unary operator
7145@findex %prec
7146
7147Often the precedence of an operator depends on the context. This sounds
7148outlandish at first, but it is really very common. For example, a minus
7149sign typically has a very high precedence as a unary operator, and a
7150somewhat lower precedence (lower than multiplication) as a binary operator.
7151
d78f0ac9
AD
7152The Bison precedence declarations
7153can only be used once for a given token; so a token has
bfa74976
RS
7154only one precedence declared in this way. For context-dependent
7155precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 7156modifier for rules.
bfa74976
RS
7157
7158The @code{%prec} modifier declares the precedence of a particular rule by
7159specifying a terminal symbol whose precedence should be used for that rule.
7160It's not necessary for that symbol to appear otherwise in the rule. The
7161modifier's syntax is:
7162
7163@example
7164%prec @var{terminal-symbol}
7165@end example
7166
7167@noindent
7168and it is written after the components of the rule. Its effect is to
7169assign the rule the precedence of @var{terminal-symbol}, overriding
7170the precedence that would be deduced for it in the ordinary way. The
7171altered rule precedence then affects how conflicts involving that rule
7172are resolved (@pxref{Precedence, ,Operator Precedence}).
7173
7174Here is how @code{%prec} solves the problem of unary minus. First, declare
7175a precedence for a fictitious terminal symbol named @code{UMINUS}. There
7176are no tokens of this type, but the symbol serves to stand for its
7177precedence:
7178
7179@example
7180@dots{}
7181%left '+' '-'
7182%left '*'
7183%left UMINUS
7184@end example
7185
7186Now the precedence of @code{UMINUS} can be used in specific rules:
7187
7188@example
7189@group
5e9b6624
AD
7190exp:
7191 @dots{}
7192| exp '-' exp
7193 @dots{}
7194| '-' exp %prec UMINUS
bfa74976
RS
7195@end group
7196@end example
7197
91d2c560 7198@ifset defaultprec
39a06c25
PE
7199If you forget to append @code{%prec UMINUS} to the rule for unary
7200minus, Bison silently assumes that minus has its usual precedence.
7201This kind of problem can be tricky to debug, since one typically
7202discovers the mistake only by testing the code.
7203
22fccf95 7204The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7205this kind of problem systematically. It causes rules that lack a
7206@code{%prec} modifier to have no precedence, even if the last terminal
7207symbol mentioned in their components has a declared precedence.
7208
22fccf95 7209If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7210for all rules that participate in precedence conflict resolution.
7211Then you will see any shift/reduce conflict until you tell Bison how
7212to resolve it, either by changing your grammar or by adding an
7213explicit precedence. This will probably add declarations to the
7214grammar, but it helps to protect against incorrect rule precedences.
7215
22fccf95
PE
7216The effect of @code{%no-default-prec;} can be reversed by giving
7217@code{%default-prec;}, which is the default.
91d2c560 7218@end ifset
39a06c25 7219
342b8b6e 7220@node Parser States
bfa74976
RS
7221@section Parser States
7222@cindex finite-state machine
7223@cindex parser state
7224@cindex state (of parser)
7225
7226The function @code{yyparse} is implemented using a finite-state machine.
7227The values pushed on the parser stack are not simply token type codes; they
7228represent the entire sequence of terminal and nonterminal symbols at or
7229near the top of the stack. The current state collects all the information
7230about previous input which is relevant to deciding what to do next.
7231
742e4900
JD
7232Each time a lookahead token is read, the current parser state together
7233with the type of lookahead token are looked up in a table. This table
7234entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7235specifies the new parser state, which is pushed onto the top of the
7236parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7237This means that a certain number of tokens or groupings are taken off
7238the top of the stack, and replaced by one grouping. In other words,
7239that number of states are popped from the stack, and one new state is
7240pushed.
7241
742e4900 7242There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7243is erroneous in the current state. This causes error processing to begin
7244(@pxref{Error Recovery}).
7245
342b8b6e 7246@node Reduce/Reduce
bfa74976
RS
7247@section Reduce/Reduce Conflicts
7248@cindex reduce/reduce conflict
7249@cindex conflicts, reduce/reduce
7250
7251A reduce/reduce conflict occurs if there are two or more rules that apply
7252to the same sequence of input. This usually indicates a serious error
7253in the grammar.
7254
7255For example, here is an erroneous attempt to define a sequence
7256of zero or more @code{word} groupings.
7257
7258@example
d4fca427 7259@group
5e9b6624
AD
7260sequence:
7261 /* empty */ @{ printf ("empty sequence\n"); @}
7262| maybeword
7263| sequence word @{ printf ("added word %s\n", $2); @}
7264;
d4fca427 7265@end group
bfa74976 7266
d4fca427 7267@group
5e9b6624
AD
7268maybeword:
7269 /* empty */ @{ printf ("empty maybeword\n"); @}
7270| word @{ printf ("single word %s\n", $1); @}
7271;
d4fca427 7272@end group
bfa74976
RS
7273@end example
7274
7275@noindent
7276The error is an ambiguity: there is more than one way to parse a single
7277@code{word} into a @code{sequence}. It could be reduced to a
7278@code{maybeword} and then into a @code{sequence} via the second rule.
7279Alternatively, nothing-at-all could be reduced into a @code{sequence}
7280via the first rule, and this could be combined with the @code{word}
7281using the third rule for @code{sequence}.
7282
7283There is also more than one way to reduce nothing-at-all into a
7284@code{sequence}. This can be done directly via the first rule,
7285or indirectly via @code{maybeword} and then the second rule.
7286
7287You might think that this is a distinction without a difference, because it
7288does not change whether any particular input is valid or not. But it does
7289affect which actions are run. One parsing order runs the second rule's
7290action; the other runs the first rule's action and the third rule's action.
7291In this example, the output of the program changes.
7292
7293Bison resolves a reduce/reduce conflict by choosing to use the rule that
7294appears first in the grammar, but it is very risky to rely on this. Every
7295reduce/reduce conflict must be studied and usually eliminated. Here is the
7296proper way to define @code{sequence}:
7297
7298@example
5e9b6624
AD
7299sequence:
7300 /* empty */ @{ printf ("empty sequence\n"); @}
7301| sequence word @{ printf ("added word %s\n", $2); @}
7302;
bfa74976
RS
7303@end example
7304
7305Here is another common error that yields a reduce/reduce conflict:
7306
7307@example
5e9b6624
AD
7308sequence:
7309 /* empty */
7310| sequence words
7311| sequence redirects
7312;
bfa74976 7313
5e9b6624
AD
7314words:
7315 /* empty */
7316| words word
7317;
bfa74976 7318
5e9b6624
AD
7319redirects:
7320 /* empty */
7321| redirects redirect
7322;
bfa74976
RS
7323@end example
7324
7325@noindent
7326The intention here is to define a sequence which can contain either
7327@code{word} or @code{redirect} groupings. The individual definitions of
7328@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7329three together make a subtle ambiguity: even an empty input can be parsed
7330in infinitely many ways!
7331
7332Consider: nothing-at-all could be a @code{words}. Or it could be two
7333@code{words} in a row, or three, or any number. It could equally well be a
7334@code{redirects}, or two, or any number. Or it could be a @code{words}
7335followed by three @code{redirects} and another @code{words}. And so on.
7336
7337Here are two ways to correct these rules. First, to make it a single level
7338of sequence:
7339
7340@example
5e9b6624
AD
7341sequence:
7342 /* empty */
7343| sequence word
7344| sequence redirect
7345;
bfa74976
RS
7346@end example
7347
7348Second, to prevent either a @code{words} or a @code{redirects}
7349from being empty:
7350
7351@example
d4fca427 7352@group
5e9b6624
AD
7353sequence:
7354 /* empty */
7355| sequence words
7356| sequence redirects
7357;
d4fca427 7358@end group
bfa74976 7359
d4fca427 7360@group
5e9b6624
AD
7361words:
7362 word
7363| words word
7364;
d4fca427 7365@end group
bfa74976 7366
d4fca427 7367@group
5e9b6624
AD
7368redirects:
7369 redirect
7370| redirects redirect
7371;
d4fca427 7372@end group
bfa74976
RS
7373@end example
7374
cc09e5be
JD
7375@node Mysterious Conflicts
7376@section Mysterious Conflicts
7fceb615 7377@cindex Mysterious Conflicts
bfa74976
RS
7378
7379Sometimes reduce/reduce conflicts can occur that don't look warranted.
7380Here is an example:
7381
7382@example
7383@group
7384%token ID
7385
7386%%
5e9b6624 7387def: param_spec return_spec ',';
bfa74976 7388param_spec:
5e9b6624
AD
7389 type
7390| name_list ':' type
7391;
bfa74976
RS
7392@end group
7393@group
7394return_spec:
5e9b6624
AD
7395 type
7396| name ':' type
7397;
bfa74976
RS
7398@end group
7399@group
5e9b6624 7400type: ID;
bfa74976
RS
7401@end group
7402@group
5e9b6624 7403name: ID;
bfa74976 7404name_list:
5e9b6624
AD
7405 name
7406| name ',' name_list
7407;
bfa74976
RS
7408@end group
7409@end example
7410
7411It would seem that this grammar can be parsed with only a single token
742e4900 7412of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7413a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7414@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7415
7fceb615
JD
7416@cindex LR
7417@cindex LALR
eb45ef3b 7418However, for historical reasons, Bison cannot by default handle all
8a4281b9 7419LR(1) grammars.
eb45ef3b
JD
7420In this grammar, two contexts, that after an @code{ID} at the beginning
7421of a @code{param_spec} and likewise at the beginning of a
7422@code{return_spec}, are similar enough that Bison assumes they are the
7423same.
7424They appear similar because the same set of rules would be
bfa74976
RS
7425active---the rule for reducing to a @code{name} and that for reducing to
7426a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7427that the rules would require different lookahead tokens in the two
bfa74976
RS
7428contexts, so it makes a single parser state for them both. Combining
7429the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7430occurrence means that the grammar is not LALR(1).
bfa74976 7431
7fceb615
JD
7432@cindex IELR
7433@cindex canonical LR
7434For many practical grammars (specifically those that fall into the non-LR(1)
7435class), the limitations of LALR(1) result in difficulties beyond just
7436mysterious reduce/reduce conflicts. The best way to fix all these problems
7437is to select a different parser table construction algorithm. Either
7438IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7439and easier to debug during development. @xref{LR Table Construction}, for
7440details. (Bison's IELR(1) and canonical LR(1) implementations are
7441experimental. More user feedback will help to stabilize them.)
eb45ef3b 7442
8a4281b9 7443If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7444can often fix a mysterious conflict by identifying the two parser states
7445that are being confused, and adding something to make them look
7446distinct. In the above example, adding one rule to
bfa74976
RS
7447@code{return_spec} as follows makes the problem go away:
7448
7449@example
7450@group
7451%token BOGUS
7452@dots{}
7453%%
7454@dots{}
7455return_spec:
5e9b6624
AD
7456 type
7457| name ':' type
7458| ID BOGUS /* This rule is never used. */
7459;
bfa74976
RS
7460@end group
7461@end example
7462
7463This corrects the problem because it introduces the possibility of an
7464additional active rule in the context after the @code{ID} at the beginning of
7465@code{return_spec}. This rule is not active in the corresponding context
7466in a @code{param_spec}, so the two contexts receive distinct parser states.
7467As long as the token @code{BOGUS} is never generated by @code{yylex},
7468the added rule cannot alter the way actual input is parsed.
7469
7470In this particular example, there is another way to solve the problem:
7471rewrite the rule for @code{return_spec} to use @code{ID} directly
7472instead of via @code{name}. This also causes the two confusing
7473contexts to have different sets of active rules, because the one for
7474@code{return_spec} activates the altered rule for @code{return_spec}
7475rather than the one for @code{name}.
7476
7477@example
7478param_spec:
5e9b6624
AD
7479 type
7480| name_list ':' type
7481;
bfa74976 7482return_spec:
5e9b6624
AD
7483 type
7484| ID ':' type
7485;
bfa74976
RS
7486@end example
7487
8a4281b9 7488For a more detailed exposition of LALR(1) parsers and parser
5e528941 7489generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7490
7fceb615
JD
7491@node Tuning LR
7492@section Tuning LR
7493
7494The default behavior of Bison's LR-based parsers is chosen mostly for
7495historical reasons, but that behavior is often not robust. For example, in
7496the previous section, we discussed the mysterious conflicts that can be
7497produced by LALR(1), Bison's default parser table construction algorithm.
7498Another example is Bison's @code{%define parse.error verbose} directive,
7499which instructs the generated parser to produce verbose syntax error
7500messages, which can sometimes contain incorrect information.
7501
7502In this section, we explore several modern features of Bison that allow you
7503to tune fundamental aspects of the generated LR-based parsers. Some of
7504these features easily eliminate shortcomings like those mentioned above.
7505Others can be helpful purely for understanding your parser.
7506
7507Most of the features discussed in this section are still experimental. More
7508user feedback will help to stabilize them.
7509
7510@menu
7511* LR Table Construction:: Choose a different construction algorithm.
7512* Default Reductions:: Disable default reductions.
7513* LAC:: Correct lookahead sets in the parser states.
7514* Unreachable States:: Keep unreachable parser states for debugging.
7515@end menu
7516
7517@node LR Table Construction
7518@subsection LR Table Construction
7519@cindex Mysterious Conflict
7520@cindex LALR
7521@cindex IELR
7522@cindex canonical LR
7523@findex %define lr.type
7524
7525For historical reasons, Bison constructs LALR(1) parser tables by default.
7526However, LALR does not possess the full language-recognition power of LR.
7527As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7528mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7529Conflicts}.
7530
7531As we also demonstrated in that example, the traditional approach to
7532eliminating such mysterious behavior is to restructure the grammar.
7533Unfortunately, doing so correctly is often difficult. Moreover, merely
7534discovering that LALR causes mysterious behavior in your parser can be
7535difficult as well.
7536
7537Fortunately, Bison provides an easy way to eliminate the possibility of such
7538mysterious behavior altogether. You simply need to activate a more powerful
7539parser table construction algorithm by using the @code{%define lr.type}
7540directive.
7541
7542@deffn {Directive} {%define lr.type @var{TYPE}}
7543Specify the type of parser tables within the LR(1) family. The accepted
7544values for @var{TYPE} are:
7545
7546@itemize
7547@item @code{lalr} (default)
7548@item @code{ielr}
7549@item @code{canonical-lr}
7550@end itemize
7551
7552(This feature is experimental. More user feedback will help to stabilize
7553it.)
7554@end deffn
7555
7556For example, to activate IELR, you might add the following directive to you
7557grammar file:
7558
7559@example
7560%define lr.type ielr
7561@end example
7562
cc09e5be 7563@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7564conflict is then eliminated, so there is no need to invest time in
7565comprehending the conflict or restructuring the grammar to fix it. If,
7566during future development, the grammar evolves such that all mysterious
7567behavior would have disappeared using just LALR, you need not fear that
7568continuing to use IELR will result in unnecessarily large parser tables.
7569That is, IELR generates LALR tables when LALR (using a deterministic parsing
7570algorithm) is sufficient to support the full language-recognition power of
7571LR. Thus, by enabling IELR at the start of grammar development, you can
7572safely and completely eliminate the need to consider LALR's shortcomings.
7573
7574While IELR is almost always preferable, there are circumstances where LALR
7575or the canonical LR parser tables described by Knuth
7576(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7577relative advantages of each parser table construction algorithm within
7578Bison:
7579
7580@itemize
7581@item LALR
7582
7583There are at least two scenarios where LALR can be worthwhile:
7584
7585@itemize
7586@item GLR without static conflict resolution.
7587
7588@cindex GLR with LALR
7589When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7590conflicts statically (for example, with @code{%left} or @code{%prec}), then
7591the parser explores all potential parses of any given input. In this case,
7592the choice of parser table construction algorithm is guaranteed not to alter
7593the language accepted by the parser. LALR parser tables are the smallest
7594parser tables Bison can currently construct, so they may then be preferable.
7595Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7596more like a deterministic parser in the syntactic contexts where those
7597conflicts appear, and so either IELR or canonical LR can then be helpful to
7598avoid LALR's mysterious behavior.
7599
7600@item Malformed grammars.
7601
7602Occasionally during development, an especially malformed grammar with a
7603major recurring flaw may severely impede the IELR or canonical LR parser
7604table construction algorithm. LALR can be a quick way to construct parser
7605tables in order to investigate such problems while ignoring the more subtle
7606differences from IELR and canonical LR.
7607@end itemize
7608
7609@item IELR
7610
7611IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7612any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7613always accept exactly the same set of sentences. However, like LALR, IELR
7614merges parser states during parser table construction so that the number of
7615parser states is often an order of magnitude less than for canonical LR.
7616More importantly, because canonical LR's extra parser states may contain
7617duplicate conflicts in the case of non-LR grammars, the number of conflicts
7618for IELR is often an order of magnitude less as well. This effect can
7619significantly reduce the complexity of developing a grammar.
7620
7621@item Canonical LR
7622
7623@cindex delayed syntax error detection
7624@cindex LAC
7625@findex %nonassoc
7626While inefficient, canonical LR parser tables can be an interesting means to
7627explore a grammar because they possess a property that IELR and LALR tables
7628do not. That is, if @code{%nonassoc} is not used and default reductions are
7629left disabled (@pxref{Default Reductions}), then, for every left context of
7630every canonical LR state, the set of tokens accepted by that state is
7631guaranteed to be the exact set of tokens that is syntactically acceptable in
7632that left context. It might then seem that an advantage of canonical LR
7633parsers in production is that, under the above constraints, they are
7634guaranteed to detect a syntax error as soon as possible without performing
7635any unnecessary reductions. However, IELR parsers that use LAC are also
7636able to achieve this behavior without sacrificing @code{%nonassoc} or
7637default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7638@end itemize
7639
7640For a more detailed exposition of the mysterious behavior in LALR parsers
7641and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7642@ref{Bibliography,,Denny 2010 November}.
7643
7644@node Default Reductions
7645@subsection Default Reductions
7646@cindex default reductions
7647@findex %define lr.default-reductions
7648@findex %nonassoc
7649
7650After parser table construction, Bison identifies the reduction with the
7651largest lookahead set in each parser state. To reduce the size of the
7652parser state, traditional Bison behavior is to remove that lookahead set and
7653to assign that reduction to be the default parser action. Such a reduction
7654is known as a @dfn{default reduction}.
7655
7656Default reductions affect more than the size of the parser tables. They
7657also affect the behavior of the parser:
7658
7659@itemize
7660@item Delayed @code{yylex} invocations.
7661
7662@cindex delayed yylex invocations
7663@cindex consistent states
7664@cindex defaulted states
7665A @dfn{consistent state} is a state that has only one possible parser
7666action. If that action is a reduction and is encoded as a default
7667reduction, then that consistent state is called a @dfn{defaulted state}.
7668Upon reaching a defaulted state, a Bison-generated parser does not bother to
7669invoke @code{yylex} to fetch the next token before performing the reduction.
7670In other words, whether default reductions are enabled in consistent states
7671determines how soon a Bison-generated parser invokes @code{yylex} for a
7672token: immediately when it @emph{reaches} that token in the input or when it
7673eventually @emph{needs} that token as a lookahead to determine the next
7674parser action. Traditionally, default reductions are enabled, and so the
7675parser exhibits the latter behavior.
7676
7677The presence of defaulted states is an important consideration when
7678designing @code{yylex} and the grammar file. That is, if the behavior of
7679@code{yylex} can influence or be influenced by the semantic actions
7680associated with the reductions in defaulted states, then the delay of the
7681next @code{yylex} invocation until after those reductions is significant.
7682For example, the semantic actions might pop a scope stack that @code{yylex}
7683uses to determine what token to return. Thus, the delay might be necessary
7684to ensure that @code{yylex} does not look up the next token in a scope that
7685should already be considered closed.
7686
7687@item Delayed syntax error detection.
7688
7689@cindex delayed syntax error detection
7690When the parser fetches a new token by invoking @code{yylex}, it checks
7691whether there is an action for that token in the current parser state. The
7692parser detects a syntax error if and only if either (1) there is no action
7693for that token or (2) the action for that token is the error action (due to
7694the use of @code{%nonassoc}). However, if there is a default reduction in
7695that state (which might or might not be a defaulted state), then it is
7696impossible for condition 1 to exist. That is, all tokens have an action.
7697Thus, the parser sometimes fails to detect the syntax error until it reaches
7698a later state.
7699
7700@cindex LAC
7701@c If there's an infinite loop, default reductions can prevent an incorrect
7702@c sentence from being rejected.
7703While default reductions never cause the parser to accept syntactically
7704incorrect sentences, the delay of syntax error detection can have unexpected
7705effects on the behavior of the parser. However, the delay can be caused
7706anyway by parser state merging and the use of @code{%nonassoc}, and it can
7707be fixed by another Bison feature, LAC. We discuss the effects of delayed
7708syntax error detection and LAC more in the next section (@pxref{LAC}).
7709@end itemize
7710
7711For canonical LR, the only default reduction that Bison enables by default
7712is the accept action, which appears only in the accepting state, which has
7713no other action and is thus a defaulted state. However, the default accept
7714action does not delay any @code{yylex} invocation or syntax error detection
7715because the accept action ends the parse.
7716
7717For LALR and IELR, Bison enables default reductions in nearly all states by
7718default. There are only two exceptions. First, states that have a shift
7719action on the @code{error} token do not have default reductions because
7720delayed syntax error detection could then prevent the @code{error} token
7721from ever being shifted in that state. However, parser state merging can
7722cause the same effect anyway, and LAC fixes it in both cases, so future
7723versions of Bison might drop this exception when LAC is activated. Second,
7724GLR parsers do not record the default reduction as the action on a lookahead
7725token for which there is a conflict. The correct action in this case is to
7726split the parse instead.
7727
7728To adjust which states have default reductions enabled, use the
7729@code{%define lr.default-reductions} directive.
7730
7731@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7732Specify the kind of states that are permitted to contain default reductions.
7733The accepted values of @var{WHERE} are:
7734@itemize
f0ad1b2f 7735@item @code{most} (default for LALR and IELR)
7fceb615
JD
7736@item @code{consistent}
7737@item @code{accepting} (default for canonical LR)
7738@end itemize
7739
7740(The ability to specify where default reductions are permitted is
7741experimental. More user feedback will help to stabilize it.)
7742@end deffn
7743
7fceb615
JD
7744@node LAC
7745@subsection LAC
7746@findex %define parse.lac
7747@cindex LAC
7748@cindex lookahead correction
7749
7750Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7751encountering a syntax error. First, the parser might perform additional
7752parser stack reductions before discovering the syntax error. Such
7753reductions can perform user semantic actions that are unexpected because
7754they are based on an invalid token, and they cause error recovery to begin
7755in a different syntactic context than the one in which the invalid token was
7756encountered. Second, when verbose error messages are enabled (@pxref{Error
7757Reporting}), the expected token list in the syntax error message can both
7758contain invalid tokens and omit valid tokens.
7759
7760The culprits for the above problems are @code{%nonassoc}, default reductions
7761in inconsistent states (@pxref{Default Reductions}), and parser state
7762merging. Because IELR and LALR merge parser states, they suffer the most.
7763Canonical LR can suffer only if @code{%nonassoc} is used or if default
7764reductions are enabled for inconsistent states.
7765
7766LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7767that solves these problems for canonical LR, IELR, and LALR without
7768sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7769enable LAC with the @code{%define parse.lac} directive.
7770
7771@deffn {Directive} {%define parse.lac @var{VALUE}}
7772Enable LAC to improve syntax error handling.
7773@itemize
7774@item @code{none} (default)
7775@item @code{full}
7776@end itemize
7777(This feature is experimental. More user feedback will help to stabilize
7778it. Moreover, it is currently only available for deterministic parsers in
7779C.)
7780@end deffn
7781
7782Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7783fetches a new token from the scanner so that it can determine the next
7784parser action, it immediately suspends normal parsing and performs an
7785exploratory parse using a temporary copy of the normal parser state stack.
7786During this exploratory parse, the parser does not perform user semantic
7787actions. If the exploratory parse reaches a shift action, normal parsing
7788then resumes on the normal parser stacks. If the exploratory parse reaches
7789an error instead, the parser reports a syntax error. If verbose syntax
7790error messages are enabled, the parser must then discover the list of
7791expected tokens, so it performs a separate exploratory parse for each token
7792in the grammar.
7793
7794There is one subtlety about the use of LAC. That is, when in a consistent
7795parser state with a default reduction, the parser will not attempt to fetch
7796a token from the scanner because no lookahead is needed to determine the
7797next parser action. Thus, whether default reductions are enabled in
7798consistent states (@pxref{Default Reductions}) affects how soon the parser
7799detects a syntax error: immediately when it @emph{reaches} an erroneous
7800token or when it eventually @emph{needs} that token as a lookahead to
7801determine the next parser action. The latter behavior is probably more
7802intuitive, so Bison currently provides no way to achieve the former behavior
7803while default reductions are enabled in consistent states.
7804
7805Thus, when LAC is in use, for some fixed decision of whether to enable
7806default reductions in consistent states, canonical LR and IELR behave almost
7807exactly the same for both syntactically acceptable and syntactically
7808unacceptable input. While LALR still does not support the full
7809language-recognition power of canonical LR and IELR, LAC at least enables
7810LALR's syntax error handling to correctly reflect LALR's
7811language-recognition power.
7812
7813There are a few caveats to consider when using LAC:
7814
7815@itemize
7816@item Infinite parsing loops.
7817
7818IELR plus LAC does have one shortcoming relative to canonical LR. Some
7819parsers generated by Bison can loop infinitely. LAC does not fix infinite
7820parsing loops that occur between encountering a syntax error and detecting
7821it, but enabling canonical LR or disabling default reductions sometimes
7822does.
7823
7824@item Verbose error message limitations.
7825
7826Because of internationalization considerations, Bison-generated parsers
7827limit the size of the expected token list they are willing to report in a
7828verbose syntax error message. If the number of expected tokens exceeds that
7829limit, the list is simply dropped from the message. Enabling LAC can
7830increase the size of the list and thus cause the parser to drop it. Of
7831course, dropping the list is better than reporting an incorrect list.
7832
7833@item Performance.
7834
7835Because LAC requires many parse actions to be performed twice, it can have a
7836performance penalty. However, not all parse actions must be performed
7837twice. Specifically, during a series of default reductions in consistent
7838states and shift actions, the parser never has to initiate an exploratory
7839parse. Moreover, the most time-consuming tasks in a parse are often the
7840file I/O, the lexical analysis performed by the scanner, and the user's
7841semantic actions, but none of these are performed during the exploratory
7842parse. Finally, the base of the temporary stack used during an exploratory
7843parse is a pointer into the normal parser state stack so that the stack is
7844never physically copied. In our experience, the performance penalty of LAC
5a321748 7845has proved insignificant for practical grammars.
7fceb615
JD
7846@end itemize
7847
709c7d11
JD
7848While the LAC algorithm shares techniques that have been recognized in the
7849parser community for years, for the publication that introduces LAC,
7850@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7851
7fceb615
JD
7852@node Unreachable States
7853@subsection Unreachable States
7854@findex %define lr.keep-unreachable-states
7855@cindex unreachable states
7856
7857If there exists no sequence of transitions from the parser's start state to
7858some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7859state}. A state can become unreachable during conflict resolution if Bison
7860disables a shift action leading to it from a predecessor state.
7861
7862By default, Bison removes unreachable states from the parser after conflict
7863resolution because they are useless in the generated parser. However,
7864keeping unreachable states is sometimes useful when trying to understand the
7865relationship between the parser and the grammar.
7866
7867@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7868Request that Bison allow unreachable states to remain in the parser tables.
7869@var{VALUE} must be a Boolean. The default is @code{false}.
7870@end deffn
7871
7872There are a few caveats to consider:
7873
7874@itemize @bullet
7875@item Missing or extraneous warnings.
7876
7877Unreachable states may contain conflicts and may use rules not used in any
7878other state. Thus, keeping unreachable states may induce warnings that are
7879irrelevant to your parser's behavior, and it may eliminate warnings that are
7880relevant. Of course, the change in warnings may actually be relevant to a
7881parser table analysis that wants to keep unreachable states, so this
7882behavior will likely remain in future Bison releases.
7883
7884@item Other useless states.
7885
7886While Bison is able to remove unreachable states, it is not guaranteed to
7887remove other kinds of useless states. Specifically, when Bison disables
7888reduce actions during conflict resolution, some goto actions may become
7889useless, and thus some additional states may become useless. If Bison were
7890to compute which goto actions were useless and then disable those actions,
7891it could identify such states as unreachable and then remove those states.
7892However, Bison does not compute which goto actions are useless.
7893@end itemize
7894
fae437e8 7895@node Generalized LR Parsing
8a4281b9
JD
7896@section Generalized LR (GLR) Parsing
7897@cindex GLR parsing
7898@cindex generalized LR (GLR) parsing
676385e2 7899@cindex ambiguous grammars
9d9b8b70 7900@cindex nondeterministic parsing
676385e2 7901
fae437e8
AD
7902Bison produces @emph{deterministic} parsers that choose uniquely
7903when to reduce and which reduction to apply
742e4900 7904based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7905As a result, normal Bison handles a proper subset of the family of
7906context-free languages.
fae437e8 7907Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7908sequence of reductions cannot have deterministic parsers in this sense.
7909The same is true of languages that require more than one symbol of
742e4900 7910lookahead, since the parser lacks the information necessary to make a
676385e2 7911decision at the point it must be made in a shift-reduce parser.
cc09e5be 7912Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7913there are languages where Bison's default choice of how to
676385e2
PH
7914summarize the input seen so far loses necessary information.
7915
7916When you use the @samp{%glr-parser} declaration in your grammar file,
7917Bison generates a parser that uses a different algorithm, called
8a4281b9 7918Generalized LR (or GLR). A Bison GLR
c827f760 7919parser uses the same basic
676385e2
PH
7920algorithm for parsing as an ordinary Bison parser, but behaves
7921differently in cases where there is a shift-reduce conflict that has not
fae437e8 7922been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7923reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7924situation, it
fae437e8 7925effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7926shift or reduction. These parsers then proceed as usual, consuming
7927tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7928and split further, with the result that instead of a sequence of states,
8a4281b9 7929a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7930
7931In effect, each stack represents a guess as to what the proper parse
7932is. Additional input may indicate that a guess was wrong, in which case
7933the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7934actions generated in each stack are saved, rather than being executed
676385e2 7935immediately. When a stack disappears, its saved semantic actions never
fae437e8 7936get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7937their sets of semantic actions are both saved with the state that
7938results from the reduction. We say that two stacks are equivalent
fae437e8 7939when they both represent the same sequence of states,
676385e2
PH
7940and each pair of corresponding states represents a
7941grammar symbol that produces the same segment of the input token
7942stream.
7943
7944Whenever the parser makes a transition from having multiple
eb45ef3b 7945states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7946algorithm, after resolving and executing the saved-up actions.
7947At this transition, some of the states on the stack will have semantic
7948values that are sets (actually multisets) of possible actions. The
7949parser tries to pick one of the actions by first finding one whose rule
7950has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7951declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7952precedence, but there the same merging function is declared for both
fae437e8 7953rules by the @samp{%merge} declaration,
676385e2
PH
7954Bison resolves and evaluates both and then calls the merge function on
7955the result. Otherwise, it reports an ambiguity.
7956
8a4281b9
JD
7957It is possible to use a data structure for the GLR parsing tree that
7958permits the processing of any LR(1) grammar in linear time (in the
c827f760 7959size of the input), any unambiguous (not necessarily
8a4281b9 7960LR(1)) grammar in
fae437e8 7961quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7962context-free grammar in cubic worst-case time. However, Bison currently
7963uses a simpler data structure that requires time proportional to the
7964length of the input times the maximum number of stacks required for any
9d9b8b70 7965prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7966grammars can require exponential time and space to process. Such badly
7967behaving examples, however, are not generally of practical interest.
9d9b8b70 7968Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7969doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7970structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7971grammar, in particular, it is only slightly slower than with the
8a4281b9 7972deterministic LR(1) Bison parser.
676385e2 7973
5e528941
JD
7974For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
79752000}.
f6481e2f 7976
1a059451
PE
7977@node Memory Management
7978@section Memory Management, and How to Avoid Memory Exhaustion
7979@cindex memory exhaustion
7980@cindex memory management
bfa74976
RS
7981@cindex stack overflow
7982@cindex parser stack overflow
7983@cindex overflow of parser stack
7984
1a059451 7985The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7986not reduced. When this happens, the parser function @code{yyparse}
1a059451 7987calls @code{yyerror} and then returns 2.
bfa74976 7988
c827f760 7989Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f 7990usually results from using a right recursion instead of a left
188867ac 7991recursion, see @ref{Recursion, ,Recursive Rules}.
d1a1114f 7992
bfa74976
RS
7993@vindex YYMAXDEPTH
7994By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7995parser stack can become before memory is exhausted. Define the
bfa74976
RS
7996macro with a value that is an integer. This value is the maximum number
7997of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7998
7999The stack space allowed is not necessarily allocated. If you specify a
1a059451 8000large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
8001stack at first, and then makes it bigger by stages as needed. This
8002increasing allocation happens automatically and silently. Therefore,
8003you do not need to make @code{YYMAXDEPTH} painfully small merely to save
8004space for ordinary inputs that do not need much stack.
8005
d7e14fc0
PE
8006However, do not allow @code{YYMAXDEPTH} to be a value so large that
8007arithmetic overflow could occur when calculating the size of the stack
8008space. Also, do not allow @code{YYMAXDEPTH} to be less than
8009@code{YYINITDEPTH}.
8010
bfa74976
RS
8011@cindex default stack limit
8012The default value of @code{YYMAXDEPTH}, if you do not define it, is
801310000.
8014
8015@vindex YYINITDEPTH
8016You can control how much stack is allocated initially by defining the
eb45ef3b
JD
8017macro @code{YYINITDEPTH} to a positive integer. For the deterministic
8018parser in C, this value must be a compile-time constant
d7e14fc0
PE
8019unless you are assuming C99 or some other target language or compiler
8020that allows variable-length arrays. The default is 200.
8021
1a059451 8022Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 8023
20be2f92 8024You can generate a deterministic parser containing C++ user code from
411614fa 8025the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
8026(@pxref{C++ Parsers}). However, if you do use the default skeleton
8027and want to allow the parsing stack to grow,
8028be careful not to use semantic types or location types that require
8029non-trivial copy constructors.
8030The C skeleton bypasses these constructors when copying data to
8031new, larger stacks.
d1a1114f 8032
342b8b6e 8033@node Error Recovery
bfa74976
RS
8034@chapter Error Recovery
8035@cindex error recovery
8036@cindex recovery from errors
8037
6e649e65 8038It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
8039error. For example, a compiler should recover sufficiently to parse the
8040rest of the input file and check it for errors; a calculator should accept
8041another expression.
8042
8043In a simple interactive command parser where each input is one line, it may
8044be sufficient to allow @code{yyparse} to return 1 on error and have the
8045caller ignore the rest of the input line when that happens (and then call
8046@code{yyparse} again). But this is inadequate for a compiler, because it
8047forgets all the syntactic context leading up to the error. A syntax error
8048deep within a function in the compiler input should not cause the compiler
8049to treat the following line like the beginning of a source file.
8050
8051@findex error
8052You can define how to recover from a syntax error by writing rules to
8053recognize the special token @code{error}. This is a terminal symbol that
8054is always defined (you need not declare it) and reserved for error
8055handling. The Bison parser generates an @code{error} token whenever a
8056syntax error happens; if you have provided a rule to recognize this token
13863333 8057in the current context, the parse can continue.
bfa74976
RS
8058
8059For example:
8060
8061@example
0860e383 8062stmts:
5e9b6624 8063 /* empty string */
0860e383
AD
8064| stmts '\n'
8065| stmts exp '\n'
8066| stmts error '\n'
bfa74976
RS
8067@end example
8068
8069The fourth rule in this example says that an error followed by a newline
0860e383 8070makes a valid addition to any @code{stmts}.
bfa74976
RS
8071
8072What happens if a syntax error occurs in the middle of an @code{exp}? The
8073error recovery rule, interpreted strictly, applies to the precise sequence
0860e383 8074of a @code{stmts}, an @code{error} and a newline. If an error occurs in
bfa74976 8075the middle of an @code{exp}, there will probably be some additional tokens
0860e383 8076and subexpressions on the stack after the last @code{stmts}, and there
bfa74976
RS
8077will be tokens to read before the next newline. So the rule is not
8078applicable in the ordinary way.
8079
8080But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
8081the semantic context and part of the input. First it discards states
8082and objects from the stack until it gets back to a state in which the
bfa74976 8083@code{error} token is acceptable. (This means that the subexpressions
0860e383 8084already parsed are discarded, back to the last complete @code{stmts}.)
72f889cc 8085At this point the @code{error} token can be shifted. Then, if the old
742e4900 8086lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 8087tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
8088this example, Bison reads and discards input until the next newline so
8089that the fourth rule can apply. Note that discarded symbols are
8090possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
8091Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
8092
8093The choice of error rules in the grammar is a choice of strategies for
8094error recovery. A simple and useful strategy is simply to skip the rest of
8095the current input line or current statement if an error is detected:
8096
8097@example
0860e383 8098stmt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
8099@end example
8100
8101It is also useful to recover to the matching close-delimiter of an
8102opening-delimiter that has already been parsed. Otherwise the
8103close-delimiter will probably appear to be unmatched, and generate another,
8104spurious error message:
8105
8106@example
5e9b6624
AD
8107primary:
8108 '(' expr ')'
8109| '(' error ')'
8110@dots{}
8111;
bfa74976
RS
8112@end example
8113
8114Error recovery strategies are necessarily guesses. When they guess wrong,
8115one syntax error often leads to another. In the above example, the error
8116recovery rule guesses that an error is due to bad input within one
0860e383
AD
8117@code{stmt}. Suppose that instead a spurious semicolon is inserted in the
8118middle of a valid @code{stmt}. After the error recovery rule recovers
bfa74976
RS
8119from the first error, another syntax error will be found straightaway,
8120since the text following the spurious semicolon is also an invalid
0860e383 8121@code{stmt}.
bfa74976
RS
8122
8123To prevent an outpouring of error messages, the parser will output no error
8124message for another syntax error that happens shortly after the first; only
8125after three consecutive input tokens have been successfully shifted will
8126error messages resume.
8127
8128Note that rules which accept the @code{error} token may have actions, just
8129as any other rules can.
8130
8131@findex yyerrok
8132You can make error messages resume immediately by using the macro
8133@code{yyerrok} in an action. If you do this in the error rule's action, no
8134error messages will be suppressed. This macro requires no arguments;
8135@samp{yyerrok;} is a valid C statement.
8136
8137@findex yyclearin
742e4900 8138The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
8139this is unacceptable, then the macro @code{yyclearin} may be used to clear
8140this token. Write the statement @samp{yyclearin;} in the error rule's
8141action.
32c29292 8142@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 8143
6e649e65 8144For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
8145called that advances the input stream to some point where parsing should
8146once again commence. The next symbol returned by the lexical scanner is
742e4900 8147probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
8148with @samp{yyclearin;}.
8149
8150@vindex YYRECOVERING
02103984
PE
8151The expression @code{YYRECOVERING ()} yields 1 when the parser
8152is recovering from a syntax error, and 0 otherwise.
8153Syntax error diagnostics are suppressed while recovering from a syntax
8154error.
bfa74976 8155
342b8b6e 8156@node Context Dependency
bfa74976
RS
8157@chapter Handling Context Dependencies
8158
8159The Bison paradigm is to parse tokens first, then group them into larger
8160syntactic units. In many languages, the meaning of a token is affected by
8161its context. Although this violates the Bison paradigm, certain techniques
8162(known as @dfn{kludges}) may enable you to write Bison parsers for such
8163languages.
8164
8165@menu
8166* Semantic Tokens:: Token parsing can depend on the semantic context.
8167* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
8168* Tie-in Recovery:: Lexical tie-ins have implications for how
8169 error recovery rules must be written.
8170@end menu
8171
8172(Actually, ``kludge'' means any technique that gets its job done but is
8173neither clean nor robust.)
8174
342b8b6e 8175@node Semantic Tokens
bfa74976
RS
8176@section Semantic Info in Token Types
8177
8178The C language has a context dependency: the way an identifier is used
8179depends on what its current meaning is. For example, consider this:
8180
8181@example
8182foo (x);
8183@end example
8184
8185This looks like a function call statement, but if @code{foo} is a typedef
8186name, then this is actually a declaration of @code{x}. How can a Bison
8187parser for C decide how to parse this input?
8188
8a4281b9 8189The method used in GNU C is to have two different token types,
bfa74976
RS
8190@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
8191identifier, it looks up the current declaration of the identifier in order
8192to decide which token type to return: @code{TYPENAME} if the identifier is
8193declared as a typedef, @code{IDENTIFIER} otherwise.
8194
8195The grammar rules can then express the context dependency by the choice of
8196token type to recognize. @code{IDENTIFIER} is accepted as an expression,
8197but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8198@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8199is @emph{not} significant, such as in declarations that can shadow a
8200typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8201accepted---there is one rule for each of the two token types.
8202
8203This technique is simple to use if the decision of which kinds of
8204identifiers to allow is made at a place close to where the identifier is
8205parsed. But in C this is not always so: C allows a declaration to
8206redeclare a typedef name provided an explicit type has been specified
8207earlier:
8208
8209@example
3a4f411f
PE
8210typedef int foo, bar;
8211int baz (void)
d4fca427 8212@group
3a4f411f
PE
8213@{
8214 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8215 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8216 return foo (bar);
8217@}
d4fca427 8218@end group
bfa74976
RS
8219@end example
8220
8221Unfortunately, the name being declared is separated from the declaration
8222construct itself by a complicated syntactic structure---the ``declarator''.
8223
9ecbd125 8224As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8225all the nonterminal names changed: once for parsing a declaration in
8226which a typedef name can be redefined, and once for parsing a
8227declaration in which that can't be done. Here is a part of the
8228duplication, with actions omitted for brevity:
bfa74976
RS
8229
8230@example
d4fca427 8231@group
bfa74976 8232initdcl:
5e9b6624
AD
8233 declarator maybeasm '=' init
8234| declarator maybeasm
8235;
d4fca427 8236@end group
bfa74976 8237
d4fca427 8238@group
bfa74976 8239notype_initdcl:
5e9b6624
AD
8240 notype_declarator maybeasm '=' init
8241| notype_declarator maybeasm
8242;
d4fca427 8243@end group
bfa74976
RS
8244@end example
8245
8246@noindent
8247Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8248cannot. The distinction between @code{declarator} and
8249@code{notype_declarator} is the same sort of thing.
8250
8251There is some similarity between this technique and a lexical tie-in
8252(described next), in that information which alters the lexical analysis is
8253changed during parsing by other parts of the program. The difference is
8254here the information is global, and is used for other purposes in the
8255program. A true lexical tie-in has a special-purpose flag controlled by
8256the syntactic context.
8257
342b8b6e 8258@node Lexical Tie-ins
bfa74976
RS
8259@section Lexical Tie-ins
8260@cindex lexical tie-in
8261
8262One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8263which is set by Bison actions, whose purpose is to alter the way tokens are
8264parsed.
8265
8266For example, suppose we have a language vaguely like C, but with a special
8267construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8268an expression in parentheses in which all integers are hexadecimal. In
8269particular, the token @samp{a1b} must be treated as an integer rather than
8270as an identifier if it appears in that context. Here is how you can do it:
8271
8272@example
8273@group
8274%@{
38a92d50
PE
8275 int hexflag;
8276 int yylex (void);
8277 void yyerror (char const *);
bfa74976
RS
8278%@}
8279%%
8280@dots{}
8281@end group
8282@group
5e9b6624
AD
8283expr:
8284 IDENTIFIER
8285| constant
8286| HEX '(' @{ hexflag = 1; @}
8287 expr ')' @{ hexflag = 0; $$ = $4; @}
8288| expr '+' expr @{ $$ = make_sum ($1, $3); @}
8289@dots{}
8290;
bfa74976
RS
8291@end group
8292
8293@group
8294constant:
5e9b6624
AD
8295 INTEGER
8296| STRING
8297;
bfa74976
RS
8298@end group
8299@end example
8300
8301@noindent
8302Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8303it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8304with letters are parsed as integers if possible.
8305
ff7571c0
JD
8306The declaration of @code{hexflag} shown in the prologue of the grammar
8307file is needed to make it accessible to the actions (@pxref{Prologue,
8308,The Prologue}). You must also write the code in @code{yylex} to obey
8309the flag.
bfa74976 8310
342b8b6e 8311@node Tie-in Recovery
bfa74976
RS
8312@section Lexical Tie-ins and Error Recovery
8313
8314Lexical tie-ins make strict demands on any error recovery rules you have.
8315@xref{Error Recovery}.
8316
8317The reason for this is that the purpose of an error recovery rule is to
8318abort the parsing of one construct and resume in some larger construct.
8319For example, in C-like languages, a typical error recovery rule is to skip
8320tokens until the next semicolon, and then start a new statement, like this:
8321
8322@example
5e9b6624
AD
8323stmt:
8324 expr ';'
8325| IF '(' expr ')' stmt @{ @dots{} @}
8326@dots{}
8327| error ';' @{ hexflag = 0; @}
8328;
bfa74976
RS
8329@end example
8330
8331If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8332construct, this error rule will apply, and then the action for the
8333completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8334remain set for the entire rest of the input, or until the next @code{hex}
8335keyword, causing identifiers to be misinterpreted as integers.
8336
8337To avoid this problem the error recovery rule itself clears @code{hexflag}.
8338
8339There may also be an error recovery rule that works within expressions.
8340For example, there could be a rule which applies within parentheses
8341and skips to the close-parenthesis:
8342
8343@example
8344@group
5e9b6624
AD
8345expr:
8346 @dots{}
8347| '(' expr ')' @{ $$ = $2; @}
8348| '(' error ')'
8349@dots{}
bfa74976
RS
8350@end group
8351@end example
8352
8353If this rule acts within the @code{hex} construct, it is not going to abort
8354that construct (since it applies to an inner level of parentheses within
8355the construct). Therefore, it should not clear the flag: the rest of
8356the @code{hex} construct should be parsed with the flag still in effect.
8357
8358What if there is an error recovery rule which might abort out of the
8359@code{hex} construct or might not, depending on circumstances? There is no
8360way you can write the action to determine whether a @code{hex} construct is
8361being aborted or not. So if you are using a lexical tie-in, you had better
8362make sure your error recovery rules are not of this kind. Each rule must
8363be such that you can be sure that it always will, or always won't, have to
8364clear the flag.
8365
ec3bc396
AD
8366@c ================================================== Debugging Your Parser
8367
342b8b6e 8368@node Debugging
bfa74976 8369@chapter Debugging Your Parser
ec3bc396 8370
93c150b6
AD
8371Developing a parser can be a challenge, especially if you don't understand
8372the algorithm (@pxref{Algorithm, ,The Bison Parser Algorithm}). This
8373chapter explains how to generate and read the detailed description of the
8374automaton, and how to enable and understand the parser run-time traces.
ec3bc396
AD
8375
8376@menu
8377* Understanding:: Understanding the structure of your parser.
8378* Tracing:: Tracing the execution of your parser.
8379@end menu
8380
8381@node Understanding
8382@section Understanding Your Parser
8383
8384As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8385Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8386frequent than one would hope), looking at this automaton is required to
8387tune or simply fix a parser. Bison provides two different
35fe0834 8388representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8389
8390The textual file is generated when the options @option{--report} or
e3fd1dcb 8391@option{--verbose} are specified, see @ref{Invocation, , Invoking
ec3bc396 8392Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8393the parser implementation file name, and adding @samp{.output}
8394instead. Therefore, if the grammar file is @file{foo.y}, then the
8395parser implementation file is called @file{foo.tab.c} by default. As
8396a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8397
8398The following grammar file, @file{calc.y}, will be used in the sequel:
8399
8400@example
8401%token NUM STR
8402%left '+' '-'
8403%left '*'
8404%%
5e9b6624
AD
8405exp:
8406 exp '+' exp
8407| exp '-' exp
8408| exp '*' exp
8409| exp '/' exp
8410| NUM
8411;
ec3bc396
AD
8412useless: STR;
8413%%
8414@end example
8415
88bce5a2
AD
8416@command{bison} reports:
8417
8418@example
8f0d265e
JD
8419calc.y: warning: 1 nonterminal useless in grammar
8420calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8421calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8422calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8423calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8424@end example
8425
8426When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8427creates a file @file{calc.output} with contents detailed below. The
8428order of the output and the exact presentation might vary, but the
8429interpretation is the same.
ec3bc396 8430
ec3bc396
AD
8431@noindent
8432@cindex token, useless
8433@cindex useless token
8434@cindex nonterminal, useless
8435@cindex useless nonterminal
8436@cindex rule, useless
8437@cindex useless rule
62243aa5 8438The first section reports useless tokens, nonterminals and rules. Useless
29e20e22
AD
8439nonterminals and rules are removed in order to produce a smaller parser, but
8440useless tokens are preserved, since they might be used by the scanner (note
8441the difference between ``useless'' and ``unused'' below):
ec3bc396
AD
8442
8443@example
29e20e22 8444Nonterminals useless in grammar
ec3bc396
AD
8445 useless
8446
29e20e22 8447Terminals unused in grammar
ec3bc396
AD
8448 STR
8449
29e20e22
AD
8450Rules useless in grammar
8451 6 useless: STR
ec3bc396
AD
8452@end example
8453
8454@noindent
29e20e22
AD
8455The next section lists states that still have conflicts.
8456
8457@example
8458State 8 conflicts: 1 shift/reduce
8459State 9 conflicts: 1 shift/reduce
8460State 10 conflicts: 1 shift/reduce
8461State 11 conflicts: 4 shift/reduce
8462@end example
8463
8464@noindent
8465Then Bison reproduces the exact grammar it used:
ec3bc396
AD
8466
8467@example
8468Grammar
8469
29e20e22
AD
8470 0 $accept: exp $end
8471
8472 1 exp: exp '+' exp
8473 2 | exp '-' exp
8474 3 | exp '*' exp
8475 4 | exp '/' exp
8476 5 | NUM
ec3bc396
AD
8477@end example
8478
8479@noindent
8480and reports the uses of the symbols:
8481
8482@example
d4fca427 8483@group
ec3bc396
AD
8484Terminals, with rules where they appear
8485
88bce5a2 8486$end (0) 0
ec3bc396
AD
8487'*' (42) 3
8488'+' (43) 1
8489'-' (45) 2
8490'/' (47) 4
8491error (256)
8492NUM (258) 5
29e20e22 8493STR (259)
d4fca427 8494@end group
ec3bc396 8495
d4fca427 8496@group
ec3bc396
AD
8497Nonterminals, with rules where they appear
8498
29e20e22 8499$accept (9)
ec3bc396 8500 on left: 0
29e20e22 8501exp (10)
ec3bc396 8502 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8503@end group
ec3bc396
AD
8504@end example
8505
8506@noindent
8507@cindex item
8508@cindex pointed rule
8509@cindex rule, pointed
8510Bison then proceeds onto the automaton itself, describing each state
35880c82
PE
8511with its set of @dfn{items}, also known as @dfn{pointed rules}. Each
8512item is a production rule together with a point (@samp{.}) marking
8513the location of the input cursor.
ec3bc396
AD
8514
8515@example
8516state 0
8517
29e20e22 8518 0 $accept: . exp $end
ec3bc396 8519
29e20e22 8520 NUM shift, and go to state 1
ec3bc396 8521
29e20e22 8522 exp go to state 2
ec3bc396
AD
8523@end example
8524
8525This reads as follows: ``state 0 corresponds to being at the very
8526beginning of the parsing, in the initial rule, right before the start
8527symbol (here, @code{exp}). When the parser returns to this state right
8528after having reduced a rule that produced an @code{exp}, the control
8529flow jumps to state 2. If there is no such transition on a nonterminal
35880c82 8530symbol, and the lookahead is a @code{NUM}, then this token is shifted onto
ec3bc396 8531the parse stack, and the control flow jumps to state 1. Any other
742e4900 8532lookahead triggers a syntax error.''
ec3bc396
AD
8533
8534@cindex core, item set
8535@cindex item set core
8536@cindex kernel, item set
8537@cindex item set core
8538Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8539report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8540at the beginning of any rule deriving an @code{exp}. By default Bison
8541reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8542you want to see more detail you can invoke @command{bison} with
35880c82 8543@option{--report=itemset} to list the derived items as well:
ec3bc396
AD
8544
8545@example
8546state 0
8547
29e20e22
AD
8548 0 $accept: . exp $end
8549 1 exp: . exp '+' exp
8550 2 | . exp '-' exp
8551 3 | . exp '*' exp
8552 4 | . exp '/' exp
8553 5 | . NUM
ec3bc396 8554
29e20e22 8555 NUM shift, and go to state 1
ec3bc396 8556
29e20e22 8557 exp go to state 2
ec3bc396
AD
8558@end example
8559
8560@noindent
29e20e22 8561In the state 1@dots{}
ec3bc396
AD
8562
8563@example
8564state 1
8565
29e20e22 8566 5 exp: NUM .
ec3bc396 8567
29e20e22 8568 $default reduce using rule 5 (exp)
ec3bc396
AD
8569@end example
8570
8571@noindent
742e4900 8572the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8573(@samp{$default}), the parser will reduce it. If it was coming from
8574state 0, then, after this reduction it will return to state 0, and will
8575jump to state 2 (@samp{exp: go to state 2}).
8576
8577@example
8578state 2
8579
29e20e22
AD
8580 0 $accept: exp . $end
8581 1 exp: exp . '+' exp
8582 2 | exp . '-' exp
8583 3 | exp . '*' exp
8584 4 | exp . '/' exp
ec3bc396 8585
29e20e22
AD
8586 $end shift, and go to state 3
8587 '+' shift, and go to state 4
8588 '-' shift, and go to state 5
8589 '*' shift, and go to state 6
8590 '/' shift, and go to state 7
ec3bc396
AD
8591@end example
8592
8593@noindent
8594In state 2, the automaton can only shift a symbol. For instance,
29e20e22 8595because of the item @samp{exp: exp . '+' exp}, if the lookahead is
35880c82 8596@samp{+} it is shifted onto the parse stack, and the automaton
29e20e22 8597jumps to state 4, corresponding to the item @samp{exp: exp '+' . exp}.
35880c82
PE
8598Since there is no default action, any lookahead not listed triggers a syntax
8599error.
ec3bc396 8600
eb45ef3b 8601@cindex accepting state
ec3bc396
AD
8602The state 3 is named the @dfn{final state}, or the @dfn{accepting
8603state}:
8604
8605@example
8606state 3
8607
29e20e22 8608 0 $accept: exp $end .
ec3bc396 8609
29e20e22 8610 $default accept
ec3bc396
AD
8611@end example
8612
8613@noindent
29e20e22
AD
8614the initial rule is completed (the start symbol and the end-of-input were
8615read), the parsing exits successfully.
ec3bc396
AD
8616
8617The interpretation of states 4 to 7 is straightforward, and is left to
8618the reader.
8619
8620@example
8621state 4
8622
29e20e22 8623 1 exp: exp '+' . exp
ec3bc396 8624
29e20e22
AD
8625 NUM shift, and go to state 1
8626
8627 exp go to state 8
ec3bc396 8628
ec3bc396
AD
8629
8630state 5
8631
29e20e22
AD
8632 2 exp: exp '-' . exp
8633
8634 NUM shift, and go to state 1
ec3bc396 8635
29e20e22 8636 exp go to state 9
ec3bc396 8637
ec3bc396
AD
8638
8639state 6
8640
29e20e22 8641 3 exp: exp '*' . exp
ec3bc396 8642
29e20e22
AD
8643 NUM shift, and go to state 1
8644
8645 exp go to state 10
ec3bc396 8646
ec3bc396
AD
8647
8648state 7
8649
29e20e22 8650 4 exp: exp '/' . exp
ec3bc396 8651
29e20e22 8652 NUM shift, and go to state 1
ec3bc396 8653
29e20e22 8654 exp go to state 11
ec3bc396
AD
8655@end example
8656
5a99098d
PE
8657As was announced in beginning of the report, @samp{State 8 conflicts:
86581 shift/reduce}:
ec3bc396
AD
8659
8660@example
8661state 8
8662
29e20e22
AD
8663 1 exp: exp . '+' exp
8664 1 | exp '+' exp .
8665 2 | exp . '-' exp
8666 3 | exp . '*' exp
8667 4 | exp . '/' exp
ec3bc396 8668
29e20e22
AD
8669 '*' shift, and go to state 6
8670 '/' shift, and go to state 7
ec3bc396 8671
29e20e22
AD
8672 '/' [reduce using rule 1 (exp)]
8673 $default reduce using rule 1 (exp)
ec3bc396
AD
8674@end example
8675
742e4900 8676Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8677either shifting (and going to state 7), or reducing rule 1. The
8678conflict means that either the grammar is ambiguous, or the parser lacks
8679information to make the right decision. Indeed the grammar is
8680ambiguous, as, since we did not specify the precedence of @samp{/}, the
8681sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8682NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8683NUM}, which corresponds to reducing rule 1.
8684
eb45ef3b 8685Because in deterministic parsing a single decision can be made, Bison
ec3bc396 8686arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
29e20e22 8687Shift/Reduce Conflicts}. Discarded actions are reported between
ec3bc396
AD
8688square brackets.
8689
8690Note that all the previous states had a single possible action: either
8691shifting the next token and going to the corresponding state, or
8692reducing a single rule. In the other cases, i.e., when shifting
8693@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8694possible, the lookahead is required to select the action. State 8 is
8695one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8696is shifting, otherwise the action is reducing rule 1. In other words,
8697the first two items, corresponding to rule 1, are not eligible when the
742e4900 8698lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8699precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8700with some set of possible lookahead tokens. When run with
8701@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8702
8703@example
8704state 8
8705
29e20e22
AD
8706 1 exp: exp . '+' exp
8707 1 | exp '+' exp . [$end, '+', '-', '/']
8708 2 | exp . '-' exp
8709 3 | exp . '*' exp
8710 4 | exp . '/' exp
8711
8712 '*' shift, and go to state 6
8713 '/' shift, and go to state 7
ec3bc396 8714
29e20e22
AD
8715 '/' [reduce using rule 1 (exp)]
8716 $default reduce using rule 1 (exp)
8717@end example
8718
8719Note however that while @samp{NUM + NUM / NUM} is ambiguous (which results in
8720the conflicts on @samp{/}), @samp{NUM + NUM * NUM} is not: the conflict was
8721solved thanks to associativity and precedence directives. If invoked with
8722@option{--report=solved}, Bison includes information about the solved
8723conflicts in the report:
ec3bc396 8724
29e20e22
AD
8725@example
8726Conflict between rule 1 and token '+' resolved as reduce (%left '+').
8727Conflict between rule 1 and token '-' resolved as reduce (%left '-').
8728Conflict between rule 1 and token '*' resolved as shift ('+' < '*').
ec3bc396
AD
8729@end example
8730
29e20e22 8731
ec3bc396
AD
8732The remaining states are similar:
8733
8734@example
d4fca427 8735@group
ec3bc396
AD
8736state 9
8737
29e20e22
AD
8738 1 exp: exp . '+' exp
8739 2 | exp . '-' exp
8740 2 | exp '-' exp .
8741 3 | exp . '*' exp
8742 4 | exp . '/' exp
ec3bc396 8743
29e20e22
AD
8744 '*' shift, and go to state 6
8745 '/' shift, and go to state 7
ec3bc396 8746
29e20e22
AD
8747 '/' [reduce using rule 2 (exp)]
8748 $default reduce using rule 2 (exp)
d4fca427 8749@end group
ec3bc396 8750
d4fca427 8751@group
ec3bc396
AD
8752state 10
8753
29e20e22
AD
8754 1 exp: exp . '+' exp
8755 2 | exp . '-' exp
8756 3 | exp . '*' exp
8757 3 | exp '*' exp .
8758 4 | exp . '/' exp
ec3bc396 8759
29e20e22 8760 '/' shift, and go to state 7
ec3bc396 8761
29e20e22
AD
8762 '/' [reduce using rule 3 (exp)]
8763 $default reduce using rule 3 (exp)
d4fca427 8764@end group
ec3bc396 8765
d4fca427 8766@group
ec3bc396
AD
8767state 11
8768
29e20e22
AD
8769 1 exp: exp . '+' exp
8770 2 | exp . '-' exp
8771 3 | exp . '*' exp
8772 4 | exp . '/' exp
8773 4 | exp '/' exp .
8774
8775 '+' shift, and go to state 4
8776 '-' shift, and go to state 5
8777 '*' shift, and go to state 6
8778 '/' shift, and go to state 7
8779
8780 '+' [reduce using rule 4 (exp)]
8781 '-' [reduce using rule 4 (exp)]
8782 '*' [reduce using rule 4 (exp)]
8783 '/' [reduce using rule 4 (exp)]
8784 $default reduce using rule 4 (exp)
d4fca427 8785@end group
ec3bc396
AD
8786@end example
8787
8788@noindent
fa7e68c3
PE
8789Observe that state 11 contains conflicts not only due to the lack of
8790precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8791@samp{*}, but also because the
ec3bc396
AD
8792associativity of @samp{/} is not specified.
8793
8794
8795@node Tracing
8796@section Tracing Your Parser
bfa74976
RS
8797@findex yydebug
8798@cindex debugging
8799@cindex tracing the parser
8800
93c150b6
AD
8801When a Bison grammar compiles properly but parses ``incorrectly'', the
8802@code{yydebug} parser-trace feature helps figuring out why.
8803
8804@menu
8805* Enabling Traces:: Activating run-time trace support
8806* Mfcalc Traces:: Extending @code{mfcalc} to support traces
8807* The YYPRINT Macro:: Obsolete interface for semantic value reports
8808@end menu
bfa74976 8809
93c150b6
AD
8810@node Enabling Traces
8811@subsection Enabling Traces
3ded9a63
AD
8812There are several means to enable compilation of trace facilities:
8813
8814@table @asis
8815@item the macro @code{YYDEBUG}
8816@findex YYDEBUG
8817Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8818parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8819@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8820YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8821Prologue}).
8822
e6ae99fe 8823If the @code{%define} variable @code{api.prefix} is used (@pxref{Multiple
e358222b
AD
8824Parsers, ,Multiple Parsers in the Same Program}), for instance @samp{%define
8825api.prefix x}, then if @code{CDEBUG} is defined, its value controls the
8826tracing feature (enabled iff nonzero); otherwise tracing is enabled iff
8827@code{YYDEBUG} is nonzero.
8828
8829@item the option @option{-t} (POSIX Yacc compliant)
8830@itemx the option @option{--debug} (Bison extension)
8831Use the @samp{-t} option when you run Bison (@pxref{Invocation, ,Invoking
8832Bison}). With @samp{%define api.prefix c}, it defines @code{CDEBUG} to 1,
8833otherwise it defines @code{YYDEBUG} to 1.
3ded9a63
AD
8834
8835@item the directive @samp{%debug}
8836@findex %debug
fa819509
AD
8837Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8838Summary}). This Bison extension is maintained for backward
8839compatibility with previous versions of Bison.
8840
8841@item the variable @samp{parse.trace}
8842@findex %define parse.trace
35c1e5f0
JD
8843Add the @samp{%define parse.trace} directive (@pxref{%define
8844Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8845(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8846useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8847portability matter to you, this is the preferred solution.
3ded9a63
AD
8848@end table
8849
fa819509 8850We suggest that you always enable the trace option so that debugging is
3ded9a63 8851always possible.
bfa74976 8852
93c150b6 8853@findex YYFPRINTF
02a81e05 8854The trace facility outputs messages with macro calls of the form
e2742e46 8855@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8856@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8857arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8858define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8859and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8860
8861Once you have compiled the program with trace facilities, the way to
8862request a trace is to store a nonzero value in the variable @code{yydebug}.
8863You can do this by making the C code do it (in @code{main}, perhaps), or
8864you can alter the value with a C debugger.
8865
8866Each step taken by the parser when @code{yydebug} is nonzero produces a
8867line or two of trace information, written on @code{stderr}. The trace
8868messages tell you these things:
8869
8870@itemize @bullet
8871@item
8872Each time the parser calls @code{yylex}, what kind of token was read.
8873
8874@item
8875Each time a token is shifted, the depth and complete contents of the
8876state stack (@pxref{Parser States}).
8877
8878@item
8879Each time a rule is reduced, which rule it is, and the complete contents
8880of the state stack afterward.
8881@end itemize
8882
93c150b6
AD
8883To make sense of this information, it helps to refer to the automaton
8884description file (@pxref{Understanding, ,Understanding Your Parser}).
8885This file shows the meaning of each state in terms of
704a47c4
AD
8886positions in various rules, and also what each state will do with each
8887possible input token. As you read the successive trace messages, you
8888can see that the parser is functioning according to its specification in
8889the listing file. Eventually you will arrive at the place where
8890something undesirable happens, and you will see which parts of the
8891grammar are to blame.
bfa74976 8892
93c150b6 8893The parser implementation file is a C/C++/Java program and you can use
ff7571c0
JD
8894debuggers on it, but it's not easy to interpret what it is doing. The
8895parser function is a finite-state machine interpreter, and aside from
8896the actions it executes the same code over and over. Only the values
8897of variables show where in the grammar it is working.
bfa74976 8898
93c150b6
AD
8899@node Mfcalc Traces
8900@subsection Enabling Debug Traces for @code{mfcalc}
8901
8902The debugging information normally gives the token type of each token read,
8903but not its semantic value. The @code{%printer} directive allows specify
8904how semantic values are reported, see @ref{Printer Decl, , Printing
8905Semantic Values}. For backward compatibility, Yacc like C parsers may also
8906use the @code{YYPRINT} (@pxref{The YYPRINT Macro, , The @code{YYPRINT}
8907Macro}), but its use is discouraged.
8908
8909As a demonstration of @code{%printer}, consider the multi-function
8910calculator, @code{mfcalc} (@pxref{Multi-function Calc}). To enable run-time
8911traces, and semantic value reports, insert the following directives in its
8912prologue:
8913
8914@comment file: mfcalc.y: 2
8915@example
8916/* Generate the parser description file. */
8917%verbose
8918/* Enable run-time traces (yydebug). */
8919%define parse.trace
8920
8921/* Formatting semantic values. */
8922%printer @{ fprintf (yyoutput, "%s", $$->name); @} VAR;
8923%printer @{ fprintf (yyoutput, "%s()", $$->name); @} FNCT;
8924%printer @{ fprintf (yyoutput, "%g", $$); @} <val>;
8925@end example
8926
8927The @code{%define} directive instructs Bison to generate run-time trace
8928support. Then, activation of these traces is controlled at run-time by the
8929@code{yydebug} variable, which is disabled by default. Because these traces
8930will refer to the ``states'' of the parser, it is helpful to ask for the
8931creation of a description of that parser; this is the purpose of (admittedly
8932ill-named) @code{%verbose} directive.
8933
8934The set of @code{%printer} directives demonstrates how to format the
8935semantic value in the traces. Note that the specification can be done
8936either on the symbol type (e.g., @code{VAR} or @code{FNCT}), or on the type
8937tag: since @code{<val>} is the type for both @code{NUM} and @code{exp}, this
8938printer will be used for them.
8939
8940Here is a sample of the information provided by run-time traces. The traces
8941are sent onto standard error.
8942
8943@example
8944$ @kbd{echo 'sin(1-1)' | ./mfcalc -p}
8945Starting parse
8946Entering state 0
8947Reducing stack by rule 1 (line 34):
8948-> $$ = nterm input ()
8949Stack now 0
8950Entering state 1
8951@end example
8952
8953@noindent
8954This first batch shows a specific feature of this grammar: the first rule
8955(which is in line 34 of @file{mfcalc.y} can be reduced without even having
8956to look for the first token. The resulting left-hand symbol (@code{$$}) is
8957a valueless (@samp{()}) @code{input} non terminal (@code{nterm}).
8958
8959Then the parser calls the scanner.
8960@example
8961Reading a token: Next token is token FNCT (sin())
8962Shifting token FNCT (sin())
8963Entering state 6
8964@end example
8965
8966@noindent
8967That token (@code{token}) is a function (@code{FNCT}) whose value is
8968@samp{sin} as formatted per our @code{%printer} specification: @samp{sin()}.
8969The parser stores (@code{Shifting}) that token, and others, until it can do
8970something about it.
8971
8972@example
8973Reading a token: Next token is token '(' ()
8974Shifting token '(' ()
8975Entering state 14
8976Reading a token: Next token is token NUM (1.000000)
8977Shifting token NUM (1.000000)
8978Entering state 4
8979Reducing stack by rule 6 (line 44):
8980 $1 = token NUM (1.000000)
8981-> $$ = nterm exp (1.000000)
8982Stack now 0 1 6 14
8983Entering state 24
8984@end example
8985
8986@noindent
8987The previous reduction demonstrates the @code{%printer} directive for
8988@code{<val>}: both the token @code{NUM} and the resulting non-terminal
8989@code{exp} have @samp{1} as value.
8990
8991@example
8992Reading a token: Next token is token '-' ()
8993Shifting token '-' ()
8994Entering state 17
8995Reading a token: Next token is token NUM (1.000000)
8996Shifting token NUM (1.000000)
8997Entering state 4
8998Reducing stack by rule 6 (line 44):
8999 $1 = token NUM (1.000000)
9000-> $$ = nterm exp (1.000000)
9001Stack now 0 1 6 14 24 17
9002Entering state 26
9003Reading a token: Next token is token ')' ()
9004Reducing stack by rule 11 (line 49):
9005 $1 = nterm exp (1.000000)
9006 $2 = token '-' ()
9007 $3 = nterm exp (1.000000)
9008-> $$ = nterm exp (0.000000)
9009Stack now 0 1 6 14
9010Entering state 24
9011@end example
9012
9013@noindent
9014The rule for the subtraction was just reduced. The parser is about to
9015discover the end of the call to @code{sin}.
9016
9017@example
9018Next token is token ')' ()
9019Shifting token ')' ()
9020Entering state 31
9021Reducing stack by rule 9 (line 47):
9022 $1 = token FNCT (sin())
9023 $2 = token '(' ()
9024 $3 = nterm exp (0.000000)
9025 $4 = token ')' ()
9026-> $$ = nterm exp (0.000000)
9027Stack now 0 1
9028Entering state 11
9029@end example
9030
9031@noindent
9032Finally, the end-of-line allow the parser to complete the computation, and
9033display its result.
9034
9035@example
9036Reading a token: Next token is token '\n' ()
9037Shifting token '\n' ()
9038Entering state 22
9039Reducing stack by rule 4 (line 40):
9040 $1 = nterm exp (0.000000)
9041 $2 = token '\n' ()
9042@result{} 0
9043-> $$ = nterm line ()
9044Stack now 0 1
9045Entering state 10
9046Reducing stack by rule 2 (line 35):
9047 $1 = nterm input ()
9048 $2 = nterm line ()
9049-> $$ = nterm input ()
9050Stack now 0
9051Entering state 1
9052@end example
9053
9054The parser has returned into state 1, in which it is waiting for the next
9055expression to evaluate, or for the end-of-file token, which causes the
9056completion of the parsing.
9057
9058@example
9059Reading a token: Now at end of input.
9060Shifting token $end ()
9061Entering state 2
9062Stack now 0 1 2
9063Cleanup: popping token $end ()
9064Cleanup: popping nterm input ()
9065@end example
9066
9067
9068@node The YYPRINT Macro
9069@subsection The @code{YYPRINT} Macro
9070
bfa74976 9071@findex YYPRINT
93c150b6
AD
9072Before @code{%printer} support, semantic values could be displayed using the
9073@code{YYPRINT} macro, which works only for terminal symbols and only with
9074the @file{yacc.c} skeleton.
9075
9076@deffn {Macro} YYPRINT (@var{stream}, @var{token}, @var{value});
9077@findex YYPRINT
9078If you define @code{YYPRINT}, it should take three arguments. The parser
9079will pass a standard I/O stream, the numeric code for the token type, and
9080the token value (from @code{yylval}).
9081
9082For @file{yacc.c} only. Obsoleted by @code{%printer}.
9083@end deffn
bfa74976
RS
9084
9085Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 9086calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976 9087
c93f22fc 9088@example
38a92d50
PE
9089%@{
9090 static void print_token_value (FILE *, int, YYSTYPE);
93c150b6
AD
9091 #define YYPRINT(File, Type, Value) \
9092 print_token_value (File, Type, Value)
38a92d50
PE
9093%@}
9094
9095@dots{} %% @dots{} %% @dots{}
bfa74976
RS
9096
9097static void
831d3c99 9098print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
9099@{
9100 if (type == VAR)
d3c4e709 9101 fprintf (file, "%s", value.tptr->name);
bfa74976 9102 else if (type == NUM)
d3c4e709 9103 fprintf (file, "%d", value.val);
bfa74976 9104@}
c93f22fc 9105@end example
bfa74976 9106
ec3bc396
AD
9107@c ================================================= Invoking Bison
9108
342b8b6e 9109@node Invocation
bfa74976
RS
9110@chapter Invoking Bison
9111@cindex invoking Bison
9112@cindex Bison invocation
9113@cindex options for invoking Bison
9114
9115The usual way to invoke Bison is as follows:
9116
9117@example
9118bison @var{infile}
9119@end example
9120
9121Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
9122@samp{.y}. The parser implementation file's name is made by replacing
9123the @samp{.y} with @samp{.tab.c} and removing any leading directory.
9124Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
9125the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
9126also possible, in case you are writing C++ code instead of C in your
9127grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
9128output files will take an extension like the given one as input
9129(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
9130feature takes effect with all options that manipulate file names like
234a3be3
AD
9131@samp{-o} or @samp{-d}.
9132
9133For example :
9134
9135@example
9136bison -d @var{infile.yxx}
9137@end example
84163231 9138@noindent
72d2299c 9139will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
9140
9141@example
b56471a6 9142bison -d -o @var{output.c++} @var{infile.y}
234a3be3 9143@end example
84163231 9144@noindent
234a3be3
AD
9145will produce @file{output.c++} and @file{outfile.h++}.
9146
8a4281b9 9147For compatibility with POSIX, the standard Bison
397ec073
PE
9148distribution also contains a shell script called @command{yacc} that
9149invokes Bison with the @option{-y} option.
9150
bfa74976 9151@menu
13863333 9152* Bison Options:: All the options described in detail,
c827f760 9153 in alphabetical order by short options.
bfa74976 9154* Option Cross Key:: Alphabetical list of long options.
93dd49ab 9155* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
9156@end menu
9157
342b8b6e 9158@node Bison Options
bfa74976
RS
9159@section Bison Options
9160
9161Bison supports both traditional single-letter options and mnemonic long
9162option names. Long option names are indicated with @samp{--} instead of
9163@samp{-}. Abbreviations for option names are allowed as long as they
9164are unique. When a long option takes an argument, like
9165@samp{--file-prefix}, connect the option name and the argument with
9166@samp{=}.
9167
9168Here is a list of options that can be used with Bison, alphabetized by
9169short option. It is followed by a cross key alphabetized by long
9170option.
9171
89cab50d
AD
9172@c Please, keep this ordered as in `bison --help'.
9173@noindent
9174Operations modes:
9175@table @option
9176@item -h
9177@itemx --help
9178Print a summary of the command-line options to Bison and exit.
bfa74976 9179
89cab50d
AD
9180@item -V
9181@itemx --version
9182Print the version number of Bison and exit.
bfa74976 9183
f7ab6a50
PE
9184@item --print-localedir
9185Print the name of the directory containing locale-dependent data.
9186
a0de5091
JD
9187@item --print-datadir
9188Print the name of the directory containing skeletons and XSLT.
9189
89cab50d
AD
9190@item -y
9191@itemx --yacc
ff7571c0
JD
9192Act more like the traditional Yacc command. This can cause different
9193diagnostics to be generated, and may change behavior in other minor
9194ways. Most importantly, imitate Yacc's output file name conventions,
9195so that the parser implementation file is called @file{y.tab.c}, and
9196the other outputs are called @file{y.output} and @file{y.tab.h}.
9197Also, if generating a deterministic parser in C, generate
9198@code{#define} statements in addition to an @code{enum} to associate
9199token numbers with token names. Thus, the following shell script can
9200substitute for Yacc, and the Bison distribution contains such a script
9201for compatibility with POSIX:
bfa74976 9202
89cab50d 9203@example
397ec073 9204#! /bin/sh
26e06a21 9205bison -y "$@@"
89cab50d 9206@end example
54662697
PE
9207
9208The @option{-y}/@option{--yacc} option is intended for use with
9209traditional Yacc grammars. If your grammar uses a Bison extension
9210like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
9211this option is specified.
9212
1d5b3c08
JD
9213@item -W [@var{category}]
9214@itemx --warnings[=@var{category}]
118d4978
AD
9215Output warnings falling in @var{category}. @var{category} can be one
9216of:
9217@table @code
9218@item midrule-values
8e55b3aa
JD
9219Warn about mid-rule values that are set but not used within any of the actions
9220of the parent rule.
9221For example, warn about unused @code{$2} in:
118d4978
AD
9222
9223@example
9224exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
9225@end example
9226
8e55b3aa
JD
9227Also warn about mid-rule values that are used but not set.
9228For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
9229
9230@example
5e9b6624 9231exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
118d4978
AD
9232@end example
9233
9234These warnings are not enabled by default since they sometimes prove to
9235be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 9236@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 9237
118d4978 9238@item yacc
8a4281b9 9239Incompatibilities with POSIX Yacc.
118d4978 9240
786743d5
JD
9241@item conflicts-sr
9242@itemx conflicts-rr
9243S/R and R/R conflicts. These warnings are enabled by default. However, if
9244the @code{%expect} or @code{%expect-rr} directive is specified, an
9245unexpected number of conflicts is an error, and an expected number of
9246conflicts is not reported, so @option{-W} and @option{--warning} then have
9247no effect on the conflict report.
9248
c39014ae
JD
9249@item other
9250All warnings not categorized above. These warnings are enabled by default.
9251
9252This category is provided merely for the sake of completeness. Future
9253releases of Bison may move warnings from this category to new, more specific
9254categories.
9255
118d4978 9256@item all
8e55b3aa 9257All the warnings.
118d4978 9258@item none
8e55b3aa 9259Turn off all the warnings.
118d4978 9260@item error
8e55b3aa 9261Treat warnings as errors.
118d4978
AD
9262@end table
9263
9264A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 9265instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 9266POSIX Yacc incompatibilities.
89cab50d
AD
9267@end table
9268
9269@noindent
9270Tuning the parser:
9271
9272@table @option
9273@item -t
9274@itemx --debug
ff7571c0
JD
9275In the parser implementation file, define the macro @code{YYDEBUG} to
92761 if it is not already defined, so that the debugging facilities are
9277compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 9278
58697c6d
AD
9279@item -D @var{name}[=@var{value}]
9280@itemx --define=@var{name}[=@var{value}]
17aed602 9281@itemx -F @var{name}[=@var{value}]
de5ab940
JD
9282@itemx --force-define=@var{name}[=@var{value}]
9283Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 9284(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
9285definitions for the same @var{name} as follows:
9286
9287@itemize
9288@item
0b6d43c5
JD
9289Bison quietly ignores all command-line definitions for @var{name} except
9290the last.
de5ab940 9291@item
0b6d43c5
JD
9292If that command-line definition is specified by a @code{-D} or
9293@code{--define}, Bison reports an error for any @code{%define}
9294definition for @var{name}.
de5ab940 9295@item
0b6d43c5
JD
9296If that command-line definition is specified by a @code{-F} or
9297@code{--force-define} instead, Bison quietly ignores all @code{%define}
9298definitions for @var{name}.
9299@item
9300Otherwise, Bison reports an error if there are multiple @code{%define}
9301definitions for @var{name}.
de5ab940
JD
9302@end itemize
9303
9304You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
9305make files unless you are confident that it is safe to quietly ignore
9306any conflicting @code{%define} that may be added to the grammar file.
58697c6d 9307
0e021770
PE
9308@item -L @var{language}
9309@itemx --language=@var{language}
9310Specify the programming language for the generated parser, as if
9311@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 9312Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 9313@var{language} is case-insensitive.
0e021770 9314
ed4d67dc
JD
9315This option is experimental and its effect may be modified in future
9316releases.
9317
89cab50d 9318@item --locations
d8988b2f 9319Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
9320
9321@item -p @var{prefix}
9322@itemx --name-prefix=@var{prefix}
4b3847c3
AD
9323Pretend that @code{%name-prefix "@var{prefix}"} was specified (@pxref{Decl
9324Summary}). Obsoleted by @code{-Dapi.prefix=@var{prefix}}. @xref{Multiple
9325Parsers, ,Multiple Parsers in the Same Program}.
bfa74976
RS
9326
9327@item -l
9328@itemx --no-lines
ff7571c0
JD
9329Don't put any @code{#line} preprocessor commands in the parser
9330implementation file. Ordinarily Bison puts them in the parser
9331implementation file so that the C compiler and debuggers will
9332associate errors with your source file, the grammar file. This option
9333causes them to associate errors with the parser implementation file,
9334treating it as an independent source file in its own right.
bfa74976 9335
e6e704dc
JD
9336@item -S @var{file}
9337@itemx --skeleton=@var{file}
a7867f53 9338Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
9339(@pxref{Decl Summary, , Bison Declaration Summary}).
9340
ed4d67dc
JD
9341@c You probably don't need this option unless you are developing Bison.
9342@c You should use @option{--language} if you want to specify the skeleton for a
9343@c different language, because it is clearer and because it will always
9344@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 9345
a7867f53
JD
9346If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
9347file in the Bison installation directory.
9348If it does, @var{file} is an absolute file name or a file name relative to the
9349current working directory.
9350This is similar to how most shells resolve commands.
9351
89cab50d
AD
9352@item -k
9353@itemx --token-table
d8988b2f 9354Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 9355@end table
bfa74976 9356
89cab50d
AD
9357@noindent
9358Adjust the output:
bfa74976 9359
89cab50d 9360@table @option
8e55b3aa 9361@item --defines[=@var{file}]
d8988b2f 9362Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 9363file containing macro definitions for the token type names defined in
4bfd5e4e 9364the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 9365
8e55b3aa
JD
9366@item -d
9367This is the same as @code{--defines} except @code{-d} does not accept a
9368@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
9369with other short options.
342b8b6e 9370
89cab50d
AD
9371@item -b @var{file-prefix}
9372@itemx --file-prefix=@var{prefix}
9c437126 9373Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 9374for all Bison output file names. @xref{Decl Summary}.
bfa74976 9375
ec3bc396
AD
9376@item -r @var{things}
9377@itemx --report=@var{things}
9378Write an extra output file containing verbose description of the comma
9379separated list of @var{things} among:
9380
9381@table @code
9382@item state
9383Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 9384parser's automaton.
ec3bc396 9385
742e4900 9386@item lookahead
ec3bc396 9387Implies @code{state} and augments the description of the automaton with
742e4900 9388each rule's lookahead set.
ec3bc396
AD
9389
9390@item itemset
9391Implies @code{state} and augments the description of the automaton with
9392the full set of items for each state, instead of its core only.
9393@end table
9394
1bb2bd75
JD
9395@item --report-file=@var{file}
9396Specify the @var{file} for the verbose description.
9397
bfa74976
RS
9398@item -v
9399@itemx --verbose
9c437126 9400Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9401file containing verbose descriptions of the grammar and
72d2299c 9402parser. @xref{Decl Summary}.
bfa74976 9403
fa4d969f
PE
9404@item -o @var{file}
9405@itemx --output=@var{file}
ff7571c0 9406Specify the @var{file} for the parser implementation file.
bfa74976 9407
fa4d969f 9408The other output files' names are constructed from @var{file} as
d8988b2f 9409described under the @samp{-v} and @samp{-d} options.
342b8b6e 9410
a7c09cba 9411@item -g [@var{file}]
8e55b3aa 9412@itemx --graph[=@var{file}]
eb45ef3b 9413Output a graphical representation of the parser's
35fe0834 9414automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9415@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9416@code{@var{file}} is optional.
9417If omitted and the grammar file is @file{foo.y}, the output file will be
9418@file{foo.dot}.
59da312b 9419
a7c09cba 9420@item -x [@var{file}]
8e55b3aa 9421@itemx --xml[=@var{file}]
eb45ef3b 9422Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9423@code{@var{file}} is optional.
59da312b
JD
9424If omitted and the grammar file is @file{foo.y}, the output file will be
9425@file{foo.xml}.
9426(The current XML schema is experimental and may evolve.
9427More user feedback will help to stabilize it.)
bfa74976
RS
9428@end table
9429
342b8b6e 9430@node Option Cross Key
bfa74976
RS
9431@section Option Cross Key
9432
9433Here is a list of options, alphabetized by long option, to help you find
de5ab940 9434the corresponding short option and directive.
bfa74976 9435
de5ab940 9436@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9437@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9438@include cross-options.texi
aa08666d 9439@end multitable
bfa74976 9440
93dd49ab
PE
9441@node Yacc Library
9442@section Yacc Library
9443
9444The Yacc library contains default implementations of the
9445@code{yyerror} and @code{main} functions. These default
8a4281b9 9446implementations are normally not useful, but POSIX requires
93dd49ab
PE
9447them. To use the Yacc library, link your program with the
9448@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9449library is distributed under the terms of the GNU General
93dd49ab
PE
9450Public License (@pxref{Copying}).
9451
9452If you use the Yacc library's @code{yyerror} function, you should
9453declare @code{yyerror} as follows:
9454
9455@example
9456int yyerror (char const *);
9457@end example
9458
9459Bison ignores the @code{int} value returned by this @code{yyerror}.
9460If you use the Yacc library's @code{main} function, your
9461@code{yyparse} function should have the following type signature:
9462
9463@example
9464int yyparse (void);
9465@end example
9466
12545799
AD
9467@c ================================================= C++ Bison
9468
8405b70c
PB
9469@node Other Languages
9470@chapter Parsers Written In Other Languages
12545799
AD
9471
9472@menu
9473* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9474* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9475@end menu
9476
9477@node C++ Parsers
9478@section C++ Parsers
9479
9480@menu
9481* C++ Bison Interface:: Asking for C++ parser generation
9482* C++ Semantic Values:: %union vs. C++
9483* C++ Location Values:: The position and location classes
9484* C++ Parser Interface:: Instantiating and running the parser
9485* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9486* A Complete C++ Example:: Demonstrating their use
12545799
AD
9487@end menu
9488
9489@node C++ Bison Interface
9490@subsection C++ Bison Interface
ed4d67dc 9491@c - %skeleton "lalr1.cc"
12545799
AD
9492@c - Always pure
9493@c - initial action
9494
eb45ef3b 9495The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9496@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9497@option{--skeleton=lalr1.cc}.
e6e704dc 9498@xref{Decl Summary}.
0e021770 9499
793fbca5
JD
9500When run, @command{bison} will create several entities in the @samp{yy}
9501namespace.
67501061 9502@findex %define api.namespace
35c1e5f0
JD
9503Use the @samp{%define api.namespace} directive to change the namespace name,
9504see @ref{%define Summary,,api.namespace}. The various classes are generated
9505in the following files:
aa08666d 9506
12545799
AD
9507@table @file
9508@item position.hh
9509@itemx location.hh
9510The definition of the classes @code{position} and @code{location},
3cdc21cf 9511used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9512
9513@item stack.hh
9514An auxiliary class @code{stack} used by the parser.
9515
fa4d969f
PE
9516@item @var{file}.hh
9517@itemx @var{file}.cc
ff7571c0 9518(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9519declaration and implementation of the C++ parser class. The basename
9520and extension of these two files follow the same rules as with regular C
9521parsers (@pxref{Invocation}).
12545799 9522
cd8b5791
AD
9523The header is @emph{mandatory}; you must either pass
9524@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9525@samp{%defines} directive.
9526@end table
9527
9528All these files are documented using Doxygen; run @command{doxygen}
9529for a complete and accurate documentation.
9530
9531@node C++ Semantic Values
9532@subsection C++ Semantic Values
9533@c - No objects in unions
178e123e 9534@c - YYSTYPE
12545799
AD
9535@c - Printer and destructor
9536
3cdc21cf
AD
9537Bison supports two different means to handle semantic values in C++. One is
9538alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9539practitioners know, unions are inconvenient in C++, therefore another
9540approach is provided, based on variants (@pxref{C++ Variants}).
9541
9542@menu
9543* C++ Unions:: Semantic values cannot be objects
9544* C++ Variants:: Using objects as semantic values
9545@end menu
9546
9547@node C++ Unions
9548@subsubsection C++ Unions
9549
12545799
AD
9550The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9551Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9552@code{union}, which have a few specific features in C++.
12545799
AD
9553@itemize @minus
9554@item
fb9712a9
AD
9555The type @code{YYSTYPE} is defined but its use is discouraged: rather
9556you should refer to the parser's encapsulated type
9557@code{yy::parser::semantic_type}.
12545799
AD
9558@item
9559Non POD (Plain Old Data) types cannot be used. C++ forbids any
9560instance of classes with constructors in unions: only @emph{pointers}
9561to such objects are allowed.
9562@end itemize
9563
9564Because objects have to be stored via pointers, memory is not
9565reclaimed automatically: using the @code{%destructor} directive is the
9566only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9567Symbols}.
9568
3cdc21cf
AD
9569@node C++ Variants
9570@subsubsection C++ Variants
9571
9572Starting with version 2.6, Bison provides a @emph{variant} based
9573implementation of semantic values for C++. This alleviates all the
9574limitations reported in the previous section, and in particular, object
9575types can be used without pointers.
9576
9577To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9578@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9579@code{%union} is ignored, and instead of using the name of the fields of the
9580@code{%union} to ``type'' the symbols, use genuine types.
9581
9582For instance, instead of
9583
9584@example
9585%union
9586@{
9587 int ival;
9588 std::string* sval;
9589@}
9590%token <ival> NUMBER;
9591%token <sval> STRING;
9592@end example
9593
9594@noindent
9595write
9596
9597@example
9598%token <int> NUMBER;
9599%token <std::string> STRING;
9600@end example
9601
9602@code{STRING} is no longer a pointer, which should fairly simplify the user
9603actions in the grammar and in the scanner (in particular the memory
9604management).
9605
9606Since C++ features destructors, and since it is customary to specialize
9607@code{operator<<} to support uniform printing of values, variants also
9608typically simplify Bison printers and destructors.
9609
9610Variants are stricter than unions. When based on unions, you may play any
9611dirty game with @code{yylval}, say storing an @code{int}, reading a
9612@code{char*}, and then storing a @code{double} in it. This is no longer
9613possible with variants: they must be initialized, then assigned to, and
9614eventually, destroyed.
9615
9616@deftypemethod {semantic_type} {T&} build<T> ()
9617Initialize, but leave empty. Returns the address where the actual value may
9618be stored. Requires that the variant was not initialized yet.
9619@end deftypemethod
9620
9621@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9622Initialize, and copy-construct from @var{t}.
9623@end deftypemethod
9624
9625
9626@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9627appeared unacceptable to require Boost on the user's machine (i.e., the
9628machine on which the generated parser will be compiled, not the machine on
9629which @command{bison} was run). Second, for each possible semantic value,
9630Boost.Variant not only stores the value, but also a tag specifying its
9631type. But the parser already ``knows'' the type of the semantic value, so
9632that would be duplicating the information.
9633
9634Therefore we developed light-weight variants whose type tag is external (so
9635they are really like @code{unions} for C++ actually). But our code is much
9636less mature that Boost.Variant. So there is a number of limitations in
9637(the current implementation of) variants:
9638@itemize
9639@item
9640Alignment must be enforced: values should be aligned in memory according to
9641the most demanding type. Computing the smallest alignment possible requires
9642meta-programming techniques that are not currently implemented in Bison, and
9643therefore, since, as far as we know, @code{double} is the most demanding
9644type on all platforms, alignments are enforced for @code{double} whatever
9645types are actually used. This may waste space in some cases.
9646
9647@item
9648Our implementation is not conforming with strict aliasing rules. Alias
9649analysis is a technique used in optimizing compilers to detect when two
9650pointers are disjoint (they cannot ``meet''). Our implementation breaks
9651some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9652alias analysis must be disabled}. Use the option
9653@option{-fno-strict-aliasing} to compile the generated parser.
9654
9655@item
9656There might be portability issues we are not aware of.
9657@end itemize
9658
a6ca4ce2 9659As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9660is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9661
9662@node C++ Location Values
9663@subsection C++ Location Values
9664@c - %locations
9665@c - class Position
9666@c - class Location
16dc6a9e 9667@c - %define filename_type "const symbol::Symbol"
12545799
AD
9668
9669When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9670location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9671define a @code{position}, a single point in a file, and a @code{location}, a
9672range composed of a pair of @code{position}s (possibly spanning several
9673files).
12545799 9674
936c88d1
AD
9675@tindex uint
9676In this section @code{uint} is an abbreviation for @code{unsigned int}: in
9677genuine code only the latter is used.
9678
9679@menu
9680* C++ position:: One point in the source file
9681* C++ location:: Two points in the source file
9682@end menu
9683
9684@node C++ position
9685@subsubsection C++ @code{position}
9686
9687@deftypeop {Constructor} {position} {} position (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9688Create a @code{position} denoting a given point. Note that @code{file} is
9689not reclaimed when the @code{position} is destroyed: memory managed must be
9690handled elsewhere.
9691@end deftypeop
9692
9693@deftypemethod {position} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9694Reset the position to the given values.
9695@end deftypemethod
9696
9697@deftypeivar {position} {std::string*} file
12545799
AD
9698The name of the file. It will always be handled as a pointer, the
9699parser will never duplicate nor deallocate it. As an experimental
9700feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9701filename_type "@var{type}"}.
936c88d1 9702@end deftypeivar
12545799 9703
936c88d1 9704@deftypeivar {position} {uint} line
12545799 9705The line, starting at 1.
936c88d1 9706@end deftypeivar
12545799 9707
936c88d1 9708@deftypemethod {position} {uint} lines (int @var{height} = 1)
12545799
AD
9709Advance by @var{height} lines, resetting the column number.
9710@end deftypemethod
9711
936c88d1
AD
9712@deftypeivar {position} {uint} column
9713The column, starting at 1.
9714@end deftypeivar
12545799 9715
936c88d1 9716@deftypemethod {position} {uint} columns (int @var{width} = 1)
12545799
AD
9717Advance by @var{width} columns, without changing the line number.
9718@end deftypemethod
9719
936c88d1
AD
9720@deftypemethod {position} {position&} operator+= (int @var{width})
9721@deftypemethodx {position} {position} operator+ (int @var{width})
9722@deftypemethodx {position} {position&} operator-= (int @var{width})
9723@deftypemethodx {position} {position} operator- (int @var{width})
12545799
AD
9724Various forms of syntactic sugar for @code{columns}.
9725@end deftypemethod
9726
936c88d1
AD
9727@deftypemethod {position} {bool} operator== (const position& @var{that})
9728@deftypemethodx {position} {bool} operator!= (const position& @var{that})
9729Whether @code{*this} and @code{that} denote equal/different positions.
9730@end deftypemethod
9731
9732@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const position& @var{p})
12545799 9733Report @var{p} on @var{o} like this:
fa4d969f
PE
9734@samp{@var{file}:@var{line}.@var{column}}, or
9735@samp{@var{line}.@var{column}} if @var{file} is null.
936c88d1
AD
9736@end deftypefun
9737
9738@node C++ location
9739@subsubsection C++ @code{location}
9740
9741@deftypeop {Constructor} {location} {} location (const position& @var{begin}, const position& @var{end})
9742Create a @code{Location} from the endpoints of the range.
9743@end deftypeop
9744
9745@deftypeop {Constructor} {location} {} location (const position& @var{pos} = position())
9746@deftypeopx {Constructor} {location} {} location (std::string* @var{file}, uint @var{line}, uint @var{col})
9747Create a @code{Location} denoting an empty range located at a given point.
9748@end deftypeop
9749
9750@deftypemethod {location} {void} initialize (std::string* @var{file} = 0, uint @var{line} = 1, uint @var{col} = 1)
9751Reset the location to an empty range at the given values.
12545799
AD
9752@end deftypemethod
9753
936c88d1
AD
9754@deftypeivar {location} {position} begin
9755@deftypeivarx {location} {position} end
12545799 9756The first, inclusive, position of the range, and the first beyond.
936c88d1 9757@end deftypeivar
12545799 9758
936c88d1
AD
9759@deftypemethod {location} {uint} columns (int @var{width} = 1)
9760@deftypemethodx {location} {uint} lines (int @var{height} = 1)
12545799
AD
9761Advance the @code{end} position.
9762@end deftypemethod
9763
936c88d1
AD
9764@deftypemethod {location} {location} operator+ (const location& @var{end})
9765@deftypemethodx {location} {location} operator+ (int @var{width})
9766@deftypemethodx {location} {location} operator+= (int @var{width})
12545799
AD
9767Various forms of syntactic sugar.
9768@end deftypemethod
9769
9770@deftypemethod {location} {void} step ()
9771Move @code{begin} onto @code{end}.
9772@end deftypemethod
9773
936c88d1
AD
9774@deftypemethod {location} {bool} operator== (const location& @var{that})
9775@deftypemethodx {location} {bool} operator!= (const location& @var{that})
9776Whether @code{*this} and @code{that} denote equal/different ranges of
9777positions.
9778@end deftypemethod
9779
9780@deftypefun {std::ostream&} operator<< (std::ostream& @var{o}, const location& @var{p})
9781Report @var{p} on @var{o}, taking care of special cases such as: no
9782@code{filename} defined, or equal filename/line or column.
9783@end deftypefun
12545799
AD
9784
9785@node C++ Parser Interface
9786@subsection C++ Parser Interface
9787@c - define parser_class_name
9788@c - Ctor
9789@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9790@c debug_stream.
9791@c - Reporting errors
9792
9793The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9794declare and define the parser class in the namespace @code{yy}. The
9795class name defaults to @code{parser}, but may be changed using
16dc6a9e 9796@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9797this class is detailed below. It can be extended using the
12545799
AD
9798@code{%parse-param} feature: its semantics is slightly changed since
9799it describes an additional member of the parser class, and an
9800additional argument for its constructor.
9801
3cdc21cf
AD
9802@defcv {Type} {parser} {semantic_type}
9803@defcvx {Type} {parser} {location_type}
9804The types for semantic values and locations (if enabled).
9805@end defcv
9806
86e5b440 9807@defcv {Type} {parser} {token}
aaaa2aae
AD
9808A structure that contains (only) the @code{yytokentype} enumeration, which
9809defines the tokens. To refer to the token @code{FOO},
9810use @code{yy::parser::token::FOO}. The scanner can use
86e5b440
AD
9811@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9812(@pxref{Calc++ Scanner}).
9813@end defcv
9814
3cdc21cf
AD
9815@defcv {Type} {parser} {syntax_error}
9816This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9817from the scanner or from the user actions to raise parse errors. This is
9818equivalent with first
3cdc21cf
AD
9819invoking @code{error} to report the location and message of the syntax
9820error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9821But contrary to @code{YYERROR} which can only be invoked from user actions
9822(i.e., written in the action itself), the exception can be thrown from
9823function invoked from the user action.
8a0adb01 9824@end defcv
12545799
AD
9825
9826@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9827Build a new parser object. There are no arguments by default, unless
9828@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9829@end deftypemethod
9830
3cdc21cf
AD
9831@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9832@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9833Instantiate a syntax-error exception.
9834@end deftypemethod
9835
12545799
AD
9836@deftypemethod {parser} {int} parse ()
9837Run the syntactic analysis, and return 0 on success, 1 otherwise.
9838@end deftypemethod
9839
9840@deftypemethod {parser} {std::ostream&} debug_stream ()
9841@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9842Get or set the stream used for tracing the parsing. It defaults to
9843@code{std::cerr}.
9844@end deftypemethod
9845
9846@deftypemethod {parser} {debug_level_type} debug_level ()
9847@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9848Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9849or nonzero, full tracing.
12545799
AD
9850@end deftypemethod
9851
9852@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9853@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9854The definition for this member function must be supplied by the user:
9855the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9856described by @var{m}. If location tracking is not enabled, the second
9857signature is used.
12545799
AD
9858@end deftypemethod
9859
9860
9861@node C++ Scanner Interface
9862@subsection C++ Scanner Interface
9863@c - prefix for yylex.
9864@c - Pure interface to yylex
9865@c - %lex-param
9866
9867The parser invokes the scanner by calling @code{yylex}. Contrary to C
9868parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9869@samp{%define api.pure} directive. The actual interface with @code{yylex}
9870depends whether you use unions, or variants.
12545799 9871
3cdc21cf
AD
9872@menu
9873* Split Symbols:: Passing symbols as two/three components
9874* Complete Symbols:: Making symbols a whole
9875@end menu
9876
9877@node Split Symbols
9878@subsubsection Split Symbols
9879
9880Therefore the interface is as follows.
9881
86e5b440
AD
9882@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9883@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9884Return the next token. Its type is the return value, its semantic value and
9885location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9886@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9887@end deftypemethod
9888
3cdc21cf
AD
9889Note that when using variants, the interface for @code{yylex} is the same,
9890but @code{yylval} is handled differently.
9891
9892Regular union-based code in Lex scanner typically look like:
9893
9894@example
9895[0-9]+ @{
9896 yylval.ival = text_to_int (yytext);
9897 return yy::parser::INTEGER;
9898 @}
9899[a-z]+ @{
9900 yylval.sval = new std::string (yytext);
9901 return yy::parser::IDENTIFIER;
9902 @}
9903@end example
9904
9905Using variants, @code{yylval} is already constructed, but it is not
9906initialized. So the code would look like:
9907
9908@example
9909[0-9]+ @{
9910 yylval.build<int>() = text_to_int (yytext);
9911 return yy::parser::INTEGER;
9912 @}
9913[a-z]+ @{
9914 yylval.build<std::string> = yytext;
9915 return yy::parser::IDENTIFIER;
9916 @}
9917@end example
9918
9919@noindent
9920or
9921
9922@example
9923[0-9]+ @{
9924 yylval.build(text_to_int (yytext));
9925 return yy::parser::INTEGER;
9926 @}
9927[a-z]+ @{
9928 yylval.build(yytext);
9929 return yy::parser::IDENTIFIER;
9930 @}
9931@end example
9932
9933
9934@node Complete Symbols
9935@subsubsection Complete Symbols
9936
9937If you specified both @code{%define variant} and @code{%define lex_symbol},
9938the @code{parser} class also defines the class @code{parser::symbol_type}
9939which defines a @emph{complete} symbol, aggregating its type (i.e., the
9940traditional value returned by @code{yylex}), its semantic value (i.e., the
9941value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9942
9943@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9944Build a complete terminal symbol which token type is @var{type}, and which
9945semantic value is @var{value}. If location tracking is enabled, also pass
9946the @var{location}.
9947@end deftypemethod
9948
9949This interface is low-level and should not be used for two reasons. First,
9950it is inconvenient, as you still have to build the semantic value, which is
9951a variant, and second, because consistency is not enforced: as with unions,
9952it is still possible to give an integer as semantic value for a string.
9953
9954So for each token type, Bison generates named constructors as follows.
9955
9956@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9957@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9958Build a complete terminal symbol for the token type @var{token} (not
9959including the @code{api.tokens.prefix}) whose possible semantic value is
9960@var{value} of adequate @var{value_type}. If location tracking is enabled,
9961also pass the @var{location}.
9962@end deftypemethod
9963
9964For instance, given the following declarations:
9965
9966@example
9967%define api.tokens.prefix "TOK_"
9968%token <std::string> IDENTIFIER;
9969%token <int> INTEGER;
9970%token COLON;
9971@end example
9972
9973@noindent
9974Bison generates the following functions:
9975
9976@example
9977symbol_type make_IDENTIFIER(const std::string& v,
9978 const location_type& l);
9979symbol_type make_INTEGER(const int& v,
9980 const location_type& loc);
9981symbol_type make_COLON(const location_type& loc);
9982@end example
9983
9984@noindent
9985which should be used in a Lex-scanner as follows.
9986
9987@example
9988[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9989[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9990":" return yy::parser::make_COLON(loc);
9991@end example
9992
9993Tokens that do not have an identifier are not accessible: you cannot simply
9994use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9995
9996@node A Complete C++ Example
8405b70c 9997@subsection A Complete C++ Example
12545799
AD
9998
9999This section demonstrates the use of a C++ parser with a simple but
10000complete example. This example should be available on your system,
3cdc21cf 10001ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
10002focuses on the use of Bison, therefore the design of the various C++
10003classes is very naive: no accessors, no encapsulation of members etc.
10004We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 10005demonstrate the various interactions. A hand-written scanner is
12545799
AD
10006actually easier to interface with.
10007
10008@menu
10009* Calc++ --- C++ Calculator:: The specifications
10010* Calc++ Parsing Driver:: An active parsing context
10011* Calc++ Parser:: A parser class
10012* Calc++ Scanner:: A pure C++ Flex scanner
10013* Calc++ Top Level:: Conducting the band
10014@end menu
10015
10016@node Calc++ --- C++ Calculator
8405b70c 10017@subsubsection Calc++ --- C++ Calculator
12545799
AD
10018
10019Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 10020expression, possibly preceded by variable assignments. An
12545799
AD
10021environment containing possibly predefined variables such as
10022@code{one} and @code{two}, is exchanged with the parser. An example
10023of valid input follows.
10024
10025@example
10026three := 3
10027seven := one + two * three
10028seven * seven
10029@end example
10030
10031@node Calc++ Parsing Driver
8405b70c 10032@subsubsection Calc++ Parsing Driver
12545799
AD
10033@c - An env
10034@c - A place to store error messages
10035@c - A place for the result
10036
10037To support a pure interface with the parser (and the scanner) the
10038technique of the ``parsing context'' is convenient: a structure
10039containing all the data to exchange. Since, in addition to simply
10040launch the parsing, there are several auxiliary tasks to execute (open
10041the file for parsing, instantiate the parser etc.), we recommend
10042transforming the simple parsing context structure into a fully blown
10043@dfn{parsing driver} class.
10044
10045The declaration of this driver class, @file{calc++-driver.hh}, is as
10046follows. The first part includes the CPP guard and imports the
fb9712a9
AD
10047required standard library components, and the declaration of the parser
10048class.
12545799 10049
1c59e0a1 10050@comment file: calc++-driver.hh
12545799
AD
10051@example
10052#ifndef CALCXX_DRIVER_HH
10053# define CALCXX_DRIVER_HH
10054# include <string>
10055# include <map>
fb9712a9 10056# include "calc++-parser.hh"
12545799
AD
10057@end example
10058
12545799
AD
10059
10060@noindent
10061Then comes the declaration of the scanning function. Flex expects
10062the signature of @code{yylex} to be defined in the macro
10063@code{YY_DECL}, and the C++ parser expects it to be declared. We can
10064factor both as follows.
1c59e0a1
AD
10065
10066@comment file: calc++-driver.hh
12545799 10067@example
3dc5e96b 10068// Tell Flex the lexer's prototype ...
3cdc21cf
AD
10069# define YY_DECL \
10070 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
10071// ... and declare it for the parser's sake.
10072YY_DECL;
10073@end example
10074
10075@noindent
10076The @code{calcxx_driver} class is then declared with its most obvious
10077members.
10078
1c59e0a1 10079@comment file: calc++-driver.hh
12545799
AD
10080@example
10081// Conducting the whole scanning and parsing of Calc++.
10082class calcxx_driver
10083@{
10084public:
10085 calcxx_driver ();
10086 virtual ~calcxx_driver ();
10087
10088 std::map<std::string, int> variables;
10089
10090 int result;
10091@end example
10092
10093@noindent
3cdc21cf
AD
10094To encapsulate the coordination with the Flex scanner, it is useful to have
10095member functions to open and close the scanning phase.
12545799 10096
1c59e0a1 10097@comment file: calc++-driver.hh
12545799
AD
10098@example
10099 // Handling the scanner.
10100 void scan_begin ();
10101 void scan_end ();
10102 bool trace_scanning;
10103@end example
10104
10105@noindent
10106Similarly for the parser itself.
10107
1c59e0a1 10108@comment file: calc++-driver.hh
12545799 10109@example
3cdc21cf
AD
10110 // Run the parser on file F.
10111 // Return 0 on success.
bb32f4f2 10112 int parse (const std::string& f);
3cdc21cf
AD
10113 // The name of the file being parsed.
10114 // Used later to pass the file name to the location tracker.
12545799 10115 std::string file;
3cdc21cf 10116 // Whether parser traces should be generated.
12545799
AD
10117 bool trace_parsing;
10118@end example
10119
10120@noindent
10121To demonstrate pure handling of parse errors, instead of simply
10122dumping them on the standard error output, we will pass them to the
10123compiler driver using the following two member functions. Finally, we
10124close the class declaration and CPP guard.
10125
1c59e0a1 10126@comment file: calc++-driver.hh
12545799
AD
10127@example
10128 // Error handling.
10129 void error (const yy::location& l, const std::string& m);
10130 void error (const std::string& m);
10131@};
10132#endif // ! CALCXX_DRIVER_HH
10133@end example
10134
10135The implementation of the driver is straightforward. The @code{parse}
10136member function deserves some attention. The @code{error} functions
10137are simple stubs, they should actually register the located error
10138messages and set error state.
10139
1c59e0a1 10140@comment file: calc++-driver.cc
12545799
AD
10141@example
10142#include "calc++-driver.hh"
10143#include "calc++-parser.hh"
10144
10145calcxx_driver::calcxx_driver ()
10146 : trace_scanning (false), trace_parsing (false)
10147@{
10148 variables["one"] = 1;
10149 variables["two"] = 2;
10150@}
10151
10152calcxx_driver::~calcxx_driver ()
10153@{
10154@}
10155
bb32f4f2 10156int
12545799
AD
10157calcxx_driver::parse (const std::string &f)
10158@{
10159 file = f;
10160 scan_begin ();
10161 yy::calcxx_parser parser (*this);
10162 parser.set_debug_level (trace_parsing);
bb32f4f2 10163 int res = parser.parse ();
12545799 10164 scan_end ();
bb32f4f2 10165 return res;
12545799
AD
10166@}
10167
10168void
10169calcxx_driver::error (const yy::location& l, const std::string& m)
10170@{
10171 std::cerr << l << ": " << m << std::endl;
10172@}
10173
10174void
10175calcxx_driver::error (const std::string& m)
10176@{
10177 std::cerr << m << std::endl;
10178@}
10179@end example
10180
10181@node Calc++ Parser
8405b70c 10182@subsubsection Calc++ Parser
12545799 10183
ff7571c0
JD
10184The grammar file @file{calc++-parser.yy} starts by asking for the C++
10185deterministic parser skeleton, the creation of the parser header file,
10186and specifies the name of the parser class. Because the C++ skeleton
10187changed several times, it is safer to require the version you designed
10188the grammar for.
1c59e0a1
AD
10189
10190@comment file: calc++-parser.yy
12545799 10191@example
c93f22fc 10192%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 10193%require "@value{VERSION}"
12545799 10194%defines
16dc6a9e 10195%define parser_class_name "calcxx_parser"
fb9712a9
AD
10196@end example
10197
3cdc21cf
AD
10198@noindent
10199@findex %define variant
10200@findex %define lex_symbol
10201This example will use genuine C++ objects as semantic values, therefore, we
10202require the variant-based interface. To make sure we properly use it, we
10203enable assertions. To fully benefit from type-safety and more natural
10204definition of ``symbol'', we enable @code{lex_symbol}.
10205
10206@comment file: calc++-parser.yy
10207@example
10208%define variant
10209%define parse.assert
10210%define lex_symbol
10211@end example
10212
fb9712a9 10213@noindent
16dc6a9e 10214@findex %code requires
3cdc21cf
AD
10215Then come the declarations/inclusions needed by the semantic values.
10216Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 10217to include the header of the other, which is, of course, insane. This
3cdc21cf 10218mutual dependency will be broken using forward declarations. Because the
fb9712a9 10219driver's header needs detailed knowledge about the parser class (in
3cdc21cf 10220particular its inner types), it is the parser's header which will use a
e0c07222 10221forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
10222
10223@comment file: calc++-parser.yy
10224@example
3cdc21cf
AD
10225%code requires
10226@{
12545799 10227# include <string>
fb9712a9 10228class calcxx_driver;
9bc0dd67 10229@}
12545799
AD
10230@end example
10231
10232@noindent
10233The driver is passed by reference to the parser and to the scanner.
10234This provides a simple but effective pure interface, not relying on
10235global variables.
10236
1c59e0a1 10237@comment file: calc++-parser.yy
12545799
AD
10238@example
10239// The parsing context.
2055a44e 10240%param @{ calcxx_driver& driver @}
12545799
AD
10241@end example
10242
10243@noindent
2055a44e 10244Then we request location tracking, and initialize the
f50bfcd6 10245first location's file name. Afterward new locations are computed
12545799 10246relatively to the previous locations: the file name will be
2055a44e 10247propagated.
12545799 10248
1c59e0a1 10249@comment file: calc++-parser.yy
12545799
AD
10250@example
10251%locations
10252%initial-action
10253@{
10254 // Initialize the initial location.
b47dbebe 10255 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
10256@};
10257@end example
10258
10259@noindent
7fceb615
JD
10260Use the following two directives to enable parser tracing and verbose error
10261messages. However, verbose error messages can contain incorrect information
10262(@pxref{LAC}).
12545799 10263
1c59e0a1 10264@comment file: calc++-parser.yy
12545799 10265@example
fa819509 10266%define parse.trace
cf499cff 10267%define parse.error verbose
12545799
AD
10268@end example
10269
fb9712a9 10270@noindent
136a0f76
PB
10271@findex %code
10272The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 10273@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
10274
10275@comment file: calc++-parser.yy
10276@example
3cdc21cf
AD
10277%code
10278@{
fb9712a9 10279# include "calc++-driver.hh"
34f98f46 10280@}
fb9712a9
AD
10281@end example
10282
10283
12545799
AD
10284@noindent
10285The token numbered as 0 corresponds to end of file; the following line
99c08fb6 10286allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
10287``$end''. Similarly user friendly names are provided for each symbol. To
10288avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
10289tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 10290
1c59e0a1 10291@comment file: calc++-parser.yy
12545799 10292@example
4c6622c2 10293%define api.tokens.prefix "TOK_"
3cdc21cf
AD
10294%token
10295 END 0 "end of file"
10296 ASSIGN ":="
10297 MINUS "-"
10298 PLUS "+"
10299 STAR "*"
10300 SLASH "/"
10301 LPAREN "("
10302 RPAREN ")"
10303;
12545799
AD
10304@end example
10305
10306@noindent
3cdc21cf
AD
10307Since we use variant-based semantic values, @code{%union} is not used, and
10308both @code{%type} and @code{%token} expect genuine types, as opposed to type
10309tags.
12545799 10310
1c59e0a1 10311@comment file: calc++-parser.yy
12545799 10312@example
3cdc21cf
AD
10313%token <std::string> IDENTIFIER "identifier"
10314%token <int> NUMBER "number"
10315%type <int> exp
10316@end example
10317
10318@noindent
10319No @code{%destructor} is needed to enable memory deallocation during error
10320recovery; the memory, for strings for instance, will be reclaimed by the
10321regular destructors. All the values are printed using their
10322@code{operator<<}.
12545799 10323
3cdc21cf
AD
10324@c FIXME: Document %printer, and mention that it takes a braced-code operand.
10325@comment file: calc++-parser.yy
10326@example
c5026327 10327%printer @{ yyoutput << $$; @} <*>;
12545799
AD
10328@end example
10329
10330@noindent
3cdc21cf
AD
10331The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
10332Location Tracking Calculator: @code{ltcalc}}).
12545799 10333
1c59e0a1 10334@comment file: calc++-parser.yy
12545799
AD
10335@example
10336%%
10337%start unit;
10338unit: assignments exp @{ driver.result = $2; @};
10339
99c08fb6 10340assignments:
5e9b6624
AD
10341 /* Nothing. */ @{@}
10342| assignments assignment @{@};
12545799 10343
3dc5e96b 10344assignment:
3cdc21cf 10345 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 10346
3cdc21cf
AD
10347%left "+" "-";
10348%left "*" "/";
99c08fb6 10349exp:
3cdc21cf
AD
10350 exp "+" exp @{ $$ = $1 + $3; @}
10351| exp "-" exp @{ $$ = $1 - $3; @}
10352| exp "*" exp @{ $$ = $1 * $3; @}
10353| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 10354| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 10355| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 10356| "number" @{ std::swap ($$, $1); @};
12545799
AD
10357%%
10358@end example
10359
10360@noindent
10361Finally the @code{error} member function registers the errors to the
10362driver.
10363
1c59e0a1 10364@comment file: calc++-parser.yy
12545799
AD
10365@example
10366void
3cdc21cf 10367yy::calcxx_parser::error (const location_type& l,
1c59e0a1 10368 const std::string& m)
12545799
AD
10369@{
10370 driver.error (l, m);
10371@}
10372@end example
10373
10374@node Calc++ Scanner
8405b70c 10375@subsubsection Calc++ Scanner
12545799
AD
10376
10377The Flex scanner first includes the driver declaration, then the
10378parser's to get the set of defined tokens.
10379
1c59e0a1 10380@comment file: calc++-scanner.ll
12545799 10381@example
c93f22fc 10382%@{ /* -*- C++ -*- */
3c248d70
AD
10383# include <cerrno>
10384# include <climits>
3cdc21cf 10385# include <cstdlib>
12545799
AD
10386# include <string>
10387# include "calc++-driver.hh"
10388# include "calc++-parser.hh"
eaea13f5 10389
3cdc21cf
AD
10390// Work around an incompatibility in flex (at least versions
10391// 2.5.31 through 2.5.33): it generates code that does
10392// not conform to C89. See Debian bug 333231
10393// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
10394# undef yywrap
10395# define yywrap() 1
eaea13f5 10396
3cdc21cf
AD
10397// The location of the current token.
10398static yy::location loc;
12545799
AD
10399%@}
10400@end example
10401
10402@noindent
10403Because there is no @code{#include}-like feature we don't need
10404@code{yywrap}, we don't need @code{unput} either, and we parse an
10405actual file, this is not an interactive session with the user.
3cdc21cf 10406Finally, we enable scanner tracing.
12545799 10407
1c59e0a1 10408@comment file: calc++-scanner.ll
12545799
AD
10409@example
10410%option noyywrap nounput batch debug
10411@end example
10412
10413@noindent
10414Abbreviations allow for more readable rules.
10415
1c59e0a1 10416@comment file: calc++-scanner.ll
12545799
AD
10417@example
10418id [a-zA-Z][a-zA-Z_0-9]*
10419int [0-9]+
10420blank [ \t]
10421@end example
10422
10423@noindent
9d9b8b70 10424The following paragraph suffices to track locations accurately. Each
12545799 10425time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
10426position. Then when a pattern is matched, its width is added to the end
10427column. When matching ends of lines, the end
12545799
AD
10428cursor is adjusted, and each time blanks are matched, the begin cursor
10429is moved onto the end cursor to effectively ignore the blanks
10430preceding tokens. Comments would be treated equally.
10431
1c59e0a1 10432@comment file: calc++-scanner.ll
12545799 10433@example
d4fca427 10434@group
828c373b 10435%@{
3cdc21cf
AD
10436 // Code run each time a pattern is matched.
10437 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 10438%@}
d4fca427 10439@end group
12545799 10440%%
d4fca427 10441@group
12545799 10442%@{
3cdc21cf
AD
10443 // Code run each time yylex is called.
10444 loc.step ();
12545799 10445%@}
d4fca427 10446@end group
3cdc21cf
AD
10447@{blank@}+ loc.step ();
10448[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10449@end example
10450
10451@noindent
3cdc21cf 10452The rules are simple. The driver is used to report errors.
12545799 10453
1c59e0a1 10454@comment file: calc++-scanner.ll
12545799 10455@example
3cdc21cf
AD
10456"-" return yy::calcxx_parser::make_MINUS(loc);
10457"+" return yy::calcxx_parser::make_PLUS(loc);
10458"*" return yy::calcxx_parser::make_STAR(loc);
10459"/" return yy::calcxx_parser::make_SLASH(loc);
10460"(" return yy::calcxx_parser::make_LPAREN(loc);
10461")" return yy::calcxx_parser::make_RPAREN(loc);
10462":=" return yy::calcxx_parser::make_ASSIGN(loc);
10463
d4fca427 10464@group
04098407
PE
10465@{int@} @{
10466 errno = 0;
10467 long n = strtol (yytext, NULL, 10);
10468 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10469 driver.error (loc, "integer is out of range");
10470 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10471@}
d4fca427 10472@end group
3cdc21cf
AD
10473@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10474. driver.error (loc, "invalid character");
10475<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10476%%
10477@end example
10478
10479@noindent
3cdc21cf 10480Finally, because the scanner-related driver's member-functions depend
12545799
AD
10481on the scanner's data, it is simpler to implement them in this file.
10482
1c59e0a1 10483@comment file: calc++-scanner.ll
12545799 10484@example
d4fca427 10485@group
12545799
AD
10486void
10487calcxx_driver::scan_begin ()
10488@{
10489 yy_flex_debug = trace_scanning;
93c150b6 10490 if (file.empty () || file == "-")
bb32f4f2
AD
10491 yyin = stdin;
10492 else if (!(yyin = fopen (file.c_str (), "r")))
10493 @{
aaaa2aae 10494 error ("cannot open " + file + ": " + strerror(errno));
d0f2b7f8 10495 exit (EXIT_FAILURE);
bb32f4f2 10496 @}
12545799 10497@}
d4fca427 10498@end group
12545799 10499
d4fca427 10500@group
12545799
AD
10501void
10502calcxx_driver::scan_end ()
10503@{
10504 fclose (yyin);
10505@}
d4fca427 10506@end group
12545799
AD
10507@end example
10508
10509@node Calc++ Top Level
8405b70c 10510@subsubsection Calc++ Top Level
12545799
AD
10511
10512The top level file, @file{calc++.cc}, poses no problem.
10513
1c59e0a1 10514@comment file: calc++.cc
12545799
AD
10515@example
10516#include <iostream>
10517#include "calc++-driver.hh"
10518
d4fca427 10519@group
12545799 10520int
fa4d969f 10521main (int argc, char *argv[])
12545799 10522@{
414c76a4 10523 int res = 0;
12545799 10524 calcxx_driver driver;
93c150b6
AD
10525 for (int i = 1; i < argc; ++i)
10526 if (argv[i] == std::string ("-p"))
12545799 10527 driver.trace_parsing = true;
93c150b6 10528 else if (argv[i] == std::string ("-s"))
12545799 10529 driver.trace_scanning = true;
93c150b6 10530 else if (!driver.parse (argv[i]))
bb32f4f2 10531 std::cout << driver.result << std::endl;
414c76a4
AD
10532 else
10533 res = 1;
10534 return res;
12545799 10535@}
d4fca427 10536@end group
12545799
AD
10537@end example
10538
8405b70c
PB
10539@node Java Parsers
10540@section Java Parsers
10541
10542@menu
f5f419de
DJ
10543* Java Bison Interface:: Asking for Java parser generation
10544* Java Semantic Values:: %type and %token vs. Java
10545* Java Location Values:: The position and location classes
10546* Java Parser Interface:: Instantiating and running the parser
10547* Java Scanner Interface:: Specifying the scanner for the parser
10548* Java Action Features:: Special features for use in actions
10549* Java Differences:: Differences between C/C++ and Java Grammars
10550* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10551@end menu
10552
10553@node Java Bison Interface
10554@subsection Java Bison Interface
10555@c - %language "Java"
8405b70c 10556
59da312b
JD
10557(The current Java interface is experimental and may evolve.
10558More user feedback will help to stabilize it.)
10559
e254a580
DJ
10560The Java parser skeletons are selected using the @code{%language "Java"}
10561directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10562
e254a580 10563@c FIXME: Documented bug.
ff7571c0
JD
10564When generating a Java parser, @code{bison @var{basename}.y} will
10565create a single Java source file named @file{@var{basename}.java}
10566containing the parser implementation. Using a grammar file without a
10567@file{.y} suffix is currently broken. The basename of the parser
10568implementation file can be changed by the @code{%file-prefix}
10569directive or the @option{-p}/@option{--name-prefix} option. The
10570entire parser implementation file name can be changed by the
10571@code{%output} directive or the @option{-o}/@option{--output} option.
10572The parser implementation file contains a single class for the parser.
8405b70c 10573
e254a580 10574You can create documentation for generated parsers using Javadoc.
8405b70c 10575
e254a580
DJ
10576Contrary to C parsers, Java parsers do not use global variables; the
10577state of the parser is always local to an instance of the parser class.
10578Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10579and @samp{%define api.pure} directives does not do anything when used in
e254a580 10580Java.
8405b70c 10581
e254a580 10582Push parsers are currently unsupported in Java and @code{%define
67212941 10583api.push-pull} have no effect.
01b477c6 10584
8a4281b9 10585GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10586@code{glr-parser} directive.
10587
10588No header file can be generated for Java parsers. Do not use the
10589@code{%defines} directive or the @option{-d}/@option{--defines} options.
10590
10591@c FIXME: Possible code change.
fa819509
AD
10592Currently, support for tracing is always compiled
10593in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10594directives and the
e254a580
DJ
10595@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10596options have no effect. This may change in the future to eliminate
fa819509
AD
10597unused code in the generated parser, so use @samp{%define parse.trace}
10598explicitly
1979121c 10599if needed. Also, in the future the
e254a580
DJ
10600@code{%token-table} directive might enable a public interface to
10601access the token names and codes.
8405b70c 10602
09ccae9b 10603Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10604hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10605Try reducing the amount of code in actions and static initializers;
10606otherwise, report a bug so that the parser skeleton will be improved.
10607
10608
8405b70c
PB
10609@node Java Semantic Values
10610@subsection Java Semantic Values
10611@c - No %union, specify type in %type/%token.
10612@c - YYSTYPE
10613@c - Printer and destructor
10614
10615There is no @code{%union} directive in Java parsers. Instead, the
10616semantic values' types (class names) should be specified in the
10617@code{%type} or @code{%token} directive:
10618
10619@example
10620%type <Expression> expr assignment_expr term factor
10621%type <Integer> number
10622@end example
10623
10624By default, the semantic stack is declared to have @code{Object} members,
10625which means that the class types you specify can be of any class.
10626To improve the type safety of the parser, you can declare the common
67501061 10627superclass of all the semantic values using the @samp{%define stype}
e254a580 10628directive. For example, after the following declaration:
8405b70c
PB
10629
10630@example
e254a580 10631%define stype "ASTNode"
8405b70c
PB
10632@end example
10633
10634@noindent
10635any @code{%type} or @code{%token} specifying a semantic type which
10636is not a subclass of ASTNode, will cause a compile-time error.
10637
e254a580 10638@c FIXME: Documented bug.
8405b70c
PB
10639Types used in the directives may be qualified with a package name.
10640Primitive data types are accepted for Java version 1.5 or later. Note
10641that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10642Generic types may not be used; this is due to a limitation in the
10643implementation of Bison, and may change in future releases.
8405b70c
PB
10644
10645Java parsers do not support @code{%destructor}, since the language
10646adopts garbage collection. The parser will try to hold references
10647to semantic values for as little time as needed.
10648
10649Java parsers do not support @code{%printer}, as @code{toString()}
10650can be used to print the semantic values. This however may change
10651(in a backwards-compatible way) in future versions of Bison.
10652
10653
10654@node Java Location Values
10655@subsection Java Location Values
10656@c - %locations
10657@c - class Position
10658@c - class Location
10659
303834cc
JD
10660When the directive @code{%locations} is used, the Java parser supports
10661location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10662class defines a @dfn{position}, a single point in a file; Bison itself
10663defines a class representing a @dfn{location}, a range composed of a pair of
10664positions (possibly spanning several files). The location class is an inner
10665class of the parser; the name is @code{Location} by default, and may also be
10666renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10667
10668The location class treats the position as a completely opaque value.
10669By default, the class name is @code{Position}, but this can be changed
67501061 10670with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10671be supplied by the user.
8405b70c
PB
10672
10673
e254a580
DJ
10674@deftypeivar {Location} {Position} begin
10675@deftypeivarx {Location} {Position} end
8405b70c 10676The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10677@end deftypeivar
10678
10679@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10680Create a @code{Location} denoting an empty range located at a given point.
e254a580 10681@end deftypeop
8405b70c 10682
e254a580
DJ
10683@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10684Create a @code{Location} from the endpoints of the range.
10685@end deftypeop
10686
10687@deftypemethod {Location} {String} toString ()
8405b70c
PB
10688Prints the range represented by the location. For this to work
10689properly, the position class should override the @code{equals} and
10690@code{toString} methods appropriately.
10691@end deftypemethod
10692
10693
10694@node Java Parser Interface
10695@subsection Java Parser Interface
10696@c - define parser_class_name
10697@c - Ctor
10698@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10699@c debug_stream.
10700@c - Reporting errors
10701
e254a580
DJ
10702The name of the generated parser class defaults to @code{YYParser}. The
10703@code{YY} prefix may be changed using the @code{%name-prefix} directive
10704or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10705@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10706the class. The interface of this class is detailed below.
8405b70c 10707
e254a580 10708By default, the parser class has package visibility. A declaration
67501061 10709@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10710according to the Java language specification, the name of the @file{.java}
10711file should match the name of the class in this case. Similarly, you can
10712use @code{abstract}, @code{final} and @code{strictfp} with the
10713@code{%define} declaration to add other modifiers to the parser class.
67501061 10714A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10715be used to add any number of annotations to the parser class.
e254a580
DJ
10716
10717The Java package name of the parser class can be specified using the
67501061 10718@samp{%define package} directive. The superclass and the implemented
e254a580 10719interfaces of the parser class can be specified with the @code{%define
67501061 10720extends} and @samp{%define implements} directives.
e254a580
DJ
10721
10722The parser class defines an inner class, @code{Location}, that is used
10723for location tracking (see @ref{Java Location Values}), and a inner
10724interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10725these inner class/interface, and the members described in the interface
10726below, all the other members and fields are preceded with a @code{yy} or
10727@code{YY} prefix to avoid clashes with user code.
10728
e254a580
DJ
10729The parser class can be extended using the @code{%parse-param}
10730directive. Each occurrence of the directive will add a @code{protected
10731final} field to the parser class, and an argument to its constructor,
10732which initialize them automatically.
10733
e254a580
DJ
10734@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10735Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10736no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10737@code{%lex-param}s are used.
1979121c
DJ
10738
10739Use @code{%code init} for code added to the start of the constructor
10740body. This is especially useful to initialize superclasses. Use
f50bfcd6 10741@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10742@end deftypeop
10743
10744@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10745Build a new parser object using the specified scanner. There are no
2055a44e
AD
10746additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10747used.
e254a580
DJ
10748
10749If the scanner is defined by @code{%code lexer}, this constructor is
10750declared @code{protected} and is called automatically with a scanner
2055a44e 10751created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10752
10753Use @code{%code init} for code added to the start of the constructor
10754body. This is especially useful to initialize superclasses. Use
5a321748 10755@samp{%define init_throws} to specify any uncaught exceptions.
e254a580 10756@end deftypeop
8405b70c
PB
10757
10758@deftypemethod {YYParser} {boolean} parse ()
10759Run the syntactic analysis, and return @code{true} on success,
10760@code{false} otherwise.
10761@end deftypemethod
10762
1979121c
DJ
10763@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10764@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10765Get or set the option to produce verbose error messages. These are only
cf499cff 10766available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10767verbose error messages.
10768@end deftypemethod
10769
10770@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10771@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10772@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10773Print an error message using the @code{yyerror} method of the scanner
10774instance in use. The @code{Location} and @code{Position} parameters are
10775available only if location tracking is active.
10776@end deftypemethod
10777
01b477c6 10778@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10779During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10780from a syntax error.
10781@xref{Error Recovery}.
8405b70c
PB
10782@end deftypemethod
10783
10784@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10785@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10786Get or set the stream used for tracing the parsing. It defaults to
10787@code{System.err}.
10788@end deftypemethod
10789
10790@deftypemethod {YYParser} {int} getDebugLevel ()
10791@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10792Get or set the tracing level. Currently its value is either 0, no trace,
10793or nonzero, full tracing.
10794@end deftypemethod
10795
1979121c
DJ
10796@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10797@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10798Identify the Bison version and skeleton used to generate this parser.
10799@end deftypecv
10800
8405b70c
PB
10801
10802@node Java Scanner Interface
10803@subsection Java Scanner Interface
01b477c6 10804@c - %code lexer
8405b70c 10805@c - %lex-param
01b477c6 10806@c - Lexer interface
8405b70c 10807
e254a580
DJ
10808There are two possible ways to interface a Bison-generated Java parser
10809with a scanner: the scanner may be defined by @code{%code lexer}, or
10810defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10811@code{Lexer} inner interface of the parser class. This interface also
10812contain constants for all user-defined token names and the predefined
10813@code{EOF} token.
e254a580
DJ
10814
10815In the first case, the body of the scanner class is placed in
10816@code{%code lexer} blocks. If you want to pass parameters from the
10817parser constructor to the scanner constructor, specify them with
10818@code{%lex-param}; they are passed before @code{%parse-param}s to the
10819constructor.
01b477c6 10820
59c5ac72 10821In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10822which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10823The constructor of the parser object will then accept an object
10824implementing the interface; @code{%lex-param} is not used in this
10825case.
10826
10827In both cases, the scanner has to implement the following methods.
10828
e254a580
DJ
10829@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10830This method is defined by the user to emit an error message. The first
10831parameter is omitted if location tracking is not active. Its type can be
67501061 10832changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10833@end deftypemethod
10834
e254a580 10835@deftypemethod {Lexer} {int} yylex ()
8405b70c 10836Return the next token. Its type is the return value, its semantic
f50bfcd6 10837value and location are saved and returned by the their methods in the
e254a580
DJ
10838interface.
10839
67501061 10840Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10841Default is @code{java.io.IOException}.
8405b70c
PB
10842@end deftypemethod
10843
10844@deftypemethod {Lexer} {Position} getStartPos ()
10845@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10846Return respectively the first position of the last token that
10847@code{yylex} returned, and the first position beyond it. These
10848methods are not needed unless location tracking is active.
8405b70c 10849
67501061 10850The return type can be changed using @samp{%define position_type
8405b70c
PB
10851"@var{class-name}".}
10852@end deftypemethod
10853
10854@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10855Return the semantic value of the last token that yylex returned.
8405b70c 10856
67501061 10857The return type can be changed using @samp{%define stype
8405b70c
PB
10858"@var{class-name}".}
10859@end deftypemethod
10860
10861
e254a580
DJ
10862@node Java Action Features
10863@subsection Special Features for Use in Java Actions
10864
10865The following special constructs can be uses in Java actions.
10866Other analogous C action features are currently unavailable for Java.
10867
67501061 10868Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10869actions, and initial actions specified by @code{%initial-action}.
10870
10871@defvar $@var{n}
10872The semantic value for the @var{n}th component of the current rule.
10873This may not be assigned to.
10874@xref{Java Semantic Values}.
10875@end defvar
10876
10877@defvar $<@var{typealt}>@var{n}
10878Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10879@xref{Java Semantic Values}.
10880@end defvar
10881
10882@defvar $$
10883The semantic value for the grouping made by the current rule. As a
10884value, this is in the base type (@code{Object} or as specified by
67501061 10885@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10886casts are not allowed on the left-hand side of Java assignments.
10887Use an explicit Java cast if the correct subtype is needed.
10888@xref{Java Semantic Values}.
10889@end defvar
10890
10891@defvar $<@var{typealt}>$
10892Same as @code{$$} since Java always allow assigning to the base type.
10893Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10894for setting the value but there is currently no easy way to distinguish
10895these constructs.
10896@xref{Java Semantic Values}.
10897@end defvar
10898
10899@defvar @@@var{n}
10900The location information of the @var{n}th component of the current rule.
10901This may not be assigned to.
10902@xref{Java Location Values}.
10903@end defvar
10904
10905@defvar @@$
10906The location information of the grouping made by the current rule.
10907@xref{Java Location Values}.
10908@end defvar
10909
34a41a93 10910@deftypefn {Statement} return YYABORT @code{;}
e254a580
DJ
10911Return immediately from the parser, indicating failure.
10912@xref{Java Parser Interface}.
34a41a93 10913@end deftypefn
8405b70c 10914
34a41a93 10915@deftypefn {Statement} return YYACCEPT @code{;}
e254a580
DJ
10916Return immediately from the parser, indicating success.
10917@xref{Java Parser Interface}.
34a41a93 10918@end deftypefn
8405b70c 10919
34a41a93 10920@deftypefn {Statement} {return} YYERROR @code{;}
4a11b852 10921Start error recovery (without printing an error message).
e254a580 10922@xref{Error Recovery}.
34a41a93 10923@end deftypefn
8405b70c 10924
e254a580
DJ
10925@deftypefn {Function} {boolean} recovering ()
10926Return whether error recovery is being done. In this state, the parser
10927reads token until it reaches a known state, and then restarts normal
10928operation.
10929@xref{Error Recovery}.
10930@end deftypefn
8405b70c 10931
1979121c
DJ
10932@deftypefn {Function} {void} yyerror (String @var{msg})
10933@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10934@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10935Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10936instance in use. The @code{Location} and @code{Position} parameters are
10937available only if location tracking is active.
e254a580 10938@end deftypefn
8405b70c 10939
8405b70c 10940
8405b70c
PB
10941@node Java Differences
10942@subsection Differences between C/C++ and Java Grammars
10943
10944The different structure of the Java language forces several differences
10945between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10946section summarizes these differences.
8405b70c
PB
10947
10948@itemize
10949@item
01b477c6 10950Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10951@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10952macros. Instead, they should be preceded by @code{return} when they
10953appear in an action. The actual definition of these symbols is
8405b70c
PB
10954opaque to the Bison grammar, and it might change in the future. The
10955only meaningful operation that you can do, is to return them.
e3fd1dcb 10956@xref{Java Action Features}.
8405b70c
PB
10957
10958Note that of these three symbols, only @code{YYACCEPT} and
10959@code{YYABORT} will cause a return from the @code{yyparse}
10960method@footnote{Java parsers include the actions in a separate
10961method than @code{yyparse} in order to have an intuitive syntax that
10962corresponds to these C macros.}.
10963
e254a580
DJ
10964@item
10965Java lacks unions, so @code{%union} has no effect. Instead, semantic
10966values have a common base type: @code{Object} or as specified by
f50bfcd6 10967@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10968@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10969an union. The type of @code{$$}, even with angle brackets, is the base
10970type since Java casts are not allow on the left-hand side of assignments.
10971Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
15cd62c2 10972left-hand side of assignments. @xref{Java Semantic Values}, and
e3fd1dcb 10973@ref{Java Action Features}.
e254a580 10974
8405b70c 10975@item
f50bfcd6 10976The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10977@table @asis
10978@item @code{%code imports}
10979blocks are placed at the beginning of the Java source code. They may
10980include copyright notices. For a @code{package} declarations, it is
67501061 10981suggested to use @samp{%define package} instead.
8405b70c 10982
01b477c6
PB
10983@item unqualified @code{%code}
10984blocks are placed inside the parser class.
10985
10986@item @code{%code lexer}
10987blocks, if specified, should include the implementation of the
10988scanner. If there is no such block, the scanner can be any class
e3fd1dcb 10989that implements the appropriate interface (@pxref{Java Scanner
01b477c6 10990Interface}).
29553547 10991@end table
8405b70c
PB
10992
10993Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10994In particular, @code{%@{ @dots{} %@}} blocks should not be used
10995and may give an error in future versions of Bison.
10996
01b477c6 10997The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10998be used to define other classes used by the parser @emph{outside}
10999the parser class.
8405b70c
PB
11000@end itemize
11001
e254a580
DJ
11002
11003@node Java Declarations Summary
11004@subsection Java Declarations Summary
11005
11006This summary only include declarations specific to Java or have special
11007meaning when used in a Java parser.
11008
11009@deffn {Directive} {%language "Java"}
11010Generate a Java class for the parser.
11011@end deffn
11012
11013@deffn {Directive} %lex-param @{@var{type} @var{name}@}
11014A parameter for the lexer class defined by @code{%code lexer}
11015@emph{only}, added as parameters to the lexer constructor and the parser
11016constructor that @emph{creates} a lexer. Default is none.
11017@xref{Java Scanner Interface}.
11018@end deffn
11019
11020@deffn {Directive} %name-prefix "@var{prefix}"
11021The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 11022@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
11023@xref{Java Bison Interface}.
11024@end deffn
11025
11026@deffn {Directive} %parse-param @{@var{type} @var{name}@}
11027A parameter for the parser class added as parameters to constructor(s)
11028and as fields initialized by the constructor(s). Default is none.
11029@xref{Java Parser Interface}.
11030@end deffn
11031
11032@deffn {Directive} %token <@var{type}> @var{token} @dots{}
11033Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
11034@xref{Java Semantic Values}.
11035@end deffn
11036
11037@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
11038Declare the type of nonterminals. Note that the angle brackets enclose
11039a Java @emph{type}.
11040@xref{Java Semantic Values}.
11041@end deffn
11042
11043@deffn {Directive} %code @{ @var{code} @dots{} @}
11044Code appended to the inside of the parser class.
11045@xref{Java Differences}.
11046@end deffn
11047
11048@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
11049Code inserted just after the @code{package} declaration.
11050@xref{Java Differences}.
11051@end deffn
11052
1979121c
DJ
11053@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
11054Code inserted at the beginning of the parser constructor body.
11055@xref{Java Parser Interface}.
11056@end deffn
11057
e254a580
DJ
11058@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
11059Code added to the body of a inner lexer class within the parser class.
11060@xref{Java Scanner Interface}.
11061@end deffn
11062
11063@deffn {Directive} %% @var{code} @dots{}
11064Code (after the second @code{%%}) appended to the end of the file,
11065@emph{outside} the parser class.
11066@xref{Java Differences}.
11067@end deffn
11068
11069@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 11070Not supported. Use @code{%code imports} instead.
e254a580
DJ
11071@xref{Java Differences}.
11072@end deffn
11073
11074@deffn {Directive} {%define abstract}
11075Whether the parser class is declared @code{abstract}. Default is false.
11076@xref{Java Bison Interface}.
11077@end deffn
11078
1979121c
DJ
11079@deffn {Directive} {%define annotations} "@var{annotations}"
11080The Java annotations for the parser class. Default is none.
11081@xref{Java Bison Interface}.
11082@end deffn
11083
e254a580
DJ
11084@deffn {Directive} {%define extends} "@var{superclass}"
11085The superclass of the parser class. Default is none.
11086@xref{Java Bison Interface}.
11087@end deffn
11088
11089@deffn {Directive} {%define final}
11090Whether the parser class is declared @code{final}. Default is false.
11091@xref{Java Bison Interface}.
11092@end deffn
11093
11094@deffn {Directive} {%define implements} "@var{interfaces}"
11095The implemented interfaces of the parser class, a comma-separated list.
11096Default is none.
11097@xref{Java Bison Interface}.
11098@end deffn
11099
1979121c
DJ
11100@deffn {Directive} {%define init_throws} "@var{exceptions}"
11101The exceptions thrown by @code{%code init} from the parser class
11102constructor. Default is none.
11103@xref{Java Parser Interface}.
11104@end deffn
11105
e254a580
DJ
11106@deffn {Directive} {%define lex_throws} "@var{exceptions}"
11107The exceptions thrown by the @code{yylex} method of the lexer, a
11108comma-separated list. Default is @code{java.io.IOException}.
11109@xref{Java Scanner Interface}.
11110@end deffn
11111
11112@deffn {Directive} {%define location_type} "@var{class}"
11113The name of the class used for locations (a range between two
11114positions). This class is generated as an inner class of the parser
11115class by @command{bison}. Default is @code{Location}.
11116@xref{Java Location Values}.
11117@end deffn
11118
11119@deffn {Directive} {%define package} "@var{package}"
11120The package to put the parser class in. Default is none.
11121@xref{Java Bison Interface}.
11122@end deffn
11123
11124@deffn {Directive} {%define parser_class_name} "@var{name}"
11125The name of the parser class. Default is @code{YYParser} or
11126@code{@var{name-prefix}Parser}.
11127@xref{Java Bison Interface}.
11128@end deffn
11129
11130@deffn {Directive} {%define position_type} "@var{class}"
11131The name of the class used for positions. This class must be supplied by
11132the user. Default is @code{Position}.
11133@xref{Java Location Values}.
11134@end deffn
11135
11136@deffn {Directive} {%define public}
11137Whether the parser class is declared @code{public}. Default is false.
11138@xref{Java Bison Interface}.
11139@end deffn
11140
11141@deffn {Directive} {%define stype} "@var{class}"
11142The base type of semantic values. Default is @code{Object}.
11143@xref{Java Semantic Values}.
11144@end deffn
11145
11146@deffn {Directive} {%define strictfp}
11147Whether the parser class is declared @code{strictfp}. Default is false.
11148@xref{Java Bison Interface}.
11149@end deffn
11150
11151@deffn {Directive} {%define throws} "@var{exceptions}"
11152The exceptions thrown by user-supplied parser actions and
11153@code{%initial-action}, a comma-separated list. Default is none.
11154@xref{Java Parser Interface}.
11155@end deffn
11156
11157
12545799 11158@c ================================================= FAQ
d1a1114f
AD
11159
11160@node FAQ
11161@chapter Frequently Asked Questions
11162@cindex frequently asked questions
11163@cindex questions
11164
11165Several questions about Bison come up occasionally. Here some of them
11166are addressed.
11167
11168@menu
55ba27be
AD
11169* Memory Exhausted:: Breaking the Stack Limits
11170* How Can I Reset the Parser:: @code{yyparse} Keeps some State
11171* Strings are Destroyed:: @code{yylval} Loses Track of Strings
11172* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 11173* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 11174* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
11175* I can't build Bison:: Troubleshooting
11176* Where can I find help?:: Troubleshouting
11177* Bug Reports:: Troublereporting
8405b70c 11178* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
11179* Beta Testing:: Experimenting development versions
11180* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
11181@end menu
11182
1a059451
PE
11183@node Memory Exhausted
11184@section Memory Exhausted
d1a1114f 11185
71b52b13 11186@quotation
1a059451 11187My parser returns with error with a @samp{memory exhausted}
d1a1114f 11188message. What can I do?
71b52b13 11189@end quotation
d1a1114f 11190
188867ac
AD
11191This question is already addressed elsewhere, see @ref{Recursion, ,Recursive
11192Rules}.
d1a1114f 11193
e64fec0a
PE
11194@node How Can I Reset the Parser
11195@section How Can I Reset the Parser
5b066063 11196
0e14ad77
PE
11197The following phenomenon has several symptoms, resulting in the
11198following typical questions:
5b066063 11199
71b52b13 11200@quotation
5b066063
AD
11201I invoke @code{yyparse} several times, and on correct input it works
11202properly; but when a parse error is found, all the other calls fail
0e14ad77 11203too. How can I reset the error flag of @code{yyparse}?
71b52b13 11204@end quotation
5b066063
AD
11205
11206@noindent
11207or
11208
71b52b13 11209@quotation
0e14ad77 11210My parser includes support for an @samp{#include}-like feature, in
5b066063 11211which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 11212although I did specify @samp{%define api.pure}.
71b52b13 11213@end quotation
5b066063 11214
0e14ad77
PE
11215These problems typically come not from Bison itself, but from
11216Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
11217speed, they might not notice a change of input file. As a
11218demonstration, consider the following source file,
11219@file{first-line.l}:
11220
d4fca427
AD
11221@example
11222@group
11223%@{
5b066063
AD
11224#include <stdio.h>
11225#include <stdlib.h>
d4fca427
AD
11226%@}
11227@end group
5b066063
AD
11228%%
11229.*\n ECHO; return 1;
11230%%
d4fca427 11231@group
5b066063 11232int
0e14ad77 11233yyparse (char const *file)
d4fca427 11234@{
5b066063
AD
11235 yyin = fopen (file, "r");
11236 if (!yyin)
d4fca427
AD
11237 @{
11238 perror ("fopen");
11239 exit (EXIT_FAILURE);
11240 @}
11241@end group
11242@group
fa7e68c3 11243 /* One token only. */
5b066063 11244 yylex ();
0e14ad77 11245 if (fclose (yyin) != 0)
d4fca427
AD
11246 @{
11247 perror ("fclose");
11248 exit (EXIT_FAILURE);
11249 @}
5b066063 11250 return 0;
d4fca427
AD
11251@}
11252@end group
5b066063 11253
d4fca427 11254@group
5b066063 11255int
0e14ad77 11256main (void)
d4fca427 11257@{
5b066063
AD
11258 yyparse ("input");
11259 yyparse ("input");
11260 return 0;
d4fca427
AD
11261@}
11262@end group
11263@end example
5b066063
AD
11264
11265@noindent
11266If the file @file{input} contains
11267
71b52b13 11268@example
5b066063
AD
11269input:1: Hello,
11270input:2: World!
71b52b13 11271@end example
5b066063
AD
11272
11273@noindent
0e14ad77 11274then instead of getting the first line twice, you get:
5b066063
AD
11275
11276@example
11277$ @kbd{flex -ofirst-line.c first-line.l}
11278$ @kbd{gcc -ofirst-line first-line.c -ll}
11279$ @kbd{./first-line}
11280input:1: Hello,
11281input:2: World!
11282@end example
11283
0e14ad77
PE
11284Therefore, whenever you change @code{yyin}, you must tell the
11285Lex-generated scanner to discard its current buffer and switch to the
11286new one. This depends upon your implementation of Lex; see its
11287documentation for more. For Flex, it suffices to call
11288@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
11289Flex-generated scanner needs to read from several input streams to
11290handle features like include files, you might consider using Flex
11291functions like @samp{yy_switch_to_buffer} that manipulate multiple
11292input buffers.
5b066063 11293
b165c324
AD
11294If your Flex-generated scanner uses start conditions (@pxref{Start
11295conditions, , Start conditions, flex, The Flex Manual}), you might
11296also want to reset the scanner's state, i.e., go back to the initial
11297start condition, through a call to @samp{BEGIN (0)}.
11298
fef4cb51
AD
11299@node Strings are Destroyed
11300@section Strings are Destroyed
11301
71b52b13 11302@quotation
c7e441b4 11303My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
11304them. Instead of reporting @samp{"foo", "bar"}, it reports
11305@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
71b52b13 11306@end quotation
fef4cb51
AD
11307
11308This error is probably the single most frequent ``bug report'' sent to
11309Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 11310of the scanner. Consider the following Lex code:
fef4cb51 11311
71b52b13 11312@example
d4fca427 11313@group
71b52b13 11314%@{
fef4cb51
AD
11315#include <stdio.h>
11316char *yylval = NULL;
71b52b13 11317%@}
d4fca427
AD
11318@end group
11319@group
fef4cb51
AD
11320%%
11321.* yylval = yytext; return 1;
11322\n /* IGNORE */
11323%%
d4fca427
AD
11324@end group
11325@group
fef4cb51
AD
11326int
11327main ()
71b52b13 11328@{
fa7e68c3 11329 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
11330 char *fst = (yylex (), yylval);
11331 char *snd = (yylex (), yylval);
11332 printf ("\"%s\", \"%s\"\n", fst, snd);
11333 return 0;
71b52b13 11334@}
d4fca427 11335@end group
71b52b13 11336@end example
fef4cb51
AD
11337
11338If you compile and run this code, you get:
11339
11340@example
11341$ @kbd{flex -osplit-lines.c split-lines.l}
11342$ @kbd{gcc -osplit-lines split-lines.c -ll}
11343$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11344"one
11345two", "two"
11346@end example
11347
11348@noindent
11349this is because @code{yytext} is a buffer provided for @emph{reading}
11350in the action, but if you want to keep it, you have to duplicate it
11351(e.g., using @code{strdup}). Note that the output may depend on how
11352your implementation of Lex handles @code{yytext}. For instance, when
11353given the Lex compatibility option @option{-l} (which triggers the
11354option @samp{%array}) Flex generates a different behavior:
11355
11356@example
11357$ @kbd{flex -l -osplit-lines.c split-lines.l}
11358$ @kbd{gcc -osplit-lines split-lines.c -ll}
11359$ @kbd{printf 'one\ntwo\n' | ./split-lines}
11360"two", "two"
11361@end example
11362
11363
2fa09258
AD
11364@node Implementing Gotos/Loops
11365@section Implementing Gotos/Loops
a06ea4aa 11366
71b52b13 11367@quotation
a06ea4aa 11368My simple calculator supports variables, assignments, and functions,
2fa09258 11369but how can I implement gotos, or loops?
71b52b13 11370@end quotation
a06ea4aa
AD
11371
11372Although very pedagogical, the examples included in the document blur
a1c84f45 11373the distinction to make between the parser---whose job is to recover
a06ea4aa 11374the structure of a text and to transmit it to subsequent modules of
a1c84f45 11375the program---and the processing (such as the execution) of this
a06ea4aa
AD
11376structure. This works well with so called straight line programs,
11377i.e., precisely those that have a straightforward execution model:
11378execute simple instructions one after the others.
11379
11380@cindex abstract syntax tree
8a4281b9 11381@cindex AST
a06ea4aa
AD
11382If you want a richer model, you will probably need to use the parser
11383to construct a tree that does represent the structure it has
11384recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 11385or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
11386traversing it in various ways, will enable treatments such as its
11387execution or its translation, which will result in an interpreter or a
11388compiler.
11389
11390This topic is way beyond the scope of this manual, and the reader is
11391invited to consult the dedicated literature.
11392
11393
ed2e6384
AD
11394@node Multiple start-symbols
11395@section Multiple start-symbols
11396
71b52b13 11397@quotation
ed2e6384
AD
11398I have several closely related grammars, and I would like to share their
11399implementations. In fact, I could use a single grammar but with
11400multiple entry points.
71b52b13 11401@end quotation
ed2e6384
AD
11402
11403Bison does not support multiple start-symbols, but there is a very
11404simple means to simulate them. If @code{foo} and @code{bar} are the two
11405pseudo start-symbols, then introduce two new tokens, say
11406@code{START_FOO} and @code{START_BAR}, and use them as switches from the
11407real start-symbol:
11408
11409@example
11410%token START_FOO START_BAR;
11411%start start;
5e9b6624
AD
11412start:
11413 START_FOO foo
11414| START_BAR bar;
ed2e6384
AD
11415@end example
11416
11417These tokens prevents the introduction of new conflicts. As far as the
11418parser goes, that is all that is needed.
11419
11420Now the difficult part is ensuring that the scanner will send these
11421tokens first. If your scanner is hand-written, that should be
11422straightforward. If your scanner is generated by Lex, them there is
11423simple means to do it: recall that anything between @samp{%@{ ... %@}}
11424after the first @code{%%} is copied verbatim in the top of the generated
11425@code{yylex} function. Make sure a variable @code{start_token} is
11426available in the scanner (e.g., a global variable or using
11427@code{%lex-param} etc.), and use the following:
11428
11429@example
11430 /* @r{Prologue.} */
11431%%
11432%@{
11433 if (start_token)
11434 @{
11435 int t = start_token;
11436 start_token = 0;
11437 return t;
11438 @}
11439%@}
11440 /* @r{The rules.} */
11441@end example
11442
11443
55ba27be
AD
11444@node Secure? Conform?
11445@section Secure? Conform?
11446
71b52b13 11447@quotation
55ba27be 11448Is Bison secure? Does it conform to POSIX?
71b52b13 11449@end quotation
55ba27be
AD
11450
11451If you're looking for a guarantee or certification, we don't provide it.
11452However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11453POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11454please send us a bug report.
11455
11456@node I can't build Bison
11457@section I can't build Bison
11458
71b52b13 11459@quotation
8c5b881d
PE
11460I can't build Bison because @command{make} complains that
11461@code{msgfmt} is not found.
55ba27be 11462What should I do?
71b52b13 11463@end quotation
55ba27be
AD
11464
11465Like most GNU packages with internationalization support, that feature
11466is turned on by default. If you have problems building in the @file{po}
11467subdirectory, it indicates that your system's internationalization
11468support is lacking. You can re-configure Bison with
11469@option{--disable-nls} to turn off this support, or you can install GNU
11470gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11471Bison. See the file @file{ABOUT-NLS} for more information.
11472
11473
11474@node Where can I find help?
11475@section Where can I find help?
11476
71b52b13 11477@quotation
55ba27be 11478I'm having trouble using Bison. Where can I find help?
71b52b13 11479@end quotation
55ba27be
AD
11480
11481First, read this fine manual. Beyond that, you can send mail to
11482@email{help-bison@@gnu.org}. This mailing list is intended to be
11483populated with people who are willing to answer questions about using
11484and installing Bison. Please keep in mind that (most of) the people on
11485the list have aspects of their lives which are not related to Bison (!),
11486so you may not receive an answer to your question right away. This can
11487be frustrating, but please try not to honk them off; remember that any
11488help they provide is purely voluntary and out of the kindness of their
11489hearts.
11490
11491@node Bug Reports
11492@section Bug Reports
11493
71b52b13 11494@quotation
55ba27be 11495I found a bug. What should I include in the bug report?
71b52b13 11496@end quotation
55ba27be
AD
11497
11498Before you send a bug report, make sure you are using the latest
11499version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11500mirrors. Be sure to include the version number in your bug report. If
11501the bug is present in the latest version but not in a previous version,
11502try to determine the most recent version which did not contain the bug.
11503
11504If the bug is parser-related, you should include the smallest grammar
11505you can which demonstrates the bug. The grammar file should also be
11506complete (i.e., I should be able to run it through Bison without having
11507to edit or add anything). The smaller and simpler the grammar, the
11508easier it will be to fix the bug.
11509
11510Include information about your compilation environment, including your
11511operating system's name and version and your compiler's name and
11512version. If you have trouble compiling, you should also include a
11513transcript of the build session, starting with the invocation of
11514`configure'. Depending on the nature of the bug, you may be asked to
11515send additional files as well (such as `config.h' or `config.cache').
11516
11517Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11518send a bug report just because you cannot provide a fix.
55ba27be
AD
11519
11520Send bug reports to @email{bug-bison@@gnu.org}.
11521
8405b70c
PB
11522@node More Languages
11523@section More Languages
55ba27be 11524
71b52b13 11525@quotation
8405b70c 11526Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be 11527favorite language here}?
71b52b13 11528@end quotation
55ba27be 11529
8405b70c 11530C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11531languages; contributions are welcome.
11532
11533@node Beta Testing
11534@section Beta Testing
11535
71b52b13 11536@quotation
55ba27be 11537What is involved in being a beta tester?
71b52b13 11538@end quotation
55ba27be
AD
11539
11540It's not terribly involved. Basically, you would download a test
11541release, compile it, and use it to build and run a parser or two. After
11542that, you would submit either a bug report or a message saying that
11543everything is okay. It is important to report successes as well as
11544failures because test releases eventually become mainstream releases,
11545but only if they are adequately tested. If no one tests, development is
11546essentially halted.
11547
11548Beta testers are particularly needed for operating systems to which the
11549developers do not have easy access. They currently have easy access to
11550recent GNU/Linux and Solaris versions. Reports about other operating
11551systems are especially welcome.
11552
11553@node Mailing Lists
11554@section Mailing Lists
11555
71b52b13 11556@quotation
55ba27be 11557How do I join the help-bison and bug-bison mailing lists?
71b52b13 11558@end quotation
55ba27be
AD
11559
11560See @url{http://lists.gnu.org/}.
a06ea4aa 11561
d1a1114f
AD
11562@c ================================================= Table of Symbols
11563
342b8b6e 11564@node Table of Symbols
bfa74976
RS
11565@appendix Bison Symbols
11566@cindex Bison symbols, table of
11567@cindex symbols in Bison, table of
11568
18b519c0 11569@deffn {Variable} @@$
3ded9a63 11570In an action, the location of the left-hand side of the rule.
303834cc 11571@xref{Tracking Locations}.
18b519c0 11572@end deffn
3ded9a63 11573
18b519c0 11574@deffn {Variable} @@@var{n}
303834cc
JD
11575In an action, the location of the @var{n}-th symbol of the right-hand side
11576of the rule. @xref{Tracking Locations}.
18b519c0 11577@end deffn
3ded9a63 11578
d013372c 11579@deffn {Variable} @@@var{name}
303834cc
JD
11580In an action, the location of a symbol addressed by name. @xref{Tracking
11581Locations}.
d013372c
AR
11582@end deffn
11583
11584@deffn {Variable} @@[@var{name}]
303834cc
JD
11585In an action, the location of a symbol addressed by name. @xref{Tracking
11586Locations}.
d013372c
AR
11587@end deffn
11588
18b519c0 11589@deffn {Variable} $$
3ded9a63
AD
11590In an action, the semantic value of the left-hand side of the rule.
11591@xref{Actions}.
18b519c0 11592@end deffn
3ded9a63 11593
18b519c0 11594@deffn {Variable} $@var{n}
3ded9a63
AD
11595In an action, the semantic value of the @var{n}-th symbol of the
11596right-hand side of the rule. @xref{Actions}.
18b519c0 11597@end deffn
3ded9a63 11598
d013372c
AR
11599@deffn {Variable} $@var{name}
11600In an action, the semantic value of a symbol addressed by name.
11601@xref{Actions}.
11602@end deffn
11603
11604@deffn {Variable} $[@var{name}]
11605In an action, the semantic value of a symbol addressed by name.
11606@xref{Actions}.
11607@end deffn
11608
dd8d9022
AD
11609@deffn {Delimiter} %%
11610Delimiter used to separate the grammar rule section from the
11611Bison declarations section or the epilogue.
11612@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11613@end deffn
bfa74976 11614
dd8d9022
AD
11615@c Don't insert spaces, or check the DVI output.
11616@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11617All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11618to the parser implementation file. Such code forms the prologue of
11619the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11620Grammar}.
18b519c0 11621@end deffn
bfa74976 11622
ca2a6d15
PH
11623@deffn {Directive} %?@{@var{expression}@}
11624Predicate actions. This is a type of action clause that may appear in
11625rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11626GLR parsers during nondeterministic operation,
ca2a6d15
PH
11627this silently causes an alternative parse to die. During deterministic
11628operation, it is the same as the effect of YYERROR.
11629@xref{Semantic Predicates}.
11630
11631This feature is experimental.
11632More user feedback will help to determine whether it should become a permanent
11633feature.
11634@end deffn
11635
dd8d9022
AD
11636@deffn {Construct} /*@dots{}*/
11637Comment delimiters, as in C.
18b519c0 11638@end deffn
bfa74976 11639
dd8d9022
AD
11640@deffn {Delimiter} :
11641Separates a rule's result from its components. @xref{Rules, ,Syntax of
11642Grammar Rules}.
18b519c0 11643@end deffn
bfa74976 11644
dd8d9022
AD
11645@deffn {Delimiter} ;
11646Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11647@end deffn
bfa74976 11648
dd8d9022
AD
11649@deffn {Delimiter} |
11650Separates alternate rules for the same result nonterminal.
11651@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11652@end deffn
bfa74976 11653
12e35840
JD
11654@deffn {Directive} <*>
11655Used to define a default tagged @code{%destructor} or default tagged
11656@code{%printer}.
85894313
JD
11657
11658This feature is experimental.
11659More user feedback will help to determine whether it should become a permanent
11660feature.
11661
12e35840
JD
11662@xref{Destructor Decl, , Freeing Discarded Symbols}.
11663@end deffn
11664
3ebecc24 11665@deffn {Directive} <>
12e35840
JD
11666Used to define a default tagless @code{%destructor} or default tagless
11667@code{%printer}.
85894313
JD
11668
11669This feature is experimental.
11670More user feedback will help to determine whether it should become a permanent
11671feature.
11672
12e35840
JD
11673@xref{Destructor Decl, , Freeing Discarded Symbols}.
11674@end deffn
11675
dd8d9022
AD
11676@deffn {Symbol} $accept
11677The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11678$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11679Start-Symbol}. It cannot be used in the grammar.
18b519c0 11680@end deffn
bfa74976 11681
136a0f76 11682@deffn {Directive} %code @{@var{code}@}
148d66d8 11683@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11684Insert @var{code} verbatim into the output parser source at the
11685default location or at the location specified by @var{qualifier}.
e0c07222 11686@xref{%code Summary}.
9bc0dd67
JD
11687@end deffn
11688
11689@deffn {Directive} %debug
11690Equip the parser for debugging. @xref{Decl Summary}.
11691@end deffn
11692
91d2c560 11693@ifset defaultprec
22fccf95
PE
11694@deffn {Directive} %default-prec
11695Assign a precedence to rules that lack an explicit @samp{%prec}
11696modifier. @xref{Contextual Precedence, ,Context-Dependent
11697Precedence}.
39a06c25 11698@end deffn
91d2c560 11699@end ifset
39a06c25 11700
7fceb615
JD
11701@deffn {Directive} %define @var{variable}
11702@deffnx {Directive} %define @var{variable} @var{value}
11703@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11704Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11705@end deffn
11706
18b519c0 11707@deffn {Directive} %defines
ff7571c0
JD
11708Bison declaration to create a parser header file, which is usually
11709meant for the scanner. @xref{Decl Summary}.
18b519c0 11710@end deffn
6deb4447 11711
02975b9a
JD
11712@deffn {Directive} %defines @var{defines-file}
11713Same as above, but save in the file @var{defines-file}.
11714@xref{Decl Summary}.
11715@end deffn
11716
18b519c0 11717@deffn {Directive} %destructor
258b75ca 11718Specify how the parser should reclaim the memory associated to
fa7e68c3 11719discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11720@end deffn
72f889cc 11721
18b519c0 11722@deffn {Directive} %dprec
676385e2 11723Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11724time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11725GLR Parsers}.
18b519c0 11726@end deffn
676385e2 11727
dd8d9022
AD
11728@deffn {Symbol} $end
11729The predefined token marking the end of the token stream. It cannot be
11730used in the grammar.
11731@end deffn
11732
11733@deffn {Symbol} error
11734A token name reserved for error recovery. This token may be used in
11735grammar rules so as to allow the Bison parser to recognize an error in
11736the grammar without halting the process. In effect, a sentence
11737containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11738token @code{error} becomes the current lookahead token. Actions
11739corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11740token is reset to the token that originally caused the violation.
11741@xref{Error Recovery}.
18d192f0
AD
11742@end deffn
11743
18b519c0 11744@deffn {Directive} %error-verbose
7fceb615
JD
11745An obsolete directive standing for @samp{%define parse.error verbose}
11746(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11747@end deffn
2a8d363a 11748
02975b9a 11749@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11750Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11751Summary}.
18b519c0 11752@end deffn
d8988b2f 11753
18b519c0 11754@deffn {Directive} %glr-parser
8a4281b9
JD
11755Bison declaration to produce a GLR parser. @xref{GLR
11756Parsers, ,Writing GLR Parsers}.
18b519c0 11757@end deffn
676385e2 11758
dd8d9022
AD
11759@deffn {Directive} %initial-action
11760Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11761@end deffn
11762
e6e704dc
JD
11763@deffn {Directive} %language
11764Specify the programming language for the generated parser.
11765@xref{Decl Summary}.
11766@end deffn
11767
18b519c0 11768@deffn {Directive} %left
d78f0ac9 11769Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11770@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11771@end deffn
bfa74976 11772
2055a44e
AD
11773@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11774Bison declaration to specifying additional arguments that
2a8d363a
AD
11775@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11776for Pure Parsers}.
18b519c0 11777@end deffn
2a8d363a 11778
18b519c0 11779@deffn {Directive} %merge
676385e2 11780Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11781reduce/reduce conflict with a rule having the same merging function, the
676385e2 11782function is applied to the two semantic values to get a single result.
8a4281b9 11783@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11784@end deffn
676385e2 11785
02975b9a 11786@deffn {Directive} %name-prefix "@var{prefix}"
4b3847c3
AD
11787Obsoleted by the @code{%define} variable @code{api.prefix} (@pxref{Multiple
11788Parsers, ,Multiple Parsers in the Same Program}).
11789
11790Rename the external symbols (variables and functions) used in the parser so
11791that they start with @var{prefix} instead of @samp{yy}. Contrary to
11792@code{api.prefix}, do no rename types and macros.
11793
11794The precise list of symbols renamed in C parsers is @code{yyparse},
11795@code{yylex}, @code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yychar},
11796@code{yydebug}, and (if locations are used) @code{yylloc}. If you use a
11797push parser, @code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
11798@code{yypstate_new} and @code{yypstate_delete} will also be renamed. For
11799example, if you use @samp{%name-prefix "c_"}, the names become
11800@code{c_parse}, @code{c_lex}, and so on. For C++ parsers, see the
11801@code{%define namespace} documentation in this section.
18b519c0 11802@end deffn
d8988b2f 11803
4b3847c3 11804
91d2c560 11805@ifset defaultprec
22fccf95
PE
11806@deffn {Directive} %no-default-prec
11807Do not assign a precedence to rules that lack an explicit @samp{%prec}
11808modifier. @xref{Contextual Precedence, ,Context-Dependent
11809Precedence}.
11810@end deffn
91d2c560 11811@end ifset
22fccf95 11812
18b519c0 11813@deffn {Directive} %no-lines
931c7513 11814Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11815parser implementation file. @xref{Decl Summary}.
18b519c0 11816@end deffn
931c7513 11817
18b519c0 11818@deffn {Directive} %nonassoc
d78f0ac9 11819Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11820@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11821@end deffn
bfa74976 11822
02975b9a 11823@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11824Bison declaration to set the name of the parser implementation file.
11825@xref{Decl Summary}.
18b519c0 11826@end deffn
d8988b2f 11827
2055a44e
AD
11828@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11829Bison declaration to specify additional arguments that both
11830@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11831Parser Function @code{yyparse}}.
11832@end deffn
11833
11834@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11835Bison declaration to specify additional arguments that @code{yyparse}
11836should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11837@end deffn
2a8d363a 11838
18b519c0 11839@deffn {Directive} %prec
bfa74976
RS
11840Bison declaration to assign a precedence to a specific rule.
11841@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11842@end deffn
bfa74976 11843
d78f0ac9
AD
11844@deffn {Directive} %precedence
11845Bison declaration to assign precedence to token(s), but no associativity
11846@xref{Precedence Decl, ,Operator Precedence}.
11847@end deffn
11848
18b519c0 11849@deffn {Directive} %pure-parser
35c1e5f0
JD
11850Deprecated version of @samp{%define api.pure} (@pxref{%define
11851Summary,,api.pure}), for which Bison is more careful to warn about
11852unreasonable usage.
18b519c0 11853@end deffn
bfa74976 11854
b50d2359 11855@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11856Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11857Require a Version of Bison}.
b50d2359
AD
11858@end deffn
11859
18b519c0 11860@deffn {Directive} %right
d78f0ac9 11861Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11862@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11863@end deffn
bfa74976 11864
e6e704dc
JD
11865@deffn {Directive} %skeleton
11866Specify the skeleton to use; usually for development.
11867@xref{Decl Summary}.
11868@end deffn
11869
18b519c0 11870@deffn {Directive} %start
704a47c4
AD
11871Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11872Start-Symbol}.
18b519c0 11873@end deffn
bfa74976 11874
18b519c0 11875@deffn {Directive} %token
bfa74976
RS
11876Bison declaration to declare token(s) without specifying precedence.
11877@xref{Token Decl, ,Token Type Names}.
18b519c0 11878@end deffn
bfa74976 11879
18b519c0 11880@deffn {Directive} %token-table
ff7571c0
JD
11881Bison declaration to include a token name table in the parser
11882implementation file. @xref{Decl Summary}.
18b519c0 11883@end deffn
931c7513 11884
18b519c0 11885@deffn {Directive} %type
704a47c4
AD
11886Bison declaration to declare nonterminals. @xref{Type Decl,
11887,Nonterminal Symbols}.
18b519c0 11888@end deffn
bfa74976 11889
dd8d9022
AD
11890@deffn {Symbol} $undefined
11891The predefined token onto which all undefined values returned by
11892@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11893@code{error}.
11894@end deffn
11895
18b519c0 11896@deffn {Directive} %union
bfa74976
RS
11897Bison declaration to specify several possible data types for semantic
11898values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11899@end deffn
bfa74976 11900
dd8d9022
AD
11901@deffn {Macro} YYABORT
11902Macro to pretend that an unrecoverable syntax error has occurred, by
11903making @code{yyparse} return 1 immediately. The error reporting
11904function @code{yyerror} is not called. @xref{Parser Function, ,The
11905Parser Function @code{yyparse}}.
8405b70c
PB
11906
11907For Java parsers, this functionality is invoked using @code{return YYABORT;}
11908instead.
dd8d9022 11909@end deffn
3ded9a63 11910
dd8d9022
AD
11911@deffn {Macro} YYACCEPT
11912Macro to pretend that a complete utterance of the language has been
11913read, by making @code{yyparse} return 0 immediately.
11914@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11915
11916For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11917instead.
dd8d9022 11918@end deffn
bfa74976 11919
dd8d9022 11920@deffn {Macro} YYBACKUP
742e4900 11921Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11922token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11923@end deffn
bfa74976 11924
dd8d9022 11925@deffn {Variable} yychar
32c29292 11926External integer variable that contains the integer value of the
742e4900 11927lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11928@code{yyparse}.) Error-recovery rule actions may examine this variable.
11929@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11930@end deffn
bfa74976 11931
dd8d9022
AD
11932@deffn {Variable} yyclearin
11933Macro used in error-recovery rule actions. It clears the previous
742e4900 11934lookahead token. @xref{Error Recovery}.
18b519c0 11935@end deffn
bfa74976 11936
dd8d9022
AD
11937@deffn {Macro} YYDEBUG
11938Macro to define to equip the parser with tracing code. @xref{Tracing,
11939,Tracing Your Parser}.
18b519c0 11940@end deffn
bfa74976 11941
dd8d9022
AD
11942@deffn {Variable} yydebug
11943External integer variable set to zero by default. If @code{yydebug}
11944is given a nonzero value, the parser will output information on input
11945symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11946@end deffn
bfa74976 11947
dd8d9022
AD
11948@deffn {Macro} yyerrok
11949Macro to cause parser to recover immediately to its normal mode
11950after a syntax error. @xref{Error Recovery}.
11951@end deffn
11952
11953@deffn {Macro} YYERROR
4a11b852
AD
11954Cause an immediate syntax error. This statement initiates error
11955recovery just as if the parser itself had detected an error; however, it
11956does not call @code{yyerror}, and does not print any message. If you
11957want to print an error message, call @code{yyerror} explicitly before
11958the @samp{YYERROR;} statement. @xref{Error Recovery}.
8405b70c
PB
11959
11960For Java parsers, this functionality is invoked using @code{return YYERROR;}
11961instead.
dd8d9022
AD
11962@end deffn
11963
11964@deffn {Function} yyerror
11965User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11966@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11967@end deffn
11968
11969@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11970An obsolete macro used in the @file{yacc.c} skeleton, that you define
11971with @code{#define} in the prologue to request verbose, specific error
11972message strings when @code{yyerror} is called. It doesn't matter what
11973definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11974it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11975(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11976@end deffn
11977
93c150b6
AD
11978@deffn {Macro} YYFPRINTF
11979Macro used to output run-time traces.
11980@xref{Enabling Traces}.
11981@end deffn
11982
dd8d9022
AD
11983@deffn {Macro} YYINITDEPTH
11984Macro for specifying the initial size of the parser stack.
1a059451 11985@xref{Memory Management}.
dd8d9022
AD
11986@end deffn
11987
11988@deffn {Function} yylex
11989User-supplied lexical analyzer function, called with no arguments to get
11990the next token. @xref{Lexical, ,The Lexical Analyzer Function
11991@code{yylex}}.
11992@end deffn
11993
11994@deffn {Macro} YYLEX_PARAM
11995An obsolete macro for specifying an extra argument (or list of extra
32c29292 11996arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11997macro is deprecated, and is supported only for Yacc like parsers.
11998@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11999@end deffn
12000
12001@deffn {Variable} yylloc
12002External variable in which @code{yylex} should place the line and column
12003numbers associated with a token. (In a pure parser, it is a local
12004variable within @code{yyparse}, and its address is passed to
32c29292
JD
12005@code{yylex}.)
12006You can ignore this variable if you don't use the @samp{@@} feature in the
12007grammar actions.
12008@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 12009In semantic actions, it stores the location of the lookahead token.
32c29292 12010@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
12011@end deffn
12012
12013@deffn {Type} YYLTYPE
12014Data type of @code{yylloc}; by default, a structure with four
12015members. @xref{Location Type, , Data Types of Locations}.
12016@end deffn
12017
12018@deffn {Variable} yylval
12019External variable in which @code{yylex} should place the semantic
12020value associated with a token. (In a pure parser, it is a local
12021variable within @code{yyparse}, and its address is passed to
32c29292
JD
12022@code{yylex}.)
12023@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 12024In semantic actions, it stores the semantic value of the lookahead token.
32c29292 12025@xref{Actions, ,Actions}.
dd8d9022
AD
12026@end deffn
12027
12028@deffn {Macro} YYMAXDEPTH
1a059451
PE
12029Macro for specifying the maximum size of the parser stack. @xref{Memory
12030Management}.
dd8d9022
AD
12031@end deffn
12032
12033@deffn {Variable} yynerrs
8a2800e7 12034Global variable which Bison increments each time it reports a syntax error.
f4101aa6 12035(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 12036pure push parser, it is a member of yypstate.)
dd8d9022
AD
12037@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
12038@end deffn
12039
12040@deffn {Function} yyparse
12041The parser function produced by Bison; call this function to start
12042parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
12043@end deffn
12044
93c150b6
AD
12045@deffn {Macro} YYPRINT
12046Macro used to output token semantic values. For @file{yacc.c} only.
12047Obsoleted by @code{%printer}.
12048@xref{The YYPRINT Macro, , The @code{YYPRINT} Macro}.
12049@end deffn
12050
9987d1b3 12051@deffn {Function} yypstate_delete
f4101aa6 12052The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 12053call this function to delete the memory associated with a parser.
f4101aa6 12054@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 12055@code{yypstate_delete}}.
59da312b
JD
12056(The current push parsing interface is experimental and may evolve.
12057More user feedback will help to stabilize it.)
9987d1b3
JD
12058@end deffn
12059
12060@deffn {Function} yypstate_new
f4101aa6 12061The function to create a parser instance, produced by Bison in push mode;
9987d1b3 12062call this function to create a new parser.
f4101aa6 12063@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 12064@code{yypstate_new}}.
59da312b
JD
12065(The current push parsing interface is experimental and may evolve.
12066More user feedback will help to stabilize it.)
9987d1b3
JD
12067@end deffn
12068
12069@deffn {Function} yypull_parse
f4101aa6
AD
12070The parser function produced by Bison in push mode; call this function to
12071parse the rest of the input stream.
12072@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 12073@code{yypull_parse}}.
59da312b
JD
12074(The current push parsing interface is experimental and may evolve.
12075More user feedback will help to stabilize it.)
9987d1b3
JD
12076@end deffn
12077
12078@deffn {Function} yypush_parse
f4101aa6
AD
12079The parser function produced by Bison in push mode; call this function to
12080parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 12081@code{yypush_parse}}.
59da312b
JD
12082(The current push parsing interface is experimental and may evolve.
12083More user feedback will help to stabilize it.)
9987d1b3
JD
12084@end deffn
12085
dd8d9022
AD
12086@deffn {Macro} YYPARSE_PARAM
12087An obsolete macro for specifying the name of a parameter that
12088@code{yyparse} should accept. The use of this macro is deprecated, and
12089is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
12090Conventions for Pure Parsers}.
12091@end deffn
12092
12093@deffn {Macro} YYRECOVERING
02103984
PE
12094The expression @code{YYRECOVERING ()} yields 1 when the parser
12095is recovering from a syntax error, and 0 otherwise.
12096@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
12097@end deffn
12098
12099@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
12100Macro used to control the use of @code{alloca} when the
12101deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
12102the parser will use @code{malloc} to extend its stacks. If defined to
121031, the parser will use @code{alloca}. Values other than 0 and 1 are
12104reserved for future Bison extensions. If not defined,
12105@code{YYSTACK_USE_ALLOCA} defaults to 0.
12106
55289366 12107In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
12108limited stack and with unreliable stack-overflow checking, you should
12109set @code{YYMAXDEPTH} to a value that cannot possibly result in
12110unchecked stack overflow on any of your target hosts when
12111@code{alloca} is called. You can inspect the code that Bison
12112generates in order to determine the proper numeric values. This will
12113require some expertise in low-level implementation details.
dd8d9022
AD
12114@end deffn
12115
12116@deffn {Type} YYSTYPE
12117Data type of semantic values; @code{int} by default.
12118@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 12119@end deffn
bfa74976 12120
342b8b6e 12121@node Glossary
bfa74976
RS
12122@appendix Glossary
12123@cindex glossary
12124
12125@table @asis
7fceb615 12126@item Accepting state
eb45ef3b
JD
12127A state whose only action is the accept action.
12128The accepting state is thus a consistent state.
12129@xref{Understanding,,}.
12130
8a4281b9 12131@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
12132Formal method of specifying context-free grammars originally proposed
12133by John Backus, and slightly improved by Peter Naur in his 1960-01-02
12134committee document contributing to what became the Algol 60 report.
12135@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 12136
7fceb615
JD
12137@item Consistent state
12138A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 12139
bfa74976
RS
12140@item Context-free grammars
12141Grammars specified as rules that can be applied regardless of context.
12142Thus, if there is a rule which says that an integer can be used as an
12143expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
12144permitted. @xref{Language and Grammar, ,Languages and Context-Free
12145Grammars}.
bfa74976 12146
7fceb615 12147@item Default reduction
110ef36a 12148The reduction that a parser should perform if the current parser state
35c1e5f0 12149contains no other action for the lookahead token. In permitted parser
7fceb615
JD
12150states, Bison declares the reduction with the largest lookahead set to be
12151the default reduction and removes that lookahead set. @xref{Default
12152Reductions}.
12153
12154@item Defaulted state
12155A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 12156
bfa74976
RS
12157@item Dynamic allocation
12158Allocation of memory that occurs during execution, rather than at
12159compile time or on entry to a function.
12160
12161@item Empty string
12162Analogous to the empty set in set theory, the empty string is a
12163character string of length zero.
12164
12165@item Finite-state stack machine
12166A ``machine'' that has discrete states in which it is said to exist at
12167each instant in time. As input to the machine is processed, the
12168machine moves from state to state as specified by the logic of the
12169machine. In the case of the parser, the input is the language being
12170parsed, and the states correspond to various stages in the grammar
c827f760 12171rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 12172
8a4281b9 12173@item Generalized LR (GLR)
676385e2 12174A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 12175that are not LR(1). It resolves situations that Bison's
eb45ef3b 12176deterministic parsing
676385e2
PH
12177algorithm cannot by effectively splitting off multiple parsers, trying all
12178possible parsers, and discarding those that fail in the light of additional
c827f760 12179right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 12180LR Parsing}.
676385e2 12181
bfa74976
RS
12182@item Grouping
12183A language construct that is (in general) grammatically divisible;
c827f760 12184for example, `expression' or `declaration' in C@.
bfa74976
RS
12185@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12186
7fceb615
JD
12187@item IELR(1) (Inadequacy Elimination LR(1))
12188A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 12189context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
12190language-recognition power of canonical LR(1) but with nearly the same
12191number of parser states as LALR(1). This reduction in parser states is
12192often an order of magnitude. More importantly, because canonical LR(1)'s
12193extra parser states may contain duplicate conflicts in the case of non-LR(1)
12194grammars, the number of conflicts for IELR(1) is often an order of magnitude
12195less as well. This can significantly reduce the complexity of developing a
12196grammar. @xref{LR Table Construction}.
eb45ef3b 12197
bfa74976
RS
12198@item Infix operator
12199An arithmetic operator that is placed between the operands on which it
12200performs some operation.
12201
12202@item Input stream
12203A continuous flow of data between devices or programs.
12204
8a4281b9 12205@item LAC (Lookahead Correction)
fcf834f9 12206A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
12207detection, which is caused by LR state merging, default reductions, and the
12208use of @code{%nonassoc}. Delayed syntax error detection results in
12209unexpected semantic actions, initiation of error recovery in the wrong
12210syntactic context, and an incorrect list of expected tokens in a verbose
12211syntax error message. @xref{LAC}.
fcf834f9 12212
bfa74976
RS
12213@item Language construct
12214One of the typical usage schemas of the language. For example, one of
12215the constructs of the C language is the @code{if} statement.
12216@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
12217
12218@item Left associativity
12219Operators having left associativity are analyzed from left to right:
12220@samp{a+b+c} first computes @samp{a+b} and then combines with
12221@samp{c}. @xref{Precedence, ,Operator Precedence}.
12222
12223@item Left recursion
89cab50d
AD
12224A rule whose result symbol is also its first component symbol; for
12225example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
12226Rules}.
bfa74976
RS
12227
12228@item Left-to-right parsing
12229Parsing a sentence of a language by analyzing it token by token from
c827f760 12230left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12231
12232@item Lexical analyzer (scanner)
12233A function that reads an input stream and returns tokens one by one.
12234@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
12235
12236@item Lexical tie-in
12237A flag, set by actions in the grammar rules, which alters the way
12238tokens are parsed. @xref{Lexical Tie-ins}.
12239
931c7513 12240@item Literal string token
14ded682 12241A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 12242
742e4900
JD
12243@item Lookahead token
12244A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 12245Tokens}.
bfa74976 12246
8a4281b9 12247@item LALR(1)
bfa74976 12248The class of context-free grammars that Bison (like most other parser
8a4281b9 12249generators) can handle by default; a subset of LR(1).
cc09e5be 12250@xref{Mysterious Conflicts}.
bfa74976 12251
8a4281b9 12252@item LR(1)
bfa74976 12253The class of context-free grammars in which at most one token of
742e4900 12254lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
12255
12256@item Nonterminal symbol
12257A grammar symbol standing for a grammatical construct that can
12258be expressed through rules in terms of smaller constructs; in other
12259words, a construct that is not a token. @xref{Symbols}.
12260
bfa74976
RS
12261@item Parser
12262A function that recognizes valid sentences of a language by analyzing
12263the syntax structure of a set of tokens passed to it from a lexical
12264analyzer.
12265
12266@item Postfix operator
12267An arithmetic operator that is placed after the operands upon which it
12268performs some operation.
12269
12270@item Reduction
12271Replacing a string of nonterminals and/or terminals with a single
89cab50d 12272nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 12273Parser Algorithm}.
bfa74976
RS
12274
12275@item Reentrant
12276A reentrant subprogram is a subprogram which can be in invoked any
12277number of times in parallel, without interference between the various
12278invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
12279
12280@item Reverse polish notation
12281A language in which all operators are postfix operators.
12282
12283@item Right recursion
89cab50d
AD
12284A rule whose result symbol is also its last component symbol; for
12285example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
12286Rules}.
bfa74976
RS
12287
12288@item Semantics
12289In computer languages, the semantics are specified by the actions
12290taken for each instance of the language, i.e., the meaning of
12291each statement. @xref{Semantics, ,Defining Language Semantics}.
12292
12293@item Shift
12294A parser is said to shift when it makes the choice of analyzing
12295further input from the stream rather than reducing immediately some
c827f760 12296already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
12297
12298@item Single-character literal
12299A single character that is recognized and interpreted as is.
12300@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
12301
12302@item Start symbol
12303The nonterminal symbol that stands for a complete valid utterance in
12304the language being parsed. The start symbol is usually listed as the
13863333 12305first nonterminal symbol in a language specification.
bfa74976
RS
12306@xref{Start Decl, ,The Start-Symbol}.
12307
12308@item Symbol table
12309A data structure where symbol names and associated data are stored
12310during parsing to allow for recognition and use of existing
12311information in repeated uses of a symbol. @xref{Multi-function Calc}.
12312
6e649e65
PE
12313@item Syntax error
12314An error encountered during parsing of an input stream due to invalid
12315syntax. @xref{Error Recovery}.
12316
bfa74976
RS
12317@item Token
12318A basic, grammatically indivisible unit of a language. The symbol
12319that describes a token in the grammar is a terminal symbol.
12320The input of the Bison parser is a stream of tokens which comes from
12321the lexical analyzer. @xref{Symbols}.
12322
12323@item Terminal symbol
89cab50d
AD
12324A grammar symbol that has no rules in the grammar and therefore is
12325grammatically indivisible. The piece of text it represents is a token.
12326@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
12327
12328@item Unreachable state
12329A parser state to which there does not exist a sequence of transitions from
12330the parser's start state. A state can become unreachable during conflict
12331resolution. @xref{Unreachable States}.
bfa74976
RS
12332@end table
12333
342b8b6e 12334@node Copying This Manual
f2b5126e 12335@appendix Copying This Manual
f2b5126e
PB
12336@include fdl.texi
12337
5e528941
JD
12338@node Bibliography
12339@unnumbered Bibliography
12340
12341@table @asis
12342@item [Denny 2008]
12343Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
12344for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
123452008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
12346pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
12347
12348@item [Denny 2010 May]
12349Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
12350Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
12351University, Clemson, SC, USA (May 2010).
12352@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
12353
12354@item [Denny 2010 November]
12355Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
12356Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
12357in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
123582010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
12359
12360@item [DeRemer 1982]
12361Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
12362Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
12363Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
12364615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
12365
12366@item [Knuth 1965]
12367Donald E. Knuth, On the Translation of Languages from Left to Right, in
12368@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
12369607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
12370
12371@item [Scott 2000]
12372Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
12373@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
12374London, Department of Computer Science, TR-00-12 (December 2000).
12375@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
12376@end table
12377
342b8b6e 12378@node Index
bfa74976
RS
12379@unnumbered Index
12380
12381@printindex cp
12382
bfa74976 12383@bye
a06ea4aa 12384
6b5a0de9
AD
12385@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
12386@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
12387@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
12388@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
12389@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
12390@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
12391@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
12392@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
12393@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
12394@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
12395@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
12396@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
12397@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
5a321748 12398@c LocalWords: symrec val tptr FNCT fnctptr func struct sym enum IEC syntaxes
6b5a0de9
AD
12399@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
12400@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
12401@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
12402@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
12403@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
12404@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
12405@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
12406@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
12407@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
5a321748 12408@c LocalWords: YYINITDEPTH stmts ref initdcl maybeasm notype Lookahead yyoutput
6b5a0de9
AD
12409@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
12410@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
12411@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
12412@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
12413@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 12414@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
5a321748
AD
12415@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs sr
12416@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC nterm LR's
6b5a0de9 12417@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
5a321748 12418@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative Ph
6b5a0de9
AD
12419@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
12420@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
12421@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
5a321748 12422@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz ACM
6b5a0de9 12423@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
5a321748 12424@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno filename
6b5a0de9
AD
12425@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
12426@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
12427@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
12428@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
5a321748 12429@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc PSLR
6b5a0de9
AD
12430@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
12431@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
12432@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
12433@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
12434@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
5a321748
AD
12435@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett LALR's
12436@c LocalWords: subdirectory Solaris nonassociativity perror schemas Malloy
12437@c LocalWords: Scannerless ispell american
e944aaff
AD
12438
12439@c Local Variables:
12440@c ispell-dictionary: "american"
12441@c fill-column: 76
12442@c End: