]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: correct typo: s/can not/cannot/
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
34136e65 36Copyright @copyright{} 1988-1993, 1995, 1998-2012 Free Software
575619af 37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 128* Locations:: Overview of location tracking.
f5f419de
DJ
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
13863333
AD
166* Rpcalc Input::
167* Rpcalc Line::
168* Rpcalc Expr::
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
181
182Bison Grammar Files
183
303834cc
JD
184* Grammar Outline:: Overall layout of the grammar file.
185* Symbols:: Terminal and nonterminal symbols.
186* Rules:: How to write grammar rules.
187* Recursion:: Writing recursive rules.
188* Semantics:: Semantic values and actions.
189* Tracking Locations:: Locations and actions.
190* Named References:: Using named references in actions.
191* Declarations:: All kinds of Bison declarations are described here.
192* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
193
194Outline of a Bison Grammar
195
f5f419de 196* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 197* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
198* Bison Declarations:: Syntax and usage of the Bison declarations section.
199* Grammar Rules:: Syntax and usage of the grammar rules section.
200* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
201
202Defining Language Semantics
203
204* Value Type:: Specifying one data type for all semantic values.
205* Multiple Types:: Specifying several alternative data types.
206* Actions:: An action is the semantic definition of a grammar rule.
207* Action Types:: Specifying data types for actions to operate on.
208* Mid-Rule Actions:: Most actions go at the end of a rule.
209 This says when, why and how to use the exceptional
210 action in the middle of a rule.
211
93dd49ab
PE
212Tracking Locations
213
214* Location Type:: Specifying a data type for locations.
215* Actions and Locations:: Using locations in actions.
216* Location Default Action:: Defining a general way to compute locations.
217
bfa74976
RS
218Bison Declarations
219
b50d2359 220* Require Decl:: Requiring a Bison version.
bfa74976
RS
221* Token Decl:: Declaring terminal symbols.
222* Precedence Decl:: Declaring terminals with precedence and associativity.
223* Union Decl:: Declaring the set of all semantic value types.
224* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 225* Initial Action Decl:: Code run before parsing starts.
72f889cc 226* Destructor Decl:: Declaring how symbols are freed.
d6328241 227* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
228* Start Decl:: Specifying the start symbol.
229* Pure Decl:: Requesting a reentrant parser.
9987d1b3 230* Push Decl:: Requesting a push parser.
bfa74976 231* Decl Summary:: Table of all Bison declarations.
35c1e5f0 232* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 233* %code Summary:: Inserting code into the parser source.
bfa74976
RS
234
235Parser C-Language Interface
236
f5f419de
DJ
237* Parser Function:: How to call @code{yyparse} and what it returns.
238* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
239* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
240* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
241* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
242* Lexical:: You must supply a function @code{yylex}
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
254* Token Locations:: How @code{yylex} must return the text location
255 (line number, etc.) of the token, if the
256 actions want that.
257* Pure Calling:: How the calling convention differs in a pure parser
258 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 259
13863333 260The Bison Parser Algorithm
bfa74976 261
742e4900 262* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 268* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 269* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 270* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 271* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
272
273Operator Precedence
274
275* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
276* Using Precedence:: How to specify precedence and associativity.
277* Precedence Only:: How to specify precedence only.
bfa74976
RS
278* Precedence Examples:: How these features are used in the previous example.
279* How Precedence:: How they work.
280
7fceb615
JD
281Tuning LR
282
283* LR Table Construction:: Choose a different construction algorithm.
284* Default Reductions:: Disable default reductions.
285* LAC:: Correct lookahead sets in the parser states.
286* Unreachable States:: Keep unreachable parser states for debugging.
287
bfa74976
RS
288Handling Context Dependencies
289
290* Semantic Tokens:: Token parsing can depend on the semantic context.
291* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
292* Tie-in Recovery:: Lexical tie-ins have implications for how
293 error recovery rules must be written.
294
93dd49ab 295Debugging Your Parser
ec3bc396
AD
296
297* Understanding:: Understanding the structure of your parser.
298* Tracing:: Tracing the execution of your parser.
299
bfa74976
RS
300Invoking Bison
301
13863333 302* Bison Options:: All the options described in detail,
c827f760 303 in alphabetical order by short options.
bfa74976 304* Option Cross Key:: Alphabetical list of long options.
93dd49ab 305* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 306
8405b70c 307Parsers Written In Other Languages
12545799
AD
308
309* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 310* Java Parsers:: The interface to generate Java parser classes
12545799
AD
311
312C++ Parsers
313
314* C++ Bison Interface:: Asking for C++ parser generation
315* C++ Semantic Values:: %union vs. C++
316* C++ Location Values:: The position and location classes
317* C++ Parser Interface:: Instantiating and running the parser
318* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 319* A Complete C++ Example:: Demonstrating their use
12545799
AD
320
321A Complete C++ Example
322
323* Calc++ --- C++ Calculator:: The specifications
324* Calc++ Parsing Driver:: An active parsing context
325* Calc++ Parser:: A parser class
326* Calc++ Scanner:: A pure C++ Flex scanner
327* Calc++ Top Level:: Conducting the band
328
8405b70c
PB
329Java Parsers
330
f5f419de
DJ
331* Java Bison Interface:: Asking for Java parser generation
332* Java Semantic Values:: %type and %token vs. Java
333* Java Location Values:: The position and location classes
334* Java Parser Interface:: Instantiating and running the parser
335* Java Scanner Interface:: Specifying the scanner for the parser
336* Java Action Features:: Special features for use in actions
337* Java Differences:: Differences between C/C++ and Java Grammars
338* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 339
d1a1114f
AD
340Frequently Asked Questions
341
f5f419de
DJ
342* Memory Exhausted:: Breaking the Stack Limits
343* How Can I Reset the Parser:: @code{yyparse} Keeps some State
344* Strings are Destroyed:: @code{yylval} Loses Track of Strings
345* Implementing Gotos/Loops:: Control Flow in the Calculator
346* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 347* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
348* I can't build Bison:: Troubleshooting
349* Where can I find help?:: Troubleshouting
350* Bug Reports:: Troublereporting
351* More Languages:: Parsers in C++, Java, and so on
352* Beta Testing:: Experimenting development versions
353* Mailing Lists:: Meeting other Bison users
d1a1114f 354
f2b5126e
PB
355Copying This Manual
356
f5f419de 357* Copying This Manual:: License for copying this manual.
f2b5126e 358
342b8b6e 359@end detailmenu
bfa74976
RS
360@end menu
361
342b8b6e 362@node Introduction
bfa74976
RS
363@unnumbered Introduction
364@cindex introduction
365
6077da58 366@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
367annotated context-free grammar into a deterministic LR or generalized
368LR (GLR) parser employing LALR(1) parser tables. As an experimental
369feature, Bison can also generate IELR(1) or canonical LR(1) parser
370tables. Once you are proficient with Bison, you can use it to develop
371a wide range of language parsers, from those used in simple desk
372calculators to complex programming languages.
373
374Bison is upward compatible with Yacc: all properly-written Yacc
375grammars ought to work with Bison with no change. Anyone familiar
376with Yacc should be able to use Bison with little trouble. You need
377to be fluent in C or C++ programming in order to use Bison or to
378understand this manual. Java is also supported as an experimental
379feature.
380
381We begin with tutorial chapters that explain the basic concepts of
382using Bison and show three explained examples, each building on the
383last. If you don't know Bison or Yacc, start by reading these
384chapters. Reference chapters follow, which describe specific aspects
385of Bison in detail.
bfa74976 386
679e9935
JD
387Bison was written originally by Robert Corbett. Richard Stallman made
388it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
389added multi-character string literals and other features. Since then,
390Bison has grown more robust and evolved many other new features thanks
391to the hard work of a long list of volunteers. For details, see the
392@file{THANKS} and @file{ChangeLog} files included in the Bison
393distribution.
931c7513 394
df1af54c 395This edition corresponds to version @value{VERSION} of Bison.
bfa74976 396
342b8b6e 397@node Conditions
bfa74976
RS
398@unnumbered Conditions for Using Bison
399
193d7c70
PE
400The distribution terms for Bison-generated parsers permit using the
401parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 402permissions applied only when Bison was generating LALR(1)
193d7c70 403parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 404parsers could be used only in programs that were free software.
a31239f1 405
8a4281b9 406The other GNU programming tools, such as the GNU C
c827f760 407compiler, have never
9ecbd125 408had such a requirement. They could always be used for nonfree
a31239f1
RS
409software. The reason Bison was different was not due to a special
410policy decision; it resulted from applying the usual General Public
411License to all of the Bison source code.
412
ff7571c0
JD
413The main output of the Bison utility---the Bison parser implementation
414file---contains a verbatim copy of a sizable piece of Bison, which is
415the code for the parser's implementation. (The actions from your
416grammar are inserted into this implementation at one point, but most
417of the rest of the implementation is not changed.) When we applied
418the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
419the effect was to restrict the use of Bison output to free software.
420
421We didn't change the terms because of sympathy for people who want to
422make software proprietary. @strong{Software should be free.} But we
423concluded that limiting Bison's use to free software was doing little to
424encourage people to make other software free. So we decided to make the
425practical conditions for using Bison match the practical conditions for
8a4281b9 426using the other GNU tools.
bfa74976 427
193d7c70
PE
428This exception applies when Bison is generating code for a parser.
429You can tell whether the exception applies to a Bison output file by
430inspecting the file for text beginning with ``As a special
431exception@dots{}''. The text spells out the exact terms of the
432exception.
262aa8dd 433
f16b0819
PE
434@node Copying
435@unnumbered GNU GENERAL PUBLIC LICENSE
436@include gpl-3.0.texi
bfa74976 437
342b8b6e 438@node Concepts
bfa74976
RS
439@chapter The Concepts of Bison
440
441This chapter introduces many of the basic concepts without which the
442details of Bison will not make sense. If you do not already know how to
443use Bison or Yacc, we suggest you start by reading this chapter carefully.
444
445@menu
f5f419de
DJ
446* Language and Grammar:: Languages and context-free grammars,
447 as mathematical ideas.
448* Grammar in Bison:: How we represent grammars for Bison's sake.
449* Semantic Values:: Each token or syntactic grouping can have
450 a semantic value (the value of an integer,
451 the name of an identifier, etc.).
452* Semantic Actions:: Each rule can have an action containing C code.
453* GLR Parsers:: Writing parsers for general context-free languages.
1769eb30 454* Locations:: Overview of location tracking.
f5f419de
DJ
455* Bison Parser:: What are Bison's input and output,
456 how is the output used?
457* Stages:: Stages in writing and running Bison grammars.
458* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
459@end menu
460
342b8b6e 461@node Language and Grammar
bfa74976
RS
462@section Languages and Context-Free Grammars
463
bfa74976
RS
464@cindex context-free grammar
465@cindex grammar, context-free
466In order for Bison to parse a language, it must be described by a
467@dfn{context-free grammar}. This means that you specify one or more
468@dfn{syntactic groupings} and give rules for constructing them from their
469parts. For example, in the C language, one kind of grouping is called an
470`expression'. One rule for making an expression might be, ``An expression
471can be made of a minus sign and another expression''. Another would be,
472``An expression can be an integer''. As you can see, rules are often
473recursive, but there must be at least one rule which leads out of the
474recursion.
475
8a4281b9 476@cindex BNF
bfa74976
RS
477@cindex Backus-Naur form
478The most common formal system for presenting such rules for humans to read
8a4281b9 479is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 480order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
481BNF is a context-free grammar. The input to Bison is
482essentially machine-readable BNF.
bfa74976 483
7fceb615
JD
484@cindex LALR grammars
485@cindex IELR grammars
486@cindex LR grammars
487There are various important subclasses of context-free grammars. Although
488it can handle almost all context-free grammars, Bison is optimized for what
489are called LR(1) grammars. In brief, in these grammars, it must be possible
490to tell how to parse any portion of an input string with just a single token
491of lookahead. For historical reasons, Bison by default is limited by the
492additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
493@xref{Mysterious Conflicts}, for more information on this. As an
494experimental feature, you can escape these additional restrictions by
495requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
496Construction}, to learn how.
bfa74976 497
8a4281b9
JD
498@cindex GLR parsing
499@cindex generalized LR (GLR) parsing
676385e2 500@cindex ambiguous grammars
9d9b8b70 501@cindex nondeterministic parsing
9501dc6e 502
8a4281b9 503Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
504roughly that the next grammar rule to apply at any point in the input is
505uniquely determined by the preceding input and a fixed, finite portion
742e4900 506(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 507grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 508apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 509grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 510lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 511With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
512general context-free grammars, using a technique known as GLR
513parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
514are able to handle any context-free grammar for which the number of
515possible parses of any given string is finite.
676385e2 516
bfa74976
RS
517@cindex symbols (abstract)
518@cindex token
519@cindex syntactic grouping
520@cindex grouping, syntactic
9501dc6e
AD
521In the formal grammatical rules for a language, each kind of syntactic
522unit or grouping is named by a @dfn{symbol}. Those which are built by
523grouping smaller constructs according to grammatical rules are called
bfa74976
RS
524@dfn{nonterminal symbols}; those which can't be subdivided are called
525@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
526corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 527corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
528
529We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
530nonterminal, mean. The tokens of C are identifiers, constants (numeric
531and string), and the various keywords, arithmetic operators and
532punctuation marks. So the terminal symbols of a grammar for C include
533`identifier', `number', `string', plus one symbol for each keyword,
534operator or punctuation mark: `if', `return', `const', `static', `int',
535`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
536(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
537lexicography, not grammar.)
538
539Here is a simple C function subdivided into tokens:
540
9edcd895
AD
541@ifinfo
542@example
543int /* @r{keyword `int'} */
14d4662b 544square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
545 @r{identifier, close-paren} */
546@{ /* @r{open-brace} */
aa08666d
AD
547 return x * x; /* @r{keyword `return', identifier, asterisk,}
548 @r{identifier, semicolon} */
9edcd895
AD
549@} /* @r{close-brace} */
550@end example
551@end ifinfo
552@ifnotinfo
bfa74976
RS
553@example
554int /* @r{keyword `int'} */
14d4662b 555square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 556@{ /* @r{open-brace} */
9edcd895 557 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
558@} /* @r{close-brace} */
559@end example
9edcd895 560@end ifnotinfo
bfa74976
RS
561
562The syntactic groupings of C include the expression, the statement, the
563declaration, and the function definition. These are represented in the
564grammar of C by nonterminal symbols `expression', `statement',
565`declaration' and `function definition'. The full grammar uses dozens of
566additional language constructs, each with its own nonterminal symbol, in
567order to express the meanings of these four. The example above is a
568function definition; it contains one declaration, and one statement. In
569the statement, each @samp{x} is an expression and so is @samp{x * x}.
570
571Each nonterminal symbol must have grammatical rules showing how it is made
572out of simpler constructs. For example, one kind of C statement is the
573@code{return} statement; this would be described with a grammar rule which
574reads informally as follows:
575
576@quotation
577A `statement' can be made of a `return' keyword, an `expression' and a
578`semicolon'.
579@end quotation
580
581@noindent
582There would be many other rules for `statement', one for each kind of
583statement in C.
584
585@cindex start symbol
586One nonterminal symbol must be distinguished as the special one which
587defines a complete utterance in the language. It is called the @dfn{start
588symbol}. In a compiler, this means a complete input program. In the C
589language, the nonterminal symbol `sequence of definitions and declarations'
590plays this role.
591
592For example, @samp{1 + 2} is a valid C expression---a valid part of a C
593program---but it is not valid as an @emph{entire} C program. In the
594context-free grammar of C, this follows from the fact that `expression' is
595not the start symbol.
596
597The Bison parser reads a sequence of tokens as its input, and groups the
598tokens using the grammar rules. If the input is valid, the end result is
599that the entire token sequence reduces to a single grouping whose symbol is
600the grammar's start symbol. If we use a grammar for C, the entire input
601must be a `sequence of definitions and declarations'. If not, the parser
602reports a syntax error.
603
342b8b6e 604@node Grammar in Bison
bfa74976
RS
605@section From Formal Rules to Bison Input
606@cindex Bison grammar
607@cindex grammar, Bison
608@cindex formal grammar
609
610A formal grammar is a mathematical construct. To define the language
611for Bison, you must write a file expressing the grammar in Bison syntax:
612a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
613
614A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 615as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
616in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
617
618The Bison representation for a terminal symbol is also called a @dfn{token
619type}. Token types as well can be represented as C-like identifiers. By
620convention, these identifiers should be upper case to distinguish them from
621nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
622@code{RETURN}. A terminal symbol that stands for a particular keyword in
623the language should be named after that keyword converted to upper case.
624The terminal symbol @code{error} is reserved for error recovery.
931c7513 625@xref{Symbols}.
bfa74976
RS
626
627A terminal symbol can also be represented as a character literal, just like
628a C character constant. You should do this whenever a token is just a
629single character (parenthesis, plus-sign, etc.): use that same character in
630a literal as the terminal symbol for that token.
631
931c7513
RS
632A third way to represent a terminal symbol is with a C string constant
633containing several characters. @xref{Symbols}, for more information.
634
bfa74976
RS
635The grammar rules also have an expression in Bison syntax. For example,
636here is the Bison rule for a C @code{return} statement. The semicolon in
637quotes is a literal character token, representing part of the C syntax for
638the statement; the naked semicolon, and the colon, are Bison punctuation
639used in every rule.
640
641@example
642stmt: RETURN expr ';'
643 ;
644@end example
645
646@noindent
647@xref{Rules, ,Syntax of Grammar Rules}.
648
342b8b6e 649@node Semantic Values
bfa74976
RS
650@section Semantic Values
651@cindex semantic value
652@cindex value, semantic
653
654A formal grammar selects tokens only by their classifications: for example,
655if a rule mentions the terminal symbol `integer constant', it means that
656@emph{any} integer constant is grammatically valid in that position. The
657precise value of the constant is irrelevant to how to parse the input: if
658@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 659grammatical.
bfa74976
RS
660
661But the precise value is very important for what the input means once it is
662parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6633989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
664has both a token type and a @dfn{semantic value}. @xref{Semantics,
665,Defining Language Semantics},
bfa74976
RS
666for details.
667
668The token type is a terminal symbol defined in the grammar, such as
669@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
670you need to know to decide where the token may validly appear and how to
671group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 672except their types.
bfa74976
RS
673
674The semantic value has all the rest of the information about the
675meaning of the token, such as the value of an integer, or the name of an
676identifier. (A token such as @code{','} which is just punctuation doesn't
677need to have any semantic value.)
678
679For example, an input token might be classified as token type
680@code{INTEGER} and have the semantic value 4. Another input token might
681have the same token type @code{INTEGER} but value 3989. When a grammar
682rule says that @code{INTEGER} is allowed, either of these tokens is
683acceptable because each is an @code{INTEGER}. When the parser accepts the
684token, it keeps track of the token's semantic value.
685
686Each grouping can also have a semantic value as well as its nonterminal
687symbol. For example, in a calculator, an expression typically has a
688semantic value that is a number. In a compiler for a programming
689language, an expression typically has a semantic value that is a tree
690structure describing the meaning of the expression.
691
342b8b6e 692@node Semantic Actions
bfa74976
RS
693@section Semantic Actions
694@cindex semantic actions
695@cindex actions, semantic
696
697In order to be useful, a program must do more than parse input; it must
698also produce some output based on the input. In a Bison grammar, a grammar
699rule can have an @dfn{action} made up of C statements. Each time the
700parser recognizes a match for that rule, the action is executed.
701@xref{Actions}.
13863333 702
bfa74976
RS
703Most of the time, the purpose of an action is to compute the semantic value
704of the whole construct from the semantic values of its parts. For example,
705suppose we have a rule which says an expression can be the sum of two
706expressions. When the parser recognizes such a sum, each of the
707subexpressions has a semantic value which describes how it was built up.
708The action for this rule should create a similar sort of value for the
709newly recognized larger expression.
710
711For example, here is a rule that says an expression can be the sum of
712two subexpressions:
713
714@example
715expr: expr '+' expr @{ $$ = $1 + $3; @}
716 ;
717@end example
718
719@noindent
720The action says how to produce the semantic value of the sum expression
721from the values of the two subexpressions.
722
676385e2 723@node GLR Parsers
8a4281b9
JD
724@section Writing GLR Parsers
725@cindex GLR parsing
726@cindex generalized LR (GLR) parsing
676385e2
PH
727@findex %glr-parser
728@cindex conflicts
729@cindex shift/reduce conflicts
fa7e68c3 730@cindex reduce/reduce conflicts
676385e2 731
eb45ef3b 732In some grammars, Bison's deterministic
8a4281b9 733LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
734certain grammar rule at a given point. That is, it may not be able to
735decide (on the basis of the input read so far) which of two possible
736reductions (applications of a grammar rule) applies, or whether to apply
737a reduction or read more of the input and apply a reduction later in the
738input. These are known respectively as @dfn{reduce/reduce} conflicts
739(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
740(@pxref{Shift/Reduce}).
741
8a4281b9 742To use a grammar that is not easily modified to be LR(1), a
9501dc6e 743more general parsing algorithm is sometimes necessary. If you include
676385e2 744@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
745(@pxref{Grammar Outline}), the result is a Generalized LR
746(GLR) parser. These parsers handle Bison grammars that
9501dc6e 747contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 748declarations) identically to deterministic parsers. However, when
9501dc6e 749faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 750GLR parsers use the simple expedient of doing both,
9501dc6e
AD
751effectively cloning the parser to follow both possibilities. Each of
752the resulting parsers can again split, so that at any given time, there
753can be any number of possible parses being explored. The parsers
676385e2
PH
754proceed in lockstep; that is, all of them consume (shift) a given input
755symbol before any of them proceed to the next. Each of the cloned
756parsers eventually meets one of two possible fates: either it runs into
757a parsing error, in which case it simply vanishes, or it merges with
758another parser, because the two of them have reduced the input to an
759identical set of symbols.
760
761During the time that there are multiple parsers, semantic actions are
762recorded, but not performed. When a parser disappears, its recorded
763semantic actions disappear as well, and are never performed. When a
764reduction makes two parsers identical, causing them to merge, Bison
765records both sets of semantic actions. Whenever the last two parsers
766merge, reverting to the single-parser case, Bison resolves all the
767outstanding actions either by precedences given to the grammar rules
768involved, or by performing both actions, and then calling a designated
769user-defined function on the resulting values to produce an arbitrary
770merged result.
771
fa7e68c3 772@menu
8a4281b9
JD
773* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
774* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 775* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 776* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 777* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
778@end menu
779
780@node Simple GLR Parsers
8a4281b9
JD
781@subsection Using GLR on Unambiguous Grammars
782@cindex GLR parsing, unambiguous grammars
783@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
784@findex %glr-parser
785@findex %expect-rr
786@cindex conflicts
787@cindex reduce/reduce conflicts
788@cindex shift/reduce conflicts
789
8a4281b9
JD
790In the simplest cases, you can use the GLR algorithm
791to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 792Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
793
794Consider a problem that
795arises in the declaration of enumerated and subrange types in the
796programming language Pascal. Here are some examples:
797
798@example
799type subrange = lo .. hi;
800type enum = (a, b, c);
801@end example
802
803@noindent
804The original language standard allows only numeric
805literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 806and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80710206) and many other
808Pascal implementations allow arbitrary expressions there. This gives
809rise to the following situation, containing a superfluous pair of
810parentheses:
811
812@example
813type subrange = (a) .. b;
814@end example
815
816@noindent
817Compare this to the following declaration of an enumerated
818type with only one value:
819
820@example
821type enum = (a);
822@end example
823
824@noindent
825(These declarations are contrived, but they are syntactically
826valid, and more-complicated cases can come up in practical programs.)
827
828These two declarations look identical until the @samp{..} token.
8a4281b9 829With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
830possible to decide between the two forms when the identifier
831@samp{a} is parsed. It is, however, desirable
832for a parser to decide this, since in the latter case
833@samp{a} must become a new identifier to represent the enumeration
834value, while in the former case @samp{a} must be evaluated with its
835current meaning, which may be a constant or even a function call.
836
837You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
838to be resolved later, but this typically requires substantial
839contortions in both semantic actions and large parts of the
840grammar, where the parentheses are nested in the recursive rules for
841expressions.
842
843You might think of using the lexer to distinguish between the two
844forms by returning different tokens for currently defined and
845undefined identifiers. But if these declarations occur in a local
846scope, and @samp{a} is defined in an outer scope, then both forms
847are possible---either locally redefining @samp{a}, or using the
848value of @samp{a} from the outer scope. So this approach cannot
849work.
850
e757bb10 851A simple solution to this problem is to declare the parser to
8a4281b9
JD
852use the GLR algorithm.
853When the GLR parser reaches the critical state, it
fa7e68c3
PE
854merely splits into two branches and pursues both syntax rules
855simultaneously. Sooner or later, one of them runs into a parsing
856error. If there is a @samp{..} token before the next
857@samp{;}, the rule for enumerated types fails since it cannot
858accept @samp{..} anywhere; otherwise, the subrange type rule
859fails since it requires a @samp{..} token. So one of the branches
860fails silently, and the other one continues normally, performing
861all the intermediate actions that were postponed during the split.
862
863If the input is syntactically incorrect, both branches fail and the parser
864reports a syntax error as usual.
865
866The effect of all this is that the parser seems to ``guess'' the
867correct branch to take, or in other words, it seems to use more
8a4281b9
JD
868lookahead than the underlying LR(1) algorithm actually allows
869for. In this example, LR(2) would suffice, but also some cases
870that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 871
8a4281b9 872In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
873and the current Bison parser even takes exponential time and space
874for some grammars. In practice, this rarely happens, and for many
875grammars it is possible to prove that it cannot happen.
876The present example contains only one conflict between two
877rules, and the type-declaration context containing the conflict
878cannot be nested. So the number of
879branches that can exist at any time is limited by the constant 2,
880and the parsing time is still linear.
881
882Here is a Bison grammar corresponding to the example above. It
883parses a vastly simplified form of Pascal type declarations.
884
885@example
886%token TYPE DOTDOT ID
887
888@group
889%left '+' '-'
890%left '*' '/'
891@end group
892
893%%
894
895@group
896type_decl : TYPE ID '=' type ';'
897 ;
898@end group
899
900@group
901type : '(' id_list ')'
902 | expr DOTDOT expr
903 ;
904@end group
905
906@group
907id_list : ID
908 | id_list ',' ID
909 ;
910@end group
911
912@group
913expr : '(' expr ')'
914 | expr '+' expr
915 | expr '-' expr
916 | expr '*' expr
917 | expr '/' expr
918 | ID
919 ;
920@end group
921@end example
922
8a4281b9 923When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
924about one reduce/reduce conflict. In the conflicting situation the
925parser chooses one of the alternatives, arbitrarily the one
926declared first. Therefore the following correct input is not
927recognized:
928
929@example
930type t = (a) .. b;
931@end example
932
8a4281b9 933The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
934to be silent about the one known reduce/reduce conflict, by adding
935these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
936@samp{%%}):
937
938@example
939%glr-parser
940%expect-rr 1
941@end example
942
943@noindent
944No change in the grammar itself is required. Now the
945parser recognizes all valid declarations, according to the
946limited syntax above, transparently. In fact, the user does not even
947notice when the parser splits.
948
8a4281b9 949So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
950almost without disadvantages. Even in simple cases like this, however,
951there are at least two potential problems to beware. First, always
8a4281b9
JD
952analyze the conflicts reported by Bison to make sure that GLR
953splitting is only done where it is intended. A GLR parser
f8e1c9e5 954splitting inadvertently may cause problems less obvious than an
8a4281b9 955LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
956conflict. Second, consider interactions with the lexer (@pxref{Semantic
957Tokens}) with great care. Since a split parser consumes tokens without
958performing any actions during the split, the lexer cannot obtain
959information via parser actions. Some cases of lexer interactions can be
8a4281b9 960eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
961lexer to the parser. You must check the remaining cases for
962correctness.
963
964In our example, it would be safe for the lexer to return tokens based on
965their current meanings in some symbol table, because no new symbols are
966defined in the middle of a type declaration. Though it is possible for
967a parser to define the enumeration constants as they are parsed, before
968the type declaration is completed, it actually makes no difference since
969they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
970
971@node Merging GLR Parses
8a4281b9
JD
972@subsection Using GLR to Resolve Ambiguities
973@cindex GLR parsing, ambiguous grammars
974@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
975@findex %dprec
976@findex %merge
977@cindex conflicts
978@cindex reduce/reduce conflicts
979
2a8d363a 980Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
981
982@example
983%@{
38a92d50
PE
984 #include <stdio.h>
985 #define YYSTYPE char const *
986 int yylex (void);
987 void yyerror (char const *);
676385e2
PH
988%@}
989
990%token TYPENAME ID
991
992%right '='
993%left '+'
994
995%glr-parser
996
997%%
998
fae437e8 999prog :
676385e2
PH
1000 | prog stmt @{ printf ("\n"); @}
1001 ;
1002
1003stmt : expr ';' %dprec 1
1004 | decl %dprec 2
1005 ;
1006
2a8d363a 1007expr : ID @{ printf ("%s ", $$); @}
fae437e8 1008 | TYPENAME '(' expr ')'
2a8d363a
AD
1009 @{ printf ("%s <cast> ", $1); @}
1010 | expr '+' expr @{ printf ("+ "); @}
1011 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1012 ;
1013
fae437e8 1014decl : TYPENAME declarator ';'
2a8d363a 1015 @{ printf ("%s <declare> ", $1); @}
676385e2 1016 | TYPENAME declarator '=' expr ';'
2a8d363a 1017 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1018 ;
1019
2a8d363a 1020declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1021 | '(' declarator ')'
1022 ;
1023@end example
1024
1025@noindent
1026This models a problematic part of the C++ grammar---the ambiguity between
1027certain declarations and statements. For example,
1028
1029@example
1030T (x) = y+z;
1031@end example
1032
1033@noindent
1034parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1035(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1036@samp{x} as an @code{ID}).
676385e2 1037Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1038@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1039time it encounters @code{x} in the example above. Since this is a
8a4281b9 1040GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1041each choice of resolving the reduce/reduce conflict.
1042Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1043however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1044ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1045the other reduces @code{stmt : decl}, after which both parsers are in an
1046identical state: they've seen @samp{prog stmt} and have the same unprocessed
1047input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1048
8a4281b9 1049At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1050grammar of how to choose between the competing parses.
1051In the example above, the two @code{%dprec}
e757bb10 1052declarations specify that Bison is to give precedence
fa7e68c3 1053to the parse that interprets the example as a
676385e2
PH
1054@code{decl}, which implies that @code{x} is a declarator.
1055The parser therefore prints
1056
1057@example
fae437e8 1058"x" y z + T <init-declare>
676385e2
PH
1059@end example
1060
fa7e68c3
PE
1061The @code{%dprec} declarations only come into play when more than one
1062parse survives. Consider a different input string for this parser:
676385e2
PH
1063
1064@example
1065T (x) + y;
1066@end example
1067
1068@noindent
8a4281b9 1069This is another example of using GLR to parse an unambiguous
fa7e68c3 1070construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1071Here, there is no ambiguity (this cannot be parsed as a declaration).
1072However, at the time the Bison parser encounters @code{x}, it does not
1073have enough information to resolve the reduce/reduce conflict (again,
1074between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1075case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1076into two, one assuming that @code{x} is an @code{expr}, and the other
1077assuming @code{x} is a @code{declarator}. The second of these parsers
1078then vanishes when it sees @code{+}, and the parser prints
1079
1080@example
fae437e8 1081x T <cast> y +
676385e2
PH
1082@end example
1083
1084Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1085the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1086actions of the two possible parsers, rather than choosing one over the
1087other. To do so, you could change the declaration of @code{stmt} as
1088follows:
1089
1090@example
1091stmt : expr ';' %merge <stmtMerge>
1092 | decl %merge <stmtMerge>
1093 ;
1094@end example
1095
1096@noindent
676385e2
PH
1097and define the @code{stmtMerge} function as:
1098
1099@example
38a92d50
PE
1100static YYSTYPE
1101stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1102@{
1103 printf ("<OR> ");
1104 return "";
1105@}
1106@end example
1107
1108@noindent
1109with an accompanying forward declaration
1110in the C declarations at the beginning of the file:
1111
1112@example
1113%@{
38a92d50 1114 #define YYSTYPE char const *
676385e2
PH
1115 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1116%@}
1117@end example
1118
1119@noindent
fa7e68c3
PE
1120With these declarations, the resulting parser parses the first example
1121as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1122
1123@example
fae437e8 1124"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1125@end example
1126
fa7e68c3 1127Bison requires that all of the
e757bb10 1128productions that participate in any particular merge have identical
fa7e68c3
PE
1129@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1130and the parser will report an error during any parse that results in
1131the offending merge.
9501dc6e 1132
32c29292
JD
1133@node GLR Semantic Actions
1134@subsection GLR Semantic Actions
1135
8a4281b9 1136The nature of GLR parsing and the structure of the generated
20be2f92
PH
1137parsers give rise to certain restrictions on semantic values and actions.
1138
1139@subsubsection Deferred semantic actions
32c29292
JD
1140@cindex deferred semantic actions
1141By definition, a deferred semantic action is not performed at the same time as
1142the associated reduction.
1143This raises caveats for several Bison features you might use in a semantic
8a4281b9 1144action in a GLR parser.
32c29292
JD
1145
1146@vindex yychar
8a4281b9 1147@cindex GLR parsers and @code{yychar}
32c29292 1148@vindex yylval
8a4281b9 1149@cindex GLR parsers and @code{yylval}
32c29292 1150@vindex yylloc
8a4281b9 1151@cindex GLR parsers and @code{yylloc}
32c29292 1152In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1153the lookahead token present at the time of the associated reduction.
32c29292
JD
1154After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1155you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1156lookahead token's semantic value and location, if any.
32c29292
JD
1157In a nondeferred semantic action, you can also modify any of these variables to
1158influence syntax analysis.
742e4900 1159@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1160
1161@findex yyclearin
8a4281b9 1162@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1163In a deferred semantic action, it's too late to influence syntax analysis.
1164In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1165shallow copies of the values they had at the time of the associated reduction.
1166For this reason alone, modifying them is dangerous.
1167Moreover, the result of modifying them is undefined and subject to change with
1168future versions of Bison.
1169For example, if a semantic action might be deferred, you should never write it
1170to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1171memory referenced by @code{yylval}.
1172
20be2f92 1173@subsubsection YYERROR
32c29292 1174@findex YYERROR
8a4281b9 1175@cindex GLR parsers and @code{YYERROR}
32c29292 1176Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1177(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1178initiate error recovery.
8a4281b9 1179During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1180the same as its effect in a deterministic parser.
411614fa
JM
1181The effect in a deferred action is similar, but the precise point of the
1182error is undefined; instead, the parser reverts to deterministic operation,
20be2f92
PH
1183selecting an unspecified stack on which to continue with a syntax error.
1184In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1185parsing, @code{YYERROR} silently prunes
1186the parse that invoked the test.
1187
1188@subsubsection Restrictions on semantic values and locations
8a4281b9 1189GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1190semantic values and location types when using the generated parsers as
1191C++ code.
8710fc41 1192
ca2a6d15
PH
1193@node Semantic Predicates
1194@subsection Controlling a Parse with Arbitrary Predicates
1195@findex %?
8a4281b9 1196@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1197
1198In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1199GLR parsers
ca2a6d15
PH
1200allow you to reject parses on the basis of arbitrary computations executed
1201in user code, without having Bison treat this rejection as an error
1202if there are alternative parses. (This feature is experimental and may
1203evolve. We welcome user feedback.) For example,
1204
1205@smallexample
1206widget :
1207 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1208 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1209 ;
1210@end smallexample
1211
1212@noindent
411614fa 1213is one way to allow the same parser to handle two different syntaxes for
ca2a6d15
PH
1214widgets. The clause preceded by @code{%?} is treated like an ordinary
1215action, except that its text is treated as an expression and is always
411614fa 1216evaluated immediately (even when in nondeterministic mode). If the
ca2a6d15 1217expression yields 0 (false), the clause is treated as a syntax error,
411614fa 1218which, in a nondeterministic parser, causes the stack in which it is reduced
ca2a6d15
PH
1219to die. In a deterministic parser, it acts like YYERROR.
1220
1221As the example shows, predicates otherwise look like semantic actions, and
1222therefore you must be take them into account when determining the numbers
1223to use for denoting the semantic values of right-hand side symbols.
1224Predicate actions, however, have no defined value, and may not be given
1225labels.
1226
1227There is a subtle difference between semantic predicates and ordinary
1228actions in nondeterministic mode, since the latter are deferred.
411614fa 1229For example, we could try to rewrite the previous example as
ca2a6d15
PH
1230
1231@smallexample
1232widget :
1233 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1234 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1235 ;
1236@end smallexample
1237
1238@noindent
1239(reversing the sense of the predicate tests to cause an error when they are
1240false). However, this
1241does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1242have overlapping syntax.
411614fa 1243Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1244a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1245for cases where @code{new_args} and @code{old_args} recognize the same string
1246@emph{before} performing the tests of @code{new_syntax}. It therefore
1247reports an error.
1248
1249Finally, be careful in writing predicates: deferred actions have not been
1250evaluated, so that using them in a predicate will have undefined effects.
1251
fa7e68c3 1252@node Compiler Requirements
8a4281b9 1253@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1254@cindex @code{inline}
8a4281b9 1255@cindex GLR parsers and @code{inline}
fa7e68c3 1256
8a4281b9 1257The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1258later. In addition, they use the @code{inline} keyword, which is not
1259C89, but is C99 and is a common extension in pre-C99 compilers. It is
1260up to the user of these parsers to handle
9501dc6e
AD
1261portability issues. For instance, if using Autoconf and the Autoconf
1262macro @code{AC_C_INLINE}, a mere
1263
1264@example
1265%@{
38a92d50 1266 #include <config.h>
9501dc6e
AD
1267%@}
1268@end example
1269
1270@noindent
1271will suffice. Otherwise, we suggest
1272
1273@example
1274%@{
38a92d50
PE
1275 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1276 #define inline
1277 #endif
9501dc6e
AD
1278%@}
1279@end example
676385e2 1280
1769eb30 1281@node Locations
847bf1f5
AD
1282@section Locations
1283@cindex location
95923bd6
AD
1284@cindex textual location
1285@cindex location, textual
847bf1f5
AD
1286
1287Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1288and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1289the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1290Bison provides a mechanism for handling these locations.
1291
72d2299c 1292Each token has a semantic value. In a similar fashion, each token has an
303834cc
JD
1293associated location, but the type of locations is the same for all tokens
1294and groupings. Moreover, the output parser is equipped with a default data
1295structure for storing locations (@pxref{Tracking Locations}, for more
1296details).
847bf1f5
AD
1297
1298Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1299set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1300is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1301@code{@@3}.
1302
1303When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1304of its left hand side (@pxref{Actions}). In the same way, another default
1305action is used for locations. However, the action for locations is general
847bf1f5 1306enough for most cases, meaning there is usually no need to describe for each
72d2299c 1307rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1308grouping, the default behavior of the output parser is to take the beginning
1309of the first symbol, and the end of the last symbol.
1310
342b8b6e 1311@node Bison Parser
ff7571c0 1312@section Bison Output: the Parser Implementation File
bfa74976
RS
1313@cindex Bison parser
1314@cindex Bison utility
1315@cindex lexical analyzer, purpose
1316@cindex parser
1317
ff7571c0
JD
1318When you run Bison, you give it a Bison grammar file as input. The
1319most important output is a C source file that implements a parser for
1320the language described by the grammar. This parser is called a
1321@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1322implementation file}. Keep in mind that the Bison utility and the
1323Bison parser are two distinct programs: the Bison utility is a program
1324whose output is the Bison parser implementation file that becomes part
1325of your program.
bfa74976
RS
1326
1327The job of the Bison parser is to group tokens into groupings according to
1328the grammar rules---for example, to build identifiers and operators into
1329expressions. As it does this, it runs the actions for the grammar rules it
1330uses.
1331
704a47c4
AD
1332The tokens come from a function called the @dfn{lexical analyzer} that
1333you must supply in some fashion (such as by writing it in C). The Bison
1334parser calls the lexical analyzer each time it wants a new token. It
1335doesn't know what is ``inside'' the tokens (though their semantic values
1336may reflect this). Typically the lexical analyzer makes the tokens by
1337parsing characters of text, but Bison does not depend on this.
1338@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1339
ff7571c0
JD
1340The Bison parser implementation file is C code which defines a
1341function named @code{yyparse} which implements that grammar. This
1342function does not make a complete C program: you must supply some
1343additional functions. One is the lexical analyzer. Another is an
1344error-reporting function which the parser calls to report an error.
1345In addition, a complete C program must start with a function called
1346@code{main}; you have to provide this, and arrange for it to call
1347@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1348C-Language Interface}.
bfa74976 1349
f7ab6a50 1350Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1351write, all symbols defined in the Bison parser implementation file
1352itself begin with @samp{yy} or @samp{YY}. This includes interface
1353functions such as the lexical analyzer function @code{yylex}, the
1354error reporting function @code{yyerror} and the parser function
1355@code{yyparse} itself. This also includes numerous identifiers used
1356for internal purposes. Therefore, you should avoid using C
1357identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1358file except for the ones defined in this manual. Also, you should
1359avoid using the C identifiers @samp{malloc} and @samp{free} for
1360anything other than their usual meanings.
1361
1362In some cases the Bison parser implementation file includes system
1363headers, and in those cases your code should respect the identifiers
1364reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1365@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1366included as needed to declare memory allocators and related types.
1367@code{<libintl.h>} is included if message translation is in use
1368(@pxref{Internationalization}). Other system headers may be included
1369if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1370,Tracing Your Parser}).
7093d0f5 1371
342b8b6e 1372@node Stages
bfa74976
RS
1373@section Stages in Using Bison
1374@cindex stages in using Bison
1375@cindex using Bison
1376
1377The actual language-design process using Bison, from grammar specification
1378to a working compiler or interpreter, has these parts:
1379
1380@enumerate
1381@item
1382Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1383(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1384in the language, describe the action that is to be taken when an
1385instance of that rule is recognized. The action is described by a
1386sequence of C statements.
bfa74976
RS
1387
1388@item
704a47c4
AD
1389Write a lexical analyzer to process input and pass tokens to the parser.
1390The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1391Lexical Analyzer Function @code{yylex}}). It could also be produced
1392using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1393
1394@item
1395Write a controlling function that calls the Bison-produced parser.
1396
1397@item
1398Write error-reporting routines.
1399@end enumerate
1400
1401To turn this source code as written into a runnable program, you
1402must follow these steps:
1403
1404@enumerate
1405@item
1406Run Bison on the grammar to produce the parser.
1407
1408@item
1409Compile the code output by Bison, as well as any other source files.
1410
1411@item
1412Link the object files to produce the finished product.
1413@end enumerate
1414
342b8b6e 1415@node Grammar Layout
bfa74976
RS
1416@section The Overall Layout of a Bison Grammar
1417@cindex grammar file
1418@cindex file format
1419@cindex format of grammar file
1420@cindex layout of Bison grammar
1421
1422The input file for the Bison utility is a @dfn{Bison grammar file}. The
1423general form of a Bison grammar file is as follows:
1424
1425@example
1426%@{
08e49d20 1427@var{Prologue}
bfa74976
RS
1428%@}
1429
1430@var{Bison declarations}
1431
1432%%
1433@var{Grammar rules}
1434%%
08e49d20 1435@var{Epilogue}
bfa74976
RS
1436@end example
1437
1438@noindent
1439The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1440in every Bison grammar file to separate the sections.
1441
72d2299c 1442The prologue may define types and variables used in the actions. You can
342b8b6e 1443also use preprocessor commands to define macros used there, and use
bfa74976 1444@code{#include} to include header files that do any of these things.
38a92d50
PE
1445You need to declare the lexical analyzer @code{yylex} and the error
1446printer @code{yyerror} here, along with any other global identifiers
1447used by the actions in the grammar rules.
bfa74976
RS
1448
1449The Bison declarations declare the names of the terminal and nonterminal
1450symbols, and may also describe operator precedence and the data types of
1451semantic values of various symbols.
1452
1453The grammar rules define how to construct each nonterminal symbol from its
1454parts.
1455
38a92d50
PE
1456The epilogue can contain any code you want to use. Often the
1457definitions of functions declared in the prologue go here. In a
1458simple program, all the rest of the program can go here.
bfa74976 1459
342b8b6e 1460@node Examples
bfa74976
RS
1461@chapter Examples
1462@cindex simple examples
1463@cindex examples, simple
1464
1465Now we show and explain three sample programs written using Bison: a
1466reverse polish notation calculator, an algebraic (infix) notation
1467calculator, and a multi-function calculator. All three have been tested
1468under BSD Unix 4.3; each produces a usable, though limited, interactive
1469desk-top calculator.
1470
1471These examples are simple, but Bison grammars for real programming
aa08666d
AD
1472languages are written the same way. You can copy these examples into a
1473source file to try them.
bfa74976
RS
1474
1475@menu
f5f419de
DJ
1476* RPN Calc:: Reverse polish notation calculator;
1477 a first example with no operator precedence.
1478* Infix Calc:: Infix (algebraic) notation calculator.
1479 Operator precedence is introduced.
bfa74976 1480* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1481* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1482* Multi-function Calc:: Calculator with memory and trig functions.
1483 It uses multiple data-types for semantic values.
1484* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1485@end menu
1486
342b8b6e 1487@node RPN Calc
bfa74976
RS
1488@section Reverse Polish Notation Calculator
1489@cindex reverse polish notation
1490@cindex polish notation calculator
1491@cindex @code{rpcalc}
1492@cindex calculator, simple
1493
1494The first example is that of a simple double-precision @dfn{reverse polish
1495notation} calculator (a calculator using postfix operators). This example
1496provides a good starting point, since operator precedence is not an issue.
1497The second example will illustrate how operator precedence is handled.
1498
1499The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1500@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1501
1502@menu
f5f419de
DJ
1503* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1504* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1505* Rpcalc Lexer:: The lexical analyzer.
1506* Rpcalc Main:: The controlling function.
1507* Rpcalc Error:: The error reporting function.
1508* Rpcalc Generate:: Running Bison on the grammar file.
1509* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1510@end menu
1511
f5f419de 1512@node Rpcalc Declarations
bfa74976
RS
1513@subsection Declarations for @code{rpcalc}
1514
1515Here are the C and Bison declarations for the reverse polish notation
1516calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1517
1518@example
72d2299c 1519/* Reverse polish notation calculator. */
bfa74976
RS
1520
1521%@{
38a92d50
PE
1522 #define YYSTYPE double
1523 #include <math.h>
1524 int yylex (void);
1525 void yyerror (char const *);
bfa74976
RS
1526%@}
1527
1528%token NUM
1529
72d2299c 1530%% /* Grammar rules and actions follow. */
bfa74976
RS
1531@end example
1532
75f5aaea 1533The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1534preprocessor directives and two forward declarations.
bfa74976
RS
1535
1536The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1537specifying the C data type for semantic values of both tokens and
1538groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1539Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1540don't define it, @code{int} is the default. Because we specify
1541@code{double}, each token and each expression has an associated value,
1542which is a floating point number.
bfa74976
RS
1543
1544The @code{#include} directive is used to declare the exponentiation
1545function @code{pow}.
1546
38a92d50
PE
1547The forward declarations for @code{yylex} and @code{yyerror} are
1548needed because the C language requires that functions be declared
1549before they are used. These functions will be defined in the
1550epilogue, but the parser calls them so they must be declared in the
1551prologue.
1552
704a47c4
AD
1553The second section, Bison declarations, provides information to Bison
1554about the token types (@pxref{Bison Declarations, ,The Bison
1555Declarations Section}). Each terminal symbol that is not a
1556single-character literal must be declared here. (Single-character
bfa74976
RS
1557literals normally don't need to be declared.) In this example, all the
1558arithmetic operators are designated by single-character literals, so the
1559only terminal symbol that needs to be declared is @code{NUM}, the token
1560type for numeric constants.
1561
342b8b6e 1562@node Rpcalc Rules
bfa74976
RS
1563@subsection Grammar Rules for @code{rpcalc}
1564
1565Here are the grammar rules for the reverse polish notation calculator.
1566
1567@example
1568input: /* empty */
1569 | input line
1570;
1571
1572line: '\n'
18b519c0 1573 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1574;
1575
18b519c0
AD
1576exp: NUM @{ $$ = $1; @}
1577 | exp exp '+' @{ $$ = $1 + $2; @}
1578 | exp exp '-' @{ $$ = $1 - $2; @}
1579 | exp exp '*' @{ $$ = $1 * $2; @}
1580 | exp exp '/' @{ $$ = $1 / $2; @}
1581 /* Exponentiation */
1582 | exp exp '^' @{ $$ = pow ($1, $2); @}
1583 /* Unary minus */
1584 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1585;
1586%%
1587@end example
1588
1589The groupings of the rpcalc ``language'' defined here are the expression
1590(given the name @code{exp}), the line of input (@code{line}), and the
1591complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1592symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1593which is read as ``or''. The following sections explain what these rules
1594mean.
1595
1596The semantics of the language is determined by the actions taken when a
1597grouping is recognized. The actions are the C code that appears inside
1598braces. @xref{Actions}.
1599
1600You must specify these actions in C, but Bison provides the means for
1601passing semantic values between the rules. In each action, the
1602pseudo-variable @code{$$} stands for the semantic value for the grouping
1603that the rule is going to construct. Assigning a value to @code{$$} is the
1604main job of most actions. The semantic values of the components of the
1605rule are referred to as @code{$1}, @code{$2}, and so on.
1606
1607@menu
13863333
AD
1608* Rpcalc Input::
1609* Rpcalc Line::
1610* Rpcalc Expr::
bfa74976
RS
1611@end menu
1612
342b8b6e 1613@node Rpcalc Input
bfa74976
RS
1614@subsubsection Explanation of @code{input}
1615
1616Consider the definition of @code{input}:
1617
1618@example
1619input: /* empty */
1620 | input line
1621;
1622@end example
1623
1624This definition reads as follows: ``A complete input is either an empty
1625string, or a complete input followed by an input line''. Notice that
1626``complete input'' is defined in terms of itself. This definition is said
1627to be @dfn{left recursive} since @code{input} appears always as the
1628leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1629
1630The first alternative is empty because there are no symbols between the
1631colon and the first @samp{|}; this means that @code{input} can match an
1632empty string of input (no tokens). We write the rules this way because it
1633is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1634It's conventional to put an empty alternative first and write the comment
1635@samp{/* empty */} in it.
1636
1637The second alternate rule (@code{input line}) handles all nontrivial input.
1638It means, ``After reading any number of lines, read one more line if
1639possible.'' The left recursion makes this rule into a loop. Since the
1640first alternative matches empty input, the loop can be executed zero or
1641more times.
1642
1643The parser function @code{yyparse} continues to process input until a
1644grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1645input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1646
342b8b6e 1647@node Rpcalc Line
bfa74976
RS
1648@subsubsection Explanation of @code{line}
1649
1650Now consider the definition of @code{line}:
1651
1652@example
1653line: '\n'
1654 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1655;
1656@end example
1657
1658The first alternative is a token which is a newline character; this means
1659that rpcalc accepts a blank line (and ignores it, since there is no
1660action). The second alternative is an expression followed by a newline.
1661This is the alternative that makes rpcalc useful. The semantic value of
1662the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1663question is the first symbol in the alternative. The action prints this
1664value, which is the result of the computation the user asked for.
1665
1666This action is unusual because it does not assign a value to @code{$$}. As
1667a consequence, the semantic value associated with the @code{line} is
1668uninitialized (its value will be unpredictable). This would be a bug if
1669that value were ever used, but we don't use it: once rpcalc has printed the
1670value of the user's input line, that value is no longer needed.
1671
342b8b6e 1672@node Rpcalc Expr
bfa74976
RS
1673@subsubsection Explanation of @code{expr}
1674
1675The @code{exp} grouping has several rules, one for each kind of expression.
1676The first rule handles the simplest expressions: those that are just numbers.
1677The second handles an addition-expression, which looks like two expressions
1678followed by a plus-sign. The third handles subtraction, and so on.
1679
1680@example
1681exp: NUM
1682 | exp exp '+' @{ $$ = $1 + $2; @}
1683 | exp exp '-' @{ $$ = $1 - $2; @}
1684 @dots{}
1685 ;
1686@end example
1687
1688We have used @samp{|} to join all the rules for @code{exp}, but we could
1689equally well have written them separately:
1690
1691@example
1692exp: NUM ;
1693exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1694exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1695 @dots{}
1696@end example
1697
1698Most of the rules have actions that compute the value of the expression in
1699terms of the value of its parts. For example, in the rule for addition,
1700@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1701the second one. The third component, @code{'+'}, has no meaningful
1702associated semantic value, but if it had one you could refer to it as
1703@code{$3}. When @code{yyparse} recognizes a sum expression using this
1704rule, the sum of the two subexpressions' values is produced as the value of
1705the entire expression. @xref{Actions}.
1706
1707You don't have to give an action for every rule. When a rule has no
1708action, Bison by default copies the value of @code{$1} into @code{$$}.
1709This is what happens in the first rule (the one that uses @code{NUM}).
1710
1711The formatting shown here is the recommended convention, but Bison does
72d2299c 1712not require it. You can add or change white space as much as you wish.
bfa74976
RS
1713For example, this:
1714
1715@example
99a9344e 1716exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1717@end example
1718
1719@noindent
1720means the same thing as this:
1721
1722@example
1723exp: NUM
1724 | exp exp '+' @{ $$ = $1 + $2; @}
1725 | @dots{}
99a9344e 1726;
bfa74976
RS
1727@end example
1728
1729@noindent
1730The latter, however, is much more readable.
1731
342b8b6e 1732@node Rpcalc Lexer
bfa74976
RS
1733@subsection The @code{rpcalc} Lexical Analyzer
1734@cindex writing a lexical analyzer
1735@cindex lexical analyzer, writing
1736
704a47c4
AD
1737The lexical analyzer's job is low-level parsing: converting characters
1738or sequences of characters into tokens. The Bison parser gets its
1739tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1740Analyzer Function @code{yylex}}.
bfa74976 1741
8a4281b9 1742Only a simple lexical analyzer is needed for the RPN
c827f760 1743calculator. This
bfa74976
RS
1744lexical analyzer skips blanks and tabs, then reads in numbers as
1745@code{double} and returns them as @code{NUM} tokens. Any other character
1746that isn't part of a number is a separate token. Note that the token-code
1747for such a single-character token is the character itself.
1748
1749The return value of the lexical analyzer function is a numeric code which
1750represents a token type. The same text used in Bison rules to stand for
1751this token type is also a C expression for the numeric code for the type.
1752This works in two ways. If the token type is a character literal, then its
e966383b 1753numeric code is that of the character; you can use the same
bfa74976
RS
1754character literal in the lexical analyzer to express the number. If the
1755token type is an identifier, that identifier is defined by Bison as a C
1756macro whose definition is the appropriate number. In this example,
1757therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1758
1964ad8c
AD
1759The semantic value of the token (if it has one) is stored into the
1760global variable @code{yylval}, which is where the Bison parser will look
1761for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1762defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1763,Declarations for @code{rpcalc}}.)
bfa74976 1764
72d2299c
PE
1765A token type code of zero is returned if the end-of-input is encountered.
1766(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1767
1768Here is the code for the lexical analyzer:
1769
1770@example
1771@group
72d2299c 1772/* The lexical analyzer returns a double floating point
e966383b 1773 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1774 of the character read if not a number. It skips all blanks
1775 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1776
1777#include <ctype.h>
1778@end group
1779
1780@group
13863333
AD
1781int
1782yylex (void)
bfa74976
RS
1783@{
1784 int c;
1785
72d2299c 1786 /* Skip white space. */
13863333 1787 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1788 ;
1789@end group
1790@group
72d2299c 1791 /* Process numbers. */
13863333 1792 if (c == '.' || isdigit (c))
bfa74976
RS
1793 @{
1794 ungetc (c, stdin);
1795 scanf ("%lf", &yylval);
1796 return NUM;
1797 @}
1798@end group
1799@group
72d2299c 1800 /* Return end-of-input. */
13863333 1801 if (c == EOF)
bfa74976 1802 return 0;
72d2299c 1803 /* Return a single char. */
13863333 1804 return c;
bfa74976
RS
1805@}
1806@end group
1807@end example
1808
342b8b6e 1809@node Rpcalc Main
bfa74976
RS
1810@subsection The Controlling Function
1811@cindex controlling function
1812@cindex main function in simple example
1813
1814In keeping with the spirit of this example, the controlling function is
1815kept to the bare minimum. The only requirement is that it call
1816@code{yyparse} to start the process of parsing.
1817
1818@example
1819@group
13863333
AD
1820int
1821main (void)
bfa74976 1822@{
13863333 1823 return yyparse ();
bfa74976
RS
1824@}
1825@end group
1826@end example
1827
342b8b6e 1828@node Rpcalc Error
bfa74976
RS
1829@subsection The Error Reporting Routine
1830@cindex error reporting routine
1831
1832When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1833function @code{yyerror} to print an error message (usually but not
6e649e65 1834always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1835@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1836here is the definition we will use:
bfa74976
RS
1837
1838@example
1839@group
1840#include <stdio.h>
1841
38a92d50 1842/* Called by yyparse on error. */
13863333 1843void
38a92d50 1844yyerror (char const *s)
bfa74976 1845@{
4e03e201 1846 fprintf (stderr, "%s\n", s);
bfa74976
RS
1847@}
1848@end group
1849@end example
1850
1851After @code{yyerror} returns, the Bison parser may recover from the error
1852and continue parsing if the grammar contains a suitable error rule
1853(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1854have not written any error rules in this example, so any invalid input will
1855cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1856real calculator, but it is adequate for the first example.
bfa74976 1857
f5f419de 1858@node Rpcalc Generate
bfa74976
RS
1859@subsection Running Bison to Make the Parser
1860@cindex running Bison (introduction)
1861
ceed8467
AD
1862Before running Bison to produce a parser, we need to decide how to
1863arrange all the source code in one or more source files. For such a
ff7571c0
JD
1864simple example, the easiest thing is to put everything in one file,
1865the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1866@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1867(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1868
1869For a large project, you would probably have several source files, and use
1870@code{make} to arrange to recompile them.
1871
ff7571c0
JD
1872With all the source in the grammar file, you use the following command
1873to convert it into a parser implementation file:
bfa74976
RS
1874
1875@example
fa4d969f 1876bison @var{file}.y
bfa74976
RS
1877@end example
1878
1879@noindent
ff7571c0
JD
1880In this example, the grammar file is called @file{rpcalc.y} (for
1881``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1882implementation file named @file{@var{file}.tab.c}, removing the
1883@samp{.y} from the grammar file name. The parser implementation file
1884contains the source code for @code{yyparse}. The additional functions
1885in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1886copied verbatim to the parser implementation file.
bfa74976 1887
342b8b6e 1888@node Rpcalc Compile
ff7571c0 1889@subsection Compiling the Parser Implementation File
bfa74976
RS
1890@cindex compiling the parser
1891
ff7571c0 1892Here is how to compile and run the parser implementation file:
bfa74976
RS
1893
1894@example
1895@group
1896# @r{List files in current directory.}
9edcd895 1897$ @kbd{ls}
bfa74976
RS
1898rpcalc.tab.c rpcalc.y
1899@end group
1900
1901@group
1902# @r{Compile the Bison parser.}
1903# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1904$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1905@end group
1906
1907@group
1908# @r{List files again.}
9edcd895 1909$ @kbd{ls}
bfa74976
RS
1910rpcalc rpcalc.tab.c rpcalc.y
1911@end group
1912@end example
1913
1914The file @file{rpcalc} now contains the executable code. Here is an
1915example session using @code{rpcalc}.
1916
1917@example
9edcd895
AD
1918$ @kbd{rpcalc}
1919@kbd{4 9 +}
bfa74976 192013
9edcd895 1921@kbd{3 7 + 3 4 5 *+-}
bfa74976 1922-13
9edcd895 1923@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 192413
9edcd895 1925@kbd{5 6 / 4 n +}
bfa74976 1926-3.166666667
9edcd895 1927@kbd{3 4 ^} @r{Exponentiation}
bfa74976 192881
9edcd895
AD
1929@kbd{^D} @r{End-of-file indicator}
1930$
bfa74976
RS
1931@end example
1932
342b8b6e 1933@node Infix Calc
bfa74976
RS
1934@section Infix Notation Calculator: @code{calc}
1935@cindex infix notation calculator
1936@cindex @code{calc}
1937@cindex calculator, infix notation
1938
1939We now modify rpcalc to handle infix operators instead of postfix. Infix
1940notation involves the concept of operator precedence and the need for
1941parentheses nested to arbitrary depth. Here is the Bison code for
1942@file{calc.y}, an infix desk-top calculator.
1943
1944@example
38a92d50 1945/* Infix notation calculator. */
bfa74976
RS
1946
1947%@{
38a92d50
PE
1948 #define YYSTYPE double
1949 #include <math.h>
1950 #include <stdio.h>
1951 int yylex (void);
1952 void yyerror (char const *);
bfa74976
RS
1953%@}
1954
38a92d50 1955/* Bison declarations. */
bfa74976
RS
1956%token NUM
1957%left '-' '+'
1958%left '*' '/'
d78f0ac9
AD
1959%precedence NEG /* negation--unary minus */
1960%right '^' /* exponentiation */
bfa74976 1961
38a92d50
PE
1962%% /* The grammar follows. */
1963input: /* empty */
bfa74976
RS
1964 | input line
1965;
1966
1967line: '\n'
1968 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1969;
1970
1971exp: NUM @{ $$ = $1; @}
1972 | exp '+' exp @{ $$ = $1 + $3; @}
1973 | exp '-' exp @{ $$ = $1 - $3; @}
1974 | exp '*' exp @{ $$ = $1 * $3; @}
1975 | exp '/' exp @{ $$ = $1 / $3; @}
1976 | '-' exp %prec NEG @{ $$ = -$2; @}
1977 | exp '^' exp @{ $$ = pow ($1, $3); @}
1978 | '(' exp ')' @{ $$ = $2; @}
1979;
1980%%
1981@end example
1982
1983@noindent
ceed8467
AD
1984The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1985same as before.
bfa74976
RS
1986
1987There are two important new features shown in this code.
1988
1989In the second section (Bison declarations), @code{%left} declares token
1990types and says they are left-associative operators. The declarations
1991@code{%left} and @code{%right} (right associativity) take the place of
1992@code{%token} which is used to declare a token type name without
d78f0ac9 1993associativity/precedence. (These tokens are single-character literals, which
bfa74976 1994ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1995the associativity/precedence.)
bfa74976
RS
1996
1997Operator precedence is determined by the line ordering of the
1998declarations; the higher the line number of the declaration (lower on
1999the page or screen), the higher the precedence. Hence, exponentiation
2000has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2001by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2002only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2003Precedence}.
bfa74976 2004
704a47c4
AD
2005The other important new feature is the @code{%prec} in the grammar
2006section for the unary minus operator. The @code{%prec} simply instructs
2007Bison that the rule @samp{| '-' exp} has the same precedence as
2008@code{NEG}---in this case the next-to-highest. @xref{Contextual
2009Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2010
2011Here is a sample run of @file{calc.y}:
2012
2013@need 500
2014@example
9edcd895
AD
2015$ @kbd{calc}
2016@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20176.880952381
9edcd895 2018@kbd{-56 + 2}
bfa74976 2019-54
9edcd895 2020@kbd{3 ^ 2}
bfa74976
RS
20219
2022@end example
2023
342b8b6e 2024@node Simple Error Recovery
bfa74976
RS
2025@section Simple Error Recovery
2026@cindex error recovery, simple
2027
2028Up to this point, this manual has not addressed the issue of @dfn{error
2029recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2030error. All we have handled is error reporting with @code{yyerror}.
2031Recall that by default @code{yyparse} returns after calling
2032@code{yyerror}. This means that an erroneous input line causes the
2033calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2034
2035The Bison language itself includes the reserved word @code{error}, which
2036may be included in the grammar rules. In the example below it has
2037been added to one of the alternatives for @code{line}:
2038
2039@example
2040@group
2041line: '\n'
2042 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2043 | error '\n' @{ yyerrok; @}
2044;
2045@end group
2046@end example
2047
ceed8467 2048This addition to the grammar allows for simple error recovery in the
6e649e65 2049event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2050read, the error will be recognized by the third rule for @code{line},
2051and parsing will continue. (The @code{yyerror} function is still called
2052upon to print its message as well.) The action executes the statement
2053@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2054that error recovery is complete (@pxref{Error Recovery}). Note the
2055difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2056misprint.
bfa74976
RS
2057
2058This form of error recovery deals with syntax errors. There are other
2059kinds of errors; for example, division by zero, which raises an exception
2060signal that is normally fatal. A real calculator program must handle this
2061signal and use @code{longjmp} to return to @code{main} and resume parsing
2062input lines; it would also have to discard the rest of the current line of
2063input. We won't discuss this issue further because it is not specific to
2064Bison programs.
2065
342b8b6e
AD
2066@node Location Tracking Calc
2067@section Location Tracking Calculator: @code{ltcalc}
2068@cindex location tracking calculator
2069@cindex @code{ltcalc}
2070@cindex calculator, location tracking
2071
9edcd895
AD
2072This example extends the infix notation calculator with location
2073tracking. This feature will be used to improve the error messages. For
2074the sake of clarity, this example is a simple integer calculator, since
2075most of the work needed to use locations will be done in the lexical
72d2299c 2076analyzer.
342b8b6e
AD
2077
2078@menu
f5f419de
DJ
2079* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2080* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2081* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2082@end menu
2083
f5f419de 2084@node Ltcalc Declarations
342b8b6e
AD
2085@subsection Declarations for @code{ltcalc}
2086
9edcd895
AD
2087The C and Bison declarations for the location tracking calculator are
2088the same as the declarations for the infix notation calculator.
342b8b6e
AD
2089
2090@example
2091/* Location tracking calculator. */
2092
2093%@{
38a92d50
PE
2094 #define YYSTYPE int
2095 #include <math.h>
2096 int yylex (void);
2097 void yyerror (char const *);
342b8b6e
AD
2098%@}
2099
2100/* Bison declarations. */
2101%token NUM
2102
2103%left '-' '+'
2104%left '*' '/'
d78f0ac9 2105%precedence NEG
342b8b6e
AD
2106%right '^'
2107
38a92d50 2108%% /* The grammar follows. */
342b8b6e
AD
2109@end example
2110
9edcd895
AD
2111@noindent
2112Note there are no declarations specific to locations. Defining a data
2113type for storing locations is not needed: we will use the type provided
2114by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2115four member structure with the following integer fields:
2116@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2117@code{last_column}. By conventions, and in accordance with the GNU
2118Coding Standards and common practice, the line and column count both
2119start at 1.
342b8b6e
AD
2120
2121@node Ltcalc Rules
2122@subsection Grammar Rules for @code{ltcalc}
2123
9edcd895
AD
2124Whether handling locations or not has no effect on the syntax of your
2125language. Therefore, grammar rules for this example will be very close
2126to those of the previous example: we will only modify them to benefit
2127from the new information.
342b8b6e 2128
9edcd895
AD
2129Here, we will use locations to report divisions by zero, and locate the
2130wrong expressions or subexpressions.
342b8b6e
AD
2131
2132@example
2133@group
2134input : /* empty */
2135 | input line
2136;
2137@end group
2138
2139@group
2140line : '\n'
2141 | exp '\n' @{ printf ("%d\n", $1); @}
2142;
2143@end group
2144
2145@group
2146exp : NUM @{ $$ = $1; @}
2147 | exp '+' exp @{ $$ = $1 + $3; @}
2148 | exp '-' exp @{ $$ = $1 - $3; @}
2149 | exp '*' exp @{ $$ = $1 * $3; @}
2150@end group
342b8b6e 2151@group
9edcd895 2152 | exp '/' exp
342b8b6e
AD
2153 @{
2154 if ($3)
2155 $$ = $1 / $3;
2156 else
2157 @{
2158 $$ = 1;
9edcd895
AD
2159 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2160 @@3.first_line, @@3.first_column,
2161 @@3.last_line, @@3.last_column);
342b8b6e
AD
2162 @}
2163 @}
2164@end group
2165@group
178e123e 2166 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2167 | exp '^' exp @{ $$ = pow ($1, $3); @}
2168 | '(' exp ')' @{ $$ = $2; @}
2169@end group
2170@end example
2171
2172This code shows how to reach locations inside of semantic actions, by
2173using the pseudo-variables @code{@@@var{n}} for rule components, and the
2174pseudo-variable @code{@@$} for groupings.
2175
9edcd895
AD
2176We don't need to assign a value to @code{@@$}: the output parser does it
2177automatically. By default, before executing the C code of each action,
2178@code{@@$} is set to range from the beginning of @code{@@1} to the end
2179of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2180can be redefined (@pxref{Location Default Action, , Default Action for
2181Locations}), and for very specific rules, @code{@@$} can be computed by
2182hand.
342b8b6e
AD
2183
2184@node Ltcalc Lexer
2185@subsection The @code{ltcalc} Lexical Analyzer.
2186
9edcd895 2187Until now, we relied on Bison's defaults to enable location
72d2299c 2188tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2189able to feed the parser with the token locations, as it already does for
2190semantic values.
342b8b6e 2191
9edcd895
AD
2192To this end, we must take into account every single character of the
2193input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2194
2195@example
2196@group
2197int
2198yylex (void)
2199@{
2200 int c;
18b519c0 2201@end group
342b8b6e 2202
18b519c0 2203@group
72d2299c 2204 /* Skip white space. */
342b8b6e
AD
2205 while ((c = getchar ()) == ' ' || c == '\t')
2206 ++yylloc.last_column;
18b519c0 2207@end group
342b8b6e 2208
18b519c0 2209@group
72d2299c 2210 /* Step. */
342b8b6e
AD
2211 yylloc.first_line = yylloc.last_line;
2212 yylloc.first_column = yylloc.last_column;
2213@end group
2214
2215@group
72d2299c 2216 /* Process numbers. */
342b8b6e
AD
2217 if (isdigit (c))
2218 @{
2219 yylval = c - '0';
2220 ++yylloc.last_column;
2221 while (isdigit (c = getchar ()))
2222 @{
2223 ++yylloc.last_column;
2224 yylval = yylval * 10 + c - '0';
2225 @}
2226 ungetc (c, stdin);
2227 return NUM;
2228 @}
2229@end group
2230
72d2299c 2231 /* Return end-of-input. */
342b8b6e
AD
2232 if (c == EOF)
2233 return 0;
2234
72d2299c 2235 /* Return a single char, and update location. */
342b8b6e
AD
2236 if (c == '\n')
2237 @{
2238 ++yylloc.last_line;
2239 yylloc.last_column = 0;
2240 @}
2241 else
2242 ++yylloc.last_column;
2243 return c;
2244@}
2245@end example
2246
9edcd895
AD
2247Basically, the lexical analyzer performs the same processing as before:
2248it skips blanks and tabs, and reads numbers or single-character tokens.
2249In addition, it updates @code{yylloc}, the global variable (of type
2250@code{YYLTYPE}) containing the token's location.
342b8b6e 2251
9edcd895 2252Now, each time this function returns a token, the parser has its number
72d2299c 2253as well as its semantic value, and its location in the text. The last
9edcd895
AD
2254needed change is to initialize @code{yylloc}, for example in the
2255controlling function:
342b8b6e
AD
2256
2257@example
9edcd895 2258@group
342b8b6e
AD
2259int
2260main (void)
2261@{
2262 yylloc.first_line = yylloc.last_line = 1;
2263 yylloc.first_column = yylloc.last_column = 0;
2264 return yyparse ();
2265@}
9edcd895 2266@end group
342b8b6e
AD
2267@end example
2268
9edcd895
AD
2269Remember that computing locations is not a matter of syntax. Every
2270character must be associated to a location update, whether it is in
2271valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2272
2273@node Multi-function Calc
bfa74976
RS
2274@section Multi-Function Calculator: @code{mfcalc}
2275@cindex multi-function calculator
2276@cindex @code{mfcalc}
2277@cindex calculator, multi-function
2278
2279Now that the basics of Bison have been discussed, it is time to move on to
2280a more advanced problem. The above calculators provided only five
2281functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2282be nice to have a calculator that provides other mathematical functions such
2283as @code{sin}, @code{cos}, etc.
2284
2285It is easy to add new operators to the infix calculator as long as they are
2286only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2287back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2288adding a new operator. But we want something more flexible: built-in
2289functions whose syntax has this form:
2290
2291@example
2292@var{function_name} (@var{argument})
2293@end example
2294
2295@noindent
2296At the same time, we will add memory to the calculator, by allowing you
2297to create named variables, store values in them, and use them later.
2298Here is a sample session with the multi-function calculator:
2299
2300@example
9edcd895
AD
2301$ @kbd{mfcalc}
2302@kbd{pi = 3.141592653589}
bfa74976 23033.1415926536
9edcd895 2304@kbd{sin(pi)}
bfa74976 23050.0000000000
9edcd895 2306@kbd{alpha = beta1 = 2.3}
bfa74976 23072.3000000000
9edcd895 2308@kbd{alpha}
bfa74976 23092.3000000000
9edcd895 2310@kbd{ln(alpha)}
bfa74976 23110.8329091229
9edcd895 2312@kbd{exp(ln(beta1))}
bfa74976 23132.3000000000
9edcd895 2314$
bfa74976
RS
2315@end example
2316
2317Note that multiple assignment and nested function calls are permitted.
2318
2319@menu
f5f419de
DJ
2320* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2321* Mfcalc Rules:: Grammar rules for the calculator.
2322* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2323@end menu
2324
f5f419de 2325@node Mfcalc Declarations
bfa74976
RS
2326@subsection Declarations for @code{mfcalc}
2327
2328Here are the C and Bison declarations for the multi-function calculator.
2329
2330@smallexample
18b519c0 2331@group
bfa74976 2332%@{
38a92d50
PE
2333 #include <math.h> /* For math functions, cos(), sin(), etc. */
2334 #include "calc.h" /* Contains definition of `symrec'. */
2335 int yylex (void);
2336 void yyerror (char const *);
bfa74976 2337%@}
18b519c0
AD
2338@end group
2339@group
bfa74976 2340%union @{
38a92d50
PE
2341 double val; /* For returning numbers. */
2342 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2343@}
18b519c0 2344@end group
38a92d50
PE
2345%token <val> NUM /* Simple double precision number. */
2346%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2347%type <val> exp
2348
18b519c0 2349@group
bfa74976
RS
2350%right '='
2351%left '-' '+'
2352%left '*' '/'
d78f0ac9
AD
2353%precedence NEG /* negation--unary minus */
2354%right '^' /* exponentiation */
18b519c0 2355@end group
38a92d50 2356%% /* The grammar follows. */
bfa74976
RS
2357@end smallexample
2358
2359The above grammar introduces only two new features of the Bison language.
2360These features allow semantic values to have various data types
2361(@pxref{Multiple Types, ,More Than One Value Type}).
2362
2363The @code{%union} declaration specifies the entire list of possible types;
2364this is instead of defining @code{YYSTYPE}. The allowable types are now
2365double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2366the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2367
2368Since values can now have various types, it is necessary to associate a
2369type with each grammar symbol whose semantic value is used. These symbols
2370are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2371declarations are augmented with information about their data type (placed
2372between angle brackets).
2373
704a47c4
AD
2374The Bison construct @code{%type} is used for declaring nonterminal
2375symbols, just as @code{%token} is used for declaring token types. We
2376have not used @code{%type} before because nonterminal symbols are
2377normally declared implicitly by the rules that define them. But
2378@code{exp} must be declared explicitly so we can specify its value type.
2379@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2380
342b8b6e 2381@node Mfcalc Rules
bfa74976
RS
2382@subsection Grammar Rules for @code{mfcalc}
2383
2384Here are the grammar rules for the multi-function calculator.
2385Most of them are copied directly from @code{calc}; three rules,
2386those which mention @code{VAR} or @code{FNCT}, are new.
2387
2388@smallexample
18b519c0 2389@group
bfa74976
RS
2390input: /* empty */
2391 | input line
2392;
18b519c0 2393@end group
bfa74976 2394
18b519c0 2395@group
bfa74976
RS
2396line:
2397 '\n'
2398 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2399 | error '\n' @{ yyerrok; @}
2400;
18b519c0 2401@end group
bfa74976 2402
18b519c0 2403@group
bfa74976
RS
2404exp: NUM @{ $$ = $1; @}
2405 | VAR @{ $$ = $1->value.var; @}
2406 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2407 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2408 | exp '+' exp @{ $$ = $1 + $3; @}
2409 | exp '-' exp @{ $$ = $1 - $3; @}
2410 | exp '*' exp @{ $$ = $1 * $3; @}
2411 | exp '/' exp @{ $$ = $1 / $3; @}
2412 | '-' exp %prec NEG @{ $$ = -$2; @}
2413 | exp '^' exp @{ $$ = pow ($1, $3); @}
2414 | '(' exp ')' @{ $$ = $2; @}
2415;
18b519c0 2416@end group
38a92d50 2417/* End of grammar. */
bfa74976
RS
2418%%
2419@end smallexample
2420
f5f419de 2421@node Mfcalc Symbol Table
bfa74976
RS
2422@subsection The @code{mfcalc} Symbol Table
2423@cindex symbol table example
2424
2425The multi-function calculator requires a symbol table to keep track of the
2426names and meanings of variables and functions. This doesn't affect the
2427grammar rules (except for the actions) or the Bison declarations, but it
2428requires some additional C functions for support.
2429
2430The symbol table itself consists of a linked list of records. Its
2431definition, which is kept in the header @file{calc.h}, is as follows. It
2432provides for either functions or variables to be placed in the table.
2433
2434@smallexample
2435@group
38a92d50 2436/* Function type. */
32dfccf8 2437typedef double (*func_t) (double);
72f889cc 2438@end group
32dfccf8 2439
72f889cc 2440@group
38a92d50 2441/* Data type for links in the chain of symbols. */
bfa74976
RS
2442struct symrec
2443@{
38a92d50 2444 char *name; /* name of symbol */
bfa74976 2445 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2446 union
2447 @{
38a92d50
PE
2448 double var; /* value of a VAR */
2449 func_t fnctptr; /* value of a FNCT */
bfa74976 2450 @} value;
38a92d50 2451 struct symrec *next; /* link field */
bfa74976
RS
2452@};
2453@end group
2454
2455@group
2456typedef struct symrec symrec;
2457
38a92d50 2458/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2459extern symrec *sym_table;
2460
a730d142 2461symrec *putsym (char const *, int);
38a92d50 2462symrec *getsym (char const *);
bfa74976
RS
2463@end group
2464@end smallexample
2465
2466The new version of @code{main} includes a call to @code{init_table}, a
2467function that initializes the symbol table. Here it is, and
2468@code{init_table} as well:
2469
2470@smallexample
bfa74976
RS
2471#include <stdio.h>
2472
18b519c0 2473@group
38a92d50 2474/* Called by yyparse on error. */
13863333 2475void
38a92d50 2476yyerror (char const *s)
bfa74976
RS
2477@{
2478 printf ("%s\n", s);
2479@}
18b519c0 2480@end group
bfa74976 2481
18b519c0 2482@group
bfa74976
RS
2483struct init
2484@{
38a92d50
PE
2485 char const *fname;
2486 double (*fnct) (double);
bfa74976
RS
2487@};
2488@end group
2489
2490@group
38a92d50 2491struct init const arith_fncts[] =
13863333 2492@{
32dfccf8
AD
2493 "sin", sin,
2494 "cos", cos,
13863333 2495 "atan", atan,
32dfccf8
AD
2496 "ln", log,
2497 "exp", exp,
13863333
AD
2498 "sqrt", sqrt,
2499 0, 0
2500@};
18b519c0 2501@end group
bfa74976 2502
18b519c0 2503@group
bfa74976 2504/* The symbol table: a chain of `struct symrec'. */
38a92d50 2505symrec *sym_table;
bfa74976
RS
2506@end group
2507
2508@group
72d2299c 2509/* Put arithmetic functions in table. */
13863333
AD
2510void
2511init_table (void)
bfa74976
RS
2512@{
2513 int i;
2514 symrec *ptr;
2515 for (i = 0; arith_fncts[i].fname != 0; i++)
2516 @{
2517 ptr = putsym (arith_fncts[i].fname, FNCT);
2518 ptr->value.fnctptr = arith_fncts[i].fnct;
2519 @}
2520@}
2521@end group
38a92d50
PE
2522
2523@group
2524int
2525main (void)
2526@{
2527 init_table ();
2528 return yyparse ();
2529@}
2530@end group
bfa74976
RS
2531@end smallexample
2532
2533By simply editing the initialization list and adding the necessary include
2534files, you can add additional functions to the calculator.
2535
2536Two important functions allow look-up and installation of symbols in the
2537symbol table. The function @code{putsym} is passed a name and the type
2538(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2539linked to the front of the list, and a pointer to the object is returned.
2540The function @code{getsym} is passed the name of the symbol to look up. If
2541found, a pointer to that symbol is returned; otherwise zero is returned.
2542
2543@smallexample
2544symrec *
38a92d50 2545putsym (char const *sym_name, int sym_type)
bfa74976
RS
2546@{
2547 symrec *ptr;
2548 ptr = (symrec *) malloc (sizeof (symrec));
2549 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2550 strcpy (ptr->name,sym_name);
2551 ptr->type = sym_type;
72d2299c 2552 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2553 ptr->next = (struct symrec *)sym_table;
2554 sym_table = ptr;
2555 return ptr;
2556@}
2557
2558symrec *
38a92d50 2559getsym (char const *sym_name)
bfa74976
RS
2560@{
2561 symrec *ptr;
2562 for (ptr = sym_table; ptr != (symrec *) 0;
2563 ptr = (symrec *)ptr->next)
2564 if (strcmp (ptr->name,sym_name) == 0)
2565 return ptr;
2566 return 0;
2567@}
2568@end smallexample
2569
2570The function @code{yylex} must now recognize variables, numeric values, and
2571the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2572characters with a leading letter are recognized as either variables or
bfa74976
RS
2573functions depending on what the symbol table says about them.
2574
2575The string is passed to @code{getsym} for look up in the symbol table. If
2576the name appears in the table, a pointer to its location and its type
2577(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2578already in the table, then it is installed as a @code{VAR} using
2579@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2580returned to @code{yyparse}.
bfa74976
RS
2581
2582No change is needed in the handling of numeric values and arithmetic
2583operators in @code{yylex}.
2584
2585@smallexample
2586@group
2587#include <ctype.h>
18b519c0 2588@end group
13863333 2589
18b519c0 2590@group
13863333
AD
2591int
2592yylex (void)
bfa74976
RS
2593@{
2594 int c;
2595
72d2299c 2596 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2597 while ((c = getchar ()) == ' ' || c == '\t');
2598
2599 if (c == EOF)
2600 return 0;
2601@end group
2602
2603@group
2604 /* Char starts a number => parse the number. */
2605 if (c == '.' || isdigit (c))
2606 @{
2607 ungetc (c, stdin);
2608 scanf ("%lf", &yylval.val);
2609 return NUM;
2610 @}
2611@end group
2612
2613@group
2614 /* Char starts an identifier => read the name. */
2615 if (isalpha (c))
2616 @{
2617 symrec *s;
2618 static char *symbuf = 0;
2619 static int length = 0;
2620 int i;
2621@end group
2622
2623@group
2624 /* Initially make the buffer long enough
2625 for a 40-character symbol name. */
2626 if (length == 0)
2627 length = 40, symbuf = (char *)malloc (length + 1);
2628
2629 i = 0;
2630 do
2631@end group
2632@group
2633 @{
2634 /* If buffer is full, make it bigger. */
2635 if (i == length)
2636 @{
2637 length *= 2;
18b519c0 2638 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2639 @}
2640 /* Add this character to the buffer. */
2641 symbuf[i++] = c;
2642 /* Get another character. */
2643 c = getchar ();
2644 @}
2645@end group
2646@group
72d2299c 2647 while (isalnum (c));
bfa74976
RS
2648
2649 ungetc (c, stdin);
2650 symbuf[i] = '\0';
2651@end group
2652
2653@group
2654 s = getsym (symbuf);
2655 if (s == 0)
2656 s = putsym (symbuf, VAR);
2657 yylval.tptr = s;
2658 return s->type;
2659 @}
2660
2661 /* Any other character is a token by itself. */
2662 return c;
2663@}
2664@end group
2665@end smallexample
2666
72d2299c 2667This program is both powerful and flexible. You may easily add new
704a47c4
AD
2668functions, and it is a simple job to modify this code to install
2669predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2670
342b8b6e 2671@node Exercises
bfa74976
RS
2672@section Exercises
2673@cindex exercises
2674
2675@enumerate
2676@item
2677Add some new functions from @file{math.h} to the initialization list.
2678
2679@item
2680Add another array that contains constants and their values. Then
2681modify @code{init_table} to add these constants to the symbol table.
2682It will be easiest to give the constants type @code{VAR}.
2683
2684@item
2685Make the program report an error if the user refers to an
2686uninitialized variable in any way except to store a value in it.
2687@end enumerate
2688
342b8b6e 2689@node Grammar File
bfa74976
RS
2690@chapter Bison Grammar Files
2691
2692Bison takes as input a context-free grammar specification and produces a
2693C-language function that recognizes correct instances of the grammar.
2694
ff7571c0 2695The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2696@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2697
2698@menu
303834cc
JD
2699* Grammar Outline:: Overall layout of the grammar file.
2700* Symbols:: Terminal and nonterminal symbols.
2701* Rules:: How to write grammar rules.
2702* Recursion:: Writing recursive rules.
2703* Semantics:: Semantic values and actions.
2704* Tracking Locations:: Locations and actions.
2705* Named References:: Using named references in actions.
2706* Declarations:: All kinds of Bison declarations are described here.
2707* Multiple Parsers:: Putting more than one Bison parser in one program.
bfa74976
RS
2708@end menu
2709
342b8b6e 2710@node Grammar Outline
bfa74976
RS
2711@section Outline of a Bison Grammar
2712
2713A Bison grammar file has four main sections, shown here with the
2714appropriate delimiters:
2715
2716@example
2717%@{
38a92d50 2718 @var{Prologue}
bfa74976
RS
2719%@}
2720
2721@var{Bison declarations}
2722
2723%%
2724@var{Grammar rules}
2725%%
2726
75f5aaea 2727@var{Epilogue}
bfa74976
RS
2728@end example
2729
2730Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2731As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2732continues until end of line.
bfa74976
RS
2733
2734@menu
f5f419de 2735* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2736* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2737* Bison Declarations:: Syntax and usage of the Bison declarations section.
2738* Grammar Rules:: Syntax and usage of the grammar rules section.
2739* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2740@end menu
2741
38a92d50 2742@node Prologue
75f5aaea
MA
2743@subsection The prologue
2744@cindex declarations section
2745@cindex Prologue
2746@cindex declarations
bfa74976 2747
f8e1c9e5
AD
2748The @var{Prologue} section contains macro definitions and declarations
2749of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2750rules. These are copied to the beginning of the parser implementation
2751file so that they precede the definition of @code{yyparse}. You can
2752use @samp{#include} to get the declarations from a header file. If
2753you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2754@samp{%@}} delimiters that bracket this section.
bfa74976 2755
9c437126 2756The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2757of @samp{%@}} that is outside a comment, a string literal, or a
2758character constant.
2759
c732d2c6
AD
2760You may have more than one @var{Prologue} section, intermixed with the
2761@var{Bison declarations}. This allows you to have C and Bison
2762declarations that refer to each other. For example, the @code{%union}
2763declaration may use types defined in a header file, and you may wish to
2764prototype functions that take arguments of type @code{YYSTYPE}. This
2765can be done with two @var{Prologue} blocks, one before and one after the
2766@code{%union} declaration.
2767
2768@smallexample
2769%@{
aef3da86 2770 #define _GNU_SOURCE
38a92d50
PE
2771 #include <stdio.h>
2772 #include "ptypes.h"
c732d2c6
AD
2773%@}
2774
2775%union @{
779e7ceb 2776 long int n;
c732d2c6
AD
2777 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2778@}
2779
2780%@{
38a92d50
PE
2781 static void print_token_value (FILE *, int, YYSTYPE);
2782 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2783%@}
2784
2785@dots{}
2786@end smallexample
2787
aef3da86
PE
2788When in doubt, it is usually safer to put prologue code before all
2789Bison declarations, rather than after. For example, any definitions
2790of feature test macros like @code{_GNU_SOURCE} or
2791@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2792feature test macros can affect the behavior of Bison-generated
2793@code{#include} directives.
2794
2cbe6b7f
JD
2795@node Prologue Alternatives
2796@subsection Prologue Alternatives
2797@cindex Prologue Alternatives
2798
136a0f76 2799@findex %code
16dc6a9e
JD
2800@findex %code requires
2801@findex %code provides
2802@findex %code top
85894313 2803
2cbe6b7f 2804The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2805inflexible. As an alternative, Bison provides a @code{%code}
2806directive with an explicit qualifier field, which identifies the
2807purpose of the code and thus the location(s) where Bison should
2808generate it. For C/C++, the qualifier can be omitted for the default
2809location, or it can be one of @code{requires}, @code{provides},
e0c07222 2810@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2811
2812Look again at the example of the previous section:
2813
2814@smallexample
2815%@{
2816 #define _GNU_SOURCE
2817 #include <stdio.h>
2818 #include "ptypes.h"
2819%@}
2820
2821%union @{
2822 long int n;
2823 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2824@}
2825
2826%@{
2827 static void print_token_value (FILE *, int, YYSTYPE);
2828 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2829%@}
2830
2831@dots{}
2832@end smallexample
2833
2834@noindent
ff7571c0
JD
2835Notice that there are two @var{Prologue} sections here, but there's a
2836subtle distinction between their functionality. For example, if you
2837decide to override Bison's default definition for @code{YYLTYPE}, in
2838which @var{Prologue} section should you write your new definition?
2839You should write it in the first since Bison will insert that code
2840into the parser implementation file @emph{before} the default
2841@code{YYLTYPE} definition. In which @var{Prologue} section should you
2842prototype an internal function, @code{trace_token}, that accepts
2843@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2844prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2845@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2846
2847This distinction in functionality between the two @var{Prologue} sections is
2848established by the appearance of the @code{%union} between them.
a501eca9 2849This behavior raises a few questions.
2cbe6b7f
JD
2850First, why should the position of a @code{%union} affect definitions related to
2851@code{YYLTYPE} and @code{yytokentype}?
2852Second, what if there is no @code{%union}?
2853In that case, the second kind of @var{Prologue} section is not available.
2854This behavior is not intuitive.
2855
8e0a5e9e 2856To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2857@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2858Let's go ahead and add the new @code{YYLTYPE} definition and the
2859@code{trace_token} prototype at the same time:
2860
2861@smallexample
16dc6a9e 2862%code top @{
2cbe6b7f
JD
2863 #define _GNU_SOURCE
2864 #include <stdio.h>
8e0a5e9e
JD
2865
2866 /* WARNING: The following code really belongs
16dc6a9e 2867 * in a `%code requires'; see below. */
8e0a5e9e 2868
2cbe6b7f
JD
2869 #include "ptypes.h"
2870 #define YYLTYPE YYLTYPE
2871 typedef struct YYLTYPE
2872 @{
2873 int first_line;
2874 int first_column;
2875 int last_line;
2876 int last_column;
2877 char *filename;
2878 @} YYLTYPE;
2879@}
2880
2881%union @{
2882 long int n;
2883 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2884@}
2885
2886%code @{
2887 static void print_token_value (FILE *, int, YYSTYPE);
2888 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2889 static void trace_token (enum yytokentype token, YYLTYPE loc);
2890@}
2891
2892@dots{}
2893@end smallexample
2894
2895@noindent
16dc6a9e
JD
2896In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2897functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2898explicit which kind you intend.
2cbe6b7f
JD
2899Moreover, both kinds are always available even in the absence of @code{%union}.
2900
ff7571c0
JD
2901The @code{%code top} block above logically contains two parts. The
2902first two lines before the warning need to appear near the top of the
2903parser implementation file. The first line after the warning is
2904required by @code{YYSTYPE} and thus also needs to appear in the parser
2905implementation file. However, if you've instructed Bison to generate
2906a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2907want that line to appear before the @code{YYSTYPE} definition in that
2908header file as well. The @code{YYLTYPE} definition should also appear
2909in the parser header file to override the default @code{YYLTYPE}
2910definition there.
2cbe6b7f 2911
16dc6a9e 2912In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2913lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2914definitions.
16dc6a9e 2915Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2916
2917@smallexample
16dc6a9e 2918%code top @{
2cbe6b7f
JD
2919 #define _GNU_SOURCE
2920 #include <stdio.h>
2921@}
2922
16dc6a9e 2923%code requires @{
9bc0dd67
JD
2924 #include "ptypes.h"
2925@}
2926%union @{
2927 long int n;
2928 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2929@}
2930
16dc6a9e 2931%code requires @{
2cbe6b7f
JD
2932 #define YYLTYPE YYLTYPE
2933 typedef struct YYLTYPE
2934 @{
2935 int first_line;
2936 int first_column;
2937 int last_line;
2938 int last_column;
2939 char *filename;
2940 @} YYLTYPE;
2941@}
2942
136a0f76 2943%code @{
2cbe6b7f
JD
2944 static void print_token_value (FILE *, int, YYSTYPE);
2945 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2946 static void trace_token (enum yytokentype token, YYLTYPE loc);
2947@}
2948
2949@dots{}
2950@end smallexample
2951
2952@noindent
ff7571c0
JD
2953Now Bison will insert @code{#include "ptypes.h"} and the new
2954@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2955and @code{YYLTYPE} definitions in both the parser implementation file
2956and the parser header file. (By the same reasoning, @code{%code
2957requires} would also be the appropriate place to write your own
2958definition for @code{YYSTYPE}.)
2959
2960When you are writing dependency code for @code{YYSTYPE} and
2961@code{YYLTYPE}, you should prefer @code{%code requires} over
2962@code{%code top} regardless of whether you instruct Bison to generate
2963a parser header file. When you are writing code that you need Bison
2964to insert only into the parser implementation file and that has no
2965special need to appear at the top of that file, you should prefer the
2966unqualified @code{%code} over @code{%code top}. These practices will
2967make the purpose of each block of your code explicit to Bison and to
2968other developers reading your grammar file. Following these
2969practices, we expect the unqualified @code{%code} and @code{%code
2970requires} to be the most important of the four @var{Prologue}
16dc6a9e 2971alternatives.
a501eca9 2972
ff7571c0
JD
2973At some point while developing your parser, you might decide to
2974provide @code{trace_token} to modules that are external to your
2975parser. Thus, you might wish for Bison to insert the prototype into
2976both the parser header file and the parser implementation file. Since
2977this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2978@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
2979@code{%code requires}. More importantly, since it depends upon
2980@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2981sufficient. Instead, move its prototype from the unqualified
2982@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
2983
2984@smallexample
16dc6a9e 2985%code top @{
2cbe6b7f 2986 #define _GNU_SOURCE
136a0f76 2987 #include <stdio.h>
2cbe6b7f 2988@}
136a0f76 2989
16dc6a9e 2990%code requires @{
2cbe6b7f
JD
2991 #include "ptypes.h"
2992@}
2993%union @{
2994 long int n;
2995 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2996@}
2997
16dc6a9e 2998%code requires @{
2cbe6b7f
JD
2999 #define YYLTYPE YYLTYPE
3000 typedef struct YYLTYPE
3001 @{
3002 int first_line;
3003 int first_column;
3004 int last_line;
3005 int last_column;
3006 char *filename;
3007 @} YYLTYPE;
3008@}
3009
16dc6a9e 3010%code provides @{
2cbe6b7f
JD
3011 void trace_token (enum yytokentype token, YYLTYPE loc);
3012@}
3013
3014%code @{
9bc0dd67
JD
3015 static void print_token_value (FILE *, int, YYSTYPE);
3016 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3017@}
9bc0dd67
JD
3018
3019@dots{}
3020@end smallexample
3021
2cbe6b7f 3022@noindent
ff7571c0
JD
3023Bison will insert the @code{trace_token} prototype into both the
3024parser header file and the parser implementation file after the
3025definitions for @code{yytokentype}, @code{YYLTYPE}, and
3026@code{YYSTYPE}.
2cbe6b7f 3027
ff7571c0
JD
3028The above examples are careful to write directives in an order that
3029reflects the layout of the generated parser implementation and header
3030files: @code{%code top}, @code{%code requires}, @code{%code provides},
3031and then @code{%code}. While your grammar files may generally be
3032easier to read if you also follow this order, Bison does not require
3033it. Instead, Bison lets you choose an organization that makes sense
3034to you.
2cbe6b7f 3035
a501eca9 3036You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3037In that case, Bison concatenates the contained code in declaration order.
3038This is the only way in which the position of one of these directives within
3039the grammar file affects its functionality.
3040
3041The result of the previous two properties is greater flexibility in how you may
3042organize your grammar file.
3043For example, you may organize semantic-type-related directives by semantic
3044type:
3045
3046@smallexample
16dc6a9e 3047%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3048%union @{ type1 field1; @}
3049%destructor @{ type1_free ($$); @} <field1>
3050%printer @{ type1_print ($$); @} <field1>
3051
16dc6a9e 3052%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3053%union @{ type2 field2; @}
3054%destructor @{ type2_free ($$); @} <field2>
3055%printer @{ type2_print ($$); @} <field2>
3056@end smallexample
3057
3058@noindent
3059You could even place each of the above directive groups in the rules section of
3060the grammar file next to the set of rules that uses the associated semantic
3061type.
61fee93e
JD
3062(In the rules section, you must terminate each of those directives with a
3063semicolon.)
2cbe6b7f
JD
3064And you don't have to worry that some directive (like a @code{%union}) in the
3065definitions section is going to adversely affect their functionality in some
3066counter-intuitive manner just because it comes first.
3067Such an organization is not possible using @var{Prologue} sections.
3068
a501eca9 3069This section has been concerned with explaining the advantages of the four
8e0a5e9e 3070@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3071However, in most cases when using these directives, you shouldn't need to
3072think about all the low-level ordering issues discussed here.
3073Instead, you should simply use these directives to label each block of your
3074code according to its purpose and let Bison handle the ordering.
3075@code{%code} is the most generic label.
16dc6a9e
JD
3076Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3077as needed.
a501eca9 3078
342b8b6e 3079@node Bison Declarations
bfa74976
RS
3080@subsection The Bison Declarations Section
3081@cindex Bison declarations (introduction)
3082@cindex declarations, Bison (introduction)
3083
3084The @var{Bison declarations} section contains declarations that define
3085terminal and nonterminal symbols, specify precedence, and so on.
3086In some simple grammars you may not need any declarations.
3087@xref{Declarations, ,Bison Declarations}.
3088
342b8b6e 3089@node Grammar Rules
bfa74976
RS
3090@subsection The Grammar Rules Section
3091@cindex grammar rules section
3092@cindex rules section for grammar
3093
3094The @dfn{grammar rules} section contains one or more Bison grammar
3095rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3096
3097There must always be at least one grammar rule, and the first
3098@samp{%%} (which precedes the grammar rules) may never be omitted even
3099if it is the first thing in the file.
3100
38a92d50 3101@node Epilogue
75f5aaea 3102@subsection The epilogue
bfa74976 3103@cindex additional C code section
75f5aaea 3104@cindex epilogue
bfa74976
RS
3105@cindex C code, section for additional
3106
ff7571c0
JD
3107The @var{Epilogue} is copied verbatim to the end of the parser
3108implementation file, just as the @var{Prologue} is copied to the
3109beginning. This is the most convenient place to put anything that you
3110want to have in the parser implementation file but which need not come
3111before the definition of @code{yyparse}. For example, the definitions
3112of @code{yylex} and @code{yyerror} often go here. Because C requires
3113functions to be declared before being used, you often need to declare
3114functions like @code{yylex} and @code{yyerror} in the Prologue, even
3115if you define them in the Epilogue. @xref{Interface, ,Parser
3116C-Language Interface}.
bfa74976
RS
3117
3118If the last section is empty, you may omit the @samp{%%} that separates it
3119from the grammar rules.
3120
f8e1c9e5
AD
3121The Bison parser itself contains many macros and identifiers whose names
3122start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3123any such names (except those documented in this manual) in the epilogue
3124of the grammar file.
bfa74976 3125
342b8b6e 3126@node Symbols
bfa74976
RS
3127@section Symbols, Terminal and Nonterminal
3128@cindex nonterminal symbol
3129@cindex terminal symbol
3130@cindex token type
3131@cindex symbol
3132
3133@dfn{Symbols} in Bison grammars represent the grammatical classifications
3134of the language.
3135
3136A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3137class of syntactically equivalent tokens. You use the symbol in grammar
3138rules to mean that a token in that class is allowed. The symbol is
3139represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3140function returns a token type code to indicate what kind of token has
3141been read. You don't need to know what the code value is; you can use
3142the symbol to stand for it.
bfa74976 3143
f8e1c9e5
AD
3144A @dfn{nonterminal symbol} stands for a class of syntactically
3145equivalent groupings. The symbol name is used in writing grammar rules.
3146By convention, it should be all lower case.
bfa74976 3147
82f3355e
JD
3148Symbol names can contain letters, underscores, periods, and non-initial
3149digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3150with POSIX Yacc. Periods and dashes make symbol names less convenient to
3151use with named references, which require brackets around such names
3152(@pxref{Named References}). Terminal symbols that contain periods or dashes
3153make little sense: since they are not valid symbols (in most programming
3154languages) they are not exported as token names.
bfa74976 3155
931c7513 3156There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3157
3158@itemize @bullet
3159@item
3160A @dfn{named token type} is written with an identifier, like an
c827f760 3161identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3162such name must be defined with a Bison declaration such as
3163@code{%token}. @xref{Token Decl, ,Token Type Names}.
3164
3165@item
3166@cindex character token
3167@cindex literal token
3168@cindex single-character literal
931c7513
RS
3169A @dfn{character token type} (or @dfn{literal character token}) is
3170written in the grammar using the same syntax used in C for character
3171constants; for example, @code{'+'} is a character token type. A
3172character token type doesn't need to be declared unless you need to
3173specify its semantic value data type (@pxref{Value Type, ,Data Types of
3174Semantic Values}), associativity, or precedence (@pxref{Precedence,
3175,Operator Precedence}).
bfa74976
RS
3176
3177By convention, a character token type is used only to represent a
3178token that consists of that particular character. Thus, the token
3179type @code{'+'} is used to represent the character @samp{+} as a
3180token. Nothing enforces this convention, but if you depart from it,
3181your program will confuse other readers.
3182
3183All the usual escape sequences used in character literals in C can be
3184used in Bison as well, but you must not use the null character as a
72d2299c
PE
3185character literal because its numeric code, zero, signifies
3186end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3187for @code{yylex}}). Also, unlike standard C, trigraphs have no
3188special meaning in Bison character literals, nor is backslash-newline
3189allowed.
931c7513
RS
3190
3191@item
3192@cindex string token
3193@cindex literal string token
9ecbd125 3194@cindex multicharacter literal
931c7513
RS
3195A @dfn{literal string token} is written like a C string constant; for
3196example, @code{"<="} is a literal string token. A literal string token
3197doesn't need to be declared unless you need to specify its semantic
14ded682 3198value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3199(@pxref{Precedence}).
3200
3201You can associate the literal string token with a symbolic name as an
3202alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3203Declarations}). If you don't do that, the lexical analyzer has to
3204retrieve the token number for the literal string token from the
3205@code{yytname} table (@pxref{Calling Convention}).
3206
c827f760 3207@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3208
3209By convention, a literal string token is used only to represent a token
3210that consists of that particular string. Thus, you should use the token
3211type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3212does not enforce this convention, but if you depart from it, people who
931c7513
RS
3213read your program will be confused.
3214
3215All the escape sequences used in string literals in C can be used in
92ac3705
PE
3216Bison as well, except that you must not use a null character within a
3217string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3218meaning in Bison string literals, nor is backslash-newline allowed. A
3219literal string token must contain two or more characters; for a token
3220containing just one character, use a character token (see above).
bfa74976
RS
3221@end itemize
3222
3223How you choose to write a terminal symbol has no effect on its
3224grammatical meaning. That depends only on where it appears in rules and
3225on when the parser function returns that symbol.
3226
72d2299c
PE
3227The value returned by @code{yylex} is always one of the terminal
3228symbols, except that a zero or negative value signifies end-of-input.
3229Whichever way you write the token type in the grammar rules, you write
3230it the same way in the definition of @code{yylex}. The numeric code
3231for a character token type is simply the positive numeric code of the
3232character, so @code{yylex} can use the identical value to generate the
3233requisite code, though you may need to convert it to @code{unsigned
3234char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3235Each named token type becomes a C macro in the parser implementation
3236file, so @code{yylex} can use the name to stand for the code. (This
3237is why periods don't make sense in terminal symbols.) @xref{Calling
3238Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3239
3240If @code{yylex} is defined in a separate file, you need to arrange for the
3241token-type macro definitions to be available there. Use the @samp{-d}
3242option when you run Bison, so that it will write these macro definitions
3243into a separate header file @file{@var{name}.tab.h} which you can include
3244in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3245
72d2299c 3246If you want to write a grammar that is portable to any Standard C
9d9b8b70 3247host, you must use only nonnull character tokens taken from the basic
c827f760 3248execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3249digits, the 52 lower- and upper-case English letters, and the
3250characters in the following C-language string:
3251
3252@example
3253"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3254@end example
3255
f8e1c9e5
AD
3256The @code{yylex} function and Bison must use a consistent character set
3257and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3258ASCII environment, but then compile and run the resulting
f8e1c9e5 3259program in an environment that uses an incompatible character set like
8a4281b9
JD
3260EBCDIC, the resulting program may not work because the tables
3261generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3262character tokens. It is standard practice for software distributions to
3263contain C source files that were generated by Bison in an
8a4281b9
JD
3264ASCII environment, so installers on platforms that are
3265incompatible with ASCII must rebuild those files before
f8e1c9e5 3266compiling them.
e966383b 3267
bfa74976
RS
3268The symbol @code{error} is a terminal symbol reserved for error recovery
3269(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3270In particular, @code{yylex} should never return this value. The default
3271value of the error token is 256, unless you explicitly assigned 256 to
3272one of your tokens with a @code{%token} declaration.
bfa74976 3273
342b8b6e 3274@node Rules
bfa74976
RS
3275@section Syntax of Grammar Rules
3276@cindex rule syntax
3277@cindex grammar rule syntax
3278@cindex syntax of grammar rules
3279
3280A Bison grammar rule has the following general form:
3281
3282@example
e425e872 3283@group
bfa74976
RS
3284@var{result}: @var{components}@dots{}
3285 ;
e425e872 3286@end group
bfa74976
RS
3287@end example
3288
3289@noindent
9ecbd125 3290where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3291and @var{components} are various terminal and nonterminal symbols that
13863333 3292are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3293
3294For example,
3295
3296@example
3297@group
3298exp: exp '+' exp
3299 ;
3300@end group
3301@end example
3302
3303@noindent
3304says that two groupings of type @code{exp}, with a @samp{+} token in between,
3305can be combined into a larger grouping of type @code{exp}.
3306
72d2299c
PE
3307White space in rules is significant only to separate symbols. You can add
3308extra white space as you wish.
bfa74976
RS
3309
3310Scattered among the components can be @var{actions} that determine
3311the semantics of the rule. An action looks like this:
3312
3313@example
3314@{@var{C statements}@}
3315@end example
3316
3317@noindent
287c78f6
PE
3318@cindex braced code
3319This is an example of @dfn{braced code}, that is, C code surrounded by
3320braces, much like a compound statement in C@. Braced code can contain
3321any sequence of C tokens, so long as its braces are balanced. Bison
3322does not check the braced code for correctness directly; it merely
ff7571c0
JD
3323copies the code to the parser implementation file, where the C
3324compiler can check it.
287c78f6
PE
3325
3326Within braced code, the balanced-brace count is not affected by braces
3327within comments, string literals, or character constants, but it is
3328affected by the C digraphs @samp{<%} and @samp{%>} that represent
3329braces. At the top level braced code must be terminated by @samp{@}}
3330and not by a digraph. Bison does not look for trigraphs, so if braced
3331code uses trigraphs you should ensure that they do not affect the
3332nesting of braces or the boundaries of comments, string literals, or
3333character constants.
3334
bfa74976
RS
3335Usually there is only one action and it follows the components.
3336@xref{Actions}.
3337
3338@findex |
3339Multiple rules for the same @var{result} can be written separately or can
3340be joined with the vertical-bar character @samp{|} as follows:
3341
bfa74976
RS
3342@example
3343@group
3344@var{result}: @var{rule1-components}@dots{}
3345 | @var{rule2-components}@dots{}
3346 @dots{}
3347 ;
3348@end group
3349@end example
bfa74976
RS
3350
3351@noindent
3352They are still considered distinct rules even when joined in this way.
3353
3354If @var{components} in a rule is empty, it means that @var{result} can
3355match the empty string. For example, here is how to define a
3356comma-separated sequence of zero or more @code{exp} groupings:
3357
3358@example
3359@group
3360expseq: /* empty */
3361 | expseq1
3362 ;
3363@end group
3364
3365@group
3366expseq1: exp
3367 | expseq1 ',' exp
3368 ;
3369@end group
3370@end example
3371
3372@noindent
3373It is customary to write a comment @samp{/* empty */} in each rule
3374with no components.
3375
342b8b6e 3376@node Recursion
bfa74976
RS
3377@section Recursive Rules
3378@cindex recursive rule
3379
f8e1c9e5
AD
3380A rule is called @dfn{recursive} when its @var{result} nonterminal
3381appears also on its right hand side. Nearly all Bison grammars need to
3382use recursion, because that is the only way to define a sequence of any
3383number of a particular thing. Consider this recursive definition of a
9ecbd125 3384comma-separated sequence of one or more expressions:
bfa74976
RS
3385
3386@example
3387@group
3388expseq1: exp
3389 | expseq1 ',' exp
3390 ;
3391@end group
3392@end example
3393
3394@cindex left recursion
3395@cindex right recursion
3396@noindent
3397Since the recursive use of @code{expseq1} is the leftmost symbol in the
3398right hand side, we call this @dfn{left recursion}. By contrast, here
3399the same construct is defined using @dfn{right recursion}:
3400
3401@example
3402@group
3403expseq1: exp
3404 | exp ',' expseq1
3405 ;
3406@end group
3407@end example
3408
3409@noindent
ec3bc396
AD
3410Any kind of sequence can be defined using either left recursion or right
3411recursion, but you should always use left recursion, because it can
3412parse a sequence of any number of elements with bounded stack space.
3413Right recursion uses up space on the Bison stack in proportion to the
3414number of elements in the sequence, because all the elements must be
3415shifted onto the stack before the rule can be applied even once.
3416@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3417of this.
bfa74976
RS
3418
3419@cindex mutual recursion
3420@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3421rule does not appear directly on its right hand side, but does appear
3422in rules for other nonterminals which do appear on its right hand
13863333 3423side.
bfa74976
RS
3424
3425For example:
3426
3427@example
3428@group
3429expr: primary
3430 | primary '+' primary
3431 ;
3432@end group
3433
3434@group
3435primary: constant
3436 | '(' expr ')'
3437 ;
3438@end group
3439@end example
3440
3441@noindent
3442defines two mutually-recursive nonterminals, since each refers to the
3443other.
3444
342b8b6e 3445@node Semantics
bfa74976
RS
3446@section Defining Language Semantics
3447@cindex defining language semantics
13863333 3448@cindex language semantics, defining
bfa74976
RS
3449
3450The grammar rules for a language determine only the syntax. The semantics
3451are determined by the semantic values associated with various tokens and
3452groupings, and by the actions taken when various groupings are recognized.
3453
3454For example, the calculator calculates properly because the value
3455associated with each expression is the proper number; it adds properly
3456because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3457the numbers associated with @var{x} and @var{y}.
3458
3459@menu
3460* Value Type:: Specifying one data type for all semantic values.
3461* Multiple Types:: Specifying several alternative data types.
3462* Actions:: An action is the semantic definition of a grammar rule.
3463* Action Types:: Specifying data types for actions to operate on.
3464* Mid-Rule Actions:: Most actions go at the end of a rule.
3465 This says when, why and how to use the exceptional
3466 action in the middle of a rule.
3467@end menu
3468
342b8b6e 3469@node Value Type
bfa74976
RS
3470@subsection Data Types of Semantic Values
3471@cindex semantic value type
3472@cindex value type, semantic
3473@cindex data types of semantic values
3474@cindex default data type
3475
3476In a simple program it may be sufficient to use the same data type for
3477the semantic values of all language constructs. This was true in the
8a4281b9 3478RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3479Notation Calculator}).
bfa74976 3480
ddc8ede1
PE
3481Bison normally uses the type @code{int} for semantic values if your
3482program uses the same data type for all language constructs. To
bfa74976
RS
3483specify some other type, define @code{YYSTYPE} as a macro, like this:
3484
3485@example
3486#define YYSTYPE double
3487@end example
3488
3489@noindent
50cce58e
PE
3490@code{YYSTYPE}'s replacement list should be a type name
3491that does not contain parentheses or square brackets.
342b8b6e 3492This macro definition must go in the prologue of the grammar file
75f5aaea 3493(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3494
342b8b6e 3495@node Multiple Types
bfa74976
RS
3496@subsection More Than One Value Type
3497
3498In most programs, you will need different data types for different kinds
3499of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3500@code{int} or @code{long int}, while a string constant needs type
3501@code{char *}, and an identifier might need a pointer to an entry in the
3502symbol table.
bfa74976
RS
3503
3504To use more than one data type for semantic values in one parser, Bison
3505requires you to do two things:
3506
3507@itemize @bullet
3508@item
ddc8ede1 3509Specify the entire collection of possible data types, either by using the
704a47c4 3510@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3511Value Types}), or by using a @code{typedef} or a @code{#define} to
3512define @code{YYSTYPE} to be a union type whose member names are
3513the type tags.
bfa74976
RS
3514
3515@item
14ded682
AD
3516Choose one of those types for each symbol (terminal or nonterminal) for
3517which semantic values are used. This is done for tokens with the
3518@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3519and for groupings with the @code{%type} Bison declaration (@pxref{Type
3520Decl, ,Nonterminal Symbols}).
bfa74976
RS
3521@end itemize
3522
342b8b6e 3523@node Actions
bfa74976
RS
3524@subsection Actions
3525@cindex action
3526@vindex $$
3527@vindex $@var{n}
d013372c
AR
3528@vindex $@var{name}
3529@vindex $[@var{name}]
bfa74976
RS
3530
3531An action accompanies a syntactic rule and contains C code to be executed
3532each time an instance of that rule is recognized. The task of most actions
3533is to compute a semantic value for the grouping built by the rule from the
3534semantic values associated with tokens or smaller groupings.
3535
287c78f6
PE
3536An action consists of braced code containing C statements, and can be
3537placed at any position in the rule;
704a47c4
AD
3538it is executed at that position. Most rules have just one action at the
3539end of the rule, following all the components. Actions in the middle of
3540a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3541Actions, ,Actions in Mid-Rule}).
bfa74976 3542
ff7571c0
JD
3543The C code in an action can refer to the semantic values of the
3544components matched by the rule with the construct @code{$@var{n}},
3545which stands for the value of the @var{n}th component. The semantic
3546value for the grouping being constructed is @code{$$}. In addition,
3547the semantic values of symbols can be accessed with the named
3548references construct @code{$@var{name}} or @code{$[@var{name}]}.
3549Bison translates both of these constructs into expressions of the
3550appropriate type when it copies the actions into the parser
3551implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3552for the current grouping) is translated to a modifiable lvalue, so it
3553can be assigned to.
bfa74976
RS
3554
3555Here is a typical example:
3556
3557@example
3558@group
3559exp: @dots{}
3560 | exp '+' exp
3561 @{ $$ = $1 + $3; @}
3562@end group
3563@end example
3564
d013372c
AR
3565Or, in terms of named references:
3566
3567@example
3568@group
3569exp[result]: @dots{}
3570 | exp[left] '+' exp[right]
3571 @{ $result = $left + $right; @}
3572@end group
3573@end example
3574
bfa74976
RS
3575@noindent
3576This rule constructs an @code{exp} from two smaller @code{exp} groupings
3577connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3578(@code{$left} and @code{$right})
bfa74976
RS
3579refer to the semantic values of the two component @code{exp} groupings,
3580which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3581The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3582semantic value of
bfa74976
RS
3583the addition-expression just recognized by the rule. If there were a
3584useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3585referred to as @code{$2}.
bfa74976 3586
a7b15ab9
JD
3587@xref{Named References}, for more information about using the named
3588references construct.
d013372c 3589
3ded9a63
AD
3590Note that the vertical-bar character @samp{|} is really a rule
3591separator, and actions are attached to a single rule. This is a
3592difference with tools like Flex, for which @samp{|} stands for either
3593``or'', or ``the same action as that of the next rule''. In the
3594following example, the action is triggered only when @samp{b} is found:
3595
3596@example
3597@group
3598a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3599@end group
3600@end example
3601
bfa74976
RS
3602@cindex default action
3603If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3604@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3605becomes the value of the whole rule. Of course, the default action is
3606valid only if the two data types match. There is no meaningful default
3607action for an empty rule; every empty rule must have an explicit action
3608unless the rule's value does not matter.
bfa74976
RS
3609
3610@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3611to tokens and groupings on the stack @emph{before} those that match the
3612current rule. This is a very risky practice, and to use it reliably
3613you must be certain of the context in which the rule is applied. Here
3614is a case in which you can use this reliably:
3615
3616@example
3617@group
3618foo: expr bar '+' expr @{ @dots{} @}
3619 | expr bar '-' expr @{ @dots{} @}
3620 ;
3621@end group
3622
3623@group
3624bar: /* empty */
3625 @{ previous_expr = $0; @}
3626 ;
3627@end group
3628@end example
3629
3630As long as @code{bar} is used only in the fashion shown here, @code{$0}
3631always refers to the @code{expr} which precedes @code{bar} in the
3632definition of @code{foo}.
3633
32c29292 3634@vindex yylval
742e4900 3635It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3636any, from a semantic action.
3637This semantic value is stored in @code{yylval}.
3638@xref{Action Features, ,Special Features for Use in Actions}.
3639
342b8b6e 3640@node Action Types
bfa74976
RS
3641@subsection Data Types of Values in Actions
3642@cindex action data types
3643@cindex data types in actions
3644
3645If you have chosen a single data type for semantic values, the @code{$$}
3646and @code{$@var{n}} constructs always have that data type.
3647
3648If you have used @code{%union} to specify a variety of data types, then you
3649must declare a choice among these types for each terminal or nonterminal
3650symbol that can have a semantic value. Then each time you use @code{$$} or
3651@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3652in the rule. In this example,
bfa74976
RS
3653
3654@example
3655@group
3656exp: @dots{}
3657 | exp '+' exp
3658 @{ $$ = $1 + $3; @}
3659@end group
3660@end example
3661
3662@noindent
3663@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3664have the data type declared for the nonterminal symbol @code{exp}. If
3665@code{$2} were used, it would have the data type declared for the
e0c471a9 3666terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3667
3668Alternatively, you can specify the data type when you refer to the value,
3669by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3670reference. For example, if you have defined types as shown here:
3671
3672@example
3673@group
3674%union @{
3675 int itype;
3676 double dtype;
3677@}
3678@end group
3679@end example
3680
3681@noindent
3682then you can write @code{$<itype>1} to refer to the first subunit of the
3683rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3684
342b8b6e 3685@node Mid-Rule Actions
bfa74976
RS
3686@subsection Actions in Mid-Rule
3687@cindex actions in mid-rule
3688@cindex mid-rule actions
3689
3690Occasionally it is useful to put an action in the middle of a rule.
3691These actions are written just like usual end-of-rule actions, but they
3692are executed before the parser even recognizes the following components.
3693
3694A mid-rule action may refer to the components preceding it using
3695@code{$@var{n}}, but it may not refer to subsequent components because
3696it is run before they are parsed.
3697
3698The mid-rule action itself counts as one of the components of the rule.
3699This makes a difference when there is another action later in the same rule
3700(and usually there is another at the end): you have to count the actions
3701along with the symbols when working out which number @var{n} to use in
3702@code{$@var{n}}.
3703
3704The mid-rule action can also have a semantic value. The action can set
3705its value with an assignment to @code{$$}, and actions later in the rule
3706can refer to the value using @code{$@var{n}}. Since there is no symbol
3707to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3708in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3709specify a data type each time you refer to this value.
bfa74976
RS
3710
3711There is no way to set the value of the entire rule with a mid-rule
3712action, because assignments to @code{$$} do not have that effect. The
3713only way to set the value for the entire rule is with an ordinary action
3714at the end of the rule.
3715
3716Here is an example from a hypothetical compiler, handling a @code{let}
3717statement that looks like @samp{let (@var{variable}) @var{statement}} and
3718serves to create a variable named @var{variable} temporarily for the
3719duration of @var{statement}. To parse this construct, we must put
3720@var{variable} into the symbol table while @var{statement} is parsed, then
3721remove it afterward. Here is how it is done:
3722
3723@example
3724@group
3725stmt: LET '(' var ')'
3726 @{ $<context>$ = push_context ();
3727 declare_variable ($3); @}
3728 stmt @{ $$ = $6;
3729 pop_context ($<context>5); @}
3730@end group
3731@end example
3732
3733@noindent
3734As soon as @samp{let (@var{variable})} has been recognized, the first
3735action is run. It saves a copy of the current semantic context (the
3736list of accessible variables) as its semantic value, using alternative
3737@code{context} in the data-type union. Then it calls
3738@code{declare_variable} to add the new variable to that list. Once the
3739first action is finished, the embedded statement @code{stmt} can be
3740parsed. Note that the mid-rule action is component number 5, so the
3741@samp{stmt} is component number 6.
3742
3743After the embedded statement is parsed, its semantic value becomes the
3744value of the entire @code{let}-statement. Then the semantic value from the
3745earlier action is used to restore the prior list of variables. This
3746removes the temporary @code{let}-variable from the list so that it won't
3747appear to exist while the rest of the program is parsed.
3748
841a7737
JD
3749@findex %destructor
3750@cindex discarded symbols, mid-rule actions
3751@cindex error recovery, mid-rule actions
3752In the above example, if the parser initiates error recovery (@pxref{Error
3753Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3754it might discard the previous semantic context @code{$<context>5} without
3755restoring it.
3756Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3757Discarded Symbols}).
ec5479ce
JD
3758However, Bison currently provides no means to declare a destructor specific to
3759a particular mid-rule action's semantic value.
841a7737
JD
3760
3761One solution is to bury the mid-rule action inside a nonterminal symbol and to
3762declare a destructor for that symbol:
3763
3764@example
3765@group
3766%type <context> let
3767%destructor @{ pop_context ($$); @} let
3768
3769%%
3770
3771stmt: let stmt
3772 @{ $$ = $2;
3773 pop_context ($1); @}
3774 ;
3775
3776let: LET '(' var ')'
3777 @{ $$ = push_context ();
3778 declare_variable ($3); @}
3779 ;
3780
3781@end group
3782@end example
3783
3784@noindent
3785Note that the action is now at the end of its rule.
3786Any mid-rule action can be converted to an end-of-rule action in this way, and
3787this is what Bison actually does to implement mid-rule actions.
3788
bfa74976
RS
3789Taking action before a rule is completely recognized often leads to
3790conflicts since the parser must commit to a parse in order to execute the
3791action. For example, the following two rules, without mid-rule actions,
3792can coexist in a working parser because the parser can shift the open-brace
3793token and look at what follows before deciding whether there is a
3794declaration or not:
3795
3796@example
3797@group
3798compound: '@{' declarations statements '@}'
3799 | '@{' statements '@}'
3800 ;
3801@end group
3802@end example
3803
3804@noindent
3805But when we add a mid-rule action as follows, the rules become nonfunctional:
3806
3807@example
3808@group
3809compound: @{ prepare_for_local_variables (); @}
3810 '@{' declarations statements '@}'
3811@end group
3812@group
3813 | '@{' statements '@}'
3814 ;
3815@end group
3816@end example
3817
3818@noindent
3819Now the parser is forced to decide whether to run the mid-rule action
3820when it has read no farther than the open-brace. In other words, it
3821must commit to using one rule or the other, without sufficient
3822information to do it correctly. (The open-brace token is what is called
742e4900
JD
3823the @dfn{lookahead} token at this time, since the parser is still
3824deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3825
3826You might think that you could correct the problem by putting identical
3827actions into the two rules, like this:
3828
3829@example
3830@group
3831compound: @{ prepare_for_local_variables (); @}
3832 '@{' declarations statements '@}'
3833 | @{ prepare_for_local_variables (); @}
3834 '@{' statements '@}'
3835 ;
3836@end group
3837@end example
3838
3839@noindent
3840But this does not help, because Bison does not realize that the two actions
3841are identical. (Bison never tries to understand the C code in an action.)
3842
3843If the grammar is such that a declaration can be distinguished from a
3844statement by the first token (which is true in C), then one solution which
3845does work is to put the action after the open-brace, like this:
3846
3847@example
3848@group
3849compound: '@{' @{ prepare_for_local_variables (); @}
3850 declarations statements '@}'
3851 | '@{' statements '@}'
3852 ;
3853@end group
3854@end example
3855
3856@noindent
3857Now the first token of the following declaration or statement,
3858which would in any case tell Bison which rule to use, can still do so.
3859
3860Another solution is to bury the action inside a nonterminal symbol which
3861serves as a subroutine:
3862
3863@example
3864@group
3865subroutine: /* empty */
3866 @{ prepare_for_local_variables (); @}
3867 ;
3868
3869@end group
3870
3871@group
3872compound: subroutine
3873 '@{' declarations statements '@}'
3874 | subroutine
3875 '@{' statements '@}'
3876 ;
3877@end group
3878@end example
3879
3880@noindent
3881Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3882deciding which rule for @code{compound} it will eventually use.
bfa74976 3883
303834cc 3884@node Tracking Locations
847bf1f5
AD
3885@section Tracking Locations
3886@cindex location
95923bd6
AD
3887@cindex textual location
3888@cindex location, textual
847bf1f5
AD
3889
3890Though grammar rules and semantic actions are enough to write a fully
72d2299c 3891functional parser, it can be useful to process some additional information,
3e259915
MA
3892especially symbol locations.
3893
704a47c4
AD
3894The way locations are handled is defined by providing a data type, and
3895actions to take when rules are matched.
847bf1f5
AD
3896
3897@menu
3898* Location Type:: Specifying a data type for locations.
3899* Actions and Locations:: Using locations in actions.
3900* Location Default Action:: Defining a general way to compute locations.
3901@end menu
3902
342b8b6e 3903@node Location Type
847bf1f5
AD
3904@subsection Data Type of Locations
3905@cindex data type of locations
3906@cindex default location type
3907
3908Defining a data type for locations is much simpler than for semantic values,
3909since all tokens and groupings always use the same type.
3910
50cce58e
PE
3911You can specify the type of locations by defining a macro called
3912@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3913defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
3914When @code{YYLTYPE} is not defined, Bison uses a default structure type with
3915four members:
3916
3917@example
6273355b 3918typedef struct YYLTYPE
847bf1f5
AD
3919@{
3920 int first_line;
3921 int first_column;
3922 int last_line;
3923 int last_column;
6273355b 3924@} YYLTYPE;
847bf1f5
AD
3925@end example
3926
d59e456d
AD
3927When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
3928initializes all these fields to 1 for @code{yylloc}. To initialize
3929@code{yylloc} with a custom location type (or to chose a different
3930initialization), use the @code{%initial-action} directive. @xref{Initial
3931Action Decl, , Performing Actions before Parsing}.
cd48d21d 3932
342b8b6e 3933@node Actions and Locations
847bf1f5
AD
3934@subsection Actions and Locations
3935@cindex location actions
3936@cindex actions, location
3937@vindex @@$
3938@vindex @@@var{n}
d013372c
AR
3939@vindex @@@var{name}
3940@vindex @@[@var{name}]
847bf1f5
AD
3941
3942Actions are not only useful for defining language semantics, but also for
3943describing the behavior of the output parser with locations.
3944
3945The most obvious way for building locations of syntactic groupings is very
72d2299c 3946similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
3947constructs can be used to access the locations of the elements being matched.
3948The location of the @var{n}th component of the right hand side is
3949@code{@@@var{n}}, while the location of the left hand side grouping is
3950@code{@@$}.
3951
d013372c
AR
3952In addition, the named references construct @code{@@@var{name}} and
3953@code{@@[@var{name}]} may also be used to address the symbol locations.
a7b15ab9
JD
3954@xref{Named References}, for more information about using the named
3955references construct.
d013372c 3956
3e259915 3957Here is a basic example using the default data type for locations:
847bf1f5
AD
3958
3959@example
3960@group
3961exp: @dots{}
3e259915 3962 | exp '/' exp
847bf1f5 3963 @{
3e259915
MA
3964 @@$.first_column = @@1.first_column;
3965 @@$.first_line = @@1.first_line;
847bf1f5
AD
3966 @@$.last_column = @@3.last_column;
3967 @@$.last_line = @@3.last_line;
3e259915
MA
3968 if ($3)
3969 $$ = $1 / $3;
3970 else
3971 @{
3972 $$ = 1;
4e03e201
AD
3973 fprintf (stderr,
3974 "Division by zero, l%d,c%d-l%d,c%d",
3975 @@3.first_line, @@3.first_column,
3976 @@3.last_line, @@3.last_column);
3e259915 3977 @}
847bf1f5
AD
3978 @}
3979@end group
3980@end example
3981
3e259915 3982As for semantic values, there is a default action for locations that is
72d2299c 3983run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 3984beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 3985last symbol.
3e259915 3986
72d2299c 3987With this default action, the location tracking can be fully automatic. The
3e259915
MA
3988example above simply rewrites this way:
3989
3990@example
3991@group
3992exp: @dots{}
3993 | exp '/' exp
3994 @{
3995 if ($3)
3996 $$ = $1 / $3;
3997 else
3998 @{
3999 $$ = 1;
4e03e201
AD
4000 fprintf (stderr,
4001 "Division by zero, l%d,c%d-l%d,c%d",
4002 @@3.first_line, @@3.first_column,
4003 @@3.last_line, @@3.last_column);
3e259915
MA
4004 @}
4005 @}
4006@end group
4007@end example
847bf1f5 4008
32c29292 4009@vindex yylloc
742e4900 4010It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4011from a semantic action.
4012This location is stored in @code{yylloc}.
4013@xref{Action Features, ,Special Features for Use in Actions}.
4014
342b8b6e 4015@node Location Default Action
847bf1f5
AD
4016@subsection Default Action for Locations
4017@vindex YYLLOC_DEFAULT
8a4281b9 4018@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4019
72d2299c 4020Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4021locations are much more general than semantic values, there is room in
4022the output parser to redefine the default action to take for each
72d2299c 4023rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4024matched, before the associated action is run. It is also invoked
4025while processing a syntax error, to compute the error's location.
8a4281b9 4026Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4027parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4028of that ambiguity.
847bf1f5 4029
3e259915 4030Most of the time, this macro is general enough to suppress location
79282c6c 4031dedicated code from semantic actions.
847bf1f5 4032
72d2299c 4033The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4034the location of the grouping (the result of the computation). When a
766de5eb 4035rule is matched, the second parameter identifies locations of
96b93a3d 4036all right hand side elements of the rule being matched, and the third
8710fc41 4037parameter is the size of the rule's right hand side.
8a4281b9 4038When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4039right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4040When processing a syntax error, the second parameter identifies locations
4041of the symbols that were discarded during error processing, and the third
96b93a3d 4042parameter is the number of discarded symbols.
847bf1f5 4043
766de5eb 4044By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4045
766de5eb 4046@smallexample
847bf1f5 4047@group
766de5eb
PE
4048# define YYLLOC_DEFAULT(Current, Rhs, N) \
4049 do \
4050 if (N) \
4051 @{ \
4052 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4053 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4054 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4055 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4056 @} \
4057 else \
4058 @{ \
4059 (Current).first_line = (Current).last_line = \
4060 YYRHSLOC(Rhs, 0).last_line; \
4061 (Current).first_column = (Current).last_column = \
4062 YYRHSLOC(Rhs, 0).last_column; \
4063 @} \
4064 while (0)
847bf1f5 4065@end group
766de5eb 4066@end smallexample
676385e2 4067
766de5eb
PE
4068where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4069in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4070just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4071
3e259915 4072When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4073
3e259915 4074@itemize @bullet
79282c6c 4075@item
72d2299c 4076All arguments are free of side-effects. However, only the first one (the
3e259915 4077result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4078
3e259915 4079@item
766de5eb
PE
4080For consistency with semantic actions, valid indexes within the
4081right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4082valid index, and it refers to the symbol just before the reduction.
4083During error processing @var{n} is always positive.
0ae99356
PE
4084
4085@item
4086Your macro should parenthesize its arguments, if need be, since the
4087actual arguments may not be surrounded by parentheses. Also, your
4088macro should expand to something that can be used as a single
4089statement when it is followed by a semicolon.
3e259915 4090@end itemize
847bf1f5 4091
378e917c 4092@node Named References
a7b15ab9 4093@section Named References
378e917c
JD
4094@cindex named references
4095
a40e77eb
JD
4096As described in the preceding sections, the traditional way to refer to any
4097semantic value or location is a @dfn{positional reference}, which takes the
4098form @code{$@var{n}}, @code{$$}, @code{@@@var{n}}, and @code{@@$}. However,
4099such a reference is not very descriptive. Moreover, if you later decide to
4100insert or remove symbols in the right-hand side of a grammar rule, the need
4101to renumber such references can be tedious and error-prone.
4102
4103To avoid these issues, you can also refer to a semantic value or location
4104using a @dfn{named reference}. First of all, original symbol names may be
4105used as named references. For example:
378e917c
JD
4106
4107@example
4108@group
4109invocation: op '(' args ')'
4110 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
4111@end group
4112@end example
4113
4114@noindent
a40e77eb 4115Positional and named references can be mixed arbitrarily. For example:
378e917c
JD
4116
4117@example
4118@group
4119invocation: op '(' args ')'
4120 @{ $$ = new_invocation ($op, $args, @@$); @}
4121@end group
4122@end example
4123
4124@noindent
4125However, sometimes regular symbol names are not sufficient due to
4126ambiguities:
4127
4128@example
4129@group
4130exp: exp '/' exp
4131 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
4132
4133exp: exp '/' exp
4134 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
4135
4136exp: exp '/' exp
4137 @{ $$ = $1 / $3; @} // No error.
4138@end group
4139@end example
4140
4141@noindent
4142When ambiguity occurs, explicitly declared names may be used for values and
4143locations. Explicit names are declared as a bracketed name after a symbol
4144appearance in rule definitions. For example:
4145@example
4146@group
4147exp[result]: exp[left] '/' exp[right]
4148 @{ $result = $left / $right; @}
4149@end group
4150@end example
4151
4152@noindent
a7b15ab9
JD
4153In order to access a semantic value generated by a mid-rule action, an
4154explicit name may also be declared by putting a bracketed name after the
4155closing brace of the mid-rule action code:
378e917c
JD
4156@example
4157@group
4158exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
4159 @{ $res = $left + $right; @}
4160@end group
4161@end example
4162
4163@noindent
4164
4165In references, in order to specify names containing dots and dashes, an explicit
4166bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
4167@example
4168@group
4169if-stmt: IF '(' expr ')' THEN then.stmt ';'
4170 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
4171@end group
4172@end example
4173
4174It often happens that named references are followed by a dot, dash or other
4175C punctuation marks and operators. By default, Bison will read
a7b15ab9
JD
4176@samp{$name.suffix} as a reference to symbol value @code{$name} followed by
4177@samp{.suffix}, i.e., an access to the @code{suffix} field of the semantic
4178value. In order to force Bison to recognize @samp{name.suffix} in its
4179entirety as the name of a semantic value, the bracketed syntax
4180@samp{$[name.suffix]} must be used.
4181
4182The named references feature is experimental. More user feedback will help
4183to stabilize it.
378e917c 4184
342b8b6e 4185@node Declarations
bfa74976
RS
4186@section Bison Declarations
4187@cindex declarations, Bison
4188@cindex Bison declarations
4189
4190The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4191used in formulating the grammar and the data types of semantic values.
4192@xref{Symbols}.
4193
4194All token type names (but not single-character literal tokens such as
4195@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4196declared if you need to specify which data type to use for the semantic
4197value (@pxref{Multiple Types, ,More Than One Value Type}).
4198
ff7571c0
JD
4199The first rule in the grammar file also specifies the start symbol, by
4200default. If you want some other symbol to be the start symbol, you
4201must declare it explicitly (@pxref{Language and Grammar, ,Languages
4202and Context-Free Grammars}).
bfa74976
RS
4203
4204@menu
b50d2359 4205* Require Decl:: Requiring a Bison version.
bfa74976
RS
4206* Token Decl:: Declaring terminal symbols.
4207* Precedence Decl:: Declaring terminals with precedence and associativity.
4208* Union Decl:: Declaring the set of all semantic value types.
4209* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4210* Initial Action Decl:: Code run before parsing starts.
72f889cc 4211* Destructor Decl:: Declaring how symbols are freed.
d6328241 4212* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4213* Start Decl:: Specifying the start symbol.
4214* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4215* Push Decl:: Requesting a push parser.
bfa74976 4216* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4217* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4218* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4219@end menu
4220
b50d2359
AD
4221@node Require Decl
4222@subsection Require a Version of Bison
4223@cindex version requirement
4224@cindex requiring a version of Bison
4225@findex %require
4226
4227You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4228the requirement is not met, @command{bison} exits with an error (exit
4229status 63).
b50d2359
AD
4230
4231@example
4232%require "@var{version}"
4233@end example
4234
342b8b6e 4235@node Token Decl
bfa74976
RS
4236@subsection Token Type Names
4237@cindex declaring token type names
4238@cindex token type names, declaring
931c7513 4239@cindex declaring literal string tokens
bfa74976
RS
4240@findex %token
4241
4242The basic way to declare a token type name (terminal symbol) is as follows:
4243
4244@example
4245%token @var{name}
4246@end example
4247
4248Bison will convert this into a @code{#define} directive in
4249the parser, so that the function @code{yylex} (if it is in this file)
4250can use the name @var{name} to stand for this token type's code.
4251
d78f0ac9
AD
4252Alternatively, you can use @code{%left}, @code{%right},
4253@code{%precedence}, or
14ded682
AD
4254@code{%nonassoc} instead of @code{%token}, if you wish to specify
4255associativity and precedence. @xref{Precedence Decl, ,Operator
4256Precedence}.
bfa74976
RS
4257
4258You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4259a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4260following the token name:
bfa74976
RS
4261
4262@example
4263%token NUM 300
1452af69 4264%token XNUM 0x12d // a GNU extension
bfa74976
RS
4265@end example
4266
4267@noindent
4268It is generally best, however, to let Bison choose the numeric codes for
4269all token types. Bison will automatically select codes that don't conflict
e966383b 4270with each other or with normal characters.
bfa74976
RS
4271
4272In the event that the stack type is a union, you must augment the
4273@code{%token} or other token declaration to include the data type
704a47c4
AD
4274alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4275Than One Value Type}).
bfa74976
RS
4276
4277For example:
4278
4279@example
4280@group
4281%union @{ /* define stack type */
4282 double val;
4283 symrec *tptr;
4284@}
4285%token <val> NUM /* define token NUM and its type */
4286@end group
4287@end example
4288
931c7513
RS
4289You can associate a literal string token with a token type name by
4290writing the literal string at the end of a @code{%token}
4291declaration which declares the name. For example:
4292
4293@example
4294%token arrow "=>"
4295@end example
4296
4297@noindent
4298For example, a grammar for the C language might specify these names with
4299equivalent literal string tokens:
4300
4301@example
4302%token <operator> OR "||"
4303%token <operator> LE 134 "<="
4304%left OR "<="
4305@end example
4306
4307@noindent
4308Once you equate the literal string and the token name, you can use them
4309interchangeably in further declarations or the grammar rules. The
4310@code{yylex} function can use the token name or the literal string to
4311obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4312Syntax error messages passed to @code{yyerror} from the parser will reference
4313the literal string instead of the token name.
4314
4315The token numbered as 0 corresponds to end of file; the following line
4316allows for nicer error messages referring to ``end of file'' instead
4317of ``$end'':
4318
4319@example
4320%token END 0 "end of file"
4321@end example
931c7513 4322
342b8b6e 4323@node Precedence Decl
bfa74976
RS
4324@subsection Operator Precedence
4325@cindex precedence declarations
4326@cindex declaring operator precedence
4327@cindex operator precedence, declaring
4328
d78f0ac9
AD
4329Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4330@code{%precedence} declaration to
bfa74976
RS
4331declare a token and specify its precedence and associativity, all at
4332once. These are called @dfn{precedence declarations}.
704a47c4
AD
4333@xref{Precedence, ,Operator Precedence}, for general information on
4334operator precedence.
bfa74976 4335
ab7f29f8 4336The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4337@code{%token}: either
4338
4339@example
4340%left @var{symbols}@dots{}
4341@end example
4342
4343@noindent
4344or
4345
4346@example
4347%left <@var{type}> @var{symbols}@dots{}
4348@end example
4349
4350And indeed any of these declarations serves the purposes of @code{%token}.
4351But in addition, they specify the associativity and relative precedence for
4352all the @var{symbols}:
4353
4354@itemize @bullet
4355@item
4356The associativity of an operator @var{op} determines how repeated uses
4357of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4358@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4359grouping @var{y} with @var{z} first. @code{%left} specifies
4360left-associativity (grouping @var{x} with @var{y} first) and
4361@code{%right} specifies right-associativity (grouping @var{y} with
4362@var{z} first). @code{%nonassoc} specifies no associativity, which
4363means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4364considered a syntax error.
4365
d78f0ac9
AD
4366@code{%precedence} gives only precedence to the @var{symbols}, and
4367defines no associativity at all. Use this to define precedence only,
4368and leave any potential conflict due to associativity enabled.
4369
bfa74976
RS
4370@item
4371The precedence of an operator determines how it nests with other operators.
4372All the tokens declared in a single precedence declaration have equal
4373precedence and nest together according to their associativity.
4374When two tokens declared in different precedence declarations associate,
4375the one declared later has the higher precedence and is grouped first.
4376@end itemize
4377
ab7f29f8
JD
4378For backward compatibility, there is a confusing difference between the
4379argument lists of @code{%token} and precedence declarations.
4380Only a @code{%token} can associate a literal string with a token type name.
4381A precedence declaration always interprets a literal string as a reference to a
4382separate token.
4383For example:
4384
4385@example
4386%left OR "<=" // Does not declare an alias.
4387%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4388@end example
4389
342b8b6e 4390@node Union Decl
bfa74976
RS
4391@subsection The Collection of Value Types
4392@cindex declaring value types
4393@cindex value types, declaring
4394@findex %union
4395
287c78f6
PE
4396The @code{%union} declaration specifies the entire collection of
4397possible data types for semantic values. The keyword @code{%union} is
4398followed by braced code containing the same thing that goes inside a
4399@code{union} in C@.
bfa74976
RS
4400
4401For example:
4402
4403@example
4404@group
4405%union @{
4406 double val;
4407 symrec *tptr;
4408@}
4409@end group
4410@end example
4411
4412@noindent
4413This says that the two alternative types are @code{double} and @code{symrec
4414*}. They are given names @code{val} and @code{tptr}; these names are used
4415in the @code{%token} and @code{%type} declarations to pick one of the types
4416for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4417
8a4281b9 4418As an extension to POSIX, a tag is allowed after the
6273355b
PE
4419@code{union}. For example:
4420
4421@example
4422@group
4423%union value @{
4424 double val;
4425 symrec *tptr;
4426@}
4427@end group
4428@end example
4429
d6ca7905 4430@noindent
6273355b
PE
4431specifies the union tag @code{value}, so the corresponding C type is
4432@code{union value}. If you do not specify a tag, it defaults to
4433@code{YYSTYPE}.
4434
8a4281b9 4435As another extension to POSIX, you may specify multiple
d6ca7905
PE
4436@code{%union} declarations; their contents are concatenated. However,
4437only the first @code{%union} declaration can specify a tag.
4438
6273355b 4439Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4440a semicolon after the closing brace.
4441
ddc8ede1
PE
4442Instead of @code{%union}, you can define and use your own union type
4443@code{YYSTYPE} if your grammar contains at least one
4444@samp{<@var{type}>} tag. For example, you can put the following into
4445a header file @file{parser.h}:
4446
4447@example
4448@group
4449union YYSTYPE @{
4450 double val;
4451 symrec *tptr;
4452@};
4453typedef union YYSTYPE YYSTYPE;
4454@end group
4455@end example
4456
4457@noindent
4458and then your grammar can use the following
4459instead of @code{%union}:
4460
4461@example
4462@group
4463%@{
4464#include "parser.h"
4465%@}
4466%type <val> expr
4467%token <tptr> ID
4468@end group
4469@end example
4470
342b8b6e 4471@node Type Decl
bfa74976
RS
4472@subsection Nonterminal Symbols
4473@cindex declaring value types, nonterminals
4474@cindex value types, nonterminals, declaring
4475@findex %type
4476
4477@noindent
4478When you use @code{%union} to specify multiple value types, you must
4479declare the value type of each nonterminal symbol for which values are
4480used. This is done with a @code{%type} declaration, like this:
4481
4482@example
4483%type <@var{type}> @var{nonterminal}@dots{}
4484@end example
4485
4486@noindent
704a47c4
AD
4487Here @var{nonterminal} is the name of a nonterminal symbol, and
4488@var{type} is the name given in the @code{%union} to the alternative
4489that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4490can give any number of nonterminal symbols in the same @code{%type}
4491declaration, if they have the same value type. Use spaces to separate
4492the symbol names.
bfa74976 4493
931c7513
RS
4494You can also declare the value type of a terminal symbol. To do this,
4495use the same @code{<@var{type}>} construction in a declaration for the
4496terminal symbol. All kinds of token declarations allow
4497@code{<@var{type}>}.
4498
18d192f0
AD
4499@node Initial Action Decl
4500@subsection Performing Actions before Parsing
4501@findex %initial-action
4502
4503Sometimes your parser needs to perform some initializations before
4504parsing. The @code{%initial-action} directive allows for such arbitrary
4505code.
4506
4507@deffn {Directive} %initial-action @{ @var{code} @}
4508@findex %initial-action
287c78f6 4509Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4510@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4511@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4512@code{%parse-param}.
18d192f0
AD
4513@end deffn
4514
451364ed
AD
4515For instance, if your locations use a file name, you may use
4516
4517@example
48b16bbc 4518%parse-param @{ char const *file_name @};
451364ed
AD
4519%initial-action
4520@{
4626a15d 4521 @@$.initialize (file_name);
451364ed
AD
4522@};
4523@end example
4524
18d192f0 4525
72f889cc
AD
4526@node Destructor Decl
4527@subsection Freeing Discarded Symbols
4528@cindex freeing discarded symbols
4529@findex %destructor
12e35840 4530@findex <*>
3ebecc24 4531@findex <>
a85284cf
AD
4532During error recovery (@pxref{Error Recovery}), symbols already pushed
4533on the stack and tokens coming from the rest of the file are discarded
4534until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4535or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4536symbols on the stack must be discarded. Even if the parser succeeds, it
4537must discard the start symbol.
258b75ca
PE
4538
4539When discarded symbols convey heap based information, this memory is
4540lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4541in traditional compilers, it is unacceptable for programs like shells or
4542protocol implementations that may parse and execute indefinitely.
258b75ca 4543
a85284cf
AD
4544The @code{%destructor} directive defines code that is called when a
4545symbol is automatically discarded.
72f889cc
AD
4546
4547@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4548@findex %destructor
287c78f6
PE
4549Invoke the braced @var{code} whenever the parser discards one of the
4550@var{symbols}.
4b367315 4551Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4552with the discarded symbol, and @code{@@$} designates its location.
4553The additional parser parameters are also available (@pxref{Parser Function, ,
4554The Parser Function @code{yyparse}}).
ec5479ce 4555
b2a0b7ca
JD
4556When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4557per-symbol @code{%destructor}.
4558You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4559tag among @var{symbols}.
b2a0b7ca 4560In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4561grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4562per-symbol @code{%destructor}.
4563
12e35840 4564Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4565(These default forms are experimental.
4566More user feedback will help to determine whether they should become permanent
4567features.)
3ebecc24 4568You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4569exactly one @code{%destructor} declaration in your grammar file.
4570The parser will invoke the @var{code} associated with one of these whenever it
4571discards any user-defined grammar symbol that has no per-symbol and no per-type
4572@code{%destructor}.
4573The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4574symbol for which you have formally declared a semantic type tag (@code{%type}
4575counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4576The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4577symbol that has no declared semantic type tag.
72f889cc
AD
4578@end deffn
4579
b2a0b7ca 4580@noindent
12e35840 4581For example:
72f889cc
AD
4582
4583@smallexample
ec5479ce
JD
4584%union @{ char *string; @}
4585%token <string> STRING1
4586%token <string> STRING2
4587%type <string> string1
4588%type <string> string2
b2a0b7ca
JD
4589%union @{ char character; @}
4590%token <character> CHR
4591%type <character> chr
12e35840
JD
4592%token TAGLESS
4593
b2a0b7ca 4594%destructor @{ @} <character>
12e35840
JD
4595%destructor @{ free ($$); @} <*>
4596%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4597%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4598@end smallexample
4599
4600@noindent
b2a0b7ca
JD
4601guarantees that, when the parser discards any user-defined symbol that has a
4602semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4603to @code{free} by default.
ec5479ce
JD
4604However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4605prints its line number to @code{stdout}.
4606It performs only the second @code{%destructor} in this case, so it invokes
4607@code{free} only once.
12e35840
JD
4608Finally, the parser merely prints a message whenever it discards any symbol,
4609such as @code{TAGLESS}, that has no semantic type tag.
4610
4611A Bison-generated parser invokes the default @code{%destructor}s only for
4612user-defined as opposed to Bison-defined symbols.
4613For example, the parser will not invoke either kind of default
4614@code{%destructor} for the special Bison-defined symbols @code{$accept},
4615@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4616none of which you can reference in your grammar.
4617It also will not invoke either for the @code{error} token (@pxref{Table of
4618Symbols, ,error}), which is always defined by Bison regardless of whether you
4619reference it in your grammar.
4620However, it may invoke one of them for the end token (token 0) if you
4621redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4622
4623@smallexample
4624%token END 0
4625@end smallexample
4626
12e35840
JD
4627@cindex actions in mid-rule
4628@cindex mid-rule actions
4629Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4630mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
a7b15ab9
JD
4631That is, Bison does not consider a mid-rule to have a semantic value if you
4632do not reference @code{$$} in the mid-rule's action or @code{$@var{n}}
4633(where @var{n} is the right-hand side symbol position of the mid-rule) in
4634any later action in that rule. However, if you do reference either, the
4635Bison-generated parser will invoke the @code{<>} @code{%destructor} whenever
4636it discards the mid-rule symbol.
12e35840 4637
3508ce36
JD
4638@ignore
4639@noindent
4640In the future, it may be possible to redefine the @code{error} token as a
4641nonterminal that captures the discarded symbols.
4642In that case, the parser will invoke the default destructor for it as well.
4643@end ignore
4644
e757bb10
AD
4645@sp 1
4646
4647@cindex discarded symbols
4648@dfn{Discarded symbols} are the following:
4649
4650@itemize
4651@item
4652stacked symbols popped during the first phase of error recovery,
4653@item
4654incoming terminals during the second phase of error recovery,
4655@item
742e4900 4656the current lookahead and the entire stack (except the current
9d9b8b70 4657right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4658@item
4659the start symbol, when the parser succeeds.
e757bb10
AD
4660@end itemize
4661
9d9b8b70
PE
4662The parser can @dfn{return immediately} because of an explicit call to
4663@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4664exhaustion.
4665
29553547 4666Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4667error via @code{YYERROR} are not discarded automatically. As a rule
4668of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4669the memory.
e757bb10 4670
342b8b6e 4671@node Expect Decl
bfa74976
RS
4672@subsection Suppressing Conflict Warnings
4673@cindex suppressing conflict warnings
4674@cindex preventing warnings about conflicts
4675@cindex warnings, preventing
4676@cindex conflicts, suppressing warnings of
4677@findex %expect
d6328241 4678@findex %expect-rr
bfa74976
RS
4679
4680Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4681(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4682have harmless shift/reduce conflicts which are resolved in a predictable
4683way and would be difficult to eliminate. It is desirable to suppress
4684the warning about these conflicts unless the number of conflicts
4685changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4686
4687The declaration looks like this:
4688
4689@example
4690%expect @var{n}
4691@end example
4692
035aa4a0
PE
4693Here @var{n} is a decimal integer. The declaration says there should
4694be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4695Bison reports an error if the number of shift/reduce conflicts differs
4696from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4697
eb45ef3b 4698For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4699serious, and should be eliminated entirely. Bison will always report
8a4281b9 4700reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4701parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4702there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4703also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4704in GLR parsers, using the declaration:
d6328241
PH
4705
4706@example
4707%expect-rr @var{n}
4708@end example
4709
bfa74976
RS
4710In general, using @code{%expect} involves these steps:
4711
4712@itemize @bullet
4713@item
4714Compile your grammar without @code{%expect}. Use the @samp{-v} option
4715to get a verbose list of where the conflicts occur. Bison will also
4716print the number of conflicts.
4717
4718@item
4719Check each of the conflicts to make sure that Bison's default
4720resolution is what you really want. If not, rewrite the grammar and
4721go back to the beginning.
4722
4723@item
4724Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4725number which Bison printed. With GLR parsers, add an
035aa4a0 4726@code{%expect-rr} declaration as well.
bfa74976
RS
4727@end itemize
4728
93d7dde9
JD
4729Now Bison will report an error if you introduce an unexpected conflict,
4730but will keep silent otherwise.
bfa74976 4731
342b8b6e 4732@node Start Decl
bfa74976
RS
4733@subsection The Start-Symbol
4734@cindex declaring the start symbol
4735@cindex start symbol, declaring
4736@cindex default start symbol
4737@findex %start
4738
4739Bison assumes by default that the start symbol for the grammar is the first
4740nonterminal specified in the grammar specification section. The programmer
4741may override this restriction with the @code{%start} declaration as follows:
4742
4743@example
4744%start @var{symbol}
4745@end example
4746
342b8b6e 4747@node Pure Decl
bfa74976
RS
4748@subsection A Pure (Reentrant) Parser
4749@cindex reentrant parser
4750@cindex pure parser
d9df47b6 4751@findex %define api.pure
bfa74976
RS
4752
4753A @dfn{reentrant} program is one which does not alter in the course of
4754execution; in other words, it consists entirely of @dfn{pure} (read-only)
4755code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4756for example, a nonreentrant program may not be safe to call from a signal
4757handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4758program must be called only within interlocks.
4759
70811b85 4760Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4761suitable for most uses, and it permits compatibility with Yacc. (The
4762standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4763statically allocated variables for communication with @code{yylex},
4764including @code{yylval} and @code{yylloc}.)
bfa74976 4765
70811b85 4766Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4767declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4768reentrant. It looks like this:
bfa74976
RS
4769
4770@example
d9df47b6 4771%define api.pure
bfa74976
RS
4772@end example
4773
70811b85
RS
4774The result is that the communication variables @code{yylval} and
4775@code{yylloc} become local variables in @code{yyparse}, and a different
4776calling convention is used for the lexical analyzer function
4777@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4778Parsers}, for the details of this. The variable @code{yynerrs}
4779becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4780of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4781Reporting Function @code{yyerror}}). The convention for calling
4782@code{yyparse} itself is unchanged.
4783
4784Whether the parser is pure has nothing to do with the grammar rules.
4785You can generate either a pure parser or a nonreentrant parser from any
4786valid grammar.
bfa74976 4787
9987d1b3
JD
4788@node Push Decl
4789@subsection A Push Parser
4790@cindex push parser
4791@cindex push parser
67212941 4792@findex %define api.push-pull
9987d1b3 4793
59da312b
JD
4794(The current push parsing interface is experimental and may evolve.
4795More user feedback will help to stabilize it.)
4796
f4101aa6
AD
4797A pull parser is called once and it takes control until all its input
4798is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4799each time a new token is made available.
4800
f4101aa6 4801A push parser is typically useful when the parser is part of a
9987d1b3 4802main event loop in the client's application. This is typically
f4101aa6
AD
4803a requirement of a GUI, when the main event loop needs to be triggered
4804within a certain time period.
9987d1b3 4805
d782395d
JD
4806Normally, Bison generates a pull parser.
4807The following Bison declaration says that you want the parser to be a push
35c1e5f0 4808parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4809
4810@example
cf499cff 4811%define api.push-pull push
9987d1b3
JD
4812@end example
4813
4814In almost all cases, you want to ensure that your push parser is also
4815a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4816time you should create an impure push parser is to have backwards
9987d1b3
JD
4817compatibility with the impure Yacc pull mode interface. Unless you know
4818what you are doing, your declarations should look like this:
4819
4820@example
d9df47b6 4821%define api.pure
cf499cff 4822%define api.push-pull push
9987d1b3
JD
4823@end example
4824
f4101aa6
AD
4825There is a major notable functional difference between the pure push parser
4826and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4827many parser instances, of the same type of parser, in memory at the same time.
4828An impure push parser should only use one parser at a time.
4829
4830When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4831the generated parser. @code{yypstate} is a structure that the generated
4832parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4833function that will create a new parser instance. @code{yypstate_delete}
4834will free the resources associated with the corresponding parser instance.
f4101aa6 4835Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4836token is available to provide the parser. A trivial example
4837of using a pure push parser would look like this:
4838
4839@example
4840int status;
4841yypstate *ps = yypstate_new ();
4842do @{
4843 status = yypush_parse (ps, yylex (), NULL);
4844@} while (status == YYPUSH_MORE);
4845yypstate_delete (ps);
4846@end example
4847
4848If the user decided to use an impure push parser, a few things about
f4101aa6 4849the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4850a global variable instead of a variable in the @code{yypush_parse} function.
4851For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4852changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4853example would thus look like this:
4854
4855@example
4856extern int yychar;
4857int status;
4858yypstate *ps = yypstate_new ();
4859do @{
4860 yychar = yylex ();
4861 status = yypush_parse (ps);
4862@} while (status == YYPUSH_MORE);
4863yypstate_delete (ps);
4864@end example
4865
f4101aa6 4866That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4867for use by the next invocation of the @code{yypush_parse} function.
4868
f4101aa6 4869Bison also supports both the push parser interface along with the pull parser
9987d1b3 4870interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4871you should replace the @samp{%define api.push-pull push} declaration with the
4872@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4873the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4874and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4875would be used. However, the user should note that it is implemented in the
d782395d
JD
4876generated parser by calling @code{yypull_parse}.
4877This makes the @code{yyparse} function that is generated with the
cf499cff 4878@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4879@code{yyparse} function. If the user
4880calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4881stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4882and then @code{yypull_parse} the rest of the input stream. If you would like
4883to switch back and forth between between parsing styles, you would have to
4884write your own @code{yypull_parse} function that knows when to quit looking
4885for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4886like this:
4887
4888@example
4889yypstate *ps = yypstate_new ();
4890yypull_parse (ps); /* Will call the lexer */
4891yypstate_delete (ps);
4892@end example
4893
67501061 4894Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4895the generated parser with @samp{%define api.push-pull both} as it did for
4896@samp{%define api.push-pull push}.
9987d1b3 4897
342b8b6e 4898@node Decl Summary
bfa74976
RS
4899@subsection Bison Declaration Summary
4900@cindex Bison declaration summary
4901@cindex declaration summary
4902@cindex summary, Bison declaration
4903
d8988b2f 4904Here is a summary of the declarations used to define a grammar:
bfa74976 4905
18b519c0 4906@deffn {Directive} %union
bfa74976
RS
4907Declare the collection of data types that semantic values may have
4908(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4909@end deffn
bfa74976 4910
18b519c0 4911@deffn {Directive} %token
bfa74976
RS
4912Declare a terminal symbol (token type name) with no precedence
4913or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4914@end deffn
bfa74976 4915
18b519c0 4916@deffn {Directive} %right
bfa74976
RS
4917Declare a terminal symbol (token type name) that is right-associative
4918(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4919@end deffn
bfa74976 4920
18b519c0 4921@deffn {Directive} %left
bfa74976
RS
4922Declare a terminal symbol (token type name) that is left-associative
4923(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4924@end deffn
bfa74976 4925
18b519c0 4926@deffn {Directive} %nonassoc
bfa74976 4927Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4928(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4929Using it in a way that would be associative is a syntax error.
4930@end deffn
4931
91d2c560 4932@ifset defaultprec
39a06c25 4933@deffn {Directive} %default-prec
22fccf95 4934Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4935(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4936@end deffn
91d2c560 4937@end ifset
bfa74976 4938
18b519c0 4939@deffn {Directive} %type
bfa74976
RS
4940Declare the type of semantic values for a nonterminal symbol
4941(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4942@end deffn
bfa74976 4943
18b519c0 4944@deffn {Directive} %start
89cab50d
AD
4945Specify the grammar's start symbol (@pxref{Start Decl, ,The
4946Start-Symbol}).
18b519c0 4947@end deffn
bfa74976 4948
18b519c0 4949@deffn {Directive} %expect
bfa74976
RS
4950Declare the expected number of shift-reduce conflicts
4951(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4952@end deffn
4953
bfa74976 4954
d8988b2f
AD
4955@sp 1
4956@noindent
4957In order to change the behavior of @command{bison}, use the following
4958directives:
4959
148d66d8 4960@deffn {Directive} %code @{@var{code}@}
e0c07222 4961@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4962@findex %code
e0c07222
JD
4963Insert @var{code} verbatim into the output parser source at the
4964default location or at the location specified by @var{qualifier}.
4965@xref{%code Summary}.
148d66d8
JD
4966@end deffn
4967
18b519c0 4968@deffn {Directive} %debug
fa819509
AD
4969Instrument the output parser for traces. Obsoleted by @samp{%define
4970parse.trace}.
ec3bc396 4971@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 4972@end deffn
d8988b2f 4973
35c1e5f0
JD
4974@deffn {Directive} %define @var{variable}
4975@deffnx {Directive} %define @var{variable} @var{value}
4976@deffnx {Directive} %define @var{variable} "@var{value}"
4977Define a variable to adjust Bison's behavior. @xref{%define Summary}.
4978@end deffn
4979
4980@deffn {Directive} %defines
4981Write a parser header file containing macro definitions for the token
4982type names defined in the grammar as well as a few other declarations.
4983If the parser implementation file is named @file{@var{name}.c} then
4984the parser header file is named @file{@var{name}.h}.
4985
4986For C parsers, the parser header file declares @code{YYSTYPE} unless
4987@code{YYSTYPE} is already defined as a macro or you have used a
4988@code{<@var{type}>} tag without using @code{%union}. Therefore, if
4989you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
4990Value Type}) with components that require other definitions, or if you
4991have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
4992Type, ,Data Types of Semantic Values}), you need to arrange for these
4993definitions to be propagated to all modules, e.g., by putting them in
4994a prerequisite header that is included both by your parser and by any
4995other module that needs @code{YYSTYPE}.
4996
4997Unless your parser is pure, the parser header file declares
4998@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
4999(Reentrant) Parser}.
5000
5001If you have also used locations, the parser header file declares
303834cc
JD
5002@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of the
5003@code{YYSTYPE} macro and @code{yylval}. @xref{Tracking Locations}.
35c1e5f0
JD
5004
5005This parser header file is normally essential if you wish to put the
5006definition of @code{yylex} in a separate source file, because
5007@code{yylex} typically needs to be able to refer to the
5008above-mentioned declarations and to the token type codes. @xref{Token
5009Values, ,Semantic Values of Tokens}.
5010
5011@findex %code requires
5012@findex %code provides
5013If you have declared @code{%code requires} or @code{%code provides}, the output
5014header also contains their code.
5015@xref{%code Summary}.
5016@end deffn
5017
5018@deffn {Directive} %defines @var{defines-file}
5019Same as above, but save in the file @var{defines-file}.
5020@end deffn
5021
5022@deffn {Directive} %destructor
5023Specify how the parser should reclaim the memory associated to
5024discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5025@end deffn
5026
5027@deffn {Directive} %file-prefix "@var{prefix}"
5028Specify a prefix to use for all Bison output file names. The names
5029are chosen as if the grammar file were named @file{@var{prefix}.y}.
5030@end deffn
5031
5032@deffn {Directive} %language "@var{language}"
5033Specify the programming language for the generated parser. Currently
5034supported languages include C, C++, and Java.
5035@var{language} is case-insensitive.
5036
5037This directive is experimental and its effect may be modified in future
5038releases.
5039@end deffn
5040
5041@deffn {Directive} %locations
5042Generate the code processing the locations (@pxref{Action Features,
5043,Special Features for Use in Actions}). This mode is enabled as soon as
5044the grammar uses the special @samp{@@@var{n}} tokens, but if your
5045grammar does not use it, using @samp{%locations} allows for more
5046accurate syntax error messages.
5047@end deffn
5048
5049@deffn {Directive} %name-prefix "@var{prefix}"
5050Rename the external symbols used in the parser so that they start with
5051@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5052in C parsers
5053is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5054@code{yylval}, @code{yychar}, @code{yydebug}, and
5055(if locations are used) @code{yylloc}. If you use a push parser,
5056@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5057@code{yypstate_new} and @code{yypstate_delete} will
5058also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5059names become @code{c_parse}, @code{c_lex}, and so on.
5060For C++ parsers, see the @samp{%define api.namespace} documentation in this
5061section.
5062@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5063@end deffn
5064
5065@ifset defaultprec
5066@deffn {Directive} %no-default-prec
5067Do not assign a precedence to rules lacking an explicit @code{%prec}
5068modifier (@pxref{Contextual Precedence, ,Context-Dependent
5069Precedence}).
5070@end deffn
5071@end ifset
5072
5073@deffn {Directive} %no-lines
5074Don't generate any @code{#line} preprocessor commands in the parser
5075implementation file. Ordinarily Bison writes these commands in the
5076parser implementation file so that the C compiler and debuggers will
5077associate errors and object code with your source file (the grammar
5078file). This directive causes them to associate errors with the parser
5079implementation file, treating it as an independent source file in its
5080own right.
5081@end deffn
5082
5083@deffn {Directive} %output "@var{file}"
5084Specify @var{file} for the parser implementation file.
5085@end deffn
5086
5087@deffn {Directive} %pure-parser
5088Deprecated version of @samp{%define api.pure} (@pxref{%define
5089Summary,,api.pure}), for which Bison is more careful to warn about
5090unreasonable usage.
5091@end deffn
5092
5093@deffn {Directive} %require "@var{version}"
5094Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5095Require a Version of Bison}.
5096@end deffn
5097
5098@deffn {Directive} %skeleton "@var{file}"
5099Specify the skeleton to use.
5100
5101@c You probably don't need this option unless you are developing Bison.
5102@c You should use @code{%language} if you want to specify the skeleton for a
5103@c different language, because it is clearer and because it will always choose the
5104@c correct skeleton for non-deterministic or push parsers.
5105
5106If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5107file in the Bison installation directory.
5108If it does, @var{file} is an absolute file name or a file name relative to the
5109directory of the grammar file.
5110This is similar to how most shells resolve commands.
5111@end deffn
5112
5113@deffn {Directive} %token-table
5114Generate an array of token names in the parser implementation file.
5115The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5116the name of the token whose internal Bison token code number is
5117@var{i}. The first three elements of @code{yytname} correspond to the
5118predefined tokens @code{"$end"}, @code{"error"}, and
5119@code{"$undefined"}; after these come the symbols defined in the
5120grammar file.
5121
5122The name in the table includes all the characters needed to represent
5123the token in Bison. For single-character literals and literal
5124strings, this includes the surrounding quoting characters and any
5125escape sequences. For example, the Bison single-character literal
5126@code{'+'} corresponds to a three-character name, represented in C as
5127@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5128corresponds to a five-character name, represented in C as
5129@code{"\"\\\\/\""}.
5130
5131When you specify @code{%token-table}, Bison also generates macro
5132definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5133@code{YYNRULES}, and @code{YYNSTATES}:
5134
5135@table @code
5136@item YYNTOKENS
5137The highest token number, plus one.
5138@item YYNNTS
5139The number of nonterminal symbols.
5140@item YYNRULES
5141The number of grammar rules,
5142@item YYNSTATES
5143The number of parser states (@pxref{Parser States}).
5144@end table
5145@end deffn
5146
5147@deffn {Directive} %verbose
5148Write an extra output file containing verbose descriptions of the
5149parser states and what is done for each type of lookahead token in
5150that state. @xref{Understanding, , Understanding Your Parser}, for more
5151information.
5152@end deffn
5153
5154@deffn {Directive} %yacc
5155Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5156including its naming conventions. @xref{Bison Options}, for more.
5157@end deffn
5158
5159
5160@node %define Summary
5161@subsection %define Summary
51151d91
JD
5162
5163There are many features of Bison's behavior that can be controlled by
5164assigning the feature a single value. For historical reasons, some
5165such features are assigned values by dedicated directives, such as
5166@code{%start}, which assigns the start symbol. However, newer such
5167features are associated with variables, which are assigned by the
5168@code{%define} directive:
5169
c1d19e10 5170@deffn {Directive} %define @var{variable}
cf499cff 5171@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5172@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5173Define @var{variable} to @var{value}.
9611cfa2 5174
51151d91
JD
5175@var{value} must be placed in quotation marks if it contains any
5176character other than a letter, underscore, period, or non-initial dash
5177or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5178to specifying @code{""}.
9611cfa2 5179
51151d91
JD
5180It is an error if a @var{variable} is defined by @code{%define}
5181multiple times, but see @ref{Bison Options,,-D
5182@var{name}[=@var{value}]}.
5183@end deffn
cf499cff 5184
51151d91
JD
5185The rest of this section summarizes variables and values that
5186@code{%define} accepts.
9611cfa2 5187
51151d91
JD
5188Some @var{variable}s take Boolean values. In this case, Bison will
5189complain if the variable definition does not meet one of the following
5190four conditions:
9611cfa2
JD
5191
5192@enumerate
cf499cff 5193@item @code{@var{value}} is @code{true}
9611cfa2 5194
cf499cff
JD
5195@item @code{@var{value}} is omitted (or @code{""} is specified).
5196This is equivalent to @code{true}.
9611cfa2 5197
cf499cff 5198@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5199
5200@item @var{variable} is never defined.
c6abeab1 5201In this case, Bison selects a default value.
9611cfa2 5202@end enumerate
148d66d8 5203
c6abeab1
JD
5204What @var{variable}s are accepted, as well as their meanings and default
5205values, depend on the selected target language and/or the parser
5206skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5207Summary,,%skeleton}).
5208Unaccepted @var{variable}s produce an error.
793fbca5
JD
5209Some of the accepted @var{variable}s are:
5210
fa819509 5211@table @code
6b5a0de9 5212@c ================================================== api.namespace
67501061
AD
5213@item api.namespace
5214@findex %define api.namespace
5215@itemize
5216@item Languages(s): C++
5217
f1b238df 5218@item Purpose: Specify the namespace for the parser class.
67501061
AD
5219For example, if you specify:
5220
5221@smallexample
5222%define api.namespace "foo::bar"
5223@end smallexample
5224
5225Bison uses @code{foo::bar} verbatim in references such as:
5226
5227@smallexample
5228foo::bar::parser::semantic_type
5229@end smallexample
5230
5231However, to open a namespace, Bison removes any leading @code{::} and then
5232splits on any remaining occurrences:
5233
5234@smallexample
5235namespace foo @{ namespace bar @{
5236 class position;
5237 class location;
5238@} @}
5239@end smallexample
5240
5241@item Accepted Values:
5242Any absolute or relative C++ namespace reference without a trailing
5243@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5244
5245@item Default Value:
5246The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5247This usage of @code{%name-prefix} is for backward compatibility and can
5248be confusing since @code{%name-prefix} also specifies the textual prefix
5249for the lexical analyzer function. Thus, if you specify
5250@code{%name-prefix}, it is best to also specify @samp{%define
5251api.namespace} so that @code{%name-prefix} @emph{only} affects the
5252lexical analyzer function. For example, if you specify:
5253
5254@smallexample
5255%define api.namespace "foo"
5256%name-prefix "bar::"
5257@end smallexample
5258
5259The parser namespace is @code{foo} and @code{yylex} is referenced as
5260@code{bar::lex}.
5261@end itemize
5262@c namespace
5263
5264
5265
5266@c ================================================== api.pure
d9df47b6
JD
5267@item api.pure
5268@findex %define api.pure
5269
5270@itemize @bullet
5271@item Language(s): C
5272
5273@item Purpose: Request a pure (reentrant) parser program.
5274@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5275
5276@item Accepted Values: Boolean
5277
cf499cff 5278@item Default Value: @code{false}
d9df47b6 5279@end itemize
71b00ed8 5280@c api.pure
d9df47b6 5281
67501061
AD
5282
5283
5284@c ================================================== api.push-pull
67212941
JD
5285@item api.push-pull
5286@findex %define api.push-pull
793fbca5
JD
5287
5288@itemize @bullet
eb45ef3b 5289@item Language(s): C (deterministic parsers only)
793fbca5 5290
f1b238df 5291@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5292@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5293(The current push parsing interface is experimental and may evolve.
5294More user feedback will help to stabilize it.)
793fbca5 5295
cf499cff 5296@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5297
cf499cff 5298@item Default Value: @code{pull}
793fbca5 5299@end itemize
67212941 5300@c api.push-pull
71b00ed8 5301
6b5a0de9
AD
5302
5303
5304@c ================================================== api.tokens.prefix
4c6622c2
AD
5305@item api.tokens.prefix
5306@findex %define api.tokens.prefix
5307
5308@itemize
5309@item Languages(s): all
5310
5311@item Purpose:
5312Add a prefix to the token names when generating their definition in the
5313target language. For instance
5314
5315@example
5316%token FILE for ERROR
5317%define api.tokens.prefix "TOK_"
5318%%
5319start: FILE for ERROR;
5320@end example
5321
5322@noindent
5323generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5324and @code{TOK_ERROR} in the generated source files. In particular, the
5325scanner must use these prefixed token names, while the grammar itself
5326may still use the short names (as in the sample rule given above). The
5327generated informational files (@file{*.output}, @file{*.xml},
5328@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5329and @ref{Calc++ Scanner}, for a complete example.
5330
5331@item Accepted Values:
5332Any string. Should be a valid identifier prefix in the target language,
5333in other words, it should typically be an identifier itself (sequence of
5334letters, underscores, and ---not at the beginning--- digits).
5335
5336@item Default Value:
5337empty
5338@end itemize
5339@c api.tokens.prefix
5340
5341
3cdc21cf 5342@c ================================================== lex_symbol
84072495 5343@item lex_symbol
3cdc21cf
AD
5344@findex %define lex_symbol
5345
5346@itemize @bullet
5347@item Language(s):
5348C++
5349
5350@item Purpose:
5351When variant-based semantic values are enabled (@pxref{C++ Variants}),
5352request that symbols be handled as a whole (type, value, and possibly
5353location) in the scanner. @xref{Complete Symbols}, for details.
5354
5355@item Accepted Values:
5356Boolean.
5357
5358@item Default Value:
5359@code{false}
5360@end itemize
5361@c lex_symbol
5362
5363
6b5a0de9
AD
5364@c ================================================== lr.default-reductions
5365
5bab9d08 5366@item lr.default-reductions
5bab9d08 5367@findex %define lr.default-reductions
eb45ef3b
JD
5368
5369@itemize @bullet
5370@item Language(s): all
5371
fcf834f9 5372@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5373contain default reductions. @xref{Default Reductions}. (The ability to
5374specify where default reductions should be used is experimental. More user
5375feedback will help to stabilize it.)
eb45ef3b 5376
f0ad1b2f 5377@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5378@item Default Value:
5379@itemize
cf499cff 5380@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5381@item @code{most} otherwise.
eb45ef3b
JD
5382@end itemize
5383@end itemize
5384
6b5a0de9
AD
5385@c ============================================ lr.keep-unreachable-states
5386
67212941
JD
5387@item lr.keep-unreachable-states
5388@findex %define lr.keep-unreachable-states
31984206
JD
5389
5390@itemize @bullet
5391@item Language(s): all
f1b238df 5392@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5393remain in the parser tables. @xref{Unreachable States}.
31984206 5394@item Accepted Values: Boolean
cf499cff 5395@item Default Value: @code{false}
31984206 5396@end itemize
67212941 5397@c lr.keep-unreachable-states
31984206 5398
6b5a0de9
AD
5399@c ================================================== lr.type
5400
eb45ef3b
JD
5401@item lr.type
5402@findex %define lr.type
eb45ef3b
JD
5403
5404@itemize @bullet
5405@item Language(s): all
5406
f1b238df 5407@item Purpose: Specify the type of parser tables within the
7fceb615 5408LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5409More user feedback will help to stabilize it.)
5410
7fceb615 5411@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5412
cf499cff 5413@item Default Value: @code{lalr}
eb45ef3b
JD
5414@end itemize
5415
67501061
AD
5416
5417@c ================================================== namespace
793fbca5
JD
5418@item namespace
5419@findex %define namespace
67501061 5420Obsoleted by @code{api.namespace}
fa819509
AD
5421@c namespace
5422
31b850d2
AD
5423
5424@c ================================================== parse.assert
0c90a1f5
AD
5425@item parse.assert
5426@findex %define parse.assert
5427
5428@itemize
5429@item Languages(s): C++
5430
5431@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5432In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5433constructed and
0c90a1f5
AD
5434destroyed properly. This option checks these constraints.
5435
5436@item Accepted Values: Boolean
5437
5438@item Default Value: @code{false}
5439@end itemize
5440@c parse.assert
5441
31b850d2
AD
5442
5443@c ================================================== parse.error
5444@item parse.error
5445@findex %define parse.error
5446@itemize
5447@item Languages(s):
fcf834f9 5448all
31b850d2
AD
5449@item Purpose:
5450Control the kind of error messages passed to the error reporting
5451function. @xref{Error Reporting, ,The Error Reporting Function
5452@code{yyerror}}.
5453@item Accepted Values:
5454@itemize
cf499cff 5455@item @code{simple}
31b850d2
AD
5456Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5457error"}}.
cf499cff 5458@item @code{verbose}
7fceb615
JD
5459Error messages report the unexpected token, and possibly the expected ones.
5460However, this report can often be incorrect when LAC is not enabled
5461(@pxref{LAC}).
31b850d2
AD
5462@end itemize
5463
5464@item Default Value:
5465@code{simple}
5466@end itemize
5467@c parse.error
5468
5469
fcf834f9
JD
5470@c ================================================== parse.lac
5471@item parse.lac
5472@findex %define parse.lac
fcf834f9
JD
5473
5474@itemize
7fceb615 5475@item Languages(s): C (deterministic parsers only)
fcf834f9 5476
8a4281b9 5477@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5478syntax error handling. @xref{LAC}.
fcf834f9 5479@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5480@item Default Value: @code{none}
5481@end itemize
5482@c parse.lac
5483
31b850d2 5484@c ================================================== parse.trace
fa819509
AD
5485@item parse.trace
5486@findex %define parse.trace
5487
5488@itemize
5489@item Languages(s): C, C++
5490
5491@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5492In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5493file if it is not already defined, so that the debugging facilities are
5494compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5495
fa819509
AD
5496@item Accepted Values: Boolean
5497
5498@item Default Value: @code{false}
5499@end itemize
fa819509 5500@c parse.trace
99c08fb6 5501
3cdc21cf
AD
5502@c ================================================== variant
5503@item variant
5504@findex %define variant
5505
5506@itemize @bullet
5507@item Language(s):
5508C++
5509
5510@item Purpose:
f1b238df 5511Request variant-based semantic values.
3cdc21cf
AD
5512@xref{C++ Variants}.
5513
5514@item Accepted Values:
5515Boolean.
5516
5517@item Default Value:
5518@code{false}
5519@end itemize
5520@c variant
99c08fb6 5521@end table
592d0b1e 5522
d8988b2f 5523
e0c07222
JD
5524@node %code Summary
5525@subsection %code Summary
e0c07222 5526@findex %code
e0c07222 5527@cindex Prologue
51151d91
JD
5528
5529The @code{%code} directive inserts code verbatim into the output
5530parser source at any of a predefined set of locations. It thus serves
5531as a flexible and user-friendly alternative to the traditional Yacc
5532prologue, @code{%@{@var{code}%@}}. This section summarizes the
5533functionality of @code{%code} for the various target languages
5534supported by Bison. For a detailed discussion of how to use
5535@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5536is advantageous to do so, @pxref{Prologue Alternatives}.
5537
5538@deffn {Directive} %code @{@var{code}@}
5539This is the unqualified form of the @code{%code} directive. It
5540inserts @var{code} verbatim at a language-dependent default location
5541in the parser implementation.
5542
e0c07222 5543For C/C++, the default location is the parser implementation file
51151d91
JD
5544after the usual contents of the parser header file. Thus, the
5545unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5546
5547For Java, the default location is inside the parser class.
5548@end deffn
5549
5550@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5551This is the qualified form of the @code{%code} directive.
51151d91
JD
5552@var{qualifier} identifies the purpose of @var{code} and thus the
5553location(s) where Bison should insert it. That is, if you need to
5554specify location-sensitive @var{code} that does not belong at the
5555default location selected by the unqualified @code{%code} form, use
5556this form instead.
5557@end deffn
5558
5559For any particular qualifier or for the unqualified form, if there are
5560multiple occurrences of the @code{%code} directive, Bison concatenates
5561the specified code in the order in which it appears in the grammar
5562file.
e0c07222 5563
51151d91
JD
5564Not all qualifiers are accepted for all target languages. Unaccepted
5565qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5566
84072495 5567@table @code
e0c07222
JD
5568@item requires
5569@findex %code requires
5570
5571@itemize @bullet
5572@item Language(s): C, C++
5573
5574@item Purpose: This is the best place to write dependency code required for
5575@code{YYSTYPE} and @code{YYLTYPE}.
5576In other words, it's the best place to define types referenced in @code{%union}
5577directives, and it's the best place to override Bison's default @code{YYSTYPE}
5578and @code{YYLTYPE} definitions.
5579
5580@item Location(s): The parser header file and the parser implementation file
5581before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5582definitions.
5583@end itemize
5584
5585@item provides
5586@findex %code provides
5587
5588@itemize @bullet
5589@item Language(s): C, C++
5590
5591@item Purpose: This is the best place to write additional definitions and
5592declarations that should be provided to other modules.
5593
5594@item Location(s): The parser header file and the parser implementation
5595file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5596token definitions.
5597@end itemize
5598
5599@item top
5600@findex %code top
5601
5602@itemize @bullet
5603@item Language(s): C, C++
5604
5605@item Purpose: The unqualified @code{%code} or @code{%code requires}
5606should usually be more appropriate than @code{%code top}. However,
5607occasionally it is necessary to insert code much nearer the top of the
5608parser implementation file. For example:
5609
5610@smallexample
5611%code top @{
5612 #define _GNU_SOURCE
5613 #include <stdio.h>
5614@}
5615@end smallexample
5616
5617@item Location(s): Near the top of the parser implementation file.
5618@end itemize
5619
5620@item imports
5621@findex %code imports
5622
5623@itemize @bullet
5624@item Language(s): Java
5625
5626@item Purpose: This is the best place to write Java import directives.
5627
5628@item Location(s): The parser Java file after any Java package directive and
5629before any class definitions.
5630@end itemize
84072495 5631@end table
e0c07222 5632
51151d91
JD
5633Though we say the insertion locations are language-dependent, they are
5634technically skeleton-dependent. Writers of non-standard skeletons
5635however should choose their locations consistently with the behavior
5636of the standard Bison skeletons.
e0c07222 5637
d8988b2f 5638
342b8b6e 5639@node Multiple Parsers
bfa74976
RS
5640@section Multiple Parsers in the Same Program
5641
5642Most programs that use Bison parse only one language and therefore contain
5643only one Bison parser. But what if you want to parse more than one
5644language with the same program? Then you need to avoid a name conflict
5645between different definitions of @code{yyparse}, @code{yylval}, and so on.
5646
5647The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5648(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5649functions and variables of the Bison parser to start with @var{prefix}
5650instead of @samp{yy}. You can use this to give each parser distinct
5651names that do not conflict.
bfa74976
RS
5652
5653The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5654@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5655@code{yychar} and @code{yydebug}. If you use a push parser,
5656@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5657@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5658For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5659@code{clex}, and so on.
bfa74976
RS
5660
5661@strong{All the other variables and macros associated with Bison are not
5662renamed.} These others are not global; there is no conflict if the same
5663name is used in different parsers. For example, @code{YYSTYPE} is not
5664renamed, but defining this in different ways in different parsers causes
5665no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5666
ff7571c0
JD
5667The @samp{-p} option works by adding macro definitions to the
5668beginning of the parser implementation file, defining @code{yyparse}
5669as @code{@var{prefix}parse}, and so on. This effectively substitutes
5670one name for the other in the entire parser implementation file.
bfa74976 5671
342b8b6e 5672@node Interface
bfa74976
RS
5673@chapter Parser C-Language Interface
5674@cindex C-language interface
5675@cindex interface
5676
5677The Bison parser is actually a C function named @code{yyparse}. Here we
5678describe the interface conventions of @code{yyparse} and the other
5679functions that it needs to use.
5680
5681Keep in mind that the parser uses many C identifiers starting with
5682@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5683identifier (aside from those in this manual) in an action or in epilogue
5684in the grammar file, you are likely to run into trouble.
bfa74976
RS
5685
5686@menu
f5f419de
DJ
5687* Parser Function:: How to call @code{yyparse} and what it returns.
5688* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5689* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5690* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5691* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5692* Lexical:: You must supply a function @code{yylex}
5693 which reads tokens.
5694* Error Reporting:: You must supply a function @code{yyerror}.
5695* Action Features:: Special features for use in actions.
5696* Internationalization:: How to let the parser speak in the user's
5697 native language.
bfa74976
RS
5698@end menu
5699
342b8b6e 5700@node Parser Function
bfa74976
RS
5701@section The Parser Function @code{yyparse}
5702@findex yyparse
5703
5704You call the function @code{yyparse} to cause parsing to occur. This
5705function reads tokens, executes actions, and ultimately returns when it
5706encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5707write an action which directs @code{yyparse} to return immediately
5708without reading further.
bfa74976 5709
2a8d363a
AD
5710
5711@deftypefun int yyparse (void)
bfa74976
RS
5712The value returned by @code{yyparse} is 0 if parsing was successful (return
5713is due to end-of-input).
5714
b47dbebe
PE
5715The value is 1 if parsing failed because of invalid input, i.e., input
5716that contains a syntax error or that causes @code{YYABORT} to be
5717invoked.
5718
5719The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5720@end deftypefun
bfa74976
RS
5721
5722In an action, you can cause immediate return from @code{yyparse} by using
5723these macros:
5724
2a8d363a 5725@defmac YYACCEPT
bfa74976
RS
5726@findex YYACCEPT
5727Return immediately with value 0 (to report success).
2a8d363a 5728@end defmac
bfa74976 5729
2a8d363a 5730@defmac YYABORT
bfa74976
RS
5731@findex YYABORT
5732Return immediately with value 1 (to report failure).
2a8d363a
AD
5733@end defmac
5734
5735If you use a reentrant parser, you can optionally pass additional
5736parameter information to it in a reentrant way. To do so, use the
5737declaration @code{%parse-param}:
5738
2055a44e 5739@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5740@findex %parse-param
2055a44e
AD
5741Declare that one or more
5742@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5743The @var{argument-declaration} is used when declaring
feeb0eda
PE
5744functions or prototypes. The last identifier in
5745@var{argument-declaration} must be the argument name.
2a8d363a
AD
5746@end deffn
5747
5748Here's an example. Write this in the parser:
5749
5750@example
2055a44e 5751%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5752@end example
5753
5754@noindent
5755Then call the parser like this:
5756
5757@example
5758@{
5759 int nastiness, randomness;
5760 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5761 value = yyparse (&nastiness, &randomness);
5762 @dots{}
5763@}
5764@end example
5765
5766@noindent
5767In the grammar actions, use expressions like this to refer to the data:
5768
5769@example
5770exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5771@end example
5772
9987d1b3
JD
5773@node Push Parser Function
5774@section The Push Parser Function @code{yypush_parse}
5775@findex yypush_parse
5776
59da312b
JD
5777(The current push parsing interface is experimental and may evolve.
5778More user feedback will help to stabilize it.)
5779
f4101aa6 5780You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5781function is available if either the @samp{%define api.push-pull push} or
5782@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5783@xref{Push Decl, ,A Push Parser}.
5784
5785@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5786The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5787following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5788is required to finish parsing the grammar.
5789@end deftypefun
5790
5791@node Pull Parser Function
5792@section The Pull Parser Function @code{yypull_parse}
5793@findex yypull_parse
5794
59da312b
JD
5795(The current push parsing interface is experimental and may evolve.
5796More user feedback will help to stabilize it.)
5797
f4101aa6 5798You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5799stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5800declaration is used.
9987d1b3
JD
5801@xref{Push Decl, ,A Push Parser}.
5802
5803@deftypefun int yypull_parse (yypstate *yyps)
5804The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5805@end deftypefun
5806
5807@node Parser Create Function
5808@section The Parser Create Function @code{yystate_new}
5809@findex yypstate_new
5810
59da312b
JD
5811(The current push parsing interface is experimental and may evolve.
5812More user feedback will help to stabilize it.)
5813
f4101aa6 5814You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5815This function is available if either the @samp{%define api.push-pull push} or
5816@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5817@xref{Push Decl, ,A Push Parser}.
5818
5819@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5820The function will return a valid parser instance if there was memory available
333e670c
JD
5821or 0 if no memory was available.
5822In impure mode, it will also return 0 if a parser instance is currently
5823allocated.
9987d1b3
JD
5824@end deftypefun
5825
5826@node Parser Delete Function
5827@section The Parser Delete Function @code{yystate_delete}
5828@findex yypstate_delete
5829
59da312b
JD
5830(The current push parsing interface is experimental and may evolve.
5831More user feedback will help to stabilize it.)
5832
9987d1b3 5833You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5834function is available if either the @samp{%define api.push-pull push} or
5835@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5836@xref{Push Decl, ,A Push Parser}.
5837
5838@deftypefun void yypstate_delete (yypstate *yyps)
5839This function will reclaim the memory associated with a parser instance.
5840After this call, you should no longer attempt to use the parser instance.
5841@end deftypefun
bfa74976 5842
342b8b6e 5843@node Lexical
bfa74976
RS
5844@section The Lexical Analyzer Function @code{yylex}
5845@findex yylex
5846@cindex lexical analyzer
5847
5848The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5849the input stream and returns them to the parser. Bison does not create
5850this function automatically; you must write it so that @code{yyparse} can
5851call it. The function is sometimes referred to as a lexical scanner.
5852
ff7571c0
JD
5853In simple programs, @code{yylex} is often defined at the end of the
5854Bison grammar file. If @code{yylex} is defined in a separate source
5855file, you need to arrange for the token-type macro definitions to be
5856available there. To do this, use the @samp{-d} option when you run
5857Bison, so that it will write these macro definitions into the separate
5858parser header file, @file{@var{name}.tab.h}, which you can include in
5859the other source files that need it. @xref{Invocation, ,Invoking
5860Bison}.
bfa74976
RS
5861
5862@menu
5863* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5864* Token Values:: How @code{yylex} must return the semantic value
5865 of the token it has read.
5866* Token Locations:: How @code{yylex} must return the text location
5867 (line number, etc.) of the token, if the
5868 actions want that.
5869* Pure Calling:: How the calling convention differs in a pure parser
5870 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5871@end menu
5872
342b8b6e 5873@node Calling Convention
bfa74976
RS
5874@subsection Calling Convention for @code{yylex}
5875
72d2299c
PE
5876The value that @code{yylex} returns must be the positive numeric code
5877for the type of token it has just found; a zero or negative value
5878signifies end-of-input.
bfa74976
RS
5879
5880When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
5881in the parser implementation file becomes a C macro whose definition
5882is the proper numeric code for that token type. So @code{yylex} can
5883use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5884
5885When a token is referred to in the grammar rules by a character literal,
5886the numeric code for that character is also the code for the token type.
72d2299c
PE
5887So @code{yylex} can simply return that character code, possibly converted
5888to @code{unsigned char} to avoid sign-extension. The null character
5889must not be used this way, because its code is zero and that
bfa74976
RS
5890signifies end-of-input.
5891
5892Here is an example showing these things:
5893
5894@example
13863333
AD
5895int
5896yylex (void)
bfa74976
RS
5897@{
5898 @dots{}
72d2299c 5899 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5900 return 0;
5901 @dots{}
5902 if (c == '+' || c == '-')
72d2299c 5903 return c; /* Assume token type for `+' is '+'. */
bfa74976 5904 @dots{}
72d2299c 5905 return INT; /* Return the type of the token. */
bfa74976
RS
5906 @dots{}
5907@}
5908@end example
5909
5910@noindent
5911This interface has been designed so that the output from the @code{lex}
5912utility can be used without change as the definition of @code{yylex}.
5913
931c7513
RS
5914If the grammar uses literal string tokens, there are two ways that
5915@code{yylex} can determine the token type codes for them:
5916
5917@itemize @bullet
5918@item
5919If the grammar defines symbolic token names as aliases for the
5920literal string tokens, @code{yylex} can use these symbolic names like
5921all others. In this case, the use of the literal string tokens in
5922the grammar file has no effect on @code{yylex}.
5923
5924@item
9ecbd125 5925@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5926table. The index of the token in the table is the token type's code.
9ecbd125 5927The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5928double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5929token's characters are escaped as necessary to be suitable as input
5930to Bison.
931c7513 5931
9e0876fb
PE
5932Here's code for looking up a multicharacter token in @code{yytname},
5933assuming that the characters of the token are stored in
5934@code{token_buffer}, and assuming that the token does not contain any
5935characters like @samp{"} that require escaping.
931c7513
RS
5936
5937@smallexample
5938for (i = 0; i < YYNTOKENS; i++)
5939 @{
5940 if (yytname[i] != 0
5941 && yytname[i][0] == '"'
68449b3a
PE
5942 && ! strncmp (yytname[i] + 1, token_buffer,
5943 strlen (token_buffer))
931c7513
RS
5944 && yytname[i][strlen (token_buffer) + 1] == '"'
5945 && yytname[i][strlen (token_buffer) + 2] == 0)
5946 break;
5947 @}
5948@end smallexample
5949
5950The @code{yytname} table is generated only if you use the
8c9a50be 5951@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5952@end itemize
5953
342b8b6e 5954@node Token Values
bfa74976
RS
5955@subsection Semantic Values of Tokens
5956
5957@vindex yylval
9d9b8b70 5958In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5959be stored into the global variable @code{yylval}. When you are using
5960just one data type for semantic values, @code{yylval} has that type.
5961Thus, if the type is @code{int} (the default), you might write this in
5962@code{yylex}:
5963
5964@example
5965@group
5966 @dots{}
72d2299c
PE
5967 yylval = value; /* Put value onto Bison stack. */
5968 return INT; /* Return the type of the token. */
bfa74976
RS
5969 @dots{}
5970@end group
5971@end example
5972
5973When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5974made from the @code{%union} declaration (@pxref{Union Decl, ,The
5975Collection of Value Types}). So when you store a token's value, you
5976must use the proper member of the union. If the @code{%union}
5977declaration looks like this:
bfa74976
RS
5978
5979@example
5980@group
5981%union @{
5982 int intval;
5983 double val;
5984 symrec *tptr;
5985@}
5986@end group
5987@end example
5988
5989@noindent
5990then the code in @code{yylex} might look like this:
5991
5992@example
5993@group
5994 @dots{}
72d2299c
PE
5995 yylval.intval = value; /* Put value onto Bison stack. */
5996 return INT; /* Return the type of the token. */
bfa74976
RS
5997 @dots{}
5998@end group
5999@end example
6000
95923bd6
AD
6001@node Token Locations
6002@subsection Textual Locations of Tokens
bfa74976
RS
6003
6004@vindex yylloc
303834cc
JD
6005If you are using the @samp{@@@var{n}}-feature (@pxref{Tracking Locations})
6006in actions to keep track of the textual locations of tokens and groupings,
6007then you must provide this information in @code{yylex}. The function
6008@code{yyparse} expects to find the textual location of a token just parsed
6009in the global variable @code{yylloc}. So @code{yylex} must store the proper
6010data in that variable.
847bf1f5
AD
6011
6012By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6013initialize the members that are going to be used by the actions. The
6014four members are called @code{first_line}, @code{first_column},
6015@code{last_line} and @code{last_column}. Note that the use of this
6016feature makes the parser noticeably slower.
bfa74976
RS
6017
6018@tindex YYLTYPE
6019The data type of @code{yylloc} has the name @code{YYLTYPE}.
6020
342b8b6e 6021@node Pure Calling
c656404a 6022@subsection Calling Conventions for Pure Parsers
bfa74976 6023
67501061 6024When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6025pure, reentrant parser, the global communication variables @code{yylval}
6026and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6027Parser}.) In such parsers the two global variables are replaced by
6028pointers passed as arguments to @code{yylex}. You must declare them as
6029shown here, and pass the information back by storing it through those
6030pointers.
bfa74976
RS
6031
6032@example
13863333
AD
6033int
6034yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6035@{
6036 @dots{}
6037 *lvalp = value; /* Put value onto Bison stack. */
6038 return INT; /* Return the type of the token. */
6039 @dots{}
6040@}
6041@end example
6042
6043If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6044textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6045this case, omit the second argument; @code{yylex} will be called with
6046only one argument.
6047
2055a44e 6048If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6049@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6050Function}). To pass additional arguments to both @code{yylex} and
6051@code{yyparse}, use @code{%param}.
e425e872 6052
2055a44e 6053@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6054@findex %lex-param
2055a44e
AD
6055Specify that @var{argument-declaration} are additional @code{yylex} argument
6056declarations. You may pass one or more such declarations, which is
6057equivalent to repeating @code{%lex-param}.
6058@end deffn
6059
6060@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6061@findex %param
6062Specify that @var{argument-declaration} are additional
6063@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6064@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6065@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6066declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6067@end deffn
e425e872 6068
2a8d363a 6069For instance:
e425e872
RS
6070
6071@example
2055a44e
AD
6072%lex-param @{scanner_mode *mode@}
6073%parse-param @{parser_mode *mode@}
6074%param @{environment_type *env@}
e425e872
RS
6075@end example
6076
6077@noindent
2a8d363a 6078results in the following signature:
e425e872
RS
6079
6080@example
2055a44e
AD
6081int yylex (scanner_mode *mode, environment_type *env);
6082int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6083@end example
6084
67501061 6085If @samp{%define api.pure} is added:
c656404a
RS
6086
6087@example
2055a44e
AD
6088int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6089int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6090@end example
6091
2a8d363a 6092@noindent
67501061 6093and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6094
2a8d363a 6095@example
2055a44e
AD
6096int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6097 scanner_mode *mode, environment_type *env);
6098int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6099@end example
931c7513 6100
342b8b6e 6101@node Error Reporting
bfa74976
RS
6102@section The Error Reporting Function @code{yyerror}
6103@cindex error reporting function
6104@findex yyerror
6105@cindex parse error
6106@cindex syntax error
6107
31b850d2 6108The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6109whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6110action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6111macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6112in Actions}).
bfa74976
RS
6113
6114The Bison parser expects to report the error by calling an error
6115reporting function named @code{yyerror}, which you must supply. It is
6116called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6117receives one argument. For a syntax error, the string is normally
6118@w{@code{"syntax error"}}.
bfa74976 6119
31b850d2 6120@findex %define parse.error
7fceb615
JD
6121If you invoke @samp{%define parse.error verbose} in the Bison declarations
6122section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6123Bison provides a more verbose and specific error message string instead of
6124just plain @w{@code{"syntax error"}}. However, that message sometimes
6125contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6126
1a059451
PE
6127The parser can detect one other kind of error: memory exhaustion. This
6128can happen when the input contains constructions that are very deeply
bfa74976 6129nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6130parser normally extends its stack automatically up to a very large limit. But
6131if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6132fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6133
6134In some cases diagnostics like @w{@code{"syntax error"}} are
6135translated automatically from English to some other language before
6136they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6137
6138The following definition suffices in simple programs:
6139
6140@example
6141@group
13863333 6142void
38a92d50 6143yyerror (char const *s)
bfa74976
RS
6144@{
6145@end group
6146@group
6147 fprintf (stderr, "%s\n", s);
6148@}
6149@end group
6150@end example
6151
6152After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6153error recovery if you have written suitable error recovery grammar rules
6154(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6155immediately return 1.
6156
93724f13 6157Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6158an access to the current location.
8a4281b9 6159This is indeed the case for the GLR
2a8d363a 6160parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6161@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6162@code{yyerror} are:
6163
6164@example
38a92d50
PE
6165void yyerror (char const *msg); /* Yacc parsers. */
6166void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6167@end example
6168
feeb0eda 6169If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6170
6171@example
b317297e
PE
6172void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6173void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6174@end example
6175
8a4281b9 6176Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6177convention for absolutely pure parsers, i.e., when the calling
6178convention of @code{yylex} @emph{and} the calling convention of
67501061 6179@samp{%define api.pure} are pure.
d9df47b6 6180I.e.:
2a8d363a
AD
6181
6182@example
6183/* Location tracking. */
6184%locations
6185/* Pure yylex. */
d9df47b6 6186%define api.pure
feeb0eda 6187%lex-param @{int *nastiness@}
2a8d363a 6188/* Pure yyparse. */
feeb0eda
PE
6189%parse-param @{int *nastiness@}
6190%parse-param @{int *randomness@}
2a8d363a
AD
6191@end example
6192
6193@noindent
6194results in the following signatures for all the parser kinds:
6195
6196@example
6197int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6198int yyparse (int *nastiness, int *randomness);
93724f13
AD
6199void yyerror (YYLTYPE *locp,
6200 int *nastiness, int *randomness,
38a92d50 6201 char const *msg);
2a8d363a
AD
6202@end example
6203
1c0c3e95 6204@noindent
38a92d50
PE
6205The prototypes are only indications of how the code produced by Bison
6206uses @code{yyerror}. Bison-generated code always ignores the returned
6207value, so @code{yyerror} can return any type, including @code{void}.
6208Also, @code{yyerror} can be a variadic function; that is why the
6209message is always passed last.
6210
6211Traditionally @code{yyerror} returns an @code{int} that is always
6212ignored, but this is purely for historical reasons, and @code{void} is
6213preferable since it more accurately describes the return type for
6214@code{yyerror}.
93724f13 6215
bfa74976
RS
6216@vindex yynerrs
6217The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6218reported so far. Normally this variable is global; but if you
704a47c4
AD
6219request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6220then it is a local variable which only the actions can access.
bfa74976 6221
342b8b6e 6222@node Action Features
bfa74976
RS
6223@section Special Features for Use in Actions
6224@cindex summary, action features
6225@cindex action features summary
6226
6227Here is a table of Bison constructs, variables and macros that
6228are useful in actions.
6229
18b519c0 6230@deffn {Variable} $$
bfa74976
RS
6231Acts like a variable that contains the semantic value for the
6232grouping made by the current rule. @xref{Actions}.
18b519c0 6233@end deffn
bfa74976 6234
18b519c0 6235@deffn {Variable} $@var{n}
bfa74976
RS
6236Acts like a variable that contains the semantic value for the
6237@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6238@end deffn
bfa74976 6239
18b519c0 6240@deffn {Variable} $<@var{typealt}>$
bfa74976 6241Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6242specified by the @code{%union} declaration. @xref{Action Types, ,Data
6243Types of Values in Actions}.
18b519c0 6244@end deffn
bfa74976 6245
18b519c0 6246@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6247Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6248union specified by the @code{%union} declaration.
e0c471a9 6249@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6250@end deffn
bfa74976 6251
18b519c0 6252@deffn {Macro} YYABORT;
bfa74976
RS
6253Return immediately from @code{yyparse}, indicating failure.
6254@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6255@end deffn
bfa74976 6256
18b519c0 6257@deffn {Macro} YYACCEPT;
bfa74976
RS
6258Return immediately from @code{yyparse}, indicating success.
6259@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6260@end deffn
bfa74976 6261
18b519c0 6262@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6263@findex YYBACKUP
6264Unshift a token. This macro is allowed only for rules that reduce
742e4900 6265a single value, and only when there is no lookahead token.
8a4281b9 6266It is also disallowed in GLR parsers.
742e4900 6267It installs a lookahead token with token type @var{token} and
bfa74976
RS
6268semantic value @var{value}; then it discards the value that was
6269going to be reduced by this rule.
6270
6271If the macro is used when it is not valid, such as when there is
742e4900 6272a lookahead token already, then it reports a syntax error with
bfa74976
RS
6273a message @samp{cannot back up} and performs ordinary error
6274recovery.
6275
6276In either case, the rest of the action is not executed.
18b519c0 6277@end deffn
bfa74976 6278
18b519c0 6279@deffn {Macro} YYEMPTY
bfa74976 6280@vindex YYEMPTY
742e4900 6281Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6282@end deffn
bfa74976 6283
32c29292
JD
6284@deffn {Macro} YYEOF
6285@vindex YYEOF
742e4900 6286Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6287stream.
6288@end deffn
6289
18b519c0 6290@deffn {Macro} YYERROR;
bfa74976
RS
6291@findex YYERROR
6292Cause an immediate syntax error. This statement initiates error
6293recovery just as if the parser itself had detected an error; however, it
6294does not call @code{yyerror}, and does not print any message. If you
6295want to print an error message, call @code{yyerror} explicitly before
6296the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6297@end deffn
bfa74976 6298
18b519c0 6299@deffn {Macro} YYRECOVERING
02103984
PE
6300@findex YYRECOVERING
6301The expression @code{YYRECOVERING ()} yields 1 when the parser
6302is recovering from a syntax error, and 0 otherwise.
bfa74976 6303@xref{Error Recovery}.
18b519c0 6304@end deffn
bfa74976 6305
18b519c0 6306@deffn {Variable} yychar
742e4900
JD
6307Variable containing either the lookahead token, or @code{YYEOF} when the
6308lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6309has been performed so the next token is not yet known.
6310Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6311Actions}).
742e4900 6312@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6313@end deffn
bfa74976 6314
18b519c0 6315@deffn {Macro} yyclearin;
742e4900 6316Discard the current lookahead token. This is useful primarily in
32c29292
JD
6317error rules.
6318Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6319Semantic Actions}).
6320@xref{Error Recovery}.
18b519c0 6321@end deffn
bfa74976 6322
18b519c0 6323@deffn {Macro} yyerrok;
bfa74976 6324Resume generating error messages immediately for subsequent syntax
13863333 6325errors. This is useful primarily in error rules.
bfa74976 6326@xref{Error Recovery}.
18b519c0 6327@end deffn
bfa74976 6328
32c29292 6329@deffn {Variable} yylloc
742e4900 6330Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6331to @code{YYEMPTY} or @code{YYEOF}.
6332Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6333Actions}).
6334@xref{Actions and Locations, ,Actions and Locations}.
6335@end deffn
6336
6337@deffn {Variable} yylval
742e4900 6338Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6339not set to @code{YYEMPTY} or @code{YYEOF}.
6340Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6341Actions}).
6342@xref{Actions, ,Actions}.
6343@end deffn
6344
18b519c0 6345@deffn {Value} @@$
847bf1f5 6346@findex @@$
303834cc
JD
6347Acts like a structure variable containing information on the textual
6348location of the grouping made by the current rule. @xref{Tracking
6349Locations}.
bfa74976 6350
847bf1f5
AD
6351@c Check if those paragraphs are still useful or not.
6352
6353@c @example
6354@c struct @{
6355@c int first_line, last_line;
6356@c int first_column, last_column;
6357@c @};
6358@c @end example
6359
6360@c Thus, to get the starting line number of the third component, you would
6361@c use @samp{@@3.first_line}.
bfa74976 6362
847bf1f5
AD
6363@c In order for the members of this structure to contain valid information,
6364@c you must make @code{yylex} supply this information about each token.
6365@c If you need only certain members, then @code{yylex} need only fill in
6366@c those members.
bfa74976 6367
847bf1f5 6368@c The use of this feature makes the parser noticeably slower.
18b519c0 6369@end deffn
847bf1f5 6370
18b519c0 6371@deffn {Value} @@@var{n}
847bf1f5 6372@findex @@@var{n}
303834cc
JD
6373Acts like a structure variable containing information on the textual
6374location of the @var{n}th component of the current rule. @xref{Tracking
6375Locations}.
18b519c0 6376@end deffn
bfa74976 6377
f7ab6a50
PE
6378@node Internationalization
6379@section Parser Internationalization
6380@cindex internationalization
6381@cindex i18n
6382@cindex NLS
6383@cindex gettext
6384@cindex bison-po
6385
6386A Bison-generated parser can print diagnostics, including error and
6387tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6388also supports outputting diagnostics in the user's native language. To
6389make this work, the user should set the usual environment variables.
6390@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6391For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6392set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6393encoding. The exact set of available locales depends on the user's
6394installation.
6395
6396The maintainer of a package that uses a Bison-generated parser enables
6397the internationalization of the parser's output through the following
8a4281b9
JD
6398steps. Here we assume a package that uses GNU Autoconf and
6399GNU Automake.
f7ab6a50
PE
6400
6401@enumerate
6402@item
30757c8c 6403@cindex bison-i18n.m4
8a4281b9 6404Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6405by the package---often called @file{m4}---copy the
6406@file{bison-i18n.m4} file installed by Bison under
6407@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6408For example:
6409
6410@example
6411cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6412@end example
6413
6414@item
30757c8c
PE
6415@findex BISON_I18N
6416@vindex BISON_LOCALEDIR
6417@vindex YYENABLE_NLS
f7ab6a50
PE
6418In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6419invocation, add an invocation of @code{BISON_I18N}. This macro is
6420defined in the file @file{bison-i18n.m4} that you copied earlier. It
6421causes @samp{configure} to find the value of the
30757c8c
PE
6422@code{BISON_LOCALEDIR} variable, and it defines the source-language
6423symbol @code{YYENABLE_NLS} to enable translations in the
6424Bison-generated parser.
f7ab6a50
PE
6425
6426@item
6427In the @code{main} function of your program, designate the directory
6428containing Bison's runtime message catalog, through a call to
6429@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6430For example:
6431
6432@example
6433bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6434@end example
6435
6436Typically this appears after any other call @code{bindtextdomain
6437(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6438@samp{BISON_LOCALEDIR} to be defined as a string through the
6439@file{Makefile}.
6440
6441@item
6442In the @file{Makefile.am} that controls the compilation of the @code{main}
6443function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6444either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6445
6446@example
6447DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6448@end example
6449
6450or:
6451
6452@example
6453AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6454@end example
6455
6456@item
6457Finally, invoke the command @command{autoreconf} to generate the build
6458infrastructure.
6459@end enumerate
6460
bfa74976 6461
342b8b6e 6462@node Algorithm
13863333
AD
6463@chapter The Bison Parser Algorithm
6464@cindex Bison parser algorithm
bfa74976
RS
6465@cindex algorithm of parser
6466@cindex shifting
6467@cindex reduction
6468@cindex parser stack
6469@cindex stack, parser
6470
6471As Bison reads tokens, it pushes them onto a stack along with their
6472semantic values. The stack is called the @dfn{parser stack}. Pushing a
6473token is traditionally called @dfn{shifting}.
6474
6475For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6476@samp{3} to come. The stack will have four elements, one for each token
6477that was shifted.
6478
6479But the stack does not always have an element for each token read. When
6480the last @var{n} tokens and groupings shifted match the components of a
6481grammar rule, they can be combined according to that rule. This is called
6482@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6483single grouping whose symbol is the result (left hand side) of that rule.
6484Running the rule's action is part of the process of reduction, because this
6485is what computes the semantic value of the resulting grouping.
6486
6487For example, if the infix calculator's parser stack contains this:
6488
6489@example
64901 + 5 * 3
6491@end example
6492
6493@noindent
6494and the next input token is a newline character, then the last three
6495elements can be reduced to 15 via the rule:
6496
6497@example
6498expr: expr '*' expr;
6499@end example
6500
6501@noindent
6502Then the stack contains just these three elements:
6503
6504@example
65051 + 15
6506@end example
6507
6508@noindent
6509At this point, another reduction can be made, resulting in the single value
651016. Then the newline token can be shifted.
6511
6512The parser tries, by shifts and reductions, to reduce the entire input down
6513to a single grouping whose symbol is the grammar's start-symbol
6514(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6515
6516This kind of parser is known in the literature as a bottom-up parser.
6517
6518@menu
742e4900 6519* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6520* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6521* Precedence:: Operator precedence works by resolving conflicts.
6522* Contextual Precedence:: When an operator's precedence depends on context.
6523* Parser States:: The parser is a finite-state-machine with stack.
6524* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6525* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6526* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6527* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6528* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6529@end menu
6530
742e4900
JD
6531@node Lookahead
6532@section Lookahead Tokens
6533@cindex lookahead token
bfa74976
RS
6534
6535The Bison parser does @emph{not} always reduce immediately as soon as the
6536last @var{n} tokens and groupings match a rule. This is because such a
6537simple strategy is inadequate to handle most languages. Instead, when a
6538reduction is possible, the parser sometimes ``looks ahead'' at the next
6539token in order to decide what to do.
6540
6541When a token is read, it is not immediately shifted; first it becomes the
742e4900 6542@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6543perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6544the lookahead token remains off to the side. When no more reductions
6545should take place, the lookahead token is shifted onto the stack. This
bfa74976 6546does not mean that all possible reductions have been done; depending on the
742e4900 6547token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6548application.
6549
742e4900 6550Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6551expressions which contain binary addition operators and postfix unary
6552factorial operators (@samp{!}), and allow parentheses for grouping.
6553
6554@example
6555@group
6556expr: term '+' expr
6557 | term
6558 ;
6559@end group
6560
6561@group
6562term: '(' expr ')'
6563 | term '!'
6564 | NUMBER
6565 ;
6566@end group
6567@end example
6568
6569Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6570should be done? If the following token is @samp{)}, then the first three
6571tokens must be reduced to form an @code{expr}. This is the only valid
6572course, because shifting the @samp{)} would produce a sequence of symbols
6573@w{@code{term ')'}}, and no rule allows this.
6574
6575If the following token is @samp{!}, then it must be shifted immediately so
6576that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6577parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6578@code{expr}. It would then be impossible to shift the @samp{!} because
6579doing so would produce on the stack the sequence of symbols @code{expr
6580'!'}. No rule allows that sequence.
6581
6582@vindex yychar
32c29292
JD
6583@vindex yylval
6584@vindex yylloc
742e4900 6585The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6586Its semantic value and location, if any, are stored in the variables
6587@code{yylval} and @code{yylloc}.
bfa74976
RS
6588@xref{Action Features, ,Special Features for Use in Actions}.
6589
342b8b6e 6590@node Shift/Reduce
bfa74976
RS
6591@section Shift/Reduce Conflicts
6592@cindex conflicts
6593@cindex shift/reduce conflicts
6594@cindex dangling @code{else}
6595@cindex @code{else}, dangling
6596
6597Suppose we are parsing a language which has if-then and if-then-else
6598statements, with a pair of rules like this:
6599
6600@example
6601@group
6602if_stmt:
6603 IF expr THEN stmt
6604 | IF expr THEN stmt ELSE stmt
6605 ;
6606@end group
6607@end example
6608
6609@noindent
6610Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6611terminal symbols for specific keyword tokens.
6612
742e4900 6613When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6614contents of the stack (assuming the input is valid) are just right for
6615reduction by the first rule. But it is also legitimate to shift the
6616@code{ELSE}, because that would lead to eventual reduction by the second
6617rule.
6618
6619This situation, where either a shift or a reduction would be valid, is
6620called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6621these conflicts by choosing to shift, unless otherwise directed by
6622operator precedence declarations. To see the reason for this, let's
6623contrast it with the other alternative.
6624
6625Since the parser prefers to shift the @code{ELSE}, the result is to attach
6626the else-clause to the innermost if-statement, making these two inputs
6627equivalent:
6628
6629@example
6630if x then if y then win (); else lose;
6631
6632if x then do; if y then win (); else lose; end;
6633@end example
6634
6635But if the parser chose to reduce when possible rather than shift, the
6636result would be to attach the else-clause to the outermost if-statement,
6637making these two inputs equivalent:
6638
6639@example
6640if x then if y then win (); else lose;
6641
6642if x then do; if y then win (); end; else lose;
6643@end example
6644
6645The conflict exists because the grammar as written is ambiguous: either
6646parsing of the simple nested if-statement is legitimate. The established
6647convention is that these ambiguities are resolved by attaching the
6648else-clause to the innermost if-statement; this is what Bison accomplishes
6649by choosing to shift rather than reduce. (It would ideally be cleaner to
6650write an unambiguous grammar, but that is very hard to do in this case.)
6651This particular ambiguity was first encountered in the specifications of
6652Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6653
6654To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6655conflicts, use the @code{%expect @var{n}} declaration.
6656There will be no warning as long as the number of shift/reduce conflicts
6657is exactly @var{n}, and Bison will report an error if there is a
6658different number.
bfa74976
RS
6659@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6660
6661The definition of @code{if_stmt} above is solely to blame for the
6662conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6663rules. Here is a complete Bison grammar file that actually manifests
6664the conflict:
bfa74976
RS
6665
6666@example
6667@group
6668%token IF THEN ELSE variable
6669%%
6670@end group
6671@group
6672stmt: expr
6673 | if_stmt
6674 ;
6675@end group
6676
6677@group
6678if_stmt:
6679 IF expr THEN stmt
6680 | IF expr THEN stmt ELSE stmt
6681 ;
6682@end group
6683
6684expr: variable
6685 ;
6686@end example
6687
342b8b6e 6688@node Precedence
bfa74976
RS
6689@section Operator Precedence
6690@cindex operator precedence
6691@cindex precedence of operators
6692
6693Another situation where shift/reduce conflicts appear is in arithmetic
6694expressions. Here shifting is not always the preferred resolution; the
6695Bison declarations for operator precedence allow you to specify when to
6696shift and when to reduce.
6697
6698@menu
6699* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6700* Using Precedence:: How to specify precedence and associativity.
6701* Precedence Only:: How to specify precedence only.
bfa74976
RS
6702* Precedence Examples:: How these features are used in the previous example.
6703* How Precedence:: How they work.
6704@end menu
6705
342b8b6e 6706@node Why Precedence
bfa74976
RS
6707@subsection When Precedence is Needed
6708
6709Consider the following ambiguous grammar fragment (ambiguous because the
6710input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6711
6712@example
6713@group
6714expr: expr '-' expr
6715 | expr '*' expr
6716 | expr '<' expr
6717 | '(' expr ')'
6718 @dots{}
6719 ;
6720@end group
6721@end example
6722
6723@noindent
6724Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6725should it reduce them via the rule for the subtraction operator? It
6726depends on the next token. Of course, if the next token is @samp{)}, we
6727must reduce; shifting is invalid because no single rule can reduce the
6728token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6729the next token is @samp{*} or @samp{<}, we have a choice: either
6730shifting or reduction would allow the parse to complete, but with
6731different results.
6732
6733To decide which one Bison should do, we must consider the results. If
6734the next operator token @var{op} is shifted, then it must be reduced
6735first in order to permit another opportunity to reduce the difference.
6736The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6737hand, if the subtraction is reduced before shifting @var{op}, the result
6738is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6739reduce should depend on the relative precedence of the operators
6740@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6741@samp{<}.
bfa74976
RS
6742
6743@cindex associativity
6744What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6745@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6746operators we prefer the former, which is called @dfn{left association}.
6747The latter alternative, @dfn{right association}, is desirable for
6748assignment operators. The choice of left or right association is a
6749matter of whether the parser chooses to shift or reduce when the stack
742e4900 6750contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6751makes right-associativity.
bfa74976 6752
342b8b6e 6753@node Using Precedence
bfa74976
RS
6754@subsection Specifying Operator Precedence
6755@findex %left
bfa74976 6756@findex %nonassoc
d78f0ac9
AD
6757@findex %precedence
6758@findex %right
bfa74976
RS
6759
6760Bison allows you to specify these choices with the operator precedence
6761declarations @code{%left} and @code{%right}. Each such declaration
6762contains a list of tokens, which are operators whose precedence and
6763associativity is being declared. The @code{%left} declaration makes all
6764those operators left-associative and the @code{%right} declaration makes
6765them right-associative. A third alternative is @code{%nonassoc}, which
6766declares that it is a syntax error to find the same operator twice ``in a
6767row''.
d78f0ac9
AD
6768The last alternative, @code{%precedence}, allows to define only
6769precedence and no associativity at all. As a result, any
6770associativity-related conflict that remains will be reported as an
6771compile-time error. The directive @code{%nonassoc} creates run-time
6772error: using the operator in a associative way is a syntax error. The
6773directive @code{%precedence} creates compile-time errors: an operator
6774@emph{can} be involved in an associativity-related conflict, contrary to
6775what expected the grammar author.
bfa74976
RS
6776
6777The relative precedence of different operators is controlled by the
d78f0ac9
AD
6778order in which they are declared. The first precedence/associativity
6779declaration in the file declares the operators whose
bfa74976
RS
6780precedence is lowest, the next such declaration declares the operators
6781whose precedence is a little higher, and so on.
6782
d78f0ac9
AD
6783@node Precedence Only
6784@subsection Specifying Precedence Only
6785@findex %precedence
6786
8a4281b9 6787Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6788@code{%nonassoc}, which all defines precedence and associativity, little
6789attention is paid to the fact that precedence cannot be defined without
6790defining associativity. Yet, sometimes, when trying to solve a
6791conflict, precedence suffices. In such a case, using @code{%left},
6792@code{%right}, or @code{%nonassoc} might hide future (associativity
6793related) conflicts that would remain hidden.
6794
6795The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6796Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6797in the following situation, where the period denotes the current parsing
6798state:
6799
6800@example
6801if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6802@end example
6803
6804The conflict involves the reduction of the rule @samp{IF expr THEN
6805stmt}, which precedence is by default that of its last token
6806(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6807disambiguation (attach the @code{else} to the closest @code{if}),
6808shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6809higher than that of @code{THEN}. But neither is expected to be involved
6810in an associativity related conflict, which can be specified as follows.
6811
6812@example
6813%precedence THEN
6814%precedence ELSE
6815@end example
6816
6817The unary-minus is another typical example where associativity is
6818usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6819Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6820used to declare the precedence of @code{NEG}, which is more than needed
6821since it also defines its associativity. While this is harmless in the
6822traditional example, who knows how @code{NEG} might be used in future
6823evolutions of the grammar@dots{}
6824
342b8b6e 6825@node Precedence Examples
bfa74976
RS
6826@subsection Precedence Examples
6827
6828In our example, we would want the following declarations:
6829
6830@example
6831%left '<'
6832%left '-'
6833%left '*'
6834@end example
6835
6836In a more complete example, which supports other operators as well, we
6837would declare them in groups of equal precedence. For example, @code{'+'} is
6838declared with @code{'-'}:
6839
6840@example
6841%left '<' '>' '=' NE LE GE
6842%left '+' '-'
6843%left '*' '/'
6844@end example
6845
6846@noindent
6847(Here @code{NE} and so on stand for the operators for ``not equal''
6848and so on. We assume that these tokens are more than one character long
6849and therefore are represented by names, not character literals.)
6850
342b8b6e 6851@node How Precedence
bfa74976
RS
6852@subsection How Precedence Works
6853
6854The first effect of the precedence declarations is to assign precedence
6855levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6856precedence levels to certain rules: each rule gets its precedence from
6857the last terminal symbol mentioned in the components. (You can also
6858specify explicitly the precedence of a rule. @xref{Contextual
6859Precedence, ,Context-Dependent Precedence}.)
6860
6861Finally, the resolution of conflicts works by comparing the precedence
742e4900 6862of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6863token's precedence is higher, the choice is to shift. If the rule's
6864precedence is higher, the choice is to reduce. If they have equal
6865precedence, the choice is made based on the associativity of that
6866precedence level. The verbose output file made by @samp{-v}
6867(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6868resolved.
bfa74976
RS
6869
6870Not all rules and not all tokens have precedence. If either the rule or
742e4900 6871the lookahead token has no precedence, then the default is to shift.
bfa74976 6872
342b8b6e 6873@node Contextual Precedence
bfa74976
RS
6874@section Context-Dependent Precedence
6875@cindex context-dependent precedence
6876@cindex unary operator precedence
6877@cindex precedence, context-dependent
6878@cindex precedence, unary operator
6879@findex %prec
6880
6881Often the precedence of an operator depends on the context. This sounds
6882outlandish at first, but it is really very common. For example, a minus
6883sign typically has a very high precedence as a unary operator, and a
6884somewhat lower precedence (lower than multiplication) as a binary operator.
6885
d78f0ac9
AD
6886The Bison precedence declarations
6887can only be used once for a given token; so a token has
bfa74976
RS
6888only one precedence declared in this way. For context-dependent
6889precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6890modifier for rules.
bfa74976
RS
6891
6892The @code{%prec} modifier declares the precedence of a particular rule by
6893specifying a terminal symbol whose precedence should be used for that rule.
6894It's not necessary for that symbol to appear otherwise in the rule. The
6895modifier's syntax is:
6896
6897@example
6898%prec @var{terminal-symbol}
6899@end example
6900
6901@noindent
6902and it is written after the components of the rule. Its effect is to
6903assign the rule the precedence of @var{terminal-symbol}, overriding
6904the precedence that would be deduced for it in the ordinary way. The
6905altered rule precedence then affects how conflicts involving that rule
6906are resolved (@pxref{Precedence, ,Operator Precedence}).
6907
6908Here is how @code{%prec} solves the problem of unary minus. First, declare
6909a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6910are no tokens of this type, but the symbol serves to stand for its
6911precedence:
6912
6913@example
6914@dots{}
6915%left '+' '-'
6916%left '*'
6917%left UMINUS
6918@end example
6919
6920Now the precedence of @code{UMINUS} can be used in specific rules:
6921
6922@example
6923@group
6924exp: @dots{}
6925 | exp '-' exp
6926 @dots{}
6927 | '-' exp %prec UMINUS
6928@end group
6929@end example
6930
91d2c560 6931@ifset defaultprec
39a06c25
PE
6932If you forget to append @code{%prec UMINUS} to the rule for unary
6933minus, Bison silently assumes that minus has its usual precedence.
6934This kind of problem can be tricky to debug, since one typically
6935discovers the mistake only by testing the code.
6936
22fccf95 6937The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6938this kind of problem systematically. It causes rules that lack a
6939@code{%prec} modifier to have no precedence, even if the last terminal
6940symbol mentioned in their components has a declared precedence.
6941
22fccf95 6942If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6943for all rules that participate in precedence conflict resolution.
6944Then you will see any shift/reduce conflict until you tell Bison how
6945to resolve it, either by changing your grammar or by adding an
6946explicit precedence. This will probably add declarations to the
6947grammar, but it helps to protect against incorrect rule precedences.
6948
22fccf95
PE
6949The effect of @code{%no-default-prec;} can be reversed by giving
6950@code{%default-prec;}, which is the default.
91d2c560 6951@end ifset
39a06c25 6952
342b8b6e 6953@node Parser States
bfa74976
RS
6954@section Parser States
6955@cindex finite-state machine
6956@cindex parser state
6957@cindex state (of parser)
6958
6959The function @code{yyparse} is implemented using a finite-state machine.
6960The values pushed on the parser stack are not simply token type codes; they
6961represent the entire sequence of terminal and nonterminal symbols at or
6962near the top of the stack. The current state collects all the information
6963about previous input which is relevant to deciding what to do next.
6964
742e4900
JD
6965Each time a lookahead token is read, the current parser state together
6966with the type of lookahead token are looked up in a table. This table
6967entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6968specifies the new parser state, which is pushed onto the top of the
6969parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6970This means that a certain number of tokens or groupings are taken off
6971the top of the stack, and replaced by one grouping. In other words,
6972that number of states are popped from the stack, and one new state is
6973pushed.
6974
742e4900 6975There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6976is erroneous in the current state. This causes error processing to begin
6977(@pxref{Error Recovery}).
6978
342b8b6e 6979@node Reduce/Reduce
bfa74976
RS
6980@section Reduce/Reduce Conflicts
6981@cindex reduce/reduce conflict
6982@cindex conflicts, reduce/reduce
6983
6984A reduce/reduce conflict occurs if there are two or more rules that apply
6985to the same sequence of input. This usually indicates a serious error
6986in the grammar.
6987
6988For example, here is an erroneous attempt to define a sequence
6989of zero or more @code{word} groupings.
6990
6991@example
6992sequence: /* empty */
6993 @{ printf ("empty sequence\n"); @}
6994 | maybeword
6995 | sequence word
6996 @{ printf ("added word %s\n", $2); @}
6997 ;
6998
6999maybeword: /* empty */
7000 @{ printf ("empty maybeword\n"); @}
7001 | word
7002 @{ printf ("single word %s\n", $1); @}
7003 ;
7004@end example
7005
7006@noindent
7007The error is an ambiguity: there is more than one way to parse a single
7008@code{word} into a @code{sequence}. It could be reduced to a
7009@code{maybeword} and then into a @code{sequence} via the second rule.
7010Alternatively, nothing-at-all could be reduced into a @code{sequence}
7011via the first rule, and this could be combined with the @code{word}
7012using the third rule for @code{sequence}.
7013
7014There is also more than one way to reduce nothing-at-all into a
7015@code{sequence}. This can be done directly via the first rule,
7016or indirectly via @code{maybeword} and then the second rule.
7017
7018You might think that this is a distinction without a difference, because it
7019does not change whether any particular input is valid or not. But it does
7020affect which actions are run. One parsing order runs the second rule's
7021action; the other runs the first rule's action and the third rule's action.
7022In this example, the output of the program changes.
7023
7024Bison resolves a reduce/reduce conflict by choosing to use the rule that
7025appears first in the grammar, but it is very risky to rely on this. Every
7026reduce/reduce conflict must be studied and usually eliminated. Here is the
7027proper way to define @code{sequence}:
7028
7029@example
7030sequence: /* empty */
7031 @{ printf ("empty sequence\n"); @}
7032 | sequence word
7033 @{ printf ("added word %s\n", $2); @}
7034 ;
7035@end example
7036
7037Here is another common error that yields a reduce/reduce conflict:
7038
7039@example
7040sequence: /* empty */
7041 | sequence words
7042 | sequence redirects
7043 ;
7044
7045words: /* empty */
7046 | words word
7047 ;
7048
7049redirects:/* empty */
7050 | redirects redirect
7051 ;
7052@end example
7053
7054@noindent
7055The intention here is to define a sequence which can contain either
7056@code{word} or @code{redirect} groupings. The individual definitions of
7057@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7058three together make a subtle ambiguity: even an empty input can be parsed
7059in infinitely many ways!
7060
7061Consider: nothing-at-all could be a @code{words}. Or it could be two
7062@code{words} in a row, or three, or any number. It could equally well be a
7063@code{redirects}, or two, or any number. Or it could be a @code{words}
7064followed by three @code{redirects} and another @code{words}. And so on.
7065
7066Here are two ways to correct these rules. First, to make it a single level
7067of sequence:
7068
7069@example
7070sequence: /* empty */
7071 | sequence word
7072 | sequence redirect
7073 ;
7074@end example
7075
7076Second, to prevent either a @code{words} or a @code{redirects}
7077from being empty:
7078
7079@example
7080sequence: /* empty */
7081 | sequence words
7082 | sequence redirects
7083 ;
7084
7085words: word
7086 | words word
7087 ;
7088
7089redirects:redirect
7090 | redirects redirect
7091 ;
7092@end example
7093
cc09e5be
JD
7094@node Mysterious Conflicts
7095@section Mysterious Conflicts
7fceb615 7096@cindex Mysterious Conflicts
bfa74976
RS
7097
7098Sometimes reduce/reduce conflicts can occur that don't look warranted.
7099Here is an example:
7100
7101@example
7102@group
7103%token ID
7104
7105%%
7106def: param_spec return_spec ','
7107 ;
7108param_spec:
7109 type
7110 | name_list ':' type
7111 ;
7112@end group
7113@group
7114return_spec:
7115 type
7116 | name ':' type
7117 ;
7118@end group
7119@group
7120type: ID
7121 ;
7122@end group
7123@group
7124name: ID
7125 ;
7126name_list:
7127 name
7128 | name ',' name_list
7129 ;
7130@end group
7131@end example
7132
7133It would seem that this grammar can be parsed with only a single token
742e4900 7134of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7135a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7136@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7137
7fceb615
JD
7138@cindex LR
7139@cindex LALR
eb45ef3b 7140However, for historical reasons, Bison cannot by default handle all
8a4281b9 7141LR(1) grammars.
eb45ef3b
JD
7142In this grammar, two contexts, that after an @code{ID} at the beginning
7143of a @code{param_spec} and likewise at the beginning of a
7144@code{return_spec}, are similar enough that Bison assumes they are the
7145same.
7146They appear similar because the same set of rules would be
bfa74976
RS
7147active---the rule for reducing to a @code{name} and that for reducing to
7148a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7149that the rules would require different lookahead tokens in the two
bfa74976
RS
7150contexts, so it makes a single parser state for them both. Combining
7151the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7152occurrence means that the grammar is not LALR(1).
bfa74976 7153
7fceb615
JD
7154@cindex IELR
7155@cindex canonical LR
7156For many practical grammars (specifically those that fall into the non-LR(1)
7157class), the limitations of LALR(1) result in difficulties beyond just
7158mysterious reduce/reduce conflicts. The best way to fix all these problems
7159is to select a different parser table construction algorithm. Either
7160IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7161and easier to debug during development. @xref{LR Table Construction}, for
7162details. (Bison's IELR(1) and canonical LR(1) implementations are
7163experimental. More user feedback will help to stabilize them.)
eb45ef3b 7164
8a4281b9 7165If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7166can often fix a mysterious conflict by identifying the two parser states
7167that are being confused, and adding something to make them look
7168distinct. In the above example, adding one rule to
bfa74976
RS
7169@code{return_spec} as follows makes the problem go away:
7170
7171@example
7172@group
7173%token BOGUS
7174@dots{}
7175%%
7176@dots{}
7177return_spec:
7178 type
7179 | name ':' type
7180 /* This rule is never used. */
7181 | ID BOGUS
7182 ;
7183@end group
7184@end example
7185
7186This corrects the problem because it introduces the possibility of an
7187additional active rule in the context after the @code{ID} at the beginning of
7188@code{return_spec}. This rule is not active in the corresponding context
7189in a @code{param_spec}, so the two contexts receive distinct parser states.
7190As long as the token @code{BOGUS} is never generated by @code{yylex},
7191the added rule cannot alter the way actual input is parsed.
7192
7193In this particular example, there is another way to solve the problem:
7194rewrite the rule for @code{return_spec} to use @code{ID} directly
7195instead of via @code{name}. This also causes the two confusing
7196contexts to have different sets of active rules, because the one for
7197@code{return_spec} activates the altered rule for @code{return_spec}
7198rather than the one for @code{name}.
7199
7200@example
7201param_spec:
7202 type
7203 | name_list ':' type
7204 ;
7205return_spec:
7206 type
7207 | ID ':' type
7208 ;
7209@end example
7210
8a4281b9 7211For a more detailed exposition of LALR(1) parsers and parser
5e528941 7212generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7213
7fceb615
JD
7214@node Tuning LR
7215@section Tuning LR
7216
7217The default behavior of Bison's LR-based parsers is chosen mostly for
7218historical reasons, but that behavior is often not robust. For example, in
7219the previous section, we discussed the mysterious conflicts that can be
7220produced by LALR(1), Bison's default parser table construction algorithm.
7221Another example is Bison's @code{%define parse.error verbose} directive,
7222which instructs the generated parser to produce verbose syntax error
7223messages, which can sometimes contain incorrect information.
7224
7225In this section, we explore several modern features of Bison that allow you
7226to tune fundamental aspects of the generated LR-based parsers. Some of
7227these features easily eliminate shortcomings like those mentioned above.
7228Others can be helpful purely for understanding your parser.
7229
7230Most of the features discussed in this section are still experimental. More
7231user feedback will help to stabilize them.
7232
7233@menu
7234* LR Table Construction:: Choose a different construction algorithm.
7235* Default Reductions:: Disable default reductions.
7236* LAC:: Correct lookahead sets in the parser states.
7237* Unreachable States:: Keep unreachable parser states for debugging.
7238@end menu
7239
7240@node LR Table Construction
7241@subsection LR Table Construction
7242@cindex Mysterious Conflict
7243@cindex LALR
7244@cindex IELR
7245@cindex canonical LR
7246@findex %define lr.type
7247
7248For historical reasons, Bison constructs LALR(1) parser tables by default.
7249However, LALR does not possess the full language-recognition power of LR.
7250As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7251mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7252Conflicts}.
7253
7254As we also demonstrated in that example, the traditional approach to
7255eliminating such mysterious behavior is to restructure the grammar.
7256Unfortunately, doing so correctly is often difficult. Moreover, merely
7257discovering that LALR causes mysterious behavior in your parser can be
7258difficult as well.
7259
7260Fortunately, Bison provides an easy way to eliminate the possibility of such
7261mysterious behavior altogether. You simply need to activate a more powerful
7262parser table construction algorithm by using the @code{%define lr.type}
7263directive.
7264
7265@deffn {Directive} {%define lr.type @var{TYPE}}
7266Specify the type of parser tables within the LR(1) family. The accepted
7267values for @var{TYPE} are:
7268
7269@itemize
7270@item @code{lalr} (default)
7271@item @code{ielr}
7272@item @code{canonical-lr}
7273@end itemize
7274
7275(This feature is experimental. More user feedback will help to stabilize
7276it.)
7277@end deffn
7278
7279For example, to activate IELR, you might add the following directive to you
7280grammar file:
7281
7282@example
7283%define lr.type ielr
7284@end example
7285
cc09e5be 7286@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7287conflict is then eliminated, so there is no need to invest time in
7288comprehending the conflict or restructuring the grammar to fix it. If,
7289during future development, the grammar evolves such that all mysterious
7290behavior would have disappeared using just LALR, you need not fear that
7291continuing to use IELR will result in unnecessarily large parser tables.
7292That is, IELR generates LALR tables when LALR (using a deterministic parsing
7293algorithm) is sufficient to support the full language-recognition power of
7294LR. Thus, by enabling IELR at the start of grammar development, you can
7295safely and completely eliminate the need to consider LALR's shortcomings.
7296
7297While IELR is almost always preferable, there are circumstances where LALR
7298or the canonical LR parser tables described by Knuth
7299(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7300relative advantages of each parser table construction algorithm within
7301Bison:
7302
7303@itemize
7304@item LALR
7305
7306There are at least two scenarios where LALR can be worthwhile:
7307
7308@itemize
7309@item GLR without static conflict resolution.
7310
7311@cindex GLR with LALR
7312When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7313conflicts statically (for example, with @code{%left} or @code{%prec}), then
7314the parser explores all potential parses of any given input. In this case,
7315the choice of parser table construction algorithm is guaranteed not to alter
7316the language accepted by the parser. LALR parser tables are the smallest
7317parser tables Bison can currently construct, so they may then be preferable.
7318Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7319more like a deterministic parser in the syntactic contexts where those
7320conflicts appear, and so either IELR or canonical LR can then be helpful to
7321avoid LALR's mysterious behavior.
7322
7323@item Malformed grammars.
7324
7325Occasionally during development, an especially malformed grammar with a
7326major recurring flaw may severely impede the IELR or canonical LR parser
7327table construction algorithm. LALR can be a quick way to construct parser
7328tables in order to investigate such problems while ignoring the more subtle
7329differences from IELR and canonical LR.
7330@end itemize
7331
7332@item IELR
7333
7334IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7335any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7336always accept exactly the same set of sentences. However, like LALR, IELR
7337merges parser states during parser table construction so that the number of
7338parser states is often an order of magnitude less than for canonical LR.
7339More importantly, because canonical LR's extra parser states may contain
7340duplicate conflicts in the case of non-LR grammars, the number of conflicts
7341for IELR is often an order of magnitude less as well. This effect can
7342significantly reduce the complexity of developing a grammar.
7343
7344@item Canonical LR
7345
7346@cindex delayed syntax error detection
7347@cindex LAC
7348@findex %nonassoc
7349While inefficient, canonical LR parser tables can be an interesting means to
7350explore a grammar because they possess a property that IELR and LALR tables
7351do not. That is, if @code{%nonassoc} is not used and default reductions are
7352left disabled (@pxref{Default Reductions}), then, for every left context of
7353every canonical LR state, the set of tokens accepted by that state is
7354guaranteed to be the exact set of tokens that is syntactically acceptable in
7355that left context. It might then seem that an advantage of canonical LR
7356parsers in production is that, under the above constraints, they are
7357guaranteed to detect a syntax error as soon as possible without performing
7358any unnecessary reductions. However, IELR parsers that use LAC are also
7359able to achieve this behavior without sacrificing @code{%nonassoc} or
7360default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7361@end itemize
7362
7363For a more detailed exposition of the mysterious behavior in LALR parsers
7364and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7365@ref{Bibliography,,Denny 2010 November}.
7366
7367@node Default Reductions
7368@subsection Default Reductions
7369@cindex default reductions
7370@findex %define lr.default-reductions
7371@findex %nonassoc
7372
7373After parser table construction, Bison identifies the reduction with the
7374largest lookahead set in each parser state. To reduce the size of the
7375parser state, traditional Bison behavior is to remove that lookahead set and
7376to assign that reduction to be the default parser action. Such a reduction
7377is known as a @dfn{default reduction}.
7378
7379Default reductions affect more than the size of the parser tables. They
7380also affect the behavior of the parser:
7381
7382@itemize
7383@item Delayed @code{yylex} invocations.
7384
7385@cindex delayed yylex invocations
7386@cindex consistent states
7387@cindex defaulted states
7388A @dfn{consistent state} is a state that has only one possible parser
7389action. If that action is a reduction and is encoded as a default
7390reduction, then that consistent state is called a @dfn{defaulted state}.
7391Upon reaching a defaulted state, a Bison-generated parser does not bother to
7392invoke @code{yylex} to fetch the next token before performing the reduction.
7393In other words, whether default reductions are enabled in consistent states
7394determines how soon a Bison-generated parser invokes @code{yylex} for a
7395token: immediately when it @emph{reaches} that token in the input or when it
7396eventually @emph{needs} that token as a lookahead to determine the next
7397parser action. Traditionally, default reductions are enabled, and so the
7398parser exhibits the latter behavior.
7399
7400The presence of defaulted states is an important consideration when
7401designing @code{yylex} and the grammar file. That is, if the behavior of
7402@code{yylex} can influence or be influenced by the semantic actions
7403associated with the reductions in defaulted states, then the delay of the
7404next @code{yylex} invocation until after those reductions is significant.
7405For example, the semantic actions might pop a scope stack that @code{yylex}
7406uses to determine what token to return. Thus, the delay might be necessary
7407to ensure that @code{yylex} does not look up the next token in a scope that
7408should already be considered closed.
7409
7410@item Delayed syntax error detection.
7411
7412@cindex delayed syntax error detection
7413When the parser fetches a new token by invoking @code{yylex}, it checks
7414whether there is an action for that token in the current parser state. The
7415parser detects a syntax error if and only if either (1) there is no action
7416for that token or (2) the action for that token is the error action (due to
7417the use of @code{%nonassoc}). However, if there is a default reduction in
7418that state (which might or might not be a defaulted state), then it is
7419impossible for condition 1 to exist. That is, all tokens have an action.
7420Thus, the parser sometimes fails to detect the syntax error until it reaches
7421a later state.
7422
7423@cindex LAC
7424@c If there's an infinite loop, default reductions can prevent an incorrect
7425@c sentence from being rejected.
7426While default reductions never cause the parser to accept syntactically
7427incorrect sentences, the delay of syntax error detection can have unexpected
7428effects on the behavior of the parser. However, the delay can be caused
7429anyway by parser state merging and the use of @code{%nonassoc}, and it can
7430be fixed by another Bison feature, LAC. We discuss the effects of delayed
7431syntax error detection and LAC more in the next section (@pxref{LAC}).
7432@end itemize
7433
7434For canonical LR, the only default reduction that Bison enables by default
7435is the accept action, which appears only in the accepting state, which has
7436no other action and is thus a defaulted state. However, the default accept
7437action does not delay any @code{yylex} invocation or syntax error detection
7438because the accept action ends the parse.
7439
7440For LALR and IELR, Bison enables default reductions in nearly all states by
7441default. There are only two exceptions. First, states that have a shift
7442action on the @code{error} token do not have default reductions because
7443delayed syntax error detection could then prevent the @code{error} token
7444from ever being shifted in that state. However, parser state merging can
7445cause the same effect anyway, and LAC fixes it in both cases, so future
7446versions of Bison might drop this exception when LAC is activated. Second,
7447GLR parsers do not record the default reduction as the action on a lookahead
7448token for which there is a conflict. The correct action in this case is to
7449split the parse instead.
7450
7451To adjust which states have default reductions enabled, use the
7452@code{%define lr.default-reductions} directive.
7453
7454@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7455Specify the kind of states that are permitted to contain default reductions.
7456The accepted values of @var{WHERE} are:
7457@itemize
f0ad1b2f 7458@item @code{most} (default for LALR and IELR)
7fceb615
JD
7459@item @code{consistent}
7460@item @code{accepting} (default for canonical LR)
7461@end itemize
7462
7463(The ability to specify where default reductions are permitted is
7464experimental. More user feedback will help to stabilize it.)
7465@end deffn
7466
7fceb615
JD
7467@node LAC
7468@subsection LAC
7469@findex %define parse.lac
7470@cindex LAC
7471@cindex lookahead correction
7472
7473Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7474encountering a syntax error. First, the parser might perform additional
7475parser stack reductions before discovering the syntax error. Such
7476reductions can perform user semantic actions that are unexpected because
7477they are based on an invalid token, and they cause error recovery to begin
7478in a different syntactic context than the one in which the invalid token was
7479encountered. Second, when verbose error messages are enabled (@pxref{Error
7480Reporting}), the expected token list in the syntax error message can both
7481contain invalid tokens and omit valid tokens.
7482
7483The culprits for the above problems are @code{%nonassoc}, default reductions
7484in inconsistent states (@pxref{Default Reductions}), and parser state
7485merging. Because IELR and LALR merge parser states, they suffer the most.
7486Canonical LR can suffer only if @code{%nonassoc} is used or if default
7487reductions are enabled for inconsistent states.
7488
7489LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7490that solves these problems for canonical LR, IELR, and LALR without
7491sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7492enable LAC with the @code{%define parse.lac} directive.
7493
7494@deffn {Directive} {%define parse.lac @var{VALUE}}
7495Enable LAC to improve syntax error handling.
7496@itemize
7497@item @code{none} (default)
7498@item @code{full}
7499@end itemize
7500(This feature is experimental. More user feedback will help to stabilize
7501it. Moreover, it is currently only available for deterministic parsers in
7502C.)
7503@end deffn
7504
7505Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7506fetches a new token from the scanner so that it can determine the next
7507parser action, it immediately suspends normal parsing and performs an
7508exploratory parse using a temporary copy of the normal parser state stack.
7509During this exploratory parse, the parser does not perform user semantic
7510actions. If the exploratory parse reaches a shift action, normal parsing
7511then resumes on the normal parser stacks. If the exploratory parse reaches
7512an error instead, the parser reports a syntax error. If verbose syntax
7513error messages are enabled, the parser must then discover the list of
7514expected tokens, so it performs a separate exploratory parse for each token
7515in the grammar.
7516
7517There is one subtlety about the use of LAC. That is, when in a consistent
7518parser state with a default reduction, the parser will not attempt to fetch
7519a token from the scanner because no lookahead is needed to determine the
7520next parser action. Thus, whether default reductions are enabled in
7521consistent states (@pxref{Default Reductions}) affects how soon the parser
7522detects a syntax error: immediately when it @emph{reaches} an erroneous
7523token or when it eventually @emph{needs} that token as a lookahead to
7524determine the next parser action. The latter behavior is probably more
7525intuitive, so Bison currently provides no way to achieve the former behavior
7526while default reductions are enabled in consistent states.
7527
7528Thus, when LAC is in use, for some fixed decision of whether to enable
7529default reductions in consistent states, canonical LR and IELR behave almost
7530exactly the same for both syntactically acceptable and syntactically
7531unacceptable input. While LALR still does not support the full
7532language-recognition power of canonical LR and IELR, LAC at least enables
7533LALR's syntax error handling to correctly reflect LALR's
7534language-recognition power.
7535
7536There are a few caveats to consider when using LAC:
7537
7538@itemize
7539@item Infinite parsing loops.
7540
7541IELR plus LAC does have one shortcoming relative to canonical LR. Some
7542parsers generated by Bison can loop infinitely. LAC does not fix infinite
7543parsing loops that occur between encountering a syntax error and detecting
7544it, but enabling canonical LR or disabling default reductions sometimes
7545does.
7546
7547@item Verbose error message limitations.
7548
7549Because of internationalization considerations, Bison-generated parsers
7550limit the size of the expected token list they are willing to report in a
7551verbose syntax error message. If the number of expected tokens exceeds that
7552limit, the list is simply dropped from the message. Enabling LAC can
7553increase the size of the list and thus cause the parser to drop it. Of
7554course, dropping the list is better than reporting an incorrect list.
7555
7556@item Performance.
7557
7558Because LAC requires many parse actions to be performed twice, it can have a
7559performance penalty. However, not all parse actions must be performed
7560twice. Specifically, during a series of default reductions in consistent
7561states and shift actions, the parser never has to initiate an exploratory
7562parse. Moreover, the most time-consuming tasks in a parse are often the
7563file I/O, the lexical analysis performed by the scanner, and the user's
7564semantic actions, but none of these are performed during the exploratory
7565parse. Finally, the base of the temporary stack used during an exploratory
7566parse is a pointer into the normal parser state stack so that the stack is
7567never physically copied. In our experience, the performance penalty of LAC
7568has proven insignificant for practical grammars.
7569@end itemize
7570
709c7d11
JD
7571While the LAC algorithm shares techniques that have been recognized in the
7572parser community for years, for the publication that introduces LAC,
7573@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7574
7fceb615
JD
7575@node Unreachable States
7576@subsection Unreachable States
7577@findex %define lr.keep-unreachable-states
7578@cindex unreachable states
7579
7580If there exists no sequence of transitions from the parser's start state to
7581some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7582state}. A state can become unreachable during conflict resolution if Bison
7583disables a shift action leading to it from a predecessor state.
7584
7585By default, Bison removes unreachable states from the parser after conflict
7586resolution because they are useless in the generated parser. However,
7587keeping unreachable states is sometimes useful when trying to understand the
7588relationship between the parser and the grammar.
7589
7590@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7591Request that Bison allow unreachable states to remain in the parser tables.
7592@var{VALUE} must be a Boolean. The default is @code{false}.
7593@end deffn
7594
7595There are a few caveats to consider:
7596
7597@itemize @bullet
7598@item Missing or extraneous warnings.
7599
7600Unreachable states may contain conflicts and may use rules not used in any
7601other state. Thus, keeping unreachable states may induce warnings that are
7602irrelevant to your parser's behavior, and it may eliminate warnings that are
7603relevant. Of course, the change in warnings may actually be relevant to a
7604parser table analysis that wants to keep unreachable states, so this
7605behavior will likely remain in future Bison releases.
7606
7607@item Other useless states.
7608
7609While Bison is able to remove unreachable states, it is not guaranteed to
7610remove other kinds of useless states. Specifically, when Bison disables
7611reduce actions during conflict resolution, some goto actions may become
7612useless, and thus some additional states may become useless. If Bison were
7613to compute which goto actions were useless and then disable those actions,
7614it could identify such states as unreachable and then remove those states.
7615However, Bison does not compute which goto actions are useless.
7616@end itemize
7617
fae437e8 7618@node Generalized LR Parsing
8a4281b9
JD
7619@section Generalized LR (GLR) Parsing
7620@cindex GLR parsing
7621@cindex generalized LR (GLR) parsing
676385e2 7622@cindex ambiguous grammars
9d9b8b70 7623@cindex nondeterministic parsing
676385e2 7624
fae437e8
AD
7625Bison produces @emph{deterministic} parsers that choose uniquely
7626when to reduce and which reduction to apply
742e4900 7627based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7628As a result, normal Bison handles a proper subset of the family of
7629context-free languages.
fae437e8 7630Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7631sequence of reductions cannot have deterministic parsers in this sense.
7632The same is true of languages that require more than one symbol of
742e4900 7633lookahead, since the parser lacks the information necessary to make a
676385e2 7634decision at the point it must be made in a shift-reduce parser.
cc09e5be 7635Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7636there are languages where Bison's default choice of how to
676385e2
PH
7637summarize the input seen so far loses necessary information.
7638
7639When you use the @samp{%glr-parser} declaration in your grammar file,
7640Bison generates a parser that uses a different algorithm, called
8a4281b9 7641Generalized LR (or GLR). A Bison GLR
c827f760 7642parser uses the same basic
676385e2
PH
7643algorithm for parsing as an ordinary Bison parser, but behaves
7644differently in cases where there is a shift-reduce conflict that has not
fae437e8 7645been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7646reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7647situation, it
fae437e8 7648effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7649shift or reduction. These parsers then proceed as usual, consuming
7650tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7651and split further, with the result that instead of a sequence of states,
8a4281b9 7652a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7653
7654In effect, each stack represents a guess as to what the proper parse
7655is. Additional input may indicate that a guess was wrong, in which case
7656the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7657actions generated in each stack are saved, rather than being executed
676385e2 7658immediately. When a stack disappears, its saved semantic actions never
fae437e8 7659get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7660their sets of semantic actions are both saved with the state that
7661results from the reduction. We say that two stacks are equivalent
fae437e8 7662when they both represent the same sequence of states,
676385e2
PH
7663and each pair of corresponding states represents a
7664grammar symbol that produces the same segment of the input token
7665stream.
7666
7667Whenever the parser makes a transition from having multiple
eb45ef3b 7668states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7669algorithm, after resolving and executing the saved-up actions.
7670At this transition, some of the states on the stack will have semantic
7671values that are sets (actually multisets) of possible actions. The
7672parser tries to pick one of the actions by first finding one whose rule
7673has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7674declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7675precedence, but there the same merging function is declared for both
fae437e8 7676rules by the @samp{%merge} declaration,
676385e2
PH
7677Bison resolves and evaluates both and then calls the merge function on
7678the result. Otherwise, it reports an ambiguity.
7679
8a4281b9
JD
7680It is possible to use a data structure for the GLR parsing tree that
7681permits the processing of any LR(1) grammar in linear time (in the
c827f760 7682size of the input), any unambiguous (not necessarily
8a4281b9 7683LR(1)) grammar in
fae437e8 7684quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7685context-free grammar in cubic worst-case time. However, Bison currently
7686uses a simpler data structure that requires time proportional to the
7687length of the input times the maximum number of stacks required for any
9d9b8b70 7688prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7689grammars can require exponential time and space to process. Such badly
7690behaving examples, however, are not generally of practical interest.
9d9b8b70 7691Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7692doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7693structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7694grammar, in particular, it is only slightly slower than with the
8a4281b9 7695deterministic LR(1) Bison parser.
676385e2 7696
5e528941
JD
7697For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
76982000}.
f6481e2f 7699
1a059451
PE
7700@node Memory Management
7701@section Memory Management, and How to Avoid Memory Exhaustion
7702@cindex memory exhaustion
7703@cindex memory management
bfa74976
RS
7704@cindex stack overflow
7705@cindex parser stack overflow
7706@cindex overflow of parser stack
7707
1a059451 7708The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7709not reduced. When this happens, the parser function @code{yyparse}
1a059451 7710calls @code{yyerror} and then returns 2.
bfa74976 7711
c827f760 7712Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7713usually results from using a right recursion instead of a left
7714recursion, @xref{Recursion, ,Recursive Rules}.
7715
bfa74976
RS
7716@vindex YYMAXDEPTH
7717By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7718parser stack can become before memory is exhausted. Define the
bfa74976
RS
7719macro with a value that is an integer. This value is the maximum number
7720of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7721
7722The stack space allowed is not necessarily allocated. If you specify a
1a059451 7723large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7724stack at first, and then makes it bigger by stages as needed. This
7725increasing allocation happens automatically and silently. Therefore,
7726you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7727space for ordinary inputs that do not need much stack.
7728
d7e14fc0
PE
7729However, do not allow @code{YYMAXDEPTH} to be a value so large that
7730arithmetic overflow could occur when calculating the size of the stack
7731space. Also, do not allow @code{YYMAXDEPTH} to be less than
7732@code{YYINITDEPTH}.
7733
bfa74976
RS
7734@cindex default stack limit
7735The default value of @code{YYMAXDEPTH}, if you do not define it, is
773610000.
7737
7738@vindex YYINITDEPTH
7739You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7740macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7741parser in C, this value must be a compile-time constant
d7e14fc0
PE
7742unless you are assuming C99 or some other target language or compiler
7743that allows variable-length arrays. The default is 200.
7744
1a059451 7745Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7746
20be2f92 7747You can generate a deterministic parser containing C++ user code from
411614fa 7748the default (C) skeleton, as well as from the C++ skeleton
20be2f92
PH
7749(@pxref{C++ Parsers}). However, if you do use the default skeleton
7750and want to allow the parsing stack to grow,
7751be careful not to use semantic types or location types that require
7752non-trivial copy constructors.
7753The C skeleton bypasses these constructors when copying data to
7754new, larger stacks.
d1a1114f 7755
342b8b6e 7756@node Error Recovery
bfa74976
RS
7757@chapter Error Recovery
7758@cindex error recovery
7759@cindex recovery from errors
7760
6e649e65 7761It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7762error. For example, a compiler should recover sufficiently to parse the
7763rest of the input file and check it for errors; a calculator should accept
7764another expression.
7765
7766In a simple interactive command parser where each input is one line, it may
7767be sufficient to allow @code{yyparse} to return 1 on error and have the
7768caller ignore the rest of the input line when that happens (and then call
7769@code{yyparse} again). But this is inadequate for a compiler, because it
7770forgets all the syntactic context leading up to the error. A syntax error
7771deep within a function in the compiler input should not cause the compiler
7772to treat the following line like the beginning of a source file.
7773
7774@findex error
7775You can define how to recover from a syntax error by writing rules to
7776recognize the special token @code{error}. This is a terminal symbol that
7777is always defined (you need not declare it) and reserved for error
7778handling. The Bison parser generates an @code{error} token whenever a
7779syntax error happens; if you have provided a rule to recognize this token
13863333 7780in the current context, the parse can continue.
bfa74976
RS
7781
7782For example:
7783
7784@example
7785stmnts: /* empty string */
7786 | stmnts '\n'
7787 | stmnts exp '\n'
7788 | stmnts error '\n'
7789@end example
7790
7791The fourth rule in this example says that an error followed by a newline
7792makes a valid addition to any @code{stmnts}.
7793
7794What happens if a syntax error occurs in the middle of an @code{exp}? The
7795error recovery rule, interpreted strictly, applies to the precise sequence
7796of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7797the middle of an @code{exp}, there will probably be some additional tokens
7798and subexpressions on the stack after the last @code{stmnts}, and there
7799will be tokens to read before the next newline. So the rule is not
7800applicable in the ordinary way.
7801
7802But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7803the semantic context and part of the input. First it discards states
7804and objects from the stack until it gets back to a state in which the
bfa74976 7805@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7806already parsed are discarded, back to the last complete @code{stmnts}.)
7807At this point the @code{error} token can be shifted. Then, if the old
742e4900 7808lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7809tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7810this example, Bison reads and discards input until the next newline so
7811that the fourth rule can apply. Note that discarded symbols are
7812possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7813Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7814
7815The choice of error rules in the grammar is a choice of strategies for
7816error recovery. A simple and useful strategy is simply to skip the rest of
7817the current input line or current statement if an error is detected:
7818
7819@example
72d2299c 7820stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7821@end example
7822
7823It is also useful to recover to the matching close-delimiter of an
7824opening-delimiter that has already been parsed. Otherwise the
7825close-delimiter will probably appear to be unmatched, and generate another,
7826spurious error message:
7827
7828@example
7829primary: '(' expr ')'
7830 | '(' error ')'
7831 @dots{}
7832 ;
7833@end example
7834
7835Error recovery strategies are necessarily guesses. When they guess wrong,
7836one syntax error often leads to another. In the above example, the error
7837recovery rule guesses that an error is due to bad input within one
7838@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7839middle of a valid @code{stmnt}. After the error recovery rule recovers
7840from the first error, another syntax error will be found straightaway,
7841since the text following the spurious semicolon is also an invalid
7842@code{stmnt}.
7843
7844To prevent an outpouring of error messages, the parser will output no error
7845message for another syntax error that happens shortly after the first; only
7846after three consecutive input tokens have been successfully shifted will
7847error messages resume.
7848
7849Note that rules which accept the @code{error} token may have actions, just
7850as any other rules can.
7851
7852@findex yyerrok
7853You can make error messages resume immediately by using the macro
7854@code{yyerrok} in an action. If you do this in the error rule's action, no
7855error messages will be suppressed. This macro requires no arguments;
7856@samp{yyerrok;} is a valid C statement.
7857
7858@findex yyclearin
742e4900 7859The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7860this is unacceptable, then the macro @code{yyclearin} may be used to clear
7861this token. Write the statement @samp{yyclearin;} in the error rule's
7862action.
32c29292 7863@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7864
6e649e65 7865For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7866called that advances the input stream to some point where parsing should
7867once again commence. The next symbol returned by the lexical scanner is
742e4900 7868probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7869with @samp{yyclearin;}.
7870
7871@vindex YYRECOVERING
02103984
PE
7872The expression @code{YYRECOVERING ()} yields 1 when the parser
7873is recovering from a syntax error, and 0 otherwise.
7874Syntax error diagnostics are suppressed while recovering from a syntax
7875error.
bfa74976 7876
342b8b6e 7877@node Context Dependency
bfa74976
RS
7878@chapter Handling Context Dependencies
7879
7880The Bison paradigm is to parse tokens first, then group them into larger
7881syntactic units. In many languages, the meaning of a token is affected by
7882its context. Although this violates the Bison paradigm, certain techniques
7883(known as @dfn{kludges}) may enable you to write Bison parsers for such
7884languages.
7885
7886@menu
7887* Semantic Tokens:: Token parsing can depend on the semantic context.
7888* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7889* Tie-in Recovery:: Lexical tie-ins have implications for how
7890 error recovery rules must be written.
7891@end menu
7892
7893(Actually, ``kludge'' means any technique that gets its job done but is
7894neither clean nor robust.)
7895
342b8b6e 7896@node Semantic Tokens
bfa74976
RS
7897@section Semantic Info in Token Types
7898
7899The C language has a context dependency: the way an identifier is used
7900depends on what its current meaning is. For example, consider this:
7901
7902@example
7903foo (x);
7904@end example
7905
7906This looks like a function call statement, but if @code{foo} is a typedef
7907name, then this is actually a declaration of @code{x}. How can a Bison
7908parser for C decide how to parse this input?
7909
8a4281b9 7910The method used in GNU C is to have two different token types,
bfa74976
RS
7911@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7912identifier, it looks up the current declaration of the identifier in order
7913to decide which token type to return: @code{TYPENAME} if the identifier is
7914declared as a typedef, @code{IDENTIFIER} otherwise.
7915
7916The grammar rules can then express the context dependency by the choice of
7917token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7918but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7919@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7920is @emph{not} significant, such as in declarations that can shadow a
7921typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7922accepted---there is one rule for each of the two token types.
7923
7924This technique is simple to use if the decision of which kinds of
7925identifiers to allow is made at a place close to where the identifier is
7926parsed. But in C this is not always so: C allows a declaration to
7927redeclare a typedef name provided an explicit type has been specified
7928earlier:
7929
7930@example
3a4f411f
PE
7931typedef int foo, bar;
7932int baz (void)
7933@{
7934 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7935 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7936 return foo (bar);
7937@}
bfa74976
RS
7938@end example
7939
7940Unfortunately, the name being declared is separated from the declaration
7941construct itself by a complicated syntactic structure---the ``declarator''.
7942
9ecbd125 7943As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7944all the nonterminal names changed: once for parsing a declaration in
7945which a typedef name can be redefined, and once for parsing a
7946declaration in which that can't be done. Here is a part of the
7947duplication, with actions omitted for brevity:
bfa74976
RS
7948
7949@example
7950initdcl:
7951 declarator maybeasm '='
7952 init
7953 | declarator maybeasm
7954 ;
7955
7956notype_initdcl:
7957 notype_declarator maybeasm '='
7958 init
7959 | notype_declarator maybeasm
7960 ;
7961@end example
7962
7963@noindent
7964Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7965cannot. The distinction between @code{declarator} and
7966@code{notype_declarator} is the same sort of thing.
7967
7968There is some similarity between this technique and a lexical tie-in
7969(described next), in that information which alters the lexical analysis is
7970changed during parsing by other parts of the program. The difference is
7971here the information is global, and is used for other purposes in the
7972program. A true lexical tie-in has a special-purpose flag controlled by
7973the syntactic context.
7974
342b8b6e 7975@node Lexical Tie-ins
bfa74976
RS
7976@section Lexical Tie-ins
7977@cindex lexical tie-in
7978
7979One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7980which is set by Bison actions, whose purpose is to alter the way tokens are
7981parsed.
7982
7983For example, suppose we have a language vaguely like C, but with a special
7984construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7985an expression in parentheses in which all integers are hexadecimal. In
7986particular, the token @samp{a1b} must be treated as an integer rather than
7987as an identifier if it appears in that context. Here is how you can do it:
7988
7989@example
7990@group
7991%@{
38a92d50
PE
7992 int hexflag;
7993 int yylex (void);
7994 void yyerror (char const *);
bfa74976
RS
7995%@}
7996%%
7997@dots{}
7998@end group
7999@group
8000expr: IDENTIFIER
8001 | constant
8002 | HEX '('
8003 @{ hexflag = 1; @}
8004 expr ')'
8005 @{ hexflag = 0;
8006 $$ = $4; @}
8007 | expr '+' expr
8008 @{ $$ = make_sum ($1, $3); @}
8009 @dots{}
8010 ;
8011@end group
8012
8013@group
8014constant:
8015 INTEGER
8016 | STRING
8017 ;
8018@end group
8019@end example
8020
8021@noindent
8022Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8023it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8024with letters are parsed as integers if possible.
8025
ff7571c0
JD
8026The declaration of @code{hexflag} shown in the prologue of the grammar
8027file is needed to make it accessible to the actions (@pxref{Prologue,
8028,The Prologue}). You must also write the code in @code{yylex} to obey
8029the flag.
bfa74976 8030
342b8b6e 8031@node Tie-in Recovery
bfa74976
RS
8032@section Lexical Tie-ins and Error Recovery
8033
8034Lexical tie-ins make strict demands on any error recovery rules you have.
8035@xref{Error Recovery}.
8036
8037The reason for this is that the purpose of an error recovery rule is to
8038abort the parsing of one construct and resume in some larger construct.
8039For example, in C-like languages, a typical error recovery rule is to skip
8040tokens until the next semicolon, and then start a new statement, like this:
8041
8042@example
8043stmt: expr ';'
8044 | IF '(' expr ')' stmt @{ @dots{} @}
8045 @dots{}
8046 error ';'
8047 @{ hexflag = 0; @}
8048 ;
8049@end example
8050
8051If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8052construct, this error rule will apply, and then the action for the
8053completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8054remain set for the entire rest of the input, or until the next @code{hex}
8055keyword, causing identifiers to be misinterpreted as integers.
8056
8057To avoid this problem the error recovery rule itself clears @code{hexflag}.
8058
8059There may also be an error recovery rule that works within expressions.
8060For example, there could be a rule which applies within parentheses
8061and skips to the close-parenthesis:
8062
8063@example
8064@group
8065expr: @dots{}
8066 | '(' expr ')'
8067 @{ $$ = $2; @}
8068 | '(' error ')'
8069 @dots{}
8070@end group
8071@end example
8072
8073If this rule acts within the @code{hex} construct, it is not going to abort
8074that construct (since it applies to an inner level of parentheses within
8075the construct). Therefore, it should not clear the flag: the rest of
8076the @code{hex} construct should be parsed with the flag still in effect.
8077
8078What if there is an error recovery rule which might abort out of the
8079@code{hex} construct or might not, depending on circumstances? There is no
8080way you can write the action to determine whether a @code{hex} construct is
8081being aborted or not. So if you are using a lexical tie-in, you had better
8082make sure your error recovery rules are not of this kind. Each rule must
8083be such that you can be sure that it always will, or always won't, have to
8084clear the flag.
8085
ec3bc396
AD
8086@c ================================================== Debugging Your Parser
8087
342b8b6e 8088@node Debugging
bfa74976 8089@chapter Debugging Your Parser
ec3bc396
AD
8090
8091Developing a parser can be a challenge, especially if you don't
8092understand the algorithm (@pxref{Algorithm, ,The Bison Parser
8093Algorithm}). Even so, sometimes a detailed description of the automaton
8094can help (@pxref{Understanding, , Understanding Your Parser}), or
8095tracing the execution of the parser can give some insight on why it
8096behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
8097
8098@menu
8099* Understanding:: Understanding the structure of your parser.
8100* Tracing:: Tracing the execution of your parser.
8101@end menu
8102
8103@node Understanding
8104@section Understanding Your Parser
8105
8106As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8107Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8108frequent than one would hope), looking at this automaton is required to
8109tune or simply fix a parser. Bison provides two different
35fe0834 8110representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8111
8112The textual file is generated when the options @option{--report} or
8113@option{--verbose} are specified, see @xref{Invocation, , Invoking
8114Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8115the parser implementation file name, and adding @samp{.output}
8116instead. Therefore, if the grammar file is @file{foo.y}, then the
8117parser implementation file is called @file{foo.tab.c} by default. As
8118a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8119
8120The following grammar file, @file{calc.y}, will be used in the sequel:
8121
8122@example
8123%token NUM STR
8124%left '+' '-'
8125%left '*'
8126%%
8127exp: exp '+' exp
8128 | exp '-' exp
8129 | exp '*' exp
8130 | exp '/' exp
8131 | NUM
8132 ;
8133useless: STR;
8134%%
8135@end example
8136
88bce5a2
AD
8137@command{bison} reports:
8138
8139@example
8f0d265e
JD
8140calc.y: warning: 1 nonterminal useless in grammar
8141calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8142calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8143calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8144calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8145@end example
8146
8147When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8148creates a file @file{calc.output} with contents detailed below. The
8149order of the output and the exact presentation might vary, but the
8150interpretation is the same.
ec3bc396
AD
8151
8152The first section includes details on conflicts that were solved thanks
8153to precedence and/or associativity:
8154
8155@example
8156Conflict in state 8 between rule 2 and token '+' resolved as reduce.
8157Conflict in state 8 between rule 2 and token '-' resolved as reduce.
8158Conflict in state 8 between rule 2 and token '*' resolved as shift.
8159@exdent @dots{}
8160@end example
8161
8162@noindent
8163The next section lists states that still have conflicts.
8164
8165@example
5a99098d
PE
8166State 8 conflicts: 1 shift/reduce
8167State 9 conflicts: 1 shift/reduce
8168State 10 conflicts: 1 shift/reduce
8169State 11 conflicts: 4 shift/reduce
ec3bc396
AD
8170@end example
8171
8172@noindent
8173@cindex token, useless
8174@cindex useless token
8175@cindex nonterminal, useless
8176@cindex useless nonterminal
8177@cindex rule, useless
8178@cindex useless rule
8179The next section reports useless tokens, nonterminal and rules. Useless
8180nonterminals and rules are removed in order to produce a smaller parser,
8181but useless tokens are preserved, since they might be used by the
d80fb37a 8182scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
8183below):
8184
8185@example
d80fb37a 8186Nonterminals useless in grammar:
ec3bc396
AD
8187 useless
8188
d80fb37a 8189Terminals unused in grammar:
ec3bc396
AD
8190 STR
8191
cff03fb2 8192Rules useless in grammar:
ec3bc396
AD
8193#6 useless: STR;
8194@end example
8195
8196@noindent
8197The next section reproduces the exact grammar that Bison used:
8198
8199@example
8200Grammar
8201
8202 Number, Line, Rule
88bce5a2 8203 0 5 $accept -> exp $end
ec3bc396
AD
8204 1 5 exp -> exp '+' exp
8205 2 6 exp -> exp '-' exp
8206 3 7 exp -> exp '*' exp
8207 4 8 exp -> exp '/' exp
8208 5 9 exp -> NUM
8209@end example
8210
8211@noindent
8212and reports the uses of the symbols:
8213
8214@example
8215Terminals, with rules where they appear
8216
88bce5a2 8217$end (0) 0
ec3bc396
AD
8218'*' (42) 3
8219'+' (43) 1
8220'-' (45) 2
8221'/' (47) 4
8222error (256)
8223NUM (258) 5
8224
8225Nonterminals, with rules where they appear
8226
88bce5a2 8227$accept (8)
ec3bc396
AD
8228 on left: 0
8229exp (9)
8230 on left: 1 2 3 4 5, on right: 0 1 2 3 4
8231@end example
8232
8233@noindent
8234@cindex item
8235@cindex pointed rule
8236@cindex rule, pointed
8237Bison then proceeds onto the automaton itself, describing each state
8238with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
8239item is a production rule together with a point (marked by @samp{.})
8240that the input cursor.
8241
8242@example
8243state 0
8244
88bce5a2 8245 $accept -> . exp $ (rule 0)
ec3bc396 8246
2a8d363a 8247 NUM shift, and go to state 1
ec3bc396 8248
2a8d363a 8249 exp go to state 2
ec3bc396
AD
8250@end example
8251
8252This reads as follows: ``state 0 corresponds to being at the very
8253beginning of the parsing, in the initial rule, right before the start
8254symbol (here, @code{exp}). When the parser returns to this state right
8255after having reduced a rule that produced an @code{exp}, the control
8256flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 8257symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 8258the parse stack, and the control flow jumps to state 1. Any other
742e4900 8259lookahead triggers a syntax error.''
ec3bc396
AD
8260
8261@cindex core, item set
8262@cindex item set core
8263@cindex kernel, item set
8264@cindex item set core
8265Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8266report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8267at the beginning of any rule deriving an @code{exp}. By default Bison
8268reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8269you want to see more detail you can invoke @command{bison} with
8270@option{--report=itemset} to list all the items, include those that can
8271be derived:
8272
8273@example
8274state 0
8275
88bce5a2 8276 $accept -> . exp $ (rule 0)
ec3bc396
AD
8277 exp -> . exp '+' exp (rule 1)
8278 exp -> . exp '-' exp (rule 2)
8279 exp -> . exp '*' exp (rule 3)
8280 exp -> . exp '/' exp (rule 4)
8281 exp -> . NUM (rule 5)
8282
8283 NUM shift, and go to state 1
8284
8285 exp go to state 2
8286@end example
8287
8288@noindent
8289In the state 1...
8290
8291@example
8292state 1
8293
8294 exp -> NUM . (rule 5)
8295
2a8d363a 8296 $default reduce using rule 5 (exp)
ec3bc396
AD
8297@end example
8298
8299@noindent
742e4900 8300the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8301(@samp{$default}), the parser will reduce it. If it was coming from
8302state 0, then, after this reduction it will return to state 0, and will
8303jump to state 2 (@samp{exp: go to state 2}).
8304
8305@example
8306state 2
8307
88bce5a2 8308 $accept -> exp . $ (rule 0)
ec3bc396
AD
8309 exp -> exp . '+' exp (rule 1)
8310 exp -> exp . '-' exp (rule 2)
8311 exp -> exp . '*' exp (rule 3)
8312 exp -> exp . '/' exp (rule 4)
8313
2a8d363a
AD
8314 $ shift, and go to state 3
8315 '+' shift, and go to state 4
8316 '-' shift, and go to state 5
8317 '*' shift, and go to state 6
8318 '/' shift, and go to state 7
ec3bc396
AD
8319@end example
8320
8321@noindent
8322In state 2, the automaton can only shift a symbol. For instance,
742e4900 8323because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8324@samp{+}, it will be shifted on the parse stack, and the automaton
8325control will jump to state 4, corresponding to the item @samp{exp -> exp
8326'+' . exp}. Since there is no default action, any other token than
6e649e65 8327those listed above will trigger a syntax error.
ec3bc396 8328
eb45ef3b 8329@cindex accepting state
ec3bc396
AD
8330The state 3 is named the @dfn{final state}, or the @dfn{accepting
8331state}:
8332
8333@example
8334state 3
8335
88bce5a2 8336 $accept -> exp $ . (rule 0)
ec3bc396 8337
2a8d363a 8338 $default accept
ec3bc396
AD
8339@end example
8340
8341@noindent
8342the initial rule is completed (the start symbol and the end
8343of input were read), the parsing exits successfully.
8344
8345The interpretation of states 4 to 7 is straightforward, and is left to
8346the reader.
8347
8348@example
8349state 4
8350
8351 exp -> exp '+' . exp (rule 1)
8352
2a8d363a 8353 NUM shift, and go to state 1
ec3bc396 8354
2a8d363a 8355 exp go to state 8
ec3bc396
AD
8356
8357state 5
8358
8359 exp -> exp '-' . exp (rule 2)
8360
2a8d363a 8361 NUM shift, and go to state 1
ec3bc396 8362
2a8d363a 8363 exp go to state 9
ec3bc396
AD
8364
8365state 6
8366
8367 exp -> exp '*' . exp (rule 3)
8368
2a8d363a 8369 NUM shift, and go to state 1
ec3bc396 8370
2a8d363a 8371 exp go to state 10
ec3bc396
AD
8372
8373state 7
8374
8375 exp -> exp '/' . exp (rule 4)
8376
2a8d363a 8377 NUM shift, and go to state 1
ec3bc396 8378
2a8d363a 8379 exp go to state 11
ec3bc396
AD
8380@end example
8381
5a99098d
PE
8382As was announced in beginning of the report, @samp{State 8 conflicts:
83831 shift/reduce}:
ec3bc396
AD
8384
8385@example
8386state 8
8387
8388 exp -> exp . '+' exp (rule 1)
8389 exp -> exp '+' exp . (rule 1)
8390 exp -> exp . '-' exp (rule 2)
8391 exp -> exp . '*' exp (rule 3)
8392 exp -> exp . '/' exp (rule 4)
8393
2a8d363a
AD
8394 '*' shift, and go to state 6
8395 '/' shift, and go to state 7
ec3bc396 8396
2a8d363a
AD
8397 '/' [reduce using rule 1 (exp)]
8398 $default reduce using rule 1 (exp)
ec3bc396
AD
8399@end example
8400
742e4900 8401Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8402either shifting (and going to state 7), or reducing rule 1. The
8403conflict means that either the grammar is ambiguous, or the parser lacks
8404information to make the right decision. Indeed the grammar is
8405ambiguous, as, since we did not specify the precedence of @samp{/}, the
8406sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8407NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8408NUM}, which corresponds to reducing rule 1.
8409
eb45ef3b 8410Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8411arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8412Shift/Reduce Conflicts}. Discarded actions are reported in between
8413square brackets.
8414
8415Note that all the previous states had a single possible action: either
8416shifting the next token and going to the corresponding state, or
8417reducing a single rule. In the other cases, i.e., when shifting
8418@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8419possible, the lookahead is required to select the action. State 8 is
8420one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8421is shifting, otherwise the action is reducing rule 1. In other words,
8422the first two items, corresponding to rule 1, are not eligible when the
742e4900 8423lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8424precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8425with some set of possible lookahead tokens. When run with
8426@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8427
8428@example
8429state 8
8430
88c78747 8431 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8432 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8433 exp -> exp . '-' exp (rule 2)
8434 exp -> exp . '*' exp (rule 3)
8435 exp -> exp . '/' exp (rule 4)
8436
8437 '*' shift, and go to state 6
8438 '/' shift, and go to state 7
8439
8440 '/' [reduce using rule 1 (exp)]
8441 $default reduce using rule 1 (exp)
8442@end example
8443
8444The remaining states are similar:
8445
8446@example
8447state 9
8448
8449 exp -> exp . '+' exp (rule 1)
8450 exp -> exp . '-' exp (rule 2)
8451 exp -> exp '-' exp . (rule 2)
8452 exp -> exp . '*' exp (rule 3)
8453 exp -> exp . '/' exp (rule 4)
8454
2a8d363a
AD
8455 '*' shift, and go to state 6
8456 '/' shift, and go to state 7
ec3bc396 8457
2a8d363a
AD
8458 '/' [reduce using rule 2 (exp)]
8459 $default reduce using rule 2 (exp)
ec3bc396
AD
8460
8461state 10
8462
8463 exp -> exp . '+' exp (rule 1)
8464 exp -> exp . '-' exp (rule 2)
8465 exp -> exp . '*' exp (rule 3)
8466 exp -> exp '*' exp . (rule 3)
8467 exp -> exp . '/' exp (rule 4)
8468
2a8d363a 8469 '/' shift, and go to state 7
ec3bc396 8470
2a8d363a
AD
8471 '/' [reduce using rule 3 (exp)]
8472 $default reduce using rule 3 (exp)
ec3bc396
AD
8473
8474state 11
8475
8476 exp -> exp . '+' exp (rule 1)
8477 exp -> exp . '-' exp (rule 2)
8478 exp -> exp . '*' exp (rule 3)
8479 exp -> exp . '/' exp (rule 4)
8480 exp -> exp '/' exp . (rule 4)
8481
2a8d363a
AD
8482 '+' shift, and go to state 4
8483 '-' shift, and go to state 5
8484 '*' shift, and go to state 6
8485 '/' shift, and go to state 7
ec3bc396 8486
2a8d363a
AD
8487 '+' [reduce using rule 4 (exp)]
8488 '-' [reduce using rule 4 (exp)]
8489 '*' [reduce using rule 4 (exp)]
8490 '/' [reduce using rule 4 (exp)]
8491 $default reduce using rule 4 (exp)
ec3bc396
AD
8492@end example
8493
8494@noindent
fa7e68c3
PE
8495Observe that state 11 contains conflicts not only due to the lack of
8496precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8497@samp{*}, but also because the
ec3bc396
AD
8498associativity of @samp{/} is not specified.
8499
8500
8501@node Tracing
8502@section Tracing Your Parser
bfa74976
RS
8503@findex yydebug
8504@cindex debugging
8505@cindex tracing the parser
8506
8507If a Bison grammar compiles properly but doesn't do what you want when it
8508runs, the @code{yydebug} parser-trace feature can help you figure out why.
8509
3ded9a63
AD
8510There are several means to enable compilation of trace facilities:
8511
8512@table @asis
8513@item the macro @code{YYDEBUG}
8514@findex YYDEBUG
8515Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8516parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8517@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8518YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8519Prologue}).
8520
8521@item the option @option{-t}, @option{--debug}
8522Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8523,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8524
8525@item the directive @samp{%debug}
8526@findex %debug
fa819509
AD
8527Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8528Summary}). This Bison extension is maintained for backward
8529compatibility with previous versions of Bison.
8530
8531@item the variable @samp{parse.trace}
8532@findex %define parse.trace
35c1e5f0
JD
8533Add the @samp{%define parse.trace} directive (@pxref{%define
8534Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8535(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8536useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8537portability matter to you, this is the preferred solution.
3ded9a63
AD
8538@end table
8539
fa819509 8540We suggest that you always enable the trace option so that debugging is
3ded9a63 8541always possible.
bfa74976 8542
02a81e05 8543The trace facility outputs messages with macro calls of the form
e2742e46 8544@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8545@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8546arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8547define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8548and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8549
8550Once you have compiled the program with trace facilities, the way to
8551request a trace is to store a nonzero value in the variable @code{yydebug}.
8552You can do this by making the C code do it (in @code{main}, perhaps), or
8553you can alter the value with a C debugger.
8554
8555Each step taken by the parser when @code{yydebug} is nonzero produces a
8556line or two of trace information, written on @code{stderr}. The trace
8557messages tell you these things:
8558
8559@itemize @bullet
8560@item
8561Each time the parser calls @code{yylex}, what kind of token was read.
8562
8563@item
8564Each time a token is shifted, the depth and complete contents of the
8565state stack (@pxref{Parser States}).
8566
8567@item
8568Each time a rule is reduced, which rule it is, and the complete contents
8569of the state stack afterward.
8570@end itemize
8571
8572To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8573produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8574Bison}). This file shows the meaning of each state in terms of
8575positions in various rules, and also what each state will do with each
8576possible input token. As you read the successive trace messages, you
8577can see that the parser is functioning according to its specification in
8578the listing file. Eventually you will arrive at the place where
8579something undesirable happens, and you will see which parts of the
8580grammar are to blame.
bfa74976 8581
ff7571c0
JD
8582The parser implementation file is a C program and you can use C
8583debuggers on it, but it's not easy to interpret what it is doing. The
8584parser function is a finite-state machine interpreter, and aside from
8585the actions it executes the same code over and over. Only the values
8586of variables show where in the grammar it is working.
bfa74976
RS
8587
8588@findex YYPRINT
8589The debugging information normally gives the token type of each token
8590read, but not its semantic value. You can optionally define a macro
8591named @code{YYPRINT} to provide a way to print the value. If you define
8592@code{YYPRINT}, it should take three arguments. The parser will pass a
8593standard I/O stream, the numeric code for the token type, and the token
8594value (from @code{yylval}).
8595
8596Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8597calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8598
8599@smallexample
38a92d50
PE
8600%@{
8601 static void print_token_value (FILE *, int, YYSTYPE);
8602 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8603%@}
8604
8605@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8606
8607static void
831d3c99 8608print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8609@{
8610 if (type == VAR)
d3c4e709 8611 fprintf (file, "%s", value.tptr->name);
bfa74976 8612 else if (type == NUM)
d3c4e709 8613 fprintf (file, "%d", value.val);
bfa74976
RS
8614@}
8615@end smallexample
8616
ec3bc396
AD
8617@c ================================================= Invoking Bison
8618
342b8b6e 8619@node Invocation
bfa74976
RS
8620@chapter Invoking Bison
8621@cindex invoking Bison
8622@cindex Bison invocation
8623@cindex options for invoking Bison
8624
8625The usual way to invoke Bison is as follows:
8626
8627@example
8628bison @var{infile}
8629@end example
8630
8631Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
8632@samp{.y}. The parser implementation file's name is made by replacing
8633the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8634Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8635the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8636also possible, in case you are writing C++ code instead of C in your
8637grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8638output files will take an extension like the given one as input
8639(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8640feature takes effect with all options that manipulate file names like
234a3be3
AD
8641@samp{-o} or @samp{-d}.
8642
8643For example :
8644
8645@example
8646bison -d @var{infile.yxx}
8647@end example
84163231 8648@noindent
72d2299c 8649will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8650
8651@example
b56471a6 8652bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8653@end example
84163231 8654@noindent
234a3be3
AD
8655will produce @file{output.c++} and @file{outfile.h++}.
8656
8a4281b9 8657For compatibility with POSIX, the standard Bison
397ec073
PE
8658distribution also contains a shell script called @command{yacc} that
8659invokes Bison with the @option{-y} option.
8660
bfa74976 8661@menu
13863333 8662* Bison Options:: All the options described in detail,
c827f760 8663 in alphabetical order by short options.
bfa74976 8664* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8665* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8666@end menu
8667
342b8b6e 8668@node Bison Options
bfa74976
RS
8669@section Bison Options
8670
8671Bison supports both traditional single-letter options and mnemonic long
8672option names. Long option names are indicated with @samp{--} instead of
8673@samp{-}. Abbreviations for option names are allowed as long as they
8674are unique. When a long option takes an argument, like
8675@samp{--file-prefix}, connect the option name and the argument with
8676@samp{=}.
8677
8678Here is a list of options that can be used with Bison, alphabetized by
8679short option. It is followed by a cross key alphabetized by long
8680option.
8681
89cab50d
AD
8682@c Please, keep this ordered as in `bison --help'.
8683@noindent
8684Operations modes:
8685@table @option
8686@item -h
8687@itemx --help
8688Print a summary of the command-line options to Bison and exit.
bfa74976 8689
89cab50d
AD
8690@item -V
8691@itemx --version
8692Print the version number of Bison and exit.
bfa74976 8693
f7ab6a50
PE
8694@item --print-localedir
8695Print the name of the directory containing locale-dependent data.
8696
a0de5091
JD
8697@item --print-datadir
8698Print the name of the directory containing skeletons and XSLT.
8699
89cab50d
AD
8700@item -y
8701@itemx --yacc
ff7571c0
JD
8702Act more like the traditional Yacc command. This can cause different
8703diagnostics to be generated, and may change behavior in other minor
8704ways. Most importantly, imitate Yacc's output file name conventions,
8705so that the parser implementation file is called @file{y.tab.c}, and
8706the other outputs are called @file{y.output} and @file{y.tab.h}.
8707Also, if generating a deterministic parser in C, generate
8708@code{#define} statements in addition to an @code{enum} to associate
8709token numbers with token names. Thus, the following shell script can
8710substitute for Yacc, and the Bison distribution contains such a script
8711for compatibility with POSIX:
bfa74976 8712
89cab50d 8713@example
397ec073 8714#! /bin/sh
26e06a21 8715bison -y "$@@"
89cab50d 8716@end example
54662697
PE
8717
8718The @option{-y}/@option{--yacc} option is intended for use with
8719traditional Yacc grammars. If your grammar uses a Bison extension
8720like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8721this option is specified.
8722
1d5b3c08
JD
8723@item -W [@var{category}]
8724@itemx --warnings[=@var{category}]
118d4978
AD
8725Output warnings falling in @var{category}. @var{category} can be one
8726of:
8727@table @code
8728@item midrule-values
8e55b3aa
JD
8729Warn about mid-rule values that are set but not used within any of the actions
8730of the parent rule.
8731For example, warn about unused @code{$2} in:
118d4978
AD
8732
8733@example
8734exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8735@end example
8736
8e55b3aa
JD
8737Also warn about mid-rule values that are used but not set.
8738For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8739
8740@example
8741 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8742@end example
8743
8744These warnings are not enabled by default since they sometimes prove to
8745be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8746@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978 8747
118d4978 8748@item yacc
8a4281b9 8749Incompatibilities with POSIX Yacc.
118d4978 8750
786743d5
JD
8751@item conflicts-sr
8752@itemx conflicts-rr
8753S/R and R/R conflicts. These warnings are enabled by default. However, if
8754the @code{%expect} or @code{%expect-rr} directive is specified, an
8755unexpected number of conflicts is an error, and an expected number of
8756conflicts is not reported, so @option{-W} and @option{--warning} then have
8757no effect on the conflict report.
8758
c39014ae
JD
8759@item other
8760All warnings not categorized above. These warnings are enabled by default.
8761
8762This category is provided merely for the sake of completeness. Future
8763releases of Bison may move warnings from this category to new, more specific
8764categories.
8765
118d4978 8766@item all
8e55b3aa 8767All the warnings.
118d4978 8768@item none
8e55b3aa 8769Turn off all the warnings.
118d4978 8770@item error
8e55b3aa 8771Treat warnings as errors.
118d4978
AD
8772@end table
8773
8774A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8775instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8776POSIX Yacc incompatibilities.
89cab50d
AD
8777@end table
8778
8779@noindent
8780Tuning the parser:
8781
8782@table @option
8783@item -t
8784@itemx --debug
ff7571c0
JD
8785In the parser implementation file, define the macro @code{YYDEBUG} to
87861 if it is not already defined, so that the debugging facilities are
8787compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8788
58697c6d
AD
8789@item -D @var{name}[=@var{value}]
8790@itemx --define=@var{name}[=@var{value}]
17aed602 8791@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8792@itemx --force-define=@var{name}[=@var{value}]
8793Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 8794(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
8795definitions for the same @var{name} as follows:
8796
8797@itemize
8798@item
0b6d43c5
JD
8799Bison quietly ignores all command-line definitions for @var{name} except
8800the last.
de5ab940 8801@item
0b6d43c5
JD
8802If that command-line definition is specified by a @code{-D} or
8803@code{--define}, Bison reports an error for any @code{%define}
8804definition for @var{name}.
de5ab940 8805@item
0b6d43c5
JD
8806If that command-line definition is specified by a @code{-F} or
8807@code{--force-define} instead, Bison quietly ignores all @code{%define}
8808definitions for @var{name}.
8809@item
8810Otherwise, Bison reports an error if there are multiple @code{%define}
8811definitions for @var{name}.
de5ab940
JD
8812@end itemize
8813
8814You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
8815make files unless you are confident that it is safe to quietly ignore
8816any conflicting @code{%define} that may be added to the grammar file.
58697c6d 8817
0e021770
PE
8818@item -L @var{language}
8819@itemx --language=@var{language}
8820Specify the programming language for the generated parser, as if
8821@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8822Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8823@var{language} is case-insensitive.
0e021770 8824
ed4d67dc
JD
8825This option is experimental and its effect may be modified in future
8826releases.
8827
89cab50d 8828@item --locations
d8988b2f 8829Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8830
8831@item -p @var{prefix}
8832@itemx --name-prefix=@var{prefix}
02975b9a 8833Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8834@xref{Decl Summary}.
bfa74976
RS
8835
8836@item -l
8837@itemx --no-lines
ff7571c0
JD
8838Don't put any @code{#line} preprocessor commands in the parser
8839implementation file. Ordinarily Bison puts them in the parser
8840implementation file so that the C compiler and debuggers will
8841associate errors with your source file, the grammar file. This option
8842causes them to associate errors with the parser implementation file,
8843treating it as an independent source file in its own right.
bfa74976 8844
e6e704dc
JD
8845@item -S @var{file}
8846@itemx --skeleton=@var{file}
a7867f53 8847Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8848(@pxref{Decl Summary, , Bison Declaration Summary}).
8849
ed4d67dc
JD
8850@c You probably don't need this option unless you are developing Bison.
8851@c You should use @option{--language} if you want to specify the skeleton for a
8852@c different language, because it is clearer and because it will always
8853@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8854
a7867f53
JD
8855If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8856file in the Bison installation directory.
8857If it does, @var{file} is an absolute file name or a file name relative to the
8858current working directory.
8859This is similar to how most shells resolve commands.
8860
89cab50d
AD
8861@item -k
8862@itemx --token-table
d8988b2f 8863Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8864@end table
bfa74976 8865
89cab50d
AD
8866@noindent
8867Adjust the output:
bfa74976 8868
89cab50d 8869@table @option
8e55b3aa 8870@item --defines[=@var{file}]
d8988b2f 8871Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8872file containing macro definitions for the token type names defined in
4bfd5e4e 8873the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8874
8e55b3aa
JD
8875@item -d
8876This is the same as @code{--defines} except @code{-d} does not accept a
8877@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8878with other short options.
342b8b6e 8879
89cab50d
AD
8880@item -b @var{file-prefix}
8881@itemx --file-prefix=@var{prefix}
9c437126 8882Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8883for all Bison output file names. @xref{Decl Summary}.
bfa74976 8884
ec3bc396
AD
8885@item -r @var{things}
8886@itemx --report=@var{things}
8887Write an extra output file containing verbose description of the comma
8888separated list of @var{things} among:
8889
8890@table @code
8891@item state
8892Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8893parser's automaton.
ec3bc396 8894
742e4900 8895@item lookahead
ec3bc396 8896Implies @code{state} and augments the description of the automaton with
742e4900 8897each rule's lookahead set.
ec3bc396
AD
8898
8899@item itemset
8900Implies @code{state} and augments the description of the automaton with
8901the full set of items for each state, instead of its core only.
8902@end table
8903
1bb2bd75
JD
8904@item --report-file=@var{file}
8905Specify the @var{file} for the verbose description.
8906
bfa74976
RS
8907@item -v
8908@itemx --verbose
9c437126 8909Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8910file containing verbose descriptions of the grammar and
72d2299c 8911parser. @xref{Decl Summary}.
bfa74976 8912
fa4d969f
PE
8913@item -o @var{file}
8914@itemx --output=@var{file}
ff7571c0 8915Specify the @var{file} for the parser implementation file.
bfa74976 8916
fa4d969f 8917The other output files' names are constructed from @var{file} as
d8988b2f 8918described under the @samp{-v} and @samp{-d} options.
342b8b6e 8919
a7c09cba 8920@item -g [@var{file}]
8e55b3aa 8921@itemx --graph[=@var{file}]
eb45ef3b 8922Output a graphical representation of the parser's
35fe0834 8923automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 8924@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8925@code{@var{file}} is optional.
8926If omitted and the grammar file is @file{foo.y}, the output file will be
8927@file{foo.dot}.
59da312b 8928
a7c09cba 8929@item -x [@var{file}]
8e55b3aa 8930@itemx --xml[=@var{file}]
eb45ef3b 8931Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8932@code{@var{file}} is optional.
59da312b
JD
8933If omitted and the grammar file is @file{foo.y}, the output file will be
8934@file{foo.xml}.
8935(The current XML schema is experimental and may evolve.
8936More user feedback will help to stabilize it.)
bfa74976
RS
8937@end table
8938
342b8b6e 8939@node Option Cross Key
bfa74976
RS
8940@section Option Cross Key
8941
8942Here is a list of options, alphabetized by long option, to help you find
de5ab940 8943the corresponding short option and directive.
bfa74976 8944
de5ab940 8945@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8946@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8947@include cross-options.texi
aa08666d 8948@end multitable
bfa74976 8949
93dd49ab
PE
8950@node Yacc Library
8951@section Yacc Library
8952
8953The Yacc library contains default implementations of the
8954@code{yyerror} and @code{main} functions. These default
8a4281b9 8955implementations are normally not useful, but POSIX requires
93dd49ab
PE
8956them. To use the Yacc library, link your program with the
8957@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 8958library is distributed under the terms of the GNU General
93dd49ab
PE
8959Public License (@pxref{Copying}).
8960
8961If you use the Yacc library's @code{yyerror} function, you should
8962declare @code{yyerror} as follows:
8963
8964@example
8965int yyerror (char const *);
8966@end example
8967
8968Bison ignores the @code{int} value returned by this @code{yyerror}.
8969If you use the Yacc library's @code{main} function, your
8970@code{yyparse} function should have the following type signature:
8971
8972@example
8973int yyparse (void);
8974@end example
8975
12545799
AD
8976@c ================================================= C++ Bison
8977
8405b70c
PB
8978@node Other Languages
8979@chapter Parsers Written In Other Languages
12545799
AD
8980
8981@menu
8982* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8983* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8984@end menu
8985
8986@node C++ Parsers
8987@section C++ Parsers
8988
8989@menu
8990* C++ Bison Interface:: Asking for C++ parser generation
8991* C++ Semantic Values:: %union vs. C++
8992* C++ Location Values:: The position and location classes
8993* C++ Parser Interface:: Instantiating and running the parser
8994* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8995* A Complete C++ Example:: Demonstrating their use
12545799
AD
8996@end menu
8997
8998@node C++ Bison Interface
8999@subsection C++ Bison Interface
ed4d67dc 9000@c - %skeleton "lalr1.cc"
12545799
AD
9001@c - Always pure
9002@c - initial action
9003
eb45ef3b 9004The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
9005@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
9006@option{--skeleton=lalr1.cc}.
e6e704dc 9007@xref{Decl Summary}.
0e021770 9008
793fbca5
JD
9009When run, @command{bison} will create several entities in the @samp{yy}
9010namespace.
67501061 9011@findex %define api.namespace
35c1e5f0
JD
9012Use the @samp{%define api.namespace} directive to change the namespace name,
9013see @ref{%define Summary,,api.namespace}. The various classes are generated
9014in the following files:
aa08666d 9015
12545799
AD
9016@table @file
9017@item position.hh
9018@itemx location.hh
9019The definition of the classes @code{position} and @code{location},
3cdc21cf 9020used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9021
9022@item stack.hh
9023An auxiliary class @code{stack} used by the parser.
9024
fa4d969f
PE
9025@item @var{file}.hh
9026@itemx @var{file}.cc
ff7571c0 9027(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9028declaration and implementation of the C++ parser class. The basename
9029and extension of these two files follow the same rules as with regular C
9030parsers (@pxref{Invocation}).
12545799 9031
cd8b5791
AD
9032The header is @emph{mandatory}; you must either pass
9033@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9034@samp{%defines} directive.
9035@end table
9036
9037All these files are documented using Doxygen; run @command{doxygen}
9038for a complete and accurate documentation.
9039
9040@node C++ Semantic Values
9041@subsection C++ Semantic Values
9042@c - No objects in unions
178e123e 9043@c - YYSTYPE
12545799
AD
9044@c - Printer and destructor
9045
3cdc21cf
AD
9046Bison supports two different means to handle semantic values in C++. One is
9047alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9048practitioners know, unions are inconvenient in C++, therefore another
9049approach is provided, based on variants (@pxref{C++ Variants}).
9050
9051@menu
9052* C++ Unions:: Semantic values cannot be objects
9053* C++ Variants:: Using objects as semantic values
9054@end menu
9055
9056@node C++ Unions
9057@subsubsection C++ Unions
9058
12545799
AD
9059The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9060Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9061@code{union}, which have a few specific features in C++.
12545799
AD
9062@itemize @minus
9063@item
fb9712a9
AD
9064The type @code{YYSTYPE} is defined but its use is discouraged: rather
9065you should refer to the parser's encapsulated type
9066@code{yy::parser::semantic_type}.
12545799
AD
9067@item
9068Non POD (Plain Old Data) types cannot be used. C++ forbids any
9069instance of classes with constructors in unions: only @emph{pointers}
9070to such objects are allowed.
9071@end itemize
9072
9073Because objects have to be stored via pointers, memory is not
9074reclaimed automatically: using the @code{%destructor} directive is the
9075only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9076Symbols}.
9077
3cdc21cf
AD
9078@node C++ Variants
9079@subsubsection C++ Variants
9080
9081Starting with version 2.6, Bison provides a @emph{variant} based
9082implementation of semantic values for C++. This alleviates all the
9083limitations reported in the previous section, and in particular, object
9084types can be used without pointers.
9085
9086To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9087@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9088@code{%union} is ignored, and instead of using the name of the fields of the
9089@code{%union} to ``type'' the symbols, use genuine types.
9090
9091For instance, instead of
9092
9093@example
9094%union
9095@{
9096 int ival;
9097 std::string* sval;
9098@}
9099%token <ival> NUMBER;
9100%token <sval> STRING;
9101@end example
9102
9103@noindent
9104write
9105
9106@example
9107%token <int> NUMBER;
9108%token <std::string> STRING;
9109@end example
9110
9111@code{STRING} is no longer a pointer, which should fairly simplify the user
9112actions in the grammar and in the scanner (in particular the memory
9113management).
9114
9115Since C++ features destructors, and since it is customary to specialize
9116@code{operator<<} to support uniform printing of values, variants also
9117typically simplify Bison printers and destructors.
9118
9119Variants are stricter than unions. When based on unions, you may play any
9120dirty game with @code{yylval}, say storing an @code{int}, reading a
9121@code{char*}, and then storing a @code{double} in it. This is no longer
9122possible with variants: they must be initialized, then assigned to, and
9123eventually, destroyed.
9124
9125@deftypemethod {semantic_type} {T&} build<T> ()
9126Initialize, but leave empty. Returns the address where the actual value may
9127be stored. Requires that the variant was not initialized yet.
9128@end deftypemethod
9129
9130@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9131Initialize, and copy-construct from @var{t}.
9132@end deftypemethod
9133
9134
9135@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9136appeared unacceptable to require Boost on the user's machine (i.e., the
9137machine on which the generated parser will be compiled, not the machine on
9138which @command{bison} was run). Second, for each possible semantic value,
9139Boost.Variant not only stores the value, but also a tag specifying its
9140type. But the parser already ``knows'' the type of the semantic value, so
9141that would be duplicating the information.
9142
9143Therefore we developed light-weight variants whose type tag is external (so
9144they are really like @code{unions} for C++ actually). But our code is much
9145less mature that Boost.Variant. So there is a number of limitations in
9146(the current implementation of) variants:
9147@itemize
9148@item
9149Alignment must be enforced: values should be aligned in memory according to
9150the most demanding type. Computing the smallest alignment possible requires
9151meta-programming techniques that are not currently implemented in Bison, and
9152therefore, since, as far as we know, @code{double} is the most demanding
9153type on all platforms, alignments are enforced for @code{double} whatever
9154types are actually used. This may waste space in some cases.
9155
9156@item
9157Our implementation is not conforming with strict aliasing rules. Alias
9158analysis is a technique used in optimizing compilers to detect when two
9159pointers are disjoint (they cannot ``meet''). Our implementation breaks
9160some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9161alias analysis must be disabled}. Use the option
9162@option{-fno-strict-aliasing} to compile the generated parser.
9163
9164@item
9165There might be portability issues we are not aware of.
9166@end itemize
9167
a6ca4ce2 9168As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9169is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9170
9171@node C++ Location Values
9172@subsection C++ Location Values
9173@c - %locations
9174@c - class Position
9175@c - class Location
16dc6a9e 9176@c - %define filename_type "const symbol::Symbol"
12545799
AD
9177
9178When the directive @code{%locations} is used, the C++ parser supports
303834cc
JD
9179location tracking, see @ref{Tracking Locations}. Two auxiliary classes
9180define a @code{position}, a single point in a file, and a @code{location}, a
9181range composed of a pair of @code{position}s (possibly spanning several
9182files).
12545799 9183
fa4d969f 9184@deftypemethod {position} {std::string*} file
12545799
AD
9185The name of the file. It will always be handled as a pointer, the
9186parser will never duplicate nor deallocate it. As an experimental
9187feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9188filename_type "@var{type}"}.
12545799
AD
9189@end deftypemethod
9190
9191@deftypemethod {position} {unsigned int} line
9192The line, starting at 1.
9193@end deftypemethod
9194
9195@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
9196Advance by @var{height} lines, resetting the column number.
9197@end deftypemethod
9198
9199@deftypemethod {position} {unsigned int} column
9200The column, starting at 0.
9201@end deftypemethod
9202
9203@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
9204Advance by @var{width} columns, without changing the line number.
9205@end deftypemethod
9206
9207@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
9208@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
9209@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
9210@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
9211Various forms of syntactic sugar for @code{columns}.
9212@end deftypemethod
9213
9214@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
9215Report @var{p} on @var{o} like this:
fa4d969f
PE
9216@samp{@var{file}:@var{line}.@var{column}}, or
9217@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
9218@end deftypemethod
9219
9220@deftypemethod {location} {position} begin
9221@deftypemethodx {location} {position} end
9222The first, inclusive, position of the range, and the first beyond.
9223@end deftypemethod
9224
9225@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
9226@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
9227Advance the @code{end} position.
9228@end deftypemethod
9229
9230@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
9231@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
9232@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
9233Various forms of syntactic sugar.
9234@end deftypemethod
9235
9236@deftypemethod {location} {void} step ()
9237Move @code{begin} onto @code{end}.
9238@end deftypemethod
9239
9240
9241@node C++ Parser Interface
9242@subsection C++ Parser Interface
9243@c - define parser_class_name
9244@c - Ctor
9245@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9246@c debug_stream.
9247@c - Reporting errors
9248
9249The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9250declare and define the parser class in the namespace @code{yy}. The
9251class name defaults to @code{parser}, but may be changed using
16dc6a9e 9252@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9253this class is detailed below. It can be extended using the
12545799
AD
9254@code{%parse-param} feature: its semantics is slightly changed since
9255it describes an additional member of the parser class, and an
9256additional argument for its constructor.
9257
3cdc21cf
AD
9258@defcv {Type} {parser} {semantic_type}
9259@defcvx {Type} {parser} {location_type}
9260The types for semantic values and locations (if enabled).
9261@end defcv
9262
86e5b440
AD
9263@defcv {Type} {parser} {token}
9264A structure that contains (only) the definition of the tokens as the
9265@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
9266scanner should use @code{yy::parser::token::FOO}. The scanner can use
9267@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9268(@pxref{Calc++ Scanner}).
9269@end defcv
9270
3cdc21cf
AD
9271@defcv {Type} {parser} {syntax_error}
9272This class derives from @code{std::runtime_error}. Throw instances of it
9273from user actions to raise parse errors. This is equivalent with first
9274invoking @code{error} to report the location and message of the syntax
9275error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9276But contrary to @code{YYERROR} which can only be invoked from user actions
9277(i.e., written in the action itself), the exception can be thrown from
9278function invoked from the user action.
8a0adb01 9279@end defcv
12545799
AD
9280
9281@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9282Build a new parser object. There are no arguments by default, unless
9283@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9284@end deftypemethod
9285
3cdc21cf
AD
9286@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9287@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9288Instantiate a syntax-error exception.
9289@end deftypemethod
9290
12545799
AD
9291@deftypemethod {parser} {int} parse ()
9292Run the syntactic analysis, and return 0 on success, 1 otherwise.
9293@end deftypemethod
9294
9295@deftypemethod {parser} {std::ostream&} debug_stream ()
9296@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9297Get or set the stream used for tracing the parsing. It defaults to
9298@code{std::cerr}.
9299@end deftypemethod
9300
9301@deftypemethod {parser} {debug_level_type} debug_level ()
9302@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9303Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9304or nonzero, full tracing.
12545799
AD
9305@end deftypemethod
9306
9307@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9308@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9309The definition for this member function must be supplied by the user:
9310the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9311described by @var{m}. If location tracking is not enabled, the second
9312signature is used.
12545799
AD
9313@end deftypemethod
9314
9315
9316@node C++ Scanner Interface
9317@subsection C++ Scanner Interface
9318@c - prefix for yylex.
9319@c - Pure interface to yylex
9320@c - %lex-param
9321
9322The parser invokes the scanner by calling @code{yylex}. Contrary to C
9323parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9324@samp{%define api.pure} directive. The actual interface with @code{yylex}
9325depends whether you use unions, or variants.
12545799 9326
3cdc21cf
AD
9327@menu
9328* Split Symbols:: Passing symbols as two/three components
9329* Complete Symbols:: Making symbols a whole
9330@end menu
9331
9332@node Split Symbols
9333@subsubsection Split Symbols
9334
9335Therefore the interface is as follows.
9336
86e5b440
AD
9337@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9338@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9339Return the next token. Its type is the return value, its semantic value and
9340location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9341@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9342@end deftypemethod
9343
3cdc21cf
AD
9344Note that when using variants, the interface for @code{yylex} is the same,
9345but @code{yylval} is handled differently.
9346
9347Regular union-based code in Lex scanner typically look like:
9348
9349@example
9350[0-9]+ @{
9351 yylval.ival = text_to_int (yytext);
9352 return yy::parser::INTEGER;
9353 @}
9354[a-z]+ @{
9355 yylval.sval = new std::string (yytext);
9356 return yy::parser::IDENTIFIER;
9357 @}
9358@end example
9359
9360Using variants, @code{yylval} is already constructed, but it is not
9361initialized. So the code would look like:
9362
9363@example
9364[0-9]+ @{
9365 yylval.build<int>() = text_to_int (yytext);
9366 return yy::parser::INTEGER;
9367 @}
9368[a-z]+ @{
9369 yylval.build<std::string> = yytext;
9370 return yy::parser::IDENTIFIER;
9371 @}
9372@end example
9373
9374@noindent
9375or
9376
9377@example
9378[0-9]+ @{
9379 yylval.build(text_to_int (yytext));
9380 return yy::parser::INTEGER;
9381 @}
9382[a-z]+ @{
9383 yylval.build(yytext);
9384 return yy::parser::IDENTIFIER;
9385 @}
9386@end example
9387
9388
9389@node Complete Symbols
9390@subsubsection Complete Symbols
9391
9392If you specified both @code{%define variant} and @code{%define lex_symbol},
9393the @code{parser} class also defines the class @code{parser::symbol_type}
9394which defines a @emph{complete} symbol, aggregating its type (i.e., the
9395traditional value returned by @code{yylex}), its semantic value (i.e., the
9396value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9397
9398@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9399Build a complete terminal symbol which token type is @var{type}, and which
9400semantic value is @var{value}. If location tracking is enabled, also pass
9401the @var{location}.
9402@end deftypemethod
9403
9404This interface is low-level and should not be used for two reasons. First,
9405it is inconvenient, as you still have to build the semantic value, which is
9406a variant, and second, because consistency is not enforced: as with unions,
9407it is still possible to give an integer as semantic value for a string.
9408
9409So for each token type, Bison generates named constructors as follows.
9410
9411@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9412@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9413Build a complete terminal symbol for the token type @var{token} (not
9414including the @code{api.tokens.prefix}) whose possible semantic value is
9415@var{value} of adequate @var{value_type}. If location tracking is enabled,
9416also pass the @var{location}.
9417@end deftypemethod
9418
9419For instance, given the following declarations:
9420
9421@example
9422%define api.tokens.prefix "TOK_"
9423%token <std::string> IDENTIFIER;
9424%token <int> INTEGER;
9425%token COLON;
9426@end example
9427
9428@noindent
9429Bison generates the following functions:
9430
9431@example
9432symbol_type make_IDENTIFIER(const std::string& v,
9433 const location_type& l);
9434symbol_type make_INTEGER(const int& v,
9435 const location_type& loc);
9436symbol_type make_COLON(const location_type& loc);
9437@end example
9438
9439@noindent
9440which should be used in a Lex-scanner as follows.
9441
9442@example
9443[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9444[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9445":" return yy::parser::make_COLON(loc);
9446@end example
9447
9448Tokens that do not have an identifier are not accessible: you cannot simply
9449use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9450
9451@node A Complete C++ Example
8405b70c 9452@subsection A Complete C++ Example
12545799
AD
9453
9454This section demonstrates the use of a C++ parser with a simple but
9455complete example. This example should be available on your system,
3cdc21cf 9456ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9457focuses on the use of Bison, therefore the design of the various C++
9458classes is very naive: no accessors, no encapsulation of members etc.
9459We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9460demonstrate the various interactions. A hand-written scanner is
12545799
AD
9461actually easier to interface with.
9462
9463@menu
9464* Calc++ --- C++ Calculator:: The specifications
9465* Calc++ Parsing Driver:: An active parsing context
9466* Calc++ Parser:: A parser class
9467* Calc++ Scanner:: A pure C++ Flex scanner
9468* Calc++ Top Level:: Conducting the band
9469@end menu
9470
9471@node Calc++ --- C++ Calculator
8405b70c 9472@subsubsection Calc++ --- C++ Calculator
12545799
AD
9473
9474Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9475expression, possibly preceded by variable assignments. An
12545799
AD
9476environment containing possibly predefined variables such as
9477@code{one} and @code{two}, is exchanged with the parser. An example
9478of valid input follows.
9479
9480@example
9481three := 3
9482seven := one + two * three
9483seven * seven
9484@end example
9485
9486@node Calc++ Parsing Driver
8405b70c 9487@subsubsection Calc++ Parsing Driver
12545799
AD
9488@c - An env
9489@c - A place to store error messages
9490@c - A place for the result
9491
9492To support a pure interface with the parser (and the scanner) the
9493technique of the ``parsing context'' is convenient: a structure
9494containing all the data to exchange. Since, in addition to simply
9495launch the parsing, there are several auxiliary tasks to execute (open
9496the file for parsing, instantiate the parser etc.), we recommend
9497transforming the simple parsing context structure into a fully blown
9498@dfn{parsing driver} class.
9499
9500The declaration of this driver class, @file{calc++-driver.hh}, is as
9501follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9502required standard library components, and the declaration of the parser
9503class.
12545799 9504
1c59e0a1 9505@comment file: calc++-driver.hh
12545799
AD
9506@example
9507#ifndef CALCXX_DRIVER_HH
9508# define CALCXX_DRIVER_HH
9509# include <string>
9510# include <map>
fb9712a9 9511# include "calc++-parser.hh"
12545799
AD
9512@end example
9513
12545799
AD
9514
9515@noindent
9516Then comes the declaration of the scanning function. Flex expects
9517the signature of @code{yylex} to be defined in the macro
9518@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9519factor both as follows.
1c59e0a1
AD
9520
9521@comment file: calc++-driver.hh
12545799 9522@example
3dc5e96b 9523// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9524# define YY_DECL \
9525 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9526// ... and declare it for the parser's sake.
9527YY_DECL;
9528@end example
9529
9530@noindent
9531The @code{calcxx_driver} class is then declared with its most obvious
9532members.
9533
1c59e0a1 9534@comment file: calc++-driver.hh
12545799
AD
9535@example
9536// Conducting the whole scanning and parsing of Calc++.
9537class calcxx_driver
9538@{
9539public:
9540 calcxx_driver ();
9541 virtual ~calcxx_driver ();
9542
9543 std::map<std::string, int> variables;
9544
9545 int result;
9546@end example
9547
9548@noindent
3cdc21cf
AD
9549To encapsulate the coordination with the Flex scanner, it is useful to have
9550member functions to open and close the scanning phase.
12545799 9551
1c59e0a1 9552@comment file: calc++-driver.hh
12545799
AD
9553@example
9554 // Handling the scanner.
9555 void scan_begin ();
9556 void scan_end ();
9557 bool trace_scanning;
9558@end example
9559
9560@noindent
9561Similarly for the parser itself.
9562
1c59e0a1 9563@comment file: calc++-driver.hh
12545799 9564@example
3cdc21cf
AD
9565 // Run the parser on file F.
9566 // Return 0 on success.
bb32f4f2 9567 int parse (const std::string& f);
3cdc21cf
AD
9568 // The name of the file being parsed.
9569 // Used later to pass the file name to the location tracker.
12545799 9570 std::string file;
3cdc21cf 9571 // Whether parser traces should be generated.
12545799
AD
9572 bool trace_parsing;
9573@end example
9574
9575@noindent
9576To demonstrate pure handling of parse errors, instead of simply
9577dumping them on the standard error output, we will pass them to the
9578compiler driver using the following two member functions. Finally, we
9579close the class declaration and CPP guard.
9580
1c59e0a1 9581@comment file: calc++-driver.hh
12545799
AD
9582@example
9583 // Error handling.
9584 void error (const yy::location& l, const std::string& m);
9585 void error (const std::string& m);
9586@};
9587#endif // ! CALCXX_DRIVER_HH
9588@end example
9589
9590The implementation of the driver is straightforward. The @code{parse}
9591member function deserves some attention. The @code{error} functions
9592are simple stubs, they should actually register the located error
9593messages and set error state.
9594
1c59e0a1 9595@comment file: calc++-driver.cc
12545799
AD
9596@example
9597#include "calc++-driver.hh"
9598#include "calc++-parser.hh"
9599
9600calcxx_driver::calcxx_driver ()
9601 : trace_scanning (false), trace_parsing (false)
9602@{
9603 variables["one"] = 1;
9604 variables["two"] = 2;
9605@}
9606
9607calcxx_driver::~calcxx_driver ()
9608@{
9609@}
9610
bb32f4f2 9611int
12545799
AD
9612calcxx_driver::parse (const std::string &f)
9613@{
9614 file = f;
9615 scan_begin ();
9616 yy::calcxx_parser parser (*this);
9617 parser.set_debug_level (trace_parsing);
bb32f4f2 9618 int res = parser.parse ();
12545799 9619 scan_end ();
bb32f4f2 9620 return res;
12545799
AD
9621@}
9622
9623void
9624calcxx_driver::error (const yy::location& l, const std::string& m)
9625@{
9626 std::cerr << l << ": " << m << std::endl;
9627@}
9628
9629void
9630calcxx_driver::error (const std::string& m)
9631@{
9632 std::cerr << m << std::endl;
9633@}
9634@end example
9635
9636@node Calc++ Parser
8405b70c 9637@subsubsection Calc++ Parser
12545799 9638
ff7571c0
JD
9639The grammar file @file{calc++-parser.yy} starts by asking for the C++
9640deterministic parser skeleton, the creation of the parser header file,
9641and specifies the name of the parser class. Because the C++ skeleton
9642changed several times, it is safer to require the version you designed
9643the grammar for.
1c59e0a1
AD
9644
9645@comment file: calc++-parser.yy
12545799 9646@example
ed4d67dc 9647%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9648%require "@value{VERSION}"
12545799 9649%defines
16dc6a9e 9650%define parser_class_name "calcxx_parser"
fb9712a9
AD
9651@end example
9652
3cdc21cf
AD
9653@noindent
9654@findex %define variant
9655@findex %define lex_symbol
9656This example will use genuine C++ objects as semantic values, therefore, we
9657require the variant-based interface. To make sure we properly use it, we
9658enable assertions. To fully benefit from type-safety and more natural
9659definition of ``symbol'', we enable @code{lex_symbol}.
9660
9661@comment file: calc++-parser.yy
9662@example
9663%define variant
9664%define parse.assert
9665%define lex_symbol
9666@end example
9667
fb9712a9 9668@noindent
16dc6a9e 9669@findex %code requires
3cdc21cf
AD
9670Then come the declarations/inclusions needed by the semantic values.
9671Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9672to include the header of the other, which is, of course, insane. This
3cdc21cf 9673mutual dependency will be broken using forward declarations. Because the
fb9712a9 9674driver's header needs detailed knowledge about the parser class (in
3cdc21cf 9675particular its inner types), it is the parser's header which will use a
e0c07222 9676forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
9677
9678@comment file: calc++-parser.yy
9679@example
3cdc21cf
AD
9680%code requires
9681@{
12545799 9682# include <string>
fb9712a9 9683class calcxx_driver;
9bc0dd67 9684@}
12545799
AD
9685@end example
9686
9687@noindent
9688The driver is passed by reference to the parser and to the scanner.
9689This provides a simple but effective pure interface, not relying on
9690global variables.
9691
1c59e0a1 9692@comment file: calc++-parser.yy
12545799
AD
9693@example
9694// The parsing context.
2055a44e 9695%param @{ calcxx_driver& driver @}
12545799
AD
9696@end example
9697
9698@noindent
2055a44e 9699Then we request location tracking, and initialize the
f50bfcd6 9700first location's file name. Afterward new locations are computed
12545799 9701relatively to the previous locations: the file name will be
2055a44e 9702propagated.
12545799 9703
1c59e0a1 9704@comment file: calc++-parser.yy
12545799
AD
9705@example
9706%locations
9707%initial-action
9708@{
9709 // Initialize the initial location.
b47dbebe 9710 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9711@};
9712@end example
9713
9714@noindent
7fceb615
JD
9715Use the following two directives to enable parser tracing and verbose error
9716messages. However, verbose error messages can contain incorrect information
9717(@pxref{LAC}).
12545799 9718
1c59e0a1 9719@comment file: calc++-parser.yy
12545799 9720@example
fa819509 9721%define parse.trace
cf499cff 9722%define parse.error verbose
12545799
AD
9723@end example
9724
fb9712a9 9725@noindent
136a0f76
PB
9726@findex %code
9727The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9728@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9729
9730@comment file: calc++-parser.yy
9731@example
3cdc21cf
AD
9732%code
9733@{
fb9712a9 9734# include "calc++-driver.hh"
34f98f46 9735@}
fb9712a9
AD
9736@end example
9737
9738
12545799
AD
9739@noindent
9740The token numbered as 0 corresponds to end of file; the following line
99c08fb6 9741allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
9742``$end''. Similarly user friendly names are provided for each symbol. To
9743avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
9744tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 9745
1c59e0a1 9746@comment file: calc++-parser.yy
12545799 9747@example
4c6622c2 9748%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9749%token
9750 END 0 "end of file"
9751 ASSIGN ":="
9752 MINUS "-"
9753 PLUS "+"
9754 STAR "*"
9755 SLASH "/"
9756 LPAREN "("
9757 RPAREN ")"
9758;
12545799
AD
9759@end example
9760
9761@noindent
3cdc21cf
AD
9762Since we use variant-based semantic values, @code{%union} is not used, and
9763both @code{%type} and @code{%token} expect genuine types, as opposed to type
9764tags.
12545799 9765
1c59e0a1 9766@comment file: calc++-parser.yy
12545799 9767@example
3cdc21cf
AD
9768%token <std::string> IDENTIFIER "identifier"
9769%token <int> NUMBER "number"
9770%type <int> exp
9771@end example
9772
9773@noindent
9774No @code{%destructor} is needed to enable memory deallocation during error
9775recovery; the memory, for strings for instance, will be reclaimed by the
9776regular destructors. All the values are printed using their
9777@code{operator<<}.
12545799 9778
3cdc21cf
AD
9779@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9780@comment file: calc++-parser.yy
9781@example
9782%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9783@end example
9784
9785@noindent
3cdc21cf
AD
9786The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9787Location Tracking Calculator: @code{ltcalc}}).
12545799 9788
1c59e0a1 9789@comment file: calc++-parser.yy
12545799
AD
9790@example
9791%%
9792%start unit;
9793unit: assignments exp @{ driver.result = $2; @};
9794
99c08fb6
AD
9795assignments:
9796 assignments assignment @{@}
9797| /* Nothing. */ @{@};
12545799 9798
3dc5e96b 9799assignment:
3cdc21cf 9800 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9801
3cdc21cf
AD
9802%left "+" "-";
9803%left "*" "/";
99c08fb6 9804exp:
3cdc21cf
AD
9805 exp "+" exp @{ $$ = $1 + $3; @}
9806| exp "-" exp @{ $$ = $1 - $3; @}
9807| exp "*" exp @{ $$ = $1 * $3; @}
9808| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9809| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9810| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9811| "number" @{ std::swap ($$, $1); @};
12545799
AD
9812%%
9813@end example
9814
9815@noindent
9816Finally the @code{error} member function registers the errors to the
9817driver.
9818
1c59e0a1 9819@comment file: calc++-parser.yy
12545799
AD
9820@example
9821void
3cdc21cf 9822yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9823 const std::string& m)
12545799
AD
9824@{
9825 driver.error (l, m);
9826@}
9827@end example
9828
9829@node Calc++ Scanner
8405b70c 9830@subsubsection Calc++ Scanner
12545799
AD
9831
9832The Flex scanner first includes the driver declaration, then the
9833parser's to get the set of defined tokens.
9834
1c59e0a1 9835@comment file: calc++-scanner.ll
12545799
AD
9836@example
9837%@{ /* -*- C++ -*- */
3c248d70
AD
9838# include <cerrno>
9839# include <climits>
3cdc21cf 9840# include <cstdlib>
12545799
AD
9841# include <string>
9842# include "calc++-driver.hh"
9843# include "calc++-parser.hh"
eaea13f5 9844
3cdc21cf
AD
9845// Work around an incompatibility in flex (at least versions
9846// 2.5.31 through 2.5.33): it generates code that does
9847// not conform to C89. See Debian bug 333231
9848// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9849# undef yywrap
9850# define yywrap() 1
eaea13f5 9851
3cdc21cf
AD
9852// The location of the current token.
9853static yy::location loc;
12545799
AD
9854%@}
9855@end example
9856
9857@noindent
9858Because there is no @code{#include}-like feature we don't need
9859@code{yywrap}, we don't need @code{unput} either, and we parse an
9860actual file, this is not an interactive session with the user.
3cdc21cf 9861Finally, we enable scanner tracing.
12545799 9862
1c59e0a1 9863@comment file: calc++-scanner.ll
12545799
AD
9864@example
9865%option noyywrap nounput batch debug
9866@end example
9867
9868@noindent
9869Abbreviations allow for more readable rules.
9870
1c59e0a1 9871@comment file: calc++-scanner.ll
12545799
AD
9872@example
9873id [a-zA-Z][a-zA-Z_0-9]*
9874int [0-9]+
9875blank [ \t]
9876@end example
9877
9878@noindent
9d9b8b70 9879The following paragraph suffices to track locations accurately. Each
12545799 9880time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9881position. Then when a pattern is matched, its width is added to the end
9882column. When matching ends of lines, the end
12545799
AD
9883cursor is adjusted, and each time blanks are matched, the begin cursor
9884is moved onto the end cursor to effectively ignore the blanks
9885preceding tokens. Comments would be treated equally.
9886
1c59e0a1 9887@comment file: calc++-scanner.ll
12545799 9888@example
828c373b 9889%@{
3cdc21cf
AD
9890 // Code run each time a pattern is matched.
9891 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9892%@}
12545799
AD
9893%%
9894%@{
3cdc21cf
AD
9895 // Code run each time yylex is called.
9896 loc.step ();
12545799 9897%@}
3cdc21cf
AD
9898@{blank@}+ loc.step ();
9899[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
9900@end example
9901
9902@noindent
3cdc21cf 9903The rules are simple. The driver is used to report errors.
12545799 9904
1c59e0a1 9905@comment file: calc++-scanner.ll
12545799 9906@example
3cdc21cf
AD
9907"-" return yy::calcxx_parser::make_MINUS(loc);
9908"+" return yy::calcxx_parser::make_PLUS(loc);
9909"*" return yy::calcxx_parser::make_STAR(loc);
9910"/" return yy::calcxx_parser::make_SLASH(loc);
9911"(" return yy::calcxx_parser::make_LPAREN(loc);
9912")" return yy::calcxx_parser::make_RPAREN(loc);
9913":=" return yy::calcxx_parser::make_ASSIGN(loc);
9914
04098407
PE
9915@{int@} @{
9916 errno = 0;
9917 long n = strtol (yytext, NULL, 10);
9918 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
9919 driver.error (loc, "integer is out of range");
9920 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 9921@}
3cdc21cf
AD
9922@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
9923. driver.error (loc, "invalid character");
9924<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
9925%%
9926@end example
9927
9928@noindent
3cdc21cf 9929Finally, because the scanner-related driver's member-functions depend
12545799
AD
9930on the scanner's data, it is simpler to implement them in this file.
9931
1c59e0a1 9932@comment file: calc++-scanner.ll
12545799
AD
9933@example
9934void
9935calcxx_driver::scan_begin ()
9936@{
9937 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9938 if (file == "-")
9939 yyin = stdin;
9940 else if (!(yyin = fopen (file.c_str (), "r")))
9941 @{
3cdc21cf 9942 error (std::string ("cannot open ") + file + ": " + strerror(errno));
bb32f4f2
AD
9943 exit (1);
9944 @}
12545799
AD
9945@}
9946
9947void
9948calcxx_driver::scan_end ()
9949@{
9950 fclose (yyin);
9951@}
9952@end example
9953
9954@node Calc++ Top Level
8405b70c 9955@subsubsection Calc++ Top Level
12545799
AD
9956
9957The top level file, @file{calc++.cc}, poses no problem.
9958
1c59e0a1 9959@comment file: calc++.cc
12545799
AD
9960@example
9961#include <iostream>
9962#include "calc++-driver.hh"
9963
9964int
fa4d969f 9965main (int argc, char *argv[])
12545799 9966@{
414c76a4 9967 int res = 0;
12545799
AD
9968 calcxx_driver driver;
9969 for (++argv; argv[0]; ++argv)
9970 if (*argv == std::string ("-p"))
9971 driver.trace_parsing = true;
9972 else if (*argv == std::string ("-s"))
9973 driver.trace_scanning = true;
bb32f4f2
AD
9974 else if (!driver.parse (*argv))
9975 std::cout << driver.result << std::endl;
414c76a4
AD
9976 else
9977 res = 1;
9978 return res;
12545799
AD
9979@}
9980@end example
9981
8405b70c
PB
9982@node Java Parsers
9983@section Java Parsers
9984
9985@menu
f5f419de
DJ
9986* Java Bison Interface:: Asking for Java parser generation
9987* Java Semantic Values:: %type and %token vs. Java
9988* Java Location Values:: The position and location classes
9989* Java Parser Interface:: Instantiating and running the parser
9990* Java Scanner Interface:: Specifying the scanner for the parser
9991* Java Action Features:: Special features for use in actions
9992* Java Differences:: Differences between C/C++ and Java Grammars
9993* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9994@end menu
9995
9996@node Java Bison Interface
9997@subsection Java Bison Interface
9998@c - %language "Java"
8405b70c 9999
59da312b
JD
10000(The current Java interface is experimental and may evolve.
10001More user feedback will help to stabilize it.)
10002
e254a580
DJ
10003The Java parser skeletons are selected using the @code{%language "Java"}
10004directive or the @option{-L java}/@option{--language=java} option.
8405b70c 10005
e254a580 10006@c FIXME: Documented bug.
ff7571c0
JD
10007When generating a Java parser, @code{bison @var{basename}.y} will
10008create a single Java source file named @file{@var{basename}.java}
10009containing the parser implementation. Using a grammar file without a
10010@file{.y} suffix is currently broken. The basename of the parser
10011implementation file can be changed by the @code{%file-prefix}
10012directive or the @option{-p}/@option{--name-prefix} option. The
10013entire parser implementation file name can be changed by the
10014@code{%output} directive or the @option{-o}/@option{--output} option.
10015The parser implementation file contains a single class for the parser.
8405b70c 10016
e254a580 10017You can create documentation for generated parsers using Javadoc.
8405b70c 10018
e254a580
DJ
10019Contrary to C parsers, Java parsers do not use global variables; the
10020state of the parser is always local to an instance of the parser class.
10021Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10022and @samp{%define api.pure} directives does not do anything when used in
e254a580 10023Java.
8405b70c 10024
e254a580 10025Push parsers are currently unsupported in Java and @code{%define
67212941 10026api.push-pull} have no effect.
01b477c6 10027
8a4281b9 10028GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10029@code{glr-parser} directive.
10030
10031No header file can be generated for Java parsers. Do not use the
10032@code{%defines} directive or the @option{-d}/@option{--defines} options.
10033
10034@c FIXME: Possible code change.
fa819509
AD
10035Currently, support for tracing is always compiled
10036in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10037directives and the
e254a580
DJ
10038@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10039options have no effect. This may change in the future to eliminate
fa819509
AD
10040unused code in the generated parser, so use @samp{%define parse.trace}
10041explicitly
1979121c 10042if needed. Also, in the future the
e254a580
DJ
10043@code{%token-table} directive might enable a public interface to
10044access the token names and codes.
8405b70c 10045
09ccae9b 10046Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10047hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10048Try reducing the amount of code in actions and static initializers;
10049otherwise, report a bug so that the parser skeleton will be improved.
10050
10051
8405b70c
PB
10052@node Java Semantic Values
10053@subsection Java Semantic Values
10054@c - No %union, specify type in %type/%token.
10055@c - YYSTYPE
10056@c - Printer and destructor
10057
10058There is no @code{%union} directive in Java parsers. Instead, the
10059semantic values' types (class names) should be specified in the
10060@code{%type} or @code{%token} directive:
10061
10062@example
10063%type <Expression> expr assignment_expr term factor
10064%type <Integer> number
10065@end example
10066
10067By default, the semantic stack is declared to have @code{Object} members,
10068which means that the class types you specify can be of any class.
10069To improve the type safety of the parser, you can declare the common
67501061 10070superclass of all the semantic values using the @samp{%define stype}
e254a580 10071directive. For example, after the following declaration:
8405b70c
PB
10072
10073@example
e254a580 10074%define stype "ASTNode"
8405b70c
PB
10075@end example
10076
10077@noindent
10078any @code{%type} or @code{%token} specifying a semantic type which
10079is not a subclass of ASTNode, will cause a compile-time error.
10080
e254a580 10081@c FIXME: Documented bug.
8405b70c
PB
10082Types used in the directives may be qualified with a package name.
10083Primitive data types are accepted for Java version 1.5 or later. Note
10084that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10085Generic types may not be used; this is due to a limitation in the
10086implementation of Bison, and may change in future releases.
8405b70c
PB
10087
10088Java parsers do not support @code{%destructor}, since the language
10089adopts garbage collection. The parser will try to hold references
10090to semantic values for as little time as needed.
10091
10092Java parsers do not support @code{%printer}, as @code{toString()}
10093can be used to print the semantic values. This however may change
10094(in a backwards-compatible way) in future versions of Bison.
10095
10096
10097@node Java Location Values
10098@subsection Java Location Values
10099@c - %locations
10100@c - class Position
10101@c - class Location
10102
303834cc
JD
10103When the directive @code{%locations} is used, the Java parser supports
10104location tracking, see @ref{Tracking Locations}. An auxiliary user-defined
10105class defines a @dfn{position}, a single point in a file; Bison itself
10106defines a class representing a @dfn{location}, a range composed of a pair of
10107positions (possibly spanning several files). The location class is an inner
10108class of the parser; the name is @code{Location} by default, and may also be
10109renamed using @samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10110
10111The location class treats the position as a completely opaque value.
10112By default, the class name is @code{Position}, but this can be changed
67501061 10113with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10114be supplied by the user.
8405b70c
PB
10115
10116
e254a580
DJ
10117@deftypeivar {Location} {Position} begin
10118@deftypeivarx {Location} {Position} end
8405b70c 10119The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10120@end deftypeivar
10121
10122@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10123Create a @code{Location} denoting an empty range located at a given point.
e254a580 10124@end deftypeop
8405b70c 10125
e254a580
DJ
10126@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10127Create a @code{Location} from the endpoints of the range.
10128@end deftypeop
10129
10130@deftypemethod {Location} {String} toString ()
8405b70c
PB
10131Prints the range represented by the location. For this to work
10132properly, the position class should override the @code{equals} and
10133@code{toString} methods appropriately.
10134@end deftypemethod
10135
10136
10137@node Java Parser Interface
10138@subsection Java Parser Interface
10139@c - define parser_class_name
10140@c - Ctor
10141@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10142@c debug_stream.
10143@c - Reporting errors
10144
e254a580
DJ
10145The name of the generated parser class defaults to @code{YYParser}. The
10146@code{YY} prefix may be changed using the @code{%name-prefix} directive
10147or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10148@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10149the class. The interface of this class is detailed below.
8405b70c 10150
e254a580 10151By default, the parser class has package visibility. A declaration
67501061 10152@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10153according to the Java language specification, the name of the @file{.java}
10154file should match the name of the class in this case. Similarly, you can
10155use @code{abstract}, @code{final} and @code{strictfp} with the
10156@code{%define} declaration to add other modifiers to the parser class.
67501061 10157A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10158be used to add any number of annotations to the parser class.
e254a580
DJ
10159
10160The Java package name of the parser class can be specified using the
67501061 10161@samp{%define package} directive. The superclass and the implemented
e254a580 10162interfaces of the parser class can be specified with the @code{%define
67501061 10163extends} and @samp{%define implements} directives.
e254a580
DJ
10164
10165The parser class defines an inner class, @code{Location}, that is used
10166for location tracking (see @ref{Java Location Values}), and a inner
10167interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10168these inner class/interface, and the members described in the interface
10169below, all the other members and fields are preceded with a @code{yy} or
10170@code{YY} prefix to avoid clashes with user code.
10171
e254a580
DJ
10172The parser class can be extended using the @code{%parse-param}
10173directive. Each occurrence of the directive will add a @code{protected
10174final} field to the parser class, and an argument to its constructor,
10175which initialize them automatically.
10176
e254a580
DJ
10177@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10178Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10179no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10180@code{%lex-param}s are used.
1979121c
DJ
10181
10182Use @code{%code init} for code added to the start of the constructor
10183body. This is especially useful to initialize superclasses. Use
f50bfcd6 10184@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10185@end deftypeop
10186
10187@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10188Build a new parser object using the specified scanner. There are no
2055a44e
AD
10189additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10190used.
e254a580
DJ
10191
10192If the scanner is defined by @code{%code lexer}, this constructor is
10193declared @code{protected} and is called automatically with a scanner
2055a44e 10194created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10195
10196Use @code{%code init} for code added to the start of the constructor
10197body. This is especially useful to initialize superclasses. Use
67501061 10198@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 10199@end deftypeop
8405b70c
PB
10200
10201@deftypemethod {YYParser} {boolean} parse ()
10202Run the syntactic analysis, and return @code{true} on success,
10203@code{false} otherwise.
10204@end deftypemethod
10205
1979121c
DJ
10206@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10207@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10208Get or set the option to produce verbose error messages. These are only
cf499cff 10209available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10210verbose error messages.
10211@end deftypemethod
10212
10213@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10214@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10215@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10216Print an error message using the @code{yyerror} method of the scanner
10217instance in use. The @code{Location} and @code{Position} parameters are
10218available only if location tracking is active.
10219@end deftypemethod
10220
01b477c6 10221@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10222During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10223from a syntax error.
10224@xref{Error Recovery}.
8405b70c
PB
10225@end deftypemethod
10226
10227@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10228@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10229Get or set the stream used for tracing the parsing. It defaults to
10230@code{System.err}.
10231@end deftypemethod
10232
10233@deftypemethod {YYParser} {int} getDebugLevel ()
10234@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10235Get or set the tracing level. Currently its value is either 0, no trace,
10236or nonzero, full tracing.
10237@end deftypemethod
10238
1979121c
DJ
10239@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10240@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10241Identify the Bison version and skeleton used to generate this parser.
10242@end deftypecv
10243
8405b70c
PB
10244
10245@node Java Scanner Interface
10246@subsection Java Scanner Interface
01b477c6 10247@c - %code lexer
8405b70c 10248@c - %lex-param
01b477c6 10249@c - Lexer interface
8405b70c 10250
e254a580
DJ
10251There are two possible ways to interface a Bison-generated Java parser
10252with a scanner: the scanner may be defined by @code{%code lexer}, or
10253defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10254@code{Lexer} inner interface of the parser class. This interface also
10255contain constants for all user-defined token names and the predefined
10256@code{EOF} token.
e254a580
DJ
10257
10258In the first case, the body of the scanner class is placed in
10259@code{%code lexer} blocks. If you want to pass parameters from the
10260parser constructor to the scanner constructor, specify them with
10261@code{%lex-param}; they are passed before @code{%parse-param}s to the
10262constructor.
01b477c6 10263
59c5ac72 10264In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10265which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10266The constructor of the parser object will then accept an object
10267implementing the interface; @code{%lex-param} is not used in this
10268case.
10269
10270In both cases, the scanner has to implement the following methods.
10271
e254a580
DJ
10272@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10273This method is defined by the user to emit an error message. The first
10274parameter is omitted if location tracking is not active. Its type can be
67501061 10275changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10276@end deftypemethod
10277
e254a580 10278@deftypemethod {Lexer} {int} yylex ()
8405b70c 10279Return the next token. Its type is the return value, its semantic
f50bfcd6 10280value and location are saved and returned by the their methods in the
e254a580
DJ
10281interface.
10282
67501061 10283Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10284Default is @code{java.io.IOException}.
8405b70c
PB
10285@end deftypemethod
10286
10287@deftypemethod {Lexer} {Position} getStartPos ()
10288@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10289Return respectively the first position of the last token that
10290@code{yylex} returned, and the first position beyond it. These
10291methods are not needed unless location tracking is active.
8405b70c 10292
67501061 10293The return type can be changed using @samp{%define position_type
8405b70c
PB
10294"@var{class-name}".}
10295@end deftypemethod
10296
10297@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10298Return the semantic value of the last token that yylex returned.
8405b70c 10299
67501061 10300The return type can be changed using @samp{%define stype
8405b70c
PB
10301"@var{class-name}".}
10302@end deftypemethod
10303
10304
e254a580
DJ
10305@node Java Action Features
10306@subsection Special Features for Use in Java Actions
10307
10308The following special constructs can be uses in Java actions.
10309Other analogous C action features are currently unavailable for Java.
10310
67501061 10311Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10312actions, and initial actions specified by @code{%initial-action}.
10313
10314@defvar $@var{n}
10315The semantic value for the @var{n}th component of the current rule.
10316This may not be assigned to.
10317@xref{Java Semantic Values}.
10318@end defvar
10319
10320@defvar $<@var{typealt}>@var{n}
10321Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10322@xref{Java Semantic Values}.
10323@end defvar
10324
10325@defvar $$
10326The semantic value for the grouping made by the current rule. As a
10327value, this is in the base type (@code{Object} or as specified by
67501061 10328@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10329casts are not allowed on the left-hand side of Java assignments.
10330Use an explicit Java cast if the correct subtype is needed.
10331@xref{Java Semantic Values}.
10332@end defvar
10333
10334@defvar $<@var{typealt}>$
10335Same as @code{$$} since Java always allow assigning to the base type.
10336Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10337for setting the value but there is currently no easy way to distinguish
10338these constructs.
10339@xref{Java Semantic Values}.
10340@end defvar
10341
10342@defvar @@@var{n}
10343The location information of the @var{n}th component of the current rule.
10344This may not be assigned to.
10345@xref{Java Location Values}.
10346@end defvar
10347
10348@defvar @@$
10349The location information of the grouping made by the current rule.
10350@xref{Java Location Values}.
10351@end defvar
10352
10353@deffn {Statement} {return YYABORT;}
10354Return immediately from the parser, indicating failure.
10355@xref{Java Parser Interface}.
10356@end deffn
8405b70c 10357
e254a580
DJ
10358@deffn {Statement} {return YYACCEPT;}
10359Return immediately from the parser, indicating success.
10360@xref{Java Parser Interface}.
10361@end deffn
8405b70c 10362
e254a580 10363@deffn {Statement} {return YYERROR;}
c265fd6b 10364Start error recovery without printing an error message.
e254a580
DJ
10365@xref{Error Recovery}.
10366@end deffn
8405b70c 10367
e254a580
DJ
10368@deftypefn {Function} {boolean} recovering ()
10369Return whether error recovery is being done. In this state, the parser
10370reads token until it reaches a known state, and then restarts normal
10371operation.
10372@xref{Error Recovery}.
10373@end deftypefn
8405b70c 10374
1979121c
DJ
10375@deftypefn {Function} {void} yyerror (String @var{msg})
10376@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10377@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10378Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10379instance in use. The @code{Location} and @code{Position} parameters are
10380available only if location tracking is active.
e254a580 10381@end deftypefn
8405b70c 10382
8405b70c 10383
8405b70c
PB
10384@node Java Differences
10385@subsection Differences between C/C++ and Java Grammars
10386
10387The different structure of the Java language forces several differences
10388between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10389section summarizes these differences.
8405b70c
PB
10390
10391@itemize
10392@item
01b477c6 10393Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10394@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10395macros. Instead, they should be preceded by @code{return} when they
10396appear in an action. The actual definition of these symbols is
8405b70c
PB
10397opaque to the Bison grammar, and it might change in the future. The
10398only meaningful operation that you can do, is to return them.
e254a580 10399See @pxref{Java Action Features}.
8405b70c
PB
10400
10401Note that of these three symbols, only @code{YYACCEPT} and
10402@code{YYABORT} will cause a return from the @code{yyparse}
10403method@footnote{Java parsers include the actions in a separate
10404method than @code{yyparse} in order to have an intuitive syntax that
10405corresponds to these C macros.}.
10406
e254a580
DJ
10407@item
10408Java lacks unions, so @code{%union} has no effect. Instead, semantic
10409values have a common base type: @code{Object} or as specified by
f50bfcd6 10410@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10411@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10412an union. The type of @code{$$}, even with angle brackets, is the base
10413type since Java casts are not allow on the left-hand side of assignments.
10414Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10415left-hand side of assignments. See @pxref{Java Semantic Values} and
10416@pxref{Java Action Features}.
10417
8405b70c 10418@item
f50bfcd6 10419The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10420@table @asis
10421@item @code{%code imports}
10422blocks are placed at the beginning of the Java source code. They may
10423include copyright notices. For a @code{package} declarations, it is
67501061 10424suggested to use @samp{%define package} instead.
8405b70c 10425
01b477c6
PB
10426@item unqualified @code{%code}
10427blocks are placed inside the parser class.
10428
10429@item @code{%code lexer}
10430blocks, if specified, should include the implementation of the
10431scanner. If there is no such block, the scanner can be any class
10432that implements the appropriate interface (see @pxref{Java Scanner
10433Interface}).
29553547 10434@end table
8405b70c
PB
10435
10436Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10437In particular, @code{%@{ @dots{} %@}} blocks should not be used
10438and may give an error in future versions of Bison.
10439
01b477c6 10440The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10441be used to define other classes used by the parser @emph{outside}
10442the parser class.
8405b70c
PB
10443@end itemize
10444
e254a580
DJ
10445
10446@node Java Declarations Summary
10447@subsection Java Declarations Summary
10448
10449This summary only include declarations specific to Java or have special
10450meaning when used in a Java parser.
10451
10452@deffn {Directive} {%language "Java"}
10453Generate a Java class for the parser.
10454@end deffn
10455
10456@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10457A parameter for the lexer class defined by @code{%code lexer}
10458@emph{only}, added as parameters to the lexer constructor and the parser
10459constructor that @emph{creates} a lexer. Default is none.
10460@xref{Java Scanner Interface}.
10461@end deffn
10462
10463@deffn {Directive} %name-prefix "@var{prefix}"
10464The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10465@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10466@xref{Java Bison Interface}.
10467@end deffn
10468
10469@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10470A parameter for the parser class added as parameters to constructor(s)
10471and as fields initialized by the constructor(s). Default is none.
10472@xref{Java Parser Interface}.
10473@end deffn
10474
10475@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10476Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10477@xref{Java Semantic Values}.
10478@end deffn
10479
10480@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10481Declare the type of nonterminals. Note that the angle brackets enclose
10482a Java @emph{type}.
10483@xref{Java Semantic Values}.
10484@end deffn
10485
10486@deffn {Directive} %code @{ @var{code} @dots{} @}
10487Code appended to the inside of the parser class.
10488@xref{Java Differences}.
10489@end deffn
10490
10491@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10492Code inserted just after the @code{package} declaration.
10493@xref{Java Differences}.
10494@end deffn
10495
1979121c
DJ
10496@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10497Code inserted at the beginning of the parser constructor body.
10498@xref{Java Parser Interface}.
10499@end deffn
10500
e254a580
DJ
10501@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10502Code added to the body of a inner lexer class within the parser class.
10503@xref{Java Scanner Interface}.
10504@end deffn
10505
10506@deffn {Directive} %% @var{code} @dots{}
10507Code (after the second @code{%%}) appended to the end of the file,
10508@emph{outside} the parser class.
10509@xref{Java Differences}.
10510@end deffn
10511
10512@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10513Not supported. Use @code{%code imports} instead.
e254a580
DJ
10514@xref{Java Differences}.
10515@end deffn
10516
10517@deffn {Directive} {%define abstract}
10518Whether the parser class is declared @code{abstract}. Default is false.
10519@xref{Java Bison Interface}.
10520@end deffn
10521
1979121c
DJ
10522@deffn {Directive} {%define annotations} "@var{annotations}"
10523The Java annotations for the parser class. Default is none.
10524@xref{Java Bison Interface}.
10525@end deffn
10526
e254a580
DJ
10527@deffn {Directive} {%define extends} "@var{superclass}"
10528The superclass of the parser class. Default is none.
10529@xref{Java Bison Interface}.
10530@end deffn
10531
10532@deffn {Directive} {%define final}
10533Whether the parser class is declared @code{final}. Default is false.
10534@xref{Java Bison Interface}.
10535@end deffn
10536
10537@deffn {Directive} {%define implements} "@var{interfaces}"
10538The implemented interfaces of the parser class, a comma-separated list.
10539Default is none.
10540@xref{Java Bison Interface}.
10541@end deffn
10542
1979121c
DJ
10543@deffn {Directive} {%define init_throws} "@var{exceptions}"
10544The exceptions thrown by @code{%code init} from the parser class
10545constructor. Default is none.
10546@xref{Java Parser Interface}.
10547@end deffn
10548
e254a580
DJ
10549@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10550The exceptions thrown by the @code{yylex} method of the lexer, a
10551comma-separated list. Default is @code{java.io.IOException}.
10552@xref{Java Scanner Interface}.
10553@end deffn
10554
10555@deffn {Directive} {%define location_type} "@var{class}"
10556The name of the class used for locations (a range between two
10557positions). This class is generated as an inner class of the parser
10558class by @command{bison}. Default is @code{Location}.
10559@xref{Java Location Values}.
10560@end deffn
10561
10562@deffn {Directive} {%define package} "@var{package}"
10563The package to put the parser class in. Default is none.
10564@xref{Java Bison Interface}.
10565@end deffn
10566
10567@deffn {Directive} {%define parser_class_name} "@var{name}"
10568The name of the parser class. Default is @code{YYParser} or
10569@code{@var{name-prefix}Parser}.
10570@xref{Java Bison Interface}.
10571@end deffn
10572
10573@deffn {Directive} {%define position_type} "@var{class}"
10574The name of the class used for positions. This class must be supplied by
10575the user. Default is @code{Position}.
10576@xref{Java Location Values}.
10577@end deffn
10578
10579@deffn {Directive} {%define public}
10580Whether the parser class is declared @code{public}. Default is false.
10581@xref{Java Bison Interface}.
10582@end deffn
10583
10584@deffn {Directive} {%define stype} "@var{class}"
10585The base type of semantic values. Default is @code{Object}.
10586@xref{Java Semantic Values}.
10587@end deffn
10588
10589@deffn {Directive} {%define strictfp}
10590Whether the parser class is declared @code{strictfp}. Default is false.
10591@xref{Java Bison Interface}.
10592@end deffn
10593
10594@deffn {Directive} {%define throws} "@var{exceptions}"
10595The exceptions thrown by user-supplied parser actions and
10596@code{%initial-action}, a comma-separated list. Default is none.
10597@xref{Java Parser Interface}.
10598@end deffn
10599
10600
12545799 10601@c ================================================= FAQ
d1a1114f
AD
10602
10603@node FAQ
10604@chapter Frequently Asked Questions
10605@cindex frequently asked questions
10606@cindex questions
10607
10608Several questions about Bison come up occasionally. Here some of them
10609are addressed.
10610
10611@menu
55ba27be
AD
10612* Memory Exhausted:: Breaking the Stack Limits
10613* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10614* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10615* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10616* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10617* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10618* I can't build Bison:: Troubleshooting
10619* Where can I find help?:: Troubleshouting
10620* Bug Reports:: Troublereporting
8405b70c 10621* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10622* Beta Testing:: Experimenting development versions
10623* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10624@end menu
10625
1a059451
PE
10626@node Memory Exhausted
10627@section Memory Exhausted
d1a1114f
AD
10628
10629@display
1a059451 10630My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10631message. What can I do?
10632@end display
10633
10634This question is already addressed elsewhere, @xref{Recursion,
10635,Recursive Rules}.
10636
e64fec0a
PE
10637@node How Can I Reset the Parser
10638@section How Can I Reset the Parser
5b066063 10639
0e14ad77
PE
10640The following phenomenon has several symptoms, resulting in the
10641following typical questions:
5b066063
AD
10642
10643@display
10644I invoke @code{yyparse} several times, and on correct input it works
10645properly; but when a parse error is found, all the other calls fail
0e14ad77 10646too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10647@end display
10648
10649@noindent
10650or
10651
10652@display
0e14ad77 10653My parser includes support for an @samp{#include}-like feature, in
5b066063 10654which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10655although I did specify @samp{%define api.pure}.
5b066063
AD
10656@end display
10657
0e14ad77
PE
10658These problems typically come not from Bison itself, but from
10659Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10660speed, they might not notice a change of input file. As a
10661demonstration, consider the following source file,
10662@file{first-line.l}:
10663
10664@verbatim
10665%{
10666#include <stdio.h>
10667#include <stdlib.h>
10668%}
10669%%
10670.*\n ECHO; return 1;
10671%%
10672int
0e14ad77 10673yyparse (char const *file)
5b066063
AD
10674{
10675 yyin = fopen (file, "r");
10676 if (!yyin)
10677 exit (2);
fa7e68c3 10678 /* One token only. */
5b066063 10679 yylex ();
0e14ad77 10680 if (fclose (yyin) != 0)
5b066063
AD
10681 exit (3);
10682 return 0;
10683}
10684
10685int
0e14ad77 10686main (void)
5b066063
AD
10687{
10688 yyparse ("input");
10689 yyparse ("input");
10690 return 0;
10691}
10692@end verbatim
10693
10694@noindent
10695If the file @file{input} contains
10696
10697@verbatim
10698input:1: Hello,
10699input:2: World!
10700@end verbatim
10701
10702@noindent
0e14ad77 10703then instead of getting the first line twice, you get:
5b066063
AD
10704
10705@example
10706$ @kbd{flex -ofirst-line.c first-line.l}
10707$ @kbd{gcc -ofirst-line first-line.c -ll}
10708$ @kbd{./first-line}
10709input:1: Hello,
10710input:2: World!
10711@end example
10712
0e14ad77
PE
10713Therefore, whenever you change @code{yyin}, you must tell the
10714Lex-generated scanner to discard its current buffer and switch to the
10715new one. This depends upon your implementation of Lex; see its
10716documentation for more. For Flex, it suffices to call
10717@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10718Flex-generated scanner needs to read from several input streams to
10719handle features like include files, you might consider using Flex
10720functions like @samp{yy_switch_to_buffer} that manipulate multiple
10721input buffers.
5b066063 10722
b165c324
AD
10723If your Flex-generated scanner uses start conditions (@pxref{Start
10724conditions, , Start conditions, flex, The Flex Manual}), you might
10725also want to reset the scanner's state, i.e., go back to the initial
10726start condition, through a call to @samp{BEGIN (0)}.
10727
fef4cb51
AD
10728@node Strings are Destroyed
10729@section Strings are Destroyed
10730
10731@display
c7e441b4 10732My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10733them. Instead of reporting @samp{"foo", "bar"}, it reports
10734@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10735@end display
10736
10737This error is probably the single most frequent ``bug report'' sent to
10738Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10739of the scanner. Consider the following Lex code:
fef4cb51
AD
10740
10741@verbatim
10742%{
10743#include <stdio.h>
10744char *yylval = NULL;
10745%}
10746%%
10747.* yylval = yytext; return 1;
10748\n /* IGNORE */
10749%%
10750int
10751main ()
10752{
fa7e68c3 10753 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10754 char *fst = (yylex (), yylval);
10755 char *snd = (yylex (), yylval);
10756 printf ("\"%s\", \"%s\"\n", fst, snd);
10757 return 0;
10758}
10759@end verbatim
10760
10761If you compile and run this code, you get:
10762
10763@example
10764$ @kbd{flex -osplit-lines.c split-lines.l}
10765$ @kbd{gcc -osplit-lines split-lines.c -ll}
10766$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10767"one
10768two", "two"
10769@end example
10770
10771@noindent
10772this is because @code{yytext} is a buffer provided for @emph{reading}
10773in the action, but if you want to keep it, you have to duplicate it
10774(e.g., using @code{strdup}). Note that the output may depend on how
10775your implementation of Lex handles @code{yytext}. For instance, when
10776given the Lex compatibility option @option{-l} (which triggers the
10777option @samp{%array}) Flex generates a different behavior:
10778
10779@example
10780$ @kbd{flex -l -osplit-lines.c split-lines.l}
10781$ @kbd{gcc -osplit-lines split-lines.c -ll}
10782$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10783"two", "two"
10784@end example
10785
10786
2fa09258
AD
10787@node Implementing Gotos/Loops
10788@section Implementing Gotos/Loops
a06ea4aa
AD
10789
10790@display
10791My simple calculator supports variables, assignments, and functions,
2fa09258 10792but how can I implement gotos, or loops?
a06ea4aa
AD
10793@end display
10794
10795Although very pedagogical, the examples included in the document blur
a1c84f45 10796the distinction to make between the parser---whose job is to recover
a06ea4aa 10797the structure of a text and to transmit it to subsequent modules of
a1c84f45 10798the program---and the processing (such as the execution) of this
a06ea4aa
AD
10799structure. This works well with so called straight line programs,
10800i.e., precisely those that have a straightforward execution model:
10801execute simple instructions one after the others.
10802
10803@cindex abstract syntax tree
8a4281b9 10804@cindex AST
a06ea4aa
AD
10805If you want a richer model, you will probably need to use the parser
10806to construct a tree that does represent the structure it has
10807recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10808or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10809traversing it in various ways, will enable treatments such as its
10810execution or its translation, which will result in an interpreter or a
10811compiler.
10812
10813This topic is way beyond the scope of this manual, and the reader is
10814invited to consult the dedicated literature.
10815
10816
ed2e6384
AD
10817@node Multiple start-symbols
10818@section Multiple start-symbols
10819
10820@display
10821I have several closely related grammars, and I would like to share their
10822implementations. In fact, I could use a single grammar but with
10823multiple entry points.
10824@end display
10825
10826Bison does not support multiple start-symbols, but there is a very
10827simple means to simulate them. If @code{foo} and @code{bar} are the two
10828pseudo start-symbols, then introduce two new tokens, say
10829@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10830real start-symbol:
10831
10832@example
10833%token START_FOO START_BAR;
10834%start start;
10835start: START_FOO foo
10836 | START_BAR bar;
10837@end example
10838
10839These tokens prevents the introduction of new conflicts. As far as the
10840parser goes, that is all that is needed.
10841
10842Now the difficult part is ensuring that the scanner will send these
10843tokens first. If your scanner is hand-written, that should be
10844straightforward. If your scanner is generated by Lex, them there is
10845simple means to do it: recall that anything between @samp{%@{ ... %@}}
10846after the first @code{%%} is copied verbatim in the top of the generated
10847@code{yylex} function. Make sure a variable @code{start_token} is
10848available in the scanner (e.g., a global variable or using
10849@code{%lex-param} etc.), and use the following:
10850
10851@example
10852 /* @r{Prologue.} */
10853%%
10854%@{
10855 if (start_token)
10856 @{
10857 int t = start_token;
10858 start_token = 0;
10859 return t;
10860 @}
10861%@}
10862 /* @r{The rules.} */
10863@end example
10864
10865
55ba27be
AD
10866@node Secure? Conform?
10867@section Secure? Conform?
10868
10869@display
10870Is Bison secure? Does it conform to POSIX?
10871@end display
10872
10873If you're looking for a guarantee or certification, we don't provide it.
10874However, Bison is intended to be a reliable program that conforms to the
8a4281b9 10875POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10876please send us a bug report.
10877
10878@node I can't build Bison
10879@section I can't build Bison
10880
10881@display
8c5b881d
PE
10882I can't build Bison because @command{make} complains that
10883@code{msgfmt} is not found.
55ba27be
AD
10884What should I do?
10885@end display
10886
10887Like most GNU packages with internationalization support, that feature
10888is turned on by default. If you have problems building in the @file{po}
10889subdirectory, it indicates that your system's internationalization
10890support is lacking. You can re-configure Bison with
10891@option{--disable-nls} to turn off this support, or you can install GNU
10892gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10893Bison. See the file @file{ABOUT-NLS} for more information.
10894
10895
10896@node Where can I find help?
10897@section Where can I find help?
10898
10899@display
10900I'm having trouble using Bison. Where can I find help?
10901@end display
10902
10903First, read this fine manual. Beyond that, you can send mail to
10904@email{help-bison@@gnu.org}. This mailing list is intended to be
10905populated with people who are willing to answer questions about using
10906and installing Bison. Please keep in mind that (most of) the people on
10907the list have aspects of their lives which are not related to Bison (!),
10908so you may not receive an answer to your question right away. This can
10909be frustrating, but please try not to honk them off; remember that any
10910help they provide is purely voluntary and out of the kindness of their
10911hearts.
10912
10913@node Bug Reports
10914@section Bug Reports
10915
10916@display
10917I found a bug. What should I include in the bug report?
10918@end display
10919
10920Before you send a bug report, make sure you are using the latest
10921version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10922mirrors. Be sure to include the version number in your bug report. If
10923the bug is present in the latest version but not in a previous version,
10924try to determine the most recent version which did not contain the bug.
10925
10926If the bug is parser-related, you should include the smallest grammar
10927you can which demonstrates the bug. The grammar file should also be
10928complete (i.e., I should be able to run it through Bison without having
10929to edit or add anything). The smaller and simpler the grammar, the
10930easier it will be to fix the bug.
10931
10932Include information about your compilation environment, including your
10933operating system's name and version and your compiler's name and
10934version. If you have trouble compiling, you should also include a
10935transcript of the build session, starting with the invocation of
10936`configure'. Depending on the nature of the bug, you may be asked to
10937send additional files as well (such as `config.h' or `config.cache').
10938
10939Patches are most welcome, but not required. That is, do not hesitate to
411614fa 10940send a bug report just because you cannot provide a fix.
55ba27be
AD
10941
10942Send bug reports to @email{bug-bison@@gnu.org}.
10943
8405b70c
PB
10944@node More Languages
10945@section More Languages
55ba27be
AD
10946
10947@display
8405b70c 10948Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10949favorite language here}?
10950@end display
10951
8405b70c 10952C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10953languages; contributions are welcome.
10954
10955@node Beta Testing
10956@section Beta Testing
10957
10958@display
10959What is involved in being a beta tester?
10960@end display
10961
10962It's not terribly involved. Basically, you would download a test
10963release, compile it, and use it to build and run a parser or two. After
10964that, you would submit either a bug report or a message saying that
10965everything is okay. It is important to report successes as well as
10966failures because test releases eventually become mainstream releases,
10967but only if they are adequately tested. If no one tests, development is
10968essentially halted.
10969
10970Beta testers are particularly needed for operating systems to which the
10971developers do not have easy access. They currently have easy access to
10972recent GNU/Linux and Solaris versions. Reports about other operating
10973systems are especially welcome.
10974
10975@node Mailing Lists
10976@section Mailing Lists
10977
10978@display
10979How do I join the help-bison and bug-bison mailing lists?
10980@end display
10981
10982See @url{http://lists.gnu.org/}.
a06ea4aa 10983
d1a1114f
AD
10984@c ================================================= Table of Symbols
10985
342b8b6e 10986@node Table of Symbols
bfa74976
RS
10987@appendix Bison Symbols
10988@cindex Bison symbols, table of
10989@cindex symbols in Bison, table of
10990
18b519c0 10991@deffn {Variable} @@$
3ded9a63 10992In an action, the location of the left-hand side of the rule.
303834cc 10993@xref{Tracking Locations}.
18b519c0 10994@end deffn
3ded9a63 10995
18b519c0 10996@deffn {Variable} @@@var{n}
303834cc
JD
10997In an action, the location of the @var{n}-th symbol of the right-hand side
10998of the rule. @xref{Tracking Locations}.
18b519c0 10999@end deffn
3ded9a63 11000
d013372c 11001@deffn {Variable} @@@var{name}
303834cc
JD
11002In an action, the location of a symbol addressed by name. @xref{Tracking
11003Locations}.
d013372c
AR
11004@end deffn
11005
11006@deffn {Variable} @@[@var{name}]
303834cc
JD
11007In an action, the location of a symbol addressed by name. @xref{Tracking
11008Locations}.
d013372c
AR
11009@end deffn
11010
18b519c0 11011@deffn {Variable} $$
3ded9a63
AD
11012In an action, the semantic value of the left-hand side of the rule.
11013@xref{Actions}.
18b519c0 11014@end deffn
3ded9a63 11015
18b519c0 11016@deffn {Variable} $@var{n}
3ded9a63
AD
11017In an action, the semantic value of the @var{n}-th symbol of the
11018right-hand side of the rule. @xref{Actions}.
18b519c0 11019@end deffn
3ded9a63 11020
d013372c
AR
11021@deffn {Variable} $@var{name}
11022In an action, the semantic value of a symbol addressed by name.
11023@xref{Actions}.
11024@end deffn
11025
11026@deffn {Variable} $[@var{name}]
11027In an action, the semantic value of a symbol addressed by name.
11028@xref{Actions}.
11029@end deffn
11030
dd8d9022
AD
11031@deffn {Delimiter} %%
11032Delimiter used to separate the grammar rule section from the
11033Bison declarations section or the epilogue.
11034@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11035@end deffn
bfa74976 11036
dd8d9022
AD
11037@c Don't insert spaces, or check the DVI output.
11038@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11039All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11040to the parser implementation file. Such code forms the prologue of
11041the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11042Grammar}.
18b519c0 11043@end deffn
bfa74976 11044
ca2a6d15
PH
11045@deffn {Directive} %?@{@var{expression}@}
11046Predicate actions. This is a type of action clause that may appear in
11047rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11048GLR parsers during nondeterministic operation,
ca2a6d15
PH
11049this silently causes an alternative parse to die. During deterministic
11050operation, it is the same as the effect of YYERROR.
11051@xref{Semantic Predicates}.
11052
11053This feature is experimental.
11054More user feedback will help to determine whether it should become a permanent
11055feature.
11056@end deffn
11057
dd8d9022
AD
11058@deffn {Construct} /*@dots{}*/
11059Comment delimiters, as in C.
18b519c0 11060@end deffn
bfa74976 11061
dd8d9022
AD
11062@deffn {Delimiter} :
11063Separates a rule's result from its components. @xref{Rules, ,Syntax of
11064Grammar Rules}.
18b519c0 11065@end deffn
bfa74976 11066
dd8d9022
AD
11067@deffn {Delimiter} ;
11068Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11069@end deffn
bfa74976 11070
dd8d9022
AD
11071@deffn {Delimiter} |
11072Separates alternate rules for the same result nonterminal.
11073@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11074@end deffn
bfa74976 11075
12e35840
JD
11076@deffn {Directive} <*>
11077Used to define a default tagged @code{%destructor} or default tagged
11078@code{%printer}.
85894313
JD
11079
11080This feature is experimental.
11081More user feedback will help to determine whether it should become a permanent
11082feature.
11083
12e35840
JD
11084@xref{Destructor Decl, , Freeing Discarded Symbols}.
11085@end deffn
11086
3ebecc24 11087@deffn {Directive} <>
12e35840
JD
11088Used to define a default tagless @code{%destructor} or default tagless
11089@code{%printer}.
85894313
JD
11090
11091This feature is experimental.
11092More user feedback will help to determine whether it should become a permanent
11093feature.
11094
12e35840
JD
11095@xref{Destructor Decl, , Freeing Discarded Symbols}.
11096@end deffn
11097
dd8d9022
AD
11098@deffn {Symbol} $accept
11099The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11100$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11101Start-Symbol}. It cannot be used in the grammar.
18b519c0 11102@end deffn
bfa74976 11103
136a0f76 11104@deffn {Directive} %code @{@var{code}@}
148d66d8 11105@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11106Insert @var{code} verbatim into the output parser source at the
11107default location or at the location specified by @var{qualifier}.
e0c07222 11108@xref{%code Summary}.
9bc0dd67
JD
11109@end deffn
11110
11111@deffn {Directive} %debug
11112Equip the parser for debugging. @xref{Decl Summary}.
11113@end deffn
11114
91d2c560 11115@ifset defaultprec
22fccf95
PE
11116@deffn {Directive} %default-prec
11117Assign a precedence to rules that lack an explicit @samp{%prec}
11118modifier. @xref{Contextual Precedence, ,Context-Dependent
11119Precedence}.
39a06c25 11120@end deffn
91d2c560 11121@end ifset
39a06c25 11122
7fceb615
JD
11123@deffn {Directive} %define @var{variable}
11124@deffnx {Directive} %define @var{variable} @var{value}
11125@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11126Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11127@end deffn
11128
18b519c0 11129@deffn {Directive} %defines
ff7571c0
JD
11130Bison declaration to create a parser header file, which is usually
11131meant for the scanner. @xref{Decl Summary}.
18b519c0 11132@end deffn
6deb4447 11133
02975b9a
JD
11134@deffn {Directive} %defines @var{defines-file}
11135Same as above, but save in the file @var{defines-file}.
11136@xref{Decl Summary}.
11137@end deffn
11138
18b519c0 11139@deffn {Directive} %destructor
258b75ca 11140Specify how the parser should reclaim the memory associated to
fa7e68c3 11141discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11142@end deffn
72f889cc 11143
18b519c0 11144@deffn {Directive} %dprec
676385e2 11145Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11146time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11147GLR Parsers}.
18b519c0 11148@end deffn
676385e2 11149
dd8d9022
AD
11150@deffn {Symbol} $end
11151The predefined token marking the end of the token stream. It cannot be
11152used in the grammar.
11153@end deffn
11154
11155@deffn {Symbol} error
11156A token name reserved for error recovery. This token may be used in
11157grammar rules so as to allow the Bison parser to recognize an error in
11158the grammar without halting the process. In effect, a sentence
11159containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11160token @code{error} becomes the current lookahead token. Actions
11161corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11162token is reset to the token that originally caused the violation.
11163@xref{Error Recovery}.
18d192f0
AD
11164@end deffn
11165
18b519c0 11166@deffn {Directive} %error-verbose
7fceb615
JD
11167An obsolete directive standing for @samp{%define parse.error verbose}
11168(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11169@end deffn
2a8d363a 11170
02975b9a 11171@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11172Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11173Summary}.
18b519c0 11174@end deffn
d8988b2f 11175
18b519c0 11176@deffn {Directive} %glr-parser
8a4281b9
JD
11177Bison declaration to produce a GLR parser. @xref{GLR
11178Parsers, ,Writing GLR Parsers}.
18b519c0 11179@end deffn
676385e2 11180
dd8d9022
AD
11181@deffn {Directive} %initial-action
11182Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11183@end deffn
11184
e6e704dc
JD
11185@deffn {Directive} %language
11186Specify the programming language for the generated parser.
11187@xref{Decl Summary}.
11188@end deffn
11189
18b519c0 11190@deffn {Directive} %left
d78f0ac9 11191Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11192@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11193@end deffn
bfa74976 11194
2055a44e
AD
11195@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11196Bison declaration to specifying additional arguments that
2a8d363a
AD
11197@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11198for Pure Parsers}.
18b519c0 11199@end deffn
2a8d363a 11200
18b519c0 11201@deffn {Directive} %merge
676385e2 11202Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11203reduce/reduce conflict with a rule having the same merging function, the
676385e2 11204function is applied to the two semantic values to get a single result.
8a4281b9 11205@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11206@end deffn
676385e2 11207
02975b9a 11208@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 11209Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 11210@end deffn
d8988b2f 11211
91d2c560 11212@ifset defaultprec
22fccf95
PE
11213@deffn {Directive} %no-default-prec
11214Do not assign a precedence to rules that lack an explicit @samp{%prec}
11215modifier. @xref{Contextual Precedence, ,Context-Dependent
11216Precedence}.
11217@end deffn
91d2c560 11218@end ifset
22fccf95 11219
18b519c0 11220@deffn {Directive} %no-lines
931c7513 11221Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11222parser implementation file. @xref{Decl Summary}.
18b519c0 11223@end deffn
931c7513 11224
18b519c0 11225@deffn {Directive} %nonassoc
d78f0ac9 11226Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11227@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11228@end deffn
bfa74976 11229
02975b9a 11230@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11231Bison declaration to set the name of the parser implementation file.
11232@xref{Decl Summary}.
18b519c0 11233@end deffn
d8988b2f 11234
2055a44e
AD
11235@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11236Bison declaration to specify additional arguments that both
11237@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11238Parser Function @code{yyparse}}.
11239@end deffn
11240
11241@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11242Bison declaration to specify additional arguments that @code{yyparse}
11243should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11244@end deffn
2a8d363a 11245
18b519c0 11246@deffn {Directive} %prec
bfa74976
RS
11247Bison declaration to assign a precedence to a specific rule.
11248@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11249@end deffn
bfa74976 11250
d78f0ac9
AD
11251@deffn {Directive} %precedence
11252Bison declaration to assign precedence to token(s), but no associativity
11253@xref{Precedence Decl, ,Operator Precedence}.
11254@end deffn
11255
18b519c0 11256@deffn {Directive} %pure-parser
35c1e5f0
JD
11257Deprecated version of @samp{%define api.pure} (@pxref{%define
11258Summary,,api.pure}), for which Bison is more careful to warn about
11259unreasonable usage.
18b519c0 11260@end deffn
bfa74976 11261
b50d2359 11262@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11263Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11264Require a Version of Bison}.
b50d2359
AD
11265@end deffn
11266
18b519c0 11267@deffn {Directive} %right
d78f0ac9 11268Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11269@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11270@end deffn
bfa74976 11271
e6e704dc
JD
11272@deffn {Directive} %skeleton
11273Specify the skeleton to use; usually for development.
11274@xref{Decl Summary}.
11275@end deffn
11276
18b519c0 11277@deffn {Directive} %start
704a47c4
AD
11278Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11279Start-Symbol}.
18b519c0 11280@end deffn
bfa74976 11281
18b519c0 11282@deffn {Directive} %token
bfa74976
RS
11283Bison declaration to declare token(s) without specifying precedence.
11284@xref{Token Decl, ,Token Type Names}.
18b519c0 11285@end deffn
bfa74976 11286
18b519c0 11287@deffn {Directive} %token-table
ff7571c0
JD
11288Bison declaration to include a token name table in the parser
11289implementation file. @xref{Decl Summary}.
18b519c0 11290@end deffn
931c7513 11291
18b519c0 11292@deffn {Directive} %type
704a47c4
AD
11293Bison declaration to declare nonterminals. @xref{Type Decl,
11294,Nonterminal Symbols}.
18b519c0 11295@end deffn
bfa74976 11296
dd8d9022
AD
11297@deffn {Symbol} $undefined
11298The predefined token onto which all undefined values returned by
11299@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11300@code{error}.
11301@end deffn
11302
18b519c0 11303@deffn {Directive} %union
bfa74976
RS
11304Bison declaration to specify several possible data types for semantic
11305values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11306@end deffn
bfa74976 11307
dd8d9022
AD
11308@deffn {Macro} YYABORT
11309Macro to pretend that an unrecoverable syntax error has occurred, by
11310making @code{yyparse} return 1 immediately. The error reporting
11311function @code{yyerror} is not called. @xref{Parser Function, ,The
11312Parser Function @code{yyparse}}.
8405b70c
PB
11313
11314For Java parsers, this functionality is invoked using @code{return YYABORT;}
11315instead.
dd8d9022 11316@end deffn
3ded9a63 11317
dd8d9022
AD
11318@deffn {Macro} YYACCEPT
11319Macro to pretend that a complete utterance of the language has been
11320read, by making @code{yyparse} return 0 immediately.
11321@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11322
11323For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11324instead.
dd8d9022 11325@end deffn
bfa74976 11326
dd8d9022 11327@deffn {Macro} YYBACKUP
742e4900 11328Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11329token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11330@end deffn
bfa74976 11331
dd8d9022 11332@deffn {Variable} yychar
32c29292 11333External integer variable that contains the integer value of the
742e4900 11334lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11335@code{yyparse}.) Error-recovery rule actions may examine this variable.
11336@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11337@end deffn
bfa74976 11338
dd8d9022
AD
11339@deffn {Variable} yyclearin
11340Macro used in error-recovery rule actions. It clears the previous
742e4900 11341lookahead token. @xref{Error Recovery}.
18b519c0 11342@end deffn
bfa74976 11343
dd8d9022
AD
11344@deffn {Macro} YYDEBUG
11345Macro to define to equip the parser with tracing code. @xref{Tracing,
11346,Tracing Your Parser}.
18b519c0 11347@end deffn
bfa74976 11348
dd8d9022
AD
11349@deffn {Variable} yydebug
11350External integer variable set to zero by default. If @code{yydebug}
11351is given a nonzero value, the parser will output information on input
11352symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11353@end deffn
bfa74976 11354
dd8d9022
AD
11355@deffn {Macro} yyerrok
11356Macro to cause parser to recover immediately to its normal mode
11357after a syntax error. @xref{Error Recovery}.
11358@end deffn
11359
11360@deffn {Macro} YYERROR
11361Macro to pretend that a syntax error has just been detected: call
11362@code{yyerror} and then perform normal error recovery if possible
11363(@pxref{Error Recovery}), or (if recovery is impossible) make
11364@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11365
11366For Java parsers, this functionality is invoked using @code{return YYERROR;}
11367instead.
dd8d9022
AD
11368@end deffn
11369
11370@deffn {Function} yyerror
11371User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11372@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11373@end deffn
11374
11375@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11376An obsolete macro used in the @file{yacc.c} skeleton, that you define
11377with @code{#define} in the prologue to request verbose, specific error
11378message strings when @code{yyerror} is called. It doesn't matter what
11379definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11380it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11381(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11382@end deffn
11383
11384@deffn {Macro} YYINITDEPTH
11385Macro for specifying the initial size of the parser stack.
1a059451 11386@xref{Memory Management}.
dd8d9022
AD
11387@end deffn
11388
11389@deffn {Function} yylex
11390User-supplied lexical analyzer function, called with no arguments to get
11391the next token. @xref{Lexical, ,The Lexical Analyzer Function
11392@code{yylex}}.
11393@end deffn
11394
11395@deffn {Macro} YYLEX_PARAM
11396An obsolete macro for specifying an extra argument (or list of extra
32c29292 11397arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11398macro is deprecated, and is supported only for Yacc like parsers.
11399@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11400@end deffn
11401
11402@deffn {Variable} yylloc
11403External variable in which @code{yylex} should place the line and column
11404numbers associated with a token. (In a pure parser, it is a local
11405variable within @code{yyparse}, and its address is passed to
32c29292
JD
11406@code{yylex}.)
11407You can ignore this variable if you don't use the @samp{@@} feature in the
11408grammar actions.
11409@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11410In semantic actions, it stores the location of the lookahead token.
32c29292 11411@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11412@end deffn
11413
11414@deffn {Type} YYLTYPE
11415Data type of @code{yylloc}; by default, a structure with four
11416members. @xref{Location Type, , Data Types of Locations}.
11417@end deffn
11418
11419@deffn {Variable} yylval
11420External variable in which @code{yylex} should place the semantic
11421value associated with a token. (In a pure parser, it is a local
11422variable within @code{yyparse}, and its address is passed to
32c29292
JD
11423@code{yylex}.)
11424@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11425In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11426@xref{Actions, ,Actions}.
dd8d9022
AD
11427@end deffn
11428
11429@deffn {Macro} YYMAXDEPTH
1a059451
PE
11430Macro for specifying the maximum size of the parser stack. @xref{Memory
11431Management}.
dd8d9022
AD
11432@end deffn
11433
11434@deffn {Variable} yynerrs
8a2800e7 11435Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11436(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11437pure push parser, it is a member of yypstate.)
dd8d9022
AD
11438@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11439@end deffn
11440
11441@deffn {Function} yyparse
11442The parser function produced by Bison; call this function to start
11443parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11444@end deffn
11445
9987d1b3 11446@deffn {Function} yypstate_delete
f4101aa6 11447The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11448call this function to delete the memory associated with a parser.
f4101aa6 11449@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11450@code{yypstate_delete}}.
59da312b
JD
11451(The current push parsing interface is experimental and may evolve.
11452More user feedback will help to stabilize it.)
9987d1b3
JD
11453@end deffn
11454
11455@deffn {Function} yypstate_new
f4101aa6 11456The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11457call this function to create a new parser.
f4101aa6 11458@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11459@code{yypstate_new}}.
59da312b
JD
11460(The current push parsing interface is experimental and may evolve.
11461More user feedback will help to stabilize it.)
9987d1b3
JD
11462@end deffn
11463
11464@deffn {Function} yypull_parse
f4101aa6
AD
11465The parser function produced by Bison in push mode; call this function to
11466parse the rest of the input stream.
11467@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11468@code{yypull_parse}}.
59da312b
JD
11469(The current push parsing interface is experimental and may evolve.
11470More user feedback will help to stabilize it.)
9987d1b3
JD
11471@end deffn
11472
11473@deffn {Function} yypush_parse
f4101aa6
AD
11474The parser function produced by Bison in push mode; call this function to
11475parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11476@code{yypush_parse}}.
59da312b
JD
11477(The current push parsing interface is experimental and may evolve.
11478More user feedback will help to stabilize it.)
9987d1b3
JD
11479@end deffn
11480
dd8d9022
AD
11481@deffn {Macro} YYPARSE_PARAM
11482An obsolete macro for specifying the name of a parameter that
11483@code{yyparse} should accept. The use of this macro is deprecated, and
11484is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11485Conventions for Pure Parsers}.
11486@end deffn
11487
11488@deffn {Macro} YYRECOVERING
02103984
PE
11489The expression @code{YYRECOVERING ()} yields 1 when the parser
11490is recovering from a syntax error, and 0 otherwise.
11491@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11492@end deffn
11493
11494@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11495Macro used to control the use of @code{alloca} when the
11496deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11497the parser will use @code{malloc} to extend its stacks. If defined to
114981, the parser will use @code{alloca}. Values other than 0 and 1 are
11499reserved for future Bison extensions. If not defined,
11500@code{YYSTACK_USE_ALLOCA} defaults to 0.
11501
55289366 11502In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11503limited stack and with unreliable stack-overflow checking, you should
11504set @code{YYMAXDEPTH} to a value that cannot possibly result in
11505unchecked stack overflow on any of your target hosts when
11506@code{alloca} is called. You can inspect the code that Bison
11507generates in order to determine the proper numeric values. This will
11508require some expertise in low-level implementation details.
dd8d9022
AD
11509@end deffn
11510
11511@deffn {Type} YYSTYPE
11512Data type of semantic values; @code{int} by default.
11513@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11514@end deffn
bfa74976 11515
342b8b6e 11516@node Glossary
bfa74976
RS
11517@appendix Glossary
11518@cindex glossary
11519
11520@table @asis
7fceb615 11521@item Accepting state
eb45ef3b
JD
11522A state whose only action is the accept action.
11523The accepting state is thus a consistent state.
11524@xref{Understanding,,}.
11525
8a4281b9 11526@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11527Formal method of specifying context-free grammars originally proposed
11528by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11529committee document contributing to what became the Algol 60 report.
11530@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11531
7fceb615
JD
11532@item Consistent state
11533A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 11534
bfa74976
RS
11535@item Context-free grammars
11536Grammars specified as rules that can be applied regardless of context.
11537Thus, if there is a rule which says that an integer can be used as an
11538expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11539permitted. @xref{Language and Grammar, ,Languages and Context-Free
11540Grammars}.
bfa74976 11541
7fceb615 11542@item Default reduction
110ef36a 11543The reduction that a parser should perform if the current parser state
35c1e5f0 11544contains no other action for the lookahead token. In permitted parser
7fceb615
JD
11545states, Bison declares the reduction with the largest lookahead set to be
11546the default reduction and removes that lookahead set. @xref{Default
11547Reductions}.
11548
11549@item Defaulted state
11550A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 11551
bfa74976
RS
11552@item Dynamic allocation
11553Allocation of memory that occurs during execution, rather than at
11554compile time or on entry to a function.
11555
11556@item Empty string
11557Analogous to the empty set in set theory, the empty string is a
11558character string of length zero.
11559
11560@item Finite-state stack machine
11561A ``machine'' that has discrete states in which it is said to exist at
11562each instant in time. As input to the machine is processed, the
11563machine moves from state to state as specified by the logic of the
11564machine. In the case of the parser, the input is the language being
11565parsed, and the states correspond to various stages in the grammar
c827f760 11566rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11567
8a4281b9 11568@item Generalized LR (GLR)
676385e2 11569A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11570that are not LR(1). It resolves situations that Bison's
eb45ef3b 11571deterministic parsing
676385e2
PH
11572algorithm cannot by effectively splitting off multiple parsers, trying all
11573possible parsers, and discarding those that fail in the light of additional
c827f760 11574right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11575LR Parsing}.
676385e2 11576
bfa74976
RS
11577@item Grouping
11578A language construct that is (in general) grammatically divisible;
c827f760 11579for example, `expression' or `declaration' in C@.
bfa74976
RS
11580@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11581
7fceb615
JD
11582@item IELR(1) (Inadequacy Elimination LR(1))
11583A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 11584context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
11585language-recognition power of canonical LR(1) but with nearly the same
11586number of parser states as LALR(1). This reduction in parser states is
11587often an order of magnitude. More importantly, because canonical LR(1)'s
11588extra parser states may contain duplicate conflicts in the case of non-LR(1)
11589grammars, the number of conflicts for IELR(1) is often an order of magnitude
11590less as well. This can significantly reduce the complexity of developing a
11591grammar. @xref{LR Table Construction}.
eb45ef3b 11592
bfa74976
RS
11593@item Infix operator
11594An arithmetic operator that is placed between the operands on which it
11595performs some operation.
11596
11597@item Input stream
11598A continuous flow of data between devices or programs.
11599
8a4281b9 11600@item LAC (Lookahead Correction)
fcf834f9 11601A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
11602detection, which is caused by LR state merging, default reductions, and the
11603use of @code{%nonassoc}. Delayed syntax error detection results in
11604unexpected semantic actions, initiation of error recovery in the wrong
11605syntactic context, and an incorrect list of expected tokens in a verbose
11606syntax error message. @xref{LAC}.
fcf834f9 11607
bfa74976
RS
11608@item Language construct
11609One of the typical usage schemas of the language. For example, one of
11610the constructs of the C language is the @code{if} statement.
11611@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11612
11613@item Left associativity
11614Operators having left associativity are analyzed from left to right:
11615@samp{a+b+c} first computes @samp{a+b} and then combines with
11616@samp{c}. @xref{Precedence, ,Operator Precedence}.
11617
11618@item Left recursion
89cab50d
AD
11619A rule whose result symbol is also its first component symbol; for
11620example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11621Rules}.
bfa74976
RS
11622
11623@item Left-to-right parsing
11624Parsing a sentence of a language by analyzing it token by token from
c827f760 11625left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11626
11627@item Lexical analyzer (scanner)
11628A function that reads an input stream and returns tokens one by one.
11629@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11630
11631@item Lexical tie-in
11632A flag, set by actions in the grammar rules, which alters the way
11633tokens are parsed. @xref{Lexical Tie-ins}.
11634
931c7513 11635@item Literal string token
14ded682 11636A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11637
742e4900
JD
11638@item Lookahead token
11639A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11640Tokens}.
bfa74976 11641
8a4281b9 11642@item LALR(1)
bfa74976 11643The class of context-free grammars that Bison (like most other parser
8a4281b9 11644generators) can handle by default; a subset of LR(1).
cc09e5be 11645@xref{Mysterious Conflicts}.
bfa74976 11646
8a4281b9 11647@item LR(1)
bfa74976 11648The class of context-free grammars in which at most one token of
742e4900 11649lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11650
11651@item Nonterminal symbol
11652A grammar symbol standing for a grammatical construct that can
11653be expressed through rules in terms of smaller constructs; in other
11654words, a construct that is not a token. @xref{Symbols}.
11655
bfa74976
RS
11656@item Parser
11657A function that recognizes valid sentences of a language by analyzing
11658the syntax structure of a set of tokens passed to it from a lexical
11659analyzer.
11660
11661@item Postfix operator
11662An arithmetic operator that is placed after the operands upon which it
11663performs some operation.
11664
11665@item Reduction
11666Replacing a string of nonterminals and/or terminals with a single
89cab50d 11667nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11668Parser Algorithm}.
bfa74976
RS
11669
11670@item Reentrant
11671A reentrant subprogram is a subprogram which can be in invoked any
11672number of times in parallel, without interference between the various
11673invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11674
11675@item Reverse polish notation
11676A language in which all operators are postfix operators.
11677
11678@item Right recursion
89cab50d
AD
11679A rule whose result symbol is also its last component symbol; for
11680example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11681Rules}.
bfa74976
RS
11682
11683@item Semantics
11684In computer languages, the semantics are specified by the actions
11685taken for each instance of the language, i.e., the meaning of
11686each statement. @xref{Semantics, ,Defining Language Semantics}.
11687
11688@item Shift
11689A parser is said to shift when it makes the choice of analyzing
11690further input from the stream rather than reducing immediately some
c827f760 11691already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11692
11693@item Single-character literal
11694A single character that is recognized and interpreted as is.
11695@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11696
11697@item Start symbol
11698The nonterminal symbol that stands for a complete valid utterance in
11699the language being parsed. The start symbol is usually listed as the
13863333 11700first nonterminal symbol in a language specification.
bfa74976
RS
11701@xref{Start Decl, ,The Start-Symbol}.
11702
11703@item Symbol table
11704A data structure where symbol names and associated data are stored
11705during parsing to allow for recognition and use of existing
11706information in repeated uses of a symbol. @xref{Multi-function Calc}.
11707
6e649e65
PE
11708@item Syntax error
11709An error encountered during parsing of an input stream due to invalid
11710syntax. @xref{Error Recovery}.
11711
bfa74976
RS
11712@item Token
11713A basic, grammatically indivisible unit of a language. The symbol
11714that describes a token in the grammar is a terminal symbol.
11715The input of the Bison parser is a stream of tokens which comes from
11716the lexical analyzer. @xref{Symbols}.
11717
11718@item Terminal symbol
89cab50d
AD
11719A grammar symbol that has no rules in the grammar and therefore is
11720grammatically indivisible. The piece of text it represents is a token.
11721@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
11722
11723@item Unreachable state
11724A parser state to which there does not exist a sequence of transitions from
11725the parser's start state. A state can become unreachable during conflict
11726resolution. @xref{Unreachable States}.
bfa74976
RS
11727@end table
11728
342b8b6e 11729@node Copying This Manual
f2b5126e 11730@appendix Copying This Manual
f2b5126e
PB
11731@include fdl.texi
11732
5e528941
JD
11733@node Bibliography
11734@unnumbered Bibliography
11735
11736@table @asis
11737@item [Denny 2008]
11738Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11739for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
117402008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11741pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11742
11743@item [Denny 2010 May]
11744Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11745Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11746University, Clemson, SC, USA (May 2010).
11747@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11748
11749@item [Denny 2010 November]
11750Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11751Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11752in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
117532010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11754
11755@item [DeRemer 1982]
11756Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11757Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11758Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11759615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11760
11761@item [Knuth 1965]
11762Donald E. Knuth, On the Translation of Languages from Left to Right, in
11763@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11764607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11765
11766@item [Scott 2000]
11767Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11768@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11769London, Department of Computer Science, TR-00-12 (December 2000).
11770@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11771@end table
11772
342b8b6e 11773@node Index
bfa74976
RS
11774@unnumbered Index
11775
11776@printindex cp
11777
bfa74976 11778@bye
a06ea4aa 11779
6b5a0de9
AD
11780@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11781@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11782@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11783@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11784@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11785@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11786@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11787@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11788@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11789@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11790@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11791@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11792@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11793@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11794@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11795@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11796@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11797@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11798@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11799@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11800@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11801@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11802@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11803@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11804@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11805@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11806@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11807@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11808@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11809@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9 11810@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
ff7571c0 11811@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
6b5a0de9
AD
11812@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11813@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11814@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11815@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11816@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11817@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11818@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
ff7571c0 11819@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
6b5a0de9
AD
11820@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11821@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11822@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11823@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11824@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11825@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11826@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11827@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11828@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11829@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
679e9935 11830@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
6b5a0de9 11831@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11832
11833@c Local Variables:
11834@c ispell-dictionary: "american"
11835@c fill-column: 76
11836@c End: