]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: stylistic improvements.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
24ec0837
AD
166* Rpcalc Input:: Explanation of the @code{input} nonterminal
167* Rpcalc Line:: Explanation of the @code{line} nonterminal
168* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
181* Mfcalc Lexer:: The lexical analyzer.
182* Mfcalc Main:: The controlling function.
bfa74976
RS
183
184Bison Grammar Files
185
303834cc
JD
186* Grammar Outline:: Overall layout of the grammar file.
187* Symbols:: Terminal and nonterminal symbols.
188* Rules:: How to write grammar rules.
189* Recursion:: Writing recursive rules.
190* Semantics:: Semantic values and actions.
191* Tracking Locations:: Locations and actions.
192* Named References:: Using named references in actions.
193* Declarations:: All kinds of Bison declarations are described here.
194* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
195
196Outline of a Bison Grammar
197
f5f419de 198* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 199* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
200* Bison Declarations:: Syntax and usage of the Bison declarations section.
201* Grammar Rules:: Syntax and usage of the grammar rules section.
202* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
203
204Defining Language Semantics
205
206* Value Type:: Specifying one data type for all semantic values.
207* Multiple Types:: Specifying several alternative data types.
208* Actions:: An action is the semantic definition of a grammar rule.
209* Action Types:: Specifying data types for actions to operate on.
210* Mid-Rule Actions:: Most actions go at the end of a rule.
211 This says when, why and how to use the exceptional
212 action in the middle of a rule.
213
93dd49ab
PE
214Tracking Locations
215
216* Location Type:: Specifying a data type for locations.
217* Actions and Locations:: Using locations in actions.
218* Location Default Action:: Defining a general way to compute locations.
219
bfa74976
RS
220Bison Declarations
221
b50d2359 222* Require Decl:: Requiring a Bison version.
bfa74976
RS
223* Token Decl:: Declaring terminal symbols.
224* Precedence Decl:: Declaring terminals with precedence and associativity.
225* Union Decl:: Declaring the set of all semantic value types.
226* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 227* Initial Action Decl:: Code run before parsing starts.
72f889cc 228* Destructor Decl:: Declaring how symbols are freed.
d6328241 229* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
230* Start Decl:: Specifying the start symbol.
231* Pure Decl:: Requesting a reentrant parser.
9987d1b3 232* Push Decl:: Requesting a push parser.
bfa74976 233* Decl Summary:: Table of all Bison declarations.
35c1e5f0 234* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 235* %code Summary:: Inserting code into the parser source.
bfa74976
RS
236
237Parser C-Language Interface
238
f5f419de
DJ
239* Parser Function:: How to call @code{yyparse} and what it returns.
240* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
241* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
242* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
243* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
244* Lexical:: You must supply a function @code{yylex}
245 which reads tokens.
246* Error Reporting:: You must supply a function @code{yyerror}.
247* Action Features:: Special features for use in actions.
248* Internationalization:: How to let the parser speak in the user's
249 native language.
bfa74976
RS
250
251The Lexical Analyzer Function @code{yylex}
252
253* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
254* Token Values:: How @code{yylex} must return the semantic value
255 of the token it has read.
256* Token Locations:: How @code{yylex} must return the text location
257 (line number, etc.) of the token, if the
258 actions want that.
259* Pure Calling:: How the calling convention differs in a pure parser
260 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 261
13863333 262The Bison Parser Algorithm
bfa74976 263
742e4900 264* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
265* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
266* Precedence:: Operator precedence works by resolving conflicts.
267* Contextual Precedence:: When an operator's precedence depends on context.
268* Parser States:: The parser is a finite-state-machine with stack.
269* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 270* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 271* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 272* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 273* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
274
275Operator Precedence
276
277* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
278* Using Precedence:: How to specify precedence and associativity.
279* Precedence Only:: How to specify precedence only.
bfa74976
RS
280* Precedence Examples:: How these features are used in the previous example.
281* How Precedence:: How they work.
282
7fceb615
JD
283Tuning LR
284
285* LR Table Construction:: Choose a different construction algorithm.
286* Default Reductions:: Disable default reductions.
287* LAC:: Correct lookahead sets in the parser states.
288* Unreachable States:: Keep unreachable parser states for debugging.
289
bfa74976
RS
290Handling Context Dependencies
291
292* Semantic Tokens:: Token parsing can depend on the semantic context.
293* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
294* Tie-in Recovery:: Lexical tie-ins have implications for how
295 error recovery rules must be written.
296
93dd49ab 297Debugging Your Parser
ec3bc396
AD
298
299* Understanding:: Understanding the structure of your parser.
300* Tracing:: Tracing the execution of your parser.
301
bfa74976
RS
302Invoking Bison
303
13863333 304* Bison Options:: All the options described in detail,
c827f760 305 in alphabetical order by short options.
bfa74976 306* Option Cross Key:: Alphabetical list of long options.
93dd49ab 307* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 308
8405b70c 309Parsers Written In Other Languages
12545799
AD
310
311* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 312* Java Parsers:: The interface to generate Java parser classes
12545799
AD
313
314C++ Parsers
315
316* C++ Bison Interface:: Asking for C++ parser generation
317* C++ Semantic Values:: %union vs. C++
318* C++ Location Values:: The position and location classes
319* C++ Parser Interface:: Instantiating and running the parser
320* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 321* A Complete C++ Example:: Demonstrating their use
12545799
AD
322
323A Complete C++ Example
324
325* Calc++ --- C++ Calculator:: The specifications
326* Calc++ Parsing Driver:: An active parsing context
327* Calc++ Parser:: A parser class
328* Calc++ Scanner:: A pure C++ Flex scanner
329* Calc++ Top Level:: Conducting the band
330
8405b70c
PB
331Java Parsers
332
f5f419de
DJ
333* Java Bison Interface:: Asking for Java parser generation
334* Java Semantic Values:: %type and %token vs. Java
335* Java Location Values:: The position and location classes
336* Java Parser Interface:: Instantiating and running the parser
337* Java Scanner Interface:: Specifying the scanner for the parser
338* Java Action Features:: Special features for use in actions
339* Java Differences:: Differences between C/C++ and Java Grammars
340* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 341
d1a1114f
AD
342Frequently Asked Questions
343
f5f419de
DJ
344* Memory Exhausted:: Breaking the Stack Limits
345* How Can I Reset the Parser:: @code{yyparse} Keeps some State
346* Strings are Destroyed:: @code{yylval} Loses Track of Strings
347* Implementing Gotos/Loops:: Control Flow in the Calculator
348* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 349* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
350* I can't build Bison:: Troubleshooting
351* Where can I find help?:: Troubleshouting
352* Bug Reports:: Troublereporting
353* More Languages:: Parsers in C++, Java, and so on
354* Beta Testing:: Experimenting development versions
355* Mailing Lists:: Meeting other Bison users
d1a1114f 356
f2b5126e
PB
357Copying This Manual
358
f5f419de 359* Copying This Manual:: License for copying this manual.
f2b5126e 360
342b8b6e 361@end detailmenu
bfa74976
RS
362@end menu
363
342b8b6e 364@node Introduction
bfa74976
RS
365@unnumbered Introduction
366@cindex introduction
367
6077da58 368@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
369annotated context-free grammar into a deterministic LR or generalized
370LR (GLR) parser employing LALR(1) parser tables. As an experimental
371feature, Bison can also generate IELR(1) or canonical LR(1) parser
372tables. Once you are proficient with Bison, you can use it to develop
373a wide range of language parsers, from those used in simple desk
374calculators to complex programming languages.
375
376Bison is upward compatible with Yacc: all properly-written Yacc
377grammars ought to work with Bison with no change. Anyone familiar
378with Yacc should be able to use Bison with little trouble. You need
379to be fluent in C or C++ programming in order to use Bison or to
380understand this manual. Java is also supported as an experimental
381feature.
382
383We begin with tutorial chapters that explain the basic concepts of
384using Bison and show three explained examples, each building on the
385last. If you don't know Bison or Yacc, start by reading these
386chapters. Reference chapters follow, which describe specific aspects
387of Bison in detail.
bfa74976 388
679e9935
JD
389Bison was written originally by Robert Corbett. Richard Stallman made
390it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
391added multi-character string literals and other features. Since then,
392Bison has grown more robust and evolved many other new features thanks
393to the hard work of a long list of volunteers. For details, see the
394@file{THANKS} and @file{ChangeLog} files included in the Bison
395distribution.
931c7513 396
df1af54c 397This edition corresponds to version @value{VERSION} of Bison.
bfa74976 398
342b8b6e 399@node Conditions
bfa74976
RS
400@unnumbered Conditions for Using Bison
401
193d7c70
PE
402The distribution terms for Bison-generated parsers permit using the
403parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 404permissions applied only when Bison was generating LALR(1)
193d7c70 405parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 406parsers could be used only in programs that were free software.
a31239f1 407
8a4281b9 408The other GNU programming tools, such as the GNU C
c827f760 409compiler, have never
9ecbd125 410had such a requirement. They could always be used for nonfree
a31239f1
RS
411software. The reason Bison was different was not due to a special
412policy decision; it resulted from applying the usual General Public
413License to all of the Bison source code.
414
ff7571c0
JD
415The main output of the Bison utility---the Bison parser implementation
416file---contains a verbatim copy of a sizable piece of Bison, which is
417the code for the parser's implementation. (The actions from your
418grammar are inserted into this implementation at one point, but most
419of the rest of the implementation is not changed.) When we applied
420the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
421the effect was to restrict the use of Bison output to free software.
422
423We didn't change the terms because of sympathy for people who want to
424make software proprietary. @strong{Software should be free.} But we
425concluded that limiting Bison's use to free software was doing little to
426encourage people to make other software free. So we decided to make the
427practical conditions for using Bison match the practical conditions for
8a4281b9 428using the other GNU tools.
bfa74976 429
193d7c70
PE
430This exception applies when Bison is generating code for a parser.
431You can tell whether the exception applies to a Bison output file by
432inspecting the file for text beginning with ``As a special
433exception@dots{}''. The text spells out the exact terms of the
434exception.
262aa8dd 435
f16b0819
PE
436@node Copying
437@unnumbered GNU GENERAL PUBLIC LICENSE
438@include gpl-3.0.texi
bfa74976 439
342b8b6e 440@node Concepts
bfa74976
RS
441@chapter The Concepts of Bison
442
443This chapter introduces many of the basic concepts without which the
444details of Bison will not make sense. If you do not already know how to
445use Bison or Yacc, we suggest you start by reading this chapter carefully.
446
447@menu
f5f419de
DJ
448* Language and Grammar:: Languages and context-free grammars,
449 as mathematical ideas.
450* Grammar in Bison:: How we represent grammars for Bison's sake.
451* Semantic Values:: Each token or syntactic grouping can have
452 a semantic value (the value of an integer,
453 the name of an identifier, etc.).
454* Semantic Actions:: Each rule can have an action containing C code.
455* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 456* Locations:: Overview of location tracking.
f5f419de
DJ
457* Bison Parser:: What are Bison's input and output,
458 how is the output used?
459* Stages:: Stages in writing and running Bison grammars.
460* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
461@end menu
462
342b8b6e 463@node Language and Grammar
bfa74976
RS
464@section Languages and Context-Free Grammars
465
bfa74976
RS
466@cindex context-free grammar
467@cindex grammar, context-free
468In order for Bison to parse a language, it must be described by a
469@dfn{context-free grammar}. This means that you specify one or more
470@dfn{syntactic groupings} and give rules for constructing them from their
471parts. For example, in the C language, one kind of grouping is called an
472`expression'. One rule for making an expression might be, ``An expression
473can be made of a minus sign and another expression''. Another would be,
474``An expression can be an integer''. As you can see, rules are often
475recursive, but there must be at least one rule which leads out of the
476recursion.
477
8a4281b9 478@cindex BNF
bfa74976
RS
479@cindex Backus-Naur form
480The most common formal system for presenting such rules for humans to read
8a4281b9 481is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 482order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
483BNF is a context-free grammar. The input to Bison is
484essentially machine-readable BNF.
bfa74976 485
7fceb615
JD
486@cindex LALR grammars
487@cindex IELR grammars
488@cindex LR grammars
489There are various important subclasses of context-free grammars. Although
490it can handle almost all context-free grammars, Bison is optimized for what
491are called LR(1) grammars. In brief, in these grammars, it must be possible
492to tell how to parse any portion of an input string with just a single token
493of lookahead. For historical reasons, Bison by default is limited by the
494additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
495@xref{Mysterious Conflicts}, for more information on this. As an
496experimental feature, you can escape these additional restrictions by
497requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
498Construction}, to learn how.
bfa74976 499
8a4281b9
JD
500@cindex GLR parsing
501@cindex generalized LR (GLR) parsing
676385e2 502@cindex ambiguous grammars
9d9b8b70 503@cindex nondeterministic parsing
9501dc6e 504
8a4281b9 505Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
506roughly that the next grammar rule to apply at any point in the input is
507uniquely determined by the preceding input and a fixed, finite portion
742e4900 508(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 509grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 510apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 511grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 512lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 513With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
514general context-free grammars, using a technique known as GLR
515parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
516are able to handle any context-free grammar for which the number of
517possible parses of any given string is finite.
676385e2 518
bfa74976
RS
519@cindex symbols (abstract)
520@cindex token
521@cindex syntactic grouping
522@cindex grouping, syntactic
9501dc6e
AD
523In the formal grammatical rules for a language, each kind of syntactic
524unit or grouping is named by a @dfn{symbol}. Those which are built by
525grouping smaller constructs according to grammatical rules are called
bfa74976
RS
526@dfn{nonterminal symbols}; those which can't be subdivided are called
527@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
528corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 529corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
530
531We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
532nonterminal, mean. The tokens of C are identifiers, constants (numeric
533and string), and the various keywords, arithmetic operators and
534punctuation marks. So the terminal symbols of a grammar for C include
535`identifier', `number', `string', plus one symbol for each keyword,
536operator or punctuation mark: `if', `return', `const', `static', `int',
537`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
538(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
539lexicography, not grammar.)
540
541Here is a simple C function subdivided into tokens:
542
9edcd895
AD
543@ifinfo
544@example
545int /* @r{keyword `int'} */
14d4662b 546square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
547 @r{identifier, close-paren} */
548@{ /* @r{open-brace} */
aa08666d
AD
549 return x * x; /* @r{keyword `return', identifier, asterisk,}
550 @r{identifier, semicolon} */
9edcd895
AD
551@} /* @r{close-brace} */
552@end example
553@end ifinfo
554@ifnotinfo
bfa74976
RS
555@example
556int /* @r{keyword `int'} */
14d4662b 557square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 558@{ /* @r{open-brace} */
9edcd895 559 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
560@} /* @r{close-brace} */
561@end example
9edcd895 562@end ifnotinfo
bfa74976
RS
563
564The syntactic groupings of C include the expression, the statement, the
565declaration, and the function definition. These are represented in the
566grammar of C by nonterminal symbols `expression', `statement',
567`declaration' and `function definition'. The full grammar uses dozens of
568additional language constructs, each with its own nonterminal symbol, in
569order to express the meanings of these four. The example above is a
570function definition; it contains one declaration, and one statement. In
571the statement, each @samp{x} is an expression and so is @samp{x * x}.
572
573Each nonterminal symbol must have grammatical rules showing how it is made
574out of simpler constructs. For example, one kind of C statement is the
575@code{return} statement; this would be described with a grammar rule which
576reads informally as follows:
577
578@quotation
579A `statement' can be made of a `return' keyword, an `expression' and a
580`semicolon'.
581@end quotation
582
583@noindent
584There would be many other rules for `statement', one for each kind of
585statement in C.
586
587@cindex start symbol
588One nonterminal symbol must be distinguished as the special one which
589defines a complete utterance in the language. It is called the @dfn{start
590symbol}. In a compiler, this means a complete input program. In the C
591language, the nonterminal symbol `sequence of definitions and declarations'
592plays this role.
593
594For example, @samp{1 + 2} is a valid C expression---a valid part of a C
595program---but it is not valid as an @emph{entire} C program. In the
596context-free grammar of C, this follows from the fact that `expression' is
597not the start symbol.
598
599The Bison parser reads a sequence of tokens as its input, and groups the
600tokens using the grammar rules. If the input is valid, the end result is
601that the entire token sequence reduces to a single grouping whose symbol is
602the grammar's start symbol. If we use a grammar for C, the entire input
603must be a `sequence of definitions and declarations'. If not, the parser
604reports a syntax error.
605
342b8b6e 606@node Grammar in Bison
bfa74976
RS
607@section From Formal Rules to Bison Input
608@cindex Bison grammar
609@cindex grammar, Bison
610@cindex formal grammar
611
612A formal grammar is a mathematical construct. To define the language
613for Bison, you must write a file expressing the grammar in Bison syntax:
614a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
615
616A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 617as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
618in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
619
620The Bison representation for a terminal symbol is also called a @dfn{token
621type}. Token types as well can be represented as C-like identifiers. By
622convention, these identifiers should be upper case to distinguish them from
623nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
624@code{RETURN}. A terminal symbol that stands for a particular keyword in
625the language should be named after that keyword converted to upper case.
626The terminal symbol @code{error} is reserved for error recovery.
931c7513 627@xref{Symbols}.
bfa74976
RS
628
629A terminal symbol can also be represented as a character literal, just like
630a C character constant. You should do this whenever a token is just a
631single character (parenthesis, plus-sign, etc.): use that same character in
632a literal as the terminal symbol for that token.
633
931c7513
RS
634A third way to represent a terminal symbol is with a C string constant
635containing several characters. @xref{Symbols}, for more information.
636
bfa74976
RS
637The grammar rules also have an expression in Bison syntax. For example,
638here is the Bison rule for a C @code{return} statement. The semicolon in
639quotes is a literal character token, representing part of the C syntax for
640the statement; the naked semicolon, and the colon, are Bison punctuation
641used in every rule.
642
643@example
644stmt: RETURN expr ';'
645 ;
646@end example
647
648@noindent
649@xref{Rules, ,Syntax of Grammar Rules}.
650
342b8b6e 651@node Semantic Values
bfa74976
RS
652@section Semantic Values
653@cindex semantic value
654@cindex value, semantic
655
656A formal grammar selects tokens only by their classifications: for example,
657if a rule mentions the terminal symbol `integer constant', it means that
658@emph{any} integer constant is grammatically valid in that position. The
659precise value of the constant is irrelevant to how to parse the input: if
660@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 661grammatical.
bfa74976
RS
662
663But the precise value is very important for what the input means once it is
664parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6653989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
666has both a token type and a @dfn{semantic value}. @xref{Semantics,
667,Defining Language Semantics},
bfa74976
RS
668for details.
669
670The token type is a terminal symbol defined in the grammar, such as
671@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
672you need to know to decide where the token may validly appear and how to
673group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 674except their types.
bfa74976
RS
675
676The semantic value has all the rest of the information about the
677meaning of the token, such as the value of an integer, or the name of an
678identifier. (A token such as @code{','} which is just punctuation doesn't
679need to have any semantic value.)
680
681For example, an input token might be classified as token type
682@code{INTEGER} and have the semantic value 4. Another input token might
683have the same token type @code{INTEGER} but value 3989. When a grammar
684rule says that @code{INTEGER} is allowed, either of these tokens is
685acceptable because each is an @code{INTEGER}. When the parser accepts the
686token, it keeps track of the token's semantic value.
687
688Each grouping can also have a semantic value as well as its nonterminal
689symbol. For example, in a calculator, an expression typically has a
690semantic value that is a number. In a compiler for a programming
691language, an expression typically has a semantic value that is a tree
692structure describing the meaning of the expression.
693
342b8b6e 694@node Semantic Actions
bfa74976
RS
695@section Semantic Actions
696@cindex semantic actions
697@cindex actions, semantic
698
699In order to be useful, a program must do more than parse input; it must
700also produce some output based on the input. In a Bison grammar, a grammar
701rule can have an @dfn{action} made up of C statements. Each time the
702parser recognizes a match for that rule, the action is executed.
703@xref{Actions}.
13863333 704
bfa74976
RS
705Most of the time, the purpose of an action is to compute the semantic value
706of the whole construct from the semantic values of its parts. For example,
707suppose we have a rule which says an expression can be the sum of two
708expressions. When the parser recognizes such a sum, each of the
709subexpressions has a semantic value which describes how it was built up.
710The action for this rule should create a similar sort of value for the
711newly recognized larger expression.
712
713For example, here is a rule that says an expression can be the sum of
714two subexpressions:
715
716@example
717expr: expr '+' expr @{ $$ = $1 + $3; @}
718 ;
719@end example
720
721@noindent
722The action says how to produce the semantic value of the sum expression
723from the values of the two subexpressions.
724
676385e2 725@node GLR Parsers
8a4281b9
JD
726@section Writing GLR Parsers
727@cindex GLR parsing
728@cindex generalized LR (GLR) parsing
676385e2
PH
729@findex %glr-parser
730@cindex conflicts
731@cindex shift/reduce conflicts
fa7e68c3 732@cindex reduce/reduce conflicts
676385e2 733
eb45ef3b 734In some grammars, Bison's deterministic
8a4281b9 735LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
736certain grammar rule at a given point. That is, it may not be able to
737decide (on the basis of the input read so far) which of two possible
738reductions (applications of a grammar rule) applies, or whether to apply
739a reduction or read more of the input and apply a reduction later in the
740input. These are known respectively as @dfn{reduce/reduce} conflicts
741(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
742(@pxref{Shift/Reduce}).
743
8a4281b9 744To use a grammar that is not easily modified to be LR(1), a
9501dc6e 745more general parsing algorithm is sometimes necessary. If you include
676385e2 746@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
747(@pxref{Grammar Outline}), the result is a Generalized LR
748(GLR) parser. These parsers handle Bison grammars that
9501dc6e 749contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 750declarations) identically to deterministic parsers. However, when
9501dc6e 751faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 752GLR parsers use the simple expedient of doing both,
9501dc6e
AD
753effectively cloning the parser to follow both possibilities. Each of
754the resulting parsers can again split, so that at any given time, there
755can be any number of possible parses being explored. The parsers
676385e2
PH
756proceed in lockstep; that is, all of them consume (shift) a given input
757symbol before any of them proceed to the next. Each of the cloned
758parsers eventually meets one of two possible fates: either it runs into
759a parsing error, in which case it simply vanishes, or it merges with
760another parser, because the two of them have reduced the input to an
761identical set of symbols.
762
763During the time that there are multiple parsers, semantic actions are
764recorded, but not performed. When a parser disappears, its recorded
765semantic actions disappear as well, and are never performed. When a
766reduction makes two parsers identical, causing them to merge, Bison
767records both sets of semantic actions. Whenever the last two parsers
768merge, reverting to the single-parser case, Bison resolves all the
769outstanding actions either by precedences given to the grammar rules
770involved, or by performing both actions, and then calling a designated
771user-defined function on the resulting values to produce an arbitrary
772merged result.
773
fa7e68c3 774@menu
8a4281b9
JD
775* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
776* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 777* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 778* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 779* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
780@end menu
781
782@node Simple GLR Parsers
8a4281b9
JD
783@subsection Using GLR on Unambiguous Grammars
784@cindex GLR parsing, unambiguous grammars
785@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
786@findex %glr-parser
787@findex %expect-rr
788@cindex conflicts
789@cindex reduce/reduce conflicts
790@cindex shift/reduce conflicts
791
8a4281b9
JD
792In the simplest cases, you can use the GLR algorithm
793to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 794Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
795
796Consider a problem that
797arises in the declaration of enumerated and subrange types in the
798programming language Pascal. Here are some examples:
799
800@example
801type subrange = lo .. hi;
802type enum = (a, b, c);
803@end example
804
805@noindent
806The original language standard allows only numeric
807literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 808and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80910206) and many other
810Pascal implementations allow arbitrary expressions there. This gives
811rise to the following situation, containing a superfluous pair of
812parentheses:
813
814@example
815type subrange = (a) .. b;
816@end example
817
818@noindent
819Compare this to the following declaration of an enumerated
820type with only one value:
821
822@example
823type enum = (a);
824@end example
825
826@noindent
827(These declarations are contrived, but they are syntactically
828valid, and more-complicated cases can come up in practical programs.)
829
830These two declarations look identical until the @samp{..} token.
8a4281b9 831With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
832possible to decide between the two forms when the identifier
833@samp{a} is parsed. It is, however, desirable
834for a parser to decide this, since in the latter case
835@samp{a} must become a new identifier to represent the enumeration
836value, while in the former case @samp{a} must be evaluated with its
837current meaning, which may be a constant or even a function call.
838
839You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
840to be resolved later, but this typically requires substantial
841contortions in both semantic actions and large parts of the
842grammar, where the parentheses are nested in the recursive rules for
843expressions.
844
845You might think of using the lexer to distinguish between the two
846forms by returning different tokens for currently defined and
847undefined identifiers. But if these declarations occur in a local
848scope, and @samp{a} is defined in an outer scope, then both forms
849are possible---either locally redefining @samp{a}, or using the
850value of @samp{a} from the outer scope. So this approach cannot
851work.
852
e757bb10 853A simple solution to this problem is to declare the parser to
8a4281b9
JD
854use the GLR algorithm.
855When the GLR parser reaches the critical state, it
fa7e68c3
PE
856merely splits into two branches and pursues both syntax rules
857simultaneously. Sooner or later, one of them runs into a parsing
858error. If there is a @samp{..} token before the next
859@samp{;}, the rule for enumerated types fails since it cannot
860accept @samp{..} anywhere; otherwise, the subrange type rule
861fails since it requires a @samp{..} token. So one of the branches
862fails silently, and the other one continues normally, performing
863all the intermediate actions that were postponed during the split.
864
865If the input is syntactically incorrect, both branches fail and the parser
866reports a syntax error as usual.
867
868The effect of all this is that the parser seems to ``guess'' the
869correct branch to take, or in other words, it seems to use more
8a4281b9
JD
870lookahead than the underlying LR(1) algorithm actually allows
871for. In this example, LR(2) would suffice, but also some cases
872that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 873
8a4281b9 874In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
875and the current Bison parser even takes exponential time and space
876for some grammars. In practice, this rarely happens, and for many
877grammars it is possible to prove that it cannot happen.
878The present example contains only one conflict between two
879rules, and the type-declaration context containing the conflict
880cannot be nested. So the number of
881branches that can exist at any time is limited by the constant 2,
882and the parsing time is still linear.
883
884Here is a Bison grammar corresponding to the example above. It
885parses a vastly simplified form of Pascal type declarations.
886
887@example
888%token TYPE DOTDOT ID
889
890@group
891%left '+' '-'
892%left '*' '/'
893@end group
894
895%%
896
897@group
898type_decl : TYPE ID '=' type ';'
899 ;
900@end group
901
902@group
903type : '(' id_list ')'
904 | expr DOTDOT expr
905 ;
906@end group
907
908@group
909id_list : ID
910 | id_list ',' ID
911 ;
912@end group
913
914@group
915expr : '(' expr ')'
916 | expr '+' expr
917 | expr '-' expr
918 | expr '*' expr
919 | expr '/' expr
920 | ID
921 ;
922@end group
923@end example
924
8a4281b9 925When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
926about one reduce/reduce conflict. In the conflicting situation the
927parser chooses one of the alternatives, arbitrarily the one
928declared first. Therefore the following correct input is not
929recognized:
930
931@example
932type t = (a) .. b;
933@end example
934
8a4281b9 935The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
936to be silent about the one known reduce/reduce conflict, by adding
937these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
938@samp{%%}):
939
940@example
941%glr-parser
942%expect-rr 1
943@end example
944
945@noindent
946No change in the grammar itself is required. Now the
947parser recognizes all valid declarations, according to the
948limited syntax above, transparently. In fact, the user does not even
949notice when the parser splits.
950
8a4281b9 951So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
952almost without disadvantages. Even in simple cases like this, however,
953there are at least two potential problems to beware. First, always
8a4281b9
JD
954analyze the conflicts reported by Bison to make sure that GLR
955splitting is only done where it is intended. A GLR parser
f8e1c9e5 956splitting inadvertently may cause problems less obvious than an
8a4281b9 957LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
958conflict. Second, consider interactions with the lexer (@pxref{Semantic
959Tokens}) with great care. Since a split parser consumes tokens without
960performing any actions during the split, the lexer cannot obtain
961information via parser actions. Some cases of lexer interactions can be
8a4281b9 962eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
963lexer to the parser. You must check the remaining cases for
964correctness.
965
966In our example, it would be safe for the lexer to return tokens based on
967their current meanings in some symbol table, because no new symbols are
968defined in the middle of a type declaration. Though it is possible for
969a parser to define the enumeration constants as they are parsed, before
970the type declaration is completed, it actually makes no difference since
971they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
972
973@node Merging GLR Parses
8a4281b9
JD
974@subsection Using GLR to Resolve Ambiguities
975@cindex GLR parsing, ambiguous grammars
976@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
977@findex %dprec
978@findex %merge
979@cindex conflicts
980@cindex reduce/reduce conflicts
981
2a8d363a 982Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
983
984@example
985%@{
38a92d50
PE
986 #include <stdio.h>
987 #define YYSTYPE char const *
988 int yylex (void);
989 void yyerror (char const *);
676385e2
PH
990%@}
991
992%token TYPENAME ID
993
994%right '='
995%left '+'
996
997%glr-parser
998
999%%
1000
fae437e8 1001prog :
676385e2
PH
1002 | prog stmt @{ printf ("\n"); @}
1003 ;
1004
1005stmt : expr ';' %dprec 1
1006 | decl %dprec 2
1007 ;
1008
2a8d363a 1009expr : ID @{ printf ("%s ", $$); @}
fae437e8 1010 | TYPENAME '(' expr ')'
2a8d363a
AD
1011 @{ printf ("%s <cast> ", $1); @}
1012 | expr '+' expr @{ printf ("+ "); @}
1013 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1014 ;
1015
fae437e8 1016decl : TYPENAME declarator ';'
2a8d363a 1017 @{ printf ("%s <declare> ", $1); @}
676385e2 1018 | TYPENAME declarator '=' expr ';'
2a8d363a 1019 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1020 ;
1021
2a8d363a 1022declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1023 | '(' declarator ')'
1024 ;
1025@end example
1026
1027@noindent
1028This models a problematic part of the C++ grammar---the ambiguity between
1029certain declarations and statements. For example,
1030
1031@example
1032T (x) = y+z;
1033@end example
1034
1035@noindent
1036parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1037(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1038@samp{x} as an @code{ID}).
676385e2 1039Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1040@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1041time it encounters @code{x} in the example above. Since this is a
8a4281b9 1042GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1043each choice of resolving the reduce/reduce conflict.
1044Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1045however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1046ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1047the other reduces @code{stmt : decl}, after which both parsers are in an
1048identical state: they've seen @samp{prog stmt} and have the same unprocessed
1049input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1050
8a4281b9 1051At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1052grammar of how to choose between the competing parses.
1053In the example above, the two @code{%dprec}
e757bb10 1054declarations specify that Bison is to give precedence
fa7e68c3 1055to the parse that interprets the example as a
676385e2
PH
1056@code{decl}, which implies that @code{x} is a declarator.
1057The parser therefore prints
1058
1059@example
fae437e8 1060"x" y z + T <init-declare>
676385e2
PH
1061@end example
1062
fa7e68c3
PE
1063The @code{%dprec} declarations only come into play when more than one
1064parse survives. Consider a different input string for this parser:
676385e2
PH
1065
1066@example
1067T (x) + y;
1068@end example
1069
1070@noindent
8a4281b9 1071This is another example of using GLR to parse an unambiguous
fa7e68c3 1072construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1073Here, there is no ambiguity (this cannot be parsed as a declaration).
1074However, at the time the Bison parser encounters @code{x}, it does not
1075have enough information to resolve the reduce/reduce conflict (again,
1076between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1077case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1078into two, one assuming that @code{x} is an @code{expr}, and the other
1079assuming @code{x} is a @code{declarator}. The second of these parsers
1080then vanishes when it sees @code{+}, and the parser prints
1081
1082@example
fae437e8 1083x T <cast> y +
676385e2
PH
1084@end example
1085
1086Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1087the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1088actions of the two possible parsers, rather than choosing one over the
1089other. To do so, you could change the declaration of @code{stmt} as
1090follows:
1091
1092@example
1093stmt : expr ';' %merge <stmtMerge>
1094 | decl %merge <stmtMerge>
1095 ;
1096@end example
1097
1098@noindent
676385e2
PH
1099and define the @code{stmtMerge} function as:
1100
1101@example
38a92d50
PE
1102static YYSTYPE
1103stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1104@{
1105 printf ("<OR> ");
1106 return "";
1107@}
1108@end example
1109
1110@noindent
1111with an accompanying forward declaration
1112in the C declarations at the beginning of the file:
1113
1114@example
1115%@{
38a92d50 1116 #define YYSTYPE char const *
676385e2
PH
1117 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1118%@}
1119@end example
1120
1121@noindent
fa7e68c3
PE
1122With these declarations, the resulting parser parses the first example
1123as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1124
1125@example
fae437e8 1126"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1127@end example
1128
fa7e68c3 1129Bison requires that all of the
e757bb10 1130productions that participate in any particular merge have identical
fa7e68c3
PE
1131@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1132and the parser will report an error during any parse that results in
1133the offending merge.
9501dc6e 1134
32c29292
JD
1135@node GLR Semantic Actions
1136@subsection GLR Semantic Actions
1137
8a4281b9 1138The nature of GLR parsing and the structure of the generated
20be2f92
PH
1139parsers give rise to certain restrictions on semantic values and actions.
1140
1141@subsubsection Deferred semantic actions
32c29292
JD
1142@cindex deferred semantic actions
1143By definition, a deferred semantic action is not performed at the same time as
1144the associated reduction.
1145This raises caveats for several Bison features you might use in a semantic
8a4281b9 1146action in a GLR parser.
32c29292
JD
1147
1148@vindex yychar
8a4281b9 1149@cindex GLR parsers and @code{yychar}
32c29292 1150@vindex yylval
8a4281b9 1151@cindex GLR parsers and @code{yylval}
32c29292 1152@vindex yylloc
8a4281b9 1153@cindex GLR parsers and @code{yylloc}
32c29292 1154In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1155the lookahead token present at the time of the associated reduction.
32c29292
JD
1156After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1157you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1158lookahead token's semantic value and location, if any.
32c29292
JD
1159In a nondeferred semantic action, you can also modify any of these variables to
1160influence syntax analysis.
742e4900 1161@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1162
1163@findex yyclearin
8a4281b9 1164@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1165In a deferred semantic action, it's too late to influence syntax analysis.
1166In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1167shallow copies of the values they had at the time of the associated reduction.
1168For this reason alone, modifying them is dangerous.
1169Moreover, the result of modifying them is undefined and subject to change with
1170future versions of Bison.
1171For example, if a semantic action might be deferred, you should never write it
1172to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1173memory referenced by @code{yylval}.
1174
20be2f92 1175@subsubsection YYERROR
32c29292 1176@findex YYERROR
8a4281b9 1177@cindex GLR parsers and @code{YYERROR}
32c29292 1178Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1179(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1180initiate error recovery.
8a4281b9 1181During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1182the same as its effect in a deterministic parser.
411614fa
JM
1183The effect in a deferred action is similar, but the precise point of the
1184error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1185selecting an unspecified stack on which to continue with a syntax error.
1186In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1187parsing, @code{YYERROR} silently prunes
1188the parse that invoked the test.
1189
1190@subsubsection Restrictions on semantic values and locations
8a4281b9 1191GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1192semantic values and location types when using the generated parsers as
1193C++ code.
8710fc41 1194
ca2a6d15
PH
1195@node Semantic Predicates
1196@subsection Controlling a Parse with Arbitrary Predicates
1197@findex %?
8a4281b9 1198@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1199
1200In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1201GLR parsers
ca2a6d15
PH
1202allow you to reject parses on the basis of arbitrary computations executed
1203in user code, without having Bison treat this rejection as an error
1204if there are alternative parses. (This feature is experimental and may
1205evolve. We welcome user feedback.) For example,
1206
1207@smallexample
1208widget :
1209 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1210 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1211 ;
1212@end smallexample
1213
1214@noindent
411614fa 1215is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1216widgets. The clause preceded by @code{%?} is treated like an ordinary
1217action, except that its text is treated as an expression and is always
411614fa 1218evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1219expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1220which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1221to die. In a deterministic parser, it acts like YYERROR.
1222
1223As the example shows, predicates otherwise look like semantic actions, and
1224therefore you must be take them into account when determining the numbers
1225to use for denoting the semantic values of right-hand side symbols.
1226Predicate actions, however, have no defined value, and may not be given
1227labels.
1228
1229There is a subtle difference between semantic predicates and ordinary
1230actions in nondeterministic mode, since the latter are deferred.
411614fa 1231For example, we could try to rewrite the previous example as
ca2a6d15
PH
1232
1233@smallexample
1234widget :
1235 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1236 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1237 ;
1238@end smallexample
1239
1240@noindent
1241(reversing the sense of the predicate tests to cause an error when they are
1242false). However, this
1243does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1244have overlapping syntax.
411614fa 1245Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1246a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1247for cases where @code{new_args} and @code{old_args} recognize the same string
1248@emph{before} performing the tests of @code{new_syntax}. It therefore
1249reports an error.
1250
1251Finally, be careful in writing predicates: deferred actions have not been
1252evaluated, so that using them in a predicate will have undefined effects.
1253
fa7e68c3 1254@node Compiler Requirements
8a4281b9 1255@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1256@cindex @code{inline}
8a4281b9 1257@cindex GLR parsers and @code{inline}
fa7e68c3 1258
8a4281b9 1259The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1260later. In addition, they use the @code{inline} keyword, which is not
1261C89, but is C99 and is a common extension in pre-C99 compilers. It is
1262up to the user of these parsers to handle
9501dc6e
AD
1263portability issues. For instance, if using Autoconf and the Autoconf
1264macro @code{AC_C_INLINE}, a mere
1265
1266@example
1267%@{
38a92d50 1268 #include <config.h>
9501dc6e
AD
1269%@}
1270@end example
1271
1272@noindent
1273will suffice. Otherwise, we suggest
1274
1275@example
1276%@{
38a92d50
PE
1277 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1278 #define inline
1279 #endif
9501dc6e
AD
1280%@}
1281@end example
676385e2 1282
1769eb30 1283@node Locations
847bf1f5
AD
1284@section Locations
1285@cindex location
95923bd6
AD
1286@cindex textual location
1287@cindex location, textual
847bf1f5
AD
1288
1289Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1290and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1291the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1292Bison provides a mechanism for handling these locations.
1293
72d2299c 1294Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1295associated location, but the type of locations is the same for all tokens
1296and groupings. Moreover, the output parser is equipped with a default data
1297structure for storing locations (@pxref{Tracking Locations}, for more
1298details).
847bf1f5
AD
1299
1300Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1301set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1302is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1303@code{@@3}.
1304
1305When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1306of its left hand side (@pxref{Actions}). In the same way, another default
1307action is used for locations. However, the action for locations is general
847bf1f5 1308enough for most cases, meaning there is usually no need to describe for each
72d2299c 1309rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1310grouping, the default behavior of the output parser is to take the beginning
1311of the first symbol, and the end of the last symbol.
1312
342b8b6e 1313@node Bison Parser
ff7571c0 1314@section Bison Output: the Parser Implementation File
bfa74976
RS
1315@cindex Bison parser
1316@cindex Bison utility
1317@cindex lexical analyzer, purpose
1318@cindex parser
1319
ff7571c0
JD
1320When you run Bison, you give it a Bison grammar file as input. The
1321most important output is a C source file that implements a parser for
1322the language described by the grammar. This parser is called a
1323@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1324implementation file}. Keep in mind that the Bison utility and the
1325Bison parser are two distinct programs: the Bison utility is a program
1326whose output is the Bison parser implementation file that becomes part
1327of your program.
bfa74976
RS
1328
1329The job of the Bison parser is to group tokens into groupings according to
1330the grammar rules---for example, to build identifiers and operators into
1331expressions. As it does this, it runs the actions for the grammar rules it
1332uses.
1333
704a47c4
AD
1334The tokens come from a function called the @dfn{lexical analyzer} that
1335you must supply in some fashion (such as by writing it in C). The Bison
1336parser calls the lexical analyzer each time it wants a new token. It
1337doesn't know what is ``inside'' the tokens (though their semantic values
1338may reflect this). Typically the lexical analyzer makes the tokens by
1339parsing characters of text, but Bison does not depend on this.
1340@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1341
ff7571c0
JD
1342The Bison parser implementation file is C code which defines a
1343function named @code{yyparse} which implements that grammar. This
1344function does not make a complete C program: you must supply some
1345additional functions. One is the lexical analyzer. Another is an
1346error-reporting function which the parser calls to report an error.
1347In addition, a complete C program must start with a function called
1348@code{main}; you have to provide this, and arrange for it to call
1349@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1350C-Language Interface}.
bfa74976 1351
f7ab6a50 1352Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1353write, all symbols defined in the Bison parser implementation file
1354itself begin with @samp{yy} or @samp{YY}. This includes interface
1355functions such as the lexical analyzer function @code{yylex}, the
1356error reporting function @code{yyerror} and the parser function
1357@code{yyparse} itself. This also includes numerous identifiers used
1358for internal purposes. Therefore, you should avoid using C
1359identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1360file except for the ones defined in this manual. Also, you should
1361avoid using the C identifiers @samp{malloc} and @samp{free} for
1362anything other than their usual meanings.
1363
1364In some cases the Bison parser implementation file includes system
1365headers, and in those cases your code should respect the identifiers
1366reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1367@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1368included as needed to declare memory allocators and related types.
1369@code{<libintl.h>} is included if message translation is in use
1370(@pxref{Internationalization}). Other system headers may be included
1371if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1372,Tracing Your Parser}).
7093d0f5 1373
342b8b6e 1374@node Stages
bfa74976
RS
1375@section Stages in Using Bison
1376@cindex stages in using Bison
1377@cindex using Bison
1378
1379The actual language-design process using Bison, from grammar specification
1380to a working compiler or interpreter, has these parts:
1381
1382@enumerate
1383@item
1384Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1385(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1386in the language, describe the action that is to be taken when an
1387instance of that rule is recognized. The action is described by a
1388sequence of C statements.
bfa74976
RS
1389
1390@item
704a47c4
AD
1391Write a lexical analyzer to process input and pass tokens to the parser.
1392The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1393Lexical Analyzer Function @code{yylex}}). It could also be produced
1394using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1395
1396@item
1397Write a controlling function that calls the Bison-produced parser.
1398
1399@item
1400Write error-reporting routines.
1401@end enumerate
1402
1403To turn this source code as written into a runnable program, you
1404must follow these steps:
1405
1406@enumerate
1407@item
1408Run Bison on the grammar to produce the parser.
1409
1410@item
1411Compile the code output by Bison, as well as any other source files.
1412
1413@item
1414Link the object files to produce the finished product.
1415@end enumerate
1416
342b8b6e 1417@node Grammar Layout
bfa74976
RS
1418@section The Overall Layout of a Bison Grammar
1419@cindex grammar file
1420@cindex file format
1421@cindex format of grammar file
1422@cindex layout of Bison grammar
1423
1424The input file for the Bison utility is a @dfn{Bison grammar file}. The
1425general form of a Bison grammar file is as follows:
1426
1427@example
1428%@{
08e49d20 1429@var{Prologue}
bfa74976
RS
1430%@}
1431
1432@var{Bison declarations}
1433
1434%%
1435@var{Grammar rules}
1436%%
08e49d20 1437@var{Epilogue}
bfa74976
RS
1438@end example
1439
1440@noindent
1441The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1442in every Bison grammar file to separate the sections.
1443
72d2299c 1444The prologue may define types and variables used in the actions. You can
342b8b6e 1445also use preprocessor commands to define macros used there, and use
bfa74976 1446@code{#include} to include header files that do any of these things.
38a92d50
PE
1447You need to declare the lexical analyzer @code{yylex} and the error
1448printer @code{yyerror} here, along with any other global identifiers
1449used by the actions in the grammar rules.
bfa74976
RS
1450
1451The Bison declarations declare the names of the terminal and nonterminal
1452symbols, and may also describe operator precedence and the data types of
1453semantic values of various symbols.
1454
1455The grammar rules define how to construct each nonterminal symbol from its
1456parts.
1457
38a92d50
PE
1458The epilogue can contain any code you want to use. Often the
1459definitions of functions declared in the prologue go here. In a
1460simple program, all the rest of the program can go here.
bfa74976 1461
342b8b6e 1462@node Examples
bfa74976
RS
1463@chapter Examples
1464@cindex simple examples
1465@cindex examples, simple
1466
1467Now we show and explain three sample programs written using Bison: a
1468reverse polish notation calculator, an algebraic (infix) notation
1469calculator, and a multi-function calculator. All three have been tested
1470under BSD Unix 4.3; each produces a usable, though limited, interactive
1471desk-top calculator.
1472
1473These examples are simple, but Bison grammars for real programming
aa08666d
AD
1474languages are written the same way. You can copy these examples into a
1475source file to try them.
bfa74976
RS
1476
1477@menu
f5f419de
DJ
1478* RPN Calc:: Reverse polish notation calculator;
1479 a first example with no operator precedence.
1480* Infix Calc:: Infix (algebraic) notation calculator.
1481 Operator precedence is introduced.
bfa74976 1482* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1483* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1484* Multi-function Calc:: Calculator with memory and trig functions.
1485 It uses multiple data-types for semantic values.
1486* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1487@end menu
1488
342b8b6e 1489@node RPN Calc
bfa74976
RS
1490@section Reverse Polish Notation Calculator
1491@cindex reverse polish notation
1492@cindex polish notation calculator
1493@cindex @code{rpcalc}
1494@cindex calculator, simple
1495
1496The first example is that of a simple double-precision @dfn{reverse polish
1497notation} calculator (a calculator using postfix operators). This example
1498provides a good starting point, since operator precedence is not an issue.
1499The second example will illustrate how operator precedence is handled.
1500
1501The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1502@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1503
1504@menu
f5f419de
DJ
1505* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1506* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1507* Rpcalc Lexer:: The lexical analyzer.
1508* Rpcalc Main:: The controlling function.
1509* Rpcalc Error:: The error reporting function.
1510* Rpcalc Generate:: Running Bison on the grammar file.
1511* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1512@end menu
1513
f5f419de 1514@node Rpcalc Declarations
bfa74976
RS
1515@subsection Declarations for @code{rpcalc}
1516
1517Here are the C and Bison declarations for the reverse polish notation
1518calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1519
24ec0837 1520@comment file: rpcalc.y
bfa74976 1521@example
72d2299c 1522/* Reverse polish notation calculator. */
bfa74976
RS
1523
1524%@{
38a92d50 1525 #define YYSTYPE double
24ec0837 1526 #include <stdio.h>
38a92d50
PE
1527 #include <math.h>
1528 int yylex (void);
1529 void yyerror (char const *);
bfa74976
RS
1530%@}
1531
1532%token NUM
1533
72d2299c 1534%% /* Grammar rules and actions follow. */
bfa74976
RS
1535@end example
1536
75f5aaea 1537The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1538preprocessor directives and two forward declarations.
bfa74976
RS
1539
1540The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1541specifying the C data type for semantic values of both tokens and
1542groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1543Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1544don't define it, @code{int} is the default. Because we specify
1545@code{double}, each token and each expression has an associated value,
1546which is a floating point number.
bfa74976
RS
1547
1548The @code{#include} directive is used to declare the exponentiation
1549function @code{pow}.
1550
38a92d50
PE
1551The forward declarations for @code{yylex} and @code{yyerror} are
1552needed because the C language requires that functions be declared
1553before they are used. These functions will be defined in the
1554epilogue, but the parser calls them so they must be declared in the
1555prologue.
1556
704a47c4
AD
1557The second section, Bison declarations, provides information to Bison
1558about the token types (@pxref{Bison Declarations, ,The Bison
1559Declarations Section}). Each terminal symbol that is not a
1560single-character literal must be declared here. (Single-character
bfa74976
RS
1561literals normally don't need to be declared.) In this example, all the
1562arithmetic operators are designated by single-character literals, so the
1563only terminal symbol that needs to be declared is @code{NUM}, the token
1564type for numeric constants.
1565
342b8b6e 1566@node Rpcalc Rules
bfa74976
RS
1567@subsection Grammar Rules for @code{rpcalc}
1568
1569Here are the grammar rules for the reverse polish notation calculator.
1570
24ec0837 1571@comment file: rpcalc.y
bfa74976
RS
1572@example
1573input: /* empty */
1574 | input line
1575;
1576
1577line: '\n'
24ec0837 1578 | exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1579;
1580
18b519c0
AD
1581exp: NUM @{ $$ = $1; @}
1582 | exp exp '+' @{ $$ = $1 + $2; @}
1583 | exp exp '-' @{ $$ = $1 - $2; @}
1584 | exp exp '*' @{ $$ = $1 * $2; @}
1585 | exp exp '/' @{ $$ = $1 / $2; @}
1586 /* Exponentiation */
1587 | exp exp '^' @{ $$ = pow ($1, $2); @}
1588 /* Unary minus */
1589 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1590;
1591%%
1592@end example
1593
1594The groupings of the rpcalc ``language'' defined here are the expression
1595(given the name @code{exp}), the line of input (@code{line}), and the
1596complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1597symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1598which is read as ``or''. The following sections explain what these rules
1599mean.
1600
1601The semantics of the language is determined by the actions taken when a
1602grouping is recognized. The actions are the C code that appears inside
1603braces. @xref{Actions}.
1604
1605You must specify these actions in C, but Bison provides the means for
1606passing semantic values between the rules. In each action, the
1607pseudo-variable @code{$$} stands for the semantic value for the grouping
1608that the rule is going to construct. Assigning a value to @code{$$} is the
1609main job of most actions. The semantic values of the components of the
1610rule are referred to as @code{$1}, @code{$2}, and so on.
1611
1612@menu
24ec0837
AD
1613* Rpcalc Input:: Explanation of the @code{input} nonterminal
1614* Rpcalc Line:: Explanation of the @code{line} nonterminal
1615* Rpcalc Expr:: Explanation of the @code{expr} nonterminal
bfa74976
RS
1616@end menu
1617
342b8b6e 1618@node Rpcalc Input
bfa74976
RS
1619@subsubsection Explanation of @code{input}
1620
1621Consider the definition of @code{input}:
1622
1623@example
1624input: /* empty */
1625 | input line
1626;
1627@end example
1628
1629This definition reads as follows: ``A complete input is either an empty
1630string, or a complete input followed by an input line''. Notice that
1631``complete input'' is defined in terms of itself. This definition is said
1632to be @dfn{left recursive} since @code{input} appears always as the
1633leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1634
1635The first alternative is empty because there are no symbols between the
1636colon and the first @samp{|}; this means that @code{input} can match an
1637empty string of input (no tokens). We write the rules this way because it
1638is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1639It's conventional to put an empty alternative first and write the comment
1640@samp{/* empty */} in it.
1641
1642The second alternate rule (@code{input line}) handles all nontrivial input.
1643It means, ``After reading any number of lines, read one more line if
1644possible.'' The left recursion makes this rule into a loop. Since the
1645first alternative matches empty input, the loop can be executed zero or
1646more times.
1647
1648The parser function @code{yyparse} continues to process input until a
1649grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1650input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1651
342b8b6e 1652@node Rpcalc Line
bfa74976
RS
1653@subsubsection Explanation of @code{line}
1654
1655Now consider the definition of @code{line}:
1656
1657@example
1658line: '\n'
24ec0837 1659 | exp '\n' @{ printf ("%.10g\n", $1); @}
bfa74976
RS
1660;
1661@end example
1662
1663The first alternative is a token which is a newline character; this means
1664that rpcalc accepts a blank line (and ignores it, since there is no
1665action). The second alternative is an expression followed by a newline.
1666This is the alternative that makes rpcalc useful. The semantic value of
1667the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1668question is the first symbol in the alternative. The action prints this
1669value, which is the result of the computation the user asked for.
1670
1671This action is unusual because it does not assign a value to @code{$$}. As
1672a consequence, the semantic value associated with the @code{line} is
1673uninitialized (its value will be unpredictable). This would be a bug if
1674that value were ever used, but we don't use it: once rpcalc has printed the
1675value of the user's input line, that value is no longer needed.
1676
342b8b6e 1677@node Rpcalc Expr
bfa74976
RS
1678@subsubsection Explanation of @code{expr}
1679
1680The @code{exp} grouping has several rules, one for each kind of expression.
1681The first rule handles the simplest expressions: those that are just numbers.
1682The second handles an addition-expression, which looks like two expressions
1683followed by a plus-sign. The third handles subtraction, and so on.
1684
1685@example
1686exp: NUM
1687 | exp exp '+' @{ $$ = $1 + $2; @}
1688 | exp exp '-' @{ $$ = $1 - $2; @}
1689 @dots{}
1690 ;
1691@end example
1692
1693We have used @samp{|} to join all the rules for @code{exp}, but we could
1694equally well have written them separately:
1695
1696@example
1697exp: NUM ;
1698exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1699exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1700 @dots{}
1701@end example
1702
1703Most of the rules have actions that compute the value of the expression in
1704terms of the value of its parts. For example, in the rule for addition,
1705@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1706the second one. The third component, @code{'+'}, has no meaningful
1707associated semantic value, but if it had one you could refer to it as
1708@code{$3}. When @code{yyparse} recognizes a sum expression using this
1709rule, the sum of the two subexpressions' values is produced as the value of
1710the entire expression. @xref{Actions}.
1711
1712You don't have to give an action for every rule. When a rule has no
1713action, Bison by default copies the value of @code{$1} into @code{$$}.
1714This is what happens in the first rule (the one that uses @code{NUM}).
1715
1716The formatting shown here is the recommended convention, but Bison does
72d2299c 1717not require it. You can add or change white space as much as you wish.
bfa74976
RS
1718For example, this:
1719
1720@example
99a9344e 1721exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1722@end example
1723
1724@noindent
1725means the same thing as this:
1726
1727@example
1728exp: NUM
1729 | exp exp '+' @{ $$ = $1 + $2; @}
1730 | @dots{}
99a9344e 1731;
bfa74976
RS
1732@end example
1733
1734@noindent
1735The latter, however, is much more readable.
1736
342b8b6e 1737@node Rpcalc Lexer
bfa74976
RS
1738@subsection The @code{rpcalc} Lexical Analyzer
1739@cindex writing a lexical analyzer
1740@cindex lexical analyzer, writing
1741
704a47c4
AD
1742The lexical analyzer's job is low-level parsing: converting characters
1743or sequences of characters into tokens. The Bison parser gets its
1744tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1745Analyzer Function @code{yylex}}.
bfa74976 1746
8a4281b9 1747Only a simple lexical analyzer is needed for the RPN
c827f760 1748calculator. This
bfa74976
RS
1749lexical analyzer skips blanks and tabs, then reads in numbers as
1750@code{double} and returns them as @code{NUM} tokens. Any other character
1751that isn't part of a number is a separate token. Note that the token-code
1752for such a single-character token is the character itself.
1753
1754The return value of the lexical analyzer function is a numeric code which
1755represents a token type. The same text used in Bison rules to stand for
1756this token type is also a C expression for the numeric code for the type.
1757This works in two ways. If the token type is a character literal, then its
e966383b 1758numeric code is that of the character; you can use the same
bfa74976
RS
1759character literal in the lexical analyzer to express the number. If the
1760token type is an identifier, that identifier is defined by Bison as a C
1761macro whose definition is the appropriate number. In this example,
1762therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1763
1964ad8c
AD
1764The semantic value of the token (if it has one) is stored into the
1765global variable @code{yylval}, which is where the Bison parser will look
1766for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1767defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1768,Declarations for @code{rpcalc}}.)
bfa74976 1769
72d2299c
PE
1770A token type code of zero is returned if the end-of-input is encountered.
1771(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1772
1773Here is the code for the lexical analyzer:
1774
24ec0837 1775@comment file: rpcalc.y
bfa74976
RS
1776@example
1777@group
72d2299c 1778/* The lexical analyzer returns a double floating point
e966383b 1779 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1780 of the character read if not a number. It skips all blanks
1781 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1782
1783#include <ctype.h>
1784@end group
1785
1786@group
13863333
AD
1787int
1788yylex (void)
bfa74976
RS
1789@{
1790 int c;
1791
72d2299c 1792 /* Skip white space. */
13863333 1793 while ((c = getchar ()) == ' ' || c == '\t')
d4fca427 1794 continue;
bfa74976
RS
1795@end group
1796@group
72d2299c 1797 /* Process numbers. */
13863333 1798 if (c == '.' || isdigit (c))
bfa74976
RS
1799 @{
1800 ungetc (c, stdin);
1801 scanf ("%lf", &yylval);
1802 return NUM;
1803 @}
1804@end group
1805@group
72d2299c 1806 /* Return end-of-input. */
13863333 1807 if (c == EOF)
bfa74976 1808 return 0;
72d2299c 1809 /* Return a single char. */
13863333 1810 return c;
bfa74976
RS
1811@}
1812@end group
1813@end example
1814
342b8b6e 1815@node Rpcalc Main
bfa74976
RS
1816@subsection The Controlling Function
1817@cindex controlling function
1818@cindex main function in simple example
1819
1820In keeping with the spirit of this example, the controlling function is
1821kept to the bare minimum. The only requirement is that it call
1822@code{yyparse} to start the process of parsing.
1823
24ec0837 1824@comment file: rpcalc.y
bfa74976
RS
1825@example
1826@group
13863333
AD
1827int
1828main (void)
bfa74976 1829@{
13863333 1830 return yyparse ();
bfa74976
RS
1831@}
1832@end group
1833@end example
1834
342b8b6e 1835@node Rpcalc Error
bfa74976
RS
1836@subsection The Error Reporting Routine
1837@cindex error reporting routine
1838
1839When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1840function @code{yyerror} to print an error message (usually but not
6e649e65 1841always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1842@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1843here is the definition we will use:
bfa74976 1844
24ec0837 1845@comment file: rpcalc.y
bfa74976
RS
1846@example
1847@group
1848#include <stdio.h>
1849
38a92d50 1850/* Called by yyparse on error. */
13863333 1851void
38a92d50 1852yyerror (char const *s)
bfa74976 1853@{
4e03e201 1854 fprintf (stderr, "%s\n", s);
bfa74976
RS
1855@}
1856@end group
1857@end example
1858
1859After @code{yyerror} returns, the Bison parser may recover from the error
1860and continue parsing if the grammar contains a suitable error rule
1861(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1862have not written any error rules in this example, so any invalid input will
1863cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1864real calculator, but it is adequate for the first example.
bfa74976 1865
f5f419de 1866@node Rpcalc Generate
bfa74976
RS
1867@subsection Running Bison to Make the Parser
1868@cindex running Bison (introduction)
1869
ceed8467
AD
1870Before running Bison to produce a parser, we need to decide how to
1871arrange all the source code in one or more source files. For such a
ff7571c0
JD
1872simple example, the easiest thing is to put everything in one file,
1873the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1874@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1875(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1876
1877For a large project, you would probably have several source files, and use
1878@code{make} to arrange to recompile them.
1879
ff7571c0
JD
1880With all the source in the grammar file, you use the following command
1881to convert it into a parser implementation file:
bfa74976
RS
1882
1883@example
fa4d969f 1884bison @var{file}.y
bfa74976
RS
1885@end example
1886
1887@noindent
ff7571c0
JD
1888In this example, the grammar file is called @file{rpcalc.y} (for
1889``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1890implementation file named @file{@var{file}.tab.c}, removing the
1891@samp{.y} from the grammar file name. The parser implementation file
1892contains the source code for @code{yyparse}. The additional functions
1893in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1894copied verbatim to the parser implementation file.
bfa74976 1895
342b8b6e 1896@node Rpcalc Compile
ff7571c0 1897@subsection Compiling the Parser Implementation File
bfa74976
RS
1898@cindex compiling the parser
1899
ff7571c0 1900Here is how to compile and run the parser implementation file:
bfa74976
RS
1901
1902@example
1903@group
1904# @r{List files in current directory.}
9edcd895 1905$ @kbd{ls}
bfa74976
RS
1906rpcalc.tab.c rpcalc.y
1907@end group
1908
1909@group
1910# @r{Compile the Bison parser.}
1911# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1912$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1913@end group
1914
1915@group
1916# @r{List files again.}
9edcd895 1917$ @kbd{ls}
bfa74976
RS
1918rpcalc rpcalc.tab.c rpcalc.y
1919@end group
1920@end example
1921
1922The file @file{rpcalc} now contains the executable code. Here is an
1923example session using @code{rpcalc}.
1924
1925@example
9edcd895
AD
1926$ @kbd{rpcalc}
1927@kbd{4 9 +}
24ec0837 1928@result{} 13
9edcd895 1929@kbd{3 7 + 3 4 5 *+-}
24ec0837 1930@result{} -13
9edcd895 1931@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
24ec0837 1932@result{} 13
9edcd895 1933@kbd{5 6 / 4 n +}
24ec0837 1934@result{} -3.166666667
9edcd895 1935@kbd{3 4 ^} @r{Exponentiation}
24ec0837 1936@result{} 81
9edcd895
AD
1937@kbd{^D} @r{End-of-file indicator}
1938$
bfa74976
RS
1939@end example
1940
342b8b6e 1941@node Infix Calc
bfa74976
RS
1942@section Infix Notation Calculator: @code{calc}
1943@cindex infix notation calculator
1944@cindex @code{calc}
1945@cindex calculator, infix notation
1946
1947We now modify rpcalc to handle infix operators instead of postfix. Infix
1948notation involves the concept of operator precedence and the need for
1949parentheses nested to arbitrary depth. Here is the Bison code for
1950@file{calc.y}, an infix desk-top calculator.
1951
1952@example
38a92d50 1953/* Infix notation calculator. */
bfa74976
RS
1954
1955%@{
38a92d50
PE
1956 #define YYSTYPE double
1957 #include <math.h>
1958 #include <stdio.h>
1959 int yylex (void);
1960 void yyerror (char const *);
bfa74976
RS
1961%@}
1962
38a92d50 1963/* Bison declarations. */
bfa74976
RS
1964%token NUM
1965%left '-' '+'
1966%left '*' '/'
d78f0ac9
AD
1967%precedence NEG /* negation--unary minus */
1968%right '^' /* exponentiation */
bfa74976 1969
38a92d50
PE
1970%% /* The grammar follows. */
1971input: /* empty */
bfa74976
RS
1972 | input line
1973;
1974
1975line: '\n'
1976 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1977;
1978
1979exp: NUM @{ $$ = $1; @}
1980 | exp '+' exp @{ $$ = $1 + $3; @}
1981 | exp '-' exp @{ $$ = $1 - $3; @}
1982 | exp '*' exp @{ $$ = $1 * $3; @}
1983 | exp '/' exp @{ $$ = $1 / $3; @}
1984 | '-' exp %prec NEG @{ $$ = -$2; @}
1985 | exp '^' exp @{ $$ = pow ($1, $3); @}
1986 | '(' exp ')' @{ $$ = $2; @}
1987;
1988%%
1989@end example
1990
1991@noindent
ceed8467
AD
1992The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1993same as before.
bfa74976
RS
1994
1995There are two important new features shown in this code.
1996
1997In the second section (Bison declarations), @code{%left} declares token
1998types and says they are left-associative operators. The declarations
1999@code{%left} and @code{%right} (right associativity) take the place of
2000@code{%token} which is used to declare a token type name without
d78f0ac9 2001associativity/precedence. (These tokens are single-character literals, which
bfa74976 2002ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 2003the associativity/precedence.)
bfa74976
RS
2004
2005Operator precedence is determined by the line ordering of the
2006declarations; the higher the line number of the declaration (lower on
2007the page or screen), the higher the precedence. Hence, exponentiation
2008has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2009by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2010only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2011Precedence}.
bfa74976 2012
704a47c4
AD
2013The other important new feature is the @code{%prec} in the grammar
2014section for the unary minus operator. The @code{%prec} simply instructs
2015Bison that the rule @samp{| '-' exp} has the same precedence as
2016@code{NEG}---in this case the next-to-highest. @xref{Contextual
2017Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2018
2019Here is a sample run of @file{calc.y}:
2020
2021@need 500
2022@example
9edcd895
AD
2023$ @kbd{calc}
2024@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20256.880952381
9edcd895 2026@kbd{-56 + 2}
bfa74976 2027-54
9edcd895 2028@kbd{3 ^ 2}
bfa74976
RS
20299
2030@end example
2031
342b8b6e 2032@node Simple Error Recovery
bfa74976
RS
2033@section Simple Error Recovery
2034@cindex error recovery, simple
2035
2036Up to this point, this manual has not addressed the issue of @dfn{error
2037recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2038error. All we have handled is error reporting with @code{yyerror}.
2039Recall that by default @code{yyparse} returns after calling
2040@code{yyerror}. This means that an erroneous input line causes the
2041calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2042
2043The Bison language itself includes the reserved word @code{error}, which
2044may be included in the grammar rules. In the example below it has
2045been added to one of the alternatives for @code{line}:
2046
2047@example
2048@group
2049line: '\n'
2050 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2051 | error '\n' @{ yyerrok; @}
2052;
2053@end group
2054@end example
2055
ceed8467 2056This addition to the grammar allows for simple error recovery in the
6e649e65 2057event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2058read, the error will be recognized by the third rule for @code{line},
2059and parsing will continue. (The @code{yyerror} function is still called
2060upon to print its message as well.) The action executes the statement
2061@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2062that error recovery is complete (@pxref{Error Recovery}). Note the
2063difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2064misprint.
bfa74976
RS
2065
2066This form of error recovery deals with syntax errors. There are other
2067kinds of errors; for example, division by zero, which raises an exception
2068signal that is normally fatal. A real calculator program must handle this
2069signal and use @code{longjmp} to return to @code{main} and resume parsing
2070input lines; it would also have to discard the rest of the current line of
2071input. We won't discuss this issue further because it is not specific to
2072Bison programs.
2073
342b8b6e
AD
2074@node Location Tracking Calc
2075@section Location Tracking Calculator: @code{ltcalc}
2076@cindex location tracking calculator
2077@cindex @code{ltcalc}
2078@cindex calculator, location tracking
2079
9edcd895
AD
2080This example extends the infix notation calculator with location
2081tracking. This feature will be used to improve the error messages. For
2082the sake of clarity, this example is a simple integer calculator, since
2083most of the work needed to use locations will be done in the lexical
72d2299c 2084analyzer.
342b8b6e
AD
2085
2086@menu
f5f419de
DJ
2087* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2088* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2089* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2090@end menu
2091
f5f419de 2092@node Ltcalc Declarations
342b8b6e
AD
2093@subsection Declarations for @code{ltcalc}
2094
9edcd895
AD
2095The C and Bison declarations for the location tracking calculator are
2096the same as the declarations for the infix notation calculator.
342b8b6e
AD
2097
2098@example
2099/* Location tracking calculator. */
2100
2101%@{
38a92d50
PE
2102 #define YYSTYPE int
2103 #include <math.h>
2104 int yylex (void);
2105 void yyerror (char const *);
342b8b6e
AD
2106%@}
2107
2108/* Bison declarations. */
2109%token NUM
2110
2111%left '-' '+'
2112%left '*' '/'
d78f0ac9 2113%precedence NEG
342b8b6e
AD
2114%right '^'
2115
38a92d50 2116%% /* The grammar follows. */
342b8b6e
AD
2117@end example
2118
9edcd895
AD
2119@noindent
2120Note there are no declarations specific to locations. Defining a data
2121type for storing locations is not needed: we will use the type provided
2122by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2123four member structure with the following integer fields:
2124@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2125@code{last_column}. By conventions, and in accordance with the GNU
2126Coding Standards and common practice, the line and column count both
2127start at 1.
342b8b6e
AD
2128
2129@node Ltcalc Rules
2130@subsection Grammar Rules for @code{ltcalc}
2131
9edcd895
AD
2132Whether handling locations or not has no effect on the syntax of your
2133language. Therefore, grammar rules for this example will be very close
2134to those of the previous example: we will only modify them to benefit
2135from the new information.
342b8b6e 2136
9edcd895
AD
2137Here, we will use locations to report divisions by zero, and locate the
2138wrong expressions or subexpressions.
342b8b6e
AD
2139
2140@example
2141@group
2142input : /* empty */
2143 | input line
2144;
2145@end group
2146
2147@group
2148line : '\n'
2149 | exp '\n' @{ printf ("%d\n", $1); @}
2150;
2151@end group
2152
2153@group
2154exp : NUM @{ $$ = $1; @}
2155 | exp '+' exp @{ $$ = $1 + $3; @}
2156 | exp '-' exp @{ $$ = $1 - $3; @}
2157 | exp '*' exp @{ $$ = $1 * $3; @}
2158@end group
342b8b6e 2159@group
9edcd895 2160 | exp '/' exp
342b8b6e
AD
2161 @{
2162 if ($3)
2163 $$ = $1 / $3;
2164 else
2165 @{
2166 $$ = 1;
9edcd895
AD
2167 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2168 @@3.first_line, @@3.first_column,
2169 @@3.last_line, @@3.last_column);
342b8b6e
AD
2170 @}
2171 @}
2172@end group
2173@group
178e123e 2174 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2175 | exp '^' exp @{ $$ = pow ($1, $3); @}
2176 | '(' exp ')' @{ $$ = $2; @}
2177@end group
2178@end example
2179
2180This code shows how to reach locations inside of semantic actions, by
2181using the pseudo-variables @code{@@@var{n}} for rule components, and the
2182pseudo-variable @code{@@$} for groupings.
2183
9edcd895
AD
2184We don't need to assign a value to @code{@@$}: the output parser does it
2185automatically. By default, before executing the C code of each action,
2186@code{@@$} is set to range from the beginning of @code{@@1} to the end
2187of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2188can be redefined (@pxref{Location Default Action, , Default Action for
2189Locations}), and for very specific rules, @code{@@$} can be computed by
2190hand.
342b8b6e
AD
2191
2192@node Ltcalc Lexer
2193@subsection The @code{ltcalc} Lexical Analyzer.
2194
9edcd895 2195Until now, we relied on Bison's defaults to enable location
72d2299c 2196tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2197able to feed the parser with the token locations, as it already does for
2198semantic values.
342b8b6e 2199
9edcd895
AD
2200To this end, we must take into account every single character of the
2201input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2202
2203@example
2204@group
2205int
2206yylex (void)
2207@{
2208 int c;
18b519c0 2209@end group
342b8b6e 2210
18b519c0 2211@group
72d2299c 2212 /* Skip white space. */
342b8b6e
AD
2213 while ((c = getchar ()) == ' ' || c == '\t')
2214 ++yylloc.last_column;
18b519c0 2215@end group
342b8b6e 2216
18b519c0 2217@group
72d2299c 2218 /* Step. */
342b8b6e
AD
2219 yylloc.first_line = yylloc.last_line;
2220 yylloc.first_column = yylloc.last_column;
2221@end group
2222
2223@group
72d2299c 2224 /* Process numbers. */
342b8b6e
AD
2225 if (isdigit (c))
2226 @{
2227 yylval = c - '0';
2228 ++yylloc.last_column;
2229 while (isdigit (c = getchar ()))
2230 @{
2231 ++yylloc.last_column;
2232 yylval = yylval * 10 + c - '0';
2233 @}
2234 ungetc (c, stdin);
2235 return NUM;
2236 @}
2237@end group
2238
72d2299c 2239 /* Return end-of-input. */
342b8b6e
AD
2240 if (c == EOF)
2241 return 0;
2242
d4fca427 2243@group
72d2299c 2244 /* Return a single char, and update location. */
342b8b6e
AD
2245 if (c == '\n')
2246 @{
2247 ++yylloc.last_line;
2248 yylloc.last_column = 0;
2249 @}
2250 else
2251 ++yylloc.last_column;
2252 return c;
2253@}
d4fca427 2254@end group
342b8b6e
AD
2255@end example
2256
9edcd895
AD
2257Basically, the lexical analyzer performs the same processing as before:
2258it skips blanks and tabs, and reads numbers or single-character tokens.
2259In addition, it updates @code{yylloc}, the global variable (of type
2260@code{YYLTYPE}) containing the token's location.
342b8b6e 2261
9edcd895 2262Now, each time this function returns a token, the parser has its number
72d2299c 2263as well as its semantic value, and its location in the text. The last
9edcd895
AD
2264needed change is to initialize @code{yylloc}, for example in the
2265controlling function:
342b8b6e
AD
2266
2267@example
9edcd895 2268@group
342b8b6e
AD
2269int
2270main (void)
2271@{
2272 yylloc.first_line = yylloc.last_line = 1;
2273 yylloc.first_column = yylloc.last_column = 0;
2274 return yyparse ();
2275@}
9edcd895 2276@end group
342b8b6e
AD
2277@end example
2278
9edcd895
AD
2279Remember that computing locations is not a matter of syntax. Every
2280character must be associated to a location update, whether it is in
2281valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2282
2283@node Multi-function Calc
bfa74976
RS
2284@section Multi-Function Calculator: @code{mfcalc}
2285@cindex multi-function calculator
2286@cindex @code{mfcalc}
2287@cindex calculator, multi-function
2288
2289Now that the basics of Bison have been discussed, it is time to move on to
2290a more advanced problem. The above calculators provided only five
2291functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2292be nice to have a calculator that provides other mathematical functions such
2293as @code{sin}, @code{cos}, etc.
2294
2295It is easy to add new operators to the infix calculator as long as they are
2296only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2297back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2298adding a new operator. But we want something more flexible: built-in
2299functions whose syntax has this form:
2300
2301@example
2302@var{function_name} (@var{argument})
2303@end example
2304
2305@noindent
2306At the same time, we will add memory to the calculator, by allowing you
2307to create named variables, store values in them, and use them later.
2308Here is a sample session with the multi-function calculator:
2309
2310@example
d4fca427 2311@group
9edcd895
AD
2312$ @kbd{mfcalc}
2313@kbd{pi = 3.141592653589}
f9c75dd0 2314@result{} 3.1415926536
d4fca427
AD
2315@end group
2316@group
9edcd895 2317@kbd{sin(pi)}
f9c75dd0 2318@result{} 0.0000000000
d4fca427 2319@end group
9edcd895 2320@kbd{alpha = beta1 = 2.3}
f9c75dd0 2321@result{} 2.3000000000
9edcd895 2322@kbd{alpha}
f9c75dd0 2323@result{} 2.3000000000
9edcd895 2324@kbd{ln(alpha)}
f9c75dd0 2325@result{} 0.8329091229
9edcd895 2326@kbd{exp(ln(beta1))}
f9c75dd0 2327@result{} 2.3000000000
9edcd895 2328$
bfa74976
RS
2329@end example
2330
2331Note that multiple assignment and nested function calls are permitted.
2332
2333@menu
f5f419de
DJ
2334* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2335* Mfcalc Rules:: Grammar rules for the calculator.
2336* Mfcalc Symbol Table:: Symbol table management subroutines.
aeb57fb6
AD
2337* Mfcalc Lexer:: The lexical analyzer.
2338* Mfcalc Main:: The controlling function.
bfa74976
RS
2339@end menu
2340
f5f419de 2341@node Mfcalc Declarations
bfa74976
RS
2342@subsection Declarations for @code{mfcalc}
2343
2344Here are the C and Bison declarations for the multi-function calculator.
2345
f9c75dd0 2346@comment file: mfcalc.y
bfa74976 2347@smallexample
18b519c0 2348@group
bfa74976 2349%@{
f9c75dd0 2350 #include <stdio.h> /* For printf, etc. */
578e3413 2351 #include <math.h> /* For pow, used in the grammar. */
f9c75dd0 2352 #include "calc.h" /* Contains definition of `symrec'. */
38a92d50
PE
2353 int yylex (void);
2354 void yyerror (char const *);
bfa74976 2355%@}
18b519c0
AD
2356@end group
2357@group
bfa74976 2358%union @{
38a92d50
PE
2359 double val; /* For returning numbers. */
2360 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2361@}
18b519c0 2362@end group
38a92d50
PE
2363%token <val> NUM /* Simple double precision number. */
2364%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2365%type <val> exp
2366
18b519c0 2367@group
bfa74976
RS
2368%right '='
2369%left '-' '+'
2370%left '*' '/'
d78f0ac9
AD
2371%precedence NEG /* negation--unary minus */
2372%right '^' /* exponentiation */
18b519c0 2373@end group
38a92d50 2374%% /* The grammar follows. */
bfa74976
RS
2375@end smallexample
2376
2377The above grammar introduces only two new features of the Bison language.
2378These features allow semantic values to have various data types
2379(@pxref{Multiple Types, ,More Than One Value Type}).
2380
2381The @code{%union} declaration specifies the entire list of possible types;
2382this is instead of defining @code{YYSTYPE}. The allowable types are now
2383double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2384the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2385
2386Since values can now have various types, it is necessary to associate a
2387type with each grammar symbol whose semantic value is used. These symbols
2388are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2389declarations are augmented with information about their data type (placed
2390between angle brackets).
2391
704a47c4
AD
2392The Bison construct @code{%type} is used for declaring nonterminal
2393symbols, just as @code{%token} is used for declaring token types. We
2394have not used @code{%type} before because nonterminal symbols are
2395normally declared implicitly by the rules that define them. But
2396@code{exp} must be declared explicitly so we can specify its value type.
2397@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2398
342b8b6e 2399@node Mfcalc Rules
bfa74976
RS
2400@subsection Grammar Rules for @code{mfcalc}
2401
2402Here are the grammar rules for the multi-function calculator.
2403Most of them are copied directly from @code{calc}; three rules,
2404those which mention @code{VAR} or @code{FNCT}, are new.
2405
f9c75dd0 2406@comment file: mfcalc.y
bfa74976 2407@smallexample
18b519c0 2408@group
bfa74976
RS
2409input: /* empty */
2410 | input line
2411;
18b519c0 2412@end group
bfa74976 2413
18b519c0 2414@group
bfa74976
RS
2415line:
2416 '\n'
f9c75dd0
AD
2417 | exp '\n' @{ printf ("%.10g\n", $1); @}
2418 | error '\n' @{ yyerrok; @}
bfa74976 2419;
18b519c0 2420@end group
bfa74976 2421
18b519c0 2422@group
bfa74976
RS
2423exp: NUM @{ $$ = $1; @}
2424 | VAR @{ $$ = $1->value.var; @}
2425 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2426 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2427 | exp '+' exp @{ $$ = $1 + $3; @}
2428 | exp '-' exp @{ $$ = $1 - $3; @}
2429 | exp '*' exp @{ $$ = $1 * $3; @}
2430 | exp '/' exp @{ $$ = $1 / $3; @}
2431 | '-' exp %prec NEG @{ $$ = -$2; @}
2432 | exp '^' exp @{ $$ = pow ($1, $3); @}
2433 | '(' exp ')' @{ $$ = $2; @}
2434;
18b519c0 2435@end group
38a92d50 2436/* End of grammar. */
bfa74976
RS
2437%%
2438@end smallexample
2439
f5f419de 2440@node Mfcalc Symbol Table
bfa74976
RS
2441@subsection The @code{mfcalc} Symbol Table
2442@cindex symbol table example
2443
2444The multi-function calculator requires a symbol table to keep track of the
2445names and meanings of variables and functions. This doesn't affect the
2446grammar rules (except for the actions) or the Bison declarations, but it
2447requires some additional C functions for support.
2448
2449The symbol table itself consists of a linked list of records. Its
2450definition, which is kept in the header @file{calc.h}, is as follows. It
2451provides for either functions or variables to be placed in the table.
2452
f9c75dd0 2453@comment file: calc.h
bfa74976
RS
2454@smallexample
2455@group
38a92d50 2456/* Function type. */
32dfccf8 2457typedef double (*func_t) (double);
72f889cc 2458@end group
32dfccf8 2459
72f889cc 2460@group
38a92d50 2461/* Data type for links in the chain of symbols. */
bfa74976
RS
2462struct symrec
2463@{
38a92d50 2464 char *name; /* name of symbol */
bfa74976 2465 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2466 union
2467 @{
38a92d50
PE
2468 double var; /* value of a VAR */
2469 func_t fnctptr; /* value of a FNCT */
bfa74976 2470 @} value;
38a92d50 2471 struct symrec *next; /* link field */
bfa74976
RS
2472@};
2473@end group
2474
2475@group
2476typedef struct symrec symrec;
2477
38a92d50 2478/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2479extern symrec *sym_table;
2480
a730d142 2481symrec *putsym (char const *, int);
38a92d50 2482symrec *getsym (char const *);
bfa74976
RS
2483@end group
2484@end smallexample
2485
aeb57fb6
AD
2486The new version of @code{main} will call @code{init_table} to initialize
2487the symbol table:
bfa74976 2488
f9c75dd0 2489@comment file: mfcalc.y
bfa74976 2490@smallexample
18b519c0 2491@group
bfa74976
RS
2492struct init
2493@{
38a92d50
PE
2494 char const *fname;
2495 double (*fnct) (double);
bfa74976
RS
2496@};
2497@end group
2498
2499@group
38a92d50 2500struct init const arith_fncts[] =
13863333 2501@{
f9c75dd0
AD
2502 @{ "atan", atan @},
2503 @{ "cos", cos @},
2504 @{ "exp", exp @},
2505 @{ "ln", log @},
2506 @{ "sin", sin @},
2507 @{ "sqrt", sqrt @},
2508 @{ 0, 0 @},
13863333 2509@};
18b519c0 2510@end group
bfa74976 2511
18b519c0 2512@group
bfa74976 2513/* The symbol table: a chain of `struct symrec'. */
38a92d50 2514symrec *sym_table;
bfa74976
RS
2515@end group
2516
2517@group
72d2299c 2518/* Put arithmetic functions in table. */
f9c75dd0 2519static
13863333
AD
2520void
2521init_table (void)
bfa74976
RS
2522@{
2523 int i;
2524 symrec *ptr;
2525 for (i = 0; arith_fncts[i].fname != 0; i++)
2526 @{
2527 ptr = putsym (arith_fncts[i].fname, FNCT);
2528 ptr->value.fnctptr = arith_fncts[i].fnct;
2529 @}
2530@}
2531@end group
2532@end smallexample
2533
2534By simply editing the initialization list and adding the necessary include
2535files, you can add additional functions to the calculator.
2536
2537Two important functions allow look-up and installation of symbols in the
2538symbol table. The function @code{putsym} is passed a name and the type
2539(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2540linked to the front of the list, and a pointer to the object is returned.
2541The function @code{getsym} is passed the name of the symbol to look up. If
2542found, a pointer to that symbol is returned; otherwise zero is returned.
2543
f9c75dd0 2544@comment file: mfcalc.y
bfa74976 2545@smallexample
f9c75dd0
AD
2546#include <stdlib.h> /* malloc. */
2547#include <string.h> /* strlen. */
2548
d4fca427 2549@group
bfa74976 2550symrec *
38a92d50 2551putsym (char const *sym_name, int sym_type)
bfa74976
RS
2552@{
2553 symrec *ptr;
2554 ptr = (symrec *) malloc (sizeof (symrec));
2555 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2556 strcpy (ptr->name,sym_name);
2557 ptr->type = sym_type;
72d2299c 2558 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2559 ptr->next = (struct symrec *)sym_table;
2560 sym_table = ptr;
2561 return ptr;
2562@}
d4fca427 2563@end group
bfa74976 2564
d4fca427 2565@group
bfa74976 2566symrec *
38a92d50 2567getsym (char const *sym_name)
bfa74976
RS
2568@{
2569 symrec *ptr;
2570 for (ptr = sym_table; ptr != (symrec *) 0;
2571 ptr = (symrec *)ptr->next)
2572 if (strcmp (ptr->name,sym_name) == 0)
2573 return ptr;
2574 return 0;
2575@}
d4fca427 2576@end group
bfa74976
RS
2577@end smallexample
2578
aeb57fb6
AD
2579@node Mfcalc Lexer
2580@subsection The @code{mfcalc} Lexer
2581
bfa74976
RS
2582The function @code{yylex} must now recognize variables, numeric values, and
2583the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2584characters with a leading letter are recognized as either variables or
bfa74976
RS
2585functions depending on what the symbol table says about them.
2586
2587The string is passed to @code{getsym} for look up in the symbol table. If
2588the name appears in the table, a pointer to its location and its type
2589(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2590already in the table, then it is installed as a @code{VAR} using
2591@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2592returned to @code{yyparse}.
bfa74976
RS
2593
2594No change is needed in the handling of numeric values and arithmetic
2595operators in @code{yylex}.
2596
f9c75dd0 2597@comment file: mfcalc.y
bfa74976
RS
2598@smallexample
2599@group
2600#include <ctype.h>
18b519c0 2601@end group
13863333 2602
18b519c0 2603@group
13863333
AD
2604int
2605yylex (void)
bfa74976
RS
2606@{
2607 int c;
2608
72d2299c 2609 /* Ignore white space, get first nonwhite character. */
d4fca427
AD
2610 while ((c = getchar ()) == ' ' || c == '\t')
2611 continue;
bfa74976
RS
2612
2613 if (c == EOF)
2614 return 0;
2615@end group
2616
2617@group
2618 /* Char starts a number => parse the number. */
2619 if (c == '.' || isdigit (c))
2620 @{
2621 ungetc (c, stdin);
2622 scanf ("%lf", &yylval.val);
2623 return NUM;
2624 @}
2625@end group
2626
2627@group
2628 /* Char starts an identifier => read the name. */
2629 if (isalpha (c))
2630 @{
2631 symrec *s;
2632 static char *symbuf = 0;
2633 static int length = 0;
2634 int i;
2635@end group
2636
2637@group
2638 /* Initially make the buffer long enough
2639 for a 40-character symbol name. */
2640 if (length == 0)
f9c75dd0
AD
2641 @{
2642 length = 40;
2643 symbuf = (char *) malloc (length + 1);
2644 @}
bfa74976
RS
2645
2646 i = 0;
2647 do
2648@end group
2649@group
2650 @{
2651 /* If buffer is full, make it bigger. */
2652 if (i == length)
2653 @{
2654 length *= 2;
18b519c0 2655 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2656 @}
2657 /* Add this character to the buffer. */
2658 symbuf[i++] = c;
2659 /* Get another character. */
2660 c = getchar ();
2661 @}
2662@end group
2663@group
72d2299c 2664 while (isalnum (c));
bfa74976
RS
2665
2666 ungetc (c, stdin);
2667 symbuf[i] = '\0';
2668@end group
2669
2670@group
2671 s = getsym (symbuf);
2672 if (s == 0)
2673 s = putsym (symbuf, VAR);
2674 yylval.tptr = s;
2675 return s->type;
2676 @}
2677
2678 /* Any other character is a token by itself. */
2679 return c;
2680@}
2681@end group
2682@end smallexample
2683
aeb57fb6
AD
2684@node Mfcalc Main
2685@subsection The @code{mfcalc} Main
2686
2687The error reporting function is unchanged, and the new version of
2688@code{main} includes a call to @code{init_table}:
2689
2690@comment file: mfcalc.y
2691@smallexample
2692
2693@group
2694@group
2695/* Called by yyparse on error. */
2696void
2697yyerror (char const *s)
2698@{
2699 fprintf (stderr, "%s\n", s);
2700@}
2701@end group
2702
2703int
2704main (int argc, char const* argv[])
2705@{
2706 init_table ();
2707 return yyparse ();
2708@}
2709@end group
2710@end smallexample
2711
72d2299c 2712This program is both powerful and flexible. You may easily add new
704a47c4
AD
2713functions, and it is a simple job to modify this code to install
2714predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2715
342b8b6e 2716@node Exercises
bfa74976
RS
2717@section Exercises
2718@cindex exercises
2719
2720@enumerate
2721@item
2722Add some new functions from @file{math.h} to the initialization list.
2723
2724@item
2725Add another array that contains constants and their values. Then
2726modify @code{init_table} to add these constants to the symbol table.
2727It will be easiest to give the constants type @code{VAR}.
2728
2729@item
2730Make the program report an error if the user refers to an
2731uninitialized variable in any way except to store a value in it.
2732@end enumerate
2733
342b8b6e 2734@node Grammar File
bfa74976
RS
2735@chapter Bison Grammar Files
2736
2737Bison takes as input a context-free grammar specification and produces a
2738C-language function that recognizes correct instances of the grammar.
2739
ff7571c0 2740The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2741@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2742
2743@menu
303834cc
JD
2744* Grammar Outline:: Overall layout of the grammar file.
2745* Symbols:: Terminal and nonterminal symbols.
2746* Rules:: How to write grammar rules.
2747* Recursion:: Writing recursive rules.
2748* Semantics:: Semantic values and actions.
2749* Tracking Locations:: Locations and actions.
2750* Named References:: Using named references in actions.
2751* Declarations:: All kinds of Bison declarations are described here.
2752* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2753@end menu
2754
342b8b6e 2755@node Grammar Outline
bfa74976
RS
2756@section Outline of a Bison Grammar
2757
2758A Bison grammar file has four main sections, shown here with the
2759appropriate delimiters:
2760
2761@example
2762%@{
38a92d50 2763 @var{Prologue}
bfa74976
RS
2764%@}
2765
2766@var{Bison declarations}
2767
2768%%
2769@var{Grammar rules}
2770%%
2771
75f5aaea 2772@var{Epilogue}
bfa74976
RS
2773@end example
2774
2775Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2776As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2777continues until end of line.
bfa74976
RS
2778
2779@menu
f5f419de 2780* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2781* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2782* Bison Declarations:: Syntax and usage of the Bison declarations section.
2783* Grammar Rules:: Syntax and usage of the grammar rules section.
2784* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2785@end menu
2786
38a92d50 2787@node Prologue
75f5aaea
MA
2788@subsection The prologue
2789@cindex declarations section
2790@cindex Prologue
2791@cindex declarations
bfa74976 2792
f8e1c9e5
AD
2793The @var{Prologue} section contains macro definitions and declarations
2794of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2795rules. These are copied to the beginning of the parser implementation
2796file so that they precede the definition of @code{yyparse}. You can
2797use @samp{#include} to get the declarations from a header file. If
2798you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2799@samp{%@}} delimiters that bracket this section.
bfa74976 2800
9c437126 2801The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2802of @samp{%@}} that is outside a comment, a string literal, or a
2803character constant.
2804
c732d2c6
AD
2805You may have more than one @var{Prologue} section, intermixed with the
2806@var{Bison declarations}. This allows you to have C and Bison
2807declarations that refer to each other. For example, the @code{%union}
2808declaration may use types defined in a header file, and you may wish to
2809prototype functions that take arguments of type @code{YYSTYPE}. This
2810can be done with two @var{Prologue} blocks, one before and one after the
2811@code{%union} declaration.
2812
2813@smallexample
2814%@{
aef3da86 2815 #define _GNU_SOURCE
38a92d50
PE
2816 #include <stdio.h>
2817 #include "ptypes.h"
c732d2c6
AD
2818%@}
2819
2820%union @{
779e7ceb 2821 long int n;
c732d2c6
AD
2822 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2823@}
2824
2825%@{
38a92d50
PE
2826 static void print_token_value (FILE *, int, YYSTYPE);
2827 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2828%@}
2829
2830@dots{}
2831@end smallexample
2832
aef3da86
PE
2833When in doubt, it is usually safer to put prologue code before all
2834Bison declarations, rather than after. For example, any definitions
2835of feature test macros like @code{_GNU_SOURCE} or
2836@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2837feature test macros can affect the behavior of Bison-generated
2838@code{#include} directives.
2839
2cbe6b7f
JD
2840@node Prologue Alternatives
2841@subsection Prologue Alternatives
2842@cindex Prologue Alternatives
2843
136a0f76 2844@findex %code
16dc6a9e
JD
2845@findex %code requires
2846@findex %code provides
2847@findex %code top
85894313 2848
2cbe6b7f 2849The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2850inflexible. As an alternative, Bison provides a @code{%code}
2851directive with an explicit qualifier field, which identifies the
2852purpose of the code and thus the location(s) where Bison should
2853generate it. For C/C++, the qualifier can be omitted for the default
2854location, or it can be one of @code{requires}, @code{provides},
e0c07222 2855@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2856
2857Look again at the example of the previous section:
2858
2859@smallexample
2860%@{
2861 #define _GNU_SOURCE
2862 #include <stdio.h>
2863 #include "ptypes.h"
2864%@}
2865
2866%union @{
2867 long int n;
2868 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2869@}
2870
2871%@{
2872 static void print_token_value (FILE *, int, YYSTYPE);
2873 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2874%@}
2875
2876@dots{}
2877@end smallexample
2878
2879@noindent
ff7571c0
JD
2880Notice that there are two @var{Prologue} sections here, but there's a
2881subtle distinction between their functionality. For example, if you
2882decide to override Bison's default definition for @code{YYLTYPE}, in
2883which @var{Prologue} section should you write your new definition?
2884You should write it in the first since Bison will insert that code
2885into the parser implementation file @emph{before} the default
2886@code{YYLTYPE} definition. In which @var{Prologue} section should you
2887prototype an internal function, @code{trace_token}, that accepts
2888@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2889prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2890@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2891
2892This distinction in functionality between the two @var{Prologue} sections is
2893established by the appearance of the @code{%union} between them.
a501eca9 2894This behavior raises a few questions.
2cbe6b7f
JD
2895First, why should the position of a @code{%union} affect definitions related to
2896@code{YYLTYPE} and @code{yytokentype}?
2897Second, what if there is no @code{%union}?
2898In that case, the second kind of @var{Prologue} section is not available.
2899This behavior is not intuitive.
2900
8e0a5e9e 2901To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2902@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2903Let's go ahead and add the new @code{YYLTYPE} definition and the
2904@code{trace_token} prototype at the same time:
2905
2906@smallexample
16dc6a9e 2907%code top @{
2cbe6b7f
JD
2908 #define _GNU_SOURCE
2909 #include <stdio.h>
8e0a5e9e
JD
2910
2911 /* WARNING: The following code really belongs
16dc6a9e 2912 * in a `%code requires'; see below. */
8e0a5e9e 2913
2cbe6b7f
JD
2914 #include "ptypes.h"
2915 #define YYLTYPE YYLTYPE
2916 typedef struct YYLTYPE
2917 @{
2918 int first_line;
2919 int first_column;
2920 int last_line;
2921 int last_column;
2922 char *filename;
2923 @} YYLTYPE;
2924@}
2925
2926%union @{
2927 long int n;
2928 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2929@}
2930
2931%code @{
2932 static void print_token_value (FILE *, int, YYSTYPE);
2933 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2934 static void trace_token (enum yytokentype token, YYLTYPE loc);
2935@}
2936
2937@dots{}
2938@end smallexample
2939
2940@noindent
16dc6a9e
JD
2941In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2942functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2943explicit which kind you intend.
2cbe6b7f
JD
2944Moreover, both kinds are always available even in the absence of @code{%union}.
2945
ff7571c0
JD
2946The @code{%code top} block above logically contains two parts. The
2947first two lines before the warning need to appear near the top of the
2948parser implementation file. The first line after the warning is
2949required by @code{YYSTYPE} and thus also needs to appear in the parser
2950implementation file. However, if you've instructed Bison to generate
2951a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2952want that line to appear before the @code{YYSTYPE} definition in that
2953header file as well. The @code{YYLTYPE} definition should also appear
2954in the parser header file to override the default @code{YYLTYPE}
2955definition there.
2cbe6b7f 2956
16dc6a9e 2957In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2958lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2959definitions.
16dc6a9e 2960Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2961
2962@smallexample
d4fca427 2963@group
16dc6a9e 2964%code top @{
2cbe6b7f
JD
2965 #define _GNU_SOURCE
2966 #include <stdio.h>
2967@}
d4fca427 2968@end group
2cbe6b7f 2969
d4fca427 2970@group
16dc6a9e 2971%code requires @{
9bc0dd67
JD
2972 #include "ptypes.h"
2973@}
d4fca427
AD
2974@end group
2975@group
9bc0dd67
JD
2976%union @{
2977 long int n;
2978 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2979@}
d4fca427 2980@end group
9bc0dd67 2981
d4fca427 2982@group
16dc6a9e 2983%code requires @{
2cbe6b7f
JD
2984 #define YYLTYPE YYLTYPE
2985 typedef struct YYLTYPE
2986 @{
2987 int first_line;
2988 int first_column;
2989 int last_line;
2990 int last_column;
2991 char *filename;
2992 @} YYLTYPE;
2993@}
d4fca427 2994@end group
2cbe6b7f 2995
d4fca427 2996@group
136a0f76 2997%code @{
2cbe6b7f
JD
2998 static void print_token_value (FILE *, int, YYSTYPE);
2999 #define YYPRINT(F, N, L) print_token_value (F, N, L)
3000 static void trace_token (enum yytokentype token, YYLTYPE loc);
3001@}
d4fca427 3002@end group
2cbe6b7f
JD
3003
3004@dots{}
3005@end smallexample
3006
3007@noindent
ff7571c0
JD
3008Now Bison will insert @code{#include "ptypes.h"} and the new
3009@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
3010and @code{YYLTYPE} definitions in both the parser implementation file
3011and the parser header file. (By the same reasoning, @code{%code
3012requires} would also be the appropriate place to write your own
3013definition for @code{YYSTYPE}.)
3014
3015When you are writing dependency code for @code{YYSTYPE} and
3016@code{YYLTYPE}, you should prefer @code{%code requires} over
3017@code{%code top} regardless of whether you instruct Bison to generate
3018a parser header file. When you are writing code that you need Bison
3019to insert only into the parser implementation file and that has no
3020special need to appear at the top of that file, you should prefer the
3021unqualified @code{%code} over @code{%code top}. These practices will
3022make the purpose of each block of your code explicit to Bison and to
3023other developers reading your grammar file. Following these
3024practices, we expect the unqualified @code{%code} and @code{%code
3025requires} to be the most important of the four @var{Prologue}
16dc6a9e 3026alternatives.
a501eca9 3027
ff7571c0
JD
3028At some point while developing your parser, you might decide to
3029provide @code{trace_token} to modules that are external to your
3030parser. Thus, you might wish for Bison to insert the prototype into
3031both the parser header file and the parser implementation file. Since
3032this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 3033@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
3034@code{%code requires}. More importantly, since it depends upon
3035@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
3036sufficient. Instead, move its prototype from the unqualified
3037@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
3038
3039@smallexample
d4fca427 3040@group
16dc6a9e 3041%code top @{
2cbe6b7f 3042 #define _GNU_SOURCE
136a0f76 3043 #include <stdio.h>
2cbe6b7f 3044@}
d4fca427 3045@end group
136a0f76 3046
d4fca427 3047@group
16dc6a9e 3048%code requires @{
2cbe6b7f
JD
3049 #include "ptypes.h"
3050@}
d4fca427
AD
3051@end group
3052@group
2cbe6b7f
JD
3053%union @{
3054 long int n;
3055 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
3056@}
d4fca427 3057@end group
2cbe6b7f 3058
d4fca427 3059@group
16dc6a9e 3060%code requires @{
2cbe6b7f
JD
3061 #define YYLTYPE YYLTYPE
3062 typedef struct YYLTYPE
3063 @{
3064 int first_line;
3065 int first_column;
3066 int last_line;
3067 int last_column;
3068 char *filename;
3069 @} YYLTYPE;
3070@}
d4fca427 3071@end group
2cbe6b7f 3072
d4fca427 3073@group
16dc6a9e 3074%code provides @{
2cbe6b7f
JD
3075 void trace_token (enum yytokentype token, YYLTYPE loc);
3076@}
d4fca427 3077@end group
2cbe6b7f 3078
d4fca427 3079@group
2cbe6b7f 3080%code @{
9bc0dd67
JD
3081 static void print_token_value (FILE *, int, YYSTYPE);
3082 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3083@}
d4fca427 3084@end group
9bc0dd67
JD
3085
3086@dots{}
3087@end smallexample
3088
2cbe6b7f 3089@noindent
ff7571c0
JD
3090Bison will insert the @code{trace_token} prototype into both the
3091parser header file and the parser implementation file after the
3092definitions for @code{yytokentype}, @code{YYLTYPE}, and
3093@code{YYSTYPE}.
2cbe6b7f 3094
ff7571c0
JD
3095The above examples are careful to write directives in an order that
3096reflects the layout of the generated parser implementation and header
3097files: @code{%code top}, @code{%code requires}, @code{%code provides},
3098and then @code{%code}. While your grammar files may generally be
3099easier to read if you also follow this order, Bison does not require
3100it. Instead, Bison lets you choose an organization that makes sense
3101to you.
2cbe6b7f 3102
a501eca9 3103You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3104In that case, Bison concatenates the contained code in declaration order.
3105This is the only way in which the position of one of these directives within
3106the grammar file affects its functionality.
3107
3108The result of the previous two properties is greater flexibility in how you may
3109organize your grammar file.
3110For example, you may organize semantic-type-related directives by semantic
3111type:
3112
3113@smallexample
d4fca427 3114@group
16dc6a9e 3115%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3116%union @{ type1 field1; @}
3117%destructor @{ type1_free ($$); @} <field1>
3118%printer @{ type1_print ($$); @} <field1>
d4fca427 3119@end group
2cbe6b7f 3120
d4fca427 3121@group
16dc6a9e 3122%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3123%union @{ type2 field2; @}
3124%destructor @{ type2_free ($$); @} <field2>
3125%printer @{ type2_print ($$); @} <field2>
d4fca427 3126@end group
2cbe6b7f
JD
3127@end smallexample
3128
3129@noindent
3130You could even place each of the above directive groups in the rules section of
3131the grammar file next to the set of rules that uses the associated semantic
3132type.
61fee93e
JD
3133(In the rules section, you must terminate each of those directives with a
3134semicolon.)
2cbe6b7f
JD
3135And you don't have to worry that some directive (like a @code{%union}) in the
3136definitions section is going to adversely affect their functionality in some
3137counter-intuitive manner just because it comes first.
3138Such an organization is not possible using @var{Prologue} sections.
3139
a501eca9 3140This section has been concerned with explaining the advantages of the four
8e0a5e9e 3141@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3142However, in most cases when using these directives, you shouldn't need to
3143think about all the low-level ordering issues discussed here.
3144Instead, you should simply use these directives to label each block of your
3145code according to its purpose and let Bison handle the ordering.
3146@code{%code} is the most generic label.
16dc6a9e
JD
3147Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3148as needed.
a501eca9 3149
342b8b6e 3150@node Bison Declarations
bfa74976
RS
3151@subsection The Bison Declarations Section
3152@cindex Bison declarations (introduction)
3153@cindex declarations, Bison (introduction)
3154
3155The @var{Bison declarations} section contains declarations that define
3156terminal and nonterminal symbols, specify precedence, and so on.
3157In some simple grammars you may not need any declarations.
3158@xref{Declarations, ,Bison Declarations}.
3159
342b8b6e 3160@node Grammar Rules
bfa74976
RS
3161@subsection The Grammar Rules Section
3162@cindex grammar rules section
3163@cindex rules section for grammar
3164
3165The @dfn{grammar rules} section contains one or more Bison grammar
3166rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3167
3168There must always be at least one grammar rule, and the first
3169@samp{%%} (which precedes the grammar rules) may never be omitted even
3170if it is the first thing in the file.
3171
38a92d50 3172@node Epilogue
75f5aaea 3173@subsection The epilogue
bfa74976 3174@cindex additional C code section
75f5aaea 3175@cindex epilogue
bfa74976
RS
3176@cindex C code, section for additional
3177
ff7571c0
JD
3178The @var{Epilogue} is copied verbatim to the end of the parser
3179implementation file, just as the @var{Prologue} is copied to the
3180beginning. This is the most convenient place to put anything that you
3181want to have in the parser implementation file but which need not come
3182before the definition of @code{yyparse}. For example, the definitions
3183of @code{yylex} and @code{yyerror} often go here. Because C requires
3184functions to be declared before being used, you often need to declare
3185functions like @code{yylex} and @code{yyerror} in the Prologue, even
3186if you define them in the Epilogue. @xref{Interface, ,Parser
3187C-Language Interface}.
bfa74976
RS
3188
3189If the last section is empty, you may omit the @samp{%%} that separates it
3190from the grammar rules.
3191
f8e1c9e5
AD
3192The Bison parser itself contains many macros and identifiers whose names
3193start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3194any such names (except those documented in this manual) in the epilogue
3195of the grammar file.
bfa74976 3196
342b8b6e 3197@node Symbols
bfa74976
RS
3198@section Symbols, Terminal and Nonterminal
3199@cindex nonterminal symbol
3200@cindex terminal symbol
3201@cindex token type
3202@cindex symbol
3203
3204@dfn{Symbols} in Bison grammars represent the grammatical classifications
3205of the language.
3206
3207A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3208class of syntactically equivalent tokens. You use the symbol in grammar
3209rules to mean that a token in that class is allowed. The symbol is
3210represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3211function returns a token type code to indicate what kind of token has
3212been read. You don't need to know what the code value is; you can use
3213the symbol to stand for it.
bfa74976 3214
f8e1c9e5
AD
3215A @dfn{nonterminal symbol} stands for a class of syntactically
3216equivalent groupings. The symbol name is used in writing grammar rules.
3217By convention, it should be all lower case.
bfa74976 3218
82f3355e
JD
3219Symbol names can contain letters, underscores, periods, and non-initial
3220digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3221with POSIX Yacc. Periods and dashes make symbol names less convenient to
3222use with named references, which require brackets around such names
3223(@pxref{Named References}). Terminal symbols that contain periods or dashes
3224make little sense: since they are not valid symbols (in most programming
3225languages) they are not exported as token names.
bfa74976 3226
931c7513 3227There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3228
3229@itemize @bullet
3230@item
3231A @dfn{named token type} is written with an identifier, like an
c827f760 3232identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3233such name must be defined with a Bison declaration such as
3234@code{%token}. @xref{Token Decl, ,Token Type Names}.
3235
3236@item
3237@cindex character token
3238@cindex literal token
3239@cindex single-character literal
931c7513
RS
3240A @dfn{character token type} (or @dfn{literal character token}) is
3241written in the grammar using the same syntax used in C for character
3242constants; for example, @code{'+'} is a character token type. A
3243character token type doesn't need to be declared unless you need to
3244specify its semantic value data type (@pxref{Value Type, ,Data Types of
3245Semantic Values}), associativity, or precedence (@pxref{Precedence,
3246,Operator Precedence}).
bfa74976
RS
3247
3248By convention, a character token type is used only to represent a
3249token that consists of that particular character. Thus, the token
3250type @code{'+'} is used to represent the character @samp{+} as a
3251token. Nothing enforces this convention, but if you depart from it,
3252your program will confuse other readers.
3253
3254All the usual escape sequences used in character literals in C can be
3255used in Bison as well, but you must not use the null character as a
72d2299c
PE
3256character literal because its numeric code, zero, signifies
3257end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3258for @code{yylex}}). Also, unlike standard C, trigraphs have no
3259special meaning in Bison character literals, nor is backslash-newline
3260allowed.
931c7513
RS
3261
3262@item
3263@cindex string token
3264@cindex literal string token
9ecbd125 3265@cindex multicharacter literal
931c7513
RS
3266A @dfn{literal string token} is written like a C string constant; for
3267example, @code{"<="} is a literal string token. A literal string token
3268doesn't need to be declared unless you need to specify its semantic
14ded682 3269value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3270(@pxref{Precedence}).
3271
3272You can associate the literal string token with a symbolic name as an
3273alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3274Declarations}). If you don't do that, the lexical analyzer has to
3275retrieve the token number for the literal string token from the
3276@code{yytname} table (@pxref{Calling Convention}).
3277
c827f760 3278@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3279
3280By convention, a literal string token is used only to represent a token
3281that consists of that particular string. Thus, you should use the token
3282type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3283does not enforce this convention, but if you depart from it, people who
931c7513
RS
3284read your program will be confused.
3285
3286All the escape sequences used in string literals in C can be used in
92ac3705
PE
3287Bison as well, except that you must not use a null character within a
3288string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3289meaning in Bison string literals, nor is backslash-newline allowed. A
3290literal string token must contain two or more characters; for a token
3291containing just one character, use a character token (see above).
bfa74976
RS
3292@end itemize
3293
3294How you choose to write a terminal symbol has no effect on its
3295grammatical meaning. That depends only on where it appears in rules and
3296on when the parser function returns that symbol.
3297
72d2299c
PE
3298The value returned by @code{yylex} is always one of the terminal
3299symbols, except that a zero or negative value signifies end-of-input.
3300Whichever way you write the token type in the grammar rules, you write
3301it the same way in the definition of @code{yylex}. The numeric code
3302for a character token type is simply the positive numeric code of the
3303character, so @code{yylex} can use the identical value to generate the
3304requisite code, though you may need to convert it to @code{unsigned
3305char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3306Each named token type becomes a C macro in the parser implementation
3307file, so @code{yylex} can use the name to stand for the code. (This
3308is why periods don't make sense in terminal symbols.) @xref{Calling
3309Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3310
3311If @code{yylex} is defined in a separate file, you need to arrange for the
3312token-type macro definitions to be available there. Use the @samp{-d}
3313option when you run Bison, so that it will write these macro definitions
3314into a separate header file @file{@var{name}.tab.h} which you can include
3315in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3316
72d2299c 3317If you want to write a grammar that is portable to any Standard C
9d9b8b70 3318host, you must use only nonnull character tokens taken from the basic
c827f760 3319execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3320digits, the 52 lower- and upper-case English letters, and the
3321characters in the following C-language string:
3322
3323@example
3324"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3325@end example
3326
f8e1c9e5
AD
3327The @code{yylex} function and Bison must use a consistent character set
3328and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3329ASCII environment, but then compile and run the resulting
f8e1c9e5 3330program in an environment that uses an incompatible character set like
8a4281b9
JD
3331EBCDIC, the resulting program may not work because the tables
3332generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3333character tokens. It is standard practice for software distributions to
3334contain C source files that were generated by Bison in an
8a4281b9
JD
3335ASCII environment, so installers on platforms that are
3336incompatible with ASCII must rebuild those files before
f8e1c9e5 3337compiling them.
e966383b 3338
bfa74976
RS
3339The symbol @code{error} is a terminal symbol reserved for error recovery
3340(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3341In particular, @code{yylex} should never return this value. The default
3342value of the error token is 256, unless you explicitly assigned 256 to
3343one of your tokens with a @code{%token} declaration.
bfa74976 3344
342b8b6e 3345@node Rules
bfa74976
RS
3346@section Syntax of Grammar Rules
3347@cindex rule syntax
3348@cindex grammar rule syntax
3349@cindex syntax of grammar rules
3350
3351A Bison grammar rule has the following general form:
3352
3353@example
e425e872 3354@group
bfa74976
RS
3355@var{result}: @var{components}@dots{}
3356 ;
e425e872 3357@end group
bfa74976
RS
3358@end example
3359
3360@noindent
9ecbd125 3361where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3362and @var{components} are various terminal and nonterminal symbols that
13863333 3363are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3364
3365For example,
3366
3367@example
3368@group
3369exp: exp '+' exp
3370 ;
3371@end group
3372@end example
3373
3374@noindent
3375says that two groupings of type @code{exp}, with a @samp{+} token in between,
3376can be combined into a larger grouping of type @code{exp}.
3377
72d2299c
PE
3378White space in rules is significant only to separate symbols. You can add
3379extra white space as you wish.
bfa74976
RS
3380
3381Scattered among the components can be @var{actions} that determine
3382the semantics of the rule. An action looks like this:
3383
3384@example
3385@{@var{C statements}@}
3386@end example
3387
3388@noindent
287c78f6
PE
3389@cindex braced code
3390This is an example of @dfn{braced code}, that is, C code surrounded by
3391braces, much like a compound statement in C@. Braced code can contain
3392any sequence of C tokens, so long as its braces are balanced. Bison
3393does not check the braced code for correctness directly; it merely
ff7571c0
JD
3394copies the code to the parser implementation file, where the C
3395compiler can check it.
287c78f6
PE
3396
3397Within braced code, the balanced-brace count is not affected by braces
3398within comments, string literals, or character constants, but it is
3399affected by the C digraphs @samp{<%} and @samp{%>} that represent
3400braces. At the top level braced code must be terminated by @samp{@}}
3401and not by a digraph. Bison does not look for trigraphs, so if braced
3402code uses trigraphs you should ensure that they do not affect the
3403nesting of braces or the boundaries of comments, string literals, or
3404character constants.
3405
bfa74976
RS
3406Usually there is only one action and it follows the components.
3407@xref{Actions}.
3408
3409@findex |
3410Multiple rules for the same @var{result} can be written separately or can
3411be joined with the vertical-bar character @samp{|} as follows:
3412
bfa74976
RS
3413@example
3414@group
3415@var{result}: @var{rule1-components}@dots{}
3416 | @var{rule2-components}@dots{}
3417 @dots{}
3418 ;
3419@end group
3420@end example
bfa74976
RS
3421
3422@noindent
3423They are still considered distinct rules even when joined in this way.
3424
3425If @var{components} in a rule is empty, it means that @var{result} can
3426match the empty string. For example, here is how to define a
3427comma-separated sequence of zero or more @code{exp} groupings:
3428
3429@example
3430@group
3431expseq: /* empty */
3432 | expseq1
3433 ;
3434@end group
3435
3436@group
3437expseq1: exp
3438 | expseq1 ',' exp
3439 ;
3440@end group
3441@end example
3442
3443@noindent
3444It is customary to write a comment @samp{/* empty */} in each rule
3445with no components.
3446
342b8b6e 3447@node Recursion
bfa74976
RS
3448@section Recursive Rules
3449@cindex recursive rule
3450
f8e1c9e5
AD
3451A rule is called @dfn{recursive} when its @var{result} nonterminal
3452appears also on its right hand side. Nearly all Bison grammars need to
3453use recursion, because that is the only way to define a sequence of any
3454number of a particular thing. Consider this recursive definition of a
9ecbd125 3455comma-separated sequence of one or more expressions:
bfa74976
RS
3456
3457@example
3458@group
3459expseq1: exp
3460 | expseq1 ',' exp
3461 ;
3462@end group
3463@end example
3464
3465@cindex left recursion
3466@cindex right recursion
3467@noindent
3468Since the recursive use of @code{expseq1} is the leftmost symbol in the
3469right hand side, we call this @dfn{left recursion}. By contrast, here
3470the same construct is defined using @dfn{right recursion}:
3471
3472@example
3473@group
3474expseq1: exp
3475 | exp ',' expseq1
3476 ;
3477@end group
3478@end example
3479
3480@noindent
ec3bc396
AD
3481Any kind of sequence can be defined using either left recursion or right
3482recursion, but you should always use left recursion, because it can
3483parse a sequence of any number of elements with bounded stack space.
3484Right recursion uses up space on the Bison stack in proportion to the
3485number of elements in the sequence, because all the elements must be
3486shifted onto the stack before the rule can be applied even once.
3487@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3488of this.
bfa74976
RS
3489
3490@cindex mutual recursion
3491@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3492rule does not appear directly on its right hand side, but does appear
3493in rules for other nonterminals which do appear on its right hand
13863333 3494side.
bfa74976
RS
3495
3496For example:
3497
3498@example
3499@group
3500expr: primary
3501 | primary '+' primary
3502 ;
3503@end group
3504
3505@group
3506primary: constant
3507 | '(' expr ')'
3508 ;
3509@end group
3510@end example
3511
3512@noindent
3513defines two mutually-recursive nonterminals, since each refers to the
3514other.
3515
342b8b6e 3516@node Semantics
bfa74976
RS
3517@section Defining Language Semantics
3518@cindex defining language semantics
13863333 3519@cindex language semantics, defining
bfa74976
RS
3520
3521The grammar rules for a language determine only the syntax. The semantics
3522are determined by the semantic values associated with various tokens and
3523groupings, and by the actions taken when various groupings are recognized.
3524
3525For example, the calculator calculates properly because the value
3526associated with each expression is the proper number; it adds properly
3527because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3528the numbers associated with @var{x} and @var{y}.
3529
3530@menu
3531* Value Type:: Specifying one data type for all semantic values.
3532* Multiple Types:: Specifying several alternative data types.
3533* Actions:: An action is the semantic definition of a grammar rule.
3534* Action Types:: Specifying data types for actions to operate on.
3535* Mid-Rule Actions:: Most actions go at the end of a rule.
3536 This says when, why and how to use the exceptional
3537 action in the middle of a rule.
3538@end menu
3539
342b8b6e 3540@node Value Type
bfa74976
RS
3541@subsection Data Types of Semantic Values
3542@cindex semantic value type
3543@cindex value type, semantic
3544@cindex data types of semantic values
3545@cindex default data type
3546
3547In a simple program it may be sufficient to use the same data type for
3548the semantic values of all language constructs. This was true in the
8a4281b9 3549RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3550Notation Calculator}).
bfa74976 3551
ddc8ede1
PE
3552Bison normally uses the type @code{int} for semantic values if your
3553program uses the same data type for all language constructs. To
bfa74976
RS
3554specify some other type, define @code{YYSTYPE} as a macro, like this:
3555
3556@example
3557#define YYSTYPE double
3558@end example
3559
3560@noindent
50cce58e
PE
3561@code{YYSTYPE}'s replacement list should be a type name
3562that does not contain parentheses or square brackets.
342b8b6e 3563This macro definition must go in the prologue of the grammar file
75f5aaea 3564(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3565
342b8b6e 3566@node Multiple Types
bfa74976
RS
3567@subsection More Than One Value Type
3568
3569In most programs, you will need different data types for different kinds
3570of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3571@code{int} or @code{long int}, while a string constant needs type
3572@code{char *}, and an identifier might need a pointer to an entry in the
3573symbol table.
bfa74976
RS
3574
3575To use more than one data type for semantic values in one parser, Bison
3576requires you to do two things:
3577
3578@itemize @bullet
3579@item
ddc8ede1 3580Specify the entire collection of possible data types, either by using the
704a47c4 3581@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3582Value Types}), or by using a @code{typedef} or a @code{#define} to
3583define @code{YYSTYPE} to be a union type whose member names are
3584the type tags.
bfa74976
RS
3585
3586@item
14ded682
AD
3587Choose one of those types for each symbol (terminal or nonterminal) for
3588which semantic values are used. This is done for tokens with the
3589@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3590and for groupings with the @code{%type} Bison declaration (@pxref{Type
3591Decl, ,Nonterminal Symbols}).
bfa74976
RS
3592@end itemize
3593
342b8b6e 3594@node Actions
bfa74976
RS
3595@subsection Actions
3596@cindex action
3597@vindex $$
3598@vindex $@var{n}
d013372c
AR
3599@vindex $@var{name}
3600@vindex $[@var{name}]
bfa74976
RS
3601
3602An action accompanies a syntactic rule and contains C code to be executed
3603each time an instance of that rule is recognized. The task of most actions
3604is to compute a semantic value for the grouping built by the rule from the
3605semantic values associated with tokens or smaller groupings.
3606
287c78f6
PE
3607An action consists of braced code containing C statements, and can be
3608placed at any position in the rule;
704a47c4
AD
3609it is executed at that position. Most rules have just one action at the
3610end of the rule, following all the components. Actions in the middle of
3611a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3612Actions, ,Actions in Mid-Rule}).
bfa74976 3613
ff7571c0
JD
3614The C code in an action can refer to the semantic values of the
3615components matched by the rule with the construct @code{$@var{n}},
3616which stands for the value of the @var{n}th component. The semantic
3617value for the grouping being constructed is @code{$$}. In addition,
3618the semantic values of symbols can be accessed with the named
3619references construct @code{$@var{name}} or @code{$[@var{name}]}.
3620Bison translates both of these constructs into expressions of the
3621appropriate type when it copies the actions into the parser
3622implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3623for the current grouping) is translated to a modifiable lvalue, so it
3624can be assigned to.
bfa74976
RS
3625
3626Here is a typical example:
3627
3628@example
3629@group
3630exp: @dots{}
3631 | exp '+' exp
3632 @{ $$ = $1 + $3; @}
3633@end group
3634@end example
3635
d013372c
AR
3636Or, in terms of named references:
3637
3638@example
3639@group
3640exp[result]: @dots{}
3641 | exp[left] '+' exp[right]
3642 @{ $result = $left + $right; @}
3643@end group
3644@end example
3645
bfa74976
RS
3646@noindent
3647This rule constructs an @code{exp} from two smaller @code{exp} groupings
3648connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3649(@code{$left} and @code{$right})
bfa74976
RS
3650refer to the semantic values of the two component @code{exp} groupings,
3651which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3652The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3653semantic value of
bfa74976
RS
3654the addition-expression just recognized by the rule. If there were a
3655useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3656referred to as @code{$2}.
bfa74976 3657
a7b15ab9
JD
3658@xref{Named References}, for more information about using the named
3659references construct.
d013372c 3660
3ded9a63
AD
3661Note that the vertical-bar character @samp{|} is really a rule
3662separator, and actions are attached to a single rule. This is a
3663difference with tools like Flex, for which @samp{|} stands for either
3664``or'', or ``the same action as that of the next rule''. In the
3665following example, the action is triggered only when @samp{b} is found:
3666
3667@example
3668@group
3669a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3670@end group
3671@end example
3672
bfa74976
RS
3673@cindex default action
3674If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3675@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3676becomes the value of the whole rule. Of course, the default action is
3677valid only if the two data types match. There is no meaningful default
3678action for an empty rule; every empty rule must have an explicit action
3679unless the rule's value does not matter.
bfa74976
RS
3680
3681@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3682to tokens and groupings on the stack @emph{before} those that match the
3683current rule. This is a very risky practice, and to use it reliably
3684you must be certain of the context in which the rule is applied. Here
3685is a case in which you can use this reliably:
3686
3687@example
3688@group
3689foo: expr bar '+' expr @{ @dots{} @}
3690 | expr bar '-' expr @{ @dots{} @}
3691 ;
3692@end group
3693
3694@group
3695bar: /* empty */
3696 @{ previous_expr = $0; @}
3697 ;
3698@end group
3699@end example
3700
3701As long as @code{bar} is used only in the fashion shown here, @code{$0}
3702always refers to the @code{expr} which precedes @code{bar} in the
3703definition of @code{foo}.
3704
32c29292 3705@vindex yylval
742e4900 3706It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3707any, from a semantic action.
3708This semantic value is stored in @code{yylval}.
3709@xref{Action Features, ,Special Features for Use in Actions}.
3710
342b8b6e 3711@node Action Types
bfa74976
RS
3712@subsection Data Types of Values in Actions
3713@cindex action data types
3714@cindex data types in actions
3715
3716If you have chosen a single data type for semantic values, the @code{$$}
3717and @code{$@var{n}} constructs always have that data type.
3718
3719If you have used @code{%union} to specify a variety of data types, then you
3720must declare a choice among these types for each terminal or nonterminal
3721symbol that can have a semantic value. Then each time you use @code{$$} or
3722@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3723in the rule. In this example,
bfa74976
RS
3724
3725@example
3726@group
3727exp: @dots{}
3728 | exp '+' exp
3729 @{ $$ = $1 + $3; @}
3730@end group
3731@end example
3732
3733@noindent
3734@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3735have the data type declared for the nonterminal symbol @code{exp}. If
3736@code{$2} were used, it would have the data type declared for the
e0c471a9 3737terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3738
3739Alternatively, you can specify the data type when you refer to the value,
3740by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3741reference. For example, if you have defined types as shown here:
3742
3743@example
3744@group
3745%union @{
3746 int itype;
3747 double dtype;
3748@}
3749@end group
3750@end example
3751
3752@noindent
3753then you can write @code{$<itype>1} to refer to the first subunit of the
3754rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3755
342b8b6e 3756@node Mid-Rule Actions
bfa74976
RS
3757@subsection Actions in Mid-Rule
3758@cindex actions in mid-rule
3759@cindex mid-rule actions
3760
3761Occasionally it is useful to put an action in the middle of a rule.
3762These actions are written just like usual end-of-rule actions, but they
3763are executed before the parser even recognizes the following components.
3764
3765A mid-rule action may refer to the components preceding it using
3766@code{$@var{n}}, but it may not refer to subsequent components because
3767it is run before they are parsed.
3768
3769The mid-rule action itself counts as one of the components of the rule.
3770This makes a difference when there is another action later in the same rule
3771(and usually there is another at the end): you have to count the actions
3772along with the symbols when working out which number @var{n} to use in
3773@code{$@var{n}}.
3774
3775The mid-rule action can also have a semantic value. The action can set
3776its value with an assignment to @code{$$}, and actions later in the rule
3777can refer to the value using @code{$@var{n}}. Since there is no symbol
3778to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3779in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3780specify a data type each time you refer to this value.
bfa74976
RS
3781
3782There is no way to set the value of the entire rule with a mid-rule
3783action, because assignments to @code{$$} do not have that effect. The
3784only way to set the value for the entire rule is with an ordinary action
3785at the end of the rule.
3786
3787Here is an example from a hypothetical compiler, handling a @code{let}
3788statement that looks like @samp{let (@var{variable}) @var{statement}} and
3789serves to create a variable named @var{variable} temporarily for the
3790duration of @var{statement}. To parse this construct, we must put
3791@var{variable} into the symbol table while @var{statement} is parsed, then
3792remove it afterward. Here is how it is done:
3793
3794@example
3795@group
3796stmt: LET '(' var ')'
3797 @{ $<context>$ = push_context ();
3798 declare_variable ($3); @}
3799 stmt @{ $$ = $6;
3800 pop_context ($<context>5); @}
3801@end group
3802@end example
3803
3804@noindent
3805As soon as @samp{let (@var{variable})} has been recognized, the first
3806action is run. It saves a copy of the current semantic context (the
3807list of accessible variables) as its semantic value, using alternative
3808@code{context} in the data-type union. Then it calls
3809@code{declare_variable} to add the new variable to that list. Once the
3810first action is finished, the embedded statement @code{stmt} can be
3811parsed. Note that the mid-rule action is component number 5, so the
3812@samp{stmt} is component number 6.
3813
3814After the embedded statement is parsed, its semantic value becomes the
3815value of the entire @code{let}-statement. Then the semantic value from the
3816earlier action is used to restore the prior list of variables. This
3817removes the temporary @code{let}-variable from the list so that it won't
3818appear to exist while the rest of the program is parsed.
3819
841a7737
JD
3820@findex %destructor
3821@cindex discarded symbols, mid-rule actions
3822@cindex error recovery, mid-rule actions
3823In the above example, if the parser initiates error recovery (@pxref{Error
3824Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3825it might discard the previous semantic context @code{$<context>5} without
3826restoring it.
3827Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3828Discarded Symbols}).
ec5479ce
JD
3829However, Bison currently provides no means to declare a destructor specific to
3830a particular mid-rule action's semantic value.
841a7737
JD
3831
3832One solution is to bury the mid-rule action inside a nonterminal symbol and to
3833declare a destructor for that symbol:
3834
3835@example
3836@group
3837%type <context> let
3838%destructor @{ pop_context ($$); @} let
3839
3840%%
3841
3842stmt: let stmt
3843 @{ $$ = $2;
3844 pop_context ($1); @}
3845 ;
3846
3847let: LET '(' var ')'
3848 @{ $$ = push_context ();
3849 declare_variable ($3); @}
3850 ;
3851
3852@end group
3853@end example
3854
3855@noindent
3856Note that the action is now at the end of its rule.
3857Any mid-rule action can be converted to an end-of-rule action in this way, and
3858this is what Bison actually does to implement mid-rule actions.
3859
bfa74976
RS
3860Taking action before a rule is completely recognized often leads to
3861conflicts since the parser must commit to a parse in order to execute the
3862action. For example, the following two rules, without mid-rule actions,
3863can coexist in a working parser because the parser can shift the open-brace
3864token and look at what follows before deciding whether there is a
3865declaration or not:
3866
3867@example
3868@group
3869compound: '@{' declarations statements '@}'
3870 | '@{' statements '@}'
3871 ;
3872@end group
3873@end example
3874
3875@noindent
3876But when we add a mid-rule action as follows, the rules become nonfunctional:
3877
3878@example
3879@group
3880compound: @{ prepare_for_local_variables (); @}
3881 '@{' declarations statements '@}'
3882@end group
3883@group
3884 | '@{' statements '@}'
3885 ;
3886@end group
3887@end example
3888
3889@noindent
3890Now the parser is forced to decide whether to run the mid-rule action
3891when it has read no farther than the open-brace. In other words, it
3892must commit to using one rule or the other, without sufficient
3893information to do it correctly. (The open-brace token is what is called
742e4900
JD
3894the @dfn{lookahead} token at this time, since the parser is still
3895deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3896
3897You might think that you could correct the problem by putting identical
3898actions into the two rules, like this:
3899
3900@example
3901@group
3902compound: @{ prepare_for_local_variables (); @}
3903 '@{' declarations statements '@}'
3904 | @{ prepare_for_local_variables (); @}
3905 '@{' statements '@}'
3906 ;
3907@end group
3908@end example
3909
3910@noindent
3911But this does not help, because Bison does not realize that the two actions
3912are identical. (Bison never tries to understand the C code in an action.)
3913
3914If the grammar is such that a declaration can be distinguished from a
3915statement by the first token (which is true in C), then one solution which
3916does work is to put the action after the open-brace, like this:
3917
3918@example
3919@group
3920compound: '@{' @{ prepare_for_local_variables (); @}
3921 declarations statements '@}'
3922 | '@{' statements '@}'
3923 ;
3924@end group
3925@end example
3926
3927@noindent
3928Now the first token of the following declaration or statement,
3929which would in any case tell Bison which rule to use, can still do so.
3930
3931Another solution is to bury the action inside a nonterminal symbol which
3932serves as a subroutine:
3933
3934@example
3935@group
3936subroutine: /* empty */
3937 @{ prepare_for_local_variables (); @}
3938 ;
3939
3940@end group
3941
3942@group
3943compound: subroutine
3944 '@{' declarations statements '@}'
3945 | subroutine
3946 '@{' statements '@}'
3947 ;
3948@end group
3949@end example
3950
3951@noindent
3952Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3953deciding which rule for @code{compound} it will eventually use.
bfa74976 3954
303834cc 3955@node Tracking Locations
847bf1f5
AD
3956@section Tracking Locations
3957@cindex location
95923bd6
AD
3958@cindex textual location
3959@cindex location, textual
847bf1f5
AD
3960
3961Though grammar rules and semantic actions are enough to write a fully
72d2299c 3962functional parser, it can be useful to process some additional information,
3e259915
MA
3963especially symbol locations.
3964
704a47c4
AD
3965The way locations are handled is defined by providing a data type, and
3966actions to take when rules are matched.
847bf1f5
AD
3967
3968@menu
3969* Location Type:: Specifying a data type for locations.
3970* Actions and Locations:: Using locations in actions.
3971* Location Default Action:: Defining a general way to compute locations.
3972@end menu
3973
342b8b6e 3974@node Location Type
847bf1f5
AD
3975@subsection Data Type of Locations
3976@cindex data type of locations
3977@cindex default location type
3978
3979Defining a data type for locations is much simpler than for semantic values,
3980since all tokens and groupings always use the same type.
3981
50cce58e
PE
3982You can specify the type of locations by defining a macro called
3983@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3984defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3985When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3986four members:
3987
3988@example
6273355b 3989typedef struct YYLTYPE
847bf1f5
AD
3990@{
3991 int first_line;
3992 int first_column;
3993 int last_line;
3994 int last_column;
6273355b 3995@} YYLTYPE;
847bf1f5
AD
3996@end example
3997
d59e456d
AD
3998When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3999initializes all these fields to 1 for @code{yylloc}. To initialize
4000@code{yylloc} with a custom location type (or to chose a different
4001initialization), use the @code{%initial-action} directive. @xref{Initial
4002Action Decl, , Performing Actions before Parsing}.
cd48d21d 4003
342b8b6e 4004@node Actions and Locations
847bf1f5
AD
4005@subsection Actions and Locations
4006@cindex location actions
4007@cindex actions, location
4008@vindex @@$
4009@vindex @@@var{n}
d013372c
AR
4010@vindex @@@var{name}
4011@vindex @@[@var{name}]
847bf1f5
AD
4012
4013Actions are not only useful for defining language semantics, but also for
4014describing the behavior of the output parser with locations.
4015
4016The most obvious way for building locations of syntactic groupings is very
72d2299c 4017similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4018constructs can be used to access the locations of the elements being matched.
4019The location of the @var{n}th component of the right hand side is
4020@code{@@@var{n}}, while the location of the left hand side grouping is
4021@code{@@$}.
4022
d013372c
AR
4023In addition, the named references construct @code{@@@var{name}} and
4024@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
4025@xref{Named References}, for more information about using the named
4026references construct.
d013372c 4027
3e259915 4028Here is a basic example using the default data type for locations:
847bf1f5
AD
4029
4030@example
4031@group
4032exp: @dots{}
3e259915 4033 | exp '/' exp
847bf1f5 4034 @{
3e259915
MA
4035 @@$.first_column = @@1.first_column;
4036 @@$.first_line = @@1.first_line;
847bf1f5
AD
4037 @@$.last_column = @@3.last_column;
4038 @@$.last_line = @@3.last_line;
3e259915
MA
4039 if ($3)
4040 $$ = $1 / $3;
4041 else
4042 @{
4043 $$ = 1;
4e03e201
AD
4044 fprintf (stderr,
4045 "Division by zero, l%d,c%d-l%d,c%d",
4046 @@3.first_line, @@3.first_column,
4047 @@3.last_line, @@3.last_column);
3e259915 4048 @}
847bf1f5
AD
4049 @}
4050@end group
4051@end example
4052
3e259915 4053As for semantic values, there is a default action for locations that is
72d2299c 4054run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4055beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4056last symbol.
3e259915 4057
72d2299c 4058With this default action, the location tracking can be fully automatic. The
3e259915
MA
4059example above simply rewrites this way:
4060
4061@example
4062@group
4063exp: @dots{}
4064 | exp '/' exp
4065 @{
4066 if ($3)
4067 $$ = $1 / $3;
4068 else
4069 @{
4070 $$ = 1;
4e03e201
AD
4071 fprintf (stderr,
4072 "Division by zero, l%d,c%d-l%d,c%d",
4073 @@3.first_line, @@3.first_column,
4074 @@3.last_line, @@3.last_column);
3e259915
MA
4075 @}
4076 @}
4077@end group
4078@end example
847bf1f5 4079
32c29292 4080@vindex yylloc
742e4900 4081It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4082from a semantic action.
4083This location is stored in @code{yylloc}.
4084@xref{Action Features, ,Special Features for Use in Actions}.
4085
342b8b6e 4086@node Location Default Action
847bf1f5
AD
4087@subsection Default Action for Locations
4088@vindex YYLLOC_DEFAULT
8a4281b9 4089@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4090
72d2299c 4091Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4092locations are much more general than semantic values, there is room in
4093the output parser to redefine the default action to take for each
72d2299c 4094rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4095matched, before the associated action is run. It is also invoked
4096while processing a syntax error, to compute the error's location.
8a4281b9 4097Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4098parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4099of that ambiguity.
847bf1f5 4100
3e259915 4101Most of the time, this macro is general enough to suppress location
79282c6c 4102dedicated code from semantic actions.
847bf1f5 4103
72d2299c 4104The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4105the location of the grouping (the result of the computation). When a
766de5eb 4106rule is matched, the second parameter identifies locations of
96b93a3d 4107all right hand side elements of the rule being matched, and the third
8710fc41 4108parameter is the size of the rule's right hand side.
8a4281b9 4109When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4110right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4111When processing a syntax error, the second parameter identifies locations
4112of the symbols that were discarded during error processing, and the third
96b93a3d 4113parameter is the number of discarded symbols.
847bf1f5 4114
766de5eb 4115By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4116
766de5eb 4117@smallexample
847bf1f5 4118@group
766de5eb
PE
4119# define YYLLOC_DEFAULT(Current, Rhs, N) \
4120 do \
4121 if (N) \
4122 @{ \
4123 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4124 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4125 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4126 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4127 @} \
4128 else \
4129 @{ \
4130 (Current).first_line = (Current).last_line = \
4131 YYRHSLOC(Rhs, 0).last_line; \
4132 (Current).first_column = (Current).last_column = \
4133 YYRHSLOC(Rhs, 0).last_column; \
4134 @} \
4135 while (0)
847bf1f5 4136@end group
766de5eb 4137@end smallexample
676385e2 4138
766de5eb
PE
4139where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4140in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4141just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4142
3e259915 4143When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4144
3e259915 4145@itemize @bullet
79282c6c 4146@item
72d2299c 4147All arguments are free of side-effects. However, only the first one (the
3e259915 4148result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4149
3e259915 4150@item
766de5eb
PE
4151For consistency with semantic actions, valid indexes within the
4152right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4153valid index, and it refers to the symbol just before the reduction.
4154During error processing @var{n} is always positive.
0ae99356
PE
4155
4156@item
4157Your macro should parenthesize its arguments, if need be, since the
4158actual arguments may not be surrounded by parentheses. Also, your
4159macro should expand to something that can be used as a single
4160statement when it is followed by a semicolon.
3e259915 4161@end itemize
847bf1f5 4162
378e917c 4163@node Named References
a7b15ab9 4164@section Named References
378e917c
JD
4165@cindex named references
4166
a40e77eb
JD
4167As described in the preceding sections, the traditional way to refer to any
4168semantic value or location is a @dfn{positional reference}, which takes the
4169form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4170such a reference is not very descriptive. Moreover, if you later decide to
4171insert or remove symbols in the right-hand side of a grammar rule, the need
4172to renumber such references can be tedious and error-prone.
4173
4174To avoid these issues, you can also refer to a semantic value or location
4175using a @dfn{named reference}. First of all, original symbol names may be
4176used as named references. For example:
378e917c
JD
4177
4178@example
4179@group
4180invocation: op '(' args ')'
4181 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4182@end group
4183@end example
4184
4185@noindent
a40e77eb 4186Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4187
4188@example
4189@group
4190invocation: op '(' args ')'
4191 @{ $$ = new_invocation ($op, $args, @@$); @}
4192@end group
4193@end example
4194
4195@noindent
4196However, sometimes regular symbol names are not sufficient due to
4197ambiguities:
4198
4199@example
4200@group
4201exp: exp '/' exp
4202 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4203
4204exp: exp '/' exp
4205 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4206
4207exp: exp '/' exp
4208 @{ $$ = $1 / $3; @} // No error.
4209@end group
4210@end example
4211
4212@noindent
4213When ambiguity occurs, explicitly declared names may be used for values and
4214locations. Explicit names are declared as a bracketed name after a symbol
4215appearance in rule definitions. For example:
4216@example
4217@group
4218exp[result]: exp[left] '/' exp[right]
4219 @{ $result = $left / $right; @}
4220@end group
4221@end example
4222
4223@noindent
a7b15ab9
JD
4224In order to access a semantic value generated by a mid-rule action, an
4225explicit name may also be declared by putting a bracketed name after the
4226closing brace of the mid-rule action code:
378e917c
JD
4227@example
4228@group
4229exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4230 @{ $res = $left + $right; @}
4231@end group
4232@end example
4233
4234@noindent
4235
4236In references, in order to specify names containing dots and dashes, an explicit
4237bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4238@example
4239@group
762caaf6 4240if-stmt: "if" '(' expr ')' "then" then.stmt ';'
378e917c
JD
4241 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4242@end group
4243@end example
4244
4245It often happens that named references are followed by a dot, dash or other
4246C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4247@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4248@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4249value. In order to force Bison to recognize @samp{name.suffix} in its
4250entirety as the name of a semantic value, the bracketed syntax
4251@samp{$[name.suffix]} must be used.
4252
4253The named references feature is experimental. More user feedback will help
4254to stabilize it.
378e917c 4255
342b8b6e 4256@node Declarations
bfa74976
RS
4257@section Bison Declarations
4258@cindex declarations, Bison
4259@cindex Bison declarations
4260
4261The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4262used in formulating the grammar and the data types of semantic values.
4263@xref{Symbols}.
4264
4265All token type names (but not single-character literal tokens such as
4266@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4267declared if you need to specify which data type to use for the semantic
4268value (@pxref{Multiple Types, ,More Than One Value Type}).
4269
ff7571c0
JD
4270The first rule in the grammar file also specifies the start symbol, by
4271default. If you want some other symbol to be the start symbol, you
4272must declare it explicitly (@pxref{Language and Grammar, ,Languages
4273and Context-Free Grammars}).
bfa74976
RS
4274
4275@menu
b50d2359 4276* Require Decl:: Requiring a Bison version.
bfa74976
RS
4277* Token Decl:: Declaring terminal symbols.
4278* Precedence Decl:: Declaring terminals with precedence and associativity.
4279* Union Decl:: Declaring the set of all semantic value types.
4280* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4281* Initial Action Decl:: Code run before parsing starts.
72f889cc 4282* Destructor Decl:: Declaring how symbols are freed.
d6328241 4283* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4284* Start Decl:: Specifying the start symbol.
4285* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4286* Push Decl:: Requesting a push parser.
bfa74976 4287* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4288* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4289* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4290@end menu
4291
b50d2359
AD
4292@node Require Decl
4293@subsection Require a Version of Bison
4294@cindex version requirement
4295@cindex requiring a version of Bison
4296@findex %require
4297
4298You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4299the requirement is not met, @command{bison} exits with an error (exit
4300status 63).
b50d2359
AD
4301
4302@example
4303%require "@var{version}"
4304@end example
4305
342b8b6e 4306@node Token Decl
bfa74976
RS
4307@subsection Token Type Names
4308@cindex declaring token type names
4309@cindex token type names, declaring
931c7513 4310@cindex declaring literal string tokens
bfa74976
RS
4311@findex %token
4312
4313The basic way to declare a token type name (terminal symbol) is as follows:
4314
4315@example
4316%token @var{name}
4317@end example
4318
4319Bison will convert this into a @code{#define} directive in
4320the parser, so that the function @code{yylex} (if it is in this file)
4321can use the name @var{name} to stand for this token type's code.
4322
d78f0ac9
AD
4323Alternatively, you can use @code{%left}, @code{%right},
4324@code{%precedence}, or
14ded682
AD
4325@code{%nonassoc} instead of @code{%token}, if you wish to specify
4326associativity and precedence. @xref{Precedence Decl, ,Operator
4327Precedence}.
bfa74976
RS
4328
4329You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4330a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4331following the token name:
bfa74976
RS
4332
4333@example
4334%token NUM 300
1452af69 4335%token XNUM 0x12d // a GNU extension
bfa74976
RS
4336@end example
4337
4338@noindent
4339It is generally best, however, to let Bison choose the numeric codes for
4340all token types. Bison will automatically select codes that don't conflict
e966383b 4341with each other or with normal characters.
bfa74976
RS
4342
4343In the event that the stack type is a union, you must augment the
4344@code{%token} or other token declaration to include the data type
704a47c4
AD
4345alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4346Than One Value Type}).
bfa74976
RS
4347
4348For example:
4349
4350@example
4351@group
4352%union @{ /* define stack type */
4353 double val;
4354 symrec *tptr;
4355@}
4356%token <val> NUM /* define token NUM and its type */
4357@end group
4358@end example
4359
931c7513
RS
4360You can associate a literal string token with a token type name by
4361writing the literal string at the end of a @code{%token}
4362declaration which declares the name. For example:
4363
4364@example
4365%token arrow "=>"
4366@end example
4367
4368@noindent
4369For example, a grammar for the C language might specify these names with
4370equivalent literal string tokens:
4371
4372@example
4373%token <operator> OR "||"
4374%token <operator> LE 134 "<="
4375%left OR "<="
4376@end example
4377
4378@noindent
4379Once you equate the literal string and the token name, you can use them
4380interchangeably in further declarations or the grammar rules. The
4381@code{yylex} function can use the token name or the literal string to
4382obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4383Syntax error messages passed to @code{yyerror} from the parser will reference
4384the literal string instead of the token name.
4385
4386The token numbered as 0 corresponds to end of file; the following line
4387allows for nicer error messages referring to ``end of file'' instead
4388of ``$end'':
4389
4390@example
4391%token END 0 "end of file"
4392@end example
931c7513 4393
342b8b6e 4394@node Precedence Decl
bfa74976
RS
4395@subsection Operator Precedence
4396@cindex precedence declarations
4397@cindex declaring operator precedence
4398@cindex operator precedence, declaring
4399
d78f0ac9
AD
4400Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4401@code{%precedence} declaration to
bfa74976
RS
4402declare a token and specify its precedence and associativity, all at
4403once. These are called @dfn{precedence declarations}.
704a47c4
AD
4404@xref{Precedence, ,Operator Precedence}, for general information on
4405operator precedence.
bfa74976 4406
ab7f29f8 4407The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4408@code{%token}: either
4409
4410@example
4411%left @var{symbols}@dots{}
4412@end example
4413
4414@noindent
4415or
4416
4417@example
4418%left <@var{type}> @var{symbols}@dots{}
4419@end example
4420
4421And indeed any of these declarations serves the purposes of @code{%token}.
4422But in addition, they specify the associativity and relative precedence for
4423all the @var{symbols}:
4424
4425@itemize @bullet
4426@item
4427The associativity of an operator @var{op} determines how repeated uses
4428of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4429@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4430grouping @var{y} with @var{z} first. @code{%left} specifies
4431left-associativity (grouping @var{x} with @var{y} first) and
4432@code{%right} specifies right-associativity (grouping @var{y} with
4433@var{z} first). @code{%nonassoc} specifies no associativity, which
4434means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4435considered a syntax error.
4436
d78f0ac9
AD
4437@code{%precedence} gives only precedence to the @var{symbols}, and
4438defines no associativity at all. Use this to define precedence only,
4439and leave any potential conflict due to associativity enabled.
4440
bfa74976
RS
4441@item
4442The precedence of an operator determines how it nests with other operators.
4443All the tokens declared in a single precedence declaration have equal
4444precedence and nest together according to their associativity.
4445When two tokens declared in different precedence declarations associate,
4446the one declared later has the higher precedence and is grouped first.
4447@end itemize
4448
ab7f29f8
JD
4449For backward compatibility, there is a confusing difference between the
4450argument lists of @code{%token} and precedence declarations.
4451Only a @code{%token} can associate a literal string with a token type name.
4452A precedence declaration always interprets a literal string as a reference to a
4453separate token.
4454For example:
4455
4456@example
4457%left OR "<=" // Does not declare an alias.
4458%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4459@end example
4460
342b8b6e 4461@node Union Decl
bfa74976
RS
4462@subsection The Collection of Value Types
4463@cindex declaring value types
4464@cindex value types, declaring
4465@findex %union
4466
287c78f6
PE
4467The @code{%union} declaration specifies the entire collection of
4468possible data types for semantic values. The keyword @code{%union} is
4469followed by braced code containing the same thing that goes inside a
4470@code{union} in C@.
bfa74976
RS
4471
4472For example:
4473
4474@example
4475@group
4476%union @{
4477 double val;
4478 symrec *tptr;
4479@}
4480@end group
4481@end example
4482
4483@noindent
4484This says that the two alternative types are @code{double} and @code{symrec
4485*}. They are given names @code{val} and @code{tptr}; these names are used
4486in the @code{%token} and @code{%type} declarations to pick one of the types
4487for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4488
8a4281b9 4489As an extension to POSIX, a tag is allowed after the
6273355b
PE
4490@code{union}. For example:
4491
4492@example
4493@group
4494%union value @{
4495 double val;
4496 symrec *tptr;
4497@}
4498@end group
4499@end example
4500
d6ca7905 4501@noindent
6273355b
PE
4502specifies the union tag @code{value}, so the corresponding C type is
4503@code{union value}. If you do not specify a tag, it defaults to
4504@code{YYSTYPE}.
4505
8a4281b9 4506As another extension to POSIX, you may specify multiple
d6ca7905
PE
4507@code{%union} declarations; their contents are concatenated. However,
4508only the first @code{%union} declaration can specify a tag.
4509
6273355b 4510Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4511a semicolon after the closing brace.
4512
ddc8ede1
PE
4513Instead of @code{%union}, you can define and use your own union type
4514@code{YYSTYPE} if your grammar contains at least one
4515@samp{<@var{type}>} tag. For example, you can put the following into
4516a header file @file{parser.h}:
4517
4518@example
4519@group
4520union YYSTYPE @{
4521 double val;
4522 symrec *tptr;
4523@};
4524typedef union YYSTYPE YYSTYPE;
4525@end group
4526@end example
4527
4528@noindent
4529and then your grammar can use the following
4530instead of @code{%union}:
4531
4532@example
4533@group
4534%@{
4535#include "parser.h"
4536%@}
4537%type <val> expr
4538%token <tptr> ID
4539@end group
4540@end example
4541
342b8b6e 4542@node Type Decl
bfa74976
RS
4543@subsection Nonterminal Symbols
4544@cindex declaring value types, nonterminals
4545@cindex value types, nonterminals, declaring
4546@findex %type
4547
4548@noindent
4549When you use @code{%union} to specify multiple value types, you must
4550declare the value type of each nonterminal symbol for which values are
4551used. This is done with a @code{%type} declaration, like this:
4552
4553@example
4554%type <@var{type}> @var{nonterminal}@dots{}
4555@end example
4556
4557@noindent
704a47c4
AD
4558Here @var{nonterminal} is the name of a nonterminal symbol, and
4559@var{type} is the name given in the @code{%union} to the alternative
4560that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4561can give any number of nonterminal symbols in the same @code{%type}
4562declaration, if they have the same value type. Use spaces to separate
4563the symbol names.
bfa74976 4564
931c7513
RS
4565You can also declare the value type of a terminal symbol. To do this,
4566use the same @code{<@var{type}>} construction in a declaration for the
4567terminal symbol. All kinds of token declarations allow
4568@code{<@var{type}>}.
4569
18d192f0
AD
4570@node Initial Action Decl
4571@subsection Performing Actions before Parsing
4572@findex %initial-action
4573
4574Sometimes your parser needs to perform some initializations before
4575parsing. The @code{%initial-action} directive allows for such arbitrary
4576code.
4577
4578@deffn {Directive} %initial-action @{ @var{code} @}
4579@findex %initial-action
287c78f6 4580Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4581@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4582@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4583@code{%parse-param}.
18d192f0
AD
4584@end deffn
4585
451364ed
AD
4586For instance, if your locations use a file name, you may use
4587
4588@example
48b16bbc 4589%parse-param @{ char const *file_name @};
451364ed
AD
4590%initial-action
4591@{
4626a15d 4592 @@$.initialize (file_name);
451364ed
AD
4593@};
4594@end example
4595
18d192f0 4596
72f889cc
AD
4597@node Destructor Decl
4598@subsection Freeing Discarded Symbols
4599@cindex freeing discarded symbols
4600@findex %destructor
12e35840 4601@findex <*>
3ebecc24 4602@findex <>
a85284cf
AD
4603During error recovery (@pxref{Error Recovery}), symbols already pushed
4604on the stack and tokens coming from the rest of the file are discarded
4605until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4606or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4607symbols on the stack must be discarded. Even if the parser succeeds, it
4608must discard the start symbol.
258b75ca
PE
4609
4610When discarded symbols convey heap based information, this memory is
4611lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4612in traditional compilers, it is unacceptable for programs like shells or
4613protocol implementations that may parse and execute indefinitely.
258b75ca 4614
a85284cf
AD
4615The @code{%destructor} directive defines code that is called when a
4616symbol is automatically discarded.
72f889cc
AD
4617
4618@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4619@findex %destructor
287c78f6
PE
4620Invoke the braced @var{code} whenever the parser discards one of the
4621@var{symbols}.
4b367315 4622Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4623with the discarded symbol, and @code{@@$} designates its location.
4624The additional parser parameters are also available (@pxref{Parser Function, ,
4625The Parser Function @code{yyparse}}).
ec5479ce 4626
b2a0b7ca
JD
4627When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4628per-symbol @code{%destructor}.
4629You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4630tag among @var{symbols}.
b2a0b7ca 4631In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4632grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4633per-symbol @code{%destructor}.
4634
12e35840 4635Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4636(These default forms are experimental.
4637More user feedback will help to determine whether they should become permanent
4638features.)
3ebecc24 4639You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4640exactly one @code{%destructor} declaration in your grammar file.
4641The parser will invoke the @var{code} associated with one of these whenever it
4642discards any user-defined grammar symbol that has no per-symbol and no per-type
4643@code{%destructor}.
4644The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4645symbol for which you have formally declared a semantic type tag (@code{%type}
4646counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4647The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4648symbol that has no declared semantic type tag.
72f889cc
AD
4649@end deffn
4650
b2a0b7ca 4651@noindent
12e35840 4652For example:
72f889cc
AD
4653
4654@smallexample
ec5479ce
JD
4655%union @{ char *string; @}
4656%token <string> STRING1
4657%token <string> STRING2
4658%type <string> string1
4659%type <string> string2
b2a0b7ca
JD
4660%union @{ char character; @}
4661%token <character> CHR
4662%type <character> chr
12e35840
JD
4663%token TAGLESS
4664
b2a0b7ca 4665%destructor @{ @} <character>
12e35840
JD
4666%destructor @{ free ($$); @} <*>
4667%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4668%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4669@end smallexample
4670
4671@noindent
b2a0b7ca
JD
4672guarantees that, when the parser discards any user-defined symbol that has a
4673semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4674to @code{free} by default.
ec5479ce
JD
4675However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4676prints its line number to @code{stdout}.
4677It performs only the second @code{%destructor} in this case, so it invokes
4678@code{free} only once.
12e35840
JD
4679Finally, the parser merely prints a message whenever it discards any symbol,
4680such as @code{TAGLESS}, that has no semantic type tag.
4681
4682A Bison-generated parser invokes the default @code{%destructor}s only for
4683user-defined as opposed to Bison-defined symbols.
4684For example, the parser will not invoke either kind of default
4685@code{%destructor} for the special Bison-defined symbols @code{$accept},
4686@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4687none of which you can reference in your grammar.
4688It also will not invoke either for the @code{error} token (@pxref{Table of
4689Symbols, ,error}), which is always defined by Bison regardless of whether you
4690reference it in your grammar.
4691However, it may invoke one of them for the end token (token 0) if you
4692redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4693
4694@smallexample
4695%token END 0
4696@end smallexample
4697
12e35840
JD
4698@cindex actions in mid-rule
4699@cindex mid-rule actions
4700Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4701mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4702That is, Bison does not consider a mid-rule to have a semantic value if you
4703do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4704(where @var{n} is the right-hand side symbol position of the mid-rule) in
4705any later action in that rule. However, if you do reference either, the
4706Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4707it discards the mid-rule symbol.
12e35840 4708
3508ce36
JD
4709@ignore
4710@noindent
4711In the future, it may be possible to redefine the @code{error} token as a
4712nonterminal that captures the discarded symbols.
4713In that case, the parser will invoke the default destructor for it as well.
4714@end ignore
4715
e757bb10
AD
4716@sp 1
4717
4718@cindex discarded symbols
4719@dfn{Discarded symbols} are the following:
4720
4721@itemize
4722@item
4723stacked symbols popped during the first phase of error recovery,
4724@item
4725incoming terminals during the second phase of error recovery,
4726@item
742e4900 4727the current lookahead and the entire stack (except the current
9d9b8b70 4728right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4729@item
4730the start symbol, when the parser succeeds.
e757bb10
AD
4731@end itemize
4732
9d9b8b70
PE
4733The parser can @dfn{return immediately} because of an explicit call to
4734@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4735exhaustion.
4736
29553547 4737Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4738error via @code{YYERROR} are not discarded automatically. As a rule
4739of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4740the memory.
e757bb10 4741
342b8b6e 4742@node Expect Decl
bfa74976
RS
4743@subsection Suppressing Conflict Warnings
4744@cindex suppressing conflict warnings
4745@cindex preventing warnings about conflicts
4746@cindex warnings, preventing
4747@cindex conflicts, suppressing warnings of
4748@findex %expect
d6328241 4749@findex %expect-rr
bfa74976
RS
4750
4751Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4752(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4753have harmless shift/reduce conflicts which are resolved in a predictable
4754way and would be difficult to eliminate. It is desirable to suppress
4755the warning about these conflicts unless the number of conflicts
4756changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4757
4758The declaration looks like this:
4759
4760@example
4761%expect @var{n}
4762@end example
4763
035aa4a0
PE
4764Here @var{n} is a decimal integer. The declaration says there should
4765be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4766Bison reports an error if the number of shift/reduce conflicts differs
4767from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4768
eb45ef3b 4769For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4770serious, and should be eliminated entirely. Bison will always report
8a4281b9 4771reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4772parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4773there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4774also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4775in GLR parsers, using the declaration:
d6328241
PH
4776
4777@example
4778%expect-rr @var{n}
4779@end example
4780
bfa74976
RS
4781In general, using @code{%expect} involves these steps:
4782
4783@itemize @bullet
4784@item
4785Compile your grammar without @code{%expect}. Use the @samp{-v} option
4786to get a verbose list of where the conflicts occur. Bison will also
4787print the number of conflicts.
4788
4789@item
4790Check each of the conflicts to make sure that Bison's default
4791resolution is what you really want. If not, rewrite the grammar and
4792go back to the beginning.
4793
4794@item
4795Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4796number which Bison printed. With GLR parsers, add an
035aa4a0 4797@code{%expect-rr} declaration as well.
bfa74976
RS
4798@end itemize
4799
93d7dde9
JD
4800Now Bison will report an error if you introduce an unexpected conflict,
4801but will keep silent otherwise.
bfa74976 4802
342b8b6e 4803@node Start Decl
bfa74976
RS
4804@subsection The Start-Symbol
4805@cindex declaring the start symbol
4806@cindex start symbol, declaring
4807@cindex default start symbol
4808@findex %start
4809
4810Bison assumes by default that the start symbol for the grammar is the first
4811nonterminal specified in the grammar specification section. The programmer
4812may override this restriction with the @code{%start} declaration as follows:
4813
4814@example
4815%start @var{symbol}
4816@end example
4817
342b8b6e 4818@node Pure Decl
bfa74976
RS
4819@subsection A Pure (Reentrant) Parser
4820@cindex reentrant parser
4821@cindex pure parser
d9df47b6 4822@findex %define api.pure
bfa74976
RS
4823
4824A @dfn{reentrant} program is one which does not alter in the course of
4825execution; in other words, it consists entirely of @dfn{pure} (read-only)
4826code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4827for example, a nonreentrant program may not be safe to call from a signal
4828handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4829program must be called only within interlocks.
4830
70811b85 4831Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4832suitable for most uses, and it permits compatibility with Yacc. (The
4833standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4834statically allocated variables for communication with @code{yylex},
4835including @code{yylval} and @code{yylloc}.)
bfa74976 4836
70811b85 4837Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4838declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4839reentrant. It looks like this:
bfa74976
RS
4840
4841@example
d9df47b6 4842%define api.pure
bfa74976
RS
4843@end example
4844
70811b85
RS
4845The result is that the communication variables @code{yylval} and
4846@code{yylloc} become local variables in @code{yyparse}, and a different
4847calling convention is used for the lexical analyzer function
4848@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4849Parsers}, for the details of this. The variable @code{yynerrs}
4850becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4851of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4852Reporting Function @code{yyerror}}). The convention for calling
4853@code{yyparse} itself is unchanged.
4854
4855Whether the parser is pure has nothing to do with the grammar rules.
4856You can generate either a pure parser or a nonreentrant parser from any
4857valid grammar.
bfa74976 4858
9987d1b3
JD
4859@node Push Decl
4860@subsection A Push Parser
4861@cindex push parser
4862@cindex push parser
67212941 4863@findex %define api.push-pull
9987d1b3 4864
59da312b
JD
4865(The current push parsing interface is experimental and may evolve.
4866More user feedback will help to stabilize it.)
4867
f4101aa6
AD
4868A pull parser is called once and it takes control until all its input
4869is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4870each time a new token is made available.
4871
f4101aa6 4872A push parser is typically useful when the parser is part of a
9987d1b3 4873main event loop in the client's application. This is typically
f4101aa6
AD
4874a requirement of a GUI, when the main event loop needs to be triggered
4875within a certain time period.
9987d1b3 4876
d782395d
JD
4877Normally, Bison generates a pull parser.
4878The following Bison declaration says that you want the parser to be a push
35c1e5f0 4879parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4880
4881@example
cf499cff 4882%define api.push-pull push
9987d1b3
JD
4883@end example
4884
4885In almost all cases, you want to ensure that your push parser is also
4886a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4887time you should create an impure push parser is to have backwards
9987d1b3
JD
4888compatibility with the impure Yacc pull mode interface. Unless you know
4889what you are doing, your declarations should look like this:
4890
4891@example
d9df47b6 4892%define api.pure
cf499cff 4893%define api.push-pull push
9987d1b3
JD
4894@end example
4895
f4101aa6
AD
4896There is a major notable functional difference between the pure push parser
4897and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4898many parser instances, of the same type of parser, in memory at the same time.
4899An impure push parser should only use one parser at a time.
4900
4901When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4902the generated parser. @code{yypstate} is a structure that the generated
4903parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4904function that will create a new parser instance. @code{yypstate_delete}
4905will free the resources associated with the corresponding parser instance.
f4101aa6 4906Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4907token is available to provide the parser. A trivial example
4908of using a pure push parser would look like this:
4909
4910@example
4911int status;
4912yypstate *ps = yypstate_new ();
4913do @{
4914 status = yypush_parse (ps, yylex (), NULL);
4915@} while (status == YYPUSH_MORE);
4916yypstate_delete (ps);
4917@end example
4918
4919If the user decided to use an impure push parser, a few things about
f4101aa6 4920the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4921a global variable instead of a variable in the @code{yypush_parse} function.
4922For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4923changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4924example would thus look like this:
4925
4926@example
4927extern int yychar;
4928int status;
4929yypstate *ps = yypstate_new ();
4930do @{
4931 yychar = yylex ();
4932 status = yypush_parse (ps);
4933@} while (status == YYPUSH_MORE);
4934yypstate_delete (ps);
4935@end example
4936
f4101aa6 4937That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4938for use by the next invocation of the @code{yypush_parse} function.
4939
f4101aa6 4940Bison also supports both the push parser interface along with the pull parser
9987d1b3 4941interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4942you should replace the @samp{%define api.push-pull push} declaration with the
4943@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4944the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4945and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4946would be used. However, the user should note that it is implemented in the
d782395d
JD
4947generated parser by calling @code{yypull_parse}.
4948This makes the @code{yyparse} function that is generated with the
cf499cff 4949@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4950@code{yyparse} function. If the user
4951calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4952stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4953and then @code{yypull_parse} the rest of the input stream. If you would like
4954to switch back and forth between between parsing styles, you would have to
4955write your own @code{yypull_parse} function that knows when to quit looking
4956for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4957like this:
4958
4959@example
4960yypstate *ps = yypstate_new ();
4961yypull_parse (ps); /* Will call the lexer */
4962yypstate_delete (ps);
4963@end example
4964
67501061 4965Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4966the generated parser with @samp{%define api.push-pull both} as it did for
4967@samp{%define api.push-pull push}.
9987d1b3 4968
342b8b6e 4969@node Decl Summary
bfa74976
RS
4970@subsection Bison Declaration Summary
4971@cindex Bison declaration summary
4972@cindex declaration summary
4973@cindex summary, Bison declaration
4974
d8988b2f 4975Here is a summary of the declarations used to define a grammar:
bfa74976 4976
18b519c0 4977@deffn {Directive} %union
bfa74976
RS
4978Declare the collection of data types that semantic values may have
4979(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4980@end deffn
bfa74976 4981
18b519c0 4982@deffn {Directive} %token
bfa74976
RS
4983Declare a terminal symbol (token type name) with no precedence
4984or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4985@end deffn
bfa74976 4986
18b519c0 4987@deffn {Directive} %right
bfa74976
RS
4988Declare a terminal symbol (token type name) that is right-associative
4989(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4990@end deffn
bfa74976 4991
18b519c0 4992@deffn {Directive} %left
bfa74976
RS
4993Declare a terminal symbol (token type name) that is left-associative
4994(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4995@end deffn
bfa74976 4996
18b519c0 4997@deffn {Directive} %nonassoc
bfa74976 4998Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4999(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
5000Using it in a way that would be associative is a syntax error.
5001@end deffn
5002
91d2c560 5003@ifset defaultprec
39a06c25 5004@deffn {Directive} %default-prec
22fccf95 5005Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
5006(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
5007@end deffn
91d2c560 5008@end ifset
bfa74976 5009
18b519c0 5010@deffn {Directive} %type
bfa74976
RS
5011Declare the type of semantic values for a nonterminal symbol
5012(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 5013@end deffn
bfa74976 5014
18b519c0 5015@deffn {Directive} %start
89cab50d
AD
5016Specify the grammar's start symbol (@pxref{Start Decl, ,The
5017Start-Symbol}).
18b519c0 5018@end deffn
bfa74976 5019
18b519c0 5020@deffn {Directive} %expect
bfa74976
RS
5021Declare the expected number of shift-reduce conflicts
5022(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
5023@end deffn
5024
bfa74976 5025
d8988b2f
AD
5026@sp 1
5027@noindent
5028In order to change the behavior of @command{bison}, use the following
5029directives:
5030
148d66d8 5031@deffn {Directive} %code @{@var{code}@}
e0c07222 5032@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 5033@findex %code
e0c07222
JD
5034Insert @var{code} verbatim into the output parser source at the
5035default location or at the location specified by @var{qualifier}.
5036@xref{%code Summary}.
148d66d8
JD
5037@end deffn
5038
18b519c0 5039@deffn {Directive} %debug
fa819509
AD
5040Instrument the output parser for traces. Obsoleted by @samp{%define
5041parse.trace}.
ec3bc396 5042@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 5043@end deffn
d8988b2f 5044
35c1e5f0
JD
5045@deffn {Directive} %define @var{variable}
5046@deffnx {Directive} %define @var{variable} @var{value}
5047@deffnx {Directive} %define @var{variable} "@var{value}"
5048Define a variable to adjust Bison's behavior. @xref{%define Summary}.
5049@end deffn
5050
5051@deffn {Directive} %defines
5052Write a parser header file containing macro definitions for the token
5053type names defined in the grammar as well as a few other declarations.
5054If the parser implementation file is named @file{@var{name}.c} then
5055the parser header file is named @file{@var{name}.h}.
5056
5057For C parsers, the parser header file declares @code{YYSTYPE} unless
5058@code{YYSTYPE} is already defined as a macro or you have used a
5059@code{<@var{type}>} tag without using @code{%union}. Therefore, if
5060you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
5061Value Type}) with components that require other definitions, or if you
5062have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
5063Type, ,Data Types of Semantic Values}), you need to arrange for these
5064definitions to be propagated to all modules, e.g., by putting them in
5065a prerequisite header that is included both by your parser and by any
5066other module that needs @code{YYSTYPE}.
5067
5068Unless your parser is pure, the parser header file declares
5069@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
5070(Reentrant) Parser}.
5071
5072If you have also used locations, the parser header file declares
303834cc
JD
5073@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5074@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5075
5076This parser header file is normally essential if you wish to put the
5077definition of @code{yylex} in a separate source file, because
5078@code{yylex} typically needs to be able to refer to the
5079above-mentioned declarations and to the token type codes. @xref{Token
5080Values, ,Semantic Values of Tokens}.
5081
5082@findex %code requires
5083@findex %code provides
5084If you have declared @code{%code requires} or @code{%code provides}, the output
5085header also contains their code.
5086@xref{%code Summary}.
5087@end deffn
5088
5089@deffn {Directive} %defines @var{defines-file}
5090Same as above, but save in the file @var{defines-file}.
5091@end deffn
5092
5093@deffn {Directive} %destructor
5094Specify how the parser should reclaim the memory associated to
5095discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5096@end deffn
5097
5098@deffn {Directive} %file-prefix "@var{prefix}"
5099Specify a prefix to use for all Bison output file names. The names
5100are chosen as if the grammar file were named @file{@var{prefix}.y}.
5101@end deffn
5102
5103@deffn {Directive} %language "@var{language}"
5104Specify the programming language for the generated parser. Currently
5105supported languages include C, C++, and Java.
5106@var{language} is case-insensitive.
5107
5108This directive is experimental and its effect may be modified in future
5109releases.
5110@end deffn
5111
5112@deffn {Directive} %locations
5113Generate the code processing the locations (@pxref{Action Features,
5114,Special Features for Use in Actions}). This mode is enabled as soon as
5115the grammar uses the special @samp{@@@var{n}} tokens, but if your
5116grammar does not use it, using @samp{%locations} allows for more
5117accurate syntax error messages.
5118@end deffn
5119
5120@deffn {Directive} %name-prefix "@var{prefix}"
5121Rename the external symbols used in the parser so that they start with
5122@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5123in C parsers
5124is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5125@code{yylval}, @code{yychar}, @code{yydebug}, and
5126(if locations are used) @code{yylloc}. If you use a push parser,
5127@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5128@code{yypstate_new} and @code{yypstate_delete} will
5129also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5130names become @code{c_parse}, @code{c_lex}, and so on.
5131For C++ parsers, see the @samp{%define api.namespace} documentation in this
5132section.
5133@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5134@end deffn
5135
5136@ifset defaultprec
5137@deffn {Directive} %no-default-prec
5138Do not assign a precedence to rules lacking an explicit @code{%prec}
5139modifier (@pxref{Contextual Precedence, ,Context-Dependent
5140Precedence}).
5141@end deffn
5142@end ifset
5143
5144@deffn {Directive} %no-lines
5145Don't generate any @code{#line} preprocessor commands in the parser
5146implementation file. Ordinarily Bison writes these commands in the
5147parser implementation file so that the C compiler and debuggers will
5148associate errors and object code with your source file (the grammar
5149file). This directive causes them to associate errors with the parser
5150implementation file, treating it as an independent source file in its
5151own right.
5152@end deffn
5153
5154@deffn {Directive} %output "@var{file}"
5155Specify @var{file} for the parser implementation file.
5156@end deffn
5157
5158@deffn {Directive} %pure-parser
5159Deprecated version of @samp{%define api.pure} (@pxref{%define
5160Summary,,api.pure}), for which Bison is more careful to warn about
5161unreasonable usage.
5162@end deffn
5163
5164@deffn {Directive} %require "@var{version}"
5165Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5166Require a Version of Bison}.
5167@end deffn
5168
5169@deffn {Directive} %skeleton "@var{file}"
5170Specify the skeleton to use.
5171
5172@c You probably don't need this option unless you are developing Bison.
5173@c You should use @code{%language} if you want to specify the skeleton for a
5174@c different language, because it is clearer and because it will always choose the
5175@c correct skeleton for non-deterministic or push parsers.
5176
5177If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5178file in the Bison installation directory.
5179If it does, @var{file} is an absolute file name or a file name relative to the
5180directory of the grammar file.
5181This is similar to how most shells resolve commands.
5182@end deffn
5183
5184@deffn {Directive} %token-table
5185Generate an array of token names in the parser implementation file.
5186The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5187the name of the token whose internal Bison token code number is
5188@var{i}. The first three elements of @code{yytname} correspond to the
5189predefined tokens @code{"$end"}, @code{"error"}, and
5190@code{"$undefined"}; after these come the symbols defined in the
5191grammar file.
5192
5193The name in the table includes all the characters needed to represent
5194the token in Bison. For single-character literals and literal
5195strings, this includes the surrounding quoting characters and any
5196escape sequences. For example, the Bison single-character literal
5197@code{'+'} corresponds to a three-character name, represented in C as
5198@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5199corresponds to a five-character name, represented in C as
5200@code{"\"\\\\/\""}.
5201
5202When you specify @code{%token-table}, Bison also generates macro
5203definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5204@code{YYNRULES}, and @code{YYNSTATES}:
5205
5206@table @code
5207@item YYNTOKENS
5208The highest token number, plus one.
5209@item YYNNTS
5210The number of nonterminal symbols.
5211@item YYNRULES
5212The number of grammar rules,
5213@item YYNSTATES
5214The number of parser states (@pxref{Parser States}).
5215@end table
5216@end deffn
5217
5218@deffn {Directive} %verbose
5219Write an extra output file containing verbose descriptions of the
5220parser states and what is done for each type of lookahead token in
5221that state. @xref{Understanding, , Understanding Your Parser}, for more
5222information.
5223@end deffn
5224
5225@deffn {Directive} %yacc
5226Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5227including its naming conventions. @xref{Bison Options}, for more.
5228@end deffn
5229
5230
5231@node %define Summary
5232@subsection %define Summary
51151d91
JD
5233
5234There are many features of Bison's behavior that can be controlled by
5235assigning the feature a single value. For historical reasons, some
5236such features are assigned values by dedicated directives, such as
5237@code{%start}, which assigns the start symbol. However, newer such
5238features are associated with variables, which are assigned by the
5239@code{%define} directive:
5240
c1d19e10 5241@deffn {Directive} %define @var{variable}
cf499cff 5242@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5243@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5244Define @var{variable} to @var{value}.
9611cfa2 5245
51151d91
JD
5246@var{value} must be placed in quotation marks if it contains any
5247character other than a letter, underscore, period, or non-initial dash
5248or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5249to specifying @code{""}.
9611cfa2 5250
51151d91
JD
5251It is an error if a @var{variable} is defined by @code{%define}
5252multiple times, but see @ref{Bison Options,,-D
5253@var{name}[=@var{value}]}.
5254@end deffn
cf499cff 5255
51151d91
JD
5256The rest of this section summarizes variables and values that
5257@code{%define} accepts.
9611cfa2 5258
51151d91
JD
5259Some @var{variable}s take Boolean values. In this case, Bison will
5260complain if the variable definition does not meet one of the following
5261four conditions:
9611cfa2
JD
5262
5263@enumerate
cf499cff 5264@item @code{@var{value}} is @code{true}
9611cfa2 5265
cf499cff
JD
5266@item @code{@var{value}} is omitted (or @code{""} is specified).
5267This is equivalent to @code{true}.
9611cfa2 5268
cf499cff 5269@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5270
5271@item @var{variable} is never defined.
c6abeab1 5272In this case, Bison selects a default value.
9611cfa2 5273@end enumerate
148d66d8 5274
c6abeab1
JD
5275What @var{variable}s are accepted, as well as their meanings and default
5276values, depend on the selected target language and/or the parser
5277skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5278Summary,,%skeleton}).
5279Unaccepted @var{variable}s produce an error.
793fbca5
JD
5280Some of the accepted @var{variable}s are:
5281
fa819509 5282@table @code
6b5a0de9 5283@c ================================================== api.namespace
67501061
AD
5284@item api.namespace
5285@findex %define api.namespace
5286@itemize
5287@item Languages(s): C++
5288
f1b238df 5289@item Purpose: Specify the namespace for the parser class.
67501061
AD
5290For example, if you specify:
5291
5292@smallexample
5293%define api.namespace "foo::bar"
5294@end smallexample
5295
5296Bison uses @code{foo::bar} verbatim in references such as:
5297
5298@smallexample
5299foo::bar::parser::semantic_type
5300@end smallexample
5301
5302However, to open a namespace, Bison removes any leading @code{::} and then
5303splits on any remaining occurrences:
5304
5305@smallexample
5306namespace foo @{ namespace bar @{
5307 class position;
5308 class location;
5309@} @}
5310@end smallexample
5311
5312@item Accepted Values:
5313Any absolute or relative C++ namespace reference without a trailing
5314@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5315
5316@item Default Value:
5317The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5318This usage of @code{%name-prefix} is for backward compatibility and can
5319be confusing since @code{%name-prefix} also specifies the textual prefix
5320for the lexical analyzer function. Thus, if you specify
5321@code{%name-prefix}, it is best to also specify @samp{%define
5322api.namespace} so that @code{%name-prefix} @emph{only} affects the
5323lexical analyzer function. For example, if you specify:
5324
5325@smallexample
5326%define api.namespace "foo"
5327%name-prefix "bar::"
5328@end smallexample
5329
5330The parser namespace is @code{foo} and @code{yylex} is referenced as
5331@code{bar::lex}.
5332@end itemize
5333@c namespace
5334
5335
5336
5337@c ================================================== api.pure
d9df47b6
JD
5338@item api.pure
5339@findex %define api.pure
5340
5341@itemize @bullet
5342@item Language(s): C
5343
5344@item Purpose: Request a pure (reentrant) parser program.
5345@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5346
5347@item Accepted Values: Boolean
5348
cf499cff 5349@item Default Value: @code{false}
d9df47b6 5350@end itemize
71b00ed8 5351@c api.pure
d9df47b6 5352
67501061
AD
5353
5354
5355@c ================================================== api.push-pull
67212941
JD
5356@item api.push-pull
5357@findex %define api.push-pull
793fbca5
JD
5358
5359@itemize @bullet
eb45ef3b 5360@item Language(s): C (deterministic parsers only)
793fbca5 5361
f1b238df 5362@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5363@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5364(The current push parsing interface is experimental and may evolve.
5365More user feedback will help to stabilize it.)
793fbca5 5366
cf499cff 5367@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5368
cf499cff 5369@item Default Value: @code{pull}
793fbca5 5370@end itemize
67212941 5371@c api.push-pull
71b00ed8 5372
6b5a0de9
AD
5373
5374
5375@c ================================================== api.tokens.prefix
4c6622c2
AD
5376@item api.tokens.prefix
5377@findex %define api.tokens.prefix
5378
5379@itemize
5380@item Languages(s): all
5381
5382@item Purpose:
5383Add a prefix to the token names when generating their definition in the
5384target language. For instance
5385
5386@example
5387%token FILE for ERROR
5388%define api.tokens.prefix "TOK_"
5389%%
5390start: FILE for ERROR;
5391@end example
5392
5393@noindent
5394generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5395and @code{TOK_ERROR} in the generated source files. In particular, the
5396scanner must use these prefixed token names, while the grammar itself
5397may still use the short names (as in the sample rule given above). The
5398generated informational files (@file{*.output}, @file{*.xml},
5399@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5400and @ref{Calc++ Scanner}, for a complete example.
5401
5402@item Accepted Values:
5403Any string. Should be a valid identifier prefix in the target language,
5404in other words, it should typically be an identifier itself (sequence of
5405letters, underscores, and ---not at the beginning--- digits).
5406
5407@item Default Value:
5408empty
5409@end itemize
5410@c api.tokens.prefix
5411
5412
3cdc21cf 5413@c ================================================== lex_symbol
84072495 5414@item lex_symbol
3cdc21cf
AD
5415@findex %define lex_symbol
5416
5417@itemize @bullet
5418@item Language(s):
5419C++
5420
5421@item Purpose:
5422When variant-based semantic values are enabled (@pxref{C++ Variants}),
5423request that symbols be handled as a whole (type, value, and possibly
5424location) in the scanner. @xref{Complete Symbols}, for details.
5425
5426@item Accepted Values:
5427Boolean.
5428
5429@item Default Value:
5430@code{false}
5431@end itemize
5432@c lex_symbol
5433
5434
6b5a0de9
AD
5435@c ================================================== lr.default-reductions
5436
5bab9d08 5437@item lr.default-reductions
5bab9d08 5438@findex %define lr.default-reductions
eb45ef3b
JD
5439
5440@itemize @bullet
5441@item Language(s): all
5442
fcf834f9 5443@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5444contain default reductions. @xref{Default Reductions}. (The ability to
5445specify where default reductions should be used is experimental. More user
5446feedback will help to stabilize it.)
eb45ef3b 5447
f0ad1b2f 5448@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5449@item Default Value:
5450@itemize
cf499cff 5451@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5452@item @code{most} otherwise.
eb45ef3b
JD
5453@end itemize
5454@end itemize
5455
6b5a0de9
AD
5456@c ============================================ lr.keep-unreachable-states
5457
67212941
JD
5458@item lr.keep-unreachable-states
5459@findex %define lr.keep-unreachable-states
31984206
JD
5460
5461@itemize @bullet
5462@item Language(s): all
f1b238df 5463@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5464remain in the parser tables. @xref{Unreachable States}.
31984206 5465@item Accepted Values: Boolean
cf499cff 5466@item Default Value: @code{false}
31984206 5467@end itemize
67212941 5468@c lr.keep-unreachable-states
31984206 5469
6b5a0de9
AD
5470@c ================================================== lr.type
5471
eb45ef3b
JD
5472@item lr.type
5473@findex %define lr.type
eb45ef3b
JD
5474
5475@itemize @bullet
5476@item Language(s): all
5477
f1b238df 5478@item Purpose: Specify the type of parser tables within the
7fceb615 5479LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5480More user feedback will help to stabilize it.)
5481
7fceb615 5482@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5483
cf499cff 5484@item Default Value: @code{lalr}
eb45ef3b
JD
5485@end itemize
5486
67501061
AD
5487
5488@c ================================================== namespace
793fbca5
JD
5489@item namespace
5490@findex %define namespace
67501061 5491Obsoleted by @code{api.namespace}
fa819509
AD
5492@c namespace
5493
31b850d2
AD
5494
5495@c ================================================== parse.assert
0c90a1f5
AD
5496@item parse.assert
5497@findex %define parse.assert
5498
5499@itemize
5500@item Languages(s): C++
5501
5502@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5503In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5504constructed and
0c90a1f5
AD
5505destroyed properly. This option checks these constraints.
5506
5507@item Accepted Values: Boolean
5508
5509@item Default Value: @code{false}
5510@end itemize
5511@c parse.assert
5512
31b850d2
AD
5513
5514@c ================================================== parse.error
5515@item parse.error
5516@findex %define parse.error
5517@itemize
5518@item Languages(s):
fcf834f9 5519all
31b850d2
AD
5520@item Purpose:
5521Control the kind of error messages passed to the error reporting
5522function. @xref{Error Reporting, ,The Error Reporting Function
5523@code{yyerror}}.
5524@item Accepted Values:
5525@itemize
cf499cff 5526@item @code{simple}
31b850d2
AD
5527Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5528error"}}.
cf499cff 5529@item @code{verbose}
7fceb615
JD
5530Error messages report the unexpected token, and possibly the expected ones.
5531However, this report can often be incorrect when LAC is not enabled
5532(@pxref{LAC}).
31b850d2
AD
5533@end itemize
5534
5535@item Default Value:
5536@code{simple}
5537@end itemize
5538@c parse.error
5539
5540
fcf834f9
JD
5541@c ================================================== parse.lac
5542@item parse.lac
5543@findex %define parse.lac
fcf834f9
JD
5544
5545@itemize
7fceb615 5546@item Languages(s): C (deterministic parsers only)
fcf834f9 5547
8a4281b9 5548@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5549syntax error handling. @xref{LAC}.
fcf834f9 5550@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5551@item Default Value: @code{none}
5552@end itemize
5553@c parse.lac
5554
31b850d2 5555@c ================================================== parse.trace
fa819509
AD
5556@item parse.trace
5557@findex %define parse.trace
5558
5559@itemize
5560@item Languages(s): C, C++
5561
5562@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5563In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5564file if it is not already defined, so that the debugging facilities are
5565compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5566
fa819509
AD
5567@item Accepted Values: Boolean
5568
5569@item Default Value: @code{false}
5570@end itemize
fa819509 5571@c parse.trace
99c08fb6 5572
3cdc21cf
AD
5573@c ================================================== variant
5574@item variant
5575@findex %define variant
5576
5577@itemize @bullet
5578@item Language(s):
5579C++
5580
5581@item Purpose:
f1b238df 5582Request variant-based semantic values.
3cdc21cf
AD
5583@xref{C++ Variants}.
5584
5585@item Accepted Values:
5586Boolean.
5587
5588@item Default Value:
5589@code{false}
5590@end itemize
5591@c variant
99c08fb6 5592@end table
592d0b1e 5593
d8988b2f 5594
e0c07222
JD
5595@node %code Summary
5596@subsection %code Summary
e0c07222 5597@findex %code
e0c07222 5598@cindex Prologue
51151d91
JD
5599
5600The @code{%code} directive inserts code verbatim into the output
5601parser source at any of a predefined set of locations. It thus serves
5602as a flexible and user-friendly alternative to the traditional Yacc
5603prologue, @code{%@{@var{code}%@}}. This section summarizes the
5604functionality of @code{%code} for the various target languages
5605supported by Bison. For a detailed discussion of how to use
5606@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5607is advantageous to do so, @pxref{Prologue Alternatives}.
5608
5609@deffn {Directive} %code @{@var{code}@}
5610This is the unqualified form of the @code{%code} directive. It
5611inserts @var{code} verbatim at a language-dependent default location
5612in the parser implementation.
5613
e0c07222 5614For C/C++, the default location is the parser implementation file
51151d91
JD
5615after the usual contents of the parser header file. Thus, the
5616unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5617
5618For Java, the default location is inside the parser class.
5619@end deffn
5620
5621@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5622This is the qualified form of the @code{%code} directive.
51151d91
JD
5623@var{qualifier} identifies the purpose of @var{code} and thus the
5624location(s) where Bison should insert it. That is, if you need to
5625specify location-sensitive @var{code} that does not belong at the
5626default location selected by the unqualified @code{%code} form, use
5627this form instead.
5628@end deffn
5629
5630For any particular qualifier or for the unqualified form, if there are
5631multiple occurrences of the @code{%code} directive, Bison concatenates
5632the specified code in the order in which it appears in the grammar
5633file.
e0c07222 5634
51151d91
JD
5635Not all qualifiers are accepted for all target languages. Unaccepted
5636qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5637
84072495 5638@table @code
e0c07222
JD
5639@item requires
5640@findex %code requires
5641
5642@itemize @bullet
5643@item Language(s): C, C++
5644
5645@item Purpose: This is the best place to write dependency code required for
5646@code{YYSTYPE} and @code{YYLTYPE}.
5647In other words, it's the best place to define types referenced in @code{%union}
5648directives, and it's the best place to override Bison's default @code{YYSTYPE}
5649and @code{YYLTYPE} definitions.
5650
5651@item Location(s): The parser header file and the parser implementation file
5652before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5653definitions.
5654@end itemize
5655
5656@item provides
5657@findex %code provides
5658
5659@itemize @bullet
5660@item Language(s): C, C++
5661
5662@item Purpose: This is the best place to write additional definitions and
5663declarations that should be provided to other modules.
5664
5665@item Location(s): The parser header file and the parser implementation
5666file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5667token definitions.
5668@end itemize
5669
5670@item top
5671@findex %code top
5672
5673@itemize @bullet
5674@item Language(s): C, C++
5675
5676@item Purpose: The unqualified @code{%code} or @code{%code requires}
5677should usually be more appropriate than @code{%code top}. However,
5678occasionally it is necessary to insert code much nearer the top of the
5679parser implementation file. For example:
5680
5681@smallexample
5682%code top @{
5683 #define _GNU_SOURCE
5684 #include <stdio.h>
5685@}
5686@end smallexample
5687
5688@item Location(s): Near the top of the parser implementation file.
5689@end itemize
5690
5691@item imports
5692@findex %code imports
5693
5694@itemize @bullet
5695@item Language(s): Java
5696
5697@item Purpose: This is the best place to write Java import directives.
5698
5699@item Location(s): The parser Java file after any Java package directive and
5700before any class definitions.
5701@end itemize
84072495 5702@end table
e0c07222 5703
51151d91
JD
5704Though we say the insertion locations are language-dependent, they are
5705technically skeleton-dependent. Writers of non-standard skeletons
5706however should choose their locations consistently with the behavior
5707of the standard Bison skeletons.
e0c07222 5708
d8988b2f 5709
342b8b6e 5710@node Multiple Parsers
bfa74976
RS
5711@section Multiple Parsers in the Same Program
5712
5713Most programs that use Bison parse only one language and therefore contain
5714only one Bison parser. But what if you want to parse more than one
5715language with the same program? Then you need to avoid a name conflict
5716between different definitions of @code{yyparse}, @code{yylval}, and so on.
5717
5718The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5719(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5720functions and variables of the Bison parser to start with @var{prefix}
5721instead of @samp{yy}. You can use this to give each parser distinct
5722names that do not conflict.
bfa74976
RS
5723
5724The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5725@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5726@code{yychar} and @code{yydebug}. If you use a push parser,
5727@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5728@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5729For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5730@code{clex}, and so on.
bfa74976
RS
5731
5732@strong{All the other variables and macros associated with Bison are not
5733renamed.} These others are not global; there is no conflict if the same
5734name is used in different parsers. For example, @code{YYSTYPE} is not
5735renamed, but defining this in different ways in different parsers causes
5736no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5737
ff7571c0
JD
5738The @samp{-p} option works by adding macro definitions to the
5739beginning of the parser implementation file, defining @code{yyparse}
5740as @code{@var{prefix}parse}, and so on. This effectively substitutes
5741one name for the other in the entire parser implementation file.
bfa74976 5742
342b8b6e 5743@node Interface
bfa74976
RS
5744@chapter Parser C-Language Interface
5745@cindex C-language interface
5746@cindex interface
5747
5748The Bison parser is actually a C function named @code{yyparse}. Here we
5749describe the interface conventions of @code{yyparse} and the other
5750functions that it needs to use.
5751
5752Keep in mind that the parser uses many C identifiers starting with
5753@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5754identifier (aside from those in this manual) in an action or in epilogue
5755in the grammar file, you are likely to run into trouble.
bfa74976
RS
5756
5757@menu
f5f419de
DJ
5758* Parser Function:: How to call @code{yyparse} and what it returns.
5759* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5760* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5761* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5762* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5763* Lexical:: You must supply a function @code{yylex}
5764 which reads tokens.
5765* Error Reporting:: You must supply a function @code{yyerror}.
5766* Action Features:: Special features for use in actions.
5767* Internationalization:: How to let the parser speak in the user's
5768 native language.
bfa74976
RS
5769@end menu
5770
342b8b6e 5771@node Parser Function
bfa74976
RS
5772@section The Parser Function @code{yyparse}
5773@findex yyparse
5774
5775You call the function @code{yyparse} to cause parsing to occur. This
5776function reads tokens, executes actions, and ultimately returns when it
5777encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5778write an action which directs @code{yyparse} to return immediately
5779without reading further.
bfa74976 5780
2a8d363a
AD
5781
5782@deftypefun int yyparse (void)
bfa74976
RS
5783The value returned by @code{yyparse} is 0 if parsing was successful (return
5784is due to end-of-input).
5785
b47dbebe
PE
5786The value is 1 if parsing failed because of invalid input, i.e., input
5787that contains a syntax error or that causes @code{YYABORT} to be
5788invoked.
5789
5790The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5791@end deftypefun
bfa74976
RS
5792
5793In an action, you can cause immediate return from @code{yyparse} by using
5794these macros:
5795
2a8d363a 5796@defmac YYACCEPT
bfa74976
RS
5797@findex YYACCEPT
5798Return immediately with value 0 (to report success).
2a8d363a 5799@end defmac
bfa74976 5800
2a8d363a 5801@defmac YYABORT
bfa74976
RS
5802@findex YYABORT
5803Return immediately with value 1 (to report failure).
2a8d363a
AD
5804@end defmac
5805
5806If you use a reentrant parser, you can optionally pass additional
5807parameter information to it in a reentrant way. To do so, use the
5808declaration @code{%parse-param}:
5809
2055a44e 5810@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5811@findex %parse-param
2055a44e
AD
5812Declare that one or more
5813@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5814The @var{argument-declaration} is used when declaring
feeb0eda
PE
5815functions or prototypes. The last identifier in
5816@var{argument-declaration} must be the argument name.
2a8d363a
AD
5817@end deffn
5818
5819Here's an example. Write this in the parser:
5820
5821@example
2055a44e 5822%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5823@end example
5824
5825@noindent
5826Then call the parser like this:
5827
5828@example
5829@{
5830 int nastiness, randomness;
5831 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5832 value = yyparse (&nastiness, &randomness);
5833 @dots{}
5834@}
5835@end example
5836
5837@noindent
5838In the grammar actions, use expressions like this to refer to the data:
5839
5840@example
5841exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5842@end example
5843
9987d1b3
JD
5844@node Push Parser Function
5845@section The Push Parser Function @code{yypush_parse}
5846@findex yypush_parse
5847
59da312b
JD
5848(The current push parsing interface is experimental and may evolve.
5849More user feedback will help to stabilize it.)
5850
f4101aa6 5851You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5852function is available if either the @samp{%define api.push-pull push} or
5853@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5854@xref{Push Decl, ,A Push Parser}.
5855
5856@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5857The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5858following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5859is required to finish parsing the grammar.
5860@end deftypefun
5861
5862@node Pull Parser Function
5863@section The Pull Parser Function @code{yypull_parse}
5864@findex yypull_parse
5865
59da312b
JD
5866(The current push parsing interface is experimental and may evolve.
5867More user feedback will help to stabilize it.)
5868
f4101aa6 5869You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5870stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5871declaration is used.
9987d1b3
JD
5872@xref{Push Decl, ,A Push Parser}.
5873
5874@deftypefun int yypull_parse (yypstate *yyps)
5875The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5876@end deftypefun
5877
5878@node Parser Create Function
5879@section The Parser Create Function @code{yystate_new}
5880@findex yypstate_new
5881
59da312b
JD
5882(The current push parsing interface is experimental and may evolve.
5883More user feedback will help to stabilize it.)
5884
f4101aa6 5885You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5886This function is available if either the @samp{%define api.push-pull push} or
5887@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5888@xref{Push Decl, ,A Push Parser}.
5889
5890@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5891The function will return a valid parser instance if there was memory available
333e670c
JD
5892or 0 if no memory was available.
5893In impure mode, it will also return 0 if a parser instance is currently
5894allocated.
9987d1b3
JD
5895@end deftypefun
5896
5897@node Parser Delete Function
5898@section The Parser Delete Function @code{yystate_delete}
5899@findex yypstate_delete
5900
59da312b
JD
5901(The current push parsing interface is experimental and may evolve.
5902More user feedback will help to stabilize it.)
5903
9987d1b3 5904You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5905function is available if either the @samp{%define api.push-pull push} or
5906@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5907@xref{Push Decl, ,A Push Parser}.
5908
5909@deftypefun void yypstate_delete (yypstate *yyps)
5910This function will reclaim the memory associated with a parser instance.
5911After this call, you should no longer attempt to use the parser instance.
5912@end deftypefun
bfa74976 5913
342b8b6e 5914@node Lexical
bfa74976
RS
5915@section The Lexical Analyzer Function @code{yylex}
5916@findex yylex
5917@cindex lexical analyzer
5918
5919The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5920the input stream and returns them to the parser. Bison does not create
5921this function automatically; you must write it so that @code{yyparse} can
5922call it. The function is sometimes referred to as a lexical scanner.
5923
ff7571c0
JD
5924In simple programs, @code{yylex} is often defined at the end of the
5925Bison grammar file. If @code{yylex} is defined in a separate source
5926file, you need to arrange for the token-type macro definitions to be
5927available there. To do this, use the @samp{-d} option when you run
5928Bison, so that it will write these macro definitions into the separate
5929parser header file, @file{@var{name}.tab.h}, which you can include in
5930the other source files that need it. @xref{Invocation, ,Invoking
5931Bison}.
bfa74976
RS
5932
5933@menu
5934* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5935* Token Values:: How @code{yylex} must return the semantic value
5936 of the token it has read.
5937* Token Locations:: How @code{yylex} must return the text location
5938 (line number, etc.) of the token, if the
5939 actions want that.
5940* Pure Calling:: How the calling convention differs in a pure parser
5941 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5942@end menu
5943
342b8b6e 5944@node Calling Convention
bfa74976
RS
5945@subsection Calling Convention for @code{yylex}
5946
72d2299c
PE
5947The value that @code{yylex} returns must be the positive numeric code
5948for the type of token it has just found; a zero or negative value
5949signifies end-of-input.
bfa74976
RS
5950
5951When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
5952in the parser implementation file becomes a C macro whose definition
5953is the proper numeric code for that token type. So @code{yylex} can
5954use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5955
5956When a token is referred to in the grammar rules by a character literal,
5957the numeric code for that character is also the code for the token type.
72d2299c
PE
5958So @code{yylex} can simply return that character code, possibly converted
5959to @code{unsigned char} to avoid sign-extension. The null character
5960must not be used this way, because its code is zero and that
bfa74976
RS
5961signifies end-of-input.
5962
5963Here is an example showing these things:
5964
5965@example
13863333
AD
5966int
5967yylex (void)
bfa74976
RS
5968@{
5969 @dots{}
72d2299c 5970 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5971 return 0;
5972 @dots{}
5973 if (c == '+' || c == '-')
72d2299c 5974 return c; /* Assume token type for `+' is '+'. */
bfa74976 5975 @dots{}
72d2299c 5976 return INT; /* Return the type of the token. */
bfa74976
RS
5977 @dots{}
5978@}
5979@end example
5980
5981@noindent
5982This interface has been designed so that the output from the @code{lex}
5983utility can be used without change as the definition of @code{yylex}.
5984
931c7513
RS
5985If the grammar uses literal string tokens, there are two ways that
5986@code{yylex} can determine the token type codes for them:
5987
5988@itemize @bullet
5989@item
5990If the grammar defines symbolic token names as aliases for the
5991literal string tokens, @code{yylex} can use these symbolic names like
5992all others. In this case, the use of the literal string tokens in
5993the grammar file has no effect on @code{yylex}.
5994
5995@item
9ecbd125 5996@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5997table. The index of the token in the table is the token type's code.
9ecbd125 5998The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5999double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
6000token's characters are escaped as necessary to be suitable as input
6001to Bison.
931c7513 6002
9e0876fb
PE
6003Here's code for looking up a multicharacter token in @code{yytname},
6004assuming that the characters of the token are stored in
6005@code{token_buffer}, and assuming that the token does not contain any
6006characters like @samp{"} that require escaping.
931c7513
RS
6007
6008@smallexample
6009for (i = 0; i < YYNTOKENS; i++)
6010 @{
6011 if (yytname[i] != 0
6012 && yytname[i][0] == '"'
68449b3a
PE
6013 && ! strncmp (yytname[i] + 1, token_buffer,
6014 strlen (token_buffer))
931c7513
RS
6015 && yytname[i][strlen (token_buffer) + 1] == '"'
6016 && yytname[i][strlen (token_buffer) + 2] == 0)
6017 break;
6018 @}
6019@end smallexample
6020
6021The @code{yytname} table is generated only if you use the
8c9a50be 6022@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
6023@end itemize
6024
342b8b6e 6025@node Token Values
bfa74976
RS
6026@subsection Semantic Values of Tokens
6027
6028@vindex yylval
9d9b8b70 6029In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
6030be stored into the global variable @code{yylval}. When you are using
6031just one data type for semantic values, @code{yylval} has that type.
6032Thus, if the type is @code{int} (the default), you might write this in
6033@code{yylex}:
6034
6035@example
6036@group
6037 @dots{}
72d2299c
PE
6038 yylval = value; /* Put value onto Bison stack. */
6039 return INT; /* Return the type of the token. */
bfa74976
RS
6040 @dots{}
6041@end group
6042@end example
6043
6044When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
6045made from the @code{%union} declaration (@pxref{Union Decl, ,The
6046Collection of Value Types}). So when you store a token's value, you
6047must use the proper member of the union. If the @code{%union}
6048declaration looks like this:
bfa74976
RS
6049
6050@example
6051@group
6052%union @{
6053 int intval;
6054 double val;
6055 symrec *tptr;
6056@}
6057@end group
6058@end example
6059
6060@noindent
6061then the code in @code{yylex} might look like this:
6062
6063@example
6064@group
6065 @dots{}
72d2299c
PE
6066 yylval.intval = value; /* Put value onto Bison stack. */
6067 return INT; /* Return the type of the token. */
bfa74976
RS
6068 @dots{}
6069@end group
6070@end example
6071
95923bd6
AD
6072@node Token Locations
6073@subsection Textual Locations of Tokens
bfa74976
RS
6074
6075@vindex yylloc
303834cc
JD
6076If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6077in actions to keep track of the textual locations of tokens and groupings,
6078then you must provide this information in @code{yylex}. The function
6079@code{yyparse} expects to find the textual location of a token just parsed
6080in the global variable @code{yylloc}. So @code{yylex} must store the proper
6081data in that variable.
847bf1f5
AD
6082
6083By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6084initialize the members that are going to be used by the actions. The
6085four members are called @code{first_line}, @code{first_column},
6086@code{last_line} and @code{last_column}. Note that the use of this
6087feature makes the parser noticeably slower.
bfa74976
RS
6088
6089@tindex YYLTYPE
6090The data type of @code{yylloc} has the name @code{YYLTYPE}.
6091
342b8b6e 6092@node Pure Calling
c656404a 6093@subsection Calling Conventions for Pure Parsers
bfa74976 6094
67501061 6095When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6096pure, reentrant parser, the global communication variables @code{yylval}
6097and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6098Parser}.) In such parsers the two global variables are replaced by
6099pointers passed as arguments to @code{yylex}. You must declare them as
6100shown here, and pass the information back by storing it through those
6101pointers.
bfa74976
RS
6102
6103@example
13863333
AD
6104int
6105yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6106@{
6107 @dots{}
6108 *lvalp = value; /* Put value onto Bison stack. */
6109 return INT; /* Return the type of the token. */
6110 @dots{}
6111@}
6112@end example
6113
6114If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6115textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6116this case, omit the second argument; @code{yylex} will be called with
6117only one argument.
6118
2055a44e 6119If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6120@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6121Function}). To pass additional arguments to both @code{yylex} and
6122@code{yyparse}, use @code{%param}.
e425e872 6123
2055a44e 6124@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6125@findex %lex-param
2055a44e
AD
6126Specify that @var{argument-declaration} are additional @code{yylex} argument
6127declarations. You may pass one or more such declarations, which is
6128equivalent to repeating @code{%lex-param}.
6129@end deffn
6130
6131@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6132@findex %param
6133Specify that @var{argument-declaration} are additional
6134@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6135@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6136@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6137declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6138@end deffn
e425e872 6139
2a8d363a 6140For instance:
e425e872
RS
6141
6142@example
2055a44e
AD
6143%lex-param @{scanner_mode *mode@}
6144%parse-param @{parser_mode *mode@}
6145%param @{environment_type *env@}
e425e872
RS
6146@end example
6147
6148@noindent
2a8d363a 6149results in the following signature:
e425e872
RS
6150
6151@example
2055a44e
AD
6152int yylex (scanner_mode *mode, environment_type *env);
6153int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6154@end example
6155
67501061 6156If @samp{%define api.pure} is added:
c656404a
RS
6157
6158@example
2055a44e
AD
6159int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6160int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6161@end example
6162
2a8d363a 6163@noindent
67501061 6164and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6165
2a8d363a 6166@example
2055a44e
AD
6167int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6168 scanner_mode *mode, environment_type *env);
6169int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6170@end example
931c7513 6171
342b8b6e 6172@node Error Reporting
bfa74976
RS
6173@section The Error Reporting Function @code{yyerror}
6174@cindex error reporting function
6175@findex yyerror
6176@cindex parse error
6177@cindex syntax error
6178
31b850d2 6179The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6180whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6181action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6182macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6183in Actions}).
bfa74976
RS
6184
6185The Bison parser expects to report the error by calling an error
6186reporting function named @code{yyerror}, which you must supply. It is
6187called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6188receives one argument. For a syntax error, the string is normally
6189@w{@code{"syntax error"}}.
bfa74976 6190
31b850d2 6191@findex %define parse.error
7fceb615
JD
6192If you invoke @samp{%define parse.error verbose} in the Bison declarations
6193section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6194Bison provides a more verbose and specific error message string instead of
6195just plain @w{@code{"syntax error"}}. However, that message sometimes
6196contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6197
1a059451
PE
6198The parser can detect one other kind of error: memory exhaustion. This
6199can happen when the input contains constructions that are very deeply
bfa74976 6200nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6201parser normally extends its stack automatically up to a very large limit. But
6202if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6203fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6204
6205In some cases diagnostics like @w{@code{"syntax error"}} are
6206translated automatically from English to some other language before
6207they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6208
6209The following definition suffices in simple programs:
6210
6211@example
6212@group
13863333 6213void
38a92d50 6214yyerror (char const *s)
bfa74976
RS
6215@{
6216@end group
6217@group
6218 fprintf (stderr, "%s\n", s);
6219@}
6220@end group
6221@end example
6222
6223After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6224error recovery if you have written suitable error recovery grammar rules
6225(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6226immediately return 1.
6227
93724f13 6228Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6229an access to the current location.
8a4281b9 6230This is indeed the case for the GLR
2a8d363a 6231parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6232@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6233@code{yyerror} are:
6234
6235@example
38a92d50
PE
6236void yyerror (char const *msg); /* Yacc parsers. */
6237void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6238@end example
6239
feeb0eda 6240If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6241
6242@example
b317297e
PE
6243void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6244void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6245@end example
6246
8a4281b9 6247Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6248convention for absolutely pure parsers, i.e., when the calling
6249convention of @code{yylex} @emph{and} the calling convention of
67501061 6250@samp{%define api.pure} are pure.
d9df47b6 6251I.e.:
2a8d363a
AD
6252
6253@example
6254/* Location tracking. */
6255%locations
6256/* Pure yylex. */
d9df47b6 6257%define api.pure
feeb0eda 6258%lex-param @{int *nastiness@}
2a8d363a 6259/* Pure yyparse. */
feeb0eda
PE
6260%parse-param @{int *nastiness@}
6261%parse-param @{int *randomness@}
2a8d363a
AD
6262@end example
6263
6264@noindent
6265results in the following signatures for all the parser kinds:
6266
6267@example
6268int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6269int yyparse (int *nastiness, int *randomness);
93724f13
AD
6270void yyerror (YYLTYPE *locp,
6271 int *nastiness, int *randomness,
38a92d50 6272 char const *msg);
2a8d363a
AD
6273@end example
6274
1c0c3e95 6275@noindent
38a92d50
PE
6276The prototypes are only indications of how the code produced by Bison
6277uses @code{yyerror}. Bison-generated code always ignores the returned
6278value, so @code{yyerror} can return any type, including @code{void}.
6279Also, @code{yyerror} can be a variadic function; that is why the
6280message is always passed last.
6281
6282Traditionally @code{yyerror} returns an @code{int} that is always
6283ignored, but this is purely for historical reasons, and @code{void} is
6284preferable since it more accurately describes the return type for
6285@code{yyerror}.
93724f13 6286
bfa74976
RS
6287@vindex yynerrs
6288The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6289reported so far. Normally this variable is global; but if you
704a47c4
AD
6290request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6291then it is a local variable which only the actions can access.
bfa74976 6292
342b8b6e 6293@node Action Features
bfa74976
RS
6294@section Special Features for Use in Actions
6295@cindex summary, action features
6296@cindex action features summary
6297
6298Here is a table of Bison constructs, variables and macros that
6299are useful in actions.
6300
18b519c0 6301@deffn {Variable} $$
bfa74976
RS
6302Acts like a variable that contains the semantic value for the
6303grouping made by the current rule. @xref{Actions}.
18b519c0 6304@end deffn
bfa74976 6305
18b519c0 6306@deffn {Variable} $@var{n}
bfa74976
RS
6307Acts like a variable that contains the semantic value for the
6308@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6309@end deffn
bfa74976 6310
18b519c0 6311@deffn {Variable} $<@var{typealt}>$
bfa74976 6312Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6313specified by the @code{%union} declaration. @xref{Action Types, ,Data
6314Types of Values in Actions}.
18b519c0 6315@end deffn
bfa74976 6316
18b519c0 6317@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6318Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6319union specified by the @code{%union} declaration.
e0c471a9 6320@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6321@end deffn
bfa74976 6322
18b519c0 6323@deffn {Macro} YYABORT;
bfa74976
RS
6324Return immediately from @code{yyparse}, indicating failure.
6325@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6326@end deffn
bfa74976 6327
18b519c0 6328@deffn {Macro} YYACCEPT;
bfa74976
RS
6329Return immediately from @code{yyparse}, indicating success.
6330@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6331@end deffn
bfa74976 6332
18b519c0 6333@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6334@findex YYBACKUP
6335Unshift a token. This macro is allowed only for rules that reduce
742e4900 6336a single value, and only when there is no lookahead token.
8a4281b9 6337It is also disallowed in GLR parsers.
742e4900 6338It installs a lookahead token with token type @var{token} and
bfa74976
RS
6339semantic value @var{value}; then it discards the value that was
6340going to be reduced by this rule.
6341
6342If the macro is used when it is not valid, such as when there is
742e4900 6343a lookahead token already, then it reports a syntax error with
bfa74976
RS
6344a message @samp{cannot back up} and performs ordinary error
6345recovery.
6346
6347In either case, the rest of the action is not executed.
18b519c0 6348@end deffn
bfa74976 6349
18b519c0 6350@deffn {Macro} YYEMPTY
bfa74976 6351@vindex YYEMPTY
742e4900 6352Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6353@end deffn
bfa74976 6354
32c29292
JD
6355@deffn {Macro} YYEOF
6356@vindex YYEOF
742e4900 6357Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6358stream.
6359@end deffn
6360
18b519c0 6361@deffn {Macro} YYERROR;
bfa74976
RS
6362@findex YYERROR
6363Cause an immediate syntax error. This statement initiates error
6364recovery just as if the parser itself had detected an error; however, it
6365does not call @code{yyerror}, and does not print any message. If you
6366want to print an error message, call @code{yyerror} explicitly before
6367the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6368@end deffn
bfa74976 6369
18b519c0 6370@deffn {Macro} YYRECOVERING
02103984
PE
6371@findex YYRECOVERING
6372The expression @code{YYRECOVERING ()} yields 1 when the parser
6373is recovering from a syntax error, and 0 otherwise.
bfa74976 6374@xref{Error Recovery}.
18b519c0 6375@end deffn
bfa74976 6376
18b519c0 6377@deffn {Variable} yychar
742e4900
JD
6378Variable containing either the lookahead token, or @code{YYEOF} when the
6379lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6380has been performed so the next token is not yet known.
6381Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6382Actions}).
742e4900 6383@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6384@end deffn
bfa74976 6385
18b519c0 6386@deffn {Macro} yyclearin;
742e4900 6387Discard the current lookahead token. This is useful primarily in
32c29292
JD
6388error rules.
6389Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6390Semantic Actions}).
6391@xref{Error Recovery}.
18b519c0 6392@end deffn
bfa74976 6393
18b519c0 6394@deffn {Macro} yyerrok;
bfa74976 6395Resume generating error messages immediately for subsequent syntax
13863333 6396errors. This is useful primarily in error rules.
bfa74976 6397@xref{Error Recovery}.
18b519c0 6398@end deffn
bfa74976 6399
32c29292 6400@deffn {Variable} yylloc
742e4900 6401Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6402to @code{YYEMPTY} or @code{YYEOF}.
6403Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6404Actions}).
6405@xref{Actions and Locations, ,Actions and Locations}.
6406@end deffn
6407
6408@deffn {Variable} yylval
742e4900 6409Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6410not set to @code{YYEMPTY} or @code{YYEOF}.
6411Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6412Actions}).
6413@xref{Actions, ,Actions}.
6414@end deffn
6415
18b519c0 6416@deffn {Value} @@$
847bf1f5 6417@findex @@$
303834cc
JD
6418Acts like a structure variable containing information on the textual
6419location of the grouping made by the current rule. @xref{Tracking
6420Locations}.
bfa74976 6421
847bf1f5
AD
6422@c Check if those paragraphs are still useful or not.
6423
6424@c @example
6425@c struct @{
6426@c int first_line, last_line;
6427@c int first_column, last_column;
6428@c @};
6429@c @end example
6430
6431@c Thus, to get the starting line number of the third component, you would
6432@c use @samp{@@3.first_line}.
bfa74976 6433
847bf1f5
AD
6434@c In order for the members of this structure to contain valid information,
6435@c you must make @code{yylex} supply this information about each token.
6436@c If you need only certain members, then @code{yylex} need only fill in
6437@c those members.
bfa74976 6438
847bf1f5 6439@c The use of this feature makes the parser noticeably slower.
18b519c0 6440@end deffn
847bf1f5 6441
18b519c0 6442@deffn {Value} @@@var{n}
847bf1f5 6443@findex @@@var{n}
303834cc
JD
6444Acts like a structure variable containing information on the textual
6445location of the @var{n}th component of the current rule. @xref{Tracking
6446Locations}.
18b519c0 6447@end deffn
bfa74976 6448
f7ab6a50
PE
6449@node Internationalization
6450@section Parser Internationalization
6451@cindex internationalization
6452@cindex i18n
6453@cindex NLS
6454@cindex gettext
6455@cindex bison-po
6456
6457A Bison-generated parser can print diagnostics, including error and
6458tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6459also supports outputting diagnostics in the user's native language. To
6460make this work, the user should set the usual environment variables.
6461@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6462For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6463set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6464encoding. The exact set of available locales depends on the user's
6465installation.
6466
6467The maintainer of a package that uses a Bison-generated parser enables
6468the internationalization of the parser's output through the following
8a4281b9
JD
6469steps. Here we assume a package that uses GNU Autoconf and
6470GNU Automake.
f7ab6a50
PE
6471
6472@enumerate
6473@item
30757c8c 6474@cindex bison-i18n.m4
8a4281b9 6475Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6476by the package---often called @file{m4}---copy the
6477@file{bison-i18n.m4} file installed by Bison under
6478@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6479For example:
6480
6481@example
6482cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6483@end example
6484
6485@item
30757c8c
PE
6486@findex BISON_I18N
6487@vindex BISON_LOCALEDIR
6488@vindex YYENABLE_NLS
f7ab6a50
PE
6489In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6490invocation, add an invocation of @code{BISON_I18N}. This macro is
6491defined in the file @file{bison-i18n.m4} that you copied earlier. It
6492causes @samp{configure} to find the value of the
30757c8c
PE
6493@code{BISON_LOCALEDIR} variable, and it defines the source-language
6494symbol @code{YYENABLE_NLS} to enable translations in the
6495Bison-generated parser.
f7ab6a50
PE
6496
6497@item
6498In the @code{main} function of your program, designate the directory
6499containing Bison's runtime message catalog, through a call to
6500@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6501For example:
6502
6503@example
6504bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6505@end example
6506
6507Typically this appears after any other call @code{bindtextdomain
6508(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6509@samp{BISON_LOCALEDIR} to be defined as a string through the
6510@file{Makefile}.
6511
6512@item
6513In the @file{Makefile.am} that controls the compilation of the @code{main}
6514function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6515either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6516
6517@example
6518DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6519@end example
6520
6521or:
6522
6523@example
6524AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6525@end example
6526
6527@item
6528Finally, invoke the command @command{autoreconf} to generate the build
6529infrastructure.
6530@end enumerate
6531
bfa74976 6532
342b8b6e 6533@node Algorithm
13863333
AD
6534@chapter The Bison Parser Algorithm
6535@cindex Bison parser algorithm
bfa74976
RS
6536@cindex algorithm of parser
6537@cindex shifting
6538@cindex reduction
6539@cindex parser stack
6540@cindex stack, parser
6541
6542As Bison reads tokens, it pushes them onto a stack along with their
6543semantic values. The stack is called the @dfn{parser stack}. Pushing a
6544token is traditionally called @dfn{shifting}.
6545
6546For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6547@samp{3} to come. The stack will have four elements, one for each token
6548that was shifted.
6549
6550But the stack does not always have an element for each token read. When
6551the last @var{n} tokens and groupings shifted match the components of a
6552grammar rule, they can be combined according to that rule. This is called
6553@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6554single grouping whose symbol is the result (left hand side) of that rule.
6555Running the rule's action is part of the process of reduction, because this
6556is what computes the semantic value of the resulting grouping.
6557
6558For example, if the infix calculator's parser stack contains this:
6559
6560@example
65611 + 5 * 3
6562@end example
6563
6564@noindent
6565and the next input token is a newline character, then the last three
6566elements can be reduced to 15 via the rule:
6567
6568@example
6569expr: expr '*' expr;
6570@end example
6571
6572@noindent
6573Then the stack contains just these three elements:
6574
6575@example
65761 + 15
6577@end example
6578
6579@noindent
6580At this point, another reduction can be made, resulting in the single value
658116. Then the newline token can be shifted.
6582
6583The parser tries, by shifts and reductions, to reduce the entire input down
6584to a single grouping whose symbol is the grammar's start-symbol
6585(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6586
6587This kind of parser is known in the literature as a bottom-up parser.
6588
6589@menu
742e4900 6590* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6591* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6592* Precedence:: Operator precedence works by resolving conflicts.
6593* Contextual Precedence:: When an operator's precedence depends on context.
6594* Parser States:: The parser is a finite-state-machine with stack.
6595* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6596* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6597* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6598* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6599* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6600@end menu
6601
742e4900
JD
6602@node Lookahead
6603@section Lookahead Tokens
6604@cindex lookahead token
bfa74976
RS
6605
6606The Bison parser does @emph{not} always reduce immediately as soon as the
6607last @var{n} tokens and groupings match a rule. This is because such a
6608simple strategy is inadequate to handle most languages. Instead, when a
6609reduction is possible, the parser sometimes ``looks ahead'' at the next
6610token in order to decide what to do.
6611
6612When a token is read, it is not immediately shifted; first it becomes the
742e4900 6613@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6614perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6615the lookahead token remains off to the side. When no more reductions
6616should take place, the lookahead token is shifted onto the stack. This
bfa74976 6617does not mean that all possible reductions have been done; depending on the
742e4900 6618token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6619application.
6620
742e4900 6621Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6622expressions which contain binary addition operators and postfix unary
6623factorial operators (@samp{!}), and allow parentheses for grouping.
6624
6625@example
6626@group
6627expr: term '+' expr
6628 | term
6629 ;
6630@end group
6631
6632@group
6633term: '(' expr ')'
6634 | term '!'
6635 | NUMBER
6636 ;
6637@end group
6638@end example
6639
6640Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6641should be done? If the following token is @samp{)}, then the first three
6642tokens must be reduced to form an @code{expr}. This is the only valid
6643course, because shifting the @samp{)} would produce a sequence of symbols
6644@w{@code{term ')'}}, and no rule allows this.
6645
6646If the following token is @samp{!}, then it must be shifted immediately so
6647that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6648parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6649@code{expr}. It would then be impossible to shift the @samp{!} because
6650doing so would produce on the stack the sequence of symbols @code{expr
6651'!'}. No rule allows that sequence.
6652
6653@vindex yychar
32c29292
JD
6654@vindex yylval
6655@vindex yylloc
742e4900 6656The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6657Its semantic value and location, if any, are stored in the variables
6658@code{yylval} and @code{yylloc}.
bfa74976
RS
6659@xref{Action Features, ,Special Features for Use in Actions}.
6660
342b8b6e 6661@node Shift/Reduce
bfa74976
RS
6662@section Shift/Reduce Conflicts
6663@cindex conflicts
6664@cindex shift/reduce conflicts
6665@cindex dangling @code{else}
6666@cindex @code{else}, dangling
6667
6668Suppose we are parsing a language which has if-then and if-then-else
6669statements, with a pair of rules like this:
6670
6671@example
6672@group
6673if_stmt:
6674 IF expr THEN stmt
6675 | IF expr THEN stmt ELSE stmt
6676 ;
6677@end group
6678@end example
6679
6680@noindent
6681Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6682terminal symbols for specific keyword tokens.
6683
742e4900 6684When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6685contents of the stack (assuming the input is valid) are just right for
6686reduction by the first rule. But it is also legitimate to shift the
6687@code{ELSE}, because that would lead to eventual reduction by the second
6688rule.
6689
6690This situation, where either a shift or a reduction would be valid, is
6691called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6692these conflicts by choosing to shift, unless otherwise directed by
6693operator precedence declarations. To see the reason for this, let's
6694contrast it with the other alternative.
6695
6696Since the parser prefers to shift the @code{ELSE}, the result is to attach
6697the else-clause to the innermost if-statement, making these two inputs
6698equivalent:
6699
6700@example
6701if x then if y then win (); else lose;
6702
6703if x then do; if y then win (); else lose; end;
6704@end example
6705
6706But if the parser chose to reduce when possible rather than shift, the
6707result would be to attach the else-clause to the outermost if-statement,
6708making these two inputs equivalent:
6709
6710@example
6711if x then if y then win (); else lose;
6712
6713if x then do; if y then win (); end; else lose;
6714@end example
6715
6716The conflict exists because the grammar as written is ambiguous: either
6717parsing of the simple nested if-statement is legitimate. The established
6718convention is that these ambiguities are resolved by attaching the
6719else-clause to the innermost if-statement; this is what Bison accomplishes
6720by choosing to shift rather than reduce. (It would ideally be cleaner to
6721write an unambiguous grammar, but that is very hard to do in this case.)
6722This particular ambiguity was first encountered in the specifications of
6723Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6724
6725To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6726conflicts, use the @code{%expect @var{n}} declaration.
6727There will be no warning as long as the number of shift/reduce conflicts
6728is exactly @var{n}, and Bison will report an error if there is a
6729different number.
bfa74976
RS
6730@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6731
6732The definition of @code{if_stmt} above is solely to blame for the
6733conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6734rules. Here is a complete Bison grammar file that actually manifests
6735the conflict:
bfa74976
RS
6736
6737@example
6738@group
6739%token IF THEN ELSE variable
6740%%
6741@end group
6742@group
6743stmt: expr
6744 | if_stmt
6745 ;
6746@end group
6747
6748@group
6749if_stmt:
6750 IF expr THEN stmt
6751 | IF expr THEN stmt ELSE stmt
6752 ;
6753@end group
6754
6755expr: variable
6756 ;
6757@end example
6758
342b8b6e 6759@node Precedence
bfa74976
RS
6760@section Operator Precedence
6761@cindex operator precedence
6762@cindex precedence of operators
6763
6764Another situation where shift/reduce conflicts appear is in arithmetic
6765expressions. Here shifting is not always the preferred resolution; the
6766Bison declarations for operator precedence allow you to specify when to
6767shift and when to reduce.
6768
6769@menu
6770* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6771* Using Precedence:: How to specify precedence and associativity.
6772* Precedence Only:: How to specify precedence only.
bfa74976
RS
6773* Precedence Examples:: How these features are used in the previous example.
6774* How Precedence:: How they work.
6775@end menu
6776
342b8b6e 6777@node Why Precedence
bfa74976
RS
6778@subsection When Precedence is Needed
6779
6780Consider the following ambiguous grammar fragment (ambiguous because the
6781input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6782
6783@example
6784@group
6785expr: expr '-' expr
6786 | expr '*' expr
6787 | expr '<' expr
6788 | '(' expr ')'
6789 @dots{}
6790 ;
6791@end group
6792@end example
6793
6794@noindent
6795Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6796should it reduce them via the rule for the subtraction operator? It
6797depends on the next token. Of course, if the next token is @samp{)}, we
6798must reduce; shifting is invalid because no single rule can reduce the
6799token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6800the next token is @samp{*} or @samp{<}, we have a choice: either
6801shifting or reduction would allow the parse to complete, but with
6802different results.
6803
6804To decide which one Bison should do, we must consider the results. If
6805the next operator token @var{op} is shifted, then it must be reduced
6806first in order to permit another opportunity to reduce the difference.
6807The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6808hand, if the subtraction is reduced before shifting @var{op}, the result
6809is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6810reduce should depend on the relative precedence of the operators
6811@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6812@samp{<}.
bfa74976
RS
6813
6814@cindex associativity
6815What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6816@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6817operators we prefer the former, which is called @dfn{left association}.
6818The latter alternative, @dfn{right association}, is desirable for
6819assignment operators. The choice of left or right association is a
6820matter of whether the parser chooses to shift or reduce when the stack
742e4900 6821contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6822makes right-associativity.
bfa74976 6823
342b8b6e 6824@node Using Precedence
bfa74976
RS
6825@subsection Specifying Operator Precedence
6826@findex %left
bfa74976 6827@findex %nonassoc
d78f0ac9
AD
6828@findex %precedence
6829@findex %right
bfa74976
RS
6830
6831Bison allows you to specify these choices with the operator precedence
6832declarations @code{%left} and @code{%right}. Each such declaration
6833contains a list of tokens, which are operators whose precedence and
6834associativity is being declared. The @code{%left} declaration makes all
6835those operators left-associative and the @code{%right} declaration makes
6836them right-associative. A third alternative is @code{%nonassoc}, which
6837declares that it is a syntax error to find the same operator twice ``in a
6838row''.
d78f0ac9
AD
6839The last alternative, @code{%precedence}, allows to define only
6840precedence and no associativity at all. As a result, any
6841associativity-related conflict that remains will be reported as an
6842compile-time error. The directive @code{%nonassoc} creates run-time
6843error: using the operator in a associative way is a syntax error. The
6844directive @code{%precedence} creates compile-time errors: an operator
6845@emph{can} be involved in an associativity-related conflict, contrary to
6846what expected the grammar author.
bfa74976
RS
6847
6848The relative precedence of different operators is controlled by the
d78f0ac9
AD
6849order in which they are declared. The first precedence/associativity
6850declaration in the file declares the operators whose
bfa74976
RS
6851precedence is lowest, the next such declaration declares the operators
6852whose precedence is a little higher, and so on.
6853
d78f0ac9
AD
6854@node Precedence Only
6855@subsection Specifying Precedence Only
6856@findex %precedence
6857
8a4281b9 6858Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6859@code{%nonassoc}, which all defines precedence and associativity, little
6860attention is paid to the fact that precedence cannot be defined without
6861defining associativity. Yet, sometimes, when trying to solve a
6862conflict, precedence suffices. In such a case, using @code{%left},
6863@code{%right}, or @code{%nonassoc} might hide future (associativity
6864related) conflicts that would remain hidden.
6865
6866The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6867Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6868in the following situation, where the period denotes the current parsing
6869state:
6870
6871@example
6872if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6873@end example
6874
6875The conflict involves the reduction of the rule @samp{IF expr THEN
6876stmt}, which precedence is by default that of its last token
6877(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6878disambiguation (attach the @code{else} to the closest @code{if}),
6879shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6880higher than that of @code{THEN}. But neither is expected to be involved
6881in an associativity related conflict, which can be specified as follows.
6882
6883@example
6884%precedence THEN
6885%precedence ELSE
6886@end example
6887
6888The unary-minus is another typical example where associativity is
6889usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6890Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6891used to declare the precedence of @code{NEG}, which is more than needed
6892since it also defines its associativity. While this is harmless in the
6893traditional example, who knows how @code{NEG} might be used in future
6894evolutions of the grammar@dots{}
6895
342b8b6e 6896@node Precedence Examples
bfa74976
RS
6897@subsection Precedence Examples
6898
6899In our example, we would want the following declarations:
6900
6901@example
6902%left '<'
6903%left '-'
6904%left '*'
6905@end example
6906
6907In a more complete example, which supports other operators as well, we
6908would declare them in groups of equal precedence. For example, @code{'+'} is
6909declared with @code{'-'}:
6910
6911@example
6912%left '<' '>' '=' NE LE GE
6913%left '+' '-'
6914%left '*' '/'
6915@end example
6916
6917@noindent
6918(Here @code{NE} and so on stand for the operators for ``not equal''
6919and so on. We assume that these tokens are more than one character long
6920and therefore are represented by names, not character literals.)
6921
342b8b6e 6922@node How Precedence
bfa74976
RS
6923@subsection How Precedence Works
6924
6925The first effect of the precedence declarations is to assign precedence
6926levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6927precedence levels to certain rules: each rule gets its precedence from
6928the last terminal symbol mentioned in the components. (You can also
6929specify explicitly the precedence of a rule. @xref{Contextual
6930Precedence, ,Context-Dependent Precedence}.)
6931
6932Finally, the resolution of conflicts works by comparing the precedence
742e4900 6933of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6934token's precedence is higher, the choice is to shift. If the rule's
6935precedence is higher, the choice is to reduce. If they have equal
6936precedence, the choice is made based on the associativity of that
6937precedence level. The verbose output file made by @samp{-v}
6938(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6939resolved.
bfa74976
RS
6940
6941Not all rules and not all tokens have precedence. If either the rule or
742e4900 6942the lookahead token has no precedence, then the default is to shift.
bfa74976 6943
342b8b6e 6944@node Contextual Precedence
bfa74976
RS
6945@section Context-Dependent Precedence
6946@cindex context-dependent precedence
6947@cindex unary operator precedence
6948@cindex precedence, context-dependent
6949@cindex precedence, unary operator
6950@findex %prec
6951
6952Often the precedence of an operator depends on the context. This sounds
6953outlandish at first, but it is really very common. For example, a minus
6954sign typically has a very high precedence as a unary operator, and a
6955somewhat lower precedence (lower than multiplication) as a binary operator.
6956
d78f0ac9
AD
6957The Bison precedence declarations
6958can only be used once for a given token; so a token has
bfa74976
RS
6959only one precedence declared in this way. For context-dependent
6960precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6961modifier for rules.
bfa74976
RS
6962
6963The @code{%prec} modifier declares the precedence of a particular rule by
6964specifying a terminal symbol whose precedence should be used for that rule.
6965It's not necessary for that symbol to appear otherwise in the rule. The
6966modifier's syntax is:
6967
6968@example
6969%prec @var{terminal-symbol}
6970@end example
6971
6972@noindent
6973and it is written after the components of the rule. Its effect is to
6974assign the rule the precedence of @var{terminal-symbol}, overriding
6975the precedence that would be deduced for it in the ordinary way. The
6976altered rule precedence then affects how conflicts involving that rule
6977are resolved (@pxref{Precedence, ,Operator Precedence}).
6978
6979Here is how @code{%prec} solves the problem of unary minus. First, declare
6980a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6981are no tokens of this type, but the symbol serves to stand for its
6982precedence:
6983
6984@example
6985@dots{}
6986%left '+' '-'
6987%left '*'
6988%left UMINUS
6989@end example
6990
6991Now the precedence of @code{UMINUS} can be used in specific rules:
6992
6993@example
6994@group
6995exp: @dots{}
6996 | exp '-' exp
6997 @dots{}
6998 | '-' exp %prec UMINUS
6999@end group
7000@end example
7001
91d2c560 7002@ifset defaultprec
39a06c25
PE
7003If you forget to append @code{%prec UMINUS} to the rule for unary
7004minus, Bison silently assumes that minus has its usual precedence.
7005This kind of problem can be tricky to debug, since one typically
7006discovers the mistake only by testing the code.
7007
22fccf95 7008The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
7009this kind of problem systematically. It causes rules that lack a
7010@code{%prec} modifier to have no precedence, even if the last terminal
7011symbol mentioned in their components has a declared precedence.
7012
22fccf95 7013If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
7014for all rules that participate in precedence conflict resolution.
7015Then you will see any shift/reduce conflict until you tell Bison how
7016to resolve it, either by changing your grammar or by adding an
7017explicit precedence. This will probably add declarations to the
7018grammar, but it helps to protect against incorrect rule precedences.
7019
22fccf95
PE
7020The effect of @code{%no-default-prec;} can be reversed by giving
7021@code{%default-prec;}, which is the default.
91d2c560 7022@end ifset
39a06c25 7023
342b8b6e 7024@node Parser States
bfa74976
RS
7025@section Parser States
7026@cindex finite-state machine
7027@cindex parser state
7028@cindex state (of parser)
7029
7030The function @code{yyparse} is implemented using a finite-state machine.
7031The values pushed on the parser stack are not simply token type codes; they
7032represent the entire sequence of terminal and nonterminal symbols at or
7033near the top of the stack. The current state collects all the information
7034about previous input which is relevant to deciding what to do next.
7035
742e4900
JD
7036Each time a lookahead token is read, the current parser state together
7037with the type of lookahead token are looked up in a table. This table
7038entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
7039specifies the new parser state, which is pushed onto the top of the
7040parser stack. Or it can say, ``Reduce using rule number @var{n}.''
7041This means that a certain number of tokens or groupings are taken off
7042the top of the stack, and replaced by one grouping. In other words,
7043that number of states are popped from the stack, and one new state is
7044pushed.
7045
742e4900 7046There is one other alternative: the table can say that the lookahead token
bfa74976
RS
7047is erroneous in the current state. This causes error processing to begin
7048(@pxref{Error Recovery}).
7049
342b8b6e 7050@node Reduce/Reduce
bfa74976
RS
7051@section Reduce/Reduce Conflicts
7052@cindex reduce/reduce conflict
7053@cindex conflicts, reduce/reduce
7054
7055A reduce/reduce conflict occurs if there are two or more rules that apply
7056to the same sequence of input. This usually indicates a serious error
7057in the grammar.
7058
7059For example, here is an erroneous attempt to define a sequence
7060of zero or more @code{word} groupings.
7061
7062@example
d4fca427 7063@group
bfa74976
RS
7064sequence: /* empty */
7065 @{ printf ("empty sequence\n"); @}
7066 | maybeword
7067 | sequence word
7068 @{ printf ("added word %s\n", $2); @}
7069 ;
d4fca427 7070@end group
bfa74976 7071
d4fca427 7072@group
bfa74976
RS
7073maybeword: /* empty */
7074 @{ printf ("empty maybeword\n"); @}
7075 | word
7076 @{ printf ("single word %s\n", $1); @}
7077 ;
d4fca427 7078@end group
bfa74976
RS
7079@end example
7080
7081@noindent
7082The error is an ambiguity: there is more than one way to parse a single
7083@code{word} into a @code{sequence}. It could be reduced to a
7084@code{maybeword} and then into a @code{sequence} via the second rule.
7085Alternatively, nothing-at-all could be reduced into a @code{sequence}
7086via the first rule, and this could be combined with the @code{word}
7087using the third rule for @code{sequence}.
7088
7089There is also more than one way to reduce nothing-at-all into a
7090@code{sequence}. This can be done directly via the first rule,
7091or indirectly via @code{maybeword} and then the second rule.
7092
7093You might think that this is a distinction without a difference, because it
7094does not change whether any particular input is valid or not. But it does
7095affect which actions are run. One parsing order runs the second rule's
7096action; the other runs the first rule's action and the third rule's action.
7097In this example, the output of the program changes.
7098
7099Bison resolves a reduce/reduce conflict by choosing to use the rule that
7100appears first in the grammar, but it is very risky to rely on this. Every
7101reduce/reduce conflict must be studied and usually eliminated. Here is the
7102proper way to define @code{sequence}:
7103
7104@example
7105sequence: /* empty */
7106 @{ printf ("empty sequence\n"); @}
7107 | sequence word
7108 @{ printf ("added word %s\n", $2); @}
7109 ;
7110@end example
7111
7112Here is another common error that yields a reduce/reduce conflict:
7113
7114@example
7115sequence: /* empty */
7116 | sequence words
7117 | sequence redirects
7118 ;
7119
7120words: /* empty */
7121 | words word
7122 ;
7123
7124redirects:/* empty */
7125 | redirects redirect
7126 ;
7127@end example
7128
7129@noindent
7130The intention here is to define a sequence which can contain either
7131@code{word} or @code{redirect} groupings. The individual definitions of
7132@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7133three together make a subtle ambiguity: even an empty input can be parsed
7134in infinitely many ways!
7135
7136Consider: nothing-at-all could be a @code{words}. Or it could be two
7137@code{words} in a row, or three, or any number. It could equally well be a
7138@code{redirects}, or two, or any number. Or it could be a @code{words}
7139followed by three @code{redirects} and another @code{words}. And so on.
7140
7141Here are two ways to correct these rules. First, to make it a single level
7142of sequence:
7143
7144@example
7145sequence: /* empty */
7146 | sequence word
7147 | sequence redirect
7148 ;
7149@end example
7150
7151Second, to prevent either a @code{words} or a @code{redirects}
7152from being empty:
7153
7154@example
d4fca427 7155@group
bfa74976
RS
7156sequence: /* empty */
7157 | sequence words
7158 | sequence redirects
7159 ;
d4fca427 7160@end group
bfa74976 7161
d4fca427 7162@group
bfa74976
RS
7163words: word
7164 | words word
7165 ;
d4fca427 7166@end group
bfa74976 7167
d4fca427 7168@group
bfa74976
RS
7169redirects:redirect
7170 | redirects redirect
7171 ;
d4fca427 7172@end group
bfa74976
RS
7173@end example
7174
cc09e5be
JD
7175@node Mysterious Conflicts
7176@section Mysterious Conflicts
7fceb615 7177@cindex Mysterious Conflicts
bfa74976
RS
7178
7179Sometimes reduce/reduce conflicts can occur that don't look warranted.
7180Here is an example:
7181
7182@example
7183@group
7184%token ID
7185
7186%%
7187def: param_spec return_spec ','
7188 ;
7189param_spec:
7190 type
7191 | name_list ':' type
7192 ;
7193@end group
7194@group
7195return_spec:
7196 type
7197 | name ':' type
7198 ;
7199@end group
7200@group
7201type: ID
7202 ;
7203@end group
7204@group
7205name: ID
7206 ;
7207name_list:
7208 name
7209 | name ',' name_list
7210 ;
7211@end group
7212@end example
7213
7214It would seem that this grammar can be parsed with only a single token
742e4900 7215of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7216a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7217@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7218
7fceb615
JD
7219@cindex LR
7220@cindex LALR
eb45ef3b 7221However, for historical reasons, Bison cannot by default handle all
8a4281b9 7222LR(1) grammars.
eb45ef3b
JD
7223In this grammar, two contexts, that after an @code{ID} at the beginning
7224of a @code{param_spec} and likewise at the beginning of a
7225@code{return_spec}, are similar enough that Bison assumes they are the
7226same.
7227They appear similar because the same set of rules would be
bfa74976
RS
7228active---the rule for reducing to a @code{name} and that for reducing to
7229a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7230that the rules would require different lookahead tokens in the two
bfa74976
RS
7231contexts, so it makes a single parser state for them both. Combining
7232the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7233occurrence means that the grammar is not LALR(1).
bfa74976 7234
7fceb615
JD
7235@cindex IELR
7236@cindex canonical LR
7237For many practical grammars (specifically those that fall into the non-LR(1)
7238class), the limitations of LALR(1) result in difficulties beyond just
7239mysterious reduce/reduce conflicts. The best way to fix all these problems
7240is to select a different parser table construction algorithm. Either
7241IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7242and easier to debug during development. @xref{LR Table Construction}, for
7243details. (Bison's IELR(1) and canonical LR(1) implementations are
7244experimental. More user feedback will help to stabilize them.)
eb45ef3b 7245
8a4281b9 7246If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7247can often fix a mysterious conflict by identifying the two parser states
7248that are being confused, and adding something to make them look
7249distinct. In the above example, adding one rule to
bfa74976
RS
7250@code{return_spec} as follows makes the problem go away:
7251
7252@example
7253@group
7254%token BOGUS
7255@dots{}
7256%%
7257@dots{}
7258return_spec:
7259 type
7260 | name ':' type
7261 /* This rule is never used. */
7262 | ID BOGUS
7263 ;
7264@end group
7265@end example
7266
7267This corrects the problem because it introduces the possibility of an
7268additional active rule in the context after the @code{ID} at the beginning of
7269@code{return_spec}. This rule is not active in the corresponding context
7270in a @code{param_spec}, so the two contexts receive distinct parser states.
7271As long as the token @code{BOGUS} is never generated by @code{yylex},
7272the added rule cannot alter the way actual input is parsed.
7273
7274In this particular example, there is another way to solve the problem:
7275rewrite the rule for @code{return_spec} to use @code{ID} directly
7276instead of via @code{name}. This also causes the two confusing
7277contexts to have different sets of active rules, because the one for
7278@code{return_spec} activates the altered rule for @code{return_spec}
7279rather than the one for @code{name}.
7280
7281@example
7282param_spec:
7283 type
7284 | name_list ':' type
7285 ;
7286return_spec:
7287 type
7288 | ID ':' type
7289 ;
7290@end example
7291
8a4281b9 7292For a more detailed exposition of LALR(1) parsers and parser
5e528941 7293generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7294
7fceb615
JD
7295@node Tuning LR
7296@section Tuning LR
7297
7298The default behavior of Bison's LR-based parsers is chosen mostly for
7299historical reasons, but that behavior is often not robust. For example, in
7300the previous section, we discussed the mysterious conflicts that can be
7301produced by LALR(1), Bison's default parser table construction algorithm.
7302Another example is Bison's @code{%define parse.error verbose} directive,
7303which instructs the generated parser to produce verbose syntax error
7304messages, which can sometimes contain incorrect information.
7305
7306In this section, we explore several modern features of Bison that allow you
7307to tune fundamental aspects of the generated LR-based parsers. Some of
7308these features easily eliminate shortcomings like those mentioned above.
7309Others can be helpful purely for understanding your parser.
7310
7311Most of the features discussed in this section are still experimental. More
7312user feedback will help to stabilize them.
7313
7314@menu
7315* LR Table Construction:: Choose a different construction algorithm.
7316* Default Reductions:: Disable default reductions.
7317* LAC:: Correct lookahead sets in the parser states.
7318* Unreachable States:: Keep unreachable parser states for debugging.
7319@end menu
7320
7321@node LR Table Construction
7322@subsection LR Table Construction
7323@cindex Mysterious Conflict
7324@cindex LALR
7325@cindex IELR
7326@cindex canonical LR
7327@findex %define lr.type
7328
7329For historical reasons, Bison constructs LALR(1) parser tables by default.
7330However, LALR does not possess the full language-recognition power of LR.
7331As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7332mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7333Conflicts}.
7334
7335As we also demonstrated in that example, the traditional approach to
7336eliminating such mysterious behavior is to restructure the grammar.
7337Unfortunately, doing so correctly is often difficult. Moreover, merely
7338discovering that LALR causes mysterious behavior in your parser can be
7339difficult as well.
7340
7341Fortunately, Bison provides an easy way to eliminate the possibility of such
7342mysterious behavior altogether. You simply need to activate a more powerful
7343parser table construction algorithm by using the @code{%define lr.type}
7344directive.
7345
7346@deffn {Directive} {%define lr.type @var{TYPE}}
7347Specify the type of parser tables within the LR(1) family. The accepted
7348values for @var{TYPE} are:
7349
7350@itemize
7351@item @code{lalr} (default)
7352@item @code{ielr}
7353@item @code{canonical-lr}
7354@end itemize
7355
7356(This feature is experimental. More user feedback will help to stabilize
7357it.)
7358@end deffn
7359
7360For example, to activate IELR, you might add the following directive to you
7361grammar file:
7362
7363@example
7364%define lr.type ielr
7365@end example
7366
cc09e5be 7367@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7368conflict is then eliminated, so there is no need to invest time in
7369comprehending the conflict or restructuring the grammar to fix it. If,
7370during future development, the grammar evolves such that all mysterious
7371behavior would have disappeared using just LALR, you need not fear that
7372continuing to use IELR will result in unnecessarily large parser tables.
7373That is, IELR generates LALR tables when LALR (using a deterministic parsing
7374algorithm) is sufficient to support the full language-recognition power of
7375LR. Thus, by enabling IELR at the start of grammar development, you can
7376safely and completely eliminate the need to consider LALR's shortcomings.
7377
7378While IELR is almost always preferable, there are circumstances where LALR
7379or the canonical LR parser tables described by Knuth
7380(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7381relative advantages of each parser table construction algorithm within
7382Bison:
7383
7384@itemize
7385@item LALR
7386
7387There are at least two scenarios where LALR can be worthwhile:
7388
7389@itemize
7390@item GLR without static conflict resolution.
7391
7392@cindex GLR with LALR
7393When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7394conflicts statically (for example, with @code{%left} or @code{%prec}), then
7395the parser explores all potential parses of any given input. In this case,
7396the choice of parser table construction algorithm is guaranteed not to alter
7397the language accepted by the parser. LALR parser tables are the smallest
7398parser tables Bison can currently construct, so they may then be preferable.
7399Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7400more like a deterministic parser in the syntactic contexts where those
7401conflicts appear, and so either IELR or canonical LR can then be helpful to
7402avoid LALR's mysterious behavior.
7403
7404@item Malformed grammars.
7405
7406Occasionally during development, an especially malformed grammar with a
7407major recurring flaw may severely impede the IELR or canonical LR parser
7408table construction algorithm. LALR can be a quick way to construct parser
7409tables in order to investigate such problems while ignoring the more subtle
7410differences from IELR and canonical LR.
7411@end itemize
7412
7413@item IELR
7414
7415IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7416any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7417always accept exactly the same set of sentences. However, like LALR, IELR
7418merges parser states during parser table construction so that the number of
7419parser states is often an order of magnitude less than for canonical LR.
7420More importantly, because canonical LR's extra parser states may contain
7421duplicate conflicts in the case of non-LR grammars, the number of conflicts
7422for IELR is often an order of magnitude less as well. This effect can
7423significantly reduce the complexity of developing a grammar.
7424
7425@item Canonical LR
7426
7427@cindex delayed syntax error detection
7428@cindex LAC
7429@findex %nonassoc
7430While inefficient, canonical LR parser tables can be an interesting means to
7431explore a grammar because they possess a property that IELR and LALR tables
7432do not. That is, if @code{%nonassoc} is not used and default reductions are
7433left disabled (@pxref{Default Reductions}), then, for every left context of
7434every canonical LR state, the set of tokens accepted by that state is
7435guaranteed to be the exact set of tokens that is syntactically acceptable in
7436that left context. It might then seem that an advantage of canonical LR
7437parsers in production is that, under the above constraints, they are
7438guaranteed to detect a syntax error as soon as possible without performing
7439any unnecessary reductions. However, IELR parsers that use LAC are also
7440able to achieve this behavior without sacrificing @code{%nonassoc} or
7441default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7442@end itemize
7443
7444For a more detailed exposition of the mysterious behavior in LALR parsers
7445and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7446@ref{Bibliography,,Denny 2010 November}.
7447
7448@node Default Reductions
7449@subsection Default Reductions
7450@cindex default reductions
7451@findex %define lr.default-reductions
7452@findex %nonassoc
7453
7454After parser table construction, Bison identifies the reduction with the
7455largest lookahead set in each parser state. To reduce the size of the
7456parser state, traditional Bison behavior is to remove that lookahead set and
7457to assign that reduction to be the default parser action. Such a reduction
7458is known as a @dfn{default reduction}.
7459
7460Default reductions affect more than the size of the parser tables. They
7461also affect the behavior of the parser:
7462
7463@itemize
7464@item Delayed @code{yylex} invocations.
7465
7466@cindex delayed yylex invocations
7467@cindex consistent states
7468@cindex defaulted states
7469A @dfn{consistent state} is a state that has only one possible parser
7470action. If that action is a reduction and is encoded as a default
7471reduction, then that consistent state is called a @dfn{defaulted state}.
7472Upon reaching a defaulted state, a Bison-generated parser does not bother to
7473invoke @code{yylex} to fetch the next token before performing the reduction.
7474In other words, whether default reductions are enabled in consistent states
7475determines how soon a Bison-generated parser invokes @code{yylex} for a
7476token: immediately when it @emph{reaches} that token in the input or when it
7477eventually @emph{needs} that token as a lookahead to determine the next
7478parser action. Traditionally, default reductions are enabled, and so the
7479parser exhibits the latter behavior.
7480
7481The presence of defaulted states is an important consideration when
7482designing @code{yylex} and the grammar file. That is, if the behavior of
7483@code{yylex} can influence or be influenced by the semantic actions
7484associated with the reductions in defaulted states, then the delay of the
7485next @code{yylex} invocation until after those reductions is significant.
7486For example, the semantic actions might pop a scope stack that @code{yylex}
7487uses to determine what token to return. Thus, the delay might be necessary
7488to ensure that @code{yylex} does not look up the next token in a scope that
7489should already be considered closed.
7490
7491@item Delayed syntax error detection.
7492
7493@cindex delayed syntax error detection
7494When the parser fetches a new token by invoking @code{yylex}, it checks
7495whether there is an action for that token in the current parser state. The
7496parser detects a syntax error if and only if either (1) there is no action
7497for that token or (2) the action for that token is the error action (due to
7498the use of @code{%nonassoc}). However, if there is a default reduction in
7499that state (which might or might not be a defaulted state), then it is
7500impossible for condition 1 to exist. That is, all tokens have an action.
7501Thus, the parser sometimes fails to detect the syntax error until it reaches
7502a later state.
7503
7504@cindex LAC
7505@c If there's an infinite loop, default reductions can prevent an incorrect
7506@c sentence from being rejected.
7507While default reductions never cause the parser to accept syntactically
7508incorrect sentences, the delay of syntax error detection can have unexpected
7509effects on the behavior of the parser. However, the delay can be caused
7510anyway by parser state merging and the use of @code{%nonassoc}, and it can
7511be fixed by another Bison feature, LAC. We discuss the effects of delayed
7512syntax error detection and LAC more in the next section (@pxref{LAC}).
7513@end itemize
7514
7515For canonical LR, the only default reduction that Bison enables by default
7516is the accept action, which appears only in the accepting state, which has
7517no other action and is thus a defaulted state. However, the default accept
7518action does not delay any @code{yylex} invocation or syntax error detection
7519because the accept action ends the parse.
7520
7521For LALR and IELR, Bison enables default reductions in nearly all states by
7522default. There are only two exceptions. First, states that have a shift
7523action on the @code{error} token do not have default reductions because
7524delayed syntax error detection could then prevent the @code{error} token
7525from ever being shifted in that state. However, parser state merging can
7526cause the same effect anyway, and LAC fixes it in both cases, so future
7527versions of Bison might drop this exception when LAC is activated. Second,
7528GLR parsers do not record the default reduction as the action on a lookahead
7529token for which there is a conflict. The correct action in this case is to
7530split the parse instead.
7531
7532To adjust which states have default reductions enabled, use the
7533@code{%define lr.default-reductions} directive.
7534
7535@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7536Specify the kind of states that are permitted to contain default reductions.
7537The accepted values of @var{WHERE} are:
7538@itemize
f0ad1b2f 7539@item @code{most} (default for LALR and IELR)
7fceb615
JD
7540@item @code{consistent}
7541@item @code{accepting} (default for canonical LR)
7542@end itemize
7543
7544(The ability to specify where default reductions are permitted is
7545experimental. More user feedback will help to stabilize it.)
7546@end deffn
7547
7fceb615
JD
7548@node LAC
7549@subsection LAC
7550@findex %define parse.lac
7551@cindex LAC
7552@cindex lookahead correction
7553
7554Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7555encountering a syntax error. First, the parser might perform additional
7556parser stack reductions before discovering the syntax error. Such
7557reductions can perform user semantic actions that are unexpected because
7558they are based on an invalid token, and they cause error recovery to begin
7559in a different syntactic context than the one in which the invalid token was
7560encountered. Second, when verbose error messages are enabled (@pxref{Error
7561Reporting}), the expected token list in the syntax error message can both
7562contain invalid tokens and omit valid tokens.
7563
7564The culprits for the above problems are @code{%nonassoc}, default reductions
7565in inconsistent states (@pxref{Default Reductions}), and parser state
7566merging. Because IELR and LALR merge parser states, they suffer the most.
7567Canonical LR can suffer only if @code{%nonassoc} is used or if default
7568reductions are enabled for inconsistent states.
7569
7570LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7571that solves these problems for canonical LR, IELR, and LALR without
7572sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7573enable LAC with the @code{%define parse.lac} directive.
7574
7575@deffn {Directive} {%define parse.lac @var{VALUE}}
7576Enable LAC to improve syntax error handling.
7577@itemize
7578@item @code{none} (default)
7579@item @code{full}
7580@end itemize
7581(This feature is experimental. More user feedback will help to stabilize
7582it. Moreover, it is currently only available for deterministic parsers in
7583C.)
7584@end deffn
7585
7586Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7587fetches a new token from the scanner so that it can determine the next
7588parser action, it immediately suspends normal parsing and performs an
7589exploratory parse using a temporary copy of the normal parser state stack.
7590During this exploratory parse, the parser does not perform user semantic
7591actions. If the exploratory parse reaches a shift action, normal parsing
7592then resumes on the normal parser stacks. If the exploratory parse reaches
7593an error instead, the parser reports a syntax error. If verbose syntax
7594error messages are enabled, the parser must then discover the list of
7595expected tokens, so it performs a separate exploratory parse for each token
7596in the grammar.
7597
7598There is one subtlety about the use of LAC. That is, when in a consistent
7599parser state with a default reduction, the parser will not attempt to fetch
7600a token from the scanner because no lookahead is needed to determine the
7601next parser action. Thus, whether default reductions are enabled in
7602consistent states (@pxref{Default Reductions}) affects how soon the parser
7603detects a syntax error: immediately when it @emph{reaches} an erroneous
7604token or when it eventually @emph{needs} that token as a lookahead to
7605determine the next parser action. The latter behavior is probably more
7606intuitive, so Bison currently provides no way to achieve the former behavior
7607while default reductions are enabled in consistent states.
7608
7609Thus, when LAC is in use, for some fixed decision of whether to enable
7610default reductions in consistent states, canonical LR and IELR behave almost
7611exactly the same for both syntactically acceptable and syntactically
7612unacceptable input. While LALR still does not support the full
7613language-recognition power of canonical LR and IELR, LAC at least enables
7614LALR's syntax error handling to correctly reflect LALR's
7615language-recognition power.
7616
7617There are a few caveats to consider when using LAC:
7618
7619@itemize
7620@item Infinite parsing loops.
7621
7622IELR plus LAC does have one shortcoming relative to canonical LR. Some
7623parsers generated by Bison can loop infinitely. LAC does not fix infinite
7624parsing loops that occur between encountering a syntax error and detecting
7625it, but enabling canonical LR or disabling default reductions sometimes
7626does.
7627
7628@item Verbose error message limitations.
7629
7630Because of internationalization considerations, Bison-generated parsers
7631limit the size of the expected token list they are willing to report in a
7632verbose syntax error message. If the number of expected tokens exceeds that
7633limit, the list is simply dropped from the message. Enabling LAC can
7634increase the size of the list and thus cause the parser to drop it. Of
7635course, dropping the list is better than reporting an incorrect list.
7636
7637@item Performance.
7638
7639Because LAC requires many parse actions to be performed twice, it can have a
7640performance penalty. However, not all parse actions must be performed
7641twice. Specifically, during a series of default reductions in consistent
7642states and shift actions, the parser never has to initiate an exploratory
7643parse. Moreover, the most time-consuming tasks in a parse are often the
7644file I/O, the lexical analysis performed by the scanner, and the user's
7645semantic actions, but none of these are performed during the exploratory
7646parse. Finally, the base of the temporary stack used during an exploratory
7647parse is a pointer into the normal parser state stack so that the stack is
7648never physically copied. In our experience, the performance penalty of LAC
7649has proven insignificant for practical grammars.
7650@end itemize
7651
709c7d11
JD
7652While the LAC algorithm shares techniques that have been recognized in the
7653parser community for years, for the publication that introduces LAC,
7654@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7655
7fceb615
JD
7656@node Unreachable States
7657@subsection Unreachable States
7658@findex %define lr.keep-unreachable-states
7659@cindex unreachable states
7660
7661If there exists no sequence of transitions from the parser's start state to
7662some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7663state}. A state can become unreachable during conflict resolution if Bison
7664disables a shift action leading to it from a predecessor state.
7665
7666By default, Bison removes unreachable states from the parser after conflict
7667resolution because they are useless in the generated parser. However,
7668keeping unreachable states is sometimes useful when trying to understand the
7669relationship between the parser and the grammar.
7670
7671@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7672Request that Bison allow unreachable states to remain in the parser tables.
7673@var{VALUE} must be a Boolean. The default is @code{false}.
7674@end deffn
7675
7676There are a few caveats to consider:
7677
7678@itemize @bullet
7679@item Missing or extraneous warnings.
7680
7681Unreachable states may contain conflicts and may use rules not used in any
7682other state. Thus, keeping unreachable states may induce warnings that are
7683irrelevant to your parser's behavior, and it may eliminate warnings that are
7684relevant. Of course, the change in warnings may actually be relevant to a
7685parser table analysis that wants to keep unreachable states, so this
7686behavior will likely remain in future Bison releases.
7687
7688@item Other useless states.
7689
7690While Bison is able to remove unreachable states, it is not guaranteed to
7691remove other kinds of useless states. Specifically, when Bison disables
7692reduce actions during conflict resolution, some goto actions may become
7693useless, and thus some additional states may become useless. If Bison were
7694to compute which goto actions were useless and then disable those actions,
7695it could identify such states as unreachable and then remove those states.
7696However, Bison does not compute which goto actions are useless.
7697@end itemize
7698
fae437e8 7699@node Generalized LR Parsing
8a4281b9
JD
7700@section Generalized LR (GLR) Parsing
7701@cindex GLR parsing
7702@cindex generalized LR (GLR) parsing
676385e2 7703@cindex ambiguous grammars
9d9b8b70 7704@cindex nondeterministic parsing
676385e2 7705
fae437e8
AD
7706Bison produces @emph{deterministic} parsers that choose uniquely
7707when to reduce and which reduction to apply
742e4900 7708based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7709As a result, normal Bison handles a proper subset of the family of
7710context-free languages.
fae437e8 7711Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7712sequence of reductions cannot have deterministic parsers in this sense.
7713The same is true of languages that require more than one symbol of
742e4900 7714lookahead, since the parser lacks the information necessary to make a
676385e2 7715decision at the point it must be made in a shift-reduce parser.
cc09e5be 7716Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7717there are languages where Bison's default choice of how to
676385e2
PH
7718summarize the input seen so far loses necessary information.
7719
7720When you use the @samp{%glr-parser} declaration in your grammar file,
7721Bison generates a parser that uses a different algorithm, called
8a4281b9 7722Generalized LR (or GLR). A Bison GLR
c827f760 7723parser uses the same basic
676385e2
PH
7724algorithm for parsing as an ordinary Bison parser, but behaves
7725differently in cases where there is a shift-reduce conflict that has not
fae437e8 7726been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7727reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7728situation, it
fae437e8 7729effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7730shift or reduction. These parsers then proceed as usual, consuming
7731tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7732and split further, with the result that instead of a sequence of states,
8a4281b9 7733a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7734
7735In effect, each stack represents a guess as to what the proper parse
7736is. Additional input may indicate that a guess was wrong, in which case
7737the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7738actions generated in each stack are saved, rather than being executed
676385e2 7739immediately. When a stack disappears, its saved semantic actions never
fae437e8 7740get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7741their sets of semantic actions are both saved with the state that
7742results from the reduction. We say that two stacks are equivalent
fae437e8 7743when they both represent the same sequence of states,
676385e2
PH
7744and each pair of corresponding states represents a
7745grammar symbol that produces the same segment of the input token
7746stream.
7747
7748Whenever the parser makes a transition from having multiple
eb45ef3b 7749states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7750algorithm, after resolving and executing the saved-up actions.
7751At this transition, some of the states on the stack will have semantic
7752values that are sets (actually multisets) of possible actions. The
7753parser tries to pick one of the actions by first finding one whose rule
7754has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7755declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7756precedence, but there the same merging function is declared for both
fae437e8 7757rules by the @samp{%merge} declaration,
676385e2
PH
7758Bison resolves and evaluates both and then calls the merge function on
7759the result. Otherwise, it reports an ambiguity.
7760
8a4281b9
JD
7761It is possible to use a data structure for the GLR parsing tree that
7762permits the processing of any LR(1) grammar in linear time (in the
c827f760 7763size of the input), any unambiguous (not necessarily
8a4281b9 7764LR(1)) grammar in
fae437e8 7765quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7766context-free grammar in cubic worst-case time. However, Bison currently
7767uses a simpler data structure that requires time proportional to the
7768length of the input times the maximum number of stacks required for any
9d9b8b70 7769prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7770grammars can require exponential time and space to process. Such badly
7771behaving examples, however, are not generally of practical interest.
9d9b8b70 7772Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7773doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7774structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7775grammar, in particular, it is only slightly slower than with the
8a4281b9 7776deterministic LR(1) Bison parser.
676385e2 7777
5e528941
JD
7778For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
77792000}.
f6481e2f 7780
1a059451
PE
7781@node Memory Management
7782@section Memory Management, and How to Avoid Memory Exhaustion
7783@cindex memory exhaustion
7784@cindex memory management
bfa74976
RS
7785@cindex stack overflow
7786@cindex parser stack overflow
7787@cindex overflow of parser stack
7788
1a059451 7789The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7790not reduced. When this happens, the parser function @code{yyparse}
1a059451 7791calls @code{yyerror} and then returns 2.
bfa74976 7792
c827f760 7793Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7794usually results from using a right recursion instead of a left
7795recursion, @xref{Recursion, ,Recursive Rules}.
7796
bfa74976
RS
7797@vindex YYMAXDEPTH
7798By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7799parser stack can become before memory is exhausted. Define the
bfa74976
RS
7800macro with a value that is an integer. This value is the maximum number
7801of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7802
7803The stack space allowed is not necessarily allocated. If you specify a
1a059451 7804large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7805stack at first, and then makes it bigger by stages as needed. This
7806increasing allocation happens automatically and silently. Therefore,
7807you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7808space for ordinary inputs that do not need much stack.
7809
d7e14fc0
PE
7810However, do not allow @code{YYMAXDEPTH} to be a value so large that
7811arithmetic overflow could occur when calculating the size of the stack
7812space. Also, do not allow @code{YYMAXDEPTH} to be less than
7813@code{YYINITDEPTH}.
7814
bfa74976
RS
7815@cindex default stack limit
7816The default value of @code{YYMAXDEPTH}, if you do not define it, is
781710000.
7818
7819@vindex YYINITDEPTH
7820You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7821macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7822parser in C, this value must be a compile-time constant
d7e14fc0
PE
7823unless you are assuming C99 or some other target language or compiler
7824that allows variable-length arrays. The default is 200.
7825
1a059451 7826Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7827
20be2f92 7828You can generate a deterministic parser containing C++ user code from
411614fa 7829the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
7830(@pxref{C++ Parsers}). However, if you do use the default skeleton
7831and want to allow the parsing stack to grow,
7832be careful not to use semantic types or location types that require
7833non-trivial copy constructors.
7834The C skeleton bypasses these constructors when copying data to
7835new, larger stacks.
d1a1114f 7836
342b8b6e 7837@node Error Recovery
bfa74976
RS
7838@chapter Error Recovery
7839@cindex error recovery
7840@cindex recovery from errors
7841
6e649e65 7842It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7843error. For example, a compiler should recover sufficiently to parse the
7844rest of the input file and check it for errors; a calculator should accept
7845another expression.
7846
7847In a simple interactive command parser where each input is one line, it may
7848be sufficient to allow @code{yyparse} to return 1 on error and have the
7849caller ignore the rest of the input line when that happens (and then call
7850@code{yyparse} again). But this is inadequate for a compiler, because it
7851forgets all the syntactic context leading up to the error. A syntax error
7852deep within a function in the compiler input should not cause the compiler
7853to treat the following line like the beginning of a source file.
7854
7855@findex error
7856You can define how to recover from a syntax error by writing rules to
7857recognize the special token @code{error}. This is a terminal symbol that
7858is always defined (you need not declare it) and reserved for error
7859handling. The Bison parser generates an @code{error} token whenever a
7860syntax error happens; if you have provided a rule to recognize this token
13863333 7861in the current context, the parse can continue.
bfa74976
RS
7862
7863For example:
7864
7865@example
7866stmnts: /* empty string */
7867 | stmnts '\n'
7868 | stmnts exp '\n'
7869 | stmnts error '\n'
7870@end example
7871
7872The fourth rule in this example says that an error followed by a newline
7873makes a valid addition to any @code{stmnts}.
7874
7875What happens if a syntax error occurs in the middle of an @code{exp}? The
7876error recovery rule, interpreted strictly, applies to the precise sequence
7877of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7878the middle of an @code{exp}, there will probably be some additional tokens
7879and subexpressions on the stack after the last @code{stmnts}, and there
7880will be tokens to read before the next newline. So the rule is not
7881applicable in the ordinary way.
7882
7883But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7884the semantic context and part of the input. First it discards states
7885and objects from the stack until it gets back to a state in which the
bfa74976 7886@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7887already parsed are discarded, back to the last complete @code{stmnts}.)
7888At this point the @code{error} token can be shifted. Then, if the old
742e4900 7889lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7890tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7891this example, Bison reads and discards input until the next newline so
7892that the fourth rule can apply. Note that discarded symbols are
7893possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7894Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7895
7896The choice of error rules in the grammar is a choice of strategies for
7897error recovery. A simple and useful strategy is simply to skip the rest of
7898the current input line or current statement if an error is detected:
7899
7900@example
72d2299c 7901stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7902@end example
7903
7904It is also useful to recover to the matching close-delimiter of an
7905opening-delimiter that has already been parsed. Otherwise the
7906close-delimiter will probably appear to be unmatched, and generate another,
7907spurious error message:
7908
7909@example
7910primary: '(' expr ')'
7911 | '(' error ')'
7912 @dots{}
7913 ;
7914@end example
7915
7916Error recovery strategies are necessarily guesses. When they guess wrong,
7917one syntax error often leads to another. In the above example, the error
7918recovery rule guesses that an error is due to bad input within one
7919@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7920middle of a valid @code{stmnt}. After the error recovery rule recovers
7921from the first error, another syntax error will be found straightaway,
7922since the text following the spurious semicolon is also an invalid
7923@code{stmnt}.
7924
7925To prevent an outpouring of error messages, the parser will output no error
7926message for another syntax error that happens shortly after the first; only
7927after three consecutive input tokens have been successfully shifted will
7928error messages resume.
7929
7930Note that rules which accept the @code{error} token may have actions, just
7931as any other rules can.
7932
7933@findex yyerrok
7934You can make error messages resume immediately by using the macro
7935@code{yyerrok} in an action. If you do this in the error rule's action, no
7936error messages will be suppressed. This macro requires no arguments;
7937@samp{yyerrok;} is a valid C statement.
7938
7939@findex yyclearin
742e4900 7940The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7941this is unacceptable, then the macro @code{yyclearin} may be used to clear
7942this token. Write the statement @samp{yyclearin;} in the error rule's
7943action.
32c29292 7944@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7945
6e649e65 7946For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7947called that advances the input stream to some point where parsing should
7948once again commence. The next symbol returned by the lexical scanner is
742e4900 7949probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7950with @samp{yyclearin;}.
7951
7952@vindex YYRECOVERING
02103984
PE
7953The expression @code{YYRECOVERING ()} yields 1 when the parser
7954is recovering from a syntax error, and 0 otherwise.
7955Syntax error diagnostics are suppressed while recovering from a syntax
7956error.
bfa74976 7957
342b8b6e 7958@node Context Dependency
bfa74976
RS
7959@chapter Handling Context Dependencies
7960
7961The Bison paradigm is to parse tokens first, then group them into larger
7962syntactic units. In many languages, the meaning of a token is affected by
7963its context. Although this violates the Bison paradigm, certain techniques
7964(known as @dfn{kludges}) may enable you to write Bison parsers for such
7965languages.
7966
7967@menu
7968* Semantic Tokens:: Token parsing can depend on the semantic context.
7969* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7970* Tie-in Recovery:: Lexical tie-ins have implications for how
7971 error recovery rules must be written.
7972@end menu
7973
7974(Actually, ``kludge'' means any technique that gets its job done but is
7975neither clean nor robust.)
7976
342b8b6e 7977@node Semantic Tokens
bfa74976
RS
7978@section Semantic Info in Token Types
7979
7980The C language has a context dependency: the way an identifier is used
7981depends on what its current meaning is. For example, consider this:
7982
7983@example
7984foo (x);
7985@end example
7986
7987This looks like a function call statement, but if @code{foo} is a typedef
7988name, then this is actually a declaration of @code{x}. How can a Bison
7989parser for C decide how to parse this input?
7990
8a4281b9 7991The method used in GNU C is to have two different token types,
bfa74976
RS
7992@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7993identifier, it looks up the current declaration of the identifier in order
7994to decide which token type to return: @code{TYPENAME} if the identifier is
7995declared as a typedef, @code{IDENTIFIER} otherwise.
7996
7997The grammar rules can then express the context dependency by the choice of
7998token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7999but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
8000@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
8001is @emph{not} significant, such as in declarations that can shadow a
8002typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
8003accepted---there is one rule for each of the two token types.
8004
8005This technique is simple to use if the decision of which kinds of
8006identifiers to allow is made at a place close to where the identifier is
8007parsed. But in C this is not always so: C allows a declaration to
8008redeclare a typedef name provided an explicit type has been specified
8009earlier:
8010
8011@example
3a4f411f
PE
8012typedef int foo, bar;
8013int baz (void)
d4fca427 8014@group
3a4f411f
PE
8015@{
8016 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
8017 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
8018 return foo (bar);
8019@}
d4fca427 8020@end group
bfa74976
RS
8021@end example
8022
8023Unfortunately, the name being declared is separated from the declaration
8024construct itself by a complicated syntactic structure---the ``declarator''.
8025
9ecbd125 8026As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
8027all the nonterminal names changed: once for parsing a declaration in
8028which a typedef name can be redefined, and once for parsing a
8029declaration in which that can't be done. Here is a part of the
8030duplication, with actions omitted for brevity:
bfa74976
RS
8031
8032@example
d4fca427 8033@group
bfa74976
RS
8034initdcl:
8035 declarator maybeasm '='
8036 init
8037 | declarator maybeasm
8038 ;
d4fca427 8039@end group
bfa74976 8040
d4fca427 8041@group
bfa74976
RS
8042notype_initdcl:
8043 notype_declarator maybeasm '='
8044 init
8045 | notype_declarator maybeasm
8046 ;
d4fca427 8047@end group
bfa74976
RS
8048@end example
8049
8050@noindent
8051Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
8052cannot. The distinction between @code{declarator} and
8053@code{notype_declarator} is the same sort of thing.
8054
8055There is some similarity between this technique and a lexical tie-in
8056(described next), in that information which alters the lexical analysis is
8057changed during parsing by other parts of the program. The difference is
8058here the information is global, and is used for other purposes in the
8059program. A true lexical tie-in has a special-purpose flag controlled by
8060the syntactic context.
8061
342b8b6e 8062@node Lexical Tie-ins
bfa74976
RS
8063@section Lexical Tie-ins
8064@cindex lexical tie-in
8065
8066One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
8067which is set by Bison actions, whose purpose is to alter the way tokens are
8068parsed.
8069
8070For example, suppose we have a language vaguely like C, but with a special
8071construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
8072an expression in parentheses in which all integers are hexadecimal. In
8073particular, the token @samp{a1b} must be treated as an integer rather than
8074as an identifier if it appears in that context. Here is how you can do it:
8075
8076@example
8077@group
8078%@{
38a92d50
PE
8079 int hexflag;
8080 int yylex (void);
8081 void yyerror (char const *);
bfa74976
RS
8082%@}
8083%%
8084@dots{}
8085@end group
8086@group
8087expr: IDENTIFIER
8088 | constant
8089 | HEX '('
8090 @{ hexflag = 1; @}
8091 expr ')'
8092 @{ hexflag = 0;
8093 $$ = $4; @}
8094 | expr '+' expr
8095 @{ $$ = make_sum ($1, $3); @}
8096 @dots{}
8097 ;
8098@end group
8099
8100@group
8101constant:
8102 INTEGER
8103 | STRING
8104 ;
8105@end group
8106@end example
8107
8108@noindent
8109Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8110it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8111with letters are parsed as integers if possible.
8112
ff7571c0
JD
8113The declaration of @code{hexflag} shown in the prologue of the grammar
8114file is needed to make it accessible to the actions (@pxref{Prologue,
8115,The Prologue}). You must also write the code in @code{yylex} to obey
8116the flag.
bfa74976 8117
342b8b6e 8118@node Tie-in Recovery
bfa74976
RS
8119@section Lexical Tie-ins and Error Recovery
8120
8121Lexical tie-ins make strict demands on any error recovery rules you have.
8122@xref{Error Recovery}.
8123
8124The reason for this is that the purpose of an error recovery rule is to
8125abort the parsing of one construct and resume in some larger construct.
8126For example, in C-like languages, a typical error recovery rule is to skip
8127tokens until the next semicolon, and then start a new statement, like this:
8128
8129@example
8130stmt: expr ';'
8131 | IF '(' expr ')' stmt @{ @dots{} @}
8132 @dots{}
8133 error ';'
8134 @{ hexflag = 0; @}
8135 ;
8136@end example
8137
8138If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8139construct, this error rule will apply, and then the action for the
8140completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8141remain set for the entire rest of the input, or until the next @code{hex}
8142keyword, causing identifiers to be misinterpreted as integers.
8143
8144To avoid this problem the error recovery rule itself clears @code{hexflag}.
8145
8146There may also be an error recovery rule that works within expressions.
8147For example, there could be a rule which applies within parentheses
8148and skips to the close-parenthesis:
8149
8150@example
8151@group
8152expr: @dots{}
8153 | '(' expr ')'
8154 @{ $$ = $2; @}
8155 | '(' error ')'
8156 @dots{}
8157@end group
8158@end example
8159
8160If this rule acts within the @code{hex} construct, it is not going to abort
8161that construct (since it applies to an inner level of parentheses within
8162the construct). Therefore, it should not clear the flag: the rest of
8163the @code{hex} construct should be parsed with the flag still in effect.
8164
8165What if there is an error recovery rule which might abort out of the
8166@code{hex} construct or might not, depending on circumstances? There is no
8167way you can write the action to determine whether a @code{hex} construct is
8168being aborted or not. So if you are using a lexical tie-in, you had better
8169make sure your error recovery rules are not of this kind. Each rule must
8170be such that you can be sure that it always will, or always won't, have to
8171clear the flag.
8172
ec3bc396
AD
8173@c ================================================== Debugging Your Parser
8174
342b8b6e 8175@node Debugging
bfa74976 8176@chapter Debugging Your Parser
ec3bc396
AD
8177
8178Developing a parser can be a challenge, especially if you don't
8179understand the algorithm (@pxref{Algorithm, ,The Bison Parser
8180Algorithm}). Even so, sometimes a detailed description of the automaton
8181can help (@pxref{Understanding, , Understanding Your Parser}), or
8182tracing the execution of the parser can give some insight on why it
8183behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
8184
8185@menu
8186* Understanding:: Understanding the structure of your parser.
8187* Tracing:: Tracing the execution of your parser.
8188@end menu
8189
8190@node Understanding
8191@section Understanding Your Parser
8192
8193As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8194Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8195frequent than one would hope), looking at this automaton is required to
8196tune or simply fix a parser. Bison provides two different
35fe0834 8197representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8198
8199The textual file is generated when the options @option{--report} or
8200@option{--verbose} are specified, see @xref{Invocation, , Invoking
8201Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8202the parser implementation file name, and adding @samp{.output}
8203instead. Therefore, if the grammar file is @file{foo.y}, then the
8204parser implementation file is called @file{foo.tab.c} by default. As
8205a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8206
8207The following grammar file, @file{calc.y}, will be used in the sequel:
8208
8209@example
8210%token NUM STR
8211%left '+' '-'
8212%left '*'
8213%%
8214exp: exp '+' exp
8215 | exp '-' exp
8216 | exp '*' exp
8217 | exp '/' exp
8218 | NUM
8219 ;
8220useless: STR;
8221%%
8222@end example
8223
88bce5a2
AD
8224@command{bison} reports:
8225
8226@example
8f0d265e
JD
8227calc.y: warning: 1 nonterminal useless in grammar
8228calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8229calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8230calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8231calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8232@end example
8233
8234When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8235creates a file @file{calc.output} with contents detailed below. The
8236order of the output and the exact presentation might vary, but the
8237interpretation is the same.
ec3bc396
AD
8238
8239The first section includes details on conflicts that were solved thanks
8240to precedence and/or associativity:
8241
8242@example
8243Conflict in state 8 between rule 2 and token '+' resolved as reduce.
8244Conflict in state 8 between rule 2 and token '-' resolved as reduce.
8245Conflict in state 8 between rule 2 and token '*' resolved as shift.
8246@exdent @dots{}
8247@end example
8248
8249@noindent
8250The next section lists states that still have conflicts.
8251
8252@example
5a99098d
PE
8253State 8 conflicts: 1 shift/reduce
8254State 9 conflicts: 1 shift/reduce
8255State 10 conflicts: 1 shift/reduce
8256State 11 conflicts: 4 shift/reduce
ec3bc396
AD
8257@end example
8258
8259@noindent
8260@cindex token, useless
8261@cindex useless token
8262@cindex nonterminal, useless
8263@cindex useless nonterminal
8264@cindex rule, useless
8265@cindex useless rule
8266The next section reports useless tokens, nonterminal and rules. Useless
8267nonterminals and rules are removed in order to produce a smaller parser,
8268but useless tokens are preserved, since they might be used by the
d80fb37a 8269scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
8270below):
8271
8272@example
d80fb37a 8273Nonterminals useless in grammar:
ec3bc396
AD
8274 useless
8275
d80fb37a 8276Terminals unused in grammar:
ec3bc396
AD
8277 STR
8278
cff03fb2 8279Rules useless in grammar:
ec3bc396
AD
8280#6 useless: STR;
8281@end example
8282
8283@noindent
8284The next section reproduces the exact grammar that Bison used:
8285
8286@example
8287Grammar
8288
8289 Number, Line, Rule
88bce5a2 8290 0 5 $accept -> exp $end
ec3bc396
AD
8291 1 5 exp -> exp '+' exp
8292 2 6 exp -> exp '-' exp
8293 3 7 exp -> exp '*' exp
8294 4 8 exp -> exp '/' exp
8295 5 9 exp -> NUM
8296@end example
8297
8298@noindent
8299and reports the uses of the symbols:
8300
8301@example
d4fca427 8302@group
ec3bc396
AD
8303Terminals, with rules where they appear
8304
88bce5a2 8305$end (0) 0
ec3bc396
AD
8306'*' (42) 3
8307'+' (43) 1
8308'-' (45) 2
8309'/' (47) 4
8310error (256)
8311NUM (258) 5
d4fca427 8312@end group
ec3bc396 8313
d4fca427 8314@group
ec3bc396
AD
8315Nonterminals, with rules where they appear
8316
88bce5a2 8317$accept (8)
ec3bc396
AD
8318 on left: 0
8319exp (9)
8320 on left: 1 2 3 4 5, on right: 0 1 2 3 4
d4fca427 8321@end group
ec3bc396
AD
8322@end example
8323
8324@noindent
8325@cindex item
8326@cindex pointed rule
8327@cindex rule, pointed
8328Bison then proceeds onto the automaton itself, describing each state
8329with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
8330item is a production rule together with a point (marked by @samp{.})
8331that the input cursor.
8332
8333@example
8334state 0
8335
88bce5a2 8336 $accept -> . exp $ (rule 0)
ec3bc396 8337
2a8d363a 8338 NUM shift, and go to state 1
ec3bc396 8339
2a8d363a 8340 exp go to state 2
ec3bc396
AD
8341@end example
8342
8343This reads as follows: ``state 0 corresponds to being at the very
8344beginning of the parsing, in the initial rule, right before the start
8345symbol (here, @code{exp}). When the parser returns to this state right
8346after having reduced a rule that produced an @code{exp}, the control
8347flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 8348symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 8349the parse stack, and the control flow jumps to state 1. Any other
742e4900 8350lookahead triggers a syntax error.''
ec3bc396
AD
8351
8352@cindex core, item set
8353@cindex item set core
8354@cindex kernel, item set
8355@cindex item set core
8356Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8357report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8358at the beginning of any rule deriving an @code{exp}. By default Bison
8359reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8360you want to see more detail you can invoke @command{bison} with
8361@option{--report=itemset} to list all the items, include those that can
8362be derived:
8363
8364@example
8365state 0
8366
88bce5a2 8367 $accept -> . exp $ (rule 0)
ec3bc396
AD
8368 exp -> . exp '+' exp (rule 1)
8369 exp -> . exp '-' exp (rule 2)
8370 exp -> . exp '*' exp (rule 3)
8371 exp -> . exp '/' exp (rule 4)
8372 exp -> . NUM (rule 5)
8373
8374 NUM shift, and go to state 1
8375
8376 exp go to state 2
8377@end example
8378
8379@noindent
8380In the state 1...
8381
8382@example
8383state 1
8384
8385 exp -> NUM . (rule 5)
8386
2a8d363a 8387 $default reduce using rule 5 (exp)
ec3bc396
AD
8388@end example
8389
8390@noindent
742e4900 8391the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8392(@samp{$default}), the parser will reduce it. If it was coming from
8393state 0, then, after this reduction it will return to state 0, and will
8394jump to state 2 (@samp{exp: go to state 2}).
8395
8396@example
8397state 2
8398
88bce5a2 8399 $accept -> exp . $ (rule 0)
ec3bc396
AD
8400 exp -> exp . '+' exp (rule 1)
8401 exp -> exp . '-' exp (rule 2)
8402 exp -> exp . '*' exp (rule 3)
8403 exp -> exp . '/' exp (rule 4)
8404
2a8d363a
AD
8405 $ shift, and go to state 3
8406 '+' shift, and go to state 4
8407 '-' shift, and go to state 5
8408 '*' shift, and go to state 6
8409 '/' shift, and go to state 7
ec3bc396
AD
8410@end example
8411
8412@noindent
8413In state 2, the automaton can only shift a symbol. For instance,
742e4900 8414because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8415@samp{+}, it will be shifted on the parse stack, and the automaton
8416control will jump to state 4, corresponding to the item @samp{exp -> exp
8417'+' . exp}. Since there is no default action, any other token than
6e649e65 8418those listed above will trigger a syntax error.
ec3bc396 8419
eb45ef3b 8420@cindex accepting state
ec3bc396
AD
8421The state 3 is named the @dfn{final state}, or the @dfn{accepting
8422state}:
8423
8424@example
8425state 3
8426
88bce5a2 8427 $accept -> exp $ . (rule 0)
ec3bc396 8428
2a8d363a 8429 $default accept
ec3bc396
AD
8430@end example
8431
8432@noindent
8433the initial rule is completed (the start symbol and the end
8434of input were read), the parsing exits successfully.
8435
8436The interpretation of states 4 to 7 is straightforward, and is left to
8437the reader.
8438
8439@example
8440state 4
8441
8442 exp -> exp '+' . exp (rule 1)
8443
2a8d363a 8444 NUM shift, and go to state 1
ec3bc396 8445
2a8d363a 8446 exp go to state 8
ec3bc396
AD
8447
8448state 5
8449
8450 exp -> exp '-' . exp (rule 2)
8451
2a8d363a 8452 NUM shift, and go to state 1
ec3bc396 8453
2a8d363a 8454 exp go to state 9
ec3bc396
AD
8455
8456state 6
8457
8458 exp -> exp '*' . exp (rule 3)
8459
2a8d363a 8460 NUM shift, and go to state 1
ec3bc396 8461
2a8d363a 8462 exp go to state 10
ec3bc396
AD
8463
8464state 7
8465
8466 exp -> exp '/' . exp (rule 4)
8467
2a8d363a 8468 NUM shift, and go to state 1
ec3bc396 8469
2a8d363a 8470 exp go to state 11
ec3bc396
AD
8471@end example
8472
5a99098d
PE
8473As was announced in beginning of the report, @samp{State 8 conflicts:
84741 shift/reduce}:
ec3bc396
AD
8475
8476@example
8477state 8
8478
8479 exp -> exp . '+' exp (rule 1)
8480 exp -> exp '+' exp . (rule 1)
8481 exp -> exp . '-' exp (rule 2)
8482 exp -> exp . '*' exp (rule 3)
8483 exp -> exp . '/' exp (rule 4)
8484
2a8d363a
AD
8485 '*' shift, and go to state 6
8486 '/' shift, and go to state 7
ec3bc396 8487
2a8d363a
AD
8488 '/' [reduce using rule 1 (exp)]
8489 $default reduce using rule 1 (exp)
ec3bc396
AD
8490@end example
8491
742e4900 8492Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8493either shifting (and going to state 7), or reducing rule 1. The
8494conflict means that either the grammar is ambiguous, or the parser lacks
8495information to make the right decision. Indeed the grammar is
8496ambiguous, as, since we did not specify the precedence of @samp{/}, the
8497sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8498NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8499NUM}, which corresponds to reducing rule 1.
8500
eb45ef3b 8501Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8502arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8503Shift/Reduce Conflicts}. Discarded actions are reported in between
8504square brackets.
8505
8506Note that all the previous states had a single possible action: either
8507shifting the next token and going to the corresponding state, or
8508reducing a single rule. In the other cases, i.e., when shifting
8509@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8510possible, the lookahead is required to select the action. State 8 is
8511one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8512is shifting, otherwise the action is reducing rule 1. In other words,
8513the first two items, corresponding to rule 1, are not eligible when the
742e4900 8514lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8515precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8516with some set of possible lookahead tokens. When run with
8517@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8518
8519@example
8520state 8
8521
88c78747 8522 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8523 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8524 exp -> exp . '-' exp (rule 2)
8525 exp -> exp . '*' exp (rule 3)
8526 exp -> exp . '/' exp (rule 4)
8527
8528 '*' shift, and go to state 6
8529 '/' shift, and go to state 7
8530
8531 '/' [reduce using rule 1 (exp)]
8532 $default reduce using rule 1 (exp)
8533@end example
8534
8535The remaining states are similar:
8536
8537@example
d4fca427 8538@group
ec3bc396
AD
8539state 9
8540
8541 exp -> exp . '+' exp (rule 1)
8542 exp -> exp . '-' exp (rule 2)
8543 exp -> exp '-' exp . (rule 2)
8544 exp -> exp . '*' exp (rule 3)
8545 exp -> exp . '/' exp (rule 4)
8546
2a8d363a
AD
8547 '*' shift, and go to state 6
8548 '/' shift, and go to state 7
ec3bc396 8549
2a8d363a
AD
8550 '/' [reduce using rule 2 (exp)]
8551 $default reduce using rule 2 (exp)
d4fca427 8552@end group
ec3bc396 8553
d4fca427 8554@group
ec3bc396
AD
8555state 10
8556
8557 exp -> exp . '+' exp (rule 1)
8558 exp -> exp . '-' exp (rule 2)
8559 exp -> exp . '*' exp (rule 3)
8560 exp -> exp '*' exp . (rule 3)
8561 exp -> exp . '/' exp (rule 4)
8562
2a8d363a 8563 '/' shift, and go to state 7
ec3bc396 8564
2a8d363a
AD
8565 '/' [reduce using rule 3 (exp)]
8566 $default reduce using rule 3 (exp)
d4fca427 8567@end group
ec3bc396 8568
d4fca427 8569@group
ec3bc396
AD
8570state 11
8571
8572 exp -> exp . '+' exp (rule 1)
8573 exp -> exp . '-' exp (rule 2)
8574 exp -> exp . '*' exp (rule 3)
8575 exp -> exp . '/' exp (rule 4)
8576 exp -> exp '/' exp . (rule 4)
8577
2a8d363a
AD
8578 '+' shift, and go to state 4
8579 '-' shift, and go to state 5
8580 '*' shift, and go to state 6
8581 '/' shift, and go to state 7
ec3bc396 8582
2a8d363a
AD
8583 '+' [reduce using rule 4 (exp)]
8584 '-' [reduce using rule 4 (exp)]
8585 '*' [reduce using rule 4 (exp)]
8586 '/' [reduce using rule 4 (exp)]
8587 $default reduce using rule 4 (exp)
d4fca427 8588@end group
ec3bc396
AD
8589@end example
8590
8591@noindent
fa7e68c3
PE
8592Observe that state 11 contains conflicts not only due to the lack of
8593precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8594@samp{*}, but also because the
ec3bc396
AD
8595associativity of @samp{/} is not specified.
8596
8597
8598@node Tracing
8599@section Tracing Your Parser
bfa74976
RS
8600@findex yydebug
8601@cindex debugging
8602@cindex tracing the parser
8603
8604If a Bison grammar compiles properly but doesn't do what you want when it
8605runs, the @code{yydebug} parser-trace feature can help you figure out why.
8606
3ded9a63
AD
8607There are several means to enable compilation of trace facilities:
8608
8609@table @asis
8610@item the macro @code{YYDEBUG}
8611@findex YYDEBUG
8612Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8613parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8614@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8615YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8616Prologue}).
8617
8618@item the option @option{-t}, @option{--debug}
8619Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8620,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8621
8622@item the directive @samp{%debug}
8623@findex %debug
fa819509
AD
8624Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8625Summary}). This Bison extension is maintained for backward
8626compatibility with previous versions of Bison.
8627
8628@item the variable @samp{parse.trace}
8629@findex %define parse.trace
35c1e5f0
JD
8630Add the @samp{%define parse.trace} directive (@pxref{%define
8631Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8632(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8633useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8634portability matter to you, this is the preferred solution.
3ded9a63
AD
8635@end table
8636
fa819509 8637We suggest that you always enable the trace option so that debugging is
3ded9a63 8638always possible.
bfa74976 8639
02a81e05 8640The trace facility outputs messages with macro calls of the form
e2742e46 8641@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8642@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8643arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8644define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8645and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8646
8647Once you have compiled the program with trace facilities, the way to
8648request a trace is to store a nonzero value in the variable @code{yydebug}.
8649You can do this by making the C code do it (in @code{main}, perhaps), or
8650you can alter the value with a C debugger.
8651
8652Each step taken by the parser when @code{yydebug} is nonzero produces a
8653line or two of trace information, written on @code{stderr}. The trace
8654messages tell you these things:
8655
8656@itemize @bullet
8657@item
8658Each time the parser calls @code{yylex}, what kind of token was read.
8659
8660@item
8661Each time a token is shifted, the depth and complete contents of the
8662state stack (@pxref{Parser States}).
8663
8664@item
8665Each time a rule is reduced, which rule it is, and the complete contents
8666of the state stack afterward.
8667@end itemize
8668
8669To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8670produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8671Bison}). This file shows the meaning of each state in terms of
8672positions in various rules, and also what each state will do with each
8673possible input token. As you read the successive trace messages, you
8674can see that the parser is functioning according to its specification in
8675the listing file. Eventually you will arrive at the place where
8676something undesirable happens, and you will see which parts of the
8677grammar are to blame.
bfa74976 8678
ff7571c0
JD
8679The parser implementation file is a C program and you can use C
8680debuggers on it, but it's not easy to interpret what it is doing. The
8681parser function is a finite-state machine interpreter, and aside from
8682the actions it executes the same code over and over. Only the values
8683of variables show where in the grammar it is working.
bfa74976
RS
8684
8685@findex YYPRINT
8686The debugging information normally gives the token type of each token
8687read, but not its semantic value. You can optionally define a macro
8688named @code{YYPRINT} to provide a way to print the value. If you define
8689@code{YYPRINT}, it should take three arguments. The parser will pass a
8690standard I/O stream, the numeric code for the token type, and the token
8691value (from @code{yylval}).
8692
8693Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8694calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8695
8696@smallexample
38a92d50
PE
8697%@{
8698 static void print_token_value (FILE *, int, YYSTYPE);
8699 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8700%@}
8701
8702@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8703
8704static void
831d3c99 8705print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8706@{
8707 if (type == VAR)
d3c4e709 8708 fprintf (file, "%s", value.tptr->name);
bfa74976 8709 else if (type == NUM)
d3c4e709 8710 fprintf (file, "%d", value.val);
bfa74976
RS
8711@}
8712@end smallexample
8713
ec3bc396
AD
8714@c ================================================= Invoking Bison
8715
342b8b6e 8716@node Invocation
bfa74976
RS
8717@chapter Invoking Bison
8718@cindex invoking Bison
8719@cindex Bison invocation
8720@cindex options for invoking Bison
8721
8722The usual way to invoke Bison is as follows:
8723
8724@example
8725bison @var{infile}
8726@end example
8727
8728Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
8729@samp{.y}. The parser implementation file's name is made by replacing
8730the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8731Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8732the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8733also possible, in case you are writing C++ code instead of C in your
8734grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8735output files will take an extension like the given one as input
8736(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8737feature takes effect with all options that manipulate file names like
234a3be3
AD
8738@samp{-o} or @samp{-d}.
8739
8740For example :
8741
8742@example
8743bison -d @var{infile.yxx}
8744@end example
84163231 8745@noindent
72d2299c 8746will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8747
8748@example
b56471a6 8749bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8750@end example
84163231 8751@noindent
234a3be3
AD
8752will produce @file{output.c++} and @file{outfile.h++}.
8753
8a4281b9 8754For compatibility with POSIX, the standard Bison
397ec073
PE
8755distribution also contains a shell script called @command{yacc} that
8756invokes Bison with the @option{-y} option.
8757
bfa74976 8758@menu
13863333 8759* Bison Options:: All the options described in detail,
c827f760 8760 in alphabetical order by short options.
bfa74976 8761* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8762* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8763@end menu
8764
342b8b6e 8765@node Bison Options
bfa74976
RS
8766@section Bison Options
8767
8768Bison supports both traditional single-letter options and mnemonic long
8769option names. Long option names are indicated with @samp{--} instead of
8770@samp{-}. Abbreviations for option names are allowed as long as they
8771are unique. When a long option takes an argument, like
8772@samp{--file-prefix}, connect the option name and the argument with
8773@samp{=}.
8774
8775Here is a list of options that can be used with Bison, alphabetized by
8776short option. It is followed by a cross key alphabetized by long
8777option.
8778
89cab50d
AD
8779@c Please, keep this ordered as in `bison --help'.
8780@noindent
8781Operations modes:
8782@table @option
8783@item -h
8784@itemx --help
8785Print a summary of the command-line options to Bison and exit.
bfa74976 8786
89cab50d
AD
8787@item -V
8788@itemx --version
8789Print the version number of Bison and exit.
bfa74976 8790
f7ab6a50
PE
8791@item --print-localedir
8792Print the name of the directory containing locale-dependent data.
8793
a0de5091
JD
8794@item --print-datadir
8795Print the name of the directory containing skeletons and XSLT.
8796
89cab50d
AD
8797@item -y
8798@itemx --yacc
ff7571c0
JD
8799Act more like the traditional Yacc command. This can cause different
8800diagnostics to be generated, and may change behavior in other minor
8801ways. Most importantly, imitate Yacc's output file name conventions,
8802so that the parser implementation file is called @file{y.tab.c}, and
8803the other outputs are called @file{y.output} and @file{y.tab.h}.
8804Also, if generating a deterministic parser in C, generate
8805@code{#define} statements in addition to an @code{enum} to associate
8806token numbers with token names. Thus, the following shell script can
8807substitute for Yacc, and the Bison distribution contains such a script
8808for compatibility with POSIX:
bfa74976 8809
89cab50d 8810@example
397ec073 8811#! /bin/sh
26e06a21 8812bison -y "$@@"
89cab50d 8813@end example
54662697
PE
8814
8815The @option{-y}/@option{--yacc} option is intended for use with
8816traditional Yacc grammars. If your grammar uses a Bison extension
8817like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8818this option is specified.
8819
1d5b3c08
JD
8820@item -W [@var{category}]
8821@itemx --warnings[=@var{category}]
118d4978
AD
8822Output warnings falling in @var{category}. @var{category} can be one
8823of:
8824@table @code
8825@item midrule-values
8e55b3aa
JD
8826Warn about mid-rule values that are set but not used within any of the actions
8827of the parent rule.
8828For example, warn about unused @code{$2} in:
118d4978
AD
8829
8830@example
8831exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8832@end example
8833
8e55b3aa
JD
8834Also warn about mid-rule values that are used but not set.
8835For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8836
8837@example
8838 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8839@end example
8840
8841These warnings are not enabled by default since they sometimes prove to
8842be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8843@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8844
118d4978 8845@item yacc
8a4281b9 8846Incompatibilities with POSIX Yacc.
118d4978 8847
786743d5
JD
8848@item conflicts-sr
8849@itemx conflicts-rr
8850S/R and R/R conflicts. These warnings are enabled by default. However, if
8851the @code{%expect} or @code{%expect-rr} directive is specified, an
8852unexpected number of conflicts is an error, and an expected number of
8853conflicts is not reported, so @option{-W} and @option{--warning} then have
8854no effect on the conflict report.
8855
c39014ae
JD
8856@item other
8857All warnings not categorized above. These warnings are enabled by default.
8858
8859This category is provided merely for the sake of completeness. Future
8860releases of Bison may move warnings from this category to new, more specific
8861categories.
8862
118d4978 8863@item all
8e55b3aa 8864All the warnings.
118d4978 8865@item none
8e55b3aa 8866Turn off all the warnings.
118d4978 8867@item error
8e55b3aa 8868Treat warnings as errors.
118d4978
AD
8869@end table
8870
8871A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8872instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8873POSIX Yacc incompatibilities.
89cab50d
AD
8874@end table
8875
8876@noindent
8877Tuning the parser:
8878
8879@table @option
8880@item -t
8881@itemx --debug
ff7571c0
JD
8882In the parser implementation file, define the macro @code{YYDEBUG} to
88831 if it is not already defined, so that the debugging facilities are
8884compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8885
58697c6d
AD
8886@item -D @var{name}[=@var{value}]
8887@itemx --define=@var{name}[=@var{value}]
17aed602 8888@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8889@itemx --force-define=@var{name}[=@var{value}]
8890Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 8891(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
8892definitions for the same @var{name} as follows:
8893
8894@itemize
8895@item
0b6d43c5
JD
8896Bison quietly ignores all command-line definitions for @var{name} except
8897the last.
de5ab940 8898@item
0b6d43c5
JD
8899If that command-line definition is specified by a @code{-D} or
8900@code{--define}, Bison reports an error for any @code{%define}
8901definition for @var{name}.
de5ab940 8902@item
0b6d43c5
JD
8903If that command-line definition is specified by a @code{-F} or
8904@code{--force-define} instead, Bison quietly ignores all @code{%define}
8905definitions for @var{name}.
8906@item
8907Otherwise, Bison reports an error if there are multiple @code{%define}
8908definitions for @var{name}.
de5ab940
JD
8909@end itemize
8910
8911You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
8912make files unless you are confident that it is safe to quietly ignore
8913any conflicting @code{%define} that may be added to the grammar file.
58697c6d 8914
0e021770
PE
8915@item -L @var{language}
8916@itemx --language=@var{language}
8917Specify the programming language for the generated parser, as if
8918@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8919Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8920@var{language} is case-insensitive.
0e021770 8921
ed4d67dc
JD
8922This option is experimental and its effect may be modified in future
8923releases.
8924
89cab50d 8925@item --locations
d8988b2f 8926Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8927
8928@item -p @var{prefix}
8929@itemx --name-prefix=@var{prefix}
02975b9a 8930Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8931@xref{Decl Summary}.
bfa74976
RS
8932
8933@item -l
8934@itemx --no-lines
ff7571c0
JD
8935Don't put any @code{#line} preprocessor commands in the parser
8936implementation file. Ordinarily Bison puts them in the parser
8937implementation file so that the C compiler and debuggers will
8938associate errors with your source file, the grammar file. This option
8939causes them to associate errors with the parser implementation file,
8940treating it as an independent source file in its own right.
bfa74976 8941
e6e704dc
JD
8942@item -S @var{file}
8943@itemx --skeleton=@var{file}
a7867f53 8944Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8945(@pxref{Decl Summary, , Bison Declaration Summary}).
8946
ed4d67dc
JD
8947@c You probably don't need this option unless you are developing Bison.
8948@c You should use @option{--language} if you want to specify the skeleton for a
8949@c different language, because it is clearer and because it will always
8950@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8951
a7867f53
JD
8952If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8953file in the Bison installation directory.
8954If it does, @var{file} is an absolute file name or a file name relative to the
8955current working directory.
8956This is similar to how most shells resolve commands.
8957
89cab50d
AD
8958@item -k
8959@itemx --token-table
d8988b2f 8960Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8961@end table
bfa74976 8962
89cab50d
AD
8963@noindent
8964Adjust the output:
bfa74976 8965
89cab50d 8966@table @option
8e55b3aa 8967@item --defines[=@var{file}]
d8988b2f 8968Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8969file containing macro definitions for the token type names defined in
4bfd5e4e 8970the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8971
8e55b3aa
JD
8972@item -d
8973This is the same as @code{--defines} except @code{-d} does not accept a
8974@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8975with other short options.
342b8b6e 8976
89cab50d
AD
8977@item -b @var{file-prefix}
8978@itemx --file-prefix=@var{prefix}
9c437126 8979Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8980for all Bison output file names. @xref{Decl Summary}.
bfa74976 8981
ec3bc396
AD
8982@item -r @var{things}
8983@itemx --report=@var{things}
8984Write an extra output file containing verbose description of the comma
8985separated list of @var{things} among:
8986
8987@table @code
8988@item state
8989Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8990parser's automaton.
ec3bc396 8991
742e4900 8992@item lookahead
ec3bc396 8993Implies @code{state} and augments the description of the automaton with
742e4900 8994each rule's lookahead set.
ec3bc396
AD
8995
8996@item itemset
8997Implies @code{state} and augments the description of the automaton with
8998the full set of items for each state, instead of its core only.
8999@end table
9000
1bb2bd75
JD
9001@item --report-file=@var{file}
9002Specify the @var{file} for the verbose description.
9003
bfa74976
RS
9004@item -v
9005@itemx --verbose
9c437126 9006Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 9007file containing verbose descriptions of the grammar and
72d2299c 9008parser. @xref{Decl Summary}.
bfa74976 9009
fa4d969f
PE
9010@item -o @var{file}
9011@itemx --output=@var{file}
ff7571c0 9012Specify the @var{file} for the parser implementation file.
bfa74976 9013
fa4d969f 9014The other output files' names are constructed from @var{file} as
d8988b2f 9015described under the @samp{-v} and @samp{-d} options.
342b8b6e 9016
a7c09cba 9017@item -g [@var{file}]
8e55b3aa 9018@itemx --graph[=@var{file}]
eb45ef3b 9019Output a graphical representation of the parser's
35fe0834 9020automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 9021@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
9022@code{@var{file}} is optional.
9023If omitted and the grammar file is @file{foo.y}, the output file will be
9024@file{foo.dot}.
59da312b 9025
a7c09cba 9026@item -x [@var{file}]
8e55b3aa 9027@itemx --xml[=@var{file}]
eb45ef3b 9028Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 9029@code{@var{file}} is optional.
59da312b
JD
9030If omitted and the grammar file is @file{foo.y}, the output file will be
9031@file{foo.xml}.
9032(The current XML schema is experimental and may evolve.
9033More user feedback will help to stabilize it.)
bfa74976
RS
9034@end table
9035
342b8b6e 9036@node Option Cross Key
bfa74976
RS
9037@section Option Cross Key
9038
9039Here is a list of options, alphabetized by long option, to help you find
de5ab940 9040the corresponding short option and directive.
bfa74976 9041
de5ab940 9042@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 9043@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 9044@include cross-options.texi
aa08666d 9045@end multitable
bfa74976 9046
93dd49ab
PE
9047@node Yacc Library
9048@section Yacc Library
9049
9050The Yacc library contains default implementations of the
9051@code{yyerror} and @code{main} functions. These default
8a4281b9 9052implementations are normally not useful, but POSIX requires
93dd49ab
PE
9053them. To use the Yacc library, link your program with the
9054@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 9055library is distributed under the terms of the GNU General
93dd49ab
PE
9056Public License (@pxref{Copying}).
9057
9058If you use the Yacc library's @code{yyerror} function, you should
9059declare @code{yyerror} as follows:
9060
9061@example
9062int yyerror (char const *);
9063@end example
9064
9065Bison ignores the @code{int} value returned by this @code{yyerror}.
9066If you use the Yacc library's @code{main} function, your
9067@code{yyparse} function should have the following type signature:
9068
9069@example
9070int yyparse (void);
9071@end example
9072
12545799
AD
9073@c ================================================= C++ Bison
9074
8405b70c
PB
9075@node Other Languages
9076@chapter Parsers Written In Other Languages
12545799
AD
9077
9078@menu
9079* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 9080* Java Parsers:: The interface to generate Java parser classes
12545799
AD
9081@end menu
9082
9083@node C++ Parsers
9084@section C++ Parsers
9085
9086@menu
9087* C++ Bison Interface:: Asking for C++ parser generation
9088* C++ Semantic Values:: %union vs. C++
9089* C++ Location Values:: The position and location classes
9090* C++ Parser Interface:: Instantiating and running the parser
9091* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 9092* A Complete C++ Example:: Demonstrating their use
12545799
AD
9093@end menu
9094
9095@node C++ Bison Interface
9096@subsection C++ Bison Interface
ed4d67dc 9097@c - %skeleton "lalr1.cc"
12545799
AD
9098@c - Always pure
9099@c - initial action
9100
eb45ef3b 9101The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9102@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9103@option{--skeleton=lalr1.cc}.
e6e704dc 9104@xref{Decl Summary}.
0e021770 9105
793fbca5
JD
9106When run, @command{bison} will create several entities in the @samp{yy}
9107namespace.
67501061 9108@findex %define api.namespace
35c1e5f0
JD
9109Use the @samp{%define api.namespace} directive to change the namespace name,
9110see @ref{%define Summary,,api.namespace}. The various classes are generated
9111in the following files:
aa08666d 9112
12545799
AD
9113@table @file
9114@item position.hh
9115@itemx location.hh
9116The definition of the classes @code{position} and @code{location},
3cdc21cf 9117used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9118
9119@item stack.hh
9120An auxiliary class @code{stack} used by the parser.
9121
fa4d969f
PE
9122@item @var{file}.hh
9123@itemx @var{file}.cc
ff7571c0 9124(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9125declaration and implementation of the C++ parser class. The basename
9126and extension of these two files follow the same rules as with regular C
9127parsers (@pxref{Invocation}).
12545799 9128
cd8b5791
AD
9129The header is @emph{mandatory}; you must either pass
9130@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9131@samp{%defines} directive.
9132@end table
9133
9134All these files are documented using Doxygen; run @command{doxygen}
9135for a complete and accurate documentation.
9136
9137@node C++ Semantic Values
9138@subsection C++ Semantic Values
9139@c - No objects in unions
178e123e 9140@c - YYSTYPE
12545799
AD
9141@c - Printer and destructor
9142
3cdc21cf
AD
9143Bison supports two different means to handle semantic values in C++. One is
9144alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9145practitioners know, unions are inconvenient in C++, therefore another
9146approach is provided, based on variants (@pxref{C++ Variants}).
9147
9148@menu
9149* C++ Unions:: Semantic values cannot be objects
9150* C++ Variants:: Using objects as semantic values
9151@end menu
9152
9153@node C++ Unions
9154@subsubsection C++ Unions
9155
12545799
AD
9156The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9157Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9158@code{union}, which have a few specific features in C++.
12545799
AD
9159@itemize @minus
9160@item
fb9712a9
AD
9161The type @code{YYSTYPE} is defined but its use is discouraged: rather
9162you should refer to the parser's encapsulated type
9163@code{yy::parser::semantic_type}.
12545799
AD
9164@item
9165Non POD (Plain Old Data) types cannot be used. C++ forbids any
9166instance of classes with constructors in unions: only @emph{pointers}
9167to such objects are allowed.
9168@end itemize
9169
9170Because objects have to be stored via pointers, memory is not
9171reclaimed automatically: using the @code{%destructor} directive is the
9172only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9173Symbols}.
9174
3cdc21cf
AD
9175@node C++ Variants
9176@subsubsection C++ Variants
9177
9178Starting with version 2.6, Bison provides a @emph{variant} based
9179implementation of semantic values for C++. This alleviates all the
9180limitations reported in the previous section, and in particular, object
9181types can be used without pointers.
9182
9183To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9184@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9185@code{%union} is ignored, and instead of using the name of the fields of the
9186@code{%union} to ``type'' the symbols, use genuine types.
9187
9188For instance, instead of
9189
9190@example
9191%union
9192@{
9193 int ival;
9194 std::string* sval;
9195@}
9196%token <ival> NUMBER;
9197%token <sval> STRING;
9198@end example
9199
9200@noindent
9201write
9202
9203@example
9204%token <int> NUMBER;
9205%token <std::string> STRING;
9206@end example
9207
9208@code{STRING} is no longer a pointer, which should fairly simplify the user
9209actions in the grammar and in the scanner (in particular the memory
9210management).
9211
9212Since C++ features destructors, and since it is customary to specialize
9213@code{operator<<} to support uniform printing of values, variants also
9214typically simplify Bison printers and destructors.
9215
9216Variants are stricter than unions. When based on unions, you may play any
9217dirty game with @code{yylval}, say storing an @code{int}, reading a
9218@code{char*}, and then storing a @code{double} in it. This is no longer
9219possible with variants: they must be initialized, then assigned to, and
9220eventually, destroyed.
9221
9222@deftypemethod {semantic_type} {T&} build<T> ()
9223Initialize, but leave empty. Returns the address where the actual value may
9224be stored. Requires that the variant was not initialized yet.
9225@end deftypemethod
9226
9227@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9228Initialize, and copy-construct from @var{t}.
9229@end deftypemethod
9230
9231
9232@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9233appeared unacceptable to require Boost on the user's machine (i.e., the
9234machine on which the generated parser will be compiled, not the machine on
9235which @command{bison} was run). Second, for each possible semantic value,
9236Boost.Variant not only stores the value, but also a tag specifying its
9237type. But the parser already ``knows'' the type of the semantic value, so
9238that would be duplicating the information.
9239
9240Therefore we developed light-weight variants whose type tag is external (so
9241they are really like @code{unions} for C++ actually). But our code is much
9242less mature that Boost.Variant. So there is a number of limitations in
9243(the current implementation of) variants:
9244@itemize
9245@item
9246Alignment must be enforced: values should be aligned in memory according to
9247the most demanding type. Computing the smallest alignment possible requires
9248meta-programming techniques that are not currently implemented in Bison, and
9249therefore, since, as far as we know, @code{double} is the most demanding
9250type on all platforms, alignments are enforced for @code{double} whatever
9251types are actually used. This may waste space in some cases.
9252
9253@item
9254Our implementation is not conforming with strict aliasing rules. Alias
9255analysis is a technique used in optimizing compilers to detect when two
9256pointers are disjoint (they cannot ``meet''). Our implementation breaks
9257some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9258alias analysis must be disabled}. Use the option
9259@option{-fno-strict-aliasing} to compile the generated parser.
9260
9261@item
9262There might be portability issues we are not aware of.
9263@end itemize
9264
a6ca4ce2 9265As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9266is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9267
9268@node C++ Location Values
9269@subsection C++ Location Values
9270@c - %locations
9271@c - class Position
9272@c - class Location
16dc6a9e 9273@c - %define filename_type "const symbol::Symbol"
12545799
AD
9274
9275When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9276location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9277define a @code{position}, a single point in a file, and a @code{location}, a
9278range composed of a pair of @code{position}s (possibly spanning several
9279files).
12545799 9280
fa4d969f 9281@deftypemethod {position} {std::string*} file
12545799
AD
9282The name of the file. It will always be handled as a pointer, the
9283parser will never duplicate nor deallocate it. As an experimental
9284feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9285filename_type "@var{type}"}.
12545799
AD
9286@end deftypemethod
9287
9288@deftypemethod {position} {unsigned int} line
9289The line, starting at 1.
9290@end deftypemethod
9291
9292@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
9293Advance by @var{height} lines, resetting the column number.
9294@end deftypemethod
9295
9296@deftypemethod {position} {unsigned int} column
9297The column, starting at 0.
9298@end deftypemethod
9299
9300@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
9301Advance by @var{width} columns, without changing the line number.
9302@end deftypemethod
9303
9304@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
9305@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
9306@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
9307@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
9308Various forms of syntactic sugar for @code{columns}.
9309@end deftypemethod
9310
9311@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
9312Report @var{p} on @var{o} like this:
fa4d969f
PE
9313@samp{@var{file}:@var{line}.@var{column}}, or
9314@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
9315@end deftypemethod
9316
9317@deftypemethod {location} {position} begin
9318@deftypemethodx {location} {position} end
9319The first, inclusive, position of the range, and the first beyond.
9320@end deftypemethod
9321
9322@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
9323@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
9324Advance the @code{end} position.
9325@end deftypemethod
9326
9327@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
9328@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
9329@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
9330Various forms of syntactic sugar.
9331@end deftypemethod
9332
9333@deftypemethod {location} {void} step ()
9334Move @code{begin} onto @code{end}.
9335@end deftypemethod
9336
9337
9338@node C++ Parser Interface
9339@subsection C++ Parser Interface
9340@c - define parser_class_name
9341@c - Ctor
9342@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9343@c debug_stream.
9344@c - Reporting errors
9345
9346The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9347declare and define the parser class in the namespace @code{yy}. The
9348class name defaults to @code{parser}, but may be changed using
16dc6a9e 9349@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9350this class is detailed below. It can be extended using the
12545799
AD
9351@code{%parse-param} feature: its semantics is slightly changed since
9352it describes an additional member of the parser class, and an
9353additional argument for its constructor.
9354
3cdc21cf
AD
9355@defcv {Type} {parser} {semantic_type}
9356@defcvx {Type} {parser} {location_type}
9357The types for semantic values and locations (if enabled).
9358@end defcv
9359
86e5b440
AD
9360@defcv {Type} {parser} {token}
9361A structure that contains (only) the definition of the tokens as the
9362@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
9363scanner should use @code{yy::parser::token::FOO}. The scanner can use
9364@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9365(@pxref{Calc++ Scanner}).
9366@end defcv
9367
3cdc21cf
AD
9368@defcv {Type} {parser} {syntax_error}
9369This class derives from @code{std::runtime_error}. Throw instances of it
a6552c5d
AD
9370from the scanner or from the user actions to raise parse errors. This is
9371equivalent with first
3cdc21cf
AD
9372invoking @code{error} to report the location and message of the syntax
9373error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9374But contrary to @code{YYERROR} which can only be invoked from user actions
9375(i.e., written in the action itself), the exception can be thrown from
9376function invoked from the user action.
8a0adb01 9377@end defcv
12545799
AD
9378
9379@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9380Build a new parser object. There are no arguments by default, unless
9381@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9382@end deftypemethod
9383
3cdc21cf
AD
9384@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9385@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9386Instantiate a syntax-error exception.
9387@end deftypemethod
9388
12545799
AD
9389@deftypemethod {parser} {int} parse ()
9390Run the syntactic analysis, and return 0 on success, 1 otherwise.
9391@end deftypemethod
9392
9393@deftypemethod {parser} {std::ostream&} debug_stream ()
9394@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9395Get or set the stream used for tracing the parsing. It defaults to
9396@code{std::cerr}.
9397@end deftypemethod
9398
9399@deftypemethod {parser} {debug_level_type} debug_level ()
9400@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9401Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9402or nonzero, full tracing.
12545799
AD
9403@end deftypemethod
9404
9405@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9406@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9407The definition for this member function must be supplied by the user:
9408the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9409described by @var{m}. If location tracking is not enabled, the second
9410signature is used.
12545799
AD
9411@end deftypemethod
9412
9413
9414@node C++ Scanner Interface
9415@subsection C++ Scanner Interface
9416@c - prefix for yylex.
9417@c - Pure interface to yylex
9418@c - %lex-param
9419
9420The parser invokes the scanner by calling @code{yylex}. Contrary to C
9421parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9422@samp{%define api.pure} directive. The actual interface with @code{yylex}
9423depends whether you use unions, or variants.
12545799 9424
3cdc21cf
AD
9425@menu
9426* Split Symbols:: Passing symbols as two/three components
9427* Complete Symbols:: Making symbols a whole
9428@end menu
9429
9430@node Split Symbols
9431@subsubsection Split Symbols
9432
9433Therefore the interface is as follows.
9434
86e5b440
AD
9435@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9436@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9437Return the next token. Its type is the return value, its semantic value and
9438location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9439@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9440@end deftypemethod
9441
3cdc21cf
AD
9442Note that when using variants, the interface for @code{yylex} is the same,
9443but @code{yylval} is handled differently.
9444
9445Regular union-based code in Lex scanner typically look like:
9446
9447@example
9448[0-9]+ @{
9449 yylval.ival = text_to_int (yytext);
9450 return yy::parser::INTEGER;
9451 @}
9452[a-z]+ @{
9453 yylval.sval = new std::string (yytext);
9454 return yy::parser::IDENTIFIER;
9455 @}
9456@end example
9457
9458Using variants, @code{yylval} is already constructed, but it is not
9459initialized. So the code would look like:
9460
9461@example
9462[0-9]+ @{
9463 yylval.build<int>() = text_to_int (yytext);
9464 return yy::parser::INTEGER;
9465 @}
9466[a-z]+ @{
9467 yylval.build<std::string> = yytext;
9468 return yy::parser::IDENTIFIER;
9469 @}
9470@end example
9471
9472@noindent
9473or
9474
9475@example
9476[0-9]+ @{
9477 yylval.build(text_to_int (yytext));
9478 return yy::parser::INTEGER;
9479 @}
9480[a-z]+ @{
9481 yylval.build(yytext);
9482 return yy::parser::IDENTIFIER;
9483 @}
9484@end example
9485
9486
9487@node Complete Symbols
9488@subsubsection Complete Symbols
9489
9490If you specified both @code{%define variant} and @code{%define lex_symbol},
9491the @code{parser} class also defines the class @code{parser::symbol_type}
9492which defines a @emph{complete} symbol, aggregating its type (i.e., the
9493traditional value returned by @code{yylex}), its semantic value (i.e., the
9494value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9495
9496@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9497Build a complete terminal symbol which token type is @var{type}, and which
9498semantic value is @var{value}. If location tracking is enabled, also pass
9499the @var{location}.
9500@end deftypemethod
9501
9502This interface is low-level and should not be used for two reasons. First,
9503it is inconvenient, as you still have to build the semantic value, which is
9504a variant, and second, because consistency is not enforced: as with unions,
9505it is still possible to give an integer as semantic value for a string.
9506
9507So for each token type, Bison generates named constructors as follows.
9508
9509@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9510@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9511Build a complete terminal symbol for the token type @var{token} (not
9512including the @code{api.tokens.prefix}) whose possible semantic value is
9513@var{value} of adequate @var{value_type}. If location tracking is enabled,
9514also pass the @var{location}.
9515@end deftypemethod
9516
9517For instance, given the following declarations:
9518
9519@example
9520%define api.tokens.prefix "TOK_"
9521%token <std::string> IDENTIFIER;
9522%token <int> INTEGER;
9523%token COLON;
9524@end example
9525
9526@noindent
9527Bison generates the following functions:
9528
9529@example
9530symbol_type make_IDENTIFIER(const std::string& v,
9531 const location_type& l);
9532symbol_type make_INTEGER(const int& v,
9533 const location_type& loc);
9534symbol_type make_COLON(const location_type& loc);
9535@end example
9536
9537@noindent
9538which should be used in a Lex-scanner as follows.
9539
9540@example
9541[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9542[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9543":" return yy::parser::make_COLON(loc);
9544@end example
9545
9546Tokens that do not have an identifier are not accessible: you cannot simply
9547use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9548
9549@node A Complete C++ Example
8405b70c 9550@subsection A Complete C++ Example
12545799
AD
9551
9552This section demonstrates the use of a C++ parser with a simple but
9553complete example. This example should be available on your system,
3cdc21cf 9554ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9555focuses on the use of Bison, therefore the design of the various C++
9556classes is very naive: no accessors, no encapsulation of members etc.
9557We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9558demonstrate the various interactions. A hand-written scanner is
12545799
AD
9559actually easier to interface with.
9560
9561@menu
9562* Calc++ --- C++ Calculator:: The specifications
9563* Calc++ Parsing Driver:: An active parsing context
9564* Calc++ Parser:: A parser class
9565* Calc++ Scanner:: A pure C++ Flex scanner
9566* Calc++ Top Level:: Conducting the band
9567@end menu
9568
9569@node Calc++ --- C++ Calculator
8405b70c 9570@subsubsection Calc++ --- C++ Calculator
12545799
AD
9571
9572Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9573expression, possibly preceded by variable assignments. An
12545799
AD
9574environment containing possibly predefined variables such as
9575@code{one} and @code{two}, is exchanged with the parser. An example
9576of valid input follows.
9577
9578@example
9579three := 3
9580seven := one + two * three
9581seven * seven
9582@end example
9583
9584@node Calc++ Parsing Driver
8405b70c 9585@subsubsection Calc++ Parsing Driver
12545799
AD
9586@c - An env
9587@c - A place to store error messages
9588@c - A place for the result
9589
9590To support a pure interface with the parser (and the scanner) the
9591technique of the ``parsing context'' is convenient: a structure
9592containing all the data to exchange. Since, in addition to simply
9593launch the parsing, there are several auxiliary tasks to execute (open
9594the file for parsing, instantiate the parser etc.), we recommend
9595transforming the simple parsing context structure into a fully blown
9596@dfn{parsing driver} class.
9597
9598The declaration of this driver class, @file{calc++-driver.hh}, is as
9599follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9600required standard library components, and the declaration of the parser
9601class.
12545799 9602
1c59e0a1 9603@comment file: calc++-driver.hh
12545799
AD
9604@example
9605#ifndef CALCXX_DRIVER_HH
9606# define CALCXX_DRIVER_HH
9607# include <string>
9608# include <map>
fb9712a9 9609# include "calc++-parser.hh"
12545799
AD
9610@end example
9611
12545799
AD
9612
9613@noindent
9614Then comes the declaration of the scanning function. Flex expects
9615the signature of @code{yylex} to be defined in the macro
9616@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9617factor both as follows.
1c59e0a1
AD
9618
9619@comment file: calc++-driver.hh
12545799 9620@example
3dc5e96b 9621// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9622# define YY_DECL \
9623 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9624// ... and declare it for the parser's sake.
9625YY_DECL;
9626@end example
9627
9628@noindent
9629The @code{calcxx_driver} class is then declared with its most obvious
9630members.
9631
1c59e0a1 9632@comment file: calc++-driver.hh
12545799
AD
9633@example
9634// Conducting the whole scanning and parsing of Calc++.
9635class calcxx_driver
9636@{
9637public:
9638 calcxx_driver ();
9639 virtual ~calcxx_driver ();
9640
9641 std::map<std::string, int> variables;
9642
9643 int result;
9644@end example
9645
9646@noindent
3cdc21cf
AD
9647To encapsulate the coordination with the Flex scanner, it is useful to have
9648member functions to open and close the scanning phase.
12545799 9649
1c59e0a1 9650@comment file: calc++-driver.hh
12545799
AD
9651@example
9652 // Handling the scanner.
9653 void scan_begin ();
9654 void scan_end ();
9655 bool trace_scanning;
9656@end example
9657
9658@noindent
9659Similarly for the parser itself.
9660
1c59e0a1 9661@comment file: calc++-driver.hh
12545799 9662@example
3cdc21cf
AD
9663 // Run the parser on file F.
9664 // Return 0 on success.
bb32f4f2 9665 int parse (const std::string& f);
3cdc21cf
AD
9666 // The name of the file being parsed.
9667 // Used later to pass the file name to the location tracker.
12545799 9668 std::string file;
3cdc21cf 9669 // Whether parser traces should be generated.
12545799
AD
9670 bool trace_parsing;
9671@end example
9672
9673@noindent
9674To demonstrate pure handling of parse errors, instead of simply
9675dumping them on the standard error output, we will pass them to the
9676compiler driver using the following two member functions. Finally, we
9677close the class declaration and CPP guard.
9678
1c59e0a1 9679@comment file: calc++-driver.hh
12545799
AD
9680@example
9681 // Error handling.
9682 void error (const yy::location& l, const std::string& m);
9683 void error (const std::string& m);
9684@};
9685#endif // ! CALCXX_DRIVER_HH
9686@end example
9687
9688The implementation of the driver is straightforward. The @code{parse}
9689member function deserves some attention. The @code{error} functions
9690are simple stubs, they should actually register the located error
9691messages and set error state.
9692
1c59e0a1 9693@comment file: calc++-driver.cc
12545799
AD
9694@example
9695#include "calc++-driver.hh"
9696#include "calc++-parser.hh"
9697
9698calcxx_driver::calcxx_driver ()
9699 : trace_scanning (false), trace_parsing (false)
9700@{
9701 variables["one"] = 1;
9702 variables["two"] = 2;
9703@}
9704
9705calcxx_driver::~calcxx_driver ()
9706@{
9707@}
9708
bb32f4f2 9709int
12545799
AD
9710calcxx_driver::parse (const std::string &f)
9711@{
9712 file = f;
9713 scan_begin ();
9714 yy::calcxx_parser parser (*this);
9715 parser.set_debug_level (trace_parsing);
bb32f4f2 9716 int res = parser.parse ();
12545799 9717 scan_end ();
bb32f4f2 9718 return res;
12545799
AD
9719@}
9720
9721void
9722calcxx_driver::error (const yy::location& l, const std::string& m)
9723@{
9724 std::cerr << l << ": " << m << std::endl;
9725@}
9726
9727void
9728calcxx_driver::error (const std::string& m)
9729@{
9730 std::cerr << m << std::endl;
9731@}
9732@end example
9733
9734@node Calc++ Parser
8405b70c 9735@subsubsection Calc++ Parser
12545799 9736
ff7571c0
JD
9737The grammar file @file{calc++-parser.yy} starts by asking for the C++
9738deterministic parser skeleton, the creation of the parser header file,
9739and specifies the name of the parser class. Because the C++ skeleton
9740changed several times, it is safer to require the version you designed
9741the grammar for.
1c59e0a1
AD
9742
9743@comment file: calc++-parser.yy
12545799 9744@example
ed4d67dc 9745%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9746%require "@value{VERSION}"
12545799 9747%defines
16dc6a9e 9748%define parser_class_name "calcxx_parser"
fb9712a9
AD
9749@end example
9750
3cdc21cf
AD
9751@noindent
9752@findex %define variant
9753@findex %define lex_symbol
9754This example will use genuine C++ objects as semantic values, therefore, we
9755require the variant-based interface. To make sure we properly use it, we
9756enable assertions. To fully benefit from type-safety and more natural
9757definition of ``symbol'', we enable @code{lex_symbol}.
9758
9759@comment file: calc++-parser.yy
9760@example
9761%define variant
9762%define parse.assert
9763%define lex_symbol
9764@end example
9765
fb9712a9 9766@noindent
16dc6a9e 9767@findex %code requires
3cdc21cf
AD
9768Then come the declarations/inclusions needed by the semantic values.
9769Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9770to include the header of the other, which is, of course, insane. This
3cdc21cf 9771mutual dependency will be broken using forward declarations. Because the
fb9712a9 9772driver's header needs detailed knowledge about the parser class (in
3cdc21cf 9773particular its inner types), it is the parser's header which will use a
e0c07222 9774forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
9775
9776@comment file: calc++-parser.yy
9777@example
3cdc21cf
AD
9778%code requires
9779@{
12545799 9780# include <string>
fb9712a9 9781class calcxx_driver;
9bc0dd67 9782@}
12545799
AD
9783@end example
9784
9785@noindent
9786The driver is passed by reference to the parser and to the scanner.
9787This provides a simple but effective pure interface, not relying on
9788global variables.
9789
1c59e0a1 9790@comment file: calc++-parser.yy
12545799
AD
9791@example
9792// The parsing context.
2055a44e 9793%param @{ calcxx_driver& driver @}
12545799
AD
9794@end example
9795
9796@noindent
2055a44e 9797Then we request location tracking, and initialize the
f50bfcd6 9798first location's file name. Afterward new locations are computed
12545799 9799relatively to the previous locations: the file name will be
2055a44e 9800propagated.
12545799 9801
1c59e0a1 9802@comment file: calc++-parser.yy
12545799
AD
9803@example
9804%locations
9805%initial-action
9806@{
9807 // Initialize the initial location.
b47dbebe 9808 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9809@};
9810@end example
9811
9812@noindent
7fceb615
JD
9813Use the following two directives to enable parser tracing and verbose error
9814messages. However, verbose error messages can contain incorrect information
9815(@pxref{LAC}).
12545799 9816
1c59e0a1 9817@comment file: calc++-parser.yy
12545799 9818@example
fa819509 9819%define parse.trace
cf499cff 9820%define parse.error verbose
12545799
AD
9821@end example
9822
fb9712a9 9823@noindent
136a0f76
PB
9824@findex %code
9825The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9826@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9827
9828@comment file: calc++-parser.yy
9829@example
3cdc21cf
AD
9830%code
9831@{
fb9712a9 9832# include "calc++-driver.hh"
34f98f46 9833@}
fb9712a9
AD
9834@end example
9835
9836
12545799
AD
9837@noindent
9838The token numbered as 0 corresponds to end of file; the following line
99c08fb6 9839allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
9840``$end''. Similarly user friendly names are provided for each symbol. To
9841avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
9842tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 9843
1c59e0a1 9844@comment file: calc++-parser.yy
12545799 9845@example
4c6622c2 9846%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9847%token
9848 END 0 "end of file"
9849 ASSIGN ":="
9850 MINUS "-"
9851 PLUS "+"
9852 STAR "*"
9853 SLASH "/"
9854 LPAREN "("
9855 RPAREN ")"
9856;
12545799
AD
9857@end example
9858
9859@noindent
3cdc21cf
AD
9860Since we use variant-based semantic values, @code{%union} is not used, and
9861both @code{%type} and @code{%token} expect genuine types, as opposed to type
9862tags.
12545799 9863
1c59e0a1 9864@comment file: calc++-parser.yy
12545799 9865@example
3cdc21cf
AD
9866%token <std::string> IDENTIFIER "identifier"
9867%token <int> NUMBER "number"
9868%type <int> exp
9869@end example
9870
9871@noindent
9872No @code{%destructor} is needed to enable memory deallocation during error
9873recovery; the memory, for strings for instance, will be reclaimed by the
9874regular destructors. All the values are printed using their
9875@code{operator<<}.
12545799 9876
3cdc21cf
AD
9877@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9878@comment file: calc++-parser.yy
9879@example
9880%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9881@end example
9882
9883@noindent
3cdc21cf
AD
9884The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9885Location Tracking Calculator: @code{ltcalc}}).
12545799 9886
1c59e0a1 9887@comment file: calc++-parser.yy
12545799
AD
9888@example
9889%%
9890%start unit;
9891unit: assignments exp @{ driver.result = $2; @};
9892
99c08fb6
AD
9893assignments:
9894 assignments assignment @{@}
9895| /* Nothing. */ @{@};
12545799 9896
3dc5e96b 9897assignment:
3cdc21cf 9898 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9899
3cdc21cf
AD
9900%left "+" "-";
9901%left "*" "/";
99c08fb6 9902exp:
3cdc21cf
AD
9903 exp "+" exp @{ $$ = $1 + $3; @}
9904| exp "-" exp @{ $$ = $1 - $3; @}
9905| exp "*" exp @{ $$ = $1 * $3; @}
9906| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9907| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9908| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9909| "number" @{ std::swap ($$, $1); @};
12545799
AD
9910%%
9911@end example
9912
9913@noindent
9914Finally the @code{error} member function registers the errors to the
9915driver.
9916
1c59e0a1 9917@comment file: calc++-parser.yy
12545799
AD
9918@example
9919void
3cdc21cf 9920yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9921 const std::string& m)
12545799
AD
9922@{
9923 driver.error (l, m);
9924@}
9925@end example
9926
9927@node Calc++ Scanner
8405b70c 9928@subsubsection Calc++ Scanner
12545799
AD
9929
9930The Flex scanner first includes the driver declaration, then the
9931parser's to get the set of defined tokens.
9932
1c59e0a1 9933@comment file: calc++-scanner.ll
12545799
AD
9934@example
9935%@{ /* -*- C++ -*- */
3c248d70
AD
9936# include <cerrno>
9937# include <climits>
3cdc21cf 9938# include <cstdlib>
12545799
AD
9939# include <string>
9940# include "calc++-driver.hh"
9941# include "calc++-parser.hh"
eaea13f5 9942
3cdc21cf
AD
9943// Work around an incompatibility in flex (at least versions
9944// 2.5.31 through 2.5.33): it generates code that does
9945// not conform to C89. See Debian bug 333231
9946// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9947# undef yywrap
9948# define yywrap() 1
eaea13f5 9949
3cdc21cf
AD
9950// The location of the current token.
9951static yy::location loc;
12545799
AD
9952%@}
9953@end example
9954
9955@noindent
9956Because there is no @code{#include}-like feature we don't need
9957@code{yywrap}, we don't need @code{unput} either, and we parse an
9958actual file, this is not an interactive session with the user.
3cdc21cf 9959Finally, we enable scanner tracing.
12545799 9960
1c59e0a1 9961@comment file: calc++-scanner.ll
12545799
AD
9962@example
9963%option noyywrap nounput batch debug
9964@end example
9965
9966@noindent
9967Abbreviations allow for more readable rules.
9968
1c59e0a1 9969@comment file: calc++-scanner.ll
12545799
AD
9970@example
9971id [a-zA-Z][a-zA-Z_0-9]*
9972int [0-9]+
9973blank [ \t]
9974@end example
9975
9976@noindent
9d9b8b70 9977The following paragraph suffices to track locations accurately. Each
12545799 9978time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9979position. Then when a pattern is matched, its width is added to the end
9980column. When matching ends of lines, the end
12545799
AD
9981cursor is adjusted, and each time blanks are matched, the begin cursor
9982is moved onto the end cursor to effectively ignore the blanks
9983preceding tokens. Comments would be treated equally.
9984
1c59e0a1 9985@comment file: calc++-scanner.ll
12545799 9986@example
d4fca427 9987@group
828c373b 9988%@{
3cdc21cf
AD
9989 // Code run each time a pattern is matched.
9990 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9991%@}
d4fca427 9992@end group
12545799 9993%%
d4fca427 9994@group
12545799 9995%@{
3cdc21cf
AD
9996 // Code run each time yylex is called.
9997 loc.step ();
12545799 9998%@}
d4fca427 9999@end group
3cdc21cf
AD
10000@{blank@}+ loc.step ();
10001[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
10002@end example
10003
10004@noindent
3cdc21cf 10005The rules are simple. The driver is used to report errors.
12545799 10006
1c59e0a1 10007@comment file: calc++-scanner.ll
12545799 10008@example
3cdc21cf
AD
10009"-" return yy::calcxx_parser::make_MINUS(loc);
10010"+" return yy::calcxx_parser::make_PLUS(loc);
10011"*" return yy::calcxx_parser::make_STAR(loc);
10012"/" return yy::calcxx_parser::make_SLASH(loc);
10013"(" return yy::calcxx_parser::make_LPAREN(loc);
10014")" return yy::calcxx_parser::make_RPAREN(loc);
10015":=" return yy::calcxx_parser::make_ASSIGN(loc);
10016
d4fca427 10017@group
04098407
PE
10018@{int@} @{
10019 errno = 0;
10020 long n = strtol (yytext, NULL, 10);
10021 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
10022 driver.error (loc, "integer is out of range");
10023 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 10024@}
d4fca427 10025@end group
3cdc21cf
AD
10026@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
10027. driver.error (loc, "invalid character");
10028<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
10029%%
10030@end example
10031
10032@noindent
3cdc21cf 10033Finally, because the scanner-related driver's member-functions depend
12545799
AD
10034on the scanner's data, it is simpler to implement them in this file.
10035
1c59e0a1 10036@comment file: calc++-scanner.ll
12545799 10037@example
d4fca427 10038@group
12545799
AD
10039void
10040calcxx_driver::scan_begin ()
10041@{
10042 yy_flex_debug = trace_scanning;
bb32f4f2
AD
10043 if (file == "-")
10044 yyin = stdin;
10045 else if (!(yyin = fopen (file.c_str (), "r")))
10046 @{
3cdc21cf 10047 error (std::string ("cannot open ") + file + ": " + strerror(errno));
d0f2b7f8 10048 exit (EXIT_FAILURE);
bb32f4f2 10049 @}
12545799 10050@}
d4fca427 10051@end group
12545799 10052
d4fca427 10053@group
12545799
AD
10054void
10055calcxx_driver::scan_end ()
10056@{
10057 fclose (yyin);
10058@}
d4fca427 10059@end group
12545799
AD
10060@end example
10061
10062@node Calc++ Top Level
8405b70c 10063@subsubsection Calc++ Top Level
12545799
AD
10064
10065The top level file, @file{calc++.cc}, poses no problem.
10066
1c59e0a1 10067@comment file: calc++.cc
12545799
AD
10068@example
10069#include <iostream>
10070#include "calc++-driver.hh"
10071
d4fca427 10072@group
12545799 10073int
fa4d969f 10074main (int argc, char *argv[])
12545799 10075@{
414c76a4 10076 int res = 0;
12545799
AD
10077 calcxx_driver driver;
10078 for (++argv; argv[0]; ++argv)
10079 if (*argv == std::string ("-p"))
10080 driver.trace_parsing = true;
10081 else if (*argv == std::string ("-s"))
10082 driver.trace_scanning = true;
bb32f4f2
AD
10083 else if (!driver.parse (*argv))
10084 std::cout << driver.result << std::endl;
414c76a4
AD
10085 else
10086 res = 1;
10087 return res;
12545799 10088@}
d4fca427 10089@end group
12545799
AD
10090@end example
10091
8405b70c
PB
10092@node Java Parsers
10093@section Java Parsers
10094
10095@menu
f5f419de
DJ
10096* Java Bison Interface:: Asking for Java parser generation
10097* Java Semantic Values:: %type and %token vs. Java
10098* Java Location Values:: The position and location classes
10099* Java Parser Interface:: Instantiating and running the parser
10100* Java Scanner Interface:: Specifying the scanner for the parser
10101* Java Action Features:: Special features for use in actions
10102* Java Differences:: Differences between C/C++ and Java Grammars
10103* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
10104@end menu
10105
10106@node Java Bison Interface
10107@subsection Java Bison Interface
10108@c - %language "Java"
8405b70c 10109
59da312b
JD
10110(The current Java interface is experimental and may evolve.
10111More user feedback will help to stabilize it.)
10112
e254a580
DJ
10113The Java parser skeletons are selected using the @code{%language "Java"}
10114directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10115
e254a580 10116@c FIXME: Documented bug.
ff7571c0
JD
10117When generating a Java parser, @code{bison @var{basename}.y} will
10118create a single Java source file named @file{@var{basename}.java}
10119containing the parser implementation. Using a grammar file without a
10120@file{.y} suffix is currently broken. The basename of the parser
10121implementation file can be changed by the @code{%file-prefix}
10122directive or the @option{-p}/@option{--name-prefix} option. The
10123entire parser implementation file name can be changed by the
10124@code{%output} directive or the @option{-o}/@option{--output} option.
10125The parser implementation file contains a single class for the parser.
8405b70c 10126
e254a580 10127You can create documentation for generated parsers using Javadoc.
8405b70c 10128
e254a580
DJ
10129Contrary to C parsers, Java parsers do not use global variables; the
10130state of the parser is always local to an instance of the parser class.
10131Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10132and @samp{%define api.pure} directives does not do anything when used in
e254a580 10133Java.
8405b70c 10134
e254a580 10135Push parsers are currently unsupported in Java and @code{%define
67212941 10136api.push-pull} have no effect.
01b477c6 10137
8a4281b9 10138GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10139@code{glr-parser} directive.
10140
10141No header file can be generated for Java parsers. Do not use the
10142@code{%defines} directive or the @option{-d}/@option{--defines} options.
10143
10144@c FIXME: Possible code change.
fa819509
AD
10145Currently, support for tracing is always compiled
10146in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10147directives and the
e254a580
DJ
10148@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10149options have no effect. This may change in the future to eliminate
fa819509
AD
10150unused code in the generated parser, so use @samp{%define parse.trace}
10151explicitly
1979121c 10152if needed. Also, in the future the
e254a580
DJ
10153@code{%token-table} directive might enable a public interface to
10154access the token names and codes.
8405b70c 10155
09ccae9b 10156Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10157hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10158Try reducing the amount of code in actions and static initializers;
10159otherwise, report a bug so that the parser skeleton will be improved.
10160
10161
8405b70c
PB
10162@node Java Semantic Values
10163@subsection Java Semantic Values
10164@c - No %union, specify type in %type/%token.
10165@c - YYSTYPE
10166@c - Printer and destructor
10167
10168There is no @code{%union} directive in Java parsers. Instead, the
10169semantic values' types (class names) should be specified in the
10170@code{%type} or @code{%token} directive:
10171
10172@example
10173%type <Expression> expr assignment_expr term factor
10174%type <Integer> number
10175@end example
10176
10177By default, the semantic stack is declared to have @code{Object} members,
10178which means that the class types you specify can be of any class.
10179To improve the type safety of the parser, you can declare the common
67501061 10180superclass of all the semantic values using the @samp{%define stype}
e254a580 10181directive. For example, after the following declaration:
8405b70c
PB
10182
10183@example
e254a580 10184%define stype "ASTNode"
8405b70c
PB
10185@end example
10186
10187@noindent
10188any @code{%type} or @code{%token} specifying a semantic type which
10189is not a subclass of ASTNode, will cause a compile-time error.
10190
e254a580 10191@c FIXME: Documented bug.
8405b70c
PB
10192Types used in the directives may be qualified with a package name.
10193Primitive data types are accepted for Java version 1.5 or later. Note
10194that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10195Generic types may not be used; this is due to a limitation in the
10196implementation of Bison, and may change in future releases.
8405b70c
PB
10197
10198Java parsers do not support @code{%destructor}, since the language
10199adopts garbage collection. The parser will try to hold references
10200to semantic values for as little time as needed.
10201
10202Java parsers do not support @code{%printer}, as @code{toString()}
10203can be used to print the semantic values. This however may change
10204(in a backwards-compatible way) in future versions of Bison.
10205
10206
10207@node Java Location Values
10208@subsection Java Location Values
10209@c - %locations
10210@c - class Position
10211@c - class Location
10212
303834cc
JD
10213When the directive @code{%locations} is used, the Java parser supports
10214location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10215class defines a @dfn{position}, a single point in a file; Bison itself
10216defines a class representing a @dfn{location}, a range composed of a pair of
10217positions (possibly spanning several files). The location class is an inner
10218class of the parser; the name is @code{Location} by default, and may also be
10219renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10220
10221The location class treats the position as a completely opaque value.
10222By default, the class name is @code{Position}, but this can be changed
67501061 10223with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10224be supplied by the user.
8405b70c
PB
10225
10226
e254a580
DJ
10227@deftypeivar {Location} {Position} begin
10228@deftypeivarx {Location} {Position} end
8405b70c 10229The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10230@end deftypeivar
10231
10232@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10233Create a @code{Location} denoting an empty range located at a given point.
e254a580 10234@end deftypeop
8405b70c 10235
e254a580
DJ
10236@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10237Create a @code{Location} from the endpoints of the range.
10238@end deftypeop
10239
10240@deftypemethod {Location} {String} toString ()
8405b70c
PB
10241Prints the range represented by the location. For this to work
10242properly, the position class should override the @code{equals} and
10243@code{toString} methods appropriately.
10244@end deftypemethod
10245
10246
10247@node Java Parser Interface
10248@subsection Java Parser Interface
10249@c - define parser_class_name
10250@c - Ctor
10251@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10252@c debug_stream.
10253@c - Reporting errors
10254
e254a580
DJ
10255The name of the generated parser class defaults to @code{YYParser}. The
10256@code{YY} prefix may be changed using the @code{%name-prefix} directive
10257or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10258@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10259the class. The interface of this class is detailed below.
8405b70c 10260
e254a580 10261By default, the parser class has package visibility. A declaration
67501061 10262@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10263according to the Java language specification, the name of the @file{.java}
10264file should match the name of the class in this case. Similarly, you can
10265use @code{abstract}, @code{final} and @code{strictfp} with the
10266@code{%define} declaration to add other modifiers to the parser class.
67501061 10267A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10268be used to add any number of annotations to the parser class.
e254a580
DJ
10269
10270The Java package name of the parser class can be specified using the
67501061 10271@samp{%define package} directive. The superclass and the implemented
e254a580 10272interfaces of the parser class can be specified with the @code{%define
67501061 10273extends} and @samp{%define implements} directives.
e254a580
DJ
10274
10275The parser class defines an inner class, @code{Location}, that is used
10276for location tracking (see @ref{Java Location Values}), and a inner
10277interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10278these inner class/interface, and the members described in the interface
10279below, all the other members and fields are preceded with a @code{yy} or
10280@code{YY} prefix to avoid clashes with user code.
10281
e254a580
DJ
10282The parser class can be extended using the @code{%parse-param}
10283directive. Each occurrence of the directive will add a @code{protected
10284final} field to the parser class, and an argument to its constructor,
10285which initialize them automatically.
10286
e254a580
DJ
10287@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10288Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10289no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10290@code{%lex-param}s are used.
1979121c
DJ
10291
10292Use @code{%code init} for code added to the start of the constructor
10293body. This is especially useful to initialize superclasses. Use
f50bfcd6 10294@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10295@end deftypeop
10296
10297@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10298Build a new parser object using the specified scanner. There are no
2055a44e
AD
10299additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10300used.
e254a580
DJ
10301
10302If the scanner is defined by @code{%code lexer}, this constructor is
10303declared @code{protected} and is called automatically with a scanner
2055a44e 10304created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10305
10306Use @code{%code init} for code added to the start of the constructor
10307body. This is especially useful to initialize superclasses. Use
67501061 10308@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 10309@end deftypeop
8405b70c
PB
10310
10311@deftypemethod {YYParser} {boolean} parse ()
10312Run the syntactic analysis, and return @code{true} on success,
10313@code{false} otherwise.
10314@end deftypemethod
10315
1979121c
DJ
10316@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10317@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10318Get or set the option to produce verbose error messages. These are only
cf499cff 10319available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10320verbose error messages.
10321@end deftypemethod
10322
10323@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10324@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10325@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10326Print an error message using the @code{yyerror} method of the scanner
10327instance in use. The @code{Location} and @code{Position} parameters are
10328available only if location tracking is active.
10329@end deftypemethod
10330
01b477c6 10331@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10332During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10333from a syntax error.
10334@xref{Error Recovery}.
8405b70c
PB
10335@end deftypemethod
10336
10337@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10338@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10339Get or set the stream used for tracing the parsing. It defaults to
10340@code{System.err}.
10341@end deftypemethod
10342
10343@deftypemethod {YYParser} {int} getDebugLevel ()
10344@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10345Get or set the tracing level. Currently its value is either 0, no trace,
10346or nonzero, full tracing.
10347@end deftypemethod
10348
1979121c
DJ
10349@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10350@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10351Identify the Bison version and skeleton used to generate this parser.
10352@end deftypecv
10353
8405b70c
PB
10354
10355@node Java Scanner Interface
10356@subsection Java Scanner Interface
01b477c6 10357@c - %code lexer
8405b70c 10358@c - %lex-param
01b477c6 10359@c - Lexer interface
8405b70c 10360
e254a580
DJ
10361There are two possible ways to interface a Bison-generated Java parser
10362with a scanner: the scanner may be defined by @code{%code lexer}, or
10363defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10364@code{Lexer} inner interface of the parser class. This interface also
10365contain constants for all user-defined token names and the predefined
10366@code{EOF} token.
e254a580
DJ
10367
10368In the first case, the body of the scanner class is placed in
10369@code{%code lexer} blocks. If you want to pass parameters from the
10370parser constructor to the scanner constructor, specify them with
10371@code{%lex-param}; they are passed before @code{%parse-param}s to the
10372constructor.
01b477c6 10373
59c5ac72 10374In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10375which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10376The constructor of the parser object will then accept an object
10377implementing the interface; @code{%lex-param} is not used in this
10378case.
10379
10380In both cases, the scanner has to implement the following methods.
10381
e254a580
DJ
10382@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10383This method is defined by the user to emit an error message. The first
10384parameter is omitted if location tracking is not active. Its type can be
67501061 10385changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10386@end deftypemethod
10387
e254a580 10388@deftypemethod {Lexer} {int} yylex ()
8405b70c 10389Return the next token. Its type is the return value, its semantic
f50bfcd6 10390value and location are saved and returned by the their methods in the
e254a580
DJ
10391interface.
10392
67501061 10393Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10394Default is @code{java.io.IOException}.
8405b70c
PB
10395@end deftypemethod
10396
10397@deftypemethod {Lexer} {Position} getStartPos ()
10398@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10399Return respectively the first position of the last token that
10400@code{yylex} returned, and the first position beyond it. These
10401methods are not needed unless location tracking is active.
8405b70c 10402
67501061 10403The return type can be changed using @samp{%define position_type
8405b70c
PB
10404"@var{class-name}".}
10405@end deftypemethod
10406
10407@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10408Return the semantic value of the last token that yylex returned.
8405b70c 10409
67501061 10410The return type can be changed using @samp{%define stype
8405b70c
PB
10411"@var{class-name}".}
10412@end deftypemethod
10413
10414
e254a580
DJ
10415@node Java Action Features
10416@subsection Special Features for Use in Java Actions
10417
10418The following special constructs can be uses in Java actions.
10419Other analogous C action features are currently unavailable for Java.
10420
67501061 10421Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10422actions, and initial actions specified by @code{%initial-action}.
10423
10424@defvar $@var{n}
10425The semantic value for the @var{n}th component of the current rule.
10426This may not be assigned to.
10427@xref{Java Semantic Values}.
10428@end defvar
10429
10430@defvar $<@var{typealt}>@var{n}
10431Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10432@xref{Java Semantic Values}.
10433@end defvar
10434
10435@defvar $$
10436The semantic value for the grouping made by the current rule. As a
10437value, this is in the base type (@code{Object} or as specified by
67501061 10438@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10439casts are not allowed on the left-hand side of Java assignments.
10440Use an explicit Java cast if the correct subtype is needed.
10441@xref{Java Semantic Values}.
10442@end defvar
10443
10444@defvar $<@var{typealt}>$
10445Same as @code{$$} since Java always allow assigning to the base type.
10446Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10447for setting the value but there is currently no easy way to distinguish
10448these constructs.
10449@xref{Java Semantic Values}.
10450@end defvar
10451
10452@defvar @@@var{n}
10453The location information of the @var{n}th component of the current rule.
10454This may not be assigned to.
10455@xref{Java Location Values}.
10456@end defvar
10457
10458@defvar @@$
10459The location information of the grouping made by the current rule.
10460@xref{Java Location Values}.
10461@end defvar
10462
10463@deffn {Statement} {return YYABORT;}
10464Return immediately from the parser, indicating failure.
10465@xref{Java Parser Interface}.
10466@end deffn
8405b70c 10467
e254a580
DJ
10468@deffn {Statement} {return YYACCEPT;}
10469Return immediately from the parser, indicating success.
10470@xref{Java Parser Interface}.
10471@end deffn
8405b70c 10472
e254a580 10473@deffn {Statement} {return YYERROR;}
c265fd6b 10474Start error recovery without printing an error message.
e254a580
DJ
10475@xref{Error Recovery}.
10476@end deffn
8405b70c 10477
e254a580
DJ
10478@deftypefn {Function} {boolean} recovering ()
10479Return whether error recovery is being done. In this state, the parser
10480reads token until it reaches a known state, and then restarts normal
10481operation.
10482@xref{Error Recovery}.
10483@end deftypefn
8405b70c 10484
1979121c
DJ
10485@deftypefn {Function} {void} yyerror (String @var{msg})
10486@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10487@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10488Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10489instance in use. The @code{Location} and @code{Position} parameters are
10490available only if location tracking is active.
e254a580 10491@end deftypefn
8405b70c 10492
8405b70c 10493
8405b70c
PB
10494@node Java Differences
10495@subsection Differences between C/C++ and Java Grammars
10496
10497The different structure of the Java language forces several differences
10498between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10499section summarizes these differences.
8405b70c
PB
10500
10501@itemize
10502@item
01b477c6 10503Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10504@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10505macros. Instead, they should be preceded by @code{return} when they
10506appear in an action. The actual definition of these symbols is
8405b70c
PB
10507opaque to the Bison grammar, and it might change in the future. The
10508only meaningful operation that you can do, is to return them.
e254a580 10509See @pxref{Java Action Features}.
8405b70c
PB
10510
10511Note that of these three symbols, only @code{YYACCEPT} and
10512@code{YYABORT} will cause a return from the @code{yyparse}
10513method@footnote{Java parsers include the actions in a separate
10514method than @code{yyparse} in order to have an intuitive syntax that
10515corresponds to these C macros.}.
10516
e254a580
DJ
10517@item
10518Java lacks unions, so @code{%union} has no effect. Instead, semantic
10519values have a common base type: @code{Object} or as specified by
f50bfcd6 10520@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10521@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10522an union. The type of @code{$$}, even with angle brackets, is the base
10523type since Java casts are not allow on the left-hand side of assignments.
10524Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10525left-hand side of assignments. See @pxref{Java Semantic Values} and
10526@pxref{Java Action Features}.
10527
8405b70c 10528@item
f50bfcd6 10529The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10530@table @asis
10531@item @code{%code imports}
10532blocks are placed at the beginning of the Java source code. They may
10533include copyright notices. For a @code{package} declarations, it is
67501061 10534suggested to use @samp{%define package} instead.
8405b70c 10535
01b477c6
PB
10536@item unqualified @code{%code}
10537blocks are placed inside the parser class.
10538
10539@item @code{%code lexer}
10540blocks, if specified, should include the implementation of the
10541scanner. If there is no such block, the scanner can be any class
10542that implements the appropriate interface (see @pxref{Java Scanner
10543Interface}).
29553547 10544@end table
8405b70c
PB
10545
10546Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10547In particular, @code{%@{ @dots{} %@}} blocks should not be used
10548and may give an error in future versions of Bison.
10549
01b477c6 10550The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10551be used to define other classes used by the parser @emph{outside}
10552the parser class.
8405b70c
PB
10553@end itemize
10554
e254a580
DJ
10555
10556@node Java Declarations Summary
10557@subsection Java Declarations Summary
10558
10559This summary only include declarations specific to Java or have special
10560meaning when used in a Java parser.
10561
10562@deffn {Directive} {%language "Java"}
10563Generate a Java class for the parser.
10564@end deffn
10565
10566@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10567A parameter for the lexer class defined by @code{%code lexer}
10568@emph{only}, added as parameters to the lexer constructor and the parser
10569constructor that @emph{creates} a lexer. Default is none.
10570@xref{Java Scanner Interface}.
10571@end deffn
10572
10573@deffn {Directive} %name-prefix "@var{prefix}"
10574The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10575@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10576@xref{Java Bison Interface}.
10577@end deffn
10578
10579@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10580A parameter for the parser class added as parameters to constructor(s)
10581and as fields initialized by the constructor(s). Default is none.
10582@xref{Java Parser Interface}.
10583@end deffn
10584
10585@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10586Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10587@xref{Java Semantic Values}.
10588@end deffn
10589
10590@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10591Declare the type of nonterminals. Note that the angle brackets enclose
10592a Java @emph{type}.
10593@xref{Java Semantic Values}.
10594@end deffn
10595
10596@deffn {Directive} %code @{ @var{code} @dots{} @}
10597Code appended to the inside of the parser class.
10598@xref{Java Differences}.
10599@end deffn
10600
10601@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10602Code inserted just after the @code{package} declaration.
10603@xref{Java Differences}.
10604@end deffn
10605
1979121c
DJ
10606@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10607Code inserted at the beginning of the parser constructor body.
10608@xref{Java Parser Interface}.
10609@end deffn
10610
e254a580
DJ
10611@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10612Code added to the body of a inner lexer class within the parser class.
10613@xref{Java Scanner Interface}.
10614@end deffn
10615
10616@deffn {Directive} %% @var{code} @dots{}
10617Code (after the second @code{%%}) appended to the end of the file,
10618@emph{outside} the parser class.
10619@xref{Java Differences}.
10620@end deffn
10621
10622@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10623Not supported. Use @code{%code imports} instead.
e254a580
DJ
10624@xref{Java Differences}.
10625@end deffn
10626
10627@deffn {Directive} {%define abstract}
10628Whether the parser class is declared @code{abstract}. Default is false.
10629@xref{Java Bison Interface}.
10630@end deffn
10631
1979121c
DJ
10632@deffn {Directive} {%define annotations} "@var{annotations}"
10633The Java annotations for the parser class. Default is none.
10634@xref{Java Bison Interface}.
10635@end deffn
10636
e254a580
DJ
10637@deffn {Directive} {%define extends} "@var{superclass}"
10638The superclass of the parser class. Default is none.
10639@xref{Java Bison Interface}.
10640@end deffn
10641
10642@deffn {Directive} {%define final}
10643Whether the parser class is declared @code{final}. Default is false.
10644@xref{Java Bison Interface}.
10645@end deffn
10646
10647@deffn {Directive} {%define implements} "@var{interfaces}"
10648The implemented interfaces of the parser class, a comma-separated list.
10649Default is none.
10650@xref{Java Bison Interface}.
10651@end deffn
10652
1979121c
DJ
10653@deffn {Directive} {%define init_throws} "@var{exceptions}"
10654The exceptions thrown by @code{%code init} from the parser class
10655constructor. Default is none.
10656@xref{Java Parser Interface}.
10657@end deffn
10658
e254a580
DJ
10659@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10660The exceptions thrown by the @code{yylex} method of the lexer, a
10661comma-separated list. Default is @code{java.io.IOException}.
10662@xref{Java Scanner Interface}.
10663@end deffn
10664
10665@deffn {Directive} {%define location_type} "@var{class}"
10666The name of the class used for locations (a range between two
10667positions). This class is generated as an inner class of the parser
10668class by @command{bison}. Default is @code{Location}.
10669@xref{Java Location Values}.
10670@end deffn
10671
10672@deffn {Directive} {%define package} "@var{package}"
10673The package to put the parser class in. Default is none.
10674@xref{Java Bison Interface}.
10675@end deffn
10676
10677@deffn {Directive} {%define parser_class_name} "@var{name}"
10678The name of the parser class. Default is @code{YYParser} or
10679@code{@var{name-prefix}Parser}.
10680@xref{Java Bison Interface}.
10681@end deffn
10682
10683@deffn {Directive} {%define position_type} "@var{class}"
10684The name of the class used for positions. This class must be supplied by
10685the user. Default is @code{Position}.
10686@xref{Java Location Values}.
10687@end deffn
10688
10689@deffn {Directive} {%define public}
10690Whether the parser class is declared @code{public}. Default is false.
10691@xref{Java Bison Interface}.
10692@end deffn
10693
10694@deffn {Directive} {%define stype} "@var{class}"
10695The base type of semantic values. Default is @code{Object}.
10696@xref{Java Semantic Values}.
10697@end deffn
10698
10699@deffn {Directive} {%define strictfp}
10700Whether the parser class is declared @code{strictfp}. Default is false.
10701@xref{Java Bison Interface}.
10702@end deffn
10703
10704@deffn {Directive} {%define throws} "@var{exceptions}"
10705The exceptions thrown by user-supplied parser actions and
10706@code{%initial-action}, a comma-separated list. Default is none.
10707@xref{Java Parser Interface}.
10708@end deffn
10709
10710
12545799 10711@c ================================================= FAQ
d1a1114f
AD
10712
10713@node FAQ
10714@chapter Frequently Asked Questions
10715@cindex frequently asked questions
10716@cindex questions
10717
10718Several questions about Bison come up occasionally. Here some of them
10719are addressed.
10720
10721@menu
55ba27be
AD
10722* Memory Exhausted:: Breaking the Stack Limits
10723* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10724* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10725* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10726* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10727* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10728* I can't build Bison:: Troubleshooting
10729* Where can I find help?:: Troubleshouting
10730* Bug Reports:: Troublereporting
8405b70c 10731* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10732* Beta Testing:: Experimenting development versions
10733* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10734@end menu
10735
1a059451
PE
10736@node Memory Exhausted
10737@section Memory Exhausted
d1a1114f
AD
10738
10739@display
1a059451 10740My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10741message. What can I do?
10742@end display
10743
10744This question is already addressed elsewhere, @xref{Recursion,
10745,Recursive Rules}.
10746
e64fec0a
PE
10747@node How Can I Reset the Parser
10748@section How Can I Reset the Parser
5b066063 10749
0e14ad77
PE
10750The following phenomenon has several symptoms, resulting in the
10751following typical questions:
5b066063
AD
10752
10753@display
10754I invoke @code{yyparse} several times, and on correct input it works
10755properly; but when a parse error is found, all the other calls fail
0e14ad77 10756too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10757@end display
10758
10759@noindent
10760or
10761
10762@display
0e14ad77 10763My parser includes support for an @samp{#include}-like feature, in
5b066063 10764which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10765although I did specify @samp{%define api.pure}.
5b066063
AD
10766@end display
10767
0e14ad77
PE
10768These problems typically come not from Bison itself, but from
10769Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10770speed, they might not notice a change of input file. As a
10771demonstration, consider the following source file,
10772@file{first-line.l}:
10773
d4fca427
AD
10774@example
10775@group
10776%@{
5b066063
AD
10777#include <stdio.h>
10778#include <stdlib.h>
d4fca427
AD
10779%@}
10780@end group
5b066063
AD
10781%%
10782.*\n ECHO; return 1;
10783%%
d4fca427 10784@group
5b066063 10785int
0e14ad77 10786yyparse (char const *file)
d4fca427 10787@{
5b066063
AD
10788 yyin = fopen (file, "r");
10789 if (!yyin)
d4fca427
AD
10790 @{
10791 perror ("fopen");
10792 exit (EXIT_FAILURE);
10793 @}
10794@end group
10795@group
fa7e68c3 10796 /* One token only. */
5b066063 10797 yylex ();
0e14ad77 10798 if (fclose (yyin) != 0)
d4fca427
AD
10799 @{
10800 perror ("fclose");
10801 exit (EXIT_FAILURE);
10802 @}
5b066063 10803 return 0;
d4fca427
AD
10804@}
10805@end group
5b066063 10806
d4fca427 10807@group
5b066063 10808int
0e14ad77 10809main (void)
d4fca427 10810@{
5b066063
AD
10811 yyparse ("input");
10812 yyparse ("input");
10813 return 0;
d4fca427
AD
10814@}
10815@end group
10816@end example
5b066063
AD
10817
10818@noindent
10819If the file @file{input} contains
10820
10821@verbatim
10822input:1: Hello,
10823input:2: World!
10824@end verbatim
10825
10826@noindent
0e14ad77 10827then instead of getting the first line twice, you get:
5b066063
AD
10828
10829@example
10830$ @kbd{flex -ofirst-line.c first-line.l}
10831$ @kbd{gcc -ofirst-line first-line.c -ll}
10832$ @kbd{./first-line}
10833input:1: Hello,
10834input:2: World!
10835@end example
10836
0e14ad77
PE
10837Therefore, whenever you change @code{yyin}, you must tell the
10838Lex-generated scanner to discard its current buffer and switch to the
10839new one. This depends upon your implementation of Lex; see its
10840documentation for more. For Flex, it suffices to call
10841@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10842Flex-generated scanner needs to read from several input streams to
10843handle features like include files, you might consider using Flex
10844functions like @samp{yy_switch_to_buffer} that manipulate multiple
10845input buffers.
5b066063 10846
b165c324
AD
10847If your Flex-generated scanner uses start conditions (@pxref{Start
10848conditions, , Start conditions, flex, The Flex Manual}), you might
10849also want to reset the scanner's state, i.e., go back to the initial
10850start condition, through a call to @samp{BEGIN (0)}.
10851
fef4cb51
AD
10852@node Strings are Destroyed
10853@section Strings are Destroyed
10854
10855@display
c7e441b4 10856My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10857them. Instead of reporting @samp{"foo", "bar"}, it reports
10858@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10859@end display
10860
10861This error is probably the single most frequent ``bug report'' sent to
10862Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10863of the scanner. Consider the following Lex code:
fef4cb51
AD
10864
10865@verbatim
d4fca427 10866@group
fef4cb51
AD
10867%{
10868#include <stdio.h>
10869char *yylval = NULL;
10870%}
d4fca427
AD
10871@end group
10872@group
fef4cb51
AD
10873%%
10874.* yylval = yytext; return 1;
10875\n /* IGNORE */
10876%%
d4fca427
AD
10877@end group
10878@group
fef4cb51
AD
10879int
10880main ()
10881{
fa7e68c3 10882 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10883 char *fst = (yylex (), yylval);
10884 char *snd = (yylex (), yylval);
10885 printf ("\"%s\", \"%s\"\n", fst, snd);
10886 return 0;
10887}
d4fca427 10888@end group
fef4cb51
AD
10889@end verbatim
10890
10891If you compile and run this code, you get:
10892
10893@example
10894$ @kbd{flex -osplit-lines.c split-lines.l}
10895$ @kbd{gcc -osplit-lines split-lines.c -ll}
10896$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10897"one
10898two", "two"
10899@end example
10900
10901@noindent
10902this is because @code{yytext} is a buffer provided for @emph{reading}
10903in the action, but if you want to keep it, you have to duplicate it
10904(e.g., using @code{strdup}). Note that the output may depend on how
10905your implementation of Lex handles @code{yytext}. For instance, when
10906given the Lex compatibility option @option{-l} (which triggers the
10907option @samp{%array}) Flex generates a different behavior:
10908
10909@example
10910$ @kbd{flex -l -osplit-lines.c split-lines.l}
10911$ @kbd{gcc -osplit-lines split-lines.c -ll}
10912$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10913"two", "two"
10914@end example
10915
10916
2fa09258
AD
10917@node Implementing Gotos/Loops
10918@section Implementing Gotos/Loops
a06ea4aa
AD
10919
10920@display
10921My simple calculator supports variables, assignments, and functions,
2fa09258 10922but how can I implement gotos, or loops?
a06ea4aa
AD
10923@end display
10924
10925Although very pedagogical, the examples included in the document blur
a1c84f45 10926the distinction to make between the parser---whose job is to recover
a06ea4aa 10927the structure of a text and to transmit it to subsequent modules of
a1c84f45 10928the program---and the processing (such as the execution) of this
a06ea4aa
AD
10929structure. This works well with so called straight line programs,
10930i.e., precisely those that have a straightforward execution model:
10931execute simple instructions one after the others.
10932
10933@cindex abstract syntax tree
8a4281b9 10934@cindex AST
a06ea4aa
AD
10935If you want a richer model, you will probably need to use the parser
10936to construct a tree that does represent the structure it has
10937recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10938or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10939traversing it in various ways, will enable treatments such as its
10940execution or its translation, which will result in an interpreter or a
10941compiler.
10942
10943This topic is way beyond the scope of this manual, and the reader is
10944invited to consult the dedicated literature.
10945
10946
ed2e6384
AD
10947@node Multiple start-symbols
10948@section Multiple start-symbols
10949
10950@display
10951I have several closely related grammars, and I would like to share their
10952implementations. In fact, I could use a single grammar but with
10953multiple entry points.
10954@end display
10955
10956Bison does not support multiple start-symbols, but there is a very
10957simple means to simulate them. If @code{foo} and @code{bar} are the two
10958pseudo start-symbols, then introduce two new tokens, say
10959@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10960real start-symbol:
10961
10962@example
10963%token START_FOO START_BAR;
10964%start start;
10965start: START_FOO foo
10966 | START_BAR bar;
10967@end example
10968
10969These tokens prevents the introduction of new conflicts. As far as the
10970parser goes, that is all that is needed.
10971
10972Now the difficult part is ensuring that the scanner will send these
10973tokens first. If your scanner is hand-written, that should be
10974straightforward. If your scanner is generated by Lex, them there is
10975simple means to do it: recall that anything between @samp{%@{ ... %@}}
10976after the first @code{%%} is copied verbatim in the top of the generated
10977@code{yylex} function. Make sure a variable @code{start_token} is
10978available in the scanner (e.g., a global variable or using
10979@code{%lex-param} etc.), and use the following:
10980
10981@example
10982 /* @r{Prologue.} */
10983%%
10984%@{
10985 if (start_token)
10986 @{
10987 int t = start_token;
10988 start_token = 0;
10989 return t;
10990 @}
10991%@}
10992 /* @r{The rules.} */
10993@end example
10994
10995
55ba27be
AD
10996@node Secure? Conform?
10997@section Secure? Conform?
10998
10999@display
11000Is Bison secure? Does it conform to POSIX?
11001@end display
11002
11003If you're looking for a guarantee or certification, we don't provide it.
11004However, Bison is intended to be a reliable program that conforms to the
8a4281b9 11005POSIX specification for Yacc. If you run into problems,
55ba27be
AD
11006please send us a bug report.
11007
11008@node I can't build Bison
11009@section I can't build Bison
11010
11011@display
8c5b881d
PE
11012I can't build Bison because @command{make} complains that
11013@code{msgfmt} is not found.
55ba27be
AD
11014What should I do?
11015@end display
11016
11017Like most GNU packages with internationalization support, that feature
11018is turned on by default. If you have problems building in the @file{po}
11019subdirectory, it indicates that your system's internationalization
11020support is lacking. You can re-configure Bison with
11021@option{--disable-nls} to turn off this support, or you can install GNU
11022gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
11023Bison. See the file @file{ABOUT-NLS} for more information.
11024
11025
11026@node Where can I find help?
11027@section Where can I find help?
11028
11029@display
11030I'm having trouble using Bison. Where can I find help?
11031@end display
11032
11033First, read this fine manual. Beyond that, you can send mail to
11034@email{help-bison@@gnu.org}. This mailing list is intended to be
11035populated with people who are willing to answer questions about using
11036and installing Bison. Please keep in mind that (most of) the people on
11037the list have aspects of their lives which are not related to Bison (!),
11038so you may not receive an answer to your question right away. This can
11039be frustrating, but please try not to honk them off; remember that any
11040help they provide is purely voluntary and out of the kindness of their
11041hearts.
11042
11043@node Bug Reports
11044@section Bug Reports
11045
11046@display
11047I found a bug. What should I include in the bug report?
11048@end display
11049
11050Before you send a bug report, make sure you are using the latest
11051version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
11052mirrors. Be sure to include the version number in your bug report. If
11053the bug is present in the latest version but not in a previous version,
11054try to determine the most recent version which did not contain the bug.
11055
11056If the bug is parser-related, you should include the smallest grammar
11057you can which demonstrates the bug. The grammar file should also be
11058complete (i.e., I should be able to run it through Bison without having
11059to edit or add anything). The smaller and simpler the grammar, the
11060easier it will be to fix the bug.
11061
11062Include information about your compilation environment, including your
11063operating system's name and version and your compiler's name and
11064version. If you have trouble compiling, you should also include a
11065transcript of the build session, starting with the invocation of
11066`configure'. Depending on the nature of the bug, you may be asked to
11067send additional files as well (such as `config.h' or `config.cache').
11068
11069Patches are most welcome, but not required. That is, do not hesitate to
411614fa 11070send a bug report just because you cannot provide a fix.
55ba27be
AD
11071
11072Send bug reports to @email{bug-bison@@gnu.org}.
11073
8405b70c
PB
11074@node More Languages
11075@section More Languages
55ba27be
AD
11076
11077@display
8405b70c 11078Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
11079favorite language here}?
11080@end display
11081
8405b70c 11082C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
11083languages; contributions are welcome.
11084
11085@node Beta Testing
11086@section Beta Testing
11087
11088@display
11089What is involved in being a beta tester?
11090@end display
11091
11092It's not terribly involved. Basically, you would download a test
11093release, compile it, and use it to build and run a parser or two. After
11094that, you would submit either a bug report or a message saying that
11095everything is okay. It is important to report successes as well as
11096failures because test releases eventually become mainstream releases,
11097but only if they are adequately tested. If no one tests, development is
11098essentially halted.
11099
11100Beta testers are particularly needed for operating systems to which the
11101developers do not have easy access. They currently have easy access to
11102recent GNU/Linux and Solaris versions. Reports about other operating
11103systems are especially welcome.
11104
11105@node Mailing Lists
11106@section Mailing Lists
11107
11108@display
11109How do I join the help-bison and bug-bison mailing lists?
11110@end display
11111
11112See @url{http://lists.gnu.org/}.
a06ea4aa 11113
d1a1114f
AD
11114@c ================================================= Table of Symbols
11115
342b8b6e 11116@node Table of Symbols
bfa74976
RS
11117@appendix Bison Symbols
11118@cindex Bison symbols, table of
11119@cindex symbols in Bison, table of
11120
18b519c0 11121@deffn {Variable} @@$
3ded9a63 11122In an action, the location of the left-hand side of the rule.
303834cc 11123@xref{Tracking Locations}.
18b519c0 11124@end deffn
3ded9a63 11125
18b519c0 11126@deffn {Variable} @@@var{n}
303834cc
JD
11127In an action, the location of the @var{n}-th symbol of the right-hand side
11128of the rule. @xref{Tracking Locations}.
18b519c0 11129@end deffn
3ded9a63 11130
d013372c 11131@deffn {Variable} @@@var{name}
303834cc
JD
11132In an action, the location of a symbol addressed by name. @xref{Tracking
11133Locations}.
d013372c
AR
11134@end deffn
11135
11136@deffn {Variable} @@[@var{name}]
303834cc
JD
11137In an action, the location of a symbol addressed by name. @xref{Tracking
11138Locations}.
d013372c
AR
11139@end deffn
11140
18b519c0 11141@deffn {Variable} $$
3ded9a63
AD
11142In an action, the semantic value of the left-hand side of the rule.
11143@xref{Actions}.
18b519c0 11144@end deffn
3ded9a63 11145
18b519c0 11146@deffn {Variable} $@var{n}
3ded9a63
AD
11147In an action, the semantic value of the @var{n}-th symbol of the
11148right-hand side of the rule. @xref{Actions}.
18b519c0 11149@end deffn
3ded9a63 11150
d013372c
AR
11151@deffn {Variable} $@var{name}
11152In an action, the semantic value of a symbol addressed by name.
11153@xref{Actions}.
11154@end deffn
11155
11156@deffn {Variable} $[@var{name}]
11157In an action, the semantic value of a symbol addressed by name.
11158@xref{Actions}.
11159@end deffn
11160
dd8d9022
AD
11161@deffn {Delimiter} %%
11162Delimiter used to separate the grammar rule section from the
11163Bison declarations section or the epilogue.
11164@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11165@end deffn
bfa74976 11166
dd8d9022
AD
11167@c Don't insert spaces, or check the DVI output.
11168@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11169All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11170to the parser implementation file. Such code forms the prologue of
11171the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11172Grammar}.
18b519c0 11173@end deffn
bfa74976 11174
ca2a6d15
PH
11175@deffn {Directive} %?@{@var{expression}@}
11176Predicate actions. This is a type of action clause that may appear in
11177rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11178GLR parsers during nondeterministic operation,
ca2a6d15
PH
11179this silently causes an alternative parse to die. During deterministic
11180operation, it is the same as the effect of YYERROR.
11181@xref{Semantic Predicates}.
11182
11183This feature is experimental.
11184More user feedback will help to determine whether it should become a permanent
11185feature.
11186@end deffn
11187
dd8d9022
AD
11188@deffn {Construct} /*@dots{}*/
11189Comment delimiters, as in C.
18b519c0 11190@end deffn
bfa74976 11191
dd8d9022
AD
11192@deffn {Delimiter} :
11193Separates a rule's result from its components. @xref{Rules, ,Syntax of
11194Grammar Rules}.
18b519c0 11195@end deffn
bfa74976 11196
dd8d9022
AD
11197@deffn {Delimiter} ;
11198Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11199@end deffn
bfa74976 11200
dd8d9022
AD
11201@deffn {Delimiter} |
11202Separates alternate rules for the same result nonterminal.
11203@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11204@end deffn
bfa74976 11205
12e35840
JD
11206@deffn {Directive} <*>
11207Used to define a default tagged @code{%destructor} or default tagged
11208@code{%printer}.
85894313
JD
11209
11210This feature is experimental.
11211More user feedback will help to determine whether it should become a permanent
11212feature.
11213
12e35840
JD
11214@xref{Destructor Decl, , Freeing Discarded Symbols}.
11215@end deffn
11216
3ebecc24 11217@deffn {Directive} <>
12e35840
JD
11218Used to define a default tagless @code{%destructor} or default tagless
11219@code{%printer}.
85894313
JD
11220
11221This feature is experimental.
11222More user feedback will help to determine whether it should become a permanent
11223feature.
11224
12e35840
JD
11225@xref{Destructor Decl, , Freeing Discarded Symbols}.
11226@end deffn
11227
dd8d9022
AD
11228@deffn {Symbol} $accept
11229The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11230$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11231Start-Symbol}. It cannot be used in the grammar.
18b519c0 11232@end deffn
bfa74976 11233
136a0f76 11234@deffn {Directive} %code @{@var{code}@}
148d66d8 11235@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11236Insert @var{code} verbatim into the output parser source at the
11237default location or at the location specified by @var{qualifier}.
e0c07222 11238@xref{%code Summary}.
9bc0dd67
JD
11239@end deffn
11240
11241@deffn {Directive} %debug
11242Equip the parser for debugging. @xref{Decl Summary}.
11243@end deffn
11244
91d2c560 11245@ifset defaultprec
22fccf95
PE
11246@deffn {Directive} %default-prec
11247Assign a precedence to rules that lack an explicit @samp{%prec}
11248modifier. @xref{Contextual Precedence, ,Context-Dependent
11249Precedence}.
39a06c25 11250@end deffn
91d2c560 11251@end ifset
39a06c25 11252
7fceb615
JD
11253@deffn {Directive} %define @var{variable}
11254@deffnx {Directive} %define @var{variable} @var{value}
11255@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11256Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11257@end deffn
11258
18b519c0 11259@deffn {Directive} %defines
ff7571c0
JD
11260Bison declaration to create a parser header file, which is usually
11261meant for the scanner. @xref{Decl Summary}.
18b519c0 11262@end deffn
6deb4447 11263
02975b9a
JD
11264@deffn {Directive} %defines @var{defines-file}
11265Same as above, but save in the file @var{defines-file}.
11266@xref{Decl Summary}.
11267@end deffn
11268
18b519c0 11269@deffn {Directive} %destructor
258b75ca 11270Specify how the parser should reclaim the memory associated to
fa7e68c3 11271discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11272@end deffn
72f889cc 11273
18b519c0 11274@deffn {Directive} %dprec
676385e2 11275Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11276time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11277GLR Parsers}.
18b519c0 11278@end deffn
676385e2 11279
dd8d9022
AD
11280@deffn {Symbol} $end
11281The predefined token marking the end of the token stream. It cannot be
11282used in the grammar.
11283@end deffn
11284
11285@deffn {Symbol} error
11286A token name reserved for error recovery. This token may be used in
11287grammar rules so as to allow the Bison parser to recognize an error in
11288the grammar without halting the process. In effect, a sentence
11289containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11290token @code{error} becomes the current lookahead token. Actions
11291corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11292token is reset to the token that originally caused the violation.
11293@xref{Error Recovery}.
18d192f0
AD
11294@end deffn
11295
18b519c0 11296@deffn {Directive} %error-verbose
7fceb615
JD
11297An obsolete directive standing for @samp{%define parse.error verbose}
11298(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11299@end deffn
2a8d363a 11300
02975b9a 11301@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11302Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11303Summary}.
18b519c0 11304@end deffn
d8988b2f 11305
18b519c0 11306@deffn {Directive} %glr-parser
8a4281b9
JD
11307Bison declaration to produce a GLR parser. @xref{GLR
11308Parsers, ,Writing GLR Parsers}.
18b519c0 11309@end deffn
676385e2 11310
dd8d9022
AD
11311@deffn {Directive} %initial-action
11312Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11313@end deffn
11314
e6e704dc
JD
11315@deffn {Directive} %language
11316Specify the programming language for the generated parser.
11317@xref{Decl Summary}.
11318@end deffn
11319
18b519c0 11320@deffn {Directive} %left
d78f0ac9 11321Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11322@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11323@end deffn
bfa74976 11324
2055a44e
AD
11325@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11326Bison declaration to specifying additional arguments that
2a8d363a
AD
11327@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11328for Pure Parsers}.
18b519c0 11329@end deffn
2a8d363a 11330
18b519c0 11331@deffn {Directive} %merge
676385e2 11332Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11333reduce/reduce conflict with a rule having the same merging function, the
676385e2 11334function is applied to the two semantic values to get a single result.
8a4281b9 11335@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11336@end deffn
676385e2 11337
02975b9a 11338@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 11339Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 11340@end deffn
d8988b2f 11341
91d2c560 11342@ifset defaultprec
22fccf95
PE
11343@deffn {Directive} %no-default-prec
11344Do not assign a precedence to rules that lack an explicit @samp{%prec}
11345modifier. @xref{Contextual Precedence, ,Context-Dependent
11346Precedence}.
11347@end deffn
91d2c560 11348@end ifset
22fccf95 11349
18b519c0 11350@deffn {Directive} %no-lines
931c7513 11351Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11352parser implementation file. @xref{Decl Summary}.
18b519c0 11353@end deffn
931c7513 11354
18b519c0 11355@deffn {Directive} %nonassoc
d78f0ac9 11356Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11357@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11358@end deffn
bfa74976 11359
02975b9a 11360@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11361Bison declaration to set the name of the parser implementation file.
11362@xref{Decl Summary}.
18b519c0 11363@end deffn
d8988b2f 11364
2055a44e
AD
11365@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11366Bison declaration to specify additional arguments that both
11367@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11368Parser Function @code{yyparse}}.
11369@end deffn
11370
11371@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11372Bison declaration to specify additional arguments that @code{yyparse}
11373should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11374@end deffn
2a8d363a 11375
18b519c0 11376@deffn {Directive} %prec
bfa74976
RS
11377Bison declaration to assign a precedence to a specific rule.
11378@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11379@end deffn
bfa74976 11380
d78f0ac9
AD
11381@deffn {Directive} %precedence
11382Bison declaration to assign precedence to token(s), but no associativity
11383@xref{Precedence Decl, ,Operator Precedence}.
11384@end deffn
11385
18b519c0 11386@deffn {Directive} %pure-parser
35c1e5f0
JD
11387Deprecated version of @samp{%define api.pure} (@pxref{%define
11388Summary,,api.pure}), for which Bison is more careful to warn about
11389unreasonable usage.
18b519c0 11390@end deffn
bfa74976 11391
b50d2359 11392@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11393Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11394Require a Version of Bison}.
b50d2359
AD
11395@end deffn
11396
18b519c0 11397@deffn {Directive} %right
d78f0ac9 11398Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11399@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11400@end deffn
bfa74976 11401
e6e704dc
JD
11402@deffn {Directive} %skeleton
11403Specify the skeleton to use; usually for development.
11404@xref{Decl Summary}.
11405@end deffn
11406
18b519c0 11407@deffn {Directive} %start
704a47c4
AD
11408Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11409Start-Symbol}.
18b519c0 11410@end deffn
bfa74976 11411
18b519c0 11412@deffn {Directive} %token
bfa74976
RS
11413Bison declaration to declare token(s) without specifying precedence.
11414@xref{Token Decl, ,Token Type Names}.
18b519c0 11415@end deffn
bfa74976 11416
18b519c0 11417@deffn {Directive} %token-table
ff7571c0
JD
11418Bison declaration to include a token name table in the parser
11419implementation file. @xref{Decl Summary}.
18b519c0 11420@end deffn
931c7513 11421
18b519c0 11422@deffn {Directive} %type
704a47c4
AD
11423Bison declaration to declare nonterminals. @xref{Type Decl,
11424,Nonterminal Symbols}.
18b519c0 11425@end deffn
bfa74976 11426
dd8d9022
AD
11427@deffn {Symbol} $undefined
11428The predefined token onto which all undefined values returned by
11429@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11430@code{error}.
11431@end deffn
11432
18b519c0 11433@deffn {Directive} %union
bfa74976
RS
11434Bison declaration to specify several possible data types for semantic
11435values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11436@end deffn
bfa74976 11437
dd8d9022
AD
11438@deffn {Macro} YYABORT
11439Macro to pretend that an unrecoverable syntax error has occurred, by
11440making @code{yyparse} return 1 immediately. The error reporting
11441function @code{yyerror} is not called. @xref{Parser Function, ,The
11442Parser Function @code{yyparse}}.
8405b70c
PB
11443
11444For Java parsers, this functionality is invoked using @code{return YYABORT;}
11445instead.
dd8d9022 11446@end deffn
3ded9a63 11447
dd8d9022
AD
11448@deffn {Macro} YYACCEPT
11449Macro to pretend that a complete utterance of the language has been
11450read, by making @code{yyparse} return 0 immediately.
11451@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11452
11453For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11454instead.
dd8d9022 11455@end deffn
bfa74976 11456
dd8d9022 11457@deffn {Macro} YYBACKUP
742e4900 11458Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11459token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11460@end deffn
bfa74976 11461
dd8d9022 11462@deffn {Variable} yychar
32c29292 11463External integer variable that contains the integer value of the
742e4900 11464lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11465@code{yyparse}.) Error-recovery rule actions may examine this variable.
11466@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11467@end deffn
bfa74976 11468
dd8d9022
AD
11469@deffn {Variable} yyclearin
11470Macro used in error-recovery rule actions. It clears the previous
742e4900 11471lookahead token. @xref{Error Recovery}.
18b519c0 11472@end deffn
bfa74976 11473
dd8d9022
AD
11474@deffn {Macro} YYDEBUG
11475Macro to define to equip the parser with tracing code. @xref{Tracing,
11476,Tracing Your Parser}.
18b519c0 11477@end deffn
bfa74976 11478
dd8d9022
AD
11479@deffn {Variable} yydebug
11480External integer variable set to zero by default. If @code{yydebug}
11481is given a nonzero value, the parser will output information on input
11482symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11483@end deffn
bfa74976 11484
dd8d9022
AD
11485@deffn {Macro} yyerrok
11486Macro to cause parser to recover immediately to its normal mode
11487after a syntax error. @xref{Error Recovery}.
11488@end deffn
11489
11490@deffn {Macro} YYERROR
11491Macro to pretend that a syntax error has just been detected: call
11492@code{yyerror} and then perform normal error recovery if possible
11493(@pxref{Error Recovery}), or (if recovery is impossible) make
11494@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11495
11496For Java parsers, this functionality is invoked using @code{return YYERROR;}
11497instead.
dd8d9022
AD
11498@end deffn
11499
11500@deffn {Function} yyerror
11501User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11502@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11503@end deffn
11504
11505@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11506An obsolete macro used in the @file{yacc.c} skeleton, that you define
11507with @code{#define} in the prologue to request verbose, specific error
11508message strings when @code{yyerror} is called. It doesn't matter what
11509definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11510it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11511(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11512@end deffn
11513
11514@deffn {Macro} YYINITDEPTH
11515Macro for specifying the initial size of the parser stack.
1a059451 11516@xref{Memory Management}.
dd8d9022
AD
11517@end deffn
11518
11519@deffn {Function} yylex
11520User-supplied lexical analyzer function, called with no arguments to get
11521the next token. @xref{Lexical, ,The Lexical Analyzer Function
11522@code{yylex}}.
11523@end deffn
11524
11525@deffn {Macro} YYLEX_PARAM
11526An obsolete macro for specifying an extra argument (or list of extra
32c29292 11527arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11528macro is deprecated, and is supported only for Yacc like parsers.
11529@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11530@end deffn
11531
11532@deffn {Variable} yylloc
11533External variable in which @code{yylex} should place the line and column
11534numbers associated with a token. (In a pure parser, it is a local
11535variable within @code{yyparse}, and its address is passed to
32c29292
JD
11536@code{yylex}.)
11537You can ignore this variable if you don't use the @samp{@@} feature in the
11538grammar actions.
11539@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11540In semantic actions, it stores the location of the lookahead token.
32c29292 11541@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11542@end deffn
11543
11544@deffn {Type} YYLTYPE
11545Data type of @code{yylloc}; by default, a structure with four
11546members. @xref{Location Type, , Data Types of Locations}.
11547@end deffn
11548
11549@deffn {Variable} yylval
11550External variable in which @code{yylex} should place the semantic
11551value associated with a token. (In a pure parser, it is a local
11552variable within @code{yyparse}, and its address is passed to
32c29292
JD
11553@code{yylex}.)
11554@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11555In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11556@xref{Actions, ,Actions}.
dd8d9022
AD
11557@end deffn
11558
11559@deffn {Macro} YYMAXDEPTH
1a059451
PE
11560Macro for specifying the maximum size of the parser stack. @xref{Memory
11561Management}.
dd8d9022
AD
11562@end deffn
11563
11564@deffn {Variable} yynerrs
8a2800e7 11565Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11566(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11567pure push parser, it is a member of yypstate.)
dd8d9022
AD
11568@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11569@end deffn
11570
11571@deffn {Function} yyparse
11572The parser function produced by Bison; call this function to start
11573parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11574@end deffn
11575
9987d1b3 11576@deffn {Function} yypstate_delete
f4101aa6 11577The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11578call this function to delete the memory associated with a parser.
f4101aa6 11579@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11580@code{yypstate_delete}}.
59da312b
JD
11581(The current push parsing interface is experimental and may evolve.
11582More user feedback will help to stabilize it.)
9987d1b3
JD
11583@end deffn
11584
11585@deffn {Function} yypstate_new
f4101aa6 11586The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11587call this function to create a new parser.
f4101aa6 11588@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11589@code{yypstate_new}}.
59da312b
JD
11590(The current push parsing interface is experimental and may evolve.
11591More user feedback will help to stabilize it.)
9987d1b3
JD
11592@end deffn
11593
11594@deffn {Function} yypull_parse
f4101aa6
AD
11595The parser function produced by Bison in push mode; call this function to
11596parse the rest of the input stream.
11597@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11598@code{yypull_parse}}.
59da312b
JD
11599(The current push parsing interface is experimental and may evolve.
11600More user feedback will help to stabilize it.)
9987d1b3
JD
11601@end deffn
11602
11603@deffn {Function} yypush_parse
f4101aa6
AD
11604The parser function produced by Bison in push mode; call this function to
11605parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11606@code{yypush_parse}}.
59da312b
JD
11607(The current push parsing interface is experimental and may evolve.
11608More user feedback will help to stabilize it.)
9987d1b3
JD
11609@end deffn
11610
dd8d9022
AD
11611@deffn {Macro} YYPARSE_PARAM
11612An obsolete macro for specifying the name of a parameter that
11613@code{yyparse} should accept. The use of this macro is deprecated, and
11614is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11615Conventions for Pure Parsers}.
11616@end deffn
11617
11618@deffn {Macro} YYRECOVERING
02103984
PE
11619The expression @code{YYRECOVERING ()} yields 1 when the parser
11620is recovering from a syntax error, and 0 otherwise.
11621@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11622@end deffn
11623
11624@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11625Macro used to control the use of @code{alloca} when the
11626deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11627the parser will use @code{malloc} to extend its stacks. If defined to
116281, the parser will use @code{alloca}. Values other than 0 and 1 are
11629reserved for future Bison extensions. If not defined,
11630@code{YYSTACK_USE_ALLOCA} defaults to 0.
11631
55289366 11632In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11633limited stack and with unreliable stack-overflow checking, you should
11634set @code{YYMAXDEPTH} to a value that cannot possibly result in
11635unchecked stack overflow on any of your target hosts when
11636@code{alloca} is called. You can inspect the code that Bison
11637generates in order to determine the proper numeric values. This will
11638require some expertise in low-level implementation details.
dd8d9022
AD
11639@end deffn
11640
11641@deffn {Type} YYSTYPE
11642Data type of semantic values; @code{int} by default.
11643@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11644@end deffn
bfa74976 11645
342b8b6e 11646@node Glossary
bfa74976
RS
11647@appendix Glossary
11648@cindex glossary
11649
11650@table @asis
7fceb615 11651@item Accepting state
eb45ef3b
JD
11652A state whose only action is the accept action.
11653The accepting state is thus a consistent state.
11654@xref{Understanding,,}.
11655
8a4281b9 11656@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11657Formal method of specifying context-free grammars originally proposed
11658by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11659committee document contributing to what became the Algol 60 report.
11660@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11661
7fceb615
JD
11662@item Consistent state
11663A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 11664
bfa74976
RS
11665@item Context-free grammars
11666Grammars specified as rules that can be applied regardless of context.
11667Thus, if there is a rule which says that an integer can be used as an
11668expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11669permitted. @xref{Language and Grammar, ,Languages and Context-Free
11670Grammars}.
bfa74976 11671
7fceb615 11672@item Default reduction
110ef36a 11673The reduction that a parser should perform if the current parser state
35c1e5f0 11674contains no other action for the lookahead token. In permitted parser
7fceb615
JD
11675states, Bison declares the reduction with the largest lookahead set to be
11676the default reduction and removes that lookahead set. @xref{Default
11677Reductions}.
11678
11679@item Defaulted state
11680A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 11681
bfa74976
RS
11682@item Dynamic allocation
11683Allocation of memory that occurs during execution, rather than at
11684compile time or on entry to a function.
11685
11686@item Empty string
11687Analogous to the empty set in set theory, the empty string is a
11688character string of length zero.
11689
11690@item Finite-state stack machine
11691A ``machine'' that has discrete states in which it is said to exist at
11692each instant in time. As input to the machine is processed, the
11693machine moves from state to state as specified by the logic of the
11694machine. In the case of the parser, the input is the language being
11695parsed, and the states correspond to various stages in the grammar
c827f760 11696rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11697
8a4281b9 11698@item Generalized LR (GLR)
676385e2 11699A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11700that are not LR(1). It resolves situations that Bison's
eb45ef3b 11701deterministic parsing
676385e2
PH
11702algorithm cannot by effectively splitting off multiple parsers, trying all
11703possible parsers, and discarding those that fail in the light of additional
c827f760 11704right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11705LR Parsing}.
676385e2 11706
bfa74976
RS
11707@item Grouping
11708A language construct that is (in general) grammatically divisible;
c827f760 11709for example, `expression' or `declaration' in C@.
bfa74976
RS
11710@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11711
7fceb615
JD
11712@item IELR(1) (Inadequacy Elimination LR(1))
11713A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 11714context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
11715language-recognition power of canonical LR(1) but with nearly the same
11716number of parser states as LALR(1). This reduction in parser states is
11717often an order of magnitude. More importantly, because canonical LR(1)'s
11718extra parser states may contain duplicate conflicts in the case of non-LR(1)
11719grammars, the number of conflicts for IELR(1) is often an order of magnitude
11720less as well. This can significantly reduce the complexity of developing a
11721grammar. @xref{LR Table Construction}.
eb45ef3b 11722
bfa74976
RS
11723@item Infix operator
11724An arithmetic operator that is placed between the operands on which it
11725performs some operation.
11726
11727@item Input stream
11728A continuous flow of data between devices or programs.
11729
8a4281b9 11730@item LAC (Lookahead Correction)
fcf834f9 11731A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
11732detection, which is caused by LR state merging, default reductions, and the
11733use of @code{%nonassoc}. Delayed syntax error detection results in
11734unexpected semantic actions, initiation of error recovery in the wrong
11735syntactic context, and an incorrect list of expected tokens in a verbose
11736syntax error message. @xref{LAC}.
fcf834f9 11737
bfa74976
RS
11738@item Language construct
11739One of the typical usage schemas of the language. For example, one of
11740the constructs of the C language is the @code{if} statement.
11741@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11742
11743@item Left associativity
11744Operators having left associativity are analyzed from left to right:
11745@samp{a+b+c} first computes @samp{a+b} and then combines with
11746@samp{c}. @xref{Precedence, ,Operator Precedence}.
11747
11748@item Left recursion
89cab50d
AD
11749A rule whose result symbol is also its first component symbol; for
11750example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11751Rules}.
bfa74976
RS
11752
11753@item Left-to-right parsing
11754Parsing a sentence of a language by analyzing it token by token from
c827f760 11755left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11756
11757@item Lexical analyzer (scanner)
11758A function that reads an input stream and returns tokens one by one.
11759@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11760
11761@item Lexical tie-in
11762A flag, set by actions in the grammar rules, which alters the way
11763tokens are parsed. @xref{Lexical Tie-ins}.
11764
931c7513 11765@item Literal string token
14ded682 11766A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11767
742e4900
JD
11768@item Lookahead token
11769A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11770Tokens}.
bfa74976 11771
8a4281b9 11772@item LALR(1)
bfa74976 11773The class of context-free grammars that Bison (like most other parser
8a4281b9 11774generators) can handle by default; a subset of LR(1).
cc09e5be 11775@xref{Mysterious Conflicts}.
bfa74976 11776
8a4281b9 11777@item LR(1)
bfa74976 11778The class of context-free grammars in which at most one token of
742e4900 11779lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11780
11781@item Nonterminal symbol
11782A grammar symbol standing for a grammatical construct that can
11783be expressed through rules in terms of smaller constructs; in other
11784words, a construct that is not a token. @xref{Symbols}.
11785
bfa74976
RS
11786@item Parser
11787A function that recognizes valid sentences of a language by analyzing
11788the syntax structure of a set of tokens passed to it from a lexical
11789analyzer.
11790
11791@item Postfix operator
11792An arithmetic operator that is placed after the operands upon which it
11793performs some operation.
11794
11795@item Reduction
11796Replacing a string of nonterminals and/or terminals with a single
89cab50d 11797nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11798Parser Algorithm}.
bfa74976
RS
11799
11800@item Reentrant
11801A reentrant subprogram is a subprogram which can be in invoked any
11802number of times in parallel, without interference between the various
11803invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11804
11805@item Reverse polish notation
11806A language in which all operators are postfix operators.
11807
11808@item Right recursion
89cab50d
AD
11809A rule whose result symbol is also its last component symbol; for
11810example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11811Rules}.
bfa74976
RS
11812
11813@item Semantics
11814In computer languages, the semantics are specified by the actions
11815taken for each instance of the language, i.e., the meaning of
11816each statement. @xref{Semantics, ,Defining Language Semantics}.
11817
11818@item Shift
11819A parser is said to shift when it makes the choice of analyzing
11820further input from the stream rather than reducing immediately some
c827f760 11821already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11822
11823@item Single-character literal
11824A single character that is recognized and interpreted as is.
11825@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11826
11827@item Start symbol
11828The nonterminal symbol that stands for a complete valid utterance in
11829the language being parsed. The start symbol is usually listed as the
13863333 11830first nonterminal symbol in a language specification.
bfa74976
RS
11831@xref{Start Decl, ,The Start-Symbol}.
11832
11833@item Symbol table
11834A data structure where symbol names and associated data are stored
11835during parsing to allow for recognition and use of existing
11836information in repeated uses of a symbol. @xref{Multi-function Calc}.
11837
6e649e65
PE
11838@item Syntax error
11839An error encountered during parsing of an input stream due to invalid
11840syntax. @xref{Error Recovery}.
11841
bfa74976
RS
11842@item Token
11843A basic, grammatically indivisible unit of a language. The symbol
11844that describes a token in the grammar is a terminal symbol.
11845The input of the Bison parser is a stream of tokens which comes from
11846the lexical analyzer. @xref{Symbols}.
11847
11848@item Terminal symbol
89cab50d
AD
11849A grammar symbol that has no rules in the grammar and therefore is
11850grammatically indivisible. The piece of text it represents is a token.
11851@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
11852
11853@item Unreachable state
11854A parser state to which there does not exist a sequence of transitions from
11855the parser's start state. A state can become unreachable during conflict
11856resolution. @xref{Unreachable States}.
bfa74976
RS
11857@end table
11858
342b8b6e 11859@node Copying This Manual
f2b5126e 11860@appendix Copying This Manual
f2b5126e
PB
11861@include fdl.texi
11862
5e528941
JD
11863@node Bibliography
11864@unnumbered Bibliography
11865
11866@table @asis
11867@item [Denny 2008]
11868Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11869for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
118702008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11871pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11872
11873@item [Denny 2010 May]
11874Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11875Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11876University, Clemson, SC, USA (May 2010).
11877@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11878
11879@item [Denny 2010 November]
11880Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11881Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11882in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
118832010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11884
11885@item [DeRemer 1982]
11886Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11887Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11888Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11889615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11890
11891@item [Knuth 1965]
11892Donald E. Knuth, On the Translation of Languages from Left to Right, in
11893@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11894607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11895
11896@item [Scott 2000]
11897Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11898@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11899London, Department of Computer Science, TR-00-12 (December 2000).
11900@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11901@end table
11902
342b8b6e 11903@node Index
bfa74976
RS
11904@unnumbered Index
11905
11906@printindex cp
11907
bfa74976 11908@bye
a06ea4aa 11909
6b5a0de9
AD
11910@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11911@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11912@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11913@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11914@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11915@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11916@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11917@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11918@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11919@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11920@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11921@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11922@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11923@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11924@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11925@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11926@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11927@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11928@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11929@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11930@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11931@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11932@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11933@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11934@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11935@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11936@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11937@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11938@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11939@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9 11940@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
ff7571c0 11941@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
6b5a0de9
AD
11942@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11943@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11944@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11945@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11946@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11947@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11948@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
ff7571c0 11949@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
6b5a0de9
AD
11950@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11951@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11952@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11953@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11954@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11955@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11956@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11957@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11958@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11959@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
679e9935 11960@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
6b5a0de9 11961@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11962
11963@c Local Variables:
11964@c ispell-dictionary: "american"
11965@c fill-column: 76
11966@c End: