]> git.saurik.com Git - bison.git/blame - doc/bison.texinfo
doc: fix confusing citation of LAC publication.
[bison.git] / doc / bison.texinfo
CommitLineData
bfa74976
RS
1\input texinfo @c -*-texinfo-*-
2@comment %**start of header
3@setfilename bison.info
df1af54c
JT
4@include version.texi
5@settitle Bison @value{VERSION}
bfa74976
RS
6@setchapternewpage odd
7
5378c3e7 8@finalout
5378c3e7 9
13863333 10@c SMALL BOOK version
bfa74976 11@c This edition has been formatted so that you can format and print it in
13863333 12@c the smallbook format.
bfa74976
RS
13@c @smallbook
14
91d2c560
PE
15@c Set following if you want to document %default-prec and %no-default-prec.
16@c This feature is experimental and may change in future Bison versions.
17@c @set defaultprec
18
8c5b881d 19@ifnotinfo
bfa74976
RS
20@syncodeindex fn cp
21@syncodeindex vr cp
22@syncodeindex tp cp
8c5b881d 23@end ifnotinfo
bfa74976
RS
24@ifinfo
25@synindex fn cp
26@synindex vr cp
27@synindex tp cp
28@end ifinfo
29@comment %**end of header
30
fae437e8 31@copying
bd773d73 32
8a4281b9
JD
33This manual (@value{UPDATED}) is for GNU Bison (version
34@value{VERSION}), the GNU parser generator.
fae437e8 35
575619af
JD
36Copyright @copyright{} 1988-1993, 1995, 1998-2011 Free Software
37Foundation, Inc.
fae437e8
AD
38
39@quotation
40Permission is granted to copy, distribute and/or modify this document
8a4281b9 41under the terms of the GNU Free Documentation License,
804e83b2 42Version 1.3 or any later version published by the Free Software
c827f760 43Foundation; with no Invariant Sections, with the Front-Cover texts
8a4281b9 44being ``A GNU Manual,'' and with the Back-Cover Texts as in
c827f760 45(a) below. A copy of the license is included in the section entitled
8a4281b9 46``GNU Free Documentation License.''
c827f760 47
389c8cfd 48(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
8a4281b9
JD
49modify this GNU manual. Buying copies from the FSF
50supports it in developing GNU and promoting software
389c8cfd 51freedom.''
fae437e8
AD
52@end quotation
53@end copying
54
e62f1a89 55@dircategory Software development
fae437e8 56@direntry
8a4281b9 57* bison: (bison). GNU parser generator (Yacc replacement).
fae437e8 58@end direntry
bfa74976 59
bfa74976
RS
60@titlepage
61@title Bison
c827f760 62@subtitle The Yacc-compatible Parser Generator
df1af54c 63@subtitle @value{UPDATED}, Bison Version @value{VERSION}
bfa74976
RS
64
65@author by Charles Donnelly and Richard Stallman
66
67@page
68@vskip 0pt plus 1filll
fae437e8 69@insertcopying
bfa74976
RS
70@sp 2
71Published by the Free Software Foundation @*
0fb669f9
PE
7251 Franklin Street, Fifth Floor @*
73Boston, MA 02110-1301 USA @*
9ecbd125 74Printed copies are available from the Free Software Foundation.@*
8a4281b9 75ISBN 1-882114-44-2
bfa74976
RS
76@sp 2
77Cover art by Etienne Suvasa.
78@end titlepage
d5796688
JT
79
80@contents
bfa74976 81
342b8b6e
AD
82@ifnottex
83@node Top
84@top Bison
fae437e8 85@insertcopying
342b8b6e 86@end ifnottex
bfa74976
RS
87
88@menu
13863333
AD
89* Introduction::
90* Conditions::
8a4281b9 91* Copying:: The GNU General Public License says
f5f419de 92 how you can copy and share Bison.
bfa74976
RS
93
94Tutorial sections:
f5f419de
DJ
95* Concepts:: Basic concepts for understanding Bison.
96* Examples:: Three simple explained examples of using Bison.
bfa74976
RS
97
98Reference sections:
f5f419de
DJ
99* Grammar File:: Writing Bison declarations and rules.
100* Interface:: C-language interface to the parser function @code{yyparse}.
101* Algorithm:: How the Bison parser works at run-time.
102* Error Recovery:: Writing rules for error recovery.
bfa74976 103* Context Dependency:: What to do if your language syntax is too
f5f419de
DJ
104 messy for Bison to handle straightforwardly.
105* Debugging:: Understanding or debugging Bison parsers.
ff7571c0 106* Invocation:: How to run Bison (to produce the parser implementation).
f5f419de
DJ
107* Other Languages:: Creating C++ and Java parsers.
108* FAQ:: Frequently Asked Questions
109* Table of Symbols:: All the keywords of the Bison language are explained.
110* Glossary:: Basic concepts are explained.
111* Copying This Manual:: License for copying this manual.
5e528941 112* Bibliography:: Publications cited in this manual.
f5f419de 113* Index:: Cross-references to the text.
bfa74976 114
93dd49ab
PE
115@detailmenu
116 --- The Detailed Node Listing ---
bfa74976
RS
117
118The Concepts of Bison
119
f5f419de
DJ
120* Language and Grammar:: Languages and context-free grammars,
121 as mathematical ideas.
122* Grammar in Bison:: How we represent grammars for Bison's sake.
123* Semantic Values:: Each token or syntactic grouping can have
124 a semantic value (the value of an integer,
125 the name of an identifier, etc.).
126* Semantic Actions:: Each rule can have an action containing C code.
127* GLR Parsers:: Writing parsers for general context-free languages.
128* Locations Overview:: Tracking Locations.
129* Bison Parser:: What are Bison's input and output,
130 how is the output used?
131* Stages:: Stages in writing and running Bison grammars.
132* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976 133
8a4281b9 134Writing GLR Parsers
fa7e68c3 135
8a4281b9
JD
136* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
137* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 138* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 139* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 140* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3 141
bfa74976
RS
142Examples
143
f5f419de
DJ
144* RPN Calc:: Reverse polish notation calculator;
145 a first example with no operator precedence.
146* Infix Calc:: Infix (algebraic) notation calculator.
147 Operator precedence is introduced.
bfa74976 148* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 149* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
150* Multi-function Calc:: Calculator with memory and trig functions.
151 It uses multiple data-types for semantic values.
152* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
153
154Reverse Polish Notation Calculator
155
f5f419de
DJ
156* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
157* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
158* Rpcalc Lexer:: The lexical analyzer.
159* Rpcalc Main:: The controlling function.
160* Rpcalc Error:: The error reporting function.
161* Rpcalc Generate:: Running Bison on the grammar file.
162* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
163
164Grammar Rules for @code{rpcalc}
165
13863333
AD
166* Rpcalc Input::
167* Rpcalc Line::
168* Rpcalc Expr::
bfa74976 169
342b8b6e
AD
170Location Tracking Calculator: @code{ltcalc}
171
f5f419de
DJ
172* Ltcalc Declarations:: Bison and C declarations for ltcalc.
173* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
174* Ltcalc Lexer:: The lexical analyzer.
342b8b6e 175
bfa74976
RS
176Multi-Function Calculator: @code{mfcalc}
177
f5f419de
DJ
178* Mfcalc Declarations:: Bison declarations for multi-function calculator.
179* Mfcalc Rules:: Grammar rules for the calculator.
180* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
181
182Bison Grammar Files
183
184* Grammar Outline:: Overall layout of the grammar file.
185* Symbols:: Terminal and nonterminal symbols.
186* Rules:: How to write grammar rules.
187* Recursion:: Writing recursive rules.
188* Semantics:: Semantic values and actions.
93dd49ab 189* Locations:: Locations and actions.
bfa74976
RS
190* Declarations:: All kinds of Bison declarations are described here.
191* Multiple Parsers:: Putting more than one Bison parser in one program.
192
193Outline of a Bison Grammar
194
f5f419de 195* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 196* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
197* Bison Declarations:: Syntax and usage of the Bison declarations section.
198* Grammar Rules:: Syntax and usage of the grammar rules section.
199* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
200
201Defining Language Semantics
202
203* Value Type:: Specifying one data type for all semantic values.
204* Multiple Types:: Specifying several alternative data types.
205* Actions:: An action is the semantic definition of a grammar rule.
206* Action Types:: Specifying data types for actions to operate on.
207* Mid-Rule Actions:: Most actions go at the end of a rule.
208 This says when, why and how to use the exceptional
209 action in the middle of a rule.
d013372c 210* Named References:: Using named references in actions.
bfa74976 211
93dd49ab
PE
212Tracking Locations
213
214* Location Type:: Specifying a data type for locations.
215* Actions and Locations:: Using locations in actions.
216* Location Default Action:: Defining a general way to compute locations.
217
bfa74976
RS
218Bison Declarations
219
b50d2359 220* Require Decl:: Requiring a Bison version.
bfa74976
RS
221* Token Decl:: Declaring terminal symbols.
222* Precedence Decl:: Declaring terminals with precedence and associativity.
223* Union Decl:: Declaring the set of all semantic value types.
224* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 225* Initial Action Decl:: Code run before parsing starts.
72f889cc 226* Destructor Decl:: Declaring how symbols are freed.
d6328241 227* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
228* Start Decl:: Specifying the start symbol.
229* Pure Decl:: Requesting a reentrant parser.
9987d1b3 230* Push Decl:: Requesting a push parser.
bfa74976 231* Decl Summary:: Table of all Bison declarations.
35c1e5f0 232* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 233* %code Summary:: Inserting code into the parser source.
bfa74976
RS
234
235Parser C-Language Interface
236
f5f419de
DJ
237* Parser Function:: How to call @code{yyparse} and what it returns.
238* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
239* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
240* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
241* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
242* Lexical:: You must supply a function @code{yylex}
243 which reads tokens.
244* Error Reporting:: You must supply a function @code{yyerror}.
245* Action Features:: Special features for use in actions.
246* Internationalization:: How to let the parser speak in the user's
247 native language.
bfa74976
RS
248
249The Lexical Analyzer Function @code{yylex}
250
251* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
252* Token Values:: How @code{yylex} must return the semantic value
253 of the token it has read.
254* Token Locations:: How @code{yylex} must return the text location
255 (line number, etc.) of the token, if the
256 actions want that.
257* Pure Calling:: How the calling convention differs in a pure parser
258 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976 259
13863333 260The Bison Parser Algorithm
bfa74976 261
742e4900 262* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
263* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
264* Precedence:: Operator precedence works by resolving conflicts.
265* Contextual Precedence:: When an operator's precedence depends on context.
266* Parser States:: The parser is a finite-state-machine with stack.
267* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 268* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 269* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 270* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 271* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
272
273Operator Precedence
274
275* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
276* Using Precedence:: How to specify precedence and associativity.
277* Precedence Only:: How to specify precedence only.
bfa74976
RS
278* Precedence Examples:: How these features are used in the previous example.
279* How Precedence:: How they work.
280
7fceb615
JD
281Tuning LR
282
283* LR Table Construction:: Choose a different construction algorithm.
284* Default Reductions:: Disable default reductions.
285* LAC:: Correct lookahead sets in the parser states.
286* Unreachable States:: Keep unreachable parser states for debugging.
287
bfa74976
RS
288Handling Context Dependencies
289
290* Semantic Tokens:: Token parsing can depend on the semantic context.
291* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
292* Tie-in Recovery:: Lexical tie-ins have implications for how
293 error recovery rules must be written.
294
93dd49ab 295Debugging Your Parser
ec3bc396
AD
296
297* Understanding:: Understanding the structure of your parser.
298* Tracing:: Tracing the execution of your parser.
299
bfa74976
RS
300Invoking Bison
301
13863333 302* Bison Options:: All the options described in detail,
c827f760 303 in alphabetical order by short options.
bfa74976 304* Option Cross Key:: Alphabetical list of long options.
93dd49ab 305* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
f2b5126e 306
8405b70c 307Parsers Written In Other Languages
12545799
AD
308
309* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 310* Java Parsers:: The interface to generate Java parser classes
12545799
AD
311
312C++ Parsers
313
314* C++ Bison Interface:: Asking for C++ parser generation
315* C++ Semantic Values:: %union vs. C++
316* C++ Location Values:: The position and location classes
317* C++ Parser Interface:: Instantiating and running the parser
318* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 319* A Complete C++ Example:: Demonstrating their use
12545799
AD
320
321A Complete C++ Example
322
323* Calc++ --- C++ Calculator:: The specifications
324* Calc++ Parsing Driver:: An active parsing context
325* Calc++ Parser:: A parser class
326* Calc++ Scanner:: A pure C++ Flex scanner
327* Calc++ Top Level:: Conducting the band
328
8405b70c
PB
329Java Parsers
330
f5f419de
DJ
331* Java Bison Interface:: Asking for Java parser generation
332* Java Semantic Values:: %type and %token vs. Java
333* Java Location Values:: The position and location classes
334* Java Parser Interface:: Instantiating and running the parser
335* Java Scanner Interface:: Specifying the scanner for the parser
336* Java Action Features:: Special features for use in actions
337* Java Differences:: Differences between C/C++ and Java Grammars
338* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c 339
d1a1114f
AD
340Frequently Asked Questions
341
f5f419de
DJ
342* Memory Exhausted:: Breaking the Stack Limits
343* How Can I Reset the Parser:: @code{yyparse} Keeps some State
344* Strings are Destroyed:: @code{yylval} Loses Track of Strings
345* Implementing Gotos/Loops:: Control Flow in the Calculator
346* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 347* Secure? Conform?:: Is Bison POSIX safe?
f5f419de
DJ
348* I can't build Bison:: Troubleshooting
349* Where can I find help?:: Troubleshouting
350* Bug Reports:: Troublereporting
351* More Languages:: Parsers in C++, Java, and so on
352* Beta Testing:: Experimenting development versions
353* Mailing Lists:: Meeting other Bison users
d1a1114f 354
f2b5126e
PB
355Copying This Manual
356
f5f419de 357* Copying This Manual:: License for copying this manual.
f2b5126e 358
342b8b6e 359@end detailmenu
bfa74976
RS
360@end menu
361
342b8b6e 362@node Introduction
bfa74976
RS
363@unnumbered Introduction
364@cindex introduction
365
6077da58 366@dfn{Bison} is a general-purpose parser generator that converts an
af28d414
JD
367annotated context-free grammar into a deterministic LR or generalized
368LR (GLR) parser employing LALR(1) parser tables. As an experimental
369feature, Bison can also generate IELR(1) or canonical LR(1) parser
370tables. Once you are proficient with Bison, you can use it to develop
371a wide range of language parsers, from those used in simple desk
372calculators to complex programming languages.
373
374Bison is upward compatible with Yacc: all properly-written Yacc
375grammars ought to work with Bison with no change. Anyone familiar
376with Yacc should be able to use Bison with little trouble. You need
377to be fluent in C or C++ programming in order to use Bison or to
378understand this manual. Java is also supported as an experimental
379feature.
380
381We begin with tutorial chapters that explain the basic concepts of
382using Bison and show three explained examples, each building on the
383last. If you don't know Bison or Yacc, start by reading these
384chapters. Reference chapters follow, which describe specific aspects
385of Bison in detail.
bfa74976 386
679e9935
JD
387Bison was written originally by Robert Corbett. Richard Stallman made
388it Yacc-compatible. Wilfred Hansen of Carnegie Mellon University
389added multi-character string literals and other features. Since then,
390Bison has grown more robust and evolved many other new features thanks
391to the hard work of a long list of volunteers. For details, see the
392@file{THANKS} and @file{ChangeLog} files included in the Bison
393distribution.
931c7513 394
df1af54c 395This edition corresponds to version @value{VERSION} of Bison.
bfa74976 396
342b8b6e 397@node Conditions
bfa74976
RS
398@unnumbered Conditions for Using Bison
399
193d7c70
PE
400The distribution terms for Bison-generated parsers permit using the
401parsers in nonfree programs. Before Bison version 2.2, these extra
8a4281b9 402permissions applied only when Bison was generating LALR(1)
193d7c70 403parsers in C@. And before Bison version 1.24, Bison-generated
262aa8dd 404parsers could be used only in programs that were free software.
a31239f1 405
8a4281b9 406The other GNU programming tools, such as the GNU C
c827f760 407compiler, have never
9ecbd125 408had such a requirement. They could always be used for nonfree
a31239f1
RS
409software. The reason Bison was different was not due to a special
410policy decision; it resulted from applying the usual General Public
411License to all of the Bison source code.
412
ff7571c0
JD
413The main output of the Bison utility---the Bison parser implementation
414file---contains a verbatim copy of a sizable piece of Bison, which is
415the code for the parser's implementation. (The actions from your
416grammar are inserted into this implementation at one point, but most
417of the rest of the implementation is not changed.) When we applied
418the GPL terms to the skeleton code for the parser's implementation,
a31239f1
RS
419the effect was to restrict the use of Bison output to free software.
420
421We didn't change the terms because of sympathy for people who want to
422make software proprietary. @strong{Software should be free.} But we
423concluded that limiting Bison's use to free software was doing little to
424encourage people to make other software free. So we decided to make the
425practical conditions for using Bison match the practical conditions for
8a4281b9 426using the other GNU tools.
bfa74976 427
193d7c70
PE
428This exception applies when Bison is generating code for a parser.
429You can tell whether the exception applies to a Bison output file by
430inspecting the file for text beginning with ``As a special
431exception@dots{}''. The text spells out the exact terms of the
432exception.
262aa8dd 433
f16b0819
PE
434@node Copying
435@unnumbered GNU GENERAL PUBLIC LICENSE
436@include gpl-3.0.texi
bfa74976 437
342b8b6e 438@node Concepts
bfa74976
RS
439@chapter The Concepts of Bison
440
441This chapter introduces many of the basic concepts without which the
442details of Bison will not make sense. If you do not already know how to
443use Bison or Yacc, we suggest you start by reading this chapter carefully.
444
445@menu
f5f419de
DJ
446* Language and Grammar:: Languages and context-free grammars,
447 as mathematical ideas.
448* Grammar in Bison:: How we represent grammars for Bison's sake.
449* Semantic Values:: Each token or syntactic grouping can have
450 a semantic value (the value of an integer,
451 the name of an identifier, etc.).
452* Semantic Actions:: Each rule can have an action containing C code.
453* GLR Parsers:: Writing parsers for general context-free languages.
454* Locations Overview:: Tracking Locations.
455* Bison Parser:: What are Bison's input and output,
456 how is the output used?
457* Stages:: Stages in writing and running Bison grammars.
458* Grammar Layout:: Overall structure of a Bison grammar file.
bfa74976
RS
459@end menu
460
342b8b6e 461@node Language and Grammar
bfa74976
RS
462@section Languages and Context-Free Grammars
463
bfa74976
RS
464@cindex context-free grammar
465@cindex grammar, context-free
466In order for Bison to parse a language, it must be described by a
467@dfn{context-free grammar}. This means that you specify one or more
468@dfn{syntactic groupings} and give rules for constructing them from their
469parts. For example, in the C language, one kind of grouping is called an
470`expression'. One rule for making an expression might be, ``An expression
471can be made of a minus sign and another expression''. Another would be,
472``An expression can be an integer''. As you can see, rules are often
473recursive, but there must be at least one rule which leads out of the
474recursion.
475
8a4281b9 476@cindex BNF
bfa74976
RS
477@cindex Backus-Naur form
478The most common formal system for presenting such rules for humans to read
8a4281b9 479is @dfn{Backus-Naur Form} or ``BNF'', which was developed in
c827f760 480order to specify the language Algol 60. Any grammar expressed in
8a4281b9
JD
481BNF is a context-free grammar. The input to Bison is
482essentially machine-readable BNF.
bfa74976 483
7fceb615
JD
484@cindex LALR grammars
485@cindex IELR grammars
486@cindex LR grammars
487There are various important subclasses of context-free grammars. Although
488it can handle almost all context-free grammars, Bison is optimized for what
489are called LR(1) grammars. In brief, in these grammars, it must be possible
490to tell how to parse any portion of an input string with just a single token
491of lookahead. For historical reasons, Bison by default is limited by the
492additional restrictions of LALR(1), which is hard to explain simply.
cc09e5be
JD
493@xref{Mysterious Conflicts}, for more information on this. As an
494experimental feature, you can escape these additional restrictions by
495requesting IELR(1) or canonical LR(1) parser tables. @xref{LR Table
496Construction}, to learn how.
bfa74976 497
8a4281b9
JD
498@cindex GLR parsing
499@cindex generalized LR (GLR) parsing
676385e2 500@cindex ambiguous grammars
9d9b8b70 501@cindex nondeterministic parsing
9501dc6e 502
8a4281b9 503Parsers for LR(1) grammars are @dfn{deterministic}, meaning
9501dc6e
AD
504roughly that the next grammar rule to apply at any point in the input is
505uniquely determined by the preceding input and a fixed, finite portion
742e4900 506(called a @dfn{lookahead}) of the remaining input. A context-free
9501dc6e 507grammar can be @dfn{ambiguous}, meaning that there are multiple ways to
e4f85c39 508apply the grammar rules to get the same inputs. Even unambiguous
9d9b8b70 509grammars can be @dfn{nondeterministic}, meaning that no fixed
742e4900 510lookahead always suffices to determine the next grammar rule to apply.
9501dc6e 511With the proper declarations, Bison is also able to parse these more
8a4281b9
JD
512general context-free grammars, using a technique known as GLR
513parsing (for Generalized LR). Bison's GLR parsers
9501dc6e
AD
514are able to handle any context-free grammar for which the number of
515possible parses of any given string is finite.
676385e2 516
bfa74976
RS
517@cindex symbols (abstract)
518@cindex token
519@cindex syntactic grouping
520@cindex grouping, syntactic
9501dc6e
AD
521In the formal grammatical rules for a language, each kind of syntactic
522unit or grouping is named by a @dfn{symbol}. Those which are built by
523grouping smaller constructs according to grammatical rules are called
bfa74976
RS
524@dfn{nonterminal symbols}; those which can't be subdivided are called
525@dfn{terminal symbols} or @dfn{token types}. We call a piece of input
526corresponding to a single terminal symbol a @dfn{token}, and a piece
e0c471a9 527corresponding to a single nonterminal symbol a @dfn{grouping}.
bfa74976
RS
528
529We can use the C language as an example of what symbols, terminal and
9501dc6e
AD
530nonterminal, mean. The tokens of C are identifiers, constants (numeric
531and string), and the various keywords, arithmetic operators and
532punctuation marks. So the terminal symbols of a grammar for C include
533`identifier', `number', `string', plus one symbol for each keyword,
534operator or punctuation mark: `if', `return', `const', `static', `int',
535`char', `plus-sign', `open-brace', `close-brace', `comma' and many more.
536(These tokens can be subdivided into characters, but that is a matter of
bfa74976
RS
537lexicography, not grammar.)
538
539Here is a simple C function subdivided into tokens:
540
9edcd895
AD
541@ifinfo
542@example
543int /* @r{keyword `int'} */
14d4662b 544square (int x) /* @r{identifier, open-paren, keyword `int',}
9edcd895
AD
545 @r{identifier, close-paren} */
546@{ /* @r{open-brace} */
aa08666d
AD
547 return x * x; /* @r{keyword `return', identifier, asterisk,}
548 @r{identifier, semicolon} */
9edcd895
AD
549@} /* @r{close-brace} */
550@end example
551@end ifinfo
552@ifnotinfo
bfa74976
RS
553@example
554int /* @r{keyword `int'} */
14d4662b 555square (int x) /* @r{identifier, open-paren, keyword `int', identifier, close-paren} */
bfa74976 556@{ /* @r{open-brace} */
9edcd895 557 return x * x; /* @r{keyword `return', identifier, asterisk, identifier, semicolon} */
bfa74976
RS
558@} /* @r{close-brace} */
559@end example
9edcd895 560@end ifnotinfo
bfa74976
RS
561
562The syntactic groupings of C include the expression, the statement, the
563declaration, and the function definition. These are represented in the
564grammar of C by nonterminal symbols `expression', `statement',
565`declaration' and `function definition'. The full grammar uses dozens of
566additional language constructs, each with its own nonterminal symbol, in
567order to express the meanings of these four. The example above is a
568function definition; it contains one declaration, and one statement. In
569the statement, each @samp{x} is an expression and so is @samp{x * x}.
570
571Each nonterminal symbol must have grammatical rules showing how it is made
572out of simpler constructs. For example, one kind of C statement is the
573@code{return} statement; this would be described with a grammar rule which
574reads informally as follows:
575
576@quotation
577A `statement' can be made of a `return' keyword, an `expression' and a
578`semicolon'.
579@end quotation
580
581@noindent
582There would be many other rules for `statement', one for each kind of
583statement in C.
584
585@cindex start symbol
586One nonterminal symbol must be distinguished as the special one which
587defines a complete utterance in the language. It is called the @dfn{start
588symbol}. In a compiler, this means a complete input program. In the C
589language, the nonterminal symbol `sequence of definitions and declarations'
590plays this role.
591
592For example, @samp{1 + 2} is a valid C expression---a valid part of a C
593program---but it is not valid as an @emph{entire} C program. In the
594context-free grammar of C, this follows from the fact that `expression' is
595not the start symbol.
596
597The Bison parser reads a sequence of tokens as its input, and groups the
598tokens using the grammar rules. If the input is valid, the end result is
599that the entire token sequence reduces to a single grouping whose symbol is
600the grammar's start symbol. If we use a grammar for C, the entire input
601must be a `sequence of definitions and declarations'. If not, the parser
602reports a syntax error.
603
342b8b6e 604@node Grammar in Bison
bfa74976
RS
605@section From Formal Rules to Bison Input
606@cindex Bison grammar
607@cindex grammar, Bison
608@cindex formal grammar
609
610A formal grammar is a mathematical construct. To define the language
611for Bison, you must write a file expressing the grammar in Bison syntax:
612a @dfn{Bison grammar} file. @xref{Grammar File, ,Bison Grammar Files}.
613
614A nonterminal symbol in the formal grammar is represented in Bison input
c827f760 615as an identifier, like an identifier in C@. By convention, it should be
bfa74976
RS
616in lower case, such as @code{expr}, @code{stmt} or @code{declaration}.
617
618The Bison representation for a terminal symbol is also called a @dfn{token
619type}. Token types as well can be represented as C-like identifiers. By
620convention, these identifiers should be upper case to distinguish them from
621nonterminals: for example, @code{INTEGER}, @code{IDENTIFIER}, @code{IF} or
622@code{RETURN}. A terminal symbol that stands for a particular keyword in
623the language should be named after that keyword converted to upper case.
624The terminal symbol @code{error} is reserved for error recovery.
931c7513 625@xref{Symbols}.
bfa74976
RS
626
627A terminal symbol can also be represented as a character literal, just like
628a C character constant. You should do this whenever a token is just a
629single character (parenthesis, plus-sign, etc.): use that same character in
630a literal as the terminal symbol for that token.
631
931c7513
RS
632A third way to represent a terminal symbol is with a C string constant
633containing several characters. @xref{Symbols}, for more information.
634
bfa74976
RS
635The grammar rules also have an expression in Bison syntax. For example,
636here is the Bison rule for a C @code{return} statement. The semicolon in
637quotes is a literal character token, representing part of the C syntax for
638the statement; the naked semicolon, and the colon, are Bison punctuation
639used in every rule.
640
641@example
642stmt: RETURN expr ';'
643 ;
644@end example
645
646@noindent
647@xref{Rules, ,Syntax of Grammar Rules}.
648
342b8b6e 649@node Semantic Values
bfa74976
RS
650@section Semantic Values
651@cindex semantic value
652@cindex value, semantic
653
654A formal grammar selects tokens only by their classifications: for example,
655if a rule mentions the terminal symbol `integer constant', it means that
656@emph{any} integer constant is grammatically valid in that position. The
657precise value of the constant is irrelevant to how to parse the input: if
658@samp{x+4} is grammatical then @samp{x+1} or @samp{x+3989} is equally
e0c471a9 659grammatical.
bfa74976
RS
660
661But the precise value is very important for what the input means once it is
662parsed. A compiler is useless if it fails to distinguish between 4, 1 and
6633989 as constants in the program! Therefore, each token in a Bison grammar
c827f760
PE
664has both a token type and a @dfn{semantic value}. @xref{Semantics,
665,Defining Language Semantics},
bfa74976
RS
666for details.
667
668The token type is a terminal symbol defined in the grammar, such as
669@code{INTEGER}, @code{IDENTIFIER} or @code{','}. It tells everything
670you need to know to decide where the token may validly appear and how to
671group it with other tokens. The grammar rules know nothing about tokens
e0c471a9 672except their types.
bfa74976
RS
673
674The semantic value has all the rest of the information about the
675meaning of the token, such as the value of an integer, or the name of an
676identifier. (A token such as @code{','} which is just punctuation doesn't
677need to have any semantic value.)
678
679For example, an input token might be classified as token type
680@code{INTEGER} and have the semantic value 4. Another input token might
681have the same token type @code{INTEGER} but value 3989. When a grammar
682rule says that @code{INTEGER} is allowed, either of these tokens is
683acceptable because each is an @code{INTEGER}. When the parser accepts the
684token, it keeps track of the token's semantic value.
685
686Each grouping can also have a semantic value as well as its nonterminal
687symbol. For example, in a calculator, an expression typically has a
688semantic value that is a number. In a compiler for a programming
689language, an expression typically has a semantic value that is a tree
690structure describing the meaning of the expression.
691
342b8b6e 692@node Semantic Actions
bfa74976
RS
693@section Semantic Actions
694@cindex semantic actions
695@cindex actions, semantic
696
697In order to be useful, a program must do more than parse input; it must
698also produce some output based on the input. In a Bison grammar, a grammar
699rule can have an @dfn{action} made up of C statements. Each time the
700parser recognizes a match for that rule, the action is executed.
701@xref{Actions}.
13863333 702
bfa74976
RS
703Most of the time, the purpose of an action is to compute the semantic value
704of the whole construct from the semantic values of its parts. For example,
705suppose we have a rule which says an expression can be the sum of two
706expressions. When the parser recognizes such a sum, each of the
707subexpressions has a semantic value which describes how it was built up.
708The action for this rule should create a similar sort of value for the
709newly recognized larger expression.
710
711For example, here is a rule that says an expression can be the sum of
712two subexpressions:
713
714@example
715expr: expr '+' expr @{ $$ = $1 + $3; @}
716 ;
717@end example
718
719@noindent
720The action says how to produce the semantic value of the sum expression
721from the values of the two subexpressions.
722
676385e2 723@node GLR Parsers
8a4281b9
JD
724@section Writing GLR Parsers
725@cindex GLR parsing
726@cindex generalized LR (GLR) parsing
676385e2
PH
727@findex %glr-parser
728@cindex conflicts
729@cindex shift/reduce conflicts
fa7e68c3 730@cindex reduce/reduce conflicts
676385e2 731
eb45ef3b 732In some grammars, Bison's deterministic
8a4281b9 733LR(1) parsing algorithm cannot decide whether to apply a
9501dc6e
AD
734certain grammar rule at a given point. That is, it may not be able to
735decide (on the basis of the input read so far) which of two possible
736reductions (applications of a grammar rule) applies, or whether to apply
737a reduction or read more of the input and apply a reduction later in the
738input. These are known respectively as @dfn{reduce/reduce} conflicts
739(@pxref{Reduce/Reduce}), and @dfn{shift/reduce} conflicts
740(@pxref{Shift/Reduce}).
741
8a4281b9 742To use a grammar that is not easily modified to be LR(1), a
9501dc6e 743more general parsing algorithm is sometimes necessary. If you include
676385e2 744@code{%glr-parser} among the Bison declarations in your file
8a4281b9
JD
745(@pxref{Grammar Outline}), the result is a Generalized LR
746(GLR) parser. These parsers handle Bison grammars that
9501dc6e 747contain no unresolved conflicts (i.e., after applying precedence
eb45ef3b 748declarations) identically to deterministic parsers. However, when
9501dc6e 749faced with unresolved shift/reduce and reduce/reduce conflicts,
8a4281b9 750GLR parsers use the simple expedient of doing both,
9501dc6e
AD
751effectively cloning the parser to follow both possibilities. Each of
752the resulting parsers can again split, so that at any given time, there
753can be any number of possible parses being explored. The parsers
676385e2
PH
754proceed in lockstep; that is, all of them consume (shift) a given input
755symbol before any of them proceed to the next. Each of the cloned
756parsers eventually meets one of two possible fates: either it runs into
757a parsing error, in which case it simply vanishes, or it merges with
758another parser, because the two of them have reduced the input to an
759identical set of symbols.
760
761During the time that there are multiple parsers, semantic actions are
762recorded, but not performed. When a parser disappears, its recorded
763semantic actions disappear as well, and are never performed. When a
764reduction makes two parsers identical, causing them to merge, Bison
765records both sets of semantic actions. Whenever the last two parsers
766merge, reverting to the single-parser case, Bison resolves all the
767outstanding actions either by precedences given to the grammar rules
768involved, or by performing both actions, and then calling a designated
769user-defined function on the resulting values to produce an arbitrary
770merged result.
771
fa7e68c3 772@menu
8a4281b9
JD
773* Simple GLR Parsers:: Using GLR parsers on unambiguous grammars.
774* Merging GLR Parses:: Using GLR parsers to resolve ambiguities.
20be2f92 775* GLR Semantic Actions:: Considerations for semantic values and deferred actions.
ca2a6d15 776* Semantic Predicates:: Controlling a parse with arbitrary computations.
8a4281b9 777* Compiler Requirements:: GLR parsers require a modern C compiler.
fa7e68c3
PE
778@end menu
779
780@node Simple GLR Parsers
8a4281b9
JD
781@subsection Using GLR on Unambiguous Grammars
782@cindex GLR parsing, unambiguous grammars
783@cindex generalized LR (GLR) parsing, unambiguous grammars
fa7e68c3
PE
784@findex %glr-parser
785@findex %expect-rr
786@cindex conflicts
787@cindex reduce/reduce conflicts
788@cindex shift/reduce conflicts
789
8a4281b9
JD
790In the simplest cases, you can use the GLR algorithm
791to parse grammars that are unambiguous but fail to be LR(1).
eb45ef3b 792Such grammars typically require more than one symbol of lookahead.
fa7e68c3
PE
793
794Consider a problem that
795arises in the declaration of enumerated and subrange types in the
796programming language Pascal. Here are some examples:
797
798@example
799type subrange = lo .. hi;
800type enum = (a, b, c);
801@end example
802
803@noindent
804The original language standard allows only numeric
805literals and constant identifiers for the subrange bounds (@samp{lo}
8a4281b9 806and @samp{hi}), but Extended Pascal (ISO/IEC
fa7e68c3
PE
80710206) and many other
808Pascal implementations allow arbitrary expressions there. This gives
809rise to the following situation, containing a superfluous pair of
810parentheses:
811
812@example
813type subrange = (a) .. b;
814@end example
815
816@noindent
817Compare this to the following declaration of an enumerated
818type with only one value:
819
820@example
821type enum = (a);
822@end example
823
824@noindent
825(These declarations are contrived, but they are syntactically
826valid, and more-complicated cases can come up in practical programs.)
827
828These two declarations look identical until the @samp{..} token.
8a4281b9 829With normal LR(1) one-token lookahead it is not
fa7e68c3
PE
830possible to decide between the two forms when the identifier
831@samp{a} is parsed. It is, however, desirable
832for a parser to decide this, since in the latter case
833@samp{a} must become a new identifier to represent the enumeration
834value, while in the former case @samp{a} must be evaluated with its
835current meaning, which may be a constant or even a function call.
836
837You could parse @samp{(a)} as an ``unspecified identifier in parentheses'',
838to be resolved later, but this typically requires substantial
839contortions in both semantic actions and large parts of the
840grammar, where the parentheses are nested in the recursive rules for
841expressions.
842
843You might think of using the lexer to distinguish between the two
844forms by returning different tokens for currently defined and
845undefined identifiers. But if these declarations occur in a local
846scope, and @samp{a} is defined in an outer scope, then both forms
847are possible---either locally redefining @samp{a}, or using the
848value of @samp{a} from the outer scope. So this approach cannot
849work.
850
e757bb10 851A simple solution to this problem is to declare the parser to
8a4281b9
JD
852use the GLR algorithm.
853When the GLR parser reaches the critical state, it
fa7e68c3
PE
854merely splits into two branches and pursues both syntax rules
855simultaneously. Sooner or later, one of them runs into a parsing
856error. If there is a @samp{..} token before the next
857@samp{;}, the rule for enumerated types fails since it cannot
858accept @samp{..} anywhere; otherwise, the subrange type rule
859fails since it requires a @samp{..} token. So one of the branches
860fails silently, and the other one continues normally, performing
861all the intermediate actions that were postponed during the split.
862
863If the input is syntactically incorrect, both branches fail and the parser
864reports a syntax error as usual.
865
866The effect of all this is that the parser seems to ``guess'' the
867correct branch to take, or in other words, it seems to use more
8a4281b9
JD
868lookahead than the underlying LR(1) algorithm actually allows
869for. In this example, LR(2) would suffice, but also some cases
870that are not LR(@math{k}) for any @math{k} can be handled this way.
fa7e68c3 871
8a4281b9 872In general, a GLR parser can take quadratic or cubic worst-case time,
fa7e68c3
PE
873and the current Bison parser even takes exponential time and space
874for some grammars. In practice, this rarely happens, and for many
875grammars it is possible to prove that it cannot happen.
876The present example contains only one conflict between two
877rules, and the type-declaration context containing the conflict
878cannot be nested. So the number of
879branches that can exist at any time is limited by the constant 2,
880and the parsing time is still linear.
881
882Here is a Bison grammar corresponding to the example above. It
883parses a vastly simplified form of Pascal type declarations.
884
885@example
886%token TYPE DOTDOT ID
887
888@group
889%left '+' '-'
890%left '*' '/'
891@end group
892
893%%
894
895@group
896type_decl : TYPE ID '=' type ';'
897 ;
898@end group
899
900@group
901type : '(' id_list ')'
902 | expr DOTDOT expr
903 ;
904@end group
905
906@group
907id_list : ID
908 | id_list ',' ID
909 ;
910@end group
911
912@group
913expr : '(' expr ')'
914 | expr '+' expr
915 | expr '-' expr
916 | expr '*' expr
917 | expr '/' expr
918 | ID
919 ;
920@end group
921@end example
922
8a4281b9 923When used as a normal LR(1) grammar, Bison correctly complains
fa7e68c3
PE
924about one reduce/reduce conflict. In the conflicting situation the
925parser chooses one of the alternatives, arbitrarily the one
926declared first. Therefore the following correct input is not
927recognized:
928
929@example
930type t = (a) .. b;
931@end example
932
8a4281b9 933The parser can be turned into a GLR parser, while also telling Bison
ff7571c0
JD
934to be silent about the one known reduce/reduce conflict, by adding
935these two declarations to the Bison grammar file (before the first
fa7e68c3
PE
936@samp{%%}):
937
938@example
939%glr-parser
940%expect-rr 1
941@end example
942
943@noindent
944No change in the grammar itself is required. Now the
945parser recognizes all valid declarations, according to the
946limited syntax above, transparently. In fact, the user does not even
947notice when the parser splits.
948
8a4281b9 949So here we have a case where we can use the benefits of GLR,
f8e1c9e5
AD
950almost without disadvantages. Even in simple cases like this, however,
951there are at least two potential problems to beware. First, always
8a4281b9
JD
952analyze the conflicts reported by Bison to make sure that GLR
953splitting is only done where it is intended. A GLR parser
f8e1c9e5 954splitting inadvertently may cause problems less obvious than an
8a4281b9 955LR parser statically choosing the wrong alternative in a
f8e1c9e5
AD
956conflict. Second, consider interactions with the lexer (@pxref{Semantic
957Tokens}) with great care. Since a split parser consumes tokens without
958performing any actions during the split, the lexer cannot obtain
959information via parser actions. Some cases of lexer interactions can be
8a4281b9 960eliminated by using GLR to shift the complications from the
f8e1c9e5
AD
961lexer to the parser. You must check the remaining cases for
962correctness.
963
964In our example, it would be safe for the lexer to return tokens based on
965their current meanings in some symbol table, because no new symbols are
966defined in the middle of a type declaration. Though it is possible for
967a parser to define the enumeration constants as they are parsed, before
968the type declaration is completed, it actually makes no difference since
969they cannot be used within the same enumerated type declaration.
fa7e68c3
PE
970
971@node Merging GLR Parses
8a4281b9
JD
972@subsection Using GLR to Resolve Ambiguities
973@cindex GLR parsing, ambiguous grammars
974@cindex generalized LR (GLR) parsing, ambiguous grammars
fa7e68c3
PE
975@findex %dprec
976@findex %merge
977@cindex conflicts
978@cindex reduce/reduce conflicts
979
2a8d363a 980Let's consider an example, vastly simplified from a C++ grammar.
676385e2
PH
981
982@example
983%@{
38a92d50
PE
984 #include <stdio.h>
985 #define YYSTYPE char const *
986 int yylex (void);
987 void yyerror (char const *);
676385e2
PH
988%@}
989
990%token TYPENAME ID
991
992%right '='
993%left '+'
994
995%glr-parser
996
997%%
998
fae437e8 999prog :
676385e2
PH
1000 | prog stmt @{ printf ("\n"); @}
1001 ;
1002
1003stmt : expr ';' %dprec 1
1004 | decl %dprec 2
1005 ;
1006
2a8d363a 1007expr : ID @{ printf ("%s ", $$); @}
fae437e8 1008 | TYPENAME '(' expr ')'
2a8d363a
AD
1009 @{ printf ("%s <cast> ", $1); @}
1010 | expr '+' expr @{ printf ("+ "); @}
1011 | expr '=' expr @{ printf ("= "); @}
676385e2
PH
1012 ;
1013
fae437e8 1014decl : TYPENAME declarator ';'
2a8d363a 1015 @{ printf ("%s <declare> ", $1); @}
676385e2 1016 | TYPENAME declarator '=' expr ';'
2a8d363a 1017 @{ printf ("%s <init-declare> ", $1); @}
676385e2
PH
1018 ;
1019
2a8d363a 1020declarator : ID @{ printf ("\"%s\" ", $1); @}
676385e2
PH
1021 | '(' declarator ')'
1022 ;
1023@end example
1024
1025@noindent
1026This models a problematic part of the C++ grammar---the ambiguity between
1027certain declarations and statements. For example,
1028
1029@example
1030T (x) = y+z;
1031@end example
1032
1033@noindent
1034parses as either an @code{expr} or a @code{stmt}
c827f760
PE
1035(assuming that @samp{T} is recognized as a @code{TYPENAME} and
1036@samp{x} as an @code{ID}).
676385e2 1037Bison detects this as a reduce/reduce conflict between the rules
fae437e8 1038@code{expr : ID} and @code{declarator : ID}, which it cannot resolve at the
e757bb10 1039time it encounters @code{x} in the example above. Since this is a
8a4281b9 1040GLR parser, it therefore splits the problem into two parses, one for
fa7e68c3
PE
1041each choice of resolving the reduce/reduce conflict.
1042Unlike the example from the previous section (@pxref{Simple GLR Parsers}),
1043however, neither of these parses ``dies,'' because the grammar as it stands is
e757bb10
AD
1044ambiguous. One of the parsers eventually reduces @code{stmt : expr ';'} and
1045the other reduces @code{stmt : decl}, after which both parsers are in an
1046identical state: they've seen @samp{prog stmt} and have the same unprocessed
1047input remaining. We say that these parses have @dfn{merged.}
fa7e68c3 1048
8a4281b9 1049At this point, the GLR parser requires a specification in the
fa7e68c3
PE
1050grammar of how to choose between the competing parses.
1051In the example above, the two @code{%dprec}
e757bb10 1052declarations specify that Bison is to give precedence
fa7e68c3 1053to the parse that interprets the example as a
676385e2
PH
1054@code{decl}, which implies that @code{x} is a declarator.
1055The parser therefore prints
1056
1057@example
fae437e8 1058"x" y z + T <init-declare>
676385e2
PH
1059@end example
1060
fa7e68c3
PE
1061The @code{%dprec} declarations only come into play when more than one
1062parse survives. Consider a different input string for this parser:
676385e2
PH
1063
1064@example
1065T (x) + y;
1066@end example
1067
1068@noindent
8a4281b9 1069This is another example of using GLR to parse an unambiguous
fa7e68c3 1070construct, as shown in the previous section (@pxref{Simple GLR Parsers}).
676385e2
PH
1071Here, there is no ambiguity (this cannot be parsed as a declaration).
1072However, at the time the Bison parser encounters @code{x}, it does not
1073have enough information to resolve the reduce/reduce conflict (again,
1074between @code{x} as an @code{expr} or a @code{declarator}). In this
fa7e68c3 1075case, no precedence declaration is used. Again, the parser splits
676385e2
PH
1076into two, one assuming that @code{x} is an @code{expr}, and the other
1077assuming @code{x} is a @code{declarator}. The second of these parsers
1078then vanishes when it sees @code{+}, and the parser prints
1079
1080@example
fae437e8 1081x T <cast> y +
676385e2
PH
1082@end example
1083
1084Suppose that instead of resolving the ambiguity, you wanted to see all
fa7e68c3 1085the possibilities. For this purpose, you must merge the semantic
676385e2
PH
1086actions of the two possible parsers, rather than choosing one over the
1087other. To do so, you could change the declaration of @code{stmt} as
1088follows:
1089
1090@example
1091stmt : expr ';' %merge <stmtMerge>
1092 | decl %merge <stmtMerge>
1093 ;
1094@end example
1095
1096@noindent
676385e2
PH
1097and define the @code{stmtMerge} function as:
1098
1099@example
38a92d50
PE
1100static YYSTYPE
1101stmtMerge (YYSTYPE x0, YYSTYPE x1)
676385e2
PH
1102@{
1103 printf ("<OR> ");
1104 return "";
1105@}
1106@end example
1107
1108@noindent
1109with an accompanying forward declaration
1110in the C declarations at the beginning of the file:
1111
1112@example
1113%@{
38a92d50 1114 #define YYSTYPE char const *
676385e2
PH
1115 static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);
1116%@}
1117@end example
1118
1119@noindent
fa7e68c3
PE
1120With these declarations, the resulting parser parses the first example
1121as both an @code{expr} and a @code{decl}, and prints
676385e2
PH
1122
1123@example
fae437e8 1124"x" y z + T <init-declare> x T <cast> y z + = <OR>
676385e2
PH
1125@end example
1126
fa7e68c3 1127Bison requires that all of the
e757bb10 1128productions that participate in any particular merge have identical
fa7e68c3
PE
1129@samp{%merge} clauses. Otherwise, the ambiguity would be unresolvable,
1130and the parser will report an error during any parse that results in
1131the offending merge.
9501dc6e 1132
32c29292
JD
1133@node GLR Semantic Actions
1134@subsection GLR Semantic Actions
1135
8a4281b9 1136The nature of GLR parsing and the structure of the generated
20be2f92
PH
1137parsers give rise to certain restrictions on semantic values and actions.
1138
1139@subsubsection Deferred semantic actions
32c29292
JD
1140@cindex deferred semantic actions
1141By definition, a deferred semantic action is not performed at the same time as
1142the associated reduction.
1143This raises caveats for several Bison features you might use in a semantic
8a4281b9 1144action in a GLR parser.
32c29292
JD
1145
1146@vindex yychar
8a4281b9 1147@cindex GLR parsers and @code{yychar}
32c29292 1148@vindex yylval
8a4281b9 1149@cindex GLR parsers and @code{yylval}
32c29292 1150@vindex yylloc
8a4281b9 1151@cindex GLR parsers and @code{yylloc}
32c29292 1152In any semantic action, you can examine @code{yychar} to determine the type of
742e4900 1153the lookahead token present at the time of the associated reduction.
32c29292
JD
1154After checking that @code{yychar} is not set to @code{YYEMPTY} or @code{YYEOF},
1155you can then examine @code{yylval} and @code{yylloc} to determine the
742e4900 1156lookahead token's semantic value and location, if any.
32c29292
JD
1157In a nondeferred semantic action, you can also modify any of these variables to
1158influence syntax analysis.
742e4900 1159@xref{Lookahead, ,Lookahead Tokens}.
32c29292
JD
1160
1161@findex yyclearin
8a4281b9 1162@cindex GLR parsers and @code{yyclearin}
32c29292
JD
1163In a deferred semantic action, it's too late to influence syntax analysis.
1164In this case, @code{yychar}, @code{yylval}, and @code{yylloc} are set to
1165shallow copies of the values they had at the time of the associated reduction.
1166For this reason alone, modifying them is dangerous.
1167Moreover, the result of modifying them is undefined and subject to change with
1168future versions of Bison.
1169For example, if a semantic action might be deferred, you should never write it
1170to invoke @code{yyclearin} (@pxref{Action Features}) or to attempt to free
1171memory referenced by @code{yylval}.
1172
20be2f92 1173@subsubsection YYERROR
32c29292 1174@findex YYERROR
8a4281b9 1175@cindex GLR parsers and @code{YYERROR}
32c29292 1176Another Bison feature requiring special consideration is @code{YYERROR}
8710fc41 1177(@pxref{Action Features}), which you can invoke in a semantic action to
32c29292 1178initiate error recovery.
8a4281b9 1179During deterministic GLR operation, the effect of @code{YYERROR} is
eb45ef3b 1180the same as its effect in a deterministic parser.
20be2f92
PH
1181The effect in a deferred action is similar, but the precise point of the
1182error is undefined; instead, the parser reverts to deterministic operation,
1183selecting an unspecified stack on which to continue with a syntax error.
1184In a semantic predicate (see @ref{Semantic Predicates}) during nondeterministic
1185parsing, @code{YYERROR} silently prunes
1186the parse that invoked the test.
1187
1188@subsubsection Restrictions on semantic values and locations
8a4281b9 1189GLR parsers require that you use POD (Plain Old Data) types for
20be2f92
PH
1190semantic values and location types when using the generated parsers as
1191C++ code.
8710fc41 1192
ca2a6d15
PH
1193@node Semantic Predicates
1194@subsection Controlling a Parse with Arbitrary Predicates
1195@findex %?
8a4281b9 1196@cindex Semantic predicates in GLR parsers
ca2a6d15
PH
1197
1198In addition to the @code{%dprec} and @code{%merge} directives,
8a4281b9 1199GLR parsers
ca2a6d15
PH
1200allow you to reject parses on the basis of arbitrary computations executed
1201in user code, without having Bison treat this rejection as an error
1202if there are alternative parses. (This feature is experimental and may
1203evolve. We welcome user feedback.) For example,
1204
1205@smallexample
1206widget :
1207 %?@{ new_syntax @} "widget" id new_args @{ $$ = f($3, $4); @}
1208 | %?@{ !new_syntax @} "widget" id old_args @{ $$ = f($3, $4); @}
1209 ;
1210@end smallexample
1211
1212@noindent
1213is one way to allow the same parser to handle two different syntaxes for
1214widgets. The clause preceded by @code{%?} is treated like an ordinary
1215action, except that its text is treated as an expression and is always
1216evaluated immediately (even when in nondeterministic mode). If the
1217expression yields 0 (false), the clause is treated as a syntax error,
1218which, in a nondeterministic parser, causes the stack in which it is reduced
1219to die. In a deterministic parser, it acts like YYERROR.
1220
1221As the example shows, predicates otherwise look like semantic actions, and
1222therefore you must be take them into account when determining the numbers
1223to use for denoting the semantic values of right-hand side symbols.
1224Predicate actions, however, have no defined value, and may not be given
1225labels.
1226
1227There is a subtle difference between semantic predicates and ordinary
1228actions in nondeterministic mode, since the latter are deferred.
1229For example, we could try to rewrite the previous example as
1230
1231@smallexample
1232widget :
1233 @{ if (!new_syntax) YYERROR; @} "widget" id new_args @{ $$ = f($3, $4); @}
1234 | @{ if (new_syntax) YYERROR; @} "widget" id old_args @{ $$ = f($3, $4); @}
1235 ;
1236@end smallexample
1237
1238@noindent
1239(reversing the sense of the predicate tests to cause an error when they are
1240false). However, this
1241does @emph{not} have the same effect if @code{new_args} and @code{old_args}
1242have overlapping syntax.
1243Since the mid-rule actions testing @code{new_syntax} are deferred,
8a4281b9 1244a GLR parser first encounters the unresolved ambiguous reduction
ca2a6d15
PH
1245for cases where @code{new_args} and @code{old_args} recognize the same string
1246@emph{before} performing the tests of @code{new_syntax}. It therefore
1247reports an error.
1248
1249Finally, be careful in writing predicates: deferred actions have not been
1250evaluated, so that using them in a predicate will have undefined effects.
1251
fa7e68c3 1252@node Compiler Requirements
8a4281b9 1253@subsection Considerations when Compiling GLR Parsers
fa7e68c3 1254@cindex @code{inline}
8a4281b9 1255@cindex GLR parsers and @code{inline}
fa7e68c3 1256
8a4281b9 1257The GLR parsers require a compiler for ISO C89 or
38a92d50
PE
1258later. In addition, they use the @code{inline} keyword, which is not
1259C89, but is C99 and is a common extension in pre-C99 compilers. It is
1260up to the user of these parsers to handle
9501dc6e
AD
1261portability issues. For instance, if using Autoconf and the Autoconf
1262macro @code{AC_C_INLINE}, a mere
1263
1264@example
1265%@{
38a92d50 1266 #include <config.h>
9501dc6e
AD
1267%@}
1268@end example
1269
1270@noindent
1271will suffice. Otherwise, we suggest
1272
1273@example
1274%@{
38a92d50
PE
1275 #if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
1276 #define inline
1277 #endif
9501dc6e
AD
1278%@}
1279@end example
676385e2 1280
342b8b6e 1281@node Locations Overview
847bf1f5
AD
1282@section Locations
1283@cindex location
95923bd6
AD
1284@cindex textual location
1285@cindex location, textual
847bf1f5
AD
1286
1287Many applications, like interpreters or compilers, have to produce verbose
72d2299c 1288and useful error messages. To achieve this, one must be able to keep track of
95923bd6 1289the @dfn{textual location}, or @dfn{location}, of each syntactic construct.
847bf1f5
AD
1290Bison provides a mechanism for handling these locations.
1291
72d2299c 1292Each token has a semantic value. In a similar fashion, each token has an
847bf1f5 1293associated location, but the type of locations is the same for all tokens and
72d2299c 1294groupings. Moreover, the output parser is equipped with a default data
847bf1f5
AD
1295structure for storing locations (@pxref{Locations}, for more details).
1296
1297Like semantic values, locations can be reached in actions using a dedicated
72d2299c 1298set of constructs. In the example above, the location of the whole grouping
847bf1f5
AD
1299is @code{@@$}, while the locations of the subexpressions are @code{@@1} and
1300@code{@@3}.
1301
1302When a rule is matched, a default action is used to compute the semantic value
72d2299c
PE
1303of its left hand side (@pxref{Actions}). In the same way, another default
1304action is used for locations. However, the action for locations is general
847bf1f5 1305enough for most cases, meaning there is usually no need to describe for each
72d2299c 1306rule how @code{@@$} should be formed. When building a new location for a given
847bf1f5
AD
1307grouping, the default behavior of the output parser is to take the beginning
1308of the first symbol, and the end of the last symbol.
1309
342b8b6e 1310@node Bison Parser
ff7571c0 1311@section Bison Output: the Parser Implementation File
bfa74976
RS
1312@cindex Bison parser
1313@cindex Bison utility
1314@cindex lexical analyzer, purpose
1315@cindex parser
1316
ff7571c0
JD
1317When you run Bison, you give it a Bison grammar file as input. The
1318most important output is a C source file that implements a parser for
1319the language described by the grammar. This parser is called a
1320@dfn{Bison parser}, and this file is called a @dfn{Bison parser
1321implementation file}. Keep in mind that the Bison utility and the
1322Bison parser are two distinct programs: the Bison utility is a program
1323whose output is the Bison parser implementation file that becomes part
1324of your program.
bfa74976
RS
1325
1326The job of the Bison parser is to group tokens into groupings according to
1327the grammar rules---for example, to build identifiers and operators into
1328expressions. As it does this, it runs the actions for the grammar rules it
1329uses.
1330
704a47c4
AD
1331The tokens come from a function called the @dfn{lexical analyzer} that
1332you must supply in some fashion (such as by writing it in C). The Bison
1333parser calls the lexical analyzer each time it wants a new token. It
1334doesn't know what is ``inside'' the tokens (though their semantic values
1335may reflect this). Typically the lexical analyzer makes the tokens by
1336parsing characters of text, but Bison does not depend on this.
1337@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
bfa74976 1338
ff7571c0
JD
1339The Bison parser implementation file is C code which defines a
1340function named @code{yyparse} which implements that grammar. This
1341function does not make a complete C program: you must supply some
1342additional functions. One is the lexical analyzer. Another is an
1343error-reporting function which the parser calls to report an error.
1344In addition, a complete C program must start with a function called
1345@code{main}; you have to provide this, and arrange for it to call
1346@code{yyparse} or the parser will never run. @xref{Interface, ,Parser
1347C-Language Interface}.
bfa74976 1348
f7ab6a50 1349Aside from the token type names and the symbols in the actions you
ff7571c0
JD
1350write, all symbols defined in the Bison parser implementation file
1351itself begin with @samp{yy} or @samp{YY}. This includes interface
1352functions such as the lexical analyzer function @code{yylex}, the
1353error reporting function @code{yyerror} and the parser function
1354@code{yyparse} itself. This also includes numerous identifiers used
1355for internal purposes. Therefore, you should avoid using C
1356identifiers starting with @samp{yy} or @samp{YY} in the Bison grammar
1357file except for the ones defined in this manual. Also, you should
1358avoid using the C identifiers @samp{malloc} and @samp{free} for
1359anything other than their usual meanings.
1360
1361In some cases the Bison parser implementation file includes system
1362headers, and in those cases your code should respect the identifiers
1363reserved by those headers. On some non-GNU hosts, @code{<alloca.h>},
1364@code{<malloc.h>}, @code{<stddef.h>}, and @code{<stdlib.h>} are
1365included as needed to declare memory allocators and related types.
1366@code{<libintl.h>} is included if message translation is in use
1367(@pxref{Internationalization}). Other system headers may be included
1368if you define @code{YYDEBUG} to a nonzero value (@pxref{Tracing,
1369,Tracing Your Parser}).
7093d0f5 1370
342b8b6e 1371@node Stages
bfa74976
RS
1372@section Stages in Using Bison
1373@cindex stages in using Bison
1374@cindex using Bison
1375
1376The actual language-design process using Bison, from grammar specification
1377to a working compiler or interpreter, has these parts:
1378
1379@enumerate
1380@item
1381Formally specify the grammar in a form recognized by Bison
704a47c4
AD
1382(@pxref{Grammar File, ,Bison Grammar Files}). For each grammatical rule
1383in the language, describe the action that is to be taken when an
1384instance of that rule is recognized. The action is described by a
1385sequence of C statements.
bfa74976
RS
1386
1387@item
704a47c4
AD
1388Write a lexical analyzer to process input and pass tokens to the parser.
1389The lexical analyzer may be written by hand in C (@pxref{Lexical, ,The
1390Lexical Analyzer Function @code{yylex}}). It could also be produced
1391using Lex, but the use of Lex is not discussed in this manual.
bfa74976
RS
1392
1393@item
1394Write a controlling function that calls the Bison-produced parser.
1395
1396@item
1397Write error-reporting routines.
1398@end enumerate
1399
1400To turn this source code as written into a runnable program, you
1401must follow these steps:
1402
1403@enumerate
1404@item
1405Run Bison on the grammar to produce the parser.
1406
1407@item
1408Compile the code output by Bison, as well as any other source files.
1409
1410@item
1411Link the object files to produce the finished product.
1412@end enumerate
1413
342b8b6e 1414@node Grammar Layout
bfa74976
RS
1415@section The Overall Layout of a Bison Grammar
1416@cindex grammar file
1417@cindex file format
1418@cindex format of grammar file
1419@cindex layout of Bison grammar
1420
1421The input file for the Bison utility is a @dfn{Bison grammar file}. The
1422general form of a Bison grammar file is as follows:
1423
1424@example
1425%@{
08e49d20 1426@var{Prologue}
bfa74976
RS
1427%@}
1428
1429@var{Bison declarations}
1430
1431%%
1432@var{Grammar rules}
1433%%
08e49d20 1434@var{Epilogue}
bfa74976
RS
1435@end example
1436
1437@noindent
1438The @samp{%%}, @samp{%@{} and @samp{%@}} are punctuation that appears
1439in every Bison grammar file to separate the sections.
1440
72d2299c 1441The prologue may define types and variables used in the actions. You can
342b8b6e 1442also use preprocessor commands to define macros used there, and use
bfa74976 1443@code{#include} to include header files that do any of these things.
38a92d50
PE
1444You need to declare the lexical analyzer @code{yylex} and the error
1445printer @code{yyerror} here, along with any other global identifiers
1446used by the actions in the grammar rules.
bfa74976
RS
1447
1448The Bison declarations declare the names of the terminal and nonterminal
1449symbols, and may also describe operator precedence and the data types of
1450semantic values of various symbols.
1451
1452The grammar rules define how to construct each nonterminal symbol from its
1453parts.
1454
38a92d50
PE
1455The epilogue can contain any code you want to use. Often the
1456definitions of functions declared in the prologue go here. In a
1457simple program, all the rest of the program can go here.
bfa74976 1458
342b8b6e 1459@node Examples
bfa74976
RS
1460@chapter Examples
1461@cindex simple examples
1462@cindex examples, simple
1463
1464Now we show and explain three sample programs written using Bison: a
1465reverse polish notation calculator, an algebraic (infix) notation
1466calculator, and a multi-function calculator. All three have been tested
1467under BSD Unix 4.3; each produces a usable, though limited, interactive
1468desk-top calculator.
1469
1470These examples are simple, but Bison grammars for real programming
aa08666d
AD
1471languages are written the same way. You can copy these examples into a
1472source file to try them.
bfa74976
RS
1473
1474@menu
f5f419de
DJ
1475* RPN Calc:: Reverse polish notation calculator;
1476 a first example with no operator precedence.
1477* Infix Calc:: Infix (algebraic) notation calculator.
1478 Operator precedence is introduced.
bfa74976 1479* Simple Error Recovery:: Continuing after syntax errors.
342b8b6e 1480* Location Tracking Calc:: Demonstrating the use of @@@var{n} and @@$.
f5f419de
DJ
1481* Multi-function Calc:: Calculator with memory and trig functions.
1482 It uses multiple data-types for semantic values.
1483* Exercises:: Ideas for improving the multi-function calculator.
bfa74976
RS
1484@end menu
1485
342b8b6e 1486@node RPN Calc
bfa74976
RS
1487@section Reverse Polish Notation Calculator
1488@cindex reverse polish notation
1489@cindex polish notation calculator
1490@cindex @code{rpcalc}
1491@cindex calculator, simple
1492
1493The first example is that of a simple double-precision @dfn{reverse polish
1494notation} calculator (a calculator using postfix operators). This example
1495provides a good starting point, since operator precedence is not an issue.
1496The second example will illustrate how operator precedence is handled.
1497
1498The source code for this calculator is named @file{rpcalc.y}. The
ff7571c0 1499@samp{.y} extension is a convention used for Bison grammar files.
bfa74976
RS
1500
1501@menu
f5f419de
DJ
1502* Rpcalc Declarations:: Prologue (declarations) for rpcalc.
1503* Rpcalc Rules:: Grammar Rules for rpcalc, with explanation.
1504* Rpcalc Lexer:: The lexical analyzer.
1505* Rpcalc Main:: The controlling function.
1506* Rpcalc Error:: The error reporting function.
1507* Rpcalc Generate:: Running Bison on the grammar file.
1508* Rpcalc Compile:: Run the C compiler on the output code.
bfa74976
RS
1509@end menu
1510
f5f419de 1511@node Rpcalc Declarations
bfa74976
RS
1512@subsection Declarations for @code{rpcalc}
1513
1514Here are the C and Bison declarations for the reverse polish notation
1515calculator. As in C, comments are placed between @samp{/*@dots{}*/}.
1516
1517@example
72d2299c 1518/* Reverse polish notation calculator. */
bfa74976
RS
1519
1520%@{
38a92d50
PE
1521 #define YYSTYPE double
1522 #include <math.h>
1523 int yylex (void);
1524 void yyerror (char const *);
bfa74976
RS
1525%@}
1526
1527%token NUM
1528
72d2299c 1529%% /* Grammar rules and actions follow. */
bfa74976
RS
1530@end example
1531
75f5aaea 1532The declarations section (@pxref{Prologue, , The prologue}) contains two
38a92d50 1533preprocessor directives and two forward declarations.
bfa74976
RS
1534
1535The @code{#define} directive defines the macro @code{YYSTYPE}, thus
1964ad8c
AD
1536specifying the C data type for semantic values of both tokens and
1537groupings (@pxref{Value Type, ,Data Types of Semantic Values}). The
1538Bison parser will use whatever type @code{YYSTYPE} is defined as; if you
1539don't define it, @code{int} is the default. Because we specify
1540@code{double}, each token and each expression has an associated value,
1541which is a floating point number.
bfa74976
RS
1542
1543The @code{#include} directive is used to declare the exponentiation
1544function @code{pow}.
1545
38a92d50
PE
1546The forward declarations for @code{yylex} and @code{yyerror} are
1547needed because the C language requires that functions be declared
1548before they are used. These functions will be defined in the
1549epilogue, but the parser calls them so they must be declared in the
1550prologue.
1551
704a47c4
AD
1552The second section, Bison declarations, provides information to Bison
1553about the token types (@pxref{Bison Declarations, ,The Bison
1554Declarations Section}). Each terminal symbol that is not a
1555single-character literal must be declared here. (Single-character
bfa74976
RS
1556literals normally don't need to be declared.) In this example, all the
1557arithmetic operators are designated by single-character literals, so the
1558only terminal symbol that needs to be declared is @code{NUM}, the token
1559type for numeric constants.
1560
342b8b6e 1561@node Rpcalc Rules
bfa74976
RS
1562@subsection Grammar Rules for @code{rpcalc}
1563
1564Here are the grammar rules for the reverse polish notation calculator.
1565
1566@example
1567input: /* empty */
1568 | input line
1569;
1570
1571line: '\n'
18b519c0 1572 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
bfa74976
RS
1573;
1574
18b519c0
AD
1575exp: NUM @{ $$ = $1; @}
1576 | exp exp '+' @{ $$ = $1 + $2; @}
1577 | exp exp '-' @{ $$ = $1 - $2; @}
1578 | exp exp '*' @{ $$ = $1 * $2; @}
1579 | exp exp '/' @{ $$ = $1 / $2; @}
1580 /* Exponentiation */
1581 | exp exp '^' @{ $$ = pow ($1, $2); @}
1582 /* Unary minus */
1583 | exp 'n' @{ $$ = -$1; @}
bfa74976
RS
1584;
1585%%
1586@end example
1587
1588The groupings of the rpcalc ``language'' defined here are the expression
1589(given the name @code{exp}), the line of input (@code{line}), and the
1590complete input transcript (@code{input}). Each of these nonterminal
8c5b881d 1591symbols has several alternate rules, joined by the vertical bar @samp{|}
bfa74976
RS
1592which is read as ``or''. The following sections explain what these rules
1593mean.
1594
1595The semantics of the language is determined by the actions taken when a
1596grouping is recognized. The actions are the C code that appears inside
1597braces. @xref{Actions}.
1598
1599You must specify these actions in C, but Bison provides the means for
1600passing semantic values between the rules. In each action, the
1601pseudo-variable @code{$$} stands for the semantic value for the grouping
1602that the rule is going to construct. Assigning a value to @code{$$} is the
1603main job of most actions. The semantic values of the components of the
1604rule are referred to as @code{$1}, @code{$2}, and so on.
1605
1606@menu
13863333
AD
1607* Rpcalc Input::
1608* Rpcalc Line::
1609* Rpcalc Expr::
bfa74976
RS
1610@end menu
1611
342b8b6e 1612@node Rpcalc Input
bfa74976
RS
1613@subsubsection Explanation of @code{input}
1614
1615Consider the definition of @code{input}:
1616
1617@example
1618input: /* empty */
1619 | input line
1620;
1621@end example
1622
1623This definition reads as follows: ``A complete input is either an empty
1624string, or a complete input followed by an input line''. Notice that
1625``complete input'' is defined in terms of itself. This definition is said
1626to be @dfn{left recursive} since @code{input} appears always as the
1627leftmost symbol in the sequence. @xref{Recursion, ,Recursive Rules}.
1628
1629The first alternative is empty because there are no symbols between the
1630colon and the first @samp{|}; this means that @code{input} can match an
1631empty string of input (no tokens). We write the rules this way because it
1632is legitimate to type @kbd{Ctrl-d} right after you start the calculator.
1633It's conventional to put an empty alternative first and write the comment
1634@samp{/* empty */} in it.
1635
1636The second alternate rule (@code{input line}) handles all nontrivial input.
1637It means, ``After reading any number of lines, read one more line if
1638possible.'' The left recursion makes this rule into a loop. Since the
1639first alternative matches empty input, the loop can be executed zero or
1640more times.
1641
1642The parser function @code{yyparse} continues to process input until a
1643grammatical error is seen or the lexical analyzer says there are no more
72d2299c 1644input tokens; we will arrange for the latter to happen at end-of-input.
bfa74976 1645
342b8b6e 1646@node Rpcalc Line
bfa74976
RS
1647@subsubsection Explanation of @code{line}
1648
1649Now consider the definition of @code{line}:
1650
1651@example
1652line: '\n'
1653 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1654;
1655@end example
1656
1657The first alternative is a token which is a newline character; this means
1658that rpcalc accepts a blank line (and ignores it, since there is no
1659action). The second alternative is an expression followed by a newline.
1660This is the alternative that makes rpcalc useful. The semantic value of
1661the @code{exp} grouping is the value of @code{$1} because the @code{exp} in
1662question is the first symbol in the alternative. The action prints this
1663value, which is the result of the computation the user asked for.
1664
1665This action is unusual because it does not assign a value to @code{$$}. As
1666a consequence, the semantic value associated with the @code{line} is
1667uninitialized (its value will be unpredictable). This would be a bug if
1668that value were ever used, but we don't use it: once rpcalc has printed the
1669value of the user's input line, that value is no longer needed.
1670
342b8b6e 1671@node Rpcalc Expr
bfa74976
RS
1672@subsubsection Explanation of @code{expr}
1673
1674The @code{exp} grouping has several rules, one for each kind of expression.
1675The first rule handles the simplest expressions: those that are just numbers.
1676The second handles an addition-expression, which looks like two expressions
1677followed by a plus-sign. The third handles subtraction, and so on.
1678
1679@example
1680exp: NUM
1681 | exp exp '+' @{ $$ = $1 + $2; @}
1682 | exp exp '-' @{ $$ = $1 - $2; @}
1683 @dots{}
1684 ;
1685@end example
1686
1687We have used @samp{|} to join all the rules for @code{exp}, but we could
1688equally well have written them separately:
1689
1690@example
1691exp: NUM ;
1692exp: exp exp '+' @{ $$ = $1 + $2; @} ;
1693exp: exp exp '-' @{ $$ = $1 - $2; @} ;
1694 @dots{}
1695@end example
1696
1697Most of the rules have actions that compute the value of the expression in
1698terms of the value of its parts. For example, in the rule for addition,
1699@code{$1} refers to the first component @code{exp} and @code{$2} refers to
1700the second one. The third component, @code{'+'}, has no meaningful
1701associated semantic value, but if it had one you could refer to it as
1702@code{$3}. When @code{yyparse} recognizes a sum expression using this
1703rule, the sum of the two subexpressions' values is produced as the value of
1704the entire expression. @xref{Actions}.
1705
1706You don't have to give an action for every rule. When a rule has no
1707action, Bison by default copies the value of @code{$1} into @code{$$}.
1708This is what happens in the first rule (the one that uses @code{NUM}).
1709
1710The formatting shown here is the recommended convention, but Bison does
72d2299c 1711not require it. You can add or change white space as much as you wish.
bfa74976
RS
1712For example, this:
1713
1714@example
99a9344e 1715exp : NUM | exp exp '+' @{$$ = $1 + $2; @} | @dots{} ;
bfa74976
RS
1716@end example
1717
1718@noindent
1719means the same thing as this:
1720
1721@example
1722exp: NUM
1723 | exp exp '+' @{ $$ = $1 + $2; @}
1724 | @dots{}
99a9344e 1725;
bfa74976
RS
1726@end example
1727
1728@noindent
1729The latter, however, is much more readable.
1730
342b8b6e 1731@node Rpcalc Lexer
bfa74976
RS
1732@subsection The @code{rpcalc} Lexical Analyzer
1733@cindex writing a lexical analyzer
1734@cindex lexical analyzer, writing
1735
704a47c4
AD
1736The lexical analyzer's job is low-level parsing: converting characters
1737or sequences of characters into tokens. The Bison parser gets its
1738tokens by calling the lexical analyzer. @xref{Lexical, ,The Lexical
1739Analyzer Function @code{yylex}}.
bfa74976 1740
8a4281b9 1741Only a simple lexical analyzer is needed for the RPN
c827f760 1742calculator. This
bfa74976
RS
1743lexical analyzer skips blanks and tabs, then reads in numbers as
1744@code{double} and returns them as @code{NUM} tokens. Any other character
1745that isn't part of a number is a separate token. Note that the token-code
1746for such a single-character token is the character itself.
1747
1748The return value of the lexical analyzer function is a numeric code which
1749represents a token type. The same text used in Bison rules to stand for
1750this token type is also a C expression for the numeric code for the type.
1751This works in two ways. If the token type is a character literal, then its
e966383b 1752numeric code is that of the character; you can use the same
bfa74976
RS
1753character literal in the lexical analyzer to express the number. If the
1754token type is an identifier, that identifier is defined by Bison as a C
1755macro whose definition is the appropriate number. In this example,
1756therefore, @code{NUM} becomes a macro for @code{yylex} to use.
1757
1964ad8c
AD
1758The semantic value of the token (if it has one) is stored into the
1759global variable @code{yylval}, which is where the Bison parser will look
1760for it. (The C data type of @code{yylval} is @code{YYSTYPE}, which was
f5f419de 1761defined at the beginning of the grammar; @pxref{Rpcalc Declarations,
1964ad8c 1762,Declarations for @code{rpcalc}}.)
bfa74976 1763
72d2299c
PE
1764A token type code of zero is returned if the end-of-input is encountered.
1765(Bison recognizes any nonpositive value as indicating end-of-input.)
bfa74976
RS
1766
1767Here is the code for the lexical analyzer:
1768
1769@example
1770@group
72d2299c 1771/* The lexical analyzer returns a double floating point
e966383b 1772 number on the stack and the token NUM, or the numeric code
72d2299c
PE
1773 of the character read if not a number. It skips all blanks
1774 and tabs, and returns 0 for end-of-input. */
bfa74976
RS
1775
1776#include <ctype.h>
1777@end group
1778
1779@group
13863333
AD
1780int
1781yylex (void)
bfa74976
RS
1782@{
1783 int c;
1784
72d2299c 1785 /* Skip white space. */
13863333 1786 while ((c = getchar ()) == ' ' || c == '\t')
bfa74976
RS
1787 ;
1788@end group
1789@group
72d2299c 1790 /* Process numbers. */
13863333 1791 if (c == '.' || isdigit (c))
bfa74976
RS
1792 @{
1793 ungetc (c, stdin);
1794 scanf ("%lf", &yylval);
1795 return NUM;
1796 @}
1797@end group
1798@group
72d2299c 1799 /* Return end-of-input. */
13863333 1800 if (c == EOF)
bfa74976 1801 return 0;
72d2299c 1802 /* Return a single char. */
13863333 1803 return c;
bfa74976
RS
1804@}
1805@end group
1806@end example
1807
342b8b6e 1808@node Rpcalc Main
bfa74976
RS
1809@subsection The Controlling Function
1810@cindex controlling function
1811@cindex main function in simple example
1812
1813In keeping with the spirit of this example, the controlling function is
1814kept to the bare minimum. The only requirement is that it call
1815@code{yyparse} to start the process of parsing.
1816
1817@example
1818@group
13863333
AD
1819int
1820main (void)
bfa74976 1821@{
13863333 1822 return yyparse ();
bfa74976
RS
1823@}
1824@end group
1825@end example
1826
342b8b6e 1827@node Rpcalc Error
bfa74976
RS
1828@subsection The Error Reporting Routine
1829@cindex error reporting routine
1830
1831When @code{yyparse} detects a syntax error, it calls the error reporting
13863333 1832function @code{yyerror} to print an error message (usually but not
6e649e65 1833always @code{"syntax error"}). It is up to the programmer to supply
13863333
AD
1834@code{yyerror} (@pxref{Interface, ,Parser C-Language Interface}), so
1835here is the definition we will use:
bfa74976
RS
1836
1837@example
1838@group
1839#include <stdio.h>
1840
38a92d50 1841/* Called by yyparse on error. */
13863333 1842void
38a92d50 1843yyerror (char const *s)
bfa74976 1844@{
4e03e201 1845 fprintf (stderr, "%s\n", s);
bfa74976
RS
1846@}
1847@end group
1848@end example
1849
1850After @code{yyerror} returns, the Bison parser may recover from the error
1851and continue parsing if the grammar contains a suitable error rule
1852(@pxref{Error Recovery}). Otherwise, @code{yyparse} returns nonzero. We
1853have not written any error rules in this example, so any invalid input will
1854cause the calculator program to exit. This is not clean behavior for a
9ecbd125 1855real calculator, but it is adequate for the first example.
bfa74976 1856
f5f419de 1857@node Rpcalc Generate
bfa74976
RS
1858@subsection Running Bison to Make the Parser
1859@cindex running Bison (introduction)
1860
ceed8467
AD
1861Before running Bison to produce a parser, we need to decide how to
1862arrange all the source code in one or more source files. For such a
ff7571c0
JD
1863simple example, the easiest thing is to put everything in one file,
1864the grammar file. The definitions of @code{yylex}, @code{yyerror} and
1865@code{main} go at the end, in the epilogue of the grammar file
75f5aaea 1866(@pxref{Grammar Layout, ,The Overall Layout of a Bison Grammar}).
bfa74976
RS
1867
1868For a large project, you would probably have several source files, and use
1869@code{make} to arrange to recompile them.
1870
ff7571c0
JD
1871With all the source in the grammar file, you use the following command
1872to convert it into a parser implementation file:
bfa74976
RS
1873
1874@example
fa4d969f 1875bison @var{file}.y
bfa74976
RS
1876@end example
1877
1878@noindent
ff7571c0
JD
1879In this example, the grammar file is called @file{rpcalc.y} (for
1880``Reverse Polish @sc{calc}ulator''). Bison produces a parser
1881implementation file named @file{@var{file}.tab.c}, removing the
1882@samp{.y} from the grammar file name. The parser implementation file
1883contains the source code for @code{yyparse}. The additional functions
1884in the grammar file (@code{yylex}, @code{yyerror} and @code{main}) are
1885copied verbatim to the parser implementation file.
bfa74976 1886
342b8b6e 1887@node Rpcalc Compile
ff7571c0 1888@subsection Compiling the Parser Implementation File
bfa74976
RS
1889@cindex compiling the parser
1890
ff7571c0 1891Here is how to compile and run the parser implementation file:
bfa74976
RS
1892
1893@example
1894@group
1895# @r{List files in current directory.}
9edcd895 1896$ @kbd{ls}
bfa74976
RS
1897rpcalc.tab.c rpcalc.y
1898@end group
1899
1900@group
1901# @r{Compile the Bison parser.}
1902# @r{@samp{-lm} tells compiler to search math library for @code{pow}.}
b56471a6 1903$ @kbd{cc -lm -o rpcalc rpcalc.tab.c}
bfa74976
RS
1904@end group
1905
1906@group
1907# @r{List files again.}
9edcd895 1908$ @kbd{ls}
bfa74976
RS
1909rpcalc rpcalc.tab.c rpcalc.y
1910@end group
1911@end example
1912
1913The file @file{rpcalc} now contains the executable code. Here is an
1914example session using @code{rpcalc}.
1915
1916@example
9edcd895
AD
1917$ @kbd{rpcalc}
1918@kbd{4 9 +}
bfa74976 191913
9edcd895 1920@kbd{3 7 + 3 4 5 *+-}
bfa74976 1921-13
9edcd895 1922@kbd{3 7 + 3 4 5 * + - n} @r{Note the unary minus, @samp{n}}
bfa74976 192313
9edcd895 1924@kbd{5 6 / 4 n +}
bfa74976 1925-3.166666667
9edcd895 1926@kbd{3 4 ^} @r{Exponentiation}
bfa74976 192781
9edcd895
AD
1928@kbd{^D} @r{End-of-file indicator}
1929$
bfa74976
RS
1930@end example
1931
342b8b6e 1932@node Infix Calc
bfa74976
RS
1933@section Infix Notation Calculator: @code{calc}
1934@cindex infix notation calculator
1935@cindex @code{calc}
1936@cindex calculator, infix notation
1937
1938We now modify rpcalc to handle infix operators instead of postfix. Infix
1939notation involves the concept of operator precedence and the need for
1940parentheses nested to arbitrary depth. Here is the Bison code for
1941@file{calc.y}, an infix desk-top calculator.
1942
1943@example
38a92d50 1944/* Infix notation calculator. */
bfa74976
RS
1945
1946%@{
38a92d50
PE
1947 #define YYSTYPE double
1948 #include <math.h>
1949 #include <stdio.h>
1950 int yylex (void);
1951 void yyerror (char const *);
bfa74976
RS
1952%@}
1953
38a92d50 1954/* Bison declarations. */
bfa74976
RS
1955%token NUM
1956%left '-' '+'
1957%left '*' '/'
d78f0ac9
AD
1958%precedence NEG /* negation--unary minus */
1959%right '^' /* exponentiation */
bfa74976 1960
38a92d50
PE
1961%% /* The grammar follows. */
1962input: /* empty */
bfa74976
RS
1963 | input line
1964;
1965
1966line: '\n'
1967 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
1968;
1969
1970exp: NUM @{ $$ = $1; @}
1971 | exp '+' exp @{ $$ = $1 + $3; @}
1972 | exp '-' exp @{ $$ = $1 - $3; @}
1973 | exp '*' exp @{ $$ = $1 * $3; @}
1974 | exp '/' exp @{ $$ = $1 / $3; @}
1975 | '-' exp %prec NEG @{ $$ = -$2; @}
1976 | exp '^' exp @{ $$ = pow ($1, $3); @}
1977 | '(' exp ')' @{ $$ = $2; @}
1978;
1979%%
1980@end example
1981
1982@noindent
ceed8467
AD
1983The functions @code{yylex}, @code{yyerror} and @code{main} can be the
1984same as before.
bfa74976
RS
1985
1986There are two important new features shown in this code.
1987
1988In the second section (Bison declarations), @code{%left} declares token
1989types and says they are left-associative operators. The declarations
1990@code{%left} and @code{%right} (right associativity) take the place of
1991@code{%token} which is used to declare a token type name without
d78f0ac9 1992associativity/precedence. (These tokens are single-character literals, which
bfa74976 1993ordinarily don't need to be declared. We declare them here to specify
d78f0ac9 1994the associativity/precedence.)
bfa74976
RS
1995
1996Operator precedence is determined by the line ordering of the
1997declarations; the higher the line number of the declaration (lower on
1998the page or screen), the higher the precedence. Hence, exponentiation
1999has the highest precedence, unary minus (@code{NEG}) is next, followed
d78f0ac9
AD
2000by @samp{*} and @samp{/}, and so on. Unary minus is not associative,
2001only precedence matters (@code{%precedence}. @xref{Precedence, ,Operator
704a47c4 2002Precedence}.
bfa74976 2003
704a47c4
AD
2004The other important new feature is the @code{%prec} in the grammar
2005section for the unary minus operator. The @code{%prec} simply instructs
2006Bison that the rule @samp{| '-' exp} has the same precedence as
2007@code{NEG}---in this case the next-to-highest. @xref{Contextual
2008Precedence, ,Context-Dependent Precedence}.
bfa74976
RS
2009
2010Here is a sample run of @file{calc.y}:
2011
2012@need 500
2013@example
9edcd895
AD
2014$ @kbd{calc}
2015@kbd{4 + 4.5 - (34/(8*3+-3))}
bfa74976 20166.880952381
9edcd895 2017@kbd{-56 + 2}
bfa74976 2018-54
9edcd895 2019@kbd{3 ^ 2}
bfa74976
RS
20209
2021@end example
2022
342b8b6e 2023@node Simple Error Recovery
bfa74976
RS
2024@section Simple Error Recovery
2025@cindex error recovery, simple
2026
2027Up to this point, this manual has not addressed the issue of @dfn{error
2028recovery}---how to continue parsing after the parser detects a syntax
ceed8467
AD
2029error. All we have handled is error reporting with @code{yyerror}.
2030Recall that by default @code{yyparse} returns after calling
2031@code{yyerror}. This means that an erroneous input line causes the
2032calculator program to exit. Now we show how to rectify this deficiency.
bfa74976
RS
2033
2034The Bison language itself includes the reserved word @code{error}, which
2035may be included in the grammar rules. In the example below it has
2036been added to one of the alternatives for @code{line}:
2037
2038@example
2039@group
2040line: '\n'
2041 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2042 | error '\n' @{ yyerrok; @}
2043;
2044@end group
2045@end example
2046
ceed8467 2047This addition to the grammar allows for simple error recovery in the
6e649e65 2048event of a syntax error. If an expression that cannot be evaluated is
ceed8467
AD
2049read, the error will be recognized by the third rule for @code{line},
2050and parsing will continue. (The @code{yyerror} function is still called
2051upon to print its message as well.) The action executes the statement
2052@code{yyerrok}, a macro defined automatically by Bison; its meaning is
2053that error recovery is complete (@pxref{Error Recovery}). Note the
2054difference between @code{yyerrok} and @code{yyerror}; neither one is a
e0c471a9 2055misprint.
bfa74976
RS
2056
2057This form of error recovery deals with syntax errors. There are other
2058kinds of errors; for example, division by zero, which raises an exception
2059signal that is normally fatal. A real calculator program must handle this
2060signal and use @code{longjmp} to return to @code{main} and resume parsing
2061input lines; it would also have to discard the rest of the current line of
2062input. We won't discuss this issue further because it is not specific to
2063Bison programs.
2064
342b8b6e
AD
2065@node Location Tracking Calc
2066@section Location Tracking Calculator: @code{ltcalc}
2067@cindex location tracking calculator
2068@cindex @code{ltcalc}
2069@cindex calculator, location tracking
2070
9edcd895
AD
2071This example extends the infix notation calculator with location
2072tracking. This feature will be used to improve the error messages. For
2073the sake of clarity, this example is a simple integer calculator, since
2074most of the work needed to use locations will be done in the lexical
72d2299c 2075analyzer.
342b8b6e
AD
2076
2077@menu
f5f419de
DJ
2078* Ltcalc Declarations:: Bison and C declarations for ltcalc.
2079* Ltcalc Rules:: Grammar rules for ltcalc, with explanations.
2080* Ltcalc Lexer:: The lexical analyzer.
342b8b6e
AD
2081@end menu
2082
f5f419de 2083@node Ltcalc Declarations
342b8b6e
AD
2084@subsection Declarations for @code{ltcalc}
2085
9edcd895
AD
2086The C and Bison declarations for the location tracking calculator are
2087the same as the declarations for the infix notation calculator.
342b8b6e
AD
2088
2089@example
2090/* Location tracking calculator. */
2091
2092%@{
38a92d50
PE
2093 #define YYSTYPE int
2094 #include <math.h>
2095 int yylex (void);
2096 void yyerror (char const *);
342b8b6e
AD
2097%@}
2098
2099/* Bison declarations. */
2100%token NUM
2101
2102%left '-' '+'
2103%left '*' '/'
d78f0ac9 2104%precedence NEG
342b8b6e
AD
2105%right '^'
2106
38a92d50 2107%% /* The grammar follows. */
342b8b6e
AD
2108@end example
2109
9edcd895
AD
2110@noindent
2111Note there are no declarations specific to locations. Defining a data
2112type for storing locations is not needed: we will use the type provided
2113by default (@pxref{Location Type, ,Data Types of Locations}), which is a
2114four member structure with the following integer fields:
2115@code{first_line}, @code{first_column}, @code{last_line} and
cd48d21d
AD
2116@code{last_column}. By conventions, and in accordance with the GNU
2117Coding Standards and common practice, the line and column count both
2118start at 1.
342b8b6e
AD
2119
2120@node Ltcalc Rules
2121@subsection Grammar Rules for @code{ltcalc}
2122
9edcd895
AD
2123Whether handling locations or not has no effect on the syntax of your
2124language. Therefore, grammar rules for this example will be very close
2125to those of the previous example: we will only modify them to benefit
2126from the new information.
342b8b6e 2127
9edcd895
AD
2128Here, we will use locations to report divisions by zero, and locate the
2129wrong expressions or subexpressions.
342b8b6e
AD
2130
2131@example
2132@group
2133input : /* empty */
2134 | input line
2135;
2136@end group
2137
2138@group
2139line : '\n'
2140 | exp '\n' @{ printf ("%d\n", $1); @}
2141;
2142@end group
2143
2144@group
2145exp : NUM @{ $$ = $1; @}
2146 | exp '+' exp @{ $$ = $1 + $3; @}
2147 | exp '-' exp @{ $$ = $1 - $3; @}
2148 | exp '*' exp @{ $$ = $1 * $3; @}
2149@end group
342b8b6e 2150@group
9edcd895 2151 | exp '/' exp
342b8b6e
AD
2152 @{
2153 if ($3)
2154 $$ = $1 / $3;
2155 else
2156 @{
2157 $$ = 1;
9edcd895
AD
2158 fprintf (stderr, "%d.%d-%d.%d: division by zero",
2159 @@3.first_line, @@3.first_column,
2160 @@3.last_line, @@3.last_column);
342b8b6e
AD
2161 @}
2162 @}
2163@end group
2164@group
178e123e 2165 | '-' exp %prec NEG @{ $$ = -$2; @}
342b8b6e
AD
2166 | exp '^' exp @{ $$ = pow ($1, $3); @}
2167 | '(' exp ')' @{ $$ = $2; @}
2168@end group
2169@end example
2170
2171This code shows how to reach locations inside of semantic actions, by
2172using the pseudo-variables @code{@@@var{n}} for rule components, and the
2173pseudo-variable @code{@@$} for groupings.
2174
9edcd895
AD
2175We don't need to assign a value to @code{@@$}: the output parser does it
2176automatically. By default, before executing the C code of each action,
2177@code{@@$} is set to range from the beginning of @code{@@1} to the end
2178of @code{@@@var{n}}, for a rule with @var{n} components. This behavior
2179can be redefined (@pxref{Location Default Action, , Default Action for
2180Locations}), and for very specific rules, @code{@@$} can be computed by
2181hand.
342b8b6e
AD
2182
2183@node Ltcalc Lexer
2184@subsection The @code{ltcalc} Lexical Analyzer.
2185
9edcd895 2186Until now, we relied on Bison's defaults to enable location
72d2299c 2187tracking. The next step is to rewrite the lexical analyzer, and make it
9edcd895
AD
2188able to feed the parser with the token locations, as it already does for
2189semantic values.
342b8b6e 2190
9edcd895
AD
2191To this end, we must take into account every single character of the
2192input text, to avoid the computed locations of being fuzzy or wrong:
342b8b6e
AD
2193
2194@example
2195@group
2196int
2197yylex (void)
2198@{
2199 int c;
18b519c0 2200@end group
342b8b6e 2201
18b519c0 2202@group
72d2299c 2203 /* Skip white space. */
342b8b6e
AD
2204 while ((c = getchar ()) == ' ' || c == '\t')
2205 ++yylloc.last_column;
18b519c0 2206@end group
342b8b6e 2207
18b519c0 2208@group
72d2299c 2209 /* Step. */
342b8b6e
AD
2210 yylloc.first_line = yylloc.last_line;
2211 yylloc.first_column = yylloc.last_column;
2212@end group
2213
2214@group
72d2299c 2215 /* Process numbers. */
342b8b6e
AD
2216 if (isdigit (c))
2217 @{
2218 yylval = c - '0';
2219 ++yylloc.last_column;
2220 while (isdigit (c = getchar ()))
2221 @{
2222 ++yylloc.last_column;
2223 yylval = yylval * 10 + c - '0';
2224 @}
2225 ungetc (c, stdin);
2226 return NUM;
2227 @}
2228@end group
2229
72d2299c 2230 /* Return end-of-input. */
342b8b6e
AD
2231 if (c == EOF)
2232 return 0;
2233
72d2299c 2234 /* Return a single char, and update location. */
342b8b6e
AD
2235 if (c == '\n')
2236 @{
2237 ++yylloc.last_line;
2238 yylloc.last_column = 0;
2239 @}
2240 else
2241 ++yylloc.last_column;
2242 return c;
2243@}
2244@end example
2245
9edcd895
AD
2246Basically, the lexical analyzer performs the same processing as before:
2247it skips blanks and tabs, and reads numbers or single-character tokens.
2248In addition, it updates @code{yylloc}, the global variable (of type
2249@code{YYLTYPE}) containing the token's location.
342b8b6e 2250
9edcd895 2251Now, each time this function returns a token, the parser has its number
72d2299c 2252as well as its semantic value, and its location in the text. The last
9edcd895
AD
2253needed change is to initialize @code{yylloc}, for example in the
2254controlling function:
342b8b6e
AD
2255
2256@example
9edcd895 2257@group
342b8b6e
AD
2258int
2259main (void)
2260@{
2261 yylloc.first_line = yylloc.last_line = 1;
2262 yylloc.first_column = yylloc.last_column = 0;
2263 return yyparse ();
2264@}
9edcd895 2265@end group
342b8b6e
AD
2266@end example
2267
9edcd895
AD
2268Remember that computing locations is not a matter of syntax. Every
2269character must be associated to a location update, whether it is in
2270valid input, in comments, in literal strings, and so on.
342b8b6e
AD
2271
2272@node Multi-function Calc
bfa74976
RS
2273@section Multi-Function Calculator: @code{mfcalc}
2274@cindex multi-function calculator
2275@cindex @code{mfcalc}
2276@cindex calculator, multi-function
2277
2278Now that the basics of Bison have been discussed, it is time to move on to
2279a more advanced problem. The above calculators provided only five
2280functions, @samp{+}, @samp{-}, @samp{*}, @samp{/} and @samp{^}. It would
2281be nice to have a calculator that provides other mathematical functions such
2282as @code{sin}, @code{cos}, etc.
2283
2284It is easy to add new operators to the infix calculator as long as they are
2285only single-character literals. The lexical analyzer @code{yylex} passes
9d9b8b70 2286back all nonnumeric characters as tokens, so new grammar rules suffice for
bfa74976
RS
2287adding a new operator. But we want something more flexible: built-in
2288functions whose syntax has this form:
2289
2290@example
2291@var{function_name} (@var{argument})
2292@end example
2293
2294@noindent
2295At the same time, we will add memory to the calculator, by allowing you
2296to create named variables, store values in them, and use them later.
2297Here is a sample session with the multi-function calculator:
2298
2299@example
9edcd895
AD
2300$ @kbd{mfcalc}
2301@kbd{pi = 3.141592653589}
bfa74976 23023.1415926536
9edcd895 2303@kbd{sin(pi)}
bfa74976 23040.0000000000
9edcd895 2305@kbd{alpha = beta1 = 2.3}
bfa74976 23062.3000000000
9edcd895 2307@kbd{alpha}
bfa74976 23082.3000000000
9edcd895 2309@kbd{ln(alpha)}
bfa74976 23100.8329091229
9edcd895 2311@kbd{exp(ln(beta1))}
bfa74976 23122.3000000000
9edcd895 2313$
bfa74976
RS
2314@end example
2315
2316Note that multiple assignment and nested function calls are permitted.
2317
2318@menu
f5f419de
DJ
2319* Mfcalc Declarations:: Bison declarations for multi-function calculator.
2320* Mfcalc Rules:: Grammar rules for the calculator.
2321* Mfcalc Symbol Table:: Symbol table management subroutines.
bfa74976
RS
2322@end menu
2323
f5f419de 2324@node Mfcalc Declarations
bfa74976
RS
2325@subsection Declarations for @code{mfcalc}
2326
2327Here are the C and Bison declarations for the multi-function calculator.
2328
2329@smallexample
18b519c0 2330@group
bfa74976 2331%@{
38a92d50
PE
2332 #include <math.h> /* For math functions, cos(), sin(), etc. */
2333 #include "calc.h" /* Contains definition of `symrec'. */
2334 int yylex (void);
2335 void yyerror (char const *);
bfa74976 2336%@}
18b519c0
AD
2337@end group
2338@group
bfa74976 2339%union @{
38a92d50
PE
2340 double val; /* For returning numbers. */
2341 symrec *tptr; /* For returning symbol-table pointers. */
bfa74976 2342@}
18b519c0 2343@end group
38a92d50
PE
2344%token <val> NUM /* Simple double precision number. */
2345%token <tptr> VAR FNCT /* Variable and Function. */
bfa74976
RS
2346%type <val> exp
2347
18b519c0 2348@group
bfa74976
RS
2349%right '='
2350%left '-' '+'
2351%left '*' '/'
d78f0ac9
AD
2352%precedence NEG /* negation--unary minus */
2353%right '^' /* exponentiation */
18b519c0 2354@end group
38a92d50 2355%% /* The grammar follows. */
bfa74976
RS
2356@end smallexample
2357
2358The above grammar introduces only two new features of the Bison language.
2359These features allow semantic values to have various data types
2360(@pxref{Multiple Types, ,More Than One Value Type}).
2361
2362The @code{%union} declaration specifies the entire list of possible types;
2363this is instead of defining @code{YYSTYPE}. The allowable types are now
2364double-floats (for @code{exp} and @code{NUM}) and pointers to entries in
2365the symbol table. @xref{Union Decl, ,The Collection of Value Types}.
2366
2367Since values can now have various types, it is necessary to associate a
2368type with each grammar symbol whose semantic value is used. These symbols
2369are @code{NUM}, @code{VAR}, @code{FNCT}, and @code{exp}. Their
2370declarations are augmented with information about their data type (placed
2371between angle brackets).
2372
704a47c4
AD
2373The Bison construct @code{%type} is used for declaring nonterminal
2374symbols, just as @code{%token} is used for declaring token types. We
2375have not used @code{%type} before because nonterminal symbols are
2376normally declared implicitly by the rules that define them. But
2377@code{exp} must be declared explicitly so we can specify its value type.
2378@xref{Type Decl, ,Nonterminal Symbols}.
bfa74976 2379
342b8b6e 2380@node Mfcalc Rules
bfa74976
RS
2381@subsection Grammar Rules for @code{mfcalc}
2382
2383Here are the grammar rules for the multi-function calculator.
2384Most of them are copied directly from @code{calc}; three rules,
2385those which mention @code{VAR} or @code{FNCT}, are new.
2386
2387@smallexample
18b519c0 2388@group
bfa74976
RS
2389input: /* empty */
2390 | input line
2391;
18b519c0 2392@end group
bfa74976 2393
18b519c0 2394@group
bfa74976
RS
2395line:
2396 '\n'
2397 | exp '\n' @{ printf ("\t%.10g\n", $1); @}
2398 | error '\n' @{ yyerrok; @}
2399;
18b519c0 2400@end group
bfa74976 2401
18b519c0 2402@group
bfa74976
RS
2403exp: NUM @{ $$ = $1; @}
2404 | VAR @{ $$ = $1->value.var; @}
2405 | VAR '=' exp @{ $$ = $3; $1->value.var = $3; @}
2406 | FNCT '(' exp ')' @{ $$ = (*($1->value.fnctptr))($3); @}
2407 | exp '+' exp @{ $$ = $1 + $3; @}
2408 | exp '-' exp @{ $$ = $1 - $3; @}
2409 | exp '*' exp @{ $$ = $1 * $3; @}
2410 | exp '/' exp @{ $$ = $1 / $3; @}
2411 | '-' exp %prec NEG @{ $$ = -$2; @}
2412 | exp '^' exp @{ $$ = pow ($1, $3); @}
2413 | '(' exp ')' @{ $$ = $2; @}
2414;
18b519c0 2415@end group
38a92d50 2416/* End of grammar. */
bfa74976
RS
2417%%
2418@end smallexample
2419
f5f419de 2420@node Mfcalc Symbol Table
bfa74976
RS
2421@subsection The @code{mfcalc} Symbol Table
2422@cindex symbol table example
2423
2424The multi-function calculator requires a symbol table to keep track of the
2425names and meanings of variables and functions. This doesn't affect the
2426grammar rules (except for the actions) or the Bison declarations, but it
2427requires some additional C functions for support.
2428
2429The symbol table itself consists of a linked list of records. Its
2430definition, which is kept in the header @file{calc.h}, is as follows. It
2431provides for either functions or variables to be placed in the table.
2432
2433@smallexample
2434@group
38a92d50 2435/* Function type. */
32dfccf8 2436typedef double (*func_t) (double);
72f889cc 2437@end group
32dfccf8 2438
72f889cc 2439@group
38a92d50 2440/* Data type for links in the chain of symbols. */
bfa74976
RS
2441struct symrec
2442@{
38a92d50 2443 char *name; /* name of symbol */
bfa74976 2444 int type; /* type of symbol: either VAR or FNCT */
32dfccf8
AD
2445 union
2446 @{
38a92d50
PE
2447 double var; /* value of a VAR */
2448 func_t fnctptr; /* value of a FNCT */
bfa74976 2449 @} value;
38a92d50 2450 struct symrec *next; /* link field */
bfa74976
RS
2451@};
2452@end group
2453
2454@group
2455typedef struct symrec symrec;
2456
38a92d50 2457/* The symbol table: a chain of `struct symrec'. */
bfa74976
RS
2458extern symrec *sym_table;
2459
a730d142 2460symrec *putsym (char const *, int);
38a92d50 2461symrec *getsym (char const *);
bfa74976
RS
2462@end group
2463@end smallexample
2464
2465The new version of @code{main} includes a call to @code{init_table}, a
2466function that initializes the symbol table. Here it is, and
2467@code{init_table} as well:
2468
2469@smallexample
bfa74976
RS
2470#include <stdio.h>
2471
18b519c0 2472@group
38a92d50 2473/* Called by yyparse on error. */
13863333 2474void
38a92d50 2475yyerror (char const *s)
bfa74976
RS
2476@{
2477 printf ("%s\n", s);
2478@}
18b519c0 2479@end group
bfa74976 2480
18b519c0 2481@group
bfa74976
RS
2482struct init
2483@{
38a92d50
PE
2484 char const *fname;
2485 double (*fnct) (double);
bfa74976
RS
2486@};
2487@end group
2488
2489@group
38a92d50 2490struct init const arith_fncts[] =
13863333 2491@{
32dfccf8
AD
2492 "sin", sin,
2493 "cos", cos,
13863333 2494 "atan", atan,
32dfccf8
AD
2495 "ln", log,
2496 "exp", exp,
13863333
AD
2497 "sqrt", sqrt,
2498 0, 0
2499@};
18b519c0 2500@end group
bfa74976 2501
18b519c0 2502@group
bfa74976 2503/* The symbol table: a chain of `struct symrec'. */
38a92d50 2504symrec *sym_table;
bfa74976
RS
2505@end group
2506
2507@group
72d2299c 2508/* Put arithmetic functions in table. */
13863333
AD
2509void
2510init_table (void)
bfa74976
RS
2511@{
2512 int i;
2513 symrec *ptr;
2514 for (i = 0; arith_fncts[i].fname != 0; i++)
2515 @{
2516 ptr = putsym (arith_fncts[i].fname, FNCT);
2517 ptr->value.fnctptr = arith_fncts[i].fnct;
2518 @}
2519@}
2520@end group
38a92d50
PE
2521
2522@group
2523int
2524main (void)
2525@{
2526 init_table ();
2527 return yyparse ();
2528@}
2529@end group
bfa74976
RS
2530@end smallexample
2531
2532By simply editing the initialization list and adding the necessary include
2533files, you can add additional functions to the calculator.
2534
2535Two important functions allow look-up and installation of symbols in the
2536symbol table. The function @code{putsym} is passed a name and the type
2537(@code{VAR} or @code{FNCT}) of the object to be installed. The object is
2538linked to the front of the list, and a pointer to the object is returned.
2539The function @code{getsym} is passed the name of the symbol to look up. If
2540found, a pointer to that symbol is returned; otherwise zero is returned.
2541
2542@smallexample
2543symrec *
38a92d50 2544putsym (char const *sym_name, int sym_type)
bfa74976
RS
2545@{
2546 symrec *ptr;
2547 ptr = (symrec *) malloc (sizeof (symrec));
2548 ptr->name = (char *) malloc (strlen (sym_name) + 1);
2549 strcpy (ptr->name,sym_name);
2550 ptr->type = sym_type;
72d2299c 2551 ptr->value.var = 0; /* Set value to 0 even if fctn. */
bfa74976
RS
2552 ptr->next = (struct symrec *)sym_table;
2553 sym_table = ptr;
2554 return ptr;
2555@}
2556
2557symrec *
38a92d50 2558getsym (char const *sym_name)
bfa74976
RS
2559@{
2560 symrec *ptr;
2561 for (ptr = sym_table; ptr != (symrec *) 0;
2562 ptr = (symrec *)ptr->next)
2563 if (strcmp (ptr->name,sym_name) == 0)
2564 return ptr;
2565 return 0;
2566@}
2567@end smallexample
2568
2569The function @code{yylex} must now recognize variables, numeric values, and
2570the single-character arithmetic operators. Strings of alphanumeric
9d9b8b70 2571characters with a leading letter are recognized as either variables or
bfa74976
RS
2572functions depending on what the symbol table says about them.
2573
2574The string is passed to @code{getsym} for look up in the symbol table. If
2575the name appears in the table, a pointer to its location and its type
2576(@code{VAR} or @code{FNCT}) is returned to @code{yyparse}. If it is not
2577already in the table, then it is installed as a @code{VAR} using
2578@code{putsym}. Again, a pointer and its type (which must be @code{VAR}) is
e0c471a9 2579returned to @code{yyparse}.
bfa74976
RS
2580
2581No change is needed in the handling of numeric values and arithmetic
2582operators in @code{yylex}.
2583
2584@smallexample
2585@group
2586#include <ctype.h>
18b519c0 2587@end group
13863333 2588
18b519c0 2589@group
13863333
AD
2590int
2591yylex (void)
bfa74976
RS
2592@{
2593 int c;
2594
72d2299c 2595 /* Ignore white space, get first nonwhite character. */
bfa74976
RS
2596 while ((c = getchar ()) == ' ' || c == '\t');
2597
2598 if (c == EOF)
2599 return 0;
2600@end group
2601
2602@group
2603 /* Char starts a number => parse the number. */
2604 if (c == '.' || isdigit (c))
2605 @{
2606 ungetc (c, stdin);
2607 scanf ("%lf", &yylval.val);
2608 return NUM;
2609 @}
2610@end group
2611
2612@group
2613 /* Char starts an identifier => read the name. */
2614 if (isalpha (c))
2615 @{
2616 symrec *s;
2617 static char *symbuf = 0;
2618 static int length = 0;
2619 int i;
2620@end group
2621
2622@group
2623 /* Initially make the buffer long enough
2624 for a 40-character symbol name. */
2625 if (length == 0)
2626 length = 40, symbuf = (char *)malloc (length + 1);
2627
2628 i = 0;
2629 do
2630@end group
2631@group
2632 @{
2633 /* If buffer is full, make it bigger. */
2634 if (i == length)
2635 @{
2636 length *= 2;
18b519c0 2637 symbuf = (char *) realloc (symbuf, length + 1);
bfa74976
RS
2638 @}
2639 /* Add this character to the buffer. */
2640 symbuf[i++] = c;
2641 /* Get another character. */
2642 c = getchar ();
2643 @}
2644@end group
2645@group
72d2299c 2646 while (isalnum (c));
bfa74976
RS
2647
2648 ungetc (c, stdin);
2649 symbuf[i] = '\0';
2650@end group
2651
2652@group
2653 s = getsym (symbuf);
2654 if (s == 0)
2655 s = putsym (symbuf, VAR);
2656 yylval.tptr = s;
2657 return s->type;
2658 @}
2659
2660 /* Any other character is a token by itself. */
2661 return c;
2662@}
2663@end group
2664@end smallexample
2665
72d2299c 2666This program is both powerful and flexible. You may easily add new
704a47c4
AD
2667functions, and it is a simple job to modify this code to install
2668predefined variables such as @code{pi} or @code{e} as well.
bfa74976 2669
342b8b6e 2670@node Exercises
bfa74976
RS
2671@section Exercises
2672@cindex exercises
2673
2674@enumerate
2675@item
2676Add some new functions from @file{math.h} to the initialization list.
2677
2678@item
2679Add another array that contains constants and their values. Then
2680modify @code{init_table} to add these constants to the symbol table.
2681It will be easiest to give the constants type @code{VAR}.
2682
2683@item
2684Make the program report an error if the user refers to an
2685uninitialized variable in any way except to store a value in it.
2686@end enumerate
2687
342b8b6e 2688@node Grammar File
bfa74976
RS
2689@chapter Bison Grammar Files
2690
2691Bison takes as input a context-free grammar specification and produces a
2692C-language function that recognizes correct instances of the grammar.
2693
ff7571c0 2694The Bison grammar file conventionally has a name ending in @samp{.y}.
234a3be3 2695@xref{Invocation, ,Invoking Bison}.
bfa74976
RS
2696
2697@menu
2698* Grammar Outline:: Overall layout of the grammar file.
2699* Symbols:: Terminal and nonterminal symbols.
2700* Rules:: How to write grammar rules.
2701* Recursion:: Writing recursive rules.
2702* Semantics:: Semantic values and actions.
847bf1f5 2703* Locations:: Locations and actions.
bfa74976
RS
2704* Declarations:: All kinds of Bison declarations are described here.
2705* Multiple Parsers:: Putting more than one Bison parser in one program.
2706@end menu
2707
342b8b6e 2708@node Grammar Outline
bfa74976
RS
2709@section Outline of a Bison Grammar
2710
2711A Bison grammar file has four main sections, shown here with the
2712appropriate delimiters:
2713
2714@example
2715%@{
38a92d50 2716 @var{Prologue}
bfa74976
RS
2717%@}
2718
2719@var{Bison declarations}
2720
2721%%
2722@var{Grammar rules}
2723%%
2724
75f5aaea 2725@var{Epilogue}
bfa74976
RS
2726@end example
2727
2728Comments enclosed in @samp{/* @dots{} */} may appear in any of the sections.
8a4281b9 2729As a GNU extension, @samp{//} introduces a comment that
2bfc2e2a 2730continues until end of line.
bfa74976
RS
2731
2732@menu
f5f419de 2733* Prologue:: Syntax and usage of the prologue.
2cbe6b7f 2734* Prologue Alternatives:: Syntax and usage of alternatives to the prologue.
f5f419de
DJ
2735* Bison Declarations:: Syntax and usage of the Bison declarations section.
2736* Grammar Rules:: Syntax and usage of the grammar rules section.
2737* Epilogue:: Syntax and usage of the epilogue.
bfa74976
RS
2738@end menu
2739
38a92d50 2740@node Prologue
75f5aaea
MA
2741@subsection The prologue
2742@cindex declarations section
2743@cindex Prologue
2744@cindex declarations
bfa74976 2745
f8e1c9e5
AD
2746The @var{Prologue} section contains macro definitions and declarations
2747of functions and variables that are used in the actions in the grammar
ff7571c0
JD
2748rules. These are copied to the beginning of the parser implementation
2749file so that they precede the definition of @code{yyparse}. You can
2750use @samp{#include} to get the declarations from a header file. If
2751you don't need any C declarations, you may omit the @samp{%@{} and
f8e1c9e5 2752@samp{%@}} delimiters that bracket this section.
bfa74976 2753
9c437126 2754The @var{Prologue} section is terminated by the first occurrence
287c78f6
PE
2755of @samp{%@}} that is outside a comment, a string literal, or a
2756character constant.
2757
c732d2c6
AD
2758You may have more than one @var{Prologue} section, intermixed with the
2759@var{Bison declarations}. This allows you to have C and Bison
2760declarations that refer to each other. For example, the @code{%union}
2761declaration may use types defined in a header file, and you may wish to
2762prototype functions that take arguments of type @code{YYSTYPE}. This
2763can be done with two @var{Prologue} blocks, one before and one after the
2764@code{%union} declaration.
2765
2766@smallexample
2767%@{
aef3da86 2768 #define _GNU_SOURCE
38a92d50
PE
2769 #include <stdio.h>
2770 #include "ptypes.h"
c732d2c6
AD
2771%@}
2772
2773%union @{
779e7ceb 2774 long int n;
c732d2c6
AD
2775 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2776@}
2777
2778%@{
38a92d50
PE
2779 static void print_token_value (FILE *, int, YYSTYPE);
2780 #define YYPRINT(F, N, L) print_token_value (F, N, L)
c732d2c6
AD
2781%@}
2782
2783@dots{}
2784@end smallexample
2785
aef3da86
PE
2786When in doubt, it is usually safer to put prologue code before all
2787Bison declarations, rather than after. For example, any definitions
2788of feature test macros like @code{_GNU_SOURCE} or
2789@code{_POSIX_C_SOURCE} should appear before all Bison declarations, as
2790feature test macros can affect the behavior of Bison-generated
2791@code{#include} directives.
2792
2cbe6b7f
JD
2793@node Prologue Alternatives
2794@subsection Prologue Alternatives
2795@cindex Prologue Alternatives
2796
136a0f76 2797@findex %code
16dc6a9e
JD
2798@findex %code requires
2799@findex %code provides
2800@findex %code top
85894313 2801
2cbe6b7f 2802The functionality of @var{Prologue} sections can often be subtle and
ff7571c0
JD
2803inflexible. As an alternative, Bison provides a @code{%code}
2804directive with an explicit qualifier field, which identifies the
2805purpose of the code and thus the location(s) where Bison should
2806generate it. For C/C++, the qualifier can be omitted for the default
2807location, or it can be one of @code{requires}, @code{provides},
e0c07222 2808@code{top}. @xref{%code Summary}.
2cbe6b7f
JD
2809
2810Look again at the example of the previous section:
2811
2812@smallexample
2813%@{
2814 #define _GNU_SOURCE
2815 #include <stdio.h>
2816 #include "ptypes.h"
2817%@}
2818
2819%union @{
2820 long int n;
2821 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2822@}
2823
2824%@{
2825 static void print_token_value (FILE *, int, YYSTYPE);
2826 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2827%@}
2828
2829@dots{}
2830@end smallexample
2831
2832@noindent
ff7571c0
JD
2833Notice that there are two @var{Prologue} sections here, but there's a
2834subtle distinction between their functionality. For example, if you
2835decide to override Bison's default definition for @code{YYLTYPE}, in
2836which @var{Prologue} section should you write your new definition?
2837You should write it in the first since Bison will insert that code
2838into the parser implementation file @emph{before} the default
2839@code{YYLTYPE} definition. In which @var{Prologue} section should you
2840prototype an internal function, @code{trace_token}, that accepts
2841@code{YYLTYPE} and @code{yytokentype} as arguments? You should
2842prototype it in the second since Bison will insert that code
2cbe6b7f
JD
2843@emph{after} the @code{YYLTYPE} and @code{yytokentype} definitions.
2844
2845This distinction in functionality between the two @var{Prologue} sections is
2846established by the appearance of the @code{%union} between them.
a501eca9 2847This behavior raises a few questions.
2cbe6b7f
JD
2848First, why should the position of a @code{%union} affect definitions related to
2849@code{YYLTYPE} and @code{yytokentype}?
2850Second, what if there is no @code{%union}?
2851In that case, the second kind of @var{Prologue} section is not available.
2852This behavior is not intuitive.
2853
8e0a5e9e 2854To avoid this subtle @code{%union} dependency, rewrite the example using a
16dc6a9e 2855@code{%code top} and an unqualified @code{%code}.
2cbe6b7f
JD
2856Let's go ahead and add the new @code{YYLTYPE} definition and the
2857@code{trace_token} prototype at the same time:
2858
2859@smallexample
16dc6a9e 2860%code top @{
2cbe6b7f
JD
2861 #define _GNU_SOURCE
2862 #include <stdio.h>
8e0a5e9e
JD
2863
2864 /* WARNING: The following code really belongs
16dc6a9e 2865 * in a `%code requires'; see below. */
8e0a5e9e 2866
2cbe6b7f
JD
2867 #include "ptypes.h"
2868 #define YYLTYPE YYLTYPE
2869 typedef struct YYLTYPE
2870 @{
2871 int first_line;
2872 int first_column;
2873 int last_line;
2874 int last_column;
2875 char *filename;
2876 @} YYLTYPE;
2877@}
2878
2879%union @{
2880 long int n;
2881 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2882@}
2883
2884%code @{
2885 static void print_token_value (FILE *, int, YYSTYPE);
2886 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2887 static void trace_token (enum yytokentype token, YYLTYPE loc);
2888@}
2889
2890@dots{}
2891@end smallexample
2892
2893@noindent
16dc6a9e
JD
2894In this way, @code{%code top} and the unqualified @code{%code} achieve the same
2895functionality as the two kinds of @var{Prologue} sections, but it's always
8e0a5e9e 2896explicit which kind you intend.
2cbe6b7f
JD
2897Moreover, both kinds are always available even in the absence of @code{%union}.
2898
ff7571c0
JD
2899The @code{%code top} block above logically contains two parts. The
2900first two lines before the warning need to appear near the top of the
2901parser implementation file. The first line after the warning is
2902required by @code{YYSTYPE} and thus also needs to appear in the parser
2903implementation file. However, if you've instructed Bison to generate
2904a parser header file (@pxref{Decl Summary, ,%defines}), you probably
2905want that line to appear before the @code{YYSTYPE} definition in that
2906header file as well. The @code{YYLTYPE} definition should also appear
2907in the parser header file to override the default @code{YYLTYPE}
2908definition there.
2cbe6b7f 2909
16dc6a9e 2910In other words, in the @code{%code top} block above, all but the first two
8e0a5e9e
JD
2911lines are dependency code required by the @code{YYSTYPE} and @code{YYLTYPE}
2912definitions.
16dc6a9e 2913Thus, they belong in one or more @code{%code requires}:
9bc0dd67
JD
2914
2915@smallexample
16dc6a9e 2916%code top @{
2cbe6b7f
JD
2917 #define _GNU_SOURCE
2918 #include <stdio.h>
2919@}
2920
16dc6a9e 2921%code requires @{
9bc0dd67
JD
2922 #include "ptypes.h"
2923@}
2924%union @{
2925 long int n;
2926 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2927@}
2928
16dc6a9e 2929%code requires @{
2cbe6b7f
JD
2930 #define YYLTYPE YYLTYPE
2931 typedef struct YYLTYPE
2932 @{
2933 int first_line;
2934 int first_column;
2935 int last_line;
2936 int last_column;
2937 char *filename;
2938 @} YYLTYPE;
2939@}
2940
136a0f76 2941%code @{
2cbe6b7f
JD
2942 static void print_token_value (FILE *, int, YYSTYPE);
2943 #define YYPRINT(F, N, L) print_token_value (F, N, L)
2944 static void trace_token (enum yytokentype token, YYLTYPE loc);
2945@}
2946
2947@dots{}
2948@end smallexample
2949
2950@noindent
ff7571c0
JD
2951Now Bison will insert @code{#include "ptypes.h"} and the new
2952@code{YYLTYPE} definition before the Bison-generated @code{YYSTYPE}
2953and @code{YYLTYPE} definitions in both the parser implementation file
2954and the parser header file. (By the same reasoning, @code{%code
2955requires} would also be the appropriate place to write your own
2956definition for @code{YYSTYPE}.)
2957
2958When you are writing dependency code for @code{YYSTYPE} and
2959@code{YYLTYPE}, you should prefer @code{%code requires} over
2960@code{%code top} regardless of whether you instruct Bison to generate
2961a parser header file. When you are writing code that you need Bison
2962to insert only into the parser implementation file and that has no
2963special need to appear at the top of that file, you should prefer the
2964unqualified @code{%code} over @code{%code top}. These practices will
2965make the purpose of each block of your code explicit to Bison and to
2966other developers reading your grammar file. Following these
2967practices, we expect the unqualified @code{%code} and @code{%code
2968requires} to be the most important of the four @var{Prologue}
16dc6a9e 2969alternatives.
a501eca9 2970
ff7571c0
JD
2971At some point while developing your parser, you might decide to
2972provide @code{trace_token} to modules that are external to your
2973parser. Thus, you might wish for Bison to insert the prototype into
2974both the parser header file and the parser implementation file. Since
2975this function is not a dependency required by @code{YYSTYPE} or
8e0a5e9e 2976@code{YYLTYPE}, it doesn't make sense to move its prototype to a
ff7571c0
JD
2977@code{%code requires}. More importantly, since it depends upon
2978@code{YYLTYPE} and @code{yytokentype}, @code{%code requires} is not
2979sufficient. Instead, move its prototype from the unqualified
2980@code{%code} to a @code{%code provides}:
2cbe6b7f
JD
2981
2982@smallexample
16dc6a9e 2983%code top @{
2cbe6b7f 2984 #define _GNU_SOURCE
136a0f76 2985 #include <stdio.h>
2cbe6b7f 2986@}
136a0f76 2987
16dc6a9e 2988%code requires @{
2cbe6b7f
JD
2989 #include "ptypes.h"
2990@}
2991%union @{
2992 long int n;
2993 tree t; /* @r{@code{tree} is defined in @file{ptypes.h}.} */
2994@}
2995
16dc6a9e 2996%code requires @{
2cbe6b7f
JD
2997 #define YYLTYPE YYLTYPE
2998 typedef struct YYLTYPE
2999 @{
3000 int first_line;
3001 int first_column;
3002 int last_line;
3003 int last_column;
3004 char *filename;
3005 @} YYLTYPE;
3006@}
3007
16dc6a9e 3008%code provides @{
2cbe6b7f
JD
3009 void trace_token (enum yytokentype token, YYLTYPE loc);
3010@}
3011
3012%code @{
9bc0dd67
JD
3013 static void print_token_value (FILE *, int, YYSTYPE);
3014 #define YYPRINT(F, N, L) print_token_value (F, N, L)
34f98f46 3015@}
9bc0dd67
JD
3016
3017@dots{}
3018@end smallexample
3019
2cbe6b7f 3020@noindent
ff7571c0
JD
3021Bison will insert the @code{trace_token} prototype into both the
3022parser header file and the parser implementation file after the
3023definitions for @code{yytokentype}, @code{YYLTYPE}, and
3024@code{YYSTYPE}.
2cbe6b7f 3025
ff7571c0
JD
3026The above examples are careful to write directives in an order that
3027reflects the layout of the generated parser implementation and header
3028files: @code{%code top}, @code{%code requires}, @code{%code provides},
3029and then @code{%code}. While your grammar files may generally be
3030easier to read if you also follow this order, Bison does not require
3031it. Instead, Bison lets you choose an organization that makes sense
3032to you.
2cbe6b7f 3033
a501eca9 3034You may declare any of these directives multiple times in the grammar file.
2cbe6b7f
JD
3035In that case, Bison concatenates the contained code in declaration order.
3036This is the only way in which the position of one of these directives within
3037the grammar file affects its functionality.
3038
3039The result of the previous two properties is greater flexibility in how you may
3040organize your grammar file.
3041For example, you may organize semantic-type-related directives by semantic
3042type:
3043
3044@smallexample
16dc6a9e 3045%code requires @{ #include "type1.h" @}
2cbe6b7f
JD
3046%union @{ type1 field1; @}
3047%destructor @{ type1_free ($$); @} <field1>
3048%printer @{ type1_print ($$); @} <field1>
3049
16dc6a9e 3050%code requires @{ #include "type2.h" @}
2cbe6b7f
JD
3051%union @{ type2 field2; @}
3052%destructor @{ type2_free ($$); @} <field2>
3053%printer @{ type2_print ($$); @} <field2>
3054@end smallexample
3055
3056@noindent
3057You could even place each of the above directive groups in the rules section of
3058the grammar file next to the set of rules that uses the associated semantic
3059type.
61fee93e
JD
3060(In the rules section, you must terminate each of those directives with a
3061semicolon.)
2cbe6b7f
JD
3062And you don't have to worry that some directive (like a @code{%union}) in the
3063definitions section is going to adversely affect their functionality in some
3064counter-intuitive manner just because it comes first.
3065Such an organization is not possible using @var{Prologue} sections.
3066
a501eca9 3067This section has been concerned with explaining the advantages of the four
8e0a5e9e 3068@var{Prologue} alternatives over the original Yacc @var{Prologue}.
a501eca9
JD
3069However, in most cases when using these directives, you shouldn't need to
3070think about all the low-level ordering issues discussed here.
3071Instead, you should simply use these directives to label each block of your
3072code according to its purpose and let Bison handle the ordering.
3073@code{%code} is the most generic label.
16dc6a9e
JD
3074Move code to @code{%code requires}, @code{%code provides}, or @code{%code top}
3075as needed.
a501eca9 3076
342b8b6e 3077@node Bison Declarations
bfa74976
RS
3078@subsection The Bison Declarations Section
3079@cindex Bison declarations (introduction)
3080@cindex declarations, Bison (introduction)
3081
3082The @var{Bison declarations} section contains declarations that define
3083terminal and nonterminal symbols, specify precedence, and so on.
3084In some simple grammars you may not need any declarations.
3085@xref{Declarations, ,Bison Declarations}.
3086
342b8b6e 3087@node Grammar Rules
bfa74976
RS
3088@subsection The Grammar Rules Section
3089@cindex grammar rules section
3090@cindex rules section for grammar
3091
3092The @dfn{grammar rules} section contains one or more Bison grammar
3093rules, and nothing else. @xref{Rules, ,Syntax of Grammar Rules}.
3094
3095There must always be at least one grammar rule, and the first
3096@samp{%%} (which precedes the grammar rules) may never be omitted even
3097if it is the first thing in the file.
3098
38a92d50 3099@node Epilogue
75f5aaea 3100@subsection The epilogue
bfa74976 3101@cindex additional C code section
75f5aaea 3102@cindex epilogue
bfa74976
RS
3103@cindex C code, section for additional
3104
ff7571c0
JD
3105The @var{Epilogue} is copied verbatim to the end of the parser
3106implementation file, just as the @var{Prologue} is copied to the
3107beginning. This is the most convenient place to put anything that you
3108want to have in the parser implementation file but which need not come
3109before the definition of @code{yyparse}. For example, the definitions
3110of @code{yylex} and @code{yyerror} often go here. Because C requires
3111functions to be declared before being used, you often need to declare
3112functions like @code{yylex} and @code{yyerror} in the Prologue, even
3113if you define them in the Epilogue. @xref{Interface, ,Parser
3114C-Language Interface}.
bfa74976
RS
3115
3116If the last section is empty, you may omit the @samp{%%} that separates it
3117from the grammar rules.
3118
f8e1c9e5
AD
3119The Bison parser itself contains many macros and identifiers whose names
3120start with @samp{yy} or @samp{YY}, so it is a good idea to avoid using
3121any such names (except those documented in this manual) in the epilogue
3122of the grammar file.
bfa74976 3123
342b8b6e 3124@node Symbols
bfa74976
RS
3125@section Symbols, Terminal and Nonterminal
3126@cindex nonterminal symbol
3127@cindex terminal symbol
3128@cindex token type
3129@cindex symbol
3130
3131@dfn{Symbols} in Bison grammars represent the grammatical classifications
3132of the language.
3133
3134A @dfn{terminal symbol} (also known as a @dfn{token type}) represents a
3135class of syntactically equivalent tokens. You use the symbol in grammar
3136rules to mean that a token in that class is allowed. The symbol is
3137represented in the Bison parser by a numeric code, and the @code{yylex}
f8e1c9e5
AD
3138function returns a token type code to indicate what kind of token has
3139been read. You don't need to know what the code value is; you can use
3140the symbol to stand for it.
bfa74976 3141
f8e1c9e5
AD
3142A @dfn{nonterminal symbol} stands for a class of syntactically
3143equivalent groupings. The symbol name is used in writing grammar rules.
3144By convention, it should be all lower case.
bfa74976 3145
82f3355e
JD
3146Symbol names can contain letters, underscores, periods, and non-initial
3147digits and dashes. Dashes in symbol names are a GNU extension, incompatible
3148with POSIX Yacc. Periods and dashes make symbol names less convenient to
3149use with named references, which require brackets around such names
3150(@pxref{Named References}). Terminal symbols that contain periods or dashes
3151make little sense: since they are not valid symbols (in most programming
3152languages) they are not exported as token names.
bfa74976 3153
931c7513 3154There are three ways of writing terminal symbols in the grammar:
bfa74976
RS
3155
3156@itemize @bullet
3157@item
3158A @dfn{named token type} is written with an identifier, like an
c827f760 3159identifier in C@. By convention, it should be all upper case. Each
bfa74976
RS
3160such name must be defined with a Bison declaration such as
3161@code{%token}. @xref{Token Decl, ,Token Type Names}.
3162
3163@item
3164@cindex character token
3165@cindex literal token
3166@cindex single-character literal
931c7513
RS
3167A @dfn{character token type} (or @dfn{literal character token}) is
3168written in the grammar using the same syntax used in C for character
3169constants; for example, @code{'+'} is a character token type. A
3170character token type doesn't need to be declared unless you need to
3171specify its semantic value data type (@pxref{Value Type, ,Data Types of
3172Semantic Values}), associativity, or precedence (@pxref{Precedence,
3173,Operator Precedence}).
bfa74976
RS
3174
3175By convention, a character token type is used only to represent a
3176token that consists of that particular character. Thus, the token
3177type @code{'+'} is used to represent the character @samp{+} as a
3178token. Nothing enforces this convention, but if you depart from it,
3179your program will confuse other readers.
3180
3181All the usual escape sequences used in character literals in C can be
3182used in Bison as well, but you must not use the null character as a
72d2299c
PE
3183character literal because its numeric code, zero, signifies
3184end-of-input (@pxref{Calling Convention, ,Calling Convention
2bfc2e2a
PE
3185for @code{yylex}}). Also, unlike standard C, trigraphs have no
3186special meaning in Bison character literals, nor is backslash-newline
3187allowed.
931c7513
RS
3188
3189@item
3190@cindex string token
3191@cindex literal string token
9ecbd125 3192@cindex multicharacter literal
931c7513
RS
3193A @dfn{literal string token} is written like a C string constant; for
3194example, @code{"<="} is a literal string token. A literal string token
3195doesn't need to be declared unless you need to specify its semantic
14ded682 3196value data type (@pxref{Value Type}), associativity, or precedence
931c7513
RS
3197(@pxref{Precedence}).
3198
3199You can associate the literal string token with a symbolic name as an
3200alias, using the @code{%token} declaration (@pxref{Token Decl, ,Token
3201Declarations}). If you don't do that, the lexical analyzer has to
3202retrieve the token number for the literal string token from the
3203@code{yytname} table (@pxref{Calling Convention}).
3204
c827f760 3205@strong{Warning}: literal string tokens do not work in Yacc.
931c7513
RS
3206
3207By convention, a literal string token is used only to represent a token
3208that consists of that particular string. Thus, you should use the token
3209type @code{"<="} to represent the string @samp{<=} as a token. Bison
9ecbd125 3210does not enforce this convention, but if you depart from it, people who
931c7513
RS
3211read your program will be confused.
3212
3213All the escape sequences used in string literals in C can be used in
92ac3705
PE
3214Bison as well, except that you must not use a null character within a
3215string literal. Also, unlike Standard C, trigraphs have no special
2bfc2e2a
PE
3216meaning in Bison string literals, nor is backslash-newline allowed. A
3217literal string token must contain two or more characters; for a token
3218containing just one character, use a character token (see above).
bfa74976
RS
3219@end itemize
3220
3221How you choose to write a terminal symbol has no effect on its
3222grammatical meaning. That depends only on where it appears in rules and
3223on when the parser function returns that symbol.
3224
72d2299c
PE
3225The value returned by @code{yylex} is always one of the terminal
3226symbols, except that a zero or negative value signifies end-of-input.
3227Whichever way you write the token type in the grammar rules, you write
3228it the same way in the definition of @code{yylex}. The numeric code
3229for a character token type is simply the positive numeric code of the
3230character, so @code{yylex} can use the identical value to generate the
3231requisite code, though you may need to convert it to @code{unsigned
3232char} to avoid sign-extension on hosts where @code{char} is signed.
ff7571c0
JD
3233Each named token type becomes a C macro in the parser implementation
3234file, so @code{yylex} can use the name to stand for the code. (This
3235is why periods don't make sense in terminal symbols.) @xref{Calling
3236Convention, ,Calling Convention for @code{yylex}}.
bfa74976
RS
3237
3238If @code{yylex} is defined in a separate file, you need to arrange for the
3239token-type macro definitions to be available there. Use the @samp{-d}
3240option when you run Bison, so that it will write these macro definitions
3241into a separate header file @file{@var{name}.tab.h} which you can include
3242in the other source files that need it. @xref{Invocation, ,Invoking Bison}.
3243
72d2299c 3244If you want to write a grammar that is portable to any Standard C
9d9b8b70 3245host, you must use only nonnull character tokens taken from the basic
c827f760 3246execution character set of Standard C@. This set consists of the ten
72d2299c
PE
3247digits, the 52 lower- and upper-case English letters, and the
3248characters in the following C-language string:
3249
3250@example
3251"\a\b\t\n\v\f\r !\"#%&'()*+,-./:;<=>?[\\]^_@{|@}~"
3252@end example
3253
f8e1c9e5
AD
3254The @code{yylex} function and Bison must use a consistent character set
3255and encoding for character tokens. For example, if you run Bison in an
8a4281b9 3256ASCII environment, but then compile and run the resulting
f8e1c9e5 3257program in an environment that uses an incompatible character set like
8a4281b9
JD
3258EBCDIC, the resulting program may not work because the tables
3259generated by Bison will assume ASCII numeric values for
f8e1c9e5
AD
3260character tokens. It is standard practice for software distributions to
3261contain C source files that were generated by Bison in an
8a4281b9
JD
3262ASCII environment, so installers on platforms that are
3263incompatible with ASCII must rebuild those files before
f8e1c9e5 3264compiling them.
e966383b 3265
bfa74976
RS
3266The symbol @code{error} is a terminal symbol reserved for error recovery
3267(@pxref{Error Recovery}); you shouldn't use it for any other purpose.
23c5a174
AD
3268In particular, @code{yylex} should never return this value. The default
3269value of the error token is 256, unless you explicitly assigned 256 to
3270one of your tokens with a @code{%token} declaration.
bfa74976 3271
342b8b6e 3272@node Rules
bfa74976
RS
3273@section Syntax of Grammar Rules
3274@cindex rule syntax
3275@cindex grammar rule syntax
3276@cindex syntax of grammar rules
3277
3278A Bison grammar rule has the following general form:
3279
3280@example
e425e872 3281@group
bfa74976
RS
3282@var{result}: @var{components}@dots{}
3283 ;
e425e872 3284@end group
bfa74976
RS
3285@end example
3286
3287@noindent
9ecbd125 3288where @var{result} is the nonterminal symbol that this rule describes,
bfa74976 3289and @var{components} are various terminal and nonterminal symbols that
13863333 3290are put together by this rule (@pxref{Symbols}).
bfa74976
RS
3291
3292For example,
3293
3294@example
3295@group
3296exp: exp '+' exp
3297 ;
3298@end group
3299@end example
3300
3301@noindent
3302says that two groupings of type @code{exp}, with a @samp{+} token in between,
3303can be combined into a larger grouping of type @code{exp}.
3304
72d2299c
PE
3305White space in rules is significant only to separate symbols. You can add
3306extra white space as you wish.
bfa74976
RS
3307
3308Scattered among the components can be @var{actions} that determine
3309the semantics of the rule. An action looks like this:
3310
3311@example
3312@{@var{C statements}@}
3313@end example
3314
3315@noindent
287c78f6
PE
3316@cindex braced code
3317This is an example of @dfn{braced code}, that is, C code surrounded by
3318braces, much like a compound statement in C@. Braced code can contain
3319any sequence of C tokens, so long as its braces are balanced. Bison
3320does not check the braced code for correctness directly; it merely
ff7571c0
JD
3321copies the code to the parser implementation file, where the C
3322compiler can check it.
287c78f6
PE
3323
3324Within braced code, the balanced-brace count is not affected by braces
3325within comments, string literals, or character constants, but it is
3326affected by the C digraphs @samp{<%} and @samp{%>} that represent
3327braces. At the top level braced code must be terminated by @samp{@}}
3328and not by a digraph. Bison does not look for trigraphs, so if braced
3329code uses trigraphs you should ensure that they do not affect the
3330nesting of braces or the boundaries of comments, string literals, or
3331character constants.
3332
bfa74976
RS
3333Usually there is only one action and it follows the components.
3334@xref{Actions}.
3335
3336@findex |
3337Multiple rules for the same @var{result} can be written separately or can
3338be joined with the vertical-bar character @samp{|} as follows:
3339
bfa74976
RS
3340@example
3341@group
3342@var{result}: @var{rule1-components}@dots{}
3343 | @var{rule2-components}@dots{}
3344 @dots{}
3345 ;
3346@end group
3347@end example
bfa74976
RS
3348
3349@noindent
3350They are still considered distinct rules even when joined in this way.
3351
3352If @var{components} in a rule is empty, it means that @var{result} can
3353match the empty string. For example, here is how to define a
3354comma-separated sequence of zero or more @code{exp} groupings:
3355
3356@example
3357@group
3358expseq: /* empty */
3359 | expseq1
3360 ;
3361@end group
3362
3363@group
3364expseq1: exp
3365 | expseq1 ',' exp
3366 ;
3367@end group
3368@end example
3369
3370@noindent
3371It is customary to write a comment @samp{/* empty */} in each rule
3372with no components.
3373
342b8b6e 3374@node Recursion
bfa74976
RS
3375@section Recursive Rules
3376@cindex recursive rule
3377
f8e1c9e5
AD
3378A rule is called @dfn{recursive} when its @var{result} nonterminal
3379appears also on its right hand side. Nearly all Bison grammars need to
3380use recursion, because that is the only way to define a sequence of any
3381number of a particular thing. Consider this recursive definition of a
9ecbd125 3382comma-separated sequence of one or more expressions:
bfa74976
RS
3383
3384@example
3385@group
3386expseq1: exp
3387 | expseq1 ',' exp
3388 ;
3389@end group
3390@end example
3391
3392@cindex left recursion
3393@cindex right recursion
3394@noindent
3395Since the recursive use of @code{expseq1} is the leftmost symbol in the
3396right hand side, we call this @dfn{left recursion}. By contrast, here
3397the same construct is defined using @dfn{right recursion}:
3398
3399@example
3400@group
3401expseq1: exp
3402 | exp ',' expseq1
3403 ;
3404@end group
3405@end example
3406
3407@noindent
ec3bc396
AD
3408Any kind of sequence can be defined using either left recursion or right
3409recursion, but you should always use left recursion, because it can
3410parse a sequence of any number of elements with bounded stack space.
3411Right recursion uses up space on the Bison stack in proportion to the
3412number of elements in the sequence, because all the elements must be
3413shifted onto the stack before the rule can be applied even once.
3414@xref{Algorithm, ,The Bison Parser Algorithm}, for further explanation
3415of this.
bfa74976
RS
3416
3417@cindex mutual recursion
3418@dfn{Indirect} or @dfn{mutual} recursion occurs when the result of the
3419rule does not appear directly on its right hand side, but does appear
3420in rules for other nonterminals which do appear on its right hand
13863333 3421side.
bfa74976
RS
3422
3423For example:
3424
3425@example
3426@group
3427expr: primary
3428 | primary '+' primary
3429 ;
3430@end group
3431
3432@group
3433primary: constant
3434 | '(' expr ')'
3435 ;
3436@end group
3437@end example
3438
3439@noindent
3440defines two mutually-recursive nonterminals, since each refers to the
3441other.
3442
342b8b6e 3443@node Semantics
bfa74976
RS
3444@section Defining Language Semantics
3445@cindex defining language semantics
13863333 3446@cindex language semantics, defining
bfa74976
RS
3447
3448The grammar rules for a language determine only the syntax. The semantics
3449are determined by the semantic values associated with various tokens and
3450groupings, and by the actions taken when various groupings are recognized.
3451
3452For example, the calculator calculates properly because the value
3453associated with each expression is the proper number; it adds properly
3454because the action for the grouping @w{@samp{@var{x} + @var{y}}} is to add
3455the numbers associated with @var{x} and @var{y}.
3456
3457@menu
3458* Value Type:: Specifying one data type for all semantic values.
3459* Multiple Types:: Specifying several alternative data types.
3460* Actions:: An action is the semantic definition of a grammar rule.
3461* Action Types:: Specifying data types for actions to operate on.
3462* Mid-Rule Actions:: Most actions go at the end of a rule.
3463 This says when, why and how to use the exceptional
3464 action in the middle of a rule.
d013372c 3465* Named References:: Using named references in actions.
bfa74976
RS
3466@end menu
3467
342b8b6e 3468@node Value Type
bfa74976
RS
3469@subsection Data Types of Semantic Values
3470@cindex semantic value type
3471@cindex value type, semantic
3472@cindex data types of semantic values
3473@cindex default data type
3474
3475In a simple program it may be sufficient to use the same data type for
3476the semantic values of all language constructs. This was true in the
8a4281b9 3477RPN and infix calculator examples (@pxref{RPN Calc, ,Reverse Polish
1964ad8c 3478Notation Calculator}).
bfa74976 3479
ddc8ede1
PE
3480Bison normally uses the type @code{int} for semantic values if your
3481program uses the same data type for all language constructs. To
bfa74976
RS
3482specify some other type, define @code{YYSTYPE} as a macro, like this:
3483
3484@example
3485#define YYSTYPE double
3486@end example
3487
3488@noindent
50cce58e
PE
3489@code{YYSTYPE}'s replacement list should be a type name
3490that does not contain parentheses or square brackets.
342b8b6e 3491This macro definition must go in the prologue of the grammar file
75f5aaea 3492(@pxref{Grammar Outline, ,Outline of a Bison Grammar}).
bfa74976 3493
342b8b6e 3494@node Multiple Types
bfa74976
RS
3495@subsection More Than One Value Type
3496
3497In most programs, you will need different data types for different kinds
3498of tokens and groupings. For example, a numeric constant may need type
f8e1c9e5
AD
3499@code{int} or @code{long int}, while a string constant needs type
3500@code{char *}, and an identifier might need a pointer to an entry in the
3501symbol table.
bfa74976
RS
3502
3503To use more than one data type for semantic values in one parser, Bison
3504requires you to do two things:
3505
3506@itemize @bullet
3507@item
ddc8ede1 3508Specify the entire collection of possible data types, either by using the
704a47c4 3509@code{%union} Bison declaration (@pxref{Union Decl, ,The Collection of
ddc8ede1
PE
3510Value Types}), or by using a @code{typedef} or a @code{#define} to
3511define @code{YYSTYPE} to be a union type whose member names are
3512the type tags.
bfa74976
RS
3513
3514@item
14ded682
AD
3515Choose one of those types for each symbol (terminal or nonterminal) for
3516which semantic values are used. This is done for tokens with the
3517@code{%token} Bison declaration (@pxref{Token Decl, ,Token Type Names})
3518and for groupings with the @code{%type} Bison declaration (@pxref{Type
3519Decl, ,Nonterminal Symbols}).
bfa74976
RS
3520@end itemize
3521
342b8b6e 3522@node Actions
bfa74976
RS
3523@subsection Actions
3524@cindex action
3525@vindex $$
3526@vindex $@var{n}
d013372c
AR
3527@vindex $@var{name}
3528@vindex $[@var{name}]
bfa74976
RS
3529
3530An action accompanies a syntactic rule and contains C code to be executed
3531each time an instance of that rule is recognized. The task of most actions
3532is to compute a semantic value for the grouping built by the rule from the
3533semantic values associated with tokens or smaller groupings.
3534
287c78f6
PE
3535An action consists of braced code containing C statements, and can be
3536placed at any position in the rule;
704a47c4
AD
3537it is executed at that position. Most rules have just one action at the
3538end of the rule, following all the components. Actions in the middle of
3539a rule are tricky and used only for special purposes (@pxref{Mid-Rule
3540Actions, ,Actions in Mid-Rule}).
bfa74976 3541
ff7571c0
JD
3542The C code in an action can refer to the semantic values of the
3543components matched by the rule with the construct @code{$@var{n}},
3544which stands for the value of the @var{n}th component. The semantic
3545value for the grouping being constructed is @code{$$}. In addition,
3546the semantic values of symbols can be accessed with the named
3547references construct @code{$@var{name}} or @code{$[@var{name}]}.
3548Bison translates both of these constructs into expressions of the
3549appropriate type when it copies the actions into the parser
3550implementation file. @code{$$} (or @code{$@var{name}}, when it stands
3551for the current grouping) is translated to a modifiable lvalue, so it
3552can be assigned to.
bfa74976
RS
3553
3554Here is a typical example:
3555
3556@example
3557@group
3558exp: @dots{}
3559 | exp '+' exp
3560 @{ $$ = $1 + $3; @}
3561@end group
3562@end example
3563
d013372c
AR
3564Or, in terms of named references:
3565
3566@example
3567@group
3568exp[result]: @dots{}
3569 | exp[left] '+' exp[right]
3570 @{ $result = $left + $right; @}
3571@end group
3572@end example
3573
bfa74976
RS
3574@noindent
3575This rule constructs an @code{exp} from two smaller @code{exp} groupings
3576connected by a plus-sign token. In the action, @code{$1} and @code{$3}
d013372c 3577(@code{$left} and @code{$right})
bfa74976
RS
3578refer to the semantic values of the two component @code{exp} groupings,
3579which are the first and third symbols on the right hand side of the rule.
d013372c
AR
3580The sum is stored into @code{$$} (@code{$result}) so that it becomes the
3581semantic value of
bfa74976
RS
3582the addition-expression just recognized by the rule. If there were a
3583useful semantic value associated with the @samp{+} token, it could be
e0c471a9 3584referred to as @code{$2}.
bfa74976 3585
d013372c
AR
3586@xref{Named References,,Using Named References}, for more information
3587about using the named references construct.
3588
3ded9a63
AD
3589Note that the vertical-bar character @samp{|} is really a rule
3590separator, and actions are attached to a single rule. This is a
3591difference with tools like Flex, for which @samp{|} stands for either
3592``or'', or ``the same action as that of the next rule''. In the
3593following example, the action is triggered only when @samp{b} is found:
3594
3595@example
3596@group
3597a-or-b: 'a'|'b' @{ a_or_b_found = 1; @};
3598@end group
3599@end example
3600
bfa74976
RS
3601@cindex default action
3602If you don't specify an action for a rule, Bison supplies a default:
72f889cc
AD
3603@w{@code{$$ = $1}.} Thus, the value of the first symbol in the rule
3604becomes the value of the whole rule. Of course, the default action is
3605valid only if the two data types match. There is no meaningful default
3606action for an empty rule; every empty rule must have an explicit action
3607unless the rule's value does not matter.
bfa74976
RS
3608
3609@code{$@var{n}} with @var{n} zero or negative is allowed for reference
3610to tokens and groupings on the stack @emph{before} those that match the
3611current rule. This is a very risky practice, and to use it reliably
3612you must be certain of the context in which the rule is applied. Here
3613is a case in which you can use this reliably:
3614
3615@example
3616@group
3617foo: expr bar '+' expr @{ @dots{} @}
3618 | expr bar '-' expr @{ @dots{} @}
3619 ;
3620@end group
3621
3622@group
3623bar: /* empty */
3624 @{ previous_expr = $0; @}
3625 ;
3626@end group
3627@end example
3628
3629As long as @code{bar} is used only in the fashion shown here, @code{$0}
3630always refers to the @code{expr} which precedes @code{bar} in the
3631definition of @code{foo}.
3632
32c29292 3633@vindex yylval
742e4900 3634It is also possible to access the semantic value of the lookahead token, if
32c29292
JD
3635any, from a semantic action.
3636This semantic value is stored in @code{yylval}.
3637@xref{Action Features, ,Special Features for Use in Actions}.
3638
342b8b6e 3639@node Action Types
bfa74976
RS
3640@subsection Data Types of Values in Actions
3641@cindex action data types
3642@cindex data types in actions
3643
3644If you have chosen a single data type for semantic values, the @code{$$}
3645and @code{$@var{n}} constructs always have that data type.
3646
3647If you have used @code{%union} to specify a variety of data types, then you
3648must declare a choice among these types for each terminal or nonterminal
3649symbol that can have a semantic value. Then each time you use @code{$$} or
3650@code{$@var{n}}, its data type is determined by which symbol it refers to
e0c471a9 3651in the rule. In this example,
bfa74976
RS
3652
3653@example
3654@group
3655exp: @dots{}
3656 | exp '+' exp
3657 @{ $$ = $1 + $3; @}
3658@end group
3659@end example
3660
3661@noindent
3662@code{$1} and @code{$3} refer to instances of @code{exp}, so they all
3663have the data type declared for the nonterminal symbol @code{exp}. If
3664@code{$2} were used, it would have the data type declared for the
e0c471a9 3665terminal symbol @code{'+'}, whatever that might be.
bfa74976
RS
3666
3667Alternatively, you can specify the data type when you refer to the value,
3668by inserting @samp{<@var{type}>} after the @samp{$} at the beginning of the
3669reference. For example, if you have defined types as shown here:
3670
3671@example
3672@group
3673%union @{
3674 int itype;
3675 double dtype;
3676@}
3677@end group
3678@end example
3679
3680@noindent
3681then you can write @code{$<itype>1} to refer to the first subunit of the
3682rule as an integer, or @code{$<dtype>1} to refer to it as a double.
3683
342b8b6e 3684@node Mid-Rule Actions
bfa74976
RS
3685@subsection Actions in Mid-Rule
3686@cindex actions in mid-rule
3687@cindex mid-rule actions
3688
3689Occasionally it is useful to put an action in the middle of a rule.
3690These actions are written just like usual end-of-rule actions, but they
3691are executed before the parser even recognizes the following components.
3692
3693A mid-rule action may refer to the components preceding it using
3694@code{$@var{n}}, but it may not refer to subsequent components because
3695it is run before they are parsed.
3696
3697The mid-rule action itself counts as one of the components of the rule.
3698This makes a difference when there is another action later in the same rule
3699(and usually there is another at the end): you have to count the actions
3700along with the symbols when working out which number @var{n} to use in
3701@code{$@var{n}}.
3702
3703The mid-rule action can also have a semantic value. The action can set
3704its value with an assignment to @code{$$}, and actions later in the rule
3705can refer to the value using @code{$@var{n}}. Since there is no symbol
3706to name the action, there is no way to declare a data type for the value
fdc6758b
MA
3707in advance, so you must use the @samp{$<@dots{}>@var{n}} construct to
3708specify a data type each time you refer to this value.
bfa74976
RS
3709
3710There is no way to set the value of the entire rule with a mid-rule
3711action, because assignments to @code{$$} do not have that effect. The
3712only way to set the value for the entire rule is with an ordinary action
3713at the end of the rule.
3714
3715Here is an example from a hypothetical compiler, handling a @code{let}
3716statement that looks like @samp{let (@var{variable}) @var{statement}} and
3717serves to create a variable named @var{variable} temporarily for the
3718duration of @var{statement}. To parse this construct, we must put
3719@var{variable} into the symbol table while @var{statement} is parsed, then
3720remove it afterward. Here is how it is done:
3721
3722@example
3723@group
3724stmt: LET '(' var ')'
3725 @{ $<context>$ = push_context ();
3726 declare_variable ($3); @}
3727 stmt @{ $$ = $6;
3728 pop_context ($<context>5); @}
3729@end group
3730@end example
3731
3732@noindent
3733As soon as @samp{let (@var{variable})} has been recognized, the first
3734action is run. It saves a copy of the current semantic context (the
3735list of accessible variables) as its semantic value, using alternative
3736@code{context} in the data-type union. Then it calls
3737@code{declare_variable} to add the new variable to that list. Once the
3738first action is finished, the embedded statement @code{stmt} can be
3739parsed. Note that the mid-rule action is component number 5, so the
3740@samp{stmt} is component number 6.
3741
3742After the embedded statement is parsed, its semantic value becomes the
3743value of the entire @code{let}-statement. Then the semantic value from the
3744earlier action is used to restore the prior list of variables. This
3745removes the temporary @code{let}-variable from the list so that it won't
3746appear to exist while the rest of the program is parsed.
3747
841a7737
JD
3748@findex %destructor
3749@cindex discarded symbols, mid-rule actions
3750@cindex error recovery, mid-rule actions
3751In the above example, if the parser initiates error recovery (@pxref{Error
3752Recovery}) while parsing the tokens in the embedded statement @code{stmt},
3753it might discard the previous semantic context @code{$<context>5} without
3754restoring it.
3755Thus, @code{$<context>5} needs a destructor (@pxref{Destructor Decl, , Freeing
3756Discarded Symbols}).
ec5479ce
JD
3757However, Bison currently provides no means to declare a destructor specific to
3758a particular mid-rule action's semantic value.
841a7737
JD
3759
3760One solution is to bury the mid-rule action inside a nonterminal symbol and to
3761declare a destructor for that symbol:
3762
3763@example
3764@group
3765%type <context> let
3766%destructor @{ pop_context ($$); @} let
3767
3768%%
3769
3770stmt: let stmt
3771 @{ $$ = $2;
3772 pop_context ($1); @}
3773 ;
3774
3775let: LET '(' var ')'
3776 @{ $$ = push_context ();
3777 declare_variable ($3); @}
3778 ;
3779
3780@end group
3781@end example
3782
3783@noindent
3784Note that the action is now at the end of its rule.
3785Any mid-rule action can be converted to an end-of-rule action in this way, and
3786this is what Bison actually does to implement mid-rule actions.
3787
bfa74976
RS
3788Taking action before a rule is completely recognized often leads to
3789conflicts since the parser must commit to a parse in order to execute the
3790action. For example, the following two rules, without mid-rule actions,
3791can coexist in a working parser because the parser can shift the open-brace
3792token and look at what follows before deciding whether there is a
3793declaration or not:
3794
3795@example
3796@group
3797compound: '@{' declarations statements '@}'
3798 | '@{' statements '@}'
3799 ;
3800@end group
3801@end example
3802
3803@noindent
3804But when we add a mid-rule action as follows, the rules become nonfunctional:
3805
3806@example
3807@group
3808compound: @{ prepare_for_local_variables (); @}
3809 '@{' declarations statements '@}'
3810@end group
3811@group
3812 | '@{' statements '@}'
3813 ;
3814@end group
3815@end example
3816
3817@noindent
3818Now the parser is forced to decide whether to run the mid-rule action
3819when it has read no farther than the open-brace. In other words, it
3820must commit to using one rule or the other, without sufficient
3821information to do it correctly. (The open-brace token is what is called
742e4900
JD
3822the @dfn{lookahead} token at this time, since the parser is still
3823deciding what to do about it. @xref{Lookahead, ,Lookahead Tokens}.)
bfa74976
RS
3824
3825You might think that you could correct the problem by putting identical
3826actions into the two rules, like this:
3827
3828@example
3829@group
3830compound: @{ prepare_for_local_variables (); @}
3831 '@{' declarations statements '@}'
3832 | @{ prepare_for_local_variables (); @}
3833 '@{' statements '@}'
3834 ;
3835@end group
3836@end example
3837
3838@noindent
3839But this does not help, because Bison does not realize that the two actions
3840are identical. (Bison never tries to understand the C code in an action.)
3841
3842If the grammar is such that a declaration can be distinguished from a
3843statement by the first token (which is true in C), then one solution which
3844does work is to put the action after the open-brace, like this:
3845
3846@example
3847@group
3848compound: '@{' @{ prepare_for_local_variables (); @}
3849 declarations statements '@}'
3850 | '@{' statements '@}'
3851 ;
3852@end group
3853@end example
3854
3855@noindent
3856Now the first token of the following declaration or statement,
3857which would in any case tell Bison which rule to use, can still do so.
3858
3859Another solution is to bury the action inside a nonterminal symbol which
3860serves as a subroutine:
3861
3862@example
3863@group
3864subroutine: /* empty */
3865 @{ prepare_for_local_variables (); @}
3866 ;
3867
3868@end group
3869
3870@group
3871compound: subroutine
3872 '@{' declarations statements '@}'
3873 | subroutine
3874 '@{' statements '@}'
3875 ;
3876@end group
3877@end example
3878
3879@noindent
3880Now Bison can execute the action in the rule for @code{subroutine} without
841a7737 3881deciding which rule for @code{compound} it will eventually use.
bfa74976 3882
d013372c
AR
3883@node Named References
3884@subsection Using Named References
3885@cindex named references
3886
3887While every semantic value can be accessed with positional references
3888@code{$@var{n}} and @code{$$}, it's often much more convenient to refer to
3889them by name. First of all, original symbol names may be used as named
3890references. For example:
3891
3892@example
3893@group
3894invocation: op '(' args ')'
3895 @{ $invocation = new_invocation ($op, $args, @@invocation); @}
3896@end group
3897@end example
3898
3899@noindent
3900The positional @code{$$}, @code{@@$}, @code{$n}, and @code{@@n} can be
3901mixed with @code{$name} and @code{@@name} arbitrarily. For example:
3902
3903@example
3904@group
3905invocation: op '(' args ')'
3906 @{ $$ = new_invocation ($op, $args, @@$); @}
3907@end group
3908@end example
3909
3910@noindent
3911However, sometimes regular symbol names are not sufficient due to
3912ambiguities:
3913
3914@example
3915@group
3916exp: exp '/' exp
3917 @{ $exp = $exp / $exp; @} // $exp is ambiguous.
3918
3919exp: exp '/' exp
3920 @{ $$ = $1 / $exp; @} // One usage is ambiguous.
3921
3922exp: exp '/' exp
3923 @{ $$ = $1 / $3; @} // No error.
3924@end group
3925@end example
3926
3927@noindent
3928When ambiguity occurs, explicitly declared names may be used for values and
3929locations. Explicit names are declared as a bracketed name after a symbol
3930appearance in rule definitions. For example:
3931@example
3932@group
3933exp[result]: exp[left] '/' exp[right]
3934 @{ $result = $left / $right; @}
3935@end group
3936@end example
3937
3938@noindent
3939Explicit names may be declared for RHS and for LHS symbols as well. In order
3940to access a semantic value generated by a mid-rule action, an explicit name
3941may also be declared by putting a bracketed name after the closing brace of
3942the mid-rule action code:
3943@example
3944@group
3945exp[res]: exp[x] '+' @{$left = $x;@}[left] exp[right]
3946 @{ $res = $left + $right; @}
3947@end group
3948@end example
3949
3950@noindent
3951
3952In references, in order to specify names containing dots and dashes, an explicit
3953bracketed syntax @code{$[name]} and @code{@@[name]} must be used:
3954@example
3955@group
3956if-stmt: IF '(' expr ')' THEN then.stmt ';'
3957 @{ $[if-stmt] = new_if_stmt ($expr, $[then.stmt]); @}
3958@end group
3959@end example
3960
3961It often happens that named references are followed by a dot, dash or other
3962C punctuation marks and operators. By default, Bison will read
3963@code{$name.suffix} as a reference to symbol value @code{$name} followed by
3964@samp{.suffix}, i.e., an access to the @samp{suffix} field of the semantic
3965value. In order to force Bison to recognize @code{name.suffix} in its entirety
3966as the name of a semantic value, bracketed syntax @code{$[name.suffix]}
3967must be used.
3968
3969
342b8b6e 3970@node Locations
847bf1f5
AD
3971@section Tracking Locations
3972@cindex location
95923bd6
AD
3973@cindex textual location
3974@cindex location, textual
847bf1f5
AD
3975
3976Though grammar rules and semantic actions are enough to write a fully
72d2299c 3977functional parser, it can be useful to process some additional information,
3e259915
MA
3978especially symbol locations.
3979
704a47c4
AD
3980The way locations are handled is defined by providing a data type, and
3981actions to take when rules are matched.
847bf1f5
AD
3982
3983@menu
3984* Location Type:: Specifying a data type for locations.
3985* Actions and Locations:: Using locations in actions.
3986* Location Default Action:: Defining a general way to compute locations.
3987@end menu
3988
342b8b6e 3989@node Location Type
847bf1f5
AD
3990@subsection Data Type of Locations
3991@cindex data type of locations
3992@cindex default location type
3993
3994Defining a data type for locations is much simpler than for semantic values,
3995since all tokens and groupings always use the same type.
3996
50cce58e
PE
3997You can specify the type of locations by defining a macro called
3998@code{YYLTYPE}, just as you can specify the semantic value type by
ddc8ede1 3999defining a @code{YYSTYPE} macro (@pxref{Value Type}).
847bf1f5
AD
4000When @code{YYLTYPE} is not defined, Bison uses a default structure type with
4001four members:
4002
4003@example
6273355b 4004typedef struct YYLTYPE
847bf1f5
AD
4005@{
4006 int first_line;
4007 int first_column;
4008 int last_line;
4009 int last_column;
6273355b 4010@} YYLTYPE;
847bf1f5
AD
4011@end example
4012
d59e456d
AD
4013When @code{YYLTYPE} is not defined, at the beginning of the parsing, Bison
4014initializes all these fields to 1 for @code{yylloc}. To initialize
4015@code{yylloc} with a custom location type (or to chose a different
4016initialization), use the @code{%initial-action} directive. @xref{Initial
4017Action Decl, , Performing Actions before Parsing}.
cd48d21d 4018
342b8b6e 4019@node Actions and Locations
847bf1f5
AD
4020@subsection Actions and Locations
4021@cindex location actions
4022@cindex actions, location
4023@vindex @@$
4024@vindex @@@var{n}
d013372c
AR
4025@vindex @@@var{name}
4026@vindex @@[@var{name}]
847bf1f5
AD
4027
4028Actions are not only useful for defining language semantics, but also for
4029describing the behavior of the output parser with locations.
4030
4031The most obvious way for building locations of syntactic groupings is very
72d2299c 4032similar to the way semantic values are computed. In a given rule, several
847bf1f5
AD
4033constructs can be used to access the locations of the elements being matched.
4034The location of the @var{n}th component of the right hand side is
4035@code{@@@var{n}}, while the location of the left hand side grouping is
4036@code{@@$}.
4037
d013372c
AR
4038In addition, the named references construct @code{@@@var{name}} and
4039@code{@@[@var{name}]} may also be used to address the symbol locations.
4040@xref{Named References,,Using Named References}, for more information
4041about using the named references construct.
4042
3e259915 4043Here is a basic example using the default data type for locations:
847bf1f5
AD
4044
4045@example
4046@group
4047exp: @dots{}
3e259915 4048 | exp '/' exp
847bf1f5 4049 @{
3e259915
MA
4050 @@$.first_column = @@1.first_column;
4051 @@$.first_line = @@1.first_line;
847bf1f5
AD
4052 @@$.last_column = @@3.last_column;
4053 @@$.last_line = @@3.last_line;
3e259915
MA
4054 if ($3)
4055 $$ = $1 / $3;
4056 else
4057 @{
4058 $$ = 1;
4e03e201
AD
4059 fprintf (stderr,
4060 "Division by zero, l%d,c%d-l%d,c%d",
4061 @@3.first_line, @@3.first_column,
4062 @@3.last_line, @@3.last_column);
3e259915 4063 @}
847bf1f5
AD
4064 @}
4065@end group
4066@end example
4067
3e259915 4068As for semantic values, there is a default action for locations that is
72d2299c 4069run each time a rule is matched. It sets the beginning of @code{@@$} to the
3e259915 4070beginning of the first symbol, and the end of @code{@@$} to the end of the
79282c6c 4071last symbol.
3e259915 4072
72d2299c 4073With this default action, the location tracking can be fully automatic. The
3e259915
MA
4074example above simply rewrites this way:
4075
4076@example
4077@group
4078exp: @dots{}
4079 | exp '/' exp
4080 @{
4081 if ($3)
4082 $$ = $1 / $3;
4083 else
4084 @{
4085 $$ = 1;
4e03e201
AD
4086 fprintf (stderr,
4087 "Division by zero, l%d,c%d-l%d,c%d",
4088 @@3.first_line, @@3.first_column,
4089 @@3.last_line, @@3.last_column);
3e259915
MA
4090 @}
4091 @}
4092@end group
4093@end example
847bf1f5 4094
32c29292 4095@vindex yylloc
742e4900 4096It is also possible to access the location of the lookahead token, if any,
32c29292
JD
4097from a semantic action.
4098This location is stored in @code{yylloc}.
4099@xref{Action Features, ,Special Features for Use in Actions}.
4100
342b8b6e 4101@node Location Default Action
847bf1f5
AD
4102@subsection Default Action for Locations
4103@vindex YYLLOC_DEFAULT
8a4281b9 4104@cindex GLR parsers and @code{YYLLOC_DEFAULT}
847bf1f5 4105
72d2299c 4106Actually, actions are not the best place to compute locations. Since
704a47c4
AD
4107locations are much more general than semantic values, there is room in
4108the output parser to redefine the default action to take for each
72d2299c 4109rule. The @code{YYLLOC_DEFAULT} macro is invoked each time a rule is
96b93a3d
PE
4110matched, before the associated action is run. It is also invoked
4111while processing a syntax error, to compute the error's location.
8a4281b9 4112Before reporting an unresolvable syntactic ambiguity, a GLR
8710fc41
JD
4113parser invokes @code{YYLLOC_DEFAULT} recursively to compute the location
4114of that ambiguity.
847bf1f5 4115
3e259915 4116Most of the time, this macro is general enough to suppress location
79282c6c 4117dedicated code from semantic actions.
847bf1f5 4118
72d2299c 4119The @code{YYLLOC_DEFAULT} macro takes three parameters. The first one is
96b93a3d 4120the location of the grouping (the result of the computation). When a
766de5eb 4121rule is matched, the second parameter identifies locations of
96b93a3d 4122all right hand side elements of the rule being matched, and the third
8710fc41 4123parameter is the size of the rule's right hand side.
8a4281b9 4124When a GLR parser reports an ambiguity, which of multiple candidate
8710fc41
JD
4125right hand sides it passes to @code{YYLLOC_DEFAULT} is undefined.
4126When processing a syntax error, the second parameter identifies locations
4127of the symbols that were discarded during error processing, and the third
96b93a3d 4128parameter is the number of discarded symbols.
847bf1f5 4129
766de5eb 4130By default, @code{YYLLOC_DEFAULT} is defined this way:
847bf1f5 4131
766de5eb 4132@smallexample
847bf1f5 4133@group
766de5eb
PE
4134# define YYLLOC_DEFAULT(Current, Rhs, N) \
4135 do \
4136 if (N) \
4137 @{ \
4138 (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \
4139 (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \
4140 (Current).last_line = YYRHSLOC(Rhs, N).last_line; \
4141 (Current).last_column = YYRHSLOC(Rhs, N).last_column; \
4142 @} \
4143 else \
4144 @{ \
4145 (Current).first_line = (Current).last_line = \
4146 YYRHSLOC(Rhs, 0).last_line; \
4147 (Current).first_column = (Current).last_column = \
4148 YYRHSLOC(Rhs, 0).last_column; \
4149 @} \
4150 while (0)
847bf1f5 4151@end group
766de5eb 4152@end smallexample
676385e2 4153
766de5eb
PE
4154where @code{YYRHSLOC (rhs, k)} is the location of the @var{k}th symbol
4155in @var{rhs} when @var{k} is positive, and the location of the symbol
f28ac696 4156just before the reduction when @var{k} and @var{n} are both zero.
676385e2 4157
3e259915 4158When defining @code{YYLLOC_DEFAULT}, you should consider that:
847bf1f5 4159
3e259915 4160@itemize @bullet
79282c6c 4161@item
72d2299c 4162All arguments are free of side-effects. However, only the first one (the
3e259915 4163result) should be modified by @code{YYLLOC_DEFAULT}.
847bf1f5 4164
3e259915 4165@item
766de5eb
PE
4166For consistency with semantic actions, valid indexes within the
4167right hand side range from 1 to @var{n}. When @var{n} is zero, only 0 is a
4168valid index, and it refers to the symbol just before the reduction.
4169During error processing @var{n} is always positive.
0ae99356
PE
4170
4171@item
4172Your macro should parenthesize its arguments, if need be, since the
4173actual arguments may not be surrounded by parentheses. Also, your
4174macro should expand to something that can be used as a single
4175statement when it is followed by a semicolon.
3e259915 4176@end itemize
847bf1f5 4177
342b8b6e 4178@node Declarations
bfa74976
RS
4179@section Bison Declarations
4180@cindex declarations, Bison
4181@cindex Bison declarations
4182
4183The @dfn{Bison declarations} section of a Bison grammar defines the symbols
4184used in formulating the grammar and the data types of semantic values.
4185@xref{Symbols}.
4186
4187All token type names (but not single-character literal tokens such as
4188@code{'+'} and @code{'*'}) must be declared. Nonterminal symbols must be
4189declared if you need to specify which data type to use for the semantic
4190value (@pxref{Multiple Types, ,More Than One Value Type}).
4191
ff7571c0
JD
4192The first rule in the grammar file also specifies the start symbol, by
4193default. If you want some other symbol to be the start symbol, you
4194must declare it explicitly (@pxref{Language and Grammar, ,Languages
4195and Context-Free Grammars}).
bfa74976
RS
4196
4197@menu
b50d2359 4198* Require Decl:: Requiring a Bison version.
bfa74976
RS
4199* Token Decl:: Declaring terminal symbols.
4200* Precedence Decl:: Declaring terminals with precedence and associativity.
4201* Union Decl:: Declaring the set of all semantic value types.
4202* Type Decl:: Declaring the choice of type for a nonterminal symbol.
18d192f0 4203* Initial Action Decl:: Code run before parsing starts.
72f889cc 4204* Destructor Decl:: Declaring how symbols are freed.
d6328241 4205* Expect Decl:: Suppressing warnings about parsing conflicts.
bfa74976
RS
4206* Start Decl:: Specifying the start symbol.
4207* Pure Decl:: Requesting a reentrant parser.
9987d1b3 4208* Push Decl:: Requesting a push parser.
bfa74976 4209* Decl Summary:: Table of all Bison declarations.
35c1e5f0 4210* %define Summary:: Defining variables to adjust Bison's behavior.
e0c07222 4211* %code Summary:: Inserting code into the parser source.
bfa74976
RS
4212@end menu
4213
b50d2359
AD
4214@node Require Decl
4215@subsection Require a Version of Bison
4216@cindex version requirement
4217@cindex requiring a version of Bison
4218@findex %require
4219
4220You may require the minimum version of Bison to process the grammar. If
9b8a5ce0
AD
4221the requirement is not met, @command{bison} exits with an error (exit
4222status 63).
b50d2359
AD
4223
4224@example
4225%require "@var{version}"
4226@end example
4227
342b8b6e 4228@node Token Decl
bfa74976
RS
4229@subsection Token Type Names
4230@cindex declaring token type names
4231@cindex token type names, declaring
931c7513 4232@cindex declaring literal string tokens
bfa74976
RS
4233@findex %token
4234
4235The basic way to declare a token type name (terminal symbol) is as follows:
4236
4237@example
4238%token @var{name}
4239@end example
4240
4241Bison will convert this into a @code{#define} directive in
4242the parser, so that the function @code{yylex} (if it is in this file)
4243can use the name @var{name} to stand for this token type's code.
4244
d78f0ac9
AD
4245Alternatively, you can use @code{%left}, @code{%right},
4246@code{%precedence}, or
14ded682
AD
4247@code{%nonassoc} instead of @code{%token}, if you wish to specify
4248associativity and precedence. @xref{Precedence Decl, ,Operator
4249Precedence}.
bfa74976
RS
4250
4251You can explicitly specify the numeric code for a token type by appending
b1cc23c4 4252a nonnegative decimal or hexadecimal integer value in the field immediately
1452af69 4253following the token name:
bfa74976
RS
4254
4255@example
4256%token NUM 300
1452af69 4257%token XNUM 0x12d // a GNU extension
bfa74976
RS
4258@end example
4259
4260@noindent
4261It is generally best, however, to let Bison choose the numeric codes for
4262all token types. Bison will automatically select codes that don't conflict
e966383b 4263with each other or with normal characters.
bfa74976
RS
4264
4265In the event that the stack type is a union, you must augment the
4266@code{%token} or other token declaration to include the data type
704a47c4
AD
4267alternative delimited by angle-brackets (@pxref{Multiple Types, ,More
4268Than One Value Type}).
bfa74976
RS
4269
4270For example:
4271
4272@example
4273@group
4274%union @{ /* define stack type */
4275 double val;
4276 symrec *tptr;
4277@}
4278%token <val> NUM /* define token NUM and its type */
4279@end group
4280@end example
4281
931c7513
RS
4282You can associate a literal string token with a token type name by
4283writing the literal string at the end of a @code{%token}
4284declaration which declares the name. For example:
4285
4286@example
4287%token arrow "=>"
4288@end example
4289
4290@noindent
4291For example, a grammar for the C language might specify these names with
4292equivalent literal string tokens:
4293
4294@example
4295%token <operator> OR "||"
4296%token <operator> LE 134 "<="
4297%left OR "<="
4298@end example
4299
4300@noindent
4301Once you equate the literal string and the token name, you can use them
4302interchangeably in further declarations or the grammar rules. The
4303@code{yylex} function can use the token name or the literal string to
4304obtain the token type code number (@pxref{Calling Convention}).
b1cc23c4
JD
4305Syntax error messages passed to @code{yyerror} from the parser will reference
4306the literal string instead of the token name.
4307
4308The token numbered as 0 corresponds to end of file; the following line
4309allows for nicer error messages referring to ``end of file'' instead
4310of ``$end'':
4311
4312@example
4313%token END 0 "end of file"
4314@end example
931c7513 4315
342b8b6e 4316@node Precedence Decl
bfa74976
RS
4317@subsection Operator Precedence
4318@cindex precedence declarations
4319@cindex declaring operator precedence
4320@cindex operator precedence, declaring
4321
d78f0ac9
AD
4322Use the @code{%left}, @code{%right}, @code{%nonassoc}, or
4323@code{%precedence} declaration to
bfa74976
RS
4324declare a token and specify its precedence and associativity, all at
4325once. These are called @dfn{precedence declarations}.
704a47c4
AD
4326@xref{Precedence, ,Operator Precedence}, for general information on
4327operator precedence.
bfa74976 4328
ab7f29f8 4329The syntax of a precedence declaration is nearly the same as that of
bfa74976
RS
4330@code{%token}: either
4331
4332@example
4333%left @var{symbols}@dots{}
4334@end example
4335
4336@noindent
4337or
4338
4339@example
4340%left <@var{type}> @var{symbols}@dots{}
4341@end example
4342
4343And indeed any of these declarations serves the purposes of @code{%token}.
4344But in addition, they specify the associativity and relative precedence for
4345all the @var{symbols}:
4346
4347@itemize @bullet
4348@item
4349The associativity of an operator @var{op} determines how repeated uses
4350of the operator nest: whether @samp{@var{x} @var{op} @var{y} @var{op}
4351@var{z}} is parsed by grouping @var{x} with @var{y} first or by
4352grouping @var{y} with @var{z} first. @code{%left} specifies
4353left-associativity (grouping @var{x} with @var{y} first) and
4354@code{%right} specifies right-associativity (grouping @var{y} with
4355@var{z} first). @code{%nonassoc} specifies no associativity, which
4356means that @samp{@var{x} @var{op} @var{y} @var{op} @var{z}} is
4357considered a syntax error.
4358
d78f0ac9
AD
4359@code{%precedence} gives only precedence to the @var{symbols}, and
4360defines no associativity at all. Use this to define precedence only,
4361and leave any potential conflict due to associativity enabled.
4362
bfa74976
RS
4363@item
4364The precedence of an operator determines how it nests with other operators.
4365All the tokens declared in a single precedence declaration have equal
4366precedence and nest together according to their associativity.
4367When two tokens declared in different precedence declarations associate,
4368the one declared later has the higher precedence and is grouped first.
4369@end itemize
4370
ab7f29f8
JD
4371For backward compatibility, there is a confusing difference between the
4372argument lists of @code{%token} and precedence declarations.
4373Only a @code{%token} can associate a literal string with a token type name.
4374A precedence declaration always interprets a literal string as a reference to a
4375separate token.
4376For example:
4377
4378@example
4379%left OR "<=" // Does not declare an alias.
4380%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
4381@end example
4382
342b8b6e 4383@node Union Decl
bfa74976
RS
4384@subsection The Collection of Value Types
4385@cindex declaring value types
4386@cindex value types, declaring
4387@findex %union
4388
287c78f6
PE
4389The @code{%union} declaration specifies the entire collection of
4390possible data types for semantic values. The keyword @code{%union} is
4391followed by braced code containing the same thing that goes inside a
4392@code{union} in C@.
bfa74976
RS
4393
4394For example:
4395
4396@example
4397@group
4398%union @{
4399 double val;
4400 symrec *tptr;
4401@}
4402@end group
4403@end example
4404
4405@noindent
4406This says that the two alternative types are @code{double} and @code{symrec
4407*}. They are given names @code{val} and @code{tptr}; these names are used
4408in the @code{%token} and @code{%type} declarations to pick one of the types
4409for a terminal or nonterminal symbol (@pxref{Type Decl, ,Nonterminal Symbols}).
4410
8a4281b9 4411As an extension to POSIX, a tag is allowed after the
6273355b
PE
4412@code{union}. For example:
4413
4414@example
4415@group
4416%union value @{
4417 double val;
4418 symrec *tptr;
4419@}
4420@end group
4421@end example
4422
d6ca7905 4423@noindent
6273355b
PE
4424specifies the union tag @code{value}, so the corresponding C type is
4425@code{union value}. If you do not specify a tag, it defaults to
4426@code{YYSTYPE}.
4427
8a4281b9 4428As another extension to POSIX, you may specify multiple
d6ca7905
PE
4429@code{%union} declarations; their contents are concatenated. However,
4430only the first @code{%union} declaration can specify a tag.
4431
6273355b 4432Note that, unlike making a @code{union} declaration in C, you need not write
bfa74976
RS
4433a semicolon after the closing brace.
4434
ddc8ede1
PE
4435Instead of @code{%union}, you can define and use your own union type
4436@code{YYSTYPE} if your grammar contains at least one
4437@samp{<@var{type}>} tag. For example, you can put the following into
4438a header file @file{parser.h}:
4439
4440@example
4441@group
4442union YYSTYPE @{
4443 double val;
4444 symrec *tptr;
4445@};
4446typedef union YYSTYPE YYSTYPE;
4447@end group
4448@end example
4449
4450@noindent
4451and then your grammar can use the following
4452instead of @code{%union}:
4453
4454@example
4455@group
4456%@{
4457#include "parser.h"
4458%@}
4459%type <val> expr
4460%token <tptr> ID
4461@end group
4462@end example
4463
342b8b6e 4464@node Type Decl
bfa74976
RS
4465@subsection Nonterminal Symbols
4466@cindex declaring value types, nonterminals
4467@cindex value types, nonterminals, declaring
4468@findex %type
4469
4470@noindent
4471When you use @code{%union} to specify multiple value types, you must
4472declare the value type of each nonterminal symbol for which values are
4473used. This is done with a @code{%type} declaration, like this:
4474
4475@example
4476%type <@var{type}> @var{nonterminal}@dots{}
4477@end example
4478
4479@noindent
704a47c4
AD
4480Here @var{nonterminal} is the name of a nonterminal symbol, and
4481@var{type} is the name given in the @code{%union} to the alternative
4482that you want (@pxref{Union Decl, ,The Collection of Value Types}). You
4483can give any number of nonterminal symbols in the same @code{%type}
4484declaration, if they have the same value type. Use spaces to separate
4485the symbol names.
bfa74976 4486
931c7513
RS
4487You can also declare the value type of a terminal symbol. To do this,
4488use the same @code{<@var{type}>} construction in a declaration for the
4489terminal symbol. All kinds of token declarations allow
4490@code{<@var{type}>}.
4491
18d192f0
AD
4492@node Initial Action Decl
4493@subsection Performing Actions before Parsing
4494@findex %initial-action
4495
4496Sometimes your parser needs to perform some initializations before
4497parsing. The @code{%initial-action} directive allows for such arbitrary
4498code.
4499
4500@deffn {Directive} %initial-action @{ @var{code} @}
4501@findex %initial-action
287c78f6 4502Declare that the braced @var{code} must be invoked before parsing each time
451364ed 4503@code{yyparse} is called. The @var{code} may use @code{$$} and
742e4900 4504@code{@@$} --- initial value and location of the lookahead --- and the
451364ed 4505@code{%parse-param}.
18d192f0
AD
4506@end deffn
4507
451364ed
AD
4508For instance, if your locations use a file name, you may use
4509
4510@example
48b16bbc 4511%parse-param @{ char const *file_name @};
451364ed
AD
4512%initial-action
4513@{
4626a15d 4514 @@$.initialize (file_name);
451364ed
AD
4515@};
4516@end example
4517
18d192f0 4518
72f889cc
AD
4519@node Destructor Decl
4520@subsection Freeing Discarded Symbols
4521@cindex freeing discarded symbols
4522@findex %destructor
12e35840 4523@findex <*>
3ebecc24 4524@findex <>
a85284cf
AD
4525During error recovery (@pxref{Error Recovery}), symbols already pushed
4526on the stack and tokens coming from the rest of the file are discarded
4527until the parser falls on its feet. If the parser runs out of memory,
9d9b8b70 4528or if it returns via @code{YYABORT} or @code{YYACCEPT}, all the
a85284cf
AD
4529symbols on the stack must be discarded. Even if the parser succeeds, it
4530must discard the start symbol.
258b75ca
PE
4531
4532When discarded symbols convey heap based information, this memory is
4533lost. While this behavior can be tolerable for batch parsers, such as
4b367315
AD
4534in traditional compilers, it is unacceptable for programs like shells or
4535protocol implementations that may parse and execute indefinitely.
258b75ca 4536
a85284cf
AD
4537The @code{%destructor} directive defines code that is called when a
4538symbol is automatically discarded.
72f889cc
AD
4539
4540@deffn {Directive} %destructor @{ @var{code} @} @var{symbols}
4541@findex %destructor
287c78f6
PE
4542Invoke the braced @var{code} whenever the parser discards one of the
4543@var{symbols}.
4b367315 4544Within @var{code}, @code{$$} designates the semantic value associated
ec5479ce
JD
4545with the discarded symbol, and @code{@@$} designates its location.
4546The additional parser parameters are also available (@pxref{Parser Function, ,
4547The Parser Function @code{yyparse}}).
ec5479ce 4548
b2a0b7ca
JD
4549When a symbol is listed among @var{symbols}, its @code{%destructor} is called a
4550per-symbol @code{%destructor}.
4551You may also define a per-type @code{%destructor} by listing a semantic type
12e35840 4552tag among @var{symbols}.
b2a0b7ca 4553In that case, the parser will invoke this @var{code} whenever it discards any
12e35840 4554grammar symbol that has that semantic type tag unless that symbol has its own
b2a0b7ca
JD
4555per-symbol @code{%destructor}.
4556
12e35840 4557Finally, you can define two different kinds of default @code{%destructor}s.
85894313
JD
4558(These default forms are experimental.
4559More user feedback will help to determine whether they should become permanent
4560features.)
3ebecc24 4561You can place each of @code{<*>} and @code{<>} in the @var{symbols} list of
12e35840
JD
4562exactly one @code{%destructor} declaration in your grammar file.
4563The parser will invoke the @var{code} associated with one of these whenever it
4564discards any user-defined grammar symbol that has no per-symbol and no per-type
4565@code{%destructor}.
4566The parser uses the @var{code} for @code{<*>} in the case of such a grammar
4567symbol for which you have formally declared a semantic type tag (@code{%type}
4568counts as such a declaration, but @code{$<tag>$} does not).
3ebecc24 4569The parser uses the @var{code} for @code{<>} in the case of such a grammar
12e35840 4570symbol that has no declared semantic type tag.
72f889cc
AD
4571@end deffn
4572
b2a0b7ca 4573@noindent
12e35840 4574For example:
72f889cc
AD
4575
4576@smallexample
ec5479ce
JD
4577%union @{ char *string; @}
4578%token <string> STRING1
4579%token <string> STRING2
4580%type <string> string1
4581%type <string> string2
b2a0b7ca
JD
4582%union @{ char character; @}
4583%token <character> CHR
4584%type <character> chr
12e35840
JD
4585%token TAGLESS
4586
b2a0b7ca 4587%destructor @{ @} <character>
12e35840
JD
4588%destructor @{ free ($$); @} <*>
4589%destructor @{ free ($$); printf ("%d", @@$.first_line); @} STRING1 string1
3ebecc24 4590%destructor @{ printf ("Discarding tagless symbol.\n"); @} <>
72f889cc
AD
4591@end smallexample
4592
4593@noindent
b2a0b7ca
JD
4594guarantees that, when the parser discards any user-defined symbol that has a
4595semantic type tag other than @code{<character>}, it passes its semantic value
12e35840 4596to @code{free} by default.
ec5479ce
JD
4597However, when the parser discards a @code{STRING1} or a @code{string1}, it also
4598prints its line number to @code{stdout}.
4599It performs only the second @code{%destructor} in this case, so it invokes
4600@code{free} only once.
12e35840
JD
4601Finally, the parser merely prints a message whenever it discards any symbol,
4602such as @code{TAGLESS}, that has no semantic type tag.
4603
4604A Bison-generated parser invokes the default @code{%destructor}s only for
4605user-defined as opposed to Bison-defined symbols.
4606For example, the parser will not invoke either kind of default
4607@code{%destructor} for the special Bison-defined symbols @code{$accept},
4608@code{$undefined}, or @code{$end} (@pxref{Table of Symbols, ,Bison Symbols}),
4609none of which you can reference in your grammar.
4610It also will not invoke either for the @code{error} token (@pxref{Table of
4611Symbols, ,error}), which is always defined by Bison regardless of whether you
4612reference it in your grammar.
4613However, it may invoke one of them for the end token (token 0) if you
4614redefine it from @code{$end} to, for example, @code{END}:
3508ce36
JD
4615
4616@smallexample
4617%token END 0
4618@end smallexample
4619
12e35840
JD
4620@cindex actions in mid-rule
4621@cindex mid-rule actions
4622Finally, Bison will never invoke a @code{%destructor} for an unreferenced
4623mid-rule semantic value (@pxref{Mid-Rule Actions,,Actions in Mid-Rule}).
4624That is, Bison does not consider a mid-rule to have a semantic value if you do
4625not reference @code{$$} in the mid-rule's action or @code{$@var{n}} (where
4626@var{n} is the RHS symbol position of the mid-rule) in any later action in that
4627rule.
4628However, if you do reference either, the Bison-generated parser will invoke the
3ebecc24 4629@code{<>} @code{%destructor} whenever it discards the mid-rule symbol.
12e35840 4630
3508ce36
JD
4631@ignore
4632@noindent
4633In the future, it may be possible to redefine the @code{error} token as a
4634nonterminal that captures the discarded symbols.
4635In that case, the parser will invoke the default destructor for it as well.
4636@end ignore
4637
e757bb10
AD
4638@sp 1
4639
4640@cindex discarded symbols
4641@dfn{Discarded symbols} are the following:
4642
4643@itemize
4644@item
4645stacked symbols popped during the first phase of error recovery,
4646@item
4647incoming terminals during the second phase of error recovery,
4648@item
742e4900 4649the current lookahead and the entire stack (except the current
9d9b8b70 4650right-hand side symbols) when the parser returns immediately, and
258b75ca
PE
4651@item
4652the start symbol, when the parser succeeds.
e757bb10
AD
4653@end itemize
4654
9d9b8b70
PE
4655The parser can @dfn{return immediately} because of an explicit call to
4656@code{YYABORT} or @code{YYACCEPT}, or failed error recovery, or memory
4657exhaustion.
4658
29553547 4659Right-hand side symbols of a rule that explicitly triggers a syntax
9d9b8b70
PE
4660error via @code{YYERROR} are not discarded automatically. As a rule
4661of thumb, destructors are invoked only when user actions cannot manage
a85284cf 4662the memory.
e757bb10 4663
342b8b6e 4664@node Expect Decl
bfa74976
RS
4665@subsection Suppressing Conflict Warnings
4666@cindex suppressing conflict warnings
4667@cindex preventing warnings about conflicts
4668@cindex warnings, preventing
4669@cindex conflicts, suppressing warnings of
4670@findex %expect
d6328241 4671@findex %expect-rr
bfa74976
RS
4672
4673Bison normally warns if there are any conflicts in the grammar
7da99ede
AD
4674(@pxref{Shift/Reduce, ,Shift/Reduce Conflicts}), but most real grammars
4675have harmless shift/reduce conflicts which are resolved in a predictable
4676way and would be difficult to eliminate. It is desirable to suppress
4677the warning about these conflicts unless the number of conflicts
4678changes. You can do this with the @code{%expect} declaration.
bfa74976
RS
4679
4680The declaration looks like this:
4681
4682@example
4683%expect @var{n}
4684@end example
4685
035aa4a0
PE
4686Here @var{n} is a decimal integer. The declaration says there should
4687be @var{n} shift/reduce conflicts and no reduce/reduce conflicts.
4688Bison reports an error if the number of shift/reduce conflicts differs
4689from @var{n}, or if there are any reduce/reduce conflicts.
bfa74976 4690
eb45ef3b 4691For deterministic parsers, reduce/reduce conflicts are more
035aa4a0 4692serious, and should be eliminated entirely. Bison will always report
8a4281b9 4693reduce/reduce conflicts for these parsers. With GLR
035aa4a0 4694parsers, however, both kinds of conflicts are routine; otherwise,
8a4281b9 4695there would be no need to use GLR parsing. Therefore, it is
035aa4a0 4696also possible to specify an expected number of reduce/reduce conflicts
8a4281b9 4697in GLR parsers, using the declaration:
d6328241
PH
4698
4699@example
4700%expect-rr @var{n}
4701@end example
4702
bfa74976
RS
4703In general, using @code{%expect} involves these steps:
4704
4705@itemize @bullet
4706@item
4707Compile your grammar without @code{%expect}. Use the @samp{-v} option
4708to get a verbose list of where the conflicts occur. Bison will also
4709print the number of conflicts.
4710
4711@item
4712Check each of the conflicts to make sure that Bison's default
4713resolution is what you really want. If not, rewrite the grammar and
4714go back to the beginning.
4715
4716@item
4717Add an @code{%expect} declaration, copying the number @var{n} from the
8a4281b9 4718number which Bison printed. With GLR parsers, add an
035aa4a0 4719@code{%expect-rr} declaration as well.
bfa74976
RS
4720@end itemize
4721
93d7dde9
JD
4722Now Bison will report an error if you introduce an unexpected conflict,
4723but will keep silent otherwise.
bfa74976 4724
342b8b6e 4725@node Start Decl
bfa74976
RS
4726@subsection The Start-Symbol
4727@cindex declaring the start symbol
4728@cindex start symbol, declaring
4729@cindex default start symbol
4730@findex %start
4731
4732Bison assumes by default that the start symbol for the grammar is the first
4733nonterminal specified in the grammar specification section. The programmer
4734may override this restriction with the @code{%start} declaration as follows:
4735
4736@example
4737%start @var{symbol}
4738@end example
4739
342b8b6e 4740@node Pure Decl
bfa74976
RS
4741@subsection A Pure (Reentrant) Parser
4742@cindex reentrant parser
4743@cindex pure parser
d9df47b6 4744@findex %define api.pure
bfa74976
RS
4745
4746A @dfn{reentrant} program is one which does not alter in the course of
4747execution; in other words, it consists entirely of @dfn{pure} (read-only)
4748code. Reentrancy is important whenever asynchronous execution is possible;
9d9b8b70
PE
4749for example, a nonreentrant program may not be safe to call from a signal
4750handler. In systems with multiple threads of control, a nonreentrant
bfa74976
RS
4751program must be called only within interlocks.
4752
70811b85 4753Normally, Bison generates a parser which is not reentrant. This is
c827f760
PE
4754suitable for most uses, and it permits compatibility with Yacc. (The
4755standard Yacc interfaces are inherently nonreentrant, because they use
70811b85
RS
4756statically allocated variables for communication with @code{yylex},
4757including @code{yylval} and @code{yylloc}.)
bfa74976 4758
70811b85 4759Alternatively, you can generate a pure, reentrant parser. The Bison
67501061 4760declaration @samp{%define api.pure} says that you want the parser to be
70811b85 4761reentrant. It looks like this:
bfa74976
RS
4762
4763@example
d9df47b6 4764%define api.pure
bfa74976
RS
4765@end example
4766
70811b85
RS
4767The result is that the communication variables @code{yylval} and
4768@code{yylloc} become local variables in @code{yyparse}, and a different
4769calling convention is used for the lexical analyzer function
4770@code{yylex}. @xref{Pure Calling, ,Calling Conventions for Pure
f4101aa6
AD
4771Parsers}, for the details of this. The variable @code{yynerrs}
4772becomes local in @code{yyparse} in pull mode but it becomes a member
9987d1b3 4773of yypstate in push mode. (@pxref{Error Reporting, ,The Error
70811b85
RS
4774Reporting Function @code{yyerror}}). The convention for calling
4775@code{yyparse} itself is unchanged.
4776
4777Whether the parser is pure has nothing to do with the grammar rules.
4778You can generate either a pure parser or a nonreentrant parser from any
4779valid grammar.
bfa74976 4780
9987d1b3
JD
4781@node Push Decl
4782@subsection A Push Parser
4783@cindex push parser
4784@cindex push parser
67212941 4785@findex %define api.push-pull
9987d1b3 4786
59da312b
JD
4787(The current push parsing interface is experimental and may evolve.
4788More user feedback will help to stabilize it.)
4789
f4101aa6
AD
4790A pull parser is called once and it takes control until all its input
4791is completely parsed. A push parser, on the other hand, is called
9987d1b3
JD
4792each time a new token is made available.
4793
f4101aa6 4794A push parser is typically useful when the parser is part of a
9987d1b3 4795main event loop in the client's application. This is typically
f4101aa6
AD
4796a requirement of a GUI, when the main event loop needs to be triggered
4797within a certain time period.
9987d1b3 4798
d782395d
JD
4799Normally, Bison generates a pull parser.
4800The following Bison declaration says that you want the parser to be a push
35c1e5f0 4801parser (@pxref{%define Summary,,api.push-pull}):
9987d1b3
JD
4802
4803@example
cf499cff 4804%define api.push-pull push
9987d1b3
JD
4805@end example
4806
4807In almost all cases, you want to ensure that your push parser is also
4808a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}). The only
f4101aa6 4809time you should create an impure push parser is to have backwards
9987d1b3
JD
4810compatibility with the impure Yacc pull mode interface. Unless you know
4811what you are doing, your declarations should look like this:
4812
4813@example
d9df47b6 4814%define api.pure
cf499cff 4815%define api.push-pull push
9987d1b3
JD
4816@end example
4817
f4101aa6
AD
4818There is a major notable functional difference between the pure push parser
4819and the impure push parser. It is acceptable for a pure push parser to have
9987d1b3
JD
4820many parser instances, of the same type of parser, in memory at the same time.
4821An impure push parser should only use one parser at a time.
4822
4823When a push parser is selected, Bison will generate some new symbols in
f4101aa6
AD
4824the generated parser. @code{yypstate} is a structure that the generated
4825parser uses to store the parser's state. @code{yypstate_new} is the
9987d1b3
JD
4826function that will create a new parser instance. @code{yypstate_delete}
4827will free the resources associated with the corresponding parser instance.
f4101aa6 4828Finally, @code{yypush_parse} is the function that should be called whenever a
9987d1b3
JD
4829token is available to provide the parser. A trivial example
4830of using a pure push parser would look like this:
4831
4832@example
4833int status;
4834yypstate *ps = yypstate_new ();
4835do @{
4836 status = yypush_parse (ps, yylex (), NULL);
4837@} while (status == YYPUSH_MORE);
4838yypstate_delete (ps);
4839@end example
4840
4841If the user decided to use an impure push parser, a few things about
f4101aa6 4842the generated parser will change. The @code{yychar} variable becomes
9987d1b3
JD
4843a global variable instead of a variable in the @code{yypush_parse} function.
4844For this reason, the signature of the @code{yypush_parse} function is
f4101aa6 4845changed to remove the token as a parameter. A nonreentrant push parser
9987d1b3
JD
4846example would thus look like this:
4847
4848@example
4849extern int yychar;
4850int status;
4851yypstate *ps = yypstate_new ();
4852do @{
4853 yychar = yylex ();
4854 status = yypush_parse (ps);
4855@} while (status == YYPUSH_MORE);
4856yypstate_delete (ps);
4857@end example
4858
f4101aa6 4859That's it. Notice the next token is put into the global variable @code{yychar}
9987d1b3
JD
4860for use by the next invocation of the @code{yypush_parse} function.
4861
f4101aa6 4862Bison also supports both the push parser interface along with the pull parser
9987d1b3 4863interface in the same generated parser. In order to get this functionality,
cf499cff
JD
4864you should replace the @samp{%define api.push-pull push} declaration with the
4865@samp{%define api.push-pull both} declaration. Doing this will create all of
c373bf8b 4866the symbols mentioned earlier along with the two extra symbols, @code{yyparse}
f4101aa6
AD
4867and @code{yypull_parse}. @code{yyparse} can be used exactly as it normally
4868would be used. However, the user should note that it is implemented in the
d782395d
JD
4869generated parser by calling @code{yypull_parse}.
4870This makes the @code{yyparse} function that is generated with the
cf499cff 4871@samp{%define api.push-pull both} declaration slower than the normal
d782395d
JD
4872@code{yyparse} function. If the user
4873calls the @code{yypull_parse} function it will parse the rest of the input
f4101aa6
AD
4874stream. It is possible to @code{yypush_parse} tokens to select a subgrammar
4875and then @code{yypull_parse} the rest of the input stream. If you would like
4876to switch back and forth between between parsing styles, you would have to
4877write your own @code{yypull_parse} function that knows when to quit looking
4878for input. An example of using the @code{yypull_parse} function would look
9987d1b3
JD
4879like this:
4880
4881@example
4882yypstate *ps = yypstate_new ();
4883yypull_parse (ps); /* Will call the lexer */
4884yypstate_delete (ps);
4885@end example
4886
67501061 4887Adding the @samp{%define api.pure} declaration does exactly the same thing to
cf499cff
JD
4888the generated parser with @samp{%define api.push-pull both} as it did for
4889@samp{%define api.push-pull push}.
9987d1b3 4890
342b8b6e 4891@node Decl Summary
bfa74976
RS
4892@subsection Bison Declaration Summary
4893@cindex Bison declaration summary
4894@cindex declaration summary
4895@cindex summary, Bison declaration
4896
d8988b2f 4897Here is a summary of the declarations used to define a grammar:
bfa74976 4898
18b519c0 4899@deffn {Directive} %union
bfa74976
RS
4900Declare the collection of data types that semantic values may have
4901(@pxref{Union Decl, ,The Collection of Value Types}).
18b519c0 4902@end deffn
bfa74976 4903
18b519c0 4904@deffn {Directive} %token
bfa74976
RS
4905Declare a terminal symbol (token type name) with no precedence
4906or associativity specified (@pxref{Token Decl, ,Token Type Names}).
18b519c0 4907@end deffn
bfa74976 4908
18b519c0 4909@deffn {Directive} %right
bfa74976
RS
4910Declare a terminal symbol (token type name) that is right-associative
4911(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4912@end deffn
bfa74976 4913
18b519c0 4914@deffn {Directive} %left
bfa74976
RS
4915Declare a terminal symbol (token type name) that is left-associative
4916(@pxref{Precedence Decl, ,Operator Precedence}).
18b519c0 4917@end deffn
bfa74976 4918
18b519c0 4919@deffn {Directive} %nonassoc
bfa74976 4920Declare a terminal symbol (token type name) that is nonassociative
bfa74976 4921(@pxref{Precedence Decl, ,Operator Precedence}).
39a06c25
PE
4922Using it in a way that would be associative is a syntax error.
4923@end deffn
4924
91d2c560 4925@ifset defaultprec
39a06c25 4926@deffn {Directive} %default-prec
22fccf95 4927Assign a precedence to rules lacking an explicit @code{%prec} modifier
39a06c25
PE
4928(@pxref{Contextual Precedence, ,Context-Dependent Precedence}).
4929@end deffn
91d2c560 4930@end ifset
bfa74976 4931
18b519c0 4932@deffn {Directive} %type
bfa74976
RS
4933Declare the type of semantic values for a nonterminal symbol
4934(@pxref{Type Decl, ,Nonterminal Symbols}).
18b519c0 4935@end deffn
bfa74976 4936
18b519c0 4937@deffn {Directive} %start
89cab50d
AD
4938Specify the grammar's start symbol (@pxref{Start Decl, ,The
4939Start-Symbol}).
18b519c0 4940@end deffn
bfa74976 4941
18b519c0 4942@deffn {Directive} %expect
bfa74976
RS
4943Declare the expected number of shift-reduce conflicts
4944(@pxref{Expect Decl, ,Suppressing Conflict Warnings}).
18b519c0
AD
4945@end deffn
4946
bfa74976 4947
d8988b2f
AD
4948@sp 1
4949@noindent
4950In order to change the behavior of @command{bison}, use the following
4951directives:
4952
148d66d8 4953@deffn {Directive} %code @{@var{code}@}
e0c07222 4954@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
148d66d8 4955@findex %code
e0c07222
JD
4956Insert @var{code} verbatim into the output parser source at the
4957default location or at the location specified by @var{qualifier}.
4958@xref{%code Summary}.
148d66d8
JD
4959@end deffn
4960
18b519c0 4961@deffn {Directive} %debug
fa819509
AD
4962Instrument the output parser for traces. Obsoleted by @samp{%define
4963parse.trace}.
ec3bc396 4964@xref{Tracing, ,Tracing Your Parser}.
f7dae1ea 4965@end deffn
d8988b2f 4966
35c1e5f0
JD
4967@deffn {Directive} %define @var{variable}
4968@deffnx {Directive} %define @var{variable} @var{value}
4969@deffnx {Directive} %define @var{variable} "@var{value}"
4970Define a variable to adjust Bison's behavior. @xref{%define Summary}.
4971@end deffn
4972
4973@deffn {Directive} %defines
4974Write a parser header file containing macro definitions for the token
4975type names defined in the grammar as well as a few other declarations.
4976If the parser implementation file is named @file{@var{name}.c} then
4977the parser header file is named @file{@var{name}.h}.
4978
4979For C parsers, the parser header file declares @code{YYSTYPE} unless
4980@code{YYSTYPE} is already defined as a macro or you have used a
4981@code{<@var{type}>} tag without using @code{%union}. Therefore, if
4982you are using a @code{%union} (@pxref{Multiple Types, ,More Than One
4983Value Type}) with components that require other definitions, or if you
4984have defined a @code{YYSTYPE} macro or type definition (@pxref{Value
4985Type, ,Data Types of Semantic Values}), you need to arrange for these
4986definitions to be propagated to all modules, e.g., by putting them in
4987a prerequisite header that is included both by your parser and by any
4988other module that needs @code{YYSTYPE}.
4989
4990Unless your parser is pure, the parser header file declares
4991@code{yylval} as an external variable. @xref{Pure Decl, ,A Pure
4992(Reentrant) Parser}.
4993
4994If you have also used locations, the parser header file declares
4995@code{YYLTYPE} and @code{yylloc} using a protocol similar to that of
4996the @code{YYSTYPE} macro and @code{yylval}. @xref{Locations,
4997,Tracking Locations}.
4998
4999This parser header file is normally essential if you wish to put the
5000definition of @code{yylex} in a separate source file, because
5001@code{yylex} typically needs to be able to refer to the
5002above-mentioned declarations and to the token type codes. @xref{Token
5003Values, ,Semantic Values of Tokens}.
5004
5005@findex %code requires
5006@findex %code provides
5007If you have declared @code{%code requires} or @code{%code provides}, the output
5008header also contains their code.
5009@xref{%code Summary}.
5010@end deffn
5011
5012@deffn {Directive} %defines @var{defines-file}
5013Same as above, but save in the file @var{defines-file}.
5014@end deffn
5015
5016@deffn {Directive} %destructor
5017Specify how the parser should reclaim the memory associated to
5018discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
5019@end deffn
5020
5021@deffn {Directive} %file-prefix "@var{prefix}"
5022Specify a prefix to use for all Bison output file names. The names
5023are chosen as if the grammar file were named @file{@var{prefix}.y}.
5024@end deffn
5025
5026@deffn {Directive} %language "@var{language}"
5027Specify the programming language for the generated parser. Currently
5028supported languages include C, C++, and Java.
5029@var{language} is case-insensitive.
5030
5031This directive is experimental and its effect may be modified in future
5032releases.
5033@end deffn
5034
5035@deffn {Directive} %locations
5036Generate the code processing the locations (@pxref{Action Features,
5037,Special Features for Use in Actions}). This mode is enabled as soon as
5038the grammar uses the special @samp{@@@var{n}} tokens, but if your
5039grammar does not use it, using @samp{%locations} allows for more
5040accurate syntax error messages.
5041@end deffn
5042
5043@deffn {Directive} %name-prefix "@var{prefix}"
5044Rename the external symbols used in the parser so that they start with
5045@var{prefix} instead of @samp{yy}. The precise list of symbols renamed
5046in C parsers
5047is @code{yyparse}, @code{yylex}, @code{yyerror}, @code{yynerrs},
5048@code{yylval}, @code{yychar}, @code{yydebug}, and
5049(if locations are used) @code{yylloc}. If you use a push parser,
5050@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
5051@code{yypstate_new} and @code{yypstate_delete} will
5052also be renamed. For example, if you use @samp{%name-prefix "c_"}, the
5053names become @code{c_parse}, @code{c_lex}, and so on.
5054For C++ parsers, see the @samp{%define api.namespace} documentation in this
5055section.
5056@xref{Multiple Parsers, ,Multiple Parsers in the Same Program}.
5057@end deffn
5058
5059@ifset defaultprec
5060@deffn {Directive} %no-default-prec
5061Do not assign a precedence to rules lacking an explicit @code{%prec}
5062modifier (@pxref{Contextual Precedence, ,Context-Dependent
5063Precedence}).
5064@end deffn
5065@end ifset
5066
5067@deffn {Directive} %no-lines
5068Don't generate any @code{#line} preprocessor commands in the parser
5069implementation file. Ordinarily Bison writes these commands in the
5070parser implementation file so that the C compiler and debuggers will
5071associate errors and object code with your source file (the grammar
5072file). This directive causes them to associate errors with the parser
5073implementation file, treating it as an independent source file in its
5074own right.
5075@end deffn
5076
5077@deffn {Directive} %output "@var{file}"
5078Specify @var{file} for the parser implementation file.
5079@end deffn
5080
5081@deffn {Directive} %pure-parser
5082Deprecated version of @samp{%define api.pure} (@pxref{%define
5083Summary,,api.pure}), for which Bison is more careful to warn about
5084unreasonable usage.
5085@end deffn
5086
5087@deffn {Directive} %require "@var{version}"
5088Require version @var{version} or higher of Bison. @xref{Require Decl, ,
5089Require a Version of Bison}.
5090@end deffn
5091
5092@deffn {Directive} %skeleton "@var{file}"
5093Specify the skeleton to use.
5094
5095@c You probably don't need this option unless you are developing Bison.
5096@c You should use @code{%language} if you want to specify the skeleton for a
5097@c different language, because it is clearer and because it will always choose the
5098@c correct skeleton for non-deterministic or push parsers.
5099
5100If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
5101file in the Bison installation directory.
5102If it does, @var{file} is an absolute file name or a file name relative to the
5103directory of the grammar file.
5104This is similar to how most shells resolve commands.
5105@end deffn
5106
5107@deffn {Directive} %token-table
5108Generate an array of token names in the parser implementation file.
5109The name of the array is @code{yytname}; @code{yytname[@var{i}]} is
5110the name of the token whose internal Bison token code number is
5111@var{i}. The first three elements of @code{yytname} correspond to the
5112predefined tokens @code{"$end"}, @code{"error"}, and
5113@code{"$undefined"}; after these come the symbols defined in the
5114grammar file.
5115
5116The name in the table includes all the characters needed to represent
5117the token in Bison. For single-character literals and literal
5118strings, this includes the surrounding quoting characters and any
5119escape sequences. For example, the Bison single-character literal
5120@code{'+'} corresponds to a three-character name, represented in C as
5121@code{"'+'"}; and the Bison two-character literal string @code{"\\/"}
5122corresponds to a five-character name, represented in C as
5123@code{"\"\\\\/\""}.
5124
5125When you specify @code{%token-table}, Bison also generates macro
5126definitions for macros @code{YYNTOKENS}, @code{YYNNTS}, and
5127@code{YYNRULES}, and @code{YYNSTATES}:
5128
5129@table @code
5130@item YYNTOKENS
5131The highest token number, plus one.
5132@item YYNNTS
5133The number of nonterminal symbols.
5134@item YYNRULES
5135The number of grammar rules,
5136@item YYNSTATES
5137The number of parser states (@pxref{Parser States}).
5138@end table
5139@end deffn
5140
5141@deffn {Directive} %verbose
5142Write an extra output file containing verbose descriptions of the
5143parser states and what is done for each type of lookahead token in
5144that state. @xref{Understanding, , Understanding Your Parser}, for more
5145information.
5146@end deffn
5147
5148@deffn {Directive} %yacc
5149Pretend the option @option{--yacc} was given, i.e., imitate Yacc,
5150including its naming conventions. @xref{Bison Options}, for more.
5151@end deffn
5152
5153
5154@node %define Summary
5155@subsection %define Summary
51151d91
JD
5156
5157There are many features of Bison's behavior that can be controlled by
5158assigning the feature a single value. For historical reasons, some
5159such features are assigned values by dedicated directives, such as
5160@code{%start}, which assigns the start symbol. However, newer such
5161features are associated with variables, which are assigned by the
5162@code{%define} directive:
5163
c1d19e10 5164@deffn {Directive} %define @var{variable}
cf499cff 5165@deffnx {Directive} %define @var{variable} @var{value}
c1d19e10 5166@deffnx {Directive} %define @var{variable} "@var{value}"
51151d91 5167Define @var{variable} to @var{value}.
9611cfa2 5168
51151d91
JD
5169@var{value} must be placed in quotation marks if it contains any
5170character other than a letter, underscore, period, or non-initial dash
5171or digit. Omitting @code{"@var{value}"} entirely is always equivalent
5172to specifying @code{""}.
9611cfa2 5173
51151d91
JD
5174It is an error if a @var{variable} is defined by @code{%define}
5175multiple times, but see @ref{Bison Options,,-D
5176@var{name}[=@var{value}]}.
5177@end deffn
cf499cff 5178
51151d91
JD
5179The rest of this section summarizes variables and values that
5180@code{%define} accepts.
9611cfa2 5181
51151d91
JD
5182Some @var{variable}s take Boolean values. In this case, Bison will
5183complain if the variable definition does not meet one of the following
5184four conditions:
9611cfa2
JD
5185
5186@enumerate
cf499cff 5187@item @code{@var{value}} is @code{true}
9611cfa2 5188
cf499cff
JD
5189@item @code{@var{value}} is omitted (or @code{""} is specified).
5190This is equivalent to @code{true}.
9611cfa2 5191
cf499cff 5192@item @code{@var{value}} is @code{false}.
9611cfa2
JD
5193
5194@item @var{variable} is never defined.
c6abeab1 5195In this case, Bison selects a default value.
9611cfa2 5196@end enumerate
148d66d8 5197
c6abeab1
JD
5198What @var{variable}s are accepted, as well as their meanings and default
5199values, depend on the selected target language and/or the parser
5200skeleton (@pxref{Decl Summary,,%language}, @pxref{Decl
5201Summary,,%skeleton}).
5202Unaccepted @var{variable}s produce an error.
793fbca5
JD
5203Some of the accepted @var{variable}s are:
5204
fa819509 5205@table @code
6b5a0de9 5206@c ================================================== api.namespace
67501061
AD
5207@item api.namespace
5208@findex %define api.namespace
5209@itemize
5210@item Languages(s): C++
5211
f1b238df 5212@item Purpose: Specify the namespace for the parser class.
67501061
AD
5213For example, if you specify:
5214
5215@smallexample
5216%define api.namespace "foo::bar"
5217@end smallexample
5218
5219Bison uses @code{foo::bar} verbatim in references such as:
5220
5221@smallexample
5222foo::bar::parser::semantic_type
5223@end smallexample
5224
5225However, to open a namespace, Bison removes any leading @code{::} and then
5226splits on any remaining occurrences:
5227
5228@smallexample
5229namespace foo @{ namespace bar @{
5230 class position;
5231 class location;
5232@} @}
5233@end smallexample
5234
5235@item Accepted Values:
5236Any absolute or relative C++ namespace reference without a trailing
5237@code{"::"}. For example, @code{"foo"} or @code{"::foo::bar"}.
5238
5239@item Default Value:
5240The value specified by @code{%name-prefix}, which defaults to @code{yy}.
5241This usage of @code{%name-prefix} is for backward compatibility and can
5242be confusing since @code{%name-prefix} also specifies the textual prefix
5243for the lexical analyzer function. Thus, if you specify
5244@code{%name-prefix}, it is best to also specify @samp{%define
5245api.namespace} so that @code{%name-prefix} @emph{only} affects the
5246lexical analyzer function. For example, if you specify:
5247
5248@smallexample
5249%define api.namespace "foo"
5250%name-prefix "bar::"
5251@end smallexample
5252
5253The parser namespace is @code{foo} and @code{yylex} is referenced as
5254@code{bar::lex}.
5255@end itemize
5256@c namespace
5257
5258
5259
5260@c ================================================== api.pure
d9df47b6
JD
5261@item api.pure
5262@findex %define api.pure
5263
5264@itemize @bullet
5265@item Language(s): C
5266
5267@item Purpose: Request a pure (reentrant) parser program.
5268@xref{Pure Decl, ,A Pure (Reentrant) Parser}.
5269
5270@item Accepted Values: Boolean
5271
cf499cff 5272@item Default Value: @code{false}
d9df47b6 5273@end itemize
71b00ed8 5274@c api.pure
d9df47b6 5275
67501061
AD
5276
5277
5278@c ================================================== api.push-pull
67212941
JD
5279@item api.push-pull
5280@findex %define api.push-pull
793fbca5
JD
5281
5282@itemize @bullet
eb45ef3b 5283@item Language(s): C (deterministic parsers only)
793fbca5 5284
f1b238df 5285@item Purpose: Request a pull parser, a push parser, or both.
d782395d 5286@xref{Push Decl, ,A Push Parser}.
59da312b
JD
5287(The current push parsing interface is experimental and may evolve.
5288More user feedback will help to stabilize it.)
793fbca5 5289
cf499cff 5290@item Accepted Values: @code{pull}, @code{push}, @code{both}
793fbca5 5291
cf499cff 5292@item Default Value: @code{pull}
793fbca5 5293@end itemize
67212941 5294@c api.push-pull
71b00ed8 5295
6b5a0de9
AD
5296
5297
5298@c ================================================== api.tokens.prefix
4c6622c2
AD
5299@item api.tokens.prefix
5300@findex %define api.tokens.prefix
5301
5302@itemize
5303@item Languages(s): all
5304
5305@item Purpose:
5306Add a prefix to the token names when generating their definition in the
5307target language. For instance
5308
5309@example
5310%token FILE for ERROR
5311%define api.tokens.prefix "TOK_"
5312%%
5313start: FILE for ERROR;
5314@end example
5315
5316@noindent
5317generates the definition of the symbols @code{TOK_FILE}, @code{TOK_for},
5318and @code{TOK_ERROR} in the generated source files. In particular, the
5319scanner must use these prefixed token names, while the grammar itself
5320may still use the short names (as in the sample rule given above). The
5321generated informational files (@file{*.output}, @file{*.xml},
5322@file{*.dot}) are not modified by this prefix. See @ref{Calc++ Parser}
5323and @ref{Calc++ Scanner}, for a complete example.
5324
5325@item Accepted Values:
5326Any string. Should be a valid identifier prefix in the target language,
5327in other words, it should typically be an identifier itself (sequence of
5328letters, underscores, and ---not at the beginning--- digits).
5329
5330@item Default Value:
5331empty
5332@end itemize
5333@c api.tokens.prefix
5334
5335
3cdc21cf 5336@c ================================================== lex_symbol
84072495 5337@item lex_symbol
3cdc21cf
AD
5338@findex %define lex_symbol
5339
5340@itemize @bullet
5341@item Language(s):
5342C++
5343
5344@item Purpose:
5345When variant-based semantic values are enabled (@pxref{C++ Variants}),
5346request that symbols be handled as a whole (type, value, and possibly
5347location) in the scanner. @xref{Complete Symbols}, for details.
5348
5349@item Accepted Values:
5350Boolean.
5351
5352@item Default Value:
5353@code{false}
5354@end itemize
5355@c lex_symbol
5356
5357
6b5a0de9
AD
5358@c ================================================== lr.default-reductions
5359
5bab9d08 5360@item lr.default-reductions
5bab9d08 5361@findex %define lr.default-reductions
eb45ef3b
JD
5362
5363@itemize @bullet
5364@item Language(s): all
5365
fcf834f9 5366@item Purpose: Specify the kind of states that are permitted to
7fceb615
JD
5367contain default reductions. @xref{Default Reductions}. (The ability to
5368specify where default reductions should be used is experimental. More user
5369feedback will help to stabilize it.)
eb45ef3b 5370
f0ad1b2f 5371@item Accepted Values: @code{most}, @code{consistent}, @code{accepting}
eb45ef3b
JD
5372@item Default Value:
5373@itemize
cf499cff 5374@item @code{accepting} if @code{lr.type} is @code{canonical-lr}.
f0ad1b2f 5375@item @code{most} otherwise.
eb45ef3b
JD
5376@end itemize
5377@end itemize
5378
6b5a0de9
AD
5379@c ============================================ lr.keep-unreachable-states
5380
67212941
JD
5381@item lr.keep-unreachable-states
5382@findex %define lr.keep-unreachable-states
31984206
JD
5383
5384@itemize @bullet
5385@item Language(s): all
f1b238df 5386@item Purpose: Request that Bison allow unreachable parser states to
7fceb615 5387remain in the parser tables. @xref{Unreachable States}.
31984206 5388@item Accepted Values: Boolean
cf499cff 5389@item Default Value: @code{false}
31984206 5390@end itemize
67212941 5391@c lr.keep-unreachable-states
31984206 5392
6b5a0de9
AD
5393@c ================================================== lr.type
5394
eb45ef3b
JD
5395@item lr.type
5396@findex %define lr.type
eb45ef3b
JD
5397
5398@itemize @bullet
5399@item Language(s): all
5400
f1b238df 5401@item Purpose: Specify the type of parser tables within the
7fceb615 5402LR(1) family. @xref{LR Table Construction}. (This feature is experimental.
eb45ef3b
JD
5403More user feedback will help to stabilize it.)
5404
7fceb615 5405@item Accepted Values: @code{lalr}, @code{ielr}, @code{canonical-lr}
eb45ef3b 5406
cf499cff 5407@item Default Value: @code{lalr}
eb45ef3b
JD
5408@end itemize
5409
67501061
AD
5410
5411@c ================================================== namespace
793fbca5
JD
5412@item namespace
5413@findex %define namespace
67501061 5414Obsoleted by @code{api.namespace}
fa819509
AD
5415@c namespace
5416
31b850d2
AD
5417
5418@c ================================================== parse.assert
0c90a1f5
AD
5419@item parse.assert
5420@findex %define parse.assert
5421
5422@itemize
5423@item Languages(s): C++
5424
5425@item Purpose: Issue runtime assertions to catch invalid uses.
3cdc21cf
AD
5426In C++, when variants are used (@pxref{C++ Variants}), symbols must be
5427constructed and
0c90a1f5
AD
5428destroyed properly. This option checks these constraints.
5429
5430@item Accepted Values: Boolean
5431
5432@item Default Value: @code{false}
5433@end itemize
5434@c parse.assert
5435
31b850d2
AD
5436
5437@c ================================================== parse.error
5438@item parse.error
5439@findex %define parse.error
5440@itemize
5441@item Languages(s):
fcf834f9 5442all
31b850d2
AD
5443@item Purpose:
5444Control the kind of error messages passed to the error reporting
5445function. @xref{Error Reporting, ,The Error Reporting Function
5446@code{yyerror}}.
5447@item Accepted Values:
5448@itemize
cf499cff 5449@item @code{simple}
31b850d2
AD
5450Error messages passed to @code{yyerror} are simply @w{@code{"syntax
5451error"}}.
cf499cff 5452@item @code{verbose}
7fceb615
JD
5453Error messages report the unexpected token, and possibly the expected ones.
5454However, this report can often be incorrect when LAC is not enabled
5455(@pxref{LAC}).
31b850d2
AD
5456@end itemize
5457
5458@item Default Value:
5459@code{simple}
5460@end itemize
5461@c parse.error
5462
5463
fcf834f9
JD
5464@c ================================================== parse.lac
5465@item parse.lac
5466@findex %define parse.lac
fcf834f9
JD
5467
5468@itemize
7fceb615 5469@item Languages(s): C (deterministic parsers only)
fcf834f9 5470
8a4281b9 5471@item Purpose: Enable LAC (lookahead correction) to improve
7fceb615 5472syntax error handling. @xref{LAC}.
fcf834f9 5473@item Accepted Values: @code{none}, @code{full}
fcf834f9
JD
5474@item Default Value: @code{none}
5475@end itemize
5476@c parse.lac
5477
31b850d2 5478@c ================================================== parse.trace
fa819509
AD
5479@item parse.trace
5480@findex %define parse.trace
5481
5482@itemize
5483@item Languages(s): C, C++
5484
5485@item Purpose: Require parser instrumentation for tracing.
ff7571c0
JD
5486In C/C++, define the macro @code{YYDEBUG} to 1 in the parser implementation
5487file if it is not already defined, so that the debugging facilities are
5488compiled. @xref{Tracing, ,Tracing Your Parser}.
793fbca5 5489
fa819509
AD
5490@item Accepted Values: Boolean
5491
5492@item Default Value: @code{false}
5493@end itemize
fa819509 5494@c parse.trace
99c08fb6 5495
3cdc21cf
AD
5496@c ================================================== variant
5497@item variant
5498@findex %define variant
5499
5500@itemize @bullet
5501@item Language(s):
5502C++
5503
5504@item Purpose:
f1b238df 5505Request variant-based semantic values.
3cdc21cf
AD
5506@xref{C++ Variants}.
5507
5508@item Accepted Values:
5509Boolean.
5510
5511@item Default Value:
5512@code{false}
5513@end itemize
5514@c variant
99c08fb6 5515@end table
592d0b1e 5516
d8988b2f 5517
e0c07222
JD
5518@node %code Summary
5519@subsection %code Summary
e0c07222 5520@findex %code
e0c07222 5521@cindex Prologue
51151d91
JD
5522
5523The @code{%code} directive inserts code verbatim into the output
5524parser source at any of a predefined set of locations. It thus serves
5525as a flexible and user-friendly alternative to the traditional Yacc
5526prologue, @code{%@{@var{code}%@}}. This section summarizes the
5527functionality of @code{%code} for the various target languages
5528supported by Bison. For a detailed discussion of how to use
5529@code{%code} in place of @code{%@{@var{code}%@}} for C/C++ and why it
5530is advantageous to do so, @pxref{Prologue Alternatives}.
5531
5532@deffn {Directive} %code @{@var{code}@}
5533This is the unqualified form of the @code{%code} directive. It
5534inserts @var{code} verbatim at a language-dependent default location
5535in the parser implementation.
5536
e0c07222 5537For C/C++, the default location is the parser implementation file
51151d91
JD
5538after the usual contents of the parser header file. Thus, the
5539unqualified form replaces @code{%@{@var{code}%@}} for most purposes.
e0c07222
JD
5540
5541For Java, the default location is inside the parser class.
5542@end deffn
5543
5544@deffn {Directive} %code @var{qualifier} @{@var{code}@}
5545This is the qualified form of the @code{%code} directive.
51151d91
JD
5546@var{qualifier} identifies the purpose of @var{code} and thus the
5547location(s) where Bison should insert it. That is, if you need to
5548specify location-sensitive @var{code} that does not belong at the
5549default location selected by the unqualified @code{%code} form, use
5550this form instead.
5551@end deffn
5552
5553For any particular qualifier or for the unqualified form, if there are
5554multiple occurrences of the @code{%code} directive, Bison concatenates
5555the specified code in the order in which it appears in the grammar
5556file.
e0c07222 5557
51151d91
JD
5558Not all qualifiers are accepted for all target languages. Unaccepted
5559qualifiers produce an error. Some of the accepted qualifiers are:
e0c07222 5560
84072495 5561@table @code
e0c07222
JD
5562@item requires
5563@findex %code requires
5564
5565@itemize @bullet
5566@item Language(s): C, C++
5567
5568@item Purpose: This is the best place to write dependency code required for
5569@code{YYSTYPE} and @code{YYLTYPE}.
5570In other words, it's the best place to define types referenced in @code{%union}
5571directives, and it's the best place to override Bison's default @code{YYSTYPE}
5572and @code{YYLTYPE} definitions.
5573
5574@item Location(s): The parser header file and the parser implementation file
5575before the Bison-generated @code{YYSTYPE} and @code{YYLTYPE}
5576definitions.
5577@end itemize
5578
5579@item provides
5580@findex %code provides
5581
5582@itemize @bullet
5583@item Language(s): C, C++
5584
5585@item Purpose: This is the best place to write additional definitions and
5586declarations that should be provided to other modules.
5587
5588@item Location(s): The parser header file and the parser implementation
5589file after the Bison-generated @code{YYSTYPE}, @code{YYLTYPE}, and
5590token definitions.
5591@end itemize
5592
5593@item top
5594@findex %code top
5595
5596@itemize @bullet
5597@item Language(s): C, C++
5598
5599@item Purpose: The unqualified @code{%code} or @code{%code requires}
5600should usually be more appropriate than @code{%code top}. However,
5601occasionally it is necessary to insert code much nearer the top of the
5602parser implementation file. For example:
5603
5604@smallexample
5605%code top @{
5606 #define _GNU_SOURCE
5607 #include <stdio.h>
5608@}
5609@end smallexample
5610
5611@item Location(s): Near the top of the parser implementation file.
5612@end itemize
5613
5614@item imports
5615@findex %code imports
5616
5617@itemize @bullet
5618@item Language(s): Java
5619
5620@item Purpose: This is the best place to write Java import directives.
5621
5622@item Location(s): The parser Java file after any Java package directive and
5623before any class definitions.
5624@end itemize
84072495 5625@end table
e0c07222 5626
51151d91
JD
5627Though we say the insertion locations are language-dependent, they are
5628technically skeleton-dependent. Writers of non-standard skeletons
5629however should choose their locations consistently with the behavior
5630of the standard Bison skeletons.
e0c07222 5631
d8988b2f 5632
342b8b6e 5633@node Multiple Parsers
bfa74976
RS
5634@section Multiple Parsers in the Same Program
5635
5636Most programs that use Bison parse only one language and therefore contain
5637only one Bison parser. But what if you want to parse more than one
5638language with the same program? Then you need to avoid a name conflict
5639between different definitions of @code{yyparse}, @code{yylval}, and so on.
5640
5641The easy way to do this is to use the option @samp{-p @var{prefix}}
704a47c4
AD
5642(@pxref{Invocation, ,Invoking Bison}). This renames the interface
5643functions and variables of the Bison parser to start with @var{prefix}
5644instead of @samp{yy}. You can use this to give each parser distinct
5645names that do not conflict.
bfa74976
RS
5646
5647The precise list of symbols renamed is @code{yyparse}, @code{yylex},
2a8d363a 5648@code{yyerror}, @code{yynerrs}, @code{yylval}, @code{yylloc},
f4101aa6
AD
5649@code{yychar} and @code{yydebug}. If you use a push parser,
5650@code{yypush_parse}, @code{yypull_parse}, @code{yypstate},
9987d1b3 5651@code{yypstate_new} and @code{yypstate_delete} will also be renamed.
f4101aa6 5652For example, if you use @samp{-p c}, the names become @code{cparse},
9987d1b3 5653@code{clex}, and so on.
bfa74976
RS
5654
5655@strong{All the other variables and macros associated with Bison are not
5656renamed.} These others are not global; there is no conflict if the same
5657name is used in different parsers. For example, @code{YYSTYPE} is not
5658renamed, but defining this in different ways in different parsers causes
5659no trouble (@pxref{Value Type, ,Data Types of Semantic Values}).
5660
ff7571c0
JD
5661The @samp{-p} option works by adding macro definitions to the
5662beginning of the parser implementation file, defining @code{yyparse}
5663as @code{@var{prefix}parse}, and so on. This effectively substitutes
5664one name for the other in the entire parser implementation file.
bfa74976 5665
342b8b6e 5666@node Interface
bfa74976
RS
5667@chapter Parser C-Language Interface
5668@cindex C-language interface
5669@cindex interface
5670
5671The Bison parser is actually a C function named @code{yyparse}. Here we
5672describe the interface conventions of @code{yyparse} and the other
5673functions that it needs to use.
5674
5675Keep in mind that the parser uses many C identifiers starting with
5676@samp{yy} and @samp{YY} for internal purposes. If you use such an
75f5aaea
MA
5677identifier (aside from those in this manual) in an action or in epilogue
5678in the grammar file, you are likely to run into trouble.
bfa74976
RS
5679
5680@menu
f5f419de
DJ
5681* Parser Function:: How to call @code{yyparse} and what it returns.
5682* Push Parser Function:: How to call @code{yypush_parse} and what it returns.
5683* Pull Parser Function:: How to call @code{yypull_parse} and what it returns.
5684* Parser Create Function:: How to call @code{yypstate_new} and what it returns.
5685* Parser Delete Function:: How to call @code{yypstate_delete} and what it returns.
5686* Lexical:: You must supply a function @code{yylex}
5687 which reads tokens.
5688* Error Reporting:: You must supply a function @code{yyerror}.
5689* Action Features:: Special features for use in actions.
5690* Internationalization:: How to let the parser speak in the user's
5691 native language.
bfa74976
RS
5692@end menu
5693
342b8b6e 5694@node Parser Function
bfa74976
RS
5695@section The Parser Function @code{yyparse}
5696@findex yyparse
5697
5698You call the function @code{yyparse} to cause parsing to occur. This
5699function reads tokens, executes actions, and ultimately returns when it
5700encounters end-of-input or an unrecoverable syntax error. You can also
14ded682
AD
5701write an action which directs @code{yyparse} to return immediately
5702without reading further.
bfa74976 5703
2a8d363a
AD
5704
5705@deftypefun int yyparse (void)
bfa74976
RS
5706The value returned by @code{yyparse} is 0 if parsing was successful (return
5707is due to end-of-input).
5708
b47dbebe
PE
5709The value is 1 if parsing failed because of invalid input, i.e., input
5710that contains a syntax error or that causes @code{YYABORT} to be
5711invoked.
5712
5713The value is 2 if parsing failed due to memory exhaustion.
2a8d363a 5714@end deftypefun
bfa74976
RS
5715
5716In an action, you can cause immediate return from @code{yyparse} by using
5717these macros:
5718
2a8d363a 5719@defmac YYACCEPT
bfa74976
RS
5720@findex YYACCEPT
5721Return immediately with value 0 (to report success).
2a8d363a 5722@end defmac
bfa74976 5723
2a8d363a 5724@defmac YYABORT
bfa74976
RS
5725@findex YYABORT
5726Return immediately with value 1 (to report failure).
2a8d363a
AD
5727@end defmac
5728
5729If you use a reentrant parser, you can optionally pass additional
5730parameter information to it in a reentrant way. To do so, use the
5731declaration @code{%parse-param}:
5732
2055a44e 5733@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
2a8d363a 5734@findex %parse-param
2055a44e
AD
5735Declare that one or more
5736@var{argument-declaration} are additional @code{yyparse} arguments.
94175978 5737The @var{argument-declaration} is used when declaring
feeb0eda
PE
5738functions or prototypes. The last identifier in
5739@var{argument-declaration} must be the argument name.
2a8d363a
AD
5740@end deffn
5741
5742Here's an example. Write this in the parser:
5743
5744@example
2055a44e 5745%parse-param @{int *nastiness@} @{int *randomness@}
2a8d363a
AD
5746@end example
5747
5748@noindent
5749Then call the parser like this:
5750
5751@example
5752@{
5753 int nastiness, randomness;
5754 @dots{} /* @r{Store proper data in @code{nastiness} and @code{randomness}.} */
5755 value = yyparse (&nastiness, &randomness);
5756 @dots{}
5757@}
5758@end example
5759
5760@noindent
5761In the grammar actions, use expressions like this to refer to the data:
5762
5763@example
5764exp: @dots{} @{ @dots{}; *randomness += 1; @dots{} @}
5765@end example
5766
9987d1b3
JD
5767@node Push Parser Function
5768@section The Push Parser Function @code{yypush_parse}
5769@findex yypush_parse
5770
59da312b
JD
5771(The current push parsing interface is experimental and may evolve.
5772More user feedback will help to stabilize it.)
5773
f4101aa6 5774You call the function @code{yypush_parse} to parse a single token. This
cf499cff
JD
5775function is available if either the @samp{%define api.push-pull push} or
5776@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5777@xref{Push Decl, ,A Push Parser}.
5778
5779@deftypefun int yypush_parse (yypstate *yyps)
f4101aa6 5780The value returned by @code{yypush_parse} is the same as for yyparse with the
9987d1b3
JD
5781following exception. @code{yypush_parse} will return YYPUSH_MORE if more input
5782is required to finish parsing the grammar.
5783@end deftypefun
5784
5785@node Pull Parser Function
5786@section The Pull Parser Function @code{yypull_parse}
5787@findex yypull_parse
5788
59da312b
JD
5789(The current push parsing interface is experimental and may evolve.
5790More user feedback will help to stabilize it.)
5791
f4101aa6 5792You call the function @code{yypull_parse} to parse the rest of the input
cf499cff 5793stream. This function is available if the @samp{%define api.push-pull both}
f4101aa6 5794declaration is used.
9987d1b3
JD
5795@xref{Push Decl, ,A Push Parser}.
5796
5797@deftypefun int yypull_parse (yypstate *yyps)
5798The value returned by @code{yypull_parse} is the same as for @code{yyparse}.
5799@end deftypefun
5800
5801@node Parser Create Function
5802@section The Parser Create Function @code{yystate_new}
5803@findex yypstate_new
5804
59da312b
JD
5805(The current push parsing interface is experimental and may evolve.
5806More user feedback will help to stabilize it.)
5807
f4101aa6 5808You call the function @code{yypstate_new} to create a new parser instance.
cf499cff
JD
5809This function is available if either the @samp{%define api.push-pull push} or
5810@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5811@xref{Push Decl, ,A Push Parser}.
5812
5813@deftypefun yypstate *yypstate_new (void)
f50bfcd6 5814The function will return a valid parser instance if there was memory available
333e670c
JD
5815or 0 if no memory was available.
5816In impure mode, it will also return 0 if a parser instance is currently
5817allocated.
9987d1b3
JD
5818@end deftypefun
5819
5820@node Parser Delete Function
5821@section The Parser Delete Function @code{yystate_delete}
5822@findex yypstate_delete
5823
59da312b
JD
5824(The current push parsing interface is experimental and may evolve.
5825More user feedback will help to stabilize it.)
5826
9987d1b3 5827You call the function @code{yypstate_delete} to delete a parser instance.
cf499cff
JD
5828function is available if either the @samp{%define api.push-pull push} or
5829@samp{%define api.push-pull both} declaration is used.
9987d1b3
JD
5830@xref{Push Decl, ,A Push Parser}.
5831
5832@deftypefun void yypstate_delete (yypstate *yyps)
5833This function will reclaim the memory associated with a parser instance.
5834After this call, you should no longer attempt to use the parser instance.
5835@end deftypefun
bfa74976 5836
342b8b6e 5837@node Lexical
bfa74976
RS
5838@section The Lexical Analyzer Function @code{yylex}
5839@findex yylex
5840@cindex lexical analyzer
5841
5842The @dfn{lexical analyzer} function, @code{yylex}, recognizes tokens from
5843the input stream and returns them to the parser. Bison does not create
5844this function automatically; you must write it so that @code{yyparse} can
5845call it. The function is sometimes referred to as a lexical scanner.
5846
ff7571c0
JD
5847In simple programs, @code{yylex} is often defined at the end of the
5848Bison grammar file. If @code{yylex} is defined in a separate source
5849file, you need to arrange for the token-type macro definitions to be
5850available there. To do this, use the @samp{-d} option when you run
5851Bison, so that it will write these macro definitions into the separate
5852parser header file, @file{@var{name}.tab.h}, which you can include in
5853the other source files that need it. @xref{Invocation, ,Invoking
5854Bison}.
bfa74976
RS
5855
5856@menu
5857* Calling Convention:: How @code{yyparse} calls @code{yylex}.
f5f419de
DJ
5858* Token Values:: How @code{yylex} must return the semantic value
5859 of the token it has read.
5860* Token Locations:: How @code{yylex} must return the text location
5861 (line number, etc.) of the token, if the
5862 actions want that.
5863* Pure Calling:: How the calling convention differs in a pure parser
5864 (@pxref{Pure Decl, ,A Pure (Reentrant) Parser}).
bfa74976
RS
5865@end menu
5866
342b8b6e 5867@node Calling Convention
bfa74976
RS
5868@subsection Calling Convention for @code{yylex}
5869
72d2299c
PE
5870The value that @code{yylex} returns must be the positive numeric code
5871for the type of token it has just found; a zero or negative value
5872signifies end-of-input.
bfa74976
RS
5873
5874When a token is referred to in the grammar rules by a name, that name
ff7571c0
JD
5875in the parser implementation file becomes a C macro whose definition
5876is the proper numeric code for that token type. So @code{yylex} can
5877use the name to indicate that type. @xref{Symbols}.
bfa74976
RS
5878
5879When a token is referred to in the grammar rules by a character literal,
5880the numeric code for that character is also the code for the token type.
72d2299c
PE
5881So @code{yylex} can simply return that character code, possibly converted
5882to @code{unsigned char} to avoid sign-extension. The null character
5883must not be used this way, because its code is zero and that
bfa74976
RS
5884signifies end-of-input.
5885
5886Here is an example showing these things:
5887
5888@example
13863333
AD
5889int
5890yylex (void)
bfa74976
RS
5891@{
5892 @dots{}
72d2299c 5893 if (c == EOF) /* Detect end-of-input. */
bfa74976
RS
5894 return 0;
5895 @dots{}
5896 if (c == '+' || c == '-')
72d2299c 5897 return c; /* Assume token type for `+' is '+'. */
bfa74976 5898 @dots{}
72d2299c 5899 return INT; /* Return the type of the token. */
bfa74976
RS
5900 @dots{}
5901@}
5902@end example
5903
5904@noindent
5905This interface has been designed so that the output from the @code{lex}
5906utility can be used without change as the definition of @code{yylex}.
5907
931c7513
RS
5908If the grammar uses literal string tokens, there are two ways that
5909@code{yylex} can determine the token type codes for them:
5910
5911@itemize @bullet
5912@item
5913If the grammar defines symbolic token names as aliases for the
5914literal string tokens, @code{yylex} can use these symbolic names like
5915all others. In this case, the use of the literal string tokens in
5916the grammar file has no effect on @code{yylex}.
5917
5918@item
9ecbd125 5919@code{yylex} can find the multicharacter token in the @code{yytname}
931c7513 5920table. The index of the token in the table is the token type's code.
9ecbd125 5921The name of a multicharacter token is recorded in @code{yytname} with a
931c7513 5922double-quote, the token's characters, and another double-quote. The
9e0876fb
PE
5923token's characters are escaped as necessary to be suitable as input
5924to Bison.
931c7513 5925
9e0876fb
PE
5926Here's code for looking up a multicharacter token in @code{yytname},
5927assuming that the characters of the token are stored in
5928@code{token_buffer}, and assuming that the token does not contain any
5929characters like @samp{"} that require escaping.
931c7513
RS
5930
5931@smallexample
5932for (i = 0; i < YYNTOKENS; i++)
5933 @{
5934 if (yytname[i] != 0
5935 && yytname[i][0] == '"'
68449b3a
PE
5936 && ! strncmp (yytname[i] + 1, token_buffer,
5937 strlen (token_buffer))
931c7513
RS
5938 && yytname[i][strlen (token_buffer) + 1] == '"'
5939 && yytname[i][strlen (token_buffer) + 2] == 0)
5940 break;
5941 @}
5942@end smallexample
5943
5944The @code{yytname} table is generated only if you use the
8c9a50be 5945@code{%token-table} declaration. @xref{Decl Summary}.
931c7513
RS
5946@end itemize
5947
342b8b6e 5948@node Token Values
bfa74976
RS
5949@subsection Semantic Values of Tokens
5950
5951@vindex yylval
9d9b8b70 5952In an ordinary (nonreentrant) parser, the semantic value of the token must
bfa74976
RS
5953be stored into the global variable @code{yylval}. When you are using
5954just one data type for semantic values, @code{yylval} has that type.
5955Thus, if the type is @code{int} (the default), you might write this in
5956@code{yylex}:
5957
5958@example
5959@group
5960 @dots{}
72d2299c
PE
5961 yylval = value; /* Put value onto Bison stack. */
5962 return INT; /* Return the type of the token. */
bfa74976
RS
5963 @dots{}
5964@end group
5965@end example
5966
5967When you are using multiple data types, @code{yylval}'s type is a union
704a47c4
AD
5968made from the @code{%union} declaration (@pxref{Union Decl, ,The
5969Collection of Value Types}). So when you store a token's value, you
5970must use the proper member of the union. If the @code{%union}
5971declaration looks like this:
bfa74976
RS
5972
5973@example
5974@group
5975%union @{
5976 int intval;
5977 double val;
5978 symrec *tptr;
5979@}
5980@end group
5981@end example
5982
5983@noindent
5984then the code in @code{yylex} might look like this:
5985
5986@example
5987@group
5988 @dots{}
72d2299c
PE
5989 yylval.intval = value; /* Put value onto Bison stack. */
5990 return INT; /* Return the type of the token. */
bfa74976
RS
5991 @dots{}
5992@end group
5993@end example
5994
95923bd6
AD
5995@node Token Locations
5996@subsection Textual Locations of Tokens
bfa74976
RS
5997
5998@vindex yylloc
847bf1f5 5999If you are using the @samp{@@@var{n}}-feature (@pxref{Locations, ,
f8e1c9e5
AD
6000Tracking Locations}) in actions to keep track of the textual locations
6001of tokens and groupings, then you must provide this information in
6002@code{yylex}. The function @code{yyparse} expects to find the textual
6003location of a token just parsed in the global variable @code{yylloc}.
6004So @code{yylex} must store the proper data in that variable.
847bf1f5
AD
6005
6006By default, the value of @code{yylloc} is a structure and you need only
89cab50d
AD
6007initialize the members that are going to be used by the actions. The
6008four members are called @code{first_line}, @code{first_column},
6009@code{last_line} and @code{last_column}. Note that the use of this
6010feature makes the parser noticeably slower.
bfa74976
RS
6011
6012@tindex YYLTYPE
6013The data type of @code{yylloc} has the name @code{YYLTYPE}.
6014
342b8b6e 6015@node Pure Calling
c656404a 6016@subsection Calling Conventions for Pure Parsers
bfa74976 6017
67501061 6018When you use the Bison declaration @samp{%define api.pure} to request a
e425e872
RS
6019pure, reentrant parser, the global communication variables @code{yylval}
6020and @code{yylloc} cannot be used. (@xref{Pure Decl, ,A Pure (Reentrant)
6021Parser}.) In such parsers the two global variables are replaced by
6022pointers passed as arguments to @code{yylex}. You must declare them as
6023shown here, and pass the information back by storing it through those
6024pointers.
bfa74976
RS
6025
6026@example
13863333
AD
6027int
6028yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
bfa74976
RS
6029@{
6030 @dots{}
6031 *lvalp = value; /* Put value onto Bison stack. */
6032 return INT; /* Return the type of the token. */
6033 @dots{}
6034@}
6035@end example
6036
6037If the grammar file does not use the @samp{@@} constructs to refer to
95923bd6 6038textual locations, then the type @code{YYLTYPE} will not be defined. In
bfa74976
RS
6039this case, omit the second argument; @code{yylex} will be called with
6040only one argument.
6041
2055a44e 6042If you wish to pass additional arguments to @code{yylex}, use
2a8d363a 6043@code{%lex-param} just like @code{%parse-param} (@pxref{Parser
2055a44e
AD
6044Function}). To pass additional arguments to both @code{yylex} and
6045@code{yyparse}, use @code{%param}.
e425e872 6046
2055a44e 6047@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
2a8d363a 6048@findex %lex-param
2055a44e
AD
6049Specify that @var{argument-declaration} are additional @code{yylex} argument
6050declarations. You may pass one or more such declarations, which is
6051equivalent to repeating @code{%lex-param}.
6052@end deffn
6053
6054@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
6055@findex %param
6056Specify that @var{argument-declaration} are additional
6057@code{yylex}/@code{yyparse} argument declaration. This is equivalent to
6058@samp{%lex-param @{@var{argument-declaration}@} @dots{} %parse-param
6059@{@var{argument-declaration}@} @dots{}}. You may pass one or more
6060declarations, which is equivalent to repeating @code{%param}.
2a8d363a 6061@end deffn
e425e872 6062
2a8d363a 6063For instance:
e425e872
RS
6064
6065@example
2055a44e
AD
6066%lex-param @{scanner_mode *mode@}
6067%parse-param @{parser_mode *mode@}
6068%param @{environment_type *env@}
e425e872
RS
6069@end example
6070
6071@noindent
2a8d363a 6072results in the following signature:
e425e872
RS
6073
6074@example
2055a44e
AD
6075int yylex (scanner_mode *mode, environment_type *env);
6076int yyparse (parser_mode *mode, environment_type *env);
e425e872
RS
6077@end example
6078
67501061 6079If @samp{%define api.pure} is added:
c656404a
RS
6080
6081@example
2055a44e
AD
6082int yylex (YYSTYPE *lvalp, scanner_mode *mode, environment_type *env);
6083int yyparse (parser_mode *mode, environment_type *env);
c656404a
RS
6084@end example
6085
2a8d363a 6086@noindent
67501061 6087and finally, if both @samp{%define api.pure} and @code{%locations} are used:
c656404a 6088
2a8d363a 6089@example
2055a44e
AD
6090int yylex (YYSTYPE *lvalp, YYLTYPE *llocp,
6091 scanner_mode *mode, environment_type *env);
6092int yyparse (parser_mode *mode, environment_type *env);
2a8d363a 6093@end example
931c7513 6094
342b8b6e 6095@node Error Reporting
bfa74976
RS
6096@section The Error Reporting Function @code{yyerror}
6097@cindex error reporting function
6098@findex yyerror
6099@cindex parse error
6100@cindex syntax error
6101
31b850d2 6102The Bison parser detects a @dfn{syntax error} (or @dfn{parse error})
9ecbd125 6103whenever it reads a token which cannot satisfy any syntax rule. An
bfa74976 6104action in the grammar can also explicitly proclaim an error, using the
ceed8467
AD
6105macro @code{YYERROR} (@pxref{Action Features, ,Special Features for Use
6106in Actions}).
bfa74976
RS
6107
6108The Bison parser expects to report the error by calling an error
6109reporting function named @code{yyerror}, which you must supply. It is
6110called by @code{yyparse} whenever a syntax error is found, and it
6e649e65
PE
6111receives one argument. For a syntax error, the string is normally
6112@w{@code{"syntax error"}}.
bfa74976 6113
31b850d2 6114@findex %define parse.error
7fceb615
JD
6115If you invoke @samp{%define parse.error verbose} in the Bison declarations
6116section (@pxref{Bison Declarations, ,The Bison Declarations Section}), then
6117Bison provides a more verbose and specific error message string instead of
6118just plain @w{@code{"syntax error"}}. However, that message sometimes
6119contains incorrect information if LAC is not enabled (@pxref{LAC}).
bfa74976 6120
1a059451
PE
6121The parser can detect one other kind of error: memory exhaustion. This
6122can happen when the input contains constructions that are very deeply
bfa74976 6123nested. It isn't likely you will encounter this, since the Bison
1a059451
PE
6124parser normally extends its stack automatically up to a very large limit. But
6125if memory is exhausted, @code{yyparse} calls @code{yyerror} in the usual
6126fashion, except that the argument string is @w{@code{"memory exhausted"}}.
6127
6128In some cases diagnostics like @w{@code{"syntax error"}} are
6129translated automatically from English to some other language before
6130they are passed to @code{yyerror}. @xref{Internationalization}.
bfa74976
RS
6131
6132The following definition suffices in simple programs:
6133
6134@example
6135@group
13863333 6136void
38a92d50 6137yyerror (char const *s)
bfa74976
RS
6138@{
6139@end group
6140@group
6141 fprintf (stderr, "%s\n", s);
6142@}
6143@end group
6144@end example
6145
6146After @code{yyerror} returns to @code{yyparse}, the latter will attempt
6147error recovery if you have written suitable error recovery grammar rules
6148(@pxref{Error Recovery}). If recovery is impossible, @code{yyparse} will
6149immediately return 1.
6150
93724f13 6151Obviously, in location tracking pure parsers, @code{yyerror} should have
fa7e68c3 6152an access to the current location.
8a4281b9 6153This is indeed the case for the GLR
2a8d363a 6154parsers, but not for the Yacc parser, for historical reasons. I.e., if
d9df47b6 6155@samp{%locations %define api.pure} is passed then the prototypes for
2a8d363a
AD
6156@code{yyerror} are:
6157
6158@example
38a92d50
PE
6159void yyerror (char const *msg); /* Yacc parsers. */
6160void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */
2a8d363a
AD
6161@end example
6162
feeb0eda 6163If @samp{%parse-param @{int *nastiness@}} is used, then:
2a8d363a
AD
6164
6165@example
b317297e
PE
6166void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
6167void yyerror (int *nastiness, char const *msg); /* GLR parsers. */
2a8d363a
AD
6168@end example
6169
8a4281b9 6170Finally, GLR and Yacc parsers share the same @code{yyerror} calling
2a8d363a
AD
6171convention for absolutely pure parsers, i.e., when the calling
6172convention of @code{yylex} @emph{and} the calling convention of
67501061 6173@samp{%define api.pure} are pure.
d9df47b6 6174I.e.:
2a8d363a
AD
6175
6176@example
6177/* Location tracking. */
6178%locations
6179/* Pure yylex. */
d9df47b6 6180%define api.pure
feeb0eda 6181%lex-param @{int *nastiness@}
2a8d363a 6182/* Pure yyparse. */
feeb0eda
PE
6183%parse-param @{int *nastiness@}
6184%parse-param @{int *randomness@}
2a8d363a
AD
6185@end example
6186
6187@noindent
6188results in the following signatures for all the parser kinds:
6189
6190@example
6191int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
6192int yyparse (int *nastiness, int *randomness);
93724f13
AD
6193void yyerror (YYLTYPE *locp,
6194 int *nastiness, int *randomness,
38a92d50 6195 char const *msg);
2a8d363a
AD
6196@end example
6197
1c0c3e95 6198@noindent
38a92d50
PE
6199The prototypes are only indications of how the code produced by Bison
6200uses @code{yyerror}. Bison-generated code always ignores the returned
6201value, so @code{yyerror} can return any type, including @code{void}.
6202Also, @code{yyerror} can be a variadic function; that is why the
6203message is always passed last.
6204
6205Traditionally @code{yyerror} returns an @code{int} that is always
6206ignored, but this is purely for historical reasons, and @code{void} is
6207preferable since it more accurately describes the return type for
6208@code{yyerror}.
93724f13 6209
bfa74976
RS
6210@vindex yynerrs
6211The variable @code{yynerrs} contains the number of syntax errors
8a2800e7 6212reported so far. Normally this variable is global; but if you
704a47c4
AD
6213request a pure parser (@pxref{Pure Decl, ,A Pure (Reentrant) Parser})
6214then it is a local variable which only the actions can access.
bfa74976 6215
342b8b6e 6216@node Action Features
bfa74976
RS
6217@section Special Features for Use in Actions
6218@cindex summary, action features
6219@cindex action features summary
6220
6221Here is a table of Bison constructs, variables and macros that
6222are useful in actions.
6223
18b519c0 6224@deffn {Variable} $$
bfa74976
RS
6225Acts like a variable that contains the semantic value for the
6226grouping made by the current rule. @xref{Actions}.
18b519c0 6227@end deffn
bfa74976 6228
18b519c0 6229@deffn {Variable} $@var{n}
bfa74976
RS
6230Acts like a variable that contains the semantic value for the
6231@var{n}th component of the current rule. @xref{Actions}.
18b519c0 6232@end deffn
bfa74976 6233
18b519c0 6234@deffn {Variable} $<@var{typealt}>$
bfa74976 6235Like @code{$$} but specifies alternative @var{typealt} in the union
704a47c4
AD
6236specified by the @code{%union} declaration. @xref{Action Types, ,Data
6237Types of Values in Actions}.
18b519c0 6238@end deffn
bfa74976 6239
18b519c0 6240@deffn {Variable} $<@var{typealt}>@var{n}
bfa74976 6241Like @code{$@var{n}} but specifies alternative @var{typealt} in the
13863333 6242union specified by the @code{%union} declaration.
e0c471a9 6243@xref{Action Types, ,Data Types of Values in Actions}.
18b519c0 6244@end deffn
bfa74976 6245
18b519c0 6246@deffn {Macro} YYABORT;
bfa74976
RS
6247Return immediately from @code{yyparse}, indicating failure.
6248@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6249@end deffn
bfa74976 6250
18b519c0 6251@deffn {Macro} YYACCEPT;
bfa74976
RS
6252Return immediately from @code{yyparse}, indicating success.
6253@xref{Parser Function, ,The Parser Function @code{yyparse}}.
18b519c0 6254@end deffn
bfa74976 6255
18b519c0 6256@deffn {Macro} YYBACKUP (@var{token}, @var{value});
bfa74976
RS
6257@findex YYBACKUP
6258Unshift a token. This macro is allowed only for rules that reduce
742e4900 6259a single value, and only when there is no lookahead token.
8a4281b9 6260It is also disallowed in GLR parsers.
742e4900 6261It installs a lookahead token with token type @var{token} and
bfa74976
RS
6262semantic value @var{value}; then it discards the value that was
6263going to be reduced by this rule.
6264
6265If the macro is used when it is not valid, such as when there is
742e4900 6266a lookahead token already, then it reports a syntax error with
bfa74976
RS
6267a message @samp{cannot back up} and performs ordinary error
6268recovery.
6269
6270In either case, the rest of the action is not executed.
18b519c0 6271@end deffn
bfa74976 6272
18b519c0 6273@deffn {Macro} YYEMPTY
bfa74976 6274@vindex YYEMPTY
742e4900 6275Value stored in @code{yychar} when there is no lookahead token.
18b519c0 6276@end deffn
bfa74976 6277
32c29292
JD
6278@deffn {Macro} YYEOF
6279@vindex YYEOF
742e4900 6280Value stored in @code{yychar} when the lookahead is the end of the input
32c29292
JD
6281stream.
6282@end deffn
6283
18b519c0 6284@deffn {Macro} YYERROR;
bfa74976
RS
6285@findex YYERROR
6286Cause an immediate syntax error. This statement initiates error
6287recovery just as if the parser itself had detected an error; however, it
6288does not call @code{yyerror}, and does not print any message. If you
6289want to print an error message, call @code{yyerror} explicitly before
6290the @samp{YYERROR;} statement. @xref{Error Recovery}.
18b519c0 6291@end deffn
bfa74976 6292
18b519c0 6293@deffn {Macro} YYRECOVERING
02103984
PE
6294@findex YYRECOVERING
6295The expression @code{YYRECOVERING ()} yields 1 when the parser
6296is recovering from a syntax error, and 0 otherwise.
bfa74976 6297@xref{Error Recovery}.
18b519c0 6298@end deffn
bfa74976 6299
18b519c0 6300@deffn {Variable} yychar
742e4900
JD
6301Variable containing either the lookahead token, or @code{YYEOF} when the
6302lookahead is the end of the input stream, or @code{YYEMPTY} when no lookahead
32c29292
JD
6303has been performed so the next token is not yet known.
6304Do not modify @code{yychar} in a deferred semantic action (@pxref{GLR Semantic
6305Actions}).
742e4900 6306@xref{Lookahead, ,Lookahead Tokens}.
18b519c0 6307@end deffn
bfa74976 6308
18b519c0 6309@deffn {Macro} yyclearin;
742e4900 6310Discard the current lookahead token. This is useful primarily in
32c29292
JD
6311error rules.
6312Do not invoke @code{yyclearin} in a deferred semantic action (@pxref{GLR
6313Semantic Actions}).
6314@xref{Error Recovery}.
18b519c0 6315@end deffn
bfa74976 6316
18b519c0 6317@deffn {Macro} yyerrok;
bfa74976 6318Resume generating error messages immediately for subsequent syntax
13863333 6319errors. This is useful primarily in error rules.
bfa74976 6320@xref{Error Recovery}.
18b519c0 6321@end deffn
bfa74976 6322
32c29292 6323@deffn {Variable} yylloc
742e4900 6324Variable containing the lookahead token location when @code{yychar} is not set
32c29292
JD
6325to @code{YYEMPTY} or @code{YYEOF}.
6326Do not modify @code{yylloc} in a deferred semantic action (@pxref{GLR Semantic
6327Actions}).
6328@xref{Actions and Locations, ,Actions and Locations}.
6329@end deffn
6330
6331@deffn {Variable} yylval
742e4900 6332Variable containing the lookahead token semantic value when @code{yychar} is
32c29292
JD
6333not set to @code{YYEMPTY} or @code{YYEOF}.
6334Do not modify @code{yylval} in a deferred semantic action (@pxref{GLR Semantic
6335Actions}).
6336@xref{Actions, ,Actions}.
6337@end deffn
6338
18b519c0 6339@deffn {Value} @@$
847bf1f5 6340@findex @@$
95923bd6 6341Acts like a structure variable containing information on the textual location
847bf1f5
AD
6342of the grouping made by the current rule. @xref{Locations, ,
6343Tracking Locations}.
bfa74976 6344
847bf1f5
AD
6345@c Check if those paragraphs are still useful or not.
6346
6347@c @example
6348@c struct @{
6349@c int first_line, last_line;
6350@c int first_column, last_column;
6351@c @};
6352@c @end example
6353
6354@c Thus, to get the starting line number of the third component, you would
6355@c use @samp{@@3.first_line}.
bfa74976 6356
847bf1f5
AD
6357@c In order for the members of this structure to contain valid information,
6358@c you must make @code{yylex} supply this information about each token.
6359@c If you need only certain members, then @code{yylex} need only fill in
6360@c those members.
bfa74976 6361
847bf1f5 6362@c The use of this feature makes the parser noticeably slower.
18b519c0 6363@end deffn
847bf1f5 6364
18b519c0 6365@deffn {Value} @@@var{n}
847bf1f5 6366@findex @@@var{n}
95923bd6 6367Acts like a structure variable containing information on the textual location
847bf1f5
AD
6368of the @var{n}th component of the current rule. @xref{Locations, ,
6369Tracking Locations}.
18b519c0 6370@end deffn
bfa74976 6371
f7ab6a50
PE
6372@node Internationalization
6373@section Parser Internationalization
6374@cindex internationalization
6375@cindex i18n
6376@cindex NLS
6377@cindex gettext
6378@cindex bison-po
6379
6380A Bison-generated parser can print diagnostics, including error and
6381tracing messages. By default, they appear in English. However, Bison
f8e1c9e5
AD
6382also supports outputting diagnostics in the user's native language. To
6383make this work, the user should set the usual environment variables.
6384@xref{Users, , The User's View, gettext, GNU @code{gettext} utilities}.
6385For example, the shell command @samp{export LC_ALL=fr_CA.UTF-8} might
8a4281b9 6386set the user's locale to French Canadian using the UTF-8
f7ab6a50
PE
6387encoding. The exact set of available locales depends on the user's
6388installation.
6389
6390The maintainer of a package that uses a Bison-generated parser enables
6391the internationalization of the parser's output through the following
8a4281b9
JD
6392steps. Here we assume a package that uses GNU Autoconf and
6393GNU Automake.
f7ab6a50
PE
6394
6395@enumerate
6396@item
30757c8c 6397@cindex bison-i18n.m4
8a4281b9 6398Into the directory containing the GNU Autoconf macros used
f7ab6a50
PE
6399by the package---often called @file{m4}---copy the
6400@file{bison-i18n.m4} file installed by Bison under
6401@samp{share/aclocal/bison-i18n.m4} in Bison's installation directory.
6402For example:
6403
6404@example
6405cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4
6406@end example
6407
6408@item
30757c8c
PE
6409@findex BISON_I18N
6410@vindex BISON_LOCALEDIR
6411@vindex YYENABLE_NLS
f7ab6a50
PE
6412In the top-level @file{configure.ac}, after the @code{AM_GNU_GETTEXT}
6413invocation, add an invocation of @code{BISON_I18N}. This macro is
6414defined in the file @file{bison-i18n.m4} that you copied earlier. It
6415causes @samp{configure} to find the value of the
30757c8c
PE
6416@code{BISON_LOCALEDIR} variable, and it defines the source-language
6417symbol @code{YYENABLE_NLS} to enable translations in the
6418Bison-generated parser.
f7ab6a50
PE
6419
6420@item
6421In the @code{main} function of your program, designate the directory
6422containing Bison's runtime message catalog, through a call to
6423@samp{bindtextdomain} with domain name @samp{bison-runtime}.
6424For example:
6425
6426@example
6427bindtextdomain ("bison-runtime", BISON_LOCALEDIR);
6428@end example
6429
6430Typically this appears after any other call @code{bindtextdomain
6431(PACKAGE, LOCALEDIR)} that your package already has. Here we rely on
6432@samp{BISON_LOCALEDIR} to be defined as a string through the
6433@file{Makefile}.
6434
6435@item
6436In the @file{Makefile.am} that controls the compilation of the @code{main}
6437function, make @samp{BISON_LOCALEDIR} available as a C preprocessor macro,
6438either in @samp{DEFS} or in @samp{AM_CPPFLAGS}. For example:
6439
6440@example
6441DEFS = @@DEFS@@ -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6442@end example
6443
6444or:
6445
6446@example
6447AM_CPPFLAGS = -DBISON_LOCALEDIR='"$(BISON_LOCALEDIR)"'
6448@end example
6449
6450@item
6451Finally, invoke the command @command{autoreconf} to generate the build
6452infrastructure.
6453@end enumerate
6454
bfa74976 6455
342b8b6e 6456@node Algorithm
13863333
AD
6457@chapter The Bison Parser Algorithm
6458@cindex Bison parser algorithm
bfa74976
RS
6459@cindex algorithm of parser
6460@cindex shifting
6461@cindex reduction
6462@cindex parser stack
6463@cindex stack, parser
6464
6465As Bison reads tokens, it pushes them onto a stack along with their
6466semantic values. The stack is called the @dfn{parser stack}. Pushing a
6467token is traditionally called @dfn{shifting}.
6468
6469For example, suppose the infix calculator has read @samp{1 + 5 *}, with a
6470@samp{3} to come. The stack will have four elements, one for each token
6471that was shifted.
6472
6473But the stack does not always have an element for each token read. When
6474the last @var{n} tokens and groupings shifted match the components of a
6475grammar rule, they can be combined according to that rule. This is called
6476@dfn{reduction}. Those tokens and groupings are replaced on the stack by a
6477single grouping whose symbol is the result (left hand side) of that rule.
6478Running the rule's action is part of the process of reduction, because this
6479is what computes the semantic value of the resulting grouping.
6480
6481For example, if the infix calculator's parser stack contains this:
6482
6483@example
64841 + 5 * 3
6485@end example
6486
6487@noindent
6488and the next input token is a newline character, then the last three
6489elements can be reduced to 15 via the rule:
6490
6491@example
6492expr: expr '*' expr;
6493@end example
6494
6495@noindent
6496Then the stack contains just these three elements:
6497
6498@example
64991 + 15
6500@end example
6501
6502@noindent
6503At this point, another reduction can be made, resulting in the single value
650416. Then the newline token can be shifted.
6505
6506The parser tries, by shifts and reductions, to reduce the entire input down
6507to a single grouping whose symbol is the grammar's start-symbol
6508(@pxref{Language and Grammar, ,Languages and Context-Free Grammars}).
6509
6510This kind of parser is known in the literature as a bottom-up parser.
6511
6512@menu
742e4900 6513* Lookahead:: Parser looks one token ahead when deciding what to do.
bfa74976
RS
6514* Shift/Reduce:: Conflicts: when either shifting or reduction is valid.
6515* Precedence:: Operator precedence works by resolving conflicts.
6516* Contextual Precedence:: When an operator's precedence depends on context.
6517* Parser States:: The parser is a finite-state-machine with stack.
6518* Reduce/Reduce:: When two rules are applicable in the same situation.
cc09e5be 6519* Mysterious Conflicts:: Conflicts that look unjustified.
7fceb615 6520* Tuning LR:: How to tune fundamental aspects of LR-based parsing.
676385e2 6521* Generalized LR Parsing:: Parsing arbitrary context-free grammars.
1a059451 6522* Memory Management:: What happens when memory is exhausted. How to avoid it.
bfa74976
RS
6523@end menu
6524
742e4900
JD
6525@node Lookahead
6526@section Lookahead Tokens
6527@cindex lookahead token
bfa74976
RS
6528
6529The Bison parser does @emph{not} always reduce immediately as soon as the
6530last @var{n} tokens and groupings match a rule. This is because such a
6531simple strategy is inadequate to handle most languages. Instead, when a
6532reduction is possible, the parser sometimes ``looks ahead'' at the next
6533token in order to decide what to do.
6534
6535When a token is read, it is not immediately shifted; first it becomes the
742e4900 6536@dfn{lookahead token}, which is not on the stack. Now the parser can
bfa74976 6537perform one or more reductions of tokens and groupings on the stack, while
742e4900
JD
6538the lookahead token remains off to the side. When no more reductions
6539should take place, the lookahead token is shifted onto the stack. This
bfa74976 6540does not mean that all possible reductions have been done; depending on the
742e4900 6541token type of the lookahead token, some rules may choose to delay their
bfa74976
RS
6542application.
6543
742e4900 6544Here is a simple case where lookahead is needed. These three rules define
bfa74976
RS
6545expressions which contain binary addition operators and postfix unary
6546factorial operators (@samp{!}), and allow parentheses for grouping.
6547
6548@example
6549@group
6550expr: term '+' expr
6551 | term
6552 ;
6553@end group
6554
6555@group
6556term: '(' expr ')'
6557 | term '!'
6558 | NUMBER
6559 ;
6560@end group
6561@end example
6562
6563Suppose that the tokens @w{@samp{1 + 2}} have been read and shifted; what
6564should be done? If the following token is @samp{)}, then the first three
6565tokens must be reduced to form an @code{expr}. This is the only valid
6566course, because shifting the @samp{)} would produce a sequence of symbols
6567@w{@code{term ')'}}, and no rule allows this.
6568
6569If the following token is @samp{!}, then it must be shifted immediately so
6570that @w{@samp{2 !}} can be reduced to make a @code{term}. If instead the
6571parser were to reduce before shifting, @w{@samp{1 + 2}} would become an
6572@code{expr}. It would then be impossible to shift the @samp{!} because
6573doing so would produce on the stack the sequence of symbols @code{expr
6574'!'}. No rule allows that sequence.
6575
6576@vindex yychar
32c29292
JD
6577@vindex yylval
6578@vindex yylloc
742e4900 6579The lookahead token is stored in the variable @code{yychar}.
32c29292
JD
6580Its semantic value and location, if any, are stored in the variables
6581@code{yylval} and @code{yylloc}.
bfa74976
RS
6582@xref{Action Features, ,Special Features for Use in Actions}.
6583
342b8b6e 6584@node Shift/Reduce
bfa74976
RS
6585@section Shift/Reduce Conflicts
6586@cindex conflicts
6587@cindex shift/reduce conflicts
6588@cindex dangling @code{else}
6589@cindex @code{else}, dangling
6590
6591Suppose we are parsing a language which has if-then and if-then-else
6592statements, with a pair of rules like this:
6593
6594@example
6595@group
6596if_stmt:
6597 IF expr THEN stmt
6598 | IF expr THEN stmt ELSE stmt
6599 ;
6600@end group
6601@end example
6602
6603@noindent
6604Here we assume that @code{IF}, @code{THEN} and @code{ELSE} are
6605terminal symbols for specific keyword tokens.
6606
742e4900 6607When the @code{ELSE} token is read and becomes the lookahead token, the
bfa74976
RS
6608contents of the stack (assuming the input is valid) are just right for
6609reduction by the first rule. But it is also legitimate to shift the
6610@code{ELSE}, because that would lead to eventual reduction by the second
6611rule.
6612
6613This situation, where either a shift or a reduction would be valid, is
6614called a @dfn{shift/reduce conflict}. Bison is designed to resolve
6615these conflicts by choosing to shift, unless otherwise directed by
6616operator precedence declarations. To see the reason for this, let's
6617contrast it with the other alternative.
6618
6619Since the parser prefers to shift the @code{ELSE}, the result is to attach
6620the else-clause to the innermost if-statement, making these two inputs
6621equivalent:
6622
6623@example
6624if x then if y then win (); else lose;
6625
6626if x then do; if y then win (); else lose; end;
6627@end example
6628
6629But if the parser chose to reduce when possible rather than shift, the
6630result would be to attach the else-clause to the outermost if-statement,
6631making these two inputs equivalent:
6632
6633@example
6634if x then if y then win (); else lose;
6635
6636if x then do; if y then win (); end; else lose;
6637@end example
6638
6639The conflict exists because the grammar as written is ambiguous: either
6640parsing of the simple nested if-statement is legitimate. The established
6641convention is that these ambiguities are resolved by attaching the
6642else-clause to the innermost if-statement; this is what Bison accomplishes
6643by choosing to shift rather than reduce. (It would ideally be cleaner to
6644write an unambiguous grammar, but that is very hard to do in this case.)
6645This particular ambiguity was first encountered in the specifications of
6646Algol 60 and is called the ``dangling @code{else}'' ambiguity.
6647
6648To avoid warnings from Bison about predictable, legitimate shift/reduce
93d7dde9
JD
6649conflicts, use the @code{%expect @var{n}} declaration.
6650There will be no warning as long as the number of shift/reduce conflicts
6651is exactly @var{n}, and Bison will report an error if there is a
6652different number.
bfa74976
RS
6653@xref{Expect Decl, ,Suppressing Conflict Warnings}.
6654
6655The definition of @code{if_stmt} above is solely to blame for the
6656conflict, but the conflict does not actually appear without additional
ff7571c0
JD
6657rules. Here is a complete Bison grammar file that actually manifests
6658the conflict:
bfa74976
RS
6659
6660@example
6661@group
6662%token IF THEN ELSE variable
6663%%
6664@end group
6665@group
6666stmt: expr
6667 | if_stmt
6668 ;
6669@end group
6670
6671@group
6672if_stmt:
6673 IF expr THEN stmt
6674 | IF expr THEN stmt ELSE stmt
6675 ;
6676@end group
6677
6678expr: variable
6679 ;
6680@end example
6681
342b8b6e 6682@node Precedence
bfa74976
RS
6683@section Operator Precedence
6684@cindex operator precedence
6685@cindex precedence of operators
6686
6687Another situation where shift/reduce conflicts appear is in arithmetic
6688expressions. Here shifting is not always the preferred resolution; the
6689Bison declarations for operator precedence allow you to specify when to
6690shift and when to reduce.
6691
6692@menu
6693* Why Precedence:: An example showing why precedence is needed.
d78f0ac9
AD
6694* Using Precedence:: How to specify precedence and associativity.
6695* Precedence Only:: How to specify precedence only.
bfa74976
RS
6696* Precedence Examples:: How these features are used in the previous example.
6697* How Precedence:: How they work.
6698@end menu
6699
342b8b6e 6700@node Why Precedence
bfa74976
RS
6701@subsection When Precedence is Needed
6702
6703Consider the following ambiguous grammar fragment (ambiguous because the
6704input @w{@samp{1 - 2 * 3}} can be parsed in two different ways):
6705
6706@example
6707@group
6708expr: expr '-' expr
6709 | expr '*' expr
6710 | expr '<' expr
6711 | '(' expr ')'
6712 @dots{}
6713 ;
6714@end group
6715@end example
6716
6717@noindent
6718Suppose the parser has seen the tokens @samp{1}, @samp{-} and @samp{2};
14ded682
AD
6719should it reduce them via the rule for the subtraction operator? It
6720depends on the next token. Of course, if the next token is @samp{)}, we
6721must reduce; shifting is invalid because no single rule can reduce the
6722token sequence @w{@samp{- 2 )}} or anything starting with that. But if
6723the next token is @samp{*} or @samp{<}, we have a choice: either
6724shifting or reduction would allow the parse to complete, but with
6725different results.
6726
6727To decide which one Bison should do, we must consider the results. If
6728the next operator token @var{op} is shifted, then it must be reduced
6729first in order to permit another opportunity to reduce the difference.
6730The result is (in effect) @w{@samp{1 - (2 @var{op} 3)}}. On the other
6731hand, if the subtraction is reduced before shifting @var{op}, the result
6732is @w{@samp{(1 - 2) @var{op} 3}}. Clearly, then, the choice of shift or
6733reduce should depend on the relative precedence of the operators
6734@samp{-} and @var{op}: @samp{*} should be shifted first, but not
6735@samp{<}.
bfa74976
RS
6736
6737@cindex associativity
6738What about input such as @w{@samp{1 - 2 - 5}}; should this be
14ded682
AD
6739@w{@samp{(1 - 2) - 5}} or should it be @w{@samp{1 - (2 - 5)}}? For most
6740operators we prefer the former, which is called @dfn{left association}.
6741The latter alternative, @dfn{right association}, is desirable for
6742assignment operators. The choice of left or right association is a
6743matter of whether the parser chooses to shift or reduce when the stack
742e4900 6744contains @w{@samp{1 - 2}} and the lookahead token is @samp{-}: shifting
14ded682 6745makes right-associativity.
bfa74976 6746
342b8b6e 6747@node Using Precedence
bfa74976
RS
6748@subsection Specifying Operator Precedence
6749@findex %left
bfa74976 6750@findex %nonassoc
d78f0ac9
AD
6751@findex %precedence
6752@findex %right
bfa74976
RS
6753
6754Bison allows you to specify these choices with the operator precedence
6755declarations @code{%left} and @code{%right}. Each such declaration
6756contains a list of tokens, which are operators whose precedence and
6757associativity is being declared. The @code{%left} declaration makes all
6758those operators left-associative and the @code{%right} declaration makes
6759them right-associative. A third alternative is @code{%nonassoc}, which
6760declares that it is a syntax error to find the same operator twice ``in a
6761row''.
d78f0ac9
AD
6762The last alternative, @code{%precedence}, allows to define only
6763precedence and no associativity at all. As a result, any
6764associativity-related conflict that remains will be reported as an
6765compile-time error. The directive @code{%nonassoc} creates run-time
6766error: using the operator in a associative way is a syntax error. The
6767directive @code{%precedence} creates compile-time errors: an operator
6768@emph{can} be involved in an associativity-related conflict, contrary to
6769what expected the grammar author.
bfa74976
RS
6770
6771The relative precedence of different operators is controlled by the
d78f0ac9
AD
6772order in which they are declared. The first precedence/associativity
6773declaration in the file declares the operators whose
bfa74976
RS
6774precedence is lowest, the next such declaration declares the operators
6775whose precedence is a little higher, and so on.
6776
d78f0ac9
AD
6777@node Precedence Only
6778@subsection Specifying Precedence Only
6779@findex %precedence
6780
8a4281b9 6781Since POSIX Yacc defines only @code{%left}, @code{%right}, and
d78f0ac9
AD
6782@code{%nonassoc}, which all defines precedence and associativity, little
6783attention is paid to the fact that precedence cannot be defined without
6784defining associativity. Yet, sometimes, when trying to solve a
6785conflict, precedence suffices. In such a case, using @code{%left},
6786@code{%right}, or @code{%nonassoc} might hide future (associativity
6787related) conflicts that would remain hidden.
6788
6789The dangling @code{else} ambiguity (@pxref{Shift/Reduce, , Shift/Reduce
f50bfcd6 6790Conflicts}) can be solved explicitly. This shift/reduce conflicts occurs
d78f0ac9
AD
6791in the following situation, where the period denotes the current parsing
6792state:
6793
6794@example
6795if @var{e1} then if @var{e2} then @var{s1} . else @var{s2}
6796@end example
6797
6798The conflict involves the reduction of the rule @samp{IF expr THEN
6799stmt}, which precedence is by default that of its last token
6800(@code{THEN}), and the shifting of the token @code{ELSE}. The usual
6801disambiguation (attach the @code{else} to the closest @code{if}),
6802shifting must be preferred, i.e., the precedence of @code{ELSE} must be
6803higher than that of @code{THEN}. But neither is expected to be involved
6804in an associativity related conflict, which can be specified as follows.
6805
6806@example
6807%precedence THEN
6808%precedence ELSE
6809@end example
6810
6811The unary-minus is another typical example where associativity is
6812usually over-specified, see @ref{Infix Calc, , Infix Notation
f50bfcd6 6813Calculator: @code{calc}}. The @code{%left} directive is traditionally
d78f0ac9
AD
6814used to declare the precedence of @code{NEG}, which is more than needed
6815since it also defines its associativity. While this is harmless in the
6816traditional example, who knows how @code{NEG} might be used in future
6817evolutions of the grammar@dots{}
6818
342b8b6e 6819@node Precedence Examples
bfa74976
RS
6820@subsection Precedence Examples
6821
6822In our example, we would want the following declarations:
6823
6824@example
6825%left '<'
6826%left '-'
6827%left '*'
6828@end example
6829
6830In a more complete example, which supports other operators as well, we
6831would declare them in groups of equal precedence. For example, @code{'+'} is
6832declared with @code{'-'}:
6833
6834@example
6835%left '<' '>' '=' NE LE GE
6836%left '+' '-'
6837%left '*' '/'
6838@end example
6839
6840@noindent
6841(Here @code{NE} and so on stand for the operators for ``not equal''
6842and so on. We assume that these tokens are more than one character long
6843and therefore are represented by names, not character literals.)
6844
342b8b6e 6845@node How Precedence
bfa74976
RS
6846@subsection How Precedence Works
6847
6848The first effect of the precedence declarations is to assign precedence
6849levels to the terminal symbols declared. The second effect is to assign
704a47c4
AD
6850precedence levels to certain rules: each rule gets its precedence from
6851the last terminal symbol mentioned in the components. (You can also
6852specify explicitly the precedence of a rule. @xref{Contextual
6853Precedence, ,Context-Dependent Precedence}.)
6854
6855Finally, the resolution of conflicts works by comparing the precedence
742e4900 6856of the rule being considered with that of the lookahead token. If the
704a47c4
AD
6857token's precedence is higher, the choice is to shift. If the rule's
6858precedence is higher, the choice is to reduce. If they have equal
6859precedence, the choice is made based on the associativity of that
6860precedence level. The verbose output file made by @samp{-v}
6861(@pxref{Invocation, ,Invoking Bison}) says how each conflict was
6862resolved.
bfa74976
RS
6863
6864Not all rules and not all tokens have precedence. If either the rule or
742e4900 6865the lookahead token has no precedence, then the default is to shift.
bfa74976 6866
342b8b6e 6867@node Contextual Precedence
bfa74976
RS
6868@section Context-Dependent Precedence
6869@cindex context-dependent precedence
6870@cindex unary operator precedence
6871@cindex precedence, context-dependent
6872@cindex precedence, unary operator
6873@findex %prec
6874
6875Often the precedence of an operator depends on the context. This sounds
6876outlandish at first, but it is really very common. For example, a minus
6877sign typically has a very high precedence as a unary operator, and a
6878somewhat lower precedence (lower than multiplication) as a binary operator.
6879
d78f0ac9
AD
6880The Bison precedence declarations
6881can only be used once for a given token; so a token has
bfa74976
RS
6882only one precedence declared in this way. For context-dependent
6883precedence, you need to use an additional mechanism: the @code{%prec}
e0c471a9 6884modifier for rules.
bfa74976
RS
6885
6886The @code{%prec} modifier declares the precedence of a particular rule by
6887specifying a terminal symbol whose precedence should be used for that rule.
6888It's not necessary for that symbol to appear otherwise in the rule. The
6889modifier's syntax is:
6890
6891@example
6892%prec @var{terminal-symbol}
6893@end example
6894
6895@noindent
6896and it is written after the components of the rule. Its effect is to
6897assign the rule the precedence of @var{terminal-symbol}, overriding
6898the precedence that would be deduced for it in the ordinary way. The
6899altered rule precedence then affects how conflicts involving that rule
6900are resolved (@pxref{Precedence, ,Operator Precedence}).
6901
6902Here is how @code{%prec} solves the problem of unary minus. First, declare
6903a precedence for a fictitious terminal symbol named @code{UMINUS}. There
6904are no tokens of this type, but the symbol serves to stand for its
6905precedence:
6906
6907@example
6908@dots{}
6909%left '+' '-'
6910%left '*'
6911%left UMINUS
6912@end example
6913
6914Now the precedence of @code{UMINUS} can be used in specific rules:
6915
6916@example
6917@group
6918exp: @dots{}
6919 | exp '-' exp
6920 @dots{}
6921 | '-' exp %prec UMINUS
6922@end group
6923@end example
6924
91d2c560 6925@ifset defaultprec
39a06c25
PE
6926If you forget to append @code{%prec UMINUS} to the rule for unary
6927minus, Bison silently assumes that minus has its usual precedence.
6928This kind of problem can be tricky to debug, since one typically
6929discovers the mistake only by testing the code.
6930
22fccf95 6931The @code{%no-default-prec;} declaration makes it easier to discover
39a06c25
PE
6932this kind of problem systematically. It causes rules that lack a
6933@code{%prec} modifier to have no precedence, even if the last terminal
6934symbol mentioned in their components has a declared precedence.
6935
22fccf95 6936If @code{%no-default-prec;} is in effect, you must specify @code{%prec}
39a06c25
PE
6937for all rules that participate in precedence conflict resolution.
6938Then you will see any shift/reduce conflict until you tell Bison how
6939to resolve it, either by changing your grammar or by adding an
6940explicit precedence. This will probably add declarations to the
6941grammar, but it helps to protect against incorrect rule precedences.
6942
22fccf95
PE
6943The effect of @code{%no-default-prec;} can be reversed by giving
6944@code{%default-prec;}, which is the default.
91d2c560 6945@end ifset
39a06c25 6946
342b8b6e 6947@node Parser States
bfa74976
RS
6948@section Parser States
6949@cindex finite-state machine
6950@cindex parser state
6951@cindex state (of parser)
6952
6953The function @code{yyparse} is implemented using a finite-state machine.
6954The values pushed on the parser stack are not simply token type codes; they
6955represent the entire sequence of terminal and nonterminal symbols at or
6956near the top of the stack. The current state collects all the information
6957about previous input which is relevant to deciding what to do next.
6958
742e4900
JD
6959Each time a lookahead token is read, the current parser state together
6960with the type of lookahead token are looked up in a table. This table
6961entry can say, ``Shift the lookahead token.'' In this case, it also
bfa74976
RS
6962specifies the new parser state, which is pushed onto the top of the
6963parser stack. Or it can say, ``Reduce using rule number @var{n}.''
6964This means that a certain number of tokens or groupings are taken off
6965the top of the stack, and replaced by one grouping. In other words,
6966that number of states are popped from the stack, and one new state is
6967pushed.
6968
742e4900 6969There is one other alternative: the table can say that the lookahead token
bfa74976
RS
6970is erroneous in the current state. This causes error processing to begin
6971(@pxref{Error Recovery}).
6972
342b8b6e 6973@node Reduce/Reduce
bfa74976
RS
6974@section Reduce/Reduce Conflicts
6975@cindex reduce/reduce conflict
6976@cindex conflicts, reduce/reduce
6977
6978A reduce/reduce conflict occurs if there are two or more rules that apply
6979to the same sequence of input. This usually indicates a serious error
6980in the grammar.
6981
6982For example, here is an erroneous attempt to define a sequence
6983of zero or more @code{word} groupings.
6984
6985@example
6986sequence: /* empty */
6987 @{ printf ("empty sequence\n"); @}
6988 | maybeword
6989 | sequence word
6990 @{ printf ("added word %s\n", $2); @}
6991 ;
6992
6993maybeword: /* empty */
6994 @{ printf ("empty maybeword\n"); @}
6995 | word
6996 @{ printf ("single word %s\n", $1); @}
6997 ;
6998@end example
6999
7000@noindent
7001The error is an ambiguity: there is more than one way to parse a single
7002@code{word} into a @code{sequence}. It could be reduced to a
7003@code{maybeword} and then into a @code{sequence} via the second rule.
7004Alternatively, nothing-at-all could be reduced into a @code{sequence}
7005via the first rule, and this could be combined with the @code{word}
7006using the third rule for @code{sequence}.
7007
7008There is also more than one way to reduce nothing-at-all into a
7009@code{sequence}. This can be done directly via the first rule,
7010or indirectly via @code{maybeword} and then the second rule.
7011
7012You might think that this is a distinction without a difference, because it
7013does not change whether any particular input is valid or not. But it does
7014affect which actions are run. One parsing order runs the second rule's
7015action; the other runs the first rule's action and the third rule's action.
7016In this example, the output of the program changes.
7017
7018Bison resolves a reduce/reduce conflict by choosing to use the rule that
7019appears first in the grammar, but it is very risky to rely on this. Every
7020reduce/reduce conflict must be studied and usually eliminated. Here is the
7021proper way to define @code{sequence}:
7022
7023@example
7024sequence: /* empty */
7025 @{ printf ("empty sequence\n"); @}
7026 | sequence word
7027 @{ printf ("added word %s\n", $2); @}
7028 ;
7029@end example
7030
7031Here is another common error that yields a reduce/reduce conflict:
7032
7033@example
7034sequence: /* empty */
7035 | sequence words
7036 | sequence redirects
7037 ;
7038
7039words: /* empty */
7040 | words word
7041 ;
7042
7043redirects:/* empty */
7044 | redirects redirect
7045 ;
7046@end example
7047
7048@noindent
7049The intention here is to define a sequence which can contain either
7050@code{word} or @code{redirect} groupings. The individual definitions of
7051@code{sequence}, @code{words} and @code{redirects} are error-free, but the
7052three together make a subtle ambiguity: even an empty input can be parsed
7053in infinitely many ways!
7054
7055Consider: nothing-at-all could be a @code{words}. Or it could be two
7056@code{words} in a row, or three, or any number. It could equally well be a
7057@code{redirects}, or two, or any number. Or it could be a @code{words}
7058followed by three @code{redirects} and another @code{words}. And so on.
7059
7060Here are two ways to correct these rules. First, to make it a single level
7061of sequence:
7062
7063@example
7064sequence: /* empty */
7065 | sequence word
7066 | sequence redirect
7067 ;
7068@end example
7069
7070Second, to prevent either a @code{words} or a @code{redirects}
7071from being empty:
7072
7073@example
7074sequence: /* empty */
7075 | sequence words
7076 | sequence redirects
7077 ;
7078
7079words: word
7080 | words word
7081 ;
7082
7083redirects:redirect
7084 | redirects redirect
7085 ;
7086@end example
7087
cc09e5be
JD
7088@node Mysterious Conflicts
7089@section Mysterious Conflicts
7fceb615 7090@cindex Mysterious Conflicts
bfa74976
RS
7091
7092Sometimes reduce/reduce conflicts can occur that don't look warranted.
7093Here is an example:
7094
7095@example
7096@group
7097%token ID
7098
7099%%
7100def: param_spec return_spec ','
7101 ;
7102param_spec:
7103 type
7104 | name_list ':' type
7105 ;
7106@end group
7107@group
7108return_spec:
7109 type
7110 | name ':' type
7111 ;
7112@end group
7113@group
7114type: ID
7115 ;
7116@end group
7117@group
7118name: ID
7119 ;
7120name_list:
7121 name
7122 | name ',' name_list
7123 ;
7124@end group
7125@end example
7126
7127It would seem that this grammar can be parsed with only a single token
742e4900 7128of lookahead: when a @code{param_spec} is being read, an @code{ID} is
bfa74976 7129a @code{name} if a comma or colon follows, or a @code{type} if another
8a4281b9 7130@code{ID} follows. In other words, this grammar is LR(1).
bfa74976 7131
7fceb615
JD
7132@cindex LR
7133@cindex LALR
eb45ef3b 7134However, for historical reasons, Bison cannot by default handle all
8a4281b9 7135LR(1) grammars.
eb45ef3b
JD
7136In this grammar, two contexts, that after an @code{ID} at the beginning
7137of a @code{param_spec} and likewise at the beginning of a
7138@code{return_spec}, are similar enough that Bison assumes they are the
7139same.
7140They appear similar because the same set of rules would be
bfa74976
RS
7141active---the rule for reducing to a @code{name} and that for reducing to
7142a @code{type}. Bison is unable to determine at that stage of processing
742e4900 7143that the rules would require different lookahead tokens in the two
bfa74976
RS
7144contexts, so it makes a single parser state for them both. Combining
7145the two contexts causes a conflict later. In parser terminology, this
8a4281b9 7146occurrence means that the grammar is not LALR(1).
bfa74976 7147
7fceb615
JD
7148@cindex IELR
7149@cindex canonical LR
7150For many practical grammars (specifically those that fall into the non-LR(1)
7151class), the limitations of LALR(1) result in difficulties beyond just
7152mysterious reduce/reduce conflicts. The best way to fix all these problems
7153is to select a different parser table construction algorithm. Either
7154IELR(1) or canonical LR(1) would suffice, but the former is more efficient
7155and easier to debug during development. @xref{LR Table Construction}, for
7156details. (Bison's IELR(1) and canonical LR(1) implementations are
7157experimental. More user feedback will help to stabilize them.)
eb45ef3b 7158
8a4281b9 7159If you instead wish to work around LALR(1)'s limitations, you
eb45ef3b
JD
7160can often fix a mysterious conflict by identifying the two parser states
7161that are being confused, and adding something to make them look
7162distinct. In the above example, adding one rule to
bfa74976
RS
7163@code{return_spec} as follows makes the problem go away:
7164
7165@example
7166@group
7167%token BOGUS
7168@dots{}
7169%%
7170@dots{}
7171return_spec:
7172 type
7173 | name ':' type
7174 /* This rule is never used. */
7175 | ID BOGUS
7176 ;
7177@end group
7178@end example
7179
7180This corrects the problem because it introduces the possibility of an
7181additional active rule in the context after the @code{ID} at the beginning of
7182@code{return_spec}. This rule is not active in the corresponding context
7183in a @code{param_spec}, so the two contexts receive distinct parser states.
7184As long as the token @code{BOGUS} is never generated by @code{yylex},
7185the added rule cannot alter the way actual input is parsed.
7186
7187In this particular example, there is another way to solve the problem:
7188rewrite the rule for @code{return_spec} to use @code{ID} directly
7189instead of via @code{name}. This also causes the two confusing
7190contexts to have different sets of active rules, because the one for
7191@code{return_spec} activates the altered rule for @code{return_spec}
7192rather than the one for @code{name}.
7193
7194@example
7195param_spec:
7196 type
7197 | name_list ':' type
7198 ;
7199return_spec:
7200 type
7201 | ID ':' type
7202 ;
7203@end example
7204
8a4281b9 7205For a more detailed exposition of LALR(1) parsers and parser
5e528941 7206generators, @pxref{Bibliography,,DeRemer 1982}.
e054b190 7207
7fceb615
JD
7208@node Tuning LR
7209@section Tuning LR
7210
7211The default behavior of Bison's LR-based parsers is chosen mostly for
7212historical reasons, but that behavior is often not robust. For example, in
7213the previous section, we discussed the mysterious conflicts that can be
7214produced by LALR(1), Bison's default parser table construction algorithm.
7215Another example is Bison's @code{%define parse.error verbose} directive,
7216which instructs the generated parser to produce verbose syntax error
7217messages, which can sometimes contain incorrect information.
7218
7219In this section, we explore several modern features of Bison that allow you
7220to tune fundamental aspects of the generated LR-based parsers. Some of
7221these features easily eliminate shortcomings like those mentioned above.
7222Others can be helpful purely for understanding your parser.
7223
7224Most of the features discussed in this section are still experimental. More
7225user feedback will help to stabilize them.
7226
7227@menu
7228* LR Table Construction:: Choose a different construction algorithm.
7229* Default Reductions:: Disable default reductions.
7230* LAC:: Correct lookahead sets in the parser states.
7231* Unreachable States:: Keep unreachable parser states for debugging.
7232@end menu
7233
7234@node LR Table Construction
7235@subsection LR Table Construction
7236@cindex Mysterious Conflict
7237@cindex LALR
7238@cindex IELR
7239@cindex canonical LR
7240@findex %define lr.type
7241
7242For historical reasons, Bison constructs LALR(1) parser tables by default.
7243However, LALR does not possess the full language-recognition power of LR.
7244As a result, the behavior of parsers employing LALR parser tables is often
cc09e5be 7245mysterious. We presented a simple example of this effect in @ref{Mysterious
7fceb615
JD
7246Conflicts}.
7247
7248As we also demonstrated in that example, the traditional approach to
7249eliminating such mysterious behavior is to restructure the grammar.
7250Unfortunately, doing so correctly is often difficult. Moreover, merely
7251discovering that LALR causes mysterious behavior in your parser can be
7252difficult as well.
7253
7254Fortunately, Bison provides an easy way to eliminate the possibility of such
7255mysterious behavior altogether. You simply need to activate a more powerful
7256parser table construction algorithm by using the @code{%define lr.type}
7257directive.
7258
7259@deffn {Directive} {%define lr.type @var{TYPE}}
7260Specify the type of parser tables within the LR(1) family. The accepted
7261values for @var{TYPE} are:
7262
7263@itemize
7264@item @code{lalr} (default)
7265@item @code{ielr}
7266@item @code{canonical-lr}
7267@end itemize
7268
7269(This feature is experimental. More user feedback will help to stabilize
7270it.)
7271@end deffn
7272
7273For example, to activate IELR, you might add the following directive to you
7274grammar file:
7275
7276@example
7277%define lr.type ielr
7278@end example
7279
cc09e5be 7280@noindent For the example in @ref{Mysterious Conflicts}, the mysterious
7fceb615
JD
7281conflict is then eliminated, so there is no need to invest time in
7282comprehending the conflict or restructuring the grammar to fix it. If,
7283during future development, the grammar evolves such that all mysterious
7284behavior would have disappeared using just LALR, you need not fear that
7285continuing to use IELR will result in unnecessarily large parser tables.
7286That is, IELR generates LALR tables when LALR (using a deterministic parsing
7287algorithm) is sufficient to support the full language-recognition power of
7288LR. Thus, by enabling IELR at the start of grammar development, you can
7289safely and completely eliminate the need to consider LALR's shortcomings.
7290
7291While IELR is almost always preferable, there are circumstances where LALR
7292or the canonical LR parser tables described by Knuth
7293(@pxref{Bibliography,,Knuth 1965}) can be useful. Here we summarize the
7294relative advantages of each parser table construction algorithm within
7295Bison:
7296
7297@itemize
7298@item LALR
7299
7300There are at least two scenarios where LALR can be worthwhile:
7301
7302@itemize
7303@item GLR without static conflict resolution.
7304
7305@cindex GLR with LALR
7306When employing GLR parsers (@pxref{GLR Parsers}), if you do not resolve any
7307conflicts statically (for example, with @code{%left} or @code{%prec}), then
7308the parser explores all potential parses of any given input. In this case,
7309the choice of parser table construction algorithm is guaranteed not to alter
7310the language accepted by the parser. LALR parser tables are the smallest
7311parser tables Bison can currently construct, so they may then be preferable.
7312Nevertheless, once you begin to resolve conflicts statically, GLR behaves
7313more like a deterministic parser in the syntactic contexts where those
7314conflicts appear, and so either IELR or canonical LR can then be helpful to
7315avoid LALR's mysterious behavior.
7316
7317@item Malformed grammars.
7318
7319Occasionally during development, an especially malformed grammar with a
7320major recurring flaw may severely impede the IELR or canonical LR parser
7321table construction algorithm. LALR can be a quick way to construct parser
7322tables in order to investigate such problems while ignoring the more subtle
7323differences from IELR and canonical LR.
7324@end itemize
7325
7326@item IELR
7327
7328IELR (Inadequacy Elimination LR) is a minimal LR algorithm. That is, given
7329any grammar (LR or non-LR), parsers using IELR or canonical LR parser tables
7330always accept exactly the same set of sentences. However, like LALR, IELR
7331merges parser states during parser table construction so that the number of
7332parser states is often an order of magnitude less than for canonical LR.
7333More importantly, because canonical LR's extra parser states may contain
7334duplicate conflicts in the case of non-LR grammars, the number of conflicts
7335for IELR is often an order of magnitude less as well. This effect can
7336significantly reduce the complexity of developing a grammar.
7337
7338@item Canonical LR
7339
7340@cindex delayed syntax error detection
7341@cindex LAC
7342@findex %nonassoc
7343While inefficient, canonical LR parser tables can be an interesting means to
7344explore a grammar because they possess a property that IELR and LALR tables
7345do not. That is, if @code{%nonassoc} is not used and default reductions are
7346left disabled (@pxref{Default Reductions}), then, for every left context of
7347every canonical LR state, the set of tokens accepted by that state is
7348guaranteed to be the exact set of tokens that is syntactically acceptable in
7349that left context. It might then seem that an advantage of canonical LR
7350parsers in production is that, under the above constraints, they are
7351guaranteed to detect a syntax error as soon as possible without performing
7352any unnecessary reductions. However, IELR parsers that use LAC are also
7353able to achieve this behavior without sacrificing @code{%nonassoc} or
7354default reductions. For details and a few caveats of LAC, @pxref{LAC}.
7355@end itemize
7356
7357For a more detailed exposition of the mysterious behavior in LALR parsers
7358and the benefits of IELR, @pxref{Bibliography,,Denny 2008 March}, and
7359@ref{Bibliography,,Denny 2010 November}.
7360
7361@node Default Reductions
7362@subsection Default Reductions
7363@cindex default reductions
7364@findex %define lr.default-reductions
7365@findex %nonassoc
7366
7367After parser table construction, Bison identifies the reduction with the
7368largest lookahead set in each parser state. To reduce the size of the
7369parser state, traditional Bison behavior is to remove that lookahead set and
7370to assign that reduction to be the default parser action. Such a reduction
7371is known as a @dfn{default reduction}.
7372
7373Default reductions affect more than the size of the parser tables. They
7374also affect the behavior of the parser:
7375
7376@itemize
7377@item Delayed @code{yylex} invocations.
7378
7379@cindex delayed yylex invocations
7380@cindex consistent states
7381@cindex defaulted states
7382A @dfn{consistent state} is a state that has only one possible parser
7383action. If that action is a reduction and is encoded as a default
7384reduction, then that consistent state is called a @dfn{defaulted state}.
7385Upon reaching a defaulted state, a Bison-generated parser does not bother to
7386invoke @code{yylex} to fetch the next token before performing the reduction.
7387In other words, whether default reductions are enabled in consistent states
7388determines how soon a Bison-generated parser invokes @code{yylex} for a
7389token: immediately when it @emph{reaches} that token in the input or when it
7390eventually @emph{needs} that token as a lookahead to determine the next
7391parser action. Traditionally, default reductions are enabled, and so the
7392parser exhibits the latter behavior.
7393
7394The presence of defaulted states is an important consideration when
7395designing @code{yylex} and the grammar file. That is, if the behavior of
7396@code{yylex} can influence or be influenced by the semantic actions
7397associated with the reductions in defaulted states, then the delay of the
7398next @code{yylex} invocation until after those reductions is significant.
7399For example, the semantic actions might pop a scope stack that @code{yylex}
7400uses to determine what token to return. Thus, the delay might be necessary
7401to ensure that @code{yylex} does not look up the next token in a scope that
7402should already be considered closed.
7403
7404@item Delayed syntax error detection.
7405
7406@cindex delayed syntax error detection
7407When the parser fetches a new token by invoking @code{yylex}, it checks
7408whether there is an action for that token in the current parser state. The
7409parser detects a syntax error if and only if either (1) there is no action
7410for that token or (2) the action for that token is the error action (due to
7411the use of @code{%nonassoc}). However, if there is a default reduction in
7412that state (which might or might not be a defaulted state), then it is
7413impossible for condition 1 to exist. That is, all tokens have an action.
7414Thus, the parser sometimes fails to detect the syntax error until it reaches
7415a later state.
7416
7417@cindex LAC
7418@c If there's an infinite loop, default reductions can prevent an incorrect
7419@c sentence from being rejected.
7420While default reductions never cause the parser to accept syntactically
7421incorrect sentences, the delay of syntax error detection can have unexpected
7422effects on the behavior of the parser. However, the delay can be caused
7423anyway by parser state merging and the use of @code{%nonassoc}, and it can
7424be fixed by another Bison feature, LAC. We discuss the effects of delayed
7425syntax error detection and LAC more in the next section (@pxref{LAC}).
7426@end itemize
7427
7428For canonical LR, the only default reduction that Bison enables by default
7429is the accept action, which appears only in the accepting state, which has
7430no other action and is thus a defaulted state. However, the default accept
7431action does not delay any @code{yylex} invocation or syntax error detection
7432because the accept action ends the parse.
7433
7434For LALR and IELR, Bison enables default reductions in nearly all states by
7435default. There are only two exceptions. First, states that have a shift
7436action on the @code{error} token do not have default reductions because
7437delayed syntax error detection could then prevent the @code{error} token
7438from ever being shifted in that state. However, parser state merging can
7439cause the same effect anyway, and LAC fixes it in both cases, so future
7440versions of Bison might drop this exception when LAC is activated. Second,
7441GLR parsers do not record the default reduction as the action on a lookahead
7442token for which there is a conflict. The correct action in this case is to
7443split the parse instead.
7444
7445To adjust which states have default reductions enabled, use the
7446@code{%define lr.default-reductions} directive.
7447
7448@deffn {Directive} {%define lr.default-reductions @var{WHERE}}
7449Specify the kind of states that are permitted to contain default reductions.
7450The accepted values of @var{WHERE} are:
7451@itemize
f0ad1b2f 7452@item @code{most} (default for LALR and IELR)
7fceb615
JD
7453@item @code{consistent}
7454@item @code{accepting} (default for canonical LR)
7455@end itemize
7456
7457(The ability to specify where default reductions are permitted is
7458experimental. More user feedback will help to stabilize it.)
7459@end deffn
7460
7fceb615
JD
7461@node LAC
7462@subsection LAC
7463@findex %define parse.lac
7464@cindex LAC
7465@cindex lookahead correction
7466
7467Canonical LR, IELR, and LALR can suffer from a couple of problems upon
7468encountering a syntax error. First, the parser might perform additional
7469parser stack reductions before discovering the syntax error. Such
7470reductions can perform user semantic actions that are unexpected because
7471they are based on an invalid token, and they cause error recovery to begin
7472in a different syntactic context than the one in which the invalid token was
7473encountered. Second, when verbose error messages are enabled (@pxref{Error
7474Reporting}), the expected token list in the syntax error message can both
7475contain invalid tokens and omit valid tokens.
7476
7477The culprits for the above problems are @code{%nonassoc}, default reductions
7478in inconsistent states (@pxref{Default Reductions}), and parser state
7479merging. Because IELR and LALR merge parser states, they suffer the most.
7480Canonical LR can suffer only if @code{%nonassoc} is used or if default
7481reductions are enabled for inconsistent states.
7482
7483LAC (Lookahead Correction) is a new mechanism within the parsing algorithm
7484that solves these problems for canonical LR, IELR, and LALR without
7485sacrificing @code{%nonassoc}, default reductions, or state merging. You can
7486enable LAC with the @code{%define parse.lac} directive.
7487
7488@deffn {Directive} {%define parse.lac @var{VALUE}}
7489Enable LAC to improve syntax error handling.
7490@itemize
7491@item @code{none} (default)
7492@item @code{full}
7493@end itemize
7494(This feature is experimental. More user feedback will help to stabilize
7495it. Moreover, it is currently only available for deterministic parsers in
7496C.)
7497@end deffn
7498
7499Conceptually, the LAC mechanism is straight-forward. Whenever the parser
7500fetches a new token from the scanner so that it can determine the next
7501parser action, it immediately suspends normal parsing and performs an
7502exploratory parse using a temporary copy of the normal parser state stack.
7503During this exploratory parse, the parser does not perform user semantic
7504actions. If the exploratory parse reaches a shift action, normal parsing
7505then resumes on the normal parser stacks. If the exploratory parse reaches
7506an error instead, the parser reports a syntax error. If verbose syntax
7507error messages are enabled, the parser must then discover the list of
7508expected tokens, so it performs a separate exploratory parse for each token
7509in the grammar.
7510
7511There is one subtlety about the use of LAC. That is, when in a consistent
7512parser state with a default reduction, the parser will not attempt to fetch
7513a token from the scanner because no lookahead is needed to determine the
7514next parser action. Thus, whether default reductions are enabled in
7515consistent states (@pxref{Default Reductions}) affects how soon the parser
7516detects a syntax error: immediately when it @emph{reaches} an erroneous
7517token or when it eventually @emph{needs} that token as a lookahead to
7518determine the next parser action. The latter behavior is probably more
7519intuitive, so Bison currently provides no way to achieve the former behavior
7520while default reductions are enabled in consistent states.
7521
7522Thus, when LAC is in use, for some fixed decision of whether to enable
7523default reductions in consistent states, canonical LR and IELR behave almost
7524exactly the same for both syntactically acceptable and syntactically
7525unacceptable input. While LALR still does not support the full
7526language-recognition power of canonical LR and IELR, LAC at least enables
7527LALR's syntax error handling to correctly reflect LALR's
7528language-recognition power.
7529
7530There are a few caveats to consider when using LAC:
7531
7532@itemize
7533@item Infinite parsing loops.
7534
7535IELR plus LAC does have one shortcoming relative to canonical LR. Some
7536parsers generated by Bison can loop infinitely. LAC does not fix infinite
7537parsing loops that occur between encountering a syntax error and detecting
7538it, but enabling canonical LR or disabling default reductions sometimes
7539does.
7540
7541@item Verbose error message limitations.
7542
7543Because of internationalization considerations, Bison-generated parsers
7544limit the size of the expected token list they are willing to report in a
7545verbose syntax error message. If the number of expected tokens exceeds that
7546limit, the list is simply dropped from the message. Enabling LAC can
7547increase the size of the list and thus cause the parser to drop it. Of
7548course, dropping the list is better than reporting an incorrect list.
7549
7550@item Performance.
7551
7552Because LAC requires many parse actions to be performed twice, it can have a
7553performance penalty. However, not all parse actions must be performed
7554twice. Specifically, during a series of default reductions in consistent
7555states and shift actions, the parser never has to initiate an exploratory
7556parse. Moreover, the most time-consuming tasks in a parse are often the
7557file I/O, the lexical analysis performed by the scanner, and the user's
7558semantic actions, but none of these are performed during the exploratory
7559parse. Finally, the base of the temporary stack used during an exploratory
7560parse is a pointer into the normal parser state stack so that the stack is
7561never physically copied. In our experience, the performance penalty of LAC
7562has proven insignificant for practical grammars.
7563@end itemize
7564
709c7d11
JD
7565While the LAC algorithm shares techniques that have been recognized in the
7566parser community for years, for the publication that introduces LAC,
7567@pxref{Bibliography,,Denny 2010 May}.
15e46f2d 7568
7fceb615
JD
7569@node Unreachable States
7570@subsection Unreachable States
7571@findex %define lr.keep-unreachable-states
7572@cindex unreachable states
7573
7574If there exists no sequence of transitions from the parser's start state to
7575some state @var{s}, then Bison considers @var{s} to be an @dfn{unreachable
7576state}. A state can become unreachable during conflict resolution if Bison
7577disables a shift action leading to it from a predecessor state.
7578
7579By default, Bison removes unreachable states from the parser after conflict
7580resolution because they are useless in the generated parser. However,
7581keeping unreachable states is sometimes useful when trying to understand the
7582relationship between the parser and the grammar.
7583
7584@deffn {Directive} {%define lr.keep-unreachable-states @var{VALUE}}
7585Request that Bison allow unreachable states to remain in the parser tables.
7586@var{VALUE} must be a Boolean. The default is @code{false}.
7587@end deffn
7588
7589There are a few caveats to consider:
7590
7591@itemize @bullet
7592@item Missing or extraneous warnings.
7593
7594Unreachable states may contain conflicts and may use rules not used in any
7595other state. Thus, keeping unreachable states may induce warnings that are
7596irrelevant to your parser's behavior, and it may eliminate warnings that are
7597relevant. Of course, the change in warnings may actually be relevant to a
7598parser table analysis that wants to keep unreachable states, so this
7599behavior will likely remain in future Bison releases.
7600
7601@item Other useless states.
7602
7603While Bison is able to remove unreachable states, it is not guaranteed to
7604remove other kinds of useless states. Specifically, when Bison disables
7605reduce actions during conflict resolution, some goto actions may become
7606useless, and thus some additional states may become useless. If Bison were
7607to compute which goto actions were useless and then disable those actions,
7608it could identify such states as unreachable and then remove those states.
7609However, Bison does not compute which goto actions are useless.
7610@end itemize
7611
fae437e8 7612@node Generalized LR Parsing
8a4281b9
JD
7613@section Generalized LR (GLR) Parsing
7614@cindex GLR parsing
7615@cindex generalized LR (GLR) parsing
676385e2 7616@cindex ambiguous grammars
9d9b8b70 7617@cindex nondeterministic parsing
676385e2 7618
fae437e8
AD
7619Bison produces @emph{deterministic} parsers that choose uniquely
7620when to reduce and which reduction to apply
742e4900 7621based on a summary of the preceding input and on one extra token of lookahead.
676385e2
PH
7622As a result, normal Bison handles a proper subset of the family of
7623context-free languages.
fae437e8 7624Ambiguous grammars, since they have strings with more than one possible
676385e2
PH
7625sequence of reductions cannot have deterministic parsers in this sense.
7626The same is true of languages that require more than one symbol of
742e4900 7627lookahead, since the parser lacks the information necessary to make a
676385e2 7628decision at the point it must be made in a shift-reduce parser.
cc09e5be 7629Finally, as previously mentioned (@pxref{Mysterious Conflicts}),
eb45ef3b 7630there are languages where Bison's default choice of how to
676385e2
PH
7631summarize the input seen so far loses necessary information.
7632
7633When you use the @samp{%glr-parser} declaration in your grammar file,
7634Bison generates a parser that uses a different algorithm, called
8a4281b9 7635Generalized LR (or GLR). A Bison GLR
c827f760 7636parser uses the same basic
676385e2
PH
7637algorithm for parsing as an ordinary Bison parser, but behaves
7638differently in cases where there is a shift-reduce conflict that has not
fae437e8 7639been resolved by precedence rules (@pxref{Precedence}) or a
8a4281b9 7640reduce-reduce conflict. When a GLR parser encounters such a
c827f760 7641situation, it
fae437e8 7642effectively @emph{splits} into a several parsers, one for each possible
676385e2
PH
7643shift or reduction. These parsers then proceed as usual, consuming
7644tokens in lock-step. Some of the stacks may encounter other conflicts
fae437e8 7645and split further, with the result that instead of a sequence of states,
8a4281b9 7646a Bison GLR parsing stack is what is in effect a tree of states.
676385e2
PH
7647
7648In effect, each stack represents a guess as to what the proper parse
7649is. Additional input may indicate that a guess was wrong, in which case
7650the appropriate stack silently disappears. Otherwise, the semantics
fae437e8 7651actions generated in each stack are saved, rather than being executed
676385e2 7652immediately. When a stack disappears, its saved semantic actions never
fae437e8 7653get executed. When a reduction causes two stacks to become equivalent,
676385e2
PH
7654their sets of semantic actions are both saved with the state that
7655results from the reduction. We say that two stacks are equivalent
fae437e8 7656when they both represent the same sequence of states,
676385e2
PH
7657and each pair of corresponding states represents a
7658grammar symbol that produces the same segment of the input token
7659stream.
7660
7661Whenever the parser makes a transition from having multiple
eb45ef3b 7662states to having one, it reverts to the normal deterministic parsing
676385e2
PH
7663algorithm, after resolving and executing the saved-up actions.
7664At this transition, some of the states on the stack will have semantic
7665values that are sets (actually multisets) of possible actions. The
7666parser tries to pick one of the actions by first finding one whose rule
7667has the highest dynamic precedence, as set by the @samp{%dprec}
fae437e8 7668declaration. Otherwise, if the alternative actions are not ordered by
676385e2 7669precedence, but there the same merging function is declared for both
fae437e8 7670rules by the @samp{%merge} declaration,
676385e2
PH
7671Bison resolves and evaluates both and then calls the merge function on
7672the result. Otherwise, it reports an ambiguity.
7673
8a4281b9
JD
7674It is possible to use a data structure for the GLR parsing tree that
7675permits the processing of any LR(1) grammar in linear time (in the
c827f760 7676size of the input), any unambiguous (not necessarily
8a4281b9 7677LR(1)) grammar in
fae437e8 7678quadratic worst-case time, and any general (possibly ambiguous)
676385e2
PH
7679context-free grammar in cubic worst-case time. However, Bison currently
7680uses a simpler data structure that requires time proportional to the
7681length of the input times the maximum number of stacks required for any
9d9b8b70 7682prefix of the input. Thus, really ambiguous or nondeterministic
676385e2
PH
7683grammars can require exponential time and space to process. Such badly
7684behaving examples, however, are not generally of practical interest.
9d9b8b70 7685Usually, nondeterminism in a grammar is local---the parser is ``in
676385e2 7686doubt'' only for a few tokens at a time. Therefore, the current data
8a4281b9 7687structure should generally be adequate. On LR(1) portions of a
eb45ef3b 7688grammar, in particular, it is only slightly slower than with the
8a4281b9 7689deterministic LR(1) Bison parser.
676385e2 7690
5e528941
JD
7691For a more detailed exposition of GLR parsers, @pxref{Bibliography,,Scott
76922000}.
f6481e2f 7693
1a059451
PE
7694@node Memory Management
7695@section Memory Management, and How to Avoid Memory Exhaustion
7696@cindex memory exhaustion
7697@cindex memory management
bfa74976
RS
7698@cindex stack overflow
7699@cindex parser stack overflow
7700@cindex overflow of parser stack
7701
1a059451 7702The Bison parser stack can run out of memory if too many tokens are shifted and
bfa74976 7703not reduced. When this happens, the parser function @code{yyparse}
1a059451 7704calls @code{yyerror} and then returns 2.
bfa74976 7705
c827f760 7706Because Bison parsers have growing stacks, hitting the upper limit
d1a1114f
AD
7707usually results from using a right recursion instead of a left
7708recursion, @xref{Recursion, ,Recursive Rules}.
7709
bfa74976
RS
7710@vindex YYMAXDEPTH
7711By defining the macro @code{YYMAXDEPTH}, you can control how deep the
1a059451 7712parser stack can become before memory is exhausted. Define the
bfa74976
RS
7713macro with a value that is an integer. This value is the maximum number
7714of tokens that can be shifted (and not reduced) before overflow.
bfa74976
RS
7715
7716The stack space allowed is not necessarily allocated. If you specify a
1a059451 7717large value for @code{YYMAXDEPTH}, the parser normally allocates a small
bfa74976
RS
7718stack at first, and then makes it bigger by stages as needed. This
7719increasing allocation happens automatically and silently. Therefore,
7720you do not need to make @code{YYMAXDEPTH} painfully small merely to save
7721space for ordinary inputs that do not need much stack.
7722
d7e14fc0
PE
7723However, do not allow @code{YYMAXDEPTH} to be a value so large that
7724arithmetic overflow could occur when calculating the size of the stack
7725space. Also, do not allow @code{YYMAXDEPTH} to be less than
7726@code{YYINITDEPTH}.
7727
bfa74976
RS
7728@cindex default stack limit
7729The default value of @code{YYMAXDEPTH}, if you do not define it, is
773010000.
7731
7732@vindex YYINITDEPTH
7733You can control how much stack is allocated initially by defining the
eb45ef3b
JD
7734macro @code{YYINITDEPTH} to a positive integer. For the deterministic
7735parser in C, this value must be a compile-time constant
d7e14fc0
PE
7736unless you are assuming C99 or some other target language or compiler
7737that allows variable-length arrays. The default is 200.
7738
1a059451 7739Do not allow @code{YYINITDEPTH} to be greater than @code{YYMAXDEPTH}.
bfa74976 7740
20be2f92
PH
7741You can generate a deterministic parser containing C++ user code from
7742the default (C) skeleton, as well as from the C++ skeleton
7743(@pxref{C++ Parsers}). However, if you do use the default skeleton
7744and want to allow the parsing stack to grow,
7745be careful not to use semantic types or location types that require
7746non-trivial copy constructors.
7747The C skeleton bypasses these constructors when copying data to
7748new, larger stacks.
d1a1114f 7749
342b8b6e 7750@node Error Recovery
bfa74976
RS
7751@chapter Error Recovery
7752@cindex error recovery
7753@cindex recovery from errors
7754
6e649e65 7755It is not usually acceptable to have a program terminate on a syntax
bfa74976
RS
7756error. For example, a compiler should recover sufficiently to parse the
7757rest of the input file and check it for errors; a calculator should accept
7758another expression.
7759
7760In a simple interactive command parser where each input is one line, it may
7761be sufficient to allow @code{yyparse} to return 1 on error and have the
7762caller ignore the rest of the input line when that happens (and then call
7763@code{yyparse} again). But this is inadequate for a compiler, because it
7764forgets all the syntactic context leading up to the error. A syntax error
7765deep within a function in the compiler input should not cause the compiler
7766to treat the following line like the beginning of a source file.
7767
7768@findex error
7769You can define how to recover from a syntax error by writing rules to
7770recognize the special token @code{error}. This is a terminal symbol that
7771is always defined (you need not declare it) and reserved for error
7772handling. The Bison parser generates an @code{error} token whenever a
7773syntax error happens; if you have provided a rule to recognize this token
13863333 7774in the current context, the parse can continue.
bfa74976
RS
7775
7776For example:
7777
7778@example
7779stmnts: /* empty string */
7780 | stmnts '\n'
7781 | stmnts exp '\n'
7782 | stmnts error '\n'
7783@end example
7784
7785The fourth rule in this example says that an error followed by a newline
7786makes a valid addition to any @code{stmnts}.
7787
7788What happens if a syntax error occurs in the middle of an @code{exp}? The
7789error recovery rule, interpreted strictly, applies to the precise sequence
7790of a @code{stmnts}, an @code{error} and a newline. If an error occurs in
7791the middle of an @code{exp}, there will probably be some additional tokens
7792and subexpressions on the stack after the last @code{stmnts}, and there
7793will be tokens to read before the next newline. So the rule is not
7794applicable in the ordinary way.
7795
7796But Bison can force the situation to fit the rule, by discarding part of
72f889cc
AD
7797the semantic context and part of the input. First it discards states
7798and objects from the stack until it gets back to a state in which the
bfa74976 7799@code{error} token is acceptable. (This means that the subexpressions
72f889cc
AD
7800already parsed are discarded, back to the last complete @code{stmnts}.)
7801At this point the @code{error} token can be shifted. Then, if the old
742e4900 7802lookahead token is not acceptable to be shifted next, the parser reads
bfa74976 7803tokens and discards them until it finds a token which is acceptable. In
72f889cc
AD
7804this example, Bison reads and discards input until the next newline so
7805that the fourth rule can apply. Note that discarded symbols are
7806possible sources of memory leaks, see @ref{Destructor Decl, , Freeing
7807Discarded Symbols}, for a means to reclaim this memory.
bfa74976
RS
7808
7809The choice of error rules in the grammar is a choice of strategies for
7810error recovery. A simple and useful strategy is simply to skip the rest of
7811the current input line or current statement if an error is detected:
7812
7813@example
72d2299c 7814stmnt: error ';' /* On error, skip until ';' is read. */
bfa74976
RS
7815@end example
7816
7817It is also useful to recover to the matching close-delimiter of an
7818opening-delimiter that has already been parsed. Otherwise the
7819close-delimiter will probably appear to be unmatched, and generate another,
7820spurious error message:
7821
7822@example
7823primary: '(' expr ')'
7824 | '(' error ')'
7825 @dots{}
7826 ;
7827@end example
7828
7829Error recovery strategies are necessarily guesses. When they guess wrong,
7830one syntax error often leads to another. In the above example, the error
7831recovery rule guesses that an error is due to bad input within one
7832@code{stmnt}. Suppose that instead a spurious semicolon is inserted in the
7833middle of a valid @code{stmnt}. After the error recovery rule recovers
7834from the first error, another syntax error will be found straightaway,
7835since the text following the spurious semicolon is also an invalid
7836@code{stmnt}.
7837
7838To prevent an outpouring of error messages, the parser will output no error
7839message for another syntax error that happens shortly after the first; only
7840after three consecutive input tokens have been successfully shifted will
7841error messages resume.
7842
7843Note that rules which accept the @code{error} token may have actions, just
7844as any other rules can.
7845
7846@findex yyerrok
7847You can make error messages resume immediately by using the macro
7848@code{yyerrok} in an action. If you do this in the error rule's action, no
7849error messages will be suppressed. This macro requires no arguments;
7850@samp{yyerrok;} is a valid C statement.
7851
7852@findex yyclearin
742e4900 7853The previous lookahead token is reanalyzed immediately after an error. If
bfa74976
RS
7854this is unacceptable, then the macro @code{yyclearin} may be used to clear
7855this token. Write the statement @samp{yyclearin;} in the error rule's
7856action.
32c29292 7857@xref{Action Features, ,Special Features for Use in Actions}.
bfa74976 7858
6e649e65 7859For example, suppose that on a syntax error, an error handling routine is
bfa74976
RS
7860called that advances the input stream to some point where parsing should
7861once again commence. The next symbol returned by the lexical scanner is
742e4900 7862probably correct. The previous lookahead token ought to be discarded
bfa74976
RS
7863with @samp{yyclearin;}.
7864
7865@vindex YYRECOVERING
02103984
PE
7866The expression @code{YYRECOVERING ()} yields 1 when the parser
7867is recovering from a syntax error, and 0 otherwise.
7868Syntax error diagnostics are suppressed while recovering from a syntax
7869error.
bfa74976 7870
342b8b6e 7871@node Context Dependency
bfa74976
RS
7872@chapter Handling Context Dependencies
7873
7874The Bison paradigm is to parse tokens first, then group them into larger
7875syntactic units. In many languages, the meaning of a token is affected by
7876its context. Although this violates the Bison paradigm, certain techniques
7877(known as @dfn{kludges}) may enable you to write Bison parsers for such
7878languages.
7879
7880@menu
7881* Semantic Tokens:: Token parsing can depend on the semantic context.
7882* Lexical Tie-ins:: Token parsing can depend on the syntactic context.
7883* Tie-in Recovery:: Lexical tie-ins have implications for how
7884 error recovery rules must be written.
7885@end menu
7886
7887(Actually, ``kludge'' means any technique that gets its job done but is
7888neither clean nor robust.)
7889
342b8b6e 7890@node Semantic Tokens
bfa74976
RS
7891@section Semantic Info in Token Types
7892
7893The C language has a context dependency: the way an identifier is used
7894depends on what its current meaning is. For example, consider this:
7895
7896@example
7897foo (x);
7898@end example
7899
7900This looks like a function call statement, but if @code{foo} is a typedef
7901name, then this is actually a declaration of @code{x}. How can a Bison
7902parser for C decide how to parse this input?
7903
8a4281b9 7904The method used in GNU C is to have two different token types,
bfa74976
RS
7905@code{IDENTIFIER} and @code{TYPENAME}. When @code{yylex} finds an
7906identifier, it looks up the current declaration of the identifier in order
7907to decide which token type to return: @code{TYPENAME} if the identifier is
7908declared as a typedef, @code{IDENTIFIER} otherwise.
7909
7910The grammar rules can then express the context dependency by the choice of
7911token type to recognize. @code{IDENTIFIER} is accepted as an expression,
7912but @code{TYPENAME} is not. @code{TYPENAME} can start a declaration, but
7913@code{IDENTIFIER} cannot. In contexts where the meaning of the identifier
7914is @emph{not} significant, such as in declarations that can shadow a
7915typedef name, either @code{TYPENAME} or @code{IDENTIFIER} is
7916accepted---there is one rule for each of the two token types.
7917
7918This technique is simple to use if the decision of which kinds of
7919identifiers to allow is made at a place close to where the identifier is
7920parsed. But in C this is not always so: C allows a declaration to
7921redeclare a typedef name provided an explicit type has been specified
7922earlier:
7923
7924@example
3a4f411f
PE
7925typedef int foo, bar;
7926int baz (void)
7927@{
7928 static bar (bar); /* @r{redeclare @code{bar} as static variable} */
7929 extern foo foo (foo); /* @r{redeclare @code{foo} as function} */
7930 return foo (bar);
7931@}
bfa74976
RS
7932@end example
7933
7934Unfortunately, the name being declared is separated from the declaration
7935construct itself by a complicated syntactic structure---the ``declarator''.
7936
9ecbd125 7937As a result, part of the Bison parser for C needs to be duplicated, with
14ded682
AD
7938all the nonterminal names changed: once for parsing a declaration in
7939which a typedef name can be redefined, and once for parsing a
7940declaration in which that can't be done. Here is a part of the
7941duplication, with actions omitted for brevity:
bfa74976
RS
7942
7943@example
7944initdcl:
7945 declarator maybeasm '='
7946 init
7947 | declarator maybeasm
7948 ;
7949
7950notype_initdcl:
7951 notype_declarator maybeasm '='
7952 init
7953 | notype_declarator maybeasm
7954 ;
7955@end example
7956
7957@noindent
7958Here @code{initdcl} can redeclare a typedef name, but @code{notype_initdcl}
7959cannot. The distinction between @code{declarator} and
7960@code{notype_declarator} is the same sort of thing.
7961
7962There is some similarity between this technique and a lexical tie-in
7963(described next), in that information which alters the lexical analysis is
7964changed during parsing by other parts of the program. The difference is
7965here the information is global, and is used for other purposes in the
7966program. A true lexical tie-in has a special-purpose flag controlled by
7967the syntactic context.
7968
342b8b6e 7969@node Lexical Tie-ins
bfa74976
RS
7970@section Lexical Tie-ins
7971@cindex lexical tie-in
7972
7973One way to handle context-dependency is the @dfn{lexical tie-in}: a flag
7974which is set by Bison actions, whose purpose is to alter the way tokens are
7975parsed.
7976
7977For example, suppose we have a language vaguely like C, but with a special
7978construct @samp{hex (@var{hex-expr})}. After the keyword @code{hex} comes
7979an expression in parentheses in which all integers are hexadecimal. In
7980particular, the token @samp{a1b} must be treated as an integer rather than
7981as an identifier if it appears in that context. Here is how you can do it:
7982
7983@example
7984@group
7985%@{
38a92d50
PE
7986 int hexflag;
7987 int yylex (void);
7988 void yyerror (char const *);
bfa74976
RS
7989%@}
7990%%
7991@dots{}
7992@end group
7993@group
7994expr: IDENTIFIER
7995 | constant
7996 | HEX '('
7997 @{ hexflag = 1; @}
7998 expr ')'
7999 @{ hexflag = 0;
8000 $$ = $4; @}
8001 | expr '+' expr
8002 @{ $$ = make_sum ($1, $3); @}
8003 @dots{}
8004 ;
8005@end group
8006
8007@group
8008constant:
8009 INTEGER
8010 | STRING
8011 ;
8012@end group
8013@end example
8014
8015@noindent
8016Here we assume that @code{yylex} looks at the value of @code{hexflag}; when
8017it is nonzero, all integers are parsed in hexadecimal, and tokens starting
8018with letters are parsed as integers if possible.
8019
ff7571c0
JD
8020The declaration of @code{hexflag} shown in the prologue of the grammar
8021file is needed to make it accessible to the actions (@pxref{Prologue,
8022,The Prologue}). You must also write the code in @code{yylex} to obey
8023the flag.
bfa74976 8024
342b8b6e 8025@node Tie-in Recovery
bfa74976
RS
8026@section Lexical Tie-ins and Error Recovery
8027
8028Lexical tie-ins make strict demands on any error recovery rules you have.
8029@xref{Error Recovery}.
8030
8031The reason for this is that the purpose of an error recovery rule is to
8032abort the parsing of one construct and resume in some larger construct.
8033For example, in C-like languages, a typical error recovery rule is to skip
8034tokens until the next semicolon, and then start a new statement, like this:
8035
8036@example
8037stmt: expr ';'
8038 | IF '(' expr ')' stmt @{ @dots{} @}
8039 @dots{}
8040 error ';'
8041 @{ hexflag = 0; @}
8042 ;
8043@end example
8044
8045If there is a syntax error in the middle of a @samp{hex (@var{expr})}
8046construct, this error rule will apply, and then the action for the
8047completed @samp{hex (@var{expr})} will never run. So @code{hexflag} would
8048remain set for the entire rest of the input, or until the next @code{hex}
8049keyword, causing identifiers to be misinterpreted as integers.
8050
8051To avoid this problem the error recovery rule itself clears @code{hexflag}.
8052
8053There may also be an error recovery rule that works within expressions.
8054For example, there could be a rule which applies within parentheses
8055and skips to the close-parenthesis:
8056
8057@example
8058@group
8059expr: @dots{}
8060 | '(' expr ')'
8061 @{ $$ = $2; @}
8062 | '(' error ')'
8063 @dots{}
8064@end group
8065@end example
8066
8067If this rule acts within the @code{hex} construct, it is not going to abort
8068that construct (since it applies to an inner level of parentheses within
8069the construct). Therefore, it should not clear the flag: the rest of
8070the @code{hex} construct should be parsed with the flag still in effect.
8071
8072What if there is an error recovery rule which might abort out of the
8073@code{hex} construct or might not, depending on circumstances? There is no
8074way you can write the action to determine whether a @code{hex} construct is
8075being aborted or not. So if you are using a lexical tie-in, you had better
8076make sure your error recovery rules are not of this kind. Each rule must
8077be such that you can be sure that it always will, or always won't, have to
8078clear the flag.
8079
ec3bc396
AD
8080@c ================================================== Debugging Your Parser
8081
342b8b6e 8082@node Debugging
bfa74976 8083@chapter Debugging Your Parser
ec3bc396
AD
8084
8085Developing a parser can be a challenge, especially if you don't
8086understand the algorithm (@pxref{Algorithm, ,The Bison Parser
8087Algorithm}). Even so, sometimes a detailed description of the automaton
8088can help (@pxref{Understanding, , Understanding Your Parser}), or
8089tracing the execution of the parser can give some insight on why it
8090behaves improperly (@pxref{Tracing, , Tracing Your Parser}).
8091
8092@menu
8093* Understanding:: Understanding the structure of your parser.
8094* Tracing:: Tracing the execution of your parser.
8095@end menu
8096
8097@node Understanding
8098@section Understanding Your Parser
8099
8100As documented elsewhere (@pxref{Algorithm, ,The Bison Parser Algorithm})
8101Bison parsers are @dfn{shift/reduce automata}. In some cases (much more
8102frequent than one would hope), looking at this automaton is required to
8103tune or simply fix a parser. Bison provides two different
35fe0834 8104representation of it, either textually or graphically (as a DOT file).
ec3bc396
AD
8105
8106The textual file is generated when the options @option{--report} or
8107@option{--verbose} are specified, see @xref{Invocation, , Invoking
8108Bison}. Its name is made by removing @samp{.tab.c} or @samp{.c} from
ff7571c0
JD
8109the parser implementation file name, and adding @samp{.output}
8110instead. Therefore, if the grammar file is @file{foo.y}, then the
8111parser implementation file is called @file{foo.tab.c} by default. As
8112a consequence, the verbose output file is called @file{foo.output}.
ec3bc396
AD
8113
8114The following grammar file, @file{calc.y}, will be used in the sequel:
8115
8116@example
8117%token NUM STR
8118%left '+' '-'
8119%left '*'
8120%%
8121exp: exp '+' exp
8122 | exp '-' exp
8123 | exp '*' exp
8124 | exp '/' exp
8125 | NUM
8126 ;
8127useless: STR;
8128%%
8129@end example
8130
88bce5a2
AD
8131@command{bison} reports:
8132
8133@example
8f0d265e
JD
8134calc.y: warning: 1 nonterminal useless in grammar
8135calc.y: warning: 1 rule useless in grammar
cff03fb2
JD
8136calc.y:11.1-7: warning: nonterminal useless in grammar: useless
8137calc.y:11.10-12: warning: rule useless in grammar: useless: STR
5a99098d 8138calc.y: conflicts: 7 shift/reduce
88bce5a2
AD
8139@end example
8140
8141When given @option{--report=state}, in addition to @file{calc.tab.c}, it
8142creates a file @file{calc.output} with contents detailed below. The
8143order of the output and the exact presentation might vary, but the
8144interpretation is the same.
ec3bc396
AD
8145
8146The first section includes details on conflicts that were solved thanks
8147to precedence and/or associativity:
8148
8149@example
8150Conflict in state 8 between rule 2 and token '+' resolved as reduce.
8151Conflict in state 8 between rule 2 and token '-' resolved as reduce.
8152Conflict in state 8 between rule 2 and token '*' resolved as shift.
8153@exdent @dots{}
8154@end example
8155
8156@noindent
8157The next section lists states that still have conflicts.
8158
8159@example
5a99098d
PE
8160State 8 conflicts: 1 shift/reduce
8161State 9 conflicts: 1 shift/reduce
8162State 10 conflicts: 1 shift/reduce
8163State 11 conflicts: 4 shift/reduce
ec3bc396
AD
8164@end example
8165
8166@noindent
8167@cindex token, useless
8168@cindex useless token
8169@cindex nonterminal, useless
8170@cindex useless nonterminal
8171@cindex rule, useless
8172@cindex useless rule
8173The next section reports useless tokens, nonterminal and rules. Useless
8174nonterminals and rules are removed in order to produce a smaller parser,
8175but useless tokens are preserved, since they might be used by the
d80fb37a 8176scanner (note the difference between ``useless'' and ``unused''
ec3bc396
AD
8177below):
8178
8179@example
d80fb37a 8180Nonterminals useless in grammar:
ec3bc396
AD
8181 useless
8182
d80fb37a 8183Terminals unused in grammar:
ec3bc396
AD
8184 STR
8185
cff03fb2 8186Rules useless in grammar:
ec3bc396
AD
8187#6 useless: STR;
8188@end example
8189
8190@noindent
8191The next section reproduces the exact grammar that Bison used:
8192
8193@example
8194Grammar
8195
8196 Number, Line, Rule
88bce5a2 8197 0 5 $accept -> exp $end
ec3bc396
AD
8198 1 5 exp -> exp '+' exp
8199 2 6 exp -> exp '-' exp
8200 3 7 exp -> exp '*' exp
8201 4 8 exp -> exp '/' exp
8202 5 9 exp -> NUM
8203@end example
8204
8205@noindent
8206and reports the uses of the symbols:
8207
8208@example
8209Terminals, with rules where they appear
8210
88bce5a2 8211$end (0) 0
ec3bc396
AD
8212'*' (42) 3
8213'+' (43) 1
8214'-' (45) 2
8215'/' (47) 4
8216error (256)
8217NUM (258) 5
8218
8219Nonterminals, with rules where they appear
8220
88bce5a2 8221$accept (8)
ec3bc396
AD
8222 on left: 0
8223exp (9)
8224 on left: 1 2 3 4 5, on right: 0 1 2 3 4
8225@end example
8226
8227@noindent
8228@cindex item
8229@cindex pointed rule
8230@cindex rule, pointed
8231Bison then proceeds onto the automaton itself, describing each state
8232with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
8233item is a production rule together with a point (marked by @samp{.})
8234that the input cursor.
8235
8236@example
8237state 0
8238
88bce5a2 8239 $accept -> . exp $ (rule 0)
ec3bc396 8240
2a8d363a 8241 NUM shift, and go to state 1
ec3bc396 8242
2a8d363a 8243 exp go to state 2
ec3bc396
AD
8244@end example
8245
8246This reads as follows: ``state 0 corresponds to being at the very
8247beginning of the parsing, in the initial rule, right before the start
8248symbol (here, @code{exp}). When the parser returns to this state right
8249after having reduced a rule that produced an @code{exp}, the control
8250flow jumps to state 2. If there is no such transition on a nonterminal
742e4900 8251symbol, and the lookahead is a @code{NUM}, then this token is shifted on
ec3bc396 8252the parse stack, and the control flow jumps to state 1. Any other
742e4900 8253lookahead triggers a syntax error.''
ec3bc396
AD
8254
8255@cindex core, item set
8256@cindex item set core
8257@cindex kernel, item set
8258@cindex item set core
8259Even though the only active rule in state 0 seems to be rule 0, the
742e4900 8260report lists @code{NUM} as a lookahead token because @code{NUM} can be
ec3bc396
AD
8261at the beginning of any rule deriving an @code{exp}. By default Bison
8262reports the so-called @dfn{core} or @dfn{kernel} of the item set, but if
8263you want to see more detail you can invoke @command{bison} with
8264@option{--report=itemset} to list all the items, include those that can
8265be derived:
8266
8267@example
8268state 0
8269
88bce5a2 8270 $accept -> . exp $ (rule 0)
ec3bc396
AD
8271 exp -> . exp '+' exp (rule 1)
8272 exp -> . exp '-' exp (rule 2)
8273 exp -> . exp '*' exp (rule 3)
8274 exp -> . exp '/' exp (rule 4)
8275 exp -> . NUM (rule 5)
8276
8277 NUM shift, and go to state 1
8278
8279 exp go to state 2
8280@end example
8281
8282@noindent
8283In the state 1...
8284
8285@example
8286state 1
8287
8288 exp -> NUM . (rule 5)
8289
2a8d363a 8290 $default reduce using rule 5 (exp)
ec3bc396
AD
8291@end example
8292
8293@noindent
742e4900 8294the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead token
ec3bc396
AD
8295(@samp{$default}), the parser will reduce it. If it was coming from
8296state 0, then, after this reduction it will return to state 0, and will
8297jump to state 2 (@samp{exp: go to state 2}).
8298
8299@example
8300state 2
8301
88bce5a2 8302 $accept -> exp . $ (rule 0)
ec3bc396
AD
8303 exp -> exp . '+' exp (rule 1)
8304 exp -> exp . '-' exp (rule 2)
8305 exp -> exp . '*' exp (rule 3)
8306 exp -> exp . '/' exp (rule 4)
8307
2a8d363a
AD
8308 $ shift, and go to state 3
8309 '+' shift, and go to state 4
8310 '-' shift, and go to state 5
8311 '*' shift, and go to state 6
8312 '/' shift, and go to state 7
ec3bc396
AD
8313@end example
8314
8315@noindent
8316In state 2, the automaton can only shift a symbol. For instance,
742e4900 8317because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
ec3bc396
AD
8318@samp{+}, it will be shifted on the parse stack, and the automaton
8319control will jump to state 4, corresponding to the item @samp{exp -> exp
8320'+' . exp}. Since there is no default action, any other token than
6e649e65 8321those listed above will trigger a syntax error.
ec3bc396 8322
eb45ef3b 8323@cindex accepting state
ec3bc396
AD
8324The state 3 is named the @dfn{final state}, or the @dfn{accepting
8325state}:
8326
8327@example
8328state 3
8329
88bce5a2 8330 $accept -> exp $ . (rule 0)
ec3bc396 8331
2a8d363a 8332 $default accept
ec3bc396
AD
8333@end example
8334
8335@noindent
8336the initial rule is completed (the start symbol and the end
8337of input were read), the parsing exits successfully.
8338
8339The interpretation of states 4 to 7 is straightforward, and is left to
8340the reader.
8341
8342@example
8343state 4
8344
8345 exp -> exp '+' . exp (rule 1)
8346
2a8d363a 8347 NUM shift, and go to state 1
ec3bc396 8348
2a8d363a 8349 exp go to state 8
ec3bc396
AD
8350
8351state 5
8352
8353 exp -> exp '-' . exp (rule 2)
8354
2a8d363a 8355 NUM shift, and go to state 1
ec3bc396 8356
2a8d363a 8357 exp go to state 9
ec3bc396
AD
8358
8359state 6
8360
8361 exp -> exp '*' . exp (rule 3)
8362
2a8d363a 8363 NUM shift, and go to state 1
ec3bc396 8364
2a8d363a 8365 exp go to state 10
ec3bc396
AD
8366
8367state 7
8368
8369 exp -> exp '/' . exp (rule 4)
8370
2a8d363a 8371 NUM shift, and go to state 1
ec3bc396 8372
2a8d363a 8373 exp go to state 11
ec3bc396
AD
8374@end example
8375
5a99098d
PE
8376As was announced in beginning of the report, @samp{State 8 conflicts:
83771 shift/reduce}:
ec3bc396
AD
8378
8379@example
8380state 8
8381
8382 exp -> exp . '+' exp (rule 1)
8383 exp -> exp '+' exp . (rule 1)
8384 exp -> exp . '-' exp (rule 2)
8385 exp -> exp . '*' exp (rule 3)
8386 exp -> exp . '/' exp (rule 4)
8387
2a8d363a
AD
8388 '*' shift, and go to state 6
8389 '/' shift, and go to state 7
ec3bc396 8390
2a8d363a
AD
8391 '/' [reduce using rule 1 (exp)]
8392 $default reduce using rule 1 (exp)
ec3bc396
AD
8393@end example
8394
742e4900 8395Indeed, there are two actions associated to the lookahead @samp{/}:
ec3bc396
AD
8396either shifting (and going to state 7), or reducing rule 1. The
8397conflict means that either the grammar is ambiguous, or the parser lacks
8398information to make the right decision. Indeed the grammar is
8399ambiguous, as, since we did not specify the precedence of @samp{/}, the
8400sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM /
8401NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM + NUM) /
8402NUM}, which corresponds to reducing rule 1.
8403
eb45ef3b 8404Because in deterministic parsing a single decision can be made, Bison
ec3bc396
AD
8405arbitrarily chose to disable the reduction, see @ref{Shift/Reduce, ,
8406Shift/Reduce Conflicts}. Discarded actions are reported in between
8407square brackets.
8408
8409Note that all the previous states had a single possible action: either
8410shifting the next token and going to the corresponding state, or
8411reducing a single rule. In the other cases, i.e., when shifting
8412@emph{and} reducing is possible or when @emph{several} reductions are
742e4900
JD
8413possible, the lookahead is required to select the action. State 8 is
8414one such state: if the lookahead is @samp{*} or @samp{/} then the action
ec3bc396
AD
8415is shifting, otherwise the action is reducing rule 1. In other words,
8416the first two items, corresponding to rule 1, are not eligible when the
742e4900 8417lookahead token is @samp{*}, since we specified that @samp{*} has higher
8dd162d3 8418precedence than @samp{+}. More generally, some items are eligible only
742e4900
JD
8419with some set of possible lookahead tokens. When run with
8420@option{--report=lookahead}, Bison specifies these lookahead tokens:
ec3bc396
AD
8421
8422@example
8423state 8
8424
88c78747 8425 exp -> exp . '+' exp (rule 1)
ec3bc396
AD
8426 exp -> exp '+' exp . [$, '+', '-', '/'] (rule 1)
8427 exp -> exp . '-' exp (rule 2)
8428 exp -> exp . '*' exp (rule 3)
8429 exp -> exp . '/' exp (rule 4)
8430
8431 '*' shift, and go to state 6
8432 '/' shift, and go to state 7
8433
8434 '/' [reduce using rule 1 (exp)]
8435 $default reduce using rule 1 (exp)
8436@end example
8437
8438The remaining states are similar:
8439
8440@example
8441state 9
8442
8443 exp -> exp . '+' exp (rule 1)
8444 exp -> exp . '-' exp (rule 2)
8445 exp -> exp '-' exp . (rule 2)
8446 exp -> exp . '*' exp (rule 3)
8447 exp -> exp . '/' exp (rule 4)
8448
2a8d363a
AD
8449 '*' shift, and go to state 6
8450 '/' shift, and go to state 7
ec3bc396 8451
2a8d363a
AD
8452 '/' [reduce using rule 2 (exp)]
8453 $default reduce using rule 2 (exp)
ec3bc396
AD
8454
8455state 10
8456
8457 exp -> exp . '+' exp (rule 1)
8458 exp -> exp . '-' exp (rule 2)
8459 exp -> exp . '*' exp (rule 3)
8460 exp -> exp '*' exp . (rule 3)
8461 exp -> exp . '/' exp (rule 4)
8462
2a8d363a 8463 '/' shift, and go to state 7
ec3bc396 8464
2a8d363a
AD
8465 '/' [reduce using rule 3 (exp)]
8466 $default reduce using rule 3 (exp)
ec3bc396
AD
8467
8468state 11
8469
8470 exp -> exp . '+' exp (rule 1)
8471 exp -> exp . '-' exp (rule 2)
8472 exp -> exp . '*' exp (rule 3)
8473 exp -> exp . '/' exp (rule 4)
8474 exp -> exp '/' exp . (rule 4)
8475
2a8d363a
AD
8476 '+' shift, and go to state 4
8477 '-' shift, and go to state 5
8478 '*' shift, and go to state 6
8479 '/' shift, and go to state 7
ec3bc396 8480
2a8d363a
AD
8481 '+' [reduce using rule 4 (exp)]
8482 '-' [reduce using rule 4 (exp)]
8483 '*' [reduce using rule 4 (exp)]
8484 '/' [reduce using rule 4 (exp)]
8485 $default reduce using rule 4 (exp)
ec3bc396
AD
8486@end example
8487
8488@noindent
fa7e68c3
PE
8489Observe that state 11 contains conflicts not only due to the lack of
8490precedence of @samp{/} with respect to @samp{+}, @samp{-}, and
8491@samp{*}, but also because the
ec3bc396
AD
8492associativity of @samp{/} is not specified.
8493
8494
8495@node Tracing
8496@section Tracing Your Parser
bfa74976
RS
8497@findex yydebug
8498@cindex debugging
8499@cindex tracing the parser
8500
8501If a Bison grammar compiles properly but doesn't do what you want when it
8502runs, the @code{yydebug} parser-trace feature can help you figure out why.
8503
3ded9a63
AD
8504There are several means to enable compilation of trace facilities:
8505
8506@table @asis
8507@item the macro @code{YYDEBUG}
8508@findex YYDEBUG
8509Define the macro @code{YYDEBUG} to a nonzero value when you compile the
8a4281b9 8510parser. This is compliant with POSIX Yacc. You could use
3ded9a63
AD
8511@samp{-DYYDEBUG=1} as a compiler option or you could put @samp{#define
8512YYDEBUG 1} in the prologue of the grammar file (@pxref{Prologue, , The
8513Prologue}).
8514
8515@item the option @option{-t}, @option{--debug}
8516Use the @samp{-t} option when you run Bison (@pxref{Invocation,
8a4281b9 8517,Invoking Bison}). This is POSIX compliant too.
3ded9a63
AD
8518
8519@item the directive @samp{%debug}
8520@findex %debug
fa819509
AD
8521Add the @code{%debug} directive (@pxref{Decl Summary, ,Bison Declaration
8522Summary}). This Bison extension is maintained for backward
8523compatibility with previous versions of Bison.
8524
8525@item the variable @samp{parse.trace}
8526@findex %define parse.trace
35c1e5f0
JD
8527Add the @samp{%define parse.trace} directive (@pxref{%define
8528Summary,,parse.trace}), or pass the @option{-Dparse.trace} option
fa819509 8529(@pxref{Bison Options}). This is a Bison extension, which is especially
35c1e5f0
JD
8530useful for languages that don't use a preprocessor. Unless POSIX and Yacc
8531portability matter to you, this is the preferred solution.
3ded9a63
AD
8532@end table
8533
fa819509 8534We suggest that you always enable the trace option so that debugging is
3ded9a63 8535always possible.
bfa74976 8536
02a81e05 8537The trace facility outputs messages with macro calls of the form
e2742e46 8538@code{YYFPRINTF (stderr, @var{format}, @var{args})} where
f57a7536 8539@var{format} and @var{args} are the usual @code{printf} format and variadic
4947ebdb
PE
8540arguments. If you define @code{YYDEBUG} to a nonzero value but do not
8541define @code{YYFPRINTF}, @code{<stdio.h>} is automatically included
9c437126 8542and @code{YYFPRINTF} is defined to @code{fprintf}.
bfa74976
RS
8543
8544Once you have compiled the program with trace facilities, the way to
8545request a trace is to store a nonzero value in the variable @code{yydebug}.
8546You can do this by making the C code do it (in @code{main}, perhaps), or
8547you can alter the value with a C debugger.
8548
8549Each step taken by the parser when @code{yydebug} is nonzero produces a
8550line or two of trace information, written on @code{stderr}. The trace
8551messages tell you these things:
8552
8553@itemize @bullet
8554@item
8555Each time the parser calls @code{yylex}, what kind of token was read.
8556
8557@item
8558Each time a token is shifted, the depth and complete contents of the
8559state stack (@pxref{Parser States}).
8560
8561@item
8562Each time a rule is reduced, which rule it is, and the complete contents
8563of the state stack afterward.
8564@end itemize
8565
8566To make sense of this information, it helps to refer to the listing file
704a47c4
AD
8567produced by the Bison @samp{-v} option (@pxref{Invocation, ,Invoking
8568Bison}). This file shows the meaning of each state in terms of
8569positions in various rules, and also what each state will do with each
8570possible input token. As you read the successive trace messages, you
8571can see that the parser is functioning according to its specification in
8572the listing file. Eventually you will arrive at the place where
8573something undesirable happens, and you will see which parts of the
8574grammar are to blame.
bfa74976 8575
ff7571c0
JD
8576The parser implementation file is a C program and you can use C
8577debuggers on it, but it's not easy to interpret what it is doing. The
8578parser function is a finite-state machine interpreter, and aside from
8579the actions it executes the same code over and over. Only the values
8580of variables show where in the grammar it is working.
bfa74976
RS
8581
8582@findex YYPRINT
8583The debugging information normally gives the token type of each token
8584read, but not its semantic value. You can optionally define a macro
8585named @code{YYPRINT} to provide a way to print the value. If you define
8586@code{YYPRINT}, it should take three arguments. The parser will pass a
8587standard I/O stream, the numeric code for the token type, and the token
8588value (from @code{yylval}).
8589
8590Here is an example of @code{YYPRINT} suitable for the multi-function
f5f419de 8591calculator (@pxref{Mfcalc Declarations, ,Declarations for @code{mfcalc}}):
bfa74976
RS
8592
8593@smallexample
38a92d50
PE
8594%@{
8595 static void print_token_value (FILE *, int, YYSTYPE);
8596 #define YYPRINT(file, type, value) print_token_value (file, type, value)
8597%@}
8598
8599@dots{} %% @dots{} %% @dots{}
bfa74976
RS
8600
8601static void
831d3c99 8602print_token_value (FILE *file, int type, YYSTYPE value)
bfa74976
RS
8603@{
8604 if (type == VAR)
d3c4e709 8605 fprintf (file, "%s", value.tptr->name);
bfa74976 8606 else if (type == NUM)
d3c4e709 8607 fprintf (file, "%d", value.val);
bfa74976
RS
8608@}
8609@end smallexample
8610
ec3bc396
AD
8611@c ================================================= Invoking Bison
8612
342b8b6e 8613@node Invocation
bfa74976
RS
8614@chapter Invoking Bison
8615@cindex invoking Bison
8616@cindex Bison invocation
8617@cindex options for invoking Bison
8618
8619The usual way to invoke Bison is as follows:
8620
8621@example
8622bison @var{infile}
8623@end example
8624
8625Here @var{infile} is the grammar file name, which usually ends in
ff7571c0
JD
8626@samp{.y}. The parser implementation file's name is made by replacing
8627the @samp{.y} with @samp{.tab.c} and removing any leading directory.
8628Thus, the @samp{bison foo.y} file name yields @file{foo.tab.c}, and
8629the @samp{bison hack/foo.y} file name yields @file{foo.tab.c}. It's
8630also possible, in case you are writing C++ code instead of C in your
8631grammar file, to name it @file{foo.ypp} or @file{foo.y++}. Then, the
8632output files will take an extension like the given one as input
8633(respectively @file{foo.tab.cpp} and @file{foo.tab.c++}). This
8634feature takes effect with all options that manipulate file names like
234a3be3
AD
8635@samp{-o} or @samp{-d}.
8636
8637For example :
8638
8639@example
8640bison -d @var{infile.yxx}
8641@end example
84163231 8642@noindent
72d2299c 8643will produce @file{infile.tab.cxx} and @file{infile.tab.hxx}, and
234a3be3
AD
8644
8645@example
b56471a6 8646bison -d -o @var{output.c++} @var{infile.y}
234a3be3 8647@end example
84163231 8648@noindent
234a3be3
AD
8649will produce @file{output.c++} and @file{outfile.h++}.
8650
8a4281b9 8651For compatibility with POSIX, the standard Bison
397ec073
PE
8652distribution also contains a shell script called @command{yacc} that
8653invokes Bison with the @option{-y} option.
8654
bfa74976 8655@menu
13863333 8656* Bison Options:: All the options described in detail,
c827f760 8657 in alphabetical order by short options.
bfa74976 8658* Option Cross Key:: Alphabetical list of long options.
93dd49ab 8659* Yacc Library:: Yacc-compatible @code{yylex} and @code{main}.
bfa74976
RS
8660@end menu
8661
342b8b6e 8662@node Bison Options
bfa74976
RS
8663@section Bison Options
8664
8665Bison supports both traditional single-letter options and mnemonic long
8666option names. Long option names are indicated with @samp{--} instead of
8667@samp{-}. Abbreviations for option names are allowed as long as they
8668are unique. When a long option takes an argument, like
8669@samp{--file-prefix}, connect the option name and the argument with
8670@samp{=}.
8671
8672Here is a list of options that can be used with Bison, alphabetized by
8673short option. It is followed by a cross key alphabetized by long
8674option.
8675
89cab50d
AD
8676@c Please, keep this ordered as in `bison --help'.
8677@noindent
8678Operations modes:
8679@table @option
8680@item -h
8681@itemx --help
8682Print a summary of the command-line options to Bison and exit.
bfa74976 8683
89cab50d
AD
8684@item -V
8685@itemx --version
8686Print the version number of Bison and exit.
bfa74976 8687
f7ab6a50
PE
8688@item --print-localedir
8689Print the name of the directory containing locale-dependent data.
8690
a0de5091
JD
8691@item --print-datadir
8692Print the name of the directory containing skeletons and XSLT.
8693
89cab50d
AD
8694@item -y
8695@itemx --yacc
ff7571c0
JD
8696Act more like the traditional Yacc command. This can cause different
8697diagnostics to be generated, and may change behavior in other minor
8698ways. Most importantly, imitate Yacc's output file name conventions,
8699so that the parser implementation file is called @file{y.tab.c}, and
8700the other outputs are called @file{y.output} and @file{y.tab.h}.
8701Also, if generating a deterministic parser in C, generate
8702@code{#define} statements in addition to an @code{enum} to associate
8703token numbers with token names. Thus, the following shell script can
8704substitute for Yacc, and the Bison distribution contains such a script
8705for compatibility with POSIX:
bfa74976 8706
89cab50d 8707@example
397ec073 8708#! /bin/sh
26e06a21 8709bison -y "$@@"
89cab50d 8710@end example
54662697
PE
8711
8712The @option{-y}/@option{--yacc} option is intended for use with
8713traditional Yacc grammars. If your grammar uses a Bison extension
8714like @samp{%glr-parser}, Bison might not be Yacc-compatible even if
8715this option is specified.
8716
1d5b3c08
JD
8717@item -W [@var{category}]
8718@itemx --warnings[=@var{category}]
118d4978
AD
8719Output warnings falling in @var{category}. @var{category} can be one
8720of:
8721@table @code
8722@item midrule-values
8e55b3aa
JD
8723Warn about mid-rule values that are set but not used within any of the actions
8724of the parent rule.
8725For example, warn about unused @code{$2} in:
118d4978
AD
8726
8727@example
8728exp: '1' @{ $$ = 1; @} '+' exp @{ $$ = $1 + $4; @};
8729@end example
8730
8e55b3aa
JD
8731Also warn about mid-rule values that are used but not set.
8732For example, warn about unset @code{$$} in the mid-rule action in:
118d4978
AD
8733
8734@example
8735 exp: '1' @{ $1 = 1; @} '+' exp @{ $$ = $2 + $4; @};
8736@end example
8737
8738These warnings are not enabled by default since they sometimes prove to
8739be false alarms in existing grammars employing the Yacc constructs
8e55b3aa 8740@code{$0} or @code{$-@var{n}} (where @var{n} is some positive integer).
118d4978
AD
8741
8742
8743@item yacc
8a4281b9 8744Incompatibilities with POSIX Yacc.
118d4978
AD
8745
8746@item all
8e55b3aa 8747All the warnings.
118d4978 8748@item none
8e55b3aa 8749Turn off all the warnings.
118d4978 8750@item error
8e55b3aa 8751Treat warnings as errors.
118d4978
AD
8752@end table
8753
8754A category can be turned off by prefixing its name with @samp{no-}. For
93d7dde9 8755instance, @option{-Wno-yacc} will hide the warnings about
8a4281b9 8756POSIX Yacc incompatibilities.
89cab50d
AD
8757@end table
8758
8759@noindent
8760Tuning the parser:
8761
8762@table @option
8763@item -t
8764@itemx --debug
ff7571c0
JD
8765In the parser implementation file, define the macro @code{YYDEBUG} to
87661 if it is not already defined, so that the debugging facilities are
8767compiled. @xref{Tracing, ,Tracing Your Parser}.
89cab50d 8768
58697c6d
AD
8769@item -D @var{name}[=@var{value}]
8770@itemx --define=@var{name}[=@var{value}]
17aed602 8771@itemx -F @var{name}[=@var{value}]
de5ab940
JD
8772@itemx --force-define=@var{name}[=@var{value}]
8773Each of these is equivalent to @samp{%define @var{name} "@var{value}"}
35c1e5f0 8774(@pxref{%define Summary}) except that Bison processes multiple
de5ab940
JD
8775definitions for the same @var{name} as follows:
8776
8777@itemize
8778@item
0b6d43c5
JD
8779Bison quietly ignores all command-line definitions for @var{name} except
8780the last.
de5ab940 8781@item
0b6d43c5
JD
8782If that command-line definition is specified by a @code{-D} or
8783@code{--define}, Bison reports an error for any @code{%define}
8784definition for @var{name}.
de5ab940 8785@item
0b6d43c5
JD
8786If that command-line definition is specified by a @code{-F} or
8787@code{--force-define} instead, Bison quietly ignores all @code{%define}
8788definitions for @var{name}.
8789@item
8790Otherwise, Bison reports an error if there are multiple @code{%define}
8791definitions for @var{name}.
de5ab940
JD
8792@end itemize
8793
8794You should avoid using @code{-F} and @code{--force-define} in your
ff7571c0
JD
8795make files unless you are confident that it is safe to quietly ignore
8796any conflicting @code{%define} that may be added to the grammar file.
58697c6d 8797
0e021770
PE
8798@item -L @var{language}
8799@itemx --language=@var{language}
8800Specify the programming language for the generated parser, as if
8801@code{%language} was specified (@pxref{Decl Summary, , Bison Declaration
59da312b 8802Summary}). Currently supported languages include C, C++, and Java.
e6e704dc 8803@var{language} is case-insensitive.
0e021770 8804
ed4d67dc
JD
8805This option is experimental and its effect may be modified in future
8806releases.
8807
89cab50d 8808@item --locations
d8988b2f 8809Pretend that @code{%locations} was specified. @xref{Decl Summary}.
89cab50d
AD
8810
8811@item -p @var{prefix}
8812@itemx --name-prefix=@var{prefix}
02975b9a 8813Pretend that @code{%name-prefix "@var{prefix}"} was specified.
d8988b2f 8814@xref{Decl Summary}.
bfa74976
RS
8815
8816@item -l
8817@itemx --no-lines
ff7571c0
JD
8818Don't put any @code{#line} preprocessor commands in the parser
8819implementation file. Ordinarily Bison puts them in the parser
8820implementation file so that the C compiler and debuggers will
8821associate errors with your source file, the grammar file. This option
8822causes them to associate errors with the parser implementation file,
8823treating it as an independent source file in its own right.
bfa74976 8824
e6e704dc
JD
8825@item -S @var{file}
8826@itemx --skeleton=@var{file}
a7867f53 8827Specify the skeleton to use, similar to @code{%skeleton}
e6e704dc
JD
8828(@pxref{Decl Summary, , Bison Declaration Summary}).
8829
ed4d67dc
JD
8830@c You probably don't need this option unless you are developing Bison.
8831@c You should use @option{--language} if you want to specify the skeleton for a
8832@c different language, because it is clearer and because it will always
8833@c choose the correct skeleton for non-deterministic or push parsers.
e6e704dc 8834
a7867f53
JD
8835If @var{file} does not contain a @code{/}, @var{file} is the name of a skeleton
8836file in the Bison installation directory.
8837If it does, @var{file} is an absolute file name or a file name relative to the
8838current working directory.
8839This is similar to how most shells resolve commands.
8840
89cab50d
AD
8841@item -k
8842@itemx --token-table
d8988b2f 8843Pretend that @code{%token-table} was specified. @xref{Decl Summary}.
89cab50d 8844@end table
bfa74976 8845
89cab50d
AD
8846@noindent
8847Adjust the output:
bfa74976 8848
89cab50d 8849@table @option
8e55b3aa 8850@item --defines[=@var{file}]
d8988b2f 8851Pretend that @code{%defines} was specified, i.e., write an extra output
6deb4447 8852file containing macro definitions for the token type names defined in
4bfd5e4e 8853the grammar, as well as a few other declarations. @xref{Decl Summary}.
931c7513 8854
8e55b3aa
JD
8855@item -d
8856This is the same as @code{--defines} except @code{-d} does not accept a
8857@var{file} argument since POSIX Yacc requires that @code{-d} can be bundled
8858with other short options.
342b8b6e 8859
89cab50d
AD
8860@item -b @var{file-prefix}
8861@itemx --file-prefix=@var{prefix}
9c437126 8862Pretend that @code{%file-prefix} was specified, i.e., specify prefix to use
72d2299c 8863for all Bison output file names. @xref{Decl Summary}.
bfa74976 8864
ec3bc396
AD
8865@item -r @var{things}
8866@itemx --report=@var{things}
8867Write an extra output file containing verbose description of the comma
8868separated list of @var{things} among:
8869
8870@table @code
8871@item state
8872Description of the grammar, conflicts (resolved and unresolved), and
eb45ef3b 8873parser's automaton.
ec3bc396 8874
742e4900 8875@item lookahead
ec3bc396 8876Implies @code{state} and augments the description of the automaton with
742e4900 8877each rule's lookahead set.
ec3bc396
AD
8878
8879@item itemset
8880Implies @code{state} and augments the description of the automaton with
8881the full set of items for each state, instead of its core only.
8882@end table
8883
1bb2bd75
JD
8884@item --report-file=@var{file}
8885Specify the @var{file} for the verbose description.
8886
bfa74976
RS
8887@item -v
8888@itemx --verbose
9c437126 8889Pretend that @code{%verbose} was specified, i.e., write an extra output
6deb4447 8890file containing verbose descriptions of the grammar and
72d2299c 8891parser. @xref{Decl Summary}.
bfa74976 8892
fa4d969f
PE
8893@item -o @var{file}
8894@itemx --output=@var{file}
ff7571c0 8895Specify the @var{file} for the parser implementation file.
bfa74976 8896
fa4d969f 8897The other output files' names are constructed from @var{file} as
d8988b2f 8898described under the @samp{-v} and @samp{-d} options.
342b8b6e 8899
a7c09cba 8900@item -g [@var{file}]
8e55b3aa 8901@itemx --graph[=@var{file}]
eb45ef3b 8902Output a graphical representation of the parser's
35fe0834 8903automaton computed by Bison, in @uref{http://www.graphviz.org/, Graphviz}
8a4281b9 8904@uref{http://www.graphviz.org/doc/info/lang.html, DOT} format.
8e55b3aa
JD
8905@code{@var{file}} is optional.
8906If omitted and the grammar file is @file{foo.y}, the output file will be
8907@file{foo.dot}.
59da312b 8908
a7c09cba 8909@item -x [@var{file}]
8e55b3aa 8910@itemx --xml[=@var{file}]
eb45ef3b 8911Output an XML report of the parser's automaton computed by Bison.
8e55b3aa 8912@code{@var{file}} is optional.
59da312b
JD
8913If omitted and the grammar file is @file{foo.y}, the output file will be
8914@file{foo.xml}.
8915(The current XML schema is experimental and may evolve.
8916More user feedback will help to stabilize it.)
bfa74976
RS
8917@end table
8918
342b8b6e 8919@node Option Cross Key
bfa74976
RS
8920@section Option Cross Key
8921
8922Here is a list of options, alphabetized by long option, to help you find
de5ab940 8923the corresponding short option and directive.
bfa74976 8924
de5ab940 8925@multitable {@option{--force-define=@var{name}[=@var{value}]}} {@option{-F @var{name}[=@var{value}]}} {@code{%nondeterministic-parser}}
a7c09cba 8926@headitem Long Option @tab Short Option @tab Bison Directive
f4101aa6 8927@include cross-options.texi
aa08666d 8928@end multitable
bfa74976 8929
93dd49ab
PE
8930@node Yacc Library
8931@section Yacc Library
8932
8933The Yacc library contains default implementations of the
8934@code{yyerror} and @code{main} functions. These default
8a4281b9 8935implementations are normally not useful, but POSIX requires
93dd49ab
PE
8936them. To use the Yacc library, link your program with the
8937@option{-ly} option. Note that Bison's implementation of the Yacc
8a4281b9 8938library is distributed under the terms of the GNU General
93dd49ab
PE
8939Public License (@pxref{Copying}).
8940
8941If you use the Yacc library's @code{yyerror} function, you should
8942declare @code{yyerror} as follows:
8943
8944@example
8945int yyerror (char const *);
8946@end example
8947
8948Bison ignores the @code{int} value returned by this @code{yyerror}.
8949If you use the Yacc library's @code{main} function, your
8950@code{yyparse} function should have the following type signature:
8951
8952@example
8953int yyparse (void);
8954@end example
8955
12545799
AD
8956@c ================================================= C++ Bison
8957
8405b70c
PB
8958@node Other Languages
8959@chapter Parsers Written In Other Languages
12545799
AD
8960
8961@menu
8962* C++ Parsers:: The interface to generate C++ parser classes
8405b70c 8963* Java Parsers:: The interface to generate Java parser classes
12545799
AD
8964@end menu
8965
8966@node C++ Parsers
8967@section C++ Parsers
8968
8969@menu
8970* C++ Bison Interface:: Asking for C++ parser generation
8971* C++ Semantic Values:: %union vs. C++
8972* C++ Location Values:: The position and location classes
8973* C++ Parser Interface:: Instantiating and running the parser
8974* C++ Scanner Interface:: Exchanges between yylex and parse
8405b70c 8975* A Complete C++ Example:: Demonstrating their use
12545799
AD
8976@end menu
8977
8978@node C++ Bison Interface
8979@subsection C++ Bison Interface
ed4d67dc 8980@c - %skeleton "lalr1.cc"
12545799
AD
8981@c - Always pure
8982@c - initial action
8983
eb45ef3b 8984The C++ deterministic parser is selected using the skeleton directive,
86e5b440
AD
8985@samp{%skeleton "lalr1.cc"}, or the synonymous command-line option
8986@option{--skeleton=lalr1.cc}.
e6e704dc 8987@xref{Decl Summary}.
0e021770 8988
793fbca5
JD
8989When run, @command{bison} will create several entities in the @samp{yy}
8990namespace.
67501061 8991@findex %define api.namespace
35c1e5f0
JD
8992Use the @samp{%define api.namespace} directive to change the namespace name,
8993see @ref{%define Summary,,api.namespace}. The various classes are generated
8994in the following files:
aa08666d 8995
12545799
AD
8996@table @file
8997@item position.hh
8998@itemx location.hh
8999The definition of the classes @code{position} and @code{location},
3cdc21cf 9000used for location tracking when enabled. @xref{C++ Location Values}.
12545799
AD
9001
9002@item stack.hh
9003An auxiliary class @code{stack} used by the parser.
9004
fa4d969f
PE
9005@item @var{file}.hh
9006@itemx @var{file}.cc
ff7571c0 9007(Assuming the extension of the grammar file was @samp{.yy}.) The
cd8b5791
AD
9008declaration and implementation of the C++ parser class. The basename
9009and extension of these two files follow the same rules as with regular C
9010parsers (@pxref{Invocation}).
12545799 9011
cd8b5791
AD
9012The header is @emph{mandatory}; you must either pass
9013@option{-d}/@option{--defines} to @command{bison}, or use the
12545799
AD
9014@samp{%defines} directive.
9015@end table
9016
9017All these files are documented using Doxygen; run @command{doxygen}
9018for a complete and accurate documentation.
9019
9020@node C++ Semantic Values
9021@subsection C++ Semantic Values
9022@c - No objects in unions
178e123e 9023@c - YYSTYPE
12545799
AD
9024@c - Printer and destructor
9025
3cdc21cf
AD
9026Bison supports two different means to handle semantic values in C++. One is
9027alike the C interface, and relies on unions (@pxref{C++ Unions}). As C++
9028practitioners know, unions are inconvenient in C++, therefore another
9029approach is provided, based on variants (@pxref{C++ Variants}).
9030
9031@menu
9032* C++ Unions:: Semantic values cannot be objects
9033* C++ Variants:: Using objects as semantic values
9034@end menu
9035
9036@node C++ Unions
9037@subsubsection C++ Unions
9038
12545799
AD
9039The @code{%union} directive works as for C, see @ref{Union Decl, ,The
9040Collection of Value Types}. In particular it produces a genuine
3cdc21cf 9041@code{union}, which have a few specific features in C++.
12545799
AD
9042@itemize @minus
9043@item
fb9712a9
AD
9044The type @code{YYSTYPE} is defined but its use is discouraged: rather
9045you should refer to the parser's encapsulated type
9046@code{yy::parser::semantic_type}.
12545799
AD
9047@item
9048Non POD (Plain Old Data) types cannot be used. C++ forbids any
9049instance of classes with constructors in unions: only @emph{pointers}
9050to such objects are allowed.
9051@end itemize
9052
9053Because objects have to be stored via pointers, memory is not
9054reclaimed automatically: using the @code{%destructor} directive is the
9055only means to avoid leaks. @xref{Destructor Decl, , Freeing Discarded
9056Symbols}.
9057
3cdc21cf
AD
9058@node C++ Variants
9059@subsubsection C++ Variants
9060
9061Starting with version 2.6, Bison provides a @emph{variant} based
9062implementation of semantic values for C++. This alleviates all the
9063limitations reported in the previous section, and in particular, object
9064types can be used without pointers.
9065
9066To enable variant-based semantic values, set @code{%define} variable
35c1e5f0 9067@code{variant} (@pxref{%define Summary,, variant}). Once this defined,
3cdc21cf
AD
9068@code{%union} is ignored, and instead of using the name of the fields of the
9069@code{%union} to ``type'' the symbols, use genuine types.
9070
9071For instance, instead of
9072
9073@example
9074%union
9075@{
9076 int ival;
9077 std::string* sval;
9078@}
9079%token <ival> NUMBER;
9080%token <sval> STRING;
9081@end example
9082
9083@noindent
9084write
9085
9086@example
9087%token <int> NUMBER;
9088%token <std::string> STRING;
9089@end example
9090
9091@code{STRING} is no longer a pointer, which should fairly simplify the user
9092actions in the grammar and in the scanner (in particular the memory
9093management).
9094
9095Since C++ features destructors, and since it is customary to specialize
9096@code{operator<<} to support uniform printing of values, variants also
9097typically simplify Bison printers and destructors.
9098
9099Variants are stricter than unions. When based on unions, you may play any
9100dirty game with @code{yylval}, say storing an @code{int}, reading a
9101@code{char*}, and then storing a @code{double} in it. This is no longer
9102possible with variants: they must be initialized, then assigned to, and
9103eventually, destroyed.
9104
9105@deftypemethod {semantic_type} {T&} build<T> ()
9106Initialize, but leave empty. Returns the address where the actual value may
9107be stored. Requires that the variant was not initialized yet.
9108@end deftypemethod
9109
9110@deftypemethod {semantic_type} {T&} build<T> (const T& @var{t})
9111Initialize, and copy-construct from @var{t}.
9112@end deftypemethod
9113
9114
9115@strong{Warning}: We do not use Boost.Variant, for two reasons. First, it
9116appeared unacceptable to require Boost on the user's machine (i.e., the
9117machine on which the generated parser will be compiled, not the machine on
9118which @command{bison} was run). Second, for each possible semantic value,
9119Boost.Variant not only stores the value, but also a tag specifying its
9120type. But the parser already ``knows'' the type of the semantic value, so
9121that would be duplicating the information.
9122
9123Therefore we developed light-weight variants whose type tag is external (so
9124they are really like @code{unions} for C++ actually). But our code is much
9125less mature that Boost.Variant. So there is a number of limitations in
9126(the current implementation of) variants:
9127@itemize
9128@item
9129Alignment must be enforced: values should be aligned in memory according to
9130the most demanding type. Computing the smallest alignment possible requires
9131meta-programming techniques that are not currently implemented in Bison, and
9132therefore, since, as far as we know, @code{double} is the most demanding
9133type on all platforms, alignments are enforced for @code{double} whatever
9134types are actually used. This may waste space in some cases.
9135
9136@item
9137Our implementation is not conforming with strict aliasing rules. Alias
9138analysis is a technique used in optimizing compilers to detect when two
9139pointers are disjoint (they cannot ``meet''). Our implementation breaks
9140some of the rules that G++ 4.4 uses in its alias analysis, so @emph{strict
9141alias analysis must be disabled}. Use the option
9142@option{-fno-strict-aliasing} to compile the generated parser.
9143
9144@item
9145There might be portability issues we are not aware of.
9146@end itemize
9147
a6ca4ce2 9148As far as we know, these limitations @emph{can} be alleviated. All it takes
3cdc21cf 9149is some time and/or some talented C++ hacker willing to contribute to Bison.
12545799
AD
9150
9151@node C++ Location Values
9152@subsection C++ Location Values
9153@c - %locations
9154@c - class Position
9155@c - class Location
16dc6a9e 9156@c - %define filename_type "const symbol::Symbol"
12545799
AD
9157
9158When the directive @code{%locations} is used, the C++ parser supports
9159location tracking, see @ref{Locations, , Locations Overview}. Two
9160auxiliary classes define a @code{position}, a single point in a file,
9161and a @code{location}, a range composed of a pair of
9162@code{position}s (possibly spanning several files).
9163
fa4d969f 9164@deftypemethod {position} {std::string*} file
12545799
AD
9165The name of the file. It will always be handled as a pointer, the
9166parser will never duplicate nor deallocate it. As an experimental
9167feature you may change it to @samp{@var{type}*} using @samp{%define
16dc6a9e 9168filename_type "@var{type}"}.
12545799
AD
9169@end deftypemethod
9170
9171@deftypemethod {position} {unsigned int} line
9172The line, starting at 1.
9173@end deftypemethod
9174
9175@deftypemethod {position} {unsigned int} lines (int @var{height} = 1)
9176Advance by @var{height} lines, resetting the column number.
9177@end deftypemethod
9178
9179@deftypemethod {position} {unsigned int} column
9180The column, starting at 0.
9181@end deftypemethod
9182
9183@deftypemethod {position} {unsigned int} columns (int @var{width} = 1)
9184Advance by @var{width} columns, without changing the line number.
9185@end deftypemethod
9186
9187@deftypemethod {position} {position&} operator+= (position& @var{pos}, int @var{width})
9188@deftypemethodx {position} {position} operator+ (const position& @var{pos}, int @var{width})
9189@deftypemethodx {position} {position&} operator-= (const position& @var{pos}, int @var{width})
9190@deftypemethodx {position} {position} operator- (position& @var{pos}, int @var{width})
9191Various forms of syntactic sugar for @code{columns}.
9192@end deftypemethod
9193
9194@deftypemethod {position} {position} operator<< (std::ostream @var{o}, const position& @var{p})
9195Report @var{p} on @var{o} like this:
fa4d969f
PE
9196@samp{@var{file}:@var{line}.@var{column}}, or
9197@samp{@var{line}.@var{column}} if @var{file} is null.
12545799
AD
9198@end deftypemethod
9199
9200@deftypemethod {location} {position} begin
9201@deftypemethodx {location} {position} end
9202The first, inclusive, position of the range, and the first beyond.
9203@end deftypemethod
9204
9205@deftypemethod {location} {unsigned int} columns (int @var{width} = 1)
9206@deftypemethodx {location} {unsigned int} lines (int @var{height} = 1)
9207Advance the @code{end} position.
9208@end deftypemethod
9209
9210@deftypemethod {location} {location} operator+ (const location& @var{begin}, const location& @var{end})
9211@deftypemethodx {location} {location} operator+ (const location& @var{begin}, int @var{width})
9212@deftypemethodx {location} {location} operator+= (const location& @var{loc}, int @var{width})
9213Various forms of syntactic sugar.
9214@end deftypemethod
9215
9216@deftypemethod {location} {void} step ()
9217Move @code{begin} onto @code{end}.
9218@end deftypemethod
9219
9220
9221@node C++ Parser Interface
9222@subsection C++ Parser Interface
9223@c - define parser_class_name
9224@c - Ctor
9225@c - parse, error, set_debug_level, debug_level, set_debug_stream,
9226@c debug_stream.
9227@c - Reporting errors
9228
9229The output files @file{@var{output}.hh} and @file{@var{output}.cc}
9230declare and define the parser class in the namespace @code{yy}. The
9231class name defaults to @code{parser}, but may be changed using
16dc6a9e 9232@samp{%define parser_class_name "@var{name}"}. The interface of
9d9b8b70 9233this class is detailed below. It can be extended using the
12545799
AD
9234@code{%parse-param} feature: its semantics is slightly changed since
9235it describes an additional member of the parser class, and an
9236additional argument for its constructor.
9237
3cdc21cf
AD
9238@defcv {Type} {parser} {semantic_type}
9239@defcvx {Type} {parser} {location_type}
9240The types for semantic values and locations (if enabled).
9241@end defcv
9242
86e5b440
AD
9243@defcv {Type} {parser} {token}
9244A structure that contains (only) the definition of the tokens as the
9245@code{yytokentype} enumeration. To refer to the token @code{FOO}, the
9246scanner should use @code{yy::parser::token::FOO}. The scanner can use
9247@samp{typedef yy::parser::token token;} to ``import'' the token enumeration
9248(@pxref{Calc++ Scanner}).
9249@end defcv
9250
3cdc21cf
AD
9251@defcv {Type} {parser} {syntax_error}
9252This class derives from @code{std::runtime_error}. Throw instances of it
9253from user actions to raise parse errors. This is equivalent with first
9254invoking @code{error} to report the location and message of the syntax
9255error, and then to invoke @code{YYERROR} to enter the error-recovery mode.
9256But contrary to @code{YYERROR} which can only be invoked from user actions
9257(i.e., written in the action itself), the exception can be thrown from
9258function invoked from the user action.
8a0adb01 9259@end defcv
12545799
AD
9260
9261@deftypemethod {parser} {} parser (@var{type1} @var{arg1}, ...)
9262Build a new parser object. There are no arguments by default, unless
9263@samp{%parse-param @{@var{type1} @var{arg1}@}} was used.
9264@end deftypemethod
9265
3cdc21cf
AD
9266@deftypemethod {syntax_error} {} syntax_error (const location_type& @var{l}, const std::string& @var{m})
9267@deftypemethodx {syntax_error} {} syntax_error (const std::string& @var{m})
9268Instantiate a syntax-error exception.
9269@end deftypemethod
9270
12545799
AD
9271@deftypemethod {parser} {int} parse ()
9272Run the syntactic analysis, and return 0 on success, 1 otherwise.
9273@end deftypemethod
9274
9275@deftypemethod {parser} {std::ostream&} debug_stream ()
9276@deftypemethodx {parser} {void} set_debug_stream (std::ostream& @var{o})
9277Get or set the stream used for tracing the parsing. It defaults to
9278@code{std::cerr}.
9279@end deftypemethod
9280
9281@deftypemethod {parser} {debug_level_type} debug_level ()
9282@deftypemethodx {parser} {void} set_debug_level (debug_level @var{l})
9283Get or set the tracing level. Currently its value is either 0, no trace,
9d9b8b70 9284or nonzero, full tracing.
12545799
AD
9285@end deftypemethod
9286
9287@deftypemethod {parser} {void} error (const location_type& @var{l}, const std::string& @var{m})
3cdc21cf 9288@deftypemethodx {parser} {void} error (const std::string& @var{m})
12545799
AD
9289The definition for this member function must be supplied by the user:
9290the parser uses it to report a parser error occurring at @var{l},
3cdc21cf
AD
9291described by @var{m}. If location tracking is not enabled, the second
9292signature is used.
12545799
AD
9293@end deftypemethod
9294
9295
9296@node C++ Scanner Interface
9297@subsection C++ Scanner Interface
9298@c - prefix for yylex.
9299@c - Pure interface to yylex
9300@c - %lex-param
9301
9302The parser invokes the scanner by calling @code{yylex}. Contrary to C
9303parsers, C++ parsers are always pure: there is no point in using the
3cdc21cf
AD
9304@samp{%define api.pure} directive. The actual interface with @code{yylex}
9305depends whether you use unions, or variants.
12545799 9306
3cdc21cf
AD
9307@menu
9308* Split Symbols:: Passing symbols as two/three components
9309* Complete Symbols:: Making symbols a whole
9310@end menu
9311
9312@node Split Symbols
9313@subsubsection Split Symbols
9314
9315Therefore the interface is as follows.
9316
86e5b440
AD
9317@deftypemethod {parser} {int} yylex (semantic_type* @var{yylval}, location_type* @var{yylloc}, @var{type1} @var{arg1}, ...)
9318@deftypemethodx {parser} {int} yylex (semantic_type* @var{yylval}, @var{type1} @var{arg1}, ...)
3cdc21cf
AD
9319Return the next token. Its type is the return value, its semantic value and
9320location (if enabled) being @var{yylval} and @var{yylloc}. Invocations of
12545799
AD
9321@samp{%lex-param @{@var{type1} @var{arg1}@}} yield additional arguments.
9322@end deftypemethod
9323
3cdc21cf
AD
9324Note that when using variants, the interface for @code{yylex} is the same,
9325but @code{yylval} is handled differently.
9326
9327Regular union-based code in Lex scanner typically look like:
9328
9329@example
9330[0-9]+ @{
9331 yylval.ival = text_to_int (yytext);
9332 return yy::parser::INTEGER;
9333 @}
9334[a-z]+ @{
9335 yylval.sval = new std::string (yytext);
9336 return yy::parser::IDENTIFIER;
9337 @}
9338@end example
9339
9340Using variants, @code{yylval} is already constructed, but it is not
9341initialized. So the code would look like:
9342
9343@example
9344[0-9]+ @{
9345 yylval.build<int>() = text_to_int (yytext);
9346 return yy::parser::INTEGER;
9347 @}
9348[a-z]+ @{
9349 yylval.build<std::string> = yytext;
9350 return yy::parser::IDENTIFIER;
9351 @}
9352@end example
9353
9354@noindent
9355or
9356
9357@example
9358[0-9]+ @{
9359 yylval.build(text_to_int (yytext));
9360 return yy::parser::INTEGER;
9361 @}
9362[a-z]+ @{
9363 yylval.build(yytext);
9364 return yy::parser::IDENTIFIER;
9365 @}
9366@end example
9367
9368
9369@node Complete Symbols
9370@subsubsection Complete Symbols
9371
9372If you specified both @code{%define variant} and @code{%define lex_symbol},
9373the @code{parser} class also defines the class @code{parser::symbol_type}
9374which defines a @emph{complete} symbol, aggregating its type (i.e., the
9375traditional value returned by @code{yylex}), its semantic value (i.e., the
9376value passed in @code{yylval}, and possibly its location (@code{yylloc}).
9377
9378@deftypemethod {symbol_type} {} symbol_type (token_type @var{type}, const semantic_type& @var{value}, const location_type& @var{location})
9379Build a complete terminal symbol which token type is @var{type}, and which
9380semantic value is @var{value}. If location tracking is enabled, also pass
9381the @var{location}.
9382@end deftypemethod
9383
9384This interface is low-level and should not be used for two reasons. First,
9385it is inconvenient, as you still have to build the semantic value, which is
9386a variant, and second, because consistency is not enforced: as with unions,
9387it is still possible to give an integer as semantic value for a string.
9388
9389So for each token type, Bison generates named constructors as follows.
9390
9391@deftypemethod {symbol_type} {} make_@var{token} (const @var{value_type}& @var{value}, const location_type& @var{location})
9392@deftypemethodx {symbol_type} {} make_@var{token} (const location_type& @var{location})
9393Build a complete terminal symbol for the token type @var{token} (not
9394including the @code{api.tokens.prefix}) whose possible semantic value is
9395@var{value} of adequate @var{value_type}. If location tracking is enabled,
9396also pass the @var{location}.
9397@end deftypemethod
9398
9399For instance, given the following declarations:
9400
9401@example
9402%define api.tokens.prefix "TOK_"
9403%token <std::string> IDENTIFIER;
9404%token <int> INTEGER;
9405%token COLON;
9406@end example
9407
9408@noindent
9409Bison generates the following functions:
9410
9411@example
9412symbol_type make_IDENTIFIER(const std::string& v,
9413 const location_type& l);
9414symbol_type make_INTEGER(const int& v,
9415 const location_type& loc);
9416symbol_type make_COLON(const location_type& loc);
9417@end example
9418
9419@noindent
9420which should be used in a Lex-scanner as follows.
9421
9422@example
9423[0-9]+ return yy::parser::make_INTEGER(text_to_int (yytext), loc);
9424[a-z]+ return yy::parser::make_IDENTIFIER(yytext, loc);
9425":" return yy::parser::make_COLON(loc);
9426@end example
9427
9428Tokens that do not have an identifier are not accessible: you cannot simply
9429use characters such as @code{':'}, they must be declared with @code{%token}.
12545799
AD
9430
9431@node A Complete C++ Example
8405b70c 9432@subsection A Complete C++ Example
12545799
AD
9433
9434This section demonstrates the use of a C++ parser with a simple but
9435complete example. This example should be available on your system,
3cdc21cf 9436ready to compile, in the directory @dfn{.../bison/examples/calc++}. It
12545799
AD
9437focuses on the use of Bison, therefore the design of the various C++
9438classes is very naive: no accessors, no encapsulation of members etc.
9439We will use a Lex scanner, and more precisely, a Flex scanner, to
3cdc21cf 9440demonstrate the various interactions. A hand-written scanner is
12545799
AD
9441actually easier to interface with.
9442
9443@menu
9444* Calc++ --- C++ Calculator:: The specifications
9445* Calc++ Parsing Driver:: An active parsing context
9446* Calc++ Parser:: A parser class
9447* Calc++ Scanner:: A pure C++ Flex scanner
9448* Calc++ Top Level:: Conducting the band
9449@end menu
9450
9451@node Calc++ --- C++ Calculator
8405b70c 9452@subsubsection Calc++ --- C++ Calculator
12545799
AD
9453
9454Of course the grammar is dedicated to arithmetics, a single
9d9b8b70 9455expression, possibly preceded by variable assignments. An
12545799
AD
9456environment containing possibly predefined variables such as
9457@code{one} and @code{two}, is exchanged with the parser. An example
9458of valid input follows.
9459
9460@example
9461three := 3
9462seven := one + two * three
9463seven * seven
9464@end example
9465
9466@node Calc++ Parsing Driver
8405b70c 9467@subsubsection Calc++ Parsing Driver
12545799
AD
9468@c - An env
9469@c - A place to store error messages
9470@c - A place for the result
9471
9472To support a pure interface with the parser (and the scanner) the
9473technique of the ``parsing context'' is convenient: a structure
9474containing all the data to exchange. Since, in addition to simply
9475launch the parsing, there are several auxiliary tasks to execute (open
9476the file for parsing, instantiate the parser etc.), we recommend
9477transforming the simple parsing context structure into a fully blown
9478@dfn{parsing driver} class.
9479
9480The declaration of this driver class, @file{calc++-driver.hh}, is as
9481follows. The first part includes the CPP guard and imports the
fb9712a9
AD
9482required standard library components, and the declaration of the parser
9483class.
12545799 9484
1c59e0a1 9485@comment file: calc++-driver.hh
12545799
AD
9486@example
9487#ifndef CALCXX_DRIVER_HH
9488# define CALCXX_DRIVER_HH
9489# include <string>
9490# include <map>
fb9712a9 9491# include "calc++-parser.hh"
12545799
AD
9492@end example
9493
12545799
AD
9494
9495@noindent
9496Then comes the declaration of the scanning function. Flex expects
9497the signature of @code{yylex} to be defined in the macro
9498@code{YY_DECL}, and the C++ parser expects it to be declared. We can
9499factor both as follows.
1c59e0a1
AD
9500
9501@comment file: calc++-driver.hh
12545799 9502@example
3dc5e96b 9503// Tell Flex the lexer's prototype ...
3cdc21cf
AD
9504# define YY_DECL \
9505 yy::calcxx_parser::symbol_type yylex (calcxx_driver& driver)
12545799
AD
9506// ... and declare it for the parser's sake.
9507YY_DECL;
9508@end example
9509
9510@noindent
9511The @code{calcxx_driver} class is then declared with its most obvious
9512members.
9513
1c59e0a1 9514@comment file: calc++-driver.hh
12545799
AD
9515@example
9516// Conducting the whole scanning and parsing of Calc++.
9517class calcxx_driver
9518@{
9519public:
9520 calcxx_driver ();
9521 virtual ~calcxx_driver ();
9522
9523 std::map<std::string, int> variables;
9524
9525 int result;
9526@end example
9527
9528@noindent
3cdc21cf
AD
9529To encapsulate the coordination with the Flex scanner, it is useful to have
9530member functions to open and close the scanning phase.
12545799 9531
1c59e0a1 9532@comment file: calc++-driver.hh
12545799
AD
9533@example
9534 // Handling the scanner.
9535 void scan_begin ();
9536 void scan_end ();
9537 bool trace_scanning;
9538@end example
9539
9540@noindent
9541Similarly for the parser itself.
9542
1c59e0a1 9543@comment file: calc++-driver.hh
12545799 9544@example
3cdc21cf
AD
9545 // Run the parser on file F.
9546 // Return 0 on success.
bb32f4f2 9547 int parse (const std::string& f);
3cdc21cf
AD
9548 // The name of the file being parsed.
9549 // Used later to pass the file name to the location tracker.
12545799 9550 std::string file;
3cdc21cf 9551 // Whether parser traces should be generated.
12545799
AD
9552 bool trace_parsing;
9553@end example
9554
9555@noindent
9556To demonstrate pure handling of parse errors, instead of simply
9557dumping them on the standard error output, we will pass them to the
9558compiler driver using the following two member functions. Finally, we
9559close the class declaration and CPP guard.
9560
1c59e0a1 9561@comment file: calc++-driver.hh
12545799
AD
9562@example
9563 // Error handling.
9564 void error (const yy::location& l, const std::string& m);
9565 void error (const std::string& m);
9566@};
9567#endif // ! CALCXX_DRIVER_HH
9568@end example
9569
9570The implementation of the driver is straightforward. The @code{parse}
9571member function deserves some attention. The @code{error} functions
9572are simple stubs, they should actually register the located error
9573messages and set error state.
9574
1c59e0a1 9575@comment file: calc++-driver.cc
12545799
AD
9576@example
9577#include "calc++-driver.hh"
9578#include "calc++-parser.hh"
9579
9580calcxx_driver::calcxx_driver ()
9581 : trace_scanning (false), trace_parsing (false)
9582@{
9583 variables["one"] = 1;
9584 variables["two"] = 2;
9585@}
9586
9587calcxx_driver::~calcxx_driver ()
9588@{
9589@}
9590
bb32f4f2 9591int
12545799
AD
9592calcxx_driver::parse (const std::string &f)
9593@{
9594 file = f;
9595 scan_begin ();
9596 yy::calcxx_parser parser (*this);
9597 parser.set_debug_level (trace_parsing);
bb32f4f2 9598 int res = parser.parse ();
12545799 9599 scan_end ();
bb32f4f2 9600 return res;
12545799
AD
9601@}
9602
9603void
9604calcxx_driver::error (const yy::location& l, const std::string& m)
9605@{
9606 std::cerr << l << ": " << m << std::endl;
9607@}
9608
9609void
9610calcxx_driver::error (const std::string& m)
9611@{
9612 std::cerr << m << std::endl;
9613@}
9614@end example
9615
9616@node Calc++ Parser
8405b70c 9617@subsubsection Calc++ Parser
12545799 9618
ff7571c0
JD
9619The grammar file @file{calc++-parser.yy} starts by asking for the C++
9620deterministic parser skeleton, the creation of the parser header file,
9621and specifies the name of the parser class. Because the C++ skeleton
9622changed several times, it is safer to require the version you designed
9623the grammar for.
1c59e0a1
AD
9624
9625@comment file: calc++-parser.yy
12545799 9626@example
ed4d67dc 9627%skeleton "lalr1.cc" /* -*- C++ -*- */
e6e704dc 9628%require "@value{VERSION}"
12545799 9629%defines
16dc6a9e 9630%define parser_class_name "calcxx_parser"
fb9712a9
AD
9631@end example
9632
3cdc21cf
AD
9633@noindent
9634@findex %define variant
9635@findex %define lex_symbol
9636This example will use genuine C++ objects as semantic values, therefore, we
9637require the variant-based interface. To make sure we properly use it, we
9638enable assertions. To fully benefit from type-safety and more natural
9639definition of ``symbol'', we enable @code{lex_symbol}.
9640
9641@comment file: calc++-parser.yy
9642@example
9643%define variant
9644%define parse.assert
9645%define lex_symbol
9646@end example
9647
fb9712a9 9648@noindent
16dc6a9e 9649@findex %code requires
3cdc21cf
AD
9650Then come the declarations/inclusions needed by the semantic values.
9651Because the parser uses the parsing driver and reciprocally, both would like
a6ca4ce2 9652to include the header of the other, which is, of course, insane. This
3cdc21cf 9653mutual dependency will be broken using forward declarations. Because the
fb9712a9 9654driver's header needs detailed knowledge about the parser class (in
3cdc21cf 9655particular its inner types), it is the parser's header which will use a
e0c07222 9656forward declaration of the driver. @xref{%code Summary}.
fb9712a9
AD
9657
9658@comment file: calc++-parser.yy
9659@example
3cdc21cf
AD
9660%code requires
9661@{
12545799 9662# include <string>
fb9712a9 9663class calcxx_driver;
9bc0dd67 9664@}
12545799
AD
9665@end example
9666
9667@noindent
9668The driver is passed by reference to the parser and to the scanner.
9669This provides a simple but effective pure interface, not relying on
9670global variables.
9671
1c59e0a1 9672@comment file: calc++-parser.yy
12545799
AD
9673@example
9674// The parsing context.
2055a44e 9675%param @{ calcxx_driver& driver @}
12545799
AD
9676@end example
9677
9678@noindent
2055a44e 9679Then we request location tracking, and initialize the
f50bfcd6 9680first location's file name. Afterward new locations are computed
12545799 9681relatively to the previous locations: the file name will be
2055a44e 9682propagated.
12545799 9683
1c59e0a1 9684@comment file: calc++-parser.yy
12545799
AD
9685@example
9686%locations
9687%initial-action
9688@{
9689 // Initialize the initial location.
b47dbebe 9690 @@$.begin.filename = @@$.end.filename = &driver.file;
12545799
AD
9691@};
9692@end example
9693
9694@noindent
7fceb615
JD
9695Use the following two directives to enable parser tracing and verbose error
9696messages. However, verbose error messages can contain incorrect information
9697(@pxref{LAC}).
12545799 9698
1c59e0a1 9699@comment file: calc++-parser.yy
12545799 9700@example
fa819509 9701%define parse.trace
cf499cff 9702%define parse.error verbose
12545799
AD
9703@end example
9704
fb9712a9 9705@noindent
136a0f76
PB
9706@findex %code
9707The code between @samp{%code @{} and @samp{@}} is output in the
34f98f46 9708@file{*.cc} file; it needs detailed knowledge about the driver.
fb9712a9
AD
9709
9710@comment file: calc++-parser.yy
9711@example
3cdc21cf
AD
9712%code
9713@{
fb9712a9 9714# include "calc++-driver.hh"
34f98f46 9715@}
fb9712a9
AD
9716@end example
9717
9718
12545799
AD
9719@noindent
9720The token numbered as 0 corresponds to end of file; the following line
99c08fb6 9721allows for nicer error messages referring to ``end of file'' instead of
35c1e5f0
JD
9722``$end''. Similarly user friendly names are provided for each symbol. To
9723avoid name clashes in the generated files (@pxref{Calc++ Scanner}), prefix
9724tokens with @code{TOK_} (@pxref{%define Summary,,api.tokens.prefix}).
12545799 9725
1c59e0a1 9726@comment file: calc++-parser.yy
12545799 9727@example
4c6622c2 9728%define api.tokens.prefix "TOK_"
3cdc21cf
AD
9729%token
9730 END 0 "end of file"
9731 ASSIGN ":="
9732 MINUS "-"
9733 PLUS "+"
9734 STAR "*"
9735 SLASH "/"
9736 LPAREN "("
9737 RPAREN ")"
9738;
12545799
AD
9739@end example
9740
9741@noindent
3cdc21cf
AD
9742Since we use variant-based semantic values, @code{%union} is not used, and
9743both @code{%type} and @code{%token} expect genuine types, as opposed to type
9744tags.
12545799 9745
1c59e0a1 9746@comment file: calc++-parser.yy
12545799 9747@example
3cdc21cf
AD
9748%token <std::string> IDENTIFIER "identifier"
9749%token <int> NUMBER "number"
9750%type <int> exp
9751@end example
9752
9753@noindent
9754No @code{%destructor} is needed to enable memory deallocation during error
9755recovery; the memory, for strings for instance, will be reclaimed by the
9756regular destructors. All the values are printed using their
9757@code{operator<<}.
12545799 9758
3cdc21cf
AD
9759@c FIXME: Document %printer, and mention that it takes a braced-code operand.
9760@comment file: calc++-parser.yy
9761@example
9762%printer @{ debug_stream () << $$; @} <*>;
12545799
AD
9763@end example
9764
9765@noindent
3cdc21cf
AD
9766The grammar itself is straightforward (@pxref{Location Tracking Calc, ,
9767Location Tracking Calculator: @code{ltcalc}}).
12545799 9768
1c59e0a1 9769@comment file: calc++-parser.yy
12545799
AD
9770@example
9771%%
9772%start unit;
9773unit: assignments exp @{ driver.result = $2; @};
9774
99c08fb6
AD
9775assignments:
9776 assignments assignment @{@}
9777| /* Nothing. */ @{@};
12545799 9778
3dc5e96b 9779assignment:
3cdc21cf 9780 "identifier" ":=" exp @{ driver.variables[$1] = $3; @};
12545799 9781
3cdc21cf
AD
9782%left "+" "-";
9783%left "*" "/";
99c08fb6 9784exp:
3cdc21cf
AD
9785 exp "+" exp @{ $$ = $1 + $3; @}
9786| exp "-" exp @{ $$ = $1 - $3; @}
9787| exp "*" exp @{ $$ = $1 * $3; @}
9788| exp "/" exp @{ $$ = $1 / $3; @}
298e8ad9 9789| "(" exp ")" @{ std::swap ($$, $2); @}
3cdc21cf 9790| "identifier" @{ $$ = driver.variables[$1]; @}
298e8ad9 9791| "number" @{ std::swap ($$, $1); @};
12545799
AD
9792%%
9793@end example
9794
9795@noindent
9796Finally the @code{error} member function registers the errors to the
9797driver.
9798
1c59e0a1 9799@comment file: calc++-parser.yy
12545799
AD
9800@example
9801void
3cdc21cf 9802yy::calcxx_parser::error (const location_type& l,
1c59e0a1 9803 const std::string& m)
12545799
AD
9804@{
9805 driver.error (l, m);
9806@}
9807@end example
9808
9809@node Calc++ Scanner
8405b70c 9810@subsubsection Calc++ Scanner
12545799
AD
9811
9812The Flex scanner first includes the driver declaration, then the
9813parser's to get the set of defined tokens.
9814
1c59e0a1 9815@comment file: calc++-scanner.ll
12545799
AD
9816@example
9817%@{ /* -*- C++ -*- */
3c248d70
AD
9818# include <cerrno>
9819# include <climits>
3cdc21cf 9820# include <cstdlib>
12545799
AD
9821# include <string>
9822# include "calc++-driver.hh"
9823# include "calc++-parser.hh"
eaea13f5 9824
3cdc21cf
AD
9825// Work around an incompatibility in flex (at least versions
9826// 2.5.31 through 2.5.33): it generates code that does
9827// not conform to C89. See Debian bug 333231
9828// <http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>.
7870f699
PE
9829# undef yywrap
9830# define yywrap() 1
eaea13f5 9831
3cdc21cf
AD
9832// The location of the current token.
9833static yy::location loc;
12545799
AD
9834%@}
9835@end example
9836
9837@noindent
9838Because there is no @code{#include}-like feature we don't need
9839@code{yywrap}, we don't need @code{unput} either, and we parse an
9840actual file, this is not an interactive session with the user.
3cdc21cf 9841Finally, we enable scanner tracing.
12545799 9842
1c59e0a1 9843@comment file: calc++-scanner.ll
12545799
AD
9844@example
9845%option noyywrap nounput batch debug
9846@end example
9847
9848@noindent
9849Abbreviations allow for more readable rules.
9850
1c59e0a1 9851@comment file: calc++-scanner.ll
12545799
AD
9852@example
9853id [a-zA-Z][a-zA-Z_0-9]*
9854int [0-9]+
9855blank [ \t]
9856@end example
9857
9858@noindent
9d9b8b70 9859The following paragraph suffices to track locations accurately. Each
12545799 9860time @code{yylex} is invoked, the begin position is moved onto the end
3cdc21cf
AD
9861position. Then when a pattern is matched, its width is added to the end
9862column. When matching ends of lines, the end
12545799
AD
9863cursor is adjusted, and each time blanks are matched, the begin cursor
9864is moved onto the end cursor to effectively ignore the blanks
9865preceding tokens. Comments would be treated equally.
9866
1c59e0a1 9867@comment file: calc++-scanner.ll
12545799 9868@example
828c373b 9869%@{
3cdc21cf
AD
9870 // Code run each time a pattern is matched.
9871 # define YY_USER_ACTION loc.columns (yyleng);
828c373b 9872%@}
12545799
AD
9873%%
9874%@{
3cdc21cf
AD
9875 // Code run each time yylex is called.
9876 loc.step ();
12545799 9877%@}
3cdc21cf
AD
9878@{blank@}+ loc.step ();
9879[\n]+ loc.lines (yyleng); loc.step ();
12545799
AD
9880@end example
9881
9882@noindent
3cdc21cf 9883The rules are simple. The driver is used to report errors.
12545799 9884
1c59e0a1 9885@comment file: calc++-scanner.ll
12545799 9886@example
3cdc21cf
AD
9887"-" return yy::calcxx_parser::make_MINUS(loc);
9888"+" return yy::calcxx_parser::make_PLUS(loc);
9889"*" return yy::calcxx_parser::make_STAR(loc);
9890"/" return yy::calcxx_parser::make_SLASH(loc);
9891"(" return yy::calcxx_parser::make_LPAREN(loc);
9892")" return yy::calcxx_parser::make_RPAREN(loc);
9893":=" return yy::calcxx_parser::make_ASSIGN(loc);
9894
04098407
PE
9895@{int@} @{
9896 errno = 0;
9897 long n = strtol (yytext, NULL, 10);
9898 if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
3cdc21cf
AD
9899 driver.error (loc, "integer is out of range");
9900 return yy::calcxx_parser::make_NUMBER(n, loc);
04098407 9901@}
3cdc21cf
AD
9902@{id@} return yy::calcxx_parser::make_IDENTIFIER(yytext, loc);
9903. driver.error (loc, "invalid character");
9904<<EOF>> return yy::calcxx_parser::make_END(loc);
12545799
AD
9905%%
9906@end example
9907
9908@noindent
3cdc21cf 9909Finally, because the scanner-related driver's member-functions depend
12545799
AD
9910on the scanner's data, it is simpler to implement them in this file.
9911
1c59e0a1 9912@comment file: calc++-scanner.ll
12545799
AD
9913@example
9914void
9915calcxx_driver::scan_begin ()
9916@{
9917 yy_flex_debug = trace_scanning;
bb32f4f2
AD
9918 if (file == "-")
9919 yyin = stdin;
9920 else if (!(yyin = fopen (file.c_str (), "r")))
9921 @{
3cdc21cf 9922 error (std::string ("cannot open ") + file + ": " + strerror(errno));
bb32f4f2
AD
9923 exit (1);
9924 @}
12545799
AD
9925@}
9926
9927void
9928calcxx_driver::scan_end ()
9929@{
9930 fclose (yyin);
9931@}
9932@end example
9933
9934@node Calc++ Top Level
8405b70c 9935@subsubsection Calc++ Top Level
12545799
AD
9936
9937The top level file, @file{calc++.cc}, poses no problem.
9938
1c59e0a1 9939@comment file: calc++.cc
12545799
AD
9940@example
9941#include <iostream>
9942#include "calc++-driver.hh"
9943
9944int
fa4d969f 9945main (int argc, char *argv[])
12545799 9946@{
414c76a4 9947 int res = 0;
12545799
AD
9948 calcxx_driver driver;
9949 for (++argv; argv[0]; ++argv)
9950 if (*argv == std::string ("-p"))
9951 driver.trace_parsing = true;
9952 else if (*argv == std::string ("-s"))
9953 driver.trace_scanning = true;
bb32f4f2
AD
9954 else if (!driver.parse (*argv))
9955 std::cout << driver.result << std::endl;
414c76a4
AD
9956 else
9957 res = 1;
9958 return res;
12545799
AD
9959@}
9960@end example
9961
8405b70c
PB
9962@node Java Parsers
9963@section Java Parsers
9964
9965@menu
f5f419de
DJ
9966* Java Bison Interface:: Asking for Java parser generation
9967* Java Semantic Values:: %type and %token vs. Java
9968* Java Location Values:: The position and location classes
9969* Java Parser Interface:: Instantiating and running the parser
9970* Java Scanner Interface:: Specifying the scanner for the parser
9971* Java Action Features:: Special features for use in actions
9972* Java Differences:: Differences between C/C++ and Java Grammars
9973* Java Declarations Summary:: List of Bison declarations used with Java
8405b70c
PB
9974@end menu
9975
9976@node Java Bison Interface
9977@subsection Java Bison Interface
9978@c - %language "Java"
8405b70c 9979
59da312b
JD
9980(The current Java interface is experimental and may evolve.
9981More user feedback will help to stabilize it.)
9982
e254a580
DJ
9983The Java parser skeletons are selected using the @code{%language "Java"}
9984directive or the @option{-L java}/@option{--language=java} option.
8405b70c 9985
e254a580 9986@c FIXME: Documented bug.
ff7571c0
JD
9987When generating a Java parser, @code{bison @var{basename}.y} will
9988create a single Java source file named @file{@var{basename}.java}
9989containing the parser implementation. Using a grammar file without a
9990@file{.y} suffix is currently broken. The basename of the parser
9991implementation file can be changed by the @code{%file-prefix}
9992directive or the @option{-p}/@option{--name-prefix} option. The
9993entire parser implementation file name can be changed by the
9994@code{%output} directive or the @option{-o}/@option{--output} option.
9995The parser implementation file contains a single class for the parser.
8405b70c 9996
e254a580 9997You can create documentation for generated parsers using Javadoc.
8405b70c 9998
e254a580
DJ
9999Contrary to C parsers, Java parsers do not use global variables; the
10000state of the parser is always local to an instance of the parser class.
10001Therefore, all Java parsers are ``pure'', and the @code{%pure-parser}
67501061 10002and @samp{%define api.pure} directives does not do anything when used in
e254a580 10003Java.
8405b70c 10004
e254a580 10005Push parsers are currently unsupported in Java and @code{%define
67212941 10006api.push-pull} have no effect.
01b477c6 10007
8a4281b9 10008GLR parsers are currently unsupported in Java. Do not use the
e254a580
DJ
10009@code{glr-parser} directive.
10010
10011No header file can be generated for Java parsers. Do not use the
10012@code{%defines} directive or the @option{-d}/@option{--defines} options.
10013
10014@c FIXME: Possible code change.
fa819509
AD
10015Currently, support for tracing is always compiled
10016in. Thus the @samp{%define parse.trace} and @samp{%token-table}
10017directives and the
e254a580
DJ
10018@option{-t}/@option{--debug} and @option{-k}/@option{--token-table}
10019options have no effect. This may change in the future to eliminate
fa819509
AD
10020unused code in the generated parser, so use @samp{%define parse.trace}
10021explicitly
1979121c 10022if needed. Also, in the future the
e254a580
DJ
10023@code{%token-table} directive might enable a public interface to
10024access the token names and codes.
8405b70c 10025
09ccae9b 10026Getting a ``code too large'' error from the Java compiler means the code
f50bfcd6 10027hit the 64KB bytecode per method limitation of the Java class file.
09ccae9b
DJ
10028Try reducing the amount of code in actions and static initializers;
10029otherwise, report a bug so that the parser skeleton will be improved.
10030
10031
8405b70c
PB
10032@node Java Semantic Values
10033@subsection Java Semantic Values
10034@c - No %union, specify type in %type/%token.
10035@c - YYSTYPE
10036@c - Printer and destructor
10037
10038There is no @code{%union} directive in Java parsers. Instead, the
10039semantic values' types (class names) should be specified in the
10040@code{%type} or @code{%token} directive:
10041
10042@example
10043%type <Expression> expr assignment_expr term factor
10044%type <Integer> number
10045@end example
10046
10047By default, the semantic stack is declared to have @code{Object} members,
10048which means that the class types you specify can be of any class.
10049To improve the type safety of the parser, you can declare the common
67501061 10050superclass of all the semantic values using the @samp{%define stype}
e254a580 10051directive. For example, after the following declaration:
8405b70c
PB
10052
10053@example
e254a580 10054%define stype "ASTNode"
8405b70c
PB
10055@end example
10056
10057@noindent
10058any @code{%type} or @code{%token} specifying a semantic type which
10059is not a subclass of ASTNode, will cause a compile-time error.
10060
e254a580 10061@c FIXME: Documented bug.
8405b70c
PB
10062Types used in the directives may be qualified with a package name.
10063Primitive data types are accepted for Java version 1.5 or later. Note
10064that in this case the autoboxing feature of Java 1.5 will be used.
e254a580
DJ
10065Generic types may not be used; this is due to a limitation in the
10066implementation of Bison, and may change in future releases.
8405b70c
PB
10067
10068Java parsers do not support @code{%destructor}, since the language
10069adopts garbage collection. The parser will try to hold references
10070to semantic values for as little time as needed.
10071
10072Java parsers do not support @code{%printer}, as @code{toString()}
10073can be used to print the semantic values. This however may change
10074(in a backwards-compatible way) in future versions of Bison.
10075
10076
10077@node Java Location Values
10078@subsection Java Location Values
10079@c - %locations
10080@c - class Position
10081@c - class Location
10082
10083When the directive @code{%locations} is used, the Java parser
10084supports location tracking, see @ref{Locations, , Locations Overview}.
10085An auxiliary user-defined class defines a @dfn{position}, a single point
10086in a file; Bison itself defines a class representing a @dfn{location},
10087a range composed of a pair of positions (possibly spanning several
10088files). The location class is an inner class of the parser; the name
e254a580 10089is @code{Location} by default, and may also be renamed using
cf499cff 10090@samp{%define location_type "@var{class-name}"}.
8405b70c
PB
10091
10092The location class treats the position as a completely opaque value.
10093By default, the class name is @code{Position}, but this can be changed
67501061 10094with @samp{%define position_type "@var{class-name}"}. This class must
e254a580 10095be supplied by the user.
8405b70c
PB
10096
10097
e254a580
DJ
10098@deftypeivar {Location} {Position} begin
10099@deftypeivarx {Location} {Position} end
8405b70c 10100The first, inclusive, position of the range, and the first beyond.
e254a580
DJ
10101@end deftypeivar
10102
10103@deftypeop {Constructor} {Location} {} Location (Position @var{loc})
c265fd6b 10104Create a @code{Location} denoting an empty range located at a given point.
e254a580 10105@end deftypeop
8405b70c 10106
e254a580
DJ
10107@deftypeop {Constructor} {Location} {} Location (Position @var{begin}, Position @var{end})
10108Create a @code{Location} from the endpoints of the range.
10109@end deftypeop
10110
10111@deftypemethod {Location} {String} toString ()
8405b70c
PB
10112Prints the range represented by the location. For this to work
10113properly, the position class should override the @code{equals} and
10114@code{toString} methods appropriately.
10115@end deftypemethod
10116
10117
10118@node Java Parser Interface
10119@subsection Java Parser Interface
10120@c - define parser_class_name
10121@c - Ctor
10122@c - parse, error, set_debug_level, debug_level, set_debug_stream,
10123@c debug_stream.
10124@c - Reporting errors
10125
e254a580
DJ
10126The name of the generated parser class defaults to @code{YYParser}. The
10127@code{YY} prefix may be changed using the @code{%name-prefix} directive
10128or the @option{-p}/@option{--name-prefix} option. Alternatively, use
67501061 10129@samp{%define parser_class_name "@var{name}"} to give a custom name to
e254a580 10130the class. The interface of this class is detailed below.
8405b70c 10131
e254a580 10132By default, the parser class has package visibility. A declaration
67501061 10133@samp{%define public} will change to public visibility. Remember that,
e254a580
DJ
10134according to the Java language specification, the name of the @file{.java}
10135file should match the name of the class in this case. Similarly, you can
10136use @code{abstract}, @code{final} and @code{strictfp} with the
10137@code{%define} declaration to add other modifiers to the parser class.
67501061 10138A single @samp{%define annotations "@var{annotations}"} directive can
1979121c 10139be used to add any number of annotations to the parser class.
e254a580
DJ
10140
10141The Java package name of the parser class can be specified using the
67501061 10142@samp{%define package} directive. The superclass and the implemented
e254a580 10143interfaces of the parser class can be specified with the @code{%define
67501061 10144extends} and @samp{%define implements} directives.
e254a580
DJ
10145
10146The parser class defines an inner class, @code{Location}, that is used
10147for location tracking (see @ref{Java Location Values}), and a inner
10148interface, @code{Lexer} (see @ref{Java Scanner Interface}). Other than
10149these inner class/interface, and the members described in the interface
10150below, all the other members and fields are preceded with a @code{yy} or
10151@code{YY} prefix to avoid clashes with user code.
10152
e254a580
DJ
10153The parser class can be extended using the @code{%parse-param}
10154directive. Each occurrence of the directive will add a @code{protected
10155final} field to the parser class, and an argument to its constructor,
10156which initialize them automatically.
10157
e254a580
DJ
10158@deftypeop {Constructor} {YYParser} {} YYParser (@var{lex_param}, @dots{}, @var{parse_param}, @dots{})
10159Build a new parser object with embedded @code{%code lexer}. There are
2055a44e
AD
10160no parameters, unless @code{%param}s and/or @code{%parse-param}s and/or
10161@code{%lex-param}s are used.
1979121c
DJ
10162
10163Use @code{%code init} for code added to the start of the constructor
10164body. This is especially useful to initialize superclasses. Use
f50bfcd6 10165@samp{%define init_throws} to specify any uncaught exceptions.
e254a580
DJ
10166@end deftypeop
10167
10168@deftypeop {Constructor} {YYParser} {} YYParser (Lexer @var{lexer}, @var{parse_param}, @dots{})
10169Build a new parser object using the specified scanner. There are no
2055a44e
AD
10170additional parameters unless @code{%param}s and/or @code{%parse-param}s are
10171used.
e254a580
DJ
10172
10173If the scanner is defined by @code{%code lexer}, this constructor is
10174declared @code{protected} and is called automatically with a scanner
2055a44e 10175created with the correct @code{%param}s and/or @code{%lex-param}s.
1979121c
DJ
10176
10177Use @code{%code init} for code added to the start of the constructor
10178body. This is especially useful to initialize superclasses. Use
67501061 10179@samp{%define init_throws} to specify any uncatch exceptions.
e254a580 10180@end deftypeop
8405b70c
PB
10181
10182@deftypemethod {YYParser} {boolean} parse ()
10183Run the syntactic analysis, and return @code{true} on success,
10184@code{false} otherwise.
10185@end deftypemethod
10186
1979121c
DJ
10187@deftypemethod {YYParser} {boolean} getErrorVerbose ()
10188@deftypemethodx {YYParser} {void} setErrorVerbose (boolean @var{verbose})
10189Get or set the option to produce verbose error messages. These are only
cf499cff 10190available with @samp{%define parse.error verbose}, which also turns on
1979121c
DJ
10191verbose error messages.
10192@end deftypemethod
10193
10194@deftypemethod {YYParser} {void} yyerror (String @var{msg})
10195@deftypemethodx {YYParser} {void} yyerror (Position @var{pos}, String @var{msg})
10196@deftypemethodx {YYParser} {void} yyerror (Location @var{loc}, String @var{msg})
10197Print an error message using the @code{yyerror} method of the scanner
10198instance in use. The @code{Location} and @code{Position} parameters are
10199available only if location tracking is active.
10200@end deftypemethod
10201
01b477c6 10202@deftypemethod {YYParser} {boolean} recovering ()
8405b70c 10203During the syntactic analysis, return @code{true} if recovering
e254a580
DJ
10204from a syntax error.
10205@xref{Error Recovery}.
8405b70c
PB
10206@end deftypemethod
10207
10208@deftypemethod {YYParser} {java.io.PrintStream} getDebugStream ()
10209@deftypemethodx {YYParser} {void} setDebugStream (java.io.printStream @var{o})
10210Get or set the stream used for tracing the parsing. It defaults to
10211@code{System.err}.
10212@end deftypemethod
10213
10214@deftypemethod {YYParser} {int} getDebugLevel ()
10215@deftypemethodx {YYParser} {void} setDebugLevel (int @var{l})
10216Get or set the tracing level. Currently its value is either 0, no trace,
10217or nonzero, full tracing.
10218@end deftypemethod
10219
1979121c
DJ
10220@deftypecv {Constant} {YYParser} {String} {bisonVersion}
10221@deftypecvx {Constant} {YYParser} {String} {bisonSkeleton}
10222Identify the Bison version and skeleton used to generate this parser.
10223@end deftypecv
10224
8405b70c
PB
10225
10226@node Java Scanner Interface
10227@subsection Java Scanner Interface
01b477c6 10228@c - %code lexer
8405b70c 10229@c - %lex-param
01b477c6 10230@c - Lexer interface
8405b70c 10231
e254a580
DJ
10232There are two possible ways to interface a Bison-generated Java parser
10233with a scanner: the scanner may be defined by @code{%code lexer}, or
10234defined elsewhere. In either case, the scanner has to implement the
1979121c
DJ
10235@code{Lexer} inner interface of the parser class. This interface also
10236contain constants for all user-defined token names and the predefined
10237@code{EOF} token.
e254a580
DJ
10238
10239In the first case, the body of the scanner class is placed in
10240@code{%code lexer} blocks. If you want to pass parameters from the
10241parser constructor to the scanner constructor, specify them with
10242@code{%lex-param}; they are passed before @code{%parse-param}s to the
10243constructor.
01b477c6 10244
59c5ac72 10245In the second case, the scanner has to implement the @code{Lexer} interface,
01b477c6
PB
10246which is defined within the parser class (e.g., @code{YYParser.Lexer}).
10247The constructor of the parser object will then accept an object
10248implementing the interface; @code{%lex-param} is not used in this
10249case.
10250
10251In both cases, the scanner has to implement the following methods.
10252
e254a580
DJ
10253@deftypemethod {Lexer} {void} yyerror (Location @var{loc}, String @var{msg})
10254This method is defined by the user to emit an error message. The first
10255parameter is omitted if location tracking is not active. Its type can be
67501061 10256changed using @samp{%define location_type "@var{class-name}".}
8405b70c
PB
10257@end deftypemethod
10258
e254a580 10259@deftypemethod {Lexer} {int} yylex ()
8405b70c 10260Return the next token. Its type is the return value, its semantic
f50bfcd6 10261value and location are saved and returned by the their methods in the
e254a580
DJ
10262interface.
10263
67501061 10264Use @samp{%define lex_throws} to specify any uncaught exceptions.
e254a580 10265Default is @code{java.io.IOException}.
8405b70c
PB
10266@end deftypemethod
10267
10268@deftypemethod {Lexer} {Position} getStartPos ()
10269@deftypemethodx {Lexer} {Position} getEndPos ()
01b477c6
PB
10270Return respectively the first position of the last token that
10271@code{yylex} returned, and the first position beyond it. These
10272methods are not needed unless location tracking is active.
8405b70c 10273
67501061 10274The return type can be changed using @samp{%define position_type
8405b70c
PB
10275"@var{class-name}".}
10276@end deftypemethod
10277
10278@deftypemethod {Lexer} {Object} getLVal ()
f50bfcd6 10279Return the semantic value of the last token that yylex returned.
8405b70c 10280
67501061 10281The return type can be changed using @samp{%define stype
8405b70c
PB
10282"@var{class-name}".}
10283@end deftypemethod
10284
10285
e254a580
DJ
10286@node Java Action Features
10287@subsection Special Features for Use in Java Actions
10288
10289The following special constructs can be uses in Java actions.
10290Other analogous C action features are currently unavailable for Java.
10291
67501061 10292Use @samp{%define throws} to specify any uncaught exceptions from parser
e254a580
DJ
10293actions, and initial actions specified by @code{%initial-action}.
10294
10295@defvar $@var{n}
10296The semantic value for the @var{n}th component of the current rule.
10297This may not be assigned to.
10298@xref{Java Semantic Values}.
10299@end defvar
10300
10301@defvar $<@var{typealt}>@var{n}
10302Like @code{$@var{n}} but specifies a alternative type @var{typealt}.
10303@xref{Java Semantic Values}.
10304@end defvar
10305
10306@defvar $$
10307The semantic value for the grouping made by the current rule. As a
10308value, this is in the base type (@code{Object} or as specified by
67501061 10309@samp{%define stype}) as in not cast to the declared subtype because
e254a580
DJ
10310casts are not allowed on the left-hand side of Java assignments.
10311Use an explicit Java cast if the correct subtype is needed.
10312@xref{Java Semantic Values}.
10313@end defvar
10314
10315@defvar $<@var{typealt}>$
10316Same as @code{$$} since Java always allow assigning to the base type.
10317Perhaps we should use this and @code{$<>$} for the value and @code{$$}
10318for setting the value but there is currently no easy way to distinguish
10319these constructs.
10320@xref{Java Semantic Values}.
10321@end defvar
10322
10323@defvar @@@var{n}
10324The location information of the @var{n}th component of the current rule.
10325This may not be assigned to.
10326@xref{Java Location Values}.
10327@end defvar
10328
10329@defvar @@$
10330The location information of the grouping made by the current rule.
10331@xref{Java Location Values}.
10332@end defvar
10333
10334@deffn {Statement} {return YYABORT;}
10335Return immediately from the parser, indicating failure.
10336@xref{Java Parser Interface}.
10337@end deffn
8405b70c 10338
e254a580
DJ
10339@deffn {Statement} {return YYACCEPT;}
10340Return immediately from the parser, indicating success.
10341@xref{Java Parser Interface}.
10342@end deffn
8405b70c 10343
e254a580 10344@deffn {Statement} {return YYERROR;}
c265fd6b 10345Start error recovery without printing an error message.
e254a580
DJ
10346@xref{Error Recovery}.
10347@end deffn
8405b70c 10348
e254a580
DJ
10349@deftypefn {Function} {boolean} recovering ()
10350Return whether error recovery is being done. In this state, the parser
10351reads token until it reaches a known state, and then restarts normal
10352operation.
10353@xref{Error Recovery}.
10354@end deftypefn
8405b70c 10355
1979121c
DJ
10356@deftypefn {Function} {void} yyerror (String @var{msg})
10357@deftypefnx {Function} {void} yyerror (Position @var{loc}, String @var{msg})
10358@deftypefnx {Function} {void} yyerror (Location @var{loc}, String @var{msg})
e254a580 10359Print an error message using the @code{yyerror} method of the scanner
1979121c
DJ
10360instance in use. The @code{Location} and @code{Position} parameters are
10361available only if location tracking is active.
e254a580 10362@end deftypefn
8405b70c 10363
8405b70c 10364
8405b70c
PB
10365@node Java Differences
10366@subsection Differences between C/C++ and Java Grammars
10367
10368The different structure of the Java language forces several differences
10369between C/C++ grammars, and grammars designed for Java parsers. This
29553547 10370section summarizes these differences.
8405b70c
PB
10371
10372@itemize
10373@item
01b477c6 10374Java lacks a preprocessor, so the @code{YYERROR}, @code{YYACCEPT},
8405b70c 10375@code{YYABORT} symbols (@pxref{Table of Symbols}) cannot obviously be
01b477c6
PB
10376macros. Instead, they should be preceded by @code{return} when they
10377appear in an action. The actual definition of these symbols is
8405b70c
PB
10378opaque to the Bison grammar, and it might change in the future. The
10379only meaningful operation that you can do, is to return them.
e254a580 10380See @pxref{Java Action Features}.
8405b70c
PB
10381
10382Note that of these three symbols, only @code{YYACCEPT} and
10383@code{YYABORT} will cause a return from the @code{yyparse}
10384method@footnote{Java parsers include the actions in a separate
10385method than @code{yyparse} in order to have an intuitive syntax that
10386corresponds to these C macros.}.
10387
e254a580
DJ
10388@item
10389Java lacks unions, so @code{%union} has no effect. Instead, semantic
10390values have a common base type: @code{Object} or as specified by
f50bfcd6 10391@samp{%define stype}. Angle brackets on @code{%token}, @code{type},
e254a580
DJ
10392@code{$@var{n}} and @code{$$} specify subtypes rather than fields of
10393an union. The type of @code{$$}, even with angle brackets, is the base
10394type since Java casts are not allow on the left-hand side of assignments.
10395Also, @code{$@var{n}} and @code{@@@var{n}} are not allowed on the
10396left-hand side of assignments. See @pxref{Java Semantic Values} and
10397@pxref{Java Action Features}.
10398
8405b70c 10399@item
f50bfcd6 10400The prologue declarations have a different meaning than in C/C++ code.
01b477c6
PB
10401@table @asis
10402@item @code{%code imports}
10403blocks are placed at the beginning of the Java source code. They may
10404include copyright notices. For a @code{package} declarations, it is
67501061 10405suggested to use @samp{%define package} instead.
8405b70c 10406
01b477c6
PB
10407@item unqualified @code{%code}
10408blocks are placed inside the parser class.
10409
10410@item @code{%code lexer}
10411blocks, if specified, should include the implementation of the
10412scanner. If there is no such block, the scanner can be any class
10413that implements the appropriate interface (see @pxref{Java Scanner
10414Interface}).
29553547 10415@end table
8405b70c
PB
10416
10417Other @code{%code} blocks are not supported in Java parsers.
e254a580
DJ
10418In particular, @code{%@{ @dots{} %@}} blocks should not be used
10419and may give an error in future versions of Bison.
10420
01b477c6 10421The epilogue has the same meaning as in C/C++ code and it can
e254a580
DJ
10422be used to define other classes used by the parser @emph{outside}
10423the parser class.
8405b70c
PB
10424@end itemize
10425
e254a580
DJ
10426
10427@node Java Declarations Summary
10428@subsection Java Declarations Summary
10429
10430This summary only include declarations specific to Java or have special
10431meaning when used in a Java parser.
10432
10433@deffn {Directive} {%language "Java"}
10434Generate a Java class for the parser.
10435@end deffn
10436
10437@deffn {Directive} %lex-param @{@var{type} @var{name}@}
10438A parameter for the lexer class defined by @code{%code lexer}
10439@emph{only}, added as parameters to the lexer constructor and the parser
10440constructor that @emph{creates} a lexer. Default is none.
10441@xref{Java Scanner Interface}.
10442@end deffn
10443
10444@deffn {Directive} %name-prefix "@var{prefix}"
10445The prefix of the parser class name @code{@var{prefix}Parser} if
67501061 10446@samp{%define parser_class_name} is not used. Default is @code{YY}.
e254a580
DJ
10447@xref{Java Bison Interface}.
10448@end deffn
10449
10450@deffn {Directive} %parse-param @{@var{type} @var{name}@}
10451A parameter for the parser class added as parameters to constructor(s)
10452and as fields initialized by the constructor(s). Default is none.
10453@xref{Java Parser Interface}.
10454@end deffn
10455
10456@deffn {Directive} %token <@var{type}> @var{token} @dots{}
10457Declare tokens. Note that the angle brackets enclose a Java @emph{type}.
10458@xref{Java Semantic Values}.
10459@end deffn
10460
10461@deffn {Directive} %type <@var{type}> @var{nonterminal} @dots{}
10462Declare the type of nonterminals. Note that the angle brackets enclose
10463a Java @emph{type}.
10464@xref{Java Semantic Values}.
10465@end deffn
10466
10467@deffn {Directive} %code @{ @var{code} @dots{} @}
10468Code appended to the inside of the parser class.
10469@xref{Java Differences}.
10470@end deffn
10471
10472@deffn {Directive} {%code imports} @{ @var{code} @dots{} @}
10473Code inserted just after the @code{package} declaration.
10474@xref{Java Differences}.
10475@end deffn
10476
1979121c
DJ
10477@deffn {Directive} {%code init} @{ @var{code} @dots{} @}
10478Code inserted at the beginning of the parser constructor body.
10479@xref{Java Parser Interface}.
10480@end deffn
10481
e254a580
DJ
10482@deffn {Directive} {%code lexer} @{ @var{code} @dots{} @}
10483Code added to the body of a inner lexer class within the parser class.
10484@xref{Java Scanner Interface}.
10485@end deffn
10486
10487@deffn {Directive} %% @var{code} @dots{}
10488Code (after the second @code{%%}) appended to the end of the file,
10489@emph{outside} the parser class.
10490@xref{Java Differences}.
10491@end deffn
10492
10493@deffn {Directive} %@{ @var{code} @dots{} %@}
1979121c 10494Not supported. Use @code{%code imports} instead.
e254a580
DJ
10495@xref{Java Differences}.
10496@end deffn
10497
10498@deffn {Directive} {%define abstract}
10499Whether the parser class is declared @code{abstract}. Default is false.
10500@xref{Java Bison Interface}.
10501@end deffn
10502
1979121c
DJ
10503@deffn {Directive} {%define annotations} "@var{annotations}"
10504The Java annotations for the parser class. Default is none.
10505@xref{Java Bison Interface}.
10506@end deffn
10507
e254a580
DJ
10508@deffn {Directive} {%define extends} "@var{superclass}"
10509The superclass of the parser class. Default is none.
10510@xref{Java Bison Interface}.
10511@end deffn
10512
10513@deffn {Directive} {%define final}
10514Whether the parser class is declared @code{final}. Default is false.
10515@xref{Java Bison Interface}.
10516@end deffn
10517
10518@deffn {Directive} {%define implements} "@var{interfaces}"
10519The implemented interfaces of the parser class, a comma-separated list.
10520Default is none.
10521@xref{Java Bison Interface}.
10522@end deffn
10523
1979121c
DJ
10524@deffn {Directive} {%define init_throws} "@var{exceptions}"
10525The exceptions thrown by @code{%code init} from the parser class
10526constructor. Default is none.
10527@xref{Java Parser Interface}.
10528@end deffn
10529
e254a580
DJ
10530@deffn {Directive} {%define lex_throws} "@var{exceptions}"
10531The exceptions thrown by the @code{yylex} method of the lexer, a
10532comma-separated list. Default is @code{java.io.IOException}.
10533@xref{Java Scanner Interface}.
10534@end deffn
10535
10536@deffn {Directive} {%define location_type} "@var{class}"
10537The name of the class used for locations (a range between two
10538positions). This class is generated as an inner class of the parser
10539class by @command{bison}. Default is @code{Location}.
10540@xref{Java Location Values}.
10541@end deffn
10542
10543@deffn {Directive} {%define package} "@var{package}"
10544The package to put the parser class in. Default is none.
10545@xref{Java Bison Interface}.
10546@end deffn
10547
10548@deffn {Directive} {%define parser_class_name} "@var{name}"
10549The name of the parser class. Default is @code{YYParser} or
10550@code{@var{name-prefix}Parser}.
10551@xref{Java Bison Interface}.
10552@end deffn
10553
10554@deffn {Directive} {%define position_type} "@var{class}"
10555The name of the class used for positions. This class must be supplied by
10556the user. Default is @code{Position}.
10557@xref{Java Location Values}.
10558@end deffn
10559
10560@deffn {Directive} {%define public}
10561Whether the parser class is declared @code{public}. Default is false.
10562@xref{Java Bison Interface}.
10563@end deffn
10564
10565@deffn {Directive} {%define stype} "@var{class}"
10566The base type of semantic values. Default is @code{Object}.
10567@xref{Java Semantic Values}.
10568@end deffn
10569
10570@deffn {Directive} {%define strictfp}
10571Whether the parser class is declared @code{strictfp}. Default is false.
10572@xref{Java Bison Interface}.
10573@end deffn
10574
10575@deffn {Directive} {%define throws} "@var{exceptions}"
10576The exceptions thrown by user-supplied parser actions and
10577@code{%initial-action}, a comma-separated list. Default is none.
10578@xref{Java Parser Interface}.
10579@end deffn
10580
10581
12545799 10582@c ================================================= FAQ
d1a1114f
AD
10583
10584@node FAQ
10585@chapter Frequently Asked Questions
10586@cindex frequently asked questions
10587@cindex questions
10588
10589Several questions about Bison come up occasionally. Here some of them
10590are addressed.
10591
10592@menu
55ba27be
AD
10593* Memory Exhausted:: Breaking the Stack Limits
10594* How Can I Reset the Parser:: @code{yyparse} Keeps some State
10595* Strings are Destroyed:: @code{yylval} Loses Track of Strings
10596* Implementing Gotos/Loops:: Control Flow in the Calculator
ed2e6384 10597* Multiple start-symbols:: Factoring closely related grammars
8a4281b9 10598* Secure? Conform?:: Is Bison POSIX safe?
55ba27be
AD
10599* I can't build Bison:: Troubleshooting
10600* Where can I find help?:: Troubleshouting
10601* Bug Reports:: Troublereporting
8405b70c 10602* More Languages:: Parsers in C++, Java, and so on
55ba27be
AD
10603* Beta Testing:: Experimenting development versions
10604* Mailing Lists:: Meeting other Bison users
d1a1114f
AD
10605@end menu
10606
1a059451
PE
10607@node Memory Exhausted
10608@section Memory Exhausted
d1a1114f
AD
10609
10610@display
1a059451 10611My parser returns with error with a @samp{memory exhausted}
d1a1114f
AD
10612message. What can I do?
10613@end display
10614
10615This question is already addressed elsewhere, @xref{Recursion,
10616,Recursive Rules}.
10617
e64fec0a
PE
10618@node How Can I Reset the Parser
10619@section How Can I Reset the Parser
5b066063 10620
0e14ad77
PE
10621The following phenomenon has several symptoms, resulting in the
10622following typical questions:
5b066063
AD
10623
10624@display
10625I invoke @code{yyparse} several times, and on correct input it works
10626properly; but when a parse error is found, all the other calls fail
0e14ad77 10627too. How can I reset the error flag of @code{yyparse}?
5b066063
AD
10628@end display
10629
10630@noindent
10631or
10632
10633@display
0e14ad77 10634My parser includes support for an @samp{#include}-like feature, in
5b066063 10635which case I run @code{yyparse} from @code{yyparse}. This fails
67501061 10636although I did specify @samp{%define api.pure}.
5b066063
AD
10637@end display
10638
0e14ad77
PE
10639These problems typically come not from Bison itself, but from
10640Lex-generated scanners. Because these scanners use large buffers for
5b066063
AD
10641speed, they might not notice a change of input file. As a
10642demonstration, consider the following source file,
10643@file{first-line.l}:
10644
10645@verbatim
10646%{
10647#include <stdio.h>
10648#include <stdlib.h>
10649%}
10650%%
10651.*\n ECHO; return 1;
10652%%
10653int
0e14ad77 10654yyparse (char const *file)
5b066063
AD
10655{
10656 yyin = fopen (file, "r");
10657 if (!yyin)
10658 exit (2);
fa7e68c3 10659 /* One token only. */
5b066063 10660 yylex ();
0e14ad77 10661 if (fclose (yyin) != 0)
5b066063
AD
10662 exit (3);
10663 return 0;
10664}
10665
10666int
0e14ad77 10667main (void)
5b066063
AD
10668{
10669 yyparse ("input");
10670 yyparse ("input");
10671 return 0;
10672}
10673@end verbatim
10674
10675@noindent
10676If the file @file{input} contains
10677
10678@verbatim
10679input:1: Hello,
10680input:2: World!
10681@end verbatim
10682
10683@noindent
0e14ad77 10684then instead of getting the first line twice, you get:
5b066063
AD
10685
10686@example
10687$ @kbd{flex -ofirst-line.c first-line.l}
10688$ @kbd{gcc -ofirst-line first-line.c -ll}
10689$ @kbd{./first-line}
10690input:1: Hello,
10691input:2: World!
10692@end example
10693
0e14ad77
PE
10694Therefore, whenever you change @code{yyin}, you must tell the
10695Lex-generated scanner to discard its current buffer and switch to the
10696new one. This depends upon your implementation of Lex; see its
10697documentation for more. For Flex, it suffices to call
10698@samp{YY_FLUSH_BUFFER} after each change to @code{yyin}. If your
10699Flex-generated scanner needs to read from several input streams to
10700handle features like include files, you might consider using Flex
10701functions like @samp{yy_switch_to_buffer} that manipulate multiple
10702input buffers.
5b066063 10703
b165c324
AD
10704If your Flex-generated scanner uses start conditions (@pxref{Start
10705conditions, , Start conditions, flex, The Flex Manual}), you might
10706also want to reset the scanner's state, i.e., go back to the initial
10707start condition, through a call to @samp{BEGIN (0)}.
10708
fef4cb51
AD
10709@node Strings are Destroyed
10710@section Strings are Destroyed
10711
10712@display
c7e441b4 10713My parser seems to destroy old strings, or maybe it loses track of
fef4cb51
AD
10714them. Instead of reporting @samp{"foo", "bar"}, it reports
10715@samp{"bar", "bar"}, or even @samp{"foo\nbar", "bar"}.
10716@end display
10717
10718This error is probably the single most frequent ``bug report'' sent to
10719Bison lists, but is only concerned with a misunderstanding of the role
8c5b881d 10720of the scanner. Consider the following Lex code:
fef4cb51
AD
10721
10722@verbatim
10723%{
10724#include <stdio.h>
10725char *yylval = NULL;
10726%}
10727%%
10728.* yylval = yytext; return 1;
10729\n /* IGNORE */
10730%%
10731int
10732main ()
10733{
fa7e68c3 10734 /* Similar to using $1, $2 in a Bison action. */
fef4cb51
AD
10735 char *fst = (yylex (), yylval);
10736 char *snd = (yylex (), yylval);
10737 printf ("\"%s\", \"%s\"\n", fst, snd);
10738 return 0;
10739}
10740@end verbatim
10741
10742If you compile and run this code, you get:
10743
10744@example
10745$ @kbd{flex -osplit-lines.c split-lines.l}
10746$ @kbd{gcc -osplit-lines split-lines.c -ll}
10747$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10748"one
10749two", "two"
10750@end example
10751
10752@noindent
10753this is because @code{yytext} is a buffer provided for @emph{reading}
10754in the action, but if you want to keep it, you have to duplicate it
10755(e.g., using @code{strdup}). Note that the output may depend on how
10756your implementation of Lex handles @code{yytext}. For instance, when
10757given the Lex compatibility option @option{-l} (which triggers the
10758option @samp{%array}) Flex generates a different behavior:
10759
10760@example
10761$ @kbd{flex -l -osplit-lines.c split-lines.l}
10762$ @kbd{gcc -osplit-lines split-lines.c -ll}
10763$ @kbd{printf 'one\ntwo\n' | ./split-lines}
10764"two", "two"
10765@end example
10766
10767
2fa09258
AD
10768@node Implementing Gotos/Loops
10769@section Implementing Gotos/Loops
a06ea4aa
AD
10770
10771@display
10772My simple calculator supports variables, assignments, and functions,
2fa09258 10773but how can I implement gotos, or loops?
a06ea4aa
AD
10774@end display
10775
10776Although very pedagogical, the examples included in the document blur
a1c84f45 10777the distinction to make between the parser---whose job is to recover
a06ea4aa 10778the structure of a text and to transmit it to subsequent modules of
a1c84f45 10779the program---and the processing (such as the execution) of this
a06ea4aa
AD
10780structure. This works well with so called straight line programs,
10781i.e., precisely those that have a straightforward execution model:
10782execute simple instructions one after the others.
10783
10784@cindex abstract syntax tree
8a4281b9 10785@cindex AST
a06ea4aa
AD
10786If you want a richer model, you will probably need to use the parser
10787to construct a tree that does represent the structure it has
10788recovered; this tree is usually called the @dfn{abstract syntax tree},
8a4281b9 10789or @dfn{AST} for short. Then, walking through this tree,
a06ea4aa
AD
10790traversing it in various ways, will enable treatments such as its
10791execution or its translation, which will result in an interpreter or a
10792compiler.
10793
10794This topic is way beyond the scope of this manual, and the reader is
10795invited to consult the dedicated literature.
10796
10797
ed2e6384
AD
10798@node Multiple start-symbols
10799@section Multiple start-symbols
10800
10801@display
10802I have several closely related grammars, and I would like to share their
10803implementations. In fact, I could use a single grammar but with
10804multiple entry points.
10805@end display
10806
10807Bison does not support multiple start-symbols, but there is a very
10808simple means to simulate them. If @code{foo} and @code{bar} are the two
10809pseudo start-symbols, then introduce two new tokens, say
10810@code{START_FOO} and @code{START_BAR}, and use them as switches from the
10811real start-symbol:
10812
10813@example
10814%token START_FOO START_BAR;
10815%start start;
10816start: START_FOO foo
10817 | START_BAR bar;
10818@end example
10819
10820These tokens prevents the introduction of new conflicts. As far as the
10821parser goes, that is all that is needed.
10822
10823Now the difficult part is ensuring that the scanner will send these
10824tokens first. If your scanner is hand-written, that should be
10825straightforward. If your scanner is generated by Lex, them there is
10826simple means to do it: recall that anything between @samp{%@{ ... %@}}
10827after the first @code{%%} is copied verbatim in the top of the generated
10828@code{yylex} function. Make sure a variable @code{start_token} is
10829available in the scanner (e.g., a global variable or using
10830@code{%lex-param} etc.), and use the following:
10831
10832@example
10833 /* @r{Prologue.} */
10834%%
10835%@{
10836 if (start_token)
10837 @{
10838 int t = start_token;
10839 start_token = 0;
10840 return t;
10841 @}
10842%@}
10843 /* @r{The rules.} */
10844@end example
10845
10846
55ba27be
AD
10847@node Secure? Conform?
10848@section Secure? Conform?
10849
10850@display
10851Is Bison secure? Does it conform to POSIX?
10852@end display
10853
10854If you're looking for a guarantee or certification, we don't provide it.
10855However, Bison is intended to be a reliable program that conforms to the
8a4281b9 10856POSIX specification for Yacc. If you run into problems,
55ba27be
AD
10857please send us a bug report.
10858
10859@node I can't build Bison
10860@section I can't build Bison
10861
10862@display
8c5b881d
PE
10863I can't build Bison because @command{make} complains that
10864@code{msgfmt} is not found.
55ba27be
AD
10865What should I do?
10866@end display
10867
10868Like most GNU packages with internationalization support, that feature
10869is turned on by default. If you have problems building in the @file{po}
10870subdirectory, it indicates that your system's internationalization
10871support is lacking. You can re-configure Bison with
10872@option{--disable-nls} to turn off this support, or you can install GNU
10873gettext from @url{ftp://ftp.gnu.org/gnu/gettext/} and re-configure
10874Bison. See the file @file{ABOUT-NLS} for more information.
10875
10876
10877@node Where can I find help?
10878@section Where can I find help?
10879
10880@display
10881I'm having trouble using Bison. Where can I find help?
10882@end display
10883
10884First, read this fine manual. Beyond that, you can send mail to
10885@email{help-bison@@gnu.org}. This mailing list is intended to be
10886populated with people who are willing to answer questions about using
10887and installing Bison. Please keep in mind that (most of) the people on
10888the list have aspects of their lives which are not related to Bison (!),
10889so you may not receive an answer to your question right away. This can
10890be frustrating, but please try not to honk them off; remember that any
10891help they provide is purely voluntary and out of the kindness of their
10892hearts.
10893
10894@node Bug Reports
10895@section Bug Reports
10896
10897@display
10898I found a bug. What should I include in the bug report?
10899@end display
10900
10901Before you send a bug report, make sure you are using the latest
10902version. Check @url{ftp://ftp.gnu.org/pub/gnu/bison/} or one of its
10903mirrors. Be sure to include the version number in your bug report. If
10904the bug is present in the latest version but not in a previous version,
10905try to determine the most recent version which did not contain the bug.
10906
10907If the bug is parser-related, you should include the smallest grammar
10908you can which demonstrates the bug. The grammar file should also be
10909complete (i.e., I should be able to run it through Bison without having
10910to edit or add anything). The smaller and simpler the grammar, the
10911easier it will be to fix the bug.
10912
10913Include information about your compilation environment, including your
10914operating system's name and version and your compiler's name and
10915version. If you have trouble compiling, you should also include a
10916transcript of the build session, starting with the invocation of
10917`configure'. Depending on the nature of the bug, you may be asked to
10918send additional files as well (such as `config.h' or `config.cache').
10919
10920Patches are most welcome, but not required. That is, do not hesitate to
10921send a bug report just because you can not provide a fix.
10922
10923Send bug reports to @email{bug-bison@@gnu.org}.
10924
8405b70c
PB
10925@node More Languages
10926@section More Languages
55ba27be
AD
10927
10928@display
8405b70c 10929Will Bison ever have C++ and Java support? How about @var{insert your
55ba27be
AD
10930favorite language here}?
10931@end display
10932
8405b70c 10933C++ and Java support is there now, and is documented. We'd love to add other
55ba27be
AD
10934languages; contributions are welcome.
10935
10936@node Beta Testing
10937@section Beta Testing
10938
10939@display
10940What is involved in being a beta tester?
10941@end display
10942
10943It's not terribly involved. Basically, you would download a test
10944release, compile it, and use it to build and run a parser or two. After
10945that, you would submit either a bug report or a message saying that
10946everything is okay. It is important to report successes as well as
10947failures because test releases eventually become mainstream releases,
10948but only if they are adequately tested. If no one tests, development is
10949essentially halted.
10950
10951Beta testers are particularly needed for operating systems to which the
10952developers do not have easy access. They currently have easy access to
10953recent GNU/Linux and Solaris versions. Reports about other operating
10954systems are especially welcome.
10955
10956@node Mailing Lists
10957@section Mailing Lists
10958
10959@display
10960How do I join the help-bison and bug-bison mailing lists?
10961@end display
10962
10963See @url{http://lists.gnu.org/}.
a06ea4aa 10964
d1a1114f
AD
10965@c ================================================= Table of Symbols
10966
342b8b6e 10967@node Table of Symbols
bfa74976
RS
10968@appendix Bison Symbols
10969@cindex Bison symbols, table of
10970@cindex symbols in Bison, table of
10971
18b519c0 10972@deffn {Variable} @@$
3ded9a63 10973In an action, the location of the left-hand side of the rule.
88bce5a2 10974@xref{Locations, , Locations Overview}.
18b519c0 10975@end deffn
3ded9a63 10976
18b519c0 10977@deffn {Variable} @@@var{n}
3ded9a63
AD
10978In an action, the location of the @var{n}-th symbol of the right-hand
10979side of the rule. @xref{Locations, , Locations Overview}.
18b519c0 10980@end deffn
3ded9a63 10981
d013372c
AR
10982@deffn {Variable} @@@var{name}
10983In an action, the location of a symbol addressed by name.
10984@xref{Locations, , Locations Overview}.
10985@end deffn
10986
10987@deffn {Variable} @@[@var{name}]
10988In an action, the location of a symbol addressed by name.
10989@xref{Locations, , Locations Overview}.
10990@end deffn
10991
18b519c0 10992@deffn {Variable} $$
3ded9a63
AD
10993In an action, the semantic value of the left-hand side of the rule.
10994@xref{Actions}.
18b519c0 10995@end deffn
3ded9a63 10996
18b519c0 10997@deffn {Variable} $@var{n}
3ded9a63
AD
10998In an action, the semantic value of the @var{n}-th symbol of the
10999right-hand side of the rule. @xref{Actions}.
18b519c0 11000@end deffn
3ded9a63 11001
d013372c
AR
11002@deffn {Variable} $@var{name}
11003In an action, the semantic value of a symbol addressed by name.
11004@xref{Actions}.
11005@end deffn
11006
11007@deffn {Variable} $[@var{name}]
11008In an action, the semantic value of a symbol addressed by name.
11009@xref{Actions}.
11010@end deffn
11011
dd8d9022
AD
11012@deffn {Delimiter} %%
11013Delimiter used to separate the grammar rule section from the
11014Bison declarations section or the epilogue.
11015@xref{Grammar Layout, ,The Overall Layout of a Bison Grammar}.
18b519c0 11016@end deffn
bfa74976 11017
dd8d9022
AD
11018@c Don't insert spaces, or check the DVI output.
11019@deffn {Delimiter} %@{@var{code}%@}
ff7571c0
JD
11020All code listed between @samp{%@{} and @samp{%@}} is copied verbatim
11021to the parser implementation file. Such code forms the prologue of
11022the grammar file. @xref{Grammar Outline, ,Outline of a Bison
dd8d9022 11023Grammar}.
18b519c0 11024@end deffn
bfa74976 11025
ca2a6d15
PH
11026@deffn {Directive} %?@{@var{expression}@}
11027Predicate actions. This is a type of action clause that may appear in
11028rules. The expression is evaluated, and if false, causes a syntax error. In
8a4281b9 11029GLR parsers during nondeterministic operation,
ca2a6d15
PH
11030this silently causes an alternative parse to die. During deterministic
11031operation, it is the same as the effect of YYERROR.
11032@xref{Semantic Predicates}.
11033
11034This feature is experimental.
11035More user feedback will help to determine whether it should become a permanent
11036feature.
11037@end deffn
11038
dd8d9022
AD
11039@deffn {Construct} /*@dots{}*/
11040Comment delimiters, as in C.
18b519c0 11041@end deffn
bfa74976 11042
dd8d9022
AD
11043@deffn {Delimiter} :
11044Separates a rule's result from its components. @xref{Rules, ,Syntax of
11045Grammar Rules}.
18b519c0 11046@end deffn
bfa74976 11047
dd8d9022
AD
11048@deffn {Delimiter} ;
11049Terminates a rule. @xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11050@end deffn
bfa74976 11051
dd8d9022
AD
11052@deffn {Delimiter} |
11053Separates alternate rules for the same result nonterminal.
11054@xref{Rules, ,Syntax of Grammar Rules}.
18b519c0 11055@end deffn
bfa74976 11056
12e35840
JD
11057@deffn {Directive} <*>
11058Used to define a default tagged @code{%destructor} or default tagged
11059@code{%printer}.
85894313
JD
11060
11061This feature is experimental.
11062More user feedback will help to determine whether it should become a permanent
11063feature.
11064
12e35840
JD
11065@xref{Destructor Decl, , Freeing Discarded Symbols}.
11066@end deffn
11067
3ebecc24 11068@deffn {Directive} <>
12e35840
JD
11069Used to define a default tagless @code{%destructor} or default tagless
11070@code{%printer}.
85894313
JD
11071
11072This feature is experimental.
11073More user feedback will help to determine whether it should become a permanent
11074feature.
11075
12e35840
JD
11076@xref{Destructor Decl, , Freeing Discarded Symbols}.
11077@end deffn
11078
dd8d9022
AD
11079@deffn {Symbol} $accept
11080The predefined nonterminal whose only rule is @samp{$accept: @var{start}
11081$end}, where @var{start} is the start symbol. @xref{Start Decl, , The
11082Start-Symbol}. It cannot be used in the grammar.
18b519c0 11083@end deffn
bfa74976 11084
136a0f76 11085@deffn {Directive} %code @{@var{code}@}
148d66d8 11086@deffnx {Directive} %code @var{qualifier} @{@var{code}@}
51151d91
JD
11087Insert @var{code} verbatim into the output parser source at the
11088default location or at the location specified by @var{qualifier}.
e0c07222 11089@xref{%code Summary}.
9bc0dd67
JD
11090@end deffn
11091
11092@deffn {Directive} %debug
11093Equip the parser for debugging. @xref{Decl Summary}.
11094@end deffn
11095
91d2c560 11096@ifset defaultprec
22fccf95
PE
11097@deffn {Directive} %default-prec
11098Assign a precedence to rules that lack an explicit @samp{%prec}
11099modifier. @xref{Contextual Precedence, ,Context-Dependent
11100Precedence}.
39a06c25 11101@end deffn
91d2c560 11102@end ifset
39a06c25 11103
7fceb615
JD
11104@deffn {Directive} %define @var{variable}
11105@deffnx {Directive} %define @var{variable} @var{value}
11106@deffnx {Directive} %define @var{variable} "@var{value}"
35c1e5f0 11107Define a variable to adjust Bison's behavior. @xref{%define Summary}.
148d66d8
JD
11108@end deffn
11109
18b519c0 11110@deffn {Directive} %defines
ff7571c0
JD
11111Bison declaration to create a parser header file, which is usually
11112meant for the scanner. @xref{Decl Summary}.
18b519c0 11113@end deffn
6deb4447 11114
02975b9a
JD
11115@deffn {Directive} %defines @var{defines-file}
11116Same as above, but save in the file @var{defines-file}.
11117@xref{Decl Summary}.
11118@end deffn
11119
18b519c0 11120@deffn {Directive} %destructor
258b75ca 11121Specify how the parser should reclaim the memory associated to
fa7e68c3 11122discarded symbols. @xref{Destructor Decl, , Freeing Discarded Symbols}.
18b519c0 11123@end deffn
72f889cc 11124
18b519c0 11125@deffn {Directive} %dprec
676385e2 11126Bison declaration to assign a precedence to a rule that is used at parse
c827f760 11127time to resolve reduce/reduce conflicts. @xref{GLR Parsers, ,Writing
8a4281b9 11128GLR Parsers}.
18b519c0 11129@end deffn
676385e2 11130
dd8d9022
AD
11131@deffn {Symbol} $end
11132The predefined token marking the end of the token stream. It cannot be
11133used in the grammar.
11134@end deffn
11135
11136@deffn {Symbol} error
11137A token name reserved for error recovery. This token may be used in
11138grammar rules so as to allow the Bison parser to recognize an error in
11139the grammar without halting the process. In effect, a sentence
11140containing an error may be recognized as valid. On a syntax error, the
742e4900
JD
11141token @code{error} becomes the current lookahead token. Actions
11142corresponding to @code{error} are then executed, and the lookahead
dd8d9022
AD
11143token is reset to the token that originally caused the violation.
11144@xref{Error Recovery}.
18d192f0
AD
11145@end deffn
11146
18b519c0 11147@deffn {Directive} %error-verbose
7fceb615
JD
11148An obsolete directive standing for @samp{%define parse.error verbose}
11149(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
18b519c0 11150@end deffn
2a8d363a 11151
02975b9a 11152@deffn {Directive} %file-prefix "@var{prefix}"
72d2299c 11153Bison declaration to set the prefix of the output files. @xref{Decl
d8988b2f 11154Summary}.
18b519c0 11155@end deffn
d8988b2f 11156
18b519c0 11157@deffn {Directive} %glr-parser
8a4281b9
JD
11158Bison declaration to produce a GLR parser. @xref{GLR
11159Parsers, ,Writing GLR Parsers}.
18b519c0 11160@end deffn
676385e2 11161
dd8d9022
AD
11162@deffn {Directive} %initial-action
11163Run user code before parsing. @xref{Initial Action Decl, , Performing Actions before Parsing}.
11164@end deffn
11165
e6e704dc
JD
11166@deffn {Directive} %language
11167Specify the programming language for the generated parser.
11168@xref{Decl Summary}.
11169@end deffn
11170
18b519c0 11171@deffn {Directive} %left
d78f0ac9 11172Bison declaration to assign precedence and left associativity to token(s).
bfa74976 11173@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11174@end deffn
bfa74976 11175
2055a44e
AD
11176@deffn {Directive} %lex-param @{@var{argument-declaration}@} @dots{}
11177Bison declaration to specifying additional arguments that
2a8d363a
AD
11178@code{yylex} should accept. @xref{Pure Calling,, Calling Conventions
11179for Pure Parsers}.
18b519c0 11180@end deffn
2a8d363a 11181
18b519c0 11182@deffn {Directive} %merge
676385e2 11183Bison declaration to assign a merging function to a rule. If there is a
fae437e8 11184reduce/reduce conflict with a rule having the same merging function, the
676385e2 11185function is applied to the two semantic values to get a single result.
8a4281b9 11186@xref{GLR Parsers, ,Writing GLR Parsers}.
18b519c0 11187@end deffn
676385e2 11188
02975b9a 11189@deffn {Directive} %name-prefix "@var{prefix}"
72d2299c 11190Bison declaration to rename the external symbols. @xref{Decl Summary}.
18b519c0 11191@end deffn
d8988b2f 11192
91d2c560 11193@ifset defaultprec
22fccf95
PE
11194@deffn {Directive} %no-default-prec
11195Do not assign a precedence to rules that lack an explicit @samp{%prec}
11196modifier. @xref{Contextual Precedence, ,Context-Dependent
11197Precedence}.
11198@end deffn
91d2c560 11199@end ifset
22fccf95 11200
18b519c0 11201@deffn {Directive} %no-lines
931c7513 11202Bison declaration to avoid generating @code{#line} directives in the
ff7571c0 11203parser implementation file. @xref{Decl Summary}.
18b519c0 11204@end deffn
931c7513 11205
18b519c0 11206@deffn {Directive} %nonassoc
d78f0ac9 11207Bison declaration to assign precedence and nonassociativity to token(s).
bfa74976 11208@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11209@end deffn
bfa74976 11210
02975b9a 11211@deffn {Directive} %output "@var{file}"
ff7571c0
JD
11212Bison declaration to set the name of the parser implementation file.
11213@xref{Decl Summary}.
18b519c0 11214@end deffn
d8988b2f 11215
2055a44e
AD
11216@deffn {Directive} %param @{@var{argument-declaration}@} @dots{}
11217Bison declaration to specify additional arguments that both
11218@code{yylex} and @code{yyparse} should accept. @xref{Parser Function,, The
11219Parser Function @code{yyparse}}.
11220@end deffn
11221
11222@deffn {Directive} %parse-param @{@var{argument-declaration}@} @dots{}
11223Bison declaration to specify additional arguments that @code{yyparse}
11224should accept. @xref{Parser Function,, The Parser Function @code{yyparse}}.
18b519c0 11225@end deffn
2a8d363a 11226
18b519c0 11227@deffn {Directive} %prec
bfa74976
RS
11228Bison declaration to assign a precedence to a specific rule.
11229@xref{Contextual Precedence, ,Context-Dependent Precedence}.
18b519c0 11230@end deffn
bfa74976 11231
d78f0ac9
AD
11232@deffn {Directive} %precedence
11233Bison declaration to assign precedence to token(s), but no associativity
11234@xref{Precedence Decl, ,Operator Precedence}.
11235@end deffn
11236
18b519c0 11237@deffn {Directive} %pure-parser
35c1e5f0
JD
11238Deprecated version of @samp{%define api.pure} (@pxref{%define
11239Summary,,api.pure}), for which Bison is more careful to warn about
11240unreasonable usage.
18b519c0 11241@end deffn
bfa74976 11242
b50d2359 11243@deffn {Directive} %require "@var{version}"
9b8a5ce0
AD
11244Require version @var{version} or higher of Bison. @xref{Require Decl, ,
11245Require a Version of Bison}.
b50d2359
AD
11246@end deffn
11247
18b519c0 11248@deffn {Directive} %right
d78f0ac9 11249Bison declaration to assign precedence and right associativity to token(s).
bfa74976 11250@xref{Precedence Decl, ,Operator Precedence}.
18b519c0 11251@end deffn
bfa74976 11252
e6e704dc
JD
11253@deffn {Directive} %skeleton
11254Specify the skeleton to use; usually for development.
11255@xref{Decl Summary}.
11256@end deffn
11257
18b519c0 11258@deffn {Directive} %start
704a47c4
AD
11259Bison declaration to specify the start symbol. @xref{Start Decl, ,The
11260Start-Symbol}.
18b519c0 11261@end deffn
bfa74976 11262
18b519c0 11263@deffn {Directive} %token
bfa74976
RS
11264Bison declaration to declare token(s) without specifying precedence.
11265@xref{Token Decl, ,Token Type Names}.
18b519c0 11266@end deffn
bfa74976 11267
18b519c0 11268@deffn {Directive} %token-table
ff7571c0
JD
11269Bison declaration to include a token name table in the parser
11270implementation file. @xref{Decl Summary}.
18b519c0 11271@end deffn
931c7513 11272
18b519c0 11273@deffn {Directive} %type
704a47c4
AD
11274Bison declaration to declare nonterminals. @xref{Type Decl,
11275,Nonterminal Symbols}.
18b519c0 11276@end deffn
bfa74976 11277
dd8d9022
AD
11278@deffn {Symbol} $undefined
11279The predefined token onto which all undefined values returned by
11280@code{yylex} are mapped. It cannot be used in the grammar, rather, use
11281@code{error}.
11282@end deffn
11283
18b519c0 11284@deffn {Directive} %union
bfa74976
RS
11285Bison declaration to specify several possible data types for semantic
11286values. @xref{Union Decl, ,The Collection of Value Types}.
18b519c0 11287@end deffn
bfa74976 11288
dd8d9022
AD
11289@deffn {Macro} YYABORT
11290Macro to pretend that an unrecoverable syntax error has occurred, by
11291making @code{yyparse} return 1 immediately. The error reporting
11292function @code{yyerror} is not called. @xref{Parser Function, ,The
11293Parser Function @code{yyparse}}.
8405b70c
PB
11294
11295For Java parsers, this functionality is invoked using @code{return YYABORT;}
11296instead.
dd8d9022 11297@end deffn
3ded9a63 11298
dd8d9022
AD
11299@deffn {Macro} YYACCEPT
11300Macro to pretend that a complete utterance of the language has been
11301read, by making @code{yyparse} return 0 immediately.
11302@xref{Parser Function, ,The Parser Function @code{yyparse}}.
8405b70c
PB
11303
11304For Java parsers, this functionality is invoked using @code{return YYACCEPT;}
11305instead.
dd8d9022 11306@end deffn
bfa74976 11307
dd8d9022 11308@deffn {Macro} YYBACKUP
742e4900 11309Macro to discard a value from the parser stack and fake a lookahead
dd8d9022 11310token. @xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11311@end deffn
bfa74976 11312
dd8d9022 11313@deffn {Variable} yychar
32c29292 11314External integer variable that contains the integer value of the
742e4900 11315lookahead token. (In a pure parser, it is a local variable within
dd8d9022
AD
11316@code{yyparse}.) Error-recovery rule actions may examine this variable.
11317@xref{Action Features, ,Special Features for Use in Actions}.
18b519c0 11318@end deffn
bfa74976 11319
dd8d9022
AD
11320@deffn {Variable} yyclearin
11321Macro used in error-recovery rule actions. It clears the previous
742e4900 11322lookahead token. @xref{Error Recovery}.
18b519c0 11323@end deffn
bfa74976 11324
dd8d9022
AD
11325@deffn {Macro} YYDEBUG
11326Macro to define to equip the parser with tracing code. @xref{Tracing,
11327,Tracing Your Parser}.
18b519c0 11328@end deffn
bfa74976 11329
dd8d9022
AD
11330@deffn {Variable} yydebug
11331External integer variable set to zero by default. If @code{yydebug}
11332is given a nonzero value, the parser will output information on input
11333symbols and parser action. @xref{Tracing, ,Tracing Your Parser}.
18b519c0 11334@end deffn
bfa74976 11335
dd8d9022
AD
11336@deffn {Macro} yyerrok
11337Macro to cause parser to recover immediately to its normal mode
11338after a syntax error. @xref{Error Recovery}.
11339@end deffn
11340
11341@deffn {Macro} YYERROR
11342Macro to pretend that a syntax error has just been detected: call
11343@code{yyerror} and then perform normal error recovery if possible
11344(@pxref{Error Recovery}), or (if recovery is impossible) make
11345@code{yyparse} return 1. @xref{Error Recovery}.
8405b70c
PB
11346
11347For Java parsers, this functionality is invoked using @code{return YYERROR;}
11348instead.
dd8d9022
AD
11349@end deffn
11350
11351@deffn {Function} yyerror
11352User-supplied function to be called by @code{yyparse} on error.
71b00ed8 11353@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
dd8d9022
AD
11354@end deffn
11355
11356@deffn {Macro} YYERROR_VERBOSE
71b00ed8
AD
11357An obsolete macro used in the @file{yacc.c} skeleton, that you define
11358with @code{#define} in the prologue to request verbose, specific error
11359message strings when @code{yyerror} is called. It doesn't matter what
11360definition you use for @code{YYERROR_VERBOSE}, just whether you define
cf499cff 11361it. Using @samp{%define parse.error verbose} is preferred
31b850d2 11362(@pxref{Error Reporting, ,The Error Reporting Function @code{yyerror}}).
dd8d9022
AD
11363@end deffn
11364
11365@deffn {Macro} YYINITDEPTH
11366Macro for specifying the initial size of the parser stack.
1a059451 11367@xref{Memory Management}.
dd8d9022
AD
11368@end deffn
11369
11370@deffn {Function} yylex
11371User-supplied lexical analyzer function, called with no arguments to get
11372the next token. @xref{Lexical, ,The Lexical Analyzer Function
11373@code{yylex}}.
11374@end deffn
11375
11376@deffn {Macro} YYLEX_PARAM
11377An obsolete macro for specifying an extra argument (or list of extra
32c29292 11378arguments) for @code{yyparse} to pass to @code{yylex}. The use of this
dd8d9022
AD
11379macro is deprecated, and is supported only for Yacc like parsers.
11380@xref{Pure Calling,, Calling Conventions for Pure Parsers}.
11381@end deffn
11382
11383@deffn {Variable} yylloc
11384External variable in which @code{yylex} should place the line and column
11385numbers associated with a token. (In a pure parser, it is a local
11386variable within @code{yyparse}, and its address is passed to
32c29292
JD
11387@code{yylex}.)
11388You can ignore this variable if you don't use the @samp{@@} feature in the
11389grammar actions.
11390@xref{Token Locations, ,Textual Locations of Tokens}.
742e4900 11391In semantic actions, it stores the location of the lookahead token.
32c29292 11392@xref{Actions and Locations, ,Actions and Locations}.
dd8d9022
AD
11393@end deffn
11394
11395@deffn {Type} YYLTYPE
11396Data type of @code{yylloc}; by default, a structure with four
11397members. @xref{Location Type, , Data Types of Locations}.
11398@end deffn
11399
11400@deffn {Variable} yylval
11401External variable in which @code{yylex} should place the semantic
11402value associated with a token. (In a pure parser, it is a local
11403variable within @code{yyparse}, and its address is passed to
32c29292
JD
11404@code{yylex}.)
11405@xref{Token Values, ,Semantic Values of Tokens}.
742e4900 11406In semantic actions, it stores the semantic value of the lookahead token.
32c29292 11407@xref{Actions, ,Actions}.
dd8d9022
AD
11408@end deffn
11409
11410@deffn {Macro} YYMAXDEPTH
1a059451
PE
11411Macro for specifying the maximum size of the parser stack. @xref{Memory
11412Management}.
dd8d9022
AD
11413@end deffn
11414
11415@deffn {Variable} yynerrs
8a2800e7 11416Global variable which Bison increments each time it reports a syntax error.
f4101aa6 11417(In a pure parser, it is a local variable within @code{yyparse}. In a
9987d1b3 11418pure push parser, it is a member of yypstate.)
dd8d9022
AD
11419@xref{Error Reporting, ,The Error Reporting Function @code{yyerror}}.
11420@end deffn
11421
11422@deffn {Function} yyparse
11423The parser function produced by Bison; call this function to start
11424parsing. @xref{Parser Function, ,The Parser Function @code{yyparse}}.
11425@end deffn
11426
9987d1b3 11427@deffn {Function} yypstate_delete
f4101aa6 11428The function to delete a parser instance, produced by Bison in push mode;
9987d1b3 11429call this function to delete the memory associated with a parser.
f4101aa6 11430@xref{Parser Delete Function, ,The Parser Delete Function
9987d1b3 11431@code{yypstate_delete}}.
59da312b
JD
11432(The current push parsing interface is experimental and may evolve.
11433More user feedback will help to stabilize it.)
9987d1b3
JD
11434@end deffn
11435
11436@deffn {Function} yypstate_new
f4101aa6 11437The function to create a parser instance, produced by Bison in push mode;
9987d1b3 11438call this function to create a new parser.
f4101aa6 11439@xref{Parser Create Function, ,The Parser Create Function
9987d1b3 11440@code{yypstate_new}}.
59da312b
JD
11441(The current push parsing interface is experimental and may evolve.
11442More user feedback will help to stabilize it.)
9987d1b3
JD
11443@end deffn
11444
11445@deffn {Function} yypull_parse
f4101aa6
AD
11446The parser function produced by Bison in push mode; call this function to
11447parse the rest of the input stream.
11448@xref{Pull Parser Function, ,The Pull Parser Function
9987d1b3 11449@code{yypull_parse}}.
59da312b
JD
11450(The current push parsing interface is experimental and may evolve.
11451More user feedback will help to stabilize it.)
9987d1b3
JD
11452@end deffn
11453
11454@deffn {Function} yypush_parse
f4101aa6
AD
11455The parser function produced by Bison in push mode; call this function to
11456parse a single token. @xref{Push Parser Function, ,The Push Parser Function
9987d1b3 11457@code{yypush_parse}}.
59da312b
JD
11458(The current push parsing interface is experimental and may evolve.
11459More user feedback will help to stabilize it.)
9987d1b3
JD
11460@end deffn
11461
dd8d9022
AD
11462@deffn {Macro} YYPARSE_PARAM
11463An obsolete macro for specifying the name of a parameter that
11464@code{yyparse} should accept. The use of this macro is deprecated, and
11465is supported only for Yacc like parsers. @xref{Pure Calling,, Calling
11466Conventions for Pure Parsers}.
11467@end deffn
11468
11469@deffn {Macro} YYRECOVERING
02103984
PE
11470The expression @code{YYRECOVERING ()} yields 1 when the parser
11471is recovering from a syntax error, and 0 otherwise.
11472@xref{Action Features, ,Special Features for Use in Actions}.
dd8d9022
AD
11473@end deffn
11474
11475@deffn {Macro} YYSTACK_USE_ALLOCA
eb45ef3b
JD
11476Macro used to control the use of @code{alloca} when the
11477deterministic parser in C needs to extend its stacks. If defined to 0,
d7e14fc0
PE
11478the parser will use @code{malloc} to extend its stacks. If defined to
114791, the parser will use @code{alloca}. Values other than 0 and 1 are
11480reserved for future Bison extensions. If not defined,
11481@code{YYSTACK_USE_ALLOCA} defaults to 0.
11482
55289366 11483In the all-too-common case where your code may run on a host with a
d7e14fc0
PE
11484limited stack and with unreliable stack-overflow checking, you should
11485set @code{YYMAXDEPTH} to a value that cannot possibly result in
11486unchecked stack overflow on any of your target hosts when
11487@code{alloca} is called. You can inspect the code that Bison
11488generates in order to determine the proper numeric values. This will
11489require some expertise in low-level implementation details.
dd8d9022
AD
11490@end deffn
11491
11492@deffn {Type} YYSTYPE
11493Data type of semantic values; @code{int} by default.
11494@xref{Value Type, ,Data Types of Semantic Values}.
18b519c0 11495@end deffn
bfa74976 11496
342b8b6e 11497@node Glossary
bfa74976
RS
11498@appendix Glossary
11499@cindex glossary
11500
11501@table @asis
7fceb615 11502@item Accepting state
eb45ef3b
JD
11503A state whose only action is the accept action.
11504The accepting state is thus a consistent state.
11505@xref{Understanding,,}.
11506
8a4281b9 11507@item Backus-Naur Form (BNF; also called ``Backus Normal Form'')
c827f760
PE
11508Formal method of specifying context-free grammars originally proposed
11509by John Backus, and slightly improved by Peter Naur in his 1960-01-02
11510committee document contributing to what became the Algol 60 report.
11511@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
bfa74976 11512
7fceb615
JD
11513@item Consistent state
11514A state containing only one possible action. @xref{Default Reductions}.
eb45ef3b 11515
bfa74976
RS
11516@item Context-free grammars
11517Grammars specified as rules that can be applied regardless of context.
11518Thus, if there is a rule which says that an integer can be used as an
11519expression, integers are allowed @emph{anywhere} an expression is
89cab50d
AD
11520permitted. @xref{Language and Grammar, ,Languages and Context-Free
11521Grammars}.
bfa74976 11522
7fceb615 11523@item Default reduction
110ef36a 11524The reduction that a parser should perform if the current parser state
35c1e5f0 11525contains no other action for the lookahead token. In permitted parser
7fceb615
JD
11526states, Bison declares the reduction with the largest lookahead set to be
11527the default reduction and removes that lookahead set. @xref{Default
11528Reductions}.
11529
11530@item Defaulted state
11531A consistent state with a default reduction. @xref{Default Reductions}.
eb45ef3b 11532
bfa74976
RS
11533@item Dynamic allocation
11534Allocation of memory that occurs during execution, rather than at
11535compile time or on entry to a function.
11536
11537@item Empty string
11538Analogous to the empty set in set theory, the empty string is a
11539character string of length zero.
11540
11541@item Finite-state stack machine
11542A ``machine'' that has discrete states in which it is said to exist at
11543each instant in time. As input to the machine is processed, the
11544machine moves from state to state as specified by the logic of the
11545machine. In the case of the parser, the input is the language being
11546parsed, and the states correspond to various stages in the grammar
c827f760 11547rules. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976 11548
8a4281b9 11549@item Generalized LR (GLR)
676385e2 11550A parsing algorithm that can handle all context-free grammars, including those
8a4281b9 11551that are not LR(1). It resolves situations that Bison's
eb45ef3b 11552deterministic parsing
676385e2
PH
11553algorithm cannot by effectively splitting off multiple parsers, trying all
11554possible parsers, and discarding those that fail in the light of additional
c827f760 11555right context. @xref{Generalized LR Parsing, ,Generalized
8a4281b9 11556LR Parsing}.
676385e2 11557
bfa74976
RS
11558@item Grouping
11559A language construct that is (in general) grammatically divisible;
c827f760 11560for example, `expression' or `declaration' in C@.
bfa74976
RS
11561@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11562
7fceb615
JD
11563@item IELR(1) (Inadequacy Elimination LR(1))
11564A minimal LR(1) parser table construction algorithm. That is, given any
35c1e5f0 11565context-free grammar, IELR(1) generates parser tables with the full
7fceb615
JD
11566language-recognition power of canonical LR(1) but with nearly the same
11567number of parser states as LALR(1). This reduction in parser states is
11568often an order of magnitude. More importantly, because canonical LR(1)'s
11569extra parser states may contain duplicate conflicts in the case of non-LR(1)
11570grammars, the number of conflicts for IELR(1) is often an order of magnitude
11571less as well. This can significantly reduce the complexity of developing a
11572grammar. @xref{LR Table Construction}.
eb45ef3b 11573
bfa74976
RS
11574@item Infix operator
11575An arithmetic operator that is placed between the operands on which it
11576performs some operation.
11577
11578@item Input stream
11579A continuous flow of data between devices or programs.
11580
8a4281b9 11581@item LAC (Lookahead Correction)
fcf834f9 11582A parsing mechanism that fixes the problem of delayed syntax error
7fceb615
JD
11583detection, which is caused by LR state merging, default reductions, and the
11584use of @code{%nonassoc}. Delayed syntax error detection results in
11585unexpected semantic actions, initiation of error recovery in the wrong
11586syntactic context, and an incorrect list of expected tokens in a verbose
11587syntax error message. @xref{LAC}.
fcf834f9 11588
bfa74976
RS
11589@item Language construct
11590One of the typical usage schemas of the language. For example, one of
11591the constructs of the C language is the @code{if} statement.
11592@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
11593
11594@item Left associativity
11595Operators having left associativity are analyzed from left to right:
11596@samp{a+b+c} first computes @samp{a+b} and then combines with
11597@samp{c}. @xref{Precedence, ,Operator Precedence}.
11598
11599@item Left recursion
89cab50d
AD
11600A rule whose result symbol is also its first component symbol; for
11601example, @samp{expseq1 : expseq1 ',' exp;}. @xref{Recursion, ,Recursive
11602Rules}.
bfa74976
RS
11603
11604@item Left-to-right parsing
11605Parsing a sentence of a language by analyzing it token by token from
c827f760 11606left to right. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11607
11608@item Lexical analyzer (scanner)
11609A function that reads an input stream and returns tokens one by one.
11610@xref{Lexical, ,The Lexical Analyzer Function @code{yylex}}.
11611
11612@item Lexical tie-in
11613A flag, set by actions in the grammar rules, which alters the way
11614tokens are parsed. @xref{Lexical Tie-ins}.
11615
931c7513 11616@item Literal string token
14ded682 11617A token which consists of two or more fixed characters. @xref{Symbols}.
931c7513 11618
742e4900
JD
11619@item Lookahead token
11620A token already read but not yet shifted. @xref{Lookahead, ,Lookahead
89cab50d 11621Tokens}.
bfa74976 11622
8a4281b9 11623@item LALR(1)
bfa74976 11624The class of context-free grammars that Bison (like most other parser
8a4281b9 11625generators) can handle by default; a subset of LR(1).
cc09e5be 11626@xref{Mysterious Conflicts}.
bfa74976 11627
8a4281b9 11628@item LR(1)
bfa74976 11629The class of context-free grammars in which at most one token of
742e4900 11630lookahead is needed to disambiguate the parsing of any piece of input.
bfa74976
RS
11631
11632@item Nonterminal symbol
11633A grammar symbol standing for a grammatical construct that can
11634be expressed through rules in terms of smaller constructs; in other
11635words, a construct that is not a token. @xref{Symbols}.
11636
bfa74976
RS
11637@item Parser
11638A function that recognizes valid sentences of a language by analyzing
11639the syntax structure of a set of tokens passed to it from a lexical
11640analyzer.
11641
11642@item Postfix operator
11643An arithmetic operator that is placed after the operands upon which it
11644performs some operation.
11645
11646@item Reduction
11647Replacing a string of nonterminals and/or terminals with a single
89cab50d 11648nonterminal, according to a grammar rule. @xref{Algorithm, ,The Bison
c827f760 11649Parser Algorithm}.
bfa74976
RS
11650
11651@item Reentrant
11652A reentrant subprogram is a subprogram which can be in invoked any
11653number of times in parallel, without interference between the various
11654invocations. @xref{Pure Decl, ,A Pure (Reentrant) Parser}.
11655
11656@item Reverse polish notation
11657A language in which all operators are postfix operators.
11658
11659@item Right recursion
89cab50d
AD
11660A rule whose result symbol is also its last component symbol; for
11661example, @samp{expseq1: exp ',' expseq1;}. @xref{Recursion, ,Recursive
11662Rules}.
bfa74976
RS
11663
11664@item Semantics
11665In computer languages, the semantics are specified by the actions
11666taken for each instance of the language, i.e., the meaning of
11667each statement. @xref{Semantics, ,Defining Language Semantics}.
11668
11669@item Shift
11670A parser is said to shift when it makes the choice of analyzing
11671further input from the stream rather than reducing immediately some
c827f760 11672already-recognized rule. @xref{Algorithm, ,The Bison Parser Algorithm}.
bfa74976
RS
11673
11674@item Single-character literal
11675A single character that is recognized and interpreted as is.
11676@xref{Grammar in Bison, ,From Formal Rules to Bison Input}.
11677
11678@item Start symbol
11679The nonterminal symbol that stands for a complete valid utterance in
11680the language being parsed. The start symbol is usually listed as the
13863333 11681first nonterminal symbol in a language specification.
bfa74976
RS
11682@xref{Start Decl, ,The Start-Symbol}.
11683
11684@item Symbol table
11685A data structure where symbol names and associated data are stored
11686during parsing to allow for recognition and use of existing
11687information in repeated uses of a symbol. @xref{Multi-function Calc}.
11688
6e649e65
PE
11689@item Syntax error
11690An error encountered during parsing of an input stream due to invalid
11691syntax. @xref{Error Recovery}.
11692
bfa74976
RS
11693@item Token
11694A basic, grammatically indivisible unit of a language. The symbol
11695that describes a token in the grammar is a terminal symbol.
11696The input of the Bison parser is a stream of tokens which comes from
11697the lexical analyzer. @xref{Symbols}.
11698
11699@item Terminal symbol
89cab50d
AD
11700A grammar symbol that has no rules in the grammar and therefore is
11701grammatically indivisible. The piece of text it represents is a token.
11702@xref{Language and Grammar, ,Languages and Context-Free Grammars}.
7fceb615
JD
11703
11704@item Unreachable state
11705A parser state to which there does not exist a sequence of transitions from
11706the parser's start state. A state can become unreachable during conflict
11707resolution. @xref{Unreachable States}.
bfa74976
RS
11708@end table
11709
342b8b6e 11710@node Copying This Manual
f2b5126e 11711@appendix Copying This Manual
f2b5126e
PB
11712@include fdl.texi
11713
5e528941
JD
11714@node Bibliography
11715@unnumbered Bibliography
11716
11717@table @asis
11718@item [Denny 2008]
11719Joel E. Denny and Brian A. Malloy, IELR(1): Practical LR(1) Parser Tables
11720for Non-LR(1) Grammars with Conflict Resolution, in @cite{Proceedings of the
117212008 ACM Symposium on Applied Computing} (SAC'08), ACM, New York, NY, USA,
11722pp.@: 240--245. @uref{http://dx.doi.org/10.1145/1363686.1363747}
11723
11724@item [Denny 2010 May]
11725Joel E. Denny, PSLR(1): Pseudo-Scannerless Minimal LR(1) for the
11726Deterministic Parsing of Composite Languages, Ph.D. Dissertation, Clemson
11727University, Clemson, SC, USA (May 2010).
11728@uref{http://proquest.umi.com/pqdlink?did=2041473591&Fmt=7&clientId=79356&RQT=309&VName=PQD}
11729
11730@item [Denny 2010 November]
11731Joel E. Denny and Brian A. Malloy, The IELR(1) Algorithm for Generating
11732Minimal LR(1) Parser Tables for Non-LR(1) Grammars with Conflict Resolution,
11733in @cite{Science of Computer Programming}, Vol.@: 75, Issue 11 (November
117342010), pp.@: 943--979. @uref{http://dx.doi.org/10.1016/j.scico.2009.08.001}
11735
11736@item [DeRemer 1982]
11737Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1)
11738Look-Ahead Sets, in @cite{ACM Transactions on Programming Languages and
11739Systems}, Vol.@: 4, No.@: 4 (October 1982), pp.@:
11740615--649. @uref{http://dx.doi.org/10.1145/69622.357187}
11741
11742@item [Knuth 1965]
11743Donald E. Knuth, On the Translation of Languages from Left to Right, in
11744@cite{Information and Control}, Vol.@: 8, Issue 6 (December 1965), pp.@:
11745607--639. @uref{http://dx.doi.org/10.1016/S0019-9958(65)90426-2}
11746
11747@item [Scott 2000]
11748Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussain,
11749@cite{Tomita-Style Generalised LR Parsers}, Royal Holloway, University of
11750London, Department of Computer Science, TR-00-12 (December 2000).
11751@uref{http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps}
11752@end table
11753
342b8b6e 11754@node Index
bfa74976
RS
11755@unnumbered Index
11756
11757@printindex cp
11758
bfa74976 11759@bye
a06ea4aa 11760
6b5a0de9
AD
11761@c LocalWords: texinfo setfilename settitle setchapternewpage finalout texi FSF
11762@c LocalWords: ifinfo smallbook shorttitlepage titlepage GPL FIXME iftex FSF's
11763@c LocalWords: akim fn cp syncodeindex vr tp synindex dircategory direntry Naur
11764@c LocalWords: ifset vskip pt filll insertcopying sp ISBN Etienne Suvasa Multi
11765@c LocalWords: ifnottex yyparse detailmenu GLR RPN Calc var Decls Rpcalc multi
11766@c LocalWords: rpcalc Lexer Expr ltcalc mfcalc yylex defaultprec Donnelly Gotos
11767@c LocalWords: yyerror pxref LR yylval cindex dfn LALR samp gpl BNF xref yypush
11768@c LocalWords: const int paren ifnotinfo AC noindent emph expr stmt findex lr
11769@c LocalWords: glr YYSTYPE TYPENAME prog dprec printf decl init stmtMerge POSIX
11770@c LocalWords: pre STDC GNUC endif yy YY alloca lf stddef stdlib YYDEBUG yypull
11771@c LocalWords: NUM exp subsubsection kbd Ctrl ctype EOF getchar isdigit nonfree
11772@c LocalWords: ungetc stdin scanf sc calc ulator ls lm cc NEG prec yyerrok rr
11773@c LocalWords: longjmp fprintf stderr yylloc YYLTYPE cos ln Stallman Destructor
11774@c LocalWords: smallexample symrec val tptr FNCT fnctptr func struct sym enum
11775@c LocalWords: fnct putsym getsym fname arith fncts atan ptr malloc sizeof Lex
11776@c LocalWords: strlen strcpy fctn strcmp isalpha symbuf realloc isalnum DOTDOT
11777@c LocalWords: ptypes itype YYPRINT trigraphs yytname expseq vindex dtype Unary
11778@c LocalWords: Rhs YYRHSLOC LE nonassoc op deffn typeless yynerrs nonterminal
11779@c LocalWords: yychar yydebug msg YYNTOKENS YYNNTS YYNRULES YYNSTATES reentrant
11780@c LocalWords: cparse clex deftypefun NE defmac YYACCEPT YYABORT param yypstate
11781@c LocalWords: strncmp intval tindex lvalp locp llocp typealt YYBACKUP subrange
11782@c LocalWords: YYEMPTY YYEOF YYRECOVERING yyclearin GE def UMINUS maybeword loc
11783@c LocalWords: Johnstone Shamsa Sadaf Hussain Tomita TR uref YYMAXDEPTH inline
11784@c LocalWords: YYINITDEPTH stmnts ref stmnt initdcl maybeasm notype Lookahead
11785@c LocalWords: hexflag STR exdent itemset asis DYYDEBUG YYFPRINTF args Autoconf
11786@c LocalWords: infile ypp yxx outfile itemx tex leaderfill Troubleshouting sqrt
11787@c LocalWords: hbox hss hfill tt ly yyin fopen fclose ofirst gcc ll lookahead
11788@c LocalWords: nbar yytext fst snd osplit ntwo strdup AST Troublereporting th
11789@c LocalWords: YYSTACK DVI fdl printindex IELR nondeterministic nonterminals ps
fcf834f9 11790@c LocalWords: subexpressions declarator nondeferred config libintl postfix LAC
6b5a0de9 11791@c LocalWords: preprocessor nonpositive unary nonnumeric typedef extern rhs
ff7571c0 11792@c LocalWords: yytokentype destructor multicharacter nonnull EBCDIC
6b5a0de9
AD
11793@c LocalWords: lvalue nonnegative XNUM CHR chr TAGLESS tagless stdout api TOK
11794@c LocalWords: destructors Reentrancy nonreentrant subgrammar nonassociative
11795@c LocalWords: deffnx namespace xml goto lalr ielr runtime lex yacc yyps env
11796@c LocalWords: yystate variadic Unshift NLS gettext po UTF Automake LOCALEDIR
11797@c LocalWords: YYENABLE bindtextdomain Makefile DEFS CPPFLAGS DBISON DeRemer
11798@c LocalWords: autoreconf Pennello multisets nondeterminism Generalised baz
11799@c LocalWords: redeclare automata Dparse localedir datadir XSLT midrule Wno
ff7571c0 11800@c LocalWords: Graphviz multitable headitem hh basename Doxygen fno
6b5a0de9
AD
11801@c LocalWords: doxygen ival sval deftypemethod deallocate pos deftypemethodx
11802@c LocalWords: Ctor defcv defcvx arg accessors arithmetics CPP ifndef CALCXX
11803@c LocalWords: lexer's calcxx bool LPAREN RPAREN deallocation cerrno climits
11804@c LocalWords: cstdlib Debian undef yywrap unput noyywrap nounput zA yyleng
11805@c LocalWords: errno strtol ERANGE str strerror iostream argc argv Javadoc
11806@c LocalWords: bytecode initializers superclass stype ASTNode autoboxing nls
11807@c LocalWords: toString deftypeivar deftypeivarx deftypeop YYParser strictfp
11808@c LocalWords: superclasses boolean getErrorVerbose setErrorVerbose deftypecv
11809@c LocalWords: getDebugStream setDebugStream getDebugLevel setDebugLevel url
11810@c LocalWords: bisonVersion deftypecvx bisonSkeleton getStartPos getEndPos
679e9935 11811@c LocalWords: getLVal defvar deftypefn deftypefnx gotos msgfmt Corbett
6b5a0de9 11812@c LocalWords: subdirectory Solaris nonassociativity
e944aaff
AD
11813
11814@c Local Variables:
11815@c ispell-dictionary: "american"
11816@c fill-column: 76
11817@c End: